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Foreword

Robots! Robots on Mars and in oceans, in hospitals and homes, in factories and
schools; robots fighting fires, making goods and products, saving time and lives.
Robots today are making a considerable impact from industrial manufacturing to
health care, transportation, and exploration of the deep space and sea. Tomorrow,
robots will become pervasive and touch upon many aspects of modern life.

The Springer Tracts in Advanced Robotics (STAR) was launched in 2002 with
the goal of bringing to the research community the latest advances in the robotics
field on the basis of their significance and quality. During the latest fifteen years, the
STAR series has featured publication of both monographs and edited collections.
Among the latter, the proceedings of thematic symposia devoted to excellence in
robotics research, such as ISRR, ISER, FSR, and WAFR, have been regularly
included in STAR.

The expansion of our field as well as the emergence of new research areas has
motivated us to enlarging the pool of proceedings to be published in STAR in the
last few years. This has ultimately led us to launching a sister series in parallel to
STAR. The Springer Proceedings in Advanced Robotics (SPAR) is dedicated to the
timely dissemination of the latest research results presented in selected symposia
and workshops.

The twelfth edition of “Robotics Research” edited by Antonio Bicchi and
Wolfram Burgard in its 8-part volume is a collection of a broad range of topics in
robotics. The content of these contributions provides a wide coverage of the current
state of robotics research: the advances and challenges in its theoretical foundation
and technology basis, and the developments in its traditional and new emerging
areas of applications. The diversity, novelty, and span of the work unfolding in
these areas reveal the field’s increased maturity and expanded scope.
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From its beautiful venue to its excellent program, the twelfth edition of ISRR
culminates with this important reference on the current developments and new
directions in the field of robotics—a true tribute to its contributors and organizers!

Stanford, USA
November 2016

Oussama Khatib
SPAR Editor
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Preface

The 12th International Symposium of Robotics Research (ISRR 2015) was held
from September 12–15, 2015, in Sestri Levante, Italy. The ISRR series on con-
ferences began in 1983, and it is sponsored by the International Foundation of
Robotics Research (IFRR), an independent organization comprised of top
researchers around the world.

The goal of the ISRR is to bring together active, leading robotics researchers
from academia, government, and industry, to assess and share their views and ideas
about the state of the art of robotics and to discuss promising new avenues for
future research exploration in the field of Robotics.

The choice of the location of ISRR 2015 reflects a tradition in ISRR, holding the
conference in a beautiful place where the natural and cultural setting can inspire
deeper and longer-sighted thoughts in the pauses of a very intense working pro-
gram. Having the symposium in Italy was also meant to be suggestive of the ideal
link between the most advanced robotics research with the ideas and dreams of the
great engineers of the past. They, in particular those who are named “Renaissance
Engineers,” thought and dreamed of realizing intelligent machines, including
robots, but could not build them. Nowadays, robotics technology can make this
possible. Some ideas, like the openings toward human sciences and the concept of
human-centered design, are as much valid now as they were at that time.

Special emphasis in ISRR 2015 was given to the emerging frontiers, such as the
fields of flying robots, soft robotics and natural machine motion, hands and haptics,
multi-robot systems, cognitive robotics and learning, humanoids and legged loco-
motion, robot planning and navigation, and knowledge-based robots.

The goal of the ISRR Symposia is to bring together active leading robotics
researchers and pioneers from academia, government, and industry to assess and
share their views and ideas about the state of the art of robotics and to discuss
promising new avenues for future research. Papers representing authoritative
reviews of established research areas as well as papers reporting on new areas and
pioneering work were sought for presentation at the symposium. In addition to the
open call, a well selected number of leading researchers have been solicited to
contribute by personal invitation.
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A Greatest Hits track was introduced in ISRR 2015. A small number of research
papers which have been selected for the most prestigious awards in the last year
have been invited for presentation. This offered a unique possibility to have a
synoptic view of what the robotics community considered to be the best of robotics
research and put it in a larger context.

During the four-day symposium, 49 papers were presented in a single track, to
cover the broad research area of robotics; two forum sessions integrated the pro-
gram by facilitating group discussions. Poster sessions were also held, in a very
informal interactive style. The procedure to select the papers and the participants
was very strict. A number of selected leading researchers were invited to be part
of the program committee, providing overview talks and participating in the review
process. In addition to an open call for contributions, researchers who had made
significant new contributions to robotics were invited to submit papers to a com-
petitive review process. All papers were reviewed by the Symposium Program
Committee and the International Foundation of Robotics Research (IFRR, the
symposium sponsor) for final acceptance.

The symposium included visits to several beautiful sites in the area, as well as at
encouraging greater participant interaction, also by stimulating cultural discussions
and reflection on robotics, its historical background, and its future challenges. It
furthermore included a technical tour to the Instituto Italiano di Technologia where
a large variety of leading edge robotics science and systems were presented to the
participants.

This book collects the papers presented at the symposium, with authoritative
introductions to each section by the chairs of the corresponding sessions.

The ISRR 2015 co-chairs/editors would like to thank Floriana Sardi, for their
invaluable help in the organization of the program; Monica Vasco and Simona
Ventriglia for their tireless secretarial work on local organization; Nick Dring for
the management of the Web site; and Abhinav Valada for helping especially in the
final assembly of this book.

Genoa/Pisa, Italy Antonio Bicchi
Freiburg im Breisgau, Germany Wolfram Burgard
August 2016
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Part I
Cognitive Robotics and Learning

Session Summary

The Cognitive Robotics and Learning mini symposium was held on the third day of
the conference and consisted of eight contributions. Three of them were presented
as 15-minute talks, and five were presented as 5-minute spotlight talks followed by a
poster session. The papers address important topics related to learning from human
observation, novel representations for linking perception and action, and machine
learning methods for statistical generalization, clustering, and classification. In spite
of ISRR, the papers focused on discussing open research questions, challenges, and
lessons learned in the respective areas.

In Chapter “Bridging the Robot Perception Gap with Mid-level Vision,” Bohren
andHager presented amethod to jointly recognize, segment, and estimate the position
of objects in 3D. The goal was to integrate popular computer vision methods for
object segmentation with constrained rigid object registration required for robotics
manipulation, thereby connecting mid-level vision with the perception in 3D space.
This was achieved with a combination of efficient convolutional operations through
integral images with RANSAC-based pose estimation. Very comprehensive tests
were performed with RGB-D data of several industrial objects.

Valada, Spinello, and Burgard introduced a new method for terrain classifica-
tion in Chapter “Deep Feature Learning for Acoustics-Based Terrain Classification.”
Instead of using popular vision classification methods, the problem was formulated
with acoustic signals obtained from inexpensivemicrophones.Adeep classifier based
on convolutional networks was then constructed to automatically learn features from
spectrograms to classify the terrain. Experiments were conducted by navigating out-
doors with accuracy exceeding 99% for the recognition of grass, paving, and carpet,
among other surfaces. This demonstrated the potential of the method to deal with
highly noise data.

Learning from demonstration was an important topic in our mini symposium,
with several papers directly addressing this problem. In Chapter “Generalizing Over
Uncertain Dynamics for Online Trajectory Generation”, Kim, Kim, Dai, Kaelbling,

http://dx.doi.org/10.1007/978-3-319-60916-4_1
http://dx.doi.org/10.1007/978-3-319-60916-4_2
http://dx.doi.org/10.1007/978-3-319-60916-4_3
http://dx.doi.org/10.1007/978-3-319-60916-4_3


2 Cognitive Robotics and Learning

and Lozano-Perez described a novel trajectory generator to address problems with
variable and uncertain dynamics. The key insight was to devise an active learning
method based on anomaly detection to better search the state space and guide the
acquisition of more training data. Experiments were performed for an aircraft control
problem and a manipulation task.

In Chapter “Inverse KKT - Learning Cost Functions of Manipulation Tasks from
Demonstrations,” Englert and Toussaint proposed a framework based on constraint
optimization, specifically quadratic programming, to execute manipulation tasks that
incorporate contacts. The authors formulated the problem of learning parametrized
cost functions as a convex optimization procedure from a series of demonstrations.
Once the cost function is determined, trajectories can be obtained by solving a nonlin-
ear constrained problem. The authors successfully tested the approach on challenging
tasks such as sliding objects and opening doors.

Oberlin and Tellex presented a system to automate the collection of data for
novel objects with the aim of making both object detection, pose estimation and
grasping easier. The paper entitled “AutonomouslyAcquiring Instance-BasedObject
Models from Experience” shows how to identify the best grasp point by performing
multiple attempts of picking up an object and tracking successes and failures. This
was formulated as an N-armed bandit problem and demonstrated on a stock Baxter
robot with no extra sensors, and achieve excellent results in detecting, classifying,
and manipulating objects.

In Chapter “Transition State Clustering: Unsupervised Surgical Trajectory
Segmentation for Robot Learning,” Krishnan and colleagues addressed the problem
of segmenting trajectories of a set of surgical trajectories by clustering transitions
between linear dynamic regimes. The new method, named transition state clustering
(TSC), uses a hierarchical Dirichlet process on Gaussian mixture models on transi-
tion states from several demonstrations. The method automatically determines the
number of segments through a series of merging and pruning steps and achieves
performance approaching human experts on needle passing segments and suturing
segments.

In Chapter “Robot Learning with Task-Parameterized Generative Models,” Cali-
non discusses the generalization capability of task-parameterized Gaussian mixture
models in robot learning from demonstration and the application of such models
for movement generation in robots with high number of degrees of freedom. The
paper shows that task parameters can be represented as affine transformation which
can be used with different statistical encoding strategies, including standard mixture
models and subspace clustering, and is able to handle task constraints in task space
and joint space as well as constraint priorities. The approach was demonstrated in a
series of problems in configuration and operational spaces, tested in simulation and
on a Baxter robot.

In modeling objects as aspect transition graphs to support manipulation, Ku,
Learned-Miller, and Grupen introduced an image-based object model that is able
to categorize an object into a subset of aspects based on interactions instead of only
on visual appearance. The resulting representation of an object model as aspect tran-
sition graph combines distinctive object views with the information of how actions

http://dx.doi.org/10.1007/978-3-319-60916-4_4
http://dx.doi.org/10.1007/978-3-319-60916-4_4
http://dx.doi.org/10.1007/978-3-319-60916-4_5
http://dx.doi.org/10.1007/978-3-319-60916-4_5
http://dx.doi.org/10.1007/978-3-319-60916-4_6
http://dx.doi.org/10.1007/978-3-319-60916-4_6
http://dx.doi.org/10.1007/978-3-319-60916-4_7
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change viewpoints or the state on the object. Further, an image-based visual servoing
algorithm is presented that works with the object model. The novel object model and
visual servoing algorithm are demonstrated on a tool grasping task on the Robonout
2 simulator.



Bridging the Robot Perception Gap
with Mid-Level Vision

Chi Li, Jonathan Bohren and Gregory D. Hager

1 Introduction

Despite the substantial progress made in computer vision for object recognition over
the past few years, practical “turn-key” use of object recognition and localization
for robotic manipulation in unstructured environments remains elusive. Traditional
recognition methods that have been optimized for large-scale object classification
[1, 2] from contextless images simply do not provide the reliability and precision
for object pose estimation necessary to support physical manipulation. In robotics,
both the identity and 3D pose of an object must be highly reliable since errors can
result in costly failures. Subsequently, roboticists are either forced to redesign tasks
to accommodate the capabilities of the available object registration algorithms, or
they need to modify the objects used in a task for easier recognition. Modifications
to the objects usually involve adding easily-classifiable colors, artificial texture, or
easily-recognizable artificial planar markers or marker constellations [3, 4]. Unfor-
tunately, such modifications are often impractical and sometimes even infeasible –
for example, inmanufacturing and assembly applications, robotic search-and-rescue,
and any operation in hazardous or extreme environments.

As with many industrial automation domains, we face an assembly task in which
a robot is required to construct structures from rigid components which have no
discriminative texture, as seen in Fig. 1a. The lattice structures are built out of truss-
like “links” which are joined together with coupling “nodes” via gendered magnetic
surfaces, as seen in Fig. 1b. While these components were originally designed for

C. Li (B) · J. Bohren · G.D. Hager
Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
e-mail: chi_li@jhu.edu

J. Bohren
e-mail: jbo@jhu.edu

G.D. Hager
e-mail: hager@cs.jhu.edu

© Springer International Publishing AG 2018
A. Bicchi and W. Burgard (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 3, DOI 10.1007/978-3-319-60916-4_1
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6 C. Li et al.

(a) Robotic assembly. (b) Atomic objects. (c) Well-separated. (d) Densely cluttered.

Fig. 1 In a robotic assembly scenario (a), for the objects (b) that have little or no distinguishing
texture features, most object recognition systems would rely on the objects being well-separated
(c) and fail when objects are densely packed (d)

open-loop assembly via quadcopter robots [5], their mechanical properties make
them ideal for autonomous and semi-autonomous [6] manipulation in assembly.

Unfortunately, many object registration algorithms [7–10] are developed to per-
form well only in “partially cluttered” scenes where individual objects are well-
separated like that shown in Fig. 1c. Furthermore, few existing recognition algorithms
are designed to reliably detect and estimate the poses of such textureless objects once
they have been assembled into composite structures as shown in Fig. 1d. Even if the
application allowed for it, augmenting the parts with 2D planar markers is still insuf-
ficient for precise pose estimation due to the small size of the parts and the range at
which they need to be observed.

While object recognition for these dense, textureless scenes is a challenging prob-
lem, we can take advantage of the inherent constraints imposed by physical envi-
ronments to find a solution. In particular, many tasks only involve manipulation of a
small set of known objects, the poses of these objects evolve continuously over time
[11], and often multiple views of the scene are available.

In this paper, we support this line of attack by describing the process of adapting
a state-of-the-art RGBD object classification algorithm [12] to support robot manip-
ulation. We show that by redesigning this algorithm to compute efficient semantic
segmentation on cluttered scenes containing a small number of known objects, we
can significantly improve a standard RANSAC-based pose estimation algorithm by
exploiting semantic labels of the scene.

In the process of creating this algorithm we have introduced three critical inno-
vations. First, we have adapted our previous state-of-the art feature-pooling-based
architecture [12] to operate efficiently enough for on-line robotic use on small sets
of known objects. Second, we have created and tested two variants on scene parsing,
making use of a semantic segmentation provided by feature pooling, that improves the
existing RANSAC-based recognition method [9] on highly cluttered and occluded
scenes. Lastly, we quantitatively and qualitatively evaluate this hybrid algorithm
on a new dataset including complex dense configurations of textureless objects in
cluttered and occluded scenes. For this dataset, our method demonstrates dramatic
improvement on pose estimation compared with the RANSAC-based algorithms
without the object class segmentation.
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The remainder of this paper is organized as follows. Section2 provides a review
of object instance detection and pose estimation. Section3 introduces a new hybrid
algorithmwhich performs scene semantic segmentation and object pose recognition.
Experiments are presented in Sect. 4 and we conclude the paper in Sect. 5.

2 Related Work

Most existing 3D object recognition and pose estimation methods [8, 13–17] employ
robust local feature descriptors such as SIFT [18] (2D) and SHOT/CSHOT [19]
(3D) to reduce the search space of object hypotheses, combined with some con-
straints imposed by 3D object structures. In particular, Hough voting [8, 13, 20] has
been applied to find hypotheses that preserve consistent geometric configurations
of matched feature points on each model. Hand-crafted global feature descriptors
which model partial views have also been examined [15, 16] to filter hypotheses.
A more principled framework is proposed by [14, 21] to select the optimal subset
of hypotheses yielding a solution that is globally consistent with the scene while
handling the interactions among objects. Other approaches only rely on simple geo-
metric features [9, 10, 22] for fast model-scene registration. However, this pipeline
of work suffers from the limited power of local features to robustly infer accurate
object poses, especially in the context of textureless objects, occlusions, foreground
and background clutter and large viewpoint variations.

Another line of work exploits detection results on 2D images for pose estimation.
One representative is the LINE-MOD system [10] which uses gradient templates
to match sliding windows to object partial views and initialize Iterative Closest
Point (ICP) for pose refinement. This template-based design does not capture fine-
grained visual cues between similar objects and does not scale well to multiple object
instanceswhich occlude and / or are in close contactwith each other. Furthermore, the
precision of LINE-MOD’s similarity measure decreases linearly in the percentage
of occlusion [23]. Additionally, some unsupervised segmentation techniques [24,
25] partition the scene into different objects without any prior model knowledge.
[11] updates scene models for generic shapes like boxes and balls over time. These
methods are hard to generalize to segment objects with arbitrary shape.

Recently, the use of deep convolutional architectures [26–31] and the availabil-
ity of huge datasets with hundreds to thousands of object classes have led to rapid
and revolutionary developments in large-scale object recognition. Although these
frameworks significantly boost object classification performance, accurate and effi-
cient pose estimation still remains an unsolved problem. Our recent work [12] shows
how color pooling, within a convolutional architecture, is effective for developing
robust object representations which are insensitive to out-of-plane rotations. This is
the foundation of the proposed method in this paper, which combines the advantages
of a pose-insensitive convolutional architecture with an efficient pose estimation
method [9].
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2.1 RANSAC-Based Object Pose Recognition

In this section, we briefly review an efficient pose estimation algorithm originally
reported in [9]. We used it as one option of object registration in our pipeline due to
its efficiency and robustness to complex occlusions. The reference implementation of
this algorithm is called “ObjRecRANSAC” and is available for academic use under
an open-source license.1

ObjRecRANSAC is designed to perform fast object pose prediction using oriented
point pair features ((pi , ni ), (p j , n j ))where pi , p j are the 3D positions of the points
and ni , n j are their associated surface normals. In turn, a simple descriptor f (i, j)
is defined by:

f (i, j) =

⎛
⎜⎜⎝

‖pi − p j‖
∠(ni , n j )

∠(ni , p j − pi )
∠(n j , ni − pi )

⎞
⎟⎟⎠ (1)

where ∠(a, b) denotes the angle between a and b. Then a hash table is constructed
for fast matching of point pairs from object models to the scene. We refer the reader
to [9] for more details.

In ObjRecRANSAC, only oriented point pair features with fixed predefined dis-
tance d are used for RANSAC sampling. This prevents the algorithm from recog-
nizing scenes composed of objects with significantly different characteristic lengths.
If one object has a highly eccentric shape, it is best localized by sampling point
pairs which span it’s widest axis. This large pair separation, however, prevents any
smaller objects in the scene from being recognized. Moreover, for objects situated
in cluttered and occluded scenes, the probability of sampling point pairs from single
object instances significantly decreases, which leads to the strong degradation in
performance. One failure case of ObjRecRANSAC is shown in Fig. 2.

Fig. 2 The illustration of failure cases of ObjRecRANSAC. Figures from the left to right are the
testing scene, estimated poses from ObjRecRANSAC and groundtruth

1See http://github.com/tum-mvp/ObjRecRANSAC.git for the reference implementation of [9].

http://github.com/tum-mvp/ObjRecRANSAC.git
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From a high-level perspective, the information needed to improve the recogni-
tion accuracy in heterogeneous scenes is the object class membership. If such class
membership could be determined independently from object pose, it could be used
to partition the input data into independent RANSAC pipelines which are specifi-
cally optimally parameterized. Semantic segmentation techniques are well-suited to
provide this crucial information.

3 Mid-Level Perception and Robust Pose Estimation

This section presents details of a two-stage algorithm inwhich semantic segmentation
first partitions the scene and the ObjRecRANSAC, or one of its variants is applied to
estimate the poses of instances within each semantic class. Figure3 shows the flow
chart for this hybrid algorithm.

3.1 Semantic Scene Segmentation Using Mid-Level
Visual Cues

There are three major challenges to achieve accurate and efficient semantic seg-
mentation. First, robust and discriminative features need to be learned to distinguish
different object classes, even for those with similar textureless appearances. Second,
“mid-level” object models should be produced in order to handle clutter and occlu-
sions caused by interactions among objects. Third, the state-of-the-art recognition
techniques in large-scale setting typically do not operate at the time scales consistent
with robot manipulation.

Here, we develop an algorithm for semantic segmentation based on the idea of
color pooling in our previous work [12], but modified to make use of integral images
to speed up the color pooling for sliding windows in the image domain. This enables
the algorithm to perform efficient dense feature extraction in practice. We also detail
how we exploit adaptive scales of sliding windows to achieve scale invariance for

Fig. 3 Overview of the hybrid algorithm for object detection and pose estimation
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Fig. 4 Illustration of the feature extraction for semantic segmentation, including from right to
left convolution of local feature codes (a→b), color pooling (b→c), integral image construction
(c→d), and final feature concatenation (d→e)

dense scene classification. The overview of the entire semantic segmentation pipeline
is illustrated in Fig. 4.

3.1.1 Review of Color Pooling

Pooling, which groups local filter responses within neighborhoods in a certain
domain, is a key component in convolutional architectures to reduce the variability
of raw input signals while preserving dominant visual characteristics. Color pooling
[12] yields features which achieve superior 3D rotation invariance over pooling in
the spatial domain.

First, the convolutional feature is constructed as follows. Given a point cloud2

P = {p1, . . . , pn}, we compute the rotationally invariant 3D feature CSHOT [19]
for each 3D point pi . Next, the CSHOT descriptor is divided into color and depth
components: fc and fd . Dictionaries D = {d1, d2, . . . , dK } with K filters for each
component are learned via hierarchical K-means for randomly sampled CSHOT
features across different object classes. Finally, each CSHOT component f is trans-
formed into a feature code μ = {μ1, . . . , μK } by the hard-assignment encoder3 and
the final local feature xi = [μc, μd ] for each pi are constructed by concatenating the
two transformed CSHOT codes μc and μd . The hard assignment coding is defined
as follows:

μ j =
{
1 : d j ∈ N1( f )

0 : d j /∈ N1( f )
(2)

2For efficiency purpose, raw point clouds are downsampled via octree with the leaf size as 0.005m.
3We replace the soft encoder used in [12] with the hard encoder to speed up the computation.
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where N1( f ) returns the set of the first nearest neighbor of the CSHOT component
x in dictionary D. The convolution and encoding process is shown in stage (a→b)
in Fig. 4.

Next, we pool features over LAB color space S because it achieves better recog-
nition performance than both RGB and HSV based on our experiences reported in
[12]. For a set of pooling regions R = {R1, . . . , Rm} where each R j (1 ≤ j ≤ m)
occupies certain subspaces in S, the pooled feature vector y j associated with R j is
computed by sum pooling over the local feature codes {xi }:

y j =
∑
i

xi · 1(ci ∈ R j ) (3)

where 1(.) is the indicator function to decide if the color signature ci (a LAB value) at
pi falls in R j .We choose sumpooling instead ofmax pooling (used in [12]) because it
is computationally expensive to computemaximumvalues over the integral structure.
Lastly, each y j is L2-normalized in order to suppress the noise [26] and the pooled
feature vector Y = [y1, . . . , ym] is constructed as the final representation for the
given point cloud.

3.1.2 Efficient Computation via Integral Images

Integral images are often used for fast feature computation in real-time object detec-
tion such as [32]. We build the integral image structure for fast dense feature extrac-
tion. To do so, we first project each scene point cloud onto a 2D image using the
camera’s intrinsic parameters.4 Suppose we obtain the local feature vector xi in
Sect. 3.1.1 for each pi . For each pooling region R j , the corresponding integral image
I j is constructed as follows:

I j (u, v) =
∑
i

xi · 1(ci ∈ R j ∧ ui ≤ u ∧ vi ≤ v) (4)

where (u, v) is the 2D coordinate of integral image and (ui , vi ) is the projected 2D
location of 3D point pi in 3D point cloud.

The total complexity to construct all integral images is O((Kd + Kc)WHm)

where Kd and Kc are the number of codewords for color and depth components,
respectively, and W and H are the width and height of integral images, respectively.
Thus, with I j , the pooled feature y j (B) for sliding window B = {ul, vl , ur , vr } can
be computed in O(1):

y j (B) = I j (ul , vl) + I j (ur , vr ) − I j (ul, vr ) − I j (ur , vl) (5)

4In our implementation, PrimeSense Carmine 1.08 depth sensor is used. We found no difference in
performance between using default camera parameters and manual calibration.
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where (ul, vl) and (ur , vr ) are 2D coordinates for top-left and bottom-right corners of
window B on the projection of the 3Dscene. Stages (c→ d) and (d→ e) in Fig. 4 show
the process of integral image construction and pooled feature extraction respectively.

3.1.3 Scale Invariant Modeling for Object Parts

Modeling object partial views from complete object segments does not account for
missing object parts due to occlusion and outliers from background clutter. To over-
come this, we train object models based on generic object parts randomly sampled
from object segments at different viewpoints. In order to achieve the scale invariance
for the learned models, all sampled parts are encompassed by a predefined fixed-size
3D bounding box B. In turn, the sliding windows extracted for testing scene adopt
scales which are consistent withB. Specifically, the scale of the i th sliding window
(wi , hi ) with center (ui , vi ) is equal to the scale of the projected bounding box B
onto the same location:

(wi , hi ) = f̃

zi
(wB, hB) (6)

where (wB, hB) is the predefined size in (x,y) coordinate of B in 3D and zi is the
depth corresponding to (ui , vi ). f̃ is the focal length of the camera. We note that
object parts here do not necessarily have specific semantic correspondences. Next,
we directly train a discriminative classificationmodel using a linear SVMover object
parts with semantic labels inherited from corresponding partial views.

Given a new scene, we extract featureswith adaptive scales for all slidingwindows
on integral images. Each window is classified into one of the trained semantic classes
and votes for all included 3D points. The final semantic label of each 3D point is the
one with the maximum votes.

3.2 Recursive RANSAC-Based Registration for Pose
Estimation

Although the semantic segmentation narrows down the space of RANSAC sampling
within only a single semantic class, the ratio of inlier correspondences may be still
small due to multiple adjacent or connected object instances. In this section, we
introduce two recursive pipelines that improve the performance of the RANSAC-
based registration algorithm detailed in Sect. 2.1 in terms of stability and the recall
rate. In what follows, we denote the original ObjRecRANSAC as B short for Batch
Matching and introduce two improved variants as GB and GO.

Greedy-Batch Matching(GB): In this approach, we run the ObjRecRANSAC
recursively over the parts of the scene that have not been well explained by previous
detected models. Specifically, the initial inputs to the ObjRecRANSAC are the set of
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Fig. 5 Illustration of the algorithm pipelines of B, GB and GO

segmented points P0 that share the same class label. At the ith round of recognition
(i ≥ 1), the working space Pi is constructed by removing the points in Pi−1 that can
be explained by the detected models Mi−1 at (i − 1)th round:

Pi = {p | min
m∈Mi−1

‖p − m‖2 > Td ∧ p ∈ Pi−1} (7)

where Td is the threshold (set to 0.01m) to determine the inlier. The detected models
Mi−1 are the transformed point clouds that are uniformly sampled from full object
meshes. Finally, this greedy registration pipeline stops once no more instances are
detected. The final set of estimated poses is the union of all previously detected poses:
M f inal = ∪i Mi .

Greedy-OneMatching(GO): TheGB approach can fail to discover some object
instances because false positives in early iterations can lead to false negatives later
on. In order to achieve higher precision and recall detection rates, we adopt a more
conservative greedy approach in which we only choose the best detected object
candidate with the highest confidence score from ObjRecRANSAC as the current
detected model Mi at i th round. The rest follows the same implementation as inGB.
The simple flow charts for B, GB and GO are illustrated in Fig. 5.

4 Experiments

In all our experiments, we use data collected with a PrimeSense Carmine 1.09 depth
sensor. We choose 0.03m as the radius for both normal estimation and CSHOT
descriptor.5 Depth and color components in the raw CSHOT feature are decoupled
into two feature vectors. Dictionaries with 200 codewords for each component are

5The implementations of normal estimation and CSHOT come from PCL Library.

http://pointclouds.org/
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learned by hierarchical K-means. For the LAB pooling domain, we adopt a 4-level
architecture where gridding over the entire domain at the k th level is performed
by equally dividing each channel of LAB into k bins. Therefore, in this 4-level
architecture we have 100 = ∑4

k=1 k
3 pooling regions. Pooled features in different

levels and domains are concatenated as the final feature vector. Integral images are
constructed with the size that is 1

5 of the original RGB-D frame for efficiency. Sliding
windowswith step size of 1px are extracted on integral images. ForObjRecRANSAC,
we build models separately for each object by setting the oriented point pair feature
separation to 60% of the largest diameter of the corresponding object. The rest of
the parameters are the same as the default ones used in [9]. Last, we capture object
partial views under both fixed and random viewpoints as the training data for the
SVM classifier in semantic segmentation. Specifically, three data sequences at fixed
viewing angles of 30, 45 and 60 degrees as well as one random viewing sequence are
captured. This follows the same procedure of data collection for JHUIT-50 dataset
[12]. In each partial view, we randomly sample 30 object patches encompassed by a
predefined3Dboundingboxwith sizewB = hB = 0.03m(see details inSect. 3.1.3).
This size is also applied to compute the scale of sliding windows on integral images
for testing examples.

Next, unlike the matching function designed for LINE-MOD [10], we introduce a
more flexible matching criterion to determine whether an estimated pose is correct.
In the task of object manipulation, a good pose estimation needs to achieve high
matching accuracy only with respect to the 3D geometry but not the surface texture.
This implies that for objects with certain symmetrical structure (rotational and/or
reflective), there should exist multiple pose candidates having perfect matching to
the groundtruth. Thus, we design a new distance function between two estimated
poses (i.e. 3D transformation in SE(3)) T1 and T2 for model point cloud PM with N
3D points uniformly sampled from the full object mesh:

D(T1, T2; PM) =
∑

pi∈PM
1(minp j∈PM ‖T1(pi ) − T2(p j )‖2 < δD)

N
(8)

where threshold δD controls the matching degree. Another threshold RD is used
to justify an estimated pose T with respect to the groudtruth Tg by the criterion:
D(T, Tg; PM) ≥ RD . We set δD = 0.01 and RD = 0.7 for all our experiments.

The algorithm presented in this paper is implemented in C++ and all tests are
performed on a desktop with Intel Xeon CPU E5-2690 3.00GHz.

4.1 LN-66 Dataset for Textureless Industrial Objects

We first evaluate our method on our new LN-66 dataset which contains 66 scenes
with various complex configurations of the two “link” and “node” textureless objects
shown in Fig. 1b. We combine the training and testing sequences (corresponding to
fixed and random viewpoints) of “link” and “node” objects in JHUIT-50 [12] as the
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(a) Testing Scene. (b) Semantic Labels. (c) Confidence Map.

Fig. 6 An example of semantic scene segmentation

training data so that each object has 300 training samples. We note that our algorithm
can easily be applied to scenes composed of more than 2 objects by simply adding
more training classes in the semantic classification stage. The LN-66 dataset and
the object training data are available at http://cirl.lcsr.jhu.edu/jhu-visual-perception-
datasets/. An example testing scene is shown in Fig. 6a. There are 6–10 example point
clouds for each static scene from a fixed viewpoint, where each cloud is the average of
ten raw RGB-D images. This gives a total of 614 testing examples across all scenes.
In our dataset, the background has been removed from each example by RANSAC
plane estimation and defining workspace limits in 3D space. Background subtraction
can also be done with the semantic segmentation stage if object models are trained
along with a background class. Therefore, the points in the remaining point cloud
only belong to instances of the “link” or “node” objects. However, robust object
detection and pose estimation are still challenging in such scenario due to similar
appearances between objects, clutter, occlusion and sensor noise. To quantitatively
analyze our method, we manually label the groundtruth object poses for each scene
and propagate them to all testing examples. Then the groundtruth poses are projected
onto 2D to generate the groundtruth for the semantic segmentation at each frame.

The overall segmentation accuracy is measured as the average ratio of correctly
labeled 3D points versus all in a testing scene point cloud. By running the classi-
fication algorithm in Sect. 3.1 over all 614 testing frames, the average accuracy of
the semantic segmentation achieves as high as 91.2%. One example of semantic
scene labeling is shown in Fig. 6. The red and blue regions represent the “link” and
“node” object classes, respectively. In Fig. 6c, we also show the confidence scores
returned from the SVM classifier for each class. The brighter color in either red
or blue indicates stronger confidence from the corresponding classifier. We could
visually observe that the semantic segmentation obtains high classification accuracy.

Next, we report the means and standard deviations(std) of precision, recall and F-
measure6 of our algorithm on LN-66 in Table1. For comparison, we run experiments
for different variants of our algorithm whose names are formatted as ‘S+O’. The
first entry ‘S’ indicates the degree of semantic segmentation used with three specific
options ‘NS’, ‘S’ and ‘GS’ as no segmentation, standard segmentation (Sect. 3.1) and
groudtruth. The second entry ‘O’ stands for the three choices of ObjRecRANSAC

6F-measure is a joint measurement computed by precision and recall as 2·precision·recall
precision+recall .

http://cirl.lcsr.jhu.edu/jhu-visual-perception-datasets/
http://cirl.lcsr.jhu.edu/jhu-visual-perception-datasets/
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Table 1 Reported precision, recall and F-score by different methods on LN-66 dataset

Precision(%) Recall(%) F-measure

NS+B 84.47 ± 0.36 61.75 ± 0.27 71.30 ± 0.28

NS+GB 79.88 ± 0.47 79.42 ± 0.37 79.65 ± 0.40

NS+GO 88.63 ± 0.31 83.13 ± 0.32 85.80 ± 0.30

S+B 87.77 ± 0.20 81.31 ± 0.27 84.42 ± 0.22

S+GB 91.89 ± 0.24 89.27 ± 0.19 90.56 ± 0.21

S+GO 94.50 ± 0.16 91.71 ± 0.13 93.09 ± 0.12

GS+B 97.27 ± 0.06 87.03 ± 0.14 91.87 ± 0.08

GS+GB 95.29 ± 0.10 92.33 ± 0.13 93.79 ± 0.11

GS+GO 98.79 ± 0.20 94.33 ± 0.13 96.51 ± 0.16

including ‘B’, ‘GB’ and ‘GO’. Due to the randomized process in ObjRecRANSAC,
we run 50 trials of each method over all testing data.

From Table1, we observe that: (1) the semantic segmentation significantly
improves all three RANSAC-based pose estimation methods in terms of preci-
sion/recall rates; (2) when using the segmentation computed by our algorithm, the
RANSAC stage performs only 2 ∼ 4% behind in the final F-measure compared
to using the groundtruth segmentation. (3) Both GO and GB are more accurate
(higher F-measure) and stable (smaller standard deviation) than the standard ObjRe-
cRANSAC (B) regardless whether they are supported by semantic labeling.

Furthermore, we show an example of comparison between different methods in
Fig. 7 and more results from S+GB are shown in Fig. 8. In each sub-figure of Fig. 7,
the gray points represent the point cloud of the testing scene. The estimated poses for
the “link” and “node” objects are shown in yellow and blue meshes, respectively. We
can see that methods that work on semantically segmented scenes achieve noticeable
improvement over the ones without scene classification. In addition, the computed
semantic segmentation yields similar results ((d), (e), (f) in Fig. 7) compared with the
ground truth ((g), (b), (i) in Fig. 7), which shows the effectiveness of our semantic
segmentation algorithm. Also, GO and GB outperform B whether or not semantic
segmentation is used. From Fig. 8, we can see S+GB could reliably detect and esti-
mate object poses in cluttered and occluded scenes. Finer pose refinement can be
made by incorporating physical constraints between adjacent objects.

Finally, Table2 reports the means and standard deviations of running times of
all main modules in the semantic segmentation as well as B, GB, GO in two con-
texts: (S) and (NS) indicating with and without semantic segmentation, respectively.
For semantic segmentation, we evaluate all three components: CSHOT extraction
(S-CSHOT), integral image construction (S-Int) and classification of sliding win-
dows (S-Det). From Table2, we can see that the semantic segmentation is running
efficiently compared to the overall runtime of the algorithm. Furthermore, all three
sub-stages can be trivially parallelized and dramatically accelerated with GPU-based
implementations. We also observe that the semantic segmentation reduces the run-



Bridging the Robot Perception Gap with Mid-Level Vision 17

(a) NS+B (b) NS+GB (c) NS+GO

(d) S+B (e) S+GB (f) S+GO

(g) GS+B (h) GS+GB (i) GS+GO

Fig. 7 An example of the comparison of the estimated poses by different methods

time of GO(NS) by half because it decreases the number of RANSAC hypotheses in
this greedy approach. For pose estimation, two proposed greedy approachesGB and
GO are slower than the standard one B due to multiple runs of ObjRecRANSAC.
Additionally, GB performs only slightly worse than GO (shown in Table1) while
being much more efficient. These times were also computed for the CPU-based
implementation of ObjRecRANSAC, and did not use the GPU-accelerated imple-
mentation, which is already available under the same open-source license. The choice
of these three methods in practice can be decided based on the specific performance
requirements of a given application.
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Fig. 8 Example results of S+GB on LN-66. The left, middle and right columns show the testing
scenes, segmentation results and estimated poses, respectively

Table 2 Means and standard deviations of running times of different methods on LN-66 dataset

S-CSHOT S-Int S-Det B(NS) GB(NS) GO(NS) B(S) GB(S) GO(S)

0.39 ± 0.12 0.13 ±
0.03

0.31 ±
0.12

0.86 ±
0.16

1.49 ±
0.40

7.69 ±
3.43

0.85 ±
0.20

2.16 ±
0.68

4.40 ±
1.72
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Although the overall runtime of the entire perception system takes more than 1s
even without the semantic segmentation, this may not be a main issue to integrate our
algorithm into a real-time robotic system. First, GPU-based parallel programming
techniques could significantly speed up the current implementation. Second, standard
object tracking methods [7] can be initialized by our algorithm to track object poses
in real time and reinitialized when they fail.

5 Conclusion

In this paper, we present a novel robot perception pipeline which applies advan-
tages of state-of-the art large-scale recognition methods to constrained rigid object
registration for robotics. Mid-level visual cues are modeled via an efficient convo-
lutional architecture built on integral images, and in turn used for robust semantic
segmentation.Additionally, twogreedy approaches are introduced to further augment
the RANSAC sampling procedure for pose estimation in the constrained semantic
classes. This pipeline effectively bridges the gap between powerful large-scale vision
techniques and task-dependent robot perception.

Although the recursive nature of our modification for RANSAC-based registra-
tion slows down the entire detection process, the better trade-off between time and
accuracy would be achieved. Moreover, we could adaptively select the suitable strat-
egy regarding the requirement of robotics systems in practice. We believe that this
approach can be used with other registration algorithms which are hindered by large
search spaces, and plan to investigate other such compositions in the future.
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Deep Feature Learning for Acoustics-Based
Terrain Classification

Abhinav Valada, Luciano Spinello and Wolfram Burgard

1 Introduction

Robots are increasingly being used for tasks in unstructured real-world environments
and thus have to be able to deal with a huge variety of different terrains. As every ter-
rain has a distinct physical property, it necessitates an appropriate navigation strategy
to maximize the performance of the robot. Therefore, terrain classification is para-
mount to determine the corresponding trafficability. However, it is a highly challeng-
ing task to robustly classify terrain. Especially, the predominantly used vision-based
approaches suffer from rapid appearance changes due to various factors including
illumination variations, changes in weather, damping due to rain and camouflaging
with leaves. Accordingly, researchers have also explored the utilization of alterna-
tive modalities such as ladars or vibrations measured using accelerometers. Each of
these approaches have their own advantages and disadvantages. For example, opti-
cal sensors are quintessential when there is good illumination and distinct visual
features, while accelerometer-based approaches are ideal to classify terrains with
varying degrees of coarseness. However, the use of sound to classify terrains in
the past has not been studied in a comparable depth, even though sound produced
from vehicle-terrain interactions have distinct audio signatures even utilizable for
fine-grained classification. Most importantly, the disturbances that affect other light-
based or active sensors do not affect microphones, hence they can even be used as
a complementary modality to increase robustness. We believe that utilization of a
complementary set of sensing modalities is geared towards long-term autonomy.

In this paper, we present a novel multiclass terrain classification approach that
uses only audio from the vehicle-terrain interaction to robustly classify a wide range
of indoor and outdoor terrains. As in any pattern recognition task, the choice of fea-
tures significantly dictates the classification performance. Vehicle-terrain interaction
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sounds are unstructured in nature as several dynamic factors contribute to the signal.
Instead of using handcrafted domain specific features, our approach employs a deep
convolutional neural network (DCNN) to learn them. DCNNs have recently been
achieving state of the art performance on several pattern recognition tasks [13, 14,
18]. They learn unsupervised hierarchical feature representations of their input by
exploiting spatial correlations. The additional advantage of this is that the features
learned from this approach generalize effectively as DCNNs are relatively insensitive
to certain input variations.

The convolutional neural network architecture we introduce is built upon recent
advances in deep learning. Our network consisting of six convolution layers and
six cascaded cross channel parametric pooling layers is depicted in Fig. 1. In order
to make the learned feature representations invariant to certain signal variations
and also to increase the number of training samples, we performed a number of
transformations on the original signal to augment the data. We experimented with
several hyperparameters for our network and show that it significantly outperforms
classification methods using popular baseline audio features. To the best of our
knowledge, this is the widest range of terrain classes successfully classified using

Fig. 1 Overview of our terrain classification pipeline. Raw audio signal of the terrain interaction
is first transformed into its spectrogram representation and then piped into a DCNN for feature
learning and classification. MP refers to max pooling
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any proprioceptive terrain classification system. Additionally, our method achieves
state of the art performance in classification using a proprioceptive sensor. Audio
classification is susceptible to background noise to a great extent. We stress test
our network with additive white Gaussian noise (WGN) at varying signal to noise
ratios (SNR). We also perform noise aware fine-tuning to increase the robustness
and show that our network performs exceptionally well even on audio data collected
by the robot with a low quality mobile phone microphone which adds significant
environmental noise.

2 Related Work

The use of sound as a modality for classifying vehicle-terrain interactions has very
sparsely been explored. The following are the only related works using acoustics
for terrain classification. Ojeda et al. [17], used a feedforward neural network and
a suite of sensors for terrain classification, including a microphone, gyroscopes,
accelerometers,motor current andvoltage sensors, infrared, ultrasonics and encoders.
They had five terrain classes and their classifier achieved an average classification
accuracy of 60.3% using the microphone. They found that using the entire spectrum
gave them the same performance as using only 0–50Hz components of the discrete
fourier transform. The authors concluded that overall the performancewas poor using
the microphone, other than for classifying grass.

More recently, Libby and Stentz [15] trained amulticlass sound-based terrain clas-
sifier that uses Support Vector Machines (SVMs). They evaluated the performance
of various features using extraction techniques derived from the literature survey as
input to the SVM. Their multidimensional feature vectors consists of spectral coeffi-
cients, moments and various other temporal as well as spectral characteristics. Their
classifier achieves an average accuracy of 78% over three terrain classes and three
hazardous vehicle-terrain interaction classes. They further increase the accuracy to
92% by smoothing over a window of 2 s.

A patent byHardsell et al. [8] describes an approach to terrain classification where
a classifier is trained on fused audio and video data. They extract scale invariant
transformation features from the video data and use Gaussian mixture models with
a time-delay neural network to represent the audio data. The classifier is then built
using expectation-maximization.

The use of contact microphones for terrain classification has also been explored.
Unlike air microphones that we use in our work, contact microphones pick up only
structure-borne sound. Brooks and Iagnemma [2] use a contact microphone mounted
on their analog rover’s wheel frame to classify terrain. They extract the log-scaled
Power Spectral Density (PSD) of the recorded vibrations and used them to train a
pairwise classifier. Their classifier with three classes, achieves an average accuracy
of 74%on awheel-terrain testbed and 85.3%on the test bed rover. They also present a
self-supervised classifier that was first trained on vibration data, which then provided
the labels for training a visual classifier [3].
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A number of methods have been developed for using accelerometer data to clas-
sify terrain [17, 19, 21]. Weiss et al. [21] use vibrations induced in the vehicles
body during traversal to classify the terrain. They train a seven class SVM with
features extracted from log-scaled PSD, discrete fourier transform and other statis-
tical measures. Their classifier produced an average accuracy of 91.8% over all the
classes. However, such approaches report a significant number of false positives for
finer terrains such as asphalt and carpet. For another similar application, Eriksson
et al. [5] employ a mobile sensor network system that uses hand selected features
from accelerometer data to identify potholes and other road anomalies. Their system
detects the anomalies over 90% of the time in real-world experiments.

There is a considerable amount of specialized audio features developed for speech
recognition and music classification, but it remains unclear which of these features
performs well for our application. We evaluated several traditional audio features
from our literature survey and compared them as baseline approaches. Libby and
Stentz [15] show that a combination of Ginna and Shape features perform the best
for classification of vehicle-terrain interactions. Gina features, based on the work
by Giannakopoulos et al. [6] is a 6D feature vector consisting of zero crossing rate
(ZCR), short time energy (STE), spectral centroid, spectral rolloff and spectral flux.
Shape features, based on thework byWellman et al. [22], characterize the distribution
of moments of the spectrum. It is a 4D feature vector consisting of spectral centroid,
standard deviation, skewness and kurtosis.

Ellis [4] use a combination of mel-frequency cepstral coefficients (MFCCs) and
chroma features. MFCCs are the most widely used features for audio classification
and Chroma features are strongly related to the harmonic progression of audio sig-
nals. We use a combination of twelve bin MFCC’s and twelve bin Chroma features
for comparison. Trimbral features have been a popular set of features for various
audio classification applications. Tzanetakis and Cook [20] use a 19D feature repre-
sentation consisting of means and variances of spectral centroid, rolloff, flux, ZCR,
low energy and means and variances of the first 5 MFCCs. For our final feature set
comparison, we use a combination of 13 bin MFCC’s, line spectral pair (LSP) and
linear prediction cepstral coefficients (LPCCs) [1]. We call this Cepstral feature set
in the later discussions.

3 Deep Convolutional Neural Network for Acoustic
Based Terrain Classification

One of the main objectives of our work is to develop a new deep convolutional neural
network architecture tailored to classifying unstructured vehicle-terrain interaction
sounds. In this section, we detail the various stages of our classification pipeline
shown in Fig. 1. Our approach can be split into two main stages. The first stage
involves processing the raw audio samples into short windowed clips, augmenting
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the samples and spectrogram transformation. The second involves training our deep
convolutional neural network with this data.

3.1 Preprocessing and Spectrogram Extraction

We first split the audio signals from each class into small “clips” of tw seconds. We
experimentally determine the shortest clip length that gives the best classification
performance. Feature responses from each of these clips are then extracted and added
as a new sample for classification.

Features derived from spectrogram representations of audio signals have been
shown to outperform other standard features for environmental sound classification
applications [12]. Therefore in our approach, we extract the Short Time Fourier
Transform (STFT) based spectrogram of each clip in our dataset. We first block each
audio clip into M samples with 75% overlap between each frame. Let x[n] be the
recorded raw audio signal with duration of N f samples, fs the sampling frequency,
S(i, j)be the spectrogram representationof the 1-Daudio signal and f (k) = k fs/N f .
By applying STFT on length M windowed frame of signal, we get

X (i, j) =
N f −1∑

p=0

x[n] w[n − j] exp
(

−p
2πk

N f
n

)
, p = 0, . . . , N f − 1 (1)

A Hamming window function w[n] is used to compensate for Gibbs effect while
computing STFT by smoothing the discontinuities at the beginning and end of the
audio signal.

w[n] = 0.54 − 0.46 cos

(
2π

n

M − 1

)
, n = 0, . . . , M − 1 (2)

We then compute the log of the power spectrum as

Slog(i, j) = 20 log10(|X (i, j)|) (3)

We chose N f as 2,048 samples, therefore the spectrogram contains 1,024 Fourier
coefficients. By analyzing the spectrum, we found that most of the spectral energy
is concentrated below 512 coefficients, hence we only use the lower 512 coefficients
to reduce the computational complexity. The noise and intensity levels vary a fair
amount in the entire dataset as we collected data in different environments. There-
fore, we normalized the spectrograms by dividing by the maximum amplitude. We
compute the normalized spectrogram as S(i, j) = Slog(i, j)/maxi, j Slog(i, j). We
then compute the mean spectrum over the entire dataset and subtract it from the
normalized spectrogram to remove any temporal artifacts.
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We created additional training samples by applying a set of augmentation strate-
gies At on the audio signal in the frequency domain. Offsets in time and frequency
was used to perform shifting to transform the spectrogram. The transformations
were applied using 2D affine transform and warping, keeping the shape constant.
Furthermore we created more samples using time stretching, modulating the tempo,
using random equalization augmentation and by increasing as well as decreasing the
volume gain. We also experimented with frequency and time normalization with a
sliding window and local contrast normalization.

3.2 Network Architecture and Training

The extracted spectrograms in our training set are of the form S = {s1, . . . , sM }
with si ∈ R

N . Each of them are of size v × w and number of channels d (d = 1
in our case). We assume M to be the number of samples and yi as the class label
in one-hot encoding, yi ∈ R

C , where C is the number of classes. We then train the
DCNN by minimizing the negative log likelihood of the training data. Our network
shown in Fig. 1 has six Convolution layers, six Cascaded Cross Channel Parametric
Pooling (CCCP) layers, two Fully-Connected (FC) layers and a Softmax layer. All
the convolution layers are one dimensional with a kernel size of three and convolve
along the time dimension. We use a fixed convolutional stride of one. CCCP layers
follow the first, second and third convolution layers. CCCP layers was proposed by
Lin et al. [16] to enhance discriminability for local patches within the receptive fields.
CCCP layers are effectively employ 1×1 convolutions over the feature maps and the
filters learnt are a better non-linear function approximator. A max-pooling layer with
a kernel of 2, then follows the second and fourth CCCP layers. Max-pooling adds
some invariance by only taking the high activations from adjacent hidden units that
share the same weight, thereby providing invariance to small phase shifts in the
signal.

DCNNs that are used for feature learning with images are designed to preserve
the spatial information of objects in context, however for our application we are
not interested to localize features in the frame, rather we are only interested to
identify the presence or absence of features in the entire frame. Therefore, we added
three different global pooling layers after CCCP-9 to compute the statistics across
time. This global pooling approach is similar to that used for content based music
recommendation by Oord et al. [18]. For global pooling layers, we use max pooling,
L2 norm pooling and average pooling.We experimented with just one global pooling
layer and combinations of two global pooling layers and the accuracy dropped over
3% while compared to using all three global pooling layers. We also investigated the
effect of global stochastic pooling with the other three pooling combinations, but the
network did not show any significant improvement. Finally, a fully connected layer
is then used to combine outputs of all the global pooling layers.

Rectified linear units (ReLUs) have significantly helped in overcoming the vanish-
ing gradient problem. They have been shown to considerably accelerate the training
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compared to tanh units. We use ReLUs f (x) = max(0, x), after the convolution
layers and dropout regularization [10] on fully connected layers except the softmax
layer. We used a dropout probability of 0.5. We also experimented with Parameter-
ized Rectified Linear Units (PReLU) [9], which has shown to improve model fitting
but it drastically affected our performance compared to ReLUs.

We used Xavier weight initialization [7] for the Convolution, CCCP and FC
layers. The Xavier weight filler initializes weights by drawing from a zero mean
uniform distribution from [−a, a] and a variance as a function of the number of
input neurons, where a = √

3 / nin and nin is the number of input neurons. Using
this strategy enables us to move away from the traditional layer by layer generative
pre-training. Let f j (si ; θ) be the activation value for spectrogram si and class j , θ
be the parameters of the network (weights W and biases b). The softmax function
and the loss is computed as

P(y = j | si ; θ) = softmax( f (si ; θ)) = exp( f j (si ; θ))

K∑
k=1

exp( fk(si ; θ))

(4)

where P(y = j | si ; θ) is the probability of the j th class and the loss can be computed
as L(u, y) = −∑

k
yk loguk . Using stochastic gradient decent (SGD), we then solve

min
θ

N∑

i=1

L(softmax( f (si ; θ)), yi ) (5)

We use minibatch SGD with a momentum of 0.9 and a batch size of 128. Minibatch
SGD refers to a more efficient way of computing the derivatives before updating the
weights in proportion to the gradient, especially in large datasets such as ours. We
improve the efficiency by computing the derivative on a random small minibatch of
training samples, rather than the entire training set which would be computationally
exhaustive. Furthermore, we optimize SGD by smoothing the gradient computation
for minibatch t using a momentum coefficient α as 0 < α < 1. The update rule can
then be written as

Δwi j (t) = αΔwi j (t − 1) − ε
∂E

∂wi j (t)
(6)

We employ a weight decay of λ = 5 · 10−4 to regularize the network. We begin the
training with an initial learning rate of λ0 and reduced it every iteration by an inverse
learning rate policy as λn = λ0 ∗ (1 + γ ∗ N )−c. Where λ0 is the base learning rate,
N is the number of iterations and c is the power. We use c = 0.75 and γ = 0.1. We
determine the hyperparameter λ0 by experimenting with different rates in an initial
trial. The best performing rate of 10−2 was then ascertained. The entire training of
350K iterations (∼135 epochs) took about 4 days on a single GPU.
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3.3 Noise Aware Fine-Tuning

Classification performance is often strongly affected by noise from the environment.
Since the microphone is mounted on the robot and used in real-world environments,
it is inevitable that the recorded signals include the robot’s motor noise in addition
to environmental noise. Fortunately deep networks have good generalization to real-
world scenarios if they are trained with noisy samples. In order to quantify the
performance in the presence of noise, we added WGN to training samples at various
SNR’s and measured the classification accuracy. WGN adds a very similar effect as
various physical and environmental disturbances including wind and water sources.

From experiments detailed in Sect. 5.4, it can be seen that the classification per-
formance of our network quickly drops below SNRs of 40 dB. As a solution to this
problem, we augmented raw audio signals with additiveWGN at SNRs ranging from
50 dB to −10 dB, in steps of 10 dB. We then performed noise adaptive fine-tuning
of all the layers in our network with the training set containing both noised and
original samples. The weights and biases are initialized by coping from our original
model trained as described in Sect. 3.2. The new model is then trained by minimiz-
ing the negative log likelihood as shown in Eq. (5). We again use minibatch SGD
with a learning rate 1/10th of the initial rate use for training the network, 10−3. The
learning rate was further reduced by a factor of 10, every 20,000 iterations.

4 Data Collection and Labeling

As we are particularly interested in analyzing the sounds produced from the vehicle-
terrain interaction on both indoor and outdoor terrains, we use the Pioneer P3-DX
platformwhich has a small footprint and feeblemotor noise. Interference fromnearby
sound sources in the environment can drastically influence the classification. It can
even augment the vehicle-terrain interaction data by adding its own attributes from
each environment. In order to prevent such biases in the data being collected, we use
a shotgun microphone that has a supercardioid polar pattern which helps in rejecting
off-axis ambient sounds. We chose the Rode VideoMic Pro and mounted it near
the right wheel of the robot as shown in Fig. 2. The integrated shock mount in the
microphone prevents any unwanted vibrations from being picked up.

We collected over 15h of audio data from a total of 9 different indoor and out-
door terrains. We particularly choose our terrain classes such that some of them
have similar visual features (Fig. 3a, h, i) and hence pose a challenge to vision based
approaches. The data was collected at several different locations to have enough gen-
eralizability, therefore even signals in each class have varying temporal and spectral
characteristics. The robots speed was varied from 0.1 to 1.0 ms−1 during the data
collection runs. The data was recorded in the lossless 16-bit WAV format at 44.1kHz
to avoid any recording artifacts. Experiments were conducted by recording at vari-
ous preamp levels and microphone mounting locations. There was no software level
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Fig. 2 The Pioneer P3-DX platform showing the shotgun microphone with the shock mount,
mounted close to the wheel

boost added during the final recordings as they also tended to amplify the ambient
noise significantly, instead the microphones 20dB hardware level boost was turned
on.

Wemanually label the data by looking at live tagswith timestamps from recordings
andweuse awaveformanalyzer tool to crop out any significant disturbances. The data
from each class was then split into overlapping time windows, where each window
is then used separately as a new data sample for feature extraction. As Libby et
al. mention in [15], choosing an appropriate length for the time window is critical,
as too short of a window might cut off a potential feature and by having too large
of a window we will loose the classification resolution. We also analyzed the effect
of different window sizes in our experiments. In order to train the classifier to be
generalizable to different locations with the same terrain, a ten-fold cross validation
approach was adopted. Furthermore, we ensured that all the sets and classes have
approximately the same number of samples to prevent any bias towards a specific
class.

5 Experimental Results

We performed the implementation and evaluations using the publicly available,
Caffe [11] deep learning toolbox and ran all our experiments on a systemwith an Intel
i7-4790K processor and a NVIDIA GTX 980M GPU. We used the cuDNN library
for GPU acceleration. For all the baseline comparisons and noise robustness tests,
we chose a clip window length of 300ms and performed ten-fold cross-validation.
The results from our experiments are described in the following sections.
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(a) Asphalt (b) Mowed
Grass

(c) Grass
Med-High

(d) Paving (e) Cobblestone

(f) Offroad (g) Wood (h) Linoleum (i) Carpet

Fig. 3 Terrain classes and an example spectrogram of a 2,000 ms clip (colorized spectrograms are
only shown for better visualization, spectrograms used for training are in gray scale)

5.1 Baseline Comparison

We chose two benchmark classifiers, k-Nearest Neighbors (kNNs) and SVMs. SVMs
performwell in high dimensional spaces and kNNs performwell when there are very
irregular decision boundaries. As a preprocessing step we first normalize the data to
have zero mean. We use the one-vs-rest voting scheme with SVM to handle multiple
classes and experimented with Linear and Radial Basis Function (RBF) kernels as
decision functions. We used inverse distance weighting for kNNs and optimized the
hyperparameters for both the classifiers by a grid-search using cross-validation. We
empirically evaluated six popular feature combinations described in Sect. 2, with
SVM and kNN. We used scikit-learn and LibSVM for the implementation. It was
ensured that the training and validation sets do not contain the same audio split or
the augmented clip. The results from this comparison are shown in Table1.

The best performing baseline feature-classifier combination was Cepstral features
using a linear SVM kernel, although the performance using Trimbral features are
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Table 1 Classification accuracy of several baseline feature extraction approaches on our dataset

Features SVM Linear SVM RBF k-NN

Ginna 44.87 ± 0.70 37.51 ± 0.74 57.26 ± 0.60

Spectral 84.48 ± 0.36 78.65 ± 0.45 76.02 ± 0.43

Ginna and Shape 85.50 ± 0.34 80.37 ± 0.55 78.17 ± 0.37

MFCC and Chroma 88.95 ± 0.21 88.55 ± 0.20 88.43 ± 0.15

Trimbral 89.07 ± 0.12 86.74 ± 0.25 84.82 ± 0.54

Cepstral 89.93 ± 0.21 78.93 ± 0.62 88.63 ± 0.06

DCNN (ours) 97.36 ± 0.12

closely comparable. This feature set outperformed Ginna and Shape features by over
9%. Ginna and Shape features using an SVM RBF kernel was the best performing
combination in the work by Libby and Stentz [15]. The worst performance was from
Ginna features using an SVM RBF kernel. It can also be seen that the feature sets
containing MFCCs show comparatively better results than the others.

Our DCNN yields an overall accuracy of 97.36 ± 0.12%, which is a substantial
improvement over the hand-crafted feature sets. We get an improvement of 7%
over the best performing Cepstral features and 12% over Ginna and Shape features
using the same clip length of 300ms. Furthermore, using a clip window size of
500ms, our network achieves an accuracy of 99.41%, a 9% improvement over the
best performing baseline approach. This strongly demonstrates the potential for using
sound to classify vehicle-terrain interactions in a variety of environments.

5.2 Overall DCNN Performance

To further investigate classification performance of our network we computed the
confusion matrix, which helps us understand the misclassifications between the
classes. Figure4 shows the confusion matrix for ten-fold cross validation.

The best performing classes were carpet and asphalt, while the most misclassified
was offroad and paving, which were sometimes confused with each other. Both
these classes have similar spectral responses when the clip window gets smaller than
500ms.Our system still outperforms all baseline approaches bywidemargin.We also
compared the per-class recall as it gives an insight on the ratio of correctly classified
instances. Figure5 shows the per-class recall using ten-fold cross validation. The
network achieves an overall recall of 97.61%.
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Fig. 4 Confusion matrix of our approach for ten-fold cross validation, using an audio clip length of
300ms. The network seemed to get mostly confused with Offroad and Paving, as well as Linoleum
and Wood

5.3 Varying Clip Length

We compared the average cross-validated accuracy of our network using varying
audio clip lengths and execution times. Each clip is essentially a new sample for
classification, therefore the shorter the clip, the higher is the rate at which we can
infer the terrain. In addition, the shorter the clip, the faster is the execution time.
For an application such as ours, fast classification and execution rates are essential
for making quick trafficability decisions. Table2 shows the overall classification
accuracy using the DCNN approach with various window sizes.

From the above table it can be seen that the deep network approach significantly
outperforms classification using hand-crafted feature sets. We get an improvement
of 7% over the best performing Cepstral features and 12% over Ginna and Shape
features using the same clip length of 300ms. Furthermore, using a window size of
500ms, our network achieves an accuracy of 99.41%, a 9% improvement over the
best performing baseline approach.
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Fig. 5 Per-class recall of our network on ten-fold cross validation, using an audio clip length of
300ms. The class with the lowest recall was Paving

Table 2 Classification accuracy of our system at varying audio clip lengths and the corresponding
time taken to process though the pipeline

Clip Length (ms) 2000 1500 1000 500 300

Accuracy (%) 99.86 99.82 99.76 99.41 97.36

Time (ms) 45.40 34.10 21.40 13.30 9.15

5.4 Robustness to Noise

For real-world applications such as ours, robustness to noise is a critical property.
Howevermodels can only be insensitive to noise up to a certain level.We analyzed the
effect of Gaussian white noise on the classification performance at several SNRs as
shown in Fig. 6. It can be seen that for some classes such as carpet, grass and cobble,
the performance decreases exponentially at different intensities, while for others such
as linoleum and asphalt, the performance seems to be affected marginally compared
to others. On the other extreme, wood and paving show remarkable robustness for
SNRs upto 20dB, thereafter the performance drops to zero. This can be attributed
to the fact that spectral components are much wider for the classes that show more
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Fig. 6 Per-class precision of our network when subject to different levels of white Gaussian noise.
The levels mentioned in the legend are SNRs

Table 3 Influence of white Gaussian noise onto the classification rate. SNR is in dB and accuracy
is in percent. The standard deviations were less than 1%

SNR 40 30 20 10 0 –10

Before FT 91.42 76.45 70.66 45.06 41.91 32.01

After FT 99.49 99.12 98.56 97.97 97.09 95.90

FT = Fine-tuning

robustness and for the −10dB SNR, only the classes that have certain pulses still
over the noise signal are recognizable.

As a solution to this problem, we fine-tuned our trained model on samples with
additive Gaussian white noise as described in Sect. 3.2. Table3 shows the average
cross-validated recognition accuracy of our network at different SNR, before and
after fine-tuning. Our fine-tuned model significantly outperforms our base model on
a wide range of SNRs. The best performing classes were mowed grass, linoleum,
asphalt, wood and carpet, with over 99% accuracy in all the SNRs shown in Table3.
Paving, cobble and offroad classes yielded a recognition accuracy of about 95%,
averaged over all the SNRs. The only class that was slightly negatively affected by
the fine-tuningwaswood at SNRof 20dB,where therewas a 0.2% loss in recognition
performance.

We also tested our fine-tuned model on the test set with no noise samples and the
average accuracy over all the classes was 99.57%, which is a 2.21% improvement
over our base models performance, clearly showing that noise adaptive fine-tuning is
a necessary step. This improvement can be attributed to the fact that by augmenting
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Fig. 7 The map on the left shows the trajectory taken by the robot during a classification test run
using a mobile phone microphone. The variation in speed along the path is indicated in red and
wider red points denote slower speed. The graph on the right shows the classification result, along
with the corresponding probabilities for the path shown in the map. True positives are shown as
green markers and false positives are shown are red markers

Fig. 8 Confusionmatrix for classification runs using data from amobile phonemicrophone. Paving
and Cobble show decreased performance due to false positives with Offroad and Grass

the signals with noise samples, we provide the network some prior knowledge about
the distribution of the signals which boosts the recognition performance. The only
significant misclassification was in the offroad class, which was 1% of the times
misclassified as paving. The other classes had almost negligible misclassifications.

To further stress test our network, we collected noisy samples in a new environ-
ment using a mobile phone that also tagged each sample with a GPS location. The
mobile phone has a condenser microphone, which unlike the shotgun microphone
that we used before, collects sounds from every direction, thereby adding consider-
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able amount of background noise. One of the test paths that the robot traversed is
shown in the map in Fig. 7. The figure also shows then variation in speed (0–2ms−1)
along the path. Thicker red lines in the map, indicate slower speed. Our network
achieved an accuracy of 98.54% on the mobile phone dataset. This shows the recog-
nition robustness, not only to real-world environments but also invariant to the type
of microphone. In addition, the graph in Fig. 7 shows the false positives and true
positives along the traversed path. It can be seen that most of the false positives are
in the paving class and this primarily occurs when the speed is above 1ms−1 and
the height of the paving is highly irregular, thereby misclassifying as offroad. Inter-
estingly, there is also significant fluctuations in the class probabilities of the false
positives along the paving path when the speed is below 1ms−1.

Figure8 shows the confusion matrix for the entire mobile phone microphone
dataset which contains about 2.15h of audio data. The classes that show a dip in
performance are paving, cobblestones and offroad. The paving class shows a non-
negligible false positive rate as it is often misclassified as offroad. Part of this mis-
classification is due variation in speed and the false positives in the terrain transition
boundaries.

6 Conclusion

In this paper, we introduced a novel approach that uses only sound from vehicle-
terrain interactions to robustly classify a wide range of indoor and outdoor terrains.
We evaluated several baseline audio features and presented a new deep convolutional
neural network architecture that achieves state-of-the-art performance in proprio-
ceptive terrain classification. Our GPU-based implementation operates on 300ms
windows and is 1,800 times faster than real-time, i.e., our system can classify a years
worth of audio data in roughly 4.8h. Additionally, our experiments in classifying
audio signal corrupted with white Gaussian noise demonstrate our networks robust-
ness to a great extent. We additionally show that our network fine-tuned with noisy
samples performs exceptionally well even at low signal-to-noise ratios. Furthermore,
our empirical evaluations with an inexpensive low-quality microphone shows that
our approach is invariant to the type ofmicrophone and can handle significant amount
of real-world noise.
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Generalizing Over Uncertain Dynamics
for Online Trajectory Generation

Beomjoon Kim, Albert Kim, Hongkai Dai, Leslie Kaelbling
and Tomas Lozano-Perez

1 Introduction

Given a known deterministic model of the dynamics of a system, a start and goal
state, and a cost function to be minimized, trajectory optimization methods [1] can
be used to generate a trajectory that connects the start and goal states, respects the
constraints imposed by the dynamics, and (locally) minimizes the cost subject to
those constraints. A significant limitation to the application of these methods is the
computational time required to solve the difficult non-linear program for generating
a near-optimal trajectory. In addition, standard techniques [1] require the transition
dynamics to be known with certainty.

We are interested in solving problems online in domains that are not completely
understood in advance and that require fast action selection. In such domains we will
not know, offline, the exact dynamics of the systemwewant to control.Online,wewill
receive information that results in a posterior distribution over the domain dynamics.
We seek to design an overall method that combines offline trajectory optimization and
inductive learning methods to construct an online execution system that efficiently
generates actions based on observations of the domain.

For example, we might wish a robot to move objects along a surface, potentially
picking them up or pushing them, and making choices of grasps and contacts. The
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best way to achieve this depends on properties of the object, such as the coefficient
of friction of the robot’s contacts with the object and the object’s center of mass
(COM), which determine the system’s dynamics. If we knew the friction and center
of mass, it would be relatively straightforward to find an appropriate trajectory using
trajectory optimization, but solving a non-linear optimization with large number of
decision variables and constraints generally takes a significant amount of time.

This work builds on recent advances in supervised imitation learning [2, 3] to
design a new learning-based online trajectory generation algorithm called TOIL
(Trajectory Optimization as Inductive Learning). We present two general problem
settings. In the completely observable setting, we assume that at execution time the
world dynamics will be fully observed; in the manipulation domain, this would cor-
respond to observing the friction and COM of the object. In the partially observable
setting, we assume that properties of the domain that govern its dynamics are only
partially observed; for example, observing the height and shape of an object would
allow us to make a “guess” in the form of a posterior distribution over these para-
meters to the dynamics, conditioned on the online observations. In both cases, we
desire the online action-selection to run much more quickly than would be possible
if it were necessary to run a traditional trajectory optimization algorithm online.

More concretely, we aim to build a trajectory generator that, for a given initial state
and goal, maps the values of the dynamics parameters to a trajectory in the observable
setting, or maps from an observation to a trajectory in the partially observable setting.
We do this by training a regression function that maps both the dynamics parameters
and the current system state to an appropriate control action. The trajectories used for
off-line training are generated by using an existing trajectory optimizer that solves
non-linear programs. To minimize the number of training trajectories required, we
take an active-learning approach based on MMD-IL [3], which uses an anomaly-
detection strategy to determine which parts of the state space require additional
training data.

The idea of reducing trajectory generation to supervised learning has been sug-
gested before, but it is quite difficult to learn a single regressor that generalizes
over a large number of trajectories. Our approach, instead, is to learn a number of
local controllers (regressors) based on individual trajectories, for a given value of the
dynamic parameter or observation. During training TOIL decides when additional
controllers are needed based on a measure of distance between the states reached
during execution and the existing set of controllers. During execution, TOIL uses the
same distance criterion to select which controller among the learned controllers to
use at each time step.

We evaluate TOIL in two domains: aircraft path-finding and robot manipulation.
The aircraft domain is a path-planning task in which a sequence of control inputs
that drive the aircraft to the goal must be found. For the observable case of this task,
we show that TOIL is able to generate a trajectory whose performance is on par with
the traditional trajectory optimizer while reducing the generation time by a factor of
44. In the partially observable case, we show TOIL’s success rate is better than that
of the trajectory optimizer, while the generation time is reduced by a factor of 52.
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In the manipulation domain, a robotic hand needs to move a cylindrical object
from an initial position to a target position. This involves high dimensional state and
control input. We show that in this domain, for both the observable and partially
observable settings, TOIL is able to reduce the trajectory generation time by a factor
of thousands. Moreover, we show that TOIL can generalize over different shapes
of the cylinder, and generate trajectories whose success rate is almost as same as
traditional trajectory optimization.1

2 Related Work

The idea of combining multiple trajectories to obtain a control policy has a long
history, for example [4–6]. Recently, there has been a surge of interest in learning-
based methods for constructing control policies from a set of trajectories obtained
from trajectory optimization [7–9]. These methods generalize a set of relatively
expensive trajectory optimizations to produce a policy represented in a form that can
be efficiently executed on-line.

Our goal is similar, except that we are trying to generalize over dynamic para-
meters. Our training examples are trajectories labeled either directly with dynamics
parameters or with observations that give a distribution over dynamic parameters.

Our approach is based on the paradigmof imitation learning [10, 11]. This learning
paradigm has had many successes in robotics, notably helicopter maneuvering, UAV
reactive control, and robot surgery [12–14]. In imitation learning, the goal is to
replicate (or improve upon) trajectories acquired from an “oracle,” usually an expert
human. Thework in this paper can be seen as replacing the oracle in imitation learning
with a trajectory optimizer.

DAgger [2] is an influential algorithm that addresses a fundamental problem in
standard supervised approaches to imitation learning. Direct application of super-
vised learning suffers from the fact that the state distribution induced by the learned
policy differs from that of the oracle. DAgger adopts intuition from online learning,
a branch of theoretical machine learning, to address this problem by iteratively exe-
cuting the learned policy, collecting data from the oracle, and then learning a new
policy from the aggregated data. An important drawback of Dagger is that it queries
the oracle at each time step, which would require solving a non-linear optimization
program every time step during training in our case.

Our work extends Maximum Mean Discrepancy Imitation Learning
(MMD-IL) [3], a recently proposed imitation learning method designed to be effi-
cient in its access to the oracle. MMD-IL learns a set of trajectories to represent a
policy and uses the MaximumMean Discrepancy criterion [15] as a metric to decide
when to query the oracle for a new trajectory. In this paper, we also take this approach
with a modification that makes it parameter free.

1The video of this can be found at: https://www.youtube.com/watch?v=r9o0pUIXV6w.

https://www.youtube.com/watch?v=r9o0pUIXV6w
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3 Completely Observable Dynamics

For clarity of exposition, we begin by defining the learning problem and the operation
of TOIL in the completely observable case; in Sect. 4we extend it to themore realistic
partially observable case.

We assume a fixed initial state x0, goal state xg (or goal criterion) and cost func-
tional J . We also assume that the transition dynamics are drawn from a known
class, with a particular instance determined by the parameter α drawn from set A :
ẋ = fα(x, u). Our overall aim is to learn to map values of α to trajectories τ that
go from x0 to xg while respecting the transition dynamics and optimizing the cost
functional.

Rather than invent a direct parameterization of trajectories, we will represent a
trajectory implicitly as a policy π that maps a state x to a control output u. Thus,
we can think of the problem as learning a mapping Π : A → (X → U ), which can
be rewritten to a more traditional form: Π : A × X → U . Given a set of example
training trajectories of length H for a set of N different α values

(α j , τ j ) = (α j , {(x ( j)
t , u( j)

t )}Ht=1), j = 1, . . . , N

we can use traditional supervised learning methods to find parameters θ for a family
of regression functions, by constructing the training set {((α j , x

( j)
t ), u( j)

t )}, and using
it as input to a regression method.

Because the training data represent trajectories rather than identically and inde-
pendently distributed samples from a distribution, we find that it is more effective
to use a specialized form of supervised learning algorithm and an active strategy for
collecting training data. The remaining parts of this section describe these methods
and the way in which the final learned regressor is used to generate action in the
on-line setting.

3.1 Representation and Learning

The key idea in TOIL is to construct a set of local trajectory generators πk and to
appropriately select among them based on a two-sample test metric, MMD [15].
These trajectory generators are local in the sense that each of them specializes in a
particular region of the space X × A and can be expected to generalize well to query
points that are likely to have been drawn from that same distribution of points. The
final policy is a regressor that has the form π(α, x) = πk(α, x), where the particular
πk is chosen based on the distance between the query point (α, x) and the data
that were used to train πk . We then iterate between executing the current policy
and updating it with the new data. This is to mitigate the problems associated with
executing a learned policy without updating it, which has been shown to accumulate
error and cause cause the trajectory to be highly erroneous [2]. Pseudo-code for the
top level of TOIL is shown in Algorithm 1. It takes an initial state x0, a goal state xg
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and a sample set A = {α1, . . . , αN } of dynamics parameters, and outputs a trajectory
generator,Π , which is a mapping from the state at time t and the uncertain dynamics
parameter α to the control to be applied at time t .

TOIL comprises three procedures: LearnLocalTrajGenerator, SelectLocalTraj-
Generator and Optimize. The procedure LearnLocalTrajGenerator(τi , αi ) is simply
a call to any supervised regression algorithm on the training set

{((αi , xt ), ut )} for (xt , ut ) ∈ τi

We explain the remaining procedures as we describe Algorithm 1 below.
The algorithm begins by generating a set of training trajectories using the pro-

cedure Optimize. This procedure is responsible for getting a training trajectory, by
optimizing a nonlinear program for trajectory optimization. This nonlinear program
is discussed in detail in Sect. 3.3. From each of these training trajectories, it builds a
local trajectory generator and adds it to the set Π .

Once the initial training trajectories have been used to train local controllers,
we begin an iterative process of ensuring coverage of the input space that will be
reached by control actions generated by Π . For every value of αi , we try to execute
the trajectory that would be generated by Π starting from x0. At each step of exe-
cution we find the local controller π that applies to xt and α using the procedure
SelectLocalTrajGenerator. This procedure, given in Algorithm 2, is responsible for
selecting the most appropriate local trajectory generator based on the similarity met-
ric, called MMD, between the current state and training data π.D associated with
each of the local controllers. This metric is described in detail in Sect. 3.2. If there
is one, we use fα to simulate its execution and get a new state xt+1. If there is no
local controller that covers the pair xt , α, then we call the Optimize procedure to
get a training trajectory from xt to xg with dynamics fαi and use it to train a new
local controller, π , which we add to Π . This process is repeated until it is possible
to execute trajectories for all the training αi to reach the goal, without encountering
any anomalous states. If the αi have been chosen so that they cover the space of
system dynamics that are likely to be encountered during real execution, then Π can
be relied upon to generate effective trajectories.

3.2 Maximum Mean Discrepancy

The process of applying trajectory generator Π to generate an actual trajectory from
an initial (x0, α), as well as the process of actively collecting training trajectories,
depends crucially on identifying when a local trajectory generator is applicable to
an observed system state. This decision is based on anomaly detection using the
MMD criterion [15, 16], which is a non-parametric anomaly detection method that
is straightforward to implement. Other anomaly-detection methods might also be
suitable in this context, as surveyed in [17].

Given two sets of data, X = {x1, . . . , xm} and Y = {y1, . . . , yn} drawn i.i.d. from
distributions p and q respectively, the maximummean discrepancy (MMD) criterion
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Algorithm 1 TOIL(x0, f, xg, A)
Π = { }
for i = 1 to N do

τi = Optimize(x0, f, xg, αi )

Π = Π ∪ LearnLocalTrajGenerator(τi , αi )

end for
farPtsExists = True
while farPtsExists do
farPtsExists = False
for i = 1 to N do
for t = 0 to H do

πt = SelectLocalTrajGenerator(Π, xt , αi )

if isempty(πt ) then
farPtsExists = True
τ = Optimize(xt , fαi , xg)
π = LearnLocalTrajGenerator(τ, αi )

Π = Π ∪ π

end if
Generate xt+1 using fαi (xt , π(xt , αi ))

end for
end for

end while
return Π

Algorithm 2 SelectLocalTrajGenerator(Π, xt , α)
candidates = ∅
for πi ∈ Π do
if MMD(πi .D, (xt , α)) < maxMMD(πi .D) then
candidates = candidates ∪ πi

end if
end for
if size(candidates) == 0 then
return ∅

else
return argminπ̂∈candidatesMMD(π̂ , (xt , α))

end if

determines whether p = q or p �= q, based on an embedding of the distributions in
a reproducing kernel Hilbert space (RKHS).

Definition 1 (from [15]) Let F be a class of functions f : X → R and let
p, q, X,Y be defined as above. Then MMD and its empirical estimate are defined
as:

MMD(F , p, q) = sup f ∈F (Ex∼p[ f (x)] − Ey∼q [ f (y)])

MMD(F , X,Y ) = sup f ∈F

(
1

m

m∑
i=1

f (xi ) − 1

n

n∑
i=1

f (yi )

)
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(a) Initial position of the air-
craft (black), obstacles (blue),
and the goal region (red).

(b) Training trajectory from a
trajectory optimizer (TrajOpt,
black), and executed trajectory
of TOIL. Magenta indicates
the states that are detected as
anomalies during the execution,
while blue indicates those that
were not detected.

(c) Training traj (navy) for an
observation, and a traj found
by TOIL for that observation
(non-navy). Colors indicate the
local trajectory generators se-
lected by TOIL. Notice that
none of the states on TOIL’s tra-
jectory is navy.

Fig. 1 Airplane control

MMD comes with an important theorem which we restate here.

Theorem 1 (from [15]) Let F be a unit ball in a reproducing kernel Hilbert
spaceH , defined on compact metric spaceX , with associated kernel k(·, ·). Then
MMD(F , p, q) = 0 if and only if p = q.

Intuitively, we can expect MMD[F , X,Y ] to be small if p = q, and the quantity
to be large if distributions are far apart. This criterion can also be used as a metric
for anomaly detection, as described in [16]. Given a training dataset D and a query
point x , we can compute the following:

MMD(F , x, D) = sup f ∈F
(
f (x) − 1

n

∑
x ′∈Di

f (x ′))
)

=
(
k(x, x) − 2

n

∑
x ′∈Di

k(x, x ′) + 1

n2
∑

x ′,x ′′∈Di

k(x ′, x ′′)
) 1

2
(1)

and define maxMMD(D) = maxx∈D MMD(F , x, D). As illustrated in [16], we
report x as an anomaly for dataset D if MMD(x, D) > maxMMD(D).

Figure1b shows the result of anomaly detection using the MMD criterion in one
of our domains, in which the robot needs to steer to the goal from a given initial
position and a forward velocity for the robot.
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Algorithm 3 TOILEx(x0,Π, α)
for t = 0 to H do

π = SelectLocalTrajGenerator(Π, xt , α)

execute π(xt , α)

xt+1 = ObserveState
end for

3.3 Trajectory Optimization

In trajectory optimization, the goal is to produce a locally optimal open-loop trajec-
tory that minimizes a cost function along this trajectory, for a given initial condition
x0. The problem of finding an optimal trajectory can be formulated generically as:

u∗(·) = argmin
u(·)

J (x0;α) = argmin
u(·)

∫ T

t=0
g(xt , ut ) dt

s.t. ẋt = fα(xt , ut ) ∀ t and xT = xg (2)

where, xt and ut respectively represent the state and the control input of the system
at time t , g(xt , ut ) is the cost function, ẋt = fα(xt , ut ) governs the dynamics of the
system, x0 is the initial state and xg is the goal state.

There are multiple way of solving nonlinear programs of this form [18], any of
which would be appropriate for use with TOIL.

3.4 Online Execution

Algorithm 3 illustrates the use of a learned Π in an on-line control situation. We
assume that, at execution time, the parameter α is observable. At each time point, we
find the local controller that is appropriate for the current state andα, execute theu that
it generates, and then observe the next state. Assuming we have K local controllers,
each of which is trained with H data points, the worst-case time complexity for
computing a control for a given state andmodel is then O(HK ). This can be achieved
by storing the Grammatrix of the dataset (i.e. the third part of Eq. 1) in a database, in
which case the computation of the second part of Eq.1 becomes the dominant term.

4 Partially Observable Dynamics

Inmore realistic situations, the exact value ofαwill not be observable online. Instead,
we will be able to make observations o, which allow computation of a posterior
distribution Pr(α | o). The TOIL approach can be generalized directly to this setting,
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but rather than selecting the ut to minimize J (x0, α) we minimize it in expectation,
hoping to obtain a trajectory that “hedges its bets” and performs reasonably well in
expectation over system dynamics fα where α ∼ Pr(α | o).

In practice, we use a sampled approximation of the expected value; in particular,
we assume that we have N αs drawn from P(α | o), andwe formulate the constrained
optimization problem as

u∗(·) = argmin
u(·)

Eα∼P(α|o)
[
J (x0;α)

] ≈ argmin
u(·)

1

N

N∑
i=1

∫ T

t=0
g(xit , ut ) dt

s.t. ẋ it = fαi (x
i
t , ut ) ∀ t, i and xiT = xg ∀ i (3)

Note that there are different state variables xit for each possible dynamics αi , allowing
the trajectories to be different, but that there is a single sequence of control variables
ut .

The only additional change to the TOIL algorithm is that, instead of condition-
ing on α in the supervised learning and selection of local trajectory generators, we
condition on the observation o.

5 Experiments

We evaluate our framework on two domains: aircraft path finding and robot manip-
ulation. In all of our experiments, we use random forests [19] as our supervised
learner. Specifically, we use the TreeBagger class implemented in MATLAB for the
aircraft task, and RandomForestRegressor class implemented in scikit-learn [20] for
the manipulation task.We used a Gaussian kernel for the MMDmetric in both tasks.

To evaluate TOIL, we compute three different measures: success rate, trajectory
generation time, and training time. The success rate is the percentage of the time
the trajectory generated by TOIL satisfied the constraints of the environment and
reached the goal. Trajectory generation time shows how much TOIL decreases the
online computation burden and training time measures the off-line computation time
required to learn Π for a new domain.

We compared TOIL to three different benchmarks: (1) calling a standard tra-
jectory optimization procedure (solving Eq.2 using snopt [21]) online in each new
task instance, (2) using the initial training trajectories as input to a random forest
supervised learning algorithm; and (3) DAgger, which calls trajectory optimization
at every time step.
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5.1 Airplane Control

This task is to cause an airplane traveling at a constant speed in the plane to avoid
obstacles and reach a goal location by controlling its angular acceleration. Figure1a
shows an instance of this task. System states st and controls ut are defined to be:

st = [
xt , yt , θt , θ̇t

]T
, ut = θ̈t

where (x, y) is the location of the airplane in the 2D plane, θ is the heading angle,
and θ̇ and θ̈ are the angular velocity and acceleration, respectively. The dynamics of
the system is given by:

f (xt , ut ) = [
ẋt , ẏt , θ̇t , θ̈t

]T = [−v · sin(θt ), v · cos(θt ), θ̈t , ut
]T

where v denotes the constant speed of the airplane. The objective function is inte-
grated cost g(st , ut ) = u2t − distToNearestObstacle(st ).

We consider a trajectory to be a “success” if it does not collide with any obstacles,
and arrives at the goal.

Observable Case The aspect of the dynamics that is variable, corresponding to
α in the algorithms, is the speed of the aircraft, v; it is correctly observed by the
system at the execution time. For training, we sampled 30 different α values from
P(α) = Uniform(5, 30), and then generated training trajectories by solving Eq. 2.
For testing, we sampled 50 different α values from P(α).

Figure2a shows the success rates of the different algorithms. Trajectory opti-
mization always returns a trajectory that is able to arrive at the goal without a
collision. DAgger frequently failed to find feasible trajectories, mainly because it
has not sampled training trajectories in the relevant parts of the state space. Simple
supervised learning was even less successful due to its inability to sample any extra

Algorithms

trajopt DAgger Supervised TOIL

S
uc

ce
ss

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success Rate for 50 Different Observable Models

Algorithms

trajopt DAgger Supervised TOIL

S
uc

ce
ss

 R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success Rate for 50 Different Partially Observable Models

Fig. 2 Success rates for airplane domain
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Table 1 Observable airplane domain trajectory generation and training times

Algorithm Trajectory generation
time (s)

Training time (min) Number of traj opt
calls

TOIL 2.73 64.53 32

DAgger 2.10 375.01 186

Supervised 1.57 60.50 30

Traj opt 121.31 0 0

trajectories at training time. TOIL, in comparison, is able to generate trajectories
whose performance is almost on par with the trajectory optimizer.

Table1 shows the online trajectory computation time required by each algorithm
for 21 knot points. All of the learning-based methods significantly reduce the online
computation time compared to the online trajectory optimization. In terms of training
time, we can see that DAgger makes a very large number of calls to the trajectory
optimizer, collecting training data at inappropriate regions of state space. In contrast,
TOIL is able to ask onlywhennecessary, achievingmuch faster training time.Overall,
then, TOIL produces very good trajectories with reasonable time requirements for
both training and testing.

Partially Observable Case For the partially observable case, the observation o
is the mass of the aircraft, m. We assume a Gaussian distribution, P(α | o = m) =
N ( 1

m , 1), where m is the mass of the aircraft. During training we pick 30 different
m values, and for each m we sample 5 different α values from P(α | o = m) and
solve Eq. 3 to produce 30 training trajectories, each of which is intended to be robust
to varying α values.

For testing, we sampled 50 different new m values, and for each, sampled 5 α

values from P(α | o = m). In this phase, the robot only seesm, but not α or P(α|o).
For online trajectory optimization, we computed a trajectory using those 5 α samples
by solving Eq. 3. Then, for all learning algorithms, we report the result of evaluating
the trajectory they produce on one of the five sampled α values.

Figure2b shows the success rate of different techniques in these problems. In
contrast to the observable case, the robust trajectory optimization cannot always find
trajectories that succeed. This is because the non-linear optimizer needs to find a
trajectory that is feasible for all 5 sampled α values, which makes the optimization
problem much more difficult.

TOIL performs much better than trajectory optimization, which sometimes gets
stuck in terrible local optima, such as one that collides with obstacles. TOIL is
more robust because the MMD criterion is able to pick appropriate local trajectory
generators depending on the initial state. In this task, most of the training trajectories
have heading angles facing forward and travel through the middle of the field due to
the placement of obstacles. Therefore, it is unlikely for a local trajectory generator
whose training data includes traveling towards obstacles to be selected, because x0
is located at the middle of field, facing forward. This is well illustrated in Fig. 1c.
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Table 2 Partially observable airplane trajectory generation and training times

Algorithm Trajectory generation
time (s)

Training time (min) Number of traj opt
calls

TOIL 8.40 273 37

DAgger 7.84 1720.30 233

Supervised 1.75 221.50 30

Traj opt 443.12 0 0

Fig. 3 Examples of the cylinders used in testing. The robotic hand is at its initial position, and the
red dot indicates the goal location for the center of the cylinder

Here, we can see that the local trajectory generator trained with data that collides
with obstacles by traveling to right is never selected during execution.

Now we consider the trajectory generation time and training time, as shown in
Table2.As the generation times show, the learningmethods reduce the online compu-
tation time significantly compared to online optimization. TOIL’s training time was
again significantly smaller than DAgger’s, and comparable with that of supervised
learning.

5.2 Manipulation Control

In this domain, the task is to move a cylindrical object with a multi-fingered robot
hand from an initial position to a goal position. A state of the robot is an element
of an 84 dimensional space which consists of: position and orientation of the palm
and the cylinder, as well as poses of the other 8 links relative to palm, q; associated
velocities, q̇ , and accelerations q̈ . We make use of an augmented position controller
whose inputs are desired poses and an amount of time that should be taken to achieve
them: ut = (qt+1, dtt+1). The aspect of the dynamics that varies is α = (Cx ,Cy,Cz),
the center ofmass of the cylinder, and in the partially observable case, the observation
o = (r, l) is the radius and length of the cylinder. We declare a trajectory to be
successful if it does not violate the dynamics constraints and moves the cylinder to a
desired goal pose. Figure3 shows some example cylinders used in the testing phase.
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The nonlinear program for trajectory optimization has the following compo-
nents: decision variables

{
qt , q̇t , q̈t , F

(1)
t , F (2)

t , F (3)
t

}T
t=0 where F (i) is the force

exerted by i th finger at a contact point; objective function g(xt , ut ) = αq̇2
t +

βq̈2
t + γ

∑3
i=1 F

(i)
t

2
where α, β, γ ∈ R. are weights on each component; constraints

between xt , ut and xt+1 that enforce the physics of the world; constraints on final
and initial states; finger-tip contact constraints that require the robot to contact
the object with its finger tips only; friction cone constraints between robot and
cylinder, and cylinder and the surface; complementarity constraints of the form
F ( f ) · d(qt ) = 0, ∀ f, qt , where, F ( f ) denotes the force being exerted by finger
f , qt denotes the location of the hand at time t , and d(qt ) denotes the distance from
the object to the finger f at time t . Our implementation of the physics constraints
embodies several approximations to real world physics. However, this still represents
a challenging test for the learning methods.

Intuitively, given the objective function and the constraints, the optimal behavior
is to simply push the object to the goal, because pushing requires the robot to exert
less total force and move along a shorter trajectory than lifting the object. However,
when there is uncertainty about the center of mass, pushing the object may be risky:
if the height at which it pushes is too far above or below the COM, the cylinder may
tip over, and so picking the object up may be preferable, in expectation. We find
that when the system dynamics are observable, TOIL selects appropriate pushing
trajectories, but when they are only partially observable, TOIL makes more robust
choices; an example is illustrated in Fig. 4 and a few more examples are shown in
the video2

Observable Case In the observable case, we directly observe α. For training,
we sample 40 different α’s from P(α = (Cx ,Cy,Cz)), which is defined as a joint
uniform distribution with its range defined by the length and radius of the cylinder.
For testing, we sample 50 different models from the same distribution.

Figure5a shows the success rate of the same set of algorithms as for the airplane
domain. As the figure shows, even trajectory optimization sometimes fails to satisfy
the constraints within the given time limit for optimization, because the problem is
quite large.While TOIL again performed just slightlyworse than trajectory optimiza-
tion, DAgger and supervised learning performed relatively poorly. Table3 shows the
training and trajectory computation times. The learning approaches are much more
efficient at generating trajectories online than the optimizer is; Again, DAgger makes
extra calls to the trajectory optimizer, while the supervised learner makes too few.

Partially Observable Case In a more realistic scenario, the robot only gets to
observe length and radius of the cylinder, but not the exact center of mass. For
training, we sampled 40 different observations, and sampled two different α’s from
the conditional distribution P(α = [Cx ,Cy,Cz]|o = [r, l]), which is defined as a
joint normal distribution centered at the center of the cylinder (i.e.μα = (rx , ry, l/2))
and variance defined as half of radius for (x, y) direction, and length in z direction.
For testing, we sampled 50 different observations and tested the algorithms on one

2https://www.youtube.com/watch?v=r9o0pUIXV6w.

https://www.youtube.com/watch?v=r9o0pUIXV6w
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Fig. 4 Trajectories for the observable (left) and partially observable case (right). For the observable
case, the robot simply pushes the object to the goal. For the partially observable case, the robot lifts
the object to to the goal, as to minimize the risk of tipping the cylinder over
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Fig. 5 Success rates for manipulation domain

Table 3 Trajectory computation times and training times for various algorithms

Algorithm Trajectory generation
time (s)

Training time (mins) Number of traj opt
calls

TOIL 1.10 1012 44

DAgger 1.04 1320 60

Supervised 0.45 880 40

Traj Opt 1302 0 0
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Table 4 Trajectory computation times and training times of various algorithms

Algorithm Trajectory generation
time (s)

Training time (mins) Number of traj opt
calls

TOIL 1.16 1978 46

DAgger 1.04 2580 60

Supervised 0.45 1720 40

Traj Opt 2628 0 0

of the α’s sampled from the same distribution. The robot gets to see only o, but not
the conditional distribution or α.

Figure5b shows the success rate of the different algorithms. The pattern of per-
formance is similar to the observable case. All the algorithms performed somewhat
better than in the observable case, presumably because the trajectories found are
less sensitive to variations in the dynamics. Table4 shows the training and trajec-
tory generation times. For this case, the learning algorithms are even more efficient
relative to trajectory optimization, because the optimization problem is so difficult.
As before, DAgger gathered much more data, while TOIL collected just enough to
perform almost as well as the trajectory optimizer.

6 Conclusion

We proposed TOIL, an algorithm that learns an online trajectory generator that can
generalize over varying and uncertain dynamics. When the dynamics is certain, our
generator is able to generalize across various model parameters. If it is partially
observable, then it is able to generalize across different observations. It is shown, in
two simulated domains, to find solutions that are nearly as good as, and sometimes
better than, those obtained by calling the trajectory optimizer on line. The online
execution time is dramatically decreased, and the off-line training time is reasonable.

A significant concern about TOIL, as well as other supervised learning based
algorithms for trajectory generation [7–9], is that the resulting controller has no
guarantee of stability. In contrast, controllers synthesized from a set of local stabi-
lizing controllers, such as LQRs, can guarantee that the controller would stabilize to
the goal state [5]. Investigating the stability guarantees of supervised learning based
trajectory generators would be an interesting research avenue for the future.
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Inverse KKT – Learning Cost Functions
of Manipulation Tasks from Demonstrations

Peter Englert and Marc Toussaint

1 Introduction

Most tasks in real world scenarios require contacts with the environment.
For example, the task of opening a door requires contact between the robot grip-
per and the door handle. In this paper, we address learning from demonstration for
the case of manipulation that incorporates contacts. Specifically, we want to extract
from demonstrations how to represent and execute manipulations in such a way that
the robot can perform such tasks in a robust and general manner.

Cost functions are a powerful representation for robot skills, since they are able
to encode task knowledge in a very abstract way. This property allows them to reach
high generalization to a wide range of problem configurations. However, designing
cost functions by hand can be hard since the right features have to be chosen and
combined with each other. Therefore, inverse optimal control, also known as inverse
reinforcement learning [18], automates the design of cost functions by extracting
the important task spaces and cost parameters from demonstrations. Many success-
ful applications in different areas have demonstrated the capabilities of this idea,
including the learning of quadruped locomotion [8], helicopter acrobatics [1] and
simulated car driving [10].

There are two parts necessary for applying learning from demonstrationwith IOC:
(1) The inverse optimization method for extracting the cost function from demon-
strations; (2) The motion optimization method that creates motions by minimizing
such cost functions. Both parts are coupled by the cost function, which is the output
of the first and input of the second part, see Fig. 1. Usually IOC algorithms try to find
a cost function such that the output of the motion optimization method is similar to
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Fig. 1 Concept of skill learning with inverse optimal control, where the cost function plays the
central role of encoding the demonstrated behavior. In this paper, we present our formulation of
learning a cost function for a constrained trajectory optimization problem

the input demonstrations of the inverse problem. Therefore, the cost function is used
as a compact representation that encodes the demonstrated behavior.

Our approach finds a cost function, including the identification of relevant task
spaces, such that the demonstrations fulfill the KKT conditions of an underlying
constrained optimization problem with this cost function. Thereby we integrate con-
straints into the IOC method, which allows us to learn from object manipulation
demonstrations that naturally involve contact constraints.Motion generation for such
cost functions (point 2 above) is a non-linear constrained program, which we solve
using an augmented Lagrangian method. However, for typical cost function para-
meterizations, the IOC problem of inferring the cost function parameters (point 1
above) becomes a quadratic program, which can be solved very efficiently.

The structure of the paper is as follows. We would like to defer the discussion of
related work to after we have introduced our method, in Sect. 4. First, in Sect. 2, we
introduce some background on constrained trajectory optimization, which represents
the counterpart to the IOC approach. Afterwards, we develop our IOC algorithm in
Sect. 3 by deriving a cost function based on KKT conditions. In Sect. 5 we evaluate
our approach on simulated and real robot experiments.

The main contribution of this paper is the introduction of an IOC method for
constrained motions with equality and inequality constraints that is based on the
KKT conditions. Thismethod allows to efficiently extract task spaces and parameters
from demonstrations.

2 Constrained Trajectory Optimization

We define a trajectory x0:T as a sequence of T + 1 robot configurations xt ∈ R
n . The

goal of trajectoryoptimization is tofinda trajectory x�
1:T , given an initial configuration

x0, that minimizes a certain objective function

f (x1:T , y,w) =
T∑

t=1

ct (x̃t , y,wt ) . (1)

This defines the objective as a sum over cost terms ct (x̃t , y,wt ), where each cost
term depends on a k-order tuple of consecutive states x̃t = (xt−k, . . . , xt−1, xt ),
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containing the current and k previous robot configurations [22]. This allows us to
specify costs on the level of positions, velocities or accelerations (for k = 2) in
configuration space as well as any task spaces. In addition to the robot configuration
state x̃t , we use external parameters of the environment y to contain information that
are important for planning themotion (parameters of the environment’s configuration,
e.g. object positions). These y usually vary between different problem instances,
which is used to generalize the skill to different environment configurations.

We typically assume that the cost terms in Eq. (1) are a weighted sum of squared
features,

ct (x̃t , y,wt ) = φt (x̃t , y)
�diag(wt )φt (x̃t , y) , (2)

where φt (x̃t , y) are the features and wt is the weighting vector at time t . A simple
example for a feature is the robot’s endeffector position at the end of the motion
T relative to the position of a cup. In this example the feature φT (x̃t , y) would
compute the difference between the forward kinematics mapping and cup position
(given by y). More complex tasks define body orientations or relative positions
between robot and an object. Transition costs are a special type of features, which
could be squared torques, squared accelerations or a combination of those, or veloc-
ities or accelerations in any task space.

In addition to the task costs we also consider inequality and equality constraints

∀t gt (x̃t , y) ≤ 0, ht (x̃t , y) = 0 (3)

which are analogous to features φt (x̃t , y) and can refer to arbitrary task spaces. An
example for an inequality constraint is the distance to an obstacle,which should not be
below a certain threshold. In this example gt (x̃t , y)would be the smallest difference
between the distance of the robot body to the obstacle and the allowed threshold. The
equality constraints are in our approach mostly used to represent persistent contacts
with the environment (e.g., ht describes the distance between hand and object that
should be exactly 0). The motivation for using equality constraints for contacts,
instead of using cost terms in the objective function as in Eq. (2), is the fact that
minimizing costs does not guarantee that they will become 0, which is essential for
establishing a contact.

For better readability we transform Eqs. (1) and (3) into vector notation by intro-
ducing the vectorsw,Φ, g and h that concatenate all elements over time. This allows
us to write the objective function of Eq. (1) as

f (x1:T , y,w) = Φ(x1:T , y)�diag(w) Φ(x1:T , y) (4)

and the overall optimization problem as
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x�
1:T = argmin

x1:T
f (x1:T , y,w) (5)

s.t. g(x1:T , y) ≤ 0

h(x1:T , y) = 0

We solve such problems using the augmented Lagrangian method [13]. Therefore,
additionally to the solution x�

1:T we also get the Lagrange parameters λ�
1:T , which

provide information on when the constraints are active during the motion. This
knowledge can be used to make the control of interactions with the environment
more robust [23]. We use a Gauss–Newton optimization method to solve the uncon-
strained Lagrangian problem in the inner loop of augmented Lagrangian. For this
problem, the gradient is

∇x1:T f (x1:T , y,w) = 2J(x1:T , y)�diag(w)Φ(x1:T , y) (6)

and the Hessian is approximated as in Gauss–Newton as

∇2
x1:T f (x1:T , y,w) ≈ 2J(x1:T , y)�diag(w)J(x1:T , y), (7)

where J = ∂Φ
∂x is the Jacobian of the features. Using a gradient based trajectory

optimization method restricts the class of possible features Φ to functions that are
continuous with respect to x. However, we will show in the experimental section
that this restriction still allows to represent complex behavior like opening a door or
sliding a box on a table.

3 Inverse KKT Motion Optimization

We now present an approach to the inverse problem for the constrained trajectory
optimization formulation introduced in the previous section. To this end we learn the
weight vector w in Eq. (5) from demonstrations. We assume that D demonstrations
of a task are provided with the robot body (e.g., through teleoperation or kinesthetic

teaching) and are given in the form (x̂(d)

1:T , ŷ(d)
)Dd=1, where x̂(d)

1:T is the demonstrated
trajectory and ŷ(d) is the environment configuration (e.g., object position).

Our IOC objective is derived from the Lagrange function of the problem in Eq. (5)

L(x1:T , y,λ,w) = f (x1:T , y,w) + λ�
[
g(x1:T , y)
h(x1:T , y)

]
(8)

and the Karush–Kuhn–Tucker (KKT) conditions. The first KKT condition says that
for an optimal solution x�

1:T the condition ∇x1:T L(x�
1:T , y,λ,w) = 0 has to be ful-

filled. With Eq. (6) this leads to
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2J(x1:T , y)�diag(w)Φ(x1:T , y) + λ� J c(x1:T , y) = 0 (9)

where the matrix J c is the Jacobian of all constraints. We assume that the demon-
strations are optimal and should fulfill this conditions. Therefore, the IOC problem
can be viewed as searching for a parameter w such that this condition is fulfilled for
all the demonstrations.

We express this idea in terms of the loss function

�(w,λ) =
D∑

d=1

�(d)(w,λ(d)) (10)

�(d)(w,λ(d)) =
(
∇x1:T L(x̂(d)

1:T , ŷ(d)
,λ(d),w)

)2
, (11)

wherewe sumover D demonstrations of the scalar product of the firstKKTcondition.
In Eq. (10), d enumerates the demonstrations and λ(d) is the dual to the demonstra-
tion x̂(d)

1:T under the problem defined by w. Note that the dual demonstrations are
initially unknown and, of course, depend on the underlying cost function f . More
precisely, λ(d) = λ(d)(x̂(d)

1:T , ŷ(d)
,w) is a function of the primal demonstration, the

environment configuration of that demonstration, and the underlying parameters w.
And �(d)(w,λ(d)(w)) = �(d)(w) becomes a function of the parameters only (we think
of x̂(d)

1:T and ŷ(d) as given, fixed quantities, as in Eqs. 10 and 11).
Given that wewant tominimize �(d)(w)we can substitute λ(d)(w) for each demon-

stration by choosing the dual solution that analytically minimizes �(d)(w) subject to
the KKT’s complementarity condition

∂

∂λ(d)
�(d)(w,λ(d)) = 0 (12)

⇒ λ(d)(w) = −( J̃c J̃c
�
)−1 J̃c J�diag(Φ)w . (13)

Note that here the matrix J̃c is a subset of the full Jacobian of the constraints J c that
contains only the active constraints during the demonstration, which we can evaluate
as g and h are independent of w. This ensures that (13) is the minimizer subject to
the complementarity condition. The number of active constraint at each time point
has a limit. This limit would be exceeded if more degrees of freedom of the system
are constrained than there are available.

By inserting Eq. (13) into Eq. (11) we get

�(d)(w)=4w�diag(Φ)J
(
I− J̃c

�
( J̃c J̃c

�
)−1J̃c

)
J�diag(Φ)

︸ ︷︷ ︸
Λ(d)

w (14)

which is the IOC cost per demonstration. Adding up the loss per demonstration and
plugging this into Eq. (10) we get a total inverse KKT loss of
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�(w) = w�Λw with Λ = 4
D∑

d=1

Λ(d). (15)

The resulting optimization problem is

min
w

w�Λw s.t. w ≥ 0 (16)

Note that we constrain the parameters w to be positive. This reflects that we want
squared cost features to only positively contribute to the overall cost in Eq. (4).

However, the above formulation may lead to the singular solution w = 0 where
zero costs are assigned to all demonstrations, trivially fulfilling the KKT conditions.
This calls for a regularization of the problem. In principle there are two ways to regu-
larize the problem to enforce a non-singular solution: First, we can impose positive-
definiteness of Eq. (4) at the demonstrations (cf. [10]). Second, as the absolute scaling
of Eq. (4) is arbitrary we may additionally add the constraint

min
w

w�Λw (17)

s.t. w ≥ 0 ,
∑

i

wi ≥ 1

to our problem formulation (16). We choose the latter option in our experiments.
Equation (17) is a (convex) quadratic program (QP), for which there exist efficient

solvers. The gradient w�Λ and Hessian Λ are very structured and sparse, which we
exploit in our implementations.

In practice we usually use parametrizations on w. This is useful since in the
extreme case, when for each time step a different parameter is used, this leads to
a very high dimensional parameter space (e.g., 10 tasks and 300 time steps lead to
3000 parameter). This space can be reduced by using the sameweight parameter over
all time steps or to activate a task only at some time points. The simplest variant is
to use a linear parametrization w(θ) = Aθ , where θ are the parameters that the IOC
method learns. This parametrization allows a flexible assignment of one parameter
to multiple task costs. Further linear parametrizations are radial basis function or
B-spline basis functions over time t to more compactly describe smoothly varying
cost parameters. For such linear parametrization the problem in Eq. (17) remains a
QP that can be solved very efficiently.

Another option we will consider in the evaluations is to use a nonlinear map-
ping w(θ) = A (θ) to more compactly represent all parameters. For instance, the
parameters w can be of a Gaussian shape (as a function of t), where the mean and
variance of the Gaussian is described by θ . Such a parametrization would allow us
to learn directly the time point when costs are active. In such a case, the problem is
not convex anymore. We address such problems using a general non-linear program-
ming method (again, augmented Lagrangian) and multiple restarts are required with
different initializations of the parameter.
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Our approach alsoworks in the unconstrained case. In this case the constraint term
vanishes in Eq. (9) and the remaining part is the optimality condition of unconstrained
optimization, which says that the gradient of the cost function should be equal to
zero.

4 Related Work

In the recent years, there has been extensive research on imitation learning and
inverse optimal control. In the following section, wewill focus on the approaches and
methods that are most related to our work of learning cost functions for manipulation
tasks. For a broader overview on IOC approaches, we refer the reader to the survey
paper of Zhifei and Joo [24] and for an overview on general imitation learning we
recommend Argall et al. [3].

4.1 Max-Entropy and Lagrangian-Based IOC Approaches

Thework of Levine andKoltun [10] is perhaps the closest to our approach. They use a
probabilistic formulation of inverse optimal control that approximates the maximum
entropy model of Ziebart et al. [25]. In our framework of trajectory optimization (cf.
Sect. 2) this translates to

min
w

∇x f
�(∇2

x f )
−1∇x f − log |∇2

x f |. (18)

The first term of this equation is similar to our loss in Eq. (10), where the objective
is to get small gradients. Additionally, they use the inverse Hessian as a weighting
of the gradient. The second term ensures the positive definiteness of the Hessian
and also acts as a regularizer on the weights. The learning procedure is performed
by maximizing the log-likelihood of the approximated reward function. Instead of
enforcing a fully probabilistic formulation, we focus on finite-horizon constrained
motion optimization formulation with the benefit that it can handle constraints and
leads to a fast QP formulation. Further, our formulation also targets at efficiently
extracting the relevant task spaces.

Puydupin-Jamin et al. [16] introduced an approach to IOC that also handles linear
constraints. It learns the weight parameter w and Lagrange parameter λ by solving a
least-squares optimization problem

min
w,λ

([
2J�diag(Φ) J�

c

] [
w
λ

]
+ J/w

)2

(19)
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where /w denotes the part in the cost function that is not weighted withw. Themethod
only addresses equality constraints (no complementarity condition for λ). Our main
concern with this formulation is that there are no constraints that ensure that the
weight parameter w do not become 0 or negative. If J/w is zero, as in our case,
the solution is identially zero (w,λ). Starting with the KKT condition, they derive
a linear residual function that they optimize analytically as the unconstrained least
squares. In the experimental section they consider human locomotion with a unicycle
model, where they learn one weight parameter of torques and multiple constraints
that define the dynamics of the unicycle model and the initial and target position. The
idea of using KKT conditions is similar to our approach. However, our formulation
allows for inequality constraints and leads to a QP with boundary constraints that
ensures that the resulting parameters are feasible. Instead of optimizing for λ, we
eliminate λ from the inverse KKT optimization using Eq. (13).

The work of Albrecht et al. [2] learns cost functions for human reaching motions
from demonstrations that are a linear combination of different transition types (e.g.,
jerk, torque). They transformed a bilevel optimization problem, similar to [11], into
a constrained optimization problem of the form

min
x1:T ,w,λ

(
φpos(xT ) − φpos(x̂(d)

T )
)2

(20)

s.t. ∇x1:T L(x1:T , y,λ,w) = 0 (21)

h(x1:T ) = 0
∑

i

wi = 1 w ≥ 0 (22)

The objective is the squared distance between optimal and demonstrated final hand
position. They optimize this objective for the trajectory x1:T , the parameterw and the
Lagrange parameter λ with the constraints that the KKT conditions of the trajectory
x1:T are fulfilled. To apply this approach demonstrations are first preprocessed by
extracting a characteristic movement with dynamic time warping and a clustering
step. Their results show that a combination of different transition costs represent
human armmovements best and that they are able to generalize to newhand positions.
The advantage of their approach is that they do not only get the parameter weightsw,
but also an optimal trajectory x�

1:T out of the inverse problem in Eqs. (20)–(22). The
use of the KKT conditions differs from our approach in two ways. First, they use the
KKT conditions in the constrained part of the formulation in Eq. (21), whereas we
use them directly as scalar product in the cost function. Second, they use them on the
optimization variables x1:T , whereas we use them on the demonstrations x̂(d) (see
Eq. (10)). Instead of minimizing a function directly of the final endeffector position
and only learning weights of transition costs, we present a more general solution to
imitation learning that can learn transition and task costs in arbitrary feature spaces.
Our approach also handles multiple demonstrations directly without preprocessing
them to a characteristic movement.
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4.2 Black-Box Inverse Optimal Control

Black-box optimization approaches are another category of methods for IOC. There,
usually an optimization procedure with two layers is used, where in the outer loop
black box optimization methods are used to find suitable parameter of the inner
motion problem. For this usually no gradients of the outer loop cost function are
required.

Mombaur et al. [11] use such a two-layered approach, where they use in the outer
loop a derivative free trust region optimization technique and in the inner loop a
direct multiple shooting technique. The fitness function of their outer loop is the
squared distance between inner loop solution and demonstrations. They apply it on a
human locomotion task, where they record demonstration of human locomotion and
learn a cost function that they transfer to a humanoid robot. Rückert et al. [17] uses
a similar idea to learn movements. They use covariance matrix adaptation [5] in the
outer loop to learn policy parameters of a planned movement primitive represented
as a cost function. Such methods usually have high computational costs for higher-
dimensional spaces since the black box optimizer needs many evaluations. One also
needs to find a cost function for the outer loop that leads to reasonable behavior.

Kalakrishnan et al. [7] introduce an inverse formulation of the path integral rein-
forcement learning method PI2 [21] to learn objective functions for manipulation
tasks. The cost function consists of a control cost and a general state dependent cost
term at each time step. They maximize the trajectory likelihood of demonstrations
p(x̂1:T |w) for all demonstrations by creating sampled trajectories around the demon-
strations. Further, they L1 regularize w to only select a subset of the weights. The
method is evaluated on grasping tasks.

4.3 Task Space Extraction

Jetchev and Toussaint [6] discover task relevant features by training a specific kind
of value function, assuming that demonstrations can be modelled as down-hill walks
of this function. Similar to our approach, the function is modelled as linear in several
potential task spaces, allowing to extract the onemost consistentwith demonstrations.
In Muhlig et al. [12] they automatically select relevant task spaces from demonstra-
tions. Therefore, the demonstrations are mapped on a set of predefined task spaces,
which is then searched for the task spaces that best represent the movement. In con-
trast to these methods, our approach more rigorously extracts task dimensions in
the inverse KKT motion optimization framework, including motions that involve
contacts.
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4.4 Model-Free Imitation Learning

Another approach is the widely used framework of direct imitation learning with
movement primitives [14, 15, 19]. They belong to amore direct approach of imitation
learning that does not try to estimate the cost function of the demonstration. Instead
they represent the demonstrations in a parametrized form that is used to generalize
to new situations (e.g., changing duration of motion, adapting the target). Many
extensions with different parametrization exist that try to generalize tomore complex
scenarios [4, 20]. They are very efficient to learn from demonstrations and have been
used for manipulation tasks (e.g., pushing a box [9]).

The major difference of such kind of approaches to our method is that they do not
need an internal model of the environment, which is sometimes difficult to obtain.
However, if such a model is available it can be used to learn a cost function that
provide better generalization abilities than movement primitives. This is the case
since cost functions are a more abstract representation of task knowledge. Examples
of such generalization abilities are demonstrated in Sect. 5 with a box sliding task
wherewe generalized to different box positions andwith the door opening taskwhere
we generalized to different door angles.

5 Experiments

In the following experimental evaluations, we demonstrate the learning properties
and the practical applicability of our approach and compare it to an alternativemethod
in terms of accuracy and learning speed.

For applying an IOC method a set of potential features Φ has to be provided as
input. For the following experiments we implemented a simple feature generator to
produce a set of potential cost function features in a task independent manner. The
used feature types are:

• Transition features: Represent the smoothness of themotion (e.g., sumof squared
acceleration or torques)

• Position features: Represent a body position relative to another body.
• Orientation features: Represent orientation of a body relative to another body.

A body is either a part of the robot or belongs to the environment. In the following
experiments the time points are either learned with RBF parametrization or they
are heuristically extracted from points of interest of the demonstrations (e.g., zero
velocity, contact release). We demonstrate in the following experiments that by com-
bining such simple feature types at different time steps into a cost function allows to
represent complex behavior.

First, we present on a simple task the ability to reestimate weight functions
from optimal demonstrations with different weight parametrizations. Afterwards,
we present more complex tasks like sliding a box and opening a door with a real
PR2.



Inverse KKT – Learning Cost Functions of Manipulation Tasks … 67

5.1 Different Weight Parametrizations in a Benchmark
Scenario

The goal of our work is to learn cost functions for finite horizon optimal control prob-
lems, including when and how long the costs should be active. In this experiment
we test our approach on a simple benchmark scenario. Therefore, we create syn-
thetic demonstrations by optimizing the forward problem with a known ground truth
parameter set wGT and test if it is possible to reestimate these parameters from the
demonstrations. We create three demonstrations with 50 time steps, where we define
that in the time steps 25–30 of these demonstrations the robot endeffector is close to
a target position. For this experiments we use a simple robot arm with 7 degree of
freedom and the target is a sphere object. We compare the three parametrizations

• Direct parametrization: A different parameter is used at each time step (i.e.,
w = θ ) which results in θ ∈ R

50.
• Radial basis function: The basis functions are equally distributed over the time
horizon. We use 30 Gaussian basis functions with standard deviation 0.8. This
results in θ ∈ R

30.
• Nonlinear Gaussian: A single unnormalized Gaussian weight profile where we
have θ ∈ R

3 with the weight as linear parameter and the nonlinear parameters are
directly themean and standard deviation. In this case themean directly corresponds
to the time where the activation is highest.

The demonstrations are used as input to our inverse KKT method (see Sect. 3) and
the weights are initialized randomly. A comparison of the learned parameters and the
ground truth parameter is shown in Fig. 2. The green line represents the ground truth
knowledge used for creating the demonstrations. The black dots show the learned
parameters of the direct parametrization. The red line shows the learned Gaussian
activation and the blue line shows the RBF network. As it can be seen all parametriza-
tion detect the right activation region between the time steps 25–30 and approximate
the ground truth profile. The Gaussian and RBF parametrization also give some
weight to the region outside the actual cost region, which is reasonable since in the
demonstrations the robot is still close to the target position. After learning with these
parametrizations, we conclude that the linear RBF network are most suited to learn
time profiles of cost functions. The main reason for this is the linearity of the para-

15 20 25 30 35 40 45 50
0

0.5

1

w

time steps

Ground truth
Direct param
Gauss param
RBF param

Fig. 2 Learned time profiles of different weight parameterizations. For more details see Sect. 5.1
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metrization that makes the inverse KKT problem convex and the versatility of the
RBF network to take on more complex forms. Directly learning the time with the
nonlinear Gaussian-shaped parametrization was more difficult and required multiple
restarts with different initialization. This demonstrates that the framework of con-
strained trajectory optimization and its counterpart inverse KKT works quite well
for reestimating cost functions of optimal demonstrations.

5.2 Sliding a Box on a Table

In this experiment we use our approach to learn a cost function for sliding a box on
a table. This task is depicted in Fig. 3. The goal is to move the blue box on the table
to the green marked target position and orientation. The robot consist of a fixed base
and a hand with 2 fingers. In total the robot has 10 degrees of freedom. Additionally
to these degree of freedom we model the box as part of the configuration state,
which adds 3 more degrees of freedom (2 translational + 1 rotational). The final box
position and orientation is provided as input to our approach and part of the external
parameters y. We used three synthetic demonstrations of the task and created a set
of features with the approach described above that led to θ ∈ R

537 parameters. The
relevant features extracted from our algorithm are

• transition: Squared acceleration at each time step in joint space
• posBox: Relative position between the box and the target.
• vecBox: Relative orientation between the box and the target.
• posFinger1/2: Relative position between the robots fingertips and the box.
• posHand: Relative position between robot hand and box.
• vecHand: Relative orientation between robot hand and box.

The contacts between the fingers and the box during the sliding are modeled with
equality constraints. They ensure that during the sliding the contact ismaintained. For
achieving realisticmotions,we use an inequality constraint that restrict themovement
direction during contact into the direction inwhich the contact is applied. This ensures
that no unrealisticmotions like sliding backwards or sidewards are created. For clarity
we would like to note that we are not doing a physical simulation of the sliding

Fig. 3 These images show the box sliding motion of Sect. 5.2 where the goal of the task is to slide
the blue box on the table to the green target region
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Fig. 4 Each image shows a different instance of the box sliding task. We were able to generalize
to different initial box states (blue box) and to different final box targets (green area)

Fig. 5 The resulting parameters w of the extracted relevant features plotted over time. task is
depicted in this slideshow

Fig. 6 On the left side is the black box IOC algorithm we used for comparison in Sect. 5.2. On the
right side are the results of the evaluation that show that our method is superior in terms of squared
error between the trajectories and computation time

behavior in these experiments. Our goal was more to learn a policy that executes a
geometric realistic trajectory from an initial to a final box position. Figure3 shows
one of the resulting motion after learning. We were able to generalize to a wide
range of different start and goal position of the box (see Figs. 4 and 5). Videos of the
resulting motions can be found in the supplementary material.

We compare our method to a black-box optimization approach similar to [11,
17]. We implemented this approach with the black-box method Covariance Matrix
Adaptation (CMA) [5] in the outer loop and our constrained trajectory optimization
method (see Sect. 2) in the inner loop. The resulting algorithm is described in Fig. 6.
As fitness function for CMA we used the squared distance between the current
solution x(n) and the demonstrations x̂(d). We compare this method with our inverse
KKT approach by computing the error between the solution and demonstrations and
the computational time, which are shown in the table in Fig. 6. The black-boxmethod
took around 4900 iterations of the outer loop of the above algorithm until it converged
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Fig. 7 The resulting motion after learning the door opening task is depicted in this slideshow. See
Sect. 5.3 for more details

to a solution. This comparison shows that using structure and optimality conditions
of the solution can enormously improve the learning speed. Further difficulties with
black box methods is that they cannot naturally deal with constraints (in our case
w > 0) and that the initialization is non-trivial.

5.3 Opening a Door with a PR2

In this experiment we apply the introduced inverse KKT approach from Sect. 3 on
a skill with the goal to open a door with a real PR2 robot. The problem setup is
visualized in Fig. 7. We use a model of the door for our planning approach and
track the door angle with AR marker. We use the left arm of the robot that consists
of 7 rotational joints and also include the door angle as configuration state into x.
This allows us to define cost functions directly on the door angle. The gripper is
fixed during the whole motion. For our IOC algorithmwe recorded 2 demonstrations
of opening the door from different initial positions with kinesthetic teaching. The
motions also include the unlocking of the door by turning the handle first. During the
demonstrations we also recorded the door position with the attached markers. We
created a feature set similar to the box sliding motion from the previous experiment.
Our inverse KKT algorithm extracted the features:

• Relative position & orientation between gripper and handle before and after
unlocking the handle.

• Endeffector orientation during the whole opening motion.
• Position of the final door state.

We use equality constraints, similar to the box sliding experiment to keep the contact
between endeffector and door. Furthermore, we use inequality constraints to avoid
contacts with the rest of the robot body. A resulting motion of optimizing the con-
strained trajectory optimization problem with the learned parameter w� is visualized
in Fig. 7. We are able to robustly generate motions with these parameters that gener-
alize to different initial positions and different target door angles (see Fig. 8). Videos
of all these motions can be found in the supplementary material.
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Fig. 8 These images show the generalization abilities of our approach. The pictures in (a) show
different initial positions of the robot and the pictures in (b) show different final door angle positions.
After learning the weight parameter w� with inverse KKT it was possible to generalize to all these
instances of the door opening task

6 Conclusion

In this paper we introduced inverse KKT motion optimization, an inverse optimal
control method for learning cost functions for constrainedmotion optimization prob-
lems. Our formulation is focused on finite horizon optimal control problems for tasks
that include contact with the environment. The resulting method is based on the KKT
conditions that the demonstrations should fulfill. For a typical linear parameterization
of cost functions this leads to a convex problem; in the general case it is implemented
as a 2nd order optimization problem, which leads to a fast convergence rate. We
demonstrated the method in a real robot experiment of opening a door that involved
contact with the environment. In our future research we plan to further automate and
simplify the skill acquisition process. Thereby, one goal is to extend the proposed
method to be able to handle demonstrations that are not recorded on the robot body.
Another goal is to further improve the skill with reinforcement learning.
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Autonomously Acquiring Instance-Based
Object Models from Experience

John Oberlin and Stefanie Tellex

1 Introduction

Robotics will assist us at childcare, help us cook, and provide service to doctors,
nurses, and patients in hospitals. Many of these tasks require a robot to robustly
perceive and manipulate objects in its environment, yet robust object manipulation
remains a challenging problem. Transparent or reflective surfaces that are not visible
in IR or RGB make it difficult to infer grasp points [23], while emergent physical
dynamics cause objects to slip out of the robot’s gripper; for example, a heavy object
might slip to the ground during transport unless the robot grabs it close to the center
of mass. Instance-based approaches that focus on specific objects can have higher
accuracy but usually require training by a human operator, which is time consuming
and can be difficult for a non-expert to perform [18, 19, 31]. Existing approaches for
autonomously learning 3D object models often rely on expensive iterative closest
point-based methods to localize objects, which are susceptible to local minima and
take time to converge [16].

To address this problem, we take an instance-based approach, exploiting the
robot’s ability to collect its own training data. Although this approach does not
generalize to novel objects, it enables experience with the object to directly improve
the robot’s performance during future interactions, analogous to how mapping an
environment improves a robot’s ability later to localize itself. After this data collec-
tion process is complete, the robot can quickly and reliably manipulate the objects.
Our first contribution is an approach that enables a robot to achieve the high accuracy
of instance-based methods by autonomously acquiring training data on a per object
basis. Our grasping and perception pipeline uses standard computer vision techniques
to perform data collection, feature extraction, and training. It uses active visual ser-
voing for localization, and only uses depth information at scan time. Because our
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camera can move with seven degrees of freedom, the robot collects large quantities
of view-based training data, so that straightforward object detection approaches per-
form with high accuracy. This framework enables a Baxter robot to detect, classify,
and manipulate many objects.

However, limitations in sensing and complex physical dynamics cause problems
for some objects. Our second contribution addresses these limitations by enabling
a robot to learn about an object through exploration and adapt its grasping model
accordingly.We frame the problemofmodel adaptation as identifying the best arm for
anN-armed bandit problem [41] where the robot aims tominimize simple regret after
a finite exploration period [3]. Existing algorithms for best arm identification require
pulling all the arms as an initialization step [1, 5, 26]; in the case of identifying grasp
points, where each grasp takes more than 15s and there are more than 1000 potential
arms, this is a prohibitive expense. To avoid pulling all the arms, we present a new
algorithm, Prior Confidence Bound, based on Hoeffding races [27]. In our approach,
the robot pulls arms in an order determined by a prior, which allows it to try the most
promising arms first. It can then autonomously decide when to stop by bounding
the confidence in the result. Figure1 shows the robot’s performance before and after
training on a ruler; after training it grasps the object in the center, improving the
success rate.

Our evaluation demonstrates that our scanning approach enables a Baxter robot
with no additional sensing to detect, localize, and pick up a variety of household
objects. Further, our adaptation step improves the overall pick success rate from 55
to 75% on our test set of 30 household objects, shown in Fig. 6 (Fig. 2).

(a) Before learning, the ruler slips. (b) After learning, the robot picks it up.

Fig. 1 Before learning, the robot grasps the ruler near the end, and it twists out of the gripper and
falls onto the table; after learning, the robot successfully grasps near the ruler’s center of mass
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Fig. 2 Results at each phase of the grasping pipeline

2 Grasping System

Our object detection and pose estimation pipeline uses conventional computer vision
algorithms in a simple software architecture to achieve a frame rate of about 2Hz
for object detection and pose estimation. Object classes consist of specific object
instances rather than general object categories. Using instance recognition means
we cannot reliably detect categories, such as “mugs,” but the system will be much
better able to detect, localize, and grasp the specific instances, e.g. particular mugs,
for which it does have models.

Our detection pipeline runs on stock Baxter with one additional computer. The
pipeline starts with video from the robot’s wrist cameras, proposes a small number
of candidate object bounding boxes in each frame, and classifies each candidate
bounding box as belonging to a previously encountered object class. When the robot
moves to attempt a pick, it uses detected bounding boxes and visual servoing to
move the arm to a position approximately above the target object. Next, it uses
image gradients to servo the arm to a known position and orientation above the
object. Because we can know the gripper’s position relative to the object, we can
reliably collect statistics about the success rate of grasps at specific points on the
object.

2.1 Object Detection

The goal of the object detection component is to extract bounding boxes for objects in
the environment from a relatively uniform background. The robot uses object detec-
tion to identify regions of interest for further processing. The input of the object
detection component is an image, I ; the output is a set of candidate bounding boxes,
B. Our object detection approach uses a modified Canny algorithm which termi-
nates before the usual non-maximal suppression step [4]. We start by converting I
to a YCbCr opponent color representation. Then we apply 5 × 5 Sobel derivative
filters [39] to each of the three channels and keep the square gradient magnitude. We
take a convex combination of the three channels, where Cb and Cr and weighted the
same and more heavily than Y because Y contains more information about shadows
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and specular information, which adds noise. Finally we downsample, apply the two
Canny thresholds, and find connected components. We generate a candidate bound-
ing box for each remaining component by taking the smallest box which contains the
component. We throw out boxes which do not contain enough visual data to classify.
If a box is contained entirely within another, we discard it.

2.2 Object Classification

The object classification module takes as input a bounding box, B, and outputs a
label for that object, c, based on the robot’s memory. This label is used to identify the
object and look up other information about the object for grasping further down the
pipeline. For each object c we wish to classify, we gather a set of example crops Ec

which are candidate bounding boxes (derived as above) which contain c. We extract
dense SIFT features [21] from all boxes of all classes and use k-means to extract a
visual vocabulary of SIFT features [40]. We then construct a Bag of Words feature
vector for each image and augment it with a histogram of colors which appear in
that image. The augmented feature vector is incorporated into a k-nearest-neighbors
model which we use to classify objects at inference [40]. We use kNN because
our automated training process allows us to acquire as much high-quality data as
necessary to make the model work well, and kNN supports direct matching to this
large dataset.

2.3 Pose Estimation

For pose estimation, we require a crop of the image gradient of the object at a specific,
known pose. As during the bounding box proposal step, we approximate the gradient
using 5 × 5 Sobel derivative filters [39], but we use a different convex combination
of the channels which focuses even less on the Y channel. Camera noise in the color
channels is significant. To cope with the noise, we marginalize the gradient estimate
over several frames taken from the same location, providing a much cleaner signal
which matches more robustly. To estimate pose, we rotate our training image and
find the closest match to the image currently recorded from the camera, as detected
and localized via the pipeline in Sects. 2.1 and 2.2. Once the pose is determined, we
have enough information to attempt any realizable grasp, but our system focuses on
crane grasps.

Lighting changes between scan and pick time can make it difficult to perform
image matching. In order to match our template image with the crop observed at pick
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time,we remove themean from the two images and L2 normalize them.Removing the
mean provides invariance to bias, and normalizing introduces invariance to scaling.
These both help to provide compensation for inadequacies in the lighting.

2.4 Grasping

During grasp point identification, we use a model of the gripper to perform inference
over a depthmap of the object. The graspmodel scores each potential grasp according
to a linearmodel of the gripper in order to estimate grasp success. A default algorithm
picks the highest-scoring grasp point using hand designed linear filters, but frequently
this point is not actually a good grasp, because the object might slip out of the robot’s
gripper or part of the object may not be visible in IR. The input to this module is
the 3D pose of the object, and the output is a grasp point (x, y, θ); at this point we
employ only crane grasps rather than full 3D grasping, where θ is the angle which
the gripper assumes for the grasp. This approach is not a state-of-the-art but is simple
to implement and works well for many objects in practice. In Sect. 4, we describe
how we can improve grasp proposals from experience, which can in principle use
any state-of-the-art grasp proposal system as a prior.

3 Autonomously Acquiring Object Models

An object model in our framework consists of the following elements, which the
robot autonomously acquires:

• cropped object templates (roughly 200), t1 . . . t K

• depth map, D, which consists of a point cloud, (x, y, z, r, g, b)i, j .
• cropped gradient templates at different heights, t0 . . . t M

The robot collects gradient images by servoing to the center of the extracted
bounding box for the object, described in Sect. 2.1, and then recording a gradient
image at several different heights. It records each image for several frames to average
away noise from the camera. Gradient images for the ruler appear in Fig. 3c.

Next, it acquires a depth image. Normally, this image could be acquired from an
RGB-D sensor such as the Kinect. However, in order to make our approach run on a
stock Baxter robot with no additional sensing, we acquire a depth scan using Baxter’s
IR sensor, turning the arm into a seven degree of freedom, one-pixel depth sensor.
After acquiring visual and IR models for the object at different poses of the arm,
we acquire view-based object models for detection and classification by moving the
camera around the object, extracting bounding boxes from the images, and storing
the resulting crops. Figure3a shows RGB images automatically collected for one
object in our dataset.
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Fig. 3 Autonomously acquired object model. a Cropped RGB images, b Depth map, c Aerial
gradient images at four different heights

4 Bandit-Based Model Adaptation

The formalization we contribute treats grasp learning as an N-armed bandit problem.
Formally, the agent is given an N-armed bandit, where each arm pays out 1 with
probability μi and 0 otherwise. The agent’s goal is to identify a good arm (with
payout≥ k) with probability c (e.g., 95% confidence that this arm is good) as quickly
as possible. As soon as it has done this, it should terminate. The agent is also given
a prior π on the arms so that it may make informed decisions about which grasps to
explore.

4.1 Algorithm

Our algorithm, Prior Confidence Bound, iteratively chooses the arm with the highest
observed (or prior) success rate but whose probability of being below k is less than
a threshold. It then tries that arm, records the results, and updates its estimate of the
probability of success, μi . If it is sufficiently certain that the arm’s payout is either
very good or very bad, it terminates; otherwise, it continues pulling the arm to collect
more information. Pseudo-code appears in Algorithm 1. Our algorithm takes as input
π , an estimate of the payout of each arm, as well as δaccept and δreject , parameters
controlling how certain it must be to accept or reject an arm. We need to estimate
the probability that the true payout probability, μi , is greater than the threshold, c,
given the observed number of successes and failures:

Pr(μi > k|S, F) (1)

We can compute this probability using the law of total probability:

Pr(μi > k|S, F) = 1 −
∫ k

0
Pr(μi = μ|S, F)dμ (2)
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PriorConfidenceBound(π , k, δaccept , δreject , maxTries)
Initialize S0 . . . Sn to 0
Initialize F0 . . . Fn to 0
totalT ries ← 0
while true do

totalT ries ← totalT ries + 1
Set M0 . . . Mn to S0

S0+F0
... Sn

Sn+Fn
j ← bestV alid Arm; // set j to the arm with pbelow < δreject that
has the highest marginal value
r ← sample(arm j )

if r = 1 then
S j ← S j + 1

else
Fj ← Fj + 1

end

pbelow ← ∫ k
0 Pr(μ j = μ|S j , Fj )dμ

pabove ← ∫ 1
k Pr(μ j = μ|S j , Fj )dμ

pthreshold ← ∫ k+ε

k−ε
Pr(μ j = μ|S j , Fj )dμ

if pabove ≥ δaccept then
return j ; // accept this arm

else if pthreshold ≥ δaccept then
return j ; // accept this arm

else if totalT ries ≥ maxTries then
return max I ; // return the arm with the best marginal value
out of those that were tried

else
pass ; // keep trying

end
end

Algorithm 1: Prior Confidence Bound for Best Arm Identification

We assume a beta distribution on μ:

=
∫ 1

k
μS(1 − μ)Fdμ (3)

This integral is the CDF of the beta distribution, and is called the regularized
incomplete beta function [32].

The prior controls both the order that arms are explored and when the
algorithm moves on to the next arm. If the prior is optimistic (i.e., overestimates
μi ), the algorithm will more quickly move on to the next arm if it encounters fail-
ures, because its empirical estimate of μi will be lower than the estimate from the
prior of the next arm to pull. If the prior is pessimistic, the algorithm will be more
likely to continue pulling an arm even if it encounters failure. By using a prior that
incorporates probability estimates, it enables our algorithm to exploit information
from the underlying grasp proposal system and make more informed decisions about
when to move on.
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4.2 Simulation

We simulate our algorithm by creating a sequence of 50 bandits, where each arm i
pays out at a rate uniformly sampled between 0 and 1. For algorithms that incorporate
prior knowledge, we sample a vector of estimates for eachμi from a beta distribution
with α = β = 1 + e ∗ μi where e controls the entropy of the sampling distribution.

To compare to a well-known baseline, we assess the performance of Thompson
Sampling [41] in the fixed budget setting, although this algorithm minimizes total
regret, including regret during training, rather than simple regret. Second,we compare
to a Uniform baseline that pulls every arm equally until the budget is exceeded.
This baseline corresponds to the initialization step in UCB or the confidence bound
algorithms in Chen et al. [5]. The state-of-the-art CLUCB algorithm from Chen
et al. [5] would not have enough pulls to finish this initialization step in our setting.
Finally, we show the performance of three versions of Prior Confidence Bound, one
with an uninformed prior (e = 0, corresponding to Hoeffding races [27]), one quite
noisy with e = 1(but still informative), the other less noisy e = 5).

We run each experiment for 100 trials, and report 95% confidence intervals around
the algorithm’s simple regret. For Thompson Sampling and Uniform, which always
use all trials in their budget, we report performance at each budget level; for Prior
Confidence Bound, we report the mean number of trials the algorithm took before
halting, also at 95% confidence intervals.

Results appear in Fig. 4. Thompson Sampling always uses all trials in its budget
and improves performance as larger budgets are available. The Uniformmethod fails

Fig. 4 Results comparing
our approach to various
baselines in simulation
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to find the optimal arm because there is not enough information when pulling each
arm once. All variants of Prior Confidence Bound outperform these baselines, but
as more prior information is incorporated, regret decreases. Even with a completely
uninformed prior, bounding the confidence and decided when to stop improves per-
formance over Thompson sampling or a uniform baseline, but the approach realizes
significant further improvement with more prior knowledge.

5 Evaluation

The aimof our evaluation is to assess the ability of the system to acquire visualmodels
of objects which are effective for grasping and object detection. We implemented
our approach on a Baxter robot; a video showing our training and grasping pipeline
is available at https://www.youtube.com/watch?v=xfH0B3g782Y.

5.1 Mapping

Mapping assesses the ability of our robot to accurately localize and label objects in
a tabletop scene. The robot maps the scene by maintaining a data structure with an
entry for each cell in its work space, at approximately 1cm resolution, and recording
the last time that cell was observed by the camera. It samples a new cell uniformly
from the set of oldest cells, moves to that location, then runs the detection step. If it
sees an object, it servos to that object, then adds the object’s bounding box and class
label to the map. By running object classification directly over the object, we obtain
high-accuracy recognition rates, since the robot sees the object from a consistent
pose. Figure5 shows the map created in this way for a tabletop scene. We compute

(a) Tabletop scene with objects (b) Map created for the scene by scanning with
both arms.

Fig. 5 The robot actively scans the table and maps its environment using learned models (Descrip-
tive object labels are provided by hand)

https://www.youtube.com/watch?v=xfH0B3g782Y
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colors for each cell by taking the average of camera pixel colors at that cell, given
the current table height.

5.2 Pick and Place

The robot acquired visual and RGB-D models for 30 objects using our autonomous
learning system. The objects used in our evaluation appear in Fig. 6. We manually
verified that the scans were accurate, and set the following parameters: height above
the object for the IR scan (to approximately 2cm); this height could be acquired
automatically by doing a first coarse IR scan following by a second IR scan 2cm
above the tallest height, but we set it manually to save time. Additionally we set the
height of the arm for the initial servo to acquire the object. After acquiring visual
and IR models for the object at different poses of the arm, the robot performed the
bandit-based adaptation step using Algorithm 1. The algorithm requires a scoring of
candidate grasps,π , whichweprovided using the linear filter described in Sect. 2.4. In
principle, we could use any state-of-the-art system for proposing grasps in the prior
(e.g., [9, 34, 36]); if the proposed grasp is successful, the algorithm will quickly
terminate. Otherwise it will continue trying to pick until it finds a successful grasp.

After the robot detects an initially successful grab, it shakes the object vigorously
to ensure that it would not fall out during transport. After releasing the object and
moving away, the robot checks to make sure the object is not stuck in its gripper. If
the object falls out during shaking or does not release properly, the grasp is recorded
as a failure. If the object is stuck, the robot pauses and requests assistance before
proceeding.

Most objects have more than one pose in which they can stand upright on the
table. If the robot knocks over an object, the model taken in the reference pose is
no longer meaningful. Thus, during training, we monitored the object and returned

Fig. 6 The objects used in our evaluation, sorted from worst performing (left) to best performing
(right)
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(a) The depth map for the glass bowl
without a contrast agent applied is noisy
and leads to poor grasp hypothesis.

(b) When a contrast agent is applied,
the depth map is clean and grasp perfor-
mance improves. In our method, the con-
trast agent is only needed at scan time,
not at pick time.

Fig. 7 Depth map for a transparent object with and without a contrast agent

it to the reference pose whenever the robot knocked it over. In the future, we aim to
incorporate multiple components in the models which will allow the robot to cope
with objects whose pose can change during training.

5.2.1 Contrast Agents

Many objects are challenging to grasp for our approach because they are transparent
or dark in IR; grasping objects in spite of these issues is a challenging problem that
remains an active area of research [11, 28]. As in Lysenkov et al. [23], which used
paint to construct models of objects, apply a contrast agent to make the object visible
in IR. Because our approach only uses depth information at scan time, and not at
grasping time, and is heavily instance-based, it enables us to we apply a temporary
coating for the IR scan and then remove it for learning visual models and later
interaction with the object. (We found that hair spray coated with a layer of flour
gives good performance, but can be easily removed.) Figure7 shows an object and
IR scan with and without a contrast agent. This demonstrates the advantage of our
view-based and instance-based approach,which uses IR only during the single, initial
scan, and not at inference time; once a good scan is obtained, grasps can be proposed
at any time in the future and high-quality grasps can be learned through training. For
the glass bowl in Fig. 7, pick accuracy improved from 0/10 without a contrast agent
to 8/10 with a contrast agent applied during the IR scan only and removed before the
pick trials.

5.2.2 Bandit-Based Adaptation

We evaluate our bandit-based adaptation step by allowing the robot to try grasps
on the object until it either halts or reaches a maximum of 50 grasp attempts. Our
algorithm used an accept threshold of 0.7, reject confidence of 0.95 and epsilon of
0.2. These parameters result in a policy that rejects a grasp after one failed try, and
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accepts if the first three picks are successful. Different observations of success and
failure will cause the algorithm to try the graspmore to determine the true probability
of success.

We report the performance of the robot at picking using the learned height for
servoing, but without grasp learning, then the number of trials used for grasp learning
by our algorithm, and finally the performance at picking using the learned grasp
location and orientation. These results appear in Table1.

Some objects significantly improved performance. Objects that improved typi-
cally had some feature that prevented our grasping model from working. For exam-
ple, the triangular block failed with the prior grasp because the gripper slid over the
sloped edges and pinched the block out of its grippers. The robot tried grasps until
it found one that targeted the sides that were parallel to the grippers, resulting in a
flush grasp, significantly improving accuracy. For the round salt shaker, the robot
first attempted to grab the round plastic dome, but the gripper is not wide enough for
this grasp. It tried grasps until it found one on the handle that worked reliably.

Objects such as the round salt shaker and the bottle top are on the edge of tractabil-
ity for thorough policies such as Thompson sampling. Prior Confidence Bound, on
the other hand, rejects arms quickly so as to make these two objects train in relatively
short order while bringing even more difficult objects such as the sippy cup and big
syringe into the realm of possibility. It would have taken substantially more time and
picks for Thompson sampling to reject the long list of bad grasps on the sippy cup
before finding the good ones.

The garlic press is a geometrically simple object but quite heavy compared to the
others. The robot found a few grasps whichmight have been good for a lighter object,
but it frequently shook the press out of its grippers when confirming grasp quality.
The big syringe has some good grasps which are detected well by the prior, but due
to its poor contrast and transparent tip, orientation servoing was imprecise and the
robot was unable to learn well due to poor signal. What improvement did occur was
due to finding a grasp which consistently deformed the bulb into a grippable shape
regardless of the perceived orientation of the syringe. We observed similar problems
with the clear pitcher and icosahedron.

Objects that failed to improve fall into several categories. For some, performance
was already high, so there was not much room to move or a reasonable grasp was
accepted quickly without waiting to find a better one. A common failure mode for
poorly performing objects was failure to accurately determine the position and ori-
entation through visual servoing. If the grasp map cannot be localized accurately,
significant noise is introduced because the map does not correspond to the same
physical location on the object at each trial. For example, there is only about a 5mm
difference between the width of the dragon and the width of the gripper; objects
such as these would benefit from additional servo iterations to increase localization
precision. If we double the number of iterations during fine grained servoing we can
more reliably pick it, but this would either introduce another parameter in the system
(iterations) or excessively slow down other objects which are more tolerant to error.
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Table 1 Results from the robotic evaluation of Prior Confidence Bound, sorted by pick success
rate. All objects either maintained or improved performance after learning except for one: Dragon

Low-performing objects

Before learning During learning After learning

Garlic press 0/10 8/50 2/10

Helicopter 2/10 8/39 3/10

Gyro bowl 0/10 5/15 3/10

Big syringe 1/10 13/50 4/10

Sippy cup 0/10 6/50 4/10

Clear pitcher 4/10 3/4 4/10

Red bucket 5/10 3/3 5/10

Wooden spoon 7/10 3/3 7/10

Dragon 8/10 5/6 7/10

Triangle block 0/10 3/13 7/10

Bottle top 0/10 5/17 7/10

Ruler 6/10 5/12 7/10

High-Performing Objects

Epipen 8/10 4/5 8/10

Icosahedron 7/10 7/21 8/10

Stamp 8/10 3/3 8/10

Blue salt shaker 6/10 5/10 8/10

Wooden train 4/10 11/24 8/10

Packing tape 9/10 3/3 9/10

Purple marker 9/10 3/3 9/10

Round salt shaker 1/10 4/16 9/10

Toy egg 8/10 4/5 9/10

Yellow boat 9/10 5/6 9/10

Vanilla 5/10 4/5 9/10

Brush 10/10 3/3 10/10

Red bowl 10/10 3/3 10/10

Shoe 10/10 3/3 10/10

Whiteout 10/10 3/3 10/10

Metal pitcher 6/10 7/12 10/10

Mug 3/10 3/4 10/10

Syringe 9/10 6/9 10/10
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6 Related Work

Pick-and-place has been studied since the early days of robotics [2, 22]. Initial
systems relied on models of object pose and end effector pose being provided to the
algorithm, and simply planned a motion for the arm to grasp. Modern approaches
use object recognition systems to estimate pose and object type, then libraries of
grasps either annotated or learned from data [8, 29, 36]. These approaches attempt
to create systems that can grasp arbitrary objects based on learned visual features or
known 3D configuration.

Collecting training sets is an expensive process and is not accessible to the average
user in a non-robotics setting. If the system does not work for the user’s particular
application, there is no easy way for it to adapt or relearn. Our approach enables the
robot to autonomously acquire more information to increase robustness at detect-
ing and manipulating the specific object that is important to the user at the current
moment. Other approaches that focus on object discovery and manipulation fail to
combine a camera that moves with an end to end system that learns to recognize
objects and improves grasp success rates through experience [6, 15, 24, 37].

We formalize the problem as an N-armed bandit [41] where the robot aims to per-
form best arm identification [1, 5], or alternatively, to minimize simple regret after
a finite exploration period [3]. Audibert and Bubeck [1] explored best arm identi-
fication in a fixed budget setting; however a fixed budget approach does not match
our problem, because we would like the robot to stop sampling as soon as it has
improved performance above a threshold. We take a fixed confidence approach as in
Chen et al. [5], but their fixed confidence algorithm begins by pulling each arm once,
a prohibitively expensive operation on our robot. Instead our algorithm estimates
confidence that one arm is better than another, following Hoeffding races [27] but
operating in a confidence threshold setting that incorporates prior information. By
incorporating prior information, our approach achieves good performance without
being required to pull all the arms. Kaufmann et al. [12] describe Bayesian upper
confidence bounds for bandit problems but do not use simple regret, with a train-
ing period followed by an evaluation period. Additionally these approaches do not
provide a stopping criterion, to decide when to move to the next object.

By formalizing grasp identification as a bandit problem, we are able to lever-
age existing strategies for inferring the best arm. Our system brings together key
techniques in autonomous data collection and online learning for persistent robotic
systems to establish a baseline grasping system which we show to be useful and
extensible. Nguyen and Kemp [30] learn to manipulate objects such as a light switch
or drawerwith a similar self-training approach. Ourwork autonomously learns visual
models to detect, pick, and place previously unencountered rigid objects by actively
selecting the best grasp pointwith a bandit based system, rather than acquiringmodels
for the manipulation of articulated objects. We rely on the fixed structure of objects
rather than learning how to deal with structure that can change during manipulation.

Hudson et al. [10] used active perception to create a grasping system capable of
carrying out a variety of complex tasks. Using feedback is critical for good perfor-
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mance, but the model cannot adapt itself to new objects. Existing general purpose
grasp algorithms achieve fairly good performance on novel objects but leave appre-
ciable gaps which could be closed by using our system to learn from experience
[9, 20, 25, 33, 34]. Kroemer et al. [17] also use reinforcement learning to choose
where to grasp novel objects, operating in continuous state spaces. However their
approach does not incorporate prior knowledge and requires forty or more trials to
learn a good grasp; in contrast, because our approach incorporates prior knowledge,
we often obtain improvement after trying only a few grasps.

Collet et al. [6] describe an approach for lifelong robotic object discovery, which
infers object candidates from the robot’s perceptual data. This system does not learn
grasping models and does not actively acquire more data to recognize, localize, and
grasp the object with high reliability. It could be used as a first-pass to our system,
after which the robot uses an active method to acquire additional data enabling it to
grasp the object. Some approaches integrate SLAM and moving object tracking to
estimate object poses over time but have not been extended to manipulation [7, 35,
38, 42]. Crowd-sourced and web robotics have created large databases of objects and
grasps using human supervision on the web [13, 14]. These approaches outperform
automatically inferred grasps but still require humans in the loop. Our approach can
incorporate human annotations in the form of the prior: if the annotated grasps work
well, then the robot will quickly converge and stop sampling; if they are poor grasps,
our approach will find better ones.

7 Conclusion

The contribution of this paper is a system for automatically acquiring instance-based
models of objects using a Baxter robot. Using our approach, the robot scans objects
and collects RGB and depth information, which it then uses to perform detection,
classification, and grasping. We demonstrate that the robot can improve grasping
performance through active exploration by formalizing the grasping problem as best
arm identification on an N-armed bandit. This approach significantly improves the
robot’s success rate at grasping specific objects as it practices picking them.

A limitation of our system is the requirement that a target object be in a canonical
upright position with respect to the table, leaving only one degree of freedom to
describe its orientation and two for its position. In our evaluation, if the salt shaker
fell down, we reset it to a randomized upright position. With this paradigm, if we
want to be able to handle the salt shaker whether it is upright or on its side, we
must train two models and use logic outside the system to identify the models as
the same object. Our next goal is to automatically explore these object modes and
acquire classification, localization, grasping, and transition models for them over a
long period of time. This improvement will enable any Baxter robot to automatically
scan objects for long periods of time.

A second limitation is that by taking an instance-based approach, knowledge
obtained from interacting with one object does not generalize to another object. Our
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approach runs on a stock Baxter robot and does not require any additional sensing.
We aim to release our software so that anyone with a Baxter can train models using
our approach and automatically share their models through a common database. This
approach will enable us to scale up and distribute the scanning effort, so that a very
large corpus of instance-based models can be automatically collected. As more and
more models are collected, containing RGB image crops, point clouds, and logs
of grasp success rates at different geometries, this data set will provide a unique
opportunity to train new category-based models for general detection and grasping,
supplying well-annotated data of multiple views of many instances of individual
objects.

Our system focuses on manipulation of small objects; however, objects in the
environment have more affordances than just manipulation: bottles can be opened;
light switches can be flipped; buttons can be pushed, and doors can be unlocked.
We aim to expand our approach to instance-based semantic mapping of large-scale
environments, so that the robot can interactively learn about features of its environ-
ment such as drawers, door knobs, and light switches. By taking an instance-based
approach, the robot can automatically create robust detectors for object features and
fix up any problems through interaction with the environment. This approach will
create a true semantic map of the environment, including affordances of objects.
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Transition State Clustering: Unsupervised
Surgical Trajectory Segmentation for Robot
Learning

Sanjay Krishnan, Animesh Garg, Sachin Patil, Colin Lea,
Gregory Hager, Pieter Abbeel and Ken Goldberg

1 Introduction

Recorded demonstrations of robot-assisted minimally invasive surgery (RMIS) have
been used for surgical skill assessment [7], development of finite state machines for
automation [13, 25], learning from demonstration (LfD) [29], and calibration [22].
Intuitive Surgical’s da Vinci robot facilitated over 570, 000 procedures in 2014 [11].
There are proposals to record all of Intuitive’s RMIS procedures similar to flight
data recorders (“black boxes”) in airplanes [12], which could lead to a prolifera-
tion of data. While these large datasets have the potential to facilitate learning and
autonomy; the length and variability of surgical trajectories pose a unique challenge.
Each surgical trajectory may represent minutes of multi-modal observations, may
contain loops (failures and repetitions until achieving the desired result), and even
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identical procedures can vary due to differences in the environment. In this setting,
typical techniques for establishing spatial and temporal correspondence that employ
continuous deformations can be unreliable (e.g., Dynamic Time Warping [14] and
spline-based registration [31]).

Segmentation of a task into sub-tasks can be valuable since individual segments
are less complex, less variable, and allow for easier detection and rejection of out-
liers. Trajectory segmentation in robotics is an extensively studied problem [4, 5,
16, 20, 21, 26, 30]. However, prior work in robotic surgery focuses on the super-
vised problem setting, either requiring manual segmentation of example trajectories
or using a set of pre-defined primitive motions called “surgemes” [21, 30, 36]. Man-
ual labelling requires specifying consistent segmentation criteria and applying these
criteria to across demonstrations, which can be time-consuming and unreliable. Sim-
ilarly, it can be challenging to manually construct a dictionary of primitives at the
correct level of abstraction.

Outside of surgery, there have been several proposals for unsupervised segmen-
tation [5, 16, 20, 26], where the criteria are learned from data without a pre-defined
dictionary. The salient feature of these approaches is a clustering or local regres-
sion model to identify locally similar states. Inherently, the success of unsupervised
approaches is dependent on how well the demonstrations match the assumptions of
the model (i.e., the definition of “similar”). In surgery, the tissue and environment
may vary greatly between demonstrations making it difficult to directly compare
different trajectories. Our insight is that while the trajectories may be very differ-
ent, there can be a common latent structure in the demonstrations that can be learned
from the data. Segmentation can be performedwith respect to these latent parameters
leading to robust segmentation criteria.

Transition State Clustering (TSC) combines hybrid dynamical system theory with
Bayesian statistics to learn such a structure. We model demonstrations as repeated
realizations of an unknown noisy switched linear dynamical system [8]. TSC iden-
tifies changes in local linearity in each demonstration, and leans a model to infer
regions of the state-space at which switching events occur. These regions are gener-
ated from a hierarchical nonparametric Bayesianmodel, where the number of regions
are determined by a Dirichlet Process and the shape of the regions are determined
by a mixture of multivariate Gaussian random variables. A series of merging and
pruning steps (controlled by user-specified parameters δ and ρ respectively) remove
outlier transition states.

We also explore how to use the video data that accompanies kinematic data in
surgical demonstration recordings. In this work, we explore improving segmentation
through hand-engineered visual features. We manually label the video stream with
two features: a binary variable identifying object grasp events and a scalar variable
indicating surface penetration depth. We evaluate results with and without these
visual features (Sect. 5.4). In future work, we will explore automated methods to
construct featurized representations of the video data.
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2 Related Work and Background

Motion Primitives and Skill Learning: Motion primitives are segments that dis-
cretize the action-space of a robot, and can facilitate faster convergence in LfD [10,
23, 27]. On the other hand, TSC discretizes the state-space, which can be inter-
preted as segmenting a task and not a trajectory. Much of the initial work in motion
primitives considered manually identified segments, but recently, Niekum et al. [26]
proposed learning the set of primitives from demonstrations using the Beta-Process
Autoregressive Hidden Markov Model (BP-AR-HMM). Calinon et al. [2] also build
on a large corpus of literature of unsupervised skill segmentation including the task-
parameterized movement model [6], and GMMs for segmentation [5].

The ideas in Niekum et al. inspire the results presented in this work, namely,
the use of Bayesian non-parametric models for segmentation and switched linear
models. Unlike Niekum et al. and our work, Calinon et al. do not employ Bayesian
non-parametrics or multimodal data. In Niekum et al. transition events are only
dependent on the current dynamical regime, and in TSC they also depend on the
current state (as illustrated in Fig. 1 with a dashed line). In this paper, we extend this
line of work with non-parametric clustering on a GMM based model, and account
for specific challenges such as looping and inconsistency in surgical demonstrations.

Handling Temporal Inconsistency: The most common model for handling demon-
strations that have varying temporal characteristics is Dynamic Time Warping
(DTW). However, DTW is a greedy dynamic programming approach which assumes
that trajectories are largely the same up-to some smooth temporal deformations.
When there are significant variations due to looping or spurious states, this model
can give unreliable results [14], as shown by our results.

Another common model for modeling temporal inconsistencies is the Finite State
Markov Chain model with Gaussian Mixture Emissions (GMM+HMM) [1, 3, 15,
34]. These models, impose a probabilistic grammar on the segment transitions and
can be learned with an EM algorithm. However, they can be sensitive to hyper-
parameters such as the number of segments and the amount of data [32]. The prob-
lem of robustness in GMM+HMM (or closely related variants) has been addressed
using down-weighting transient states [17] and sparsification [9]. In TSC, we explore
whether it is sufficient to know transition states without having to fully parametrize
aMarkov Chain for accurate segmentation. In Fig. 1, we compare the graphical mod-
els of GMM+HMM, and TSC. The TSC model applies Dirichlet Process priors to
automatically set the number of hidden states (regimes).

The TSC algorithm finds spatially and temporally similar transition states across
demonstrations, and it does not have tomodel correlations between switching events–
in essence, using the current state as a sufficient statistic for switching behavior. On
the other hand, the typical GMM+HMMmodel learns a full k × k transition matrix.
Consequently, we empirically find that the TSCmodel is robust to noise and temporal
variation, especially for a small number of demonstrations.

Surgical Task Recognition: Surgical robotics has largely studied the problem of
supervised segmentation using either segmented examples or a pre-defined dictionary
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of motions (similar to motion primitives). For example, given manually segmented
videos, Zappella et al. [36] use features from both the videos and kinematic data
to classify surgical motions. Simiarly, Quellec et al. [28] use manually segmented
examples as training for segmentation and recognition of surgical tasks based on
archived cataract surgery videos. The dictionary-based approaches are done with a
domain-specific set of motion primitives for surgery called “surgemes”. A number of
works (e.g., [19, 21, 33, 35]), use the surgemes to bootstrap learning segmentation.

3 Problem Setup and Model

The TSC model is summarized by the hierarchical graphical model in the previous
section (Fig. 1). Here, we formalize each of the levels of the hierarchy and describe
the assumptions in this work.

Dynamical System Model: Let D = {di } be the set of demonstrations where each
di is a trajectory x(t) of fully observed robot states and each state is a vector in R

d .
We model each demonstration as a switched linear dynamical system. There is a
finite set of d × d matrices {A1, . . . , Ak}, and an i.i.d zero-mean additive Gaussian
Markovian noise process W (t) which accounts for noise in the dynamical model:

x(t + 1) = Aix(t) + W (t) : Ai ∈ {A1, . . . , Ak}

Transitions between regimes are instantaneous where each time t is associated with
exactly one dynamical system matrix 1, . . . , k.

Transition States and Times: Transition states are defined as the last states before a
dynamical regime transition in each demonstration. Each demonstration di follows a

Fig. 1 a A finite-state Hidden Markov Chain with Gaussian Mixture Emissions (GMM+HMM),
and b TSC model. TSC uses Dirichlet Process Priors and the concept of transition states to learn a
robust segmentation
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switched linear dynamical system model, therefore there is a time series of regimes
A(t) associatedwith each demonstration. Consequently, therewill be times t atwhich
A(t) �= A(t + 1).

We model the occurrence of these events as a stochastic process conditioned on
the current state. Switching events are governed by a latent function of the current
state S : X �→ {0, 1}, andwe have noisy observations of switching eventŝS(x(t)) =
S(x(t) + Q(t)), where Q(t) is a i.i.d noise process. Thus, across all demonstrations,
the observed switching events induce a probability density f (x) over the state space
X . In this paper, we focus on the problem where f (x) is a Mixture of Gaussian
densities.

Transition State Clusters: Across all demonstrations, we are interested in aggregat-
ing nearby (spatially and temporally) transition states together. The goal of transition
state clustering is to find a mixture model for f that approximately recovers the true
latent function S. Consequently, a transition state cluster is defined as a clustering
of the set of transition states across all demonstrations; partitioning these transition
states into m non-overlapping similar groups:

C = {C1,C2, . . . ,Cm}

EveryUi can be represented as a sequence of integers indicating that transition states
assignment to one of the transition state clusters Ui = [1, 2, 4, 2].
Consistency: We assume, demonstrations are consistent, meaning there exists a
non-empty sequence of transition states U ∗ such that the partial order defined by
the elements in the sequence (i.e., s1 happens before s2 and s3) is satisfied by every
Ui . For example,

U1 = [1, 3, 4], U2 = [1, 1, 2, 4], U ∗ = [1, 4]

A counter example,

U1 = [1, 3, 4], U2 = [2, 5], U ∗ no solution

Intuitively, this condition states that there have to be a consistent ordering of actions
over all demonstrations up to some additional regimes (e.g., spurious actions).

Loops: Loops are common in surgical demonstrations. For example, a surgeon may
attempt to insert a needle 2–3 times. When demonstrations have varying amounts
of retrials it is challenging. In this work, we assume that these loops are modeled
as repeated transitions between transition state clusters, which is justified in our
experimental datasets, for example,

U1 = [1, 3, 4], U2 = [1, 3, 1, 3, 1, 3, 4], U ∗ = [1, 3, 4]

Our algorithm will compact these loops together into a single transition.
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Minimal Solution: Given a consistent set of demonstrations, that have additional
regimes and loops, the goal of the algorithm is to find a minimal solution, U ∗ that
is loop-free and respects the partial order of transitions in all demonstrations.

Given a set of demonstrationsD , the Transition State Clustering problem is to find
a set of transition state clustersC such that they represent a minimal parametrization
of the demonstrations.

Multi-modal TSC : This model can similarly be extended to states derived from
sensing. Suppose at every time t , there is a feature vector z(t). Then the augmented
state of both the robot spatial state and the features denoted is:

x(t) =
(

x(t)

z(t)

)

In our experiments, we worked the da Vinci surgical robot with two 7-DOF arms,
each with 2 finger grippers. Consider the following feature representation which we
used in our experiments:

1. Gripper grasp. Indicator that is 1 if there is an object between the gripper, 0
otherwise.

2. SurfacePenetration. In surgical tasks,weoften have a tissue phantom.This feature
describes whether the robot (or something the robot is holding like a needle) has
penetrated the surface. We use an estimate of the truncated penetration depth to
encode this feature. If there is no penetration, the value is 0, otherwise the value
of penetration is the robot’s kinematic position in the direction orthogonal to the
tissue phantom.

4 Transition State Clustering

In this section, we describe the hierarchical clustering process of TSC. This algorithm
is a greedy approach to learning the parameters in the graphical model in Fig. 1. We
decompose the hierarchical model into stages and fit parameters to the generative
model at each stage. The full algorithm is described in Algorithm1.

4.1 Background: Bayesian Statistics

One challenge with mixture models is hyper-parameter selection, such as the number
of clusters. Recent results in Bayesian statistics can mitigate some of these problems.
The basic recipe is to define a generative model, and then use ExpectationMaximiza-
tion to fit the parameters of the model to observed data. The generative model that
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we will use is called a mixture model, which defines a probability distribution that
is a composite of multiple distributions.

Oneflexible class ofmixturemodels areGaussianMixtureModels (GMM),which
are described generatively as follows. We first sample some c from a categorical
distribution, one that takes on values from (1…K), with probabilities φ, where φ is
a K dimensional simplex:

c ∼ cat (K , φ)

Then, given the event {c = i}, we specify a multivariate Gaussian distribution:

xi ∼ N (μi , �i )

The insight is that a stochastic process called the Dirichlet Process (DP) defines a
distribution over discrete distributions, and thus instead we can draw samples of
cat (K , φ) to find the most likely choice of K via EM. The result is the following
model:

(K , φ) ∼ DP(H, α) c ∼ cat (K , φ) X ∼ N (μi , �i ) (1)

After fitting the model, every observed sample of x ∼ X will have a probability of
being generated from a mixture component P(x | c = i). Every observation x will
have a most likely generating component. It is worth noting that each cluster defines
an ellipsoidal region in the feature space of x , because of the Gaussian noise model
N (μi , �i ).

We denote this entire clustering method in the remainder of this work as DP-
GMM. We use the same model at multiple levels of the hierarchical clustering and
wewill describe the feature space at each level.We use aMATLAB software package
to solve this problem using a variational EM algorithm [18].

4.2 Transition States Identification

The first step is to identify a set of transition states for each demonstration in D . To
do this, we have to fit a switched dynamic system model to the trajectories. Suppose
there was only one regime, then this would be a linear regression problem:

argmin
A

‖AXt − Xt+1‖

where Xt and Xt+1 are matrices where each column vector is corresponding x(t)
and x(t + 1). Moldovan et al. [24] showed that fitting a jointly Gaussian model to
n(t) = (x(t+1)

x(t)

)

is equivalent to Bayesian Linear Regression.
Therefore, to fit a switched linear dynamical system model, we can fit a Mixture

of Gaussians (GMM) model to n(t) via DP-GMM. Each cluster learned signifies a
different regime, and co-linear states are in the same cluster. To find transition states,
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we move along a trajectory from t = 1, . . . , t f , and find states at which n(t) is in
a different cluster than n(t + 1). These points mark a transition between clusters
(i.e., transition regimes).

4.3 Transition State Pruning

We consider the problem of outlier transitions, ones that appear only in a few demon-
strations. Each of these regimeswill have constituent vectorswhere each n(t) belongs
to a demonstration di . Transition states thatmark transitions to or from regimeswhose
constituent vectors come from fewer than a fraction ρ demonstrations are pruned. ρ
should be set based on the expected rarity of outliers. In our experiments, we set the
parameter ρ to 80% and show the results with and without this step.

4.4 Transition State Compaction

Once we have transition states for each demonstration, and have applied pruning, the
next step is to remove transition states that correspond to looping actions, which are
prevalent in surgical demonstrations. We model this behavior as consecutive linear
regimes repeating, i.e., transition from i to j and then a repeated i to j . We apply
this step after pruning to take advantage of the removal of outlier regimes during
the looping process. These repeated transitions can be compacted together to make
a single transition.

The key question is how to differentiate between repetitions that are part of the
demonstration and ones that correspond to looping actions–the sequence might con-
tain repetitions not due to looping. To differentiate this, as a heuristic, we threshold
the L2 distance between consecutive segments with repeated transitions. If the L2
distance is low, we know that the consecutive segments are happening in a similar
location as well. In our datasets, this is a good indication of looping behavior. If the
L2 distance is larger, then repetition between dynamical regimes might be happening
but the location is changing.

Algorithm 1: The Transition State Clustering Algorithm
1: Input: D , ρ pruning parameter, and δ compaction parameter.

2: n(t) = (x(t+1)
x(t)

)

.

3: Cluster the vectors n(t) using DP-GMM assigning each state to its most likely cluster.
4: Transition states are times when n(t) is in a different cluster than n(t + 1).
5: Remove states that transition to and from clusters with less than a fraction of p demonstrations.
6: Remove consecutive transition states when the L2 distance between these transitions is less than δ.
7: Cluster the remaining transition states in the state space x(t + 1) using DP-GMM.
8: Within each state-space cluster, sub-cluster the transition states temporally.
9: Output: A set M of clusters of transition states and the associated with each cluster a time interval of

transition times.
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For each demonstration, we define a segment s( j)[t] of states between each transi-
tion states. The challenge is that s( j)[t] and s( j+1)[t] may have a different number of
observations and may be at different time scales. To address this challenge, we apply
Dynamic TimeWarping (DTW). Since segments are locally similar up-to small time
variations, DTW can find a most-likely time alignment of the two segments.

Let s( j+1)[t∗] be a time aligned (w.r.t to s( j)) version of s( j+1). Then, after align-
ment, we define the L2 metric between the two segments:

d( j, j + 1) = 1

T

T
∑

t=0

(s( j)[i] − s( j+1)[i∗])2

when d ≤ δ, we compact two consecutive segments. δ is chosen empirically and
a larger δ leads to a sparser distribution of transition states, and smaller δ leads
to more transition states. For our needle passing and suturing experiments, we set
δ to correspond to the distance between two suture/needle insertion points–thus,
differentiating between repetitions at the same point versus at others.

However, sincewe are removing points from a time-series this requires us to adjust
the time scale. Thus, from every following observation, we shift the time stamp back
by the length of the compacted segments.

4.5 State-Space Clustering

After compaction, there are numerous transition states at different locations in the
state-space. If we model the states at transition states as drawn from a GMMmodel:

x(t) ∼ N (μi , �i )

Then, we can apply the DP-GMM again to cluster the state vectors at the transition
states. Each cluster defines an ellipsoidal region of the state-space space.

4.6 Time Clustering

Without temporal localization, the transitions may be ambiguous. For example, in
circle cutting, the robot may pass over a point twice in the same task. The chal-
lenge is that we cannot naively use time as another feature, since it is unclear what
metric to use to compare distance between

(x(t)
t

)

. However a second level of cluster-
ing by time within each state-space cluster can overcome this issue. Within a state
cluster, if we model the times which change points occur as drawn from a GMM
t ∼ N (μi , σi ), and then we can apply DP-GMM to the set of times. We cluster time
second because we observe that the surgical demonstrations are more consistent spa-
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tially than temporally. This groups together events that happen at similar times during
the demonstrations. The result is clusters of states and times. Thus, a transition states
mk is defined as tuple of an ellipsoidal region of the state-space and a time interval.

5 Results

5.1 Experiment 1. Synthetic Example of 2-Segment
Trajectory

In our first experiment, we segment noisy observations from a two regime linear
dynamical system. Figure2 illustrates examples from this system under the different
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Fig. 2 a Observations from a dynamical system with two regimes, b Observations corrupted with
GaussianNoise, c Observations corrupted with a spurious inserted regime (red), and dObservations
corrupted with an inserted loop(green)
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types of corruption. Since there is a known a ground truth of two segments, we mea-
sure the precision (average fraction of observations in each segment that are from
the same regime) and recall (average fraction of observations from each regime seg-
mented together) in recovering these two segments.We can jointly consider precision
and recall with the F1 Score which is the harmonic mean of the two. We compare
three techniques against TSC: K-Means (only spatial), GMM+T (using time as a
feature in a GMM), GMM+HMM (using an HMM to model the grammar). For the
GMM techniques, we have to select the number of segments, and we experiment
with k = 1, 2, 3 (i.e., a slightly sub-optimal parameter choice compared to k = 2).
In this example, for TSC, we set the two user-specified parameters to δ = 0 (merge
all repeated transitions), and ρ = 80% (prune all regimes representing less than 80%
of the demonstrations).

First, we generate 100 noisy observations (additive zero mean Gaussian noise)
from the system without loops or spurious states–effectively only measuring the DP-
GMMversus the alternatives. Figure3a shows the F1-score as a function of the noise
in the observations. Initially, for an appropriate parameter choice k = 2 both of the
GMM-basedmethods performwell and at low noise levels the DP-GMMused by our
work mirrors this performance. However, if the parameter is set to be k = 3, we see
that the performance significantly degrades. k = 1 corresponds to a single segment
which has a F1 score of 0.4 on all figures. The DP-GMMmitigates this sensitivity to
the choice of parameter by automatically setting the value. Furthermore, as the noise
increases, the 80% pruning of DP-GMM mitigates the effect of outliers leading to
improved accuracy.

In Fig. 3b, we look at the accuracy of each technique as a function of the number of
demonstrations. GMM+HMM has more parameters to learn and therefore requires
more data. GMM+T converges the fastest, TSC requires slightly more data, and
the GMM+HMM requires the most. In Fig. 3c, we corrupt the observations with
spurious dynamical regimes. These are random transition matrices which replace
one of the two dynamical regimes. We vary the rate at which we randomly corrupt
the data, and measure the performance of the different segmentation techniques as a
function of this rate. Due to the pruning, TSC gives the most accurate segmentation.
The Dirichlet process groups the random transitions in different clusters and the
small clusters are pruned out. On the other hand, the pure GMM techniques are less
accurate since they are looking for exactly two regimes.

In Fig. 3d, introduce corruption due to loops and compare the different techniques.
A loop is a step that returns to the start of the regime randomly, and we vary this
random rate. For an accurately chosen parameter k = 2, for the GMM−HMM, it
gives the most accurate segmentation. However, when this parameter is set poorly
k = 3, the accuracy is significantly reduced. On the other hand, using time as a GMM
feature (GMM+T) does not work since it does not know how to group loops into the
same regime.
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and is comparable to GMM techniques using the optimal parameter choice, b HMMbased methods
need more training data as they have to learn transitions, c TSC clusters are robust to spurious
regimes, and d TSC clusters are robust to loops–without having to know the regimes in advance

5.2 Surgical Experiments: Evaluation Tasks

We describe the three tasks used in our evaluation, and show manually segmented
versions in Fig. 4. This will serve as ground truth when qualitatively evaluating our
segmentation on real data.

Circle Cutting: In this task,we have a 5cmdiameter circle drawn on a piece of gauze.
The first step is to cut a notch into the circle. The second step is to cut clockwise.
Next, the robot transitions to the other side cutting counter clockwise. Finally, the
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(a) Circle Cutting

1. Start

2. Notch

3. 1/2 cut

4. Re-enter

6. Finish

5. 1/2 Cut

(b) Needle Passing

1.Start

2.Pass 1

4. Pass 2

6. Pass 3

8. Pass 4
1. Insert

2. Pull

4. Insert

5. Pull

7. Insert

10. Insert
8. Pull

11. Pull
(c) Suturing

Fig. 4 Hand annotations of the three tasks: a circle cutting, b needle passing, and c suturing. Right
arm actions are listed in dark blue and left arm actions are listed in yellow

robot finishes the cut at the meeting point of the two incisions. As the left arm’s only
action is maintain the gauze in tension, we exclude it from the analysis. In Fig. 4a,
we mark 6 manually identified transitions points for this task from [25]: (1) start,
(2) notch, (3) finish 1st cut, (4) cross-over, (5) finish 2nd cut, and (6) connect the
two cuts. For the circle cutting task, we collected 10 demonstrations by non-experts
familiar with operating the da Vinci Research Kit (dVRK).

We apply our method to the JIGSAWS dataset [7] consisting of surgical activity
for human motion modeling. The dataset was captured using the da Vinci Surgical
System from eight surgeons with different levels of skill performing five repetitions
each of Needle Passing and Suturing.

Needle Passing: We applied our framework to 28 demonstrations of the needle
passing task. The robot passes a needle through a loop using its right arm, then its
left arm to pull the needle through the loop. Then, the robot hands the needle off
from the left arm to the right arm. This is repeated four times as illustrated with a
manual segmentation in Fig. 4b.

Suturing: Next, we explored 39 examples of a 4 throw suturing task (Fig. 4c). Using
the right arm, the first step is to penetrate one of the points on right side. The next
step is to force the needle through the phantom to the other side. Using the left arm,
the robot pulls the needle out of the phantom, and then hands it off to the right arm
for the next point.

5.3 Experiment 2. Pruning and Compaction

In Fig. 5, we highlight the benefit of pruning and compaction using the Suturing task
as exemplar. First, we show the transition states without applying the compaction
step to remove looping transition states (Fig. 5a). We find that there are many more
transition states at the “insert” step of the task. Compaction removes the segments
that correspond to a loop of the insertions. Next, we show the all of the clusters found
by DP-GMM. The centroids of these clusters are marked in Fig. 5b. Many of these
clusters are small containing only a few transition states. This is why we created the
heuristic to prune clusters that do not have transition states from at least 80% of the
demonstrations. In all, 11 clusters are pruned by this rule.
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Fig. 5 We first show the transition states without compaction (in black and green), and then
show the clusters without pruning (in red). Compaction sparsifies the transition states and pruning
significantly reduces the number of clusters

5.4 Experiment 3. Can Vision Help?

In the next experiment, we evaluate TSC in a featurized state space that incorporates
states derived from vision (Described in Sect. 5.1). We illustrate the transition states
in Fig. 6 with and without visual features on the circle cutting task. At each point
where themodel transitions,wemark the end-effector (x, y, z) location. In particular,
we show a region (red box) to highlight the benefits of these features. During the
cross-over phase of the task, the robot has to re-enter the notch point and adjust to cut
the other half of the circle. When only using the end-effector position, the locations
where this transition happens is unreliable as operators may approach the entry from
slightly different angles. On the other hand, the use of a gripper contact binary feature
clusters the transition states around the point at which the gripper is in position and
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Fig. 6 a We show the transition states without visual features, b and with visual features. Marked
in the red box is a set of transitions that cannot always be detected from kinematics alone
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ready to begin cutting again. In the subsequent experiments, we use the same two
visual features.

5.5 Experiment 4. TSC Evaluation

Circle Cutting: Figure7a shows the transition states obtained from our algorithm.
And Fig. 7b shows the TSC clusters learned (numbered by time interval midpoint).
The algorithm found 8 clusters, one of which was pruned out using our ρ = 80%
threshold rule.

The remaining 7 clusters correspond well to the manually identified transition
points. It is worth noting that there is one extra cluster (marked 2′), that does not
correspond to a transition in the manual segmentation. At 2′, the operator finishes
a notch and begins to cut. While at a logical level notching and cutting are both
penetration actions, they correspond to two different linear transition regimes due to
the positioning of the end-effector. Thus, TSC separates them into different clusters
even though a human annotator may not do so.

Needle Passing: In Fig. 8a, we plot the transition states in (x, y, z) end-effector
space for both arms. We find that these transition states correspond well to the log-
ical segments of the task (Fig. 4b). These demonstrations are noisier than the circle
cutting demonstrations and there are more outliers. The subsequent clustering finds 9
(2 pruned). Next, Fig. 8b–c illustrate the TSC clusters. We find that again TSC learns
a small parametrization for the task structure with the clusters corresponding well
to the manual segments. However, in this case, the noise does lead to a spurious
cluster (4 marked in green). One possible explanation is that the two middle loops
are in close proximity and demonstrations contain many adjustments to avoid col-
liding with the loop and the other arm while passing the needle through leading to
numerous transition states in that location.
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Fig. 7 a The transition states for the circle cutting task are marked in black. b The TSC clusters,
which are clusters of the transition states, are illustrated with their 75% confidence ellipsoid
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Fig. 8 a The transition states for the task are marked in orange (left arm) and blue (right arm).
b–c The TSC clusters, which are clusters of the transition states, are illustrated with their 75%
confidence ellipsoid for both arms

Suturing: In Fig. 9, we show the transition states and clusters for the suturing task.
As before, we mark the left arm in orange and the right arm in blue. This task was far
more challenging than the previous tasks as the demonstrations were inconsistent.
These inconsistencies were in the way the suture is pulled after insertion (some pull
to the left, some to the right, etc.), leading to transition states all over the state space.
Furthermore, there were numerous demonstrations with looping behaviors for the
left arm. In fact, the DP-GMM method gives us 23 clusters, 11 of which represent
less than 80% of the demonstrations and thus are pruned (we illustrate the effect of
the pruning in the next section). In the early stages of the task, the clusters clearly
correspond to the manually segmented transitions. As the task progresses, we see
that some of the later clusters do not.

5.6 Experiment 5. Comparison to “Surgemes”

Surgical demonstrations have an established set of primitives called surgemes, andwe
evaluate if segments discovered by our approach correspond to surgemes. In Table1,
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Fig. 9 a The transition states for the task are marked in orange (left arm) and blue (right arm). b–c
The clusters, which are clusters of the transition states, are illustrated with their 75% confidence
ellipsoid for both arms

Table 1 83 and 73% of transition clusters for needle passing and suturing respectively contained
exactly one surgeme transition

No. of
surgeme
segments

No. of
segments +
C/P

No. of TSC TSC-Surgeme
(%)

Surgeme-TSC
(%)

Needle passing 19.3 ± 3.2 14.4 ± 2.57 11 83 74

Suturing 20.3 ± 3.5 15.9 ± 3.11 13 73 66

we compare the number of TSC segments for needle passing and suturing to the
number of annotated surgeme segments. A key difference between our segmentation
and number of annotated surgemes is our compaction and pruning steps. To account
for this, we first select a set of surgemes that are expressed in most demonstrations
(i.e., simulating pruning), and we also apply a compaction step to the surgeme seg-
ments. In case of consecutive appearances of these surgemes, we only keep the 1
instance of each for compaction.We explore twometrics:TSC-Surgeme the fraction
of TSC clusters with only one surgeme switch (averaged over all demonstrations),
and Surgeme-TSC the fraction of surgeme switches that fall inside exactly one TSC
clusters.
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6 Conclusion and Future Work

We presented Transition State Clustering (TSC), which leverages hybrid dynamical
system theory and Bayesian statistics to robustly learn segmentation criteria. To
learn these clusters, TSC uses a hierarchical Dirichlet Process Gaussian Mixture
Model (DP-GMM) with a series of merging and pruning steps. Our results on a
synthetic example suggest that the hierarchical clusters are more robust to looping
and noise, which are prevalent in surgical data. We further applied our algorithm to
three surgical datasets and found that the transition state clusters correspond well to
hand annotations and transitions w.r.t motions from a pre-defined surgical motion
vocabulary called surgemes.

There are a number of important open-questions for future work. First, we believe
that the growing maturity of Convolutional Neural Networks can facilitate transition
state clustering directly from raw data (e.g., pixels), as opposed to the features studied
in this work, and is a promising avenue for future work. Next, we are also particularly
interested in closing-the-loop and using segmentation to facilitate optimal control or
reinforcement learning. Finally, we are also interested in relaxing the consistency
and normality assumptions in our parameter inference algorithm.
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Robot Learning with Task-Parameterized
Generative Models

Sylvain Calinon

1 Introduction

Robots are provided with an increasing number of sensors and actuators. This trend
introduces original challenges in machine learning, where the sample size is often
bounded by the cost of data acquisition, thus requiring models capable of handling
wide-ranging data. Namely, models that can start learning from a small number of
demonstrations, while still being able to continue learning when more data become
available.

Robot learning from demonstration is one such field, which aims at providing
end-users with intuitive interfaces to transfer new skills to robots. The challenges in
robot learning can often be reinterpreted as designing appropriate domain-specific
priors that can supply the required generalization capability from small training sets.
The position adopted in this paper is that: (1) generative models are well suited for
robot learning from demonstration because they can treat recognition, classification,
prediction and synthesis within the same framework; and (2) an efficient and versatile
prior is to consider that the task parameters describing the current situation (body
and workspace configuration encountered by the robot) can be represented as affine
transformations (including frames of reference, coordinate systems or projections).

By providing such structure to the skill generation problem, the role of the exper-
imenter is to provide the robot with a set of candidate frames (list of coordinate
systems) that could potentially be relevant for the task. This paper will show that
structuring the affine transformations in such way has a simple interpretation, that it
can be easily implemented, and that it remains valid for a wide range of skills that a
robot can experience.
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The task-parameterized Gaussian mixture model (TP-GMM) was presented in
[8, 10, 11] for the special case of frames of reference representing rotations and
translations in Cartesian space. The current paper discusses the potentials of the
approach and introduces several routes for further investigation, aiming at applying
the proposed technique to a wider range of affine transformations (directly exploit-
ing the considered application domain), including constraints in both configuration
and operational spaces, as well as priority constraints. It also shows that the pro-
posed method can be applied to different probabilistic encoding strategies, including
subspace clustering approaches enabling the consideration of high dimension fea-
ture spaces. Examples are provided in simulations and on a real robot (transfer of
manipulation skills to the Baxter bimanual robot). Accompanying source codes are
available at http://www.idiap.ch/software/pbdlib/.

2 Adaptive Models of Movements

Task-parameterizedmodels ofmovements/behaviors refer to representations that can
adapt to a set of task parameters describing for example the current context, situation,
state of the environment or state of the robot configuration. The task parameters can
for example refer to the variables collected by the system to describe the position of
objects in the environment. The task parameters can be fixed during an execution
trial or they can vary while the motion is executed. The model parameters refer to
the variables learned by the system, namely, that are stored in memory (the internal
representation of the movement). During reproduction, a new set of task parameters
(describing the present situation) is used to generate a newmovement (e.g., adaptation
to new position of objects).

Several denominations have been introduced in the literature to describe these
models, such as task-parameterized [11, 40] (the denomination that will be used
here), parametric [26, 29, 49] or stylistic [7]. In these models, the encoding of skills
usually serve several purposes, including classification, prediction, synthesis and
online adaptation. A taxonomy of task-parameterized models is presented in [8],
classifying existing methods in three broad categories: (1) Approaches employing
M models for the M demonstrations, performed in M different situations, see e.g.
[12, 16, 21, 23, 25, 29, 45]; (2) Approaches employing P models for the P frames
of reference that are possibly relevant for the task, see e.g. [13, 32]; (3) Approaches
employing a single model whose parameters are modulated by task parameters, see
e.g. [20, 26, 49].

In the majority of these approaches, the retrieval of movements from the model
parameters and the task parameters is viewed as a standard regression problem. This
generalitymight look appealing at first sight, but it also limits the generalization scope
of these models. Our work aims at increasing the generalization capability of task-
parameterized models by exploiting the functional nature of the task parameters. The
approach arose from the observation that the task parameters in robotics applications
can most of the time be related to some form of frames of reference, coordinate

http://www.idiap.ch/software/pbdlib/
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systems, basis functions or local projections, whose structure can be exploited to
speed up learning and provide the robot with remarkable extrapolation capability.

2.1 Motivation

The core of the approach is to represent an observed movement or behavior as a
spring-damper system with varying parameters, where a generative model is used to
encode the evolution of the attractor, and the variability and correlation information
is used to infer the impedance parameters of the system. These impedance parameters
figuratively correspond to the stiffness of a spring and to the damping coefficient of
a viscous damper, with the difference that they can also be full stiffness and damping
matrices. The model shares links with optimal feedback control strategies in which
deviations from an average trajectory are corrected only when they interfere with
task performance, resulting in a minimal intervention principle [43].

In its task-parameterized version, several frames of reference are interacting with
each other to describe tracking behaviors in multiple coordinate systems, where
statistical analysis from the perspective of each of these observers is used to esti-
mate feedforward and feedback control terms with linear quadratic optimal control.
Figure1 presents an illustration of the overall approach, which can be decomposed
into multiple steps, involving statistical modeling, dynamical systems and optimal
control.

Fig. 1 Illustration of the overall approach (see main text for details). a Observation of a task
in different situations and generalization to new contexts. Multiple demonstrations provide the
opportunity to discern the structure of the task. b Probabilistic encoding of continuous movements
in multiple coordinate systems. c Exploitation of variability and correlation information to adapt
the motion to new situations. With cross-situational observations of the same task, the robot is able
to generalize the skill to new situations. d Computation of the underlying optimal control strategy
driving the observed behavior
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2.2 Example with a Single Gaussian

Before presenting the details of the task-parameterized model, the approach is moti-
vated by an introductory example with a single Gaussian.

Two frames will be considered, described respectively at each time step t by
{bt,1, At,1} and {bt,2, At,2}, representing the origin of the observer bt, j and a set of
basis vectors {e1, e2, ...} forming a transformation matrix At, j =[e1,t, j , e2,t, j , ...].

A set of demonstrations is observed from the perspective of the two frames.During
reproduction, each frame expects the new datapoints to lie within the same range
as that of the demonstrations. If N (

μ(1),Σ (1)
)
and N (

μ(2),Σ (2)
)
are the normal

distributions of the observed demonstrations in the first and second frames, the two
frames respectively expect the reproduction attempt to lie at the intersection of the
distributionsN (

ξ̂(1)
t , Σ̂

(1)
t

)
andN (

ξ̂(2)
t , Σ̂

(2)
t

)
. These distributions can be computed

with the linear transformation property of normal distribution as

ξ̂(1)
t = At,1 μ(1) + bt,1 , Σ̂

(1)
t = At,1 Σ (1)A�

t,1 , (1)

ξ̂(2)
t = At,2 μ(2) + bt,2 , Σ̂

(2)
t = At,2 Σ (2)A�

t,2 . (2)

A trade-off thus needs to be determined during reproduction to concord with the
distributions expected by each frame. The objective function can be defined as the
weighted sum of quadratic error terms

ξ̂t = argmin
ξt

2∑

j=1

(
ξt−ξ̂

( j)
t

)�
Σ̂

( j)
t

−1(
ξt−ξ̂

( j)
t

)
. (3)

The above objective can easily be solved by differentiation, providing a point ξ̂t ,
with an error defined by covariance Σ̂ t . This estimate corresponds to a product of
Gaussians (intersection between the two Gaussians). Figure2 illustrates this process
for one of the Gaussians of Fig. 1.

Fig. 2 Minimization of the
objective function in Eq. (3)
composed of a weighted sum
of quadratic error terms,
whose result corresponds to
a product of Gaussians. It is
easy to show that N (

ξ̂t , Σ̂ t
)

corresponds to the Gaussian
outcoming from the product
of the two Gaussians
N (

ξ̂
(1)
t , Σ̂

(1)
t

)
and

N (
ξ̂
(2)
t , Σ̂

(2)
t

)
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3 Task-Parameterized Gaussian Mixture Model
(TP-GMM)

TP-GMM is a direct extension of the objective problem presented above, by consid-
ering multiple frames and multiple clusters of datapoints (soft clustering via mixture
modeling). It probabilistically encodes the relevance of candidate frames, which
can change throughout the task. In contrast to approaches such as [33] that aim
at extracting a single (most prominent) coordinate system located at the end of a
motion segment, the proposed approach allows the superposition and transition of
different coordinate systems that are relevant for the task (parallel organization of
behavior primitives, adaptation to multiple viapoints in the middle of the movement,
modulation based on positions, orientations or geometries of objects, etc.).

Each demonstration m∈{1, ... ,M} contains Tm datapoints forming a dataset of
N datapoints {ξt }Nt=1 with N =∑M

m Tm . The task parameters are represented by P
coordinate systems, defined at time step t by {bt, j , At, j }Pj=1, representing respectively
the origin and the basis of the coordinate system.

The demonstrations ξ∈R
D×N are observed from these different viewpoints, form-

ing P trajectory samples X ( j)∈R
D×N . These samples can be collected from sensors

located at the frames, or computed with

X ( j)
t = A−1

t, j (ξt − bt, j ). (4)

The parameters of the proposed task-parameterized GMM (TP-GMM) with K
components are defined by {πi , {μ( j)

i ,Σ
( j)
i }Pj=1}Ki=1 (πi are the mixing coefficients,

μ
( j)
i and Σ

( j)
i are the center and covariance matrix of the i-th Gaussian component

in frame j).
Learning of the parameters is achieved by log-likelihood maximization subject to

the constraint that the data in the different frames arose from the same source, result-
ing in an EM process iteratively updating the model parameters until convergence,
see [10] for details. Model selection (i.e., determining the number of Gaussians
in the GMM) is compatible with techniques employed in standard mixture models
(Bayesian information criterion [37], Dirichlet process [34], small-variance asymp-
totics [27], etc.). For a movement in Cartesian space with 10 demonstrations and 3
candidate frames, the overall learning process typically takes 1–3s. The reproduction
is much faster and can be computed online (typically below 1 ms).

The learned model is then used to reproduce movements in other situations (for
new position and orientation of candidate frames). A new GMM with parameters
{πi , ξ̂t,i , Σ̂ t,i }Ki=1 can thus automatically be generated with

N
(
ξ̂t,i , Σ̂ t,i

)
∝

P∏

j=1

N
(
ξ̂
( j)
t,i , Σ̂

( j)
t,i

)
,

with ξ̂
( j)
t,i = At, jμ

( j)
i +bt, j , Σ̂

( j)
t,i = At, jΣ

( j)
i A�

t, j , (5)
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Fig. 3 Generalization capability of task-parameterized Gaussianmixture model. Each graph shows
a different situation with increasing generalization complexity. In each graph, the four demonstra-
tions and the associated adapted model parameters are depicted in semi-transparent colors

where the result of the Gaussian product is given by

Σ̂ t,i =
( P∑

j=1

Σ̂
( j)
t,i

−1)−1
, ξ̂t,i = Σ̂ t,i

P∑

j=1

Σ̂
( j)
t,i

−1
ξ̂
( j)
t,i . (6)

For computational efficiency, the above equations can be computed with precision
matrices instead of covariances.

Several approaches can be used to retrieve movements from the proposed model.
An option is to encode both static and dynamic features in the mixture model to
retrieve continuous behaviors [22, 39, 51]. An alternative option is to encode time as
additional feature in the GMM, and use Gaussian mixture regression (GMR) [18] to
retrieve continuous behaviors. Similarly, if the evolution of a decay term is encoded
instead of time, the system yields a probabilistic formulation of dynamical movement
primitives (DMP) [20], see [11] for details. Figure3 presents TP-GMR reproduction
results for the example in Fig. 1.

4 Extension to Task-Parameterized Subspace Clustering

Classical model-based clustering will tend to perform poorly in high-dimensional
spaces. A simple way of handling this issue is to reduce the number of parameters
by considering diagonal covariances instead of full matrices, which corresponds to a
separated treatment of each variable. Although common in robotics, such decoupling
can be a limiting factor to encode movements and sensorimotor streams, because it
follows a strategy that is not fully exploiting principles underlying coordination,
motor skill acquisition and action-perception couplings.

The rationale is that diagonal structures are unadapted to motor skill represen-
tation because they do not encapsulate coordination information among the con-
trol variables. The good news is that a wide range of mixture modeling techniques
exist between the encoding of diagonal and full covariances. At the exception of
[14, 47], these techniques have only been exploited to a limited extent in robot skills
acquisition. They can be studied as a subspace clustering problem, aiming to group
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Fig. 4 The mixture of factor analyzers (MFA) covers a wide range of covariance structures for the
modeling of the data, from diagonal covariances (left) to full covariances (right)

datapoints such that they can be locally projected in subspaces of reduced dimension-
ality. Such subspace clustering helps the analysis of the local trend of the movement,
while reducing the number of parameters to be estimated, and “locking” the most
important coordination patterns to efficiently cope with perturbations.

Several possible constraints can be considered, grouped in families such as
parsimonious GMM [6], mixtures of factor analyzers (MFA) [30] or mixtures of
probabilistic principal component analyzers [42]. Methods such as MFA provide a
simple approach to the problem of high-dimensional cluster analysis with a slight
modification of the generative model underlying the mixture of Gaussians to enforce
low-dimensional models (i.e., noninvasive regarding the other methods used in the
proposed framework). The basic idea of factor analysis (FA) is to reduce the dimen-
sionality of the data while keeping the observed covariance structure. MFA assumes
for each component i a covariance structure of the form Σ i =ΛiΛ

�
i + Ψ i , where

Λi ∈R
D×d , known as the factor loadings matrix, typically has d<D (providing a

parsimonious representation of the data), and a diagonal noise matrix Ψ i .
Figure4 shows that the covariance structure in MFA can span a wide range of

covariances.
TheTP-GMMpresented in Sect. 3 is fully compatiblewith the subspace clustering

approaches mentioned above. Bayesian nonparametric approaches such as [48] can
be used to simultaneously select the number of clusters and the dimension of the
subspace in each cluster.

The TP-MFA extension of TP-GMMopens several roads for further investigation.
A possible extension is to use tied structures in the covariances to enable the organi-
zation and reuse of previously acquired synergies [17]. Another possible extension
is to enable deep or hierarchical learning techniques in task-parameterized models.
As discussed in [41], the prior of each FA can be replaced by a separate second-level
MFA that learns to model the aggregated posterior of that FA (instead of the isotropic
Gaussian), providing a hierarchical structure organization where one layer of latent
variables can be learned at a time.
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Demonstrations

Reproductions

Fig. 5 Learning of two behaviors with the Baxter robot. The taught tasks consist of holding a cup
horizontally with one hand, and holding a sugar cube above the cup with the other hand, where the
two task primitives can be combined in parallel. The demonstrations are provided in two steps by
kinesthetic teaching, namely, by holding the arms of the robot and moving them during the task
while the robot compensates for the effect of gravity. This procedure allows the user to move the
robot arms without feeling their weight and without feeling the motors in the articulations, while
the sensors are used to record position information. Here, the data are recorded in several frames
of reference (top image). During reproduction, the robot is controlled by following a minimal
intervention principle, where the computed feedforward and feedback control commands result
in different levels of stiffness obeying the extracted variation and coordination constraints of the
task. First sequence: Brief demonstration to show the robot how to hold a cup horizontally. Second
sequence: Brief demonstration to show how to hold a sugar cube above the cup. Third sequence:
Manual displacement of the left arm to test the learned behavior (the coordination of the two hands
was successfully learned). Last sequence: Combination of the two learned task primitives. Here,
the user pushes the robot to show that the robot remains soft for perturbations that do not conflict
with the acquired task constraints (automatic exploitation of the redundant degrees of freedom that
do not conflict with the task)
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5 Extension to Minimal Intervention Control

We showed in [10] that TP-GMM can be used to autonomously regulate the stiffness
and damping behavior of the robot, see also Fig. 1d. It shares similarities with the
solution proposed by Medina et al. in the context of risk-sensitive control for haptic
assistance [31], by exploiting the predicted variability to form aminimal intervention
controller (in task space or in joint space). The retrieved variability and correlation
information is exploited to generate safe and natural movements within an optimal
control strategy, in accordance to the predicted range of motion to reproduce the
task, evaluated for the current situation. TP-GMM is fully compatible with linear
quadratic regulation (LQR) and model predictive control (MPC) [4], providing an
approach to learn controllers adapted to the current situation, with feedforward and
feedback control commands varying in regard to external task parameters, see [10]
for details.

Figure5 demonstrates that a TP-GMMwith a single Gaussian, combined with an
infinite-horizon LQR, can readily be used to represent various behaviors that directly
exploit the torque control capability of the robot and the redundancy, both at the level
of the task and at the level of the robot kinematic structure.

It is worth noting that each frame in the TP-GMMhas an associated sub-objective
function as in Eq. (3), which aims at minimizing the discrepancy between the demon-
strations and the reproduction attempt. By considering the combination of these sub-
objectives in the overall objective, the problem can be viewed as a rudimentary form
of inverse optimal control (IOC) [1]. This form of IOC does not have external con-
straints and can be solved analytically, which means that it can provide a controller
without exploratory search, at the expense of being restricted to simple forms of
objectives (weighted sums of quadratic errors whose weights are learned from the
demonstrations). This dual view can be exploited for further research in learning
from demonstration, either to bridge action-level and goal-driven imitation, or to
initialize the search in IOC.

6 Extension to Multimodal Data and Projection
Constraints

TP-GMMisnot limited to coordinate systems representingobjects inCartesian space.
It can be extended to other forms of locally linear transformations or projections,
which opens many roads for further research.

The consideration of non-square At, j matrices is for example relevant to learn
and reproduce soft constraints in both configuration and operational spaces (through
Jacobian operators). With a preliminary model of task-parameterized movements,
we explored in [9] how a similar approach could be used to simultaneously learn
constraints in joint space and task space. Themodel also provides a principled way to
learn priority constraints in a probabilistic form (through nullspace operators). The
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different frames correspond in this case to several subspace projections of the same
movement, whose relevance is estimated statistically from the demonstrations.

A wide range of motor skills could potentially be adapted to this framework, by
exploiting the functional nature of task parameters to build models that learn the
local structure of the task from a small number of demonstrations. Indeed, most task
parameterization in robot control can be related to some form of frames of reference,
coordinate systems or basis functions, where the involvement of the frames can
change during the execution of the task, with transformations represented as local
linear projection operators (Jacobians for inverse kinematics, kernel matrices for
nullspace projections, etc.).

The potential applications are diverse, with an objective that is well in line with
the original purpose of motor primitives to be composed together serially or in paral-
lel [15]. Further work is required to investigate in which manner TP-GMM could be
exploited to provide a probabilistic view of robotics techniques that are in practice
predefined, handled by ad hoc solutions, or sometimes inefficiently set as hard con-
straints. This includes the consideration of soft constraints in both configuration and
operational spaces. A wide range of robot skills can be defined in such way, see e.g.
the possible tasks described in Sect. 6.2.1 of [3]. In humanoids, the candidate frames
could for example be employed to learn the constraints of whole-body movements
from demonstration or experience, based on the regularities extracted from different
subspace projections.

An important category of applications currently attracting a lot of attention con-
cerns the problems requiring priority constraints [19, 28, 36, 44, 50]. With an appro-
priate definition of the frames and with an initial set of candidate task hierarchies,
such constraints can be learned and encodedwithin a TP-GMM.Here, the probabilis-
tic encoding is exploited to discover, from statistical analysis of the demonstrations,
in which manner each subtask is prioritized.

For a controller handling constraints both in configuration and operational spaces,
the most common candidate projection operators can be defined as

q̂( j)
t,i = I μ

( j)
i + 0 (7)

q̂( j)
t,i = J†(q t−1) μ

( j)
i + q t−1 − J†(q t−1)xt−1 (8)

q̂( j)
t,i = J†(q t−1)A

O
t μ

( j)
i + q t−1 + J†(q t−1)

[
bO
t − xt−1

]
(9)

q̂( j)
t,i = N(q t−1) μ

( j)
i + J†(q t−1)J(q t−1)q t−1 (10)

q̂( j)
t,i = N(q t−1) J̃

†
(q t−1) μ

( j)
i + q t−1 − N(q t−1) J̃

†
(q t−1) xt−1 (11)

q̂( j)
t,i = N(q t−1) J̃

†
(q t−1)A

O
t︸ ︷︷ ︸

At, j

μ
( j)
i + q t−1+N(q t−1) J̃

†
(q t−1)

[
bO
t −xt−1

]

︸ ︷︷ ︸
bt, j

, (12)

covering a wide range of robotics applications.
Note here that the product of Gaussians is computed in configuration space (q and

x represent respectively poses in joint space and task space). Equation (7) describes
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Fig. 6 Illustration of the encoding of priority constraints in a TP-GMM. The top row shows 3
demonstrations with a bimanual planar robot with 5 articulations. The color of the robot changes
from light gray to black with the movement. The task consists of tracking two objects with the left
and right hands (the path of the objects are depicted in red). In some parts of the demonstrations, the
two objects could not be reached, and the demonstrator either made a compromise (left graph), or
gave priority to the left or right hand (middle and right graphs). The bottom row shows reproduction
attempts for new trajectories of the two objects. Although facedwith different situations, the priority
constraints are reproduced in a similar fashion as in the corresponding demonstrations

joint space constraints in a fixed frame. It corresponds to the canonical frame defined
by At, j = I (identity matrix) and bt, j =0. Equation (8) describes absolute position
constraints (in operational space), where J† is the Jacobian pseudoinverse used as
least-norm inverse kinematics solution. Note that Eq. (8) describes a moving frame,
where the task parameters change at each iteration (observation of a changing pose
in configuration space). Equation (9) describes relative position constraints, where
the constraint in task space is related to an object described at each time step t by
a position bO

t and an orientation matrix AO
t in task space. Equation (10) describes

nullspace/priority constraints in joint space, with N= I− J† J a nullspace projection
operator. Equation (11) describes absolute position nullspace/priority constraints,
where the secondary objective is described in task space (for a point in the kinematic
chain with corresponding Jacobian J̃). Finally, Eq. (12) describes relative position
nullspace/priority constraints.

The above equations can be retrieved without much effort by discretizing (with an
Euler approximation) the standard inverse kinematics and nullspace control relations
that can be found in most robotics textbooks, see e.g. [3].

Figure6 presents a TP-GMM example with task parameters taking the form of
nullspace bases. The frames are defined by Eqs. (9) and (12) with two different
combinations of nullspaces N and Jacobians J̃ corresponding to the left and right
arm.
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7 Discussion and Further Work

A potential limitation of the current TP-GMM approach is that it requires the
experimenter to provide an initial set of frames that will act as candidate projec-
tions/transformations of the data that can potentially be relevant for the task. The
number of frames can be overspecified by the experimenter (e.g., by providing an
exhaustive list), at the expense of potentially requiring a large number of demonstra-
tions to obtain sufficient statistics to discard the frames that have no role in the task.
The demonstrations must also be sufficiently varied, which becomes more difficult
as the number of candidate frames increases. The problem per se is not different
from the problem of selecting the variables that will form the feature vector fed to a
learning system. The only difference here is that the initial selection of frames takes
the form of affine transformations instead of the initial selection of elements in a
feature vector.

In practice, the experimenter selects the list of objects or landmarks in the robot
workspace, as well as the locations in the robot kinematic chain that might be relevant
for the task, which are typically the end-effectors of the robot, where tools, grippers
or parts in contact with the environment are mounted. It should be noted here that
if some frames of reference are missing during reproduction (e.g., when occlusions
occur or when frames are collected at different rates), the system is still able to
reproduce an appropriate behavior given the circumstance, see [2] for details.

The issue of predefining an initial set of frames of reference is not restrictive
when the number of frames remains reasonably low (e.g., when they come from
a set of predefined objects tracked with visual markers in a lab setting). However,
for perception in unconstrained environment, the number of frames could potentially
grow (e.g., detection of phantomobjects), while the number of demonstrations should
remain low.

Further work is thus required to detect redundant frames or remove irrelevant
frames, as well as to automatically determine in which manner the frames are
coordinated with each other and locally contribute to the achievement of the task.
A promising route for further investigation is to exploit the recent developments in
multilinear algebra and tensormethods [24, 38] that exploit themultivariate structure
of data for statistical analysis and compression without transforming it to a matrix
form.

In the proposed task-parameterized framework, themovement is expressed simul-
taneously in multiple coordinate systems, and is stored as a multidimensional array
(tensor-variate data). This opens many roads for further investigation, where mul-
tilinear algebra could provide a principled method to simultaneously extract eigen-
frames, eigenposes and eigentrajectories. Multiway analysis of tensor-variate data
could imaginably offer a rich set of data decomposition techniques, which has been
demonstrated in computer imaging fields such as face processing [46], video analy-
sis [52], geoscience [35] or neuroimaging [5], but which remains underexploited in
robotics and motor skills acquisition.
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There are several other encoding methods that can be explored within the pro-
posed task-parameterized approach (e.g., with hidden Markov models (HMM), with
Gaussian processes (GP) or with other forms of trajectory distributions). Indeed,
it is worth noting that the approach is not restricted to mixture models and can be
employed with other representations as long as a local measure of uncertainty is
available.

8 Conclusion

An efficient prior assumption in robot learning from demonstration is to consider
that skills are modulated by external task parameters. These task parameters often
take the form of affine transformations, whose role is to describe the current situation
encountered by the robot (body and workspace configuration). We showed that this
structure can be usedwith different statistical modeling strategies, including standard
mixture models and subspace clustering. The approach can be used in a wide variety
of problems in robotics, by reinterpreting them with a structural relation between
the task parameters and the model parameters represented as candidate frames of
reference. The rationale is that robot skills can often be related to coordinate systems,
basis functions or local projections, whose structure can be exploited to speed up
learning and provide robots with better generalization capability. Early promises of
the approach were discussed in a series of problems in configuration and operational
spaces, including tests on a Baxter robot.
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Modeling Objects as Aspect Transition
Graphs to Support Manipulation

Li Yang Ku, Erik Learned-Miller and Roderic Grupen

1 Introduction

In the fields of human psychophysics and neurophysiology, the study of visual object
recognition is often motivated by the question of how humans recognize 3-D objects
while receiving only 2-D light patterns on the retina [29]. Two types of models for
object recognition have been proposed to answer this question. The structural descrip-
tionmodel represents each object by a small number of view-invariant primitives and
their position in an object-centered reference frame [23]. Alternatively, image-based
models represent each object as a collection of viewpoint-specific local features.
Since the development of these models, experiments in human psychophysics and
neurophysiology have provided converging evidence for image-based models. In
experiments done by Bülthoff and Edelman [2, 6], it was shown that when a new
object is presented to a human subject, a small set of canonical views are formed
despite the fact that each viewpoint is presented to the subject for the same amount
of time. Experiments on monkeys further confirmed that a significant percentage of
neurons in the inferior temporal cortex responded selectively to a subset of views of
a known object [20]. However, how an infinite set of possible views can be effec-
tively reduced to a smaller set of canonical views remains an open question. Different
approaches such as view interpolation [24] and linear combinations of views [31]
have been proposed.
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Closely related to the image-based models in the field of psychophysics, aspect
graphs were first introduced as a way to represent 3-D objects using multiple 2-D
views in the field of computer vision [16]. An aspect graph contains distinctive views
of anobject captured fromaviewing sphere centeredon theobject.Researchonaspect
graphs has focused on the methodologies for automatically computing aspect graphs
of polyhedra [10] and general curved objects [17]. The set of viewpoints on the
viewing sphere is partitioned into regions that have the same qualitative topological
structure as an image of the geometric contours of the object. However, work done
in this field was mostly theoretical and was not applicable in practice [7]. One of
the difficulties faced in this work concerned the large number of aspects that exist
for normal everyday objects. An object can generate millions of different aspects,
but many of these may be irrelevant at the scale of the observation. In this work,
we propose an object model that provides a consistent treatment for classifying
observations into aspects within a practically-sized subset of all possible aspects for
most types of objects including deformable objects.

Object and tool manipulation are essential skills for a humanoid robot, and recog-
nizing known objects and tools is often a first step in manipulation tasks. In computer
vision and robotics, object recognition is often defined as the process of labeling seg-
ments in an imageorfitting a 3-Dmodel to anobservedpoint cloud.Theobjectmodels
used to accomplish these tasks usually include information about visual appearance
and shape. However, what these object recognition systems provide is merely a label
for each observed object. The sequence of actions that the robot should perform
based on the object label are often manually defined. Without linking actions to
object labels these object models themselves have limited utility to the robot.

Both aspect graphs and image-based models attempt to model 3-D objects with
multiple 2-D views. Research in aspect graphs has encountered difficulties in deter-
mining the threshold to differentiate two distinctive views while for image-based
models how to generalize from unfamiliar to canonical views remains an open ques-
tion. In this article we propose an object model that addresses both of these issues
and incorporates actions in a coherent way. In particular, we show how aspects can
be chosen in a unique and repeatable way that is defined by the object itself, and in
a way that supports manipulation.

While many of our examples use images and visual processing, our methodology
applies to other modes of perception such as audition and haptics. Below, we use the
terms “observation” and “aspect” instead of “view” and “canonical view” to reflect
the more general nature of our approach beyond just visual processing.

The three main contributions of this paper are the following. (1) We define a
principle that determines whether two observations should be differentiated or gen-
eralized to one aspect based on the actor’s capability. (2)We propose an image-based
visual servoing algorithm that allows the actor to manipulate an object to cause the
features in an image to conformwith an aspect inmemory. (3)We introduce amethod
for determining whether a sequence of non-deterministic manipulation actions can,
under certain assumptions, be guaranteed to transition between two aspects. We
demonstrate our object model and our visual servoing algorithm on a tool-grasping
task using the Robonaut 2 simulator.
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2 Related Work

Besides work done in aspect graphs and image-based models mentioned in the last
section, our work also relates to a body of work in hybrid control theory. In [3], a
controller is described as a funnel that guides the robot state to convergence; multiple
controllers can be combined to funnel robot states to a desired state that no one single
controller can reach alone. In [30], an algorithm that combines linear quadratic regu-
lators into a nonlinear policy was also introduced. However under certain situations
the goal state may not be reachable through a combinations of controllers that act
like funnels. For example, the visual servoing controller implemented in our exper-
iment controls the end effector to a certain pose based on the robot hand’s visual
appearance. However to reach the goal state, a controller that transitions from a state
where the robot hand is not visible to one in which the visual servoing controller can
be executed is required. Such a controller can be an open loop controller that moves
the end effector to a memorized pose and may not necessarily converge to a certain
state like a funnel.

In this work we introduce the notion of a slide as a metaphor for this kind of action
that transitions from one set of states to another (see Fig. 1). Uncertainty of the state
may increase after transitioning down a slide, but may still reach the goal state if a
funnel-slide-funnel structure is carefully designed. We investigate how a sequence
of these two kinds of controllers will change how an object is observed. In previous
(on-going) work we have referred to funnels as track control actions and slides as
search control actions [11]. The search control action orients the visual sensor to
where the target is likely be found therefore transitioning states like a slide; the track
control action keeps the target in the visual center and converges to a subset of states
like a funnel. Figure1 illustrates the funnel-slide-funnel concept using the same style
of figure demonstrated in previous work by Burridge et al. [3].

There is also a good deal of related work in visual servoing. This work can be
classified into two major types: position-based servoing, where servoing is based on
the estimated pose; and image-based servoing, where servoing is based directly on
visual features [14]. The image-based servoing approach has the advantage that it

Fig. 1 Funnel-slide-funnel
structure. We use the funnel
metaphor introduced in [3] to
describe a closed-loop
controller or a track control
action [11] that converges to
a subset of states and the
slide metaphor to describe an
open-loop controller or a
search control action [11]
that causes state transitions
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performs with an accuracy independent of extrinsic camera calibration and does not
require an accurate model of the target object or end effector. Our visual servoing
approach belongs to this class of image-based servoing techniques.

Our work is inspired by Jägersand and Nelson [15], in which Broyden’s method is
used to estimate the visuomotor Jacobian online. Our algorithm uses a similar update
approach but is implemented on top of a changing set of features. Some other work
in visual servoing has also investigated approaches that do not rely on a predefined
set of features. In [26], a set of robust SIFT features are selected to perform visual
servoing. In [12] moments of SIFT features that represent six degrees of motion are
designed. An approach that is based on the image entropy was also introduced in
[4]. However these approaches all assume a setting in which the camera is mounted
on the end effector. In this article we are interested in a setting that is more similar
to human manipulation. Unlike a system where the camera is mounted on the end
effector, only part of the observed features move in correspondence with the end
effector. Our algorithm is used to guide the robot end effector, within the field of
view, to a pose that is defined relative to an object that was memorized. The features
that are controllable are learned and reused.

Our work also has many connections to prior work on affordances. The term
affordance [9] has many interpretations. We prefer the definition of affordance as
“the opportunities for action provided by a particular object or environment” [8].
Affordances can be used to explain the functionality and utility of things in the
environment. Our object models are based on this interactionist view of perception
and action that focuses on learning relationships between objects and actions specific
to the robot. An approach to bind affordances of objects with the robot was also
introduced by Stoytchev [27]. In this work, the robot learns sequences of actions that
will lead to invariant features on objects through random exploration. In the object
model introduced in [33], predefined base affordances are associated with object
surface types. Instead of defining object affordances from a human perspective,
our object models memorize how robot actions change perception with a graph
representation.

The aspect transition graph model employed in this work was first introduced by
Sen [25]. In our previous work [18, 19], we introduced a mechanism for learning
these models without supervision, from a fixed set of actions and observations. We
used these models to support belief-space planning techniques where actions are
chosen to minimize the expected future model-space entropy, and we showed that
these techniques can be used to condense belief over objects more efficiently. In
this article we extend the aspect transition graph model to handle an infinite variety
of observations and to handle continuous actions. We start with a discussion of our
aspect transition graph model.
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3 Object Model

The aspect transition graph (ATG)objectmodel discussed in this paper is an extension
of the original concept of an aspect graph. In addition to distinctive views, the ATG
object model summarizes how actions change viewpoints or the state of the object
and thus, the observation. We define the term “observation” to be the combination of
all sensor feedback of the robot at a particular time and the “observation space” as the
space of all possible observations. This limits themodel to a specific robot, but allows
the model to present object properties other than viewpoint changes. Extensions to
tactile, auditory and other sensors is possible with this representation. AnATGmodel
of an object can be used to plan manipulation actions for that object to achieve a
specific target aspect. For example, in order for the robot to pick up an object, the
target aspect is a view where the robot’s end effector surrounds the object. We expect
that this view will be common to many such tasks and that it can be the expected
outcome of a sequence of slides (i.e. like moving the effector to the same field of
view as the target object) and funnels (like visually servoing features from the hand
into the pregrasp configuration relative to the object).

Definitions

We define an “aspect” as a single observation that is stored in the object model.
This usage is consistent with the term “canonical view” coined in the psychophysics
literature to describe image-based models. As we will see below, many observations
will not be stored in the object’smemory and hencewill not be categorized as aspects.
We will discuss in detail below how a given observation is categorized as an aspect
or not.

An ATG object model is represented using a directed multigraph1 G = (X ,U),
composed of a set of aspect nodesX connected by a set of action edgesU that capture
the probabilistic transition between aspects. An action edgeU is a triple (X1, X2, A)

consisting of a source node X1, a destination node X2 and an action A that transitions
between them. Note that there can be multiple action edges (associated with different
actions) that transition between the same pair of nodes. In contrast to aspect graphs
and image-based models that differentiate views based on visual appearance, we
argue that, in general, discriminating between object observations should depend on
whether the actor is capable of manipulating the object such that the observation
converges to a target aspect. That is, we define aspects that are functions of the visual
servoing and action abilities of the robot.

Figure2 shows an example of an ATG model that contains two aspects x1, x2 and
one action edge u connecting the two aspects in the observation space. An aspect is
represented as a single dot in the figure. The smaller ellipses around x1, x2 represent
the ε-region of the corresponding aspect. Inside the ε-region, the observation is close
to the target aspect, and the funnel action is considered to have “converged”. The
ε-region is task dependent; a task that requires higher precision such as picking up

1A multigraph allows multiple edges between a given pair of vertices.
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x1 x2

region of attraction of x1

ε-region of x1

xβ

ε-region of x2

region of attraction of x2

u

xα

Fig. 2 An ATG model containing two aspects x1 and x2, each a likely result of applying a funnel
action within their respective regions of attraction. The edge labeled u is a model-referenced “slide”
action that reliably maps the ε-region of x1 to the interior of the region of attraction of x2

a needle will require a smaller ε-region. Each aspect x is located in the ε-region but
does not have to be in the center. The location and shape of the ε-region also depends
on the given task since certain dimensions in the observation space might be less
relevant when performing certain tasks.

The larger ellipses surrounding the ε-regions are the region of attraction of the
“funnel” controller referenced to aspects x1 and x2. Observations within the region
of attraction converge to the ε-region of the target aspect by running a closed-loop
controller that does not rely on additional information from the object model. In our
experiment, a visual servoing controller is implemented to perform gradient descent
to minimize the observation error. The region of attraction for using such a controller
is the set of observations fromwhich a gradient descent errorminimization procedure
leads to the ε-region of the target aspect.

Slides

The arrow in Fig. 2 that connects the two aspects is an action edge (x1, x2, a) that
represents a “slide” action. Action a is an open-loop controller that causes aspect
transitions. Instead of converging to an aspect, “slide” actions tend to increase uncer-
tainty in the observation space. If a funnel is used to describe a convergent controller
then a slide is suitable for describing this type of action. Figure1 illustrates this
metaphor with an example structure that allows transitions from a converged aspect
to the mouth of another funnel.

We implement slide actions as open-loop controllers. In our experiments, a slide
action a can be represented in the form a = φ|σ̃τ whereφ represents the potential func-
tion that the controller tries to minimize, σ̃ represents a set of memorized controller
parameters, and τ represents the motor resources the action controls. An example
is an end point position controller that moves to a relative pose with respect to the
center of an object point cloud. Under situations when there is no randomness in
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observation, action execution and the environment, executing action a from aspect
x1 will transition reliably to aspect x2.

Convergence

The arrow in Fig. 2 that connects the observation xα within the ε-region of x1 to
observation xβ represents a scenario where action a is executed when xα is observed
in a system in which actions have stochastic outcomes.We define εu as the maximum
error between the aspect x2 and the observation xβ when action a is executed while
the current observation is within the ε-region of aspect x1. εu can be caused by a
combination of kinematic and sensory errors generated by the robot or randomness
in the environment. If the region of attraction of the controller that converges to
aspect x2 covers the observation space within εu from x2, by running the convergent
controller we are guaranteed to converge within the ε-region of aspect x2 under such
an environment. Figure1 illustrates this using the funnel and slide metaphor. As
long as the end of the slide is within the mouth of the next funnel we can guarantee
convergence to the desired state even when open loop controllers are within the
sequence. The target aspect x2 is determinedby estimating themost likely observation
after executing action a through the Bayesian filtering algorithm.

Completeness and Sufficiency

We call an Aspect Transition Graph model complete if the union of the regions of
attraction over all aspects cover thewhole observation space and a path exists between
any pair of aspects. A complete ATG object model allows the robot to manipulate the
object from any observation to one of the aspects. Complete ATG object models are
informative but often hard to acquire and do not exist for irreversible actions. On the
other hand, it is not always necessary to have a complete ATG to accomplish a task.
For example, a robot can accomplish most drill related tasks without modeling the
bottom of the drill. Therefore, we define an Aspect Transition Graph object model
to be sufficient if it can be used to accomplish all required tasks of the object. In this
work we will focus on sufficient ATG object models.

4 Visual Servoing

In this section we introduce an image-based visual servoing algorithm under the
control basis framework [13]. This visual servoing controller is used to converge from
an observation within the region of attraction to the ε-region of the corresponding
aspect. An action is written in the form φ|στ , where φ is a potential function, σ
represents sensory resources allocated, and τ represents themotor resources allocated
[13]. The control basis framework provides a means for robot systems to explore
combinations of sensory and motor controls. Although only visual data are used in
this work, the control basis framework allows us to combine controllers that utilize
sensory resources of different modalities in future work. In our experiment the visual
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Fig. 3 Visual servoing sequences. Each image pair shows the target aspect (left) and the current
observation (right). A line in between represents a pair of matching keypoints. The top image
pair represents the starting observation and the bottom image pair represents when the controller
converged

servoing controller is used to control the end effector of the robot to reach a pose
relative to a target object using visual sensor feedback. Unlike many visual servoing
approaches, our visual servoing algorithm does not require a set of predefined visual
features on the end effector or target object nor does it require an inverse kinematic
solution for the robot. The only information required is the current observation and
the target aspect. Figure3 shows a trial of our visual servoing algorithm converging
to a stored target aspect.

Potential Function

In the control basis framework, a potential function φ represents an error function
that the controller minimizes. To reach minimum error a closed loop controller per-
forms gradient descent on the potential function to converge to a minimum. Artificial
potential functions that guarantee asymptotically stable behavior are usually used to
avoid local minima [11]. However in visual servoing, potential functions with a
unique minimum often do not exist due to occlusion, lighting and noisy sensory
data. Instead of trying to define a potential function with a unique minimum, we
define a potential function with possibly many local minima and call the region in
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Fig. 4 Components of the
signature of the target aspect
(left) and the current
observation (right). The
circle and the triangle
represent the i th and j th
matched keypoints

which gradient descent converges to a particular minimum the region of attraction.
If the current aspect is within the region of attraction we can guarantee convergence
to the target aspect through gradient descent.

Our potential function is defined as the weighted squared Euclidean distance
between the signature of the current observation s̃ and the signature of the target
aspect s. This approach can be used with most feature detectors and feature descrip-
tors. In our experiment the Fast-Hessian detector and the SURF descriptor [1] are
implemented. A depth filter that uses the depth image is first used to filter out most
keypoints that belong to the background. The first step to calculate the signature
of an observation is to find a subset K of keypoints in the current observation that
match to keypoints in the target aspect. The signature of an observation can then be
calculated based on this subset K of keypoints. The signature is a combination of
the distance signature vector sD and the angle signature vector sA. sD is a signature
vector that consists of Euclidean distances sDi j between all pairs of keypoints (ki , k j )

in K : sDi j = √
(xi − x j )2 + (yi − y j )2. Here xi , yi are the X Y image coordinates

of keypoint ki ∈ K . The angle signature vector sA consists of angle differences s Ai j
between all pairs of keypoints (ki , k j ) in K : s Ai j = ωi j − θi . Here ωi j represents the
orientation of the ray from keypoint ki to keypoint k j and θi represents the orientation
of keypoint ki . Figure4 illustrates examples of sDi j and s

A
i j of the target aspect and the

current observation.
The potential φ is then the scaled squared Euclidean distance between distance

signature vectors of the target aspect sD and the current observation s̃D plus the
weighted squared Euclidean distance between angle signature vectors of the target
aspect sA and the current observation s̃A;

φ = 1

ND
·

∑

{i, j |ki ,k j∈K }
(sDi j − s̃ Di j )

2 +
∑

{i, j |ki ,k j∈K }
wA
i j · (s Ai j − s̃ Ai j )

2,

where ND = |K | · (|K | − 1)/2 andwA
i j = sDi j /

∑
{i, j |ki ,k j∈K } s

D
i j .Here |K | is the num-

ber of matched keypoints between the current observation and the target aspect and
wA
i j is a normalized weight proportional to the keypoint pair distance sDi j in the target

aspect. The purpose of wA
i j is to weight angle differences more heavily for keypoints

that are far apart.
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Gradient Descent

In order to perform gradient descent on the potential function we need to be able
to estimate the potential-motor Jacobian defined as J = ∂φ(σ)/∂τ . A seven degree
freedom arm is used in our experiment, therefore τ = [q1, q2, . . . , q7] where qi
represents the i th joint in Robonaut-2’s right arm. The control signal that leads to
the greatest descent can then be calculated by the expression: Δτ = −c(J #φ(σ)),

where c is a positive step size and J # is the Moore–Penrose pseudoinverse [22].
In order to calculate the partial derivative of the potential function φ with respect

to each joint q, we introduce the visuomotor Jacobian defined as Jv = ∂V /∂τ ,where
V is the X Y positions and orientations of the set of keypoints detected in the current
observation thatmatch to keypoints in the target aspect based on its feature descriptor.
Given Δτ and Jv we can calculate the change in the keypoint positions and angles
through ΔV = Jv · Δτ . Since the potential only depends on matched pairs we can
calculate an estimated potential for every joint value.

Learning the Visuomotor Jacobian

Our visuomotor Jacobian that models how features change with respect to joint
values is inspired by work done in understanding how humans obtain a sense of
agency by observing their own hand movements [32]. Our approach learns that
certain feature positions on the robot end effector are controllable while features in
the background are not. Our visuomotor Jacobians for each aspect are updated on-
line using a Broyden-like method Jvt+1 = Jvt + (μ(ΔV − JvtΔτ )Δτ T /Δτ TΔτ ),

where Jvt is the visuomotor Jacobian at time t and μ ∈ (0, 1] is a factor that specifies
the update rate [21]. When μ = 1 the updating formula will converge to the correct
Jacobian Jv after m noiseless orthogonal moves and observations, where m is the
dimension of Jv. In our experiment we set μ = 0.1 to make the estimation more
robust. The visuomotor Jacobians for each aspect are initialized randomly for the first
run and memorized afterwards. The more trials the controller runs the more accurate
the estimated Jv is on average. Using Broyden’smethod to estimate Jacobians on-line
for visual servoing was first introduced in [15].

5 Experimental Results

The aspect transition graph object model in conjunction with the visual servoing
algorithm introduced in previous sections are tested on a tool grasping task on the
NASA Robonaut-2 simulator [5]. The goal of the task is to control Robonaut-2’s
right hand to a pose where a screwdriver on a tool stand is in between the robot’s
right thumb, index finger and middle finger as shown in Fig. 5. An ATG object
model consisting of three aspects, that is sufficient for this task, was built through
demonstration. We show that the “slide-funnel-slide-funnel” controller sequence
decreases the average pose error over a “slide-slide” controller sequence.
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Fig. 5 Robonaut 2
approaching a pregrasp pose
for a screwdriver on a tool
stand in simulation

Building ATG Models

In this experiment our ATG object model is built through a teleoperated demon-
stration. An interface was implemented to allow the demonstrator to indicate when
to create a new aspect in the object model. The demonstrator can control the robot
end effector through interactive markers implemented by the MoveIt! platform [28].
When a new aspect is created, the action edge that connects the previous aspect to
this new aspect can be inferred.

The ATG object model used in this experiment consists of three aspects. The first
aspect represents an observation in which the screwdriver is on a tool stand on a table
and is 0.6m in front of the robot. In addition, no parts of the robot are visible. The
left image in Fig. 6 is the corresponding observation of this aspect. The second aspect
represents an observation where the robot’s right hand is about 0.07m right of the
screwdriver. The action edge between the first and second aspects represents an action
that moves the robot’s right hand to a pose relative to the center of the segmented
point cloud observed in the first aspect. This point cloud is segmented based on the
distance to the camera. The middle image in Fig. 6 is the corresponding observation
of this aspect. The third aspect represents an observation where the robot’s right
thumb, index and middle finger surrounds the screwdriver handle. The right image
in Fig. 6 is the corresponding observation of this aspect. The action edge in between
the second and third aspects represents an action that moves the robot’s right hand
to a pose relative to the right hand pose of the previous aspect. The relative action
frame is determined based on the closest observable feature to the end effector. An
even better approach would be to assign action frames based on the intention of the
demonstrator but this is beyond the scope of this paper.

Region of Attraction

The region of attraction of the second and third aspect of the ATG object model with
respect to the visual servoing controller can be analyzed. It is possible to also have a
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Fig. 6 The first, second, and third aspect stored in theATGmodel through demonstration are shown
from left to right. In the first aspect, the object on top of the table is a screwdriver on a tool stand. In
the second aspect, the robot hand is in a position where a straight movement toward the screwdriver
would lead to a pregrasp pose. The third aspect represents a pregrasp pose. This is the goal aspect
for the pregrasp task designed in this experiment

controller that is capable of converging to the first aspect through controlling joints
in the robot’s neck and waist, however since we assume the robot starts in a similar
pose with similar observation this controller is not implemented in this experiment.
The region of attraction of an aspect is defined as the observation space in which a
closed loop convergence controller that does not rely on additional information from
the object model can converge to the ε-region of the aspect. An aspect or observation
lies in a high dimensional observation space and can be varied by multiple different
parameters or noise. In this experiment we are interested in two types of noise.
(1) Noise in the relative pose between the robot hand and the object. This kind of
noise can be caused by kinematic errors from executing an action or imperfect object
positions calculated from a noisy point cloud. This type of noise will result in a
different end effector pose relative to the object. (2) Noise in the object position.
This kind of noise can be caused by placing the tool stand and screwdriver in a
different position than the position previously observed in the demonstration. This
type of noise can cause the estimated object center position to vary and will affect
the visual servoing controller since the object and the robot end effector will look
visually different from a different angle. In this experiment our goal is to find the
region of attraction of the second and third aspects with respect to these two kinds
of noise.

These two kinds of noise are artificially added to our experiment and the num-
ber of gradient descent iterations required to reach the ε-region of the aspect are
recorded. In this experiment we only consider noise on the X -Y plane for easier
visualization and analysis. For each type of noise and each aspect we tested 289
different combination of noise in the X and Y axes roughly within the scale that the
visual servoing controller can handle. The results for adding noise in the relative pose
between the robot hand and the object to the second aspect are shown in Fig. 7. The
plot on the left indicates how many iterations the visual servoing controller executed
till convergence for different noise values. Each color tile is one single experiment
and dark blue means the controller converges fast while orange means the controller
took longer to converge. A yellow tile means that the controller could not converge
within the 1000 iteration threshold. We call the region of attraction the set of obser-
vations that include the aspect plus the set of noise positions that corresponds to a
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Fig. 7 Iteration till convergence with respect to noise in the relative pose between the robot hand
and the object for the second aspect

Fig. 8 Iteration till convergence with respect to noise in the relative pose between the robot hand
and the object for the third aspect

non yellow tile connected to the origin. The plot on the right is a visualization of
the same result in 3D which has some resemblance to the funnel metaphor used in
Fig. 1.

The results for adding noise in the relative pose between the robot hand and the
object to the third aspect are shown in Fig. 8. Note that this aspect has a smaller
region of attraction with more tolerance in the direction perpendicular to the hand
opening. If there is a large error in the Y axis the robot’s hand may end up in front
or behind the screwdriver. Under such situations without additional information the
visual servoing controller will not be able to avoid colliding with the screwdriver
while trying to reach the goal. The results for adding noise in the object position are
shown in Fig. 9. Notice that the regions of attraction are much larger for this type of
noise.
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Fig. 9 Iteration till convergence with respect to noise in the object position for the second aspect
(left image) and the third aspect (right image)

Convergence and Accuracy

By analyzing the observed regions of attraction of the visual servo controller that
converges to the two aspects we can estimate the magnitude of noise this “slide-
funnel-slide-funnel” controller sequence can tolerate. Through Figs. 7 and 8 we can
see that the visual servo controller has a region of attraction with about 1.5cm radius
of kinematic noise around the second aspect and about 0.5cm radius of kinematic
noise around the third aspect. We evaluate these sequences of actions by comparing
the final end effector position in the X -Y plane to the demonstrated pose relative to the
screwdriver. We tested noise of three different magnitudes to each open-loop action;
0.5, 1.0, and 1.5cm for the action that transitions from the first aspect to the second
aspect and 0.1, 0.2, and 0.3cm for the action that transitions from the second aspect
to the third aspect. For each combination of noise we test eight uniformly distributed

Fig. 10 Convergence with
respect to artificial noise
added to the test cases. Each
dot represents a test case
where the X Y value
represents the summed
magnitude and direction of
the manually added
kinematic noise. A red
diamond indicates that the
controller fails to converge to
the third aspect while a blue
circle indicates that the
action sequence converged
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Table 1 Average position error in the X -Y plane in centimeters

Complete test set (cm) “Slide-funnel-slide-funnel”
structure converged test set
(cm)

“slide-slide” structure 2.24 2.06

“slide-funnel-slide-funnel”
structure

0.99 0.75

directions. Among the 72 test cases 100% of them converged to the second aspect
and 87.5% of them converged to the third aspect.

We did not reach a 100% overall convergence rate for two possible reasons. First,
in addition to the artificial noise, randomness in the action planner and simulator also
exist in the system. Second, the region of attractions shown in the previous section
are estimated based on visual similarity. Two observations can be visually similar
but position wise quite different therefore causing a false estimate of convergence.
Figure10 shows the test cases that the controller fails to converge on; most of the
failed test cases are located in the lower right corner. This is consistent with the shape
of the region of attraction of the controller with respect to the third aspect shown in
Fig. 8. The final poses of the end effector relative to the screwdriver are recorded and
compared to the demonstrated pose.

We further compare the result to a sequence of “slide-slide” controllers without
visual servoing acting as a funnel. The average position error is shown in Table1. The
“slide-funnel-slide-funnel” structure reduces the error by 55.8% and has an average
error of 0.75 cm in the X -Y plane when only considering test cases that converged.

6 Conclusion

In this paper we introduce an image-based object model that categorizes different
observations of an object into a subset of aspects based on interactions instead of
only on visual appearance. We further propose that a sequence of controllers that
form a “funnel-slide-funnel” structure based on this object model can have high rates
of success even when open-loop controllers are within the sequence. To demonstrate
this proposition we created an aspect transition graph object model that represents a
pregrasp action through a teleoperation demonstration. In addition, we introduced a
novel visual servoing controller that funnels the current observation to a memorized
aspect using a changing set of visual features. The regions of attractionwith respect to
the end effector pose of the visual servoing controller are then identified by manually
adding kinematic noise to the end effector position. Based on this region of attraction
we identified themagnitude of kinematic noise this sequence of controllers is capable
of handling and showed that under an environment with a similar magnitude of noise
this sequence of actions decreases the average final position error significantly.
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The biggest drawback of the current approach is its scalability to model more
complex objects. In this work we define aspects by manually indicating meaning-
ful observations. In future work we plan to identify transitions autonomously and
investigate hierarchical models that reuse existing sub-structures.
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An Approximate Inference Approach
to Temporal Optimization for Robotics

Konrad Rawlik, Dmitry Zarubin, Marc Toussaint
and Sethu Vijayakumar

1 Introduction

Control of sensorimotor systems, artificial or biological, is inherently both a spatial
and temporal process. Not only do we have to specify where the plant has to move
to but also when it reaches that position. In some control schemes, the temporal
component is implicit. For example, with an infinite horizon, discounted cost based
controller, movement duration results from the application of the feedback loop. In
other cases it is explicit, for example in finite horizon objective based formulations,
where the time horizon is set explicitly as a parameter of the problem [10].

Although control based on an optimality criterion is certainly attractive, practical
approaches for stochastic systems are currently limited to the finite horizon objective
or the first exit time objective. The former does not optimize temporal aspects of
the movement, i.e., duration or the time when costs for specific sub-goals of the
problem are incurred, assuming them as given a priori. However, how should one
choose these temporal parameters? This question is non-trivial and important, even
when considering a simple reaching problem. The solution of using an a priori fixed
duration, chosen experimentally, can result in not reaching the goal, having to use
an unrealistic range of control commands or excessive (wasteful) durations for short
distance tasks. The alternative first exit time formulation, on the other hand, either
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assumes specific exit states in the cost function and computes the shortest duration
trajectory which fulfils the task, or assumes a time stationary task cost function and
computes the control which minimizes the joint cost of movement duration and task
cost [1, 5, 15]. This is directly applicable only to taskswhich do not require sequential
achievement of multiple goals. While this limitation could be overcome by chaining
together individual time optimal single goal controllers, such a sequential approach
has several drawbacks. First, ifwe are interested in placing a cost onoverallmovement
duration, we are restricted to linear costs if we wish to remain time optimal. A second
more important flaw is that future goals should influence our control even before we
have achieved the previous goal.

In this paper, we extend standard finite horizon Stochastic Optimal Control (SOC)
problem formulation with additional cost terms on temporal aspects of a control
policy.

2 Problem Formulation

2.1 Finite Horizon Stochastic Optimal Control Problem

Let us consider a general controlled process, with state x ∈ R
Dx and controls u ∈

R
Du , given by the stochastic differential equation of the form

dx = f (x, u) dt + dξ ,
〈
dξ dξ�〉 = Q . (1)

with non-linear dynamics f and Brownian motion ξ . Fixing a finite time horizon
t f we denote by x(·) and u(·) the state and control trajectories over the interval
t ∈ [0, t f ]. For a given state-control trajectory we define the cost function as

C(x(·), u(·)) =
∫ t f

0
c(x(t), u(t), t) dt + c f (x(t f )) , (2)

where c(x, u, t) is a cost rate for being in state x and applying controls u at time t ,
and c f denotes a final state cost term. The finite horizon stochastic optimal control
problem is to find the (non-stationary) control policy π∗ : (x, t) → u that minimizes
the expected total cost given a start state x(0) and t f ,

π∗ = argmin
π

〈
C(x(·), u(·))〉x(·),u(·)|π,x(0) . (3)

Here we take the expectation w.r.t. the distribution P(x(·), u(·) | π, x(0)) over state-
control trajectories conditional on the given start state and control policy.
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2.2 Temporal Optimisation Problem

In practical robotics applications cost can generally be divided into subgoals, where
costs depend only on state and incur at intermediate time instances, and stationary
costs incurred throughout the movement. We express this by considering a cost of
the following form,

C(x(·), u(·),T ) =
∫ t f

0
c(x(t), u(t)) dt +

∑ f

i=1
ci (x(ti )) + CT (T ) (4)

whereT = {t1, . . . , t f } is a set of time instances—the time course—atwhich specific
subgoals, captured by the corresponding ci ’s, are to be fulfilled. For instance, in a
reaching movement, a cost that is a function of the distance to the target is incurred
only at the final time t f , while intermediate costs may represent subgoals like the
alignment of an orientation some time before the reaching of a target. In our temporal
optimisation framework, our objective shall be the optimisation of the time course
T itself, including an explicit cost term CT (T ) that arbitrarily penalizes these
time intervals. Note that this objective is broader than the duration optimisation, i.e.,
choice of only t f , but of course includes it as the special case T = {t f }.

The problem now is to find the joint optimum for the control policy and the time
course T ,

(π∗,T ∗) = argmin
π,T

〈
C(x(·), u(·),T )

〉
x(·),u(·)|π,x(0) . (5)

2.3 Time Discretization

While our approach can equally be described fully in a continuous time framework,
the presentation will be simplified when assuming a time discretization. Below we
briefly discuss a continuous time formulation.

We discretize the time interval [0, t f ] in K time steps, where each interval
[ti , ti+1] is discretized in K/ f steps of uniform length δk = (ti(k)+1 − ti(k))/K/ f ,
and i(k) = � f k/K � denotes the interval that the k th time step belongs to (see
Fig. 1 for illustration). Conversely, by k(i) = i K/ f we denote the step index that

Fig. 1 Illustration of the notation used (in the case K/ f = 5)
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corresponds to the i th intermediate cost ci . Choosing different numbers of time steps
per interval [ti , ti+1] of non-uniform step lengths is a straight-forward extension of
all the following.

In the discrete time case the problem takes the general form

xk+1 = f (xk, uk, δk) + ε , ε ∼ N (0, Q(δk)) (6)

C(x1:K , u1:K ,T ) =
∑K

k=0
c(xk, uk)δk +

∑ f

i=1
ci (xk(i)) + CT (T ) (7)

although the ideas presented can be easily adapted to alternative forms. For notational
convenience, we will absorb the task costs ci (xk(i)) in the running costs by defining

c̃k(xk, uk, δk) = c(xk, uk)δk + [k%K = 0] ci(k)(xk) (8)

C(x1:K , u1:K ,T ) =
∑K

k=0
c̃k(xk, uk, δk) + CT (T ) , (9)

where k%K denotes the modulo operator.
If instead we would like to stay in a time continuous framework we would define

d(t) as a function of time, thus augmenting the state space by a dimension. The
quantity d(t) can be regarded as a general resource variable and the general problem
formulation (4) reformulated as a first exit time problem - details can be found in [8].
Several algorithms applicable to problems with general non-linear dynamics have
been developed, e.g. DDP [11], ILQG [13] to name a couple, all of which can be
directly applied to this reformulation of the temporal optimisation problem.However,
our experience has shown that naive application of such algorithms, in particular those
listed, to the problemof temporal optimisation fails. This is generally due to the nature
of these approximate algorithms as local optimisers.With a poor initialisation, setting
d(·) = 0, π(·, ·) = 0, i.e., not moving for no time or close approximations thereof,
often proves to be a dominant local minimum. We are therefore compelled to seek
alternative optimisation schemes, which avoid the collapse of the solution to such
undesirable outcomes. In the following we describe an approach based on alternate
optimisation of the policy andT . This is formulated in the AICO framework, which
frames the problem as an inference problem, although a similar approach can be
followed within classical stochastic optimal control formulations leading to similar
results.

3 Approximate Inference Approach

In previous work [9] it has been shown that a general SOC problem can be refor-
mulated in the context of approximate inference, or more precisely, as a problem of
minimizing a Kullback–Leibler divergence. This alternative problem formulation is
useful in particular for derivation of approximation methods which would be non-
obvious to derive in the classical formulation. In the following we will adopt the
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approximate inference perspective to propose a specific approximation method to
solve the temporal optimization problem.

3.1 AICOT Formulation

In the inference control formulation, given a stochastic control policy πk(uk |xk) we
define the process

P(x1:K , u1:K |π,T ) = π(u0|x0)
K∏

k=1

π(uk |xk)P(xk+1|xk, uk, δk) , (10)

where P(xk+1|xk, uk, δk) is given by the discrete time dynamics (6). We further
introduce an auxiliary (binary) random variable rk with the likelihood

P(rk = 1|xk, uk,T ) = exp {−ηc̃k(xk, uk, δk)} , (11)

which can be interpreted as indicating (probabilistically) whether a task is fulfilled
(or rather whether costs are low). It is straight-forward to verify that

C(x1:K , u1:K ,T ) − CT (T ) = − log P(r1:K = 1|x1:K , u1:K ) , (12)

that is, we translated task and control costs into neg-log-likelihoods. In [9] it has been
show how for fixed T computing the posterior process P(x1:K , u1:K |r1:K = 1,T ),
that is, the distributionover state-control trajectories conditionedonalwaysobserving
“task fulfillment” is related to solving the stochastic optimal control problem. In
particular, this posterior also includes the posterior policy P(uk |xk, r1:K = 1,T ),
i.e. the posterior probability of choosing a control uk in state xk conditioned on
constant “task fulfillment”, which can be used in an interactive procedure to find the
optimal control policy.

In the context of temporal optimisation we are interested in the computation of
the posterior

P(T , x1:K , u1:K |r1:K = 1) ∝ P(x0)
K∏

k=0

P(xk+1|xk , uk ,T ) exp{−C(x1:K , u1:K ,T )} .

From this the MAP policy, and in this case MAP T , are extracted. As this problem
will in general be intractable, we proceed in two steps

T MAP = argmax
T

P(T | r1:K = 1) (13)

πMAP = argmax
π

P(π | T MAP, r1:K = 1) (14)
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Note that the second step reduces exactly to standard AICO and may be solved with
any of the methods proposed by [9, 14]. The main focus in the following is therefore
on solving (13). The proposed approach is based on an iterative procedure alternating
between approximation of the distribution P(x1:K , u1:K |T old, r1:K = 1) and utilisa-
tion of this distribution to obtain an improved T new. We call this general method
AICOT. Two alternative forms of the improvement step are proposed, one gradient
and one EM based. The relative merits of these two methods are then discussed in
Sect. 3.4.

3.2 Gradient Descent

We first consider direct optimisation of (13) by gradient descent. Let

L (T ) = log P(T | r1:K = 1) (15)

and note that

∇L (T ) ∝ 1

L (T )
· ∇P(r1:K = 1|T ) − ∇CT (T )

In the general case P(r1:K = 1|T )will not be tractable.We therefore propose taking,
similar to the standard AICO algorithms, a Gaussian approximation. For brevity, let
z1:K = (x1:K , u1:K ) denote the state-control trajectory. We define

p̃(z1:K |T ) ≈ P(r1:K = 1, z1:K |T )

as the unnormalized Gaussian approximation to P(z1:K |r1:K = 1,T ). Using this
approximation

∇T L (T ) ≈ ∇T

∫

z1:K
p̃(z1:K |T ) .

We derive the approximate gradient, assuming a state-control LQ approximation,
that is, we consider (6) and (9) are locally in the form

f (zk, δk) ≈ ak(δk) + Ak(δk) zk + Bk(δk)uk , Qk = Qδk (16)

c̃k(zk, k) ≈ [k%K = 0]1
2
x�
k Ck(T )xk − ck(T )�xk + 1

2
u�
k Huk , (17)

where all termsmay depend non-linearly onT , or δk . In the interest of an uncluttered
notation we will not further note this dependence explicitly. Equation (17) assumes
that the running costs are quadratic in u; as in [14] the squared control costs can
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equivalently translated to a Gaussian prior over u that combines with the process
noise Qk to a an uncontrolled process with noise Qk + BkH -1Bk .

We can now write the unnormalized posterior p̃ as the product of an uncontrolled
process and a Gaussian likelihood,

p̃(z1:K |T ) = N (z1:K |µ,Σ)︸ ︷︷ ︸
dynamics prior

·N [z1:K |c,C]︸ ︷︷ ︸
cost likelihood

where N [x |a, A] ∝ exp{− 1
2 x

�Ax + x�a} is a Gaussian in canonical form, with
precision matrix A and mean A-1a, c = (c1, . . . , cK )� is as in (17) neglecting the
u�
k Huk terms, and C = diag(C1, . . . ,CK ). The elements of µ are given by

µi = (A0 · · · Ai−1) z0 +
∑i−1

k=1
(Ak+1 · · · Ai−1) ak

and Σ is the symmetric matrix with

Σi j = Σ�
j i = (A j−1 · · · Ai )

∑i−1

k=0
(Ai−1 · · · Ak)(Qk + BkH

-1Bk)(A
�
i−1 · · · Ak)

�

for i ≤ j . In practise, given a local linearization the unnormalized posterior
p̃(z1:K |T ) can be computed with same computational complexity as a Riccati or
Kalman filter iterating over k [14].

Now let us define ẑ to be the subset of z1:K which have an associated interme-
diate cost, i.e., ẑ = {zk : [k%C = 0] = {zk : ck = 0,Ck = 0}}. (Note that, if we
subsumed the control costs u�

k Huk in the uncontrolled process, only at [k%K = 0]
we have cost terms.) As we can marginalize the uncontrolled process for all zk /∈ ẑ,
we can retrieve p̃(ẑ|T ) as

p̃(ẑ|T ) = N (µ̂|Ĉ−1 ĉ, Σ̂ + Ĉ−1)

where µ̂ and Σ̂ denote the appropriate sub-vector and -matrix ofμ andΣ respectively.
Hence, with m := Ĉ−1 ĉ and M := Σ̂ + Ĉ−1, the approximate derivatives take the
general form

∇
∫

z1:K
p̃(z1:K |T ) = N (µ̂|m,M)

[
g�[∇(m − µ̂)] −1

2
Tr

(
M−1∇M

)
+ 1

2
g�[∇M]g

]

where g = M−1(µ̂ − m).
Combining the results, the overall approximation to the derivatives is obtained as

∇δkL (T ) ≈ −∇δkCT (T ) + [
g�[∇δk (m − µ̂)] (18)

−1

2
Tr

(
M−1∇δkM

) + 1

2
g�[∇δkM]g

]
.



152 K. Rawlik et al.

The gradient ∇δkM and ∇δk (m − µ̂) are straight-forward by their definition. With
this we can use any gradient based scheme to obtain a newT new, which in turn gives
rise to a new approximation.

3.3 Expectation Maximisation

The solution to (13) can alternatively be obtained using an ExpectationMaximisation
approach. Specifically, we form the bound

L (T ) >

∫

z1:K
P(z1:K |r1:K = 1,T )︸ ︷︷ ︸

p(z1:K )

log P(r1:K = 1, z1:K |T )

which is alternately maximised with respect to p and T , in an E- and M-step.
In the E-Step we aim to calculate the posterior over the unobserved variables, i.e.

the trajectories, given the current parameter values δk ,

p(z1:K ) = P(z1:K |r1:K = 1,T ) .

We approximate this with p̃ using AICO as before. In the M-Step, we solve

T new = argmin
T

〈
log P(r1:K = 1, z1:K |T )

〉
p̃︸ ︷︷ ︸

:= ˜L (T )

,

where p̃ is the approximation calculated in the E-Step based onT old.Wemay expand
the objective as

L̃ (T ) =
∑K−1

k=0

(〈
log P(zk+t |zk, dk)

〉 − 〈
c̃k(zk, dk)

〉) + C ,

where
〈 · 〉

denotes the expectation with respect to q̃ andC is a constant. The required
expectations,

〈
c̃k(zk, dk)

〉
and

〈
log P(zk+t |zk, dk)

〉 = −Dz

2
log |Qk | − 1

2

〈
(zk+t − f (zk))

�Q−1
k (zk+1 − f (zk))

〉
,

are in general not tractable. As previously, we therefore resort to a LQ approxima-
tion. This leads in the general case to an expression which can not be maximised
analytically w.r.t. T . However, if the approximation and discretization are chosen
such that the system is also linear in δ, i.e.,

f (zk) ≈ (ak + Akzk)δk , Qk = Qδk , ck(zk, δk) ≈
(
1

2
z�
k Ckzk − c�

k zk

)
δk
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it can be shown that,

∂

∂dk
L̃ (T ) =δ−2

k g2 + δ−1
k g1 +

(

g0 + 2
d

dδ
CT

∣∣∣∣
dk

)

, (19)

g1 = − D2
z

2
, g2 = 1

2
Tr

(
Q−1

k (
〈
zk+1z

�
k+1

〉 − 2
〈
zk+1z

�
k

〉 + 〈
zkz

�
k

〉
)
)

g0 = − 1

2

[
Tr(AkQ

−1
k A�

k

〈
zkz

�
k

〉
) + a�

k Q−1
k ak

+ 2a�
k Q−1

k Ak
〈
xk

〉 + Tr(Ck
〈
zkz

�
k

〉
) − 2c�

k

〈
zk

〉]
.

In the general case we may use an efficient gradient ascent to compute the M-step
(for fixed p̃) and improve on δk’s. However, in the specific case where CT is a
linear function of δk’s, (19) is quadratic in δ−1

k and the unique extremum under the
constraint δk > 0 can be found analytically.

3.4 Discussion

The two proposed methods have different merits. From the point of view of com-
putational complexity the EM based updates are preferable as they only require
computation of the pair marginals (zk, zk+1) and operate entirely on matrices which
are the size of zk’s dimension. The gradient method instead requires computation of
the covariance of all cost conditioned states and controls. Due to the inversion of this
matrix, gradient updates are usually more expensive to compute.

While computationally attractive, EM updates suffer from numerical instability
in many problems. In general, the deficiency of EM algorithms in near deterministic
regimes is a well known problem, e.g., [1]. In our case it leads to instability when
Q ≈ 0 or if the posterior trajectories are severally constrained by the cost terms. The
problem arises in the M-Step, which may be written as

argmax
T

−KL
(
p(z1:K |T old)||P(z1:K |r1:K = 1,T )

)
+ log

∫

z1:K
P(r1:K = 1, z1:K |T )

It is now apparent that for deterministic dynamics no change in δk is possible, lest
the KL divergence becomes infinite.
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4 Experiments

4.1 Evaluation on Basic Via-Point Tasks

We first evaluate the proposed method in simulation on a simple plant. As a basic
plant, we used a simulation of a 2 degrees of freedom planar arm, consisting of two
links of equal length. The state of the plant is given by x = (q, q̇), with q ∈ R

2 the
joint angles and q̇ ∈ R

2 associated angular velocities. The controls u ∈ R
2 are the

joint space accelerations. We also added some noise with diagonal covariance.
For all experiments, we used a trajectory cost of the form

C(x1:K , u1:K ,T ) = c(x1:K ) +
∑K

k=0
δk u

�
k C

uuk + αδk(T ) (20)

whereCu = 104 · I. Note that α ∑K
k=0 δk , where δk depends onT , penalizes the total

movement duration linearly. The state dependent cost was

c(x1:K ) =
∑ f

i=1
(φn(xk̂i ) − y∗

i )
�Λi (φn(xk̂i ) − y∗

i ) , (21)

where the tuplets (k̂i , φi ,Λi , y∗
i ), consisting of a time step, a task space mapping, a

diagonal weight matrix and the desired state in task space, define goals. For example,
for point targets, the task space mapping is φ(x) = (x, y, ẋ, ẏ)�, i.e., the map from
x to the vector of end point positions and velocities in task space coordinates, and
y∗ is the target coordinate.

4.1.1 Variable Distance Reaching Task

In order to evaluate the behaviour of AICOT we applied it to a reaching task with
varying start-target distance. Specifically, for a fixed start point we considered a
series of targets lying equally spaced along a line in task space. It should be noted
that although the targets are equally spaced in task space and results are shown with
respect to movement distance in task space, the distances in joint space scale non-
linearly. The state cost (21) contained a single term incurred at the final discrete
step with Λ f = 106 · I. Figure2c, d shows the movement duration (= ∑K

k=0 δk) and
standard reaching cost1 for different temporal-cost parameters α (we used α0 = 2 ·
107), demonstrating that AICOT successfully trades-off the movement duration and
standard reaching cost for varying movement distances. In Fig. 2b, we compare the
reaching costs of AICOT with those obtained with a fixed duration approach, in this
caseAICO.Note that althoughwith a fixed, long duration (e.g., AICOwith durationT
= 0.41) the control and error costs are reduced for shortmovements, thesemovements

1n.b. the standard reaching cost is the sum of control costs and cost on the endpoint error, without
taking duration into account.
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Fig. 2 Temporal scaling behaviour using AICOT. a Schematic of plant together with mean start

position and list of targets b Comparison of reaching costs (control + error cost) for AICOT
and a fixed duration approach, i.e. AICO. c and d Effect of changing time-cost weight α, (effectively
the ratio between reaching cost and duration cost) on duration and reaching cost (control + state
cost)

necessarily have up to 4× longer durations than those obtained with AICOT. For
example for a movement distance of 0.2 application of AICOT results in a optimised
movement duration of 0.07 (cf. Fig. 2c), making the fixed time approach impractical
when temporal costs are considered. Choosing a short duration on the other hand
(AICO (T=0.07)) leads to significantly worse costs for long movements. We further
emphasis that the fixed durations used in this comparison were chosen post hoc by
exploiting the durations suggested by AICOT; in absence of this, there would have
been no practical way of choosing them apart from experimentation. Furthermore,
we would like to highlight that, although the results suggests a simple scaling of
duration with movement distance, in cluttered environments and plants with more
complex forward kinematics, an efficient decision on the movement duration cannot
be based only on task space distance.

4.1.2 Via Point Reaching Task

We also evaluated the proposed algorithm in a more complex via point task. The task
requires the end-effector to reach to a target, having passed at some point through
a given second target, the via point. This task is of interest as it can be seen as
an abstraction of a diverse range of complex sequential tasks that requires one to
achieve a series of sub-tasks in order to reach a final goal. This task has also seen
some interest in the literature on modelling of human movement using the optimal
control framework [12]. Here the common approach is to choose the time point at
which one passes the via point such as to divide the movement duration in the same
ratio as the distances between the start point, via point and end target. This requires on
the one hand prior knowledge of these movement distances and on the other, makes
the implicit assumption that the two movements are in some sense independent.

Here, we demonstrate the ability of our approach to solve such sequential prob-
lems, adjusting movement durations between sub-goals in a principled manner, and
show that it improves upon the standard modelling approach. Specifically, we apply
AICOT to the two via point problems illustrated in Fig. 3a with randomised start
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Fig. 3 Comparision of AICOT ( ) to AICO with the common modelling approach ( ) with
fixed times on a via point task. a End point task space trajectories for two different via points

obtained for a fixed start point . c The corresponding joint space trajectories. b Movement
durations and reaching costs (control + error costs) from 10 random start points. The proportion of
the movement duration spend before the via point is shown in light gray (mean in the AICOT case)

states.2 For comparison, we follow the standardmodelling approach and apply AICO
to compute the controller. We again choose the movement duration for the standard
case post hoc to coincide with the mean movement duration obtained with AICOT
for each of the individual via point tasks. Each task is expressed using a cost function
consisting of two point target cost terms. Specifically, (21) takes the form

c(x1:K ) = (φ(x K
2
) − y∗

v)
�Λv(φ(x K

2
) − y∗

v) + (φ(xK ) − y∗
e)

�Λe(φ(xK ) − y∗
e) ,

2For the sake of clarity, Fig. 3a, c show mean trajectories of controllers computed for the mean start
state.
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with diagonal matrices

Λv = diag(λpos, λpos, 0, 0)

Λe = diag(λpos, λpos, λvel , λvel) ,

where λpos = 105 & λvel = 107 and vectors y∗
v = (·, ·, 0, 0)�, y∗

e = (·, ·, 0, 0)�
desired states for individual via point and target, respectively. Note that the cost
function does not penalise velocity at the via point but encourages the stopping at the
target. While admittedly the choice of incurring the via point cost at the middle of the
movement ( K2 ) is likely to be a sub-optimal choice for the standard approach, one has
to consider that inmore complex task spaces, the relative ratio ofmovement distances
may not be easily accessible and one may have to resort to the most intuitive choice
for the uninformed case as we have done here. Note that although for AICOT this
cost is incurred at the same discrete step, we allow δk before and after the via point
to differ, but constrain them to be constant throughout each part of the movement,
hence, allowing the cost to be incurred at an arbitrary point in real time. We sampled
the initial position of each joint independently from a Gaussian distribution with a
variance of 3◦. In Fig. 3a, c, we show mean trajectories in task space and joint space
for controllers computed for the mean initial state. Interestingly, although the end
point trajectory for the near via point produced byAICOTmay look sub-optimal than
that produced by the standard AICO algorithm, closer examination of the joint space
trajectories reveal that our approach results in more efficient actuation trajectories.
In Fig. 3b, we illustrate the resulting average movement durations and costs of the
mean trajectories. As can be seen, AICOT results in the expected passing times for
the two via points, i.e., early vs. late in the movement for the near and far via point,
respectively. This directly leads to a lower incurred cost compared to un-optimised
movement durations.

4.1.3 Sequential and Joint Planning

In order to highlight the shortcomings of sequential time optimal control, we com-
pare planning a complete movement, referred to as joint optimisation, to planning
a sequence of individually optimised movements. We again use the via-point task
of the previous section and performed (i) planning using AICOT on the entire task
(ii) using AICOT to plan for to reaching tasks – start point to via-point and via-
point to final target – by splitting the cost function. In the latter the end state of the
first reaching movement, rather then the via-point, was used as initial state for the
second sub-task. Figure4 summarises the results. As can be seen in Fig. 4a the two
approaches lead to solutions with substantially different end-effector trajectories in
task space. The joint optimisation, accounting for the need to continue to the even-
tual target after the via-point, yields a different approach angle. The profound effect
this has on the incurred cost can be seen in Fig. 4b. While the joint planning incurs
higher cost before the via-point the overall cost is more than halved. Importantly, as
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Fig. 4 Joint ( ) vs. sequential ( ) optimisation using our approach on a via-point task as
described in the main text. a Task space trajectories for the fixed start point . Via-point and
target are indicated by and , respectively. b The movement durations and reaching costs for
10 random start points. The mean proportion of the movement duration spend before the via point
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Table 1 Results for application ofAICOT to the roboticmanipulationwith obstacles in the reaching
tasks illustrated inFig. 5. Shownare themean ratio of expected cost relative toAICOand it’s standard
deviation

Method Simple obstacles Complex obstacle

AICO 1 1

AICOT (end cost) 0.585 (± 0.337) 0.635 (± 0.085)

AICOT (full) 0.549 (± 0.311) 0.123 (± 0.047)

the plot of the movement durations illustrates, this reduction in cost is not achieved
by an increase in movement duration, with both approaches leading to not signifi-
cantly different durations. However, one should note that this effect would be less
pronounced if the cost required stopping at the via-point, as it is the velocity away
from the end target which is the main problem for the sequential planner.

4.2 7-DOF Robotic Manipulation Tasks

We now turn to evaluating themethod for planning with the 7-DOFKuka lightweight
robot. Our aim is two fold, on the one hand to demonstrate scalability to practical
applications, and on the other hand, to demonstrate that in practical tasks temporal
optimisation can significantly improve the results compared to naive selection of the
movement durations.

The state of the plant is given by x = (q, q̇), with q ∈ R
7 the joint angles

and q̇ ∈ R
7 the associated angular velocities. The controls u ∈ R

7 are the joint
space accelerations. We also added some i.i.d. noise with diagonal covariance. The
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trajectory cost takes the general form

C(x1:K , u1:K ,T ) =
∑K

k

( ∑M

m=1
‖φm(xk) − y∗

m‖2Λm,k
+ u�

k δkC
uuk

)
(22)

where the tuplets (φm,Λm,k, y∗
m) define the task variables, consisting of a task space

mapping, a time varying diagonal weight matrix and the desired state in task space.
In each task we compare three methods:

• AICOT(full) is the complete algorithm as described in Sect. 3.2.
• AICOT(end cost) is the algorithm as described in Sect. 3.2. However, the gradient
is calculated taking only the reaching cost into account, i.e., ignoring joint limit and
obstacle costs. The intention is to illustrate that selection of duration needs to take
into account the entire problem and can not be simply based on a target-distance
law as could be derived from, e.g., Fig. 2.

• AICO is the algorithm with fixed duration. This is to provide a comparison to the
naive approach prevalent in the literature. Note however that, we set the duration
the mean duration obtained by AICOT(end cost). Hence it was in some sense
adapted to the task distribution. Without AICOT, selection would have, at best,
relied on manual selection based on an individual task instance or, at worst, a
random guess. Both approaches lead to substantially worse results.

4.2.1 Simple Obstacle Reaching Task

We first consider a standard reaching task with obstacles. The task is defined via the
following set of task variables

• Reaching: with φ1(x) ∈ R
6 the arm’s end effector position and velocity. The cost

is incurred in the final time step only, i.e.,Λ1,k =K = 0, and y∗ indicates the desired
state end-effector positions with zero velocities.

• Joint Limits: with φ2(x) ∈ R a scalar indicating danger of violating joint limits.
Specifically,

φ2(x) =
∑

j
H (d j − ε)2 , (23)

with d j the distance to the joint limit between of joint j ,H the heavy-side function
and margin ε = 0.1rad. This task variable is considered throughout the trajectory,
i.e. Λ2,1 = Λ2,1 = · · · = Λ2,K .

• Collisions: with φ2(x) ∈ R a scalar indicating proximity of obstacles. Specifically
φ2 takes the general form (23) with d j the shortest distance between a pair j
of collidable objects, i.e. the set of links of the arm and obstacles, and margin
ε = 0.02m. Like the joint limits, this task variable is also considered throughout
the trajectory.
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Although the resulting finite cost functions can not guarantee that collisions with
obstacles or joint limits will not occur, such approximations are typical in the litera-
ture (e.g., [4, 14]) and lead, under appropriate weighting between the reaching and
collision components, to good results with low collision probability.

We consider a randomised task with two spherical obstacles, an example configu-
ration being illustrated in Fig. 5a. Specifically, both the target and obstacle positions
are randomly sampled, the latter so that they lie near the direct path to the target so
as to influence the solution. The results are summarised in Table1. As different task
instances can give rise to very different expected costs, we compare expected costs
relative to AICO, i.e., the improvement of the methods over the baseline without
temporal optimisation. The expected costs are estimated from sampled trajectories
and we consider 50 task instances. As can be seen, temporal optimisation improves
upon the naive application of AICO. In particular note that, instance specific dura-
tions as given by AICOT(end cost) improve significantly on selecting an informed
constant duration (the mean duration over task instances). Furthermore, taking the
entire problem into account leads to increasing gains as the problem complexity
increases.

In general we note that a possible straightforward extension of the gradient based
algorithm whereby we solve the problem incrementally, by using the solution of
a reduced problem with intermediate cost terms removed, i.e., the AICO-T (end
cost) approach, as an initialization of AICO-T (full) can significantly improve the
computational complexity of the gradient based method for problems with many
intermediate costs terms.

4.2.2 Complex Obstacle

We now consider a generic instance of a task involving manipulation in constrained
spaces. It comprises the same basic task variables as used with the simple obstacle
above. However instead of using spherical obstacles we use a wall with two holes as
illustrated in Fig. 5b. The end-effector starts reaching through one of the holes and
the reaching target lies in the other hole. Due to their local nature direct application
of AICO fails in this task, as do alternative local solvers like, e.g., iLQG. However,
in the context of AICO [16] suggested using parallel inference in the normal state
space and a abstract topological representations to overcome limitations of local
planning in such tasks. With a suitable topological representation the task becomes
nearly linear in the alternative representation, which then serves to regularise further
inference in the plant’s state space. Here we use the interaction mesh representation
suggested by [16], a scale and position invariant representation of relative positions
of the plant and markers in the environment. This representation has been used for
this task by [4] who also used AICO. For this experiment we again sampled the
position of the wall relative to the manipulator and compared the relative expected
costs averaged over 50 task instances. The results are shown in the second column
of Table1.
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Fig. 5 Example configurations for the tasks usedwithKUKA7-DOF robotic system in simulation.a
The simple obstacle task. The manipulator has to reach with it’s end-effector to the target whilst
avoiding the obstacles . The task is randomised by sampling both the target and the obstacle
positions. b The complex obstacle task. The manipulator starts in one hole and has to reach for the
target in the other, whilst avoiding collisions with the wall. The position of the wall is randomised

5 Conclusion

The contribution of this paper is a novel method for jointly optimizing a trajectory
and its time evolution (temporal scale and duration) in the stochastic optimal control
framework. In particular, two extension of the AICO method of [14] with com-
plementary strength and weaknesses are presented. The gradient based approach,
on the one hand, is widely applicable but can become computationally demanding.
Meanwhile, the EM method provides an algorithm with lower computational cost,
is however only applicable for certain classes of problems.

The experiments have concentrated on demonstrating the benefit of temporal
optimisation in manipulation tasks. However, arguably it is dynamic movements
which can benefit most from temporal adjustment. An example of this was seen in the
brachiation task of [7], where our frameworkwas applied to brachiationwith variable
stiffness actuation, showing that an coordinated interplay of stiffness and temporal
adjustment gives rise to gains in performance.We anticipate that, with the general rise
of interest in variable impedance, e.g., in throwing [2], locomotion [3] or climbing
robots [6], temporal optimisation will become a necessity if the capabilities of the
dynamical system are to be fully exploited. Our framework provides a principled
step in this direction.
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Part II
Humanoids and Legged Locomotion

Session Summary

The advancement of walking skills is a fundamental perquisite for legged robots
to permit the utility of these machines within real world workspaces. This entails
substantial progress and a radical change in the locomotion control paradigm from
the slowly adaptive pre-planned bipedal gait generators and balancing stabilizers
towards more rapidly modulated generators combined with reflexive behaviours that
will allow humanoids and legged robots in general to cope with uneven terrains
and ground uncertainties and rapidly modulate their gait to adapt. Balancing as part
for the general locomotion control problem cannot be ensured in all cases through
only gait regulation actions, and lately, the research community have moved towards
more human-like whole body balancing skills exploiting the potential of whole-
body motions which can be harmonized for the purpose of compensating specific
motion dynamics, reducing the overall locomotion effort and generating effective
balancing reactions and recovery abilities under unpredicted moderate to strong dis-
turbances. The implementation requirements of all these techniques have recently
paved the development of several new tools in the areas of state estimation, whole
bodymotion optimization, locomotion and balancingmodelling. In this session, eight
contributions were presented that dealt with the development of innovative models
and controllers for legged robot locomotion and balancing.

The first talk by Roy Featherstone introduced a new model of the dynamics of
balancing in the plane, which makes use of only two parameters of the robots bal-
ancing behaviour, both simple functions of basic physical properties of the robot
mechanism. A third parameter describes the effect of other movements on the robots
balance. Based on this this model, a high-performance balance controller was then
presented as a simple four-term control law with gains that are trivial functions of
the two model parameters and a single value chosen by the user that determines
the overall speed of balancing. The model and the balance controller were first
applied to a double pendulum, and then extended to a general planar mechanism.
Simulation results were presented showing the controllers performance at following
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commanded motion trajectories while simultaneously maintaining the robots bal-
ance. In the second talk of the session, Michele Focchi proposed a methodology for
foot slip detection in legged robots and estimation of the friction parameters using
only proprioceptive sensors. Indeed, the majority of locomotion controllers and state
estimation algorithms rely on the assumption that the stance feet are not slipping.
The capability to detect foot slippage at the very beginning and promptly recover
the traction is crucial for the body stability of legged robots and can assist to avoid
falling. Having detected the foot slip, a recovery strategy, which exploits the capabil-
ities of a whole body controller, implemented for locomotion, was used to optimize
the ground reaction forces (GRFs). The proposed method is general and can be
applied to any legged robot. In this talk, the application of the method to a quadruped
robot was presented demonstrating its effectiveness while the robot was walking on
challenging terrains. Nicholas Perrin presentation concerned with the development
of novel approaches to solve for 3D locomotion with multiple non-coplanar con-
tacts. Going further than the classical Zero Moment Point-based method, two new
techniques were presented. Both formulations are based on model predictive con-
trol (MPC) to generate dynamically balanced trajectories with no restrictions on the
trajectory of the centre of mass. The first formulation treats the balance criterion as
an objective function and solves the control problem using a sequence of alternat-
ing convex quadratic programs. The second formulation considers the criterion as
a constraint and solves a succession of convex quadratic ally constrained quadratic
programs (QCQPs). The main feature of the proposed MPC schemes is that they can
be efficiently solved through a succession of convex optimization problems, when
the problem formulation is of particular forms, such as bilinear problems or non-
convex QCQPs. In his talk, Jean-Paul Laumond briefly discussed The Yoyo-Man,
a research action that investigates the synergies of anthropomorphic locomotion. A
seminal hypothesis is made in which the wheel is considered as a plausible model of
bipedal walking. The presentation reported on preliminary results developed along
three perspectives combining biomechanics, neurophysiology and robotics. Firstly,
from a motion capture data basis of human walkers, the center of mass (CoM) is
identified as a geometric center from which the motions of the feet are organized.
It was then demonstrated how rimless wheels that model most passive walkers are
better controlled when equipped with a stabilized mass on top of them. CoM and
head play complementary roles that define what is called the Yoyo-Man. The next
talk by Katie Byl discussed on the evaluation of robustness of bipedal locomotion on
variable-height terrains. The work considers a point-foot biped on a variable-height
terrain and measure robustness by the expected number of steps before failure. The
proposed method uses quantification of robustness to benchmark and optimize a
given (low-level) controller. Two particular control strategies as case demonstrations
were studied. One scheme is the now-familiar hybrid zero dynamics approach and
the other is a method using piece-wise reference trajectories with a sliding mode
control. The presentation provided a methodology for optimization of a broad vari-
ety of parameterizable gait control strategies and illustrates dramatic increases in
robustness due to both gait optimization and choice of control strategy. Guilherme
Maeda talk dealt with an interaction learning method suited for semi-autonomous
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robots that work with or assist a human partner. The method aims at generating a
collaborative trajectory of the robot as a function of the current action of the human.
The trajectory generation is based on action recognition and prediction of the human
movement given intermittent observations of his/her positions under unknown speeds
of execution. The problem typically arises from motion capture systems in scenar-
ios that lead to marker occlusion. The ability to predict the human movement while
observing the initial part of his/her trajectory allows for faster robot reactions and
eliminates the need of time alignment of the training data. The method models the
coupling between human–robot movement primitives, and it is scalable in relation to
the number of tasks. The method is evaluated using a 7-DoF lightweight robot arm
equipped with a 5-finger hand in a multitask collaborative assembly experiment, also
comparing results with a previous method based on time aligned trajectories. Avik
De in his talk discussed a notion of parallel composition to achieve for the first time
a stability proof and an empirical demonstration of a steady-state gait on a highly
coupled 3DOF legged platform controlled by two simple (decoupled) feedback laws
that provably stabilize in isolation of two simple 1DOF mechanical subsystems. A
limit cycle was stabilized on a tailed monoped to excite sustained sagittal plane
translational hopping energized by tail-pumping during stance. The constituent sub-
systems for which the controllers are nominally designed were a purely vertical
bouncing mass (controlled by injecting energy into its springy shaft) and a purely
tangential rimless wheel (controlled by adjusting the inter-spoke stepping angle).
The presentation described the use of averaging methods in legged locomotion to
prove that this parallel composition of independent 1DOF controllers achieves an
asymptotically stable closed-loop hybrid limit cycle for a dynamical system that
approximates the 3DOF stance mechanics of a physical tailed monoped. In the last
talk of the session, Steve Tonneau discussed the challenge of multiped locomotion
in cluttered environments as a problem of planning acyclic sequences of contacts
that characterize the motion. To overcome the inherent combinatorial difficulty, the
work proposed to divide the problem in two sub-problems: first, planning a guide
trajectory for the root of the robot, and then, generating relevant contacts along this
trajectory were considered. The presentation introduces theoretical contributions to
these two sub-problems. A theoretical characterization of the guide trajectory, named
true feasibility, which guarantees that a guide can be mapped into the contact mani-
fold of the robot was introduced. As opposed to previous approaches, this property
makes it possible to assert the relevance of a guide trajectory without explicitly
computing contact configurations. Guide trajectories are then easily mapped into a
valid sequence of contacts, and a particular sequence with desirable properties, such
as robustness, efficiency and naturalness, is considered. Based on this, a complete
acyclic contact planner was then introduced and its performance was demonstrated
by producing a large variety of motions.



A New Simple Model of Balancing
in the Plane

Roy Featherstone

1 Introduction

This paper considers the problem of a planar robot that is actively balancing on a
single point of support while simultaneously executing motion commands. In par-
ticular, the same motion freedom that is used for balancing is also subject to motion
commands. The robot is therefore overloaded in the sense that the number of task
variables to be controlled exceeds the number of actuator variables. Such overloading
is physically possible, and is routinely exhibited by circus performers and the like,
as well as by inverted pendulum robots [8] and wheeled robots that use the same
motion freedom both for balancing and for transport [4, 10].

The main contribution of this paper is a new model of the plant (i.e., the robot
mechanism) in which the essential features of the robot’s balancing behaviour have
been reduced to just two numbers.A third number summarizes the disturbance caused
by other movements being performed by the robot. The model is obtained by exploit-
ing a property of joint-space momentum variables. The advantages of this model are:
(1) it is exceptionally simple; (2) it applies to general planar robots, including robots
with kinematic loops; (3) it takes into account the effect of other movements of
the robot (i.e., movements for accomplishing tasks other than balancing); (4) the
model parameters have a clear physical meaning that is easy to understand; (5) they
can be computed efficiently using standard dynamics algorithms; and (6) a high-
performance balance controller is easily obtained by a simple feedback control law
acting directly on the new plant model.

A second contribution is the new balance controller derived from the plant model.
It resembles the one presented in [1, 3], and shares its robustness to effects such as
torque limits, modelling errors and slippage at the point of support. However, it is
simpler, and it can easily be applied to a general planar robot. It differs from the
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typical approach to balance control in the literature, as exemplified by [7, 9, 13],
in that it is a four-term controller using full state feedback, rather than a three-term
output-zeroing controller with a one-dimensional zero dynamics. Note that the great
majority of literature in this area is actually on swing-up control (e.g. [11, 12]) which
is not considered here. The paper concludes with some simulation results showing
the performance of the new controller at balancing an inverted triple pendulumwhile
simultaneously following a variety of motion commands.

2 The New Model

A fundamental aspect of balancing is that the controller must control more state
variables than the available controls. To understand how this can be done, consider
the system ẋ = f (x, u), in which x is a vector of state variables and u is a control
input. (Bold letters denote vectors.) If x has the property that xi+1 = ẋi for every i ,
then any control policy that successfully controls x1 has the side-effect of controlling
all of the other elements of x. Furthermore, the condition xi+1 = ẋi is sufficient but
not necessary, and can be relaxed to some extent. Balancing is an activity that can
be accomplished in this way; and the new model described here is essentially a good
choice of x, having a simple function f , which allows balancing to be achieved using
a simple control law for u.

Figure1 shows a planar 2Rmechanism representing an inverted double pendulum.
Joint 1 is passive and represents the point contact between the foot of the mechanism
and a supporting surface (the ground). It is assumed that the foot neither slips nor
loses contact with the ground. The state variables of this robot are q1, q2, q̇1 and
q̇2. The total mass of the robot is m; the coordinates of its centre of mass (CoM)
relative to the support point are cx and cy ; and it is assumed that the support point is

Fig. 1 Planar 2R robot
mechanism representing an
inverted double pendulum
actuated at joint 2
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stationary, i.e., it is not a rolling contact. The equation of motion of the robot is

[
H11 H12

H21 H22

] [
q̈1
q̈2

]
+

[
C1

C2

]
=

[
0
τ2

]
, (1)

where Hi j are elements of the joint-space inertia matrix, Ci are elements of the
bias vector containing Coriolis, centrifugal and gravitational terms, q̈i are the joint
accelerations, and τ2 is the torque at joint 2. The conditions for the robot to be in a
balanced position are: cx = 0, q̇1 = 0 and q̇2 = 0. The robot is also subject to the
position command q2 = qc, where qc is an input to the controller.

Anymechanism that balances on a single point has the following special property,
which is central to the activity of balancing: the only force that can exert a moment
about the support point is gravity. If we define L to be the total angular momentum
of the robot about the support point then we find that

L̇ = −mgcx , (2)

where g is the magnitude of gravitational acceleration (a positive number). This
equation implies

L̈ = −mgċx (3)

and ...
L = −mgc̈x . (4)

We also have
L = p1 = H11q̇1 + H12q̇2 , (5)

which follows from a special property of joint-space momentum that is proved in
the appendix: if pi is the momentum variable of joint i then, by definition, pi =∑

j Hi j q̇ j ; but if the mechanism is a kinematic tree then pi is also the component in
the direction of motion of joint i of the total momentum of the subtree beginning at
body i . As the whole robot rotates about joint 1, it follows that p1 is the total angular
momentum of the robot about the support point, hence p1 = L .

Observe that L̇ is simply a constant multiple of cx , and that L and L̈ are both
linear functions of the robot’s velocity, implying that the condition L = L̈ = 0 is
equivalent to q̇1 = q̇2 = 0. So the three conditions for balance can be written as

L = L̇ = L̈ = 0 . (6)

Thus, any controller that successfully drives L to zero will cause the robot to balance,
but will not necessarily bring q2 to the commanded angle.

We now introduce a fictitious extra joint between joint 1 and the base, which is a
prismatic joint acting in the x direction. To preserve the numbering of the existing
joints, the extra joint is called joint 0. This joint never moves, and therefore never
has any effect on the dynamics of the robot. Its purpose is to increase the number of
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coefficients in the equation of motion, which now reads

⎡
⎣H00 H01 H02

H10 H11 H12

H20 H21 H22

⎤
⎦

⎡
⎣ 0
q̈1
q̈2

⎤
⎦ +

⎡
⎣C0

C1

C2

⎤
⎦ =

⎡
⎣τ0
0
τ2

⎤
⎦ . (7)

The position and velocity variables of joint 0 are always zero, and τ0 takes whatever
value is necessary to ensure that q̈0 = 0. The reason for adding this joint is that the
special property of joint-space momentum, which we used earlier to deduce that
p1 = L , also implies that p0 is the linear momentum of the whole robot in the x
direction. So p0 = mċx . With the extra coefficients in Eq.7 we can write

p0 = H01q̇1 + H02q̇2 = mċx = −L̈/g , (8)

so that we now have a pair of linear equations relating L and L̈ to the two joint
velocities: [

L
L̈

]
=

[
H11 H12

−gH01 −gH02

] [
q̇1
q̇2

]
. (9)

Solving this equation for q̇2 gives

q̇2 = Y1L + Y2 L̈ , (10)

where

Y1 = H01

D
, Y2 = H11

gD
(11)

and
D = H12H01 − H11H02 . (12)

Clearly, this only works if D �= 0. The physical significance of D = 0 is explained
below. From a control point of view, a problem also arises if Y1 = 0, and this too is
discussed below.

We now have all the component parts of the new plant model, which is shown in
Fig. 2 in the form of a block diagram. The state variables are q2, L , L̇ and L̈ , which

Fig. 2 New plant model for balancing
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replace the original state variables. As will be shown in the next section, a simple
feedback control law closed around this plant can make q2 follow a commanded
trajectory while maintaining the robot’s balance. To be more accurate, what really
happens is that the control law tips the robot slightly off balance so that the necessary
balance recovery movement just happens to make q2 follow the commanded trajec-
tory. Once q2 has reached its final position, the other state variables settle to zero,
thereby satisfying the conditions for balance in Eq.6.

Observe that the new plant model has only two parameters: the two gains Y1
and Y2. These gains are calculated directly from the elements of the joint-space
inertia matrix in Eq.7, which in turn can be calculated using any standard method for
calculating the joint-space inertia matrix of a robot. Thus, no special code is needed
to calculate the model parameters.

Physical Meaning of Y1 and Y2

The two gains Y1 and Y2 are related in a simple way to two physical properties of
the mechanism: the natural time constant of toppling and the linear velocity gain
[6]. The former quantifies the rate at which the robot begins to fall in the absence of
movement of the actuated joint. The latter measures the degree to which motion of
the actuated joint influences the motion of the CoM.

If there is no movement in the actuated joint then the robot behaves as if it were a
single rigid body, and its motion is governed by the equation of motion of a simple
pendulum:

I θ̈ = mgc(cos(θ0) − cos(θ)) (13)

where I is the rotational inertia of the robot about the support point, c = |c| is the
distance between the CoM and the support point, θ = tan−1(cy/cx ) is the angle of
the CoM from the x axis, and the term mgc cos(θ0) is a hypothetical constant torque
acting at the support point, which serves to make θ0 an equilibrium point of the
pendulum. Linearizing this equation about θ0, and defining φ = θ − θ0, results in
the following equation:

I φ̈ = mgcyφ , (14)

which has solutions of the form

φ = Aet/Tc + Be−t/Tc (15)

where A and B are constants depending on the initial conditions, and Tc is the natural
time constant of the pendulum, given by

T 2
c = I

mgcy
. (16)

If cy > 0 then Tc is real and Eq.15 contains both a rising and a decaying exponential.
This is characteristic of an unstable equilibrium. If cy < 0 then Tc is imaginary
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and Eq.15 is a combination of sines and cosines, which is characteristic of a stable
equilibrium. But if cy = 0 then we are at the boundary between stable and unstable
equilibrium and Tc is unbounded. As we are considering the problem of a robot
balancing on a supporting surface, it is reasonable to assume cy > 0.

From the definition of the joint-space inertia matrix [5, Sect. 6.2] we have H01 =
sT0 I

c
0 s1 and H11 = sT1 I

c
1 s1, where s0 = [0 1 0]T, s1 = [1 0 0]T and

I c0 = I c1 =
⎡
⎣ I −mcy mcx

−mcy m 0
mcx 0 m

⎤
⎦ (17)

(planar vectors and matrices—see [5, Sect. 2.16]). It therefore follows that H01 =
−mcy and H11 = I , implying that

T 2
c = −H11

gH01
. (18)

On comparing this with Eq.11 it can be seen that

T 2
c = −Y2

Y1
. (19)

The linear velocity gain of a robot mechanism, Gv, as defined in [6], is the ratio
of a change in the horizontal velocity of the CoM to the change in velocity of the
joint (or combination of joints) that is being used to manipulate the CoM. For the
robot in Fig. 1 the velocity gain is

Gv = Δċx
Δq̇2

, (20)

where both velocity changes are caused by an impulse about joint 2. The value of
Gv can be worked out via the impulsive equation of motion derived from Eq.7:

⎡
⎣ι0
0
ι2

⎤
⎦ =

⎡
⎣H00 H01 H02

H10 H11 H12

H20 H21 H22

⎤
⎦

⎡
⎣ 0

Δq̇1
Δq̇2

⎤
⎦ , (21)

where ι2 is an arbitrary nonzero impulse. Solving this equation for ι0 gives

ι0 = H01Δq̇1 + H02Δq̇2

= (
H02 − H01H12

H11

)
Δq̇2 = −D

H11
Δq̇2 . (22)

But ι0 is the ground-reaction impulse in the x direction, which is the step change
in horizontal momentum of the whole robot; so we also have ι0 = mΔċx , and the
velocity gain is therefore
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Fig. 3 Alternative version of new plant model for balancing

Gv = Δċx
Δq̇2

= ι0

mΔq̇2
= −D

mH11
. (23)

The two plant gains can now be written in terms of Tc and Gv as follows:

Y1 = 1

mgT 2
c Gv

, Y2 = −1

mgGv
, (24)

and another interesting formula for Y1 is

Y1 = cy
IGv

. (25)

Equation19 suggests a small modification to the plant model in Fig. 2, in which
Y2 is replaced with T 2

c as shown in Fig. 3. In this version of the model, it can be seen
that everything to the left of Y1 is concerned with the balancing motion of the robot,
while Y1 describes how the balancing motion affects joint 2. It was mentioned earlier
that the balance controller works by tipping the robot slightly off balance, so that
the corrective motion causes q2 to follow the commanded trajectory. The model in
Fig. 3 makes this idea a little clearer.

We are now in a position to explain the physical significance of the conditions
D �= 0, which is required by the plant model, and Y1 �= 0, which is required by the
control law in the next section. D �= 0 is equivalent toGv �= 0, and it is the condition
for joint 2 to have an effect on the horizontal motion of the CoM. If D = 0 in some
particular configuration then it is physically impossible for the robot to balance itself
in that configuration. Y1 = 0 occurs when cy = 0, which is on the boundary between
unstable and stable equilibrium. A similar analysis appears in [1, 3].

3 The Balance Controller

The new plant model is interesting in its own right, but its usefulness lies in the
simplicity of the balance controller and the ease with which it can be designed and
implemented. Consider the following four-term control law:

...
L = kdd(L̈ − L̈c) + kd(L̇ − L̇c) + kL(L − Lc) + kq(q2 − qc) . (26)
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When the plant in Fig. 2 is subjected to this control law, the resulting closed-loop
equation of motion is

⎡
⎢⎢⎣
...
L
L̈
L̇
q̇2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
kdd kd kL kq
1 0 0 0
0 1 0 0
Y2 0 Y1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
L̈
L̇
L
q2

⎤
⎥⎥⎦ −

⎡
⎢⎢⎣
kdd L̈c + kd L̇c + kL Lc + kqqc

0
0
0

⎤
⎥⎥⎦ , (27)

and the characteristic equation of the coefficient matrix is

λ4 − kddλ
3 − (kd + kqY2)λ

2 − kLλ − kqY1 = 0 . (28)

The simplest way to choose the gains is by pole placement. As the speed of balancing
is determined mainly by the slowest pole, a sensible approach is to place all of the
poles at a point−p on the negative real axis, the value of p being chosen by the user,
and choose the gains to make Eq.28 match the polynomial

(λ + p)4 = λ4 + 4pλ3 + 6p2λ2 + 4p3λ + p4 = 0 . (29)

The resulting gains are

kdd = −4p kL = −4p3

kd = −6p2 + p4Y2/Y1 kq = −p4/Y1 .
(30)

Clearly, another polynomial could be used in place of Eq.29. The choice of p is not
critical, but also not arbitrary: if it is too small then balancing happens too slowly, and
if it is too large then the robot overshoots too much. A graph illustrating this effect
can be found in [1, p. 37]. Simulation studies suggest that a value around 1.2–1.5
times 1/Tc is about right.

It can be seen from Eq.30 that this choice of gains is not possible if Y1 = 0. How-
ever, this problem is unavoidable because Y1 appears in the constant term of Eq.28,
so if Y1 = 0 then λ = 0 is always a root of the characteristic equation regardless of
the choice of gains.

The input qc in Eq.26 specifies the trajectory that q2 is being commanded to
follow. It can be arbitrary in the sense of not being required to have any particular
algebraic form. However, a sufficiently wild or pathological command will cause
the robot to fall over. Simulation studies suggest that the most likely cause of failure
is if the command makes the robot enter a region of configuration space where the
velocity gain is close to zero.

The inputs Lc, L̇c and L̈c in Eq.26 help to improve the tracking accuracy of time-
varying trajectories. The simplest choice for these variables is to set them to zero.
In this case, the balance controller converges accurately to qc when it is constant,
but does not track accurately when qc is changing. Nonzero values can improve the
tracking accuracy. For example, setting
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Lc = q̇c
Y1

(31)

produces accurate tracking of linear ramps (constant q̇c). (Ld in [1, 3] achieves the
same effect.) Additionally setting

L̇c = q̈c
Y1

− Ẏ1
Y1

Lc (32)

achieves accurate tracking of parabolic curves (constant q̈c). However, the improved
tracking comes at the expense of increased overshoots and a tendency to over-react
to the high-frequency component of the command signal.

The value computed by Eq.26 is
...
L , but the output of the control system has to be

either a torque command or an acceleration command for joint 2; that is, either τ2 or
q̈2. These quantities are computed as follows. First, from Eq.4 we have

...
L = −mgc̈x ;

but mc̈x is the x component of the ground reaction force acting on the robot, which
is τ0. So

...
L = −gτ0. Substituting this into Eq.7 and rearranging to put all of the

unknowns into a single vector produces the equation

⎡
⎣ 0 H01 H02

0 H11 H12

−1 H21 H22

⎤
⎦

⎡
⎣τ2
q̈1
q̈2

⎤
⎦ =

⎡
⎣−...

L/g − C0

−C1

−C2

⎤
⎦ , (33)

which can be solved for both τ2 and q̈2.

4 Extension to More General Robots

If a robot has more than one actuated motion freedom then two aspects of the balance
problem change: (1) there is now a choice of which motion to use for balancing, and
(2) there are now motion freedoms that are separate from the balancing activity, and
can be controlled with little regard to the balancing activity. These motions can be
designed to lie in the balance null space, which is the space of motions that the robot
can make that do not affect cx . However, it may be easier to design these motions to
have very little effect on cx rather than no effect at all.

Let us now replace the double pendulumwith a general planar mechanism, retain-
ing only the fictitious prismatic joint and the passive revolute joint that models the
contact with the ground. The rest of the mechanism is assumed to be fully actuated,
and itmay contain kinematic loops. Let y = [y0 y1 y2 yT3 ]T be a vector of generalized
coordinates in which y0 = q0, y1 = q1, y2 is the coordinate expressing themovement
to be used for balancing, and y3 is a vector containing the rest of the generalized
coordinates. The movement expressed by y2 can be any desired combination of the
actuated joint motions. In effect, y2 is the variable of a user-defined virtual joint that
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is a generalization of joint 2 in the previous sections. The equation of motion of this
system is ⎡

⎢⎢⎣
H00 H01 H02 H03

H10 H11 H12 H13

H20 H21 H22 H23

H30 H31 H32 H33

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0
q̈1
ÿ2
ÿ3

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
C0

C1

C2

C3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

τ0
0
u2
u3

⎤
⎥⎥⎦ , (34)

in which u2 and u3 are the generalized forces corresponding to y2 and y3, and Hi j

are now the elements and submatrices of a generalized inertia matrix. This equation
replaces Eq.7. Equations2–4 and 6 remain valid, but Eq.5 becomes

L = H11q̇1 + H12 ẏ2 + H13 ẏ3 . (35)

Likewise, Eq. 8 becomes

− L̈/g = H01q̇1 + H02 ẏ2 + H03 ẏ3 , (36)

and so Eq.9 becomes

[
L
L̈

]
=

[
H11 H12

−gH01 −gH02

] [
q̇1
ẏ2

]
+

[
H13

−gH03

]
ẏ3 . (37)

Solving this equation for ẏ2 gives

ẏ2 = Y1L + Y2 L̈ − Y3 ẏ3 , (38)

where Y1 and Y2 are as given in Eq.11, and

Y3 = E
D

(39)

where
E = H13H01 − H11H03 (40)

(cf. Eq. 12). Themodifiedplantmodel is shown inFig. 4.Observe that the influence
of the non-balance motions is limited to the value of the scalar signal Y3 ẏ3. If this
signal is zero then these motions have no effect.

Fig. 4 Modified plant model for a general planar robot
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The design of the control system is largely unaffected by Y3 ẏ3. In particular,
Eq. 28 is unaffected, and the gains are still as given in Eq.30. However, there is
scope to include terms in Lc and L̇c to counteract the disturbances caused by Y3 ẏ3.
For example, one could use

Lc = ẏc
Y1

+ Y3 ẏ3
Y1

(41)

in place of Eq.31. Simulation studies indicate that this modification successfully
compensates for the low-frequency component of the disturbance, but causes the
balance controller to over-react to the high-frequency component. A low-pass filter
may help in this regard, but it is probably better to design the non-balance motion to
lie substantially in the balance null space so that Y3 is close to zero.

Finally, the generalized forces must be calculated and mapped to the actuated
joints. The first step is to solve

⎡
⎢⎢⎣

0 0 H01 H02

0 0 H11 H12

−1 0 H21 H22

0 −1 H31 H32

⎤
⎥⎥⎦

⎡
⎢⎢⎣
u2
u3

q̈1
ÿ2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−...
L/g − C0 − H03 ÿ3
−C1 − H13 ÿ3
−C2 − H23 ÿ3
−C3 − H33 ÿ3

⎤
⎥⎥⎦ , (42)

which is the generalization of Eq.33. In this equation, ÿ3 is the desired acceleration
calculated by a separate motion control law responsible for y3. The final step is to
calculate

τa = G−T

[
u2
u3

]
, (43)

where τa is the vector of force variables at the actuated joints, and G is the matrix
(chosen by the user) that maps [ẏ2 ẏT3 ]T to the vector of actuated joint velocities.

5 Simulation and Analysis

This section presents a simulation experiment in which the balance controller makes
an inverted triple pendulum perform a variety of manoeuvres while maintaining its
balance. A triple pendulum is chosen because it is the simplest mechanism that
exhibits all of the phenomena discussed in this paper.

The robot is a 3R planar kinematic chain that moves in the vertical plane. Joint 1 is
passive, and the robot is pointing straight up in the configuration q1 = q2 = q3 = 0.
The link lengths are 0.2, 0.25 and 0.35 m, and the masses are 0.7, 0.5 and 0.3 kg.
The links are modelled as point masses with the mass located at the far end of each
link. These are the parameters of a mechanism identified in [6] as being good at
balancing.

The control system consists of the balance controller of Sect. 3, which controls the
generalized coordinate y2, plus a PD position controller with exact inverse dynamics,
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which controls y3. The tracking accuracyof the latter is essentially perfect everywhere
except where there is a step change in commanded velocity. The balance controller
is based on Eq.26; the gains are as given in Eq.30 with p = 7 rad/s; Lc and L̇c are as
given in Eqs. 41 and 32; and L̈c = ...

y c/Y1. The position controller’s gains are chosen
to put both poles at 14 rad/s in order to make the point that the control of variables
not used for balancing can take place at a higher frequency than that chosen for the
balance controller.

Figure5a shows the command signals and response, both expressed in generalized
coordinates. Times are expressed in seconds and angles in radians. To show the effect
of Lc, L̇c and L̈c, this graph includes a signal ‘y2o’ showing what the response of
the balance controller would have been if Lc = L̇c = L̈c = 0. Note that these are
relatively large, fast motion commands. Comparable graphs in the literature (e.g. [7])
typically show slower, smaller movements which can be tracked more accurately.

The commands consist of a step, a ramp and a sine wave for y2 while y3 is held
at zero, a ramp of y3 while y2 is held at zero, and finally a ramp of y2 with y3 held at
1.5. Up until the final ramp, y2 and y3 are defined by y2 = q2 and y3 = q3, but then
y2 is redefined to be y2 = q2 − q3. So the final ramp involves q2 ramping from 0 to
1.5 while q3 ramps from 1.5 to 0. This can be clearly seen in Fig. 5b, which shows
the motion of the robot expressed in joint space.

One obvious feature of Fig. 5a is the reverse movements at the beginning of
each y2 manoeuvre and the overshoots at the end. These movements are physically
necessary for maintaining the robot’s balance. However, the magnitudes of some
of these movements (e.g. the one at 9.5 s) are probably larger than the minimum
necessary. Note also that the ramp in y3 disturbs y2 only at the beginning and end of
the ramp. In the middle portion, the balance controller has successfully compensated
for the disturbance caused by this motion, thanks to the term Y3 ẏ3/Y1 in Eq.41.

Figure5c, d show the values of Tc and Y1. Observe that Tc varies in a narrow range
from approximately 0.21–0.233 s even though the robot is making large changes in
its configuration. This is a property of the robot mechanism, and will vary from one
robot to the next. However, for most balancing robots it will typically be the case
that Tc does not vary very much. This suggests that assuming a constant value for Tc
could be a good approximation.

For the first 13.5 s Y1 varies in a range from approximately 26 to 33. However, at
the point where y2 is redefined, it jumps to 282, and then rises to 311 and drops to
88 over the course of the final ramp and its overshoot. So for the first 13.5 s the plant
model is only slightly nonlinear, with the two gains varying in a narrow range, but
then the situation changes when y2 is redefined.

The explanation can be found in Fig. 5e, which plots the velocity gains of joints 2
and 3 along with their difference, which is the velocity gain of the motion freedom
q2 − q3 [6]. For the first 13.5s Gv(y2) = Gv(q2); but then y2 is redefined, and for the
remaining time Gv(y2) = Gv(q2) − Gv(q3). As Gv(y2) appears in the denominator
of Eq.24, this accounts for the large change in Y1.

So from this brief analysis we can conclude the following: the robot is generally
well-behaved, and the plant model is only slightly nonlinear, up until the beginning
of the final ramp. But then the balance controller is given an especially bad new
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definition of y2: a motion that has almost no effect on the CoM (i.e., a velocity gain
close to zero). So the final ramp is an especially difficult command to follow, and
that is why the controller does not track this ramp as accurately as the first ramp.
Without an analysis of the physics of the balancing process, it is not at all obvious
why the tracking of the final ramp is not as good as the first.

6 Conclusion

This paper has presented a new model of the physical process of balancing by a
general planar robot. The essential parameters of the robot’s balancing behaviour
are reduced to just two numbers, plus a third number to describe the influence of all
other movements on the balancing behaviour. All three numbers can be computed
efficiently using standard dynamics algorithms. The model gives rise to a simple
balance controller that allows the robot to balance while performing other motions;
and simulation results are presented showing the controller making a triple pendu-
lum perform a variety of large, fast movements while maintaining its balance. The
controller allows complete freedom in choosing which movements are to be used for
balancing and which for other tasks.

As planar balancing is a solved problem, the contribution of this paper is to
simplify the problem and its solution without loss of generality, and to present an
approach to balancing that appeals more to the physical process of balancing and less
to the control theory. Clearly, the ultimate objective is a simpler theory of balancing
in 3D, and a first step in that direction appears in [1, 2].

Acknowledgements Thework presented here owesmuch to thework ofMortezaAzad as described
in [1].

Appendix

This appendix proves the result that pi = sTi hν(i), where pi and si are the momentum
variable and axis vector of joint i , and hν(i) is the total momentum of the subtree or
self-contained subsystem consisting of body i and its descendants. A self-contained
subsystem, in this context, is defined to be a subsystem in which every kinematic
loop that involves at least one body in the subsystem is entirely contained within
the subsystem. In general, si and hν(i) will be spatial vectors. However, if the whole
system is planar then they may instead be planar vectors.

Consider a kinematic tree consisting of N bodies and joints numbered from 1 to
N according to a regular numbering scheme. Without loss of generality, we assume
that every joint has only a single degree of freedom (DoF), which means that every
multi-DoF joint has already been replaced by a kinematically equivalent chain of
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single-DoF joints connected by massless bodies, and that these extra bodies and
joints are already included in N .

Let p and q̇ denote the joint-space momentum and velocity vectors of the tree, or
the spanning tree if there are kinematic loops. By definition, the two are related by
the equation

p = Hq̇ , (44)

where H is the joint-space inertia matrix. This implies that

pi =
N∑
j=1

Hi j q̇ j . (45)

The definition of H for a general kinematic tree with single-DoF joints is

Hi j =
⎧⎨
⎩

sTi Iν(i)s j if i ∈ ν( j)
sTi Iν( j)s j if j ∈ ν(i)

0 otherwise
(46)

where si is the joint axis vector (i.e., joint motion subspace vector) of joint i , Ii is
the inertia of body i (spatial or planar as appropriate), ν(i) is the set of all bodies in
the subtree beginning at body i , and Iν(i) = ∑

j∈ν(i) I j .
Let κ̄(i) be the set of all bodies on the path between body i and the base (body

0), excluding both body i and the base, and let κ(i) = κ̄(i) ∪ {i} be the same set
including body i . If we use the terms ‘ancestor’ and ‘descendant’ in an inclusive
sense, meaning that body i is both an ancestor and a descendant of itself, and use the
term ‘proper ancestor’ in an exclusive sense, then the sets ν(i), κ(i) and κ̄(i) can be
seen to be the sets of descendants, ancestors and proper ancestors, respectively, of
body i . κ(i) is also the set of joints on the path between body i and the base.

We now rewrite Eq.46 as follows:

Hi j =
⎧⎨
⎩

sTi Iν(i)s j if j ∈ κ̄(i)
sTi Iν( j)s j if j ∈ ν(i)

0 otherwise
(47)

which makes it clear that Hi j is nonzero only if j ∈ κ̄(i) or j ∈ ν(i). Substituting
Eq.47 into Eq.45 gives
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pi = sTi
( ∑
j∈κ̄(i)

Iν(i)s j q̇ j +
∑
j∈ν(i)

Iν( j)s j q̇ j
)

= sTi
( ∑
j∈κ̄(i)

∑
k∈ν(i)

Ik s j q̇ j +
∑
j∈ν(i)

∑
k∈ν( j)

Ik s j q̇ j
)

= sTi
( ∑
k∈ν(i)

∑
j∈κ̄(i)

Ik s j q̇ j +
∑
k∈ν(i)

∑
j∈ν(i)∩κ(k)

Ik s j q̇ j
)

= sTi
∑
k∈ν(i)

Ik
∑
j∈κ(k)

s j q̇ j . (48)

The step from the second to the third line works as follows:
∑

j∈ν(i)

∑
k∈ν( j) is the

sum over all j, k pairs where j is a descendant of i and k is a descendant of j , whereas∑
k∈ν(i)

∑
j∈ν(i)∩κ(k) is the sum over all j, k pairs where k is a descendant of i , and j

is both a descendant of i and an ancestor of k; but these two sets of pairs are the same.
The step from the third to the fourth line exploits the fact that ν(i) ∩ κ(k) is the set
of all ancestors of body k from i onwards, whereas κ̄(i) is the set of all ancestors of
body k prior to i , so the union of the two sets is κ(k).

Now let vk be the velocity of body k, let hk = Ikvk be the momentum of body k,
and let hν(i) = ∑

k∈ν(i) hk be the total momentum of the subtree beginning at body
i . The velocity of any body in a rigid-body system is the sum of the joint velocities
along any one path between that body and the base, so vk = ∑

j∈κ(k) s j q̇ j . We can
now further simplify Eq.48 as follows:

pi = sTi
∑
k∈ν(i)

Ikvk = sTi
∑
k∈ν(i)

hk = sTi hν(i) , (49)

which establishes the desired result for the case of a kinematic tree. If the system
contains kinematic loops then we find that Eq.49 no longer holds for all joints,
but does still hold for any joint that is not involved in any kinematic loop. This is
equivalent to the condition stated at the beginning that the subsystem consisting of
the bodies in ν(i) be self-contained.
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Slip Detection and Recovery for Quadruped
Robots

Michele Focchi, Victor Barasuol, Marco Frigerio, Darwin G. Caldwell
and Claudio Semini

1 Introduction

Being able to deal with slippage is of great importance for legged robots which are
meant to traverse unstructured terrains. In particular, a strategy for detecting slippage
and recover from it, becomes crucial when whole body inverse dynamics approaches
are implemented for robot control [1, 14, 18]. Actually, they rely on the assumption
that the stance feet constraints are not violated (e.g. they are not moving or are
supposed to move very little [8]). Indeed, a violation of the stance constraints makes
the inverse dynamics compute joint torques which are not physically meaningful
anymore. This would result in: (i) errors in the realization of the desired body wrench
(because the slip limits the amount of tangential force that the ground is able to
deliver) (ii) degeneration of the support triangle. These two facts would eventually
lead to a loss of stability even in case of very slow motions. On the same line,
kinematic-based state estimation or odometry techniques [3, 6], which rely on the
assumption that none of the stance feet is slipping, are prone to drift if the amount of
slip is relevant (or if there is a compliance between the base and the ground which
is not modelled). Even if the controller incorporates the optimization of the ground
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reaction forces, there are two types of uncertainties which can cause slippage during
locomotion:

1. Uncertainty on the estimate of the surface normal n. This is commonly estimated
by vision [17] or by fitting a plane (gradient-based terrain detection) through
the feet that are on the ground (stance feet) [26]. The fitting plane can be a
very crude approximation of the terrain surface inclination which can have local
discontinuities (e.g. like the ramp illustrated in Fig. 4). Any deviation from a
planar shape results in errors in the estimation of the inclination of the surface
which is under the foot at the moment of the touch-down.

2. Uncertainty on the friction coefficient μ. Most of the times μ cannot be known in
advance and is commonly inferred according to semantic information (e.g. ice)
coming from vision [22].

An earlier work on slip recovery is from Takemura [26], who presented both a
long term and a short term strategy for slip recovery. The former aims to change gait
frequency and stride length when approaching slippery surfaces. However, changing
locomotion parameters to address slippage can be successful only on terrain with
limited roughness and moderate slipperiness. Conversely, if very challenging envi-
ronment is considered (e.g. crossing a river or walking on ice), the occurrence of
slippage might result in unrecoverable loss of stability because any other footstep
can be infeasible. A short term strategy is needed in these cases. At this extent,
Takemura proposes to instantaneously add a force (at the occurrence of slippage) to
have the ground reaction forces (GRFs) back in the friction cone. This approach has
several shortcomings: (1) it is based on the idea that the normal is properly estimated;
(2) the required force might not be necessarily realizable at the foot, since the ground
reaction force is the result of the robot motion in interaction with the environment.
More precisely, the GRFs can only be controlled to a limited extent (e.g. creating
internal forces) in the null-space of the contact constraints. In addition to this (in
static conditions) the maximum applicable total normal force is constrained by the
robot weight.

To address the above limitations we propose a short term slip recovery strategy,
which is built on top of a whole body controller [9, 10]. In essence the controller
we use, is formulated as a QP problem where the goal is to realize a certain body
wrench while optimizing for ground reaction forces (decision variables). We added
inequality constraints to the problem to obtain forces that obey friction cones limits,
additionally accounting for the fact that the ground can only push and not pull (uni-
lateral constraints). The body wrench is the 6D vector of forces/moments coming
from the body motion task that aims to track a specified trajectory for the CoM and
the trunk orientation.

In this context, assuming a reliable low level tracking of the joint torques and
no external disturbances, a slippage can only occur if the controller uses a wrong
estimate of the surface normal or of the friction coefficient. In fact, this results in
GRFs which are out of the real friction cones (cf. Sect. 4.1). Therefore, differently
from Takemura, instead of striving to apply the correct GRFs (which might not
be feasible), we propose to correct the estimate of the surface inclination and of



Slip Detection and Recovery for Quadruped Robots 187

Fig. 1 Slip recovery pipeline (blue blocks): detection, estimation and correction. The yellow blocks
are: the body, feet trajectory generation and the high level control (whole body) and the low level
one (torque)

the friction coefficient in order to allow the robot to apply forces which satisfy the
friction limits.

More recently, in one of the online videos,1 the BigDog robot demonstrated to
successfully recover from slipping on ice. However, to date, no experimental results
have been published and no details have been reported on the repeatability of the
used approach.

Within the context of legged robots, the main contribution of this paper is a
methodology to: (1) detect slippage, (2) on-line estimate the friction coefficient μ
and the normal n of the surfacemaking use of only proprioceptive information (torque
measurement and encoder readings) (3) on-line recovery from slippage by smoothly
accommodating (but in a short time interval) the value of the normal used in the
optimization to the estimated one. The whole slip recovery pipeline is graphically
summarized in Fig. 1. We have implemented the slip detection/estimation/recovery
strategy for a model of HyQ [24], a 80kg quadruped robot with point feet. HyQ is
shown to perform a (statically stable) walk on a highly slippery (flat) surface and on
a moderately slippery ramp.

The applicability of this approach is limited to torque controlled robots equipped
with a high-level controller which optimizes for ground reaction forces. We will
show simulations where the slip is detected only in one leg and when there are at
least three legs in contact with the ground. A possible solution for the detection in
the case of more than two legs slipping is only drafted.

This paper is structured as follows: Sect. 2 presents a robust way to detect slippage,
followed by Sect. 3 that illustrates the on-line estimation of the friction parameters.
Section4 describes the implemented strategy to recover traction during slippage.
Sections5 and 6 contain the results of simulations with HyQ and the conclusions,
respectively.

1Video available at http://www.youtube.com/watch?v=cNZPRsrwumQ.

http://www.youtube.com/watch?v=cNZPRsrwumQ
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2 Slip Detection

The approaches to address the problem of slip detection can be divided into two
big groups: force based and kinematic based approaches. The force based, require
the availability of a 6-axis force sensor which is usually located at the contact point
(e.g. the foot-tip). If the friction coefficient is known in advance, the slippage could
simply be detected by checking if the ratio of the tangential/normal component of the
contact forces [20] is within the limit of static friction. When the friction coefficient
μ is unknown, a possible strategy is to check the frequency content of the tangential
contact force signal. As a matter of facts, in presence of slippage, a high frequency
ripple in the force signal appears, due to the local stick-slip phenomena that occurs
between the contacting surfaces. First Holweg [15] and more recently Palli [21],
claimed that, after performing a Fourier analisis (FFT) of the higher harmonics of
the force signal, it was possible to recognize the deformations which precedes the
real slip. These approaches are of limited applicability to legged robots, because
they need a high cost force/torque sensor to be attached to the foot tip. However,
due to the repetitive impacts with the ground, in the long run, this can result in a
damage of the sensor. Furthermore, during locomotion, the touchdown event can
create discontinuities in the force signals and jeopardize the detection. As a matter
of facts, it is not easy to measure the instant when the force oscillation, due to the
touch-down, has settled down, in order to have a detection without false positives.
Conversely, a detection strategy based on kinematics, it preferable in the context of
legged robots where ground impacts are the order of the day.

A kinematic strategy can be implemented at the acceleration, velocity or position
level. In [26] Takemura considered slippage as an impulse-like leg acceleration, and
attached accelerometers to the lower-leg links to detect slippage. A drawback of this
approach is that accelerometers are usually affected by noise.

Alternatively, slippage could be estimated at the position level, by checking the
inter-distances between the stance feet. Indeed slippage of one (or more) feet can be
detected if the mutual distance of the stance feet (which is set at the moment a new
touchdown event occurs) changeswithin the duration of a single stance configuration.
However, when traction is lost the resulting acceleration will create also a velocity
difference among the stance feet. Being the position the integral of velocity this
difference can be detected more promptly in velocity than in position. Thus, we
propose to check the slippage at the velocity level. It is important to underline that
the choice of the frame in which the feet velocities are compared, directly affects
the robustness of the approach. The most intuitive way is to check if the Cartesian
velocities of the stance feet are all zero in an inertial (world W) frame. However,
expressing the foot velocity in the world frame (wẋ f ), requires an estimation of the
robot base linear velocity wẋb:

0 � wẋ f = wẋb + wRb (bẋ f + bωb × bx f )
︸ ︷︷ ︸

b
˙̃x f

(1)
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where wRb ∈ R
3×3 is the rotation matrix representing the orientation of the robot

base, while bωb is its angular velocity. bx f , bẋ f are, respectively, the position and
velocity of the foot expressed in the base frame (B). The angular velocity bωb can be
measuredwith reasonable accuracy by an on-board IMU sensor, while the base linear
velocity, as commonpractice in robotics, canbe inferred through legodometry or state
estimation techniques [3]. Therefore, if we compare the feet velocities in the world
frame, they are influenced by errors in the state estimation, which can result into false
positives in the slip detection. A more robust approach would be to compare the feet
velocities in the base frame (term b

˙̃x f in (1) which accounts also for the influence of
the moving frame). The advantage of this, is that the kinematics is always accurate
because it directly depends on direct sensor measurements (e.g. encoders, gyro).
Differently from the world frame case, the stance feet velocities b

˙̃x f have to be equal
in norm and direction (and opposite to the base linear velocity bẋb). Thus, in amanner
similar to what a car ABS braking system is doing [2], a fruitful strategy for slip
detection is to compare the values of the norm vi = ‖b ˙̃x fi ‖ of the velocities of the
stance feet and discriminate the outlier with appropriate statistical tools. Henceforth,
for the sake of brevity, we denote the normwith v and the associated Cartesian vector
with v.

One leg slip detection: Following, we present a pseudo-code implementation of the
slip detection for one leg of a legged robot:

Algorithm 1 detectSlippageOneLeg()
1: for each stance_leg i do
2: vel_norm [i] ← |bẋ fi |
3: end for
4: M ← median(vel_norm)

5: for each stance_leg i do
6: legSlippingFlag[i] ← abs(vel_norm[i] − median) > th
7: end for

At each control loop the median of the norms of the stance feet velocities is
computed. The median will have a value in between the velocities of the non slipping
legs and the slipping one. The slipping leg will be the one with a velocity far from
the median beyond a certain margin th, that can be tuned experimentally. During
locomotion the detection algorithm is continuously checking, within the set of active
stance legs, if there is any slippage. Whenever a slip is detected, if the leg was a
stance leg, this should be removed from the set of stance legs accounted in the state
estimation/odometry, while it can be incorporated back at the end of the slip (see
Fig. 1). This is crucial to prevent the corruption of the state estimate.

Multiple leg slip detection: A more subtle situation is when two legs are slipping
at the same time. In this case, it is hard to detect with the median approach, who
are the slipping legs and who are the stance legs (we just know that they have pair-
wise different velocities). In this case, checking which of the feet velocities vi are
kinematically consistent with the base velocity bẋb, could help us to discriminate the
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slipping legs. At this extent a short-time integration of the base linear acceleration
(IMU) can be the only resort. It is known that integrating accelerometers is prone to
drift but, for a limited time interval, the estimate should be accurate enough.

3 Surface Normal and Friction Coefficient Estimation

Once that the slip is in act, it is crucial to estimate the friction coefficient μ and the
surface normal n in the early milliseconds of slippage, in order to be able to apply a
corrective action as described in Sect. 4.

Remark: Along the paper, wewill notmake a distinction between static and dynamic
friction.

Firstly, we make the following assumptions:
Assumption 1: The frictional properties of the surface around the foot are isotropic

(coefficient of friction equal in all directions).
Assumption 2: when the leg starts to slip (it will start slow), it will cover a surface

where the normal is uniformly constant.
Assumption 3: we assume no soft contact. Since the robot has point feet we

can neglect the influence of the rotational friction about the normal direction (more
complex than the linear one because it depends on the size of the contact area).

We can get useful insights for the estimation considering the following facts:

1. if unilateral constraints are always satisfied (e.g. the legs are always pushing on
the ground and the feet are not detaching), the direction of the foot slip velocity
v will always be tangent to the surface. This means the surface normal n forms
a right angle with the velocity vector v. Furthermore, physics tells us that the
normal should lie in the plane Π passing through the direction of the ground
force F and of the velocity v (see Fig. 2(left)). These two facts allow us to easily
determine the surface normal n by simple geometric computations:

π = v × F
‖v × F‖ n = π × v

‖π × v‖ (2)

where π is the normal to the plane Π .
2. during the slipping motion, the ground force F is always lying on one edge of

the friction cone. Therefore, while the foot is slipping, the angular distance φ
between F and n (see Fig. 2), can be an estimate of the real friction coefficient
(μ = tan(φ)):

μ = tan(φ) = sin(φ)

cos(φ)
= ‖F × n‖

F · n (3)

To obtain a noise-free estimation of the normal n, we compute a moving average
on N samples, by using a parametric representation of the geodesic [12], while for
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Fig. 2 Left vector definitions for slip detection (for a generic foot on a slope). The red dot is the
foot location, Π is the plane where the ground reaction force F and the foot velocity vector v lie
while n is the estimated surface normal. Right slip recovery definitions: n̂ is the actual normal used
in the controller. ê is the axis of rotation to move n̂ towards n while Δθ is the correction angle

the friction coefficient μ we perform a moving average with linear weighting (last
sample is weighted most).

Observation: the value of μ found with this approach, represents a “sample” of
the friction coefficient in a certain direction. Depending on the way the friction con-
straints are implemented in the optimization (e.g. if the friction cone is approximated
with an inscribed polyhedron to have linear constraints [25]) an appropriate scaling
should be considered. For instance, in the case we approximate the cone with the
inscribed pyramid, the estimated μ should be scaled by 1/

√
2 which is the ratio

between the edge of the inscribed pyramid and the diameter of the cone.

4 Slip Recovery

4.1 Dynamics of Slippage

To obtain insights to draft a strategy for slip recovery it is useful to understand the
dynamics of slippage.

1D case: Let us consider the simple case of a mass standing on a plane with friction
under the effect of a vertical force (Fig. 3(top)). We can model the contact as a set of
tiny bristles [13]. If an external force is applied to the mass which has a tangential
component Fextt the “bristles” at the contact interface start to deform (b) and the
friction force with the plane Ff builds up until the breaking point |F̃ f | = μ|Fextn |
is achieved, where the bristles start to slide over each other. From then onward they
will apply a constant resistance force F̃ f which is opposing the motion direction (c).
The subsequent motion will depend on the mass dynamics (mdv/dt = Fextt − F̃ f )
and any tangential component of Fext will increase the kinetic energy of the body,
increasing the slippage. If Fextt is removed (d), the accumulated momentum will
keep the mass in motion but F̃ f will decelerate it until v = 0.
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(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

Fig. 3 Slip dynamics: (top) 1D case (bottom) 3D case

3D case: Consider now the case of a point foot on a frictional plane (Fig. 3(bottom)).
In the situation (a), the ground reaction force F is able to balance the external force
Fext and the body is in equilibrium (v = 0). If an external load is applied which
would require a force which is out of the friction cone to be balanced (b), the ground
will be able to balance only with a F which is constrained to lie on the boundary of
the cone (satisfying the relationship ‖F̃t‖ = μ‖Fn‖). The foot will then start moving
because there is a net force (black) accelerating it.

Now, as long as v �= 0, F will stay on the cone boundary and be opposing the
motion. However, if the external force is applied inside the friction cone (c), by the
composition of vectors, the net force will have a decelerating component that will
slow down the slipping motion until v = 0 and the grip will be recovered (d). In this
situation Fext will balance again F and the contact will be stable.

4.2 Smooth Correction of Friction Parameters

When slippage occurs some action should be undertaken. The detection phase, illus-
trated in Sect. 2, has provided the estimated values of n and μ. The goal of our short
term slip recovery strategy is to make the actual surface inclination n̂ (e.g. coming
from a terrain estimation algorithm) and the friction coefficient μ̂, which are used
in the optimization, converge to the estimated ones. Once that n̂ is set to the appro-
priate direction (inside the cone), the slippage will naturally end-up after a short
transient, because the tangential component of the GRF (see Sect. 4.1) will “make
work” against the slipping motion and eventually stop it. To prevent step-wise torque
discontinuities, we choose to perform the correction in a smooth fashion. The fol-
lowing recursive equations result in a smooth (1st order) convergence of n̂ toward n
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and of μ̂ toward μ:

Δθ(k) = atan
(‖n̂ × n‖/(n̂ · n)

) (4)

ωθ(k) = ê(k)KnΔθ(k)

n̂(k + 1) = R(ωθ(k)dt)n̂(k)

μ̂(k + 1) = Kμμ + (1 − Kμ)μ̂

whereΔθ ∈ R is the angular error between n̂ andn at time k (see Fig. 2 (right)). ê∈ R
3

is the instantaneous rotation axis perpendicular to both n̂ and n, and R(.) ∈ R
3×3 is

the rotation matrix associated to the rotation vector ωθdt , which is obtained by the
Rodrigues’ formula. Kn and Kw are scalar gains to set the convergence rates of n̂
and μ̂, respectively. dt is the control loop duration.

Comment: It is well known that for a legged robot static/dynamic stability is depen-
dent on the relationship between the CoM/ZMP and the support polygon [27]. In the
case the feet are standing on non-coplanar surfaces more elaborated computations
should be carried out [4, 5]. In our work we assume that a stabilizing controller is
available for the robot. The main goal of our approach is to eliminate slippage in a
very short time interval (tens of ms) such that the support polygon does not suffer
significant changes and hence the robot stability is not affected. An analysis of the
maximum amount of slippagewhich is tolerable in the context of locomotion in order
to preserve stability is out of the scope of this paper and will be part of future works.

4.3 Freezing Mode

If, during the slip recovery, the ground frictional force is not sufficient to reduce
the slip velocity in a reasonable time (tens of ms) the slipping foot accumulates a
significant position error (with respect to the desired set-point). This can likely result
in significant degradation of the support polygon shape and possible loss of stability.
In this case, the last resort is to stiffen all the joints in the actual configuration and
make the robot behave like a “wooden chair” (freezing mode in Fig. 1). In such a
way, a stable situation can be achieved even if all legs are slipping at the same time.
Such a strategy is often successfully adopted by humans when slipping on ice.

5 Simulation Results

In this section we show the effectiveness of the proposed slip detecion/estimation/
recovery strategies simulating a walking of the dynamic model of the quadruped
HyQ [24] on very slippery surfaces. Namely, an ice slab with locally different fric-
tional properties and a ramp. HyQ is 1m long and weights 80kg. Our simulation
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environment is composed of two software packages. The first, called SL [23], is a
multi-process application that provides a low level joint controller, a customizable
trajectory generator, and a simulator. The robot-specific software, namely the kine-
matics and dynamics engine, is implemented with RobCoGen which provides an
optimized C++ implementation of kinematics and dynamics [11] based on spatial-
vectors algebra and state-of-the-art numerical algorithms [7]. As far as contact forces
are concerned, the SL simulator implements a simple spring damper contact model,
together with a Coulomb model for friction. The simulation is based purely on rigid
body dynamics, and as such it assumes ideal force sources at the actuated joints. To
be consistent with a real implementation on the real robot, we estimate the ground
reaction forces at the feet from torque measurements (HyQ is not currently equipped
with foot sensors). Both the loop for the optimization and the rigid body simulation
run at 1kHz, which is the frequency of the low level controller in the real platform.
The state (position/orientation) of the robot base is estimated through leg odome-
try. The terrain inclination (roll and pitch) is computed by fitting a plane through
the stance feet in a least-square fashion. The evaluation is carried out after each
touch-down event and this provides an initial estimate of the surface normal n̂0 (see
Fig. 1).

5.1 Ice Patches

Figure4(left) shows a simulation of the robot walking on a slippery set of patches
located on flat ground. The patches have friction coefficients (μ = 0.15 − 0.3) com-
parable to the one of an ice-shoe contact [16]. Refer to [19], for different pairs of
materials. The robot has point feet and, thus, the friction forces are lower compared
a robot which has flat feet. Indeed foot-ground contact in humanoids is usually mod-
eled with 4 contact points located at the foot edges and slippage occurs when all of

Fig. 4 Simulation screen-shots of the robot walking on ice patches (left) and on a ramp (right). In
the left plot, olive green lines represent the cone boundaries while the ground reaction forces are
depicted in light green. In the right plot n̂ is converging toward n while the LF foot is slipping after
the touch-down
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Fig. 5 Friction coefficients
estimation for the 4 legs in
the ice patches simulation.
Upper plot solid lines are the
estimated μ, dashed lines are
the ground truth. Lower plot
are the percent estimation
errors

them break the contact. For a point foot morphology, walking on ice is challenging
and slip recovery becomes crucial for the success of the task.

With the ice patches simulation we want to show the robustness of our algorithm
in estimating the friction coefficients of the different surfaces for all the 4 feets. The
blue/green patches have μ = 0.25, 0.2 while the white/red μ = 0.3, 0.15. They are
all 75cm long. Our online video2 shows that, without any slip recovery strategy, the
robot falls at the very beginning after a few steps. Conversely, with the slip recovery
enabled, is able to traverse effectively all the patches, including the last ones which
have lower friction coefficients. In Fig. 5 we show the plots of the friction coefficient
estimates for the 4 legs starting from μ = 0.6 which is the default value set at the
beginning of the simulation, in the controller. LF , RF , LH and RH stand for Left-
Front,Right-Front,Left-Hind andRight-Hind leg, respectively. For the estimate we
used a moving average window of 4 samples. The percent error in the estimation is
always below 13%.

The slip recovery is beneficial also to avoid the accumulation of big estimation
errors in the leg odometry. From the same simulation data, the upper plot of Fig. 6,
shows that slippage created an estimation errors in the X direction (before falling) of
18cm out of 50cm walked, while using the slip recovery (lower plot) the maximum
error is below 1cm for the same time window.

Observation: In the enclosed video, a little slip is always present at the touch-down,
that in principle should not occur, because the friction coefficient has been properly
identified after stepping on the surface. This is due to the actual implementation of
the stance detection. When the swing foot touches the ground it must apply a force
beyond a certain threshold, to trigger the stance and to start optimizing the force.
This little force (before the trigger) is not optimized and it causes a little slippage,
which however is immediately recovered.

2Video available at https://youtu.be/Hrwi9-411AM.

https://youtu.be/Hrwi9-411AM
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Fig. 6 Plot of the Cartesian
components of the odometry
error, without (upper plot)
and with (lower plot) slip
recovery. The black line is
the covered distance (right
ordinate)
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5.2 Slippery Ramp

A transition from walking on flat terrain to a ramp (inclination 0.25 rad) is a good
template to demonstrate the effectiveness of the algorithm in estimating the surface
normal. Indeed, in the moment in which the robot is standing with only the front feet
on the ramp, there is a big error (see Fig. 4 (right)) on the terrain inclination estimate.
This results in a wrong estimation of the surface normal n̂ which is set perpendicular
to the estimated plane. If the surface is slippery enough (we set μ = 0.5) the front
legs will slip and the slip recovery intervention is necessary to climb the ramp. In
Fig. 7 we magnify one slip event for the LF leg after the swing phase. The slip is
detected at time t = 28ms, the estimation phase is shaded in red, while the correction
phase is in blue. The slip transient ends at t = 80ms. In the upper plots, we show the
convergence of n̂ to the estimated value n while ngt is the ground truth. The lower
plot shows that the friction cone constraint is violated (in a strict sense) for the whole
slippage situation (time interval t =28–80ms). We underline that the torques of the
stance legs (e.g. cf. the knee of RH in Fig. 7(bottom)), do not suffer from step-wise
discontinuity, because of the smooth correction implemented for n̂ and μ̂.

Differently from Fig. 7 which shows the LF foot slipping after a swing phase,
Fig. 8 shows a slip occurring during the body motion where the LF leg is in stance.
The upper plot shows the velocities (norm) v of the feet while the lower one plots
boolean variables that tell which leg is slipping. Around t = 170ms the LF foot
starts to slip and this is visible looking at its velocity which significantly differs from
the ones of the other feet. The picture also shows that from the point of detection,
thanks to the recovery action the slip terminates (the norm of the velocity goes back
to the values of the other feet velocities) in less than 40ms.
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Fig. 7 Slip event for the LF foot at the touch-down (ramp simulation). (First 3 upper plots)
Cartesian components of the surface normal where: n̂ is the actual value, n is the estimated value
and ngt is the ground truth (from simulation). Lower plot the blue line depicts the friction cone
violation (in a [0–1] range) while the red line is the torque in the knee joint of the RH leg (stance).
The estimation phase is shaded in red, while the correction phase is in blue

Fig. 8 Slip event for the LF
leg during the body motion.
Upper plot of the velocity
(norm) v of the feet. Lower
boolean flags which monitor
which leg is slipping

6 Conclusions and Future Works

We presented a methodology to detect slippage and estimate the relevant friction
parameters together with a short term strategy to recover from slippage during loco-
motion. The detection is based on kinematic measurement (plus the trunk angular
velocity) and, in the context of legged robots, is more suitable than a force-based
approach which involves the use of 6 axis force/torque sensors at the foot-tips. Hav-
ing an idea of the friction properties of the terrain during locomotion can be also
useful to set different level of “cautiousness”, selecting more or less conservative
gaits according to the situation at hand. On the other hand, the recovery strategy
(which was able to reduce slippage in less than 40ms), was implemented at the force
level. The idea behind the strategy was to correct the surface normal toward the
estimated one resulting in GRFs which were back inside the real friction cone. The
slip recovery strategy has been demonstrated to be essential for locomotion on very
slippery surfaces, or in situations (ramp) where the terrain inclination was wrongly
estimated.
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In future works we plan to speed-up the recovery action by setting (in the opti-
mization) constraints on the tangential component on the GRF in order to “help” the
frictional force in decelerating the slipping foot. We are aware that with the actual
implementation, the estimated friction coefficient can only decrease. Indeed, if the
robot enters in a less slippery terrain after coming from a slippery one, it will keep
the previous friction coefficient which will be too conservative.

In the future, we are planning to fuse the actual approach with semantic informa-
tion coming from vision. according to the terrain the robot is traversing the purpose
of vision is to provide a default value for the friction coefficient together with an
estimate of its “difficulty”.

Finally, we plan to perform extensive experimental validation of the proposed
approach on the real robot platform (HyQ). In particular we are planning to make it
walk on slippery slopes and Teflon patches.
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Effective Generation of Dynamically
Balanced Locomotion with Multiple
Non-coplanar Contacts

Nicolas Perrin, Darwin Lau and Vincent Padois

1 Introduction

Locomotion is a challenging task for humanoid robots, evenwithin completely known
environments. Although the dynamics of multibody systems are well understood,
direct approaches to resolve the motion of all degrees of freedom for locomotion
have remained computationally intractable due to the large number of degrees of
freedom and nonlinear behaviour. To generate dynamically balanced locomotion
trajectories efficiently, current methods are typically based on simplified models of
the robot dynamics.

One of the most widespread model is the Inverted Pendulum Model (IPM) [10],
where the mass of the robot is assumed to be concentrated at its center of mass
(CoM). Although more accurate models are sometimes required [11], the simple
IPM is suitable for many situations where the rotational inertial effects of the robot
arms, legs and torso are negligible or can compensate for each other. An example of
such a scenario includes walking at a moderately fast pace.

One of the main properties of multi-contact locomotion is that the robot’s CoM
acceleration depends only on the contact forces with the environment. Hence, an
important objective for the generation of locomotion is to design a CoM trajectory
that is dynamically balanced at any point in time. Dynamically balanced refers to
the existence of contact forces that can produce the desired CoM acceleration while
respecting the contact constraints, such as being within the friction cones.

N. Perrin (B) · D. Lau · V. Padois
Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS UMR 7222,
Université Pierre et Marie Curie, Paris, France
e-mail: perrin@isir.upmc.fr

D. Lau
e-mail: lau@isir.upmc.fr

V. Padois
e-mail: padois@isir.upmc.fr

© Springer International Publishing AG 2018
A. Bicchi and W. Burgard (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 3, DOI 10.1007/978-3-319-60916-4_12

201



202 N. Perrin et al.

When all the contacts are coplanar, a point of particular interest, sometimes called
the Zero Moment Point (ZMP) [17], can be defined. Although this name has led to
confusion about its physical nature [3], the term ZMP will be used in the remainder
of the work. A system is considered dynamically balanced if the ZMP lies within
the support region, i.e. the 2D convex hull of the contact points. In the IPM, the
relationship between theCoMandZMPdynamics is defined by nonlinear differential
equations. However, if the vertical displacements of the CoM are set in advance, the
relationship can be decoupled and expressed as linear differential equations. This
substantially simplifies the problem into one that can be more efficiently and easily
implemented for locomotion trajectory generation and gait control.

The trajectory generation problem has been studied through analytical approaches
[4], and more recently, using convex optimization with constraints on the ZMP in
discrete time [6, 7, 19, 20]. The efficiency of convex optimization solvers allows them
to be used within model predictive control (MPC) schemes and with the potential of
real-time implementation for reactive walking. However, the ZMP+MPC approach
suffers from two main drawbacks: (1) the trajectory of the CoM height (z-direction)
must be knownorfixed in advance, and (2) the contact pointsmust always be coplanar,
making this approach unsuitable for walking in complex unstructured environments
or if the arms are to also be used. Due to these two restrictions, the ZMP+MPC
approach can be regarded as a 2D CoM planner that operates in the horizontal xy-
plane only.

Several studies have looked into extending the concept of ZMP into 3D conditions,
such as GZMP [5] and 3DZMP [9], to handle non-coplanar contact points. These
criteria have been used in control algorithms to maintain the dynamical balance of a
humanoid robot interacting with its environment. However, no locomotion trajectory
generation algorithm has been designed based on these notions. In [8], amore general
criterion than the ZMP was proposed to evaluate the balance of contacts during the
motion of a legged robot. This criterion was used within a preview control algorithm
with additional restrictions, for example, the vertical motion of the CoM must be
approximately constant. Furthermore, a preliminary phase is needed to plan the
inertia and gravity wrenches appropriately, which is a difficult problem.

In this paper, two simple and novel MPC approaches to solve for 3D locomotion
with multiple non-coplanar contacts are presented. The 3D condition for dynami-
cally balanced gait allows for non-coplanar multiple contacts and no restrictions on
the CoM height trajectory. Using the proposed 3D dynamically balanced criterion,
the first MPC formulation treats the criterion as an objective function, where the
resulting non-convex MPC problem is solved using a sequence of alternating (con-
vex) quadratic programs (AQP). The second formulation considers the criterion as
non-convex constraints to the problem, and is solved through a succession of convex
QCQPs. The results for simple locomotion scenarios show the promise in using the
proposed 3D condition to generate the CoM trajectory within the control framework
of robots with multiple contacts.

Although generalizations, such as allowing for multiple contacts, non-coplanar
contacts and not predetermining height trajectory, inherently increase the problem
complexity, care has been taken to maintain balance between the computational
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efficiency and limitations of the model. Indeed, our approach is more general than
traditional simplified methods based on the IPM or ZMP, but thanks to our main
assumption, namely, that theCoM lies inside all the contact friction cones, the number
of variables that have to be taken into account is much smaller than with direct
methods, such as [15]. The feature of the proposed MPC schemes is that they can
be effectively and efficiently solved through a succession of convex optimization
problems, when the problem formulation is of particular forms, such as bilinear
problems or non-convex QCQPs.

The remainder of the paper is organised as follows: Sect. 2 formulates the 3D
condition for dynamically balance. The two MPC formulations using the 3D condi-
tion as an objective or as constraints are formulated in Sects. 3 and 4, respectively.
Section5 presents a brief discussion on the two approaches. Finally, Sect. 6 concludes
the paper and presents areas of future work.

2 Conditions for Dynamically Balanced Locomotion in 3D

Expressing wrenches with respect to the CoM of the robot x, the Newton-Euler
equations of motion for a multibody robot system in a fixed world frame can be
written as

Wgravi t y
x + Wcontact

x =
[

L̇
M ẍ

]
, (1)

where Wgravi t y
x is the gravity wrench in 6D vector notation [2], Wcontact

x the sum of
the contact wrenches, L is the angular momentum of the whole robot with respect
to its CoM, and M the total mass of the robot. The gravity wrench is equal to the
vector

[
0T MgT

]T
, where g is the gravity vector, and

Wcontact
x =

N∑
j

[
(c j − x) × f j

f j

]
, (2)

where the c j and f j are the location and force of contact j , respectively, and N is the
total number of contacts. Substituting (2) into (1) results in

∑
j

[
(c j − x) × f j

f j

]
=

[
L̇

M(ẍ − g)

]
. (3)

The system can be regarded as dynamically balanced if (3) is satisfied. The goal
of the problem of CoM trajectory generation is to compute ẍ(t) such that the dynamic
wrench, the right hand side term of (3), can be compensated by the sum of contact
force wrenches. It is usually assumed that the contact forces belong to a cone (friction
cone) spanning from the contact point.
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Fig. 1 All the contact cones
contain the direction towards
the position of the robot
CoM x. Choosing the force
of contact j equal to
α j (c j − x), α j ≥ 0, yields:
M(g − ẍ) =∑

j α j (c j − x), α j ≥ 0

Generally, it is not trivial to compute the set, or even a reasonable subset, of the
dynamic wrenches that can be compensated by a given set of contact cones [16].
However, by assuming that all contact cones contain the CoM x, as shown in Fig. 1,
it is possible to choose the force of contact j to be

f j = α j (x − c j ) , α j ≥ 0 . (4)

This assumption is equivalent to enforcing the constraint x − c j ∈ Fj , where Fj is the
friction cone for the contact point j . Given the contact point c j , normal vector to the
contact surface n̂ j and the coefficient of friction μ j , this constraint can be expressed
as a second order cone constraint or approximated by a set of linear constraints.

By this selection, substituting (4) into the criterion for dynamic balance (3) results
in [

0∑
α j (x − c j )

]
=

[
L̇

M(ẍ − g)

]
. (5)

From (5), the system is dynamically balanced if:

1. The angularmomentum L̇ of thewhole robot with respect to its CoM is negligible.
2. M(g − ẍ) can be expressed by a positive linear combination of the vectors c j −

x , j = 1, . . . , N .

It isworth noting that the proposed condition (5) holds in 3Dwithout the restriction
that contacts are coplanar. Furthermore, although the assumption x − c j ∈ Fj limits
range of scenarios in which the simplified conditions for dynamic balance (5) can be
used, it is important to note that the restrictions are less limited and can be applied
in a larger range of scenarios compared with Zero Moment Point (ZMP) conditions.
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3 Model Predictive Control with Dynamically
Balancing Objective

3.1 Problem Formulation: Non-convex Optimization Problem

The aim of this problem is to determine the CoM trajectory for the locomotion of
a multi-limbed robot for a given sequence of contacts over a finite time horizon.
Although the number of contacts between the robot and the environment can theo-
retically be infinite, without loss of generality it can be supposed that only a finite
number of points N of the robot can be in contact with the environment. For exam-
ple, the contact points for a rectangular foot can be represented by the 4 vertices
of the foot sole. The positions of these time-varying contact points can be denoted
by c1(t), c2(t), . . . , cN (t). A binary variable κ j (t) ∈ {0, 1} can be defined to denote
whether c j (t) is in contact (κ j (t) = 1) or not in contact (κ j (t) = 0) with the environ-
ment at time t . In this work, the contact trajectory c j (t) and κ j (t) are predetermined.

In this proposed model predictive control (MPC) scheme, the decision variables
are the CoM positions x(t) and the contact force multipliers α j (t) ∀ j ∈ {1, . . . , N },
over the finite time horizon T , where t ∈ [t0, t0 + T ]. Discretizing the horizon
at a time step of δt results in K discrete time instances, where T = K δt and
ti = t0 + i · δt . Given the contact trajectory information c j (t) ∀ j ∈ {1, . . . , N } and
κ j (t) ∀ j ∈ {1, . . . , N }, the objective is to satisfy the translational components of (5)
by minimising

J1 =
K∑
i=1

∥∥∥∥∥∥M(g − ẍ(ti )) −
N∑
j

κ j (ti )α j (ti )(c j (ti ) − x(ti ))

∥∥∥∥∥∥
2

.

The constraints for this problem are:

• Initial/current CoM position x(t0) = x0
• Initial/current CoM velocity ẋ(t0) = ẋ0
• Final CoM position at the end of the horizon x(tK ) = x f

• Max acceleration ‖ẍ(ti )‖∞ ≤ amax , i = 0, . . . , K − 1

Note that any constraints on the CoM velocity ẋ and acceleration ẍ can be expressed
with respect to x by the linear relationships

ẋ(ti ) = x(ti ) − x(ti−1)

δt
, i = 1, . . . , K (6)

ẍ(ti ) = ẋ(ti+1) − ẋ(ti )
δt

, i = 0, . . . , K − 1 . (7)

As a result, all constraints are either linear equality or inequality constraints with
respect to x. Thus, the MPC optimization problem to determine the CoM trajectory
over the finite time horizon can be expressed as
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min
(x(ti ))i ,(α j (ti ))i, j

J1
(
(x(ti ))i ,

(
α j (ti )

)
i, j

)

s.t. ‖ẍ(ti )‖∞ ≤ amax , i = 0, . . . , K − 1

x(t0) = x0
ẋ(t0) = ẋ0
x(tK ) = x f . (8)

Remark: As it is presented here, to implement the approach as a model predictive
controller would require measuring the CoM velocity (ẋ0), which is not always easy.
If the contact forces are accessible, one could estimate their total wrench and use it
to obtain an approximation of M(g − ẍ), which could potentially be used to make
the approach more robust.

3.2 An Algorithm Exploiting the Objective
Function Structure

On a computational level, the objective function J1 is non-convex and it is therefore
difficult to obtain the global optimum. Finding a local minimum could be relatively
quick and provide good results, but in the next section we propose another approach
that exploits the form of the objective function. The alternating convex optimization
approach is inspired by [12], where successful results for a different application are
obtained by using an alternating sequence of convex QPs (AQPs) instead of trying
to solve head-on an optimization problem with a bilinear objective function. The
structure of function J1 can be expressed as

J1 =
∑
i

∥∥εi
(
x(ti ), (α j (ti )) j

) ‖2 , (9)

with

εi = M(g − ẍ(ti )) −
N∑
j

κ j (ti )α j (ti )(c j (ti ) − x(ti )).

The functions εi are bilinear in the variables x(ti ) and α j (ti ). Therefore, if x(ti )
are fixed, the optimization problem (8) becomes a convex QP that can be efficiently
solved. Similarly, if the α j (ti ) variables are fixed, we obtain a convex QP in the x(ti )
variables. This property can be used to alternatively optimize the x(ti ) and α j (ti )
variables, using the solution of each step as the fixed variables of the next step.
This ensures that the objective J1 decreases at each iteration of the algorithm until it
converges.

For the first step, an initial guesswasmade for theCoM trajectory that is consistent
with the constraints from (8), and the α j (ti ) variables are optimized. The most direct
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motion from x0 to x f is often a natural candidate for this initial guess, so in practice
this method does not require any tuning at all.

3.3 Results

The RobOptim [14] framework was used to illustrate the use of the proposed MPC
formulation (8) and alternating quadratic programs that exploit the bilinear form
(9) on CoM generation for locomotion. RobOptim provides a convenient interface
to try various optimization tools. One interesting aspect of the formulation of the
proposed MPC is that the matrices describing the constraints are very sparse, with
O(m) non-zero elements where m is the total number of variables. Thus, we chose
the IPOPT optimizer [18] that can exploit matrix sparsity. Three different scenarios
are simulated and presented:

1. 3 step walk with two foot supports (coplanar contacts);
2. 3 step walk with two foot supports and one hand support (non-coplanar contacts);
3. Jump-step with flight phase.

The 4.5 s trajectory for scenario 1 can be defined by the following sequence as
shown in Fig. 2:

• 0 ≤ t < 0.6 s: Robot initially begins in double support
• 0.6 ≤ t ≤ 1.2 s: Step 1 moving the left foot
• 1.2 < t < 1.9 s: Double support phase
• 1.9 ≤ t ≤ 2.5 s: Step 2 moving the right foot
• 2.5 < t < 3.2 s: Double support phase
• 3.2 ≤ t ≤ 3.8 s: Step 3 moving the left foot
• 3.8 < t ≤ 4.5 s: Double support phase.

With a time horizon of 4.5 s and δt = 0.1 s, the MPC scheme consists of 45
discrete steps. Without loss of generality, it should be noted that the MPC in this
setup solves for the entire trajectory, where in practice the time horizon would be

Fig. 2 The resulting trajectory from the MPC scheme (8) for scenario 1. In blue, the horizontal
CoM trajectory produced by our algorithm in 95 ms. In red, the projected ZMP trajectory (10)
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shorter to achieve better computational performance. The dimensions of the feet
10.45 cm × 28.3 cm and the total mass 36.66 kg correspond to the Romeo robot
[1]. At t = 0 s and t = 4.5 s, the CoM is set to be in the middle between the feet at
a height of 0.6 m, x(0) = [0.14 0 0.6]T and x(4.5) = [0.85 0 0.6]T , respectively.
The initial guess for the CoM trajectory follows a straight line from its initial to
its final position. Figure2 shows the CoM motion generated after two steps of the
algorithm (i.e. one optimization of the α j (ti ) variables and then one optimization of
the CoM trajectory).

Figure2 shows the resulting CoM trajectory (in blue) and the projection (in red)

xzmp = λzmp(x + M(g − ẍ)), (10)

where λzmp > 0 is a scaling factor such that zzmp = 0. The projected point (10)
is equivalent to the ZMP point for the scenario 1 in which all contact points are
always coplanar. It can be observed that the projected ZMP lies within the foot
during single support phases. In this scenario, the results are similar to that of the
ZMP+MPC approach, since all contacts are coplanar on the ground plane. For this
scenario, the optimization problem (8) with horizon of K steps consists of 11K
decision variables, comprised of 3 for the CoM position and 8 for the two contact
supports (four contact points per support) at each time step, and 9 + K constraints
from (8). The trajectory was computed in 95 ms (on a 2.40GHz Intel(R) Core(TM)
i7-4700MQCPU) after solving two alternations of theAQP, and hence 4 convexQPs.
Executingmore alternations of the algorithm showed that the cost J1 quickly reached
small values, for example, more than 1000 times smaller than the initial value after 4
optimizations. Furthermore, it was observed that the algorithm had almost converged
after the 2 first optimizations.

In the second scenario, an additional contact corresponding to the right hand of the
robot on a wall is considered. The contact point is at a height of 0.6m, and activated
only during the second step. This example demonstrates the ability of the proposed
3D condition and MPC algorithm to handle non-coplanar contacts. The resulting
trajectory in Fig. 3 shows how the proposed algorithm can handle this situation and
generated a different CoM trajectory. It could be observed from the results that the
additional hand contact point enabled the robot to avoid the sway motion to the left.

Finally, the third scenario illustrates the ability of the algorithm to determine the
CoMheight without restrictions unlike the classical ZMP+MPC approach. The steps
were replaced by one jump defined by the following sequence of actions: at t = 0.6 s
the left foot leaves the ground, and at t = 2.0 s the right foot leaves the ground. After
a flight phase of 0.4 s, the left foot lands at t = 2.4 s, and then the right foot lands at
t = 3.8 s. Remark: in this scenario the amax bound must be at least equal to the norm
of the gravitational acceleration. Figure4 shows the CoM trajectory produced after
2 optimizations. This example clearly shows the benefits in relaxing the fixed height
trajectory from the ZMP+MPC approach, such that the CoM trajectory generation
is able to produce a jump motion in the z-direction.
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Fig. 3 The resulting trajectory from the MPC scheme (8) for scenario 2 with hand support. In blue,
the horizontal CoM trajectory produced after 2 steps of the algorithm (in 96 ms). In purple, the
trajectory produced after 6 steps of the algorithm (in 412 ms). These trajectories are almost exactly
the same, which shows that the convergence is fast

Fig. 4 On the left the horizontal CoM trajectory generated (in 176 ms) for the jump scenario. On
the right the evolution of the CoM coordinates during the flight phase

4 Model Predictive Control with Dynamically Balancing
Constraints

4.1 Problem Formulation: Non-convex Quadratically
Constrained Quadratic Program

With the same aim of determining the CoM trajectory as Sect. 3, the problem in this
section will be formulated by considering the dynamically balanced condition (5)
as constraints over the time horizon. Furthermore, the objective to minimise is the
tracking error for a reference CoM trajectory xr (t). The reference CoM trajectory
is pre-planned based on the desired motion. In this MPC problem, the decision
variables are the CoM jerk vectors

...
x (ti ), ∀i ∈ {1, . . . , K }. The convex objective of

the problem is to minimise
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J2 =
K∑
i=1

Q1 ‖x(ti ) − xr (ti )‖2 + Q2 ‖...x (ti )‖2 ,

where Q1 and Q2 are the relative weights between the tracking and jerk terms,
respectively. Note that the relationship between theCoM jerk

...
x and theCoMposition

x, velocity ẋ and acceleration ẍ is linear [19] in the form

⎡
⎣x(ti+1)

ẋ(ti+1)

ẍ(ti+1)

⎤
⎦ = A

⎡
⎣ x(ti )
ẋ(ti )
ẍ(ti )

⎤
⎦ + B

...
x (ti ) .

As a result, the objective and all constraints can be expressed with respect to the
CoM jerk. As presented in Sect. 2, the geometrical meaning of the constraint

∑
α j (c j − x) = M(g − ẍ) , α j ≥ 0 (11)

is that the vector M(g − ẍ) must lie within the positive cone of the vectors (c j −
x) ∀ j ∈ {1, . . . , N }. Such constraints will be derived in the following for the case of
one and two supports in contact.

As shown in Fig. 5a, when the system is in single support it will be assumed that
there are four contact points. The position of the vertices for the rectangular contact
surface relative to the center of the contact c j can be represented by a1, a2, a3 and
a4. For the single support, the vector M(g − ẍ) is inside the cone produced by the
vectors (c j + a1 − x, c j + a2 − x, c j + a3 − x, c j + a4 − x) = (w1,w2,w3,w4) if
the following triple products are positive:

w1 × w2 · (g − ẍ) ≥ 0, w2 × w3 · (g − ẍ) ≥ 0

w3 × w4 · (g − ẍ) ≥ 0, w4 × w1 · (g − ẍ) ≥ 0 . (12)

For the case of double support contacts, the expression of the convex cone would
be non-trivial if each support was assumed to consist of 4 contact points. This is
because the convex cone would be dependent on the locations of each support.

Fig. 5 The constraints
required to achieve dynamic
balance for: a when one
support is in contact with the
environment κL = 1, κR = 0
and b when two supports are
in contact κL = 1, κR = 1
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Furthermore, this would increase the number of surfaces of the convex cone for the
vector M(g − ẍ) to be checked, hence increasing the number of constraints. How-
ever, by assuming that each contact support only has two contact points, at the top
at and bottom ab, then the resulting convex cone shown in Fig. 5b only consists of
four surfaces and is a strict subset of the 4 contact point convex hull regardless of the
support location. For the double support, the vector M(g − ẍ) is inside the cone
produced by the vectors (cL + at − x, cL + ab − x, cR + ab − x, cR + at − x) =
(w1,w2,w3,w4) as with the conditions in (12). In a similar manner, constraint equa-
tions for extra scenarios with additional contacts could be considered. For both math-
ematical and practical considerations, it will be assumed that contacts do not overlap,
such that the contact points in Fig. 5b can form a convex cone.

It can be observed that the constraints (12) for both single and double support are
non-convex quadratic inequality constraints if the contact trajectories are known. As
a result, the MPC optimization problem to determine the CoM trajectory over the
finite time horizon can be expressed as

min
(
...
x (ti ))i

K∑
i=1

Q1 ‖x(ti ) − xr (ti )‖2 + Q2 ‖...x (ti )‖2

s.t. (12) for κ j = 1, κa = 0 ∀a �= j

(12) for κL = 1, κR = 1 . (13)

The optimization problem (13) is a non-convex quadratically constrained quadratic
program (QCQP) with a convex objective function.

4.2 Feasible Point Pursuit Successive Convex Approximation

On a computational level, the objective function J2 has non-convex constraints and
therefore it is non-trivial to obtain a feasible solution, let alone the global optimum.
The feasible-point-pursuit successive convex approximation (FPP-SCA) [13] is an
effective approach that solves the non-convex QCQP as a succession of QP convex
approximations. Considering the non-convex QCQP of the standard form with the
decision variable u ∈ R

n

min
u

uT A0u + qT
0 u

s.t. uT Aku + qT
k u ≤ bk, k = 1, . . . , L , (14)

where A0 ∈ R
n×n is a positive semidefinite matrix, if any of Ak ∈ R

n×n from the L
constraints are not positive semidefinite, then (14) is non-convex and the problem
is N P-hard in general. By performing a linear restriction about any point zi , the
FPP-SCA approach aims to solve the following problem
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min
u,s

uT A0u + qT
0 u + λ

∑
k

s2k

s.t. uT A+
k u + (2zTi A

−
k + qT

k )u ≤ bk + zTi A
−
k zi + sk ,

sk ≥ 0, k = 1, . . . , L (15)

where A+
k and A−

k are the positive semidefinite and negative semidefinite matrices
from the decomposition Ak = A+

k + A−
k . The terms sk are slack variables that repre-

sent the violation of the k-th quadratic constraint and λ 	 1 is a constant that gives
priority to minimise the constraint violation. The vector zi ∈ R

n is the initial guess
vector at iteration i . In the FPP-SCA approach, the convex QCQP (15) is repeated,
where the variable zi+1 is set as the optimal solution u∗

i at iteration i .
By using the FPP-SCA approach to solve the MPC problem (13) with horizon of

K steps, at each iteration of FPP-SCA the convex QCQP problem consists of 7K
decision variables, comprised of 3 for the CoM jerk and 4 constraint slack variables at
each time step, and 4K quadratic constraints (12) at each time step. The initial guess
z0 can be any arbitrary vector, and in the simulations the zero vector was chosen. By
solving a succession of (15), it was shown in [13] and in the results of Sect. 4.3 that
the algorithm converges within a few successions.

4.3 Results

Todemonstrate theMPC formulation (13), theCoM jerk trajectorieswere determined
using the FPP-SCA for the three following scenarios: scenario 1 from Sect. 3.3,
scenario 2 from Sect. 3.3, and walking up 2 steps of a staircase with the same hand
support as in scenario 2 fromSect. 3.3. Scenarios 1 and2 allow for a direct comparison
between the trajectories resulting from the two different MPC schemes. The number
of successive QCQPs solved was set as 5, however it was observed that convergence
typically happened in less than 3 successions. The reference trajectory for both
scenarios was set to be simply the forward linear motion of travel at a height of 0.6
m. The values for objective function weights in (13) and (15) were set as Q1 = 1,
Q2 = 10−4 and λ = 104.

The trajectory for scenario 1 is shown in Fig. 6. From the projected ZMP points
using (10) it is clear that the produced CoM trajectory satisfies the 3D dynamically
balanced criterion. Tomaintain good tracking performance of the reference trajectory
for y = 0, it is expected that the projected ZMP would be as close to the boundary
of the single stance (SS) support region as possible. It can be observed that this MPC
scheme generated very similar CoM trajectory results from Fig. 2.

As with Fig. 2, the natural artifact of left-right swaying motion can be observed
in Fig. 6 due to the existence of single support instances. As such, a hand contact
was included (scenario 2) during step 2 of the motion. From the resulting trajectories
shown in Fig. 7 (on the left), the MPC scheme generated a very similar, in fact near
identical, behaviour to that in Fig. 3. The extra hand contact allowed the CoM to
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Fig. 6 The resulting trajectory from the MPC scheme (13) for scenario 1. In blue, the horizontal
CoM trajectory and in red, the projected ZMP trajectory (10) since all contacts are coplanar
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Fig. 7 On the left the resulting trajectory from the MPC scheme (13) for scenario 2 with hand
support. In blue, the horizontal CoM trajectory and in red, the projected ZMP trajectory (10). It can
be observed that the results are similar to that from Fig. 3. On the right the resulting z-direction
trajectory from the MPC scheme (13) for scenarios 1 and 2. In black, the CoM trajectory and in
red, the reference height trajectory. The results show that the trajectory successfully lowers from
the initial height z0 = 0.75m to the reference height 0.6m

better track the reference trajectory as there is no single support phase sway required
during step 2. To show the tracking of the height trajectory, the initial height of the
CoM was set to be 0.75 m. Figure7 (on the right) shows that the MPC CoM planner
was able to quickly converge to the desired reference height of 0.6 m. As such, it can
be claimed that for this scenario, the FFP-SCA formulation was able to achieve both
feasibility of the dynamically balancing constraints and good tracking performance.

Finally, scenario 3 demonstrates the ability for the proposed MPC formulation
to solve more complex behaviours, such as walking up stairs while using the hand
to hold onto the staircase rails. The steps of the stairs were set as 15 cm high and
the reference height trajectory for the CoM was set to be 0.6 m above the surface
of stair steps. Figure8 (on the left) shows the x and y direction (top-down view)
CoM trajectories determined by the MPC. It can be observed that the CoM results
for the x and y directions are very similar to that of walking on a flat ground as
shown in Fig. 7 (on the left). However, the resulting z trajectory shown in Fig. 8 (on
the right) shows significant differences with scenario 2. In addition to satisfying the
dynamically balanced constraints for the locomotion on the non-coplanar contacts,
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Fig. 8 On the left the resulting trajectory from the MPC scheme (13) for scenario 3 with hand
support walking up a staircase. The horizontal CoM trajectory is shown in blue. It can be observed
that the results are similar to that from Fig.7. On the right the resulting z-direction trajectory from
the MPC scheme (13) for scenario 3. In black, the CoM trajectory and in red, the reference height
trajectory. The blue lines show the left and right foot trajectories indicating that the robot is walking
up the staircase. The results show that the trajectory successfully tracks the desired height above
the staircase platform

the desired height trajectory represented by the red line in Fig. 8 (on the right) was
able to be tracked. This example shows the robustness of the formulation and the
QCQP solver to various different scenarios.

5 Discussion

To demonstrate the advantages and use of the 3D model for dynamically balanced
locomotion in Sect. 2, two different example ways to use the criterion for MPC gen-
eration of CoM trajectory were presented. Both approaches have a fundamentally
common point: the generalisations to allow for 3D non-coplanar multiple contacts
naturally result in non-convex problems. However, regardless of the use of the crite-
rion as an objective or constraint, the nature of the criterion is that it is in a bilinear
form that can be converted into a convex quadratic function by restricting some vari-
ables. Both MPC approaches take advantage of this and then solve a succession of
convex optimization problems. This is important in the proposed MPC schemes to
ensure that it is still possible to implement them on a robot in real-time. Compar-
ing between the two MPC schemes, it can be observed that using the dynamically
balancing criterion in the objective function results in a problem with more deci-
sion variables than treating it as a constraint (11K vs. 7K , where K is the horizon
length). However, the number of constraints is significantly less in return (9 + K vs.
4K ), and the resulting problem is only a QP rather than a QCQP . As a result, the
approach from Sect. 3 is expected to be more computationally efficient than the one
fromSect. 4. But the constraintMPC approach provides a stricter notion of feasibility
to dynamically balanced locomotion, and is less concerned with optimality.

Finally, it is also worth noting that compared to the traditional ZMP+MPC
approach, several restrictions have been removed, such as coplanar contacts and
predetermined height trajectory. The interesting point is that if any of these are
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relaxed, the problem complexity is identical to that if all are relaxed. As such, the 3D
formulation proposed relaxes many conditions from the ZMP+MPC approach while
still maintaining a balance with the computational cost of the resulting method. As
with the ZMP+MPC approach, the focus is typically more on generating dynami-
cally balanced motion rather than optimal gait behaviour. Hence, the development
of methods such as AQP and FPP-SCA provides the opportunity to generate feasible
motion for more general locomotion scenarios in real-time control.

6 Conclusion and Future Work

We proposed a novel model for dynamically balanced trajectory generation, more
general than the classical IPM+ZMP approach, but simple enough to enable fast
computations of CoM trajectories through an iterative resolution of convex QPs or
convex QCQPs. This claim is supported by the low number of decision variables
and constraint equations shown in the problem analysis. The generalizations gained
from the proposed model andMPC approach include the ability to allow for multiple
non-coplanar contacts and not having to predefine the CoM height trajectory. The
results of the two proposed MPC approaches support the belief that the proposed 3D
model of dynamically balanced locomotion is a good candidate for real-time model
predictive control for multi-contact locomotion.

In future work, we will focus on performing experiments on a real humanoid
robot, and address the following points:

1. Both theAQP and FPP-SCA approaches are observed toworkwell in practice and
converge quickly. However there is no mathematical guarantee on the optimality
of the solution, hence better understanding and analysis of such methods on the
particular structure of the proposed MPC formulations should be more precisely
studied.

2. In the optimisation of the CoM trajectories, the contact locations ci could also
be optimized without losing the convex QP structure. This allows the potential to
not only compute the CoM trajectory, but also optimised contact locations.

Acknowledgements The research presented in this paper was partially funded by the ROMEO2
project.
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The Yoyo-Man

Jean-Paul Laumond, Mehdi Benallegue, Justin Carpentier
and Alain Berthoz

1 Introduction: Legs Versus Wheels?

Goal oriented motion is a distinguished character of living beings. A stone does not
move by itself. Within the living systems, displacement is what makes the difference
between plants and animals. Animals make use of fins in the water and wings in
the air. On land, apart from exceptions as crawling snakes, most of the animals are
equipped with legs. Legged locomotion is based on rotating articulated limbs. The
rotation of the limbs around the contact points on the ground transfers the body
from a position to another one. Rotation then appears as a solution to translate an
articulated body. If nature applies this principle to legged animals, it is surprising that
it does not push this principle until the wheel discovery. Wheel has been invented
and developed by humans.1 Our cars are equipped with wheels and not with legs.

The magic of the wheel is to transform a rotational motion into a translational
one as soon as the wheel touches the ground. In this paper we intend to reveal the
presence of a virtual wheel as condensing all the apparent complexity of the bipedal
locomotion.

1The statement has to be nuanced: rotating engines exist at molecular scale and some insects
are able to shape objects as spheres to move them.
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Fig. 1 From a
chronophotographic image
by E.J. Marey: Walking is a
complex process involving
the actuation and the motion
coordination of many body
segments. What does motion
capture reveal on the
underlying synergies?

The motivation is twofold. From a biomechanics and neuroscience perspective we
want to explore the synergies of human locomotion: how the walking body reveals
motion invariants beyond the well-known arm-leg coordination (Fig. 1)? From a
robotics perspective [32] we seek to fill the gap between two opposite approaches
of humanoid locomotion control. The most robust one is based on the control of the
center of pressure between the feet and the ground allowing humanoid robots to walk
on rough terrains. The second approach is based on clever mechanical designs that
take advantage from the gravity. In the latter case the locomotion is much less energy
consuming; however it is very fragile with respect to the ground perturbations.

The Yoyo-Man project intends to contribute to new mechanical and control
designs for bipedal walkers inspired both by a better understanding of human walking
and by the current research on passive walkers.

Figure 2 illustrates the rationale underlying the project. The rationale is twofold.
From a mechanical perspective, a wheel rotating at the extremity of a string (i.e., a
yoyo) induces its own translation as soon as it touches the ground. Legs are made
of three rotating segments (foot, shank and thigh). A first question is addressed in
Sect. 3: is there a locomotion geometric reference center to describe the motion of
the foot independently from the motion of the shank and the thigh? On the other
hand, from a neuroscience perspective, it is known that humans stabilize their head
while walking. The second question we address in Sect. 4 is the following one: is
there some mechanical benefit to equip passive walkers with a stabilized head on the
top of them, i.e. a locomotion control center?
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Fig. 2 The Yoyo-Man: The hand controls the height of the rotating wheel. The wheel translates
as soon as it touches the ground. The Yoyo-man is a human walker model made of the geometric
center of a virtual rotating wheel together with a control center located at the head

2 Origins of the Rationale

2.1 Mechanical Basics of Bipedal Walking

Anthropomorphic systems are made of a tree of articulated rigid bodies linked
together by rotational joints. This is true for all humanoid robots. This is also true for
human at first glance, if we neglect mechanical scapula or kneecap subtleties. Joint
positions define the system posture. The system configuration is made of all the joints
together with the three placement parameters that give respectively the position and
the orientation of the system on the ground. From a control viewpoint, muscles or
motors operates in the posture space. There is no direct control of the three placement
parameters. In that sense, humans and humanoid robots are underactuated systems.
What is called locomotion is the process that modifies the posture of the system in
such a way the reaction forces with the ground induce the variation of placement
parameters.

Bipedal walking is a cyclic process sequencing two phases: single support when
only one foot is touching the ground and double support when both feet are touching
the ground. This physical description holds for all bipedal walking systems. The
cycle of locomotion is then made of four phases after which it starts again from
(almost) the same starting posture. The stability of the locomotion is reflected by the
attractiveness of a periodic orbit called limit cycle. It is captured by the so-called
Poincaré map [16]. In our context, the Poincaré map is the intersection of the orbit
of the periodic walking motion with the posture space at a same instant of the cycle,
e.g., when the left foot touches the ground (Fig. 3).
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Fig. 3 Locomotion cycle: Locomotion is a cyclic process sequencing the same postures alter-
natively (left). The stability of the underlying dynamical system is captured by the Poincaré map
(right)

2.2 Basics in Humanoid Robot Control

At each phase of the cycle the pressure applied by the surface of feet on the ground
may be concentrated onto a single point: the center of pressure. When both the ground
and the feet surfaces are flat, the center of pressure coincides with the so-called zero
moment point (ZMP) introduced in [30]. As soon as the ZMP remains within the
support surface, the system does not fall.

The property of the ZMP is at the origin of a popular locomotion control scheme.
The ZMP and the center of mass (CoM) are linked together by nonlinear equations.
The control of the CoM is easily derived from the control of the posture. So, in
theory, it is possible to control the placement of the ZMP within the surface sup-
port. However the nonlinearities linking CoM and ZMP variables make the problem
computationally challenging. Under some hypothesis the equations are linear and
the problem becomes easier. This is the case when the center of mass remains at the
same altitude. Maintaining the CoM at the same altitude is made possible thanks
to the redundancy of the anthropomorphic body. The hypothesis is at the origin of
the cart-table model introduced in [19] (Fig. 4). The foundations of such control
schemes are based on the knowledge of the foot steps to be performed. The literature
refers to the so-called preview control [31]: locomotion consists in planning the foot
placement in advance.

Passive walkers are designed from a completely different control perspective [9].
They are minimally actuated. The mechanical design is devised to take advantage of
the gravity and to convert potential energy into kinetic energy. In its simplest version,
the passive walker is made of two articulated legs connected to the hip [10]. It can
be modeled as a compass whose gaits induced a motion of the hip that is the same
as the motion of the center of a rimless wheel. At that stage, it is noticeable that the
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Fig. 4 Cart-table: The cart-table model works under the hypothesis that the CoM moves on a
horizontal plane. The hypothesis can be applied to control the locomotion of humanoid robots
(left). Figure 1 suggests it does not hold for humans (right)

Fig. 5 Rimless wheel: At a first glance, the center of a rolling rimless wheel roughly accounts for
the motion the hip

motion of the center of a rimless wheel seems to be a rather good approximation
of the hip motion in human walking (Fig. 5). The analogy is part of the Yoyo-Man
project rational.

2.3 Neurophysiology Basics in Human Walking

Neurophysiologists have observed that humans and animals stabilize their head when
moving (see an illustration in Fig. 6). Head stabilization facilitates the fusion of
visual and vestibular information. It offers a consistent egocentric reference frame
for motion perception for locomotion [23]. In the Yoyo-Man project we argue that
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Fig. 6 Sketch of the
superimposition of walker
positions in different
phases of the cycle. The
superimposition is achieved
so that the head is in the
same position. The head is
stabilized to keep constant
orientation displayed by the
dotted blue line. (Inspired
by a drawing in [23])

head stabilization also contribute mechanically to the balance when walking. In depth
description of the sensory cognitive benefits of head stabilization and preliminary
results about its mechanical advantages are presented in Sect. 4.

Do humans plan their steps in advance? Sometimes, they obviously do, when the
ground is too uneven. However most of the time, they walk without thinking, i.e.
without consciousness of any planning phase computing in advance where they have
to place their feet. How does walking in the street differ from walking on a mountain
path? On the top part of the pavement depicted by Fig. 7, we have to anticipate what
stones will next be used for stepping. On the other hand, walking on the pavement at
the bottom part of the figure does not require any anticipation of the foot placements.
In which context do we start watching our steps? Sect. 4.4 addresses the question by
introducing the notion of ground texture.
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Fig. 7 Pavement in Roma:
two textured grounds. In
the bottom part, we walk
without thinking, in the
upper part, one has to watch
his/her steps

3 In Search of a Geometric Center for the Yoyo-Man

This section brings to light the geometrical similarity between the rimless wheel and
the human body during walking (Fig. 5). While rolling on the floor, the center of
the rimless wheel describes a sequence of circle arcs whose radius correspond to
the stand beam. From a local viewpoint, this statement can be rephrased as follows:
the contact point describes an arc of circle around the center of the rimless wheel
during each supporting phase. In the case of human body, does there exist such a link
between the foot touching the ground and some point that plays the role of the center
of some rimless wheel? As far as we know, this question has never been addressed in
human motion modeling. At first glance, the articulation point between the thighbone
and the pelvis, i.e. the hip center, would be a good candidate to play the role of the
locomotion geometric center. This is not the case. In this section, we show both that
the proposed rimless wheel model holds for human walkers, and that the center of
the rimless wheel is the center of mass (CoM) of the walking body.

3.1 Experimental Setup

The experimental setup is based on an existing motion database used in [22]. It is
composed of 12 participants (5 women and 7 men, 32.8 ± 5.9 years old, 1.71 ± 0.09
m, 65.3 ± 10.1 kg) who have been asked to walk straight at three different speeds
three times each: natural, slow, and fast walking speed. Subjects were equipped
with 41 reflective markers, with a standard markers placement allowing to compute
the center of mass trajectory by means of anthropomorphic tables [12]. Finally, the
segmentation of gait into simple et double support phases was achieved by using the
methodology described in [15].
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(a) The right foot equipped with the
heel, toe and ankle markers.
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(b) Poulaines of the foot markers.

Fig. 8 Illustration of the right foot equipped with the heel, toe and ankle markers and
Poulaines of thosemarkers along 8 steps. None of the poulaines describes a circular path relatively
to the pelvis center

In our study, we are interested by natural locomotion. So, from the database we
extracted the trials dealing with natural velocity. The the total number of analyzed
trajectories is 12 × 3 = 36.

3.2 Identification of the Foot-CoM Relationship

Poulaine2 is a French word designating the trajectory of the anatomic feet markers
(e.g. ankle, heel, toe) relatively to the geometric center of the pelvis and expressed
in the world frame. For instance, Fig. 8 illustrates the poulaines of the heel, toe and
ankle markers respectively.

At the first sight, none of the aforementioned anatomic markers describes a circular
trajectory relatively to the pelvis center.3 At most, some poulaines have a temporally
(i.e. during a short period) a constant curvature, but not during all the stance phase.
Our approach consists in moving the reference frame from the hip joint center to the
CoM. We then show that a particular convex combination of the heel, ankle and toe
markers of the stance leg describes a circular trajectory whose center is very close
to the center of mass itself.

Choosing the CoM as the center of the reference frame and considering a con-
vex combination of the toe, ankle and heel markers are supported by the following

2We did not find the exact translation of this word in English.
3In biomechanics, the pelvis center is considered as the root node from which the body segment
tree is built.
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rationale. Firstly, the shift from the root marker to the center of mass allows us not
to consider one precise segment (i.e. the root) but to take into account the overall
movement of the human body. Secondly, by choosing a convex combination of the
three aforementioned markers, we ensure that this particular point has an almost zero
velocity during the stance phase.4 It can therefore be treated as the pivot point of the
rimless wheel.

3.3 Methodology

Each walking trial is composed of 10 steps. We divided each of these trials into
phases of single and double support phases. Then we introduce a virtual marker
at the convex combination of toe, ankle and heel markers by selecting a particular
convex combination for each subject, we fitted in the least-square sense the best
circle passing through this virtual marker during 85% of the single support phase.
On average, the root mean square error of the fitting part was around 2.5 mm. Figure 9
illustrates the procedure by showing the fitted circle having a center (yellow marker)
very close to the CoM (red marker) and passing on average by the convex combination
(in green). The other curves correspond to the anatomic markers of the foot, the hip
joint center and the pelvis center.

3.4 Results

For each subject, we computed the covariance matrix of the set of circle center
positions relative to either the center of mass or the hip joint center. From the inverse
of both covariance matrices, we define two distance metrics centered on the mean
position of the circle centers and relative to the both reference points: the center of
mass and the hip joint center. At the end, we obtained two dimensionless distances
which discriminate if the two reference points belong to the circle center distributions
or not.

Figure 10 summarizes the study over the 12 subjects. For the two metrics, the
bar errors plotted at the top of each orange or blue boxes of Fig. 10 corresponds to
the confidence interval [−1; 1]. While the height of the boxes corresponds to the
dimensionless distance between either the center of mass or the hip joint center and
the circle center distributions. We can remark that for all subjects, the CoM lives in the
confidence interval of the circle center distributions. It is never the case concerning
the hip joints center. Those observations allow us to conclude as following: first, there
exists a similarity between the rimless wheel and humans during nominal walking

4It is worth to mention at this stage that, due to the rolling of the foot on the ground, there is no
zero velocity point which is fixed in the feet during the stance phase.



226 J.-P. Laumond et al.

(a) The virtual marker as a convex
combination of the anatomic foot
markers.
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Fig. 9 The virtual marker location and its trajectory relative to the CoM. The virtual marker
(i.e. the convex combination of heel, toe and ankle markers) follows a circle whose center (yellow
point) is close to the CoM (red point)
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Fig. 10 Dimensionless distance between the fitted circle centers and the CoM or the hip joint
center. For all subjects, the center of mass belongs to the distribution of circle centers. This is not
true in the case of the hip joint center

gait and second, the center of this rimless does not correspond to the geometric pivot
center (i.e. the hip joint center) but rather to the center of mass itself.

Finally, it is worth mentioning that our results hold only in the case of nominal
gaits (i.e. walking gait with natural comfort velocity). Indeed, in the case of slow
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or fast walking velocities, we found that there is no convex combination of markers
belonging to the stance foot which has a circular path. Some other studies have been
focused on formulating a generic model describing the center of mass trajectory for
a large class of walking speeds [17]. Nonetheless, the proposed model overestimates
the vertical displacement of the center of mass while it fits well lateral motions.

4 In Search of a Control Center for the Yoyo-Man

4.1 A Convenient Center of Control

One important property of the human steady gait dynamics is that it takes profit from
the natural passive dynamics of the body. The passive dynamics is the dynamics
of the body when no actuation is present, the robot is then subject only to gravity,
external forces and passive elasticity and friction of the joints. The body morphology
(especially the hip and knee joints [10]) allows the emergence of most prominent
features of walking dynamics. The benefits of this structure is to enable the gener-
ation of walking motion with high energy efficiency and low control frequency [1].
Furthermore, the control of steady gait has been investigated to suggest that it hap-
pens in a very low level of the brain, in a spinal level, consisting in a combination
of a simple rhythm generator and reflexes to external perturbations [11]. The steady
gait seems to require minimal muscular efforts and cognitive involvements: we walk
without thinking about it.

However, as we said earlier, neurophysiologists have observed that humans stabi-
lize actively their head when moving, including walking on flat surfaces. By stabiliza-
tion, we mean that the head tilt is controlled to remain relatively constant compared
to other limbs of the body. Head stabilization is a task prone to dissipate energy since
it works almost always against the motion. So why do humans stabilize their head?

The head carries most of the sensory organs, and specifically the visuo-vestibular
system, responsible for a great part of balance estimation, spatial localization and
motion perception. It can be understood then that stabilizing the head facilitates the
fusion of visual and vestibular information. Recent studies show also that head stabi-
lization improves the accuracy of estimation of vertical direction by vestibular-like
inertial sensor [14]. Head stabilization improves perturbation detection and safety
supervision. Moreover, head tilt conservation offers a consistent and stable ego-
centric reference frame for perception and generation of motion in general [6] and
locomotion in particular [18, 23].

These explanations fit with clinical observations on humans. The unsteadiness and
the loss of balance resulting from head-neck system sensorimotor disturbances have
been widely documented [7, 20, 25, 29]. It has even been suggested that the impair-
ments in the neck somatosensory inputs and sensorimotor control are as important for
balance as a lower-limb proprioception loss following a knee or an ankle injury [27].
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Therefore, we can consider that the head is the convenient center of locomotion
control: even when we happen to walk without thinking, it offers a comfortable
frame with stable dynamics and there takes place the perception, the cognition and
the generation of gait.

However, the head is a relatively rigid limb, representing 7% of the total mass
of the body, and occupies the top 12% of its height. That means a non-negligible
deal of the inertia lies in there. Therefore, head stabilization which actively modifies
the motion of the head, should have a noticeable impact on the dynamics of the
gait. This effect may be negative, perturbing the walking dynamics and requiring
the rest of the body to compensate for it. Alternatively it can be part of the desired
dynamics, enhancing balance and improving coordination. In few words: does the
head-stabilization by itself contribute to war effort against falling?

4.2 The Model of Steady-Gait Head-Body Dynamics

Based on mechanical concepts from passive robot walkers [8, 9], we introduce a
walking simulation scheme where two simple walking mechanical models are then
compared. These models include improvements to classical compass-like walkers,
by adding torso, interleg actuation, spring-damper at the feet, and rough terrains.

Figure 11 illustrates our mechanical model. It operates in the sagittal plane. It is
made of five articulated rigid bodies: two bodies for the (knee-free) legs, one body
for the torso, one for the neck and one for the head. Note that the neck is modeled
as an articulated body and not as a simple joint. This setting reflects the property
of the head-neck system to have two centers of rotation in the sagittal plane: one
at the base of the neck and the other at ear level [28]. The mass distribution and
the limb lengths are anthropometric (e.g., [3]). In the first of our two models, the
walker has a rigid neck and tends to stabilize the torso upright. In the second one
the neck is modeled as a limb of two joints and the walker tends to maintain the
head direction constant. Both walker models are inspired by the mechanical design
of passive walking robots [9].

Indeed, we do not aim at modeling perfectly the human gait. Up to now, only simple
dynamical models allow to reproduce locomotion gaits [21]. Dynamical modeling
of human walking is out of reach of all current simulators. Nevertheless the energy
efficiency of these robots, the low-frequency of their control and their natural limit-
cycle dynamics are common characteristics with human locomotion [1, 16].

Detailed technical description of the models is presented in [5].

4.3 Estimating Balance: Ground Textures and MFPTs

Due to difference in control, the whole body dynamics of the walkers is different.
However, both dynamics are balanced on flat surface and converge to a stable limit
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Fig. 11 A representation of the models we simulate. The A model is the same structure subject
to the constraints α = β = γ . The B model has stabilized neck joints. The rough terrain is modeled
with a slope change at each step

cycle. Therefore both walkers can walk indefinitely on flat surface without falling.
However, the difference between the dynamics should lead to a difference in balance
performances. This difference should appear in the presence of external perturba-
tions. In our context the perturbation we study is ground texture, because it is still
today a challenging problem, especially for passive-dynamics walkers.

A textured ground is a ground for which the unevenness follows a probability dis-
tribution. For our 2D walker, we model it by changing the ground inclination at each
step, following a centered Gaussian law. The standard deviation of the probability
distribution define the degree of ground unevenness (see Fig. 11).

Byl and Tedrake [8] present a metrics which is particularly suitable for limit
cycle walkers on uneven ground. This metrics is derived from classical analysis of
metastable systems and is called Mean First Passage Time (MFPT). Limit-cycle
walking is then considered as a metastable system, and MFPT is the mean number
of steps the walker makes before falling. This metrics has the property to explore all
the reachable dynamics of the walker subject to perturbations, to take into account
the repetitive property of ground texture, and to provide a synthetic estimator easy to
comprehend intuitively. However, the computation of MFPTs may be time consum-
ing using a naive approach, especially for good performance walkers. To solve this
problem, we developed then an optimized algorithm to compute MFPT in reasonable
time for complex walking systems [4].

We computed then MFPTs for both models on several ground textures. And we
present the results hereinafter.
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Fig. 12 Mean number of steps with an ideal orientation sensor. Mean number of steps of the
walker models equipped with an ideal orientation sensor on different textures of the ground. By
texture we mean the standard deviation of the ground slope. MFPTs are displayed in logarithmic
scale. For higher ground roughness, MRPT of both models drops such that they need to change
their walking control: watching their step becomes necessary

4.4 Results

On flat terrain, and for both control models, it has not been possible to find an
upper bound on MFPTs (see Fig. 12). However walker performances greatly differ
as soon as a slight texture change appears. The phenomenon can be seen from the
example of 0.01 rad standard deviation. In this case, MFPT of the rigid neck model
is 23 steps, while head stabilization guarantees MFPT of more than 3 million steps!
This performance improvement persists as the ground texture increases, even if the
difference declines. This is purely due to mechanical effects, i.e. to the contribution
of the head motion to the balance of the gait.

These results may be seen differently. The head stabilization curve of Fig. 12 can
be seen as a shift to the right for the rigid neck curve. In other words, head stabilization
enables to increase significantly the range of ground textures the walker can handle
with the same balance performances.

As this level we may conclude that head stabilization may improve substantially
the dynamic balance of walking systems. Head stabilization is an heuristic answer
to the question of taking advantage of the head mobility during walking. Indeed,
while it is likely not the optimal control of the neck regarding balance, it is a very
simple control that produces a complex behavior with significant benefits. Additional
explanations for the origin of this effect, including its impact on energy consumption
can be found in [5].
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5 Conclusions

The preliminary results presented in this paper supports the intuition that bipedal
walking can be understood as a wheel rotating around a fixed point (the CoM) while
being controlled by a stabilized mass on top of it (Fig. 2). What we introduced as
the Yoyo-Man model then appears as a promising route to explore both to elucidate
the synergies of the human locomotion and to design new mechanical and control
architectures for humanoid robots. Here are the current research directions we are
exploring:

• First, we have seen that the rotating rimless wheel model is a rather good model
of human locomotion as soon as the center of the wheel is located at the center
of mass, and surprisingly not at the joint between the hip and the thighbone. The
result holds in the sagittal plane. However the model of the foot we have introduced
from the three markers on the heel, the toe and the ankle, does not account for the
continuous roll of the feet on the ground. To overcome these limitations, a deeper
observation of the CoM motion in the 3-dimensional space deserves to be pursued.

• Second, we have shown that a simple walking compass equipped with a stabilized
articulated mass on top of it is more robust to ground perturbations than a compass
equipped with the same but non-articulated mass. The result opens new perspec-
tives in the design of humanoid robots based on passive dynamic principles [2].
Why not equipping future humanoid robots with controlled articulated heads?

• Third, after the contribution of the head stabilization in sensing [13], the mechan-
ical contribution of the head stabilization to bipedal walking enhances the role
of the head in anthropomorphic action control. Furthermore the head yaw angle
anticipates body yaw (shoulder and trunk) and shift in locomotor trajectory [18,
26]. This behavior has been successfully implemented to steer a humanoid robot
by its head [24]. However the implementation remains based on a classical preview
control of the ZMP. The Yoyo-Man intends to truly “walk without thinking”. It
challenges us to devise new locomotion controllers that would be free of any step
anticipation and even free of contact force sensors.
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Quantifying and Optimizing Robustness
of Bipedal Walking Gaits on Rough Terrain

Cenk Oguz Saglam and Katie Byl

1 Introduction

Quantifying robustness of legged locomotion is essential toward developing more
capable robots with legs. In this work, we study underactuated bipedwalkingmodels.
For such systems, various sources of disturbance can be introduced for robustness
analysis. While keeping the methods generic, this paper focuses on two-legged loco-
motion and studies stability on rough terrain, or equivalently, robustness to terrain
disturbance.

An intuitive and capacious approach is to use two levels for controlling bipedal
locomotion. Fixed low-level controllers are blind to environmental information, such
as the terrain estimation. Given environment and state information, the high-level
control problem defines a policy to choose the right low-level controller at each step.
Our previous work has always assumed a fixed set of low-level gait controllers exist
and focused on the high-level control design [1]; in this work, we finally address the
more fundamental issue of tuning a particular gait (low-level controller) itself.

For optimization of low-level control for stability, quantification is a critical step.
In many approaches to biped walking control, stability is conservatively defined as
a binary metric based on maintaining the zero-moment point (ZMP) strictly within
a support polygon, to avoid rotation of the stance foot and ensure not falling [2].
However, robust, dynamic, fast, agile, and energy efficient human walking exploits
underactuation by foot rolling. For such robots, including point-feet walkers, local
stability of a particular limit cycle is studied by investigating deviations from the
trajectories (gait sensitivity norm [3], H∞ cost [4], and L2 gain [5]), or the speed of
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convergence back after such deviations (using Floquet theory [6, 7]). The L2 gain
calculation in [5] was successfully extended and implemented on a real robot in [8].
Alternatively, the largest single-event terrain disturbance was maximized in [9] and
trajectories were optimized to replicate human-walking data in [10].

Another approach to robustness quantification begins by stochastic modeling of
the disturbances and (conservatively) defining what a failure is, e.g., slippage, scuff-
ing, stance foot rotation, or a combination of such events. After discretizing the
disturbance and state sets by meshing, step-to-step dynamics are studied to treat the
system as aMarkov Chain. Then, the likelihood of failure can be easily quantified by
calculating the expected number of steps before falling, or mean first-passage time
(MFPT) [11]. Optimizing a low-level controller for MFPT was previously imprac-
tical due to high computation time of MFPT for a given controller. However, our
work over the years now allows us to estimate this number very quickly, and in turn,
various low-level controllers can be optimized and benchmarked.

The rest of this paper is organized as follows. The walker model we study and
the terrain model we employ are presented in Sect. 2. We then present two low-level
control schemes in Sect. 3: (1) A hybrid zero dynamics strategy, with trajectories
based on Bézier polynomials and joint-tracking via PD control as suggested in [12],
and (2) sliding mode control with time-invariant piece-wise constant joint references
adopted in [1]. Section4 shows the discretization of the dynamics. Tools for generat-
ing and working on a Markov chain are presented in Sect. 5. Section6 gives results,
including both performance benchmarks, using the MFPT metric, and also tables
documenting the optimal control parameters found using our algorithm. The latter
is of particular use to anyone wishing to repeat and build upon our methods. Finally,
Sect. 7 gives conclusions and discusses future work.

2 Model

2.1 The Biped

The planar 5-link biped with point feet and rigid links illustrated in Fig. 1 is adopted
as the walker model in this paper. The ankles have no torque, so the model is under-
actuated. The ten dimensional state of the robot is given by x := [q ; q̇], where
q := [q1 q2 q3 q4 q5]T is the vector of angles shown in the figure.

When only one of the legs is in contact with the ground, the robot is in the single
support phase, which has continuous dynamics. Using the Lagrangian approach, the
dynamics can be derived as

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (1)
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Fig. 1 Illustration of the five-link robot with symmetric legs. As will be explained, θ is called the
phase variable

where u is the input. Equation (1) can be equivalently expressed as

ẋ =
[

q̇
−D−1(Cq̇ + G)

]
+

[
0

D−1B

]
u =: f (x) + g(x)u. (2)

On the other hand, if both legs are contacting the ground, then the robot is in its
double support phase, which can be approximated as an impact map given by

x+ = Δ(x−), (3)

where x− and x+ are the states just before and after the impact respectively. Conser-
vation of energy and the principle of virtual work give the mapping Δ [13, 14].

A step consists of a single support phase and an impact event. Since walking
consists of steps in sequence, it has hybrid dynamics. For a step to be successful,
certain “validity conditions”must be satisfied, which are listed next. After impact, the
former stance leg must lift from ground with no further interaction with the ground
until the next impact. Also, the swing foot must have progressed past the stance
foot before the impact of the next step. Only the feet should contact the ground.
Furthermore, the force on stance tip during the swing phase and the force on the
swing tip at impact should satisfy the no-slip constraint given by

Ff riction = Fnormal μs > |Ftransversal |. (4)

If validity conditions are not met, the step is labeled as unsuccessful and the system
is modeled as transitioning to an absorbing failure state. This is a conservative model
because in reality violating these conditions does not necessarily mean failure.
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2.2 The Terrain

In this paper we assume the terrain ahead of the robot is a constant slope until an
impact. So each step experiences a slope and the terrain is angular. As shown in
Fig. 1, we denote the slope by γ. This terrain assumption captures the fact that to
calculate the pre-impact state, the terrain for each step can simply be interpreted as
a ramp with the appropriate slope.

An alternative and perhaps more common choice is modeling the rough terrain
with varying heights like stairs. Both models of rough terrain are equally complex,
valid, and important for this paper’s purpose and combining the two is a topic of
future work.What they both do not consider is the possibility of various intermediate
“bumps” that might cause tripping.

3 Control Scheme

This section summarizes two low-level controller strategies that are used to demon-
strate the applicability of our method.

1. Hybrid Zero Dynamics Using Proportional-Derivative Control and Bézier
Polynomials

The hybrid zero dynamics (HZD) controller framework provides stable walking
motions on flat ground. We summarize some key points here and refer interested
reader to [12] for details.

While forming trajectories, instead of time, the HZD framework uses a phase
variable denoted by θ. Since it is an internal-clock, phase needs to be monotonic
through the step. As the phase variable, we use θ drawn in Fig. 1, which corresponds
to θ = cq with c = [−1 0 − 1/2 0 − 1]. Second, since there are only four actuators,
four angles to be controlled need to be chosen, which are denoted by h0. Controlling
the relative (internal) angles means h0 := [q1 q2 q3 q4]T . Then h0 is in the form of
h0 = H0q, where H0 = [I4 0].

Let hd(θ) be the references for h0. Then the tracking error is given by

h(q) := h0(q) − hd(θ) = H0q − hd(cq). (5)

Taking the first derivative with respect to time reveals

ḣ = ∂h

∂x
ẋ = ∂h

∂x
f (x) =: L f h, (6)

where we used the fact that ∂h
∂x g(x) = 0. Then, the second derivative of tracking error

with respect to time is given by

ḧ = L2
f h + LgL f h u. (7)
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Substituting the linearizing controller structure

u(x) = (LgL f h)−1(−L2
f h + v) (8)

to (7) yields
ḧ = v. (9)

To force h (and ḣ) to zero, a simple PD controller given by

v = −KP y − KD ẏ (10)

can be employed,where KP and KD are the proportional and derivative gains, respec-
tively.

As suggested in [12], we use Bézier polynomials to form the reference (hd ). Let
θ+ and θ− be the phase at the beginning and end of limit cycle walking on flat terrain
respectively. An internal clock which ticks from 0 to 1 during this limit cycle can be
defined by

τ (q) := θ(q) − θ+

θ− − θ+ . (11)

Then, the Bézier curves are in the form of

bi (τ ) =
M∑
k=0

αi
k

M !
k!(M − k)!τ

k(1 − τ )M−k, (12)

where M is the degree and αi
k are the coefficients. Then, the reference trajectory is

determined as

hd(θ) :=

⎡
⎢⎢⎣
b1(τ )

b2(τ )

b3(τ )

b4(τ )

⎤
⎥⎥⎦ . (13)

Choosing M = 6 yields (6 + 1) × 4 = 28 αi
k parameters to optimize. However,

for hybrid invariance, h = ḣ = 0 just before an impact on flat terrain should imply
h = ḣ = 0 after the impact. This constraint eliminates 2 × 4 = 8 of the parameters
as explained in [12]. In total, 20 + 2 = 22 parameters must be chosen, including the
PD controller gains.

2. Sliding Mode Control with Time-Invariant Piece-Wise Constant References

The second controller strategy of this paper is adopting sliding mode control (SMC)
to track piece-wise constant references [1, 15].

As in the HZD control, let h0 denote the four variables to control. As a result of
our experience in previous work [16], we proceed with
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h0 := [θ2 q3 q4 q5]T , (14)

where θ2 := q2 + q5 is an absolute angle. Equivalently we can write h0 = H0q,
where

H0 =

⎡
⎢⎢⎣
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎦ . (15)

Substituting the control input

u = (H0D
−1B)−1(v + H0D

−1(Cq̇ + G)), (16)

into (1) yields
ḧ0 = v. (17)

We then design v such that h0 acts as desired (hd ). The tracking error is again given
by h = h0 − hd and the generalized error is defined as

σi = ḣi + hi/τi i = {1, 2, 3, 4}, (18)

where τi s are time constants for each dimension of h. Note that when the generalized
error is driven to zero, i.e. σi = 0, we have

0 = ḣi + hi/τi . (19)

The solution to this equation is given by

hi (t) = hi (t0) exp(−(t − t0)/τi ), (20)

which drives hi to 0 exponentially fast. Next, v in (17) is chosen to be

vi = −ki |σi |2αi−1sign(σi ), i = {1, 2, 3, 4}, (21)

where ki > 0 and 0.5 < αi < 1 are called the convergence coefficient and conver-
gence exponent respectively. Note that if we had αi = 1, this would simply be a
standard PD controller. Then, τi and ki are analogous to the proportional gain and
derivative time of a PD controller. However, 0.5 < αi < 1 ensures finite time con-
vergence. For further reading on SMC please refer to [17]. Note that SMC has
4 × 3 = 12 parameters to be optimized.

For faster optimization, it is preferable to have fewer parameters to optimize.
Motivated by simplicity, we use references in the form of
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hd =
{

[θre f 12 qre f3 qre f 14 qre f5 ]T , θ1 := q1 + q5 > π,

[θre f 22 qre f3 qre f 24 qre f5 ]T , otherwise.
(22)

Note that the references are piecewise constant and time-invariant. What makes this
reference structure appealing is the fact that there are only 6 parameters to optimize.
So, in total, 12 + 6 = 18 parameters are optimized.

4 Discretization

4.1 Discretization of the Dynamics

The impacts when a foot comes into contact with the ground provide a natural
discretization of the robot motion. For the terrain profile described in Sect. 2.2, using
(2) and (3) the step-to-step dynamics can be written as

x[n + 1] = ρ(x[n], γ[n], ζ[n]), (23)

where x[n] is the state of the robot and γ[n] is the slope ahead at step n.

4.2 Discretization of the Slope Set

Our method requires a finite slope set Γ , which we typically set as

Γ =
{
γ◦ : γ

dγ
∈ Z, −20 ≤ γ ≤ 20

}
, (24)

where dγ is a parameter determining the slope set density. The range needs to be
wide enough so that the robot is not able to walk at the boundaries of the randomness
set.

4.3 Meshing Reachable State Space

There are two key goals in meshing. First, while the actual state x might be any value
in the 10 dimensional state space, the reachable state space for system is a lower
dimensional manifold once we implement particular low-level control options and
allow only terrain height variation as a perturbation source. The meshed set of states,
X , needs to well cover the (reachable) part of state space the robot can visit. This
set should be dense enough for accuracy while not having “too many” elements for
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computational efficiency. Second, we want to learn what the step-to-step transition
mapping, ρ(x, γ, ζ), is for all x ∈ X and γ ∈ Γ . Next, an initial mesh, Xi , should be
chosen. In this study, we use an initial mesh consisting of only two points. One of
these points (x1) represents all (conservatively defined) failure states, no matter how
the robot failed, e.g. a foot slipped, or the torso touched the ground. The other point
(x2) should be in the controllable subspace. In other words, it should be in the basin
of attraction for controller ζ.

Then, our algorithm explores the reachable state space deterministically. We ini-
tially start by a queue of “unexplored” states, X = {x ∈ Xi : x �= x1}, which cor-
responds to all the states that are not simulated yet for all possible terrains. Then we
start the following iteration: As long as there is a state x ∈ X , simulate to find all
possible ρ(x, γ, ζ) and remove x from X . For the points newly found, check their
distance to other states in X . If the minimum such distance exceeds some threshold,
a new point is then added to X and X .

A crucial question is how to set the (threshold) distancemetric so that the resulting
X has a small number of states while accurately covering the reachable state space?
The standardized (normalized) Euclidean distance turns out to be extremely useful,
because it dynamically adjusts the weights for each dimension. The distance of a
vector x̄ from X is calculated as

d(x̄, X) := min
x∈X

{∑
i

(
x̄i − xi

ri

)2
}

, (25)

where ri is the standard deviation of i th dimension of all existing points in set X . In
addition, the closest point in X to x̄ is given by

c(x̄, X) := argmin
x∈X

{∑
i

(
x̄i − xi

ri

)2
}

. (26)

We are now ready to present the pseudocode in Algorithm 1. Two important tricks
to make the algorithm run faster are as follows. First, the slope set allows a natural
cluster analysis. We can classify states using the inter-leg angle they possess. So,
the distance comparison for a new point can be made only with the points that are
associated with the same (preceding) slope. This might result in more points in the
finalmesh, but it speeds up themeshing and later calculations significantly. Secondly,
consider a state x .We can simulate ρ(x,−20◦, ζ) just once and then extract ρ(x, γ, ζ)

for all γ ∈ Γ . The reason is, for example, in order robot to experience an impact at
−20◦, it has to pass through all possible (less steep) impact points in the slope set.

While meshing the whole 10D state space is infeasible, this algorithm is able
to avoid the curse of dimensionality because the reachable state space is actually a
quasi-2D manifold [18]. As a result, the meshing can be done with a relatively small
number of iteration steps.
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Algorithm 1Meshing algorithm
Input: Controller ζ, Initial set of states Xi , Slope set Γ and threshold distance dthr
Output: Final set of states X , and state-transition map
1: X ← Xi (except x1)
2: X ← Xi
3: while X is non-empty do
4: X2 ← X
5: empty X
6: for each state x ∈ X2 do
7: for each slope γ ∈ Γ do
8: Simulate a single step to get the final state x , when initial state is x , slope ahead is γ,

and controller ζ is used. Store this information in the state-transition map.
9: if robot did not fall and d(x, X) > dthr then
10: add x to X
11: add x to X
12: end if
13: end for
14: end for
15: end while

5 Metastable Markov Chains

5.1 Obtaining a Markov Chain

To obtain a finite state machine representation of the system, we need to approximate
the dynamics for points ρ(x, γ, ζ) /∈ X . The most elementary approach is 0’th order
approximation given by

x[n + 1] ≈ c(ρ(x[n], γ[n], ζ[n]), X), (27)

where c(x̄, X) is the closest point x ∈ X to x̄ for the employed distance metric. Then
the deterministic state transition matrix can be written as

T d
i j (γ, ζ) =

{
1, if x j = c(ρ(xi , γ, ζ), X)

0, otherwise.
(28)

The nearest-neighbor approximation in (27) appears to work well in practice. More
sophisticated approximations result in transition matrices not just having one or zero
elements, but also fractional values in between [19], and it does not provide much
increase in accuracy to the authors’ experience.

A Markov Chain can be represented by a stochastic state-transition matrix T
defined as

Ti j := Pr(x[n + 1] = x j | x[n] = xi ). (29)
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To calculate this matrix, the first thing we need to do is assume a distribution over
slope set, noted by

PΓ (γ) = Pr(γ[n] = γ). (30)

In this paper, we assume a normal distribution for PΓ , with mean μγ , and standard
deviation σγ . After distributing γ values, T can be calculated as

T (ζ) =
∑
γ∈Γ

PΓ (γ) T d(γ, ζ). (31)

As we make dthr and dγ smaller, we have more accurate representations of the
full dynamics at the expense of higher numbers of states in the final mesh.

5.2 Expected Number of Steps Before Failure

This section serves as a summary on how we estimate the expected number of steps
before failure, or mean first-passage time (MFPT). For details, we invite interested
reader to [20].

The eigenvalues of T cannot havemagnitude larger than one. However, the largest
eigenvalue is equal to 1 because we model failure as absorbing. Also, the second
largest eigenvalue, denoted by λ2, is non-negative and real.

No matter what the initial condition is, if the robot does not fall within several
steps, then the probability density function for the system converges to itsmetastable
distribution. Starting with this distribution, with 1 − λ2 probability the walker is
going to fall on the next step, otherwise the probability distribution does not change.
Then, the probability of taking n steps only, equivalently falling at the nth step is
simply

Pr(x[n] = x1, x[n − 1] �= x1) = λn−1
2 (1 − λ2). (32)

For λ2 < 1, realize that as n → ∞, the right hand side goes to zero, i.e., the system
will eventually fail. Note that we also count the step which ended up in failure as
a step. An intuitive check is to consider failing at the first step (taking 1 step only).
When n = 1 is substituted, we get 1 − λ2 as expected. Then, the average number of
steps can be then calculated as

MFPT = E[FPT ]

=
∞∑
n=1

n Pr(x[n] = x1, x[n − 1] �= x1)

=
∞∑
n=1

nλn−1
2 (1 − λ2) = 1

1 − λ2
,

(33)
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where we used the fact that λ2 < 1. As a result, MFPT can then be calculated using

M =
{

∞ λ2 = 1
1

1−λ2
λ2 < 1.

(34)

Note that being stable corresponds toλ2 = 1, butwewill introduce enough roughness
so that we always have λ2 < 1. This is achieved with a wide-enough slope set and
high enough σγ .

We would like to mention that instead of steps, expected distance before failure
can alternatively be calculated as explained in [21]. However, as listed later in the
following section, we did not observe high variances in stepwidth values. So, number
of steps is a good indicator of how much the robot travels.

6 Results

Unless stated otherwise, we use the “minimize” function from [22], which is based on
fminsearch function, in MATLAB to optimize. At every iteration the reachable state
space for given controller parameters is meshed and the correspondingMarkov chain
is obtained to calculate the expected number of steps as explained in the previous
sections. In this paper we optimize forμγ = 0◦, i.e., zero average slope. However, we
optimize control for each of a range of particular values of σγ . If it is too small, then
the MFPT turns out to be very large, which may not be calculated due to numeric
software capabilities. Using MATLAB, we can calculate MFPT values up to around
1014 reliably. On the other hand, σγ should not be too large, otherwise it may not
be as easy to differentiate different controllers’ performance with all controllers
performing “badly” as σγ gets large enough. Appropriate range for σγ can be easily
decided by calculatingMFPT for different values with a singlemesh. Oncewe decide
on σγ , we pick dγ . dγ = σγ/2 is the rule of thumb we apply in this paper. Just like dγ ,
dthr can be made smaller for higher accuracy in the expense of higher computation
time. Whether dγ and dthr are small enough can be checked after the optimization by
using smaller values and confirming MFPT estimation does not change much. For
the dγ and dthr values listed later in this section, each cost computation (iteration)
took around a minute. Typically, a couple of hours are enough to optimize controller
parameters.

1. Hybrid Zero Dynamics Using Proportional-Derivative Control and Bézier
Polynomials

For the HZD scheme, the base controller, ζ1Base, is obtained by assuming flat terrain,
fixing speed to be 0.8m/s and minimizing energy usage as in [12]. To obtain ζ1COT,
we remove the speed constraint and optimize for cost of transport (COT) given by

COT = W

mgd
, (35)
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wherem is the mass, g is the gravitational constant, and d is the distance traveled. In
this paper we use a conservative definition of “energy spent” by regarding negative
work is also done by the robot, i.e., W = |Wpositive| + |Wnegative|.

Both of these controllers assume flat terrain, i.e., σγ = 0◦, in optimization. In
addition, the HZD framework shows how to obtain the trajectories only, but not the
controller gains. So, we just picked KP = 100 and KD = 10, which works on flat
terrain. To obtain ζ1MFPT, we used the “patternsearch” algorithm in MATLAB to opti-
mize for MFPT with σγ = 1◦, dγ = 0.5 and dthr = 0.3. Table1 lists the parameters
for each controller.

Table 1 Parameters for the first controller scheme in radians

ζ1Base ζ1COT ζ1MFPT

KP 100 100 169.2681

α1
0 3.6151 3.6151 3.6037

α1
1 3.6413 3.6475 3.5957

α1
2 3.3894 3.4675 3.3948

α1
3 3.2884 3.2884 3.2914

α1
4 3.1135 3.1135 3.1136

α1
5 3.1708 3.1708 3.1701

α1
6 3.0349 3.0349 3.0448

α2
0 3.0349 3.0349 3.0448

α2
1 2.9006 2.9081 2.9259

α2
2 2.9544 3.4544 3.0162

α2
3 3.5470 3.0939 3.5302

α2
4 3.5186 3.5186 3.5255

α2
5 3.6851 3.6929 3.7298

α2
6 3.6151 3.6151 3.6037

ζ1Base ζ1COT ζ1MFPT

KD 10 10 30.0166

α3
0 −0.4162 −0.3693 −0.4113

α3
1 −0.6657 −0.6079 −0.6018

α3
2 −0.3732 0.0124 −0.3126

α3
3 −0.3728 −0.6501 −0.3444

α3
4 −0.2359 −0.1880 −0.2366

α3
5 −0.3780 −0.3819 −0.3478

α3
6 −0.3200 −0.3141 −0.3221

α4
0 −0.3200 −0.3141 −0.3221

α4
1 −0.2484 −0.2285 −0.2856

α4
2 −0.3690 −0.7323 −0.3664

α4
3 −1.1041 −0.1932 −1.1005

α4
4 −0.3973 −0.3817 −0.3834

α4
5 −0.4260 −0.5139 −0.5082

α4
6 −0.4162 −0.3693 −0.4113
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Fig. 2 Average number of
steps before falling
calculated using (33) versus
σγ for the first controller
scheme. Slopes ahead of the
robot are assumed to be
normally distributed with
μγ = 0◦
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Table 2 Estimation of MFPT for First Controller Scheme with μγ = 0◦ and σγ = 2◦

ζ1Base ζ1COT ζ1MFPT

Estimation using (33) 2.2085 2.2049 5.5206

Monte Carlo
simulation

2.1511 2.2487 6.1290

We compare the stability of each controller versus the roughness of the terrain in
Fig. 2. Noting the logarithmic y-axis, we immediately notice the huge improvement
in stability by optimizing with the suggested method.

We note that Monte Carlo simulations are not a computationally practical means
of verifying MFPT when it is very high, which has motivated our methodology
throughout. However, we present a Monte Carlo study in Table2 for σγ = 2◦, where
MFPT is small. To obtain the second row in this table, we simulated 10 thousand
times. To allow the robot to “forget” the initial condition, we omit the first step, i.e.,
we only consider cases where it took more than a single step and do not count that
first step.

2. Sliding Mode Control with Time-Invariant Piece-Wise Constant References

We start optimizing the second controller scheme with the hand-tuned parameters
taken from [16], which we refer to with ζ2Base. We first optimize for Cost of Transport
(COT) of the limit cycle gait on flat terrain to obtain ζ2COT. We then optimize for
MFPT with σγ = 2◦, dγ = 1 and dthr = 1. This results with controller ζ2MFPT. The
parameters for each controller are given in Table3.

Figure3 compares the stability of each controller versus the roughness of the ter-
rain. Again noting the logarithmic y-axis, the suggested method provides a dramatic
increase in the stability, just like in Fig. 2.

Table4 presents the Monte Carlo study obtained assuming σγ = 5◦. Just like in
Table2, we omit the first step to allow the simulation to “forget” the initial condition.
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Table 3 Parameters for the second controller scheme

ζ2Base ζ2COT ζ2MFPT

θ
re f 1
2 225◦ 190.5977◦ 224.9460◦

θ
re f 2
2 204◦ 200.92392◦ 203.7358◦

qre f3 0◦ −0.0008◦ −0.0169◦

qre f 14 −60◦ −19.6094◦ −60.0042◦

qre f 24 −21◦ −13.4718◦ −24.0150◦

θ
re f
5 0◦ −0.0003◦ 0.0040◦

k1 50 49.1126 40.3791

k2 100 84.2092 96.4343

k3 75 83.1357 77.1343

k4 10 7.5848 15.7245

ζ2Base ζ2COT ζ2MFPT

α1 0.7 0.7977 0.7003

α2 0.7 0.6063 0.6954

α3 0.7 0.6838 0.6991

α4 0.7 0.4873 0.7001

τ1 0.1 0.1354 0.0920

τ2 0.1 0.0997 0.0905

τ3 0.05 0.0679 0.0632

τ4 0.2 0.1690 0.1918

Fig. 3 Average number of
steps before falling
calculated using (33) versus
σγ for the second controller
scheme. Slopes ahead of the
robot are assumed to be
normally distributed with
μγ = 0◦. Note that both the
range of σγ and the y-axis
scaling are different from
Fig. 2
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Table 4 Estimation of MFPT for Second Controller Scheme with μγ = 0◦ and σγ = 5◦

ζ2Base ζ2COT ζ2MFPT

Estimation using (33) 5.1766 1.1470 10.6433

Monte Carlo
simulation

5.0738 1.5716 10.4813
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Table 5 Comparison of controller schemes for μγ = 0◦

ζ1Base ζ1COT ζ1MFPT ζ2Base ζ2COT ζ2MFPT

σγ = 1◦
(Stochas-
tic
Terrain)

MFPT 5.9 7.3 113.1 3.2×105 2.2 1.6×1014

σγ = 0◦
(Flat
Terrain)

Step width 0.413 0.43 0.4 0.456 0.388 0.439

Speed 0.8 0.516 0.649 0.752 0.513 0.928

COT 0.187 0.069 0.143 0.869 0.225 0.93

3. Comparison

We first note that all six controllers are stable on flat ground (σγ = 0◦), because they
all exhibit stable limit cycles. However, as Table5 shows, there is a huge difference
between ζ2MFPT and any of the HZD controllers. Comparing the results in Figs. 2 and 3
also emphasizes this dramatic difference. So, we conclude that the second controller
scheme is much more capable in terms of stability. One of the main goals of this
paper is to illustrate this benchmarking capability.

We note that many parameters of ζ2Base and ζ2MFPT in Table3 are very close. We
suspect that we only find local minimums. Indeed, starting with different initial
conditions yields different final gaits.

Amajor problem in the first controller scheme,we believe, is the fact that reference
is designed only for flat terrain. For example, the controller does not really knowwhat
to do when θ > θ+ (or τ > 1). This is because Bézier polynomials are designed for
0 ≤ τ (q) ≤ 1, and they quickly deviate outside this range. As a result, ζ1Base cannot
take more than several steps on inclined terrain with a slope of −1◦. We discovered
an easy fix to the problem by adopting the following policy: If τ (q) > 0.95, then do
not apply any torque. With this update, the controller can still walk on flat terrain.
In addition, it seems to be stable on −9◦ degree sloped terrain! However, we did
not present the result with this policy because it ends up with a low MFPT for
μγ = 0◦. The reason is, it works very badly on uphill slopes. The fact that turning
the controller off greatly helps when going downhill shows the need for a better
reference parametrization to keep controller on at all times. Reference [21] presents
an attempt to achieve this goal.

7 Conclusions and Future Work

In this work, we present a methodology for optimizing a low-level control scheme
and of benchmarking final performance on rough terrain using the MFPT met-
ric for reliability. We apply the approach to two particular control schemes as a



250 C.O. Saglam and K. Byl

motivating example; however, the approach is designed to provide a systematicmeans
of optimizing and benchmarking any of a wide variety of control strategies, not only
for walking systems but also for other dynamic systems subject to stochastic envi-
ronments, more generally.

As mentioned in the previous section, we end up with a local minimum for the
second controller scheme. We aim to find the global solution in a future study. The
sensitivity of our stabilitymetric tomodel mismatch is another important future work
topic.

Reference [21] is a work that builds on this paper. It presents a controller scheme
that is more capable than the two studied in this paper. It also shows that we can also
optimize under constraints, e.g., for desired speed, step width, or ground clearance.
Furthermore, by designing multiple controllers for different mean slopes, it demon-
strates how to increase stability dramatically. Finally, we may use cost functions that
incorporate other performance metrics also, similar to [23]. For example, a practical
goal is to increase stability while decreasing energy consumption, balancing the two
aims as desired.
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A Probabilistic Framework
for Semi-autonomous Robots Based
on Interaction Primitives with Phase
Estimation

Guilherme Maeda, Gerhard Neumann, Marco Ewerton,
Rudolf Lioutikov and Jan Peters

1 Introduction

Assistive and collaborative robots must have the ability to physically interact with
the human, safely and synergistically. However, pre-programming a robot for a large
number of tasks is not only tedious, but unrealistic, especially if tasks are added or
changed constantly. Moreover, conventional programming methods do not address
semi-autonomous robots—robots whose actions depend on the actions of a human
partner. Nevertheless, once deployed, for example in a domestic or small industrial
environment, a semi-autonomous robot must be easy to program, without requiring
the need of a dedicated expert. For this reason, this paper proposes the use of inter-
action learning, a data-driven approach based on the use of imitation learning [17]
for learning tasks that involve human-robot interaction.

Amongst the several challenges posed by interaction learning, this paper focuses
on two intrinsically related problems. First, the problem of estimating the phase of
the human movement, that is, the progress or the stage of the execution of the human
trajectory under an intermittent stream of position data. This is a problem of practical
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Fig. 1 Collaborative and assistive robots must address both action recognition and movement
coordination based on human observations. a A robot coworker must recognize the intention of the
human before deciding which action to take. b Observing the human movement through corrupted
(e.g. occluded, sparse, intermittent) position data, poses the problem of identifying the correct phase
of the movement

importance since the majority of motion capture systems available, such as marker
tracking and depth cameras, rely on planned spaces and well positioned cameras;
requirements that are incompatible with most of the already existing collaborative
environments of interest (e.g. in a hospital, at home) where occlusions are prone to
occur. Second, based on this assessment, we address the problem of recognizing the
human action and generating the corresponding movement of the robot assistant. As
illustrated in Fig. 1a, by observing the movement of the human, a semi-autonomous
robot must decide if it should hand over a plate, or hold a screwdriver. The human,
however, may execute movements at different unobserved speeds, and position mea-
surements may be corrupted by occlusions, which cause the problem of temporally
aligning sparse position observations with the interactionmodel. Figure1b illustrates
such a problem where the same sequence of three observed positions may fit two
models that are identically spatially, but have different phases of execution. Such an
ambiguity hinders the adaptation of the robot movement.

The contribution of this paper is a probabilistic framework for interaction learning
with movement primitives that allows a robot to react faster by estimating the phase
of the human, and to associate the outcome of the estimation to address different
tasks. As the algorithm relies on Probabilistic Movement Primitives [15] for human-
robot interaction, the method will also be referred to as Interaction ProMPs. An
Interaction ProMP provides a model that correlates the weights that parameterize
the trajectories of a human and a robot when executing a task in collaboration. The



A Probabilistic Framework for Semi-autonomous Robots … 255

Interaction ProMP is conditioned on the observations of the human and the robot is
controlled based on a posterior distribution over robot trajectories.

This paper consolidates our recent efforts in different aspects of semi-autonomous
robots. It leverages on the representation of movements with ProMPs, our develop-
ments in the context of human-robot interaction [1, 13], and the ability to address
multiple tasks [7, 13]. While our previous interaction models were explicitly time-
dependent, here, we introduce a phase-dependent method. Section2 emphasizes the
most relevant works in phase and time representations and briefly addresses related
works in other aspects of the framework.1 Section3 describes the proposed method
with a brief background on ProMPs, followed by Interaction ProMPs, phase estima-
tion, and action recognition. Finally, Sect. 4 provides experiments and discussions
on the application of the method in an assembly scenario.

2 Related Work

Dynamical Movement Primitives [8], or simply DMPs, have been known to address
temporal variations with a phase variable. The phase variable is used to govern the
spread of a fixed number of basis functions that encode parameters of a forcing func-
tion. ProMPs use the concept of phases in the same manner, with the difference that
the basis functions are used to encode positions. This difference is fundamental for
Interaction Primitives since estimating the forcing function of the human is nontrivial
in practice, while positions can be often measured directly [13].

Recently, a modified form of DMPs where the rate of phase change is related to
the speed of movement has been presented [20]. The method uses Reinforcement
Learning and Iterative Learning Control to speed up the execution of a robot’s move-
ment without violating pre-defined constraints such as carrying a glass full of liquid
without spilling it. A similar form of iterative learning was used to learn the time
mapping between demonstrated trajectories and a reference trajectory [19]. With
their approach, a robot was able to perform a surgical task of knot-tie faster than the
human demonstrator.

Dynamic Time Warping (DTW) [16] has been used in robotics applications for
temporally aligning trajectories. For example, as part of an algorithm that esti-
mates the optimal, hidden trajectory provided by multiple expert demonstrations [4].
Although DTW has been shown suitable for off-line processing of data, its online
application can be hard to achieve in practice due to exhaustive systematic search. A
different approach is to explicitly encode the time of demonstrations such as in [3],
where the structure of the model intrinsically generates smooth temporal solutions.
The measurement or estimation of velocity, for example, by differentiation of a con-
sistent stream of positions, removes the ambiguity of Fig. 1b and allows for the real-
ization of online algorithms that cope with very fast dynamics [9, 10]. Suchmethods,

1The interested reader is referred to our previous works for additional and detailed literature review
in respect to their corresponding contributions.
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however, rely on a planned environment free from occlusions and fast tracking capa-
bilities; requirements difficult to achieve in environments where semi-autonomous
robots are expected to make their biggest impact, such as in small factories, hospi-
tals and home care facilities. A limitation of ProMPs in relation to representations
based on multiple reference frames such as the Dynamical Systems [3], and forcing
functions as in DMPs, is that ProMPs only operate within the demonstrated set of
demonstrations.

Several methods to learn time-independent models by imitation have been pro-
posed. For example, HiddenMarkovModels (HMM) and Gaussian Mixture Regres-
sion (GMR) have been used to learn and reproduce demonstrated gestures [2] where
each hidden state corresponds to a Gaussian over positions and velocities, locally
encoding variation and correlation. In [5], a method to reactively adapt trajectories
of a motion planner due to changes in the environment was proposed by measuring
the progress of a task with a dynamic phase variable. While this method is suited
for cases where the goal is known from a planned trajectory—the phase is estimated
from the distance to the goal—a semi-autonomous robot is not provided with such
information: the goal must be inferred from the observation of the humanmovement,
which in turn requires an estimate of the phase.

This paper shares similar challenges faced in [21] where the robot trajectory had
to be adapted according to the observation of the human partner during handovers.
In [21] the authors encoded the demonstrations in a tree-structured database as a
hierarchyof clusters,which then poses the problemof searchingmatching trajectories
given partial observations. The use of a probabilistic approach in the present work
allows us to address the search for a matching trajectory simply computing the
likelihoods of various models given the observed trajectories.

Several other works have addressed the action recognition problem. Graphical
models, in particular, have been widely used. In human-robot interaction, HMMs
have been used hierarchically to represent states and to trigger low-level primi-
tives [12]. HMMs were also applied to predict the positions of a coworker in an
assembly line for tool delivery [18] while in [11], Conditional Random Fields were
used to predict the possible actions of a human. The prediction of the movement of
human coworkers was addressed in [14] with a mixture model. The cited methods
address the generation of the corresponding robot movement as an independent step,
either by pre-programming suitable actions [11], or by using motion planners [14].
In contrast, Interaction ProMPs intrinsically correlate the action of the human with
the movement of the robot such that action recognition and movement generation
are provided by the same model.
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3 Probabilistic Movement Primitives for Human-Robot
Interaction

This section introduces ProMPs for a single degree-of-freedom (DoF) from which
the multi-DoF ProMP will follow naturally. In human-robot interaction, the use of
ProMPs consists on the use of the multi-DoF case where some of the DoFs are given
by a tracked human interacting with a semi-autonomous robot. This section finishes
by introducing phase estimation, which also provides means to recognize human
actions in multiple-task scenarios.

3.1 Probabilistic Movement Primitives on a Single
Degree-of-Freedom

For each time step t a position is represented by yt and a trajectory of T time
steps as a smooth sequence y1:T . A parameterization of y1:T in a lower dimensional
weight space can be achieved by linear regression on time-dependent Gaussian basis
functions ψt ,

yt = ψT
t w + εy, (1)

p( y1:T |w) =
T∏

1

N ( yt |ψT
t w,� y), (2)

where εy∼N (0,� y) is zero-mean i.i.d. Gaussian noise andw ∈ R
N is a weight vec-

tor that encodes the trajectory. The number of Gaussian bases N is often much lower
than the number of trajectory time steps. The number of basis is a design parameter
that must be matched with the desired amount of detail to be preserved during the
encoding of the trajectory. In the particular case of the experiments here reported,
trajectories have an average time of 3 s, sampled at 50Hz. The dimensionality is
decreased from 3 × 50 = 150 samples to a weight vector of length N = 20.

Assume M trajectories are obtained via demonstrations; their parameterization
leading to a set of weight vectors W = {w1, ... wi , ... wM} (the subscript i as in
wi will be used to indicate a particular demonstration when relevant, and will be
omitted otherwise). Define θ as a parameter to govern the distribution of W such
that w∼p(w;θ). From the training data we model p(w;θ) as a Gaussian with mean
μw ∈ R

N and covariance �w ∈ R
N×N , that is θ = {μw,�w}. This model allows us

to sample from the demonstrated distribution over positions with

p( yt ;θ) =
∫

p( yt |w)p(w;θ)dw = N ( yt |ψT
t μw,ψ

T
t �wψt + � y). (3)
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The Gaussian assumption is restrictive in two ways. First, the training data must be
time-aligned, for example by DTW; second, only one type of interaction pattern—or
collaborative task—can be encoded within a single Gaussian (mixture of models
were used to address the latter problem in an unsupervised fashion [7]).

3.2 Correlating Human and Robot Movements
with Interaction ProMPs

Interaction ProMPs model the correlation of multiple DoFs of multiple agents. Let
us define the state vector as a concatenation of the P number of observed DoFs of
the human, followed by the Q number of DoFs of the robot

yt = [ yH1,t , ... y
H
P,t , yR1,t , ... y

R
Q,t ]T ,

where the upper scripts (·)H and (·)R refer to the human and robot DoFs, respectively.
Similar to the single DoF case, all DoF’s trajectories are parameterized as weights
such that

p( yt |w̄) = N ( yt |HT
t w̄,� y), (4)

where HT
t = diag((ψT

t )1, . . . , (ψ
T
t )P , (ψ

T
t )P+1, . . . , (ψ

T
t )P+Q) has P + Q diago-

nal entries. Each collaborative demonstration now provides P + Q training trajec-
tories. The weight vector w̄i of the i-th demonstration is

w̄i = [ (wH
1 )

T , . . . , (wH
P )

T , (wR
1 )

T , . . . , (wR
Q)

T ]T , (5)

from which a normal distribution from a set of M demonstrations W̄ = {w̄1, ...w̄M}
with μw ∈ R

(P+Q)N and �w ∈ R
(P+Q)N×(P+Q)N can be computed.

The fundamental operation for semi-autonomy is to compute a posterior proba-
bility distribution of the weights (now encoding both human and robot) w̄∼N (μnew

w ,

�new
w ) conditioned on a sparse (e.g. due to motion capture occlusion) sequence of

observed positions of the human y∗ measured within the interval [t, t ′]. This opera-
tion can be computed with

μnew
w = μw + K ( y∗

t,t ′ − HT
t,t ′μw),

�new
w = �w − K (HT

t,t ′�w), (6)

where K = �wHT
t,t ′(�

∗
y + HT

t,t ′�wHt,t ′)
−1 and �∗

y is the measurement noise. The
upper-script (·)new is used for values after the update and the subscript (·)t,t ′ is used
to indicate the unvenly spaced interval between t and t ′. The observation matrixHT

t,t ′
is obtained by concatenating the bases at the corresponding observation steps, where
the Q unobserved states of the robot are represented by zero entries in the diagonal.
Thus, for a each time step t ,
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Fig. 2 The workflow of Interaction ProMP on a single task where the distribution of human-robot
parameterized trajectories is abstracted as a bivariate Gaussian. The conditioning step is shown
as the slicing of the distribution at the observation of the human position. In the real case, this
distribution is multivariate

HT
t =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ψT
t )1 . . . 0 0 . . . 0

0
. . . 0 0

. . . 0
0 . . . (ψT

t )P 0 . . . 0
0 . . . 0 0P+1 . . . 0

0
. . . 0 0

. . . 0
0 . . . 0 0 . . . 0P+Q

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Trajectory distributions that predict human and robot movements are obtained by
integrating out the weights of the posterior distribution

p( y1:T ;θnew) =
∫

p( y1:T |w̄)p(w̄;θnew)dw̄. (8)

Figure2 summarizes the workflow of the Interaction ProMP. During the training
phase, imitation learning is used to learn the parameterθ. In the figure, the distribution
modelled by θ is abstracted as a bivariate Gaussian where each of the two dimensions
are given by the distribution over the weights of the human and robot trajectories.
During execution, the assistive trajectory of the robot is predicted by integrating out
the weights of the posterior distribution p(w̄;θnew). The operation of conditioning
is illustrated by the slicing of the prior, at the current observation of the position of
the human y∗

t .
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3.3 Estimating Phases and Actions of Multiple Tasks

Previous works [7, 13] have only addressed spatial variability, but not temporal
variability of demonstratedmovements. However, when demonstrating the same task
multiple times, a human demonstrator will inevitably execute movements at different
speeds, thus changing the phase at which events occur. Previously, this problem has
been alleviated by introducing an additional pre-processing step on the training data
for time-alignment based on a variant of DTW. Back to Fig. 1b, the aligned model is
shown as the distribution of trajectories indexed by the normalized time.

Time-alignment ensures that the weights of each demonstration can be regressed
using the same feature ψ1:T . As a consequence, during execution, the conditioning
(6) can only be used when the phase of the human demonstrator coincides with the
phase encoded by the time-aligned model, which is unrealistic in practice. In [7,
13] we avoided this problem by conditioning only at the last position of the human
movement, since for this particular case, the corresponding basis function is known
to be ψT . For any other time step t , the association between y∗

t and the basis ψt

is unknown when the human presents temporal variability and the velocity is either
unobserved or computation from derivatives impractical due to sparsity of position
measurements.

We propose incorporating the temporal variance as part of the model by learning a
distribution over phases from the multiple demonstrations. This enriched model not
only eliminates the need for time-alignment, but also opens the possibility for faster
robot behaviour as the conditioning (6) can be applied before the end of the human
movement. Initially, we replace the original time indexes of the basis functions with
a phase variable z(t). Define Tnom as a nominal trajectory duration (e.g. the average
final time of the demonstrations) from which the weights of all demonstrations are
regressed to obtain the parameters of the distribution θ = {μw,�w}; the Gaussian
bases are spread over the nominal duration ψ1:Tnom . Assuming that each of the i-th
demonstrations has a constant rate of change, define a temporal scaling factor

αi = Tnom/Ti . (9)

The single scaling factor αi means that observations (the three red circles in Fig. 1b)
are “stretched” or “compressed” at the same rate in the temporal direction. Although
simple, our experiments have shown that this assumption holds in practice for simple,
short stroke movements typical of handovers (see [6] for problems where multiple
phases are addressed). Thus, a trajectory of duration T can be computed relative to
the phase

p( y1:T |w) =
T∏

1

N ( y(zt )|[ψ(zt )]Tw,� y), zt = αt. (10)

Given the sparse partial sequence of human position observations, a posterior
probability distribution over phases is given as
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p(α| y∗
t,t ′ ,θ) ∝ p( y∗

t,t ′ |α,θ)p(α). (11)

For simplicity, we assume the prior p(α) as a univariate Gaussian distribution,
obtained from the M demonstrations, α∼N (μα,σ

2
α). For a specific α value the

likelihood is

p( y∗
t,t ′ |α,θ) =

∫
p( y∗

t,t ′ |w̄,α)p(w̄)dw̄

= N ( y∗
t :t ′ |[A(zt :t ′)]Tμw, [A(zt,t ′)]T�w[A(zt,t ′)] + �∗

y), (12)

where

[A(zt,t ′)]T =

⎡

⎢⎢⎢⎣

[ψ(zt,t ′)]T1 . . . 0

0
. . . 0

0 . . . [ψ(zt,t ′)]TP

⎤

⎥⎥⎥⎦ , (13)

is the matrix of basis functions of the observed positions of the human, which cor-
responds to the observed entries of the full matrix H in (7), however, now indexed
by the phase zt = αt . Given the observations y∗

t,t ′ , the likelihood of each sampled α
candidate is computed with (12), and the most probable scaling value

α∗ = arg max
α

p(α| y∗
t,t ′ ,θ) (14)

is selected. Intuitively, the effect of different phases is to stretch or compress the tem-
poral axis of the prior (unconditioned) distribution proportionally to α. The method
then compares which scaling value generates the model with the highest probabil-
ity given the observation y∗

t,t ′ . Once the most probable scaling value is found, its
associated observation matrix H(z1:T ) can be used in (6) to condition and predict
the trajectories of both human and robot. To efficiently estimate the phase during
execution, one approach is to sample a number of values of α from the prior p(α)
and precompute and store, for each of them, the associated matrix of basis functions
A(z1:T ) and H(z1:T ) beforehand.

In a multi-task scenario, we can now address the recognition of the task given the
positions y∗

t,t ′ . Assume a K number of collaborative tasks are encoded by indepen-
dently trained Interaction ProMPs represented by the parameter θk . For each task
k, the most probable α∗

k and likelihood must be stored. By noting that each task is
represented by its own parameter θk , the most probable task is given by re-using
the likelihoods of the set {α∗

k ,θk}, already computed in (14). The task recognition is
given by

k∗ = arg max
k

p(k| y∗
t,t ′), (15)

where p(k| y∗
t,t ′) ∝ p( y∗

t,t ′ |α∗
k ,θk)p(k) with p(k) being a prior probability distri-

bution of the task and p( y∗
t,t ′ |α∗

k ,θk) was previously obtained in (12). The two
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optimizations in (14) and (15) lead to an algorithm that scales linearly in the number
of sampled α’s and in the number of tasks.

4 Experiments with a Semi-autonomous Robot

Collaborative assembly experiments were conducted using a 7-DoF lightweight arm
equipped with a 5-finger hand. In all experiments, the wrist of the human was tracked
by motion capture, providing XYZ Cartesian coordinates. The joint encoder trajec-
tories of the robot were recorded by kinesthetic teaching. For each demonstration,
the set of human-robot measurements were paired and stored with a sampling rate
of 50Hz.

4.1 A Multi-task Semi-autonomous Robot Coworker

As it was shown in Fig. 1a, we applied our method on a multi-task scenario where
the robot plays the role of a coworker that helps a human assembling a toolbox.
This scenario was previously proposed in [7] where the training data was time-
aligned. As a consequence, the conditioning could only be applied at the end of the
movement. Here, the robot can predict the collaborative trajectory before the human
finishes moving, leading to a faster robot response. Moreover, the effort spent in
pre-processing training data was considerably decreased as no time-alignment was
needed.

The assembly consists of three different collaborative interactions. In one of them,
the human extends his hand to receive a plate. The robot fetches a plate from a stand
and gives it to the human by bringing it close to his hand. In a second interaction, the
human fetches the screwdriver and the robot grasps and gives a screw to the human
as a pre-emptive collaborator would do. The third type of interaction consists of the
robot receiving a screwdriver such that the human coworker can have both hands free
(the same primitive representing this interaction is also used to give the screwdriver
back to the human). Each interaction of plate handover, screw handover and holding
the screwdriver was demonstrated 15, 20, and 13 times, respectively. The trajectories
obtained from the demonstrations are shown in Fig. 3 in the Cartesian space. Note,
however, that the interaction primitives were trained on the Cartesian coordinates of
the wrist with the joint coordinates of the robot.

Tomake adirect comparisonbetween the previousmethod and the presentmethod,
the same training data presented in [7] was used. The durations of each demonstra-
tion was, however, randomly modified as we noticed the original data did not present
sufficient variability of phases (in our initial tests the correct phase could be reason-
ably estimated with only 2–3 α samples). The randomization acts as a surrogate for
different demonstrators with different speeds of execution. The original time-aligned
demonstrations for one of the tasks can be seen in Fig. 4a as the several gray curves.
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Fig. 3 Demonstrations of the three different interactions and their respective trajectories
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Fig. 4 Prediction of the distribution over trajectories of the human and the robot for the task of
handing over a screw driver. a The previousmethodwith time-aligned data without phase estimation
and therefore conditioned only a the last observation of the human position. The phase estimation
method where five measurements randomly spaced are taken up to 25% of the total duration of the
human movement in (b) and 50% of the total duration of the human movement in (c)

Using leave-one-out cross-validation (LOOCV) the figure shows that the uncertainty
of the human position collapses at the end, when the measurement is made on the
test data. The posterior distribution, shown as the blue patch with ± two-standard
deviations, predicts the robot final joint positions with an average error of 2.1 ±
6.7 degrees. Figure4b, c shows the proposed method with phase-estimation where
the training data includes various phases. In Fig. 4b, the observation represents 25%
of the total trajectory length. The final positional error was of 6.8 ± 11.3 degrees.
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(a) (b)

Fig. 5 Leave-one-out cross-validation over the whole training dataset of plate handovers. The final
position errors (a) and the uncertainty (±2σ) (b) of the predictions are shown. The predictions are
made when 10, 25, 50, and 80% of the trajectory are observed and compared with the time-aligned
case

In (c), 50% of the trajectory was observed and the error decreased to 2.0 ± 5.7
degrees, roughly achieving the same accuracy as the time-aligned case shown in (a).
The error was computed by averaging the RMS final position error over the 7 joint
positions of the arm.

In Fig. 5a, each bar represents the final position error as the average over the 7
joints of the robot with LOOCV over the whole data set of demonstrations. The
figure shows the cases when 10, 25, 50, and 80% of the trajectory were observed.
For each observation, 25 samples of the phase parameter α were used. We compared
those results with the original method [7] when the prediction is made based on
the final measurement, indicated by the bar labelled “Time aligned”. When 80%
of the trajectory was observed, the prediction provided the same accuracy of the
time-aligned method.

From the same LOOCV test, the uncertainty at the final position (that is, the width
of the blue patch previously shown in Fig. 4 at the end of the trajectory), was also
quantified. These results are shown at the right plot Fig. 5b. Note that when 80% of
observations were provided, a trajectory with less uncertainty than the time-aligned
case can be predicted. This results from the fact that, with phase estimation, the
covariance matrix is updated multiple times while in the time-aligned case only one
single update is made at the end of the movement.

Interaction ProMPs also provide the ability for the robot to spatially coordinate
its movement according to the movement of the human. A practical application is
the handover of an object at different positions as shown in Fig. 6. In the left picture,
the robot first receives the screwdriver from the human. In the right picture, the
human extends his hand in a different location and the robot then delivers the tool
back. The trajectory of the robot was inferred by conditioning the Interaction ProMP
during the first second of the movement of the human.We have previously quantified
the accuracy of the prediction in our setup achieving positional errors of less than
3cm [13].
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Fig. 6 Handover and return of a screwdriver at different positions, obtained by conditioning the
Interaction ProMP on the positions of the wrist marker

With phase estimation, the robot reaction time for the handover of the screwdriver
shown in Fig. 6 decreased on average by 2s, a reduction of 25% of the task dura-
tion in relation to the original time-aligned case. Our preliminary evaluations on the
assembly scenario was carried out by sampling 25 values of α phases for each of
the three tasks, thus requiring 75 (25 samples × 3 tasks) calls to the computation of
the probabilities (11) while the human moves his arm. The whole process, including
the final prediction of the full trajectory with (8), observed during the first second
of the human movement took in average 0.20 s using Matlab code on a conventional
laptop (Core i7, 1.7GHz). To control the robot, only the mean of the posterior dis-
tribution over trajectories for each joint of the robot was used, and tracked by the
standard, compliant joint controller provided by the robot manufacturer.2 A video of
this experiment can be watched in http://youtu.be/4qDFv02xlNo.

4.2 Discussion of the Experiment and Limitations

In practice, there is an upper limit on the number of tasks and sampled α’s that
can be supported. This limit can be empirically evaluated as the total time required
to compute the probability of all sampled alphas, for all tasks, which must be less
than the duration of the human movement. Otherwise, it is faster to predict the robot
trajectories based on the final measurement of the human, as it was done in previous
works. This limit depends on the efficiency of the implementation and the duration
of the human movement.

Since the experiments aimed at exposing the adaptation of the robot movement
solely bymeans of the Interaction ProMPs, no direct feedback tracking of the marker
on the human wrist was made. The interaction primitive framework may potentially
benefit when used in combination with a feedback controller that tracks the markers

2Althoughnot used in this paper, theProMPframework alsoprovidesmeans to compute the feedback
controller and the interested reader is referred to [15].

http://youtu.be/4qDFv02xlNo
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directly. Note, however, that it is not possible to completely replace an interaction
primitive by a tracking controller. A feedback controller does not provide the flexi-
bility and richness of the trajectories that can be encoded in a primitive learned from
human demonstrations.

A system that allows for reliable estimation of velocity (or a constant stream of
position) can greatly simplify the estimation of the phase, and under the assumption
of a constant rate α, make the problem readily solvable. On the other hand, the
nondisruptive deployment of semi-autonomous robots in the field must cope with
occluded and sparse positionmeasurements, often provided by low-cost sensors such
asKinect cameras, which requires algorithms that are capable of estimating the phase
from such data. In the short termwe envision a self-contained setup that uses a Kinect
camera as a replacement of the optical marker tracking system that was used during
the experiments.

5 Conclusions

This paper presented a method suited for collaborative and assistive robots whose
movements must be coordinated with the trajectories of a human partner moving
at different speeds. This goal was achieved by augmenting the previous framework
of Interaction ProMPs with a prior model of the phases of the human movement,
obtained from demonstrated trajectories. The encoding of phases enriches the model
by allowing the alignment of the observations of the human in relation to the inter-
action model, under an intermittent positional stream of data. We experimentally
evaluated our method in an application where the robot acts as a coworker in a fac-
tory. Phase estimation allowed our robot to predict the trajectories of both interacting
agents before the human finishes the movement, resulting in a faster interaction. The
duration of a handover task could be decreased by 25% while using the same robot
commands (same speed of the robot movement).

A future application of the method is to use the estimated phase of the human to
adapt the velocity of the robot. A slowlymoving human suggests that the robot should
also move slowly, as an indication that a delicate task is being executed. Conversely,
if the human is moving fast, the robot should also move fast as its partner may want
to finish the task quickly.
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Averaged Anchoring of Decoupled Templates
in a Tail-Energized Monoped

Avik De and Daniel E. Koditschek

1 Introduction

Dimension reduction enjoys a long analytical tradition in dynamical systems theory
generally [1] and locomotion particularly [2], but the synthesis of complex, high
dimensional dynamical behavior from simple low dimensional components is far
less considered. Notwithstanding some early examples of anchored templates [3] in
physical [4, 5] and numerical [6, 7] studies, the only presently available systematic
account of how to embed low dimensional target dynamics in higher dimensional
mechanical bodies entails inverse dynamics along the quotient space down to the
attracting submanifold [8, 9]. Yet well before any of this work, Raibert had already
shown empirically how to synthesize stable one-, two-, and four-legged spatial run-
ning behavior by parallel composition of simple, decoupled, one degree of freedom
vertical, horizontal, and rotational feedback laws [10].

Motivation and contributions This paper builds on and significantly advances the
ideas of [11, 12] to achieve what we believe to be the first formal account of such
anchor synthesis via template composition. We examine an approximate model of
a tailed monoped that exhibits stable sagittal plane translational hopping motion
energized by tail pumping during stance. The tail controller excites its actuator by
applying a new purely vertical hopping regulator [13] to the the robot’s shank oscilla-
tion phase. The stepping controller adjusts the next leg touchdown angle by applying
a modified active rimless wheel speed regulator [14] to the angular momentum of
the robot’s mass center relative to the pinned toe. We show that both the vertical
and fore-aft regulators, acting alone on their respective one degree of freedom tem-
plate plants in isolation, succeed in stabilizing hopping height and horizontal speed.
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We then show that this parallel composition of template controllers stabilizes the
hopping translational gait of the highly coupled approximate model.1

This paper introduces as well (to the best of our knowledge for the first time)
in the locomotion literature the dynamical systems methodology of averaging. Har-
nessing specific symmetries in motion and force played a major role in Raibert’s
compositional methods [10] and we express his intuition here by integrating them
out (or in) along the stance phase. Such appeal to averaging symmetric dynamical
influences gains its theoretical traction [1, 15] because our mechanical system exe-
cutes periodic orbits in its locomotory steady state along which (loosely speaking)
the energy levels of various compartments of the dynamics evolve at a much slower
time-scale than does the phase. The right confluence of these circumstances has the
fortunate effect of insuring not only that the averaged dynamics closely approximate
the original but guaranteeing that their steady state (limit cycle stability) properties
are identical. Recourse to averaging, in turn, motivates a new, relaxed version of
the template-anchor relation [3]. We develop this new idea using our motivational
example in Sect. 4, but we leave a formal definition to future work.

Organization and results We first develop some mathematical tools for averaging
a particular class (Definition 1) of hybrid systems in Sect. 2. Proposition 1 extends
the classical averaging result [1] to our application domain. An application-focused
reader may skip this section initially and refer back at its usage in Sects. 3–4.

In Sect. 3, we present two classical 1DOF template systems as phase-averageable
hybrid systems: the vertical hopper [13] and the rimless wheel [16] (modified to
include some control affordance [14]). We present template controllers for these
template systems (inspired by [10, 17]) that provably stabilize the 1DOF plants.

In Sect. 4, we show how to take the parallel composition of these two simple
constituents and apply it to a 3DOF model of the tailed SLIP (an approximation to
a physical system that we have built). We use averaging theory to demonstrate that
the desired steady state hopping behavior is indeed rendered asymptotically stable
in this highly coupled 3DOF model.

In Sect. 5 we show simulation evidence for our theoretical claims, and data from
a physical hopping machine showing (in spite of our approximations in the model
of Sect. 4) qualitative behavior quite similar to the simulation results.

The contributions of this paper can be summarized as (a) introduction of a new
notion of “average anchoring,” and an extension of classical averaging theory (Propo-
sition 1) to a relevant class of hybrid systems, (b) “unpacking” the classic SLIP
template [18] as a “cross-product” (in our relaxed sense of anchoring) of a vertical
heartbeat [13] and a rimless wheel [16], and (c) a proof of stability of compositional
control using decoupled controllers in a coupled 3DOF tailed SLIP model system.

A note on notation The symbol a� refers to an “energy” coordinate for subsystem �

(not necessarily mechanical energy), which changes slowly relative to the phase of

1The chief advances beyond the initial composition study of [11] are that: (i) we achieve a stability
proof of the steady state gait limit cycle for the 4DOF closed loop tailed biped (Fig. 1); and (ii) we
are able to do so for a far less restricted range of tail-energizing energies (17).
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Table 1 References to decoupled controllers and important ODE’s and vector fields

Vertical hopper Rimless wheel Anchor

Controller uv (8) uh(ah) (13) ≈ uv(t) × uh(ah)
(16), (23)

Dynamics r̈ (5), fv (9) θ̈, fh (11) q̈ (15)

Averaged dynamics f v (10) f h = fh (11) f = f v × f h (19),
(22)

the system (Definition 1). The bold subscript is also used for other symbols pertaining
to a specific subsystem; e.g. kv is the gain chosen for the vertical subsystem. We have
collected references to important equations and symbols in Table 1.

2 Hybrid Averaging

For our analysis in this paper will focus on hybrid systems with a single domain. We
specialize the general definition in [19], of a hybrid system with 1 domain, to add
properties conducive to averaging (Proposition 1).

Definition 1 Given ε > 0 (a “separation of time scales” parameter quantifying slow
energy-phase dynamics), an averageable hybrid system is a tuple (A, f,R) with

(i) a topological disk A ≈ R
d as the “energy” domain,

(ii) a C2 non-autonomous (“phase-varying”) vector field f : A × [0, Ts] × R+ →
TA, where Ts > 0, such that the system dynamics are

ẋ = ε f (x, t, ε), and (1)

(iii) an energy reset map, R : A → A that is ε-close to the identity in the sense
that there is some array-valued smooth map, S(x) such that the equilibrium
of f is also a fixed point of R, and the Jacobian of R is DR = I + εS, and
S(x) + TsD f (x) is full rank at each x .

Remark Though the definition above is sufficient for this paper, we observe
that the triple (A, f,R) is a mere specialization of a hybrid system as defined
in [19, Definition 1]. To see how, think of decoupled “phase” dynamics ψ̇ = ω
being appended to the state, yielding a standard hybrid system H = (D, F,G, R),
where D := A × [0, Ts], F := [

ω f
ω

]
,G := A × {Ts}, R := [R

0

]
with a single hybrid

mode. The last condition above is difficult to check, and we leave a more complete
generalization of this result to future work.

The “averaging” technique [1] can be extended to a method of approximating
(with error bounds) solutions of the Ts-periodic system (1) with an averaged hybrid
system by replacing f in (1) with
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dx

dt
= ε

Ts

∫ Ts

0
f (x, t, 0) dt =: ε f (x), (2)

with the same decoupled phase, guard set and reset map.
Additionally, the Poincaré return maps for (1) and (2) can both be defined as usual,

using A × {Ts} as the section.

Proposition 1 (Hybrid averaging) Let (A, f,R) be a averageable hybrid system.
If p0 is a hyperbolic fixed point of an equilibrium of (2), then there exists ε0 >

0 such that for all 0 < ε ≤ ε0, (1) possesses a unique hyperbolic periodic orbit
r(p0) + O(ε), of the same stability type as p0.

Proof (adapted from [1]) Our system satisfies all conditions required for the proof
of Theorem 4.1.1(i) in [1] on the set t ∈ (0, Ts]. We conclude that if at ψ = 0+
(just after the reset), |x0 − y0| = O(ε), then |x(t) − y(t)| = O(ε) on a time scale
t ∼ 1/ε. Construct the change of coordinates x = y + εw(y, t, ε), as in [1], so that (1)
becomes

dy

dt
= ε f (y) + ε2 f1(y, t, ε), (3)

where f1 is a lumped O(ε2) “remainder term.”
With the cross-section � := {(y, t) : t = Ts}, and U ⊂ �, an open set, the

Poincaré maps P0 : U → � and Pε : U → � can be defined as usual (reset com-
posed by a flow for time T s) for the systems (2) and (3), respectively. Pε is ε2-close
to P0, since (a) r is the same for both, and (b) the “time to impact” is fixed and
independent of ε (decoupled phase dynamics).

Since p0 is a hyperbolic fixed point of P0, it is also a hyperbolic fixed point of
DP0(p0) = eεTsD f (R(p0))DR(p0) (DR is full rank for diffeomorphismR). Therefore,
substituting Dr = I + εS, the matrix

lim
ε→0

1

ε
(DP0(p0) − I ) = lim

ε→0

1

ε
(I + εTsD f |R(p0))DR(p0) − I

= S + TsD f |R(p0) (4)

is invertible (from the resonance-free condition of Proposition 1). Since Pε is
ε-close to P0, limε→0

1
ε
(DPε(p0) − I ) is the same as the RHS of (4). Hence, using

the implicit function theorem we see that the rank of 1
ε
(DPε(p0) − I ) form a smooth

curve (pε, ε). Now pε is a fixed point of Pε, and the local Taylor expansion is
pε = p0 + O(ε). The eigenvalues of DPε(pε) are ε2-close to those of DP0(p0),
since R is a diffeomorphism, and

DPε = [exp(εTsD f |R(p0)) + O(ε2)] · DR(p0).
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So, (3) has a periodic orbit ε-close to R(p0), and by the coordinate change (3), (1)
has a similar orbit. The stability properties of the periodic orbits of (1) and (2) are
identical since DPε(pε) is ε2-close to DP0(p0).

3 Templates as Constituents of Planar Hopping

Based on the motivation in Sect. 1, we attempt to develop a planar hopping behavior
as a composition of (a) a vertical hopper, as empirically demonstrated by [10] and
studied in [11, 13], and (b) a rimless wheel [16] with liftoff impulses [14]. As Fig. 1
notionally shows, these templates are “anchored” (Sect. 4) in the Tailed SLIP model
our physical platform (Sect. 5) closely resembles.

3.1 Controlled 1DOF Vertical Hopper

Our template plant for vertical hopping is a point mass connected to a vertically-
constrained series-elastic damped leg (Fig. 1, top left). As shown in [11], this 1DOF
system can be stabilized to arbitrary hopping heights by recourse to an appropriately
designed phase-locked, oscillatory pattern of energetic excitation entering through
the shank (note the contrast to the hybrid energization strategy of [10, 13]). We
impose the following additional assumption and follow [11]:

Assumption 1 (Weakly nonlinear oscillator) The vertical hopper is an LTI spring-
mass-damper system actuated by a possibly nonlinear O(ε) force, where ε � ω.

Vertical

Tailed  SLIP

Horizontal

Fig. 1 The vertical hopper [13] and rimless wheel [16] template plants (left), and their correspond-
ing equations of motion, and (right) the tailed SLIP model, labeled with configuration variables
(black), actuators (red), and model parameters (blue)
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Stance dynamics Define the normalized leg length r := r̃ − ρ + mg/ω2, where r̃
is the physical length of the spring with rest length ρ. As in [11], the dynamics of a
linear oscillator with small (Assumption 1) damping are given by

r̈ + ω2r = −uv − εβṙ =⇒ ẋ = −ω

[
0 −1
1 0

]
x +

[
0

−uv/ω − εβx2

]
, (5)

where x :=
[

r
ṙ/ω

]
. Define the vertical energy av := ‖x‖, and note that by Assump-

tion 1, for uv = O(ε), the corresponding phase coordinate is trivial; if tan ∠x :=
−x1/x2 (such that “stance” is from ∠x = 0 to π), then

d

dt
∠x = −ω − εβx1x2

a2
v

− uvx1

a2
vω

= −ω + O(ε). (6)

Thus the phase evolution is in the form of a perturbation problem [15, (10.1)]. The
nominal system, d

dt ∠x = −ω has a trivial solution (∠x)nom = −ωt . Using [15, The-
orem 10.1], we conclude that for small ε, the perturbed system has a unique solution
of the form ∠x = −ωt + O(ε). Note that no “constant of integration” appears since
at t = 0 (touchdown), r(0) = 0, ṙ(0) < 0, and so ∠x(0) = 0. Consequently,

x2 = av cos ∠x = av cos(−ωt + O(ε))

= av
(

cos ωt cos(O(ε)) + sin ωt sin(O(ε))
) = av(cos ωt + O(ε)), (7)

since cos(O(ε)) = 1 − O(ε2) and sin(O(ε)) = O(ε). Following [11], set

uv := −εkvω cos ωt, (8)

and observe that

ȧv = ε fv(av, t, ε) := εx2

av
(kv cos ωt − βx2) (9)

≈ ε f v(av) := ε

π/ω

∫ π/ω

0
fv(av, t, 0) dt = ε

2
(kv − βav), (10)

where the bottom row corresponds to a usage of Proposition 1 on the limit cycle, and
we used (7) to eliminate O(ε2) terms.

Hybrid guard and reset For this system and our periodic forcing (8), we
observe that the dynamics (9) are π/ω-periodic. Roughly following [13], we col-
lapse the “flight map” to a reflection of the vertical velocity, or Rv(av) = av, and the
guard set is Gv = {x1 = 0} (lift-off occurs approximately at adjusted rest length).

Return map stability From the simple from (10), it is easy to see that the averaged
hybrid system has a stable limit cycle at av = kv/β, and hence by Proposition 1, we
can conclude that the vertical hopper plant (5) has a stable limit cycle.
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3.2 Controlled Forward Speed: 1DOF Active Rimless Wheel

Our conceptual physical template for an isolated fore-aft system stabilized by “step-
ping” is inspired by the rimless wheel due to [16] (parameters defined in Fig. 1), but
now fitted out with a controllable liftoff impulse, δ (inspired by [14]).

Assumption 2 (Gravity approximation) As in [20], we assume that the effect of
gravity is invariant to leg angle.

The conservative approximation is useful in our search for sufficient conditions
for an analytical stability proof (Proposition 3), but we empirically observe stability
with large leg angles (Sect. 5), indicating that it is not necessary.

Stance dynamics The implication of Assumption 2 on the rimless wheel (physically
manifested when the interspoke angle is small compared to the slope angle) is that
angular acceleration is roughly constant through stance. Using notation from [16],
and angular momentum about the toe ah := �2θ̇ as the horizontal energy,

θ̈ = σ2γ =⇒ ȧh = ε fh := σ2γ/�2, (11)

where σ is a dimensionless frequency and � is the spoke length (Fig. 1) [16]. We
observe that the right hand side is a constant, hence bounded.

Reset From [16, (5)], the rimless wheel has a restitution coefficient η := 1 − σ2(1 −
cos 2α0). The controlled reset map (with our modification to [16, (3)]) is

a+
h = ahη + δ = ah + uh, (12)

where in the last equality, we parameterize the liftoff impulse as δ = (1 − η)ah + uh
for notational convenience. Using the discrete proportional controller (suggested by
the “stepping” controller [10]) with kh � 1,

uh(ah) = kh(a
∗
h − ah), (13)

the controlled reset map becomes Rh(ah) = ah + kh(a∗
h − ah). The guard set is

{θ = −α0}.
Return map stability The integrable stance dynamics (11) together with the reset
map above give us the closed-form return map

Ph(ah) := ah + kh(a
∗
h − ah) + ν0, (14)

where ν0 := ∫ Ts
0 σ2γ/�2 dt is the leg sweep over a fixed stance duration Ts . The

Jacobian is DPh(ah) = 1 − kh, and so the system will stabilize at the fixed point
ah = a∗

h + ν0/kh.

Remarks Both the continuous (11) and discrete (14) parts of the dynamics exhibit a
θ-equivariance, and since an encoding of a planar hopping task [10, Chap. 2] is also
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θ-invariant, we work in the quotient space with coordinates given by the simple pro-
jection (θ, θ̇) �→ ah, mapping the second order system (11) to an energy coordinate
without a corresponding phase.

4 Average Anchoring in 3DOF Tail-Energized SLIP

The classical notion [3] of anchoring calls for the template dynamics (blue arrows
in the top picture of Fig. 2) to be embedded in that of the anchoring body as an
attracting invariant submanifold (red arrows in that same picture) of the left hand
with conjugate restriction dynamics (depicted by the red lining up with blue arrows
on the embedded submanifold). Averaging theory guarantees that the anchor must
have a stable cycle (red arrows in the bottom picture of Fig. 2) that is close to an
embedding of the template’s (blue arrows, again, in the bottom picture), but the
actual unaveraged (time-varying) anchor will in general have no related invariant
manifolds nor dynamical conjugacy.

Our candidate “anchoring” body is a planar pogo stick with a light tail (Fig. 1),
where the actuator τt is connected between the leg and the tail. In stance phase, the toe
of the springy leg is pinned to the ground, and as a result, the robot is dynamically
constrained to 3-DOF. Even though the body has two masses, the dynamics are
somewhat simplified by the following assumption:

Assumption 3 (Light tail) The tail mass is small, i.e. mt � m (such that the center
of mass is configuration-independent), but the tail inertia, it := mtρ

2
t , is significant.

Looking ahead to (15), this assumption allows us to use the tail as an inertial
actuator on the leg spring through τt even though mt � m, while avoiding Coriolis
forces due to motion of the center of mass.

Classical

Average

Fig. 2 A cartoon depicting the classical notion of anchoring [3] (top) and the new notion intro-
duced in this paper based on averaging (bottom) as conceptual mechanisms of dimension reduction
(Sect. 1), where the blue line represents a template flow, and the red lines depict flows on the
anchoring body
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4.1 Average Invariance of Template Flows in Stance
Dynamics

In this subsection, we examine the stance behavior of the coupled tailed monoped
in steady-state operation (we examine stability in the next subsection). The present
method of proof requires (what simulation and empirical results suggest to be) a
conservative assumption of operation in a slow fore-aft speed regime:

Assumption 4 (Slow fore-aft speed) The leg angular velocity θ̇ = O(ε), or equiva-
lently, the leg sweep is O(ε) of π/ω.

Additionally, we make a physically reasonable assumption about leg deflection:

Assumption 5 The leg deflection relative to its rest length is av/ρ = O(ε).

Stance dynamics We use Assumption 3 (specifically, taking a limit mt/m → 0 with
finite it ) in a Lagrangian formulation with variables as in Fig. 1, to get the following
stance dynamics (3 of the 4 DOF’s in [12, (39)]):

r̈ = −ω2r − εβṙ + r̃ θ̇2 − τt cos ξ

ρtm
+ g(1 − cos θ),

θ̈ = −2ṙ θ̇

r̃
− τt sin ξ

ρtmr̃
− g

r̃
sin θ,

ξ̈ = τt/ it , (15)

where ξ is the leg-tail angle (between which joints τt acts directly), r is the normalized
leg extension as in Sect. 3.1, and β is now the mass-specific damping coefficient. Our
specific usage of Assumption 3 in the equations of motion is that

• we assert thatmb + mt ≈ mb, resulting in the dropping of Coriolis forces resulting
from the configuration-dependent CoM,

• the tail can now be thought of as an inertial source of reaction forces on the (r̈ , θ̈)
terms (which have familiar “SLIP-like” dynamics), as seen in the τt terms coupled
through the physical tail angle, ξ).

We introduce as a stance controller for the coupled plant (15) a scaled version of the
simple stance controller for the isolated vertical system (8),

τt := mρt uv = εkvωmρt cos ωt. (16)

Decoupled tail excitation The tail dynamics, ξ̈, take the form of a simple double
integrator (15). When driven by the template controller (Table 1), and reset to ξ(0) =
− εkvmρt

ωit
during flight, the tail trajectory is

ξ(t) = −εkvmρt

ωit
cos ωt =: −at cos ωt, (17)
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where, for the purposes of design, we construe the amplitude of the tail oscillation as
the energy contained in the tail compartment. Note that this represents a substantial
generalization and thus a significant advance beyond the strict assumptions in [11]
regarding the analysis of a similar planar hopping model: in this paper we allow for
finite (and possibly large) tail motions, which couple into the other DOFs (15).

Proposition 2 The averaged tailed SLIP stance vector field—but not the unapprox-
imated one, obtained from (15)—is conjugate to a cross product of the averaged
template vector fields (10), (11).

Proof Because it is a decoupled double integrator, the feedforward influence of the
tail subsystem (the output of the last row of (15), on the (r, θ) dynamics) can be
represented as an independent time varying disturbance input, ξ, given in (17).

In the radial dynamics from (15), as in Sect. 3.1, let x :=
[

r
ṙ/ω

]
. Reusing Assump-

tion 1, the phase of the vertical hopper is interchangeable with time, ∠x = −ωt .
Similar to (9), setting av := ‖x‖, and using (17),

ȧv = ε fv(av, t, ε) = ε cos2 ωt (kv cos (−at cos ωt) − βav) + O(ε2) (18)

≈ ε f v(av) = ε

π/ω

∫

S
fv(av, t, 0) dt = ε

2
(̃kv − βav), (19)

where theO(ε2) term in (18) consists of the following terms from the first row of (15),
and the vertical “phase lock error” (7):

r̃ θ̇2 + g(1 − cos θ) − εβavO(ε), (20)

and use Assumption 4 to get θ̇2 = O(ε2) as well as 1 − cos θ ≈ θ2/2 = O(ε2).
In (19), k̃v := kv(2J1(at)/at − J2(at)), and Ji are Bessel functions of the first

kind [21] that act as an “attenuation” of our vertical gain kv (bear in mind that at,
introduced in (17) is a designed energizing magnitude term held constant for the
duration of each stance), as the tail sweep gets larger (cf. Fig. 3).

In the leg-angle dynamics, define ah := r̃2θ̇ as in the template (Sect. 3.2), and use
Assumptions 2, and 5 in the averaging step, to get:

ȧh = ε fh(ah, t, ε) = −εkvω · mρt cos ωt
(ρ(1 − av/ρ sin ωt) sin ξ

mρt

)
(21)

≈ ε f h(ah) = −εkvω · ρJ1(at), (22)

where J1(at) amplifies (with the sign convention of Fig. 1, ah < 0 when the robot is
making forward progress) the fore-aft acceleration as shown in Fig. 3.

Comparing (19) to (10), and (22) to (11), we see that the averaged body dynamics
are conjugate to the template dynamics. Moreover, it is clear that (9) and (18) are not
conjugate vector fields, and neither are (11) and (21).
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Fig. 3 Gain scaling terms k̃v/kv (blue, (19)) and J1(at) (orange, (22)), as a function of the tail
sweep. As at → 0, we recover the unscaled vertical template dynamics, but with larger tail sweep
(the thin vertical line corresponds to empirically observed tail sweeps from Sect. 5), the equilibrium
hopping height decreases, and the forward speed increases

Remark Compared to classical anchoring [3], conjugacy of averaged fields is the
analogue of the invariance of the embedded submanifold. However, note that there
is no analogue of the “attraction” property yet (i.e. do asymmetric orbits attract to
more symmetric ones?). We aim to study the “transient” behavior in future work.

4.2 Stability Derived from Templates

The strong relation between the averaged and unaveraged systems guaranteed by
Proposition 1 allows us to conclude existence of a periodic orbit as well as its hyper-
bolic stability type from that of the averaged system, which we calculate below.

Reset map for Tailed SLIP “Stepping” (setting the leg touchdown angle θtd+ as a
function of the liftoff state, θlo, and a desired leg angular momentum a∗

h) can be used
to control forward speed for a pendular walking/running system [10]. In particular,
a slight modification of the “scissor algorithm” [10, Chap. 5] yields

θtd = −θlo + uh, where uh := kh(a
∗
h − ah), (23)

Assumption 3 also simplifies the flight map, since the CoM flight behavior is well
represented by a ballistic motion. The guard set for the “flight” reset is identical to
that for the embedded radial coordinate r (Sect. 3.1), G(av, ah, t) = Gv(av, t)

We transform the liftoff velocity vector into Cartesian coordinates, reflect the
vertical component (ballistic flight) and transform back to polar coordinates to get

[
ρθ̇
ṙ

]

td+
= Rot(−θtd+)

[
1

−1

]
Rot(θlo)

[
ρθ̇
ṙ

]

lo

,
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and as a last step we can substitute in (23) with a :=
[
ah
av

]
(with the components as

defined just before (19), (22)) to get

atd+ =
[

1
−1

] [
ρ

1

]
Rot(−θtd+)

[
1

−1

]
Rot(θlo)

[
1/ρ

1

]
alo

=⇒ R(a)
(23)=

[
cos uh −ρ sin uh

sin uh/ρ cos uh

]
a. (24)

As apparent from (24), this map does not depend upon the leg angle, θ (from (23), uh
only depends on θ̇). Together with the equivariance of the continous dynamics with
θ (Assumption 2), this allows us to work in the ah-quotient space (as in Sect. 3.2). A
drawback of this reduction is that the hopping system exhibits pairs of antisymmetric
steps [10, Chap. 5]: a period-2 evolution of non-neutral stances which are each mirror-
symmetric to the subsequent step. In our empirical trials, with small leg sweep
(Assumption 4) we did not observe any significantly skewed stances.

Existence of periodic orbits With fixed kv (and by (17), at) the averaged fields (19),
(21) yield simple flows of the form

f π(a) =
[
ah − ν1,

ν2av + ν3

]
, (25)

where a := (ah, av), ν1, 0 < ν2 < 1 and ν3 are constants depending only on kv and
system parameters.

The zeros of Q(a) = a − R ◦ f π(a) lie on periodic orbits of the averaged system.
By the implicit function theorem, we only need to find an open neighborhood of a
where DaQ is full rank to check that periodic orbits exist. By design of uh, kh � 1
(before (13)), and so from (24),

DaR =
[

cos uh −ρ sin uh
sin uh/ρ cos uh

]
+ O(kh) ≈

[
cos uh −ρ sin uh

sin uh/ρ cos uh

]
, (26)

and so, combining with D f
π

from (25), DaQ ≈ I −
[

1
ν2

] [
cos uh −ρ sin uh

sin uh/ρ cos uh

]
,

which is full rank as long as the right summand has no unity eigenvalues (sufficient
condition). Since ν2 < 1, uh �= 0 is sufficient to ensure this.

Proposition 3 (Stability) Tailed SLIP limit cycles have locally stable return maps.

Proof We examine the stability properties of the discrete dynamical system a �→
P(a), the Jacobian of which factors into

Da P|a = Da( f π ◦ R)|a = Da f π|R(a) · DaR|a . (27)
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Repeating the argument and calculation (26), for sufficiently small kh, Da P(a) =[
1

ν2

] [
cos uh −ρ sin uh

sin uh/ρ cos uh

]
. The eigenvalues of Da P are in the stable region iff its

determinant and trace satisfy (i) det < 1, (ii) det > tr − 1, and (iii) det > −tr − 1.
A simple calculation yields

det(Da P) = ν2, tr (Da P) = (1 + ν2) cos uh, (28)

and since 0 < ν2 < 1, Da P has stable eigenvalues. �

5 Numerical and Empirical Results

The theoretical development in this paper is motivated by the implementation of tail-
energized hopping on the Penn Jerboa [12], a tailed monopedal robot (with coincident
hip and tail axes) in the sagittal plane. To demonstrate different facets of the ideas
presented here, we present both simulation results, as well as experiments on the
physical hardware.

Relationship to model (Sect. 4) The model presented earlier in the paper is a rea-
sonable representation of the physical platform, but with the distinctions

• the robot has an additional “body pitch” DOF, which we immobilize using a boom
for our experiments, and

• the tail actuator on the robot is attached between the tail and the body, whereas in the
model it is attached between the tail and leg. For small leg sweep (Assumption 4),
the empirical behavior of either appears to be very similar.

Assumption 3 is reasonably satisfied by the physical platform: the tail mass is
0.15 kg, tail length is 0.3 m, while the body mass and inertia are (approx) 2.27 Kg and
0.025 Kg-m2 respectively. That is, the tail mass is 6.6% of body mass, but tail inertia
is 54% of body inertia. The overall control architecture of the robot is implemented
as in Table 1.

Numerical simulation Figure 4 shows simulation traces at (or near) a limit cycle for
different plant models. The various parameters used in the simulation (matched to the
robot hardware as much as possible): m = 2.27 Kg, ρ = 0.12 m, mt = 0.15 Kg, ρt =
0.3 m, ω = 36.35 rad/s, and εkv = 0.118. The template plants and the analytically
intractable Jerboa simulations both simulations all attracted to a steady-state hopping
behavior, and we picked the “limit cycle” stance trajectories for Fig. 4 by simply
allowing the simulation to run for some time.

The effect of averaging is apparent in the traces: while the qualitative system
behavior is identical for the various plant models, the red and blue curves suffer
from periodic, within-stance, perturbations (mechanical coupling interactions that
we reimagine as time-varying disturbances to be “integrated out.”).
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Fig. 4 Results from numerical simulation showing the evolution of various coordinates during a
single stance phase: full Jerboa [12] simulation (no Assumption 3, analytically intractable) with
pitch immobilized (blue), tailed SLIP as modeled in this paper (15) (red), and the isolated templates
of Sect. 3 (green)
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Fig. 5 Left The physical platform used in this paper, the Penn Jerboa [12]. Right stance data (mean
and standard deviation) for a single trial on the robot, averaged over 36 steps. The z and x traces
show rough profile comparable to the r , θ profiles in Fig. 4 modulo the polar transform (which
leaves the profiles intact for small leg angles as we have assumed in Assumption 4), and the ξ traces
shows the expected profile (17) with our sinusoidal driving input

Additionally, the gain scaling effect showed in Fig. 3 can be seen in the rightmost
column of Fig. 4. For the same kv and other parameters, the body (red, blue) has
lower vertical energy and higher fore-aft energy than the template (green dashed)
(Fig. 5).

Robot experiments For Jerboa [12] experiments, we constrain out-of-plane motion
as well as body pitch using a boom. Qualitatively, the robot can hop stably (in multiple
trials we recorded approximately 50 steps, and the experiment was terminated before
failure), at limited speeds forward, backward, or in place. We have documented some
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Fig. 6 We demonstrate stability and control authority over the hopping behavior by plotting (ground
truth) fore-aft (left) and vertical (right) position for two trials where we imposed a step change in
the desired energy levels, ah (reversed at t = 20 s in the left plot) and av (increased by 33% at t =
15 s in the right plots). The “gaps” in the data are due to unfortunate communication dropouts with
the instrumented boom

Table 2 Summary of 7 in-place hopping trials with height transition

Increase in kv Pre-transition Post-transition

Mean ascent (cm) Std. dev. (cm) Mean ascent (cm) Std. dev. (cm)

33% 8.87692 3.14861 10.2622 4.34376

trials in the supplementary video [22]. Figure 6 shows ground-truth time series data
from the instrumented boom demonstrating that the tail-energized hopping strategy
can attain stable hopping with tunable hopping height and fore-aft speed. Note that
the high-frequency noise is caused by parasitic oscillations in the boom tube (which
can be seen in the supplementary video [22]), and the blank portions are due to
communication stalls in the data collection system.

In the left plot, the desired forward hopping speed is reversed at t = 20 s and it
can be seen that the robot begins hopping backwards in a few strides.

In the in-place hopping trials (right), kv is increased 33% at t = 15 s, and we can
see that within around three strides, the hopping height increases to a new equilibrium
value. Table 2 shows some statistics on these trials (the gathered data from 7 of the 12
trials was usable, with large communication drops in the remaining). Qualitatively,
the robot stably switched between two hopping heights in each run.
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6 Conclusion

To sum up the contributions of this paper, we (a) motivate, propose, and demonstrate
a new, relaxed, notion of anchoring using our extension (Sect. 2) of classical averag-
ing theory, (b) show that in a decoupled implementation (Table 1) of tail-energized
hopping in an idealized (Assumptions 1–4) planar tailed monoped (15), the stance
vector field decomposes in an averaged sense (but not in an exact sense) to a 1DOF
vertical hopper and active rimless wheel (Proposition 2), and (c) give a proof of
stability (Proposition 3) for the tailed monoped (d) test numerically and through
experiments (Sect. 5) that the same feedback control rules stabilize planar hopping
on the Jerboa [12] with controllable height and forward speed.

FutureworkWe next plan to develop a formal definition of average anchoring (which
we have skirted in this paper in favor of an illustration using the tailed monoped exam-
ple), as well as an investigation into its relation to the classical anchoring notion [3].

The physical platform we have used, the Jerboa, has 12 unconstrained DOF’s [12],
but our tailed monoped model in this paper considers only 5 of them (2DOF body,
2DOF leg, 1DOF tail). In future work, we wish to explore the composition of more
templates with the ones in Sect. 3 (as suggested in [11]), in order to be able to detach
the robot from the boom.
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A Reachability-Based Planner for Sequences
of Acyclic Contacts in Cluttered
Environments

S. Tonneau, N. Mansard, C. Park, D. Manocha, F. Multon
and J. Pettré

1 Introduction

We consider the problem of planning the acyclic sequence of contacts describing the
motion of a multiped robot in a cluttered environment. Acyclic contact planning is a
particular class of motion planning where every configuration of the resulting trajec-
tory must be in contact with the environment in order to support the balance of the
system. The difficulty of the problem comes both in practice from the proximity to
the obstacles (that tends to make the sampling of valid configuration tedious) and in
theory from the foliation of the configuration space, where zero-measure manifolds
intersect in a combinatorial manner [20]. Acyclic motion planning is a problem of
interest in robotics, neurosciences and biomechanics. It is also interesting for vir-
tual character animation. Early contributions in this field rely on local adaptation
of motion graphs [13] or ad-hoc construction of locomotion controllers [18]. These
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approaches can intrinsically not adapt to new situations or discover complex behav-
iors in unforeseen contexts. In robotics, the attention of the community first focused
on the generation of cyclic locomotion patterns, in particular for bipedal walking on
flat terrains [12].While planning cyclic bipedal contacts is nowmature, with existing
real-time solutions [3], the problem remains open for more generic acyclic contacts.

1.1 State of the Art

The issue of planning acyclic contacts was first completely described by Bretl et
al. [6], where it is proven to require the handling of two simultaneous problems:
P1: a relevant guide trajectory for the root of the robot in SE(3); and P2: the
planning of a discrete sequence of acyclic, balanced contact configurations along
the trajectory.1 A key issue is to avoid combinatorial explosion when considering at
the same time the possible contact configurations and the potential trajectories. This
seminal paper proposes a first effective algorithm, able to handle simple situations
(such as climbing scenarios), but not scalable to arbitrary environments. Following it,
several papers have applied this approach in particular situations, typically limiting
the combinatorial by imposing a fixed set of possible contacts ([11, 21]).

Most of the following papers have explored alternative formulations to handle the
combinatorial issue. Two main directions have been explored. On one hand, local
optimization of both the root trajectoryP1 and the contact positionsP2 has been
used, to trade the combinatorial of the complete problem for a differential complexity,
at the cost of local convergence [14, 15]. To keep reasonable computation times, the
method uses a simplified dynamic model for the avatar. Still, the computation time
is far from interactive (about 1min of computation for a sequence of 20 contacts).
Deits et al. [8] address the problem as a mixed integer one, but only cyclic, bipedal
locomotion is considered. Aside from the computation cost, a major drawback of
these optimization based approaches is thus that they only offer local convergence
when applied to acyclic contact planning.

On the other hand, the two problemsP1 andP2 might be decoupled to reduce
the complexity. The interest of the decoupling has first been shown by manually
setting up a rough guide trajectory (i.e. an ad-hoc solution to P1) [10]. P2 is then
addressed as the combinatorial computation of a feasible contact sequence in the
neighborhood of the guide. A solution can then be found, at the cost of prohibitive
computation times (several hours). Furthermore, this approach is suboptimal because
the quality of themotion is conditioned by the relevance of the guide trajectory, which
is not evaluated a priori. Bouyarmane et al. [4] focus on automatically computing a
guide trajectory with guarantees of contact feasibility, by extending key frames of
the trajectory into whole-body, balanced contact configurations. Randomly sampled

1A third non trivial problem,P3, not adressed in this work, then consists in interpolating a complete
motion between two postures of the contact sequence. We address P3 successfully on the HRP-2
robot in Carpentier et al. [7]. Another framework for 3D animation is proposed in Park et al. [17].
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configurations are projected into the contact submanifold using a generalized inverse
kinematics solver, a computationally expensive process (about 15min are required
to compute a guide trajectory in the examples presented). Moreover this explicit
projection is yet an insufficient condition and does not provide strong guarantees on
the feasibility of the path between two key positions in the trajectory.

1.2 Paper Contribution and Organization

We choose to focus on the sample-based methodology, more able to find complex
trajectories in cluttered environments. While the theoretical structure of the problem
is well understood, there is currently no scalable method to solve it. The combina-
torial of the original problem is too high to have any hope of tackling it directly.
Alternative formulations are necessary to obtain practical solutions. We believe that
the separation between the guide trajectory and the contact sequence is the most
promising direction [10]. However, this direction raises two theoretical questions
that remain to be solved, or even to be properly formulated:

• The guide trajectorymust satisfy a property guaranteeing the existence of a contact
sequence to actuate it.2 This property has not been studied yet for acyclic planning:
the only way to validate a trajectory is to explicitly compute the contacts, which
is computationally not reasonable [4].

• There is an infinite combination of possible contact sequences for a given root tra-
jectory. The selection of one particular contact sequencewith interesting properties
(minimum number of contact change, robustness, efficiency or naturalness) has
been studied for cyclic cases [11], but has not been efficiently applied to cluttered
environments (Previous contributionsmostly randomly pick one contact sequence,
leading to possibly very tedious contact sequences [5]).

We claim that the desirable contact properties of a guide trajectory, proposed in
[4], can be formulated in a space of lower dimension, which we call Creach. This
formulation can make the planning of a guide trajectory more efficient computation-
ally, while providing equivalent guarantees to planning directly in the configuration
space. Among the particular properties obtained when planning in Creach, we would
like to guarantee that any reduced trajectory can actually lead to a feasible sequence
of contacts, in which case we say that the reduced trajectory is truly feasible. It is
possible in theory to guarantee that any reduced trajectory is truly feasible, even if it
is more efficient in practice to approximate this property. The true-feasibility of the
guide trajectory then allows us to focus on the selection of one particular sequence
of contacts, for example one that minimizes the number of contacts in the sequence
or maximizes the robot efficiency or style.

2This property is related to the controllability of the root actuated by the contact forces, but for
discrete bounded properties.
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Request

A

RB-PRM

B

EFORT

Fig. 1 Overview of our 2-stage framework. a Given a path request between the yellow and blue
positions, a guide trajectory is computed in Creach using RB-PRM. b The trajectory is extended into
a discrete sequence of contact configurations using EFORT

Based on these fundamental observations, we implement a very efficient acyclic
contact planner. Our method is based on a probabilistic roadmap (PRM), that com-
putes offline guide trajectories that are approximately truly feasible. The planner then
resolves online the contact sequence by refining a guide trajectory computed from
the PRM. Our planner is able to compute physically-consistent contact sequences for
very complex systems (a humanoid, 28 joints; and an insectoid, 48 joints) in a few
seconds for classical scenarios like climbing, and less than aminute for very complex
problems like egress from a damaged truck. The planner also generalizes to planning
dexterous manipulation movements, as demonstrated by preliminary results.

The contributions of the paper are twofold. We propose the first theoretical char-
acterization of today’s most efficient practical approach to sampled-based planning
of acyclic contacts. And based on this characterization, we propose a very efficient
and general implementation of an acyclic contact planner, the first one compatible
with interactive applications.

We propose a framework to address the motion planning problem for multiped
robots in cluttered environments: given a start and a goal configuration, the objective
is to compute a sequence of contact configurations allowing to achieve the motion.
For instance, we can consider the task of standing up, illustrated in Fig. 1–right.
The problem is decoupled into two sequential phases: (1) the computation of a
guide trajectory for the root of the robot; (2) the computation of a discrete sequence
of contact configurations allowing to achieve the motion along the trajectory. The
remainder of this section presents the general organization of our method in Sect. 2.
The two following Sects. 2 and 3 present respectively our answer to problemsP1 and
P2. Finally, we propose a complete experimental validation of the planner with three
very different kinematic chains (humanoid, insectoid and three-finger manipulator)
in various scenarios.

1.3 Computation of a Guide Trajectory

We first consider the problem of planning a relevant guide trajectory. The objective
is to compute a trajectory of root placements which will allow contact creation. The
objective of this first part is to preserve the completeness of the planner: it should
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1) 2) 3) 4) 5)

Fig. 2 Generation of a contact configuration for the right arm of a humanoid robot. 1 Selection of
reachable obstacles. 2 A request is performed on a database of configurations. 3 Configurations too
far from contact are eliminated. 4 The best candidate according to EFORT is chosen. 5 The final
contact is achieved using inverse kinematics

be able to explore any possible guide trajectory, but at the same time, any computed
guide trajectory must be truly feasible, i.e. must lead to a valid sequence of contacts.

An intuitive description of such placements is “close, but not too close”: close,
because a contact surface must be partially included in the range of motion of the
robot (represented for the right arm in Fig. 2–1); not too close, because the robot
must avoid collision (which is represented by the hull including the torso in Fig. 2–
1). We define formally Creach, the set of interesting root placements, in which we
compute a guide trajectory with a sampling based planner, the reachability PRM–
RB-PRM– (Fig. 1–a). Planning in Creach boils down to planning in SE(3), which has
an acceptable practical complexity. Details are presented in Sect. 2.

1.4 Generating a Discrete Sequence of Contact
Configurations

The second stage is to extend the guide trajectory into a sequence of contact configu-
rations (Fig. 1–b). Thanks to the nice property that wemanage to obtain for the guide,
obtaining a random sequence of contact is an easy problem. The goal of this part is
to select an efficient sequence, in particular by reducing the number of contacts in
the sequence. To create contacts in an efficient manner, we consider each limb as a
manipulator attached to the root, and select the most relevant contact from a database
of precomputed configurations (Fig. 2). The relevance is defined as the contribution
to the quasi static balance of the robot, and as the contribution to the motion of the
root. This task efficiency is measured based on the Extended Force Transmission
ratio (EFORT) [22]. Details are presented in Sect. 3.
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Fig. 3 Left Robot in a rest
configuration. The right arm
is denoted as the limb R1.
Each colored dot represents a
degree of freedom around an
axis. Right Volumes of the
robot. The red geometry
denotes W 0 and must remain
collision-free. The green
spheres are the Wk

∈ q1

effector

1.5 Notation Conventions and Definitions

A vector x is denoted with a bold lower case letter. A matrix A is denoted with a bold
upper case letter. A set C is denoted with a upper case italic letter. Scalar variables
and functions are denoted with lower case italic letters, such as r or f (x).

A robot is a kinematic chain R, comprising n + 6 degrees of freedom (DOFs).
R is composed of l limbs Rk, 1 ≤ k ≤ l, attached to a root. It is described by a
configuration q ∈ SE(3) × R

n. We define some relevant projections of q:

• qk denotes the configuration (a vector of joint values) of the limb Rk (Fig. 3);
• qk denotes the vector of joint values of R not related to Rk . We define for conve-
nience q = qk ⊕ qk;

• q0 ∈ SE(3) denotes the position and orientation of the root of the robot R.

The environment O is defined as the union of the obstacles Oi it contains. The
volume encompassing the trunk of the robot is denoted W 0 (Fig. 3-right: central
cylinder). The range of motion of a limb Rk is denoted Wk (Fig. 3-right: the four
ellipses).

Wk = {
x ∈ R

3 : ∃qk, pk(qk) = x
}

(1)

where pk denotes the end-effector position of Rk (translation only) for q0 the null
displacement. We also define W = ⋃l

k=1 W
k . Finally, we define Wk(q0), 0 < k ≤ l

as the volume Wk translated and rotated by the rigid displacement q0.

2 Computation of a Guide Trajectory in Creach (Stage 1)

We consider the problem of computing a guide trajectory q0(t) : [0, 1] −→ SE(3)
for the geometrical root of amultiped robot, connecting start and goal configurations.
As said in previous section, the goal is to enforce that any configuration q0 of the
guide is truly feasible, i.e. can be mapped to a balanced configuration in contact. We
denote by Ccontact ⊂ SE(3) × R

n the contact submanifold of the robot.



A Reachability-Based Planner for Sequences of Acyclic Contacts … 293

We say that a root placement q0 is truly feasible if there exists a bijectivemapping3

π such that
π : q0 ∈ SE(3) −→ q0 ⊕ q0 ∈ Ccontact (2)

The set of all truly feasible root placements is denoted by Creach. By extension, a
trajectory q0(t) is truly feasible if ∀t ∈ [0, 1], q0(t) ∈ Creach.

For a two-stage acyclic contact planner to be exact and complete, we need the
combination of two conditions on a guide trajectory generator: all the generated
trajectories must be truly feasible (sufficient condition); the guide planner must be
complete, i.e. it must be able to discover any truly feasible trajectory (necessary
condition).4

2.1 Conditions for True Feasibility

By default, the true feasibility implies a constructive demonstration by exhibiting a
valid π . This is the approach chosen by [4]. However, computing a valid q0 is costly
in practice. In this section we rather define a necessary condition and a sufficient
condition for true feasibility that do not require this explicit computation.

True Feasibility: Necessary Condition

For a contact to be possible, a volume Oi ∈ O necessarily intersects with the range
of motionW (q0) (Fig. 2–1). Furthermore, if q0 is truly feasible, then the trunk of the
robot W 0(q0) is necessarily not colliding with the environment O.

Therefore we can approximate Creach with a set Creach ⊂ C1
reach with the reacha-

bility condition defined as:

C1
reach = {q0 : W (q0) ∩ O 
= ∅ ∧ W 0(q0) ∩ O = ∅} (3)

It is straightforward to prove thatCreach ⊂ C1
reach (by construction of the included set).

This inclusion is very important: it directly implies that any motion-planning algo-
rithm with a guaranty of completeness in SE(3) × R

n is complete in
Creach × R

n. This is a strong reduction of the search space, which can be directly
applied to any existing method.

The condition C1
reach is only necessary which means that one such root placement

might not be truly feasible: in practice it is not guaranteed to find a valid sequence
of contacts for every guide trajectory in C1

reach.

Sufficient Condition for True Feasibility

A trivial sufficient condition for true feasibility can be constructed as a variation
of C1

reach, by replacing W 0 with a bounding volume Bmax encompassing the whole

3This mapping is not uniquely defined.
4The proof is immediate, using a contradiction approach.
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robot in a given pose, except for the effector surfaces to be in contact.5 We denote by
C∞
reach ⊂ Creach the set of root placements corresponding to the sufficient condition.
In general, the inclusion is strict, which means that we lose the completeness of

the two-stage contact planner (i.e. the planner is not able to discover a trajectory
inside Creach \ C∞

reach). However, the sufficient condition guarantees that any such
trajectories leads to a valid sequence of contacts (i.e. π is defined).

2.2 Reachability: A Compromise Condition

The sufficient condition is not interesting in practice since it leads the solver to
lose too many interesting trajectories. The necessary condition is not perfect either,
since the first stage of the planner would stop on a guide that is not truly feasible
in practice. It might be possible to find a shape B that is necessary and sufficient;
however, it seems intuitively very unlikely in general. The construction of a shape
W 0 ⊂ B ⊂ Bmax leading to a necessary and sufficient condition (or the proof of its
inexistence) is out of the scope of this work.

However between W 0 and Bmax, a trade-off can be found between a necessary
and a sufficient condition. We define W 0

s as the volume W 0 subject to a scaling
transformation by a factor s ∈ R

+. We then consider the spaces Cs
reach

Cs
reach = {q0 : W (q0) ∩ O 
= ∅ ∧ W 0

s (q0) ∩ O = ∅} (4)

The higher s is, the closer the reachability condition is to being sufficient, and if
s = 1, the planner is complete. The parametrization of s allows to find a trade-off
between these two desirable properties. Section4 shows that in practice, it is easy to
adjust s to keep most of the interesting guides without introducing incorrect guides.

2.3 Computing the Guide Trajectory in Cs
reach with RB-PRM.

Once a value of s has been fixed, any sampling-based motion planner can be used
to plan a trajectory in Cs

reach. The only variation consists in replacing the classical
collision checking method with a test of appartenance to Cs

reach when verifying that
configurations and associated local paths are valid. For this reason, there is no need to
provide a pseudo-code for RB-PRM, although we provide here relevant information
about our own implementation.

We have chosen to implement RB-PRM as a variation of Visibility-PRM [16],
which usually leads to a smaller set of nodes than classical PRM planners. The

5This condition is trivial in the sense that the resulting W has a zero measure. For the need of
the proof, the trivial sufficient condition is enough. In practice, the construction of a non-trivial
including shape W 0 was possible for all the robot structures we considered.
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associated drawback is that the paths returned by the plannermight not be the shortest
ones, which is typically not an issue in highly cluttered environments.

To sample more efficiently configurations of Cs
reach, we bias the sampling process

to generate near obstacles configurations, similarly to [1] to generate configurations
in narrow passages. First, a configuration is set to a random point on the surface of
one obstacle. The configurations are then translated and rotated randomly until the
reachability condition is satisfied. Again, our implementation only differs in the fact
that Cs

reach is sampled instead of Cfree.

3 From a Guide Trajectory to a Discrete Sequence
of Contact Configurations (Stage 2)

As an input of this stage, we consider a truly feasible guide trajectory q0(t) :
[0, 1] −→ SE(3) for the root of the robot R. We now consider the second prob-
lem of computing a trajectory q0(t) for the limbs of the robot. Since we assume true
feasibility, we know that such a trajectory exists. Contrary to previous works [4, 10],
the goal here is not to find any such trajectory but rather to select one with particular
properties. Specifically, we show here how to build a contact sequence with a small
number of contact variations and good-efficiency and naturalness of the postures.

More precisely, any mapping π introduced in (2) can be used to expand q0(t) into
a whole-body trajectory. We propose here a particular construction of π leading to
interesting contact sequences.

3.1 Extension of the Guide Trajectory

The guide trajectory q0(t) is first discretized into a sequence of j key placements:

Q0 = [q0
0; q0

i ; . . . , q0
j−1]

where q0
0 and q0

j−1 respectively correspond to the start and goal configurations. To
ensure continuity in the contact transition phases, we rewrite π under the following
recursive form for any 0 < i < j:

π :
{

Q0 ∈ Creach −→ Ccontact

q0
i −→ q0

i ⊕ g(qi−1, q0
i )

We initialize the recurrence with π(q0
0) = q0 the initial configuration of the robot.

The function g is defined independently by gk for each limb Rk . In defining gk ,
two aspects must be considered. Is the limb Rk in contact? And which criteria is it
optimizing?
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1) 2) 3) 4)

Fig. 4 Contacts are maintained unless their position is too far, or the environment prevents it

Fig. 5 Contacts are generated when the configuration is not balanced

Maintaining a contact: If possible, a limb in contact at time i − 1 remains in contact
at i. The contact is broken if an inverse kinematics solver fails to find a collision free
limb configuration which satisfies joint limits [2].

If the solver fails, the contact is broken and a collision free configuration is
assigned to the limb.

Once a first candidate configuration is taken for all limbs, the quasi-static balance
is tested by whether the weight wrench is in the gravito-inertial cone (i.e. there exists
valid contact forces that compensate for the weight of the robot), using the geometric
approach described in [19]. If the balance is not obtained, new contacts are randomly
generated using the following procedure (Fig. 4).

Creating a contact: We consider a configuration where some limbs are in contact,
some are free and quasi-static balance is not enforced. To enforce balance,we proceed
in the followingmanner: we randomly select a contact free limb; if there is no contact
free limb, we select the limb that made contact first. Using the contact generator
introduced in [22], we project the configuration of this limb into a contact that
enhances balance, if it exists (Fig. 5); If balance is not achievable and a contact is
possible, it is generated anyway; If balance is not achieved, the next limb is selected
and projected into a contact configuration, and so on. This approach can lead to
the repositioning of existing contacts, in which case intermediate states are inserted
to reposition the contacts. This current implementation does not guarantee that the
planner will succeed in generating a balanced configuration, because true feasibility
is not fully guaranteed. However in practice the planner is successful in the large
majority of cases, as discussed in Sect. 4.2.
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3.2 Contribution to the Global Movement: The EFORT
Criteria

EFORT criterion: If only relying on the random sampling to select new contacts, the
planner produces inefficient postures. The resulting contact sequence is then poorly
efficient and unnatural. Moreover, the limbs are not well configured and are not able
to efficiently follow the general movement: contacts break frequently.

When creating additional contacts, we therefore propose to select particular con-
figurations that allow to exert a force compatible with the direction of motion.
This task efficiency is measured with the Extended FORce Transmission ratio
(EFORT) [22]. The measure of EFORT is given by

αEFORT (qk, m) = [mT (JJT )m]− 1
2 (ν0nTm) (5)

where J is the Jacobian matrix of the limb Rk in configuration qk; ν0 is the friction
coefficient of the contact surface; n is the normal of the contact surface; and m is
the direction opposite to the motion, given by the 3D vector connecting q0

i and q0
i+1.

The first part of the equation measures the ratio between the joint torques and the
resulting force applied alongm. The second part quantifies the odds of slippingwhile
applying a force along m.
Optimization at creation: In practice, a database of configurations is stored for each
limb, which can be considered as manipulator arms. The database is implemented as
an octree data structure, indexed by the end-effector positions of the configurations
(and additionally storing J). Upon request, the octree returns a set of configurations
close to contact (Fig. 2-3). These candidates are sorted based on their task efficiency,
given by αEFORT . The first candidate in this list satisfying the balance criterion and
is collision free is selected and projected on the contact surface using our inverse
kinematics solver.

4 Results

Themain strength of our planner is that it efficiently works for arbitrary robot shapes.
We first validate this aspect by producing a large variety of movements with three
very different robots (humanoid, insectoid, dexterous hand) in five challenging sce-
narios. Two evaluations of the method are provided: qualitatively, by displaying the
naturalness of the contact sequence in the companion video; and quantitatively by
statistically measuring the validity of the compromise condition (Sect. 4.2) and the
performances of the algorithm (Sect. 4.3).
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4.1 Robot Models and Scenarios

Figure6 describes the robot used in the experiments. The humanoid robot has four
limbs, each with 7 DOFs. It has a total of 34 DOFs. The insectoid robot has six limbs,
each with 8 DOFs, and a total of 54 DOFs. The hand has three fingers, each with 6
DOFs and a total of 24 DOFs.

In all the scenarios considered, the formulation of the problem is always the
same: a start and goal configuration are provided as an input of the scenario, and the
framework outputs a sequence of statically balanced contact configurations connect-
ing the start and goal configurations. A companion video available at http://youtu.
be/LmLAHgGQJGA displays the complete contact sequence obtained in all these
scenarios. The video only renders the contact configurations (not the interpolation
between contacts, which is out of the scope of the paper).
Truck egress (humanoid and insectoid): The robot must leave a truck the doors of
which are blocked: it has to crawl through the front window. Figure7 presents the
sequence of contacts obtained for both robots: RB-PRM can find solutions in highly
cluttered environments with narrow passages.
Climbing (humanoid and insectoid): The robot has to climb on a wall with several
grasps disposed along it. In this scenario, we give stronger conditions for the sampled
root placements: we require that more than one range of motion Wk collide with

Fig. 6 Robots and associated volumes: in red W 0
s ; in green the range of motion of each limb

Fig. 7 The computed contact sequences for the truck egress scenario. Only selected postures are
shown for the insect

http://youtu.be/LmLAHgGQJGA
http://youtu.be/LmLAHgGQJGA
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Fig. 8 The computed sequence for the climbing scenario

Fig. 9 Contact sequence found for a pen manipulation in a zero gravity environment

obstacles of the environment. Figure8 presents the contact sequence obtained for the
humanoid robot.
Manipulation of a pen (3-finger hand): This scenario is proposed to illustrate the
genericity of our approach: we consider a manipulation task for a robotic hand and
use our contact planner to compute a guide trajectory for the fingers, considered
as effectors (Fig. 9). Although we do not address the hard issue of accounting for
rolling motions, the planner is able to compute the shown sequences, this in less than
5 seconds.
Other scenarios (humanoids): The standing-up scenario (already presented in
Fig. 1) is a setup taken from [10]: it corresponds to a long narrow passage in the con-
figuration space. In the crouching scenario, demonstrated in the companion video,
the character automatically goes from a standing to a crouching position to crawl
under an obstacle.

4.2 Parametrization of the Reachability Condition

To find the appropriate Cs
reach in which to sample the guide trajectory, we computed

the rejection rate for various values of s for each robot in the most cluttered truck
scenario. For a given value of s, 106 root positions and orientations are computed
in Cs

reach. In each case we try to generate a collision free contact configuration, with
a database comprising N = 105 sample configurations for each limb. The rejection
rate is the ratio between the number of failures and the number of trials. From Fig.10
s is empirically chosen as the smallest value for which the rejection rate is minimal.
For the humanoid, we thus chose s = 2.2, and for the insect, s = 2.8.
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Fig. 10 Truck scenario rejection rates (%) for the humanoid (orange) and insectoid (blue), given s

4.3 Performance

The number of samples used for generating the contacts of each limb is 10000.
Table1 presents the average time (seconds) spent in the phases of the planner, for
each phase and each scenario, and the number of contact phases of the sequence.

We observe that many contacts are required for the insect, which can be explained
by its restricted range of motion. The time spent generating the navigation graph is
about one minute. The time spent in generating the graph of the climbing scenario,
despite the relatively open environment, is explained by the additional restrictions
imposed on the reachability condition. The difficulty to find a balanced configuration
essentially influences the time spent generating the contacts.

The number of contacts in the sequence gives a rough estimation of its duration
in seconds. Except for the robots crawling out of the truck, all the contact generation
are real-time. Additionally to the quality of the generated trajectories shown in the
video, these computation times are a major practical achievement.

Table 1 Average time (in seconds) spent in RB-PRM generation, and the online generation of the
contact sequence

Generate RB-PRM
(offline)

Generating the contact
sequence

Number of contact
states

Truck egress
(humanoid)

73 15 10

Truck egress
(insectoid)

70 23 48

Climbing (humanoid) 25 5 15

Climbing (insectoid) 21 27 51

Crouching (humanoid) 5 6 22
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5 Discussion and Future Work

In this paper we consider acyclic contact planning in cluttered environments, formu-
lated as two sub problems addressed sequentially: P1: the computation of a guide
trajectory for the root of the robot that can be extended ; P2: the computation of
a discrete sequence of contacts along this trajectory. Our contribution to P1 is a
characterization of the properties that the guide trajectory must satisfy, in partic-
ular to enforce the completeness of the acyclic contact planner. We introduced a
low dimensional space Creach that can be mapped into the contact submanifold of
the robot, approximated and efficiently sampled by our Reachability-Based planner.
Our contribution to P2 is a pragmatic contact generation scheme that can take into
account criteria to enforce interesting properties on the generated contacts. One such
criterion, EFORT, is used to demonstrate the method and optimizes a force exertion
compatible with the direction of motion.

Aside from the theoretical contributions, our results demonstrate that our method
allows a compromise between three criteria that are hard to conciliate: generality,
performance, and quality of the solution, making it the first acyclic contact plan-
ner compatible with interactive applications. Regarding generality, the reachabil-
ity condition, coupled with an approach based on limb decomposition, allows the
method to address arbitrary multiped robots. The only pre-requisite is the specifica-
tion of the volumes W 0 which can is adjusted from a statistical analysis such as the
one run in Sect. 4.2. Regarding performance, our framework outperforms existing
methods in addressing either P1 or P2, leading to computation costs close to real-
time in statically known environments. Regarding the quality of the trajectories,
a parametrization of the reachability condition allows us to compute relevant trajec-
tories in all the scenarios presented, with low rejection rates. As for [4], failures can
still occur, due to the compromise criterion used in computing the guide trajectory.

Future work will focus on a more accurate formulation of Creach to address this
limitation. Despite these limitations, we have been able to tackle the generation of
the complete motion, interpolated between the computed contact sequences, on the
real HRP-2 robot with real time performances [7]. Our objective is now to formu-
late improved heuristics to guarantee the robustness of the planner regarding static
equilibrium [9] and the transitions between postures.
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On the Dualities Between Grasping
and Whole-Body Loco-Manipulation Tasks

Tamim Asfour, Júlia Borràs, Christian Mandery, Peter Kaiser,
Eren Erdal Aksoy and Markus Grotz

1 Introduction

While efficient solutions have been found for walking in different scenarios [16, 25],
including rough terrain and going up/down stairs, humanoid robots are still not able
to robustly use their arms to gain stability, robustness and safety while executing
locomotion tasks. The ability of reaching for supports can be crucial to increase
robustness in tasks that require balance like walking or general locomotion, but also
for increasing dexterity and maneuverability in complex manipulation tasks. Never-
theless, to execute such tasks in an autonomous way, we need to better understand the
principles of whole-body coordination in humans, the variety of supporting whole-
body postures available and how to transition between them.

Kinematically, a humanoid balancing with multi-contacts is equivalent to a closed
kinematic chainmechanism, where the closed chains are formed through the contacts
with the environment. Contacts can be modeled as joints that can range from 0
DoFs (a planar contact without friction) to 5 DoFs (point contact with friction) [34].
Closed kinematic chain mechanisms constitute a big family that includes parallel
robots, cable driven robots, cooperative robotic arms, multi-legged robots and multi-
fingered hands among others. Dynamically, when a humanoid uses its body to gain
stability through contacts with its environment, the dynamic equations to achieve
equilibrium are the same as those of closed kinematic chain mechanisms where the
chains are closed through contacts with an object or with the environment. Although
these parallelisms in kinematics and dynamics have been acknowledged by many
authors [5, 27, 36, 37, 39], fewer works try to find connections and transfer of
techniques between those fields of robotics [7, 8, 15, 42]. We are interested in using
techniques developed in the context of grasping with multi-fingered hands to apply
them to the study of whole-body postures with multi-contacts, where the body plays

T. Asfour (B) · J. Borràs · C. Mandery · P. Kaiser · E.E. Aksoy · M. Grotz
Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,
Karlsruhe, Germany
e-mail: asfour@kit.edu

© Springer International Publishing AG 2018
A. Bicchi and W. Burgard (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 3, DOI 10.1007/978-3-319-60916-4_18

305



306 T. Asfour et al.

a double role: the role of the hand and the role of the manipulated object that can be
moved through the contact reaction forces with the environment.

In this context, this paper presents our works exploring several different aspects of
grasping that can be transferred to whole-body balance, such as grasping taxonomies
[9], analysis of human motion data to classify and analyze grasps [31] and grasping
affordances [23].

The main tools to understand how the hand can hold an object are the grasp
taxonomies [4, 13, 19, 26]. Grasp taxonomies have been proven to be useful in
many contexts: to provide a benchmark to test the abilities of a new robotic hand,
to simplify grasp synthesis, to guide autonomous grasp choices, or to inspire hand
design, among others. In our work in [9], we propose a classification of whole-body
poses for balance exploring similar criteria as these used for taxonomies in grasping.
Most grasping taxonomies define twomain categories: precision and power grasping.
In addition, Cutkosky classifies grasps according to object shape and tasks [13].
Kamakura according to task and the hand areas of contact [4, 26] and Feix et al.
according to number/type of contacts and the configuration of the thumb [18]. We
can directly use the idea of precision versus power grasping for whole-body poses:
poses that use contact with the torso versus poses where contacts are realized only
using the body end-effectors. But there is also an important difference since almost all
whole-body poses are non-prehensile grasps, i.e., grasps that use the gravity to hold
the object. In [9], we explore in detail criteria used in grasping to define a taxonomy of
whole-body poses. A full taxonomy of whole-body poses can have many interesting
applications and uses, such as a tool for autonomous decision making, a guide to
design complex motions combining different whole-body poses, a way to simplify
the control complexity, a benchmark to test abilities for humanoid robots, and a way
to improve recognition of body poses and transitions between them.

Robotics in general, but particularly humanoid robotics, has always been inspired
by biological human experience and the anatomy of the human body. In particular,
grasping has collected human motion data to generate grasp synergies [11, 44] and
classify and analyze most common grasps [17, 19], among other applications. How-
ever, human motions involving support contacts have almost not been studied [38]
and even less how healthy subjects choose to make use of contacts with support sur-
faces. Our works like [31] explore the transitions between the whole-body poses of
the proposed taxonomy by analyzing human motion data. While in classic locomo-
tion actions such as walking and running the transitions between double and single
support poses are very well-understood [29, 52], such transitions can become much
more complex when e.g. the possibility of leaning against a surface with the hands
is considered. In our work, we are interested in identifying balance poses during
motions to be able to automatically perform a segmentation based on support poses.
To study pose transition in [31], we analyze real human motion data captured with a
marker-based motion capture system and post-processed using our unifying Master
Motor Map (MMM) framework [2, 32, 33, 46], to gain information about the poses
that are used while executing different locomotion and manipulation tasks like those
shown in Fig. 1.
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(a) (b) (c) (d)

Fig. 1 When performing locomotion (a), manipulation (b), balancing (c) or kneeling (d) tasks,
the human body can use a great variety of support poses to enhance its stability. Automatically
detecting such support contacts allows for an automatic identification of the visited support poses
and their transitions

Finally, we want to revisit the works where we explore the transfer of grasp
affordances to the whole-body. The concept of affordances was originally introduced
by Gibson [20] in the field of cognitive psychology for describing the perception of
action possibilities. It states that objects suggest actions to the agent due to the object’s
shape and the agent’s capabilities. A chair for example affords sitting, a cup drinking
and a staircase climbing. Various works apply the concept of affordances to the field
of grasping andmanipulation, primarily for learning grasp affordances, e.g. by initial
visual perception and subsequent interaction with an object [14, 41] or by focusing
on either haptic [6] or visual [40] perception. In our previous work, we introduced
the concept of Object-Action Complexes (OACs) to formalize affordances and link
objects and actions into co-joint representations of sensorimotor behaviors in the
robotic context [28]. In [23, 24], whole-body affordance hypothesis are defined as an
association of awhole-body stable action to a perceived primitive of the environment.
The concept of affordances is applied to actions related to the whole body of a
humanoid agent, particularly actions for stabilization and combinations of whole-
body locomotion and manipulation actions, i.e. loco-manipulation actions. Based on
previous approaches like [6, 41], these works aim at deriving, refining and utilizing
whole-body affordances like holding, leaning, stepping-on or supporting in unknown
environments.

In this work, we present a summary review of these works to visualize successful
transfer of knowledge from grasping to whole-body motion analysis with multi-
contacts, and we point out directions of current and future work following the same
idea of research. The paper is organized as follows. Section2 summarizes the work
where the taxonomy of whole-body poses is defined, summarizing the used criteria
for classification. Section3 revises the results of the analysis of motion data, and the
automatic generation of a graph of pose transitions that is compared to the taxonomy
of the previous section. Section4 revisits the works where we extract whole-body
affordances from unknown scenes and we validate the approach with an experiment
executed with ARMAR-IIIa [1]. Finally, Sect. 5 gives a summary and provides ideas
for current and future research.
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2 Taxonomy of Whole-Body Support Poses

When considering the whole body interacting with the environment, there is a wide
range of different postures that the robot can adopt. In [9], we were interested in
those poses that use contacts for balancing. Then, the limb end-effectors that are
not used for balancing can be used to perform other manipulation tasks. This way,
we provide a framework for loco-manipulation poses. In other words, contacts with
environmental elements that do not provide support are not considered for the taxon-
omy classification. For instance, in Fig. 2, green marked contacts define the support
pose, while the rest are contacts intended to manipulate the environment that do not
affect the support pose definition.

In Table1, the taxonomy proposed in [9] is shown. It contains a total of 46 classes,
divided into three main categories: standing, kneeling and resting. Each row corre-
sponds to different number of supports, and in each row, different columns correspond
to different contact types (see contact type legend at the bottom left corner of Table1).
In addition, colors differentiate type of leg supports and poses under the gray area
use line contacts (with arms or legs). The lines between boxes indicate hypothesis
of pose transitions between poses assuming only one change of support at a time.

The criteria considered for the definition of the taxonomy are

1. Number of contacts: One of the first relevant characteristics that greatlymodifies
the complexity of a motion is the number of contacts and supports with the
environment. Kinematically, each support creates a new closed kinematic loop,
and therefore, reduces by one the dimension of the feasible configuration space
[3, 22]. Dynamically, planning of complex motions tested on humanoid robots
report higher execution times per higher number of supports [43].

2. Type of contacts: From the control point of view, the nature of the contact used
to provide the support [12, 35] and the part of the body that performs the support
are relevant and important, because the resultant kinematics of the robot changes
accordingly. A fingertip contact is usually modelled as a point contact with fric-
tion, the foot support as plane contacts and arm leaning can be modelled using
line with friction model [34]. Figure3 shows the types of support that we consid-
ered for the taxonomy with the legs and arms. To keep our taxonomy simple, we
consider only 5 types: hold, palm, arm, feet, and knee support. These lead to the

2.3 3.4 2.13.1

Fig. 2 The support poses to perform the task of hit an object are defined by the contacts highlighted
in green. The numbers under the sketches refer to the id number of the support class in Table1
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Fig. 3 Types of support
contacts with arms and legs

hold palm feet kneearm

Fig. 4 Different body
shapes for the pose 2.3

consideration of 51 combinations from which we have selected 36 (correspond-
ing to the standing and kneeling poses). This choice has been done assuming that
some combinations, while feasible, are not common.

3. Shape of the environment: Many grasping taxonomies include the shape of
the object as a criteria for grasp selection. Indeed, object shape and size have
a great influence on the ability for grasping and manipulation. However, there
is a fundamental difference between hand grasping and whole-body poses: the
need of gravity to reach force closure. A hand grasp will always start with no
contacts at all, and after grasping, it may or may not start a manipulation motion
that can be maintaining constant contacts (in-grasp manipulation) or performing
re-grasps [30]. On the contrary, a whole-body grasp is always part of a motion
sequence of re-grasps that will always start with at least one contact with the
environment (even if one of the phases has no contact as in a running locomotion
or jumping). For this reason, we believe that whole-body grasp choice will not
depend as much on the shape of the environment, but on the task/motion the pose
occurs. Therefore, our taxonomy does not include this criteria of classification.

4. Shape of the body: While we believe shape of the environment is not relevant
in our case, the shape of the body performing the pose is relevant because it
depends on the task and can influence the transitions between different poses.
For instance, the shape of the body on the pose 3.4 when walking with a handrail
will be different than going upstairs with a handrail. Also, if when performing
a locomotion, the shape of the body in a double foot support pose (pose 2.3)
contains a hand reaching further, like in the left figure of Fig. 4, it is very probable
that the following pose will be a one with hand contact. However, the number of
shapes that each pose can adopt is very large and the size of the taxonomy grows
exponentially. Therefore, we will classify shape poses in a different hierarchy of
classification, that is left for future work.
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5. Stability: The taxonomy in Table1 is organized so that the less stable poses, with
less number of supports lie on the upper left side, while the most stable ones on
the lower right side, assuming that the more number of contacts and the larger the
surfaces of contact, the more stable the robot is. Works like [21] show that there is
a trade-off between stability and maneuverability during a goal-directed whole-
body movements. In the taxonomy, we observe a similar trade-off with mobility
versus stability. However, it has to be noted that inside any class it is possible
to obtain different levels of stability depending on the support region [10] (that
greatly depends on the body shape) and the sum of the contact wrenches [50].

6. Power grasps versus resting poses: In addition to the standing and kneeling
poses we have added 10 extra classes where there is contact with the torso. We
call them resting poses and they are the equivalent to power grasps where there
is contact of the object with the palm. Poses from r.1 to r.4 are poses where
still balance needs to be achieved, but the inclination of the torso needs to be
controlled. Poses from r.5 to r.6 are stable provided that the areas of contact are
flat and with friction. Finally, using poses from r.7 to r.10 the robot is unlikely
to lose balance and can be considered safe and completely in rest, but with very
limited mobility.
At this stage of work, no transitions are shown between resting poses and the rest
of the table. Such transitions are more complex and require further analysis that
will be left for future work.

7. Pose transitions and motions: In the next section, we will show how we have
studied support pose transitions by analyzing human motion capture data. How-
ever, the taxonomy provides preliminary hypothesis of possible pose transitions
using lines connecting poses in the taxonomy. Physically, a transition between
two classes can happen by first imposing the constraints of the current and des-
tination class, and then shifting to only the constraints of the destination class.
This induces the definition of two types of motions:

a. Inside classmotion: A purelymanipulation actionwill happen inside a single
class. It includes othermanipulationmotions and therefore, extra contactswith
objects, always with the objective ofmanipulation. As amanipulationmotion,
it can be semantically segmented and interpreted as done in [48].

b. Transition class motion: motions that define a transition between poses.
The motion still occurs inside a class, but the motion consists in the shifting
towards a destination class, as part of a locomotion. For instance, a double
feet support motion that shifts towards a right foot support (2.3 → 1.1). These
are the kind of transitions that are studied in [31] and summarized in the next
section.

Note that both motions happen always inside the same support class, but in the
second case, the destination class is relevant for the motion definition.
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3 Detection of Whole-Body Poses and Segmentation

The framework presented in Sect. 2 introduces a set of segmentation criteria for a
given motion that, provided that we can differentiate support contacts and manipula-
tion contacts, subdivides a motion into pieces that can be related to types of actions.
For actions identified as manipulation (inside pose motion), further segmentation
based on the manipulation contacts can be performed [48], providing a hierarchy
of segments distinguishing between the locomotion and the manipulation parts of
an action. In the work [31], we proposed a method to detect support contacts that
allows us to automatically segment motion data based on the support poses. This
allows us to analyze support pose transitions during 121 loco-manipulation motions
recorded using an optical marker-based Vicon MX motion capture system. This
motion analysis can provide a better semantic understanding of complex locomotion
and manipulation actions for imitation learning and autonomous decision making
applications. Our motions recordings contain also information of the location and
movement of the environmental elements, such as manipulated objects or objects to
provide support. TheKITWhole-BodyHumanMotionDatabase [32] contains a large
set of motions, providing rawmotion capture data, corresponding time-synchronized
video recordings and processed motions. The motions recorded for the work [31]
can be found in the KIT Whole-Body Human Motion Database.1

Finally, the motions are post-processed using the TheMaster MotorMap (MMM)
framework [33, 46]. This provides an open-source framework for capturing, repre-
senting and processing human motion. It includes a unifying reference model of the
human body for the capturing and analysis of motion from different human sub-
jects. The kinematic properties of this MMM reference model are based on existing
biomechanical analysis by Winter [51] and allow the representation of whole-body
motions using 58 degrees of freedom (DoF): 6 for the root pose and 52 for the body
torso, extremities and head.

Support poses of the human subject are detected by analyzing the relation of the
MMM reference model to the floor and environmental elements. For this purpose,
we only consider objects which exhibit low movement during the recorded motion
as suitable environmental elements to provide support. For every motion frame, we
use the forward kinematics of the reference model to calculate the poses of the model
segments that we consider for providing supports. These model segments represent
the hands, feet, elbows and knees of the human body.

A segment s of the reference model is recognized as a support if two criteria
are fulfilled. First, the distance of s to an environmental element must be lower
than a threshold δdist (s). Distances to environmental elements are computed as the
distances between pairs of closest points from the respective models with triangle-
level accuracy using Simox [47]. Additionally, the speed of segment s, computed
from smoothed velocity vectors, has to remain below a threshold δvel(s) for a certain

1See https://motion-database.humanoids.kit.edu/details/motions/<ID>/ with ID ∈ {383, 385, 410,
412, 415, 456, 460, 463, 515, 516, 517, 520, 521, 523, 527, 529, 530, 531, 597, 598, 599, 600, 601,
604, 606, 607}.

https://motion-database.humanoids.kit.edu/details/motions/<ID>/
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number of frames, starting with the frame where the support is first recognized. The
thresholds are chosen empirically: δvel = 200 mm

s , δdist (Feet) = δdist (Hands) =
15mm, δdist (Knees) = 35mm and δdist (Elbows) = 30mm. The support pose is
defined by the contacts that are providing support to the subject. We ignore parts of
the motion where the human body is not supported at all as an empty support pose,
e.g. during running. Also, some practical assumptions are used, such as that a knee
support also implies a foot support. We have manually validated the segmentation
method error by exploring frame by frame the detected support segments. Results
can be seen in [31]. They show that about 4.5% of the poses are missed, but the
missed poses are always double foot supports (with or without hand). Only 2.1% of
the poses are incorrectly detected.

3.1 Data Driven Analysis of Transitions Between
Whole-Body Support Poses

Without taking into account kneeling motions, we have recorded and analyzed 110
motions including locomotion, loco-manipulation and balancing tasks. In the fol-
lowing, we present some analysis on the most common pose transitions. We ignore
kneeling motions because we do not have enough data yet to get significant results.
In every motion, both the initial and the final pose are double foot supports and the
time spent on these poses is arbitrary. Therefore, they have been ignored for the
statistical analysis. Without counting them, we have automatically identified a total
of 1323 pose transitions lasting a total time of 541.48 s (9.02 min). In Table2, each
cell represents the transition going from the pose indicated by the row name to the
pose indicted by the column name. In each cell, we show first the percentage of

Table 2 Percentages of appearances and time spent for each transition (%appearance, %time)

1Foot 1Foot-
1Hand

2Feet 2Feet-
1Hand

2Feet-
2Hands

1Foot-
2Hands

Totals ×
pose

1Foot 4.38,
5.69%

9.30,
7.90%

22.90,
25.56%

0.15,
0.26%

– 0.08,
0.04%

36.81,
39.44%

1Foot-
1Hand

9.15,
3.64%

1.81,
2.26%

0.08,
0.03%

12.24,
16.59%

0.08,
0.02%

0.15,
0.02%

23.51,
32.57%

2Feet 16.02,
10.05%

0.15,
0.04%

× 3.48,
2.23%

0.08,
0.06%

– 19.73,
12.38%

2Feet-
1Hand

0.23,
0.07%

11.72,
4.38%

4.61,
5.31%

× 0.98,
0.15%

– 17.54,
9.92%

2Feet-
2Hands

– – – 0.83,
1.22%

× 0.68,
0.75%

1.51,
1.97%

1Foot-
2Hands

– 0.53,
1.27%

– – 0.38,
2.45%

× 0.91,
3.72%
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occurrence of the transition with respect to the total number of transitions detected,
and secondly the percentage of time spent on the origin pose before reaching the
destination pose, with respect to the total time of all motions. The last column is the
accumulation of percentages per each pose, and the rows are sorted from the most
to the least common pose. According to Table2, the most common transitions are
1Foot→2Feet (22.90% of appearance) and 2Feet→1Foot (16.02% of appearance).
These are the same transitions of walking that have beenwidely studied. Although all
motions contain some steps of normal walking, they also involve hand supports, and
therefore, these transitions show different behaviours because they are part of a more
complex set of transitions. It must be noted that the loop transitions 1Foot→1Foot,
and 1Foot-1Hand→1Foot-1Hand are mostly missed double foot supports and we
will not include them in the analysis.

Figure5 shows the automatically generated transition graph, considering also
the start and end poses of each motion and all the kneeling motions. Each edge
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Fig. 5 Transition graph of whole-body pose transitions automatically generated from the analyzed
motions. Labels on edges indicate the number of transitions found of each type
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corresponds to a transition, and their labels to the number of times we have found
it. Edges plotted in red correspond to transitions where two simultaneous changes
of contacts occur. In the taxonomy of Table1, we assumed that only one change of
support should be allowed per transition. While this is still desirable for robotics,
it is also obvious that some human transitions involve two contact changes. For
instance, in push recovery motions, humans usually lean on the wall using both arms
at the same time to increase stability. Many of the red edge transitions in Fig. 5
occur in balancing tasks. In the transition graph shown in Fig. 5, we can quickly see
that red edges are of significantly lower frequency than the black ones, except the
loop edges in the 1Foot and 1Hand-1Foot poses, that are caused by either jumps or
missed double foot supports. They correspond to the 4.5% transitions missed by our
segmentation method reported before. This data-driven transition graph is influenced
by the type of motions we have analyzed, using only one handle or one hand support.
Only balancing poses reach the four support poses. In future work, we will analyze
walking motions with handles on both sides.

Most of the hypothetical transitions in Table1 are correct, except 1Foot →
1Foot1Knee that does not appear in real data. This is because the subject uses support
with the tip of the foot until contact is reached with the knee, and this is detected
as a foot support that corresponds to a tip-toe support. Therefore, all the edges in
red between double foot support (with and without hand) and kneeling are correctly
detected and should be corrected in our taxonomy in Table1. In the future, we will
study if we should distinguish between tip-toe and sole support. Figure6 shows an
example of segmentation result, corresponding to the time line of a motion where
the subject goes upstairs using a handle on his right side. In blue, we show the long
locomotion transitions. The supporting pose for these transitions alternates between
1Foot-1Hand, used to swing forward the foot not in contact, and 1Foot, used to swing
forward both the handle hand and the foot not in contact. This is because we only
provide one handle. Another interesting thing to notice is that the short locomotion
transitions appear in clusters, composed by a sequence of two transitions. We have
observed this in many of the motions and we have observed that the order of the
transitions inside these clusters does not matter, just the start and end poses. We
believe that each cluster could be considered as a composite transition where several
contact changes occur. As future work, we want to detect and model these clusters to

timeline

67 75 48 72

33

Fig. 6 Result of the segmentation for one of the motions upstairs with handle. The segment shown
in red represents the initial pose transition, that has an arbitrary length. Blue segments represent
transitions where the foot swings. Blue labels/numbers indicate transition durations. We can see
that the human alternates between single foot support swing and 1Foot-1Hand support swing using
the handle
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identify rules that allow us to automatically generate sequences of feasible transitions
according to extremities available for contacts.

4 Whole-Body Affordances

Grasp affordances rely on perception methods, either visual or haptic, to perceive the
geometry of the object, and then associate grasp strategies according to the recog-
nized geometric shapes [6]. Similarly, in [23, 24] we relay on a visual perception
system with active cameras that can collect point clouds, register them and then
extract geometric primitives from an unknown scene. In [23] we proposed to assign
hypotheses for whole-body affordances like support, lean, grasp or hold to envi-
ronmental primitives based on shape, size and orientation. Large vertical planes for
instance are assumed to indicate lean-affordances. These kind of affordances are
of basic importance for whole-body stabilization. However, further possible whole-
body affordances exist and are of special interest when manipulating large, and
possibly heavy, objects, for instance for removing debris from a blocked pathway.
Examples forwhole-body affordances indicatingmanipulability of objects arepusha-
bility and liftability, which are experimentally evaluated in [24]. The association of
affordances is based on a set of rules shown in Table3. While an exhaustive eval-
uation of the available types of whole-body affordances still remains to be done,
pushability and liftability are certainly essential. The work show that we can inte-
grate and evaluate the processes of affordance perception, validation and utilization
on a real-world robotic system considering all the affordance types.

The constants λi from Table3 are currently application specific. However, we
think that there is a fixed set of affordance extraction parameters that will work
reasonably well for our scenarios due to the following reasons:

• Research shows that agents infer affordances based on a body-scaled metric, i.e.
with respect to the proportions of their bodies [49].

• Weprimarily focus our studies to disaster scenarios that contain at least partly intact
man-made elements like doors, handrails or staircases. These elements usually
have standardized dimensions known beforehand.

Figure7 visualize the environmental primitives and their associated affordances
from point cloud example corresponding to a staircase scenario. The primitives are
assigned meaningful whole-body affordances based on the rules from Table3. The
proposed framework successfully identifies the existing cylindrical and planar prim-
itives. More examples of different scenes can be found in [24]. The strategies for
affordance extraction are purely based on visual perception and are therefore only
affordance hypotheses subject to further investigation and validation by the robot. In
[23], precomputed reachability maps help to discard non utilizable affordances. In
[24] there is no reliable mechanism for verifying the existence of affordanceswithout
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Table 3 Example of a set of rules for affordance derivation and possible validation strategies. The
operator ↑ tells if two vectors point into the same direction. The values λi are implementation-
specific constants

Affordance Shape Parameters Conditions Valid.

Support (S) Planar Normal n n ↑ zworld (1a)

Area a a ≥ λ1

Lean (Ln) Planar Normal n n ⊥ zworld (1a)

Area a a ≥ λ2

Grasp (G) Planar Normal n a ∈ [λ3, λ4] (3)

Area a

Cylindrical Radius r r ∈ [λ5, λ6]
Direction d ‖d‖ ≤ λ7

Spherical Radius r r ∈ [λ8, λ9]
Hold (H) Cylindrical Radius r r ∈ [λ10, λ11] (2a)

Direction d ‖d‖ ≥ λ12

Push (P) Planar Normal n n ⊥ zworld (1b)

Area a a ≤ λ13

Lift (Lf) Planar Normal n a ≤ λ15 (2b)

Area a

Cylindrical Radius r r ≤ λ15

Direction d ‖d‖ ≤ λ16

Spherical Radius r r ≤ λ17

Fig. 7 Example of the results of the affordance extraction process (right) from a segmented point
cloud (left). The example scenario is staircase. The affordance tags S, Ln, G, P and Lf refer to
Table3. For more examples see [24]
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establishing contact to the underlying primitives. Referring toTable3, different force-
based validation strategies exist based on the affordance hypothesis to investigate:

1. Exert a force along the primitive’s normal n and compare the resistance force
against a minimum ϑ1 (1a) or a maximum ϑ2 (1b).

2. Grasp the primitive and exert forces perpendicular to the primitive’s direction d.
Compare the resistance force against a minimum ϑ3 (2a) or a maximum ϑ4 (2b).

3. Push the primitive and perceive the caused effect.

Considering further sensor modalities apart from contact forces is of interest
and can lead to more sophisticated and accurate validation strategies. Validating the
pushability of a very light object for instance might not result in a reliable resistance
force feedback. Possible solutions for cases like this include tactile feedback or
the comparison of RGB-D images before and after the push, similar to [45]. These
strategies were validated with an experiment carried out on the humanoid robot

(a) Perception (b) Validation (c) Execution

Fig. 8 The three stages of perception, validation and execution of whole-body affordances in four
different scenarios: A pipe that can be grasped and lifted (first row), a chair that can be pushed
(second row), a box that can be pushed (third row) and a box that is fixed and cannot be pushed
(fourth row). The plots visualize the force amplitudes (y-axis) measured in the robot’s left wrist
over time (x-axis), while the blue curve represents the force in pushing direction
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ARMAR-III, demonstrating the perception and validation of affordance hypotheses
for pushability and liftability. In the experiment ARMAR-III is facing a cluttered
arrangement of different obstacles, i.e. debris, that block its way: A chair, a box and
a pipe (see Fig. 8, top left corner). The robot has no prior knowledge on the types
or locations of the employed obstacles, the only information it gets results from the
perceptual pipeline. Figure8 displays snapshots of different stages of the experiment:
perception (first column), validation (second column) and execution (third column).
The perception stage displays the initial obstacle arrangement and its representation
after the perceptual pipeline in terms of primitives and affordance hypotheses. The
validation stage includes the establishment of contact with the selected primitive and
the affordance validation based on the obstacle’s resistant force. In the execution
phase, the robot has validated the affordance in question and starts pushing or lifting
the obstacle, respectively. The robot successfully identifies all three obstacles and
starts by validating the liftability of the pipe (Fig. 8, first row). The validated liftability
is then exploited formoving the obstacle away. In the next steps the robot identifies the
chair and the box as pushable obstacles and validates these affordances accordingly
(Fig. 8, second row, third row). The last row of Fig. 8 displays a repetition of the
previous scene with a fixed box. The robot again assigns a pushability hypothesis to
the box, but fails to validate this hypothesis. Hence, the corresponding push cannot
be executed. A detailed description of the whole process is given in [24].

5 Conclusions

This work revisits several works from our previous work that explore transfer of
techniques from grasping to whole-body loco-manipulation tasks. In this context,
we have proposed a taxonomy of whole-body balancing poses containing 46 classes,
divided into three main categories, considering number and type of support and pos-
sible transitions between support poses. We have analyzed known grasping criteria
used to classify robot grasps, but focusing on the demands of whole-body poses. As
opposed to grasping, we have given less relevance to environment shape and more to
the type of contact the body uses to provide a support pose. We have also presented
an analysis of support poses of more than 100 motion recordings showing different
locomotion and manipulation tasks. Our method allowed us to retrieve the sequence
of used support poses and the time spent in each of them, providing segmented rep-
resentations of multi-contact whole-body motions. Although the most common pose
transitions are the ones involved in walking, we have shown that the 1Foot-1Hand
and the 2Foot-1Hand poses also play a crucial role in multi-contacts motions. The
data-driven generated graph of transitions validates the transitions proposed in our
taxonomy. We believe that our motion segmentation by support poses and time spent
per transition provides a meaningful semantic representation of a motion. Finally,
we have shown how the concept of grasp affordances can also be applied to whole-
body affordances. Using common sense knowledge of a perceived unknown scene,
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whole-body affordances are assigned to geometries and are then validated through
physical interaction with the scene.

This work opens the door to many exciting future directions. First, each class of
poses in the taxonomy corresponds to an infinite number of possible body configu-
rations depending on location and orientation of contacts and the body shape. Future
work directions include finding the most relevant whole-body eigen-grasps based on
the collected human motion data, that is, we will apply dimensionality reduction to
deal with the large space of whole-body configuration and to determine whole-body
eigen-grasps associated with support poses. Secondly, we are interested in analyzing
our motion representations to find semantic rules that can help define new motions
for different situations, with the objective of building a grammar of motion poses
based on the introduced taxonomy. Storing each transition as a motion primitive, we
are also interested in performing path planning at a semantic level based on support
poses. Finally, we plan to use the extracted and validated affordances to generate
sequences of whole-body poses that generate locomotions with multi-contacts, uti-
lizing perceived location of the possible contacts and the learned motion primitives
for each pose transition. In conclusion, our works present a step further in the com-
prehension of howhumans can utilize their bodies to enhance stability for locomotion
and manipulation tasks. We believe the proposed ideas have a lot of potential to be
used in many areas of humanoid robotics.
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Part III
Robot Planning and Navigation

Session Summary

We believe that motion planning is already well-established as a research field, but
it is still evolving while research focuses are changing. Navigation is currently very
actively studied along with recent rapid progress in drones and field robotics. Per-
ception planning and localization is intensively studied for smooth and efficient
navigation, and we have three papers on these topics in this session: relative topomet-
ric localization in globally inconsistent maps (M. Mazuran et al.), active multi-view
object recognition and online feature selection (C. Potthast et al.), an iterativeKalman
smoother for robust 3D localization and mapping (D. Kottas and S. Roumeliotis),
and incremental sparse GP regression for continuous-time trajectory estimation &
mapping (X. Yan et al.).

In the first keynote talk, Nancy Amato introduced challenges in this field and
emphasized that fundamental theory and algorithms are still actively investigated.
The graph-based (e.g., PRMs) and tree-based (e.g., RRTs)methods have proven to be
very powerful, enabling us to solve many previously unsolvable problems. Algorith-
mic challenges include how to deal with high-DOF systems, narrow passages and
constrained systems. Two papers were presented on this topic, fast sample-based
planning of dynamic systems by zero-control linearization-based steering (D.G.
Caldwell and N. Correll) and a little paradoxical topic, deterministic sampling-based
motion planning (L. Janson et al.).

Other challenges are uncertainty and unknown environments that require replan-
ning.Recently, FIRM(Feedback-based InformationRoadMap) extended the roadmap
to belief space eliminating the need for replanning. Learning is now being inte-
grated into planning. Three papers were presented about navigation under uncer-
tainty: Bayesian learning for safe high-speed navigation in unknown environments
(C. Richter et al.), Monte Carlo motion planning for robot trajectory optimization
under uncertainty (L. Janson et al.) and inference-enabled information-theoretic
exploration of continuous action spaces (S. Bai et al.). Environment-aware plan-
ning is also a related issue and two papers tackle this topic: a computational frame-
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work for environment-aware roboticmanipulation planning (M.Gabiccini) and small
and adrift with self-control: using the environment to improve autonomy (M.A.
Hsieh et al.).

Finally, Amato addressed a very exciting challenge: human-in-the-loop planning.
Why should we plan from scratch every time? Why don’t we rely on human’s guid-
ance/input that is difficult to quantify automatically and required for co-operation?
However, the information required for this planning may be different from existing
formalism such as cost or complexity. Her latest research shows that humans can
provide guidance and reduce search space leaving the planner to do fine-grained
planning.

Eiichi Yoshida’s next keynote talk was about “human(oid) motion planning” that
is a more application-oriented topic. In the earlier stage of his research, he regarded
a humanoid robot as just a robot with many DOFs that sampling-based approaches
have advantages for planning. A variety of whole-body humanoidmotion can be gen-
erated by combining generalized inverse kinematics as a local method of a sampling-
based planner. In the Humanoids session, S. Tonneau et al. presented a related topic
on a reachability-based planner for sequences of acyclic contacts in cluttered envi-
ronments. The title of talk implies “rom humanoid planning to human planning”.
Humanoid motion planning recently makes Yoshida more and more interested in
human motions: why humans do this motion rather than other motions, do they
optimize something (inverse optimal control), and if yes, is it possible to apply the
optimization to humanoid? Actually, optimization is another challenge actively stud-
ied in the domain of planning: a couple of papers report this topic: unifying classical
and optimization-basedmethods for robot tracking control with control contract (I.R.
Manchester et al.), path following for mobile manipulators (R. Gill et al.) and role of
vision in locomotor trajectories formation (J.-P. Laumond) in theHumanoids session.
Yoshida then presents some work of human motion analysis and its reproduction by
a humanoid: not only for entertainment use, but also toward a “physical mannequin”
that replaces human subjects for wearable power suits or assistive devices. Amato’s
human-in-the-loop planning is indeed one of the promising solutions. By immersive
tele-existence interface that makes the human embody” in the robot, a humanoid
can be planned in a more intuitive way. Yoshida concluded his talk by noting that
implementing a “human” motion planner will allow a humanoid robot to collaborate
with humans in a more natural and transparent way.



Bayesian Learning for Safe High-Speed
Navigation in Unknown Environments

Charles Richter, William Vega-Brown and Nicholas Roy

1 Introduction

A common planning strategy in unknown environments is the receding-horizon
approach: plan a partial trajectory given the current (partial) map knowledge, and
begin to execute it while re-planning. By repeatedly re-planning, the robot can react
to newmap information as it is perceived. However, avoiding collision in a receding-
horizon setting can be difficult, since the planner must not only ensure that its chosen
actions are collision-free within the planning horizon, but it must also consider what
actions will be feasible for the robot after the planned trajectory has been com-
pleted. To guarantee safety, a receding-horizon planner must plan trajectories that
are known to be collision-free for all time [10]. This constraint is often satisfied
through hand-coded rules or contingency plans, such as ensuring the existence of a
collision-free emergency-stop maneuver or cyclic holding pattern [2, 23]. If the map
is partially known, a safe planner must conservatively assume that every unknown
cell may contain an obstacle, and therefore must confine its trajectories to lie within
the observed free space. Figure1a, b illustrate this scenario for a robot approaching a
blind corner while guaranteeing safety. As the robot approaches the corner, it slows
dramatically to preserve its ability to complete a feasible emergency-stop maneuver
before entering unknown space. We use this “baseline” safe planner for comparison
in this paper.

Safety constraints imply an assumption that driving into unknown regions of the
map is always dangerous. However, our central claim in this line of research is that
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Fig. 1 Actions chosen for a robot approaching a blind corner while guaranteeing safety (a)–(b).
Chosen trajectories are drawn in blue, and feasible emergency-stop maneuvers are drawn in red.
Emergency-stop actions that would cause the robot to collide with obstacles or unknown cells are
drawn in black. The safety constraint requires the robot to slow from 4m/s in a to 1m/s in b to
preserve the ability to stop within known free space. In c, our solution plans a 6m/s turn, which
commits the robot to entering the unknown, but the planner’s experience predicts a low risk of
collision. The light gray region shows the hallway of the true hidden map

this assumptionmay be overly conservative. Inmany cases, the agent can safely drive
at high speeds into the unknown if it is equipped with an accurate model of collision
probability based on previous experience in similar situations [20]. For instance,
many buildings have straight hallways with 90◦ turns and intersections. If a robot
observes a hallway with a turn, and has trained in similar environments, it should
be able to reason with high certainty that the hallway will continue, and that there
will be free space around the turn. Figure1c shows our proposed solution planning
a high-speed turn around a blind corner, violating the safety constraint. Emergency-
stop trajectories from the chosen action (illustrated in black) all enter unknown space.
Yet, this type of maneuver is often empirically safe for hallway environments and
our solution correctly infers that it is not excessively risky.

Oneway to estimate the likelihood of collision in unknown spacemight be to infer
the probability that certain unknown map regions are occupied, using sensor mea-
surements and an accurate prior distribution over maps. Unfortunately, modeling an
accurate distribution over real-world environments would be extremely difficult due
to the very high dimensionality of building-sized occupancy grid maps, the strong
assumption of independence between map cells, and the richness of man-made and
natural spaces which resist compact parameterization. Without significant modeling
effort, or restriction of the problem domain to specific environments, the best prior
knowledge we can reasonably provide is to say that every map is equally likely. Of
course, this prior is very inaccurate and completely unhelpful for planning, and pre-
vents the agent from exploiting any intuitive knowledge of “typical” environments.
To compensate for this missing knowledge, we adopt a machine learning approach
to predict collision probability from training data, which implicitly captures the rel-
evant traits of our training environments rather than modeling the map distribution
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explicitly. This approach leads to a much lower-dimensional model that is signifi-
cantly easier to learn and efficient enough to run online.

In the next section, we develop the POMDP formulation of our problem, which
lays the foundation for decision theoretic planning. We then derive our approxima-
tions to the POMDP to make the problem tractable, which give rise to our learned
model of collision probability. Then, we discuss how we learn that model and how
we encode safety constraints as a prior over collision probability to help our planner
remain safe in novel environments for which it has no relevant training data. Finally,
we will present simulation and experimental results demonstrating 100% empirical
safety while navigating significantly faster than the baseline planner that relies on
formal constraints to remain safe.

2 POMDP Planning

We wish to control a dynamic vehicle through an unknown environment to a goal
position in minimum expected time, where the expectation is taken with respect
to the (unknown) distribution of maps. While solving this problem exactly is com-
pletely intractable, the POMDP formalism is useful for defining the planning task and
motivating our approximations. The following POMDP tuple, (S, A, T, R, O,Ω),
applies to an RC car equipped with a planar LIDAR being used for this research.

States S: {Q × M}. Q is the set of vehicle configurations: q = [x, y, ψ, k, v],
representing position, heading, curvature (steering angle) and forward speed, respec-
tively. M is the set of n-cell occupancy maps: m = [m0,m1, . . . ,mn] ∈ {0, 1}n ,
where mi represents the i th cell in the map. For a given problem instance, the true
underlying map, m, is fixed, while the configuration, q, changes at each time step as
the robot moves. We assume that q is fully observable, while m is partially observ-
able since only a subset of the map can be observed from a given location. We also
assume that n is fixed and known.

Actions A: A is a pre-computed discrete action library spanning the vehicle’s
maneuvering capabilities. Several examples are illustrated in Fig. 2. All actions reach
a planning horizon of 2m, but differ in their time duration as a function of their speeds.

Fig. 2 Examples of pre-computed action sets from 1m/s (a), 4m/s (b), and 8m/s (c) with zero
initial curvature, and from 4m/s with non-zero initial curvature (d)
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Due to space constraints, we refer the reader to Howard et al. for a discussion of
discrete action sets for dynamic vehicles [12].

We define several deterministic functions related to transition dynamics. The
collision function C(s, a) : S × A �→ {0, 1} indicates whether taking action a from
state s would result in a collision. The state-transition function F(s, a) : S × A �→ S
returns the state reached by taking action a from state s according to the dynamics.
In F , the map portion of the state remains fixed at its true value. If a collision would
occur along trajectory a (i.e., if C(s, a) = 1), then F(s, a) clamps the configuration
to its last feasible value along a and sets the velocity to zero. The function ICS(s) :
S �→ {0, 1} indicates whether state s is an inevitable collision state [3], i.e., if there
exists no infinite-horizon sequence of actions 〈a0, a1, . . . 〉 from s that will avoid
collision with the environment.

Conditional Transition Probabilities T : We assume deterministic vehicle
dynamics and a fixed map, p(st+1|st , at ) = 1 for st+1 = F(st , at ) and 0 otherwise.
While actions have different time durations, we use the subscript t + 1 to indicate
the discrete “time” after completing action at .

Observations Ω: Each observation consists of a perfect measurement of qt and
the partial map of cells visible to the robot from st . This partial map consists of
occupied cells at locations ri,xy corresponding to each LIDAR range measurement
ri , and unoccupied cells along the ray from qt to each ri,xy .

Conditional Observation Probabilities O: We assume a noiseless sensor, so
p(ot+1|st+1, at ) = 1 for the partial map corresponding to the map geometry visible
from state st+1, along with a perfect measurement of qt+1, and 0 otherwise.

Cost Function R: We use a minimum-time cost function and denote the time
duration of action a as Ja(a). Let SG denote the set of goal states. R(s, a) = 0 for
s ∈ SG . For s /∈ SG , R(s, a) = Ja(a) if C(s, a) = 0 and adds an additional collision
penalty, Jc, if the action results in a collision: R(s, a) = Ja(a) + Jc if C(s, a) = 1.

2.1 Missing Prior Distribution Over Environments

A POMDP agent maintains a belief over its state b(st ) = P(qt ,m), and has a state
estimator, which computes a posterior belief that results from taking an action and
then receiving an observation, given a current belief: b(st+1) = P(st+1|bt , at , ot+1).
If the agent’s current belief, bt , assigns uniform probability to all possible maps with
independence betweenmap cells (a very unrealistic distribution), then an observation
and subsequent inference over the map distribution simply eliminates those maps
that are not consistent with the observation and raises the uniform probability of
the remaining possible maps. If, on the other hand, the prior belief correctly assigns
high probability to a small set of realistic maps with common structures such as
hallways, rooms, doors, etc., and low probability to the unrealistic maps, then this
belief update may help to infer useful information about unobserved regions of the
map. For instance, it might infer that the straight parallel walls of a hallway are likely
to continue out into the unobserved regions of the map. All of this prior knowledge
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about the distribution of environments enters the problem through the agent’s initial
belief b0, which we must somehow provide.

Unfortunately, as we noted in Sect. 1, modeling the distribution over real-world
environments would be extremely difficult. We have little choice but to initialize
the robot believing that all maps are equally likely and that map cells are indepen-
dent from each other. To compensate for this missing environment distribution, our
approach is to learn a much more specific distribution representing the probability of
collision associated with a given planning scenario. This learned function enables the
agent to drive at high speed as if it had an accurate prior over environments enabling
reasonable inferences about the unknown. In the following sections, we will derive
our learned model from the POMDP and describe how we can efficiently train and
use this model in place of an accurate prior over environments.

2.2 Approximations to the POMDP

Let Vπ (s) = ∑∞
t=0 R(st , π(st )) be the infinite-horizon cost associated with some

policy π mapping states st to actions at . The optimal cost-to-go, V ∗(s) could then,
in principle, be computed recursively using the Bellman equation. Having computed
V ∗(s) for all states, we could then recover the optimal action for a given belief1:

a∗
t (bt ) = argmin

at

{ ∑

st

b(st )R(st , at )+
∑

st

b(st )
∑

st+1

P(st+1|st , at )
∑

ot+1

P(ot+1|st+1, at )V
∗(st+1)

}

(1)

The summations over st and ot+1 perform a state-estimation update, resulting in a
posterior distribution over future states st+1 from all possible current states in our
current belief bt , given our choice of action at . We can rewrite (1) as:

a∗
t (bt ) = argmin

at

{ ∑

st

b(st )R(st , at ) +
∑

st+1

P(st+1|bt , at )V ∗(st+1)

}

(2)

Since our cost function R(s, a) applies separate penalties for time and collision, we
can split V ∗(s) into two terms, V ∗(s) = V ∗

T (s) + V ∗
C (s), where T and C refer to

“time” and “collision”. V ∗
T (s), gives the optimal time-to-go from s, regardless of

whether a collision occurs between s and the goal. We assume that if a collision
occurs, the robot can recover and proceed to the goal. Furthermore, we assume that
the optimal trajectory from s to the goal will avoid collision if possible. But there
will be some states s for which collision is inevitable (ICS(s) = 1) since the robot’s

1Since we use a discrete set of actions, there is a finite number of configurations that can be reached
from an initial configuration. Therefore, we can sum over future states rather than integrating.
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abilities to brake or turn are limited to finite, realistic values. Since we assume that
collisions only occur from inevitable collision states, we can rewrite the total cost-to-
go as: V ∗(s) = V ∗

T (s) + Jc · ICS(s). Substituting this expression, we can rewrite (2)
as:

a∗
t (bt ) = argmin

at

{ ∑

st

b(st )R(st , at )+
∑

st+1

P(st+1|bt , at )V ∗
T (st+1) + Jc ·

∑

st+1

P(st+1|bt , at )ICS(st+1)

}

(3)

The first term in Eq. (3) is the expected immediate cost of the current action, at .
We assume no collisions occur along at since the robot performs collision checking
with respect to observed obstacles, and it nearly always perceives obstacles in the
immediate vicinity. This term simply reduces to Ja(at ), the time duration of at .

The second and third terms of (3) are expected values with respect to the pos-
sible future states, given at and bt . However, as we have observed in Sect. 2.1, our
initial uniform belief over maps means that bt will be very unhelpful (and indeed
misleading) if we use it to take an expectation over future states, since the true distri-
bution over maps is surely far from uniform. The lack of meaningful prior knowledge
over the distribution of environments, combined with the extremely large number of
possible future states st+1, means that we must approximate these terms.

For the expected time-to-go, we use a simple heuristic function:

h(bt , at ) ≈
∑

st+1

P(st+1|bt , at )V ∗
T (st+1), (4)

which performs a 2Dgrid search usingDijkstra’s algorithm (ignoring dynamics) from
the end of action at to the goal, respecting the observed obstacles in bt , assuming
unknown space is traversable and that the current speed is maintained. The use of
a lower-dimensional search to provide global guidance to a local planner is closely
related to graduated-density methods [13]. While other heuristics could be devised,
we instead focus our efforts in this paper on modeling the collision probability.

The third term inEq. (3), Jc · ∑
st+1

P(st+1|bt , at )ICS(st+1), is the expected future
collision penalty given our current belief bt and action at . As we noted in Sect. 2.1,
the fundamental problem is that our belief bt does not accurately capture which map
structures are likely to be encountered in the unknown portions of the environment.
Correctly predicting whether a hallway will continue around a blind corner, for
instance, is impossible based on the belief alone.We instead turn to machine learning
to approximate this important quantity from training data:

fc(φ(bt , at )) ≈
∑

st+1

P(st+1|bt , at )ICS(st+1) (5)
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The model, fc(φ(bt , at )), approximates the probability that a collision will occur in
the future if we execute action at given belief bt . It is computed from some features
φ(bt , at ) that summarize the relevant information contained in bt and at , for example
vehicle speed, distance to observed obstacles along at , etc. With the approximations
of all three terms in Eq. (3), we arrive at our receding-horizon control law:

a∗
t (bt ) = argmin

at

{
Ja(at ) + h(bt , at ) + Jc · fc(φ(bt , at ))

}
(6)

At each time step, we select a∗
t minimizing (6) given the current belief bt .We begin to

execute a∗
t while incorporating new sensor data and re-planning. Next, we describe

how we collect data and build a model to predict collision probabilities.

3 Predicting Future Collisions

In this section, we focus on learning to predict the probability of collision associated
with a given planning scenario, represented as a point in feature space,Φ.We assume
that for a given vehicle or dynamical system, there exists some true underlying
probability of collision that is independent of the map and robot configuration, given
features, φ. In other words, P(“collision”|φ, q,m) = P(“collision”|φ). Under this
assumption, we can build a data set by training in any environments we wish, and
the data will be equally valid in other environments that populate the same regions
of feature space. If two data sets gathered from two different environments do not
share the same output distribution where they overlap in feature space, we assume
that our features are simply not rich enough to capture the difference.

This assumption also implies that if an environment is fundamentally different
from our training environments with respect to collision probabilities, it will populate
a different region of feature space. If the robot encounters an environment for which
it has no relevant training data nearby in feature space, it should infer that this
environment is unfamiliar and react appropriately. In these cases, we require that
our learning algorithm somehow provide a safe prediction of collision probability
rather than naïvely extrapolating the data from other environments. Our features
must therefore be sufficiently descriptive to predict collisions as well as differentiate
between qualitatively different environment types.

Quantifying a planning scenario using a set of descriptive functions of belief-
action pairs currently relies on the domain knowledge of the feature designer. For
this paper, our features are four hand-coded functions: (a) minimum distance to the
nearest known obstacle along the action; (b) mean range to obstacle or frontier in
the 60◦ cone ahead of the robot, averaged over several points along the action; (c)
length of the straight free path directly ahead of the robot, averaged over several
points along the action; and (d) speed at the end of the action. While these features
work adequately, our method is extensible to arbitrary numbers of continuous- and
discrete-valued features from a variety of different sources, including features that
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operate on a history of past measurements. We expect that additional features will
enable more intelligent and subtle navigation behaviors.

3.1 Training Procedure

To predict collision probabilities, we collect training data D = {(φ1, y1),. . . ,(φN ,

yN )}. Labels yi are binary indicators (“collision”, “non-collision”) associated with
belief-action pairs, represented as points φi in feature space. To efficiently collect
a large data set, we use a simulator capable of generating realistic LIDAR scans
and vehicle motions within arbitrary maps. The training procedure aims to generate
scenarios that accurately emulate beliefs the planner may have at runtime, and accu-
rately represent the risk of actions given those beliefs. While at runtime, the planner
will use a map built from a history of scans, we make the simplifying assumption
that a single measurement taken from configuration qt is enough to build a realistic
map of the area around qt , similar to one the planner might actually observe. With
this assumption, we can generate training data based on individual sampled robot
configurations, rather than sampling extended state-measurement histories, which
not only results in more efficient training, but also eliminates the need for any sort
of planner or random process to sample state histories.

We generate each data point by randomly sampling a feasible configuration, qt ,
within a training map, and simulating the sensor from qt to generate a map estimate,
and hence a belief bt . We then randomly select one of the actions, at , that is feasible
given the known obstacles in bt . Recall from Eq. (5) that our learned function models
the probability that a collision will occur somewhere after completing the immediate
chosen action at , i.e., the probability that state st+1 (with configuration qt+1) is
an inevitable collision state. Therefore, to label this belief-action pair, we run a
resolution-complete training planner from configuration qt+1 at the end of at . If
there exists any feasible trajectory starting from qt+1 that avoids collision with the
true hidden map (to some horizon), then ynew = 0, otherwise ynew = 1. Finally, we
compute features φnew(bt , at ) of this belief-action pair and insert (φnew, ynew) into D.

We use a horizon of three actions (6m) for our training planner because if a
collision is inevitable for our dynamics model, it will nearly always occur within this
horizon. We have explored other settings for this horizon and found the results to be
comparable, although if the horizon is too short, some inevitable collision states will
be mis-labeled as “non-collision”.

Figure3 illustrates “collision” and “non-collision” training instances. In Fig. 3a,
the hidden map includes a sharp hairpin turn, which is infeasible for our dynamics
model, given that the car begins toward the inside of the turn at a relatively high speed
(≈8m/s). Therefore, the training planner fails to find a trajectory to the desired hori-
zon and each partial path results in a dead-end (red dot) because the robot is moving
too fast to complete the hairpin turn. On the other hand, the hidden map in Fig. 3b
has a straight hallway rather than a sharp turn, and the training planner succeeds in
finding a feasible trajectory to the three-action horizon, aided by the car’s initial con-
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Fig. 3 Examples of “collision” (a) and “non-collision” (b) training events. One of the immediate
actions (black) is chosen for labeling. The training planner determines whether the end of this action
(purple dot) is an inevitable collision state with respect to the hidden map (shown in light gray).
Feasible partial paths are shown in blue. Nodes successfully expanded by the training planner are
green, and nodes for which no collision-free outgoing action exists are red. In a, all partial paths
dead-end (red nodes) before reaching the desired three-action horizon because the vehicle speed is
too great to complete the turn given curvature and curvature rate limits. In b, the training planner
successfully finds a sequence of three actions

figuration toward the outside of the turn. The empirical distribution of “collision” and
“non-collision” labels collected from these sampled scenarios therefore implicitly
captures the relevant environmental characteristics of the true hidden map distribu-
tion, and the way they interact with our dynamics model, in a much more efficient
way than modeling the complex, high-dimensional map distribution explicitly. Our
training procedure captures sensible patterns, for instance that it is safe to drive at
high speeds in wide open areas and long straight hallways, but that slower speeds
are safer when approaching a wall or navigating dense clutter.

3.2 Learning Algorithm

We use a non-parametric Bayesian inference model developed by Vega-Brown et al.,
which generalizes local kernel estimation to the context of Bayesian inference for
exponential family distributions [29]. The Bayesian nature of this model will enable
us to provide prior knowledge tomake safe (though perhaps conservative) predictions
in environments where we have no training data. We model collision as a Bernoulli-
distributed random event with beta-distributed parameter θ ∼ Beta(α, β), where α

and β are prior pseudo-counts of collision and non-collision events, respectively.
Using the inference model from Vega-Brown et al., we can efficiently compute the
posterior probability of collision given a query point φ and data D:
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fc(φ) = P(y = “collision”|φ, D) = α(φ) + ∑N
i=1 k(φ, φi )yi

α(φ) + β(φ) + ∑N
i=1 k(φ, φi )

, (7)

where k(φ, φi ) is a kernel function measuring proximity in feature space between
our query, φ, and each φi in D. We use a polynomial approximation to a Gaussian
kernel with finite support. We write prior pseudo-counts as functions α(φ) and β(φ),
since they may vary across the feature space. We use the effective number of nearby
training data points, Neff. = ∑N

i=1 k(φ, φi ), as a measure of data density. The prior
contributes Npr. pseudo data points to each prediction, where Npr. = α(φ) + β(φ).
The ratio Neff./(Neff. + Npr.) determines the relative influence of the training data
and the prior in each prediction. For data sets with 5 × 104 points in total, Neff.

tends to be 102 or greater when the testing environment is similar to the training
map, and Neff. � 1 when the testing environment is fundamentally different (i.e.,
office building vs. natural forest). For this paper, we used Npr. = 5, and results are
insensitive to the exact value of Npr. as long as Neff.  Npr. or Neff. � Npr..

Machine learning algorithms should make good predictions for query points near
their training data in input space. However, predictions that extrapolate beyond the
domain of the training data may be arbitrarily bad. For navigation tasks, we want our
planner to recognize when it has no relevant training data, and automatically revert
to safe behaviors rather than making reckless, uninformed predictions. For instance,
if the agent moves from a well-known building into the outdoors, where it has not
trained, we still want the learning algorithm to guide it away from danger.

Fortunately, the inference model of Eq. (7) enables this capability through the
prior functions α(φ) and β(φ). If we query a feature point in a region of high
data density (Neff.  Npr.), fc(φ) will tend to a local weighted average of neigh-
bors and the prior will have little effect. However, if we query a point far from
the training data (Neff. � Npr.), the prior will dominate. By specifying priors α(φ)

and β(φ) that are functions of our features, we can endow the planner with domain
knowledge and formal rules about which regions of feature space are safe and dan-
gerous. In this paper, we have designed our prior functions α(φ) and β(φ) such
that P(“collision”) = α(φ)/(α(φ) + β(φ)) = 0 if there exists enough free space for
the robot to come safely to a stop from its current velocity, and P(“collision”) =
α(φ)/(α(φ) + β(φ)) > 0 otherwise. Computing this prior uses the information in
features (c) and (d) described in Sect. 3. Therefore, as Neff. drops to zero (and for
sufficiently large values of Jc), the learning algorithm activates a conventional stop-
ping distance constraint, seamlessly turning our planner into one with essentially the
same characteristics as the baseline planner we compare against.

Another natural choice of learning algorithm in this domain would be a Gaussian
process (GP). However, classification with a GP requires approximate inference
techniques that would likely be too slow to run online, whereas the inference model
in Eq. (7) is an approximate model that allows efficient, analytical inference.
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4 Results

We have obtained simulation results from randomly generatedmaps as well as exper-
imental results on a real RC car navigating as fast as 8m/s in laboratory, office and
large open atrium environments at MIT. Our simulation and experimental results
both show that replacing safety constraints with a learned model of collision proba-
bility can result in faster navigation without sacrificing empirical safety. The results
also show that when the planner departs a region of feature space for which it has
training data, our prior keeps the robot safe. Finally, our experiments demonstrate
that even within a single real-world environment, it is easy to encounter some regions
of feature space for which we have training data and others for which we do not,
thereby justifying our Bayesian approach and use of prior knowledge.

4.1 Simulation Results

In this section, we present simulation results from hallway and forest environments
that were randomly sampled from environment-generating distributions [21].We use
a Markov chain to sample hallways with a width of 2.5m and a turn frequency of
0.4, and a Poisson process to sample 2D forests with an average obstacle rate of
0.05 trees · m−2 and tree radius of 1m. Figure5 shows a randomly sampled hybrid
environment composed of both hallway and forest segments. To measure the benefit
of our learned model, we compare against the baseline planner, illustrated in Fig. 1a
and b, that enforces a safety constraint. This planner navigates as fast as is possible
given that constraint, and represents the planner we would use if we did not have a
learned model of collision probability.

Figure4 shows the performance of the planner using different data/prior configu-
rations (data+ prior, data only, and prior only), for different Jc values, in 25 randomly
sampled hallway environments. The training data set used for these trials was col-
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Fig. 4 Simulation results from 1600 simulations in 25 random hallway maps using our learned
model with dense data + prior (blue), data alone without a prior (red), and prior alone without data
(black). Velocities for each trial are normalized by the speed of the baseline planner (described in
Sect. 1) in the same map. The right plot shows the average length by which a stopping-distance
constraint was violated
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Fig. 5 Simulations from a hybrid hallway-forest mapwith Jc = 0.5. One planner uses hallway data
alone with no prior (red), and another planner uses hallway data combined with the prior (blue).
Without a safe prior, the planner’s data density drops to zero and the robot recklessly accelerates to
full speed, crashing in the forest (red ‘×’). However, when guided by the prior while in the forest,
the planner safely reaches the goal. The forest regions on the four graphs are shaded in gray

lected in a separate hallway environment drawn from the same distribution. For low
values of Jc all three planners crash in every trial, but become safer as Jc is increased.
Above Jc = 0.25, all planners succeed in reaching the goal without collision 100%of
the time. At Jc = 0.25, our solution navigates approximately 80% faster than base-
line using data + prior, or data alone. In these trials, the prior contributes very little
since the planner has dense training data from the same environment type. The right
plot illustrates average violation of a stopping-distance constraint. For Jc = 0.25,
the planners using training data violate the stopping-distance constraint by 5.75m
on average, indicating the degree to which this constraint is overly conservative,
given our collision probability model. The planner using the prior alone chooses
not to violate the stopping distance constraint by nearly as much, and essentially
converges to the baseline performance as Jc is increased.

While results with dense training data make very little use of the prior, Fig. 5
illustrates the important role of a priorwhen transitioning froma familiar environment
type (hallway) to an unfamiliar one (forest) where no data are available. For these
simulation experiments, the planners had access to a training data set from a hallway
environment, but not from a forest environment. If the planner has no data and no
prior, the effective data density drops essentially to zero and it is unable to distinguish
between safe and risky behaviors.2 Therefore the planner accelerates to full speed
resulting in a crash (red ‘×’). However, using our Bayesian approach, the effective

2We implement the no-prior case by setting prior values of α and β each to 0.0005 to ensure the
solution is computable in regions of feature space with no data at all. The default prediction with
no data is therefore P(“collision”) = α/(α + β) = 0.5, rather than undefined if α = β = 0.
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number of data points drops only as low as Npr. = 5 when the agent enters the forest
and the planner is safely guided by the information in the prior. In 25 trials of random
hallway-forest maps, 100% succeeded using the prior, while only 12% succeeded
without the prior.

4.2 Experimental Results

We conducted experiments on an RC car using a training dataset generated in sim-
ulation on a hallway-type environment. We performed state estimation by fusing
a planar LIDAR and an IMU in an extended Kalman filter (EKF) [7]. We use the
LIDAR to provide relative pose updates to the EKF using a scan-matching algo-
rithm [4]. We use a Hokuyo UTM-30LX LIDAR, a Microstrain 3DM-GX3-25 IMU
and an Intel dual-core i7 computer with 16GB RAM. Video of our experimental
demonstrations, at speeds up to 8.2m/s is available at: http://groups.csail.mit.edu/
rrg/bayesian_learning_high_speed_nav.

We conducted tests to show that our planner can indeed navigate faster in certain
real environments than the baseline planner. For the experiment shown here,we chose
a narrow pathwithin a lab spacewith several sharp turns andmany obstacles. Figure6
shows the trajectories and velocity profiles of both planners. The baseline planner has
difficulty navigating quickly in this environment because free space is occluded from
the sensor view by obstacles. Since the baseline planner must enforce the existence
of emergency-stopping trajectories lying within the observed free space, it is forced
to move very slowly. In the velocity profile, the baseline planner frequently applies
the brakes to slow to about 1m/s, whereas our planner uses its training data from the
simulated hallway environment to predict that it is safe to travel up to about 3m/s
around most corners and therefore maintains a higher average speed. The baseline
planner took 23.7 s to reach the goal in this case, whereas our planner took 11.5 s,
representing a factor of two improvement.

We also conducted experimental trials to show that in real-world environments,
the planner can safely navigate in unfamiliar regions where it has no relevant train-
ing data. Figure7 shows an experimental trial in the Stata Center (MIT), which is
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Fig. 7 Trajectory through theStataCenter (MIT), traversing hallway and large unstructured regions.
Our planner was trained in a hallway environment, but not in a large unstructured environment. Neff.
drops to zero in the open unstructured regions (purple and blue diamonds) and it must rely on the
prior to navigate safely. The top speed in this environment was 8.2m/s in a separate successful trial

composed of straight hallways and larger unstructured regions. For this experiment,
training data were again provided from a simulated hallway environment, which
resembles the straight hallway segments, but looks very different from the open,
unstructured regions. The inset graph shows the effective data density. In the hall-
ways, the planner uses≈102 effective data points per prediction.However, in the open
unstructured regions, Neff. drops to zero, and the only information available to the
planner is contributed by the prior. These open unstructured regions are marked with
purple and blue diamonds. In this experiment, the weight of the prior was Npr. = 5.

5 Related Work

A large body of work has established techniques for safe planning in static and
dynamic environments [3, 8, 9, 25]. Bekris and Kavraki have shown kinodynamic
navigation in unknown environments using safety constraints, without considering
actions into the unknown [6]. Several examples use circling loiter maneuvers through
observed free space to guarantee safety [2, 23]. Our method differs from this body
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of work by relaxing absolute safety constraints and replacing them with predictions
of collision probability, which can be viewed as a form of data-driven constraints.
Althoff et al. propose a collision probability concept similar to fc(φ(bt , at )) for
dynamic environments, but they assume a knowndistribution over the future behavior
of each moving agent, which we do not have in the case of unknown maps [1].

In the exploration literature, the primary objective is to build a map, and actions
may be taken to view unseen parts of the environment [28, 30]. Some exploration
work has balanced the objectives of information gain, navigation cost and localization
quality from a utility or decision-theory point of view [16, 26]. Unlike exploration,
our objective is to reach a goal in minimum time, which places emphasis on collision
probability and high-speed dynamics, rather than map information.

A naturalway to reason about planning in an unknownmap is through the POMDP
formalism [14]. Despite notorious complexity, various strategies have grown the size
of (approximately) solvable POMDPs [15, 19, 24].However,we cannot simply apply
POMDP techniques since we assume no explicit knowledge of the environment
distribution, or black-box simulation capabilities to sample the world at planning
time. Instead, we must learn a function of this missing distribution offline. POMDPs
have been used for aircraft collision avoidance [5, 27], where a very large negative
reward discourages collisions at nearly any cost. In contrast, we use small collision
penalties to drive aggressively, trading off risk and reward.

Learning has been applied to autonomous vehicle navigation in several contexts.
One example from the DARPA LAGR program used deep learning to classify tra-
versable terrain up to 100maway [11]. Neural networks andmonocular depth estima-
tion coupled with policy search [17, 18], as well as human-pilot demonstrations [22],
have been used to learn high-speed reactive controllers to avoid obstacles, however
these systems map sensory input directly to actions. They are not decision-theoretic
planners, and do not trade off meaningfully between risk and reward.

6 Conclusion

We have shown that by using a Bayesian learning algorithm, with safety constraints
encoded as a prior over collision probabilities, our planner can detect when it lacks
the appropriate training data for its environment and seamlessly revert to safe behav-
iors. Our strategy offers a simple and elegant probabilistic method of merging the
performance benefits of training experience with the the reassurance of safety con-
straints when faced with an unfamiliar environment. One of the main limitations of
this work is the difficulty of hand-coding feature functions that describe complex
planning scenarios. We plan to address this limitation by applying recent feature-
learning techniques to automatically generate feature functions from data, extending
our methods to handle different scenarios, map representations and sensor types.
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Monte Carlo Motion Planning for Robot
Trajectory Optimization Under Uncertainty

Lucas Janson, Edward Schmerling and Marco Pavone

1 Introduction

Robotic motion planning is the problem of computing a path that connects an initial
and a terminal robot state while avoiding collisions with obstacles and optimizing
an objective function [11]. Despite the fact that finding a feasible, let alone opti-
mal, solution to a motion planning problem is difficult (even the most basic versions
of the problem are already PSPACE-hard [11, 23]), in the past three decades key
breakthroughs have made the solution to this problem largely practical (see [11] and
references therein for a comprehensive historical account). Most works in the liter-
ature, however, focus on a deterministic setup where the state of a robot is perfectly
known and its actions lead to a deterministic, unique outcome. While this is usually
an excellent approximation for robots operating in highly structured environments
(e.g., manipulators in an assembly line), it falls short in unstructured settings, e.g., for
ground or aerial field robots or surgical robotic systems [12]. In such cases, motion
uncertainty, sensing uncertainty, and environment uncertainty may dramatically alter
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the safety and quality of a path computed via deterministic techniques (i.e., neglecting
uncertainty). Hence, accounting for uncertainty in the planning process is regarded
as an essential step for the deployment of robotic systems “outside the factory floor”
[12]. In this paper we introduce Monte Carlo Motion Planning, a novel approach to
planning under uncertainty that is accurate, fast, and general.

Related work: Conceptually, to enable a robot to plan its motion under uncer-
tainty, one needs to design a strategy for a decision maker. In this regard, robotic
motion planning can be formalized as a partially observableMarkov decision process
(POMDP) [8], where the key idea is to assume that the state evolves according to
a controlled Markov chain, the state is only partially observed, and one seeks to
design a control policy that maps state probability distributions to actions. However,
despite the theoretical [8] and practical [10] successes of the POMDP theory, the
online computation of a control policy for robotic applications is extremely com-
putationally intensive, and possibly even unnecessary as after a short time horizon
the environment map may have changed [11]. The alternative and widely adopted
approach is then to restrict the optimization process to open-loop trajectories, which
involves the much simpler task of computing a control sequence (as opposed to a
control policy), and recompute the reference trajectory in a receding horizon fashion
(e.g., every few seconds). This is the approach we consider in this paper.

To select open-loop trajectories, a large number of works cast the problem into
a chance-constrained optimization problem [5], where under the assumption of lin-
ear dynamics and convex obstacles, an open-loop control sequence is computed as
the solution to a mixed-integer linear program. The works in [20, 28] extend this
approach to an optimization over the larger class of affine output feedback controllers,
comprising a nominal control input and an error feedback term. These works, how-
ever, require an explicit characterization of the obstacle space (in the configuration
space), which is oftentimes unavailable [11, Chap. 5]. This has prompted a num-
ber of researchers to extend the sampling-based motion planning paradigm to the
problem of planning under uncertainty (in the sampling-based paradigm, an explicit
construction of the configuration space is avoided and the configuration space is
probabilistically “probed” with a sampling scheme [11]). A common approach is
to forgo path optimization and recast the problem as an unconstrained planning
problem where the path collision probability (CP) is minimized. For example, the
approach of LQG-MP [3] is to approximate a path CP by combining pointwise CPs
as if they were independent, running the rapidly-exploring random trees (RRT) [13]
algorithm multiple times, and then selecting the path with minimum (approximate)
path CP. The pointwise CPs are computed within the model that a reference tracking
controller is employed to track a nominal open-loop path. This is closely related to
model predictive control (MPC) with closed-loop prediction [18] and leads to a less
conservative collision probability estimate than if the nominal control was executed
without feedback. A similar approach is used in [25], where the authors employ a
truncation method [22] to improve the accuracy of path CP computation.

The interplay between minding collision probability while simultaneously opti-
mizing a path planning cost objective function is considered in [26], although still
with an approximation to the path CP. There, cost optimization is considered over
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the set of path plans satisfying a lower bound on success probability. The inclusion
of path CP as a constraint is also considered in [15], where the authors propose
CC-RRT, an RRT-based algorithm that approximates path CP via Boole’s bound.
CC-RRT has been extended to include dynamic obstacles via Bayesian nonparamet-
ric models [2], tailored to the control of unmanned aerial vehicles [9] and parafoils
[17], and combined with RRT*, the asymptotically optimal version of RRT [16].

Contributions: In this paper we present an algorithm for robot planning under
uncertainty that returns high quality solutions (in terms of a general planning objec-
tive) which satisfy a specified constraint on collision probability, or safety tolerance.
Themotivation of this work is that all of the aforementioned approaches approximate
path CP in ways that can be quite inaccurate (see Fig. 2), thus potentially drastically
mischaracterizing the feasible domain of path optimization. To address this problem,
our first contribution is to design a variance-reduced (that is, quickly-converging)
Monte Carlo (MC) probability estimation algorithm for CP computation. This algo-
rithm estimates the collision probability of a given trajectory by sampling many real-
izations of a reference-tracking controller, modeling the effort of a robot to follow
a reference path. In particular, in this paper, we assume a linear-quadratic-Gaussian
(LQG) tracking controller, similar to LQG-MP [3] and MPC with closed-loop pre-
diction [18]. Our algorithm does not suffer the inaccuracies of the approximations
mentioned earlier, and indeed provides the exact path CP given enough time (in
contrast to current approaches). Most importantly, our variance-reduction scheme,
which combines and tailors control variate and importance sampling techniques in
an original fashion to the problem at hand, enables the computation of very accurate
estimates in a way compatible with real-time operations. This holds evenwhenwork-
ing with very small CPs, a regime in which a straightforward Monte Carlo method
would require great computational expense to arrive at accurate estimates, to the point
that MC has hitherto seen application only in offline contexts, e.g., [1]. Another key
advantage of our algorithm is that it comes with an estimate of its variance, so that
one has a measure of accuracy, unlike the aforementioned approximations. It is also
trivially parallelizable and has the potential to be extended to very general controllers
and uncertainty models.

Our estimation algorithm enables a novel approach to planning under uncertainty,
which we call Monte Carlo Motion Planning (MCMP)—our second contribution.
MCMP proceeds by performing bisection search over CP and obstacle inflation, at
each step solving a deterministic version of the problem with inflated obstacles. To
demonstrate the performance of MCMP, we present simulation results that illustrate
the correctness (in terms of feasibility), efficiency (in terms of path cost), and com-
putational speed of MCMP. From a conceptual standpoint, MCMP can be viewed as
a planning analogue to MC approaches for robot localization [27].

Organization: This paper is structured as follows. Section2 reviews some
background on MC variance reduction. Section3 formally defines the problem
we consider in this paper. Section4 elucidates the shortcomings of previous path
CP approximation schemes. Section5 presents variance-reduction techniques for
fast MC computation of path CP. Section6 presents the overall MCMP approach.
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Section7 presents results from numerical experiments supporting our statements.
Finally, in Sect. 8, we draw some conclusions and discuss directions for future work.

2 Background on Monte Carlo Variance Reduction

The use of Monte Carlo (MC) to estimate the probability of complex events is well-
studied. In this section we will briefly introduce MC and the two variance reduction
techniques that provide the basis for our main result in Sect. 5. For more detail and
other topics on Monte Carlo, the reader is referred to the excellent unpublished text
[21], from which the material of this section is taken.

2.1 Simple Monte Carlo

In its most general form, MC is a way of estimating the expectation of a function of
a random variable by drawing many independent and identically distributed (i.i.d.)
samples of that random variable, and averaging their function values. Explicitly,
consider a random variable X ∈ R

n and a bounded function f : R
n → R. For a

sequence of m i.i.d. realizations of X , {X (i)}mi=1, the central limit theorem gives

√
m

(
1

m

m∑
i=1

f
(
X (i)

) − E [ f (X)]

)
D−→ N

(
0, τ 2

)
, (1)

as m → ∞, where
D−→ denotes convergence in distribution, andN (0, τ 2) refers to

the Gaussian distributionwithmean 0 and variance τ 2. This implies 1
m

∑m
i=1 f

(
X (i)

)
p−→ E [ f (X)] as m → ∞, where

p−→ denotes convergence in probability.
In this paper, X will be a random trajectory controlled to follow a nominal path,

and f will be the indicator function that a trajectory collides with an obstacle; call
this collision event A. Therefore, the expectation in Eq. (1) is just E[ f (X)] = P(A).
Denote this collision probability by p, and define p̂simple := 1

m

∑m
i=1 f

(
X (i)

)
. Then

τ 2 can be consistently estimated by the sample variance of the f (X (i)), i.e.,

τ̂ 2 := 1

m

m∑
i=1

(
f
(
X (i)

) − p̂simple
)2 p−→ τ 2, (2)

asm → ∞. V̂simple := τ̂ 2/m allows us to quantify the uncertainty in the CP estimator
p̂simple by approximating its variance. Note that the MC estimator is both unbiased
and consistent for its target of E[ f (X)]. The material from this subsection can be
found with more detail in [21, Chap.2].



Monte Carlo Motion Planning for Robot Trajectory … 347

2.2 Control Variates

To reduce the variance of p̂simple, we can use the method of control variates (CV). CV
requires a function h : R

n → R such that θ := E[h(X)] is known. Then if h(X (i))

is correlated with f (X (i)), its variation around its (known) mean can be used to
characterize the variation of f (X (i)) around its (unknown) mean, which can then be
subtracted off from p̂simple. Explicitly, given a scaling parameter value β, we estimate
p = E[ f (X)] by

p̂β := 1

m

m∑
i=1

( f (X (i)) − βh(X (i))) + βθ = p̂simple − β(θ̂ − θ), (3)

where θ̂ is the sample average of the h(X (i)). The optimal (variance-minimizing)
choice of β can be estimated from the simulated data as

β̂ :=
m∑
i=1

( f (X (i)) − p̂simple)(h(X (i)) − θ̂ )
/ m∑

i=1

(h(X (i)) − θ̂ )2. (4)

We then use the CP estimator p̂β̂ , whose variance can be estimated by

V̂β̂ := 1

m2

m∑
i=1

( f (X (i)) − p̂β̂ − β̂(h(X (i)) − θ̂ ))2. (5)

The data-dependent choice of β introduces a bias in p̂β̂ that is asymptotically (in m)
negligible compared to its variance, so we will ignore it here. As m → ∞, the vari-
ance reduction due to CV can be characterized by Var( p̂β̂ )/Var( p̂simple) → 1 − ρ2,
where ρ is the correlation between f (X) and h(X). Thematerial from this subsection
can be found with more detail in [21, Sect. 8.9].

2.3 Importance Sampling

Another tool for MC variance reduction is importance sampling (IS). IS becomes of
critical importance when f (X) is the indicator function for a rare event, as it is in
this paper (in most settings, path CP constraints are small to ensure a high likelihood
of safety). Specifically, when p � 1, we can approximate the coefficient of variation
(ratio of standard deviation to expected value) of the estimator p̂simple as,

√
Var( p̂simple)

E[ p̂simple] =
√
p(1 − p)/m

p
≈ 1√

m

1√
p
. (6)
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Thismeans that in order to get the relative uncertainty in p̂simple to be small, one needs
m � 1/p which can be very large, and this is simply due to the rarity of observing
the event A. IS allows us to sample X from a distribution that makes the event A
more common and still get an unbiased estimate of p.

Until now we have considered X to have some fixed probability density function
(pdf) P : R

n → R≥0. Denoting the expectation of f (X) when X has pdf P by
EP [ f (X)], then for any pdf Q whose support contains that of P (that is, P(x) >

0 ⇒ Q(x) > 0),

EP [ f (X)] =
∫
Rn

f (x)P(x)dx =
∫
Rn

f (x)
P(x)

Q(x)
Q(x)dx = EQ

[
f (X)

P(X)

Q(X)

]
.

Therefore, letting {X̃ (i)}mi=1 be i.i.d. samples with pdf Q, the IS estimate and associ-
ated variance estimate are

p̂Q := 1

m

m∑
i=1

f (X̃
(i)

)P(X̃
(i)

)

Q(X̃
(i)

)
, V̂Q := 1

m2

m∑
i=1

(
f (X̃

(i)
)P(X̃

(i)
)

Q(X̃
(i)

)
− p̂Q

)2

.

(7)
If Q can be chosen in such a way that A is common and the likelihood ratio
P(X)/Q(X) does not have high variance for X ∈ A, then Var( p̂Q) can be much
smaller (orders of magnitude) than Var( p̂simple) for the same m. The material from
this subsection can be found with more detail in [21, Chap.9].

2.4 Comments

CV and IS may be combined into one estimator, summarized in Algorithm 1, the full
mathematical details of which are contained in [21, Sect. 9.10]. Although CV and IS
can both be excellent frameworks for variance reduction in MC, there is no general
method for selecting h or Q, and good choices for either one are extremely problem-
dependent. Indeed, the main contribution of this paper is to find, for the important
case of linear dynamics and Gaussian noise, h and Q that make MC estimation of
CPs converge fast enough for real-time planning.

3 Problem Statement

We pose the problem of motion planning under uncertainty with safety tolerance as a
constraint separate from the path cost to be optimized. We consider robots described
by linear dynamicswith control policies derived as LQGcontrollers tracking nominal
trajectories. These nominal trajectories are planned assuming continuous dynamics,
but in order to make the computation of path CPs tractable, we assume discretized
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(zero-order hold) approximate dynamics for the tracking controllers. The full details
of the continuous vs. discrete problem formulations are rather standard and due to
space limitations are provided in Appendix A of the extended version of this paper
[7]. Briefly here, withN (μ,Σ) denoting a multivariate Gaussian with mean μ and
covariance matrix Σ , the system dynamics are given by

xt+1 = Axt + But + vt , vt ∼ N (0, V ), yt = Cxt + wt , wt ∼ N (0,W ),

(8)
where xt ∈ R

d is the state, ut ∈ R
� is the control input, yt ∈ R

o is the workspace out-
put, and vt and wt represent Gaussian process and measurement noise, respectively.
With deviation variables from a nominal trajectory defined as δxt := xt − xnomt ,
δut := ut − unom

t , and δyt := yt − ynomt , for t = 0, . . . , T , the discrete LQG con-
troller δuLQG

t := Lt δ̂xt , with Lt and δ̂xt denoting the feedback gain matrix and
Kalman state estimate respectively, minimizes the tracking cost function

J := E

[
δxTT FδxT +

T−1∑
t=0

δxTt Qδxt + δuT
t Rδut

]
.

The computation details of Lt and the dynamics of δ̂xt are standard and given in
Appendix A [7]; in the remainder of this paper we use only the notation that the
combined state/estimate deviations evolve as multivariate Gaussians

[
δxt ; δ̂xt

] ∼
N (μt ,Σt ) and for suitable definitions of Mt and Nt we may write

[
δxt+1

δ̂xt+1

]
= Mt

[
δxt
δ̂xt

]
+ nt , nt ∼ N (0, Nt ) . (9)

Let Xobs be the obstacle space, so that Xfree := R
d\Xobs is the free space. Let

Xgoal ⊂ Xfree and x0 ∈ Xfree be the goal region and initial state. Given a path cost
measure c and letting x0, . . . , xT denote the continuous curve traced by the robot’s
random trajectory through the discretization points x0, . . . , xT , we wish to solve

Discretized stochastic motion planning (SMP):

min
unom(·)

c(xnom(·))
s.t. P (x0, . . . , xT ∩ Xobs �= ∅) ≤ α

ut = unom
t + δuLQG

t

x0 ∼ N (xnom0 , P0), xnomT ∈ Xgoal

Equation(8).

(10)

Note that the optimization is still over continuous-time nominal paths, which we dis-
cretize when computing the path collision probability P (x0, . . . , xT ∩ Xobs �= ∅).
The termination constraint xnomT ∈ Xgoal in (10) is deterministic as written; it is
also possible to define a goal chance constraint similar to the obstacle avoidance
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constraint, e.g., P (xT ∈ Xobs) ≤ β. We do not consider this variant in this paper,
but note that our Monte Carlo approach also applies to estimating P (xT ∈ Xobs).
Similar to how we ensure satisfaction of the collision chance constraint by inflating
the obstacle set (see Sect. 6), satisfaction of a goal chance constraint could be ensured
by shrinking the goal region when planning a nominal trajectory.

This formulation is inspired by [3, 18] and represents a compromise between
a POMDP formulation involving a minimization over the class of output-feedback
control laws, and an open-loop formulation, in which the state is assumed to evolve
in an open loop (i.e., no tracking). This can be justified in two ways. One is that
the general constrained POMDP formulation is vastly more complex than ours and
would require muchmore computation. The other is that, in practice, a motion plan is
executed in a receding horizon fashion, so that computing output-feedback policies
may not even be useful, since after a short time-horizon the environment map may
have changed, requiring recomputation anyway. We note that the problem formula-
tion could be readily generalized to a nonlinear setup and to any tracking controller
(e.g., LQG with extended Kalman filter estimation is essentially already in the same
form)—indeed, one of the key advantages of the MC approach is that it is able to
handle (at least theoretically) such general versions of the problem. However, in the
present paper, we limit our attention to the aforementioned LQG setup.

In the remainder of the paper, we discuss how to quickly and consistently (i.e., in a
way that is asymptotically exact as the discretization stepΔt → 0) estimate the path
CP appearing in Eq. (10), and then we will employ MCMP to generate approximate
solutions to the discretized SMP problem.

4 The Problem of Computing Path CP

In general, the key difficulty for planning under uncertainty (provided a probabilistic
uncertainty model is given) is to accurately compute path CP. All previous methods
beyond simple Monte Carlo essentially rely on two approaches, namely:

• Additive approach, e.g., [15]: using Boole’s inequality, i.e., P (∪i Ai ) ≤ ∑
i

P (Ai ) , by which a path CP is approximated by summing pointwise CPi at a
certain number of waypoints along the path, i.e., CP ≈ ∑

i CPi .• Multiplicative approach, e.g., [3]: a path CP is approximated by multiplying the
complement of point-wise CPi , specifically CP ≈ 1 − ∏

i (1 − CPi ).

There are three approximations inherent in both approaches:

(A) The pathCP is approximated by combiningwaypoint CPi ’s. That is, no account-
ing is made for what happens in between waypoints.

(B) The waypoint CPi ’s are combined in an approximate manner. That is, in general
there is a complex high-dimensional dependence between collisions at differ-
ent waypoints, and these are not accounted for in either approach. In particular,
the additive approach treats waypoint collisions as mutually exclusive, while
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waypoint i

xinit

Xgoal

Obs2

Obs1

(a)

waypoint i

xinit

Xgoal

Obs1

Obs2

(b)

Fig. 1 Illustration of the interplay between approximations (A) and (B). In a, there are not enough
waypoints to properly characterize the pathwise CP, while in b, the waypoints may be too close to
not account for their dependence

the multiplicative approach treats them as independent. Since neither mutual
exclusivity nor independence hold in general, this constitutes another approxi-
mation.

(C) Each waypoint CPi is approximated (e.g., by using a nearest obstacle). This is
usually done because integrating a multivariate density over an intersection of
half-planes (defining the obstacle set) can be quite computationally expensive.

A fundamental limitation in both approaches comes from the interplay between
approximations (A) and (B). Specifically, while approximation (A) improves with
higher-resolution waypoint placement along the path, approximation (B) actually
gets worse, see Fig. 1. In Fig. 1a, although Obs2 comes very close to the path, it does
not come very close to any of the waypoints, and thus the pathwise CP will not be
properly accounted for by just combining pointwise CPs. In Fig. 1b, the waypoints
closest to Obs1 will have highly-correlated CPs, which again is not accounted for
in either the additive or multiplicative approaches. For the linear Gaussian setting
considered here, as the number of waypoints along a fixed path goes to infinity, the
path CP estimate from the additive approach actually tends to ∞, while that of the
multiplicative approach tends to 1, regardless of the true path CP. To see this, note
that for any fixed path, there exists a positive number ε > 0 such that CPi is larger
than or equal to ε for any point on the path. Therefore, the additive and multiplicative
approximations tend to, respectively,

k∑
i=1

CPi ≥ k ε
k→∞−→ ∞, 1 −

k∏
i=1

(1 − CPi ) ≥ 1 − (1 − ε)k
k→∞−→ 1, (11)

where k is the number of waypoints. In other words, both approaches are asymptot-
ically tautological, as they approximate the path CP with a number greater than or
equal to one. An important consequence of this is that as the number of waypoints
approaches infinity, either approach would deem all possible paths infeasible with
respect to any fixed non-trivial path CP constraint. This point is emphasized in Fig. 2,
which compares true path CP to approximations computed using the additive and
multiplicative approaches for two different paths, as a function of the number of
waypoints along the path. Off the plotted area, the additive approach passes through
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(a) (b)

Fig. 2 Illustration of path CP approximation schemes for a robotic systemwhere the true path CP is
around 1% under the continuous controller. The blue curve in a represents the nominal path, the red
polygons are the obstacles, and the purple ellipses represent 95% pointwise marginal confidence
intervals at each of 104 discretization points. Panel b shows the collision probability estimated by
each approximation scheme as a function of the number of discretization points. Approximation C
in all approaches is matched to their respective papers (additive: [2, 9, 15, 16], multiplicative: [3],
conditional multiplicative: [14, 22, 25])

an approximate probability of 1 and continues to infinity, while the multiplicative
approach levels off at 1. Even with few waypoints, both approaches are off by hun-
dreds of percent. The overly conservative nature of the multiplicative approach has
been recognized in [22], where the authors replace approximate marginal pointwise
CPs in the multiplicative approach with approximate pointwise CPs conditional on
the previous waypoint being collision-free. While this is a first-order improvement
on the standard approaches, the conditional pointwise probabilities are quite complex
but are approximated by Gaussians for computational reasons, with the result that
their approximate path CPs can still be off by many multiples of the true value, espe-
cially for small path CPs (which will usually be the relevant ones). The red curve in
Fig. 2b shows that the approximation of [22], while a substantial improvement over
the alternatives, can still be off by factors of 5 or more, and the discrepancy appears
to be increasing steadily with the number of waypoints.

A few comments are in order. First, there is nothing pathological in the example
in Fig. 2, as similar results are obtained with other obstacle configurations and in
higher dimensions. Second, we note that approximations such as these may be very
useful for unconstrained problems that penalize or minimize path CP, since theymay
measure the relative CP between paths well, even if they do not agree with the true
path CP in absolute terms. However, to address the chance-constrained SMP, one
needs an accurate (in absolute terms) and fast method to estimate path CP, which is
one of the key contributions of this paper. Third, the additive approach is guaranteed
to be conservative with respect to approximation (B). That is, ignoring (A) and
(C) (the latter of which can also be made conservative), the additive approach will
produce an overestimate of the path CP. Although this can result in high-cost paths
or even problem infeasibility, it is at least on the safe side. This guarantee comes
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at a cost of extreme conservativeness, and the two less-conservative multiplicative
approaches have no such guarantee for any finite number of waypoints. Fourth, the
limits inEq. (11) apply to any uncertaintymodel supported on the entire configuration
space, and even to bounded uncertainty models so long as the path in question has a
positive-length segment of positive pointwise CP.

In the next section, wewill present aMC approach that addresses all three approx-
imations (A)–(C) stated earlier. Specifically, for (A), although collisions can truly
be checked along a continuous path only for special cases of obstacles, Monte Carlo
simply checks for collisions along a sampled path and thus can do so at arbitrary
resolution, regardless of the resolution of the actual waypoints, so approximation (A)
for MC has no dependence on waypoint resolution. For (B), the high-dimensional
joint distribution of collisions at waypoints along the path is automatically accounted
for when sampling entire realizations of the tracking controller. And for (C), since
MConly has to check for collisions at specific points in space, nomultivariate density
integration needs to be done.

5 Variance-Reduced Monte Carlo for Computing
Pathwise CP

5.1 Control Variates

As discussed in Sect. 2.2, a good control variate h for f should have a known (or
rapidly computable) expected value, and should be highly correlatedwith f . Asmen-
tioned in the previous section, existing probability-approximationmethods, while not
accurate in absolute terms, can act as very good proxies for CP in that they resemble
a monotone function of the CP. Coupled with the fact that such approximations are
extremely fast to compute, they make ideal candidates for h.

Since even individual waypoint CPs are expensive to compute exactly for all
but the simplest obstacle sets, we approximate the obstacle set locally as a union
of half-planes, similar to [22]. For each waypoint xnomt along the nominal path,
we compute the closest obstacle points z(i)

t and their corresponding obstacle half-
planes such that none of these points are occluded by each others’ half-planes (see
Fig. 3a). “Close” is measured in terms of the Mahalanobis distance defined by the
covariance matrix of the robot state at that waypoint, and the obstacle half-planes are
defined as tangent to the multivariate Gaussian density contour at each close point.
Mathematically this corresponds to at most one point per convex obstacle region
X (i)

obs (with Xobs = ⋃M
i=1 X

(i)
obs ), i.e.,

z(i)
t = argmin

a∈X (i)
obs

(a − xnomt )TΣ−1
t (a − xnomt ).
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(a) (b)

Fig. 3 a Approximation of an obstacle set as a union of half-planes. Half-planes for the dashed-
line closest obstacle points are omitted, as their corresponding obstacle regions are occluded by a
closer half-plane. The green ellipse represents the shape of the uncertainty covariance matrix which
defines the “close” distance metric. b Comparison of MC variance-reduction methods applied to a
path with true CP near 1%. Bands denote 95% confidence intervals for their respective estimates

We then approximate the pointwise probability of collision by the probability of
crossing any one of these half-planes; this probability is approximated in turn by
Boole’s bound so that an expectation is simple to compute. That is, we define hti (X)

to be the indicator that xt crosses the z(i)
t obstacle half-plane, and define h(X) =∑

t,i hti (X), the count of all half-planes crossed by the points of the MC trajectory
X . We note that considering multiple close obstacle points, as opposed to only the
closest one, is important when planning in tight spaces with obstacles on all sides.
Correlations between h and f in testing were regularly around 0.8.

5.2 Importance Sampling

From a statistical standpoint, the goal in selecting the importance distribution Q is to
make the pathwise CP sampled under Q on the order of 1, while keeping the colliding
paths sampled from Q as likely as possible under the nominal distribution P . In the
language of Sect. 2.3, the former goal makes our collision event common under Q,
and the latter goal ensures that the likelihood ratio P(X)/Q(X) does not have high
variance. From a computational standpoint, we want Q to be fast to sample from
and for the likelihood ratio P/Q to be easy to compute. Our method for importance
sampling constructs Q as a mixture of sampling distributions Q0, . . . , QK—one for
each close obstacle point z(i)

t along the nominal trajectory. The intent of distribution
Qti is to sample a path that is likely to collide with the obstacle set at waypoint t .
We accomplish this by shifting the means of the noise distributions ns , 0 ≤ s ≤ t ,
leading up to time t so thatEQti [δxt ] = z(i)

t − xnomt (see (12) constraint). Tominimize
likelihood ratio P(X)/Qti (X) variance,we distribute the shift in themost likelyman-
ner according to Mahalanobis distance (see (12) objective). This amounts, through
Eq. (9), to solving the least-squares problem
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min
Δμ0,...,Δμt

t∑
s=0

ΔμT
s N

−1
s Δμs

s.t.
t∑

s=0

[
I 0

] (
t−s−1∏
r=0

Mt−r

)
Δμs = z(i)

t − xnomt

(12)

and sampling the noise as ñs ∼ N
(
Δμs, Ns

)
for 0 ≤ s ≤ t .

We weight the full mixture IS distribution, with θ = E[h(X)], as

Q =
∑
t,i

(
E[hti (X)]

θ

)
Qti .

That is, the more likely it is for the true path distribution to collide at t , the more
likely we are to sample a path pushed toward collision at t .

5.3 Combining the Two Variance-Reduction Techniques

Due to space limitations, we do not discuss the full details of combining CV and IS
here, but simply state the final combined procedure in Algorithm 1. We note here,
however, a modification to the set of close obstacle points z(i)

t defined above which
slightly changes the control variate h and sampling distribution Q. In order to speed
up theMonte Carlo CP estimation, we prune the close obstacle points so that the ones
that remain are expected to have their term in the mixture distribution Q sampled at
least once. This style of pruning does not bias the results; it only affects computation
time (omitting many near-zero terms) and estimator variance.

6 MCMP Algorithm

We now incorporate this algorithm for path CP estimation into a simple scheme for
generating high-quality paths subject to a path CP constraint. Algorithm 2 describes
the Monte Carlo Motion Planning (MCMP) algorithm in pseudocode.

The idea of MCMP is simple: solve the deterministic motion planning problem
with inflated obstacles to make the resulting path safer, and then adjust the inflation
so that the path is exactly as safe as desired. A bisection search is employed to select
this inflation. Note that in line 3, MC could be replaced by any of the approximations
from Sect. 4, but the output would suffer in quality. In the case of the multiplicative
approaches, the CP may be underestimated, in which case the safety constraint will
be violated. More commonly, for most discretizations, the CP will be substantially
overestimated for both additive andmultiplicative approaches.Although the resulting
path will not violate the safety constraint, it will be inefficient in that it will take a
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Algorithm 1Monte Carlo Path CP Estimation
Require: Nominal distribution P , control variate h as in Sect. 5.1, θ := EP [h(X)], importance

distribution Q as in Sect. 5.2, number of samples m

1: Sample {X̃(i)}mi=1 i.i.d. from Q

2: Denoting the likelihood ratio L(X̃
(i)

) := P(X̃
(i)

)/Q(X̃
(i)

), compute

p̂Q = 1

m

m∑
i=1

f (X̃
(i)

)L(X̃
(i)

), θ̂Q = 1

m

m∑
i=1

h(X̃
(i)

)L(X̃
(i)

),

β̂Q =
∑m

i=1

(
f (X̃

(i)
)L(X̃

(i)
) − p̂Q

) (
h(X̃

(i)
)L(X̃

(i)
) − θ̂Q

)
∑m

i=1

(
h(X̃

(i)
)L(X̃

(i)
) − θ̂Q

)2 ,

p̂Q,β̂Q
= 1

m

m∑
i=1

f (X̃
(i)

)L(X̃
(i)

) − β̂Qh(X̃
(i)

)L(X̃
(i)

) + β̂q θ

V̂Q,β̂Q
= 1

m2

m∑
i=1

(
f (X̃

(i)
)L(X̃

(i)
) − p̂Q,β̂Q

− β̂
(
h(X̃

(i)
)L(X̃

(i)
) − θ

))2

3: return p̂Q,β̂Q
, V̂Q,β̂Q

Algorithm 2Monte Carlo Motion Planning
Require: Maximum inflation Imax (e.g., configuration space diameter), minimum inflation Imin

(e.g., 0), number of bisection steps r , path CP constraint α
1: for i = 1 : r do
2: Compute an (approximately) optimal path σ̂ using, e.g., an asymptotically optimal sampling-

based motion planning (SBMP) algorithm, for the deterministic version of the problem with
the obstacles inflated by (Imin + Imax)/2

3: Use Algorithm 1 to compute a MC estimate p̂ of the CP of σ̂ (set p̂ = 0 if the previous step
fails to find a feasible solution)

4: if p̂ > α then
5: Imin = (Imin + Imax)/2
6: else
7: Imax = (Imin + Imax)/2
8: end if
9: end for
10: return σ̂

costlier path than needed (or than the one returned by using MC CP estimation) in
order to give the obstacles a wider berth than necessary. Another possibility is that
the obstacle inflation needed to satisfy the conservative safety constraint actually
closes off all paths to the goal, rendering the problem infeasible, even if it may have
been feasible using MC estimation.

It is worth pointing out that the tails, or probability of extreme values, of the
Gaussian distribution fall off very rapidly, at a double-exponential rate. For instance,
the 0.01th percentile of a Gaussian distribution is only about 20% farther from the
mean than the 0.1th percentile. In the Gaussian framework of this paper, this means
that a path that already has a small CP can make its CP much smaller by only shift-
ing slightly farther from the obstacles. Thus although the additive or multiplicative
approximations may overestimate the pathwise CP by hundreds of percent, the cost
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difference between using them in line 3 of Algorithm 2 and using MC in line 3
of Algorithm 2 may not be nearly so drastic. However, as noted above, the cost
difference could be great if the increased obstacle inflation required closes off an
entire homotopy class, or renders the problem infeasible altogether. Thus accurate
CP computation is essential to the application of the MCMP bisection algorithm.

7 Numerical Experiments

We implemented variance-reduced path CP estimation and MCMP in Julia [4] for
numerical experiments on a range of linear dynamical systems and obstacle sets, run
using a Unix operating system with a 2.0GHz processor and 8 GB of RAM. Many
implementation details and tuning parameters have been omitted in the discussion
below; the code for these results may be accessed at https://github.com/schmrlng/
MCMP-ISRR15.

Figures2 and4display someexample results for single integrator (ẋ = u) anddou-
ble integrator (ẍ = u) systems in a two-dimensional workspace, and Table1 summa-
rizes a range of statistics on algorithm performance in three-dimensional workspaces
aswell. The deterministic planning step (Algorithm2, line 2)was accomplished using
the differential FMT∗ algorithm [24] on a fixed set of nodes. By caching nearest-
neighbor and distance data for these nodes (Offline Planning), the total replanning
time over all inflation factors (Online Planning, essentially consisting only of col-
lision checking) was significantly reduced. For the single integrator systems 2D SI
and 3D SI, the planning problem is equivalent to geometric planning, which allowed
us to apply the ADAPTIVE-SHORTCUT rubber-band-style heuristic for smoothing

(a) (b) (c)

Fig. 4 Illustration of the MCMP algorithm output given a range of target path CPs for a 2D single
integrator system. For these uncertainty parameters, we see that the precise safety tolerance value
(between 1–20%) will correspond to a nominal solution in one of three distinct homotopy classes.
The orange obstacle in b is added by the “block and backtrack” modification, discussed in Sect. 7,
to the basic MCMP bisection Algorithm 2. The black and green lines denote the close obstacle
points and vectors defining their half planes respectively; only the pruned set is depicted

https://github.com/schmrlng/MCMP-ISRR15
https://github.com/schmrlng/MCMP-ISRR15
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planned paths [6]. Applying this smoothing heuristic ensures that the path CP varies
continuously with inflation factor within a path homotopy class. Between homotopy
classes the CP may be discontinuous as a function of inflation factor. If increasing
the inflation factor increases the CP discontinuously, the bisection process is not
affected; otherwise if the CP decreases (e.g., Fig. 4b, c—the CPs are 0.3 and 1.5%
respectively around the inflation factor which closes off the (c) route) the MCMP
bisection algorithm may get stuck before reaching the target CP α (e.g. 1% in the
case of Table1 row 2). To remedy this issue, we implemented a “block and back-
track” modification to Algorithm 2 which blocks off the riskier homotopy class with
an obstacle placed at its waypoint most likely to be in collision, and then resets the
bisection lower bound for the inflation factor. This results in increased computation
time, but returns a path with the goal CP in the end.

We did not implement any smoothing procedure for the double integrator systems.
Each nominal trajectory is selected as a concatenation of local steering connections,
subject to variance in the placement of the finite set of planning nodes. In practice,
this means that path CP is piecewise constant, with many small discontinuities, as a
function of inflation factor. If the bisection procedure terminates at an interval around
the desired CP, we choose the path satisfying the safety constraint: this explains the
mean True CP below the goal value in Table1 rows 4 and 5.

From Table1 we see that MCMP run times approach real time in a range of
state spaces from 2–6 dimensions, on the order of 5–10s total, excluding planning
computation that may be cached offline. This is accomplished even at a level of
tracking discretization sufficient to approximate continuous LQG. Planning time and
probability estimation time are similar in magnitude, indicating that the MC portion
of MCMP is not significantly holding back algorithm run time compared to a faster
approximation scheme, even in this single processor implementation. Computing the
Monte Carlo path simulations (MC Particles) in parallel could greatly reduce that
time. We note that the few thousand simulations required in total by MCMP would
not be enough to certify, using simple Monte Carlo, that a path CP is within the
interval (0.9, 1.1%) even once, which highlights the effectiveness of our proposed
estimator variance reduction techniques.

As can be seen from the simulations, the accuracies of the additive, multiplicative,
and conditional multiplicative approximations vary over problems and parameters,
even occasionally being quite accurate. At this level of discretization, we see that
the conditional multiplicative approximation scheme is within a factor of 2 of the
true CP value, but may either underestimate or overestimate depending on which of
approximation (A) or (B) from Sect. 4 has the stronger effect. This sheds light on a
key difference between using MC to estimate path CP as opposed to its alternatives:
MC not only gives accurate estimates, but also comes with a standard error of that
estimate, effectively allowing the user to know whether or not the estimate is a good
one. There is no such information for the various other approximations; they simply
return point values with no bearing on their relation to the ground truth. The standard
error estimate that comes from MC can be used as a kind of certificate of accuracy
that gives the user confidence in a trajectory plan’s estimated probability of success,
as well as some assurance that it is not overly conservative.
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Table 1 (MCMP in various state spaces). Results averaged over 400 MCMP runs: 20 runs each
for 20 SBMP sample sets. SI and DI denote single and double integrator respectively. We aim to
minimize arc-length for the SI systems, and a mixed time/control energy cost for the DI systems.
2D SI (A) refers to the obstacle set in Fig. 2, and 2D SI (B) refers to the obstacle set in Fig. 4.
We note that for the DI systems, the mean True CP found through MCMP bisection lies below
the goal value. This is because no smoothing heuristic was applied to the solutions output by the
deterministic planning step. Thus replanning over the range of inflation factors is choosing from a
discrete set of path options; in the event that none of these options corresponds exactly to the goal
CP, we choose the side of the bisection interval that satisfies the safety constraint

Goal CP
(%)

Offline
Planning
(s)

Online
Planning
(s)

MC
Time (s)

Discretization
Points

Bisection
Iterations

MC
Particles

2D SI (A) 1 0.25 ±
0.03

1.25 ±
0.24

2.64 ±
0.83

102.5 ± 0.8 6.3 ± 1.5 2085 ±
686

2D SI (B) 1 0.27 ±
0.04

2.48 ±
0.77

4.65 ±
1.70

116.5 ± 0.7 13.3 ± 4.4 2955 ±
1052

3D SI 1 0.35 ±
0.03

1.95 ±
0.76

3.00 ±
0.89

83.6 ± 1.4 6.3 ± 3.1 1667 ±
764

2D DI 1 6.64 ±
0.14

2.86 ±
0.98

5.82 ±
2.33

107.7 ± 6.0 8.6 ± 2.9 2383 ±
952

3D DI 1 20.90 ±
1.11

6.27 ±
2.40

7.45 ±
3.75

71.7 ± 10.8 7.8 ± 3.3 2117 ±
938

Goal CP
(%)

Nominal
Path
Cost

True
(MC)
CP (%)

Additive
Estimate
(%)

Multiplicative
Estimate (%)

Cond. Mult. Estimate (%)

2D SI (A) 1 1.47 ±
0.00

1.01 ±
0.06

22.67 ±
2.39

20.35 ± 1.92 2.04 ± 0.20

2D SI (B) 1 1.69 ±
0.01

1.00 ±
0.06

12.88 ±
3.72

12.10 ± 2.97 1.37 ± 0.26

3D SI 1 1.28 ±
0.03

1.00 ±
0.06

47.48 ±
7.98

38.84 ± 5.51 2.15 ± 0.23

2D DI 1 7.20 ±
0.43

0.67 ±
0.27

15.04 ±
8.97

13.78 ± 7.59 1.39 ± 0.68

3D DI 1 9.97 ±
1.61

0.66 ±
0.33

12.26 ±
5.88

11.68 ± 5.43 0.59 ± 0.32

8 Conclusion

We have presented a computationally fast method for provably-accurate pathwise
collision probability estimation using variance-reduced Monte Carlo. The variance-
reduction techniques employ a novel planning-specific control variate and impor-
tance distribution. This probability-estimation technique can be used as a compo-
nent in a simple meta-algorithm for chance-constrained motion planning, generating
low-cost paths that are not conservative with respect to a nominal path CP constraint.
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Simulation results confirm our theory, and demonstrate that computation can be done
at speeds amenable to real-time planning.

This works leaves many avenues for further investigation, the foremost of which
is parallelization. As noted earlier, a key feature of MC is that it is trivially paralleliz-
able (which is not changed by CV or IS). As most of the computation time is spent
computing likelihood ratios, which is mostly linear algebra, our technique is ideally
suited for implementation on a GPU. Another future research direction is to extend
this work to more general controllers and uncertainty models. For instance, confirm-
ing compatibility ofMCMPwith LQGwith an extended Kalman filter would allow it
to be used for systems with nonlinear dynamics and Gaussian noise. Heavier-tailed
distributions than Gaussian would require larger shifts in inflation factor to affect
similar changes in path CP, making a non-conservative CP estimation procedure all
the more important. Monte Carlo itself is extremely flexible to these parameters, but
it remains to be seen if appropriate control variates or importance distributions can
be developed to speed it up. We note that the meta-algorithmmentioned in this paper
is extremely simple, and can surely be improved upon. One potential improvement
is to incorporate domain knowledge to differentially inflate the constraints, or to do
so in an iterative or adaptive way, similar in spirit to [19]. Another improvement
could be to make bisection search adaptive and to incorporate the uncertainty in the
probability estimates. Finally, although we use our MC method to solve the chance-
constrained motion planning problem, it is in no way tied to that problem, and we
plan to test our method on other problems, such as minimizing CP or optimizing an
objective function that penalizes CP.
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A Computational Framework for
Environment-Aware Robotic Manipulation
Planning

Marco Gabiccini, Alessio Artoni, Gabriele Pannocchia and Joris Gillis

1 Introduction

Careful observation of how humans use their hands in grasping and manipulation
tasks clearly suggests that their limbs extensively engage functional interactions with
parts of the environment. The physical constraints imposed by themanipulandumand
the environment are not regarded as obstacles, but rather as opportunities to guide
functional hand pre-shaping, adaptive grasping, and affordance-guided manipula-
tion of objects. The exploitation of these opportunities, which can be referred to
as environmental constraints (EC), enables robust grasping and manipulation in dy-
namic and highly variable environments.When one considers the exploitation of EC,
i.e. when manipulation actions are performed with the help of the environment, the
boundary between grasping and manipulation is blurred, and traditional categories
such as grasp and manipulation analysis, trajectory planning and interaction control
appear somewhat artificial, as the problem we aim to solve seems to inextricably
entangle all of them.

In this paper, we set out to formulate environment-aware manipulation planning
as a nonlinear optimal control problem and discretize it according to a direct tran-
scription scheme [3]. In Sect. 3, two approaches to describe the dynamics of systems
with contacts are proposed and evaluated: in the first one, continuous contact reaction
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forces are generated by nonlinear virtual springs, and the requirement to avoid sliding
contacts is handled in an apparently originalway; in the second one, contact collisions
are approximated as impulsive events causing discontinuous jumps in the velocities
according to a modified version of the Stewart-Trinkle time-stepping scheme [47].
The introduction of two different models is motivated by the relative ease for the first
(second) one to enforce EC exploitation primitives that avoid (profitably exploit)
sliding motions during interaction.

Both formulations lead to a nonlinear programming (NLP) problem (Sect. 4) that
we solve by using the Interior-Point (IP) method implemented in Ipopt [4] and
discussed in Sect. 5. To improve computational efficiency, we also annotate sparsity
in the linear algebra expressions and leverage algorithmic differentiation (AD) [23]
to calculate derivatives both quickly and accurately: the adoption of the CasADi
framework [2], described in Sect. 5, provides a profitable interface to all the above
tools with a consistent API.

In Sect. 6, we evaluate our approaches in three simulated planar manipulation
tasks: (i) moving a circular object in the environment with two independent fingers,
(ii) rotating a capsule with an underactuated two-fingered gripper, and (iii) rotating
a circular object in hand with three independent fingers. Tasks (i) and (ii) show that
our algorithm quickly converges to locally optimal solutions that opportunistically
exploit EC. Task (iii) demonstrates that even dexterous fingertip gaits can be obtained
as a special solution in the very same framework. Conclusions are drawn in Sect. 7.

It is worth noting that with our method, approach planning, grasping, manipu-
lation, and environment constraint exploitation phases occur automatically and op-
portunistically for a wide range of tasks and object geometries, with no a-priori
specification of the ordering of the different stages required.

2 Related Work

2.1 Exploitation of Environmental Constraints

The concept of exploiting environmental constraints is well-rooted in robotics. Pio-
neering work was performed already in the eighties in the context of motion plan-
ning [34] and manipulation [35]. However, these concepts did not have the proper
influence on many of the recent developments on either area, perhaps due to the
inadequacy of the mechanical impedance properties of contemporary industrial ma-
nipulators to achieve sliding motion primitives stably, thus precluding the adoption
of strategies that exploit environmental constraints, e.g. by sliding one object over
another [10]. Also the idea of programming using environmental constraints is well
entrenched in robotics literature, starting with the seminal work [1], proceeding
with [45], and culminating in the iTaSC framework [11].

The exploitation of complex interactions with the environment in a manipulation
task also plays a central role in automation and manufacturing to design fixtures [7]
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and part feeders [6]. However, these works are highly specialized and they are limited
to the case of handling a single object geometry.

2.2 Traditional Grasp Planners

State-of-the-art general grasping algorithms and dexterous mechanical hands lie at
the opposite end of the spectrum: they are designed to perform grasping and manipu-
lation of a wide range of object geometries and for many different tasks. Traditional
grasp planners (such as OpenRAVE [12] and GraspIt! [36]) rely on precise finger-
to-object contact points while avoiding the surrounding environment. In real-world
scenarios these models, as well as the motion of the hand, will be highly uncertain
leading to poor grasping performance for grasps that were deemed highly robust
based on theoretical considerations.

The recent paper [5] has proposed a pipeline for automated grasp synthesis of
common objects with a compliant hand by developing a full-fledged multi-body
simulation of the whole grasping process in the presence of EC: however, to date,
the approach seems time consuming and the sequence of primitive actions needed
to perform complex tasks must be scripted in advance. Also recently, both grasp
planning algorithms and grasping mechanisms have begun to take advantage of
EC [14], albeit not systematically. While sequences of EC exploitation primitives
have been shown to be robust and capable [9, 28], there has been no comprehensive
research on how to enumerate and describe these primitives or how to sequence them
into task-directed manipulation plans. A noteworthy exception where a sequence of
task-directedmanipulation plans exploiting EC is created and performed on-linewith
minimalistic sensory information and limited previous assumptions about the scene
was recently presented in [16].

2.3 General Purpose Planning Algorithms

State-of-the-art sampling-based planning algorithms like RRT* [27] seem not tai-
lored for situations where a-priori unknown contact interactions may cause a com-
binatorial explosion of system configurations. Recent extensions, initially presented
in [20] for RRT, and successively devised for RRT* in [42], were able to cope with
systems described by complex and underactuated dynamics. In [30], the authors pre-
sented an approach to moving an object with several manipulators. This problem
presents some similarities to ours, since a sequence of phases has to be both planned
and solved. The strong assumption that the plan called by the high-level scheduler
will succeed — which is not always possible — has been removed in the recent
contribution [8].
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However, situations where intermitted contact sequences are not easily enumer-
ated from the outset, but are key for the success of environment-aware manipulation
plans, still appear to be out of their reach.

2.4 Machine Learning Approaches

Although significant progresses have been made in this area in recent years [29],
learning robot motion skills still remains a major challenge, especially for systems
with multiple intermittent contacts. Policy search is often the preferred method as
it scales gracefully with system dimensionality, even if its successful applications
typically rely on a compact representation that reduces the numbers of parameters
to learn [31, 43, 49]. Innovative policy classes [25] have led to substantial im-
provements on real-world systems. However, designing the right low-dimensional
representation often poses significant challenges. Learning a state representation that
is consistent with physics and embeds prior knowledge about interactions with the
physical world has recently been proposed in [26] and seems a promising venue
to find effective methods to help improve generalization in reinforcement learning:
however, the simulated robotic tasks solved by thismethods are still far in complexity
from environment-aware manipulation scenarios.

The recent contribution [32] developed a policy search algorithm which com-
bines a sample-efficient method for learning linear-Gaussian controllers with the
framework of guided policy search, which allows the use of multiple linear-Gaussian
controllers to train a single nonlinear policywith any parametrization, including com-
plex and high-dimensional policies represented by large neural networks. In [33],
this method has been recently applied, with somemodifications that make it practical
for deployment on a robotic platform, to solve contact-rich manipulation tasks with
promising results.

2.5 Optimization-Based Trajectory Planning

Various research groups are currently pursuing direct trajectory optimization to syn-
thesize complex dynamic behaviors for systems with intermittent contacts. Those
working in locomotion [46] mainly adopt a multi-stage hybrid-mode approach (usu-
ally employing multiple-shooting), where the optimization is constrained to operate
within an a priori specification of the mode ordering. Interestingly, a recent contribu-
tion [52] explored the synthesis of optimal gaits for legged robots without the need
to specify contact sequences. Certainly, the adoption of such an approach seems the
only viable solution for a multi-fingered hand manipulating an object also by ex-
ploiting EC. Along this line, it is worth mentioning the contact-invariant approach
originally proposed in [38] to discover complex behaviors for humanoid figures and
extended to the context of manipulation in [37]. The previously described trajectory
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optimization method has been recently employed to gradually train a neural network
by following an Alternating DirectionMethod ofMultipliers (ADMM) strategy with
interesting results [39].

The approach presented in [44] inspired ourwork and is the onewhich is definitely
closest. However, remarkable differences in the formulation of the dynamics for
systems with contacts, in the choice of the solution algorithm, solver and framework,
and in the focus of the paper — here, EC exploitation is sought as a key factor —
render our work significantly different.

3 Dynamics of Systems with Contacts

3.1 Penalty-Based Contact Model

To our eyes, manipulation planning has to rely on a dynamic model of the system,
namely of manipulandum, manipulator, and the environment, and of their mutual
interactions through contact.We consider here deterministic systemswith continuous
state and control spaces, denoted by x and u respectively. The dynamic evolution of
our controlled (non-autonomous) system can be described in continuous time t by a
set of Ordinary Differential Equations (ODEs):

ẋ(t) = F(x(t), u(t)) or F̃(ẋ(t), x(t), u(t)) = 0 (1)

(explicit dependence on t is omitted hereafter). Together with an initial value
x(0) = x0, Eq. (1) defines an initial value problem. In general, additional algebraic
dependencies may exist among ẋ , x and u leading to a dynamic system governed
by differential-algebraic equations (DAEs). In the presence of contact, for instance,
and if contact forces are included among the controls u, contact interactions es-
tablish functional dependencies between u and x through a set of algebraic equa-
tions/inequalities. As an example, if fN is the normal contact force and gN = gN (x)
the normal gap (shortest distance) between a finger and the object being manip-
ulated, the complementarity and non-negativity conditions 0 ≤ fN ⊥ gN (x) ≥ 0
must hold. The contact model described in this section is based on a special treat-
ment of the contact forces and the relative velocities that arise during interaction
between manipulandum, manipulator, and environment. Such a model has proved to
be successful in solving trajectory planning problems for manipulation tasks with no
sliding, in the presence of EC.

For normal contact forces, the underlying idea is borrowed from classical penalty-
based approaches, where contact interactions are modeled by spring-dampers. In our
model, no damping is introduced, while a nonlinear exponential spring relates the
normal contact force and the normal gap through the constitutive equation (Fig. 1)
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Fig. 1 Normal contact force
as a function of the normal
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fN (gN (x)) = fN0
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f̂N
fN0

)gN (x)/ĝN

(2)

where gN (x) is the normal gap function and ĝN the negative normal gap value (pene-
tration) corresponding to the normal force value f̂N . The (fixed) parameters ( f̂N , ĝN )

provide a straightforward way to properly “calibrate” the model and adapt it to the
problem at hand. Relation (2) is a relaxation of the above-stated complementarity
condition: it avoids discontinuities while being sufficiently representative of physical
reality. In order to describe (unilateral) contacts with friction, the classical Coulomb
model is adopted. The focus is placed here on point-contact with static friction,
whereby normal force fN , tangential force fT and the coefficient of static friction
μs are related by the well known relation

fT ≤ μs fN (3)

No-sliding conditions must be enforced by requiring that sliding velocities at contact
points be zero. The normal gap gN (x) and the sliding velocity ġT (ẋ, x) (i.e., the time
derivative of the tangential gap [51]) would call for an additional complementarity
condition. We devised a smooth relaxation of this discontinuous condition through
the sliding velocity funnel shown in Fig. 2 and described by:

ġ(l)
T (gN ) ≤ ġT ≤ ġ(u)

T (gN ) (4)
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where the functions ġ(l)
T (gN ) and ġ(u)

T (gN ) are lower and upper bounds, respectively,
for the sliding velocity. It is reasonable to have a symmetric funnel, hence ġ(l)

T (gN ) =
−ġ(u)

T (gN ). The bounds are modeled here as:

ġ(u)
T (gN ) = exp (c1(gN + c2)) + c3 (5)

where the three parameters (c1, c2, c3) are used for proper, problem-dependent cali-
bration. No-sliding manipulation planning benefits from this approach as the sliding
velocity funnel smoothly and gradually guides the fingers towards the object, eventu-
ally driving relative velocities to (nearly) zero at their contact points. The trajectory
planning methods employed in this work are based on numerical optimization tech-
niques that require a discrete-time model of the dynamic system, therefore discrete-
time versions of Eqs. (1)–(4) are adopted in the following. In our implementation, the
state vector xk = x(tk) collects configuration and velocity of each body, while con-
trol vector uk = u(tk) includes acceleration of each finger (or actuator) and contact
forces at each candidate contact point. The dynamic equation (1) is used in a direct
transcription scheme based on collocation points: using a single collocation point as
midpoint in the interval [tk, tk+1], and denoting t̄k = (tk+1 + tk)/2, x̄k = x(t̄k) and
h = tk+1 − tk (fixed), the discretized dynamic equation becomes

xk+1 = xk + hF(x̄k, uk) (6)

In the above implementation, states are linear and controls are constant over each
discretization interval. The integration scheme (6) is known as implicit midpoint
rule (O(h2)), and it is the special one-point case of the Gauss–Legendre collocation
method. As it is a symplectic integrator, it is suitable to cope with stiff, conservative
mechanical systems. While Eqs. (3)–(4) are straightforward to discretize, Eq. (2)
needs some attention: as it involves both states and controls, its discretization must
adhere to the scheme dictated by Eq. (6), to wit

fNk = fN (gN (x̄k)) = fN0

(
f̂N
fN0

)gN (x̄k )/ĝN

(7)

Failing to do so (e.g., evaluating gN at xk) would result in a “causality violation”, with
contact forces being inconsistent with the interpenetrations between bodies governed
by (6).

3.2 Velocity-Based Time Stepping Scheme

In this section, we present the complementarity formulation of the time-stepping
scheme employed for the dynamic modeling of manipulation systems exploiting
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sliding over EC. To keep the treatment general enough, we refer to a 3D system
of m bodies with c contacts. We assume a polyhedral approximation of the friction
cone, with d friction directions uniformly distributed to positively span the contact
tangent plane.1 For ease of notation, we write Mk = M(qk) and likewise for other
vector/matrix functions. Let h be again the time step, and let Δv := vk+1 − vk . For
k ∈ {0, . . . , N−1}, we adopt a Backward-Euler transcription scheme by writing the
kinematic reconstruction and the dynamic equations as

qk+1 − qk − h vk+1 = 0 (8a)

Mk+1Δv − h
[
κ(qk+1, vk) + Bk+1uk+1

] − Gk+1λk+1 = 0, (8b)

where: q ∈ R
6m and v ∈ R

6m represent system configuration and velocity, respec-
tively, M ∈ R

6m×6m is the generalized mass matrix, κ ∈ R
6m collects centrifugal,

Coriolis and gravitational forces, u ∈ R
t is the control torque vector, B ∈ R

6m×t is
the actuation matrix, G = [N T ] is a generalized grasp matrix, where N ∈ R

6m×c

and T ∈ R
6m×nd are normal and tangential wrench bases, and λ = [λ�

N λ�
T ]� is the

generalized wrench impulse vector, wherein λ N and λ T are the normal and tangen-
tial contact wrench impulses. Matrix N appears as N = [N (1) · · · N (c)], and each
column N (i) ∈ R

6m corresponds to contact i and contains, for each body � connected
to contact i , a block of rows of the form ±[n�

i (p�,i × ni )�]�.2 Since there are at
most two bodies connected to a contact, each N (i) has at most 12 non-zero elements.
Similarly, T = [T (1) · · · T (c)], and in the generic block T (i) ∈ R

6m×d , each column
T (i, j) ∈ R

6m contains, for each body � connected to contact i , a block of rows of
the form ±[t�i, j (p�,i × ti, j )�]�, where ti, j denotes friction direction j at contact i .
Opposite signs must be selected for each of the two bodies connected to contact i ,
and each column of T will contain, at most, 12 non-zero elements.

In partial accordance to [47], unilateral contacts with friction can be described
by the following set of inequality and complementarity conditions

0 ≤ λNk+1 ⊥ gN (qk+1) ≥ 0 (9a)

0 ≤ λTk+1 ⊥ (
ġT (qk+1, vk+1) + Eγ k+1

) ≥ 0 (9b)

0 ≤ γ k+1 ⊥ [
μλNk+1 − (λ�

Tk+1
H λTk+1)

1
2
] ≥ 0, (9c)

where gN (·) is the normal gap function and ġT (·) is the time derivative of the tangen-
tial gap function [51],γ represents, inmost cases,3 an approximation to themagnitude
of the relative contact velocity, matrix E := BlockDiag(1, . . . , 1) ∈ R

(dc)×c, with
1 ∈ R

d , μ ≥ 0 is the coefficient of friction, and H := BlockDiag(H (1), . . . , H (c)),

1For simplicity of description, we assume that the number of friction directions d is the same at
each contact, although this is not necessary.
2The positive/negative sign must be chosen if, considering equilibrium of body �, the unit normal
vector ni is facing into/away from body �.
3In situations where the relative contact velocity and the friction vector are both zero, γ ≥ 0 can
be arbitrary and has no physical meaning.



A Computational Framework for Environment-Aware Robotic Manipulation Planning 371

where the H (i)
lm = t�i,l ti,m (l,m ∈ {1, . . . , d}) is the metric form [13, Sects. 2–5] of the

basis ti,l that positively spans the tangent plane at contact i . Equation (9a) state that
bodies cannot interpenetrate (gN (qk+1) ≥ 0), normal impulses can only push objects
away (λNk+1 ≥ 0), and that, in order for the impulse to be non-zero in the interval
[tk, tk+1], the normal gap must be closed at tk+1. This condition also implies that
collisions are approximated here as inelastic ones, and interacting bodies may end
up sticking together. Equation (9b) require tangential impulses to be directed along
the positive tangential directions (λTk+1 ≥ 0). The complementarity condition in (9b)
selects, for sliding contacts, the tangential impulse that opposes the sliding velocity.
This constraint is tightly coupled with the complementarity condition in Eq. (9c),
and it ensures that, if a contact is sliding, the tangential force will lie on the boundary
of the friction cone. It is worth noting that the bracketed term in Eq. (9c) allows one
to correctly define the Coulomb friction constraints even in sticking conditions, as
it is robust to the physiological failure of Eq. (9b) in selecting only one non-zero
component in each γ

(i)
k+1 for adhesive contacts.

4

The choice of fully implicit integration schemes and nonlinear complementarity
formulations, as described in Eqs. (8) and (9), can be justified in view of the increased
numerical stability and modelling accuracy they bring about, while not hindering the
general structure of the problem.5

4 Trajectory Planning as an Optimization Problem

4.1 Penalty-Based Contact Model

Within our direct transcription framework, for k ∈ {0, . . . , N − 1}, Eqs. (6), (7), and
the discretized versions of Eqs. (3) and (4) constitute a set of (equality and inequality)
nonlinear constraints for the optimal control problem (OCP) we set out to formulate.
Additional constraints include the (fixed and known) initial state values x0 = x(0)
as well as a terminal equality constraint on (some) components of xN : the latter
provides a direct way to specify the required final state of the manipulated object
at the final time T = tN . Generally, no terminal constraints on the manipulation
system configuration are imposed. Lower and upper bounds for (xk, x̄k, uk) are also
included: they act as operational constraints for actuators and the system’sworkspace,
and they are useful to restrain contact forces within safety limits. Other constraints
can be introduced to shape emergent behaviors and to render them intrinsically
more robust or desirable for several reasons. As an illustrative example, in order

4Replacing the bracketed term in (9c) with [μλN − E�λT ], as commonly performed in litera-
ture [48], would call for unrealistically strict and physically unmotivated conditions to ensure
adhesive friction.
5Embedding contact dynamics into the numerical optimization problem as nonlinear constraints,
where many other implicit constraints are already present, does not justify explicit or semi-implicit
discretization schemes, which are, instead, legitimate when building fast simulators [21, Sect. 5].
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to guarantee that any two fingers make always contact with an object in a three-
fingered manipulation task, we add the following set of inequalities to the problem:
f (1)
Nk

+ f (2)
Nk

≥ ε, f (2)
Nk

+ f (3)
Nk

≥ ε, and f (3)
Nk

+ f (1)
Nk

≥ ε, with ε > 0.
We introduce the vector of decision variables v ∈ R

n , which collects the sequence
of unknown (xk, x̄k, uk) (i.e., configurations and velocities in (xk, x̄k), contact forces
and actuator accelerations in uk). All equality and inequality constraints can be
written compactly as

gmin ≤ g(v) ≤ gmax, vmin ≤ v ≤ vmax (10)

The general structure of the cost function takes the form

f (v) =
N−1∑
k=0

∑
i∈I

wiφi (xk, uk), (11)

where eachφi (·) represents a peculiar type of cost. These have to be carefully selected
according to the character of the manipulation action we desire to perform, along
with the correspondingweights wi (also acting as important scaling factors).Multiple
cost terms φi (·) can be used to shape different manipulation behaviors. The following
terms (specifically, their squared 2-norm) have proved to be decisive in directing the
optimization process: contact forces, and their variations from one interval to the next
(to minimize jerk); accelerations of actuators; deviations of actual object trajectories
from ideal, smooth trajectories (task-specific).

4.2 Velocity-Based Time Stepping Scheme

Similarly to the penalty-based contact model scheme, the discrete formulation of the
dynamics of systemswith contacts expressed byEqs. (8) and (9) can be used as a set of
nonlinear constraints in an optimal control problem (OCP), involving the sequence
of unknown (qk, vk+1, λk+1, γk+1). Additional equality constraints are introduced:
for the manipulated object, both initial and final configurations and velocities are
imposed, whereas only the initial conditions are specified for the manipulation sys-
tem.

Inequality constraints are also introduced with similar intentions as in the penalty-
based scheme. It is worth noting that, since in our applications the hand is velocity
controlled, the hand dynamics is not included in the optimization constraints, and
the hand velocities will play the role of control actions. Therefore, limited control
authority is imposed as bounds on hand velocities and accelerations in the form
v(l)
min ≤ v(l) ≤ v(l)

max and alminh ≤ Δv(l) ≤ a(l)
maxh, respectively, with l belonging to the

index set corresponding to the hand.
Defining v ∈ R

n as the multi-stage sequence of configurations, velocities, contact
impulses and inputs, (qk, vk+1, λk+1, γk+1), all constraints are still expressed in the



A Computational Framework for Environment-Aware Robotic Manipulation Planning 373

form (10), whereas the cost function takes the form

f (v) =
N−1∑
k=0

∑
i∈I

wiφi (qk, vk+1, λk+1, γk+1) (12)

4.3 Final Optimization Problem

From the previous discussion, we now present the nonlinear program (NLP) that has
to be solved to generate optimal trajectories. With v ∈ R

n previously defined, we
consider the following optimization problem

min
v

f (v), subject to gmin ≤ g(v) ≤ gmax vmin ≤ v ≤ vmax (13)

in which: f : Rn → R is the objective function, g : Rn → R
m is the nonlinear

constraint function, gmin ∈ [−∞,∞)m and gmax ∈ (−∞,∞]m (with gmin ≤ gmax)
are, respectively, lower and upper bound vectors of the nonlinear constraints,
vmin ∈ [−∞,∞)n and vmax ∈ (−∞,∞]n (with vmin ≤ vmax) are, respectively, lower
and upper bound vectors of the decision variables. Problem (13) is a large-scale,
but sparse NLP, that should be solved by structure-exploiting solvers. To this end,
as detailed in the next section, we resorted to the Ipopt [50] implementation of the
interior-point method within the CasADi framework. As initial guess required by the
algorithm, we somewhat crudely mapped the initial state x0 and a rough estimate of
the controls to all the (N − 1) variable instances. Obviously, better initial guesses
should be provided whenever possible. With the penalty-based approach, (partial)
solutions of the NLP (13) have also been used as initial guesses for a subsequent
optimization according to a homotopy strategy [40, Sect. 11.3], thereby maximizing
physical realism while facilitating convergence.

5 Nonlinear Programming via an Interior-Point Algorithm

5.1 The Barrier Problem Formulation

Problem (13) is equivalently rewritten as

min
x

f (x), subject to (14a)

c(x) = 0 (14b)

xmin ≤ x ≤ xmax (14c)
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in which x is formed by augmenting the decision variable vector vwith suitable slack
variables that transform inequality constraints in (13) into equality constraints.6

Let Imin = {i : x (i)
min 	= −∞}, and Imax = {i : x (i)

max 	= ∞}. We consider the barrier
function

ϕμ(x) = f (x) − μ

( ∑
i∈Imin

ln(x (i) − x (i)
min) +

∑
i∈Imax

ln(x (i)
max − x (i))

)

in whichμ > 0 is a (small) barrier parameter. Instead of solving (14), Ipopt performs
iterations to achieve an approximate solution of the equality constrained NLP

min
x

ϕμ(x), subject to: c(x) = 0 (15)

Note that ϕμ(x) is well defined if and only if xmin < x < xmax, i.e. if x is in the
interior of its admissible region. The value of μ is progressively reduced so that
ϕμ(x) → f (x), and in this way solving (15), in the limit, becomes equivalent to
solving (14). Clearly, as μ → 0, any component of x can approach its bound if this
is required by optimality.

5.2 Interior-Point Approach to NLP

Any local minimizer to (15) must satisfy the following Karush–Kuhn–Tucker (KKT)
conditions [40, Sect. 12.2]

∇ f (x) + ∇c(x)λ − z + z = 0 (16a)

c(x) = 0 (16b)

z(i)(x (i) − x (i)
min) − μ = 0 ∀i ∈ Imin (16c)

z(i)(x (i)
max − x (i)) − μ = 0 ∀i ∈ Imax (16d)

for some vectors λ ∈ R
m , z ∈ R

n , and z ∈ R
n (for completeness: z(i) = 0 ∀i /∈

Imin, z
(i) = 0 ∀i /∈ Imax). Notice that, if μ = 0, then (16) together with z ≥ 0 and

z ≥ 0 represent the KKT conditions for NLP (14). The KKT conditions (16) form
a nonlinear algebraic system F(ξ) = 0 in the unknown ξ = (x, λ, z, z), which is
solved in interior-point algorithms via Newton-like methods. If we denote by Eμ(ξ)

the maximum absolute error of the KKT equations (16) (appropriately scaled), the
basic algorithm implemented in Ipopt is summarized in Table1 (in which j is the
index of the outer loop, k is the index of the inner loop, and ε > 0 is a user-defined
convergence tolerance).

6With a slight abuse of notation, we still use n and m to denote the dimension of x and c(x),
respectively, and f (x) to denote f (v).



A Computational Framework for Environment-Aware Robotic Manipulation Planning 375

Table 1 Basic Algorithm implemented in Ipopt

1. Define μ0 > 0, x0 (xmin ≤ x0 ≤ xmax), λ0, z0 ≥ 0, z0 ≥ 0, and form ξ0 accordingly. Set:
j = 0, k = 0

2. Given the current iterate ξk , compute a Newton step pk for F(ξ) = 0. Compute the new
iterate performing a line search: ξk+1 = ξk + αk pk (for some αk > 0)

3. If E0(ξk+1) ≤ ε, exit: ξk+1 is a local solution to NLP (14). Otherwise, proceed to Step 4

4. If Eμ j (ξk+1) ≤ κμ j (for some κ > 0) proceed to Step 5. Otherwise, update k ← k + 1
and go to Step 2

5. Set μ j+1 = μ j/ρ (for some ρ > 1), update j ← j + 1, k ← k + 1 and go to Step 2

5.3 Main Computational Aspects: Calculating Derivatives
and Solving (Sparse) Linear Systems

The most expensive computation step in the basic interior-point algorithm is the
computation of the Newton step pk for the KKT system F(ξ) = 0, i.e. Step 2. We
first note that evaluation of F(ξ), at each iteration, involves the computation of the
cost function gradient ∇ f (x) ∈ R

n and of the constraint Jacobian ∇c(x) ∈ R
n×m .

Then, the Newton step is found from the solution of the following linear system:

⎡
⎢⎢⎣

Wk Ak −I I
AT
k 0 0 0

Zk 0 Xk 0
−Zk 0 0 Xk

⎤
⎥⎥⎦

⎡
⎢⎢⎣
pxk
pλ
k

p
z
k

pzk

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

∇ϕμ j (xk) + Akλk

c(xk)
Xk Zk1 − μ j1
Xk Zk1 − μ j1

⎤
⎥⎥⎦ (17)

in which:Wk = ∇2
xxL (xk, λk, zk, zk), withL (x, λ, z, z) = f (x) + c(x)Tλ − (x −

xmin)
T z − (xmax − x)T z the Lagrangian function associated with NLP (14); Ak =

∇c(xk) the constraint Jacobian; Zk = diag(zk), Zk = diag(zk), Xk = diag(xk −
xmin), and Xk = diag(xmax − xk) diagonalmatrices;∇ϕμ j (xk) = ∇ f (xk) − zk + zk .
In order to generate the entries of system (17), it is necessary to evaluate the cost
function gradient, the constraint Jacobian, as well as the Hessian of the Lagrangian
(or a suitable approximation to it). Partial derivatives can be computed numerically
by finite differentiation or analytically (for simple functions). A third approach is
by means of so-called Automatic Differentiation (or Algorithmic Differentiation)
techniques, which generate a numerical representation of partial derivatives by ex-
ploiting the chain rule in a numerical environment. Different approaches exist for
AD,which are tailored to the computation of first-order and second-order derivatives.
The interested reader is referred to [22]. A final computation observation is reserved
to the numerical solution of system (17). First, it is transformed into a symmetric
(indefinite) linear system via block elimination. Then, symmetry can be exploited
by symmetric LDL factorizations. Furthermore, it should be noted that in trajectory
planning problems considered here (and in general in optimal control problems) the
Hessian Wk and the constraint Jacobian Ak are significantly sparse and structured.
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Exploiting these features can reduce the solution time significantly. To this effect,
the MA57 multifrontal solver [15] from the Harwell Software Library [24] is used.

5.4 The CasADi Framework

The transcribed optimal control problem is coded in a scripting environment using
the Python [41] interface to the open-source CasADi framework [2], which provides
building blocks to efficiently formulate and solve large-scale optimization problems.

In the CasADi framework, symbolic expressions for objective and constraints
are formed by applying overloaded mathematical operators to symbolic primitives.
These expressions are represented in memory as computational graphs, in contrast to
tree representations common to computer algebra systems. The graph is sorted into
an in-memory algorithmwhich can be evaluated numerically or symbolically with an
efficient stack-based virtualmachine or be exported toC code. Forward and backward
source-code transforming AD can be performed on such algorithm at will, such that
derivatives of arbitrary order can be computed. The sparsity pattern of the constraint
Jacobian is computed using hierarchical seeding [19] and its unidirectional graph
coloring is used to obtain the Jacobian with a reduced number of AD sweeps [18].
Regarding expressions and algorithm inputs andoutputs, everything is a sparsematrix
in CasADi. Yet the underlying computational graphs may be of either a type with
scalar-valued (SX) nodes or a type with matrix-valued (MX) nodes. The combined
usage of these two types amounts to a checkpointing scheme [22]: low-level functions
are constructed with the SX type algorithm, which is optimized for speed. These
algorithms are in turn embedded into a graph of the MX type, which is optimized
for memory usage, to form the expression of objective and constraints.

In the context of optimal control problems, the CasADi framework offers several
advantages over other AD tools: it comes bundled with common algorithms that can
be embedded into an infinitely differentiable computational graph (e.g. numerical
integrators, root-finding and linear solvers), and takes care of constructing and pass-
ing sensitivity information to various NLP solvers backends. Since CasADi does not
impose an OCP solution strategy and allows fine-grained speed-memory trade-offs,
it is suited more than black-box OCP solvers to explore non-standard optimal control
problem formulations or efficient solution strategies.
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6 Application Examples

6.1 Environment-Aware Manipulation

6.1.1 Penalty-Based Approach with Disk and Two Independent Fingers

Figure3 shows a first example of EC-exploiting manipulation. In a vertical plane,
the two independent fingers H0 and H1, initially away from the circular object, must
interact with the object and have it interact with the environment (edges e0 and e1)
so that it will be in the shown final position, with any orientation but zero velocity, at
the end of a prescribed time horizon T . All contact interactions must occur without
slippage (static friction). The object’s initial state corresponds to a configuration of
static equilibrium. The fingers have limitations on their horizontal workspace: as a
result, grasping and lifting of the object is inhibited, and an environment-exploiting
policy needs to be discovered in order to accomplish the task. Also, object-passing
between fingers needs to emerge. This planning problem has been formulated and
solved using the penalty-based approach. The resulting trajectories in terms of normal
contact forces are shown in the first two plots of Fig. 4: finger H0 approaches the
object first (whose weight is symmetrically supported by e0 and e1), then rolls it on
edge e1 (without slipping) until it reaches its workspace limit and hands it over to
finger H1, which completes the task. Friction forces (not shown for brevity) satisfy
constraint (3), where μs = 2 was used. The third plot shows the actual x-component
trajectory of the object versus a suggested trajectory, included as a hint in the objective
function to facilitate convergence of the algorithm, but with a low weight (to avoid
forcing such trajectory against dynamic constraints). With N = 180 discretization
intervals (time step h = 45ms) and considering the prescribed initial and terminal
conditions, the problem size is n = 8810 decision variables. To obtain a solution for

Fig. 3 EC manipulation
scenario: the object must
reach its final configuration
at the prescribed final time
T = 8s

0finger object in initial
configuration

object in required
final configuration

H

0edge e

1
edge e

1finger H1 limitH

0 limit H

tl
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Fig. 4 Trajectories for a circular object manipulated by two independent fingers: normal contact
forces f iN applied by the fingers; normal contact forces f ejN applied by the environment (segments
e0, e1); suggested and actual x-displacement x of the object

this example, starting from an initial guess built by repeating the initial condition
for all the time steps, Ipopt took 1062 iterations, which correspond to ∼23min on a
2.70GHz Intel(R) Core(TM) i7-4800MQCPUwith 32GB of RAM.An animation of
the obtained results can be found in part A.1 of the accompanying video [17] which
also shows the grasping-and-lifting behavior that is discovered if finger workspace
limitations are removed and the contact force exerted by edge e1 is penalized.
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Fig. 5 EC manipulation scenario. Starting at qO (0) = π/2, in contact with segment P2P3, the
capsule must be placed, at time T = 5s, in the same position but with qO (T ) = −π/2

6.1.2 Velocity-Based Time-Stepping Scheme with Capsule and
Two-Fingered Underactuated Gripper

With reference to Fig. 5, a capsule-shaped object, starting from an equilibrium con-
figuration in contact with segment P2P3 (of a six-edged polygonal environment),
has to find itself rotated by 180◦ at the end of the planning horizon T . Since the
object is passive, a manipulation gait has to emerge for the gripper. Moreover, since
we penalize high contact impulses and the gripper has a reduced mobility due to
underactuation — it has symmetrically closing jaws — it turns out that convenient
EC-exploiting behaviors are indeed automatically synthesized by the optimizer. In
fact, with reference to Fig. 6, beside finger impulses (first plot), which represent stan-
dard grasping/manipulation actions, contact interactions generated by collisions of
the object with the environment (second plot) play a role of paramount importance
in shaping the object motion. More in detail, with reference to part A.2 of the accom-
panying video [17], the object is initially grasped and lifted, then it is gently dropped
so that it lays on segment P2P3 after hitting segment P3P4 (see the corresponding
bumps in λ23

N and λ34
N ). Then, with the circular part of the capsule pushed to corner

P3, the object is rotated with only one finger by sliding it on edges P2P3 and P3P4.
Finally, both fingers grasp the object and, slightly lifting it up, they slide it on edge
P2P3 to the initial position. It is worth noting that, with a wise exploitation of EC,
the actual rotation of the object can closely follow the desired one (third plot). This
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Fig. 6 Motion trajectories of a capsule-shaped object manipulated by an underactuated gripper:
contact normal impulses λ0N and λ1N applied by the fingers; contact normal impulses λ

i j
N applied by

the environment through segment Pi Pj ; ideal and actual rotation qO of the object-fixed frame

condition can be violated in general, since the trajectory prescribed from the outset
only constitutes a suggested behavior for some components of the system. Regarding
the underlying numerical OCP, at each time step k ∈ {0, . . . , N − 1}, the problem
variables have the following dimensions: qk ∈ R

4+3, vk+1 ∈ R
4+3, λNk+1 ∈ R

6+2,
λTk+1 ∈ R

12+4, γk+1 ∈ R
6+2. With N = 160 discretization intervals (h = 30ms) and

considering the prescribed boundary conditions on the object/gripper, the problem
size is n = 7375. To obtain a solution for this example, starting from an initial guess
built by repeating the initial condition for all the time steps, Ipopt took 920 iterations,
which correspond to ∼25min on a 2.70GHz Intel(R) Core(TM) i7-4800MQ CPU
with 32GB of RAM. An animation of the results can be found in part A.2 of the
accompanying video [17].
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1finger H

finger 0H

2finger H

object in initial
configuration

workspace of
object’s center

workspace of H0

workspace of H2workspace of H1

Fig. 7 Dexterous manipulation scenario: the object must find itself rotated by 360◦ at the final time
T = 6s

6.2 Dexterous Manipulation

With reference to Fig. 7, a circular object, starting from a configuration where it
is held in equilibrium by three independent fingers in a force-closure grasp, has to
find itself rotated by 360◦ at the end of the planning horizon T , with zero velocity.
Since, again, the object itself is passive and each finger has workspace limitations
(see Fig. 7), a relatively complex (dexterous) manipulation gait has to be discovered
for the fingers. To obtain an in-place manipulation, a box constraint has also been
assigned on the position of the object center. In order to obtain a relatively robust
manipulation, the constraint described in Sect. 4.1 has been included to guarantee
that any two fingers are always in contact. As we want no slipping between the
fingers and the object during manipulation, the penalty-based approach has been
used (with a coefficient of friction μs = 1.5). The resulting optimal trajectories in
terms of finger forces are shown in the first two plots of Fig. 8: intermittent contacts
due to the discovered manipulation gait can be clearly seen. The third plot shows the
object’s actual rotation versus a smooth (third-order), suggested rotation trajectory.
With N = 200discretization intervals (h = 30ms) and accounting for thefixed initial
and terminal conditions, the problem size is n = 12585. To obtain a solution for this
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Fig. 8 Trajectories for a circular object manipulated by three independent fingers. Shown are:
normal contact forces f iN and tangential contact forces f iT applied by the fingers; suggested and
actual rotation qO of the object

example, starting from an initial guess built by repeating the initial condition for
all the time steps, Ipopt took 1661 iterations, which correspond to ∼81min on a
2.70GHz Intel(R) Core(TM) i7-4800MQ CPU with 32GB of RAM. An animation
is provided in part B.1 of the accompanying video [17], while part B.2 shows the
results obtained by solving the same problem with the velocity-based time-stepping
scheme, where sliding between fingers and object is allowed and exploited.
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7 Conclusions and Future Work

This paper proposed a computational framework to plan environment-aware ma-
nipulation behaviors that do not rely on an a-priori defined sequences of contacts.
To this end, we framed the problem as a numerical optimal control one, including
contact forces among the optimization variables as a key factor, and we sharpened
the algorithmic pipeline by exploiting structural sparsity and leveraging Automatic
Differentiation. Two contact models were proposed that best fit manipulation sce-
narios where sliding primitives need to be avoided or sought, respectively. These
proved effective in solving manipulation planning problems where essential inter-
actions with the environment had to be synthesized to accomplish a task (Sect. 6.1).
The results presented in Sect. 6.2 demonstrated that the very same method is able to
perform successfully in discovering non-trivial gaits also in dexterous manipulation
tasks. Current research is devoted to extending the method to 3D scenarios, the ma-
jor thrust being the synthesis of EC-exploiting, whole-body manipulation strategies
for humanoid platforms. Injection of motion primitives/synergies into the model are
also being considered, and proper model scaling and tuning of Ipopt convergence
parameters are under way to maximize computational efficiency.
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Small and Adrift with Self-Control: Using
the Environment to Improve Autonomy
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Heckman, Eric Forgoston, Ira B. Schwartz and Philip A. Yecko

1 Introduction

The motions of small vehicles are more significantly impacted by the environments
they operate in, allowing the environment to be leveraged to improve vehicle control
and autonomy, particularly for aerial and marine vehicles [15]. Consider the example
of a small autonomous marine vehicle (AMV) operating in the turbulent ocean. The
tightly coupled vehicle and environmental dynamics makes control challenging, but
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Fig. 1 a Visualization of atmospheric currents for January 2015 using data provided by Global
Forecasting System, NCEP, NationalWeather Service, and NOAA. bVisualization of ocean surface
currents for June 2005 through December 2007 using NASA/JPLs Estimating the Circulation and
Climate of the Ocean, Phase II (ECCO2) ocean model

offers nearly limitless environmental forces to be exploited to extend the power
budgets of small, resource constrained vehicles.

Recent work in the marine robotics community has verified that AMV motion
planning and adaptive sampling strategies can be improved when accounting for
dynamics of the fluidic environment [10, 12, 15, 16, 27, 28]. Further progress is
hindered by the immense complexity of the atmospheric and/or the ocean dynam-
ics, which involves the interplay of rotation, stratification, complex topography and
variable thermal and atmospheric/oceanic forcing, not to mention thousands of bio-
logical, chemical, and physical inputs. Theoretical and experimental efforts to model
atmospheric and ocean flows have made progress with the help of simpler, so-called
“reduced” models, but these models are too idealized and limited in applicability for
use in the field. On the other hand, atmosphere and ocean hindcasts, nowcasts, and
forecasts provided by National Oceanic and Atmospheric Administration (NOAA)
and Naval Coastal Ocean Model (NCOM) [22] and Regional Ocean Model Systems
(ROMS) [27] include data assimilated from satellite and field observations. The over-
all quality of these data is highly dependent on how well a given region of interest is
instrumented [25, 26], stymieing attempts to incorporate historical and/or forecasted
flows into vehicle motion planning and control strategies.

Fortunately, while geophysical flows are physically complex and naturally sto-
chastic, they also exhibit coherent structure. Figure1a, b1 show examples of coherent
structures that are easily discerned from the snapshots of atmospheric and ocean sur-
face currents.Knowledge of coherent structures enables prediction of flowproperties,
including transport, where they are known to play a key role. The Gulf Stream is
a prominent example of a mesoscale coherent jet whose heat transport is a critical
component of global weather and climate. In addition to large mesoscale eddies and
jets, smaller, sub-mesoscale, coherent features such as fronts, often grow from insta-
bilities of the larger scale motions [14]. These features impact both transport and the
ocean’s primary production, and thus storage, of organic matter. Using geophysical

1For full animation visit http://earth.nullschool.net/ and http://svs.gsfc.nasa.gov/vis/a000000/
a003800/a003827/.

http://earth.nullschool.net/
http://svs.gsfc.nasa.gov/vis/a000000/a003800/a003827/
http://svs.gsfc.nasa.gov/vis/a000000/a003800/a003827/
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fluid models, details from flows such as the Gulf Stream can be used to diagnose
the underlying geophysical fluid dynamics. This, in turn, enables the prediction of
various physical, chemical, and biological processes in general geophysical flows.
More importantly, predictions based on coherent structures may be exploited more
effectively than the detailed predictions offered by state-of-the-art numerical models.
Coherent structures can thus provide a basis from which one can construct a vastly
reduced order description of the fluid environment.

The challenge of robotic control in a fluidic medium is closely tied to the dual
problems of mixing and optimal sensing. G.I. Taylor described and quantified how
even simple steady shear flows enhance the mixing of a contaminant in a fluid, a
process now known as Taylor dispersion [29]. In its simplest form, Taylor dispersion
is due to the creation of small scaleswhich locally enhance contaminant gradients and
thus optimize diffusion. While achieving better mixing over long times, for shorter
time scales, the ability of flows to form structures may also inhibit mixing, as when
contaminant is trapped in a coherent vortex.

In this work we examine autonomous sampling of a dispersive event in a geo-
physical flow. In particular, we consider the problem of finding the source of a
contaminant leak in a turbulent flow and discuss how search strategies can be sig-
nificantly improved from a GFD perspective. The GFD framework is based on a
specific class of coherent structures, called Lagrangian coherent structures (LCS).
LCS are similar to separatrices that divide a flow into dynamically distinct regions;
hyperbolic LCS can be understood as extensions of stable and unstable manifolds to
general time-dependent flows [4–6].

In our ongoing work we have tracked LCS using teams of autonomous robots in
geophysical fluidic environments,while Inanc et al. showed that time and fuel optimal
paths in the ocean can coincide with LCS boundaries [12, 23]. As such, knowledge
derived from geophysical fluid dynamics (GFD) can significantly improve the over-
all quality of vehicle autonomy. For example, planning energy efficient trajectories,
maintaining sensors in their desired monitoring regions [7, 10, 16], and enabling
computationally tractable and efficient estimation and prediction of surrounding
environmental dynamics. We claim that LCS based flow knowledge can be used
to improve contaminant tracking strategies and support our claims using geophysi-
cal fluid and dispersion models. We conclude with a discussion of major challenges
and opportunities ahead.

2 Contaminant Source Localization in Turbulent Mediums

To illustrate these ideas, consider the problem of finding the source of a contaminant
or hazardous waste plume in a turbulent medium. Turbulence poses significant chal-
lenges for the localization and tracking of material dispersion sources since it breaks
up continuous patches ofmaterial into seemingly randommoving disconnected com-
ponents. As such, gradient-based search strategies based on chemical concentrations
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become highly unreliable in turbulent mediums since the mixing dynamics renders
any estimation of chemical gradients ineffective [21].

In this section,we formulate the source seeking/plume source localizationproblem
as an information theoretic search strategy. The proposed strategy builds upon [30]
where the search strategy consists of making moves that maximize the change in
entropy of the posterior distribution of the source location. Similar to [1, 8], we
rely on a particle filter representation of the posterior belief distribution to make the
strategy more computationally viable in large complex spaces and distributable for
mobile sensing teams. The main contribution is extending existing state-of-the-art
information theoretic search strategies for robots operating in a turbulent flows.

Background and Assumptions We assume the mean rate of chemical detection at
position r resulting from a leakage at r0 follows a Poisson distribution given by:

R(r |r0) = R
ln( λ

a )
e

(y0−y)V
2D K0

(
|r−r0|

λ

)
, (1)

where λ =
√
Dτ/

(
1 + V 2τ/4D

)
, R is the emission rate of the source, τ is the finite

lifetime of a chemical patch before its concentration falls out of the detectable range,
D is the isotropic effective diffusivity of the medium, V is the mean velocity of
the current, and K0(·) is the modified Bessel function of the second kind [30]. The
probability of registering the presence of a chemical patch by a sensor depends on
the distance and the angle of the sensor from the source, i.e., (r − r0).

In the search for the source, the set of chemical detection encounters along
the search trajectory carries the only available information about the relative loca-
tion of the source with respect to the robot. Using this information, a robot can
construct the probability distribution of the source location using Bayes’ rule
P(r0|Tt ) = P(Tt |r0)P(r0)/

∫
P(Tt |r)P(r)dr . Here, Tt encapsulates the history

of the uncorrelated material encounters along the robot’s search trajectory, with
P(Tt |r0) denoting the probability of experiencing such a history if the source of the
dispersion is at r0. We assume the probability of detecting a material or chemical
plume at each step is independent and use Poisson’s law to estimate the probability
of detecting such a history of the material presence along the search trajectory as:

P(Tt |r0) = exp

(
−

∫ t

0
R(r(t̄)|r0) dt̄

) ∏
i

R(r(ti )|r0), (2)

where r(t) is the search trajectory, and r(ti ) is the position of each detection along
the trajectory [30]. We note that the assumption of the independence of detections
holds since the location of the source is unknown. Furthermore, chemical plumes
quickly disintegrate into disconnected patches in turbulent mediums whose disper-
sion dynamics are highly nonlinear and stochastic. Rather than attempt to model the
complex process dynamics, we assume detection events are independent.

We note that (1) provides an observation model and there is no process model
beyond what we assume of the environmental dynamics and the propagation of the
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source in the medium. As such, the current estimate of the belief distribution of the
source location, Pt (r), is used to determine the expected number of positive sensor
measurements at the new position, i.e.,R(r(t)|r0). We assume robots move on a grid
within theworkspace and at each time step can travel an upper bound of nmoves. The
maximum number of moves on the grid is determined based on the limitations and
bounds on the control input and is based on the vehicle’s dynamics. The workspace
is assumed to be bounded but obstacle-free.

The objective is to localize the source of the dispersion in the workspace. Since
the rate of chemical encounter is dependent on the robot’s position with respect to
the source, the proposed strategy should result in robots maximizing the expected
rate of information acquisition on the source’s position.

The Single Robot Search Strategy The information gathered through the chemical
encounters shapes the probability distribution function that describes the possible
source locations, denoted by Pt (r). Thus, it makes sense to consider a search strategy
that drives the robot in a direction that promises the steepest decrease in the entropy
of this distribution. The expected rate of information gain at each search step is the
expected change in the entropy of the estimated field is given by:

E[ΔSt (r �→ r j )] = Pt (r j )[−St ] + [1 − Pt (r j )][(1 − ρ(r j ))ΔS0 + ρ(r j )ΔS1], (3)

where, St = ∫
Pt (r) log(Pt (r))dr is the Shannon entropy of the estimated field. The

first term of (3) corresponds to the change in entropy upon finding the source
at the very next step. If the robot successfully localizes the source at the next step,
then the change in entropy would be zero and thus end the search.

Using the current belief distribution as the best estimate of the source location,
the expected number of positive sensor hits at location r is given by:

h(r) =
∫

Pt (r0)R(r |r0)dr0 (4)

and the probability of a single positive detection follows the Poisson law ρ(r) =
h(r) exp(−h(r)). Thus, the second term of (3) accounts for the case when the source
is not found at r j and computes the expected value of the information gain by the
robot moving to this new position. At each new location, we assume the robot takes
one measurement with its sensor resulting in two possibilities – the robot will have
either a positive sensor hit or not. To find the expected value of the change in the
utility function, i.e., the entropy, (3) calculates the change in entropy for each possible
move and each possible sensor outcome after the move.

The belief distribution for the source location Pt (r) is maintained over all pos-
sible source positions. At each step, the robot chooses to move in a direction that
enables it to acquire more information and decreases the uncertainty of the source
position estimate. Storing and representing the belief distribution becomes compu-
tationally challenging especially when the search space spans large physical scales
and/or contains complex geometry. This is especially true if robots rely on a fine grid
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map to calculate the log-likelihood of the belief distribution. Furthermore, since the
search hypotheses are often spread across the workspace, closed form descriptions
for the belief distribution may not be accessible, especially in geometrically complex
spaces. Thus, we employ a particle filter approach to the representation of the belief
distribution with limited numbers of randomly drawn particles.

In this work, we assume each robot stores the estimated belief distribution of the
source location, Pt (r), using a manageable number of particles,

{
r̂i , ωi

}
, with r̂i rep-

resenting the hypothesis for the state (position) andωi representing the corresponding
weight (probability) of hypothesis i . The probability mass function represented by
these set of particles is mathematically equivalent to the sum of the weighted spatial
impulse functions [2]:

P̂r (t) ≈
∑
i

ωiδ(r̂i − r), (5)

where r̂i is a hypothesis that survived the re-sampling procedure of the previous step,
and the weights, ωi , of the particles are modified as follows:

ωi (t) = ωi (t − 1)e−
(
R(r(t)|r0)

)(
R(r(t)|r0)

)hit
(6)

with hit = 1 in the case of a positive detection and hit = 0 otherwise. To calculate the
entropy of the particle representation of the belief distribution, we use the approach
presented in [8] where S ≈ −∑N

k=1 w
(i)
(t−1),k log

(
w(i)

(t−1),k

)
.

A robot’s control decision is determined by the expected change in entropy of
the source position estimate. At every time step, the expected information gain from
an observation at the next probable robot position is calculated. Since robots are
constrained to a maximum of n moves on the grid, they can quantify the expected
information gain on the source’s position as it moves. If no particles are within the
robot’s set of reachable points on the grid, then any position that is n moves away
from the robot’s current position can be chosen as the next step.

Two approaches are used to represent the information gathered during the search.
The first one assumes the robot has a limited field of view with no knowledge of the
search area. The particles are placed in the robot’s coordinate frame, and the control
decision is to move in the direction the robot expects to acquire more information.
Although the source location may not initially be within the robot’s field of view,
we assume its sensing range is large enough to provide a good enough measurement
for it to determine a direction to move in. The second approach assumes the robot
knows the boundary of the search area and can localize itself within the space. Under
this scenario, the particles used to estimate the source positions are spread over the
entire workspace. Figure2 depicts the two representations.

It is important to note that we assume robots can measure the flow direction at its
current position. This is important for the robot to discern the direction the material
plumes are coming from. We note that the weight update given by (6) is different
frommost particle filter implementations. This is because when localizing the source
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Fig. 2 The particles representing the hypotheses for the source position. The background shows
the gas volume concentration in the water due to an oil spill. Blue denotes low concentration and
red denotes high concentration. Details of the plume simulation can be found in [3]

of a dispersion, re-sampling serves the role of integrating past information into the
current estimate of the source position. Therefore, one must take the likelihood
of the detection history, (2), into account during the update and eliminate the less
probable hypotheses when re-sampling. This is the fundamental difference between
the proposed strategy and existing information theoretic strategies for aerial and
ground vehicles operating in static environments. The single robot search strategy is
summarized in Algorithm 1.

The Multi-Robot Search Strategy To speed up the search strategy, we extend the
proposed single robot search strategy to a robot team. This effectively increases the
chances of positive encounters and decreases the expected time needed to localize
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input : CURRENT estimate of source position belief distribution
output: UPDATED estimate of source position belief distribution

1 for All particles within the robot’s reachable set do
2 Update particle weights if the robot moves to the position of the particle, and;
3 (1) The robot detects a plume in the new position;
4 (2) The robot does not detect a plume in the new position;
5 Calculate entropy of the particle filter for (1) and (2);
6 Calculate expected reduction in entropy if robot moves to each particle position;
7 end
8 Move to the location of the particle with steepest expected reduction in entropy;
9 Obtain sensor reading and compute new particle weights for the samples;

10 Re-sample;
Algorithm 1: Single robot search strategy

the source. To achieve this, we assume robots can communicate with one another
and thus the team can build a shared belief distribution of the source position. While
communications can be severely bandwidth limited in a fluidic medium, e.g., under-
water environments, the amount of data that must be communicated is low. Robots
are only required to exchange their position information when they have detected a
material plume at their current location. Since robots initialize with the same belief
distribution, each robot moves in a direction that reduces the entropy of this com-
mon belief distribution. Such a coordination strategy ensures every individual in the
team searches for a single source location. To take into account the impact of robot
motion uncertainties on particle positions, we represent each particle position with
a Gaussian distribution and thus employ a Gaussian Mixture Model to represent the
probability distribution of the source given by (5). As such, we employ the steps
described in [1, 8, 11] to calculate the information utility function:

S ≈ −
∫

θ

{ N∑
k=1

w(i)
(t−1),k p(θt |θt−1 = θ̂

(i)
(t−1),k) log

( N∑
k=1

w(i)
(t−1),k p(θt |θt−1 = θ̂

(i)
(t−1),k)

)}
,

where p(θt |θt−1 = θ̂
(i)
(t−1),k) is the probability distribution over the possible position

of the i th particle with respect to the agent after it moves and is a Gaussian.
Simulation results validating the proposed search strategy for a team of three

robots are shown Fig. 3. For a video of the simulation, we refer the reader to https://
youtu.be/5maQPeEcyf8. The robots are shown localizing the source of a 2D multi-
scale simulation of the Deepwater Horizon oil spill [3]. The entropy of the belief
distribution for the source position at every time step is shown in Fig. 4a. We note
that the temporary increase in entropy at 60th time step corresponds to one of the
robots loosing track of the plume.

https://youtu.be/5maQPeEcyf8
https://youtu.be/5maQPeEcyf8
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Fig. 3 A team of three robots executing the proposed collaborative search strategy to localize the
source of an oil spill. The background shows the gas volume concentration in the water due to
the spill. The robots are denoted by black ∗. The red, magenta, and black dots denote the robot
trajectories. For more details on the plume simulation, we refer the interested reader to [3]

Fig. 4 a The particles representing the hypotheses over the position of the source. b Single agent
search using Algorithm 1 in a gyre flow. The background shows the FTLE field of the fluidic
environment with LCS boundaries denoted in red. The source of the spill is denoted by the yellow ∗
and the black dots denote contaminants emanating from the yellow ∗. The red ∗ denotes the robot’s
current position, the red dots denote the robot’s search trajectory. The cyan circles denote portions
of the robot’s trajectory where it detected the contaminants

3 Lagrangian Coherent Structures

While the proposed information theoretic search strategy described in the previous
section is able to find and localize the source of a spill in a turbulent medium, the
strategy can be significantly improved with GFD knowledge of the environmen-
tal dynamics. Coherent structures exhibited in GFD flows provide reduced-order
description of the complex fluid environment and enable the estimation of the under-
lying geophysical fluid dynamics. In particular, Lagrangian coherent structures are
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important since they quantify transport and control the stretching and folding that
underpins kinematic mixing.

Lagrangian coherent structures arematerial lines that organize fluid-flow transport
and as mentioned may be viewed as the extensions of stable and unstable manifolds
to general time-dependent systems [6]. In two-dimensional (2D) flows, LCS are one-
dimensional separating boundaries analogous to ridges defined by local maximum
instability, and can be quantified by local measures of Finite-Time Lyapunov Expo-
nents (FTLE) [5, 24]. In this section, we briefly explain the computation of FTLE
fields and the identification of LCS boundaries via local FTLE measures. We limit
our discussions to 2D planar flows, however all concepts discussed in this section
are readily extended to higher dimensions.

Consider a 2D flow field given by

ẋ(t) = F(x, t) (7)

where x = [x, y]∗ gives the position in the plane and ∗ denotes the transpose of the
vector. Such a continuous time dynamical system has quantities, known as Lyapunov
exponents, which are associated with the trajectory of the system in an infinite time
limit. The Lyapunov exponents measure the growth rates of the linearized dynamics
about the trajectory. To find the FTLE, one computes the Lyapunov exponents on
a restricted finite time interval. For each initial condition, the exponents provide a
measure of its sensitivity to small perturbations. Therefore, the FTLE is a measure
of the local sensitivity to initial data. The position of a fluid particle advected by
the flow field given by (7), is a function of time t , the starting point of the particle
x0 and starting time t0, i.e., x = x(t; x0, t0). Using the notation by Shadden et al.
[24], the solution to the dynamical system given in (7) can be viewed as a flow map
which takes points from their initial position x0 at time t0 to their position at time
t . This map, denoted by φt

t0 , satisfies φt
t0(x0) = x(t; x0, t0), and has the properties:

φ
t0
t0 (x) = x and φs+t

t0 (x) = φs+t
s (φs

t0(x)).
The FTLE with a finite integration time interval T , associated with a point x at

time t0 is given by,

σ T
t0 (x) = 1

|T | ln
√

λmax (Δ) (8)

where λmax (Δ) is the maximum eigenvalue of the finite-time version of the Cauchy-
Green deformation tensor Δ, given by,

Δ = dφ
t0+T
t0 (x)
dx

∗
dφ

t0+T
t0 (x)
dx

. (9)

The value of Δ is computed numerically by discretizing the domain into a regular
grid and computing the trajectories of each point and its immediate neighbors in the
grid from time t0 to t0 + T . For each point in the grid, the trajectories are computed
by numerically integrating (7) from t0 to t0 + T . The FTLE value gives a measure
of the maximum expansion of two initially nearby particles when they are advected
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Fig. 5 Simulation of a spill in a time-varying wind-driven double-gyre flow. The background
denotes the FTLE field for flow and the red x denotes the source position of the spill. The black
particles denotes particulates emanating from the source

by the flow. Therefore, particles initiated on opposite sides of an LCS will have
much higher FTLE values than their neighbors since LCS are essentially boundaries
between two dynamically distinct regions in the flow.

By calculating the FTLE values for the entire flow field, it is possible to identify
the LCS boundaries by tracing out regions with the highest FTLE values. As such,
LCS are equivalent to ridges in the FTLE field with maximal FTLE values as defined
by Shadden et al. [24]. The forward-time FTLE field calculated by advecting fluid
particles forward in time (T > 0), reveals repelling LCS which are analogous to the
stable manifolds of saddle points in a time independent flow field. Conversely, the
backward-time FTLE field (T < 0) reveals attracting LCS which are analogous to
unstable manifolds of a time independent flow field.

While one can easily extend the source seeking strategies described in Sect. 2
to single gyre-like flows as shown in Fig. 4b, knowing the LCS boundaries can
significantly improve search strategies when operating in complex environments
like those shown in Fig. 1a, b. Figure5 shows a simulation of the dispersion of
particulates in a time-varying wind-driven double-gyre flow [31] with the FTLE
field shown in the background. The LCS boundaries are denoted by red and the
center vertical boundary oscillates about x = 1. From the simulations, we note that:
(1) LCS boundaries behave as basin boundaries and thus fluid from opposing sides
of the boundary do not mix; (2) in the presence of noise,2 particulates can cross the

2Noise can arise from uncertainty in model parameters and/or measurement noise.
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LCS boundaries and thus LCS denotes regions in the flow field where more escape
events occur [4]; and (3) knowledge of LCS locations can improve the existing search
strategy since this is akin to having a map of the workspace.

However, one downside to finding attracting and repelling LCS by computing
the FTLE fields is due to the fact that one needs global velocity field information
for the region of interest. It is often the case when operating in the ocean that this
information is sparse. Therefore, itwouldbeuseful tofind theLCS in an alternateway.
To this end, we have developed a novel method that allows for collaborative robotic
tracking of LCS. In particular, the robots perform the tracking based on local velocity
measurements, thus ameliorating the need for global information. This collaborative
LCS tracking is described in the following section.

4 Collaborative LCS Tracking

The tracking of coherent structures in fluids is challenging since they are global struc-
tures that are generally unstable and time-dependent. We briefly describe existing
and on-going work in developing collaborative strategies for teams of robots to track
the stable and unstable manifolds and LCS boundaries in 2D flows. It is important
to note that tracking repelling LCS is achieved without relying on explicit computa-
tions of FTLE values. In fact, the identification of repelling LCS boundaries requires
the computation of forward FTLEs, making real-time FTLE-based tracking of LCS
boundaries extremely challenging. In contrast to this, tracking attracting LCS can
be performed using backward FTLE fields calculated using the local velocity data
acquired by the robots.

Repelling LCS and Stable Manifolds The tracking of repelling LCS boundaries or
stable manifolds in flows relies on robots maintaining a boundary straddling forma-
tion while collecting local measurements of the flow field. Since LCS correspond
to regions in the flow field with extremal velocities, LCS tracking is achieved by
fusing data obtained on opposite sides of the boundary to identify the location of the
extremal velocity. The strategywas first proposed for a team of three robots where the
center robot is responsible for locating the boundary using the flow measurements
provided by the team. The remaining robots would then maintain a saddle straddling
formation, i.e., remain on opposite sides of the boundary, at all times. The strategy
has been extensively validated using analytical models, experimental data, and actual
ocean data [9, 17, 18] and extended for larger team sizes [19].

It is important to note that these strategies achieve tracking of global fluidic
features, i.e., the LCS, using only localmeasurements of the flow field and an initial
estimate of the location of the repelling LCS.

Attracting LCS and Unstable Manifolds Different from repelling LCS, attract-
ing LCS are quantified bymaximal backward FTLEmeasures. As such, collaborative
tracking of attracting LCS or unstable manifolds can be achieved through on-board
calculation of local FLTE fields using previously acquired flow velocity data. In this



Small and Adrift with Self-Control: Using the Environment to Improve Autonomy 399

(a) t=9.3s (b) t=20.4s (c) t=31.6s

(d)

Fig. 6 a–c Actual ASV tracking experiment. d ASVs trajectories for the experiment in (a)–(c).
The red line is the actual boundary and the blue line is the trajectory of the center vehicle

case, the tracking strategy utilizes the FTLE field along with instantaneous local
flow field measurements to resolve the attracting LCS boundary. Similar to track-
ing repelling LCS, agent-level control policies leveraging underlying flow dynamics
were developed to maintain the formation of the team as they track the attracting
boundary. The formation control strategy ensures vehicles do not collide with one
another while maintaining the necessary boundary straddling formation.

The attracting LCS tracking strategy was also validated using a combination
of analytical models and experimental flow tanks using micro autonomous surface
vehicles (ASVs) [13]. Figure6 shows an experiment using three real and four virtual
ASVs to track a simulated static flow field. The three ASVs were initially arranged in
a saddle straddling formationwith the center ASV taskedwith tracking the boundary.
The virtual agents were placed at the four corners of the grid.

Collaborative tracking of coherent structures allows one to gain knowledge of the
geophysical flow of interest. This knowledge can be used to improve or optimize a
variety of sensing and control objectives. For example, in previous work we have
demonstrated how GFD-based knowledge allows for an increase in loitering time
of vehicles operating in the ocean [4, 7, 10, 16]. Another example involves the
localization of a contaminant source as described previously.
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5 Conclusions and Future Outlook

In this work, we showed how GFD-derived knowledge can significantly improve
the autonomy of the vehicles that operate within them. Coherent structures have the
potential to provide computationally efficient forecasts of current and wind patterns
since they enable a much lower order description of the environmental dynamics.
The ability to better quantify transport behaviors in natural fluid environments will
enable the synthesis of energy-efficient motion planning and control strategies, the
detection and tracking of contaminant and hazardous waste dispersions, and more
effective allocation ofmobile sensing resources for search and rescue operations. This
makes intuitive sense since this is akin to planning andmotion control of autonomous
vehicles using a suitable map of the environment.

Different from traditional maps, most features of interest in flows are unstable
and non-stationary. While this renders the problem of leveraging dynamic transport
controlling structures for improved underwater vehicle autonomyhighly challenging,
it also opens up new opportunities in planning, control, and perception in these
highly dynamic and uncertain environments. Some specific directions for future
investigations include how dowe construct, maintain, and update such a fluidic map?
Since LCS boundaries exist at various length scales and are often seasonal, how does
a vehicle leverage the structures for energy efficient monitoring and navigation? Is it
possible to use LCS information to identify unsafe regions in the fluidic environment
where vehicles may be trapped by the environmental dynamics? Can we manipulate
the fluid for fluid-mediated underwater manipulation of objects?

Beyond these challenging problems is the extension of all the previously discussed
tracking, planning, control, search, etc. problems to the fully 3D environment. One
major challenge associated with autonomous vehicles operating at depth are the
issues involved with communication. It is known that communication time delay can
destabilize formations of vehicle groups [20]. But one also must consider commu-
nication drop-outs and even the complete loss of communication especially when
operating in the ocean. Overcoming the difficulties of operating in a 3D environment
will allow for greatly improved environmental monitoring and forecasting.

In this work, we presented information theoretic search strategies for localizing
contaminant sources in turbulent flows. We also presented on-going work in distrib-
uted sensing of geophysical fluid dynamics. Much of this work has been motivated
by the insight that the environment may be effectively exploited for vehicle control
and autonomy especially when the vehicle and environmental dynamics are tightly
coupled. By looking at the changing environment through a geophysical perspective,
there are significant GFD features that can be leveraged for predicting and estimating
the environmental dynamics. The challenge lies in overcoming the theoretical and
technological challenges needed to robustly and autonomously collect, process, and
interpret data about the geophysical flows.
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Unifying Robot Trajectory Tracking
with Control Contraction Metrics

Ian R. Manchester, Justin Z. Tang and Jean-Jacques E. Slotine

1 Introduction

Design of tracking controllers for robotic systems is a classical problem, as old as
robotics itself. Most industrial robots are fully-actuated, i.e. for each configuration
coordinate (degree of freedom) there is an associated actuator. Additionally, many
walking robots are controlled so as to remain in a fully-actuated state, i.e. at least
one flat foot firmly planted on the ground (see, e.g., [1] and references therein). For
fully-actuated systems, there are several generally applicable methods for tracking
control: independent joint control using PID, computed torque, sliding control, and
passivity/energy-based methods, to name but a few [2, 3].

For underactuated systems, i.e. those with fewer independent control inputs than
dynamical degrees of freedom, the situation is quite different. Many robotic sys-
tems of current interest are underactuated, including quadrotors (e.g. [4]), dynamic
walking robots (e.g. [5]), and lightweight robots with flexible links (e.g. [6]).

Several nonlinear control approaches have been developed for underactuated sys-
tems [7, 8], but there is currently no generally applicable method that stabilizes
underactuated systems over their maximal basin of attraction.

One recent approach is to design a controller based on a local linearization, e.g.
using the linear quadratic regulator (LQR) [9], and then to verify a basin of attraction
using computational methods [10]. These basins can then be pieced together to
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extend the region of validity of the controller [11, 12]. Another recent approach uses
dual representations of Lyapunov functions to compute an outer-approximation the
maximal basin of attraction [13, 14].

In this paper, we explore the newly-developed concept of a “control contraction
metric” (CCM) as a unifying framework for classical physics-based methods and
emerging optimization-based methods for control of nonlinear robots. The idea of a
CCM was introduced in [15, 16], extending the analysis method of [17].

We show that CCMs can be thought of as unifying the above, seemingly uncon-
nected, approaches. For fully actuated systems, particular metrics can be chosen so
that the CCM design reduces exactly to sliding and energy-based designs. On the
other hand, the CCM approach extends that of [10–12] in some key ways: firstly,
it generates controllers that stabilize every feasible trajectory in a region, not just a
single target that must be known a priori. Secondly, the control synthesis method can
be represented as a convex optimization problem.

Convexity of conditions has benefits beyond tractability of numerical optimiza-
tion. For example, one can can mix-and-match different specifications such as local
optimality and global stability [16] – providing an interesting alternative to switching
between global and local controllers (e.g. [18, 19]) – or build motions by combining
motor primitives with contracting or limit cycle behaviour [20, 21].

2 System Description and Problem Setup

Our development ismotivated by controlling amechanical systemwith configuration
q ∈ Q, an n-dimensional smooth manifold (e.g.Rn), and dynamics derived from the
Euler-Lagrange equations and expressed in the standard “manipulator” form [2, 3]:

H(q)q̈ + C(q, q̇)q̇ + g(q) = Ru. (1)

Here H(q) is the mass/inertia matrix, C(q, q̇)q̇ contains Coriolis and centrifu-
gal terms, and g(q) is the gradient of a potential field. The control inputs are
forces/torques u ∈ R

m . For a fully-actuated robot,m = n and R is a full-rank square
matrix, while for an underactuated robot R is n × m with m < n. Recall that (1) can
be constructed so that Ḣ − 2C is skew-symmetric [2, p. 400].

We will illustrate our results on three classic systems: the single and double pen-
dulum (both fully actuated) and the underactuated cart-pole system. These systems,
their configuration coordinates, and relevant parameters are depicted in Fig. 1.

For our purposes it will frequently be convenient to rewrite the dynamical equa-
tions (1) as a 2n-dimensional set of first-order differential equations:

x :=
[
q
q̇

]
, ẋ = f (x) + B(x)u, (2)

where



Unifying Robot Trajectory Tracking with Control Contraction Metrics 405

θg

l

θ1

l1

θ2

m1

m2

l1

l2

θ
l

mp

ξ

u

Fig. 1 The single pendulum, double pendulum, and cart-pole systems

f (x) =
[

q̇
H(q)−1(−C(q, q̇)q̇ − g(q))

]
, B(x) =

[
0

H(q)−1R

]
. (3)

To define a nonlinear control problem precisely, we must be specific about the
type of convergence desired. If the configuration space is Rn , then a feasible solu-
tion x�(t), u�(t) of (2) on t ∈ [0,∞) is said to be globally exponentially stabi-
lized by a feedback controller u = k(x, t) if positive constants K , λ exist such that
|x(t) − x�(t)| ≤ Ke−λt |x(0) − x�(0)| for all x(0), where x(t) is the solution of the
closed-loop system. The constant λ is referred to as the rate of convergence. For non-
linear manifolds, similar definitions can be constructed using an appropriate distance
metric.

Global exponential stability is defined with respect to a particular solution x�, u�.
For robot tracking applications, a more appropriate requirement is that every solution
of the system can be stabilized. System (2) is said to be universally exponentially
stabilizable with rate λ if there exists a control law u(t) = k(x(t), x�(t), u�(t), t)
that globally exponentially stabilizes any feasible solution (x�, u�) with rate λ.

3 Differential Dynamics and Control Contraction Metrics

Riemannian geometry extends familiar Euclidean notions of distances and angles to
smooth nonlinear manifolds [22]. The central idea is that at each point on a manifold,
a local Euclidan geometry is defined on the tangent space by way of a “metric”: a
smoothly varying inner product on tangent vectors. In coordinates, this can bewritten
as the inner product 〈δ1, δ2〉x = δ′

1M(x)δ2 for some positive-definite matrix M(x)
that smoothly depends on x . Lengths of parameterized curves γ (s), s ∈ [0, 1] can
then be computed as

l(γ ) =
∫ 1

0

√〈γs, γs〉γ ds

where γs = ∂γ

∂s . The Riemannian distance between two points is the length of the
shortest path (a “geodesic”) joining them. If the manifold is Rn and the metric M
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is independent of x , i.e. “flat”, then all geodesics are straight lines and the distance
between two points x1, x2 is just

√
(x1 − x2)′M(x1 − x2).

Contraction analysis is based on the relative motion of “nearby” solutions of a
dynamical system [17]. If there exists some metric in which nearby solutions get
closer (differential variations shrink), then all solutions converge globally. This is
analogous to the obvious statement that if all the links in a chain get shorter, then
the chain itself must get shorter. A contraction metric is a Riemannian metric on the
state space for which all distances shrink under the flow of the system.

A smooth nonlinear system ẋ = f (x, t) has differential (a.k.a. variational, lin-
earized) dynamics δ̇x = ∂ f

∂x δx along any particular solution. One of the key advan-
tages of contraction analysis is that the differential dynamics are linear time-varying,
and therefore many tools from analysis of linear systems can be applied to nonlinear
systems to obtain global results, without approximation.

In [15, 16] this idea was extended from analysis to control design. Note that a
Riemannian metric defines not only a local measure of length

√
δ′M(x)δ, but also a

local notion of orthogonality: two tangent vectors δ1, δ2 at a point x are orthogonal
if 〈δ1, δ2〉x = δ′

1M(x)δ2 = 0. The main results of [16] is the following: if a control
system of the form (2) is contracting in all directions orthogonal to the actuated
directions, then all feasible trajectories are stabilizable. This can be considered a
contraction version of the classical notion of a control Lyapunov function.

To make the statement precise, we first note that the control system (2) has the
following differential dynamics:

δ̇x (t) = A(x, u)δx (t) + B(x)δu(t) (4)

where A(x, u) = ∂
∂x ( f (x) + B(x)u). The main result of [16] was the following.

Theorem 1 ([16]) Consider the system (2) with differential dynamics (4). If there
exists a symmetric matrix function M(x) and constants α2 ≥ α1 > 0 and λ > 0 such
that α1 I ≤ M ≤ α2 I for all x and the following implication is true for all x, u:

δ′
x MB = 0 =⇒ δ′

x (Ṁ + A′M + MA + 2λM)δx < 0, (5)

then the system is universally exponentially stabilizable with rate λ.

This result also holds for time-varying systems and metrics [16]. To understand (5),
consider that the rate of change of a differential squared-length δ′

x M(x)δx is given
by

d

dt
(δ′

x M(x)δx ) = δ′
x (Ṁ + A′M + MA)δx + 2δx MBδu . (6)

Depending on the values of x, u and δx in (6), there are two possibilities: If
δ′
x MB �= 0, then the right-hand-side of (6) can be made negative by appropri-
ate choice of differential control input δu . Indeed, since (6) is affine in δu , it can
be made negative with as large a magnitude as desired. On the other hand, if
δ′
x MB = 0, then the control input has no effect on (6), but by (5) the system is
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“naturally” contracting, i.e. differential lengths decrease with rate λ, since (5) implies
d
dt

√
δ′
x M(x)δx < −λ

√
δ′
x M(x)δx .Hence it can be shown [16] that there exists a “dif-

ferential feedback” δu(x, δx , u, t) that stabilizes the differential dynamics.
To construct the actual control signal u, one constructs a minimal path (geodesic)

γ , parameterized by s ∈ [0, 1], joining x and x�, i.e. γ (0) = x�, γ (1) = x , and the
differential control signal δu is integrated along this smooth path:

u(t, s) = u�(t) +
∫ s

0
δu

(
γ (s), ∂γ

∂s (s), u(t, s)
)
ds, (7)

and the actual control signal that is applied is u(t) = u(t, 1), see [16] for details and
proofs. In general, this involves an on-line optimization reminiscent of (but simpler
than) model predictive control to find γ . However, as mentioned above, if the metric
is independent of x then geodesics are just straight lines.

3.1 Solution via Convex Optimization

A significant advantage of the CCMmethodology is that, unlike a control Lyapunov
function, the search for a CCM can be written as a convex optimization problem.

Making the change of variables η = M(x)δ andW (x) = M(x)−1, (5) is rewritten
as η′B = 0 implies η′(−Ẇ + AW + W A′ + 2λW )η < 0. This can be expressed in
the reduced form:

B ′
⊥(−Ẇ + AW + W A′ + 2λW )B⊥ < 0, (8)

where B⊥(x) is a matrix function satisfying B⊥(x)′B(x) = 0 for all x . In tensor
analysis, the matrix W is a dualmetric (contravariant rather than covariant), and the
bijection δ ↔ η is related to the “musical isomorphisms”.

Both the constraint (8) and the uniform boundedness of W (x) are convex in the
elements of W (x). Both take the form of pointwise linear matrix inequalities (LMI)
and generalize the standardLMI condition for stabilizability of a linear time-invariant
system [23]. While convex, these conditions are infinite-dimensional: the elements
of W are smooth functions of x , and there are infinitely-many constraints: the LMI
conditions must hold for all x .

To solve this numerically we require a finite-dimensional approximation. Stan-
dard methods include choosing some basis for the functions (e.g. polynomials or
trigonometric polynomials) and then enforcing the constraints by gridding over a
region of state space, or by using a tractable (e.g. LMI) approximation to the set
of positive polynomials, such as sum-of-squares or related approximations [10, 12].
The use of sum-of-squares was examined for contraction analysis in [24].

A more explicit condition is the following:

− Ẇ + AW + W A′ − ρBB ′ + 2λW ≤ 0. (9)
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This condition clearly implies (8), since after left and rightmultiplying by B ′
⊥ and B⊥,

respectively, the term involving ρ vanishes. Furthermore, this leads to an explicitly
constructed differential control δu = −K (x)δx , with K = − 1

2ρB
′W−1.

Note that if the metric, ρ, and B are independent of x , then the resulting control
law is just a linear feedback gain: u(t) = u�(t) − 1

2ρB
′W−1(x(t) − x�(t)).

4 CCM Designs for Fully-Actuated Robots

The conditions for a CCM can be expressed as a convex optimization problem.
However, for the purpose of understanding the method, it is interesting to consider
cases in which a CCM can be constructed analytically. In this section, we show that
the CCM conditions in the previous section reduce to a very simple form for systems
which are “second-order” and fully-actuated. Furthermore, the resulting designs turn
out to be closely related to sliding control.

The differential dynamics of (2), (3) have the form:

d

dt

[
δ1
δ2

]
=

[
0 I
� �

]
︸ ︷︷ ︸
A(x)

[
δ1
δ2

]
+

[
0

H(q)−1R

]
︸ ︷︷ ︸

B(x)

[
δ1
δ2

]

where � denotes an element that will not affect the results of this section. The only
information we need for B(x) is that H(q)−1R is full-rank, which is true for fully-
actuated systems.

Consider the dual-CCM condition (8) for this system. The annihilator matrix
B⊥(x) can be any matrix such that B⊥(x)′B(x) = 0, which does not specify it
uniquely, but a simple and natural choice is B⊥ = [

I 0
]′
.

In general, we may choose a state-dependent metric M(x) or dual metricW (x) =
M(x)−1, but for this class of systems it turns out to be sufficient to consider a constant
metric, which we decompose into four n × n blocks:

W =
[
W11 W12

W ′
12 W22

]
.

Condition (8) then states simply that W is a dual CCM if the upper-left block of
AW + W A′ + 2λW is negative definite. But due to the simple structure of A(x),
this reduces to the statement

W12 + W ′
12 < −2λW11. (10)

In other words, any positive definite block matrix with off-diagonals that have a
negative-definite symmetric part is a dual-CCM for some λ > 0. This is true for any
second-order fully-actuated system, regardless of the dynamics.
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Let us examine the geometrical meaning of this statement for a one-degree of free-
dom systemwith states q, q̇ . ThenW is a two-by-twomatrix. SinceW11 is required to
be positive, the condition W12 + W ′

12 < −2λW11 means that W12 is negative. From
the formula for a two-by-two matrix inverse, the metric M = W−1 must have all
positive entries.

Now, since B = [0, 1]′, the uncontrolleddifferentials (those forwhich δ′
x MB = 0)

must satisfy δqm12 + δq̇m22 = 0. i.e. δq̇ = δ̇q = −m12
m22

δq . But since all entries of M

are positive, any non-zero δq and δ̇q are of opposite sign. i.e. the lengths of coor-
dinate differentials δq are shrinking. Meanwhile, the statement δ′

x MB = 0 implies
that differentials in accelerations, which inhabit the second row of the differential
dynamics, have no effect on the squared-length δ′

x Mδx .

4.1 Connection to Sliding Control

We have shown that for second-order, fully-actuated systems it is easy to construct
a flat control contraction metric. Interestingly, when taken to a certain limit, this
construction transitions to another method for guaranteeing convergence of second-
order systems: sliding control. In sliding control, one chooses somedesired first-order
dynamics for the configuration coordinates, e.g.

d

dt
(q(t) − q�(t)) = −a(q(t) − q�(t)) (11)

for some constant a > 0. For the second-order system, this means the state should
move rapidly to the line in phase space given by d

dt (q − q�) + a(q − q�) = 0, known
as a “sliding surface”. This objective can be achieved applying high-gain or switching
force feedback to drive the joint velocity towards q̇�(t) − a(q(t) − q�(t)).

Let us construct our dual-CCM W to be of the form

W =
[

I −λI
−λI (1 + ε)λ2 I

]
,

where ε and λ are positive constants. By construction, this W satisfies (10), and it is
also positive-definite, since taking the Schur complement with respect to the upper-
right block gives (1 + ε)λ2 I − λ2 I = ελ2 I , which is positive-definite. Taking the
block matrix inversion, and setting a = 1

λ
, we have the metric M = W−1:

M =
[
(1 + 1

ε
)I 1

λε
I

1
λε
I 1

λ2ε
I

]
≈ 1

ε

[
I a I
a I a2 I

]
=: M̂,

where the approximation M ≈ M̂ holds for ε � 1. Now, the eigenvalue/eigenvector
pairs of M̂ are of the form:
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λi = 0, vi =
[
aei
−ei

]
, λn+i = 1

ε
(1 + a2), v2 =

[
ei
aei

]
, i = 1, 2, ..., n, (12)

where ei are vectors with all zeros except for 1 at the i th component. So as ε → 0,
level sets of the metric approach long valleys in the direction of v1, with very steep
sides in the direction v2.

A feedback controller that makes δ′
x Mδx decrease exponentially will necessarily

make state deviations in the direction of v2 shrink very rapidly, but is under no
obligation to make those in the direction of v1 shrink. So the differentials will, after
short transients, lie almost upon the line aδq + δq̇ = 0. If all the differentials line
up like this, then q̇ − q̇� = −a(q − q�), which is exactly the target dynamics of the
sliding controller described above.

4.2 Example: The Inverted Pendulum

The simple pendulum provides a useful illustration because all details can be worked
out by hand and the results plotted in full. The state space of the system is cylindrical,
which allows us to illustrate the geometrical and physical meaning of the geodesic-
based control law. Normalising physical parameters, we can write the pendulum
dynamics as

q̈ + dq̇ + sin q = u.

Taking the state space x = [q, q̇]′ we have the differential dynamics (4) with

A(x) =
[

0 1
− cos q −d

]
, B =

[
0
1

]
.

For this system,W is a 2 × 2 matrix, and condition (10) is just w12 < −λw1. So any
positive-definite matrix with negative off-diagonal is a dual-CCM for the simple pen-
dulum. By inverting, any constant positive-definite matrix with positive off-diagonal
is a CCM for the simple pendulum.

Let us take the particular metric m11 = 5,m12 = 2,m22 = 1, and consider the
problem of swingup to the upright position. Figure2 represents the cylindrical phase
space “unwrapped” onto R

2. The figure depicts the open-loop phase portrait with
the two equilibria recurring periodically. It also depicts level sets of the Riemannian
distance to the target (upright) equilibrium. Notice that there are certain diagonal
“bands” in this unwrapped state space: all states in each such band share a particular
“unwrapping” of the target equilibrium as their closest. In Riemannian geometry the
separatrix these bands are known as the cut locus [22, Chap. 13].

The shape of the bands can be explained as follows: for positive θ̇ the system is
moving to the right in the phase portrait, so a target equilibrium to the right will be
“closer” in terms of the metric. So, e.g., in closed-loop with a very large initial θ̇ , the
pendulum will spin around several times before coming to rest.
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Fig. 2 Level sets of the distance metric, and bands of states that are closest to a particular
“unwrapped” upright equilibrium

So far we have ametric but not the control gain, so we apply the more constructive
condition (9)

[
2(w12 + λw1) w2 − w1 cos q − w12d + 2λw12

� 2(λw2 − w12 cos q − w2d) − ρ(x)

]
≤ 0.

Assuming w12 < −λw1, this is equivalent via Schur complement to the statement

ρ(x) ≥ (w2 − w1 cos q − w12d + 2λw12)
2

2(w12 + λw1)
− 2(λw2 − w12 cos q − w2d),

which could be enforced pointwise by ρ(x). At the expense of more aggressive
control, one can give a fixed-gain feedback: sincew1, w2 > 0 andw12 < 0 the right-
hand side has a maximum when cos(x) = −1, i.e. x = π ± 2kπ, k = 1, 2, 3, ....
Therefore it is sufficient to take the constant multiplier:

ρ = (w2 + w1 − w12d + 2λw12)
2

2(w12 + λw1)
− 2(λw2 + w12 − w2d)

and the constant linear feedback u = − 1
2ρB

′W−1(x − x�).
Figure3 shows closed-loop responses for two nearby initial conditions, on either

side of the cut locus. Note that in the unwrapped representation they converge to
different equilibria, whereas in the (true) cylindrical phase space they both converge
to the upright equilibrium but with different winding around the cylinder.
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Fig. 3 Example trajectories of two nearby initial conditions. In unwrapped representation (left)
and the cylindrical phase space (right)

5 Energy-Based Control and Virtual Systems

The design in the previous sectionmade use of only very limited physical knowledge:
the fact that the second set of state variables are the derivatives of the first set of state
variables. In this section, we show that an alternative approach based on a so-called
“virtual control system” makes use of more physical information and results in a
classical energy-based tracking controller. We will also show how these designs can
be applied for assigning desired dynamics for systems on nonlinear manifolds.

Virtual systems were introduced for convergence analysis in [25, 26], and here
we extend this technique to control design. Given the system (2), a virtual system is
a new system of the form

ẏ = f̄ (y, x) + B̄(y, x)u (13)

with the property that f̄ (x, x) = f (x) and B̄(x, x) = B(x), where y, x ∈ R
n . The

variable x , taken as an exogenous input, is the state of the true system (2).

Theorem 2 Suppose condition (5) holds for the virtual system, i.e. in terms of dif-
ferentials in y, for some metric M(y, x, t), then any trajectory x�(t) of (2) for which
there exists a control law ū(x, x�) such that

ẋ� = f̄ (x�, x) + B̄(x�, x)ū(x, x�), (14)

for all x, t can be globally exponentially stabilized.

Proof A controller is constructed using the method of [15] for the virtual system,
treating the true state x as a time variation, except that in (7) exceptwith ū(t) replacing
u�(t) as the boundary condition. By construction, there is a path of states of the virtual
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system γ which shrinks in length exponentially. Furthermore, the use of ū(t) as a
boundary condition ensures that one end of this path (s = 0) follows the desired
trajectory of the true system x�(t), while the other end (s = 1) follows the actual
trajectory of the true system x(t), by the property that f̄ (x, x) = f (x) and B̄(x, x) =
B(x). Therefore the distance between x and x� decreases exponentially. Note that
intermediate trajectories s ∈ (0, 1) do not necessarily correspond to trajectories of
the true system. �

Mechanical systems are an important example where virtual systems can simplify
control design. For the system (1), we can construct the associated virtual system
(similar to [26]):

H(q)ẏ + C(q, q̇)y + g(q) = Ru

where (q, q̇) is the true state. Since the system is fully actuated, assume without loss
of generality that R = I , which can always be achieved by change of variables on
the control input. Note the virtual system is linear in y. The differential dynamics of
the virtual system are given by H(q)δ̇y + C(q, q̇)δy = δu . Now consider the met-
ric δ′

y H(q)δy . Its derivative is d
dt

(
δ′
y H(q)δy

) = δ′
y(Ḣ − 2C)δy + 2δ′

yδu = 2δ′
yδu .

The second equality follows from the skew-symmetry of Ḣ − 2C . So any dif-
ferential feedback of the form δu = −K (q)δy with K (q) positive-definite stabi-
lizes the differential dynamics. Since the metric H(q) and gain K (q) are indepen-
dent of y, geodesics are straight lines and the feedback controller takes the form
u = ū − K (q)(q̇ − q̇�) with

ū = H(q)q̈� + C(q, q̇)q̇� + g(q).

This controller will stabilize the generalized velocities to q̇�. One can then use q̇� to
design desired first-order dynamics, as in sliding control [27].

5.1 Example: Swingup of a Double Pendulum

We will illustrate the above method by application to swingup control of a (fully-
actuated) double pendulum. The configuration space is toroidal in topology: q =
[θ1, θ2]′, with θ1 the angle of the “shoulder” link, relative to downward position, and
θ2 the “elbow” angle. The equations of motion can be found in, e.g., [3, 8].

A common choice of sliding surface is (11), but an alternative choice that respects
the identity of angles offset by 2π is d

dt (θ − θd) = −λ sin(θ − θd), where θd is
some desired angle. This assigns smooth and almost-globally stable dynamics to
each coordinate. Note that this involves subtracting velocities which are attached at
different points of the manifold, which depends on a particular choice of coordinate
system. For systems on nonlinear manifolds an alternative is to incorporate the vector
transport method in [28].
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Fig. 4 Trajectories of the double pendulum during swingup

Fig. 5 Trajectories of the
double pendulum plotted on
the nonlinear configuration
manifold

The results of simulations are shown in Fig. 4 in unwrapped coordinates. As
before, the closed-loop trajectories from two nearby initial conditions separate and
converge to apparently different equilibria. In Fig. 5 the configuration trajectories are
plotted on the torus, and it is clear that both converge to the same equilibrium (both
pendulums upright) but with a different winding around the torus.

6 Underactuated Robots and Optimization-Based Synthesis

For underactuated systems, i.e. those with fewer actuators than degrees of freedom,
the techniques of Sects. 4 and 5 are not guaranteed to be applicable. Another recently
developed approach is to use linear optimal control techniques (e.g. LQR) to locally
stabilize a system, and then verify stability in a region using semialgebraic optimiza-
tion [10–12]. In this section we discuss the connections between CCM and these
optimization-based methods.
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Consider the following family of LQR-like cost functions for tracking a desired
trajectory x�(t), u�(t), t ∈ [0,∞):

J (x, u) =
∫ ∞

0
[(x − x�)′Q(x − x�) + (u − u�)′R(u − u�)]dt.

Suppose there exists a uniformly positive-definite matrix W (x) such that

[
(Ẇ − W A′ − AW + BR−1B ′) WL ′

LW I

]
≥ 0, (15)

for all x, u, with Q = L ′L , then for any target trajectory and any initial condition
x(0), the CCM controller achieves the following upper bound on the cost: J (x, u) ≤
dM(x(0), x�(0))2, where dM is the Riemannian distance induced by M = W−1.

Note that if W, B are constant, and (15) is evaluated at an equilibrium state, then
it is equivalent (via Schur complement) to the condition W A′ + AW − BR−1B ′ +
WQW ≤ 0.Multiplying on either side by M = W−1 and replace the inequality with
equality recovers exactly the algebraic Riccati equation of LQR control [9]. It follows
that if the system is locally exponentially stabilizable at an equilibrium point, then
for some region around that point a CCM exists.

6.1 Relation to LQR-Trees and Model Predictive Control

Let us relate this approach to LQR-Trees [11]. Using CCMs, one can choose some
region of state space X , and then the search for a CCM valid for all x ∈ X is
convex (though infinite dimensional). Practically, this problem can be solved via
gridding or via sum-of-squares with Lagrange multipliers. In LQR-Trees, a locally-
valid controller is found using LQR, and then its region of validity is estimated
using sum-of-squares. Furthermore, the method of [11] constructs a controller which
stabilizes a particular target equilibrium point or trajectory only, whereas the CCM
approach produces a controller that stabilizes any feasible trajectory that remains in
the verified region, without prior knowledge of the target trajectory.

Additionally, the CCM method can be thought of as a “middle ground” between
LQR(or othermethods basedon linearization) – forwhichoff-line synthesis is convex
and on-line computation is cheap, but stabilization is local – and model predictive
control – for which stabilization is in principle global, but on-line computation may
be prohibitive. In the CCM approach, there is an off-line convex problem to find
the CCM, and then the real-time controller is computed using an on-line geodesic
optimization, which is simpler than MPC due to the lack of dynamic constraints.
This relationship was explored in detail in [29].
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6.2 Example: Underactuated Cart-Pole System

The cart-pole system is a classic example of an underactuated system: an unactuated
inverted pendulum is mounted on an actuated cart. There are two configuration
coordinates: the pendulumangle θ and the cart position ξ . The derivatives are denoted
ω and v, respectively, and the control input is a force to the cart, u. See Fig. 1.

To simplify the computation we first apply the partial feedback linearization
of [30] to obtain a state vector [θ, ω, ξ, v]′ with dynamics θ̇ = ω, ω̇ = sin(θ) −
cos(θ)u, ξ̇ = v, v̇ = u. As mentioned in Sect. 3, the CCM controller is linear if
B,W and ρ are independent of x . With this in mind, we take the new coordi-
nates x = [θ, η, ξ, v]′ with η = sec θω, which is an invertible transformation on
θ ∈ (−π

2 , π
2 ). In these coordinates the dynamics are

d

dt

⎡
⎢⎢⎣

θ

η

ξ

v

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

η cos θ

η2 sin θ + tan θ

v

0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
−1
0
1

⎤
⎥⎥⎦ u,

and the differential dynamics are:

δ̇x =

⎡
⎢⎢⎣

−η sin θ cos θ 0 0
−η2 cos θ + sec2 θ 2η sin θ 0 0

0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
A(x)

δx +

⎡
⎢⎢⎣

0
−1
0
1

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

δu .

Note that these transformations are merely to simplify computation: it was proven
in [16] that the existence of a CCM is invariant under smooth changes of variables
and affine feedback transformations.

For this system,we used the LMI parser Yalmip [31] and solverMosek to solve for
W satisfying (15) with the cost weights Q = diag[1, 1, 15, 1] and R = 10, over the
region θ ∈ [−π/4, π/4] andη ∈ [−0.5, 0.5]via gridding. The resulting optimization
problem took about 1.6 seconds to solve on a standard desktop computer.

Tracking results are shown in Fig. 6. The system first responds to initial conditions
x = [0.2, 0,−0.1, 0]′ and with the desired state at the origin (i.e. balancing upright).
After 20 s there is a step change in the desired cart position ξ� = 0.15, all other
desired states remain zero. The controller reacts to bring the cart to the new desired
position. After 40 seconds, the desired cart position linearly shifts back to the origin,
and the desired cart velocity is set accordingly. After a small transient, the controlled
system converges to this path.

Note that in all of these simulations, the desired pendulum position remained
upright: θ� = 0. Therefore the reference trajectory was not actually feasible for the
nonlinear system, since the unactuated pendulum would not stay upright if the cart
accelerates.



Unifying Robot Trajectory Tracking with Control Contraction Metrics 417

Fig. 6 Response of the
cart-pole system to initial
conditions and a changing
cart position reference
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7 Conclusions

We have explored the use of control contraction metrics for the design of robot track-
ing controllers. The central theme of the paper is that, on the one hand, CCMs extend
linearization/optimization-basedmethods (e.g. LQR-Trees) to tracking problems and
can be found using convex optimization. On the other hand, for fully-actuated sys-
tems the CCM conditions can be solved analytically and reduce to classical methods
of sliding and energy-based design. Thus CCMs can be seen to represent a bridge
between previously disparate methods.
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Inference-Enabled Information-Theoretic
Exploration of Continuous Action Spaces

Shi Bai, Jinkun Wang, Kevin Doherty and Brendan Englot

1 Introduction

We consider amobile robot that has no prior knowledge of the contents of its environ-
ment and must make repeated decisions about where to travel next, comprising an
autonomous exploration problem [1]. Specifically, we formulate an information-
theoretic exploration problem in which the long-term goal is to reduce entropy
throughout the robot’s environment map, and the short-term goal is to perform the
sensing action in each iteration thatwillmaximizemutual information, along the lines
of [2]. We assume the robot is equipped with a range sensor and uses an occupancy
grid [3] to represent and reason about the environment.

Motivated by the recent work of [4], which proved that a controller driven by
mutual information maximization attracts a robot to unexplored space, our aim is to
implement a mutual information maximization approach that is amenable to real-
time decision making and scalable to higher-dimensional systems. The approach of
[4], although successful, requires a predictive evaluation of the mutual information
achieved by performing every possible sensing action within a robot’s finely dis-
cretized action space. We hope to cut down the complexity by evaluating only a
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(a) MI of discrete sensing actions. (b) MI predicted by GP regression.

Fig. 1 An illustration of two steps of the proposed decision-making process. In a, the current
occupancy map is used to predict the mutual information at a set of discrete sensing locations. In b,
a Gaussian process (GP) regression is performed over a local region of the space of sensing actions,
using the data from (a) as training data. The darkest of the blue cells in (a) represents the current
location of the robot, and the black cells represent known obstacles in the robot’s occupancy grid.
The color scale from blue to red indicates increasing mutual information (MI)

select number of actions, and using these as training data for a supervised learning
procedure that will predict information gain throughout the continuous action space.

A key vehicle for capturing correlation among a discrete set of candidate actions
will be Gaussian process regression [5], a method that has met with recent success
in predicting outcomes within unknown regions of robot action [6] and observation
[7] spaces. An example of the regression performed in a single decision-making step
is illustrated in Fig. 1. The output of this regression is used to select the maximally
informative sensing action from a continuous, local region of the robot’s action space.
Support vector regression [8] will also be investigated to determine whether similar
results can be obtained with reduced computational effort.

1.1 Related Work

Among the earliest information-theoretic exploration strategies are those proposed
by Whaite and Ferrie [9] and Elfes [2]. The former work proposes exploring an a
priori unknown environment with the goal of minimizing entropy, and the latter work
specifically proposes exploring to maximize the mutual information between sensor
observations and an occupancy gridmap.More recent works in information-theoretic
exploration have considered the trade-off between maximizing mutual information
and managing the localization uncertainty in a robot’s simultaneous localization and
mapping (SLAM) process [10–12], in addition to the selection of trajectories that
maximize map accuracy [13]. Efforts to reduce the computational cost of evaluating
mutual information over many possible future measurements have considered small,
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carefully selected sets of candidate trajectories, using a skeletonization of the known
occupancy map [14] and the evaluation of information gain over a finite number of
motion primitives [15, 16] or 3D viewpoints [17]. Limiting consideration to local
neighborhoods of configurations permits efficient exploration by manipulators in 3D
environments [18].

Gaussian process regression has been applied to the problem of robot action
selection and control in a variety of contexts. It has been used to solve optimal
control problems [6, 19], generate paths that reduce localization uncertainty [20],
and select actions that are likely to observe physical objects of interest [21]. It has also
been used to aid the inspection of structures by predicting the regions of variability
in greatest need of additional measurement [22]. Gaussian process regression has
also been used to generate maps that support the evaluation of informative actions
[15, 23]. However, to the best of our knowledge, it has not been applied to the
problem of action selection for the exploration of unknown environments modeled
by occupancy maps, nor has support vector regression.

1.2 Paper Organization

We propose and describe below a methodology for choosing the most informative
action from the continuous action space with the aid of supervised learning. A formal
definition of the problem is given in Sect. 2, including brief introductions to Gaussian
process regression and support vector regression. The proposed algorithm is given in
Sect. 3, and the time complexity of the algorithm is analyzed inSect. 4.Computational
results are presented in Sect. 5, with conclusions and a discussion of areas for future
work in Sect. 6.

2 Problem Definition

2.1 Information Gain

Wedefine the space ofmobile robot sensing actions to be the configuration spaceC ⊆
R

d , a subset of d-dimensional Euclidean space. We assume the robot’s range sensor
provides a 360-degree field of view, and that its occupancy grid map is discretized
finely enough to represent the configuration space, in addition to serving as the robot’s
model of the environment. In the absence of obstacles, the robot is assumed capable
of travel from any grid cell in themap to any other cell. A fundamental presumption in
this formulation is that the robot’s action space is a subset of the spatial configuration
space; this, along with our other assumptions, are similar to those made in [4]. The
implications of extending the proposed method to systems with more challenging
topologies will be discussed in Sect. 6.
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We define Shannon’s entropy [24] over an occupancy grid map m as follows:

H(m) = −
∑

i

∑

j

p(mi, j ) log p(mi, j ) (1)

where index i refers to the individual grid cells of the map and index j refers to the
possible outcomes of the Bernoulli random variable that represents each grid cell,
which is either free or occupied. Cells whose contents have never been observed
are characterized as p(mi, j ) = 0.5, contributing one unit of entropy per cell. Cells
whose contents are perfectly known contribute no entropy to the summation.

We use mutual information I (m, xi ) to evaluate the expected information gain
with respect to a specific configuration xi , defined as follows:

I (m, xi ) = H(m) − H(m|xi ) (2)

where H(m) is the current entropy of the map, and H(m|xi ) is the expected entropy
of the map given a new sensor observation at configuration xi . Our goal is to pick
the optimal configuration x∗ that maximizes the expected information gain.

x∗ = argmax
xi∈Caction

I (m, xi ) (3)

In (3),Caction represents the subset of the configuration space from which the robot’s
next sensing action will be selected, typically within a short distance of the robot’s
current location.

2.2 Gaussian Process Regression

We assume a set of training data x represents the candidate sensing configurations
xi for which I (m, xi ) has been computed. The values of I (m, xi ) for all xi ∈ Caction

comprise the set of training outputs y. Gaussian process regression [5] estimates the
output values and corresponding covariance associated with a set of test configu-
rations x∗, according to Eqs. (4) and (5). The test configurations x∗ will be finely
discretized, with the same resolution as the occupancy grid map.

ȳ∗ = k(x∗, x)[k(x, x) + σn
2 I ]−1

y (4)

cov(y∗) = k(x∗, x∗) − k(x∗, x)[k(x, x) + σn
2 I ]−1

k(x, x∗) (5)

In the above equations, ȳ∗ are the estimated values I (m, xi∗) for the test data x∗,
cov(y∗) is the covariance associated with these outputs, σ 2

n is a vector of Gaussian
noise variances associated with the observed outputs y, and k(x,x’) is the ker-
nel function, which gives a covariance matrix relating all pairs of inputs. The
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hyperparameters of the kernel function, which typically influence such character-
istics as smoothness and length scales, can be trained using a preliminary set of
representative training data.

We adopt a Matérn kernel function for this application, given by (6).

k(x, x′) = 21−ν

Γ (ν)

(√
2ν|x − x′|

�

)ν

Kν

(√
2ν|x − x′|

�

)
(6)

In (6), ν is a parameter used to vary the smoothness of the covariance, � is a char-
acteristic length, Γ is the gamma function, and Kν is a modified Bessel function. In
contrast with the squared exponential kernel function, which is more commonly used
in Gaussian process regression [5], the Matérn kernel can be tuned to capture sharp
variations in the estimated outputs. This has met with success in Gaussian process
occupancy mapping, in which sharp and sudden transitions in occupancy probability
due to obstacles are successfully modeled [23, 25]. Similarly, we anticipate sharp
variations in mutual information due to the presence of obstacles, which will obstruct
the visibility of some areas and permit the observation of others.

Example regressions performed over two sets of candidate training data are given
in Fig. 2. The training data x is sampled from the two-dimensional Sobol sequence
[26]. This pseudorandom sequence is selected to impose some regularity on the train-
ing data, as demonstrated by the field of samples shown in Subfigure (a). Subfigures
(b), (c), and (e) represent the explicit evaluation of expected mutual information over
several series of candidate views. Subfigures (d) and (f) represent the use of Gaussian
process regression to predict the mutual information achieved by all actions within
the finely discretized grid representing Caction , the continuous action space. The
boundaries of Caction are set according to the limits of the robot’s field of view at its
present location.

2.3 Support Vector Regression

Support vector regression [8] is an adaptation of the support vectormachine [27] used
for regression rather than classification. With the same training set x of candidate
robot configurations employed as training inputs, and I (m, xi ) for all xi ∈ Caction as
the set of training outputs y, support vector regression estimates the output values
associated with test configurations x∗, but not their corresponding covariance, in
contrast to Gaussian process regression.

Specifically, we adopt ε-support vector regression, in which we aim to find an
approximate function with deviation less than ε from each output value at training
time. The basic form for the hypothesis of a support vector regression estimator for
test data x∗ is as follows:
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(a) Two-dimensional Sobol sequence.
(b) MI evaluated at all grid cells in Caction.

(c) 10 Sobol samples in Caction. (d) GP regression from training data of (c).

(e) 20 Sobol samples in Caction. (f) GP regression from training data of (e).

Fig. 2 Gaussian process (GP) regression using samples from the Sobol sequence. In all images,
the robot’s current location is the same as depicted in Fig. 1, and the black cells represent known
obstacles in the robot’s occupancy grid. The color scale from blue to red indicates increasingmutual
information (MI)

ȳ∗ =
l∑

i=1

(−αi + αi
∗)k(x∗i , x) + b (7)
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where k(·) denotes the Matérn kernel function mapping from test inputs to features
and αi

∗ − αi denotes the learned weight for the i-th feature in k(·), from the solu-
tion to the dual problem described in [28]. Using this approach, results visually
indistinguishable from those in Figs. 1 and 2 were obtained. This was achieved with
reduced computational effort, with the only drawback being the lack of the empirical
confidence in the results provided by the covariance of the test data, which would
be supplied by Gaussian process regression. This method will be examined along-
side Gaussian process regression to determine whether comparable results can be
obtained with reduced computational effort in all problems of interest.

3 Algorithm Description

Algorithm 1 AutonomousExploration(xinit ,minit , InfoThreshold, Nsamples)
1: xk ← xinit ; mk ← minit ; ActionHistory ← xinit ;
2: for k ∈ {1, 2, ..., NumI terations} do
3: ActionSet ← ∅;
4: MI Set ← ∅;
5: for xi ∈ Caction(xk , Nsamples) do
6: MI ← ObservationPrediction(xi ,mk);
7: MI Set ← MI Set ∪ MI ;
8: if MI > I n f oT hreshold then
9: ActionSet ← ActionSet ∪ xi ;
10: end if
11: end for
12: ActionSet ← Regression(ActionSet, I n f oT hreshold, MI Set, xk ,mk);
13: if ActionSet 
= ∅ then
14: xk+1 ← Best Action(ActionSet);
15: ActionHistory ← ActionHistory ∪ xk+1;
16: else
17: xk+1 ← ActionHistory(Previous Action);
18: ActionHistory ← ActionHistory \ xk ;
19: end if
20: end for
21: mk+1 ← MapUpdate(xk+1);

The exploration process proceeds according to Algorithm1. On each iteration, an
action set Caction is formulated within the sensor field of view at the robot’s current
location, and a designated number of sampled actions within the set is evaluated per
Eq. (2), drawn from a Sobol sequence. Actions whose mutual information surpasses
a designated threshold I n f oT hreshold are added to a set of approved candidate
actions ActionSet . All of the mutual information data are then used to perform
the regression of choice to estimate the information gain of all other members of
Caction whose mutual information was not explicity computed. Actions whose esti-
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Algorithm 2MI = ObservationPrediction(xi , mi )
1: m ← mi ;
2: for beam j ∈ Sensor Beams(xi ) do
3: I ntersectCell ← I ntersectionDetected(beam j ,m);
4: if I ntersectCell 
= ∅ then
5: r j = knnsearch(xi , I ntersectCell);
6: else
7: r j = MaxSensor Range;
8: end if
9: m ← EntropyUpdate(xi , r j );
10: end for
11: MI = Entropy(mi ) − Entropy(m);
12: return MI ;

mated mutual information exceeds the I n f oT hreshold are also added to the set of
candidate actions ActionSet . If at least one action is identified whose information
gain surpasses the threshold, the robot performs the maximally informative sensing
action. However, if none of the actions evaluated surpasses the threshold, the robot
takes a step backwards and considers the actions at a previous location along the
route traveled, where there may have been informative candidate actions that were
not yet performed. The algorithm repeats until the designated number of iterations
is performed, or map entropy drops below a user-designated lower limit.

Algorithm2 gives the specific steps required to explicitly evaluate the mutual
information at a designated sample action xi . This entails a ray tracing computation
along each of the robot’s sensor beams, returning the ranges to the nearest obstacles
intersected, if any. New entropy values are estimated in all cells that are anticipated
to be intersected by a sensor beam, and the new expected map entropy is used to
compute the expected mutual information after performing the designated sensing
action. Algorithm2 is a sub-routine of Algorithm1 used to evaluate every Sobol
sample from the action space whose mutual information is explicitly computed.

4 Analysis

When using Gaussian process regression, the computational complexity of Algo-
rithm1 is given in (8):

O(Nsteps(Nsamples Nbeams Ncells + N 3
samples + N 2

samples Nactions)) (8)

where Nsteps is the total number of sensing actions taken by the robot in the
course of exploration, Nsamples is the number of designated configurations whose
mutual information is explicitly evaluated, Nactions is the total number of actions
comprising Caction that are estimated using Gaussian process regression, Nbeams

is the number of beams emitted by the robot’s range sensor, and Ncells is the
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worst-case number of occupancy grid cells that a beam may intersect. The term
Nsamples Nbeams Ncells represents the cost of explicitly evaluating mutual information
in all cells intersected by the robot’s sensor, for all designated actions Nsamples . The
term N 3

samples + N 2
samples Nactions represents the cost of performing the subsequent

Gaussian process regression, which requires the inversion of a matrix that is square
in Nsamples , and its subsequent multiplication with cross-covariance terms that scale
with Nactions , the total number of sensing actions recovered from the “test data” of the
Gaussian process regression. In practice, we have worked with 10 ≤ Nsamples ≤ 20,
Nactions ∼ 300, Nbeams = 360, and Ncells ∼ 25, and we have found that in this range,
the complexity of the procedure is dominated by the first term, with the cost of the
Gaussian process regression relatively minor in comparison to the cost of the mutual
information computation. Hence, a much larger number of sensing actions can be
evaluated approximately for a small additional cost on top of the initial evaluation
of information gain over the original set of samples. Specific examples will be high-
lighted in the following section.

When using support vector regression, the complexity of Algorithm1 is given
in (9):

O(Nsteps(Nsamples Nbeams Ncells + N 3
samples + Nactions)) (9)

where training still takes on worst-case cubic complexity (which occurs when the
upper bound on the coefficients αi is large) but testing is linear in the number of can-
didate sensing actions. Once again, the complexity of the procedure is dominated by
the Nsamples Nbeams Ncells term, and the cost of the regression is minor in comparison
to the cost of mutual information computation.

5 Computational Results

5.1 Experimental Setup

Weexplored the performance of our algorithmusing two differentmaps: (1) a “maze”
map representing an indoor environment (shown in Fig. 3) and (2) an “unstructured”
map representing a forest-like environment (shown in Fig. 4). In our simulations, we
assume the robot is equipped with a laser scanner with a 360◦ field of view and 1◦
resolution. The range of the laser scanner was set to 1m, and all sensing actions
considered were within a 0.5m range of the robot, ensuring that the next sensing
action lies within the robot’s current field of view to the extent that its outcome can
be reasonably predicted by a mutual information evaluation over the existing map.
The exploration process was simulated using MATLAB.

We initialized the robot randomly within eachmap and simulated 100 instances of
exploration for each of the six following cases: (a) choosing the best action among
10 Sobol samples (as depicted in Fig. 2c), (b) choosing the best action among 20
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Fig. 3 The “maze” map used in our experiments is shown at top. The dimensions of the map are
approximately 6 by 9m. An occupancy map produced by exploration with GP regression, showing
the trajectory of the robot, is given at bottom

Sobol samples (as depicted in Fig. 2e), (c) using 10 Sobol samples as the basis
for Gaussian process regression and (d) support vector regression, then choosing
the best action from the approximately continuous action space, and (e) using 20
Sobol samples as the basis for Gaussian process regression and (f) support vector
regression, again choosing the best action from the approximately continuous action
space. The robot is permitted to explore until its map entropy falls below a designated
threshold, after which the simulation terminates. The Gaussian process regression
computations were performed with the aid of the Gaussian processes for machine
learning (GPML)MATLAB library [29], and support vector regression computations
were performed in MATLAB using LIBSVM [28], with a precomputed Matérn
kernel. The computation required for each trial was distributed across four cores of
an Intel Xeon 5 3.0GHz processor using theMATLAB Parallel Computing Toolbox,
and a computer equipped with 4GB RAM.
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Fig. 4 The “unstructured” map used in our experiments is shown at top. The dimensions of the
map are approximately 7 by 9m. An occupancy map produced by exploration with GP regression,
showing the trajectory of the robot, is given at bottom

5.2 Results

As noted in Sect. 4, the time consumed by the regression computations across the
entirely of the action space is substantially less than evaluating themutual information
across the much smaller designated set of actions drawn from a Sobol sequence.
Figure5 gives results showing the performance of the six problem parameterizations
over the maps of Figs. 3 and 4. In the maze map, both supervised learning methods
drive down entropy faster than each respective case that chooses themost informative
action from the explicitly evaluated sample set. In this case, all exploration methods
nearly always select sensing actions from the same homotopy class, but choosing the
approximately continuous action that is expected to be most informative, with the
aid of supervised learning, tends to point the robot in a more advantageous direction
than the most informative Sobol sample.

In the unstructured map, all parameterizations using Gaussian process and sup-
port vector regression perform better across the board, even when less computational
effort is invested in establishing a training data set. In this case, the learning-based
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Fig. 5 The results of 100 exploration trials randomly initialized in their respective maps, for each
of six parameterizations. The mean entropy reduction is given over the number of sensing actions
performed by the robot for all test cases considered

methods occasionally select actions from a different homotopy class than the compet-
ing method using explicitly computed mutual information only, resulting in funda-
mentally different paths among the different parameterizations. The use of supervised
learning to select moves from the continuous space of sensing actions accumulates
a more significant advantage, such that regression over 10 samples performs bet-
ter than explicity evaluating the mutual information at 20 samples. Hence, more
informative outcomes are selected with substantially less computational effort. Rep-
resentative trajectories of the robot when using Gaussian process regression over
20 Sobol samples are given in Figs. 3 and 4, for each map. These trajectories rep-
resent full exploration of their respective environments, reaching the lower allowed
limit on map entropy. Figure6 gives representative examples of different exploration
outcomes resulting from Gaussian process exploration, versus exploration using the
sampled configurations only. Finally, Table1 gives details on the computation time
required, and the number of steps taken by the robot in the exploration process, for
all examples implemented over the unstructured map of Fig. 4.

6 Conclusions and Future Work

We have proposed a novel approach to evaluate the mutual information throughout a
robot’s continuous action space, for the purpose of exploring a priori unknown envi-
ronments. In the examples considered, supervised learning facilitates the selection of
more informative sensing actions, in some cases selecting more informative actions
with less overall computational effort.
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(a) (b)

(d)
(c)

Fig. 6 Representative cases when Gaussian Process regression makes a more informative decision
than the best sample whose information gain was explicitly evaluated. The green star represents
the most informative Sobol sample, and the red star represents the action expected to be most
informative from the Gaussian process regression. In cases c and d from the unstructured map, the
candidate actions lie in different homotopy classes

6.1 Complex Action Spaces

Extending the approach of this paper to higher-dimensional systems and non-
Euclidean action spaces is a compelling area for future work, in which we intend to
consider regression over a robot’s rotational degrees of freedom, as well as for dif-
ferential systems capable of aggressively exploring their environments. The Matèrn
kernel function shows promise in capturing sharp variations in expectedmutual infor-
mation across obstacle boundaries, andwe intend to test its applicability to evenmore
sharply varying action spaces in future work.
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Table 1 The results shown here are the average of 100 computational trials over the unstructured
map shown in Fig. 4. For the six test cases examined (in which “DA” refers to the deterministic
approach, derived from Sobol samples, “GP” refers to the Gaussian process approach, and “SV”
refers to the support vector approach), at top we show a comparison of the mean and standard
deviation of computation time required per sensing action, and at bottom we show a comparison
of the mean and standard deviation of the total number of steps taken by the robot in the course of
driving its entropy to the minimum designated value

Time cons.
per step (s)

10 GP 10 SV 10 DA 20 GP 20 SV 20 DA

μ 2.18 2.18 2.19 3.83 3.79 3.79

σ 0.03 0.02 0.03 0.04 0.04 0.04

Steps taken
per trial

10 GP 10 SV 10 DA 20 GP 20 SV 20 DA

μ 177.2 177.4 222.7 175.3 174.9 199.9

σ 4.87 5.06 5.65 5.11 5.14 5.58
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Relative Topometric Localization in Globally
Inconsistent Maps

Mladen Mazuran, Federico Boniardi, Wolfram Burgard and Gian Diego
Tipaldi

1 Introduction

Mobile robot localization is a well studied field in robotics and several robust
approaches to localization have been proposed in the past [11, 12, 14, 19]. The
majority of those approaches, however, assume that a globally consistent map of the
environment is built beforehand by a mapping process. This map is then used to
estimate the pose of the robot in a single absolute reference frame, often without tak-
ing into account the map uncertainties arising from the robot pose estimates during
mapping.

Such maps are normally built by a separate mapping process, solving what is
called the simultaneous localization and mapping (SLAM) problem. Many modern
techniques for this problem are based on a least squares minimization approach over
a graph of measurements [13], whose error is assumed to be normally distributed.
In the presence of data association outliers, the Gaussian error assumption leads to
maps that are not globally consistent. The need of a globally consistent map for
localization led many researchers to either apply robust statistics in the minimization
step [1, 18, 24, 30], or to measure the global consistency of the resulting maps [20].

In this paper we propose a novel paradigm to robot localization that relaxes the
assumption of a globally consistent map and a single absolute reference frame. We
believe that, for the majority of navigation tasks, a globally consistent map is not
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necessary and one only needs global topological information and local metrical
consistency. Our paradigm, relative topometric localization (RTL), is based on a
graph representation of the environment, where each node represents a pose in the
map and each edge their relative transformation. The graph implicitly defines a
manifold structure with a chart associated to each node that parametrizes its local
neighborhood. Such maps are not unusual in robotics, since they are the internal
representation of modern mapping approaches based on pose-graph estimation or
bundle adjustment.Wealso donot assume thismap to be the result of anyoptimization
process, nor to be globally embeddable in a single Euclidean space.

We formulate the localization problem as jointly estimating the current reference
frame and the relative pose of the robot within its chart. Our paradigm has a set of
advantages with respect to approaches based on a single absolute reference frame: (1)
it is inherently robust to maps that are not globally consistent; (2) it includes uncer-
tainties in the map estimate during localization; and (3) it operates on unoptimized
maps, removing the need for a SLAM back-end.

We thoroughly evaluated our approach on a large set of experiments in fully sim-
ulated environments, environments sourced from real data, as well as on a real robot
trackedwith amotion capture system. To verify our claims, we compared ourmethod
with a Monte Carlo localization approach [26] on maps that have different levels of
global inconsistency. In an additional experiment, we also evaluated our paradigm
when the map is globally consistent but the environment changed its appearance
(e.g., furniture was added or removed). The experimental results demonstrate that a
relative topometric approach is indeed resilient to global inconsistencies in the map.
Further, the method provides localization accuracy in the order of millimeters even
under substantial changes in the environment or inconsistencies.

2 Related Work

Autonomous localization has been mainly addressed within probabilistic state esti-
mation frameworks, with solutions based on extended Kalman filters (EKF) [19],
histogram filters [12] or particle filters, often referred to as Monte-Carlo localiza-
tion (MCL) [11]. Such approaches assume knowledge of a globally consistent map,
without considering any uncertainty on it apart from the error induced by grid-based
approximations. In this work, we relax the assumption of global consistency and we
explicitly consider uncertainties in the map stemming from the SLAM process.

In the context of SLAM and bundle adjustment, several authors explored the
concept of relative estimates. Howard et al. [2] introduced the idea of a manifold
mapping for multiple robots. In their approach, the map is represented as a two-
dimensional manifold embedded in a higher-dimensional space. They introduce key
ideas of the manifold structure and present an application to multi-robot mapping.
Sibley et al. [27] proposed the relative bundle adjustment paradigm. They claim
that bundle adjustment is costly due to the choice of a single privileged reference
frame and propose to optimize in a metric space defined by a manifold instead of
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a single Euclidean space. Their paradigm has been first extended by Blanco et al. [6],
to consider a set of possible sparsification strategies, and by Strasdat et al. [29], to
consider a second optimization window and to enforce a metric consistency within
this optimization window. We differ from those works for the fact that we address a
localization problem and also estimate a distribution over the reference frame. This
is needed in order to include possible multiple localization hypotheses.

Churchill and Newman [9] introduced the concept of navigation experiences,
i.e., robot paths with relative metrical information. They localize the robot in the
experiences by first using appearance-based data association methods to estimate
the initial node in the experience graph and then track the robot position using visual
odometry techniques. In contrast to our framework, their approach does not consider
uncertainties in the map, nor does it track the index of the reference frame over time.

Recently, the need of a globally consistent map for navigation has been questioned
by some researchers. Konolige et al. [15] proposed a navigation system based on a
hybrid metric-topological map. They employ a laser scanner and localize the robot
with respect to one reference node in the graph. Dayoub et al. [10] extended the
approach to cameras and considered a set of image features associated at each node
in the graph. Our approach is closely related to these last two. The main difference
is that we do not assume the graph to be the result of an optimization algorithm.
Additionally, we are able to consider uncertainties in the map estimates.

The concept of topometric localization has also been exploited byBadino et al. [3].
The authors build a topological map as a vehicle travels along its route. Each node is
linked with a pose in the environment and the localization algorithm estimates which
node the robot is currently in. The robot pose is then the pose stored in that node. Xu
et al. [33] extended this to consider multiple roads and branchings along paths. Both
approaches differ from ours, as the real estimation part is purely topological and the
authors still rely on a global reference frame for the robot pose.

Ideas closely related to topometric localization are also present in teach-and-
repeat frameworks. Sprunk et al. [28] proposed a data-driven approach using laser
scanners and demonstrated millimeter-level accuracy without building any globally
consistent map of the environment. McManus et al. [21] proposed an approach based
on 3D laser reflectivity that is able to handle long-range navigation in challenging
environments. The map is a chain of poses, where each pose has a submap associated
to it. Localization is performed on the latter, relative to the corresponding pose, and
a set of heuristics to switch submaps is presented. Krüsi et al. [16] build a similar
metrical/topological map, but rely on ICP to perform localization on the submaps
with a local motion planner to avoid obstacles. Our approach differs from teach and
repeat paradigms since we do not localize only on a single route and we further
propose a sound estimation framework for tracking the reference frame.
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3 Relative Topometric Localization

In this section we describe the relative topometric localization paradigm and relate
it to the metric one. In metric localization, one seeks to estimate the pose of the
robot at each time step, given the map of the environment and the history of sensor
measurements and controls. The main assumption is that the map is a globally con-
sistent metric representation of the environment, consisting of the absolute position
of relevant features in the environment (e.g., cells in an occupancy grid or a set of
key-points for visual localization). The location of those features, as well as the pose
of the robot, is expressed with respect to a single reference frame, which is the global
coordinate frame of the map. Formally, this is equivalent to recursively estimating
the posterior p(xt | z1:t ,u1:t ,m), with robot pose xt , measurements z1:t , odometry
readings u1:t 1 and map m.

This is often estimated by a finite set of particles, resulting in the well established
field of Monte Carlo localization (MCL) [11]. MCL has been proven to be a robust
approach for localization and is often deployed on robotswhen themapm is known a-
priori. Nevertheless, estimating the pose of the robot in an absolute frame of reference
implicitly assumes the map m to be globally consistent, an assumption that can
easily be violated in the presence of outlier associations during the SLAM process.
Such a scenario can especially occur if the map of the environment is automatically
computed by the robot, without human post-processing, and the underlying SLAM
system introduces wrong associations due to, say, perceptual aliasing [1]. Figure1
showcases how the effect of a small amount of associations can impact the resulting
map and consequently cripple the estimate of MCL in a large portion of it.

(a) Ground truth map (b) Optimized map with outliers

Fig. 1 Effect of outliers in the association on the global consistency of the resulting map. Intro-
ducing just 5 outliers in the data association (marked in red) renders the central part of the map
completely unusable for MCL

1Note that this is equivalent to the more traditional formulation with control inputs.
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3.1 Relative Topometric Paradigm

In the relative topometric paradigm, we relax the assumption of a globally consistent
metric map. As map representation, we follow an approach much akin to the one
proposed by Howard et al. [2]. We consider the map of the environment to be a
collection of patches that are locally homeomorphic to the Euclidean space, thus
inducing a manifold structure, without the need of defining a global embedding.

More precisely, the map is a graph of poses mi , i = 1, . . . , N with a set of
relative transformations wi, j ∈ SE(n) between them, and sensory data attached to
them. Each node i in the graph defines a local chart of the manifold, of whichmi is
the origin. Here, we can assume that the projection of the sensory data of the nodes
in a neighborhood of i is roughly locally consistent. This, in turn, defines an open
set in which the chart is valid.

While the chart is only locally valid, we can still express the poses of the remain-
der of the map in this reference system by chaining the transformations wi, j along
the minimum distance spanning tree of the whole graph, with farther nodes having
increasingly erroneous relative position estimates.

Let zt = [
z(1)
t z(2)

t . . . z(N )
t

]
be a vector of measurements at time t , where each

z(i)
t arises from matching the current observations of the robot with the observa-
tions stored in the node i of the graph. We wish to estimate at each time step t
the vector of relative transformations between the poses mi and the robot, namely
Δxt = [

Δx(1)
t Δx(2)

t . . . Δx(N )
t

] ∈ SE(n)N . In the ideal situation, where the mani-

fold can be globally embedded, Δx(i)
t = �mi ⊕ xt . Here, mi and xt respectively

represent the pose of the node and of the robot in an absolute coordinate frame.
Formally, this is equivalent to jointly estimating the posterior over the reference

frame rt (i.e., the index of the current chart for the manifold) and the relative poses
Δxt of the robot in that particular chart:

p(rt ,Δxt | z1:t ,u1:t ,w) = p(Δxt | rt , z1:t ,u1:t ,w)p(rt | z1:t ,u1:t ,w). (1)

The distribution is composed of a discrete probability mass, associated with a con-
tinuous probability density function, which we assume to be a Gaussian. The former
represents the probability of the robot being within the open set in which the chart
is valid, the latter represents the distribution of the robot pose in that specific chart.
Following Bar-Shalom et al. [4], the estimation of (1) can be formulated within the
DynamicMultipleModel Estimator framework. In this framework, the goal is to esti-
mate the state of a system that obeys one of a finite number of system models. Each
model defines its own measurement and motion model and, during the estimation
process, the system may change its model of operation. In our case, we can consider
the choice of the reference frame as one model of our system, resulting in a finite
number of models equivalent to the number of nodes in our graph. The change of
model happens when the robot is not any longer in the valid set of the current chart
and a new chart must be used.
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Unfortunately, the full estimation problem requires tracking the whole sequence
of frames, which results in Gaussian mixture distribution with an exponentially
increasing number of terms. To reduce this complexity, approximated algorithms
have been proposed, such as the Interacting Multiple Model [4], Markov Chain
Monte Carlo [23], or Multiple Hypothesis Tracking [5].

In this paper, we focus on position tracking and we approximate the estimation
of (1) by considering only the maximum likelihood frame at each time step. We
believe that this is a valid approximation for position tracking problems, which is also
confirmed by the experimental results presented below. We leave the full estimation
problem as future work.

4 Position Tracking in the Relative Topometric Paradigm

This section describes the proposed approximation of (1) and its instantiation for
position tracking. At each time step t , we approximate the distribution over the
reference frames with a deterministic distribution, centered at its maximum r̂t , i.e.,

p(rt | z1:t ,u1:t ,w) ≈ δ[rt − r̂t ], (2)

where δ[r ] denotes the discrete impulse function. To compute the next estimate of rt
we thus need to find the index i over the possible reference frames that maximizes

p(rt = i | w, z1:t ,u1:t ) =
∑

rt−1

p(rt = i | rt−1, z1:t ,u1:t ,w)p(rt−1 | z1:t ,u1:t ,w)

(3)

∝ p(zt | rt = i, r̂t−1,u1:t ,w)p(rt = i | r̂t−1, z1:t−1,u1:t ,w) (4)

≈ p(zt | rt = i, r̂t−1,ut ,w,Δx̂t−1)p(rt = i | r̂t−1). (5)

Here, Δx̂t−1, denotes the random variable associated to the posterior distribution
ofΔxt−1 estimated at the previous time step.We assumeΔx̂t−1 to be approximable by
a Gaussian random variable with mean Δx̄t−1 and covariance ΣΣΣ t−1. Note that from
(3) to (4), we substituted approximation (2), applied Bayes’ rule on zt , and used
the independence assumption of the measurements. From (4) to (5) we followed the
same approach of the generalized pseudo-Bayesian estimator of first order (GPB1)
[4], namely, we assumed a transition model p(rt | rt−1) on the reference nodes, and
used the previous displacement estimate for computing the measurement likelihood.

In this work we restrict ourselves to a uniform p(rt | rt−1) over all nodes in a
local neighborhood of rt−1, although this can be easily generalized to more elaborate
models. As for the measurement likelihood, we computed it as follows. We first
predict the relative pose of the robot in the reference frame rt = i by propagating
the previous relative pose at time t − 1 from the reference r̂t−1 through the relative
measurements w defined in the map. Under normality assumptions, the likelihood
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is then equal to N
(
zt − ẑt ; 0,ΣΣΣ

)
, where ẑt is the predicted observation relative to

the reference frame rt = i andΣΣΣ is the innovation covariance matrix.
In the case of range sensors, which is the implementation target of this paper, the

map includes a laser scan per node, the predicted observation is the relative pose of
the robot in the reference frame of rt , while the current observation can be the result
of an ICP procedure [8].

Let m denote the stacked mi poses, in the local neighborhood of rt , say Vt , for
which the chart associated to rt is valid, as well as the posems with s = r̂t−1. Then,
to compute the distribution over the robot pose, we express (1) as the marginal over
m and Δxt−1. Given the approximation defined in (2), we compute the distribution

p(Δxt | r̂t , z1:t ,u1:t ,w)

=
∫∫

p(Δxt ,Δxt−1,m | r̂t , r̂t−1, z1:t ,u1:t ,w) dΔxt−1dm (6)

Under the assumption that the conditional distribution ofΔxt can be approximated
reasonably by a normal distribution, we can estimate the mean Δx̄t of the marginal
by maximum likelihood inference over the joint space of the relative poses Δxt , the
map nodes m, and the previous relative poses Δxt−1. The marginalization step is
performed by simply extracting the values corresponding toΔxt from the joint mean
vector. The covariance ΣΣΣ t−1, on the other hand, can be computed by linear error
propagation through the optimization algorithm.

Note that the choice of reference frame (i.e., the chart) introduces a map locality
due to the domain of the homeomorphism, implicitly discarding nodes and measure-
ments of the graph not included in the domain.

Thus, dropping r̂t and r̂t−1 for simplicity, the joint likelihood is proportional to

p(zt |Δxt ,m)p(w | m)p(ut | Δxt ,Δxt−1)p(Δx̂t−1 | m,Δxt−1), (7)

where we assumed zt , w, and ut to be conditionally independent. Theoretically, we
cannot assume independence betweenw andΔx̂t−1, sinceΔx̂t−1 was estimated at the
previous time step by usingw aswell. To avoid overconfidence due to this correlation,
the resulting covariance estimate should be corrected. The correction factor can be
computed following the approach of Mourikis and Roumeliotis [22]. We, however,
experimentally found its effect to be negligible.

For ease of notation we will henceforth refer to r̂t as r and r̂t−1 as s. Under the
chart of r , the new reference node acts as the origin of its homeomorphic Euclidean
space, with respect to which its neighborhood is expressed. We can thus consider a
set of relative map pose coordinates Δm(r)

i ∀i ∈ Vt , which in the ideal case would
be equivalent to �mr ⊕ mi .

To simplify the understanding of the conditional independence structure of the
likelihood in (7), we provide in Fig. 2a the reference frames at work in the estimation
problem. Here, k ∈ Vt , while the observations zt are assumed to provide SE(n)
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(a) Frames considered
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z(r)t
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(b) Corresponding factor graph

Fig. 2 Frames and relative transformations involved in the small-scale estimation the robot’s rela-
tive pose (left) and the factor graph associated to the same problem (right)

relative measurements, for example via ICP matching. In the general formulation,
the latter is not required, and we commit to it only for the sake of clarity.

Under the assumption that zt , ut, and w are normally distributed, we can max-
imize the likelihood (7) by performing nonlinear least squares optimization on a
reduced factor graph. Specifically, we construct a graph which has as verticesΔm(r)

s ,
Δm(r)

k ∀k ∈ Vt , Δx(r)
t−1 and Δx(r)

t . The factors we introduce are respectively all the

valid measurements z(i)
t , the odometry reading ut , the previous estimate Δx̂(s)

t−1, and
all wi, j connecting the map poses that have been introduced in the factor graph.

Note that there needs to exist a factor correlating m(r)
s to the remaining map

vertices, as otherwise the previous estimate and the odometry reading would be
neglected. If no such factor exists, it can be computed by linear error propagation.

Finally, we can compute the meanΔx̄(r)
t of the next estimate by setting the current

reference node to zero, conditioning the factor graph on it, and optimizing with
respect to the remaining vertices. The resulting factor graph associated to the example
in Fig. 2a is reported in Fig. 2b. Since we are conditioning with respect to the current
reference node, the factors that connected it have become priors on the other vertices.
Note that in this formulation, there is no assumption on zt and it does not necessarily
need to be an SE(n)measurement, however, zt should be such as to allow the overall
problem to be non-singular and observable.

Having found the mean Δx̄(r)
t by nonlinear least squares optimization, the esti-

mation of the robot’s relative position to the remaining map poses is split over two
methods. For the map poses Δm(r)

k that appeared in the factor graph optimization,
we use the resulting mean estimate Δm̄(r)

k and compute Δx̄(k)
t = �Δm̄(r)

k ⊕ Δx̄(r)
t .

For the remaining map poses we compute the relative estimate by chaining together
Δx̄(r)

t and all the transformations from the current reference node to the target map
pose, over the minimum distance spanning tree of the full map (in this paper we used
uniform weighting). Notice that with this formulation we explicitly compute only
the uncertainty of Δx(r)

t , and we keep all other uncertainties as implicitly defined
through linear error propagation.
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5 Experiments

We evaluated our relative topometric localization approach (RTL) on a 2D localiza-
tion problem with range measurements. We considered virtual measurements com-
puted by the Canonical Scan Matcher (CSM) with point-to-line metric [8] and its
first order covariance approximation [7]. We further rely on g2o [17] for the least
squares optimization and on our MCL implementation for comparison [26].

We evaluated our approach in both simulation and real data. For a more realistic
simulation, we also sourced laser data from real datasets, as performed byOlson [25].
For the simulation data, we employed the Gazebo simulator on an environment based
on two real floor plans. For each environment we kept the unfurnished version, and
created a further one with added obstacles and furniture. Figure3a, b show the two
environments in question, with the additional obstacles and furniture marked in
red. For each of the four maps we recorded one mapping run and ten localization
runs connecting distant areas in the environment. For the pseudo-simulated data,
we tested against the Intel Seattle, Intel Oregon, MIT CSAIL, and ACES datasets,
which are publicly available. As ground truth, we used the aligned SLAM output and
computed scans by casting rays on this aligned map. As with the simulated datasets,
we recorded one mapping run and ten localization runs per configuration. In the
above cases, we computed laser scans with 360◦ of field of vision and 360 rays. Each
ray was corrupted with Gaussian noise with 1 cm of standard deviation and rounded
to the closest centimeter.

For the real robot experiment we created an environment in our lab, both with
and without additional obstacles. We used a KUKA omnirob, equipped with two
Sick S300 laser scanners with 541 beams and 270◦ of field of vision. The ground
truth was approximated by using a motion capture system with 10 Raptor-E cameras
recording at 300Hz. Again, we recorded one mapping run and 10 localization runs
per configuration. To synchronize the data from the motion capture and the robot, we
periodically stopped the robot and we only considered the poses in which the robot
was stopped for both evaluation and mapping.

(a) Simulated environment 1 (b) Simulated environment 2 (c) Real environment

Fig. 3 Environments considered in the experiments in addition to the more common SLAM
datasets. The objects marked in red do not appear in the unfurnished counterparts
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The motion capture may also introduce errors due to the not perfectly even floor,
limited view-points of the cameras, and imperfect calibrations. Figure3c displays
the recorded laser scans aligned according to the motion capture as well as the
additional obstacles that were introduced in red. Note that the map is imperfect due
to the aforementioned issues, as such the quality of the evaluation for the real data
is significantly lower than for the simulation datasets.

We compared our approach, RTL, withMCL as well as two additional benchmark
approaches: a relative approach similar to RTL, where we assume the map is the
result of an optimization process and is not subject to errors, (LSLOC) and MCL
on the ground-truth map (MCLGT ). Note that LSLOC, is equivalent in spirit to the
approach of Konolige et al. [15] and Dayoub et al. [10]. For MCL and MCLGT we
used 5000 particles, as measurement model we used likelihood fields saturated to
2m of maximum distance, and rendered the map at 1 cm of resolution for maximum
accuracy.We experimentally found that resolutions greater than 1 cm did not improve
the estimate. For each dataset, we use the same unoptimized pose graph as input to
RTL and for computing the globally consistent map for MCL and LSLOC.

We consider three localization scenarios: Standard localization, where the given
maps are globally consistent; Localization with outliers, where the maps have dif-
ferent levels of inconsistency; and Furnished versus unfurnished localization, where
maps are globally consistent andwemoved furniture between themapping and local-
ization phase. Sincewe are considering a tracking problem, we initialized the starting
pose of all methods with the ground truth.

For the outlier case,we considered one simulated environment and the Intel Seattle
dataset with two levels of outliers, respectively 5 and 20. We generate those outliers
by associating the most likely matchings returned by FLIRT [31] that were at least
at 3m of distance. A sample map with five outliers is reported in Fig. 1.

5.1 Evaluation Criteria

We evaluate the localization accuracy at each time step t by measuring the discrep-
ancy ε

(i)
t = �x̆t ⊕ m̆i ⊕ Δx(i)

t between the predicted relative displacements and the
actual ones, for each reference frame i . Here x̆t and m̆i respectively refer to the
ground-truth pose of the robot at time t and of the i-th element of the map.

We compute the error statistics according to the robot’s actual distance from
the reference frame, in order to quantify the accuracy of all the methods at short
distances, which are of interest to the robot, but also at progressively larger distances.
We compute the shortest distances from the robot to the map poses by means of
Dijkstra’s algorithm on the rasterized ground-truth map, with 1 cm resolution. For
each time step t we bin the absolute values of the errors ε

(i)
t in terms of distance

and use as statistics the 5th, 25th, 50th, 75th, and 95th percentile over the whole
trajectory of all runs. When computing these statistics we do not take into account
runs that diverged; we assume amethod to diverge on any particular run if the average
absolute error was greater than 1m in translation or 60◦ in rotation in the last 10% of
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RTL LSLOC MCL MCLGT

Fig. 4 Boxplot of the errors in translation and rotation for the standard test scenario on the simulated
datasets. The data was gathered over 40 localization runs

RTL LSLOC MCL MCLGT

Fig. 5 Box plot of the errors in translation and rotation for the standard test scenario on the pseudo-
simulated datasets. The data was gathered over 40 localization runs

the trajectory. SinceMCLGT uses the ground-truth map for localization the statistics
are independent of the distance, we thus report for it a single set of statistics.

5.2 Accuracy Results

We report in Figs. 4 and 5 the errors in terms of translation and rotation for the
simulated and pseudo-simulated runs in the standard localization scenario. The box
plots are binned at 1m of discretization, where the [a, b) values refer to all distances
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RTL LSLOC MCL MCLGT

Fig. 6 Box plot of the errors in translation and rotation for the standard test scenario on the real
datasets. The data was gathered over 20 localization runs

between a and b. The errors for the pseudo-simulated datasets are indeed larger than
the simulated ones, which suggest an improved realism in the data sourcing.

As expected, the errors increase with respect to the distance for all methods, as
even themost accurate SLAMmap is subject to incremental error. At larger distances
the error of RTL increases more as the local chart is increasingly inaccurate. This
is to be expected and is the trade-off between local and global accuracy. RTL and
LSLOC consistently achieve lower errors than MCL, particularly for orientation,
and at short distances improve even on MCLGT. Nevertheless, given the scale of the
graphs (millimeters and fractions of degrees) such differences are negligible.

Figure6 reports the accuracy results for the real datasets in the standard localiza-
tion scenario. The errors are larger than both the pseudo-sumulated and simulated
datasets, partially due to the inaccuracy of the motion capture framework, the vari-
ous unmodeled errors, and possibly due to the greater number of outliers in the laser
range readings. Contrary to the previous tests, there is no clear preference to which
method is most accurate. These results confirm the practical effectiveness of MCL
when its assumptions are satisfied, with RTL showing competitive performance.

Figure7 shows the accuracy results for the localization scenario with 5 outliers.
LSLOC and MCL respectively diverged 18 and 17 times out of 20 localization runs,
and even when converged the methods exhibit significantly large errors in both posi-
tion and orientation. This result showcases the brittleness of traditional approaches
which rely on the assumption of a globally consistent map. On the contrary, RTL is
virtually unaffected by the outliers up to approximately 4m of distance.At longer dis-
tances the relative position estimates may be obtained by chaining estimates through
the outliers, which significantly degrades the accuracy. Similarly, Fig. 8 reports the
accuracy results for the localization scenario with 20 outliers. LSLOC and MCL
diverged in all runs, while RTL converged in all instances and shows similar perfor-
mance. Although we have observed no such instances, in principle, RTL might be
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RTL LSLOC MCL

Fig. 7 Box plot of the errors in translation and rotation for the test scenario on localization with 5
outliers. The data was gathered over 20 runs, with LSLOC having diverged 18 times and MCL 17
times. The error axis is broken in two scales, in order to display both small and large errors

Fig. 8 Box plot of the errors in translation and rotation of RTL for the test scenario on localization
with 20 outliers. The data was gathered over 20 runs. RTL converged in all instances, the other
methods diverged. The error axis is broken in two scales, to display both small and large errors

also trapped in awrong reference frame and exhibit divergence, sincewe are commit-
ting on a single estimate for the reference frame. This problem can be counteracted
by considering a distribution over the reference frames.

Figures9 and 10 report the errors in localization for the furnished versus unfur-
nished test scenario, respectively on simulated and real datasets. For the simulated
data MCL diverged in 4 instances, while MCLGT in 7.

The MCL methods show significantly degraded accuracy when localizing on a
map which does not reflect the structure of the perceived environment, as also shown
in the literature [32]. We conjecture it is due to the fact that truncated likelihood
fields and beam-based observation models are not robust enough to non-negligible
discrepancies between the map and the observed environment. For future works it
would be of interest to explore the conditions under which MCL results in degraded
estimates and if it is possible to improve the observation model to account for them.

RTL and LSLOC, on the other hand, are virtually unaffected by the presence
or absence of furniture. We believe this is due to the robustness of the ICP variant
implemented in CSM and due to the fact that the localization is constrained to follow
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RTL LSLOC MCL MCLGT

Fig. 9 Box plot of the errors in translation and rotation for the furnished versus unfurnished test
scenario on simulated datasets. The data was gathered over 40 runs. MCL diverged in 4 instances,
MCLGT in 7. The error axis is broken in two scales, in order to display both small and large errors

RTL LSLOC MCL MCLGT

Fig. 10 Box plot of the errors in translation and rotation for the furnished versus unfurnished test
scenario on real datasets. The data was gathered over 20 runs. The error axis is broken in two scales,
in order to display both small and large errors

the connectivity of the graph and cannot “cross” a room wall, which can indeed
happen with a standard variant of MCL.

5.3 Timing Results

In our implementation, each localization step requires roughly 220ms of time on a
multithreaded Intel®Core™i7-3770K CPU clocked at 3.50GHz. By comparison,
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MCLwith 5000 particles requires approximately 90ms. The current bottleneck is the
number of ICP matchings executed per time step. This can be drastically reduced by
introducing a better transition model p(rt | rt−1), which is currently merely uniform.

6 Conclusion

In this paper we introduced a novel localization approach, relative topometric local-
ization, that relaxes the assumption of global consistency of the map used for local-
ization. We represent the map as a pose graph endowed with sensory data for each
node, which induces a manifold-like structure that, contrary to a globally consistent
map, is not required to be fully embeddable in a Euclidean space. We reformulated
the localization problem as estimating the topological node on the graph and a rel-
ative metric rigid body transformation. In doing so we obtained a method that is
both robust to outliers in the map, takes into account the uncertainty in the mapping
process, and that is independent of whether the graph has been optimized or not.
We showed through extensive evaluation on both simulated and real data that our
method not only significantly improves the state of the art in terms of localization
accuracy when the global map consistency assumption fails, but also that for short
relative distances it is equally accurate, or better, than MCL for the nominal cases.
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2. Andrew Howard, G.S.S., Matarić, M.J.: Multi-robot mapping using manifold representations.
Proc. IEEE Special Issue Multi-robot Syst. 94(9), 1360–1369 (2006)

3. Badino, H., Huber, D., Kanade, T.: Real-time topometric localization. In: Proceedings of the
IEEE International Conferance on Robotics and Automation (2012)

4. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Nav-
igation: Theory Algorithms and Software. Wiley, New York (2004)

5. Blackman, S.S.: Multiple hypothesis tracking for multiple target tracking. IEEE Aerospace
Electron. Syst. Mag. 19(1), 5–18 (2004)

6. Blanco, J.L., González-Jiménez, J., Fernandez-Madrigal, J.A.: Sparser relative bundle adjust-
ment (SRBA): constant-time maintenance and local optimization of arbitrarily large maps. In:
Proceedings of the IEEE International Conference on Robotics and Automation (2013)

7. Censi, A.: An accurate closed-form estimate of ICP’s covariance. In: Proceedings of the IEEE
International Conference on Robotics and Automation (2007)

8. Censi, A.: An ICP variant using a point-to-line metric. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (2008)



450 M. Mazuran et al.

9. Churchill, W., Newman, P.: Practice makes perfect? managing and leveraging visual experi-
ences for lifelong navigation. In: Proceedings of the IEEE International Conference onRobotics
and Automation (2012)

10. Dayoub, F., Morris, T., Upcroft, B., Corke, P.: Vision-only autonomous navigation using topo-
metric maps. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (2013)

11. Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In:
Proceedings of the IEEE International Conference on Robotics and Automation (1999)

12. Fox, D., Burgard, W., Thrun, S.: Markov localization for mobile robots in dynamic environ-
ments. J. Artif. Intell. Res. 11, 391–427 (1999)

13. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard,W.: A tutorial on graph-based SLAM. IEEE
Trans. Intell. Transp. Syst. Mag. 2, 31–43 (2010)

14. Jensfelt, P., Austin, D., Wijk, O., Andersonn, M.: Feature based condensation for mobile robot
localization. In: Proceedings of the IEEE International Conference onRobotics andAutomation
(2000)

15. Konolige, K., Marder-Eppstein, E., Marthi, B.: Navigation in hybrid metric-topological maps.
In: Proceedings of the IEEE International Conference on Robotics and Automation (2011)

16. Krüsi, P., Bücheler, B., Pomerleau, F., Schwesinger, U., Siegwart, R., Furgale, P.: Lighting-
invariant adaptive route following using iterative closest point matching. J. Field Robot. 32,
534–564 (2014)

17. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A general framework
for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and
Automation (2011)

18. Latif, Y., Cadena, C., Neira, J.: Robust loop closing over time. In: Proceedings of Robotics:
Science and Systems (2012)

19. Leonard, J., Durrant-Whyte, H.: Mobile robot localization by tracking geometric beacons.
IEEE Trans. Robot. 7(4), 376–382 (1991)

20. Mazuran, M., Tipaldi, G.D., Spinello, L., Burgard, W., Stachniss, C.: A statistical measure for
map consistency in SLAM. In: Proceedings of the IEEE International Conference on Robotics
and Automation (2014)

21. McManus, C., Furgale, P., Stenning, B., Barfoot, T.D.: Lighting-invariant visual teach and
repeat using appearance-based lidar. J. Field Robot. 30, 254–287 (2013)

22. Mourikis, A.I., Roumeliotis, S.I.: On the treatment of relative-pose measurements for mobile
robot localization. In: Proceedings of the IEEE International Conference on Robotics and
Automation (2006)

23. Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for multi-target
tracking. IEEE Trans. Autom. Control 54(3), 481–497 (2009)

24. Olson, E., Agarwal, P.: Inference on networks of mixtures for robust robot mapping. Int. J.
Robot. Res. 32, 826–840 (2013)

25. Olson, E.B.: Real-time correlative scan matching. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (2009)

26. Röwekämper, J., Sprunk, C., Tipaldi, G.D., Stachniss, C., Pfaff, P., Burgard,W.: On the position
accuracy of mobile robot localization based on particle filters combined with scan matching.
In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(2012)

27. Sibley, G., Mei, C., Reid, I., Newman, P.: Adaptive relative bundle adjustment. In: Proceed-
ings of Robotics: Science and Systems (2009)

28. Sprunk, C., Tipaldi, G.D., Cherubini, A., Burgard, W.: Lidar-based teach-and-repeat of mobile
robot trajectories. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (2013)

29. Strasdat, H., Davison, A.J.,Montiel, J., Konolige, K.: Double window optimisation for constant
time visual SLAM. In: IEEE International Conference on Computer Vision (2011)

30. Sünderhauf, N., Protzel, P.: Switchable constraints for robust pose graph SLAM. In: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)



Relative Topometric Localization in Globally Inconsistent Maps 451

31. Tipaldi, G.D., Arras, K.O.: FLIRT - interest regions for 2D range data. In: Proceedings of the
IEEE International Conference on Robotics and Automation (2010)

32. Tipaldi, G.D., Meyer-Delius, D., Burgard, W.: Lifelong localization in changing environments.
Int. J. Robot. Res. 32(14), 1662–1678 (2013)

33. Xu, D., Badino, H., Huber, D.: Topometric localization on a road network. In: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems (2014)



Fast Sample-Based Planning for Dynamic
Systems by Zero-Control
Linearization-Based Steering

Timothy M. Caldwell and Nikolaus Correll

1 Introduction

Planning for dynamic systems is trajectory exploration through nonconvex state
spaces. These non-convexities often include configuration space obstacles and
regions of inevitable collision [12]. While sample-based planning algorithms dif-
fer in many ways, they commonly conduct many short trajectory explorations to
connect or nearly connect a large number of stochastically sampled states with the
goal of connecting a start state to a final state or goal region. Earlier algorithms like
RRT [12] guarantee under certain conditions [11] with probability one that if a con-
necting trajectory exists, that the algorithm will find it. Newer planners like RRT*,
PRM*, SST*, and FMT* [8–10, 13, 14] guarantee asymptotic convergence to the
globally optimal connecting trajectory. For planning dynamic systems, [16] directly
tackles the theoretical issues associated with the differential constraints. However,
planners for dynamic systems are still in need of computationally efficient meth-
ods to compute distances, e.g. for assessing nearest neighbors, and to steer, i.e. to
extend to sampled states. Furthermore, each method must be able to handle numer-
ical issues like sensitivities to initial conditions so that the steering trajectories can
be of significant time horizon.

The methods proposed in this paper are complementary to [2, 3, 15, 17]: For
planning dynamic systems, distance computation and steering are solutions to opti-
mal control problems. They are often approximated through linearizing the nonlinear
dynamics and solving linear quadratic regulation (LQR) or tracking (LQT) problems
[2, 3, 15]. Each [2, 3, 15] linearize around a single state and so the system is time-
invariant. In comparison, we linearize around the zero-control or “free” trajectory
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tmaxh = 1.0s

tmaxh = 0.75s

tmaxh = 0.5s

tmaxh = 0.1s

Fig. 1 Trajectories of a triple pendulumon a cart planned using anRRT-like approachwith differing
max time horizons for a constant number of vertices (1000). Planning with longer time horizons
covers significantly more search space for the same number of vertices, at the expense of increased
number of insertion failures due to collisions. In this example, computing for tmax

h = 1.0 s takes
around three times longer than for tmax

h = 0.1s

so that the linearization remains a good approximation for longer time horizons.
Since our approximate system is time-varying we formulate the LQR and LQT so
that through precomputation and caching they can be solved efficiently for many
distance and steering executions from the same state.

Both [2, 17] set up the linear quadratic optimal control problem as an optimal
state transfer without a running state cost. As [5] indicates, the solution to such
a problem is open-loop, which can be numerically intractable as the conditioning
of the reachability Gramian becomes poor. Indeed, we show that the reachability
Gramian’s condition number approaches machine precision for the n-link pendu-
lum on a cart in the examples, and as such, the methods in [2, 17] are infeasible.
Instead, we propose implementing a feedback loop and performing the same state
transfer procedure on the closed-loop system, which has a reachability Gramian with
improved conditioning.

The state and trajectory solutions to the LQR problems are infeasible—i.e. tra-
jectories of a linear system can not be trajectories of a nonlinear system. In order to
steer, we implement the trajectory functional projection operator in [4, 6] to project
approximate trajectories to feasible trajectories.

The proposed distance computation and steering methods in the paper are con-
tributions to general planners. The methods are designed so that long time horizon
exploring is viable. This is reflected in the examples where a small number of ver-
tices of an RRT are needed to plan a 3-link pendulum on a cart through a corridor
of obstacles (Fig. 1). The pendulum on a cart is under-actuated, unstable and when
uncontrolled is chaotic. To the best of our knowledge, no one has planned a 3-link
or greater pendulum on a cart.

2 Review of Planning for Dynamic Systems

Webriefly reviewplanning for dynamic systems. The kinodynamic planning problem
is to find a state and control trajectory (x, u) that connects a start state xstart to a goal
region while maintaining the differential constraint of the system dynamics
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ẋ(t) = f (x(t), u(t)). (1)

If a trajectory satisfies the system dynamics, then we say it is feasible. Sample-based
planning algorithms find a path by generating a graphG = (V,E )where the vertices
V are explored states and the edges E are state and control trajectories that connect
two states in V—i.e. (x, u; th) ∈ E implies for time horizon th > 0, x(0) ∈ V , and
x(th) ∈ V . Every edgemust be dynamically feasible in that the state and control must
satisfy Eq.1. Additionally, the state and control must remain in the set of allowable
state and control (X,U ) throughout the full trajectory where X ⊂ R

n andU ⊂ R
m .

The set X is free of all obstacles.
Methods based on RRT build the graph through two functions: nearest neighbor

and steering. The nearest neighbor calculation relies on the choice of distance func-
tion between a state x0 ∈ V and a sampled state xsamp ∈ X . Ideally, this distance is
the cost J to transfer x0 to xsamp. The nearest state is the x0 ∈ V with least distance
to xsamp. Steering computes a trajectory that satisfies Eq. 1 and transfers the system
from an initial state x0 ∈ V to a neighborhood of a desired state xsamp ∈ X . Such a
problem can be treated as an optimal control problem which finds a trajectory that
minimizes some cost J . The cost for computing distance and steering can be the
same. We consider the following cost function:

J (x, u; th) := 1

2

∫ th

0
uT (τ )R(τ )u(τ ) dτ + 1

2
(x(th) − xsamp)

T P1(x(th) − xsamp)

(2)
where R = R > 0 is symmetric positive definite and P1 = PT

1 ≥ 0 is symmetric
positive semi-definite. With a little work, the results in this paper can be extended to
general costs as long as the cost can be locally approximated by a quadratic.

The problem of minimizing J constrained to the dynamics Eq.1 is a nonlinear
optimal control problem forwhichnumericalmethods canbe slow.For this reason,we
approximate the dynamics by linearizing about one of two candidates. The candidate
used in [2, 3, 15, 17] is simply a point x0 ∈ R

n . The second candidate, which we
propose, is the zero-control trajectory xzero(t) and is the solution to:

ẋzero(t) = f (xzero(t), 0), s.t. xzero(0) = x0. (3)

Let xT (t) = x0 or xzero(t) depending on the candidate chosen. The linear terms are
A(t) = ∂

∂x(t) f (x(t), u(t))|(xT (t),0) and B(t) = ∂
∂u(t) f (x(t), u(t))|(xT (t),0) with approx-

imate state and control

x̃(t) = xT (t) + z(t), and ũ(t) = v(t),
where ż = A(t)z(t) + B(t)v(t), s.t. z(0) = 0.

(4)

Using the linearization, steering and distance computations are LQT problems. The
next section address the LQT problem and formulates an efficient approach for
many executions for the same vertex in a planning graph that is numerically tractable.
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Through the linearization, the approximate solution to the non-linear optimal control
problem reduces to matrix manipulation.

3 Affine LTV State Exploration

When a system is affine linear it is possible to find a subset of states in R
n that are

reachable from any initial state for a bounded control effort.
Suppose the system with state and control (x̃, ũ) evolves according to

x̃(t) := x̃T (t) + z(t) and ũ(t) := v(t)

where x̃T is some time-varying translation from the origin and z is the solution to
the linear differential equation

ż(t) = A(t)z(t) + B(t)v(t), s.t. z(0) = 0 (5)

where A(t) ∈ R
n×n and B(t) ∈ R

n×m are piecewise continuous. Through the state-
transition matrix (STM) Φ(t, τ ) of A(t), the solution to the linear differential equa-
tion is

z(t) =
∫ t

0
Φ(t, τ )B(τ )v(τ )dτ. (6)

The STM is the solution to the matrix differential equation

∂

∂τ
Φ(t, τ ) = −Φ(t, τ )A(τ ), Φ(t, t) = I dn×n (7)

where I dn×n is the n × n identity matrix. We wish to find the states x̃ ′ ∈ R
n such that

there exists a control v constrained to some setV ⊂ U which transfers x̃(0) = x̃T (0)
to x̃ ′ in th time. Define the set reachable at th with control constrained to V as

X̃V :=
{
x̃ ′ ∈ R

n|∃v ∈ V where x̃ ′ = x̃T (t) +
∫ th

0
Φ(t, τ )B(τ )v(τ )dτ

}
.

Consider the control constrained by the control energy

‖v‖R := 1

2

∫ th

0
v(τ )T R(τ )v(τ ) dτ (8)

where R(·) is a piecewise continuous matrix with R(τ ) = R(τ )T > 0 symmetric
positive-definite. The control set with bounded control energy is



Fast Sample-Based Planning for Dynamic Systems … 457

Vδv :=
{
v ∈ U |1

2

∫ th

0
v(τ )T R(τ )v(τ ) dτ < δv

}
(9)

where δv > 0 and th > 0.

3.1 Open-Loop Exact Linear Shooting

Suppose v has the form

v(t) = −R−1(t)B(t)TΦ(th, t)
Tη (10)

where η ∈ R
n . The significance of this control form is that it is the minimal-energy

control with control energy Eq.8 (see [7] Theorem 11.4). This control is open-loop
because of its independence on z.

By setting η, the control Eq. 10 transfers x̃(0) to some x̃ ′ ∈ R
n through Eq.5.

This procedure is shooting. The δv bounded control reachable set X̃Vδv are the points
x̃ ′ ∈ R

n for which there exists an η for which both v ∈ Vδv and v transfers x̃(0) to x̃ ′.
This set X̃Vδv is given in the following Lemma:

Lemma 1 Supposing A(·) and B(·) are so that Eq.5 is controllable on [0, th] and
that v has form Eq.10, then

X̃Vδv = {
x̃ ′ ∈ R

n| 12 (x̃ ′ − x̃T (th))TW0(th)−1(x̃ ′ − x̃T (th)) < δv
}

(11)

where the matrix W0(t), t ∈ (0, th] is symmetric positive-definite and W0 is the solu-
tion to:

Ẇ0(t) = A(t)W0(t) + W0(t)A(t)T + B(t)R(t)−1B(t)T s.t. W0(0) = 0.

Proof The symmetric positive-definiteness of W0(·) follows from (A(·), B(·)) con-
trollable and R(·) symmetric positive-definite. Its existence is guaranteed since it is
the solution to a linear differential equation. The integral form of W0(t) is:

W0(t) =
∫ t

0
Φ(t, τ )B(τ )R(τ )−1B(τ )TΦ(t, τ )T dτ.

An η is allowable if v ∈ Vδv (see Eq.9). That is, η is allowable if

1

2

∫ th

0
vT (τ )R(τ )v(τ )dτ = 1

2
ηT

∫ th

0
Φ(th , τ )B(τ )R−1(τ )B(t)TΦ(th, τ )T dτη

= 1
2ηT W0(th)η < δv.

(12)
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Fig. 2 Reachable set for
open-loop and closed-loop
double integrator for
x0 = [0.5, 1]T , δv = 0.2,
th = 1.0

x0

xzero

xzero(th)

XV vopen-loop

closed-loop

Through the form of v, the solution to z for some η ∈ R
n is

z(t) = −
∫ t

0
Φ(t, τ )B(τ )R(τ )−1B(τ )TΦ(th, τ )T dτη = −W0(t)Φ(th, t)

Tη.

SinceW0(th) is positive-definite, it is invertible and the η which transfers z(0) = 0 to
a desired z′ is η = −W0(th)−1z′. Plugging η in Eq.12 we arrive at the set of reachable
z′. The reachable x̃ ′ are x̃ ′ = x̃ ′

T (th) + z′ which is the set X̃Vδv . �

The set of reachable states X̃Vδv is an ellipsoid centered around x̃T (th), as seen in
Fig. 2 for the double integrator system. A planning algorithm can leverage Lemma 1
to choose a reachable state and compute the state and control trajectories (x̃, ũ) that
transfer the linear system to that desired state. This exact steering procedure for affine
linear systems is shown in Algorithm 1. The procedure relies on a well conditioned
W0(·), especially at th . The time-varying matrix W0 is the reachability Gramian
weighted by R−1. It is guaranteed to be invertible when the system (A(·), B(·)) is
controllable, but numerical inversion requires a well conditionedmatrix, which is not
the case for the n-link inverted pendulum on a cart analyzed in the examples section.
The condition number for time th = 1.0, κ(W0(1.0)), for 1, 2, and 3-link pendulum
on the cart at the unstable equilibrium is:

1 − link : κ(W0(1.0)) = 1.32 × 106

2 − link : κ(W0(1.0)) = 1.08 × 108

3 − link : κ(W0(1.0)) = 3.33 × 1015.
(13)

Algorithm 1 (Open-Loop Exact Linear Steering)
For x̃ ′ ∈ X̃Vδv :

1. η ← −W0(th)−1(x̃ ′ − x̃T (th))
2. x̃(t) ← x̃T (t) − W0(t)Φ(th, t)T η, and
3. ũ(t) ← −R(t)−1B(t)TΦ(th, t)T η

For the 3-link pendulum, the condition number approaches machine precision on
many computing devices. When the conditioning is sufficiently poor, the numerical
error between x̃ ′ and the computed x̃(t) through Algorithm 1 invalidates the proce-
dure. For unstable systems, the conditioning can be improved through a closed-loop
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control form with stabilizing feedback. The goal is to design a feedback so that
Algorithm 1 becomes a sort of stable shooting algorithm.

3.2 Closed-Loop Exact Linear Steering

In order to make Algorithm 1 numerically tractable, we consider a closed-loop sys-
tem with a better conditioned reachability Gramian than the open-loop system. The
closed-loop linear system is (AK , B) where AK (t) := A(t) − B(t)K (t) with time-
varying feedback gain K (t) ∈ R

m×n . For now, we assume K is given. It can be
computed as the optimal feedback gain of a LQR problem. With a properly designed
K , the closed-loop system (AK , B) should have better numerical properties—e.g.
better conditioning of relevant matrices—than the open-loop system.

Let ΦK (·, ·) be the state-transition matrix corresponding to AK . The closed-loop
control form is

v(t) = −K (t)z(t) − R−1(t)B(t)TΦK (th, t)
Tη. (14)

The closed-loop linear system dynamics are

ż(t) = AK (t)z(t) − B(t)R(t)−1B(t)TΦK (th, t)Tη, s.t. z(0) = 0

with solution

z(t) = −
∫ t

0
ΦK (t, τ )B(τ )R(τ )−1B(τ )TΦK (th, τ )T dτη

= −WK (t)ΦK (th, t)Tη

where WK is the reachability Gramian corresponding to AK , weighted by R−1, and
has differential form:

ẆK (t) = AK (t)WK (t) + WK (t)AK (t)T + B(t)R(t)−1B(t)T s.t. WK (0) = 0.
(15)

As with Lemma 1, we wish to find the reachable subset ofRn in th time with bounded
control energy, except for the closed-loop form:

Lemma 2 Supposing A(·) and B(·) are so that Eq.5 is controllable on [0, th] and
that v has form Eq.14, then

X̃Vδv = {x̃ ′ ∈ R
n|(x̃ ′ − x̃T (th))

T SK (th)
−1(x̃ ′ − x̃T (th)) < δv} (16)

where the matrix SK (t), t ∈ (0, th] is symmetric positive-definite and is the solution
to: (omitting (·))
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ṠK = AK SK + SK AT
K + (KWK − R−1BT )T R(KWK − R−1BT ) s.t. SK (0) = 0.

(17)

The proof of Lemma 2 is similar to that of Lemma 1 and for brevity is omitted.
Similar to Lemma 1, Lemma 2 finds that the reachable states with the closed-loop
control form an ellipsoid centered at x̃T (th), except where the ellipsoid’s axes are
parameterized by SK (th)−1 as opposed to W0(th)−1. The analog to Algorithm 1 is

Algorithm 2 (Closed-Loop Exact Linear Steering)
For x̃ ′ ∈ X̃Vδv and feedback gain K :

1. η ← −WK (th)−1(x̃ ′ − x̃T (t f ))
2. x̃(t) ← x̃T (t) − WK (t)ΦK (th, t)T η, and
3. ũ(t) ← −K (t)z(t) − R(t)−1B(t)TΦ(th, t)T η

The conditioning of WK and SK for the n-link cart pendulum is a significant
improvement over W0 (see Eq.13):

1 − link : κ(WK (1.0)) = 5.84 κ(SK (1.0)) = 3.80 × 104

2 − link : κ(WK (1.0)) = 5.49 × 102 κ(SK (1.0)) = 2.52 × 106

3 − link : κ(WK (1.0)) = 1.03 × 105 κ(SK (1.0)) = 2.57 × 106.

The closed loop form should be used when the open loop reachability Gramian
is poorly conditioned.

3.3 Inexact Linear Steering

The reachability results provide the minimal energy control to a reachable set. When
the desired state is not within the reachable set a new objective can be considered
which weights the importance of tracking the desired state. Consider the cost

J (x̃, ũ; th) := 1

2

∫ th

0
ũT (τ )R(τ )ũ(τ ) dτ + 1

2
(x̃(th) − x̃des)

T P1(x̃(th) − x̃des)

(18)
where P1 = P1 ≥ 0 is symmetric positive semi-definite. Parameterized by (z, v),

J (z, v; th) = 1

2

∫ th

0
vT (τ )R(τ )v(τ ) dτ

+ 1
2 (x̃T (th) + z(th) − x̃des)T P1(x̃T (th) + z(th) − x̃des).

(19)

The problem is to find a state and control trajectory that satisfies the linear dynamics
Eq.5. That is, we wish to solve the problem
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Problem 1 Solve

min
z,v;th

J (z, v; th)
s.t. ż(t) = A(t)z(t) + B(t)v(t), z(0) = 0.

For a fixed th , this problem is a linear quadratic tracking LQT problem [1], the
solution of which is well known. The optimal control is

v�(t) = −K �(t)z�(t) − R(t)−1B(t)TΦK (t, th)P1(x̃T (th) − x̃des) (20)

with optimal feedback gain K �(t)

K �(t) = R(t)−1B(t)T P(t) (21)

where P(t) is the solution to the Riccati equation

−Ṗ(t) = A(t)T P(t) + P(t)A(t) − P(t)B(t)R(t)−1B(t)T P(t) s.t. P(th) = P1.
(22)

Notice that v� has the closed-loop form Eq.14 except for a specific feedback gain
K (t) = K �(t) andwhere η = P1(x̃T (th) − x̃des). The gain K in Eq.14 can be chosen
as the optimal feedback gain from this LQT problem. The K (t) would depend on
the choice of x̃des as well as P1. If P1 = 0—i.e. the cost function reduces to just the
control energy—then K � ≡ 0—i.e. there is no feedback—and the optimal control
is the open-loop control Eq.10. As such, the procedure Algorithm 1 does indeed
compute theminimal control energy trajectory that transfers the system to a reachable
state.

The following algorithm computes the optimal cost J̃ �(th) := J (x̃�, ũ�, th), and
trajectory (x̃�, ũ�) for fixed th :

Algorithm 3 (Fixed th Inexact Linear Steering)
For x̃des ∈ X and th > 0:

1. P(t) ← solve Riccati equation Eq.22
2. K �(t) ← R(t)−1B(t)T P(t)
3. z�(t) ← solve ż�(t) = AK � (t) − B(t)R(t)−1B(t)TΦK (t, th)P1(x̃T (th) − x̃des)
4. x̃�(t) ← x̃T (t) + z�(t), and
5. ũ�(t) ← −K �(t)z�(t) − R(t)−1B(t)TΦK (t, th)P1(x̃T (th) − x̃des)
6. J̃ �(th) ← solve cost function Eq.19
7. Return J̃ �(th) and (x̃�, ũ�)

In comparison to Algorithms 1 and 2, this algorithm computes a trajectory that
tracks any state in X as opposed to just the states in a reachable set. However, the
trajectory does not transfer the state to x̃des and as such is an inexact steering.
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3.4 Efficient Inexact Linear Steering

For an affine linear system—i.e. for a set xT , A and B—Algorithm 3 must be exe-
cuted anew for distinct th and x̃des . As we show here, inexact linear steering gains
efficiency through precomputation and caching to remove redundancies from multi-
ple algorithm execution.

As previously noted, the closed-loop control Eq. 14 has the same form as the
solution to the LQT problem with optimal control Eq. 20. The efficiency is gained
through precomputing and fixing a feedback gain K (t) and solving for η as was done
in Sect. 3.2. In other words, the problem is minimize the cost Eq.19 constrained to
the closed-loop control Eq. 14:

Problem 2 With fixed K (t), solve

minη;th J (z, v, th)
s.t. ż(t) = AK (t)z(t) − B(t)v(t)R−1(t)B(t)TΦK (th, t)Tη, z(0) = 0

v(t) = −K (t)z(t) − R−1(t)B(t)TΦK (th, t)Tη.

The solution to Problem 2 is not the same as the solution to Problem 1 unless the
feedback gain K (t) happens to be the optimal K �(t).

The solution to Problem 2 is given in the following Lemma:

Lemma 3 For fixed th > 0 and K and supposing A(·) and B(·) are so that Eq.5 is
controllable on [0, th], the solution to Problem 2 is

η� = Pth (x̃T (th) − x̃des) (23)

where
Pth = (WK (th)P1WK (th) + SK (th))

−1WK (th)P1.

Additionally,

z�(t) = −WK (t)ΦK (th, t)Tη�,

v�(t) = [K (t)WK (t) − R(t)−1B(t)T ]ΦK (th, t)Tη� (24)

and
J (z�, v�; th) = 1

2 (η
�)T SK (th)η�

+ 1
2 (x̃T (th) − WK (th)η� − x̃des)T P1(x̃T (th) − WK (th)η� − x̃des).

(25)

Proof The integral form of z is Eq.6:

z(t) = ∫ t
0 ΦK (t, τ )B(τ )v(τ )dτ = − ∫ t

0 ΦK (t, τ )B(τ )R(τ )−1B(τ )TΦ(th, τ )T dτη

= −WK (t)ΦK (th, t)T η.
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Plugging z(t) into v(t),

v(t) = (K (t)WK (t) − R(t)−1B(t)T )ΦK (th, t)
Tη.

As such, z(t) and v(t) depend linearly on η. The control energy is

1
2

∫ th
0 vT (τ )R(τ )v(τ ) dτ

= 1
2η

T
∫ th
0 ΦK (th, τ )(K (τ )WK (τ ) − R(τ )−1B(τ )T )T

·R(τ )(K (τ )WK (τ ) − R(τ )−1B(τ )T )ΦK (th, τ )dτη

= 1
2η

T SK (th)η.

The cost is thus

J = 1
2 (η)T SK (th)η + 1

2 (x̃T (th) − WK (th)η − x̃des)T P1(x̃T (th) − WK (th)η − x̃des)

with optimal η� where ∂
∂η
J |η→η� = 0:

∂
∂η

J |η→η� = [(SK (th) + WK (th)P1WK (th))η − WK (th)P1(x̃T (th) − x̃des)]η→η� = 0.

Since SK (th) andWK (th) are positive definite through the controllability assumption,
(SK (th) + WK (th)P1WK (th)) is invertible. Solving for η� results in Eq.23. �

The lemma instructs how to do efficient fixed th inexact steering:

Algorithm 4 (Efficient Fixed th Inexact Linear Steering)
For x̃des ∈ X and th > 0:

1. Pth ← (WK (th)P1WK (th) + SK (th))−1WK (th)P1
2. η� ← Pth (x̃T (th) − x̃des)
3. x̃�(t) ← x̃T (t) − WK (t)ΦK (th, t)T η�

4. ũ�(t) ← [K (t)WK (t) − R(t)−1B(t)T ]ΦK (th, t)T η�

5. J̃ �(th) ← solve Eq.25
6. Return J̃ �(th) and (x̃�, ũ�)

The algorithm is efficient compared to Algorithm 3 because it does not rely on
solving any differential equations assuming certain functions have been precom-
puted. The functions to be precomputed and saved in memory are K (t), WK (t),
SK (t) and ΦK (tmax

h , t) for a specified long time horizon t ∈ [0, tmax
h ], tmax

h > 0.
As such, Algorithm 4 relies solely on matrix manipulations to return a fixed
th inexact linear steering trajectory assuming th < tmax

h . Note that ΦK (th, t) =
ΦK (tmax

h , th)−1ΦK (tmax
h , t). Also,Φ(th, th) = I dn×n and so x̃�(th), ũ�(th) and J̃ �(th)

do not rely on precomputing Φ.
As of yet, the feedback gain is assumed to have been chosen in some way. A

reasonable choice is the optimal feedback gain to the LQT problem, Problem 1,
for the max time horizon th = tmax

h . It is the case that the solution to Problem 2 is
equivalent to the solution to Problem 1 when P1 = Pth . In other words, if P1 = Pth ,
then K = K �, which will be the case at least at tmax

h for this choice of K .
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4 Extending to Nonlinear Systems

We extend the affine linear steering results in Sect. 3 to nonlinear dynamics ẋ(t) =
f (x(t), u(t)) by projecting inexact and exact linear steering trajectories to feasible
trajectories. A planner can pick which linear steering algorithm, Algorithms 1–4, to
approximately transfer the system to a desired state xdes . The resulting approximate
trajectories (x̃, ũ) are not feasible unless the dynamics are linear.

The trajectory functional projection operatorP proposed in [6] maps (x̃, ũ) to a
feasible trajectory.

[
x
u

]
= P

([
x̃
ũ

])
:=

{
ẋ = f (x, u)

u = ũ − K (x − x̃).
(26)

The projection is a feedback loop with gain K , reference signal x̃ , and feedforward
term ũ. The feedback gain may be chosen as the optimal feedback of an LQR or
LQT problem.

Inexact steering transfers a vertex x0 ∈ V to a state near a desired state xdes . Sup-
pose K (t), WK (t), SK (t) and ΦK (tmax

h , t) have been computed for the vertex x0.
Then, the efficient inexact steering trajectory is computed by projecting the approx-
imate trajectories given by efficient inexact linear steering, Algorithm 4.

Algorithm 5 (Efficient Inexact Steering)
For x0 ∈ X, xdes ∈ X, and th ∈ (0, tmax

h ]:
1. (x̃�, ũ�, J̃ �(th)) ← Algorithm 4 for th
2. (x, u) ← P(x̃�, ũ�)

3. return (x, u, x̃, ũ, J̃ �(th), th)

5 Examples and Algorithm

Using the steering and nearest neighbor methods proposed in the paper we construct
an RRT to plan a trajectory that transfers a 3-link pendulum on a cart through a
corridor of obstacles to a goal region. The state is composed of the pendulum angles
θi , their angular velocities θ̇i , the cart position p and the cart velocity ṗ. The control
is the force applied to the cart, accelerating it forward or backward, constrained by
u ∈ [−20, 20]Newtons. The pendulums are in inverted equilibrium for the start state,
with cart position at pstart = 0m as seen in Fig. 1. The obstacles are circles in the
workspace. The 3-link pendulum has 8 states. Each pendulum head has mass 0.1kg
and the pendulum lengths are assumed massless. All pendulums links have length
1/3m for a total length of 1 m. The cart has mass 1kg. The matrices R and P1 in the
cost J , Eq. 18, are R = [0.025] and P1 = I dn the n × n identity matrix. We execute
an RRT-like algorithm with efficient inexact steering.
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5.1 Algorithm

An RRT formulation with efficient inexact steering through precomputing follows.
At each iteration, a sample state x ∈ X and a sample time th,samp ∈ (0, tmax

h ] over
a uniform distribution is taken. The vertex that is the nearest neighbor is computed
and the system is steered using the efficient inexact steering algorithm. The resulting
approximate trajectory is projected to the set of feasible trajectories. An insertion
failure occurs if the projected trajectory collides with a boundary of X such as an
obstacle. Otherwise, the precomputations for the new vertex are made and the new
vertex is appended to the graph.

Algorithm 6 (RRT with Efficient Inexact Steering) for xstart ∈ X:

1. Precompute xzero, K ,WK , SK , ΦK for xstart over t ∈ [0, tmax
h ]. (Eqs.3, 21, 15, 17, 7)

2. Ninit = {xstart , xzero, K ,WK , SK , ΦK }
3. V ← {Ninit }; E ← ∅
4. while xgoal not found:
5. xsamp ← sample(x), th,samp ← sample((0, tmax

h ])
6. Nnear ← nearestneighbor(V, xsamp).
7. (xnew, unew, x̃new, ũnew, J̃ �, th,samp) ← Algorithm 5 from Nnear
8. (x, u) ← P(x̃, ũ) (Eq.26)
9. if (xnew(t), unew(t)) ∈ (X,U ) for all t ∈ [0, th,samp]:
10. Precompute xzero, K ,WK , SK , ΦK for xnew(th,samp)

over t ∈ [0, tmax
h ].

11. Nnew ← {xnew(th,samp), xzero, K ,WK , SK , ΦK }
12. V ← V ∪ {Nnew}; E ← E ∪ {(xnew, unew; th,samp)}
13. return G = (V, E )

5.2 Implementation

Source code implementing Algorithm 6 for the 3-link pendulum on a cart in C++
can be obtained at https://github.com/timocaldwell/agile_rrt/. See the README
for implementation details and for animations of solution trajectories of the 3-link
pendulum on a cart as it traverses past obstacles. All results were computed on
the University of Colorado’s JANUS Supercomputer. A single run of Algorithm 6
utilized a single 2.8Ghz Intel Westmere processor.

5.3 Results

We compare planning results past two obstacles for multiple max time horizons
th = 0.05, 0.1, 0.175, 0.25, 0.5s and linearizing about xT = x0 or xT (t) = xzero(t).
The obstacles are circles, one placed at (3,−0.85) and the other at (3, 0.85), both
with radius 0.6. The setup and results of applying Algorithm 6 for differing max time

https://github.com/timocaldwell/agile_rrt/
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Fig. 3 The mean number of
tree vertices per number of
insertion failures for 100
runs of RRT at differing max
time horizons for the
linearization candidates
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.175
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0.8 Mean # of vertices
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xT = x0

xT (t) = xzero(t)

per insertion failures

horizons are shown in Fig. 1. Qualitatively, the planner explores significantly more
space with greater time horizons for the same number of tree vertices.

For each combination ofmax time horizon and linearization candidate, we execute
Algorithm 6 100 times. We stop execution once a state x ′ ∈ X is discovered within a
goal region defined by ‖x ′ − xcenter‖ < δ = 2, where xcenter is the equilibrium point
with pcenter = 6m and each pendulum in the inverted configuration. To compare
the candidate linearizations, the mean number of vertices in the RRT per number
of failed insertions is reported in Fig. 3. Due to the higher quality approximation
through linearizing about xzero, the linearization candidate xzero results in about 4
times fewer insertion failures than linearizing about x0.

We execute Algorithm 6 for randomly selected obstacles to illuminate how dif-
fering max time horizons perform under differing obstacle densities. Each obstacle’s
center is set to be within [2.5, 5.5] × [−1, 1] and the obstacles radius is within
[0, 0.1]. The goal region is any state x ∈ R

n where the top pendulum head is located
to the right of the obstacles—i.e. if for x , (X pend3,Ypend3) is the location of the 3rd

pendulum head, then x is within the goal region when X pend3 > 6m. This way, all
obstacles are within a region designated between the start state and the goal region.

We ran the experiment 100 times for each combination of max time horizons of
0.05, 0.1, 0.25, 0.5, 0.75, 1.0s andobstacle densities of 2, 4, 8, 16, 24, and32obstacles.
A success was attributed to runs that found the goal region within 10000 vertices.
The success rate is shown in Fig. 4a. The longer time horizons were more successful.
For instance, there were about 3 times more successful plans for tmax

h = 1.0 s than
tmax
h = 0.25s at 16 obstacles. The shortest time horizons had difficulty finding the
goal region within the allotted number of vertices.

As one may expect, trajectories of longer time horizon are more likely to collide
with an obstacle resulting in a failed insertion. In Fig. 4b, we show the number of
vertices per number of insertion failures and find that at 16 obstacles there are about
4 times as many insertion failures per vertex for tmax

h = 1.0 s than tmax
h = 0.25s.

However, the ratio is less for 2 obstacles where it is a little more than 2 times.
Fig. 5 shows example successful plans for 24 randomly placed obstacles.
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Fig. 4 Results for planning through a differing number of randomly placed obstacles for a max of
10,000 RRT vertices. The number of obstacles are given. a Success rate, where a success is awarded
if the planner finds a path to the goal region past the obstacles. b Number of vertices used to find a
successful path divided by the number of failed insertions

Fig. 5 An example successful plan for 24 random obstacles. Depicts the explored paths for each
pendulum head with the path that takes the top head the furthest in black

5.4 Discussion

The results compare the capability of an RRT-based planner to search the allow-
able state space of a dynamic system for differing max time horizons, differing
linearizations, and differing obstacle densities. Qualitatively, Fig. 1 provides evi-
dence that planning with longer time horizons will search a space using far fewer
vertices. Quantitative evidence is given in Fig. 4a where the success rate is greater
for longer time horizons when the number of vertices in the tree is used as a stopping
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criteria. However, as seen in Fig. 4b, there are more failed insertions for denser
obstacle sets. We conclude that the max time horizon should be variable on the local
obstacle density, which is a topic of future work.

Additionally, when longer time horizons are needed, Fig. 3 shows that linearizing
about the zero-control trajectory results in far fewer insertion failures and should be
used for the 3-link pendulum on a cart. For systemswith even stronger nonlinearities,
like hybrid systems, the higher quality approximation may be even more necessary,
and is also a future direction.

6 Conclusion

Complementing [2, 3, 15, 17], we approximate the optimal control problems that
arise in sample-based planning through a linearization. However, we linearize about
the zero-control trajectory, making the approximation valid for longer time horizons.
Moreover, we steer a closed-loop system instead of the numerically less tractable
open-loop system. Each of these decisions were made so that steering is viable
over long time horizons. With longer time horizons, a planner’s exploration can be
coarser, thereby requiring fewer nodes in a graph, thereby decreasing a sample-based
planner’s computation time.

Acknowledgements This work has been supported by NASA Early Career Faculty fellowship
NNX12AQ47GS02 and ARO grantW911NF1410203. This work utilized the Janus supercomputer,
which is supported by the National Science Foundation (award number CNS-0821794) and the
University of Colorado Boulder. The Janus supercomputer is a joint effort of the University of
Colorado Boulder, the University of Colorado Denver and the National Center for Atmospheric
Research. Janus is operated by the University of Colorado Boulder

References

1. Anderson, B.D.O., Moore, J.B.: Optimal Control: Linear Quadratic Methods. Dover Publica-
tions INC (1990)

2. Glassman, E., Tedrake, R.: A quadratic regulator-based heuristic for rapidly exploring state
space. In: IEEE International Conference on Robotics and Automation, pp. 5021–5028 (2010)

3. Goretkin, G., Perez, A., Platt Jr. R., Konidaris, G.: Optimal sampling-based planning for linear-
quadratic kinodynamic systems. In: IEEE International Conference on Robotics and Automa-
tion, pp. 2429–2436 (2013)

4. Hauser, J.: A projection operator approach to the optimization of trajectory functionals. In:
IFAC World Congress (2002)

5. Hauser, J.: On the computation of optimal state transfers with application to the control of
quantum spin systems. In: American Control Conference, pp. 2169 – 2174 (2003)

6. Hauser, J., Meyer, D.G.: The trajectory manifold of a nonlinear control system. In: IEEE
Conference on Decision and Control, pp. 1034–1039 (1998)

7. Hespanha, J.P.: Linear Systems Theory. Princeton university press, Princeton (2009)



Fast Sample-Based Planning for Dynamic Systems … 469

8. Janson, L., Pavone,M.: Fastmarching trees: a fastmarching sampling-basedmethod for optimal
motion planning in many dimensions. In: International Symposium on Robotics Research
(2013)

9. Jeon, J.H., Karaman, H., Frazzoli, E.: Anytime computation of time-optimal off-road vehicle
maneuvers using the rrt*. In: IEEEConference onDecision and Control, pp. 3276–3282 (2011)

10. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. In: The
International Journal of Robotics Research, pp. 846–894 (2011)

11. Kunz, T., Stilman, M.: Kinodynamic rrts with fixed time step and best-input extension are
not probabilistically complete. In: International Workshop on the Algorithmic Foundations of
Robotics (2014)

12. Lavalle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In: The International Journal
of Robotics Research, pp. 378–400 (2001)

13. Li, Y., Littlefield, Z., Bekris, K.E.: Sparse methods for efficient asymptotically optimal kino-
dynamic planning. In: Workshop on the Algorithmic Foundations of Robotics (2014)

14. Littlefield, Z., Li, Y., Bekris, K.E.: Efficient sampling-based motion planning with asymptotic
near-optimality guarantees for systems with dynamics. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1779–1785 (2013)

15. Perez, A., Platt, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-RRT*: optimal
sampling-based motion planning with automatically derived extension heuristics. In: IEEE
International Conference on Robotics and Automation, pp. 2537–2542 (2012)

16. Schmerling, E., Janson, L., Pavone,M.: Optimal sampling-based motion planning under differ-
ential constraints: the drift case with linear affine dynamics. In: IEEE Conference on Decision
and Control, pp. 2574–2581 (2015)

17. Webb, D.J., van den Berg, J.: Kinodynamic RRT*: asymptotically optimal motion planning for
robots with linear dynamics. In: IEEE International Conference on Robotics and Automation,
pp. 5054–5061 (2013)



Active Multi-view Object Recognition
and Online Feature Selection

Christian Potthast, Andreas Breitenmoser,
Fei Sha and Gaurav S. Sukhatme

1 Introduction

Recognizing objects from visual percepts is a challenging task for mobile robots.
Conventional approaches for object recognition are tour de force, relying almost
exclusively on complex statistical models for classification and heavy engineering of
computationally-intensive features [4, 14]. The processing capability of the recogni-
tion system, however, is seldomquestioned and assumed to be unconstrained. In stark
contrast, mobile robots are often underpowered and need to be frugal on resources
for computing and reasoning—being able to move is their first priority!

Active object recognition [2, 8] is an appealing paradigm to overcome the chal-
lenge.Here, amobile robot configures and positions its sensor to inspect an object and
recognize it as a previously learnt one. Active object recognition enables exploratory
actions to account for unforeseen objects or scenes, and offers greater flexibility in
actively seeking the most useful information for inference under uncertainty.

As such, adaptive action selection can potentially harvest the statistical modeling
power of conventional approaches even under the severe (computing) constraints on
the mobile robots. The general idea is for the sensors to be controlled such that only
data with high information content is collected, adapted dynamically to the robot’s
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knowledge (i.e., the belief state about the identity of the object) as a result of running
inference on previously acquired information.

Concretely, two common actions have been explored in previouswork: to compute
a subset of yet informative features and to control the number of different viewpoints.
However, thoseworks do not exploit the full potential of combining the two strategies
in concert.

Themain idea of our work hinges on the following intuition: how to reduce overall
costs for recognition by relying on very simple features extracted at multiple views
in lieu of complex features extracted at a single view? Specifically, in this paper,
we describe an information-theoretic framework that unifies these two strategies:
view planning for moving robots to the optimal viewpoints and dynamic feature
selection for extracting simple yet informative features. However, unlike standard
feature selection, the two strategies are symbiotic in our algorithm. The selected
features at any given time depend on the past trajectory of the viewpoints while
simultaneously affecting the future viewpoint(s).

We conduct extensive evaluations on a large RGB-D camera dataset of single
object scenes. Our results show that dynamic feature selection reduces the compu-
tation time by five folds at runtime. Furthermore, when we combine it with view-
point planning, we increase significantly the recognition accuracy, often as high as
8–15%. We further demonstrate the proposed approach through experiments with a
quadcopter robot, equipped with a RGB-D camera that collects multiple views by
flying around an object. Our results show pose estimates within ±45◦ of the ground
truth and object recognition accuracies of over 90%, despite using relatively simple
features in rather challenging object recognition experiments.

The remainder of the paper is organized as follows. Section 2 discusses related
work. We formalize the main idea of active multi-view object recognition in Sect. 3,
followed by a detailed description of how to plan optimal views and select features
online in Sect. 4. We report empirical evaluations in Sect. 5 and conclude in Sect. 6.

2 Related Work

Works on active perception go back as far as the seminal paper [3]. “Active” can either
refer to adjustments of the sensor parameters themselves, e.g., adaptively changing
the focal length of a camera, as in [3, 8], ormean that the entire sensormoves together
with the underlying platform. The latter is particularly common in robotics, where
robots plan new observation locations and viewing directions actively [2, 11, 13].
This is known as robotic view planning [18] and has various applications, such as
inspection of underwater structures, object search in indoor environments or detect-
ing objects on a table top [2]. The common goal of these and similar approaches is to
recognize objects and estimate their pose [8, 12, 13]. To deal with uncertainty in the
robot’s state space, [2, 20] formulated the problem as a POMDP, however, their deci-
sion making comes with a higher computational cost. References [6, 7, 16] propose
multi-view object recognition frameworks that use cameras and image databases;
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alternatively, objects can be recognized by extracting features from laser scanners
and RGB-D depth cameras [2, 9, 15]. Reference [15] applies the online boosting
approach from [10] to point clouds in the robotic domain for feature selection. Fea-
ture selection can support the object recognition task by reducing the computation
time and confusions through suboptimal feature sets [21]. A common alternative to
boosting is the selection of features by mutual information [17, 21]. Reference [1]
evaluates the feature selectionmethods from [17] when applied to the RGB-D dataset
of [12]. Although many approaches for active view planning as well as online fea-
ture selection exist, to the best of our knowledge, the advantages of both approaches
have never been leveraged in combination. Reference [22] proposes a unifying view
on active recognition and feature selection, however, focuses on feature interdepen-
dencies and the selection of features given a concrete context, e.g., a specific target
object to detect. Their method, as well as the other feature selection methods for
object recognition above, do not explicitly consider viewpoint selection, whereas
our object recognition framework applies both feature and viewpoint selection in
concert.

3 Problem Formulation

Given a static scene and an object in question, we want to recognize the object as
well as estimate its pose relative to the coordinate system of the observing sensor.
We are interested in choosing a sequence of actions for the sensor which maximizes
the recognition accuracy and leads to a minimum operation time and thus minimal
energy consumption. In each time step t , we are provided with a set of possible
actions at and have the choice of (1) stopping the recognition process, (2) staying at
the current location and computing a next feature ft with different feature type (i.e.,
applying a null action at = ∅), or (3) moving the sensor to a new observation location
by taking the action at �= ∅ and computing a first feature ft from the new viewpoint.
We assume that the type of the first feature evaluated at a new location is pre-defined
by the user. Further, we restrict the motion of the sensor to a path that connects fixed
discretized viewing positions. This reduces complexity in computation compared
to a continuous representation of viewpoints. After an action is taken, we obtain a
new sensor measurement. The sensor measurements are parametrized by features
from a feature vector f = [ f 1, . . . , f N ] which includes N different feature types
in total. The values of the features depend on the identity of an object.We incorporate
the uncertainty of the observations by the conditional probability density function
p( ft |ot ) with ot = {ct , θt }. In order to infer about the current object class ct and
orientation angle θt of the observed object from a set of measurements, we use a
Bayesian framework. The parameters are assumed to be obtained from a physical
object model and to be trained offline. The general system diagram of our active
recognition framework is presented in Fig. 1. It consists of an inner and an outer
loop and the four modules: object observation, feature selection, recognition state
estimation, and viewpoint selection.
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Fig. 1 Overview of the active multi-view object recognition framework. After each observation,
the HMM updates the recognition state, upon which a new feature (inner loop) or a new viewpoint
(outer loop) is selected. The feature type that is selected first at any new location is pre-defined

At each observation location, we start off with extracting one first feature. We
then have the choice of either extracting another feature (i.e., to locally exploit)
or moving to a new location (i.e., to globally explore), depending on our stopping
criterion. However, the premise is to extract as much information as possible at the
current location since moving to a new location is inherently more costly. Also,
we only want to move to a new location if the gain of information (in expectation)
significantly reduces the uncertainty of the belief state, or in other words, if the
recognition accuracy is expected to improve significantly. Each time we decide to
add a new feature, we compute the utility of all remaining features in our arsenal and
select the one with the highest utility. We only allow to add one feature at a time, and
once a feature is added it cannot be removed from the set anymore. By doing this,
integrating a new feature is simply an update step, without the need of re-computing
the posterior of the entire feature set. We continue until either we reach our stopping
criterion or all N features are observed at a given location, forcing us to move to
the next location or to terminate. By this, ideally, at each location we have only
extracted useful features and left out features that yield no additional information.
Additionally, not extracting a feature saves time, which helps to reduce the total time
needed to recognize the object.

Sequential Bayesian Recognition: Given a new feature ft observed from the object,
we want to efficiently integrate the new observation with results from prior observa-
tions and update our current belief about the object class and orientation. We formu-
late the recognition and pose estimation of the object as aBayesian network in formof
a HMM, where the observation sequence is defined as S = {o1, . . . , ot , a2, . . . , at }
as shown in Fig. 2. The hidden state of our HMM is defined as recognition state
ot with o1:T = {o1, . . . , ot , . . . , oT }, the observations are given as observed features
ft with f1:T = { f1, . . . , ft , . . . , fT } and the actions to move between viewpoints
are given as at with a1 = ∅ and a2:T = {a2, . . . , at , . . . , aT }. The state of the hidden
process satisfies theMarkov property, that is, given the value of ot−1, the current state
ot is independent of all the states prior to t − 1. We can define the joint distribution
of the HMM as follows:
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Fig. 2 HMM for sequential Bayesian recognition. Given a sequence of observed features f1:t
and executed actions a2:t , we reason about the hidden recognition state of an object at time t ,
ot = {ct , θt }, including its object class ct = ck and object pose θt = θq . (Null action a1 is not
displayed.)

P(o1:T , f1:T , a2:T ) = P(o1:T ) P(a2:T |o1:T ) P( f1:T |o1:T , a2:T )

=
[
P(o1)

T∏
t=2

P(ot |ot−1, at )

] [ T∏
t=1

P( ft |ot )
][ T∏

t

P(at )

]
.

(1)
The observation model is given as P( ft |ot ), representing the likelihood that fea-

ture ft is generated by recognition state ot . The transition probability is given by
P(ot |ot−1, at ), which means that the transition to the next recognition state is depen-
dent on the previous recognition state (i.e., the previous object class and orientation)
as well as the action that has been applied. The posterior marginals P(ot | f1:T , a2:T )

of all hidden state variables given a sequence of observations can be efficiently com-
puted using the forward-backward algorithm. The algorithm computes a smoothed
estimate given all evidence in two passes, with the first pass going forward in time
while the second pass going backwards in time:

P(ot | f1:T , a2:T ) = P(ot | f1:t , ft+1:T , a2:t , at+1:T )

∝ P( ft+1:T , at+1:T |ot ) P(ot | f1:t , a2:t ) .
(2)

In the first pass, we compute the forward probabilities P(ot | f1:t , a2:t ), i.e., the prob-
abilities for all t ∈ {1, . . . , T } ending up in a particular state ot given the first t
observations in the sequence. In the second step, we compute the probabilities
P( ft+1:T , at+1:T |ot ) of the remaining observations given any starting point t .

Observation Model: For recognition, we learn a function g : R| f | → N that maps
the extracted object features in f to a unique object identifier i ∈ {1, . . . , K Q},
each pointing to a distinct object model oi = {ck, θq}, with k ∈ {1, . . . , K } and q ∈
{1, . . . , Q}. K denotes the total number of object classes ck and Q defines the number
of discretized object poses θq per object class. Learning multiple models per object
class allows us to train a model for a partial view of an object. This enables inference
about an object’s pose and reduces the variance in the model. The function is learned
in a supervised fashion, with all possible features f = [ f 1, . . . , f N ] and the unique
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identifier i available as the value pair ( f , i) at model training phase. While we
assume that all features of an object are observed at training phase, we do not make
this assumption during prediction, where not all components of f are observed due
to feature selection.

To deal with the missing data problem at prediction time, we use a Gaussian gen-
erative model of the form p( f |oi ) = ∏M

m=1 N ( f |μoi ,m, σoi ,m). M is the number of
independent normal distributions to model a feature f . Each feature f is represented
as a feature histogram with M bins, and the mean μoi ,m and variance σoi ,m for each
bin m are computed over the training data of each object model oi . We use M inde-
pendent normal distributions instead of a multivariate normal distribution to avoid
high-dimensional features, which usually perform rather poorly due to the curse of
dimensionality. Defining the problem as an independent Gaussian generative classi-
fier has the additional advantage of handling missing features by marginalizing them
out at prediction time, i.e., instead of inferring about the missing features, we simply
perform inference on a subset of the full feature vector f .

The Gaussian representation of the features is compact and fast to train, since it
only requires the computation of the Gaussian feature parameters μoi ,m and σoi ,m .
Sequential learning as well as sequential updates of mean and variance are possible,
which has the potential of adaptively adding new observations to our trained features.
For example, we can compute the observation model for the full feature vector f as

p( f |oi ) =
N∏

n=1

ψn

M∏
m=1

N ( f n|μoi ,m, σoi ,m) , (3)

with ψn denoting a scaling factor which scales the different feature distributions.

4 Action Selection

In the case of object recognition, the task of action selection is twofold. On the
one hand, we would like to select the lowest possible number of viewpoints that
make an informed decision about an object possible. On the other hand, however,
certain viewing choices or combinations of features may be well explained by more
than one hypothesis. This means, the measurement distributions that correspond to
the competing hypotheses are similar for a particular viewpoint. With respect to
optimization, we want to select the actions that yield the most useful information
and to stop acquiring and incorporating new observations once we have reached a
desired level of certainty about an object.

Our Bayesian inference framework leads naturally to an iterative information-
theoretic approach for deciding on the next action at+1. Action selection attributes
a utility score st (a, f ) to each possible next action a and feature f . Possible next
actions are either to stay (i.e., a = ∅) and compute a next feature f , or to move and
compute a new first feature from a different observation location; the observation
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location is selected from the discrete set of all possible next viewing positions.
The next action is eventually evaluated by ft+1 = argmax f st (a, f ), for the best
feature f while fixing a = ∅, and by at+1 = argmaxa st (a, f ), selecting the best a
(without selecting f ). Several methods from information theory have been shown
to work well in action selection tasks. The more popular methods include expected
loss of entropy (LE) [6, 16], mutual information (MI) [2, 8] and Kullback–Leibler
divergence (KL) [13], which we adapted in our framework for the action selection
task.

Convergence and Stopping Criterion: The sequential update allows to acquire new
information and with that reduce the uncertainty of the belief state. Unfortunately,
one cannot guarantee that the sequential decision process reduces the uncertainty in
every single step. But, on average, by utilizing information-theoretic action selection,
the uncertainty will be reduced. The problem with information-theoretic methods is
to find an adequate stopping criterion. In the case of feature selection, we need a
stopping criterion that defines when to stop adding new features from the current
location and rather move to a new location. Similarly, for viewpoint selection we
need a stopping criterion to know when we can terminate the object recognition
process and rely on the observations and inference we have made so far. The results
of an action selection method highly depend on the stopping criterion as well as
the parameters controlling that criterion. Wrong choices can lead to sub-optimal
performance, with all possible actions a being processed in the worst case.

4.1 Feature Selection

Feature selection can be performed at training time or at prediction time. At training
time, the feature space is reduced in advance by selecting relevant features, such
that the loss of significant information is minimal. At prediction time, features are
selected and computed online. In this work, we train all features and select features
only at prediction time. This keeps the complexity low during training and facilitates
updates by adding new features without the need to re-train the entire training set.

We want to compute relevant features, i.e., the features should provide additional
information and preferably result in a unimodal posterior distribution. This becomes
especially important on a robot platform with minimal computation power and short
operation time. In the following subsections, we describe two methods for feature
selection, one using LE and one using MI.

4.1.1 Feature Selection by Expected Loss of Entropy

Maximum LE indicates a feature that, if extracted next, would lead to the highest
reduction in entropy of the posterior distribution on average. In other words, the
selection of this feature reduces the uncertainty about our hypothesis on average the
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most. We compute the average LE because we cannot be certain about which object
we are currently observing.

We compute the utility score st (a, f ) for a null action a = ∅ and a next pos-
sible feature f , based upon the confidence in the current posterior probability
P(oi | f1:t , a2:t ) obtained from (2), as

st (a, f ) =
K Q∑
i=1

P(oi | f1:t , a2:t ) E[ΔH(oi , f1:t , f, a2:t )] , (4)

with K Q object models in the model set. In this formulation, LE is weighted by the
current belief of the object class oi being the correct hypothesis, and estimated as
the expectation E[·] of the difference in entropy between two subsequent posterior
distributions,

E[ΔH(oi , f1:t , f, a2:t )] = H(ot | f1:t , a2:t ) −
∫

p( f |oi ) H(ot | f1:t , f, a2:t ) d f .

(5)
As we do not know which feature to expect, we need to integrate over the entire
feature space. The feature distribution p( f |oi ) is given by the observationmodel. The
Shannon entropy H(·) measures the amount of uncertainty about the object model o
and can be written as H(ot | f1:t , a2:t ) = −∑K Q

i=1 P(oi | f1:t , a2:t ) log P(oi | f1:t , a2:t )
in the discrete case.

Since (5) is not possible to compute in closed form, we approximate by sampling
from the feature distribution, and obtain

E[ΔH(oi , f1:t , f, a2:t )] ≈ H(ot | f1:t , a2:t ) −
Γ∑

H(ot | f1:t , f, a2:t ) , (6)

with Γ being the number of samples drawn from the feature distribution P( f |oi ).
We can further approximate (6) by sampling with zero variance, which yields the
mean μoi of our trained object model oi , and with that, a mean feature vector f μoi

.

In the case of selecting the next feature, the mean feature vector contains only one
feature fμoi

, which leads to

E[ΔH(oi , f1:t , f, a2:t )] ≈ H(o| f1:t , a2:t ) − P( fμoi
|oi ) H(o| f1:t , fμoi

, a2:t ) . (7)

The evaluation of st (a, f ) is quite costly to compute, since it involves the sequen-
tial update of the posterior distribution given the predicted observation. Evenwith the
mean feature approximation of (7), this still involves the computation of K Q predic-
tive posteriors. Restricting attention to only the most probable oi object hypothesis
can further reduce the computational cost.

Stopping Criterion: For LE, we stop integrating more features when the loss of
entropy for the selected action is small, max(st (a, f )) < τ1.
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4.1.2 Feature Selection by Mutual Information

In contrast to LE, which uses the predictive posterior distribution, MI uses the con-
ditional entropy. Compared to the predictive posterior distribution, the conditional
entropy is much cheaper to evaluate, making the next action fast to compute in com-
parison. The utility score is computed as st (a, f ) = I (ot ; f |a), by letting a = , from
the averaged MI,

I (ot ; f ) =
K Q∑
i=1

P(oi | f1:t , a2:t )
∫

p( f |oi ) log
p( f |oi )∑K Q
j=1 p( f |o j )

d f . (8)

Since this quantity again is not possible to compute in closed form, we also approx-
imate (8) with the mean feature fμoi

by

I (ot ; f ) ≈
K Q∑
i=1

P(oi | f1:t , a2:t ) P( fμoi
|oi ) log

P( fμoi
|oi )∑K Q

j=1 P( fμoi
|o j )

. (9)

Here, the mean feature once again is one particular feature, namely the feature we
want to test for its information content.

Stopping Criterion: We stop to select a new feature from the current location when
st (a, f ) decreases compared to the previous value [21].

4.2 View Planning

The goal in view planning is to evaluate and select new viewpoints that yield us novel
and useful information about the object. Initially, we have not observed anything.
So every observation has equal usefulness under the assumption that we do not
have any prior knowledge and a uniform belief state. However, every subsequent
observation from a different viewpoint bears additional information that may help
us to identify the object correctly. The problem consists of not only finding new
observation locations that provide previously unseen information, but also viewing
positions that help us to improve our current belief of the object in question. In the
following subsections, we formulate three methods for viewpoint selection based on
three different information-theoretic measures, namely LE, MI and the KL-based
Jeffrey’s divergence.

Stopping Criterion: The stopping criterion for whether to select a new observation
location or to terminate depends on the entropy. We will return the MAP estimate of
the posterior distribution whenever H(P(ot | f1:t , a2:t ) < τ2 .
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4.2.1 Viewpoint Selection by Expected Loss of Entropy

Similar as with LE for feature selection, we compute the next best viewpoint by using
the approximationvia themean feature vector f μoi

. This time, themean feature vector
contains all features and not just a subset. Since we sample the mean feature from
our model, there is no overhead in feature computation, as there would be for making
an actual observation. Given the set of actions to move to possible viewing positions,
we now compute the utility score st (a, f ) for an action a �= ∅ and a feature f as

st (a, f ) =
K Q∑
i=1

P(oi | f1:t , a1:t ) E[ΔH(oi , f1:t , f, a2:t , a)] . (10)

We can see that we again have to compute a complete update of the poste-
rior distribution—this time, however, also including the transition of the sen-
sor from the currently believed state to a new state by performing action a.
E[ΔH(oi , f1:t , f, a1:t , a)] in (10) is then obtained by a “mean feature” approxi-
mation,

E[ΔH(oi , f1:t , f, a2:t , a)] ≈ H(ot | f1:t , a2:t ) − P( f μoi
|oi , a)H(ot | f1:t , f μoi

, a2:t , a) .

(11)

4.2.2 Viewpoint Selection by Mutual Information

As seen for feature selection before, the difference between MI and LE is that the
second term in (11) is the conditional entropy instead of the entropy of the posterior.
The utility score again is directly obtained from MI, st (a, f ) = I (ot ; f |a), where
MI for viewpoint selection is now defined as follows

I (ot ; f |a) ≈
K Q∑
i=1

P(oi | f1:t , a2:t ) P( f μoi
|oi , a) log

P( f μoi
|oi , a)∑K Q

j=1 P( f μoi
|o j , a)

. (12)

4.2.3 Viewpoint Selection by Jeffrey’s Divergence

Another way to choose new viewing positions is by selecting viewpoints such that,
regardless of the true object and pose under observation, the most likely distributions
of the resulting measurements are predictably dissimilar. Therefore, a new viewpoint
must be selected such that competing hypotheses will appear as different as possible,
and that the distinction measured by the features is increased. Finally, the best action
is evaluated by computing
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st (a, f ) =
K Q∑
i=1

K Q∑
j=1

P(oi | f1:t , a2:t ) P(o j | f1:t , a2:t ) J (P( f μoi
|oi , a) ‖ P( f μoi

|o j , a)) ,

(13)

where J (P( f μoi
|oi , a) ‖ P( f μoi

|o j , a)) is the Jeffrey’s divergence, defined as

J (P1 ‖ P2) = K L(P1 ‖ P2) + K L(P2 ‖ P1), and K L(P1 ‖ P2) = ∫ ∞
−∞ p1(x) log

p1(x)
p2(x)

dx denotes the relative entropy or KL-divergence for distributions P1 and P2.
The KL-divergence presents the difference in information if samples from the dis-
tribution P1 are assumed to be samples from P2 .

5 Experiments

To test the framework we have described in the previous sections, we ran extensive
evaluations on real world data. In this section, we report on the performance of the
individual modules and then demonstrate the performance of the complete system.

5.1 RGB-D Object Dataset

We evaluated our object recognition and action selection framework on the publicly
available RGB-D object dataset introduced in [12]. The dataset contains 41 877 data
points, each comprising a color image, a 3D point cloud and the orientation of the
object, for a total of 300 everyday objects. For each object, the data is recorded
from viewing directions emanating from the circumference all around the object,
including the three different viewing angles (angles of inclination) of 30◦, 45◦ and
60◦ per direction. The overall dataset is challenging, since the objects in the dataset
can look very similar, especially when they belong to the same object category.
Furthermore, the objects in the dataset exhibit large changes in illumination due to
the different viewing angles from which the objects were captured.

We compute a feature vector f that contains N = 4 independent features:
object bounding box, color histogram, SIFT [14] and viewpoint feature histogram
(VFH) [19]. Each feature represents a different object property: size, color, scale-
invariant image description and geometry. In accordance with (3), each single feature
or component of a feature histogram, respectively, is expressed as independent nor-
mal distribution. As we will see, the color feature is the fastest and most powerful
single feature among the four features, and thus the first feature we evaluate at each
location.

In all our experiments, we use the same evaluation procedure as proposed in [12]
and also used in [5]. We test our framework on the task of recognizing the instance
of an object. We train our object models from f using data captured from view-
points at viewing angles of 30◦ and 60◦ in each direction, and test them against
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features computed from data that is recorded from viewpoints at viewing angles of
45◦. Based on the computed features, we generate L = 8 different object models
per object instance, which clusters the viewing directions along the circumference
horizontally into bins spanning 45◦. This subdivision trades computation cost off
against performance, and defines the accuracy of the objects’ pose estimates. All
the reported accuracies of our multi-view object recognition results are expressed
as recall and are average values over 10 trials. Regarding the stopping criteria, we
terminate the action selection procedure whenever either the entropy of the poste-
rior distribution has been reduced to τ2 = 0.1 or the MAP estimate of the posterior
distribution exceeds 60% in accuracy. After termination, we use the MAP estimate
of the posterior distribution after (2) to determine the most likely object. For the LE
formulation in feature selection we set τ1 = 0.1 and after termination take as well
the MAP estimate as the most likely object.

5.2 Online Feature Selection

The first experiment confirms the usefulness of online feature selection in a single-
view recognition task. Selecting the right subset of features can reduce the compu-
tation cost while keeping comparable recognition performance.

Each feature has a cost associated for computation; the average computation times
of our features are as follows: 0.01 s for the bounding box, 0.0005 s for the color
histogram, 0.025 s for the SIFT features, and 2.0 s for the VFH. Figure3 shows the
average total cost of computation per object and the recognition accuracy plotted
against individual feature combinations. The color feature seems to have the best
single recognition performance and is the cheapest to compute. TheVFHon the other
hand does not have a lot of recognition power as such and is rather expensive. From

Fig. 3 Performance and cost
of different feature
combinations in single-view
object recognition. The
recognition accuracies are
displayed as red bars (left
side scale, in %). The
average cost of computing
the feature combinations per
object is shown in log scale
as blue bars (in seconds)
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Table 1 Individual performance for single-view object recognition. “Loss Entropy” and “Mutual
Information” denote the feature selection method, with “F Cost” being the average cost per object
for computing the features and “FS Cost” being the average cost per object for feature selection

Method Accuracy (%) F cost (s) FS cost (s) Total (s)

C+B+S 68.91 0.04 0.00 0.04

C+B+S+V 74.59 2.04 0.00 2.04

Loss entropy 73.82 0.19 1.05 1.24

Mutual
information

73.21 0.1 0.2 0.3

Reference [12]
(kSVM)

74.80 – – –

Reference [4]
(Kernel
Descriptor)

91.2 3.2 – 3.2

a cost versus performance standpoint, the feature combination {Color, Bbox, SIFT}
performs best with an accuracy of 68.91% and a low average feature computation
cost of 0.04 s. However, note that the VFH also has its value since, if included, it
increases the recognition accuracy to 74.59%, as detailed in Table1. Additionally,
we can see that using feature selection (MI, LE) reduces the cost drastically while
keeping recognition accuracy similar to using all features.

Table1 further shows that the average total cost of feature computation can be
considerably reduced bymaking use of feature selection (see the third and fourth row
of column “F Cost” in Table1). Here, we utilize LE and MI according to Sect. 4.1 in
the feature selection methods. Among the different methods, the LE measure seems
to select more features, and more importantly, is much more expensive to compute
than MI because we need to update the posterior distribution and compute a full
update step.

We compared all results with the results of the original dataset in [5, 12]. The
first paper has very comparable results to our HMM framework and uses similar
features to ours, no timing has been provided but it is probably slightly higher than
our features. The latter paper reports much higher accuracies; this is mainly due to
a more descriptive feature which seems to generalize very well. The cost for such a
feature, however, is very high computation time. Moreover, the features used in the
two papers are learned in batch, which makes them less flexible compared to our
sequential feature learning approach.

5.3 Multi-view Object Recognition

Although the computation time can be substantially reduced through feature selec-
tion, the achievable recognition accuracies are limited around 75% for single-view
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object recognition. The reasons are the relative simplicity of our four feature types
and their limitation in generalizing well for the given RGB-D dataset. However, even
with fairly simple features we can achieve improved recognition accuracies for both
object class and pose by utilizing an information-theoretic multi-view object recog-
nition approach. In the following tests, we use the MI measure for feature selection,
since it is on par with the LE measure regarding recognition performance, and in
addition, has lower computation cost (see Table1).

Table2 shows the performance and Table3 summarizes the cost of multi-view
object recognition. The first row shows that using all features (i.e., no feature selec-
tion) has a very high cost but random viewpoint selection already increases the recog-
nition accuracy by about 10%. In the second row, due to feature selection usingmutual
information and random viewpoint selection, we can see a gain in reduced compu-
tation time and an increase in accuracy. On average, random viewpoint selection
terminates after a little more than 3 observations. By using the information-theoretic

Table 2 Performance of our multi-view object recognition framework. All but the first row uses
the MI measure in the feature selection method. We show the average recognition accuracy, the
average number of observations and the average bin error of estimated viewing directions. Each bin
represents a range of observation angles of 45◦

Method Accuracy Observations Avg. bin error

C+B+S+V (no FS) 84.48% ± 1.4 3.4 ± 0.2 2.41 ± 0.07 (bins)
(±67.5◦)

Random 86.76% ± 0.4 3.2 ± 0.2 2.19 ± 0.02 (bins)
(±67.5◦)

Jeffrey’s divergence 88.34% ± 0.6 2.7 ± 0.1 1.62 ± 0.01 (bins)
(±45.0◦)

Loss entropy 89.82% ± 1.3 2.4 ± 0.2 1.54 ± 0.01 (bins)
(±45.0◦)

Mutual information 91.87% ± 0.7 2.5 ± 0.1 1.48 ± 0.01 (bins)
(±45.0◦)

Table 3 Average computation cost per object for our multi-view object recognition framework.
The columns show the average cost for computing the feature (“F Cost”), average cost for feature
selection (“FS Cost”) and average cost for viewpoint selection (“VS Cost”)

Method F cost (s) FS cost (s) VS cost (s) Total cost (s)

C+B+S+V (no
FS)

7.02 ± 0.42 0.00 0.0 7.02 ± 0.42

Random 0.40 ± 0.04 0.83 ± 0.05 0.0 1.23 ± 0.09

Jeffrey’s
divergence

0.30 ± 0.03 0.58 ± 0.02 3.E–4 ± 2.E–4 0.88 ± 0.05

Loss entropy 0.23 ± 0.04 0.50 ± 0.04 5.4 ± 0.6 6.13 ± 0.68

Mutual
information

0.24 ± 0.03 0.51 ± 0.03 1.1 ± 0.2 1.85 ± 0.26
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measures for viewpoint selection, we find that LE, MI and Jeffrey’s divergence all
perform similarly well—with MI being the best in terms of recognition accuracy.
The lowest computation time is achieved by using the Jeffrey’s divergence because it
can compute new viewing positions in almost no time. The MI formulation is supe-
rior to the LE formulation in speed, since it does not need to compute the predictive
posterior.

We further evaluate our multi-view approach for estimating an object’s pose. As
previously mentioned, we train each object with a number of different object models,
in our case L = 8 models per object. When observing a feature, we can infer from
which model it has most likely been generated, and by this, further infer about the
orientation of the object. The performance of the object’s pose estimation is presented
in Table2. The table shows the average bin error of the estimated viewing directions,
which is computed from the differences between the inferred and the true viewing
angles. For the first row, all the features were computed (i.e., no feature selection); the
feature selection methods with different information-theoretic measures were used
for the remaining rows. We are on average >2 bins off in our estimation without
view planning (i.e., random selection of views), which corresponds to an average
pose error of about 67.5◦. If we apply one of the three more sophisticated viewpoint
selectionmethods, we yield an average bin error of<2 bins. This results in an average
pose error of 45◦. For comparison, the experiments in [5] report an average pose error
of 44.8◦, which is on par with our results.

5.4 Quadcopter Experiments

Finally, to show the overall performance of our active multi-view object recognition
framework, we have conducted experiments on our custom-built quadcopter plat-
form. As shown in Fig. 4, the quadcopter is equipped with an Xtion RGB-D camera
for data acquisition and can fly autonomously to a new observation location.

Given an object, the task is to fly the quadcopter around the object and take asmany
observations as necessary to correctly recognize the object. Compared to the simu-
lated experiments above, where data is captured with a RGB-D camera mounted on
a tripod, experiments on a robotic platform are generally more challenging. Specific
challenges regarding object recognition on a fast moving platform include motion
blur and constant changes in illumination.

As we do not have any of the objects used in the RGB-D dataset at hand, we
captured 10 new objects and added them to the dataset, which now consists of a total
of 310 objects. We captured the data in the same way as described in [12] and chose
objects similar to the ones already contained in the dataset. We trained our models
with all 310 objects and observations taken at the two viewing angles of 30◦ and 60◦.
In the actual experiment, the quadcopter then flies around the object at a distance
and height that allows for a viewing angle of 45◦ roughly.

In each run of the experiments, the robot starts at a random position with respect
to the object, fromwhere it acquires the first observation of the object. From there on,
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Fig. 4 Quadcopter experiment and test setup. The quadcopter robot, equipped with a RGB-D
camera, collects multiple views of a target object (e.g., a cereal box) in an active object recognition
task

Table 4 Single-view and multi-view object recognition based on data from the quadcopter robot.
In both cases, results with and without feature selection are presented. Advantages of online feature
selection as well as multi-view object recognition are revealed by the experiments

Method Accuracy Obsv. Avg. bin error Avg. Cost (s)

Single-view

C+B+S+V (no
FS)

82.16% 1 2.1(bins)(±67.5◦) 2.14

Feature Selection
(MI)

87.32% 1 1.9(bins)(±45◦) 0.19

Multi-view

Mutual
information (no
FS)

96.5% ± 0.5 2.0 ± 0.1 1.6±
0.1(bins)(±45◦)

5.63 ± 0.3

Mutual
information

99.8% ± 0.1 1.6 ± 0.01 1.1±
0.1(bins)(±45◦)

1.48 ± 0.2

it selects the following actions as described in the previous section—either inferring
about another feature from f or flying to a new viewpoint. We terminate the process
once our stopping criteria are reached. Figure4 shows an example of the quadcopter
taking observations of a cereal box object during one of the experiments.

Table4 summarizes the experimental results from the quadcopter experiments,
averaged over eight runs with different starting locations. We can see that for all
experiments, whether conducted with single-view or multi-view object recognition,
online feature selection not only helps to decrease the computation time but also
increases the recognition accuracy. The average pose error is similar to the error in
the simulation experiments, however, the average bin error is smaller, which results
in more correctly classified bins in total.

Multi-view recognition on average only required 1.6 observations, which means
that often we are able to make a confident decision after only one scan. In some
instances, however, by acquiring additional observations, the recognition accuracy
could be increased by more than 10–99.8%. This of course comes with a price of
actually moving the robot to a new location which furthermore increases the cost
of recognizing the object. In practice, whether the cost of moving is justified, is
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probably a tradeoff between accuracy and energy saving. However, we can clearly
see that adaptive feature selection has huge benefits by decreasing computation time,
which is very beneficial for vehicles with low energy budget like quadcopters.

6 Conclusion and Future Work

We have presented an information-theoretic action selection framework for object
recognition that is capable of sequential training and classification, view planning as
well as online feature selection. Online feature selection is especially useful since it is
adaptive, can reduce computation time drastically and is more flexible, compared to
offline feature selection. Our framework was shown to lead to increased recognition
accuracies by using four relatively simple features in combination with the multi-
view object recognition approach. Furthermore, we demonstrated that information-
theoretic formulations perform better than random action selection strategies in that
they require fewer observations and less computation time.

Compared to state-of-the-art single-view object recognition methods, our multi-
view object recognition approach achieves comparable results. Our approach is not
primarily meant to replace single-view methods but rather to complement them. Put
in other words, if a confident decision can be made about an object after only one
observation, there will be no need for taking a second view. However, there will
always be objects with inherent ambiguity, and it is in those cases in which the
multi-view approach is brought to bear. Feature selection is useful regardless of the
number of views and the object in question, since it reduces the dimensionality of
the feature space and decreases the overall computation cost.

The kernel features used in [5] seem to be far superior to our simple features.
Thus, the question arises how our approach would perform when using these more
complex features instead. We are currently in the process of experimenting with
kernel features and will test them with our framework.

Acknowledgements The authors would like to thank JörgMüller for his helpwith the development
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An Iterative Kalman Smoother for Robust
3D Localization and Mapping

Dimitrios G. Kottas and Stergios I. Roumeliotis

1 Introduction and Related Work

Over the past decade, localization systems fusing inertial data, from an inertial mea-
surement unit (IMU), with visual observations, from a camera [i.e., vision-aided
inertial navigation systems (VINS)] have become a popular choice for GPS-denied
navigation (e.g., indoors [1], or in space [2]). The dramatic upswing inmanufacturing
of low-cost, miniature IMUs and cameras, combined with the increasing capabili-
ties of embedded computers, have made mobile devices (e.g., cell phones) excellent
platforms for VINS, but raised also new challenges, when designing algorithms with
improved robustness and efficiency characteristics.

The Maximum a Posteriori (MAP) estimator for VINS, corresponds to a batch
least-squares (BLS) problem, over the platform’s trajectory, and the map of the
environment. Unfortunately, BLS approaches cannot serve time-critical navigation
applications (e.g., augmented reality), due to their unbounded processing and mem-
ory requirements, as the problem size increases with time [3].

Filtering approaches, on the other hand, maintain bounded processing time, by
optimizing over a sliding window of the most recent visual and inertial measure-
ments, while absorbing past measurements into a prior cost term. Depending on
their representation of the prior information, filtering methods can be classified into
extended Kalman filters (EKFs) and inverse filters (INVFs) [4].

EKF-based algorithms exhibit excellent numerical stability, andhave beendemon-
strated in real-time VINS implementations [5, 6]. Despite their efficiency, how-
ever, they do not allow re-processing the visual and/or inertial measurements within
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the optimization window, which may severely affect their performance under chal-
lenging conditions. Specifically, consider visual observations, that arrive as feature
tracks, spanning a set of images within the estimator’s sliding window. EKF-based
approaches (e.g., the MSC-KF [2]), postpone their processing till they have reached
their maximum length, which causes a delay in the state correction equal to the time
between when a feature track is available for processing (i.e., when it spans at least
two images), and when it is actually processed. Although small (typically less than
2 s for personal localization), such a delay can affect the accuracy of time-critical
navigation systems. Furthermore, under scenarios with increased linearization errors
[e.g., (re)-initialization (after failure) of the system’s operation, when the available
estimates of critical quantities, such as the IMU’s velocity and biases, are of low
accuracy], re-processing visual and inertial measurements, can significantly improve
accuracy and robustness, by increasing their rate of convergence.

Such appealing capabilities of filtering algorithms, are supported by the INVF
(e.g., [7–10]), which allows re-processing all inertial and visualmeasurementswithin
the optimization window considered. Unfortunately, due to the high condition num-
ber of theHessian, INVFs typically require 64-bit precision, reducing their efficiency,
especially when considering that most current mobile devices feature ARM proces-
sors and NEON co-processors that provide a 4-fold processing speedup when using
32-bit precision. Note also that, with the exception of [11], existing INVFs for VINS
do not classify visual observations based on their track length, not allowing their
efficient processing (e.g., as in the MSC-KF) when possible.

To overcome the limitations of the EKF and INVF when applied to visual-inertial
odometry (VIO), in [12], we introduced an iterative Kalman smoother (IKS), that
shares the advantages of both approaches. In this paper, we extend the methodology
of [12], to the most general case for VINS, which allows (re)-processing visual data
either using a VIO approach (as in the MSC-KF), or as SLAM landmarks when their
track length exceeds the estimator’s sliding window. In particular, we introduce a
sliding window IKS for VINS with the following key advantages:

• The IKS iteratively re-linearizes both inertial and camera measurements within
the estimator’s window, and re-processes visual data over multiple overlapping
sliding-window epochs, thus improving robustness and increasing accuracy.

• The IKS employs a covariance matrix, as well as a set of linearized constraints
(instead of a Hessian) for representing prior information, thus inheriting the supe-
rior numerical properties of the EKF and leading to efficient implementations.

Besides the detailed analysis and description of the proposed IKS algorithm, we
demonstrate its robustness and assess its accuracy in simulations and experiments
over challenging indoor VINS scenarios, including, filter initialization and scarcity
of feature tracks due to sudden turns or camera occlusions. Finally, we provide a
timing comparison between the IKS and the EKF, using a mobile processor.
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2 Vision-Aided Inertial Navigation System (VINS)

The system state1 at time tk is given by xk = [
xTIk

I��Tk
]T

where xIk contains
all kinematic quantities, describing the motion of the IMU’s frame of reference
{Ik}, while I��k comprises landmarks of the environment. In particular, xIk =
[
I kqT

G
GpT

Ik

GvTIk b
T
ak b

T
gk

]T
, where I kqG is the quaternion representation of the orienta-

tion of the global frame {G} in {Ik}, GvI k and
GpI k are the velocity and position of {Ik}

in {G} respectively, while bak and bgk correspond to the gyroscope and accelerometer

biases. Finally, I��k comprises Nk landmarks, i.e., I��k = [
I�fT1 . . . I� fTNk

]T
where I� f j

denotes the inverse-depth parameterization of feature f j in {I�}.

2.1 Inertial Measurements

The IMU provides measurements of the platform’s rotational velocity and linear
acceleration, contaminated by white Gaussian noise and time-varying biases. Let
uk,k+1 denote the inertial measurements within the time interval

[
tk, tk+1

]
, which

through integration, define a constraint (discrete-time process model) of the form:

xIk+1 = f(xIk , uk,k+1 − wk,k+1) (1)

wherewk,k+1 is a discrete-time zero-mean white Gaussian noise process with covari-
anceQk .2 Linearizing (1), at the state estimates corresponding to the two consecutive
states, x�

Ik
, x�

Ik+1
, results in the following IMUmeasurement model, relating the error

states x̃�
Ik
and x̃�

Ik+1
:

x̃�
Ik+1

= r�
uk,k+1

+ Φ�
k+1,k x̃

�
Ik + G�

k+1,kwk,k+1 (2)

where r�
uk,k+1

:= f(x�
Ik
,uk,k+1) − x�

Ik+1
, and we have defined the error state x̃�

Ik
as the

difference between the true state xIk and the linearization point x
�
Ik
(i.e., x̃�

Ik
= xIk −

x�
Ik
).3 The Jacobians Φ�

k+1,k and G�
k+1,k are evaluated at x�

Ik
, x�

Ik+1
, and are available

in numerical or analytical form [1]. Although the corresponding cost term,

cuk,k+1(x̃
�
k:k+1) = ||r�

uk,k+1
− [−Φ�

k+1,k I
] [

x̃�
Ik

x̃�
Ik+1

]
||2Q�

k

1Without loss of generality, we assume that the IMU-camera extrinsic calibration is the identity
transformation and the clocks of the two sensors are perfectly synchronized. In practice, both are
included in the system’s state following the methodologies described in [13] and [6], respectively.
2The interested reader is referred to [1, 5, 14], and references there-in, for details on IMU integration.
3For the quaternion q we employ a multiplicative error model q̃ = q ⊗ q�−1 � [

1
2 δθT3×1 1

]T
.
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where x̃�
Ik:k+1

:= [
x̃�T
Ik

x̃�T
Ik+1

]T
and Q�

k = G�
k+1,kQkG�T

k+1,k , can be re-linearized multi-
ple times within the INVF framework, current EKF-based approaches linearize (1)
only once, during state and covariance propagation (i.e., every time a new inertial
measurement becomes available). This limitation may negatively affect performance
when the linearization errors are large (e.g., during system initialization).

2.2 Visual Observations

In order for a camera to provide kinematic information, a feature-tracking pipeline
is required. A common choice comprises a feature-extraction method (e.g., the Har-
ris corner [15]) along with a tracking algorithm (e.g., the Kanade-Lucas-Tomasi
(KLT) [16]). Once a new image arrives, point features from the previous image, are
tracked to the new one, while new features are extracted from areas that just entered
the camera’s field of view [1]. An example of the feature tracks generated from such
an image-processing pipeline is shown in Fig. 1.

Consider a point feature f j , observed in camera poses xIk+1:k+N j
, where N j ≤ M

and M is the window’s length. We represent f j , using its homogeneous coordinates
and inverse distance in {Ik+1}, hereafter denoted by Ik+1f j , or using its Cartesian
coordinates, Ik+1p f j . For the m-th measurement, m ∈ [

1, . . . , N j
]
, the observation

zk+m, j acquired by a calibrated camera is:

zk+m, j = π(C(Ik+mqIk+1)
Ik+1p f j + Ik+mpIk+1) + nk+m, j (3)

where, π(
[
x y z

]T
) = [ x

z
y
z

]T
, while nk+m, j ∼ N (0, σ 2I2), and I2 is the 2 × 2 iden-

tity matrix. Linearizing (3), yields:

z̃�
k+m, j = H�

R,k+1, j x̃
�
Ik+1

+ H�
R,k+m, j x̃

�
Ik+m

+ F�
k+m, j

Ik+1 f̃�
j + nk+m, j

Collecting all N j observations of feature f j in one vector, yields:

Fig. 1 At tk+M , there exist 6 categories of feature tracks described in Sect. 2.3
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z̃�
j = H�

R, j x̃
�
Ik+1:k+N j

+ F�
j
Ik+1 f̃�

j + n j (4)

which corresponds to the cost term:

cz f j
(x̃�

Ik+1:k+N j
, Ik+1 f̃ j ) = ||z̃�

j − H�
R, j x̃

�
Ik+1:k+N j

− F�
j
Ik+1 f̃ j ||2σ 2I (5)

Consider an orthonormal matrix Θ j , partitioned as Θ j = [
S j U j

]
, where the 3

columns of S j span the column space of F�
j , while the 2N j − 3 columns of U j , its

left null space. Projecting (4) onto Θ j , partitions cz f j
into two parts:

cz f j
(x̃�

Ik+1:k+N j
, Ik+1 f̃ j ) = ||ΘT

j

(
z̃�
j − H�

R, j x̃
�
Ik+1:k+N j

− F�
j
Ik+1 f̃ j

)
||2σ 2I2N j

= ||rK�
j − HK�

j x̃�
Ik+1:k+N j

||2σ 2I2N j−3
+ ||rM�

j − HM�
j x̃�

Ik+1:k+N j
− RM�

j
Ik+1 f̃ j ||2σ 2I3

= cKz f j
(x̃�

k+1:k+N j
) + cMz f j

(x̃�
Ik+1:k+N j

, Ik+1 f̃ j ) (6)

with rK�
j = UT

j z̃
�
j , H

K�
j = UT

j H
�
R, j , and rM�

j = ST
j z̃

�
j , H

M�
j = ST

j H
�
R, j , R

M�
j =

ST
j F

�
R, j . The second term, cMz f j

contains all information regarding feature f j , while

cKz f j
defines a multi-state constraint only among the poses xIk+1:k+N j

. For feature tracks

that do not exceed the estimator’s window, as in the MSC-KF [2], we consider only
the cost term cKz f j

. Specifically, since RM�
j is an invertible square matrix and for any

x̃�
Ik+1:k+N j

there exists a Ik+1 f̃ j , such that cMz f j
is exactly zero,minimizing (6) is equivalent

to minimizing cKz f j
(x̃�

Ik+1:k+N j
). As we describe later on, for feature tracks whose span

exceeds the sliding window (i.e., SLAM landmarks), cMz f j
allows initializing them

into the estimator’s map, and subsequently optimizing their measurements across
non-overlapping epochs of the sliding window.

2.3 Visual Observations in Sliding-Window Estimators

We classify visual observations, in sliding-window estimators, based on their:
(i) Track length which distinguishes SLAM landmarks from MSC-KF features,
since for the latter, their track length does not exceed the estimator’s window. Thus,
optimizing over the MSC-KF feature’s coordinates is not required for minimizing
their corresponding cost terms [see (6)].
(ii) Earliest observation which if it involves the sliding window’s “tail” (oldest)
state, it does not allow postponing their absorption into the estimator’s prior.
In particular, we distinguish the following categories of visual observations:

• Past features (ZP ) corresponding to visual observations that were absorbed in a
past epoch of the sliding window and cannot be re-processed by any filter.
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• MSC-KF featureswhose tracking length does not exceed the estimator’s window,
i.e., N j ≤ M , hence they are not mapped but rather used only for providing multi-
state constraints involving the camera poses observing them.Based on their earliest
observation, we further classify MSC-KF features into 2 sets:

– Mature features (ZM ): These are MSC-KF features that have reached their
maximum length. Both the EKF and the INVF linearize, process, and absorb
them in a single step. Note also that the INVF, as well as the Iterative EKF
(I-EKF) [4] can re-linearize these observations.

– Immature features (ZI ): This set represents feature tracks that have already
entered the image-processing pipeline, but have not reached their maximum
length, yet. Although the INVF can use (and re-linearize) these measurements
multiple times, across overlapping epochs of the sliding window (from the sec-
ond time they are observed till the track exits the optimizationwindow), the EKF
is not able to do so. This limitation introduces a delay, between the “birth” of a
feature track and its impact on the filter’s state estimates; a potential drawback
of EKF-based approaches for time-critical applications.

• SLAM landmarks corresponding to features, whose track length exceeds the
estimator’s optimizationwindow, i.e., N j > M , and hence their optimal processing
requires including them into the estimator’s map of the environment, Ik+1�k+M .
Within a single epoch of the sliding window, observations to SLAM landmarks
can be partitioned into 3 categories:

– Mature landmarks (ZLM ): These are observations to previously initialized
SLAM landmarks, which include the estimator’s “tail” pose, hence their absorp-
tion into the estimator’s prior, cannot be postponed for future epochs of the
sliding window.

– Immature landmarks (ZL I ): These correspond to measurements of previously
initialized SLAM landmarks, which do not involve the estimator’s “tail” pose,
thus their absorption can be postponed to later epochs, till one of them includes
the estimator’s “tail” pose, i.e., they become mature landmarks.

– New SLAM landmarks (ZLN ): These are feature tracks that have not yet
reached their maximum length, while their present observations span all cam-
eras within the estimator’s optimization window. Hence, they will be processed,
absorbed, and initialized as new landmarks in the estimator’s map.

3 Estimation Algorithm Description

When designing the proposed IKS our objective is two-fold: (i) Process all iner-
tial and visual observations within the current epoch of the sliding window xIk+1:k+M

(i.e., inertial measurements {u�,�+1}, for k + 1 ≤ � ≤ k + M − 1, and feature tracks
ZLM ,ZL I ,ZLN ,ZM , andZI ), and (ii) Allow future epochs to re-process all measure-
ments that are independent of the sliding window’s “tail” state xIk+1 (i.e., the inertial
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measurements {u�,�+1}, for k + 2 ≤ � ≤ k + M − 1, and visual observations to
immature MSC-KF features and SLAM landmarks (i.e., ZI and ZL I , respectively).

3.1 IKS Algorithm: Input

Before image k + M arrives, the proposed IKS maintains:
(1) A set of linearization points, over the estimator’s sliding-window of camera
poses x�

Ik+1:k+M−1, and landmarks Ik+1��
k+M−1 that represent the estimator’s best esti-

mates given all measurements up to tk+M−1.
(2) A prior comprising:
(a) The pdf of the oldest state, xIk+1 , within the sliding window approximated as a
Gaussian N (x̂�

Ik+1
,P�

Ik+1
).

(b) A set of NL linearized constraints relating the oldest state, x�
Ik+1

, with the rest of
the poses within the sliding window, expressed as:

r��
L = H��

L x̃�
Ik+1:k+M−1

+ nL , nL ∼ N (0, σ 2INL ). (7)

(c) A set of 3Nk+M−1 linearized constraints relating the oldest state, x�
Ik+1

, with the
rest of the poses within the sliding window and the SLAM landmarks Ik+1�k+M−1

expressed as:

r��
M = H��

M x̃�
Ik+1:k+M−1

+ F��
M

Ik+1̃�
�

k+M−1 + nM , nM ∼ N (0, σ 2I3Nk+M ). (8)

The ensemble of the pdf N (x̂�
Ik+1

,P�
Ik+1

) and the linearized constraints {r��
L , H��

L }
and {r��

M , H��
M , F��

M } in (7) and (8) represent all information for the poses xIk+1:k+M−1

and the landmarks Ik+1�k+M−1, accumulated through absorption of past visual obser-
vations (i.e., ZP in Fig. 1) and inertial measurements (i.e., {u�,�+1, � ≤ k}).

3.2 IKS Algorithm: Overview

A single recursion of the IKS, involves the following steps:
1. Propagation: The prior pdf, N (x̂�

Ik+1
,P�

Ik+1
), of xIk+1 and the inertial measure-

ments {u�,�+1}, for k + 1 ≤ � ≤ k + M − 1, are used for creating a priorN (x̂�
Ik+1:k+M

,

P�
Ik+1:k+M

) for all the poses within the sliding window.
2. State Update: All available feature tracks, either from SLAM landmarks, i.e.,

ZLM , ZLN and ZL I , and MSC-KF features, i.e., ZM and ZI , as well as the prior
constraints {r��

L , H��
L } and {r��

M , H��
M , F��

M } are processed for updating the current
state estimates x�

Ik+1:k+M
. This state-optimization can be performed iteratively.

3. Landmark Propagation: All landmarks are propagated to the next “tail” of

the sliding window, xIk+2 , i.e.,
Ik+2�k+M = [

Ik+2 fT1 . . . Ik+2 fTNk+M

]T
.

4. Covariance Update: The measurements, ZLM , ZLN , ZM , and uk+1,k+2, which
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are about to be absorbed, are used to compute the posterior covariance P⊕
Ik+2

of xIk+2 ,
which will become the new “tail” of the sliding window.

5. Construction of the Next Epoch’s Prior Constraints: The prior constraints
{r��

L , H��
L } and {r��

M , H��
M , F��

M } are updated so that they become independent of
the state to be marginalized, xIk+1 , and instead reflect the new constraints between
xIk+2 , xIk+3:k+M , and

Ik+2�k+M .

3.3 IKS Algorithm: Detailed Description

In order to allow for a direct comparison with the INVF and the EKF, we follow a
two-level presentation of the IKS: We first describe the effect that each step has on
the cost function beingminimized and then present the corresponding IKS equations.
We start by stating that the IKS (iteratively) minimizes the cost function:

ck+M(x̃�
Ik+1:k+M

, Ik+1 �̃
�

k+M) = cP�
Ik+1

+ cu + cL + cKzM + cKzI + cKzLM + cKzL I + cKzLN (9)

+ cM + cMzLM + cMzLI + cMzLN

where cP�
k+1

corresponds to the prior pdf of the oldest state within the sliding win-

dow, xk+1, cu = ∑k+M−1
�=k+1 cu�,�+1 to the inertial measurements uk+1:k+M [see (2)], cL

to prior information about the poses xk+1:k+M−1 [see (7)], cKzM , c
K
zI , c

K
zLM , c

K
zL I , and

cKzLN to geometric constraints between the poses from all available visual observa-
tions [see (6)], cM to prior information about the SLAM landmarks Ik+1�k+M−1, cMzLM
[see (8)] and cMzLI to feature constraints between the poses and the SLAM landmarks
[see (6)], and finally cMzLN to feature constraints for the new SLAM landmarks, Ik+1�N
[see (6)].

Hereafter, we employ the cost terms in (9) to describe the four main steps of the
proposed IKS (see Sect. 3.2).

3.3.1 Prior Propagation

The prior pdf N (x̂�
Ik+1

,P�
Ik+1

) and the inertial measurements uk+1:k+M are used to
generate a prior pdf N (x̂�

Ik+1:k+M
,P�

Ik+1:k+M
) over all the states, xIk+1:k+M , within the

sliding window. Through this process, the cost function in (9) takes the form:

ck+M(x̃�
Ik+1:k+M

, Ik+1 �̃
�

k+M) = cP�
Ik+1:k+M

+ cL + cKzM + cKzI + cKzLM + cKzL I + cKzLN (10)

+ cM + cMzLM + cMzLI + cMzLN

where, cP�
Ik+1:k+M

= cP�
Ik+1

+ ∑k+M−1
�=k+1 cu�,�+1 corresponds to the prior N (x̂�

Ik+1:k+M
,

P�
Ik+1:k+M

).
The mean x̂�

Ik+1:k+M
is computed as:
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x̂�
Ik+i

=
{
x̂�
Ik+1

, i = 1

f(x�
Ik+i−1

,uk+i−1,k+i ) + Φ�
k+i,k+i−1δx

�
k+i−1 , 2 ≤ i ≤ M

(11)

where δx�
Ik+i−1

= x̂�
Ik+i−1

− x�
Ik+i−1

. Note that for the EKF inertial measurements are
linearized and processed once, soon as they become available; hence, δx�

Ik+i−1
= 0

and the mean of the prior pdf, x̂�
Ik+i

, coincides with the linearization point x�
Ik+i

. In
contrast, the IKS re-processes inertial measurements by re-computing the prior over
the sliding window xIk+1:k+M through the process described in (11).

The block elements of the covariance P�
Ik+1:k+M

are computed through the EKF
covariance propagation recursion, using, however, the most recent state estimates:

P�
Ik+i

= Φ�
k+i,k+i−1P

�
Ik+i−1

Φ�T
k+i,k+i−1 + Q�

k, i = 2 . . . , M (12)

P�
Ik+i,k+ j

= Φ�
k+i,k+ jP

�
Ik+ j

, i = 2, . . . , M, j = 1, . . . , i − 1

3.3.2 State Update

All cost terms, which provide multi-state (i.e., cL , cKzM , c
K
zI , c

K
zLM , c

K
zL I , c

K
zLN ), as well

as mapping (i.e., cM , cMzLM , c
M
zLI , c

M
zLN ) constraints, are used for updating the state

estimates for xIk+1:k+M and Ik+1�k+M . Although each of these terms could have been
used independently, in successive updates, we choose to first merge them into two
cost terms, cKS and cMS , comprising multi-state geometric and mapping constraints,
respectively, and process them in a batch form.
Measurement Compression: Combining all mapping terms, cM , c

M
zLM , c

M
zLI c

M
zLN , into

a single cost term, cM
′

S , yields:

cM
′

S (x̃�
Ik+1:k+M

, Ik+1 �̃k+M) = ||

⎡

⎢⎢
⎣

r��
M

rM�
L I

rM�
LM
rM�
LN

⎤

⎥⎥
⎦ −

⎡

⎢⎢
⎣

H��
M F��

M
HM�

L I FM�
L I

FM�
LM

HM�
LN FM�

LN

⎤

⎥⎥
⎦

⎡

⎣
x̃�
Ik+1:k+M

Ik+1 �̃
�

k+M−1
Ik+1 �̃N

⎤

⎦ ||2σ 2I

= ||rM ′
S − [

HM ′�
S FM ′�

S

]
[
x̃�
Ik+1:k+M

Ik+1 �̃
�

k+M

]
||2σ 2I (13)

As in Sect. 2.2, we project the linearized constraints of (13) onto the column space
and left nullspace of FM ′�

S , which partitions cM
′

S into, 3Nk+M constraints, denoted
by cMS , providing information only over the landmarks �k+M and a cost term cK

′
S ,

providing geometric constraints, only over the poses xIk+1:k+M , i.e.,
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cM
′

S (x̃�
Ik+1:k+M , Ik+1 �̃

�

k+M) = ||rM�
S − [

HM�
S FM�

S

] [
x̃�
Ik+1:k+M

Ik+1 �̃
�

k+M

]
||2σ 2I3Nk+M

+ ||rK ′�
S − HK ′�

S x̃�
Ik+1:k+M

||2σ 2I

= cMS (x̃�
Ik+1:k+M

, Ik+1̃�
�

k+M) + cK
′

S (x̃�
Ik+1:k+M

)

which allows ck+M in (10) to take the form:

ck+M(x̃�
Ik+1:k+M

, Ik+1 �̃
�

k+M) = cP�
Ik+1:k+M

+ cMS + cKS (14)

where,4 cKS comprises all geometric constraints, i.e., cL , cK
′

S , cKzM , c
K
zI , c

K
zLM , c

K
zL I ,

and cKzLN :

cKS (x̃�
Ik+1:k+M

) = ||rK�
s − HK�

s x̃�
Ik+1:k+M

||2σ 2I. (15)

Note that, since FM�
S is a square full-rank matrix and for every x̃�

Ik+1:k+M
there

exists an Ik+1̃�
�

k+M that minimizes cMS to zero, for minimizing (14), it suffices to
first minimize c�

PIk+1:k+M
+ cKS , over x̃

�
Ik+1:k+M

, and then solve for Ik+1̃�
�

k+M , using cMS .
Specifically, through an I-EKF update step [4] we first update the poses xIk+1:k+M :

x�⊕
Ik+1:k+M

= x�
Ik+1:k+M

+ x̃oIk+1:k+M
, x̃oIk+1:k+M

= δx�
Ik+1:k+M

+ P�
Ik+1:k+M

HK�T
S dS (16)

where dS is the solution to the linear system S�dS = rK�
S − HK�

S δx�
Ik+1:k+M

, with S� =
HK�

S P�
Ik+1:k+M

HK�T
S + σ 2I, and δx�

Ik+1:k+M
= x̂�

Ik+1:k+M
− x�

Ik+1:k+M
.

Second, we substitute x̃oIk+1:k+M
into cMS , and solve5 the linear system

FM�
S

Ik+1̃�
o
k+M = rM�

S − HM�
S x̃oIk+1:k+M

(17)

for updating the SLAM landmarks: Ik+1��⊕ = Ik+1�� + Ik+1̃�
o
k+M .

It is important to note that processing immature observations (i.e., ZI and ZL I )
is optional for the IKS, allowing us to adjust its computational cost, based on the
availability of computational resources.

3.3.3 Landmark Propagation

Before proceeding with computing the next epoch’s prior pdf N (x̂⊕
k+2,P

⊕
k+2) and

linearized constraints, {r�⊕
L ,H�⊕

L } and {r�⊕
M ,H�⊕

M ,F�⊕
M }, we express all landmarks

Ik+1�k+M w.r.t. the new “tail” pose of the sliding window, xIk+2 , in (9). As we describe
in detail in [17], the landmark parameters in the two frames Ik+1 and Ik+2, as

4For reducing the computational cost (linear in the number of MSC-KF features within the sliding
window), the residual rK�

s and Jacobian matrix HK�
s are compressed using QR factorization [2].

5Not surprisingly, the computational cost of this step is cubic in the number of SLAM landmarks,
which are observed at the present epoch, as in the corresponding EKF and INVF state-update steps.
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well as the poses xIk+1:k+2 , are related through a non-linear deterministic constraint,
g(xIk+1:k+2 ,

Ik+1�k+M , Ik+2�k+M) = 0, which after linearization, becomes:

G�
Ik+1:k+2

x̃�
Ik+1:k+2

+ G�
Ik+1 ,�

Ik+1̃�k+M + G�
Ik+2 ,�

Ik+2 �̃k+M = 0

⇔Ik+1̃�
�

k+M = −G�−1
Ik+1 ,�

(G�
Ik+1:k+2

x̃�
Ik+1:k+2

+ G�
Ik+2 ,�

Ik+2 �̃
�

k+M) (18)

Substituting in (9), transforms ck+M to a function of x̃�
Ik+1:k+M

and Ik+2 �̃
�

k+M .

3.3.4 Covariance Update

Our objective is to compute the posterior N (x̂⊕
Ik+2

,P⊕
Ik+2

), which will be used as the
prior pdf during the next epoch. To do so, we will operate on those terms of the cost
function in (9) that contain the state xIk+1 , which is about to be marginalized; that is
the cost function:

cMk+M = cP�
Ik+1

+ cuk+1:k+2 + cL + cKzM + cKzLM + cKzLN + cM + cMzLM + cMzLN (19)

In particular, we follow a 4-step process:
Prior propagation and measurement compression: Following the same process,
as in Sects. 3.3.1 and 3.3.2, we use the priorN (x̂�

Ik+1
,P�

Ik+1
) and the inertial measure-

ments uk+1:k+2 to compute the prior N (x̂�
Ik+1:k+2

,P�
Ik+1:k+2

), and merge the linearized
constraints into two terms, cKC and cMC , comprising multi-state and mapping con-
straints, respectively. Thus, (19) becomes:

cMk+M = cP�
Ik+1:k+2

+ cKC + cMC (20)

Partitioning of the linearized constraints: Following the same process as in (6),
we partition cKC into cKC1

and cKC2
, where the first term depends only on x̃�

Ik+1:k+2
, i.e.,

cKC (x̃�
Ik+1:k+M

) = cKC1
(x̃�

Ik+1:k+2
) + cKC2

(x̃�
Ik+1:k+M

), which after substitution in (20), yields:

cMk+M = cP�
Ik+1:k+2

+ cKC1
(x̃�

Ik+1:k+2
) + cKC2

(x̃�
Ik+1:k+M

) + cMC . (21)

Covariance Update: At this point, we combine the first two terms in (21), thus
updating the prior pdf N (x�

Ik+1:k+2
,P�

Ik+1:k+2
):

cMk+M = cP⊕
Ik+1:k+2

+ cKC2
+ cMC . (22)

N (x⊕
Ik+1:k+2

,P⊕
Ik+1:k+2

) has mean x̂⊕
Ik+1:k+2

= x̂�
Ik+1:k+2

+ P�
Ik+1:k+2

HK�T
C1

dC , where dC is the
solution to the linear system SCdC = rK�

C1
− HK�T

C1
δx�

k+1:k+2, with SC = HK�
C1
P�
Ik+1:k+2

HK�T
C1

+ σ 2IN1 , and covariance P⊕
Ik+1:k+2

= P�
Ik+1:k+2

(
I − HK�T

C1
S−1
C HK�

C1
P�
Ik+1:k+2

)
.



500 D.G. Kottas and S.I. Roumeliotis

3.3.5 Construction of Next Epoch’s Prior

During this last step of the IKS, we will bring cMk+M into a form whose minimization
is independent of xIk+1 . To achieve this, we follow a 2-step process.
Partitioning of cP⊕

Ik+1:k+2
: By employing the Schur complement, the prior term

cP⊕
Ik+1:k+2

in (22) is partitioned into a prior over xIk+2 , cP⊕
Ik+2

, and a conditional term,
cIk+1|k+2 , representing linearized constraints between xIk+1 and xIk+2 , i.e.,

cP⊕
Ik+1:k+2

(x̃�
Ik+1:k+2

) =||x̃�
Ik+2

− δx⊕
Ik+2

||P⊕
Ik+2

+ ||δx⊕
Ik+1|k+2

−
[
I −P⊕

Ik+1,k+2
P⊕−1
Ik+2

]
[
x̃�
Ik+1

x̃�
Ik+2

]

||2
P⊕
Ik+1|k+2

=cP⊕
Ik+2

(x̃Ik+2 ) + cIk+1|k+2 (x̃Ik+1:k+2 ) (23)

where P⊕
Ik+1|k+2

= P⊕
Ik+1

− P⊕
Ik+1,k+2

P⊕−1
Ik+2

P⊕
Ik+2,k+1

. Substituting in (22), yields:

cMk+M = cP⊕
Ik+2

+ cIk+1|k+2 + cKC2
+ cMC . (24)

Marginalization of xIk+1 : Firstly, we combine all terms involving xIk+1 , i.e., cIk+1|k+2 ,
cKC2

, and cMC into a single quadratic cost, corresponding to 15 + NK
C2

+ 3Nk+M lin-
earized constraints:

cJ (x̃Ik+1:k+M , Ik+2 �̃
�

k+M) = ||b − J1x̃�
Ik+1

− J2

[
x̃�
Ik+2:k+M

Ik+2 �̃
�

k+M

]

||2I15+NK
C2

+3Nk+M
(25)

Following the same process as in (6), we partition cJ into cIk+1|k+2:k+M , that contains
all information regarding xIk+1 , and cL⊕ and cM⊕ , which are independent of xIk+1 :

cJ (x̃�
Ik+1:k+M

, Ik+2 �̃
�

k+M) = cIk+1|k+2:k+M + cL⊕ + cM⊕ . (26)

where the detailed analytical expressions for cL⊕ and cM⊕ are given in [17].
Substituting (26) in (24), yields:

cMk+M(x̃�
Ik+1:k+M

, Ik+2 �̃
�

k+M) = cP⊕
Ik+2

(x̃�
Ik+2

) + cL⊕(x̃�
Ik+2:k+M

) + cM⊕(x̃�
Ik+2:k+M

, Ik+2 �̃
�

k+M)

+ cIk+1|k+2:k+M (x̃�
Ik+2:k+M

, Ik+2 �̃
�

k+M). (27)

The last term, cIk+1|k+2:k+M in (27), is irrelevant for the minimization of cMk+M over
x̃�
Ik+2:k+M

and Ik+2 �̃
�

k+M since, for any of their values, there exists a x̃oIk+1
that minimizes

cIk+1|k+2:k+M to exactly zero. Hence, all prior information from the current to the next
IKS recursion, is represented completely through the terms cP⊕

k+2
, cL⊕ , and cM⊕ all

of which do not involve x̃�
Ik+1

.
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4 Simulations

Our simulations involved a MEMS-quality commercial grade IMU, similar to those
present on current mobile devices, running at 100Hz, and a wide (175◦ degrees) field
of view camera with resolution 640 × 480. Visual observations were contaminated
by zero-meanwhite Gaussian noise with σ = 1.0 pixel.We compared the RootMean
Square Error (RMSE) for the real-time estimates6 of the MSC-KF VINS (denoted
as EKF), with that of the proposed iterative Kalman smoother (denoted as IKS).
Both estimators maintained a sliding window of 10 camera poses. Feature tracks
that spanned beyond the sliding window were initialized as SLAM landmarks (and
marginalized when lost from the camera’s field of view), while shorter feature tracks
were processed as MSC-KF features.
- VINS under nominal conditions: In Simulation I (see Fig. 2), the platform’s tra-
jectory and dynamics resembled those of a person traversing 120m of an indoor
environment, while new camera poses were generated every 25cm, and the rate that
new features enter the camera’s field of view followed that of real-world experimental
trials. As seen in Fig. 2a, the performance difference between the EKF-based VINS
and the proposed IKS is rather small, since in the presence of many visual measure-
ments, both estimators are able to accurately track the system’s state. Note however,
that even under these nominal conditions the IKS always maintained a more accurate
estimate of the platform’s speed (see Fig. 2b), while for certain parts of the trajectory
its estimate improved by ∼20%, over the EKF, due to the inability of the latter to
process feature tracks immediately as they become available.
- Camera Occlusions: In Simulation II (see Fig. 3), we simulated the motion of
a handheld device, “hovering” over the same scene, for 40 s, emulating a common
scenario for augmented-reality applications.We then introduced 3 periods, of approx-
imately 5 s each, during which the camera was occluded and no feature tracks were
available. As evident from Fig. 3a, b, by re-processing visual and inertial measure-
ments, the IKS, converges faster to the correct position and velocity estimates, right
after re-gaining access to camera measurements.

Fig. 2 Monte carlo simulation I: Comparison of the proposed IKS versus the EKF under nominal
conditions: a Position RMSE; b Speed RMSE

6By real-time, we refer to the estimate for xIk , right before, processing image k.
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Fig. 3 Monte carlo simulation II: Comparison of the proposed IKS versus the EKF during camera
occlusions: a Position RMSE; b Speed RMSE

5 Experiments

We further validated the proposed IKS on real-world data, using a Project Tango
developer tablet, and as ground truth the result of a batch least-squares (BLS) over
the entire set of visual and inertial measurements. As in Sect. 4, we compared the
real-time estimates of the proposed IKS, to those of the MSC-KF VINS, both of
which processed measurements to SLAM landmarks, as well as MSC-KF feature
tracks, and maintained a sliding window of length 14.

Initialization: In Experiment I (Fig. 4), we compared the initialization phase, of
both estimators, when they start from inaccurate estimates of their initial velocity and
IMU biases, as often happens in practice. As it is seen in Fig. 4b, the IKS converged
faster to its correct velocity estimates, which lead to a reduced position error, as
compared to the EKF, for the rest of their trajectories (Fig. 4a). Note that a BLS
over a small set of initial poses, could have been used for system initialization,
making both estimators equally accurate. Such a choice, however, would inevitably
introduce a significant time delay, a key drawback for real-time applications, while
the complexity of the corresponding implementation would significantly increase.
For the IKS, however, an iterative optimization during its initial phase, seamlessly
takes place, without the need to transition from BLS to filtering.

Fast camera turns: In Experiment II (Fig. 5), we collected a “stress” dataset,
during which the camera performed quick turns, inside an office area, causing abrupt
reductions in the number, quality, and length of feature tracks for short periods of time
(Fig. 5a). As it is evident from Fig. 5d, the inability of the EKF to re-process visual

Fig. 4 Experiment I: Comparison of the proposed IKS versus the EKF during filter initialization:
a Real-time position error; b Real-time speed error
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Fig. 5 Experiment II: Comparison of the proposed IKS versus the EKF during sudden turns: a 3D
Trajectory; b Position error; c Speed error; d Yaw error

observations, caused sudden accumulations of yaw error, e.g., at 40 s. Furthermore,
on par with our simulation results, the IKS maintained an improved real-time esti-
mate, of the platform’s velocity, throughout the experiment, while at certain points,
its velocity estimate was even 2 times better than the EKF’s (Fig. 5c).

Timing analysis: We used the Samsung S4 cell phone, as a testbed for com-
paring the processing time of the proposed IKS, with and without processing of
immature visual observations, denoted by IKS w/, and IKS w/o, respectively, as well
as, a reference EKF implementation. Albeit the 32-bit arithmetic precision, of the
NEON co-processor, present on the 1.6GHz Cortex-A15 ARMCPU of the Samsung
S4, no numerical inaccuracies were introduced, when compared to 64-bit arithmetic
precision. All estimators maintained a sliding window of 14 poses and on average
5 SLAM landmarks in their state vector. As it is evident from Table1, the proposed
IKS achieves real-time performance, even under re-linearization, while it is able to
bring its cost down to levels comparable to the EKF by temporary disabling the
re-processing of visual observations.

6 Conclusion

In this paper, we have presented an iterative Kalman smoother (IKS) for vision-aided
inertial navigation that incorporates advantages of competing approaches. Through
smoothing, the proposed IKS iteratively re-linearizes both inertial and visual mea-
surements over a single, or multiple overlapping, sliding windows, thus improving
robustness. At the same time, the IKS inherits the excellent numerical properties
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Table 1 Timing analysis on the samsung S4: numbers denote average time in ms

Step\Algorithm IKS w/ IKS w/o EKF

Propagation 14 14 1

Jacobians calculation 101 12 9

Measurement
compressions

14 6 2

State update 12 12 12

Covariance update 0.5 0.5 18

Prior constraints
update

1.5 1.5 N/A

Total 166 46 42

of the Kalman filter, making it amenable to very efficient implementations (4-fold
speed up on ARM NEON co-processor) using single-precision (32 bit) arithmetic.
As part of our validation process, we demonstrated the resilience and efficiency of
the proposed approach, under adverse navigation conditions.
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Deterministic Sampling-Based Motion
Planning: Optimality, Complexity,
and Performance

Lucas Janson, Brian Ichter and Marco Pavone

1 Introduction

Probabilistic sampling-based algorithms represent a particularly successful approach
to robotic motion planning problems [14, 26]. The key idea behind probabilistic
sampling-based algorithms is to avoid the explicit construction of the configuration
space (which can be prohibitive in complex planning problems) and instead conduct
a search that probabilistically probes the configuration space with independent and
identically distributed (i.i.d.) random samples. Explicitly, each i.i.d. point is gen-
erated in the same way (e.g., from a uniform distribution over the configuration
space) and without using any information about any of the other sampled points.
This probing is enabled by a collision detection module, which the motion plan-
ning algorithm considers as a “black box” [14]. Examples, roughly in chronological
order, include the probabilistic roadmap algorithm (PRM) [13], expansive space trees
(EST) [9, 20], Lazy-PRM [4], the rapidly exploring random trees algorithm (RRT)
[15], sampling-based roadmap of trees (SRT) [22], rapidly-exploring roadmap [1],
PRM∗and RRT∗[12], RRT#[2], and the fast marching tree algorithm (FMT∗) [11]. A
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central result is that these algorithms provide probabilistic completeness guarantees
in the sense that the probability that the planner fails to return a solution, if one
exists, decays to zero as the number of samples approaches infinity [3]. Recently,
it has been proven that RRT∗, PRM∗, RRT#, and FMT∗are asymptotically opti-
mal, i.e., the cost of the returned solution converges almost surely to the optimum
[2, 11, 12].

It is natural to wonder whether the theoretical guarantees and practical perfor-
mance of sampling-based algorithms would hold if these algorithms were to be
de-randomized, i.e., run on a deterministic, as opposed to random sampling sequence.
This is an important question, as de-randomized planners would significantly sim-
plify the certification process (as needed for safety-critical applications), enable the
use of offline computation (particularly important for planning under differential con-
straints or in high dimensional spaces—exactly the regime for which sampling-based
planners are designed), and, in the case of lattice sequences, drastically simplify a
number of operations (e.g., locating nearby samples). This question has received rel-
atively little attention in the literature. Specifically, previous research [5, 10, 16] has
focused on the performance of de-randomized versions of sampling-based planners
in terms of convergence to feasible paths. A number of deterministic variants of the
PRM algorithm were shown to be resolution complete (i.e., provably converging to
a feasible solution as n → ∞) and, perhaps surprisingly, offer superior performance
on an extensive set of numerical experiments [5, 16]. Prompted by these results, a
number of deterministic low-dispersion, incremental sequences have been designed
specifically tailored to motion planning problems [17, 27, 28].

The results in [5, 10, 16] are restricted to convergence to feasible, as opposed to
optimal paths. Several questions are still open. Are there advantages of i.i.d. sampling
in terms of convergence to an optimal path? Can convergence rate guarantees for the
case of deterministic sampling be provided, similar to what is done for probabilistic
planners in [7, 11]? For a given number of samples, are there advantages in terms
of computational and space complexity? The objective of this paper is to rigorously
address these questions. Our focus is on the PRM algorithm. However, our results
extend to most of the existing batch (i.e., not anytime) algorithms, including Lazy-
PRM and FMT∗. We summarize the paper’s contributions below.

Deterministic asymptotic optimality of sampling-based planning: We show
that the PRM algorithm is asymptotically optimal when run on deterministic
sampling sequences whose �2-dispersion is upper-bounded by γ n−1/d , for some
γ ∈ R>0 (we refer to such sequences as deterministic low-dispersion sequences),
and with a connection radius rn ∈ ω(n−1/d).1 In other words, the cost of the
solution computed over n samples converges deterministically to the optimum as
n → ∞. As a comparison, the analogous result for the case of i.i.d. random sam-
pling holds almost surely [11, 12] (as opposed to deterministically) and requires
a connection radius Ω

(
(log(n)/n)1/d

)
, i.e., bigger.

1For f, g : N → R, we say f ∈ O(g) if there exists n0 ∈ N and k ∈ R>0 such that | f (n)| ≤ k |g(n)|
for all n ≥ n0. We say f ∈ Ω(g) if there exists n0 ∈ N and k ∈ R>0 such that | f (n)| ≥ k |g(n)|
for all n ≥ n0. Finally, we say f ∈ ω(g) if limn→∞ f (n)/g(n) = ∞.
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Convergence rate: We show that, in the absence of obstacles, the factor of sub-
optimality of PRM is upper-bounded by 2Dn/(rn − 2Dn), where Dn is the
�2-dispersion of the sampling sequence. A slightlymore sophisticated result holds
for the obstacle-cluttered case. As a comparison, the analogous result for the case
of i.i.d. sampling only holds in probability and is much more involved (and less
interpretable) [11]. Such results could be instrumental to the certification (i.e.,
approval by regulatory agencies) of sampling-based planners.

Computational and space complexity: We prove that PRM, when run on a low-
dispersion lattice, has computational and space complexity O(n2 rdn ). As asymp-
totic optimality can be obtained using rn ∈ ω(n−1/d), there exists an asymptot-
ically optimal version of PRM with computational and space complexity ω(n),
where O(n) represents the theoretical lower bound (as, at the very least, n oper-
ations need to be carried out to load samples into memory). As a comparison,
the analogous complexity results for the case of i.i.d. sampling are of order
O(n log(n)) [12]. We also extend our complexity analysis to non-lattice deter-
ministic sampling sequences.

Experimental performance: Finally, we compare performance (in terms of path
cost) of deterministic low-dispersion sampling versus i.i.d. sampling on a vari-
ety of test cases ranging from two to eight dimensions and from simple sets of
rectangular obstacles to rather complicated mazes. In all our examples, for a given
number of samples, deterministic low-dispersion sampling performs noworse and
sometimes substantially better than i.i.d. sampling.

The key insight behind our theoretical results (e.g., smaller required connec-
tion radius, better complexity, etc.) is the factor difference in dispersion between
deterministic low-dispersion sequences versus i.i.d. sequences, namely O(n−1/d)

versus O((log n)1/d n−1/d) [6, 18]. Interestingly, the same O(n−1/d) dispersion can
be achieved with non-i.i.d. random sequences, e.g., randomly rotated and offset lat-
tices. As we will show, these sequences enjoy the same deterministic performance
guarantees of deterministic low-dispersion sequences and retain many of the ben-
efits of deterministic sampling (e.g., fast nearest-neighbor indexing). Additionally,
their “controlled” randomness may allow them to address some potential issues with
deterministic sequences (in particular lattices), e.g., avoiding axis-alignment issues
in which entire rows of samples may become infeasible due to alignment along an
obstacle boundary. In this perspective, achieving deterministic guarantees is really
a matter of i.i.d. sampling versus non-i.i.d., low-dispersion sampling (with deter-
ministic sampling as a prominent case), as opposed to random versus deterministic.
Collectively, our results, complementing and corroborating those in [5, 16], strongly
suggest that both the study and application of sampling-based algorithms should
adopt non-i.i.d. low-dispersion sampling. From a different viewpoint, our results
provide a theoretical bridge between sampling-based algorithms with i.i.d. sam-
pling and non-sampling-based algorithms on regular grids (e.g., D* [23] and related
kinodynamic variants [21]).

Organization: This paper is structured as follows. In Sect. 2 we provide a review
of known concepts from low-dispersion sampling, with a focus on �2-dispersion. In
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Sect. 3 we formally define the optimal path planning problem. In Sect. 4 we present
our threemain theoretical results for planningwith low-dispersion sequences: asymp-
totic optimality, convergence rate, and computational and space complexity. In Sect. 5
we present results from numerical experiments supporting our statements. Finally,
in Sect. 6, we draw some conclusions and discuss directions for future work.

2 Background

A key characteristic of any set of points on a finite domain is its �2-dispersion. This
concept will be particularly useful in elucidating the advantages of deterministic
sampling over i.i.d. sampling. As such, in this section we review some relevant
properties and results on the �2-dispersion.

Definition 1 (�2-dispersion) For a finite, nonempty set S of points contained in a
d-dimensional compact Euclidean subspaceX with positive Lebesgue measure, its
�2-dispersion D(S) is defined as

D(S) := sup
x∈X

min
s∈S ‖s − x‖2 = sup {r > 0 : ∃x ∈ X with B(x, r) ∩ S = ∅} , (1)

where B(x, r) is the open ball of radius r centered at x .

Intuitively, the �2-dispersion quantifies how well a space is covered by a set of
points S in terms of the largest open Euclidean ball that touches none of the points.
The quantity D(S) is important in the analysis of path optimality as an optimal path
may pass through an empty ball of radius D(S). Hence, D(S) bounds how closely
any path tracing through points in S can possibly approximate that optimal path.

The �2-dispersion of a set of deterministic or random points is often hard to com-
pute, but luckily it can be bounded by the more-analytically-tractable �∞-dispersion.
The �∞-dispersion is defined by simply replacing the �2-norm in Eq. (1) by the
�∞-norm, or max-norm. The �∞-dispersion of a set S, which we will denote by
D∞(S), is related to the �2-dispersion in d dimensions by [18],

D∞(S) ≤ D(S) ≤ √
dD∞(S),

which allows us to bound D(S) when D∞(S) is easier to compute. In particular,
an important result due to [6] is that the �∞-dispersion of n independent uniformly
sampled points on [0, 1]d is O((log(n)/n)1/d) with probability 1. Corollary to this
is that the �2-dispersion is also O((log(n)/n)1/d) with probability 1.

Remarkably, there are deterministic sequences with �2-dispersions of order
O(n−1/d), an improvement by a factor log(n)1/d . For instance, the Sukharev sequence
[25], whereby [0, 1]d is gridded into n = kd hypercubes and their centers are taken
as the sampled points, can easily be shown to have �2-dispersion of (

√
d/2) n−1/d

for n = kd points. As we will see in Sect. 4, the use of sample sequences with lower
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�2-dispersions confers on PRM a number of beneficial properties, thus justifying
the use of certain deterministic sequences instead of i.i.d. ones. In the remainder of
the paper, we will refer to sequences with �2-dispersion of order O(n−1/d) as low-
dispersion sequences. A natural question to ask is whether we can use a sequence
that minimizes the �2-dispersion. Unfortunately, such an optimal sequence is only
known for d = 2, in which case it is represented by the centers of the equilateral
triangle tiling [14]. In this paper, we will focus on the Sukharev [25] and Halton
sequences [8], except in two dimensions when we will consider the triangular lattice
as well, but there are many other deterministic sequences with �2-dispersion of order
O(n−1/d); see [17, 27, 28] for other examples.

3 Problem Statement

The problem formulation follows very closely the problem formulation in [11]. Let
X = [0, 1]d be the configuration space, where d ∈ N. Let Xobs be a closed set
representing the obstacles, and letXfree = cl(X \ Xobs) be the obstacle-free space,
where cl(·) denotes the closure of a set. The initial condition is xinit ∈ Xfree, and the
goal region is Xgoal ⊂ Xfree. A specific path planning problem is characterized by
a triplet (Xfree, xinit,Xgoal). A function σ : [0, 1] → R

d is a path if it is continuous
and has bounded variation. If σ(τ) ∈ Xfree for all τ ∈ [0, 1], σ is said to be collision-
free. Finally, if σ is collision-free, σ(0) = xinit , and σ(1) ∈ cl(Xgoal), then σ is said
to be a feasible path for the planning problem (Xfree, xinit,Xgoal).

The goal region Xgoal is said to be regular if there exists ξ > 0 such that ∀y ∈
∂Xgoal, there exists z ∈ Xgoal with B(z; ξ) ⊆ Xgoal and y ∈ ∂B(z; ξ) (the notation
∂X denotes the boundary of set X ). Intuitively, a regular goal region is a smooth
set with a boundary that has bounded curvature. Furthermore, we will say Xgoal

is ξ -regular if Xgoal is regular for the parameter ξ . Such regularity is required to
quantify the probability of sampling a point in Xgoal near its boundary, and is a
technical condition asmost commonnon-smooth sets can be arbitrarily approximated
by smooth ones. Denote the set of all paths by Σ . A cost function for the planning
problem (Xfree, xinit,Xgoal) is a function c : Σ → R≥0; in this paper we will focus
on the arc length function. The optimal path planning problem is then defined as
follows:

Optimal path planning problem: Given a path planning problem (Xfree, xinit,Xgoal) with
a regular goal region and the arc length function c : Σ → R≥0, find a feasible path σ ∗ such
that c(σ ∗) = min{c(σ ) : σ is feasible}. If no such path exists, report failure.

A path planning problem can be arbitrarily difficult if the solution traces through
a narrow corridor, which motivates the standard notion of path clearance [12]. For a
given δ > 0, define the δ-interior of Xfree as the set of all configurations that are at
least a distance δ from Xobs. Then a path is said to have strong δ-clearance if it lies
entirely inside the δ-interior ofXfree. Further, a path planning problem with optimal
path cost c∗ is called δ-robustly feasible if there exists a strictly positive sequence
δn → 0, and a sequence {σn}ni=1 of feasible paths such that limn→∞ c(σn) = c∗ and
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for all n ∈ N, σn has strong δn-clearance, σn(1) ∈ ∂Xgoal, and σn(τ ) /∈ Xgoal for all
τ ∈ (0, 1).

Lastly, in this paper we will be considering a generic form of the PRM algo-
rithm. That is, denote by gPRM (for generic PRM) the algorithm given by Algo-
rithm 1. The function SampleFree(n) is a function that returns a set of n ∈ N

points inXfree. Given a set of samples V , a sample v ∈ V , and a positive number r ,
Near(V, v, r) is a function that returns the set of samples {u ∈ V : ‖u − v‖2 < r}.
Given two samples u, v ∈ V , CollisionFree(u, v) denotes the boolean function
which is true if and only if the line joining u and v does not intersect an obstacle.
Given a graph (V, E), where the node set V contains xinit and E is the edge set,
ShortestPath(xinit, V, E) is a function returning a shortest path from xinit to
Xgoal in the graph (V, E) (if one exists, otherwise it reports failure). Deliberately,
we do not specify the definition of SampleFree and have left rn unspecified, thus
allowing for any sequence of points—deterministic or random—to be used, with
any connection radius. These “tuning” choices will be studied in Sect. 4. We want
to clarify that we are in no way proposing a new algorithm, but just defining an
umbrella term for the PRM class of algorithms which includes, for instance, sPRM
and PRM∗as defined in [12].

Algorithm 1 gPRM Algorithm
1 V ← {xinit} ∪ SampleFree(n); E ← ∅
2 for all v ∈ V do
3 Xnear ← Near(V \{v}, v, rn)
4 for x ∈ Xnear do
5 if CollisionFree(v, x) then
6 E ← E ∪ {(v, x)} ∪ {(x, v)}
7 end if
8 end for
9 end for
10 return ShortestPath(xinit, V, E)

4 Theoretical Results

In this section we present our main theoretical results. We begin by proving that
gPRMon low-dispersion sequences is asymptotically optimal, in the deterministic
sense, for connection radius rn ∈ ω(n−1/d). Previous work has required rn to be at
least Ω((log(n)/n)1/d) for asymptotic optimality.

Theorem 1 (Asymptotic optimality with deterministic sampling) Let (Xfree, xinit,
Xgoal)bea δ-robustly feasible path planningproblem ind dimensions,with δ > 0and
Xgoal ξ -regular. Let c∗ denote the arc length of an optimal path σ ∗, and let cn denote
the arc length of the path returned by gPRM (or ∞ if gPRM returns failure) with n
samples whose �2-dispersion is D(V ) using a radius rn. Then if D(V ) ≤ γ n−1/d for
some γ ∈ R and
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xinit

Xobs

Xgoal

σ∗

σn

δn

Xobs

Xobs

Xobs

(a)

γ n−1/d

Rn − 2 γ n−1/d

ξ

Bn,Mn+2

Bn,Mn+1

Rn − 2 γ n−1/d

σn

Xgoal

(b)

Fig. 1 a Illustration in 2D of σn as the shortest strongly δn-robust feasible path, as compared to
the optimal path σ ∗, as used in the proof of Theorem 1. b Illustration in 2D of the construction of
B1, . . . , BMn+2 in the proof of Theorem 1

n1/drn → ∞, (2)

then limn→∞ cn = c∗.

Proof Fix ε > 0. By the δ-robust feasibility of the problem, there exists a σε such
that c(σε) ≤ (1 + ε/3)c∗ and σε has strong δε-clearance for some δε > 0, see Fig. 1a.
Let Rn be a sequence such that Rn ≤ rn , n1/d Rn → ∞, and Rn → 0, guaranteeing
that there exists a n0 ∈ N such that for all n ≥ n0,

(4 + 6/ε)γ n−1/d ≤ Rn ≤ min{δε, ξ, c∗ε/6}. (3)

For any n ≥ n0, construct the closed balls Bn,m such that Bn,i has radius γ n−1/d

and has center given by tracing a distance (Rn − 2γ n−1/d)i from x0 along σε (this
distance is positive by Eq. (3)) until (Rn − 2γ n−1/d)i > c(σε). This will generate
Mn = �c(σε)/(Rn − 2γ n−1/d)� balls. Define Bn,Mn+1 to also have radius γ n−1/d but
center given by the point where σε meets Xgoal. Finally, define Bn,Mn+2 to have
radius γ n−1/d and center defined by extending the center of Bn,Mn+1 intoXgoal by a
distance Rn − 2γ n−1/d in the direction perpendicular to ∂Xgoal. Note that by Eq. (3),
Bn,Mn+2 ⊂ Xgoal. See Fig. 1b for an illustration.

Since the dispersion matches the radii of all the Bn,m , each Bn,m has at least
one sampled point within it. Label these points x1, . . . , xMn+2, with the subscripts
matching their respective balls of containment. For notational convenience, define
x0 := xinit. Note that by construction of the balls, for i ∈ {0, . . . , Mn + 1}, each pair
of consecutively indexed points (xi , xi+1) is separated by no more than Rn ≤ rn .
Furthermore, since Rn ≤ δε by Eq. (3) above, there cannot be an obstacle between
any such pair, and thus each pair constitutes an edge in the gPRMgraph. Thus, we
can upper-bound the cost cn of the gPRMsolution by the sum of the lengths of the
edges (x0, x1), . . . , (xMn+1, xMn+2):
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cn ≤
Mn+1∑

i=0

‖xi+1 − xi‖ ≤ (Mn + 2)Rn ≤ c(σε)

Rn − 2γ n−1/d
Rn + 2Rn

≤ c(σε) + 2γ n−1/d

Rn − 2γ n−1/d
c(σε) + 2Rn = c(σε) + 1

Rn
2γ n−1/d − 1

c(σε) + 2Rn

≤ (1 + ε

3
)c∗ + 1

3
ε

+ 1
(1 + ε

3
)c∗ + ε

3
c∗ = (1 + ε)c∗.

The second inequality follows from the fact that the distance between xi and xi+1

is upper-bounded by the distance between the centers of Bn,i and Bn,i+1 (which
is at most Rn − 2γ n−1/d ) plus the sum of their radii (which is 2γ n−1/d ). The last
inequality follows from the facts that c(σε) ≤ (1 + ε/3)c∗ and Eq. (3). �

Note that if gPRMusing rn > 2D(V ) reports failure, then there are two possi-
bilities: (i) a solution does not exist, or (ii) all solution paths go through corridors
whose widths are smaller than 2 D(V ). Such a result can be quite useful in practice,
as solutions going through narrow corridors could be undesirable anyways (see [16,
Sect. 5] for the same conclusion).

Next, we relate the solution cost returned by gPRM to the best cost of a path
with strong δ-clearance in terms of the �2-dispersion of the samples used. This is a
generalization of previous convergence rates, e.g. [11], which only apply to obstacle-
free spaces. Previous work also defined convergence rate as, for a fixed level of
suboptimality ε, the rate (in n) that the probability of returning a greater-than-ε-
suboptimal solution goes to zero. In contrast, we compute the rate (in n) that solution
suboptimality approaches zero. Lastly, previous work focused on asymptotic rates
in big-O notation, while here we provide exact upper-bounds for finite samples.

Theorem 2 (Convergence rate in terms of dispersion) Consider the simplified prob-
lem of finding the shortest feasible path between two points x0 and x f in Xfree,
assuming that both the initial point and final point have already been sampled.
Define

δmax = sup{δ > 0 : ∃ a feasible σ ∈ Σ with strong δ-clearance},

and assume δmax > 0. For all δ < δmax, let c(δ) be the cost of the shortest path with
strong δ-clearance. Let cn be the length of the path returned by running gPRMon n
points whose �2-dispersion is D(V ) (whichwewill abbreviate to Dn for convenience)
and using a connection radius rn. Then for all n such that rn > 2Dn and rn < δ,

cn ≤
(
1 + 2Dn

rn − 2Dn

)
c(δ). (4)

Proof Let σδ be a feasible path of length c(δ) with strong δ-clearance. Construct the
balls B1, . . . , BMn with centers along σδ as in the proof of Theorem 1 (note we are
not constructing BMn+1 or BMn+2), except with radii Dn and centers separated by a
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segment of σδ of arc-length rn − 2Dn . Note that Mn = �c(δ)/(rn − 2Dn)�. Then by
definition each Bi contains at least one point xi . Furthermore, each xi is connected
to xi−1 in the gPRMgraph (because xi is contained in the ball of radius rn − Dn

centered at xi−1, and that ball is collision-free), and x f is connected to xMn as well.
Thus cn is upper-bounded by the path tracing through x0, x1, . . . , xMn , x f :

cn ≤ ‖x1 − x0‖ +
Mn∑

i=2

‖xi − xi−1‖+‖x f − xMn‖ ≤ rn − Dn+
Mn∑

i=2

rn + ‖x f − xMn‖

≤ (Mnrn − Dn) +
((

c(δ)

rn − 2Dn
−

⌊
c(δ)

rn − 2Dn

⌋)
(rn − 2Dn) + Dn

)

= c(δ) + 2DnMn ≤
(
1 + 2Dn

rn − 2Dn

)
c(δ),

where the second and third inequalities follow by considering the farthest possible
distance between neighboring points, given their inclusion in their respective balls.
�

Remark 1 (Goal region simplification) We note that the simplification of the goal
region streamlines Eq. (4) and the associated analysis. A similar result can be derived
for the more general case—this would require accounting for the curvature of the
goal region and constructing BMn+1 and BMn+2, whose radii and separation would
add a term to the convergence rate.

Remark 2 (Convergence rate in obstacle-free environments)Note thatwhen there are
no obstacles, δmax = ∞ and c(δ) = ‖x f − x0‖ for all δ > 0. Therefore, an immediate
corollary of Theorem 2 is that the convergence rate in free space of gPRM to the
optimal solution is upper-bounded by 2Dn/(rn − 2Dn) for rn > 2Dn .

Remark 3 (Practical use of convergence rate) Theorem 2 provides a convergence
rate result to a shortest path with strong δ-clearance. This result is useful for two
main reasons. First, in practice, the objective of path planning is often to find a
high-quality path with some “buffer distance” from the obstacles, which is precisely
captured by the notion of δ-clearance. Second, the convergence rate in Eq. (4) could
be used to certify the performance of gPRM (and related batch planners) by placing
some assumptions on the obstacle set (e.g., minimum separation distance among
obstacles and/or curvature of their boundaries)—this is an interesting avenue for
future research.

Both the asymptotic optimality and convergence rate results can be extended to
other batch planners such as Lazy-PRM or FMT∗. This is however omitted due to
space limitations.

Lastly, we show that using a low-�2-dispersion lattice sample set, an
asymptotically-optimal (AO) version of gPRMcan be run that has lower-order com-
putational complexity than any existing AO algorithm, namely ω(n) instead of
O(n log(n)).
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Theorem 3 (Computational complexity with deterministic sampling) gPRM run on
n samples arranged in a d-dimensional cubic lattice with connection radius rn
satisfying Eq. (2) has computational complexity and space complexity

O(n2rdn ). (5)

Proof The algorithm gPRMhas three steps: (1) For each sampled point x , it needs
to compute which other sampled points are within a distance rn of x . (2) For each
pair of sampled points within rn of one another, their connecting edge needs to be
checked for collision, and if collision-free, its edge-length needs to be computed.
(3) The shortest path through the graph produced in steps (1) and (2) from the initial
point to the goal region needs to be computed.

The lattice structure makes it trivially easy to bound a point’s rn-neighborhood
by a bounding hypercube with side-length 2rn , ensuring only O(nrdn ) nearby points
need to be checked for each of the n samples, so this step takes O(n2rdn ) time.

In step (2), one collision-check and at most one cost computation needs to be
performed for each pair of points found in step (1) to be within rn of one another.
The number of such pairs can be bounded above by the number of sampled points
times the size of each one’s neighborhood, leading to a bound of the form O(n · nrdn ).
Thus step (2) takes O(n2rdn ) time.

After steps (1) and (2), a weighted (weights correspond to edge lengths) graph has
been constructed on n vertices with a number of edges asymptotically upper-bounded
by n2rdn . One more property of this graph, because it is on the cubic lattice, is that
the number of distinct edge lengths is asymptotically upper-bounded by nrdn . An
implementation of Dijkstra’s algorithm for the single source shortest path problem
is presented in [19] with running time linear in both the number of edges and the
number of vertices times the number of distinct edge lengths. Since both are O(n2rdn ),
that is the time complexity of step (3). �

Since Theorem 1 allows rn ∈ ω(n−1/d)while maintaining AO, Theorem 3 implies
that cubic-lattice sampling allows for an AO algorithmwith computational and space
complexity ω(n). All other AO algorithms in the literature have computational and
space complexity at least O(n log(n)). While the use of an rn ∈ ω(n−1/d) makes
the graph construction phase (steps (1) and (2)) ω(n), step (3) would in general
take longer, as shortest-path algorithms on a general graph with n vertices requires
Ω(n log(n)). Thus the lattice structure must be leveraged to improve the complexity
of step (3). We note, however, that in practice the shortest-path algorithm is typically
a trivial fraction of path planning runtime, as it requires none of the much-more-
complex edge-cost and collision-free computations. If we ignore this component
of the runtime, the result of Theorem 3 can be extended to other PRM-like algo-
rithms such as FMT∗, non-lattice sampling schemes such as the Halton/Hammersley
sequence, and a k-nearest-neighbor implementation on a lattice (where kn is taken so
that each point would be connected to its rn-neighborhood if therewere no obstacles).



Deterministic Sampling-Based Motion Planning: Optimality, Complexity … 517

5 Numerical Experiments

In this sectionwenumerically investigate the benefits of planningwith low-dispersion
sampling instead of i.i.d. sampling. Section5.1 overviews the simulation environ-
ment used for this investigation. Section5.2 details the deterministic low-dispersion
sequences used, namely, lattices and the Halton sequence. Several simulations are
then introduced and results compared to i.i.d. sampling in Sects. 5.3 and 5.4. We then
briefly discuss non-i.i.d., random, low-dispersion sampling schemes in Sect. 5.5.
Finally, in Sect. 5.6 we discuss the results of different connection radius scalings,
specifically (log(log(n))/n)1/d , to numerically validate the theoretical results in
Sect. 4.

5.1 Simulation Environment

Simulations were written in C++ and MATLAB, and run using a Unix operating
system with a 2.3GHz processor and 8 GB of RAM. The C++ simulations were run
through the Open Motion Planning Library (OMPL) [24]. The planning problems
simulated in OMPL were rigid body problems whereas the simulations in MATLAB
involved point robots and kinematic chains. For each planning problem, the entire
implementation of gPRMwas held fixed (including the sequence of rn) except for
the sampling strategy. Specifically, for all simulations (except the chain and those
in Sect. 5.6), we used as connection radius rn = γPRM (log(n)/n)1/d , where γPRM =
2.2

(
1 + 1/d)1/d(1/ζd

)1/d
and ζd is the volume of the unit ball in the d-dimensional

Euclidean space. This choice ensures asymptotic optimality both for i.i.d. sample
sequences [11, 12] and deterministic low-dispersion sequences (Theorem 1). To
provide an exact “apples-to-apples” comparison, we do not present runtime results,
but only results in terms of sample count. Accordingly, our results are independent of
the specific implementation of gPRM. (Note that drawing samples represents a trivial
fraction of the total algorithm runtime. Furthermore, asmentioned in the introduction,
deterministic sampling even allows for possible speed-ups in computation.)

5.2 Sampling Sequences

Weconsider twodeterministic low-dispersion sequences, namely theHalton sequence
[8] and lattices. Halton sampling is based on a generalization of the van der Corput
sequence and uses prime numbers as its base to form a low-dispersion sequence of
points [8, 16]. Lattices in this work were implemented as a triangular lattice in two
dimensions and a Sukharev grid in higher dimensions [25].

Alongwith the benefits of lattices described throughout the paper, they also present
some challenges [16]. First, for basic cubic lattices with the same number of lattice
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points k per side, the total number of samples n is fixed to kd , which limits the
potential number of samples. For example, in 10 dimensions, the first four available
sample counts are 1, 1024, 59,049, and 1,048,576. There are some strategies to allow
for incremental sampling [17, 27, 28], but in this paper we overcome this difficulty
by simply “weighting” dimensions. Explicitly, we allow each side to have a different
number of lattice points. Independently incrementing each side’s number of points
by 1 increases the allowed resolution of n by a factor of d, as it allows all numbers
of the form n = (k − 1)m(k)d−m .

Second, lattices are sensitive to axis-alignment effects, whereby an axis-aligned
obstacle can invalidate an entire axis-aligned row of samples. A simple solution to
this problem is to rotate the entire lattice by a fixed amount (note this changes nothing
about the �2-dispersion or nearest-neighbor sets). We chose to rotate each dimension
by 10π degrees as an arbitrary angle far from zero (in practice, problems often show
a “preferential” direction, e.g., vertical, so there may be an a priori natural choice of
rotation angle).

Finally, in a Sukharev lattice in SE(2) or SE(3), each translational lattice point
represents many rotational orientations. In SE(3), this means there are only k3

translational points when n = k6. In many rigid body planning problems, the trans-
lational dimension is more cluttered and the dominating term in the cost, so the
effective reduction in translational samples severely hampers planning. A solution
is to “spread” the points, which entails de-collapsing all the rotational orientations
at each translational lattice point by spreading them deterministically in the transla-
tional dimensions around the original point.

5.3 Simulation Test Cases

Within the MATLAB environment, results were simulated for a point robot within
a Euclidean unit hypercube with a variety of geometric obstacles over a range of
dimensions. First, rectangular obstacles in 2D and 3D were generated with a fixed
configuration that allowed for several homotopy classes of solutions. A 2Dmazewith
rectangular obstacles was also created (Fig. 2a). These sets of rectangular obstacles
are of particular interest as they represent a possible “worst-case” for lattice-based
sampling because of the potential for axis alignment between samples and obstacles.
The results, shown for the 2D maze in Fig. 2 and for all experiments in Table1, show
that Halton and lattice sampling outperform i.i.d. sampling in both success rate and
solution cost.

To illustrate rectangular planning in higher dimensional space, we constructed
a recursive maze obstacle environment. Each instance of the maze consists of two
copies of the previous dimension’s maze, separated by an obstacle with an opening
through the new dimension, as detailed in [11]. Figure3a shows the maze in 2D and
Fig. 3b shows the maze in 3D with the two copies of the 2D maze in black and the
opening in red. Halton and lattice sampling conferred similar benefits in the recursive
mazes in 2D, 3D, 4D, 5D, 6D, and 8D as they did in other simulations (see Table1).
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Fig. 2 a The planning setup for a point robot with rectangular obstacles in a 2D maze. b, c The
results for solution cost and success rate versus sample count (averaged over 50 runs). For clarity
we only report data for i.i.d. sampling and lattice sequences, results including Halton sampling are
reported in Table1. Only points with greater than 50% success are shown in b

In addition to the rectangular obstacles, hyperspherical obstacles within a Euclid-
ean unit hypercube were generated to compare performance on a smooth obstacle set
with no possibility of axis alignment between samples and obstacles. The setups for
2D and 3D (Fig. 3c, d) were fixed, while in 4D, obstacles were randomly generated to
match a specified spatial coverage. Again, Halton and lattice sampling consistently
outperformed i.i.d. sampling, as shown in Table1.

As an additional high-dimensional example, an 8D kinematic chain planning
problem with rotational joints, eight links, and a fixed base was created (Fig. 3e).
The solution required the chain to be extracted from one opening and inserted into
the other, as inspired by [17]. The chain cost function was set as the sum of the
absolute values of the angle differences over all links and the connection radius was
thus scaled by

√
dπ . With this high dimension and new cost function the Halton and

lattice perform as well as or better than i.i.d. sampling (see Table1).
Within theOMPLenvironment, rigid bodyplanning problems from theOMPL test

banks were posed for SE(2) and SE(3) configuration spaces. In the SE(2) case, one
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Fig. 3 Images of the recursive maze planning problem in 2D (a) and 3D (b) and the spherical
obstacle sets in 2D (c) and 3D (d). Also shown are an 8D kinematic chain planning problem
in e and the OMPL rigid body planning problems for SE(2) and SE(3) in f and g respectively.
A summary of results can be found in Table1

rotational and two translational degrees of freedom are available, resulting in a three
dimensional space, shown in Fig. 3f. The SE(3) problem consists of an “L-shaped”
robot moving with three translational and three rotational degrees of freedom, result-
ing in six total problem dimensions, shown in Fig. 3g. The SE(2) and SE(3) lattices
use the spreading method described in Sect. 5.2.

5.4 Summary of Results

Table1 shows a summary of the results from simulations detailed in Sect. 5.3. Results
are shown normalized by the i.i.d. sampling results. In each case the sample count
at which a success rate greater than 90% is achieved and sustained is reported.
Additionally, the solution costs at a medium and high sampling count are shown. For
nearly all cases the lattice sampling finds a solution with fewer or an equal number
of samples and of lower or equal cost than that found by i.i.d. sampling. The Halton
sampling also always finds a solution at lower sample counts than i.i.d. sampling, and
almost always finds solutions of lower cost as well. The low-dispersion sequences
particularly outperform i.i.d. sampling in terms of number of samples required for a
90% success rate.
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Table 1 Summary of results. Each entry is divided by the results of i.i.d. sampling (averaged over
50 runs). For Halton sampling and lattice sampling, the number of samples at which 90% success
is achieved and the cost at a medium number of samples (near 700) and a high number of samples
are shown (highest samples simulated, always 3000 or greater). Note that nearly all table entries
are below 100%, meaning the Halton and lattice sampling outperformed i.i.d. sampling

Halton Lattice

Dim Obstacles (%) 90%
Success
(%)

Medium
(%)

High (%) 90%
Success
(%)

Medium
(%)

High (%)

2 Rectangular 38 118 80 15 56 80

3 Rectangular 36 88 94 19 80 87

2 Rect Maze 13 98 99 13 100 99

2 Sphere 16 93 99 7 93 99

3 Sphere 36 97 100 8 97 99

4 Sphere 100 97 97 100 97 100

2 Recursive
Maze

33 100 100 18 100 100

3 Recursive
Maze

22 95 99 22 96 98

4 Recursive
Maze

56 95 98 56 100 100

5 Recursive
Maze

45 97 96 60 95 96

6 Recursive
Maze

56 95 97 75 94 96

8 Recursive
Maze

56 98 99 75 99 99

8 Chain 67 112 91 7 76 87

3 SE(2) 81 96 100 81 101 101

6 SE(3) 32 96 93 42 94 95

5.5 Nondeterministic Sampling Sequences

The above simulations showed deterministic lattice sampling, with a fixed rotation
around each axis, and the deterministic Halton sequence outperform i.i.d. sampling.
Both deterministic sequences have low �2-dispersions of O(n−1/d), but sequences
with the same order �2-dispersion need not be deterministic. Figure4 shows results
for a randomly rotated and randomly offset version of the lattice (again, the
�2-dispersion and neighborhoods are all still deterministically the same). The same
cases in Table1 were run for the randomly rotated lattice and the results showed it
performed as well as or better than i.i.d. sampling (over 50 runs). In general, low-
dispersion random sequences might provide some advantages, e.g., eliminating axis
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Fig. 4 Results for deterministic and nondeterministic low-dispersion sampling. “Rand Rot Lattice”
refers to a randomly rotated lattice

alignment issues while still enjoying deterministic guarantees (see Sect. 4). Their
further study represents an interesting direction for future research.

5.6 Radius Scaling of (log(log(n))/n)1/d

To validate the results in Sect. 4 (specifically, Theorem 1), we investigate the effects
of scaling the radius as γPRM(log(log(n))/n)1/d . The results of these simulations are
shown in Fig. 5 for 2D rectangular obstacles. In the case of γPRM (log(log(n))/n)1/d ,
the lattice planning appears to still converge to the optimal cost, as predicted by
Theorem 1.
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Fig. 5 a planning setup for study of radius scaling. b planning results for lattice sampling with
radius scaling of γPRM (log(log(n))/n)1/d

6 Conclusions

This paper has shown that using low-dispersion sampling strategies (in particular,
deterministic) can provide substantial benefits for solving the optimal path planning
problem with sampling-based algorithms, in terms of deterministic performance
guarantees, reduced computational complexity per given number of samples, and
superior practical performance.

This paper opens several directions for future research. First, we plan to extend our
results to the case of kinodynamic motion planning. In particular, the �2-dispersion
is a natural quantity in geometric planning as it corresponds to Euclidean balls,
and Euclidean distance is exactly the relevant measure of distance between two
points. However, differential constraints require a different notion of distance based
on reachability sets, and as such if we can find sampling schemes that achieve low
dispersion in terms of reachability sets, we can extend the results here to the kino-
dynamic setting. Second, it is of interest to extend the results herein to other classes
of sampling-based motion planning algorithms, especially the large class of anytime
algorithms (e.g., RRT/RRT∗). This leads directly into a third key direction, which
is to study alternative low-dispersion sampling strategies beyond the few consid-
ered here, particularly incremental sequences for use in anytime algorithms. There
is already some work in this area, although thus far it has focused on the use of
such sequences for the feasibility problem [17, 27, 28]. It may also be of interest
to study low-dispersion sampling strategies that incorporate prior knowledge of the
problem by sampling non-uniformly. Non-uniform i.i.d. sampling has found success
by, for instance, sampling more densely near obstacles or more intricate parts of the
configuration space; we believe only minor modifications are needed to apply the
same principles to low-dispersion sampling, but defer such inquiry to future work.
Fourth, we plan to investigate the topological relationship between the optimal path
cost and that of the best strong-δ-clear path, in order to frame the convergence rate
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in terms of the true optimal cost. Fifth, from a practical standpoint, it is of interest to
adapt existing algorithms or design new ones that explicitly leverage the structure of
low-dispersion sequences (e.g., fast nearest neighbor indexing or precomputed data
structures). This would be especially beneficial in the domain of kinodynamicmotion
planning. Finally, leveraging our convergence rate results, we plan to investigate the
issue of certification for sampling-based planners, e.g., in the context of trajectory
planning for drones or self-driving cars.
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Path Following for Mobile Manipulators

Rajan Gill, Dana Kulić and Christopher Nielsen

1 Introduction

The problem of designing feedback control laws that make a robot follow a desired
curve in its workspace can be broadly classified as either a trajectory tracking or
path following problem. Trajectory tracking consists of tracking a curve with an
assigned time parametrization [10]. This approach may not be suitable for certain
applications as it may limit the attainable performance, be unnecessarily demanding
or even infeasible [8]. On the other hand, path following or manoeuvre regulation
controllers, as previously defined in [10], drive a system’s output to a desired path
and make the output traverse the path without a pre-specified time parametrization.
In general, path following results in smoother convergence to the desired path com-
pared to trajectory tracking, the control signals are less likely to saturate [17], and
performance limitations for non-minimum phase systems are removed [1]. Path fol-
lowing controllers can also render the desired path attractive and invariant [11]. This
is a useful property in robotics, since if a disturbance or obstacle is preventing the
output of a robot to proceed along the path, the robot will stay on the path until
the disturbance is removed [11]. Furthermore, if the robot’s output is perturbed so
that it leaves the path, the path following controller will drive the output back to the
desired path. There are several approaches for path following, see [9] for a complete
literature review.
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The majority of applications and experiments of mobile manipulators do not
simultaneously control the manipulator and the mobile base. That is, they control
the manipulator and the mobile base in a sequential, not parallel (as is done in this
paper), manner [3, 18, 21, 24]. Mobile manipulator systems can also be modelled as
a single redundant system [25]. Previous works have tackled the trajectory tracking
problem by resolving the redundancies at the kinematic level, but, unlike in this
paper, a trajectory for the end-effector as well as the mobile base is specified [12,
22]. In this paper, the motion planning process is simplified since there is no need to
plan separate trajectories (or paths) for the base and the end-effector. Khatib extended
the dynamic-level redundancy resolution developed for torque-input model of robot
manipulators [14] to holonomic mobile platforms [15], whereas the approach in this
paper can also be applied directly to combined motor-input manipulator mounted on
nonholonomic ground vehicles. In [25], the authors look at the coordinated mobile
manipulator problem, where, unlike in this paper, the manipulator dynamics are
neglected, to track a reference trajectory in the workspace of the mobile platform
while maximizing the manipulability measure.

In this paper,we apply the path following control approach of [9] to generalmobile
manipulator systems. We use dynamic extension [2, 13] to transform the dynamics
of the mobile manipulator system that are tangential and transversal to the path into
linear subsystems, and doesn’t result in a singularity when the base velocity is zero
unlike in previous work [2]. The remaining dynamics, redundant to following the
path, appear as internal dynamics of the closed-loop system. A novel redundancy
resolution technique is used at the dynamic level, and is experimentally shown to
yield bounded internal dynamics, whilemaintaining a preferredmanipulator posture.
This scheme can easily be tuned by the designer to achieve various desired poses.
The result is an automatic unified path following controller that compensates for
the dynamics of the mobile manipulator system, controlling the mobile base and
manipulator simultaneously, rendering a desired path in the output space of the
system to be attractive and invariant. There is no trajectory that needs to be planned
and tracked by the manipulator nor the mobile base, and the coordination between
the two is done automatically by our proposed path following controller.

Notation: Let 〈x, y〉 denote the inner product of vectors x and y in R
n . The

Euclidean norm of a vector and induced matrix norm are both denoted by ‖·‖.
The notation s ◦ h : A → C represents the composition of maps s : B → C and
h : A → B. The i th element of a vector x is denoted xi , and the row i to j and column
k to l submatrix of A is denoted as Ai : j,k:l . The symbol � means equal by defini-
tion. Given a C1 mapping φ : Rn → R

m let dφx be its Jacobian evaluated at x ∈ R
n .

If f , g : Rn → R
n are smooth vector fields we use the following standard nota-

tion for iterated Lie derivatives L0
f φ � φ, Lk

f φ � L f (L
k−1
f φ) = 〈dLk−1

f φx , f (x)〉,
LgL f φ � Lg(L f φ) = 〈dL f φx , g(x)〉. Finally, 0n×m is the n by m zero matrix and
In×m is a n by m matrix of zeros with ones on its main diagonal.
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2 Class of Systems

We consider a fully actuated manipulator mounted on a mobile ground vehicle.
For simplicity, the combined systems are assumed to be decoupled. This is a valid
system model assumption for general mobile manipulator systems [4, 15] and for
our experimental platform (Sect. 5).

Manipulator Subsystem: The first subsystem is a fully actuated manipulator
system with N configuration variables and N control inputs. The dynamic model is
of the familiar form [23]

M(q)q̈ + C(q, q̇)q̇ + G(q) = A(q)um (1)

where um ∈ R
N is the manipulator control input (usually motor voltages [23]), and

(q, q̇) ∈ R
N × R

N are joint positions and velocities.1

The output of system (1), the task space of the manipulator, lives in a P-
dimensional space, and is given in local frame B attached to the vehicle base (see
Fig. 1) as

ym = h(q) (2)

where h : RN → R
P is smooth. In addition, let J : RN → R

P×N , q �→ dhq repre-
sent themanipulator Jacobian [23].We assume,without loss of generality, that P ≥ 3
and that the first 3 components of h correspond to the Euclidean position of the end-
effector in the local frameB (Fig. 1). Any additional outputs (P > 3) of h represent
orientations of the end-effector in the world frame. For example, if P = 4, the fourth
row of h could represent the end-effector angle with respect to the horizontal ground
plane [20].

Vehicle Subsystem: The position xb ∈ R
2 and orientation θ ∈ R of frame B in

an inertial frame O (see Fig. 1) are governed by the vehicle’s dynamics. A general
vehicle kinematic model is given as [5]:

[
ẋ b

θ̇

]
= R(θ)Σ(σ)γb (3)

σ̇ = γs (4)

where R(θ) ∈ SO(3) is the rotation matrix

R(θ) �

⎡
⎣cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0
0 0 1

⎤
⎦ , (5)

1The results of this paper do not rely on the assumption that the state space be Euclidean. One
could replace R

N by a smooth Riemannian manifold. Nonetheless, we assume x ∈ R
N to avoid

unnecessarily cumbersome notation.
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qN

q3

q2

q1h(q)1:3

B

O

B

xb1

xb2

θq4

Fig. 1 Schematic of the mobile manipulator. The end-effector position h(q) is expressed in the
local-frame M attached to the bottom of the mobile base. The position and orientation of the
local-frame in the inertial frame O are determined by xb, θ

Σ : Rδs → R
3×δb is a full rank matrix [5, pg. 283] that depends on the steering

angle σ ∈ R
δs of the steering wheels, δs ∈ {0, 1, 2} is the degree of steerability [5,

pg. 273], δb ∈ {1, 2, 3} is the degree of mobility of the mobile base [5, pg. 272],
and γb ∈ R

δb , γs ∈ R
δs are the inputs to the vehicle. The degrees of mobility and

steerability δb, δs depend on the design of the vehicle and satisfy the constraint
δb + δs ∈ {2, 3}. The kinematic model (3) encompasses many wheeled-ground vehi-
cle designs including car-like vehicles, unicycles (see Sect. 5), and omnidirectional
vehicles [5, Chap. 7.2]. If the vehicle has no steering wheels, such as those found on
differential drive robots (see Sect. 5), then δs = 0 and Σ is a constant matrix.

Output Model:
The p-dimensional output of the overall system is taken to bemanipulator position

h(q) in the inertial frame in the following sense

y � H(q, xb, θ) =
[
R(θ)1:2,1:2 02×(P−2)

0(p−2)×2 I(p−2)×(P−2)

]
h(q) +

⎡
⎣ xb1

xb2
0(p−2)×1

⎤
⎦ . (6)

where P ≥ p ≥ 2 is the dimension of the output space. If p = 2, then only the planar
position of the end-effector in the inertial frame is of concern. If both P > 3 and
p > 3, then a component of the end-effector orientation is also to be specified.

Assumption 2.1 (Dexterity) The mobile manipulator satisfies N + δb ≥ p (see
Remark 1), i.e., the system has enough degrees of freedom to follow arbitrary paths
in the reachable space contained in Rp. �
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3 Problem Formulation

The problem studied in this paper is to find a continuous feedback control law for
um, γb, γs for the mobile manipulator system such that the output y exponentially
approaches a path in the output space R

p and traverses it towards a given desired
position or with a given velocity profile. This will be done via set stabilization [19].
Since the mobile manipulator system is redundant, the redundancy is used to avoid
manipulator joint limits and steering limits (if any) of the vehicle.

Weassume thatweare given a (p + 1)-times continuously differentiable, parametrized
curve in the output space of the mobile manipulator system,

σ : R → R
p (7)

which can be generated by spline interpolating a series of waypoints [6]. If p >

3, then the path also specifies a desired orientation of the end-effector. Given
[λmin, λmax] ⊆ R, the desired path is the set P � σ([λmin, λmax]). We assume that
the curve (7) is framed:

Assumption 3.1 (framed curves) For all λ ∈ [λmin, λmax], σ ′(λ), . . . , σ (p)(λ) are
linearly independent. �

Assumption 3.1 allows for the Frenet-Serret frame (FSF) of the path to be well-
defined [16], and the prospect of it being violated is very low when spline-
interpolatingwaypoints (see Sect. 5). In this paper we useAssumption 3.1 to generate
a zero-level set representation of P in the state space of (12). Assumption 3.1 can
be relaxed if a zero-level set representation of the path is already available, see [9].

The goals of this paper are to determine a control law for um, γb, γs such that

PF 1: The set P is rendered output invariant and locally attractive.2

PF 2: A desired position or velocity profile (tangent to the path) ηref : R≥0 → R is
tracked.

PF 3: Redundant dynamics (internal dynamics for the closed-loop system) remain
bounded while ensuring joint limits of the manipulator are respected.

4 Path Following Control Design

The control design approach relies on the output y having a well-defined relative
degree of {2, . . . , 2}. That is, the control inputs um, γb, γs all appear in the second
time-derivative of y. It can be shown that this is not the case: the control inputs γb
appear too soon by one derivative. Hence, by delaying the appearance of this input

2Invariance: if for some time t = 0 the state x(0) is appropriately initializedwith y = H(x(0)) ∈ P ,
then (∀t ≥ 0) H(x(t)) ∈ P . Attractiveness: for initial conditions x(0) such that the output H(x(0))
is in a neighbourhood of the desired path P , H(x(t)) → P as t → ∞.
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Fig. 2 Path following controller block diagram for mobile manipulator systems

via dynamic extension, we can make y have the desired relative degree. Then a “vir-
tual” output is constructed that incorporates the desired path (7). Through partial
feedback linearization, the virtual output partitions the system dynamics into con-
trollable transversal and tangential sub-systems that govern the motion transversal to
the path and along the path, respectively, and a redundant sub-system that governs the
motion of the system that does not produce any output motion. A novel redundancy
resolution approach is then used to ensure the redundant dynamics remain bounded,
while maintaining joint limits of the manipulator. The overall block diagram can be
found below in Fig. 2.

Dynamic Extension: Dynamic extension amounts to controlling the derivative(s)
of the actual control input. Since γb appears too soon by one derivative when com-
puting the derivatives of y, we introduce an auxiliary control variable ub ∈ R

δb as
follows:

γ̇b = ργb + ub (8)

where ρ < 0 is a damping coefficient. It is typical with dynamic extension [2] to
let ρ = 0, however we will see in Sect. 4 that setting ρ = 0 can result in unbounded
internal dynamics.

To facilitate the control design procedure, we write the dynamics (1), (3), (8)
with output (6) in state-space form. First, let xc � (q, xb, θ) ∈ R

N × R
2 × R,

xv � (q̇, γb, σ ) ∈ R
N × R

δb × R
δs . Then,

ẋc =
[

q̇
R(θ)Σ(σ)γb

]
=: Fc(x) (9)

ẋv =
⎡
⎣−M−1(q) (C(q, q̇)q̇ + G(q))

ργb
0δs×1

⎤
⎦ +

⎡
⎣M−1(q)A(q) 0N×δb 0N×δs

0δb×N Iδb×δb 0δs×δs

0δb×N 0δb×δb Iδs×δs

⎤
⎦

⎡
⎣um
ub
γs

⎤
⎦
(10)

=: Fv(x) + Gv(x)u (11)
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where x � (xc, xv) ∈ R
2N+3+δb+δs is the state of the system, u � (um, ub, γs) ∈

R
N+δb+δs is the control input to the system, and y is the output. Note that Fc(x) and

Fv(x) are smooth vector fields, Gv(x) is smooth and has full rank, and ∂H(xc)
∂xv

= 0.
The control inputs of the physical system (1), (3) are um, γb, γs , while (8) constitutes
the dynamic portion of the controller implemented in the control algorithm.

The state space equations can be compactly written as

ẋ =
[
ẋc
ẋv

]
=

[
Fc(x)
Fv(x)

]
+

[
0(N+3)×(N+δb+δs )

Gv(x)

]
u =: f (x) + g(x)u (12)

y = H(xc) (13)

The mobile manipulator system is redundant in the sense that dim u = N + δb +
δs ≥ dim y = p.

Virtual Outputs: The first virtual output, η1(x), is the tangential position of the
output y along the desired path. Denote the parameter of curve σ that corresponds
to the closest point to the output y as λ∗ ∈ [λmin, λmax]

λ∗ � �(y) � arg inf
λ∈[λmin,λmax]

‖y − σ(λ)‖ . (14)

The minimization for λ∗ is done numerically using a gradient-descent-like algorithm
[9]. The first virtual output is the projected, traversed arc length along the curve:

η1 = η1(x) �

λ∗∫
λmin

∥∥∥∥dσ(λ)

dλ

∥∥∥∥ dλ
∣∣∣∣∣∣
λ∗=�◦H(xc)

. (15)

This integral does not have to be computed for real time implementation if only
tangential velocity control is required, as in the case of our experiment (see Sect. 5).

The remaining virtual outputs are selected to represent the cross track error to the
path using the remaining FSF normal vectors, known as transversal positions [9]. The
generalized Frenet-Serret (FS) vectors are constructed applying the Gram-Schmidt
Orthonormalization process to the vectors σ ′(λ), σ ′′(λ),…, σ (p)(λ):

e j (λ) �
ē j (λ)∥∥ē j (λ)

∥∥ (16)

where

ē j (λ) � σ ( j)(λ) −
j−1∑
i=1

〈
σ ( j)(λ), ei (λ)

〉
ei (λ),

for j ∈ {1, . . . , p}. This formulation is well-defined by Assumption 3.1. If FSF are
not feasible, other frames may work [8].
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Fig. 3 The tangential and
transversal state positions
when p = 3

P

σ(λ ∗)
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R
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1 (x)

ξ 2
1 (x)

η1(x)

The transversal positions can be computed by projecting the error to the path,
y − σ(λ∗), onto each of the FS normal vectors:

ξ
j−1
1 = ξ

j−1
1 (x) �

〈
e j (λ∗), H(xc) − σk∗(λ∗)

〉∣∣
λ∗=�◦H(xc)

(17)

for j ∈ {2, . . . , p}.
The tangential and transversal positions are illustrated in Fig. 3 for p = 3.
Dynamics andControl: Itwill be shown that the virtual output (η1(x), ξ 1

1 (x), . . . ,
ξ
p−1
1 (x)) ∈ R

p has a well-defined vector relative degree of {2, 2, . . . , 2} for all x ∈
U , where

U �
{
x ∈ R

2N+3+δb+δs | rank
(

∂H

∂xc

∂Fc

∂xv
Gv(x)

)
= p

}
(18)

(see (24)) when (14) is solved numerically [9]. We emphasize that (14) is solved for
numerically by a local search since if the output y is equidistant to multiple points
on the path, then (14) is not well defined and neither is the relative degree. Under
these conditions, there exists a local coordinate transformation

T : U → R
2N+3+δb+δs (19)

x �→ (η1(x), L f η1(x), ξ
1
1 (x), L f ξ

1
1 (x), . . . , ξ p−1

1 (x), L f ξ
p−1
1 (x), ϕ(x)) (20)

= (η1, η2, ξ
1
1 , ξ 1

2 , . . . , ξ
p−1
1 , ξ

p−1
2 , ζ ), (21)

which is a diffeomorphism onto its image for a suitable choice of the function
ϕ : R2N+3+δb+δs → R

2N+3+δb+δs−2p [13] (which may limit the domain of T by [13,
Proposition 5.1.2], but in practice (see Sect. 5), these functions do not need to be
computed unless one wants to visualize the redundant dynamics or study their stabil-
ity properties). Note that since the virtual output η1 represents the tangential position
of the output y along the path, η2 represents the tangential velocity of the output
along the path. Similarly, since ξ

j
1 represents the transversal positions to the path, ξ j

2
represents the transversal velocities, j ∈ {1, . . . , p − 1}. Note that there will always
be an internal state ζ , since by Assumption 2.1, N + δb + δs ≥ N + δm ≥ p and
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δb + δs ∈ {2, 3} always implies 2N + 3 + δb + δs − 2p > 0, which is expected as
mobile manipulators are highly redundant systems.

The dynamics in the transformed coordinates are

η̇1 = η2 ξ̇
j
1 = ξ

j
2

η̇2 = L2
f η1(x) + LgL f η1(x)u ξ̇

j
2 = L2

f ξ
j
1 (x) + LgL f ξ

j
1 (x)u

ζ̇ = L f ϕ(x) + Lgϕ(x)u =: fζ (x, u)

(22)

for j ∈ {1, . . . , p − 1} and x = T−1(η, ξ, ζ ). The expressions for the Lie derivatives
canbe found in [7].Basedon the virtual output construction (Sect. 4), theη-subsystem
represents the dynamics tangent to the path, and the ξ -subsystem represents the
dynamics transversal to the path. Thus, the dynamics fζ represent the dynamics of
the system (12) that do not produce any output motion. These are the redundant
dynamics to path following. Next we perform standard partial feedback linearization
for non-square systems Let

α(x) �
[
L2

f η1(x) L2
f ξ

1
1 (x) . . . L2

f ξ
p−1
1 (x)

]� ∈ R
p (23)

β(x) �

⎡
⎢⎢⎢⎣

LgL f η1(x)
LgL f ξ

1
1 (x)

...

LgL f ξ
p−1
1 (x)

⎤
⎥⎥⎥⎦ ∈ R

p×(N+δb+δs ) (24)

where the terms in β(x) are

LgL f η1(x) = e1(λ∗)�
∂H(xc)

∂xc

∂Fc(x)

∂xv
Gv(xc) (25)

LgL f ξ
j−1
1 (x) =e j (λ∗)�

∂H(xc)

∂xc

∂Fc(x)

∂xv
Gv(x)+

(H(xc) − σ(λ∗))�e′
j (λ

∗)
LgL f η1(x)

‖σ ′(λ∗)‖ (26)

for j ∈ {2, . . . , p} and λ∗ = � ◦ H(xc) [7]. The decoupling matrix β(x) has full
row rank p in the setU (see (18)) since each ei are orthogonal by FSF construction,
thus in U the virtual output has a well-defined relative degree [13].

Remark 1 A necessary condition for β(x) to have rank p is that each matrix ∂H
∂xc

, ∂Fc
∂xv

and Gv(x) have rank of at least p. The matrix ∂H(xc)
∂xc

has the form

∂H(xc)

∂xc
=

[[
R(θ)1:2,1:2 02×(P−2)

0(p−2)×2 I(p−2)×(P−2)

]
J (q)

I2×2

0(p−2)×2

[
R′(θ)1:2,1:2 02×(P−2)

0(p−2)×2 0(p−2)×(P−2)

]
h(q)

]
(27)
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and always has rank of at least 2 due to the ground vehicle (thus is always full rank
if p = 2). For p > 2, it has full rank if J (q) is non-singular.

The matrix ∂Fc(x)
∂xv

has the form

∂Fc

∂xv
=

[
IN×N 0N×δb 0N×δs

03×N R(θ)Σ(σ) R(θ) ∂Σ(σ)

∂σ

]
, (28)

thus N + 3 ≥ rank( ∂Fc
∂xv

) ≥ N + δb ≥ p (by Assumption 2.1) and will depend on the

particular ground vehicle. For a unicycle (Sect. 5), for all x , rank( ∂Fc(x)
∂xv

) = N + δb =
N + 2. The matrix Gv(x) (see (9)) always has full rank of N + δb + δs ≥ p. �

Next, introduce an auxiliary input v � (vη, vξ ) ∈ R × R
p−1 such that

v = β(x)u + α(x). (29)

The dynamics (22) then become

ζ̇ = fζ (x, u) η̇1 = η2 ξ̇
j
1 = ξ

j
2

η̇2 = vη ξ̇
j
2 = vξ j

where j ∈ {1, . . . , p − 1} and x = T−1(η, ξ, ζ ).
In the set U the ξ -subsystem is linear and controllable, and can be stabilized

to ensure attractiveness and invariance of the path P [11], thereby satisfying PF1.
The η-subsystem is also linear and controllable, thus a tangential controller can be
designed for vη to track a desired tangential position or velocity profileηref (t), thereby
satisfying PF2. Figure2 shows a block diagram of the entire control system.

RedundancyResolution: Once the auxiliary control signal v ∈ R
p is generated to

stabilize the η and ξ -subsystems for PF1 and PF2, the feedback transformation (29)
must be solved to generate the actual control signal u ∈ R

N+δb+δs . When N + δb +
δs = p, there is a unique solution to (29), and one must ensure that the internal
dynamics ζ̇ = fζ (x, u) remain bounded.

Formost mobilemanipulator systems (see Sect. 5 for an example), N + δb + δs >

p. Thus there is some freedom in the choice of the control input u under the feedback
transform (29). This freedom can be used to enforce boundedness of the internal
dynamics. We apply the approach from [9] to mobile manipulator systems. Consider
the static optimization

min
u

(u − r(x))� W (u − r(x)) (30)

s.t. v = β(x)u + α(x)

This is a static minimization of a quadratic function of u under a linear constraint,
for which a closed form solution for u can be found using Lagrange multipliers. One
might be tempted to use an inequality constraint over x to respect joint limits, but
it is unclear how to do so since we are optimizing over the control effort u and x
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is treated as a parameter. The matrix W ∈ R
(N+δb+δs )×(N+δb+δs ) is a positive-definite

weighting matrix, and the function r : RN+3 → R
N+δb+δs is used to bias the control

input u to achieve desired behaviour in the internal dynamics. For example, if W
is the identity matrix and r(x) is the zero function, then we are minimizing control
effort while achieving PF1 and PF2.

In this application, we want to bias u such that the manipulator stays away from
joint and actuation limits (PF3). If a joint qi , i ∈ {1, . . . , N } of the manipulator
is at its minimum limit qmin

i , setting the control effort ui , i ∈ {1, . . . , N } (i.e., um)
corresponding to this joint to be the maximum control effort umax

i will likely increase
the value of the joint, thereby pushing it away from the negative joint limit. These
joint limits can be set artificially to bias the manipulator in a preferred position (so as
to avoid singular configurations of J (q), see Remark 1) or set to their true joint limit
values. For ui , i ∈ {N + 1, . . . , N + δb + δs} (i.e., ub, γs) we’d like to minimize the
control effort so that the mobile base moves as little as possible (however if there
are steering limits on σ , a similar logic used for joint limits on a manipulator can be
applied). The corresponding r function to achieve this behaviour in (30) is

r(x)i � −umax
i − umin

i

qmax
i − qmin

i

(qi − qmin
i ) + umax

i , i ∈ {1, . . . , N } (31)

r(x)i � 0, i ∈ {N + 1, N + δb + δs} (32)

Using Lagrangian multipliers, the solution to (30) is

u = β†(x)(v − α(x)) + (
In×n − β†(x)β(x)

)
r(x) (33)

where β†(x) � W−1β(x)�
(
β(x)W−1β(x)�

)−1
.

In [9, Conjecture 3.5], we showed via examples and experiments on manipulators
that a similar control law (33) seems to provide boundedness of the internal dynamics
while maintaining joint limits of a manipulator when each degree of freedom has
inherent viscous friction. In this paper, for mobile manipulator systems, boundedness
of internal dynamics and maintaining joint limits of the manipulator holds when
ρ < 0 in the dynamic extension (8) (PF3). If ρ = 0, PF1 and PF2 can still be
achieved (i.e. controllability is unchanged), but the internal dynamics change and at
least one of the base position states (xb, θ ) may become unbounded, see Example. 1.
The reason is ub controls the mobile base acceleration through (8). So although (31)
is chosen such that base acceleration is minimized, ideally keeping ub = 0, then the
base velocities remain at a some constant, not necessarily zero, value, resulting in
base states (namely θ ) that continuously grow. Thus, ρ < 0 is used to dampen these
dynamics. The same doesn’t happen for the steering dynamics of σ since the steering
dynamics are governed by a single integrator. So γs is minimized, ideally 0 when
possible, implies the steering position is constant when possible, thus remaining
bounded.
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Fig. 4 Example 1: Simulation of ρ = 0 (left) and ρ = −10 (right). When ρ = 0, the mobile base
orbits the output position y = H(xc(t)) such that it maintains the preferred position and is on the
desired path P . Each snapshot of the mobile base is taken every 1.5 s

Example 1 (Internal Dynamics) Consider the mobile manipulator system of Sect. 5.
In this system and in most systems, umax

i = −umin
i for use in (31). The joint limits

are set to their true values except for the waist joint q1 where qmin
1 � 0◦, qmax

1 � 20◦.
Thus the optimal control effort for the waist r(x)1 = 0 when q1 = 10◦, so that the
desired position of the waist is 10◦, that is, the manipulator should face to the right
of the vehicle (or the vehicle is to stay towards the left of the desired path). The path
is shown in Fig. 4, and ηref

2 = 100mm/s. Two simulation results are included that
show PF1 and PF2 are achieved, and there is automatic coordination between the
manipulator and the mobile base. When ρ = 0, PF3 is not achieved as the yaw state
θ of the mobile base continuously increases and the vehicle orbits the end-effector
as the end-effector follows the path.

When ρ < 0, PF3 is achieved as discussed above. At the very start of the run, the
base automatically orients itself by rotating, travels backwards until the end-effector
is at its preferred position while the end effector is on the path P , then proceeds
forward as it achieves PF2. Note that the initial position of the base could have been
placed further away from the path, and the same controller will automatically move
the base to a neighbourhood of the path. Further notice the controller automatically
speeds up the mobile base when the end-effector is traversing the higher curva-
ture areas of the path in order to maintain the desired constant tangential velocity
profile. �

Remark 2 The weighting matrixW plays an important role to ensure the joint limits
are satisfied. If the associated weights for the manipulator joint actuation are too low,
the controller may not move the mobile base at all before the manipulator reaches
a singular configuration. If the weights are high enough, then the controller will
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increase control effort to the base so that the base moves while the manipulator
satisfies its joint limits. �

5 Experiment

SystemModel: The mobile manipulator system is a platform designed by Clearpath
Robotics (see Fig. 5). The manipulator is a 4-degree-of-freedom system. The com-
pletemodelling procedure can be found in [8], yields the dynamics of themanipulator
in form (1) with N = 4 and um representing the vector of control input voltages to the
motors. The mobile platform runs a low level control loop that controls the vehicle’s
heading rate and tangential velocity. The vehicle has no steering wheels. Thus, for
this system δs = 0 and δb = 2 and the general kinematic model (3) reduces to the
standard unicycle equations [5]

ẋ b1 = γb1 cos(θ) (34)

ẋ b2 = γb1 sin(θ) (35)

θ̇ = γb2 (36)

The output space is taken to be the 3-dimensional Euclidean space, that is p = 3.
Path FollowingController: The desired path is generated by spline-interpolating

3-dimensional waypoints using quintic polynomials [6]. The control design approach
then follows from Sect. 4. For this mobile manipulator system, significant modelling
uncertainties arise due to inaccurate manipulator modelling [8] and the assumption
of a perfect kinematic model of the mobile base, as well as ignoring the coupling
dynamics between the two. This results in imperfect cancellation of the actual system
dynamics using (23), (24). The Lyapunov redesign based robust controller in [8, Eq.
(27)] is used to overcome the modelling uncertainties, thereby achieving PF1.

The η-subsystem is also linear and controllable, thus a tangential controller can be
designed for vη to track some desired tangential position or velocity profile ηref(t).
Our goal is to track a desired constant velocity profile ηref

2 . This can be done using
a PI controller [8, Eq. (24)] where the integral action is used for robustness, thereby
achieving PF2. Figure2 has the complete block diagram.

The manipulator has a Labview Real-Time Module® which is used to read the
linear actuator distances using optical encoders and to control themotor PWMampli-
fiers. The encoder readings are converted to joint angles q and numerically differ-
entiated to approximate q̇ . This module communicates with ROS via the Rosbridge
package. The Husky is a ROS-enabled robot which takes in γb to control the robot,
and gives out (xb, θ) data based on a sensor fusion of wheel odometry and an on-
board IMU. The path following controller is implemented using MATLAB Robotics
System Toolbox.

Results: The joint limits in (31) are set so that in Figs. 6, 7, 8 and 9, the waist of
the manipulator prefers 90◦ (the manipulator is ahead of the vehicle), and again in
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another run in Fig. 10, so that the waist prefers 160◦ (the manipulator is to the left of
the vehicle). In all cases, ηref

2 = 100mm/s.
As shown in the 3D and 2D plots, the proposed path following controller success-

fully satisfies the goals PF1 and PF3. The output y automatically goes towards the
closest point on the path P due to the coordinate transformation employed. A key
advantage of the proposed approach is the automatic coordination of the manipulator
and mobile base. Based on the preferred position of the manipulator via (31), the
mobile base automatically orients itself. In the second lap of the path (indicated in
magenta), the mobile base actually moves backwards until xb ≈ (-1000, 500)mm,
at which point the base turns and moves forward in order to keep the manipulator
at its preferred position and to traverse the path at the desired rate ηref

2 , without any
explicit trajectory planning and tracking for the mobile base.

Fig. 5 Clearpath
manipulator mounted on a
clearpath A200 mobile
platform

Fig. 6 Experiment 3D
response – preferred
q1 = 90◦
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Fig. 7 Experiment response,
top view – preferred
q1 = 90◦. Each snapshot of
the mobile base is taken
every 4s
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Fig. 8 Preferred q1 = 90◦.
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We see that in the state trajectory (Fig. 8), themanipulator positions q quickly con-
verge to their preferred positionswhen possible, in particular, thewaist q1 approaches
90◦. The virtual output trajectories can be found in Fig. 9 and show that the system
is traversing the path at a constant (desired) rate (PF2), while the transversal errors
quickly approach 0 resulting in convergence to the desired pathP (PF1). At steady
state, the cross-track errors are less than ≈ 15mm.

When the preferred waist position is adjusted, themobile base automatically takes
another route for the same desired pathP . In Fig. 10, it can be seen that the mobile
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Fig. 9 Preferred q1 = 90◦.
Virtual output trajectories.
Notice from η1 just over 2
laps are completed

Fig. 10 Experiment
response, top view –
preferred q1 = 160◦. Each
snapshot of the mobile base
is taken every 4s
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base tries to stay to the right of the path in order to respect the artificial preferred
position of the waist of the manipulator. Note that at the high curvature areas, the
mobile base speeds up significantly (apparent by the decreased density of the mobile
base snapshots) in order to respect PF2.
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6 Conclusions and Future Work

This paper proposes a unified path following controller for mobile manipulator sys-
tems. The controller automatically moves the mobile base and the manipulator such
that the end-effector traverses a path in the output space towards a given desired
position or with a given velocity profile. There is no explicit trajectory required for
the mobile base or the end-effector to follow. The desired path is rendered invari-
ant and attractive, and the redundancy resolution scheme employed allows for the
manipulator to stay away from joint limits. Dynamic extension with damping was
used so that the virtual output employed for path following has a full relative degree
and to ensure boundedness of the internal dynamics.

Dynamically changing the r function in (31) for real-time obstacle avoidance
is a direction for future work. Analyzing when the virtual output constructed in
the mobile manipulator path following controller loses full relative degree (that is
when (24) loses rank) is another direction for future work. This will help determine
which configurations of the mobile manipulator with respect to the path should be
avoided.
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Incremental Sparse GP Regression
for Continuous-Time Trajectory
Estimation and Mapping

Xinyan Yan, Vadim Indelman and Byron Boots

1 Introduction and Related Work

Simultaneously recovering the location of a robot and a map of its environment
from sensor readings is a fundamental challenge in robotics [1, 7, 14]. Well-known
approaches to this problem, such as square root smoothing and mapping (SAM) [4],
have focused on regression-based methods that exploit the sparse structure of the
problem to efficiently compute a solution. The main weakness of the original SAM
algorithm was that it was a batch method: all of the data must be collected before a
solution can be found. For a robot traversing an environment, the inability to update
an estimate of its trajectory online is a significant drawback. In response to this
weakness, Kaess et al. [9] developed a critical extension to the batch SAM algo-
rithm, iSAM, that overcomes this problem by incrementally computing a solution.
The main drawback of iSAM, was that the approach required costly periodic batch
steps for variable reordering to maintain sparsity and relinearization. This approach
was extended in iSAM 2.0 [11], which employs an efficient data structure called the
Bayes tree [10] to perform incremental variable reordering and just-in-time relin-
earization, thereby eliminating the bottleneck caused by batch variable reordering
and relinearization. The iSAM2.0 algorithm and its extensions arewidely considered
to be state-of-the-art in robot trajectory estimation and mapping.

Themajority of previous approaches to trajectory estimation andmapping, includ-
ing the smoothing-based SAM family of algorithms, have formulated the problem
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in discrete time [1, 3, 4, 7, 11, 12, 14]. However, discrete-time representations are
restrictive: they are not easily extended to trajectories with irregularly spaced way-
points or asynchronously sampled measurements. A continuous-time formulation
of the SAM problem where measurements constrain the trajectory at any point in
time, would elegantly contend with these difficulties. Viewed from this perspective,
the robot trajectory is a function x(t), that maps any time t to a robot state. The
problem of estimating this function along with landmark locations has been dubbed
simultaneous trajectory estimation and mapping (STEAM) [2].

Tong et al. [15] proposed a Gaussian process (GP) regression approach to solv-
ing the STEAM problem. While their approach was able to accurately model and
interpolate asynchronous data to recover a trajectory and landmark estimate, it suf-
fered from significant computational challenges: naive Gaussian process approaches
to regression have notoriously high space and time complexity. Additionally, Tong
et al.’s approach is a batchmethod, so updating the solution necessitates saving all of
the data and completely resolving the problem. In order to combat the computational
burden, Tong et al.’s approach was extended in Barfoot et al. [2] to take advantage
of the sparse structure inherent in the STEAM problem. The resulting algorithm
significantly speeds up solution time and can be viewed as a continuous-time ana-
log of Dellaert’s original square-root SAM algorithm [4]. Unfortunately, like SAM,
Barfoot et al.’s GP-based algorithm remains a batch algorithm, which is a disadvan-
tage for robots that need to continually update the estimate of their trajectory and
environment.

In this work, we provide the critical extensions necessary to transform the existing
Gaussian process-based approach to solving the STEAM problem into an extremely
efficient incremental approach. Our algorithm combines the benefits of Gaussian
processes and iSAM2.0.Like theGP regression approaches toSTEAM,our approach
canmodel continuous trajectories, handle asynchronousmeasurements, and naturally
interpolate states to speed up computation and reduce storage requirements, and,
like iSAM 2.0, our approach uses a Bayes tree to efficiently calculate a maximum a
posteriori (MAP) estimate of the GP trajectory while performing incremental factor-
ization, variable reordering, and just-in-time relinearization. The result is an online
GP-based solution to the STEAM problem that remains computationally efficient
while scaling up to large datasets.

2 Batch Trajectory Estimation and Mapping as Gaussian
Process Regression

We begin by describing how the simultaneous trajectory estimation and mapping
(STEAM) problem can be formulated in terms of Gaussian process regression. Fol-
lowing Tong et al. [15] and Barfoot et al. [2], we represent robot trajectories as
functions of time t sampled from a Gaussian process:

x(t) ∼ GP(μ(t),K(t, t ′)), t0 < t, t ′ (1)
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Here, x(t) is the continuous-time trajectory of the robot through state-space, repre-
sented by a Gaussian process with mean μ(t) and covariance K(t, t ′) functions.

We next define a finite set of measurements:

yi = hi (θi ) + ni , ni ∼ N (0,Ri ), i = 1, 2, . . . , N (2)

The measurement yi can be any linear or nonlinear functions of a set of related vari-
ables θi plus some Gaussian noise ni . The related variables for a range measurement
are the robot state at the corresponding measurement time x(ti ) and the associated
landmark location � j . We assume the total number of measurements is N , and the
number of trajectory states at measurement times is M .

Based on the definition of Gaussian processes, any finite collection of robot states
has a joint Gaussian distribution [13]. So the robot states at measurement times are
normally distributed with mean μ and covariance K.

x ∼ N (μ,K), x = [ x(t1)ᵀ . . . x(tM)ᵀ ]ᵀ
μ = [μ(t1)ᵀ . . . μ(tM)ᵀ ]ᵀ, Ki j = K(ti , t j )

(3)

Note that any point along the continuous-time trajectory can be estimated from the
Gaussian process model. Therefore, the trajectory does not need to be discretized and
robot trajectory states do not need to be evenly spaced in time, which is an advan-
tage of the Gaussian process approach over discrete-time approaches (e.g. Dellaert’s
square-root SAM [4]).

The landmarks � which represent the map are assumed to conform to a joint
Gaussian distribution with mean d and covariance W (Eq. 4). The prior distribution
of the combined state θ that consists of robot trajectory states at measurement times
and landmarks is, therefore, a joint Gaussian distribution (Eq.5).

� ∼ N (d,W), � = [ �ᵀ
1 �

ᵀ
2 . . . �

ᵀ
O ]ᵀ (4)

θ ∼ N (η,P), η = [μᵀ dᵀ ]ᵀ, P = diag(K,W) (5)

To solve the STEAM problem, given the prior distribution of the combined state
and the likelihood of measurements, we compute the maximum a posteriori (MAP)
estimate of the combined state conditioned on measurements via Bayes’ rule:

θ∗ � θMAP = argmax
θ

p(θ|y) = argmax
θ

p(θ)p(y|θ)

p(y)

= argmax
θ

p(θ)p(y|θ) = argmin
θ

(− log p(θ) − log p(y|θ))

= argmin
θ

(‖θ − η‖2P + ‖h(θ) − y‖2R
)

(6)
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where the norms are Mahalanobis norms defined as: ‖e‖2� = eᵀ�−1e, and h(θ) and
R are the mean and covariance of the measurements collected, respectively:

h(θ) = [h1(θ1)
ᵀ h2(θ2)

ᵀ . . . hN (θN )ᵀ ]ᵀ, R = diag(R1,R2, . . . ,RN ) (7)

Because both covariance matrices P and R are positive definite, the objective
in Eq.6 corresponds to a least squares problem. Consequently, if some of the
measurement functions hi (·) are nonlinear, this becomes a nonlinear least squares
problem, in which case iterative methods including Gauss–Newton and Levenberg–
Marquardt [5] can be utilized; in each iteration, an optimal update is computed given a
linearized problem at the current estimate. A linearization of a measurement function
at current state estimate θ̄i can be accomplished by a first-order Taylor expansion:

hi
(
θ̄i + δθi

) ≈ hi (θ̄i ) + ∂hi
∂θi

∣∣∣
∣
θ̄i

δθi (8)

Combining Eq.8 with Eq.6, the optimal increment δθ∗ is:

δθ∗ = argmin
δθ

(‖θ̄+δθ−η‖2P + ‖h(θ̄)+Hδθ−y‖2R
)

(9)

H = diag(H1,H2, . . . ,HN ), Hi = ∂hi
∂θi

∣
∣∣∣
θ̄i

(10)

whereH is the measurement Jacobian matrix. To solve the linear least squares prob-
lem in Eq.9, we take the derivative with respect to δθ, and set it to zero, which gives
us δθ∗ embedded in a set of linear equations

(P−1+HᵀR−1H)︸ ︷︷ ︸
I

δθ∗ =P−1(η−θ̄)+HᵀR−1(y−h̄)
︸ ︷︷ ︸

b

(11)

with covariance cov(δθ∗, δθ∗) = I−1.
The positive definite matrix I is the a posteriori information matrix. To solve

the linear equations for δθ∗, factorization-based methods can provide a fast, numer-
ically stable solution. For example, δθ∗ can be found by first performing a Cholesky
factorization LLᵀ = I , and then solving by back substitution. At each iteration we
perform a batch state estimation update θ̄ ← θ̄ + δθ∗ and repeat the process until
convergence. If I is dense, the time complexity of a Cholesky factorization and
back substitution are O(n3) and O(n2) respectively, where I ∈ R

n×n [8]. However,
if I has sparse structure, then the solution can be found much faster. For example,
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for a narrowly banded matrix, the computation time is O(n) instead of O(n3) [8].
Fortunately, we can guarantee sparsity for the STEAM problem (see Sect. 2.2).

2.1 State Interpolation

An advantage of the Gaussian process representation of the robot trajectory is that
any trajectory state can be interpolated from other states by computing the posterior
mean [15]:

x̄(t) = μ(t) + K(t)K−1(x̄ − μ) (12)

x̄ = [ x̄(t1)ᵀ . . . x̄(tM)ᵀ ]ᵀ, K(t) = [K(t, t1) . . .K(t, tM) ]

By utilizing interpolation, we can reduce the number of robot trajectory states that
we need to estimate in the optimization procedure [15]. For simplicity, assume θi ,
the set of the related variables of the i th measurement according to the model (Eq.2),
is x(τ ). Then, after interpolation, Eq.8 becomes:

hi
(
θ̄i + δθi

) = hi (x̄(τ ) + δx(τ ))

≈ hi (x̄(τ )) + ∂hi
∂x(τ )

· ∂x(τ )

∂x

∣∣
∣∣
x̄
δx

= hi
(
μ(τ )+K(τ )K−1(x̄−μ)

)+HiK(τ )K−1δx (13)

By employingEq.13 during optimization,we canmake use ofmeasurement i without
explicitly estimating the trajectory states that it relates to. We exploit this advantage
to greatly speed up the solution to the STEAM problem in practice (Sect. 4).

2.2 Sparse Gaussian Process Regression

The efficiency of the Gaussian process Gauss–Newton algorithm presented in Sect. 2
is dependent on the choice of kernel. It is well-known that if the information matrix
I is sparse, then it is possible to very efficiently compute the solution to Eq.11 [4].
Barfoot et al. suggest a kernel matrix with a sparse inverse that is well-suited to the
simultaneous trajectory estimation and mapping problem [2]. In particular, Barfoot
et al. show that K−1 is exactly block-tridiagonal when the GP is assumed to be
generated by linear, time-varying (LTV) stochastic differential equation (SDE)which
we describe here:

ẋ(t) = A(t)x(t) + v(t) + F(t)w(t),

w(t) ∼ GP(0, Qcδ(t − t ′)) t0 < t, t ′
(14)
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where x(t) is trajectory, v(t) is known exogenous input, w(t) is process noise, and
F(t) is time-varying systemmatrix. The process noisew(t) is modeled by a Gaussian
process, and δ(·) is the Dirac delta function. (See [2] for details.) We consider a
specific case of this model in the experimental results in Sect. 4.1. Because the mean
function μ(t) is an integral of the known exogenous input v(t), the assumption of
zero v(t) leads to Gaussian process with zero mean μ(t).

Assuming the GP is generated by Eq.14, the measurements are landmark and
odometry measurements, and the variables are ordered in XL ordering,1 the sparse
information matrix becomes

I =
[I xx I x�

Iᵀ
x� I��

]
(15)

where I xx is block-tridiagonal and I�� is block-diagonal. I x�’s density depends on
the frequency of landmark measurements, and how they are taken.

When the GP is generated by LTVSDE,K(τ )K−1 in Eq.12 has a specific sparsity
pattern — only two column blocks that correspond to trajectory states at ti−1 and ti
are nonzero (ti−1 < τ < ti ) [2]:

K(τ )K−1 = [
0 . . . 0 �(τ ) �(τ ) 0 . . . 0

]
(16)

�(τ ) = �(τ , ti−1) − Qτ�(ti , τ )ᵀQ−1
i �(ti , ti−1), �(τ ) = Qτ�(ti , τ )ᵀQ−1

i

�(τ , s) is the state transition matrix from s to τ .Qτ is the integral ofQc, the covari-
ance of the process noise w(t) (Eq. 14):

Qτ =
∫ τ

ti−1

�(τ , s)F(s)QcF(s)ᵀ�(τ , s)ᵀds (17)

And Qi is the integral from ti−1 to t .
Consequently, based on Eqs. 12 and 16, x̄(τ ) is an affine function of only two

nearby states x̄(ti−1) and x̄(ti ) (the current estimate of the states at ti−1 and ti ):

x̄(τ ) = μ(τ ) + [
�(τ ) �(τ )

] ([
x̄(ti−1)

x̄(ti )

]
−

[
μ(ti−1)

μ(ti )

])
, ti−1 < τ < ti (18)

Thus, it only takes O(1) time to query any x̄(τ ) using Eq.18. Moreover, because
interpolation of a state is only determined by the two nearby states, measurement
interpolation in Eq.13 can be simplified to:

1 XL ordering is an ordering where process variables come before landmarks variables.



Incremental Sparse GP Regression … 551

hk
(
θ̄k + δθk

) = hk (x̄(τ ) + δx(τ ))

≈ hk(x̄(τ )) + ∂hk

∂x(τ )
· ∂x(τ )

∂x

∣
∣∣∣
x̄
δx

= hk(x̄(τ ))+Hk
[
�(τ )�(τ )

] [
δx(ti−1)

δx(ti )

]
(19)

with x̄(τ ) defined in Eq.18.

3 The Bayes Tree Data Structure for Fast Incremental
Updates to Sparse Gaussian Process Regression

Previous work on batch continuous-time trajectory estimation as sparse Gaussian
process regression [2, 15] assumes that the information matrix I is sparse (Eq.15)
and applies standard block elimination to factor and solve Eq.11. But for large
numbers of landmarks, this process is very inefficient. In square root SAM [4],
matrix column reordering has been applied for efficient Cholesky factorization in a
discrete-time context. Similarly, naive periodic variable reordering can be employed
here to solve the STEAM problem. (See [16] for details.)

However, despite the efficiency of periodic batch updates, it is still repeatedly
executing a batch algorithm that requires reordering and refactoring I , and peri-
odically relinearizing the measurement function for all of the estimated states each
time new data is collected. Here we provide the extensions necessary to avoid these
costly steps and turn the naive batch algorithm into an efficient, truly incremental,
algorithm. The key idea is to perform just-in-time relinearization and to efficiently
update an existing sparse factorization instead of re-calculating one from scratch.

3.1 The Bayes Tree Data Structure

Webase our approach on iSAM2.0 proposed byKaess et al. [11],whichwas designed
to efficiently solve a nonlinear estimation problem in an incremental and real-time
manner by directly operating on the factor graph representation of the SAMproblem.
The core technology behind iSAM 2.0 is the Bayes tree data structure which allows
for incremental variable reordering and fluid relinearization [10]. We apply the same
data structure to sparse Gaussian process regression in the context of the STEAM
problem, thereby eliminating the need for periodic batch computation.

The Bayes tree data structure captures the formal equivalence between the sparse
QR factorization in linear algebra and the inference in graphical models, translating
abstract updates to a matrix factorization into intuitive edits to a graph. Here we give
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a brief introduction of Bayes trees (see [10] for details), and how they help solve the
sparse Gaussian process regression incrementally.

A Bayes tree is constructed from a Bayes net, which is further constructed from a
factor graph. A factor graph is a bipartite graph G = (θ,F , E), representing the fac-
torization of a function (Eq.20). θ = {θ1, . . . , θm} are variables, F = { f1, . . . , fn}
are factors (functions of variables), and E are the edges that connect these two types
of nodes. ei j ∈ E if and only if θ j ∈ θi and fi (·) is a function of θi .

f (θ) =
∏

i

fi (θi ) (20)

In the context of localization and mapping, a factor graph encodes the complex
probability estimation problem in a graphical model. It represents the joint density
of the variables consisting of both trajectory and mapping, and factors correspond to
the soft constraints imposed by the measurements and priors. If we assume that the
priors are Gaussian, measurements have Gaussian noise, and measurement functions
are linear or linearized, as in Sect. 2, the joint density becomes a product of Gaussian
distributions:

f (θ) ∝ exp

{
−1

2

∑
‖Aiθi − bi‖22

}
= exp

{
−1

2
‖Aθ − b‖22

}
(21)

Here Ai and bi are derived from factor fi (·). A is a square-root information matrix,
with I = AᵀA [4], so the QR factorR ofA is equal to the transpose of the Cholesky
factorL of I . Maximizing the joint density is equivalent to the least-square problem
in Eq.9.

A Gaussian process generated from linear, time-varying (LTV) stochastic dif-
ferential equations (SDE), as discussed in Sect. 2.2, has a block-tridiagonal inverse
kernel matrixK−1 and can be represented by a sparse factor graph [2]. In this case,
the factors derived from the Gaussian process prior are (suppose f j (·) is the GP
factor between x(ti−1) and x(ti )):

f j (θ j )= f j (x(ti−1), x(ti ))∝ exp

{
−1

2

∥∥�(ti , ti−1)x(ti−1)+vi −x(ti )
∥∥2
Qi

}
(22)

where �(ti , ti−1) is the state transition matrix,Qi is the integral of the covariance of
the process noise (Eq.17), and vi is the integral of the exogenous input v(t) (Eq. 14):

vi =
∫ ti

ti−1

�(ti , s)v(s)ds (23)

An illustrative sparse factor graph example including the GP factors is presented in
Fig. 1a. Note that although the Gaussian process representation of the trajectory is
continuous in time, to impose this prior knowledge only M − 1 factors connecting
adjacent states are required, where M is the total number of states [2].
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Fig. 1 A simple factor graph that includes landmark measurements, odometry measurements, and
Gaussian process priors. The odometry measurements are unitary, when they measure the instant
velocity in the robot state

The key of just-in-time relinearization and fluid variable reordering is to identify
the portion of a graph impacted by a new or modified factor, which is difficult to
achieve directly from a factor graph. So the factor graph is first converted to a Bayes
net through the iterative elimination algorithm related to Gaussian elimination. In
each step, one variable θi is eliminated from the joint density f (θi , si ) and removed
from the factor graph, resulting in a new conditional P(θi |si ) and a new factor f (si ),
satisfying f (θi , si ) = P(θi |si ) f (si ). The joint density f (θi , si ) is the product of the
factors adjacent to θi , and si is the set of variables that are connected to these factors,
excluding θi . The new conditional is added to the Bayes net, and the new factor is
added back to the factor graph.

The unnormalized joint density f (θi , si ) is Gaussian, due to Eq.21:

f (θi , si ) ∝ exp

{
−1

2
‖aθi + Assi − bi‖22

}
(24)

where a, As and bi correspond to the factors that are currently adjacent to θi . These
factors can be the factors included in the original factor graph, or the factors induced
by the elimination process. The conditional P(θi |si ) is obtained by evaluating Eq.24
with a given si :

P(θi |si ) ∝ exp

{
−1

2
(θi + rᵀsi − d)2

}
(25)

where r = (a†As)
ᵀ, d = a†bi , and a† = (aᵀa)−1aᵀ. f (si ) can be further computed

by substituting θi = d − rᵀsi into Eq.24. This elimination step is equivalent to one
step of Gram-Schmidt. Thus the new conditional P(θi |si ) specifies one row in the R
factor of the QR factorization of A. The sequence of the variables to be eliminated
is selected to reduce fill-in in R, just as in the case of matrix column reordering.
The joint density f (θ) represented by the Bayes net is maximized by assigning
d − rᵀsi to θi , due to Eq.25, starting from the variable that is eliminated last. This
procedure is equivalent to the back-substitution in linear algebra. The Bayes net is
further transformed into a directed tree graphical model – the Bayes tree, by grouping
together conditionals belonging to a clique in the Bayes net in reverse elimination
order.
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When a factor is modified or added to the Bayes tree, the impacted portion of the
Bayes tree is re-interpreted as a factor graph, the change is incorporated to the graph,
and the graph is eliminated with a new ordering. During elimination, information
only flows upward in the Bayes tree, from leaves to the root, so only the ascendants
of the nodes that contain the variables involved in the factor are impacted.

The Bayes tree can be used to perform fast incremental updates to the Gaussian
process representation of the continuous-time trajectory. As we demonstrate in the
experimental results, this can greatly increase the efficiency of Barfoot et al.’s batch
sparse GP algorithm when the trajectory and map need to be updated online.

Despite the interpretation of the trajectory as a Gaussian process, the approach
described above is algorithmically identical to iSAM2.0 when the states associated
with each measurement are explicitly estimated. In Sect. 3.2 below, we extend our
incremental algorithm to use Gaussian process interpolation within the Bayes tree.
By interpolatingmissing states, we can handle asynchronousmeasurements and even
remove states in order to speed computation. In Sects. 4.1 and 4.2 we show that this
results in a significant speedup over iSAM2.0.

3.2 Faster Updates Through Interpolation

To handle asynchronous measurements or to further reduce computation time, we
take advantage of Gaussian process state interpolation, described in Sect. 2.1, within
our incremental algorithm. This allows us to reduce the total number of estimated
states, while still using all of the measurements, including those that involve inter-
polated states. By only estimating a small fraction of the states along the trajectory,
we realize a large speedup relative to a naive application of the Bayes tree (see
Sect. 4). This is an advantage of continuous-time GP-based methods compared to
discrete-time methods like iSAM 2.0.

To use Gaussian process interpolation within our incremental algorithms, we add
a new type of factors that correspond to missing states (states to be interpolated).

We start by observing that, from Eq.2, the factor f j (·) derived from the measure-
ment hk(·) is:

f j (θ j ) ∝ exp

{
−1

2
‖hk(θk + δθk) − yk‖2Rk

}
(26)

where θ j (the variables adjacent to factor f j (·)), and θk (the variables related to
measurement hk(·)), are the same set of variables.

Without loss of generality, we assume that x(τ ) is the set of variables related to
the measurement and the factor, with ti−1 < τ < ti , so f j is a unitary factor of x(τ ):

f j (θ j ) ∝ exp

{
−1

2
‖hk (x̄(τ ) + δx(τ )) − yk‖2Rk

}
, θ j � δx(τ ) (27)
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If x(τ ) is missing, then this factor can not be added to the factor graph directly,
because a missing state implies that it should not be estimated explicitly. Instead
of creating a new state directly, we interpolate the state and utilize the linearized
measurement function after interpolation (Eq. 13):

f j (θ j ) ∝ exp

{
−1

2
‖hk (x̄(τ )) + HkK(τ )K−1δx − yk‖2Rk

}
, θ j � δx (28)

We apply the interpolation equations for the sparse GP (Eqs. 16 and 18), so that the
factor becomes a function of the two nearby states (in contrast to the missing state):

f j (θ j ) ∝ exp

{
−1

2
‖hk(x̄(τ ))+Hk

[
�(τ )�(τ )

]
θ j−yk‖2Rk

}
,θ j �

[
δx(ti−1)

δx(ti )

]
(29)

where x̄ is specified in Eq.18.
A factor graph augmented with the factors associated with measurements at miss-

ing states has several advantages. We can avoid estimating a missing state at time
t explicitly, but still make use of a measurement at time t . This allows our algo-
rithm to naturally handle asynchronous measurements. We can also reduce the size
of the Bayes tree and the associated matrices by skipping states, which results in a
reduction of computation time. Importantly, incorporating GP state interpolation and
regression (Sects. 2.1 and 2.2) within Bayes tree closely follows MAP inference. In
particular, we show in Sects. 4.1, and 4.2 that skipping large numbers of states can
reduce computation time by almost 70% with only a small reduction in accuracy.
The full incremental algorithm is described in Algorithm 1.

Algorithm 1 Incremental Sparse GP Regression visa the Bayes tree with Gaussian
Process Priors (BTGP)
Set the sets of affected variables, variables involved in new factors, and relinearized variables to
empty sets, θa f f := θn f := θrl := ∅.
while collecting data do
1. Collect measurements, store as new factors. Set θn f to the set of variables involved in the new
factors. If x(τ ) ∈ θn f is a missing state, replace it by nearby states (Eq. 18); If x(τ ) ∈ θn f is a
new state to estimate, a GP prior (Eq.22) is stored, and θn f := θn f ∪ xi−1.

2. For all θi ∈ θa f f = θrl ∪ θn f , remove the corresponding cliques and ascendants up to the
root of the Bayes tree.

3. Relinearize the factors required to create the removed part, using interpolation when missing
states are involved (Eq.29).

4. Add the cached marginal factors from the orphaned sub-trees of the removed cliques.

5. Eliminate the graph by a new ordering into a Bayes tree, attach back orphaned sub-trees.

6. Partially update estimate from the root, stop when updates are below a threshold.

7. Collect variables, for which the difference between the current estimate and the previous
linearization point is above a threshold, into θrl .

end while
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4 Experimental Results

We evaluate the performance of our incremental sparse GP regression algorithm to
solving the STEAMproblemon synthetic and real-data experiments and compare our
approach to the state-of-the-art. In particular, we evaluate how variable reordering
can dramatically speed up the batch solution to the sparse GP regression problem,
and how, by utilizing the Bayes tree and interpolation for incremental updates, our
algorithm can yield even greater gains in the online trajectory estimation scenario.
We compare:

• PB: Periodic batch (described in Sect. 2). This is the state-of-the-art algorithm pre-
sented in Barfoot et al. [2] (XL variable ordering), which is periodically executed
as data is received.

• PBVR: Periodic batchwith variable reordering [16]. Variable reordering is applied
to achieve efficient matrix factorization.

• BTGP: The proposed approach - Bayes tree with Gaussian process prior factors
(described in Sect. 3).

If the GP is only used to estimate the state at measurement times, the proposed
approachoffers little beyond a reinterpretation of the standard discrete-time iSAM2.0
algorithm. Therefore, we also compare our GP-based algorithm, which leverages
interpolation, to the standard Bayes tree approach used in iSAM 2.0. We show that
by interpolating large fractions of the trajectory during optimization, the GP allows
us to realize significant performance gains over iSAM 2.0 with minimal loss in
accuracy. For these experiments we compare:

• without interpolation: BTGP without interpolation at a series of lower tempo-
ral resolutions. The lower the resolution, the fewer the states to be estimated.
Without interpolation BTGP is algorithmically identical to iSAM 2.0 with coarse
discretization of the trajectory. Measurements between two estimated states are
simply ignored.

• with interpolation: BTGP with interpolation at a series of lower resolutions. In
contrast to the above case,measurements between estimated states are fully utilized
by interpolating missing states at measurement times (described in Sect. 3.2).

• finest estimate: The baseline. BTGP at the finest resolution, estimating all states
at measurement times. When measurements are synchronous with evenly-spaced
waypoints and no interpolation is used, BTGP is identical to iSAM 2.0 applied to
the full dataset with all measurements.

All algorithms are implemented with the same C++ library, GTSAM 3.2,2 to make
the comparison fair and meaningful. Evaluation is performed on two datasets sum-
marized in Table1. We first evaluate performance in a synthetic dataset (Sect. 4.1),
analyzing estimation errors with respect to ground truth data. Results using a real-
world dataset are then presented in Sect. 4.2.

2https://collab.cc.gatech.edu/borg/gtsam/.

https://collab.cc.gatech.edu/borg/gtsam/
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Table 1 Summary of the experimental datasets

# time steps # odo. m. # landmark m. # landmarks Travel dist. (km)

Synthetic 1,500 1,500 1,500 298 0.2

Auto. Mower 9,658 9,658 3,529 4 1.9

4.1 Synthetic SLAM Exploration Task

This dataset consists of an exploration task with 1,500 time steps. Each time step
contains a trajectory state x(ti ) = [p(ti )ᵀ ṗ(ti )ᵀ ]ᵀ, p(ti ) = [ x(ti ) y(ti ) θ(ti ) ]ᵀ, an
odometry measurement, and a range measurement related to a nearby landmark.
The total number of landmarks is 298. The trajectory is randomly sampled from a
Gaussian process generated from white noise acceleration p̈(t) = w(t), i.e. constant
velocity, and with zero mean.

ẋ(t) = Ax(t) + Fw(t) (30)

x(t) = [
p(t)ᵀ ṗ(t)ᵀ

]ᵀ
, p(t) = [

x(t) y(t) θ(t)
]ᵀ

, A =
[
0 I
0 0

]
,

F = [
0 I

]ᵀ
, w(t) ∼ GP(0,Qcδ(t − t ′)) (31)

Note that velocity ṗ(t)must be included in trajectory state to represent the motion in
LTV SDE form [2]. This Gaussian process representation of trajectory is also applied
to the real dataset. The odometry and range measurements with Gaussian noise are
specified as:

yio =
[
cos θ(ti ) · ẋ(ti ) + sin θ(ti ) · ẏ(ti )

θ̇(ti )

]
+ no, yir = ∥

∥[
x(ti ) y(ti )

]ᵀ−� j

∥
∥
2 + nr

(32)

where yio consists of the robot-oriented velocity and heading angle velocity with
Gaussian noise, and yir is the distance between the robot and a specific landmark � j

at ti with Gaussian noise. The estimation results are shown in Fig. 2
We compare the computation time of the three approaches (PB, PBVR andBTGP)

in Fig. 3. The incremental Gaussian process regression (BTGP) offers significant
improvements in computation time compared to the batch approaches (PBVR and
PB).

In Fig. 3, we also demonstrate that BTGP can further increase speed over a naive
application of the Bayes tree (e.g. iSAM 2.0) without sacrificing much accuracy
by leveraging interpolation. To illustrate the trade-off between the accuracy and
time efficiency due to interpolation, we plot RMSE of distance errors and the total
computation time by varying the time step difference (the rate of interpolation)
between estimated states.
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Fig. 2 (left) Synthetic dataset: Ground truth, dead reckoning path, and the estimates are shown.
State and landmark estimates obtained from BTGP approach are very close to ground truth. (right)
The Autonomous Lawnmower dataset: Ground truth, dead reckoning path and estimates are shown.
The range measurements are sparse, noisy, and asynchronous. Ground truth and the estimates of
path and landmarks obtained from BTGP are very close
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Fig. 3 Synthetic dataset: (left) Comparison of the computation time of three approaches PB, PBVR,
and BTGP. The modifiers /1 and /10 indicate frequency of estimate updates — the number of range
measurements between updates. Due to the large number of landmarks, 298, variable reordering
dramatically improves the performance. (right) Trade-off between computation time and accuracy
if BTGP makes use of interpolation. The y-axis measures the RMSE of distance errors of the
estimated trajectory states and total computation time with increasing amounts of interpolation.
The x-axis measures the time step difference between two estimated (non-interpolated) states. The
results indicate that interpolating∼90% of the states (i.e. estimating only∼10% of the states) while
running BTGP can result in a 33% reduction in computation time over iSAM 2.0 without sacrificing
accuracy
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4.2 The Autonomous Lawnmower

The second experiment evaluates our approach on real data from a freely available
range-only SLAM dataset collected from an autonomous lawn-mowing robot [6].
The “Plaza” dataset consists of odometry data and range data to stationary landmarks
collected via time-of-flight radio nodes. (Additional details on the experimental setup
can be found in [6].) Ground truth paths are computed from GPS readings and have
2cm accuracy according to [6]. The environment, including the locations of the
landmarks and the ground truth paths, are shown in Fig. 2. The robot travelled 1.9km,
occupied 9,658 poses, and received 3,529 range measurements, while following a
typical path generated during mowing. The dataset has sparse range measurements,
but contains odometry measurements at each time step. The results of incremental
BTGP are shown in Fig. 2 and demonstrate that we are able to estimate the robot’s
trajectory and map with a very high degree of accuracy.

As in Sect. 4.1, performance of three approaches – PB, PBVR, and BTGP are
compared in Fig. 4. In this dataset, the number of landmarks is 4, which is extremely
small relative to the number of trajectory states, so there is no performance gain from
reordering. However, the Bayes tree-based approach dramatically outperforms the
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Fig. 4 Autonomous Lawnmower dataset: (left) Comparison of the computation time of PB, PBVR,
and BTGP. As in Fig. 3, /1 and /10 are modifiers — the number of range measurement between
updates, and no interpolation is used by BTGP. The ‘gap’ in the upper graph is due to a long stretch
around timestep 5000 with no range measurements. Due to the low number of landmarks, variable
reordering does not help The incremental BTGP approach dramatically reduces computation time.
(right) Trade-off between computation time and accuracy if BTGP makes use of interpolation.
The y-axis measures the RMSE of distance errors and total computation time with increasing
amounts of interpolation. The x-axis measures the time step difference between two estimated
(non-interpolated) states. The results indicate that interpolating ∼80% of the states within BTGP
results in only an 8cm increase in RSME while reducing the overall computation time by 68% over
iSAM 2.0
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other two approaches. As the problem size increases, there is negligible increase in
computation time, even for close to 10,000 trajectory states.

In Fig. 4, the results of interpolation at different levels of resolutions are presented,
which indicate a significant reduction in computation time canbe achievedwithminor
sacrifice in accuracy.

5 Conclusion

We have introduced an incremental sparse Gaussian process regression algorithm
for computing the solution to the continuous-time simultaneous trajectory estima-
tion and mapping (STEAM) problem. The proposed algorithm elegantly combines
the benefits of Gaussian process-based approaches to STEAMwhile simultaneously
employing state-of-the-art innovations from incremental discrete-time algorithms
for smoothing and mapping. Our empirical results show that by parameterizing tra-
jectories with a small number of states and utilizing Gaussian process interpolation,
our algorithm can realize large gains in speed over iSAM 2.0 with very little loss in
accuracy (e.g. reducing computation time by 68% while increasing RMSE by only
8cm on the Autonomous Lawnmower Dataset).
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A General Region-Based Framework
for Collaborative Planning

Jory Denny, Read Sandström and Nancy M. Amato

1 Introduction

Motion planning is the problem of computing a feasible trajectory for a robot in a
complex environment. Motion planning has applications in robotics, virtual reality
[19], bioinformatics [29], and computer-aided design [2], among others. However,
motion planning is known to be computationally difficult [26].

To overcome this problem, attention has turned to sampling-based paradigms,
such as Probabilistic RoadMaps (PRMs) [13] or Rapidly-exploring Random Trees
(RRTs) [17], that address this complexity by constructing an approximation of the
planning space. Despite the success of these fully automated approaches, some
scenarios, e.g., certain types of narrow passages, remain problematic for these
approaches [9]. In these scenarios, research has turned to developing heuristics that
restrict the search and bias planning.

User-guided planners instead address this difficulty by attempting to harness the
power of human intuition [2, 10]. In these systems, the human often performs a
global scene analysis of the workspace, while the machine handles high-precision
tasks such as collision detection and low level path-finding [6, 12].

Recent work has explored sampling-based planning strategies that incorporate
interactive and collaborative planning techniques. Interactive-RRT (I-RRT) [30]
allows a user to interactively steer RRT growth through the control of a robot avatar.
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(a) Region-based Framework (b) Axis-Aligned Bounding Box

(c) Bounding Sphere

Fig. 1 a In one direction, the user specifies workspace regions, and in the other direction, the
planner displays the current progress in planning. b, c Region examples

This method is restricted to RRT techniques and constrains the interface to one that
can fully control the avatar. Region Steering [5] allows the user to bias PRM planners
by specifying workspace regions for the planner to prefer or avoid. Both of these
approaches yield speedup over standard automated approaches because the provided
information biases the planner to prioritize difficult regions. However, no user-guided
planner has yet been proposed that supports fully-interactive, collaborative planning
for all sampling-based planning approaches, and all except Region Steering have
constraints on their interfaces.

In this work, we generalize Region Steering into a region-based framework that
supports collaboration with any sampling-based planner. We show three variants of
this framework applied to graph-based, tree-based, and hybrid planners to demon-
strate the generality and applicability of the approach. In this collaborative frame-
work, shown in Fig. 1(a), the user specifies regions to either attract or repel the planner
while the planner displays its current progress as feedback. Like other sampling-based
techniques, this methodology biases the search to effectively guide a planner. Our
framework maintains the probabilistic completeness of the underlying planner(s).
One goal of this work is to study the benefits of this information for sampling-based
approaches. Our contributions include:

• a general region-based framework for collaborative sampling-based planning,
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• three variants of this framework employing graph-based, tree-based, and hybrid
planning methods, and

• results demonstrating that this approach reduces planning time in two scenarios
including a planar robot and an eight degree of freedom mobile manipulator.

Our framework is demonstrated in an interactive system that requires only intermit-
tent user action on a standard computer interface, e.g., a mouse. The goal of this work
is to understand how these hints and cooperation affect sampling-based planning. The
analysis and optimization of the user interface is the subject of future work.

2 Preliminaries and Related Work

In this section, we present some basics of motion planning and review previous
algorithms for sampling-based and user-guided motion planning.

2.1 Motion Planning Preliminaries

A robot is a movable object whose position and orientation can be described by n
parameters, or degrees of freedom (dofs), each corresponding to an axis of move-
ment (e.g., positions, orientations, joint angles, etc.). Hence, a robot’s placement,
or configuration, can be described by a unique point q = 〈x1, x2, ..., xn〉 in an
n-dimensional space where xi is the i th dof. This space, consisting of all possi-
ble robot configurations (feasible or not), is called configuration space (Cspace) [21].
The subset of all feasible configurations is the free space (C f ree), while the union of
the infeasible configurations is the obstacle space (Cobst ). Thus, the motion planning
problem becomes that of finding a continuous trajectory in C f ree from a given start
configuration qs to a goal configuration qg .

In general, it is intractable to compute explicit Cobst boundaries [26], but we can
often determine whether a configuration is valid or invalid quite efficiently, e.g., by
performing a collision detection (CD) test in theworkspace, the robot’s natural space.

Collision detection libraries often employ bounding volumes in the workspace
to expedite this validity check [20]. The most common examples are axis-aligned
bounding boxes (AABBs) and bounding spheres (BSs), shown in Fig. 1(b–c). In this
work, we label such bounding volumes as regions. Specifically, we define a region R
as any bounding volume in the workspace for which every point p ∈ R maps to one
or more configurations Q ⊆ Cspace. To make the placement of configurations within
R more obvious to users, we additionally require that for each q ∈ Q, the robot must
lie entirely within R when configured at q.
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Fig. 2 Interface complexity in terms of degrees of freedom manipulated versus level of autonomy
in expected behavior, where c is the degrees of freedom of theCspace andw is the degrees of freedom
of the workspace. Our approach, Region Steering (underlined), is a combination of high autonomy
mixed with a simple interface

2.2 Related Work

There is a broad spectrum of work in robotics dealing with motions for autonomous
or semi-autonomous robots. We categorize these into a few related areas (Fig. 2):
autonomous planning (red), human-in-the-loop planners (blue), and bilateral tele-
operation (green). We examine these broad categories in terms of their respective
autonomies and interface complexities.

2.2.1 Sampling-Based Motion Planners

Because of the high cost of explicitly computing Cobst boundaries, research has
turned to sampling-based techniques [13, 17] to efficiently explore C f ree for valid
paths. In this section, we give a brief review of popular paradigms in sampling-based
planning. Generally speaking, fully autonomous planners allow no user involvement
and have no interface complexity.

PRMs [13] construct a map of C f ree by first randomly sampling valid configura-
tions. Nearby samples are then connected to form the edges of the map by validating
simple paths between them. Finally, start and goal configurations are connected to
the roadmap and a graph search, e.g., A∗, is used to extract a solution path. These
approaches show much success in multi-query problems, but lack efficiency in nar-
row and cluttered spaces.

RRTs [14, 17] gradually explore Cspace from some start configuration qroot by
iteratively sampling a random configuration qrand , stepping qnear (the nearest node
in the tree to qrand ) towards qrand to create qnew, and adding qnew to a tree. RRTs are
typically used in single-query problems. Also, RRTs have deficiencies in exploring
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narrow spaces of the environment and often fail to discover the entrances of narrow
passages.

There have even been successful approaches combining PRMs and RRTs with the
goal of achieving scalability on high performance computers [24] or more effectively
exploring narrow passages [28]. Commonly, these approaches use some sort of global
sampling over the space, i.e., PRM techniques, to cover Cspace, and then use RRTs
for local exploration to achieve high roadmap connectivity.

There are many variants of all three paradigms designed to address the narrow
passage problem [1, 3, 8, 27, 34]. However, none of these planners are suited to
every scenario and still have difficulties with certain classes of problems.

Region-based Frameworks. Some motion planning frameworks utilize region
decomposition to bias sampling toward specific areas of the environment. One
approach, Feature Sensitive Motion Planning [23], subdivides the space, individually
constructs a map in each region, and merges them together to efficiently map hetero-
geneous environments. Other approaches utilize workspace decompositions to find
narrow or difficult areas of the workspace to bias Cspace sampling [25, 31]. However,
by automatically identifying regions and disallowing dynamic region specification
and modification, the planner might have inefficiencies, such as oversampling in a
fully covered region. Additionally, these planners do not typically consider avoidance
regions.

2.2.2 Human-in-the-Loop Planning

In many approaches to human-assisted planning, a human operator (user) performs
global analysis of the workspace to determine an approximate solution while the
machine handles high-precision tasks such as collision detection. In [2, 10, 32] the
user can select configurations that are critical to finding a collision-free path, while
the planner performs collision checking and path-finding between sub-goals (shown
as Cfg Input in Fig. 2). Certain approaches allow a user to input an approximate path
in the scene, and an autonomous planner then morphs this motion into a feasible
plan [2, 16, 33] (shown as Path in Fig. 2). Often, these types of planners have distinct
phases for user input and automated planning.

More recently, two-way communication approaches have been separately devel-
oped for RRTs (Interactive-RRT (I-RRT) [30]) and PRMs (Region Steering [5]). In
these systems, the planner and the user interact in an online fashion to cooperatively
solve the problem. I-RRT allows the user to control a robot avatar in a virtual scene
that biases RRT growth. This approach, however, is limited to single-query scenar-
ios, requires continuous user input, and is constrained to robotic systems that are
fully controllable by the avatar interface (as seen in Fig. 2). Region Steering over-
comes some of these weaknesses by allowing a user to specify workspace regions to
bias PRM construction. In contrast to I-RRT, Region Steering requires neither con-
tinual user input nor a relationship between the robot and interface, which makes it
applicable to a broader range of robotic systems. The work presented here generalizes
Region Steering to be suitable for any sampling-based planning paradigm.
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Bilateral Teleoperation. Teleoperation approaches provide closed-loop interac-
tions between an operator and a robot such that the operator has a sense of presence-at-
a-distance [7]. Teleoperation focuses on capturing a user’s mechanical skills directly.
Often, these approaches try to assist the human operator by predicting where the user
is headed, ensuring proper collision avoidance, and maximizing user control over the
system [18]. In contrast, human-in-the-loop planning aims to leverage a user’s high-
level intuition by augmenting an automated planner with information about difficult
aspects of the problem.

Nonetheless, both seek to provide a form of two-way communication, referred
to as bilateral control in teleoperation literature. Often these approaches have a high
interface complexity, sometimes requiring interaction with haptic devices with many
degrees of freedom, while attempting to provide as much control to the user as pos-
sible (Fig. 2). A recent study in teleoperation [22] shows that this form of interaction
can be burdensome on the user, e.g., in situations with cyclic or repetitive motions,
and takes steps to provide the robot with greater autonomy so that the user need
only provide global guidance rather than direct control. Other teleoperation systems
allow the user to control a subset of the robot’s dofs through a precomputed Cspace,
as in [11, 12], but these are limited to low dimensional problems. This approach is
referred to as Cspace in Fig. 2.

3 Framework

In this section, we describe our general framework for region-based collaborative
planning, through which an automated planner and a human operator, referred to as
a user, interact to cooperatively discover a solution to a motion planning problem.

Motivation. In essence, our framework provides a methodology to limit the
search space of the planner. By specifying a presumably important (or unimpor-
tant) workspace region r , the user restricts the planner to focus on a particular subset
of Cspace. For example, if a region biases PRM construction, e.g., to a narrow pas-
sage, then the planner will focus and build a more dense roadmap in the narrow
passage as compared with the portions of the Cspace not covered by the region. Thus,
our collaborative planner has the potential to provide more effective and efficient
planning in terms of coverage and plan construction time.

There are a few important design considerations when implementing this frame-
work for a specific algorithm. First, rendering and feedback should be real-time,
or close to real-time, to allow a seamless collaboration. Second, an intuitive mech-
anism for region specification is needed. We chose Axis-Aligned Bounding Box
(AABB) and Bounding Sphere (BS) regions for their simplicity and the ability to
specify them with a common mouse interface. Finally, proper user feedback should
be customized for the planner. For example, a region might be colored based upon
an algorithm-specific perception of usefulness [5].

“Region” is a very broad term. A region might be seen as a path or constraint in
the workspace to bias planning in Cspace. For example, one could imagine selecting
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a wall as a contact-constraint for an end-effector of an articulated robot. There are
many possibilities, and we selected a few representative scenarios for our study.

While our framework is quite general, it is important to note that our workspace
regions are primarily effective in problems where the translational degrees of freedom
dominate the system. This occurs often in systems such as mobile robots, unmanned
aerial vehicles, or certain CAD applications. In contrast, applying this framework in
other scenarios such as strongly rotational problems (e.g., the alpha puzzle) would
require an alternative region type to successfully focus the planner.

Our framework does not necessarily have to be restricted to human-planner col-
laboration. A subject of future work is to examine planner-planner collaborations,
where one planner identifies attract regions for another to focus on or avoid.

3.1 Overview

Our two-way communication framework is shown in Fig. 1(a).
In one direction, the user specifies workspace regions to bias the planner. Regions

have “types” that can be arbitrarily extended for a particular application. By default,
we allow two kinds of regions: attract (bias the planner) and avoid (disallow plans
in this region). We allow these regions to be modified at any time. This includes
addition of new regions, resizing/repositioning of current regions, and deletion of
regions from the planning scene.

In the other direction, the planner presents its current progress in the scene.
For sampling-based planners, this would be the current roadmap being constructed
whether it be a graph or a tree. Additionally, we present the current regions to the
user. Our framework is general enough to present a perceived usefulness of regions
and even recommend regions to the user [5], however these are not fully explored in
this work.

The algorithmic framework for the automated planner shown in Algorithm 1 fol-
lows this scheme. Generally, it performs a loop until the planner is finished, e.g.,
solves an example query or reaches a specific number of nodes. In each iteration,
a specific planner biased by the user-defined regions performs automated plan-
ning. Next, the planner provides feedback to the user through the roadmap and
region displays. This is important visual information to help the user adjust regions
appropriately.

3.2 Completeness

To retain the completeness properties of the underlying planner, we consider the
entire workspace as a region. Drawing a sample from this region is identical to
drawing a sample from the entire Cspace, i.e., is equivalent to the behavior of the
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Algorithm 1 Region-based Collaborative Motion Planning Framework
Input: Environment e
Output: Roadmap G
1: G = (V, E) ← (∅,∅)

2: while ¬done do
3: r ← SelectRegion(e.regions)
4: RegionBiasedPlanner(G, e, r)
5: G.UpdateMap()

6: e.UpdateRegions()
7: return G

underlying unguided planner. By having a probability to select this global region,
we inherit the probabilistic completeness property of the underlying planner.

There are two cases in which our framework cannot guarantee probabilistic com-
pleteness. The first is when the underlying planner is not probabilistically complete:
while the user may be able to manipulate regions to solve the problem, a solution
is not guaranteed. The second is when the user places an avoid region that changes
the topology of C f ree. Recall that avoid regions are hard constraints: placing such
a region is equivalent to placing a virtual obstacle in the scene. Hence, the user
can make the problem unsolvable by placing avoid regions to block all available
solutions. This is a powerful tool that requires some discretion. While the user can
unintentionally block valid solutions, they can also employ avoid regions to block
out unimportant areas of the workspace.

4 Framework Variants

In this section, we show three variants of our framework: collaborative region-biased
roadmap construction, collaborative region-biased tree construction, and a collabo-
rative region-biased hybrid method.

Fig. 3 A user has drawn a
region to mark the narrow
passage and set the sampler
to OBPRM [1] in the region.
As you can see, the samples
generated in the region are
close to the obstacles.
However, outside the region,
the samples are still
generated using uniform
sampling
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4.1 Collaborative Region-Biased Roadmap Construction

This variant, called Region-biased PRM, is a collaborative roadmap construction
approach in which a user specifies regions to bias a graph-based planning method,
e.g., PRM. Shown in Algorithm 2 and Fig. 3, Region-biased PRM extends [5] by
allowing the user to select a different sampler for each region. For example, if the
user specifies a region around a narrow passage, they could also direct the planner
to use obstacle-based sampling [1] within that region.

During sampling, an attract region is first selected at random (recall that the entire
environment is also considered an attract region). Then, a sample is generated within
that region using the user-selected sampler. Once a sample is created, it is checked
to ensure it does not lie within any avoid regions. If the sample meets the criterion,
it is added and connected to the roadmap. If the sample fails to connect, i.e., it is in a
difficult area of Cspace, the planner can additionally recommend regions to the user.
After each iteration, the perceived usefulness of each region to the planner is shown
(fully described in [5]).

Algorithm 2 Region-biased PRM
Input: A Roadmap G, an Environment e, and a Region r
1: q ← r.sampler.Sample(r)
2: if q /∈ a,∀a ∈ e.avoidRegions then
3: G.AddAndConnect(q)

4: if IsDifficultNode(q) then
5: e.RecommendRegion(q)

4.2 Collaborative Region-Biased Tree Construction

The region-based strategy can also be extended to bias tree-based approaches, e.g.,
RRT. Our algorithm, called Region-biased RRT, is shown in Algorithm 3 and Fig. 4.
The algorithm proceeds like a typical RRT by selecting a configuration qrand , though
in this case the selection is biased by a region. First, the planner selects a random
region and generates a new configuration qrand within. Then, the nearest node in the
tree qnear is determined, and a node qnew is generated by extending qnear towards
qrand . In our system, this extension is not permitted to extend through avoid regions in
the environment. It is important to note that the RRT also treats the whole environment
as an attract region in order to maintain probabilistic completeness.



572 J. Denny et al.

Algorithm 3 Region-biased RRT
Input: A Roadmap G, an Environment e, and a Region r
1: qrand ← r.GetRandomCfg()

2: qnear ← NearestNeighbor(G, qrand )
3: qnew ← Extend(qnear , qrand ,�q)

4: G.Update(qnear , qnew)

Fig. 4 A user has drawn a
region to act as a waypoint
for the RRT, influencing it to
grow through the narrow
passage. It also grows in
random directions as seen by
the upward extending
portions of the tree

4.3 Collaborative Region-Biased Hybrid Methods

Here, we extend a recent hybrid approach called Spark PRM [28], a PRM planner
that grows or “sparks” RRTs in narrow passages to increase roadmap connectivity.
Using our framework, a user can specify regions to control where RRTs are sparked
in the environment to aid PRM connection. These sparked RRTs are grown until they
connect to the roadmap or reach a maximum number of iterations. Our algorithm,
Region-biased Spark PRM, is shown in Algorithm 4 and Fig. 5.

Algorithm 4 Region-biased Spark PRM
Input: A Roadmap G, an Environment e, and a Region r
1: q ← r.sampler.Sample(r)
2: if q /∈ a,∀a ∈ e.avoidRegions then
3: G.AddAndConnect(q)

4: if r 
= e ∧ InNarrowPassage(q) then
5: G ← G ∪ ConstructRRT(q)

5 Experimental Demonstration

In this section, we evaluate our collaborative planners against their fully automated
counterparts in two scenarios, involving a 2 dof omnidirectional robot and an eight
dof mobile manipulator, respectively. We do not claim that the user interface is
optimal or intuitive: it is merely sufficient for the user to communicate with the
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Fig. 5 A user has created a
region to mark a narrow
passage and to begin
growing a RRT. The planner
also generates samples
throughout the environment

(a) Planar (b) Manipulator

Fig. 6 Example scenarios used in experimental analysis. a A planar 2dof scenario. b An 8dof
mobile manipulator. All queries require traversal through narrow passages between the start (red)
and goal (blue) configurations

planner and allows us to study the usefulness of our collaboration framework. We
leave further development of the interface to future work.

General Setup All methods were implemented in a C++ motion planning library
developed in the Parasol Lab at Texas A&M University. It uses a distributed graph
data structure from the Standard Template Adaptive Parallel Library (STAPL) [4], a
C++ library designed for parallel computing. Experiments were run on Dell Optiplex
780 computers running Fedora 19 with Intel Core 2 Quad CPU 2.83 GHz processors
with the GNU gcc compiler version 4.8.

We evaluate each method in two scenarios as seen in Fig. 6. Queries are shown in
start configuration (red) and goal configuration (blue) pairs.

• In Planar (Fig. 6a), a planar 2 dof robot must traverse a series of difficult narrow
passages and cluttered areas from the left to the right of the environment.

• InManipulator (Fig. 6b), an 8 dofKUKA youBot [15] model begins by reach-
ing into an open box. It must then pass through doorways while navigating around
boxes in an industrial scene. The query ends with the robot reaching into a cabinet
on a table. This robot has an omnidirectional base and an arm with five joints.

We are interested in the success rate and the total time for the planner to solve each
scenario (including user input and collaboration time). Experiments are run with 10
trials, and the metrics reported are averages of the successful runs.



574 J. Denny et al.

The user-guided executions were performed by graduate and undergraduate stu-
dents studying motion planning. In order to minimize the impact of user variance,
the same user performed all of the executions in a given environment. Additionally,
the users were allowed to practice with the system until they developed familiarity
with the interface and environments.

5.1 Region-Biased PRM

Setup and Results. In this experiment, we analyze Region-biased PRM by compar-
ing its performance with Basic PRM (referred to as Uniform) [13], OBPRM [1],
and Gaussian PRM [3] (referred to as Gaussian). We analyze Region-biased PRM
with a homogeneous use of uniform random sampling (referred to as RBPRM-U)
and a heterogeneous use of uniform and obstacle-based sampling (RBPRM-H). For
Gaussian PRM, we use both a tuned and untuned d value of the Gaussian distribution
based upon twice the robot radius for the environment (referred to as Gaussian-T
and Gaussian-U respectively). All methods use Euclidean distance, straight-line local
planning, and a k = 10-closest neighbor connection strategy.

Each planner is run until either a construction query is solved or 5,000 nodes
are sampled. The construction query is designed to verify that the roadmap well-
represents C f ree by requiring connectivity through the major areas of the environ-
ment. Success rates are shown in Table 1 and speedups compared with Gaussian-T
are shown in Fig. 7.

Performance Comparison. In terms of success rates, Region-biased PRM outper-
forms each method solving both problems 100% of the time. Even with including
the interaction time, Region-biased PRM generally solves each problem faster when

Table 1 Success rates of various PRM construction methods
Uniform
(%)

Gaussian-T (%) Gaussian-U (%) OBPRM(%) RBPRM-U
(%)

RBPRM-H
(%)

Planar 0 90 40 10 100 100

Manipulator 100 100 100 100 100 100

 0

 5

 10

 15

 20

Planar Manipulator

S
pe

ed
up

Uniform
Gaussian-T
Gaussian-U

OBPRM
RBPRM-U
RBPRM-H

Fig. 7 Speedups of various PRM construction methods compared with Gaussian-T
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compared to the fully automated approaches. In the easier environment, using a tuned
Gaussian PRM has comparable performance to ours. Typically, we saw improve-
ments up to two times compared with the best PRM performance in each problem.
We note that tuning Gaussian PRM can be difficult and require running the problem
many times to find an optimal value. Region-biased PRM is capable of acquiring
more consistent results because the user can visually determine where the PRM has
yet to map in the environment and focus planning there.

User Strategy. In Planar, the user’s strategy generally involved allowing the
planner to progress for a split second, identifying the narrow passage where configu-
rations were scarce, and using regions to patch the roadmap in these areas. Similarly,
the user’s strategy in Manipulator was to create attract regions wherever the
planner had not yet connected in the first three quadrants of the environment (i.e.,
those quadrants not containing the goal). However, the strategy changed for the goal
quadrant because it contained a joint-posturing aspect. Here, the user employed avoid
regions to remove unproductive configurations that sampled near the goal but did not
connect to it. This improved the likeliness that a connectible configuration would see
the goal as a nearest neighbor, thereby expediting the difficult task of connecting the
goal to the map. The user deleted or moved attract regions to new locations as soon
as the roadmap connected through them to limit redundant configurations.

5.2 Region-Biased RRT

Setup and Results. We compare Region-biased RRT (referred to as RBRRT) with
RRT [17], OBRRT [27], and I-RRT [30]. We use �q = 10 which is approximately
10% of the diagonal of each environment. With OBRRT, we use appropriate distribu-
tion of growth methods for each environment, but note there could be a more effective
parameterization to optimize performance. I-RRT’s parameters were selected based
on recommendations in [30]. We only compare against I-RRT in the Planar envi-
ronment because this is the only robot fully controllable by our interface, a mouse
with 2 dof (recall that I-RRT requires a 1-to-1 mapping between interface and robot
dof). Success rates are shown in Table 2 and speedups compared with RRT are shown
in Fig. 8.

PerformanceComparison. The interactive methods were able to solve both scenar-
ios 100% of the time, whereas the automated planners were not able to in Planar.
Unguided RRTs performed poorly because the maze-like shape of the problem’s

Table 2 Success rates of various RRT construction methods

RRT(%) OBRRT(%) I-RRT(%) RBRRT (%)

Planar 10 90 100 100

Manipulator 90 100 – 100



576 J. Denny et al.

 0

 2

 4

 6

 8

 10

 12

Planar Manipulator

S
pe

ed
up

RRT
OBRRT

I-RRT
RBRRT

Fig. 8 Speedup of various RRT techniques compared with RRT

narrow passages made growth difficult. In contrast, the user directed the expansion
of the tree through the passages in the interactive approaches. Compared with RRT,
both I-RRT and RBRRT had speedups of up to 12 times in Planar, and RBRRT
had speedups of up to four times in Manipulator. These results show the power
of the interactive methods when compared to the fully automated approaches.

User Strategy. The user’s strategy in both problems was to start the planner imme-
diately and drag a single attract region through the environment, staying just ahead of
the tree growth. This differed from the PRM-based strategies because RRTs always
grow outward from the existing roadmap. This leading strategy allowed the user
to effectively guide the RRT through narrow passages. The attract region used was
roughly twice the size of the robot’s base, which provided a good mix of flexibility
and precision for steering the RRT. This is similar to the strategy used by I-RRT
explaining their comparable performance in Planar.

5.3 Region-Biased Spark PRM

Setup and Results. Here, we compare Region-biased Spark PRM (referred to as RB
Spark PRM) to Spark PRM [28]. Parameters for Region-biased Spark PRM and
Spark PRM are identical and based upon recommendations in [28]. Both methods
use Euclidean distance, straight-line local planning, and a k = 10-closest neighbor
connection strategy.

Each planner is run until either a construction query is solved (identical to the
Region-biased PRM experiments) or 5,000 nodes are sampled. Success rates are
shown in Table 3 and speedups compared with Spark PRM are shown in Fig. 9.

Table 3 Success rates for Region-biased Spark PRM and Spark PRM

Spark PRM(%) RB Spark PRM(%)

Planar 90 100

Manipulator 100 100
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Fig. 9 Speedup comparison between Region-biased Spark PRM and Spark PRM

Performance Comparison. In this experiment, we can see that RB Spark PRM was
able to focus Spark PRM’s planning process effectively to provide more consistent
and faster results, up to nine times speedup. The interactivity of these methods and
our framework is extensible enough to speedup very efficient hybrid approaches to
planning.

User Strategy. The user’s strategy for RB Spark PRM was similar to that of
Region-biased PRM. The primary difference in Manipulator was that fewer
attract regions were required as the sparked RRTs quickly bridged unconnected
components of the roadmap.

6 Conclusion

In conclusion, we presented a general region-based framework for collaborative
motion planning. We examined three variants of this approach, designed for PRMs,
RRTs, and hybrid PRM and RRT methods, respectively. As our results show, col-
laborative planning provides more consistent and efficient results compared with
other interactive planning methods and fully automated approaches. In the future,
we would like to gain a deeper theoretical understanding of this phenomena and
see how this would extend past the classical planning problem into more difficult
variants of motion planning.
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Robotic Invention: Challenges and
Perspectives for Model-Free Design
Optimization of Dynamic Locomotion Robots

Luzius Brodbeck, Simon Hauser and Fumiya Iida

1 Introduction

The performance of a robot at a certain task depends on the robot’s body structure
and control. It has been shown that an appropriate body structure can greatly simplify
the control problem [10]. However, the initial design of a robot might not be the most
suitable for a task and a more beneficial structures exists.

To repeatedly adapt a robot’s shape to its task and optimize the robot’s perfor-
mance, two main challenges must be addressed. First, to adjust to a preferably large
range of tasks, the robot must be able to assume diverse body shapes, ideally of dif-
ferent size and resolution. This is demanding, as the real-world fabrication processes
and constraints must be considered, and not all parts of the design space can equally
well be explored. Second, to continuously optimize its own shape, the robot must be
able to evaluate its own performance and iteratively generate new designs based on
the task and previous performance.

Reconfigurable and self-reconfigurable modular robots address this issue by
possessing the ability to change their own body structure to better adapt to the
task requirements [16]. The ability to change their physical shape enables self-
reconfigurable robots to achieve tasks which might not be solvable with a fixed
morphology [14]. The field of modular self-reconfigurable robotics employs mecha-
tronic modules which can adapt the connectivity between themselves to change the
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overall structure [4, 6, 12]. Other solutions are provided by configurable systems
which can adjust predefined components of the system, such as the compound eye
robot by Lichtensteiger et al. [5]. A further approach is the synthesis of new struc-
tures from a suitable base material as demonstrated by Revzen et al. [11] using a
robot equipped with hardening foam or our previous work using hot melt adhesives
[1, 7].

It is shown in this paper, that by increasing the diversity of mechanical design
through improved reconfigurability, robots can generate and implement nontrivial
designs. The ability to explore intricate morphological designs also allows for the
generation of more complex behaviors. This was achieved within a limited number
of trial-and-error iterations, without the use of simulation tools. To implement such
a process, sufficient manipulation dexterity is necessary to physically instantiate the
diverse morphologies and the search method must be able to efficiently handle the
large dimensionality of the design problem.

In our implementation, flexible assembly is employed to generate diverse robot
morphologies, similar to the centralized generation of agents demonstrated by Weel
et al. in simulation [15]. An evolutionary algorithm is applied directly to the encoded
building process [3] of locomotion agents to vary their shapes and subsequently
optimize the locomotion speed of physical agents in amodel-free process. The results
were obtained throughout five experiments with 100 candidate robots each. These
experiments have previously been published in [2].

2 Processes and Outcome of the Experiments

The goal of this experiment is the morphological adaptation of physical robotic
agents to a locomotion task through an evolutionary process. To iteratively adapt
the locomotion agents, a “mother robot” can repeatedly assemble the agents from
elementary modules. The details of each agent’s building process is encoded in
its genotype. The population of candidate solutions can undergo evolution, which
subsequently optimizes the fitness at the locomotion task.

In this section, Materials and Methods are introduced first, before an overview of
the results is given. The experiments have previously been presented in [2], which
also contains a more detailed description of the setup and all parameters.

2.1 Materials and Methods

The robotic arm shown in Fig. 1 is able to rotate and bond the active and passive
elementary modules. These processes are parametrized, and each set of parameters
results in specific outcome of the building process, i.e. a specific morphology of the
locomotion agent. This morphology, together with its control parameters and the task
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Fig. 1 The experimental setup with robotic arm (“mother robot”) and prepared active and passive
modules

environment determine the agent’s performance, and thus its chances to be selected
for further generations.

2.1.1 Hardware and Control

The robotic arm (Universal Robots, UR5) used is equipped with a pneumatic parallel
gripper and a hot glue supplier. The gripper is used for the manipulation of the
available modules, and the hot glue (ALFA Klebstoffe AG, ALFA H 5500/30) is
used to bond the modules together.

The active modules are cubes with a side length of 6cm and the passive modules
are wooden cubes with 3cm side length. The active modules contain a servo motor
(Modelcraft, RS-3 JR) for actuation, a battery (Conrad ElectronicAG,Conrad energy
LiPo Akku 7.4V, 800mAh) and the electronics for control and wireless communi-
cation (Arduino, Pro Mini; Sparkfun, Bluetooth Mate Silver). One side of the cube
is connected to the motor flange, such that it can be oscillated. Active and passive
modules are supplied at predefined positions for the assembly of each agent.

For the rotation of active modules, a centering frame is mounted in the construc-
tion space to avoid that position errors sum up during repeated manipulations. The
assembly is performed on a slightly adhesive and soft ground (3mm foam rubber,
covered with masking tape sticky side up) to ensure good ground contact and some
error tolerance. In the testbed, three different ground surfaces are tested: plywood
covered with fabric, carpet and polyurethane foam.

The experiment is controlled from themain controller on a desktop PC usingMat-
lab. A TCP/IP connection is used for communication. The robot controller receives
the command sequence from the main controller and executes it step by step. For
the evaluation, the main controller sends the commands to the active modules using
a Bluetooth connection.
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Fig. 2 Translation of the encoding into the building process based on three operations. For the
preparation of a module, it is rotated. During assembly, the prepared module is bonded to the
previously built structure, which in the last operation can undergo rotation as a whole

2.1.2 Evolutionary Process

All candidate locomotion agents are physically assembled from the modules and
tested. To achieve a sufficiently large design space, the building process must be able
to handle diverse solutions. To maintain the buildability for many parameter values,
the fabrication process is structured into a fixed operation sequence. The parameter
values are stored in an agent’s genotype, which contains one gene per module, with
each gene holding the parameters for the addition of one module. In Fig. 2, the
encoded building process is illustrated. The three operations are the preparation of a
module, assembly and the rotation of the structure.

For its preparation, amodule is picked from the storage position and rotated around
the global y and z-axes. Afterwards, the prepared module can be connected from the
top to the previously built structure using the hot glue [13]. The assembled structure is
then rotated again around the y and z-axes. After the rotation is terminated, either the
next module is prepared and added, or the fabrication is concluded and the finished
agent placed in the testbed for its evaluation. In the case an active module is added, its
gene also defines the motor’s amplitude and phase shift during the evaluation period.

Each gene contains the following fields defining the parameters of the fabrication
process described above: Type of module, rotations during module preparation, rota-
tions of previously built structure, relative offset at placement about x and y-axes,
selection of attachment area in case of multiple options, a final rotation parame-
ter executed after the building process and in case of active modules the control
parameters amplitude and phase shift.

For the fitness evaluation of each agent, it is automatically placed in a prepared
testbed by the robotic manipulator once its construction is finished. There, themotors
are activated with the encoded control parameters for a fixed testing time. The behav-
ior of the agent during the testing phase is recorded by an overhead camera. From
the recorded footage, the position of the agent at the beginning and end of the test is
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extracted using computer vision techniques, and the distance travelled by the agent,
divided by the testing time serves as a fitness measure.

After the fitness is evaluated for all agents of one generation, the genotypes of
the next generation can be generated. An elite (usually the fittest three) advances
to the next generation without any change to their genotype, to preserve this infor-
mation. The other slots in the following generation are filled through mutation and
recombination of genotypes. It is randomly determined for each newgenotype,which
mechanism is applied. For the mutation, one parent is selected, for recombination
two parent genotypes are required. The selection in both cases is stochastic, with the
selection probability for each genotype of the preceding generation proportional to
its fitness.

Mutation can either add a new (randomly initialized gene), delete one gene from
the genome or randomly change a parameter in a gene. It is probabilistically deter-
mined how many and which kind of mutation is performed. For the recombination,
a one-point crossover scheme is applied. This combines the first n genes of the first
parent with the lastm genes of the second parent. Both integers n andm are randomly
selected.

The physical implementation of candidate solutions introduces a number of con-
straints, mostly related to the specific implementation of the setup. For example the
parallel gripper has a limited holding force, and the robotic arm’s range is bounded.
To minimize the time spent on candidate solutions which will violate one of these
constraints, or are otherwise prone to fail (e.g. do not contain a single motor), a
validation step is introduced. It checks each genotype for a number of elementary
conditions. If the genotype fails at least one condition, it is regenerated. Conditions
leading to the exclusion of a genotype are:

• Lack of stability during construction
• Servo-shafts colliding with other components
• Less than one or more than five elements
• Less than one or more than three active modules.

2.1.3 Experiment Details

Five experiments were performed, resulting in the instantiation and evaluation of
500 candidate solutions. Each experiment consisted of ten generationswith ten agents
each. Some parameters were varied between the experiments. The primary differ-
ences and parameters are indicated in this section. The complete specifications can be
found in [2]. Unless specified otherwise, all experiments were randomly initialized,
with genomes of one to three genes length.

Experiment 1a The first experiment was performed on the hard ground (ply-
wood), with four instead of two rotations in the preparation and
rotation operations. The final rotation of the agent was disabled
and in the validation step, only the size limits were active.
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Experiment 1b The agents were evaluated on the carpet. The motor amplitudes
were restricted to 10◦, 20◦ and 40◦.

Experiment 1c To examine puremorphological adaptation, themotor control val-
ues (amplitude and phase shift) were fixed during this experiment.
The agents were also evaluated on the carpet.

Experiment 1d Motor control was reactivated as an evolutionary parameter with
the restricted parameter set from experiment 1b. Agents were
evaluated on the polyurethane foam.

Experiment 2 To further increase the achievable morphological complexity,
multiple parameters were adapted in this experiment and some
manual interventions accepted. Successful agents from the pre-
vious experiments were selected for the initial population. In the
validation step, the stability condition and collision detectionwere
disabled. Consequently, a human operator had to assist to guaran-
tee stability, and colliding motors were manually disabled. Fur-
thermore, the more significant add and delete mutations were
preferred over simple parameter changes.

2.2 Results

Throughout the experiments a large variety of locomotion robots were built and
tested, which developed different successful locomotion strategies. A selection of
successful agents from different experiments is shown in Fig. 3.

The stochastic optimization based on the evolutionary algorithm described in
Sect. 2.1 optimizes the overall locomotion speed of the robotic agents. The increase
of the resulting fitnesses over ten generations is documented in Fig. 4, which shows
for each generation the mean of the best three agents in the population. Because
of the real-world implementation, the evaluation is not deterministic and although
elitism is applied, there is no guarantee that every generation reaches the previous
fitness. However, over generations the fitness increased in all five experiments.

All agents of experiment 1c are shown in Fig. 5. This experiment is particularly
interesting, as the motor control parameters were not subject to the evolutionary

Fig. 3 Four sample locomotion agents generated by real-world evolution. All shownmorphologies
were amongst the most successful robots in their experiment
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Fig. 4 Mean fitness of best
three agents per generation
of all five experiments. An
improvement of fitness over
ten generations can be found
in all five experiments
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optimization. Therefore, the fitness improvement was solely achieved through adap-
tations to the morphology of the locomotion agents. It also shows that despite the
validation step, for a few agents the building process failed, with negative error codes
indicating the reason (−13: glue connection failure, −14: collision during assembly,
−16: other).Over all five experiments, the fabrication success ratewas approximately
96%.

3 Design Diversity and Evolutionary Dynamics

Toadapt the locomotion agents to different environments and explore different behav-
iors, diverse designs have to be generated and implemented. The encoding of designs
and the fabrication process are closely coupled and largely define the design space.
After addressing the initialization of diverse designs, the evolutionary process iter-
ating on the designs must be set up such that it can maintain this diversity over
generations to further explore additional solutions in the design space.

3.1 Encoding of Morphological Variations

Although a flexible assembly process is employed for the instantiation of the locomo-
tion agents, the generation of morphological variation is not trivial. The fabrication
constraints restrict the admissible ranges for parameter values. Therefore, not all
regions of the design space are equally well reachable, which reduces the diversity.
Furthermore, the ranges for parameter values must be set a priori and cannot depend
on other values as this would conflict with mutation and crossover processes.
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Fig. 5 Generation map of experiment 1c. In this experiment, the motor control parameters were not
subject to the optimization, forcing the evolutionary process to improve the locomotion speed solely
bymorphological adaptation. The locomotion agents were evaluated on the carpet. The number with
each agent indicates its fitness (cm/s) and the colors indicate the generation method (green: elite,
red: mutation, blue: crossover). Negative fitnesses are the error codes for failed agents
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(a) (b) (c)

Fig. 6 Encoding generalization. Three different scenarios were considered for the attachment of
an object O to a structure S. In the general case a, two bodies of arbitrary shape are connected by
at least one contact point. For a physical realization b, a sufficiently large contact area is required.
Therefore, in this scenario, both bodies are assumed to be polyhedra. Given the assembly constraints
from the real-world experiment c, both bodies are from elementary cubic shapes. All illustrations
are 2D, but the approach readily applies to the general 3D case

The modules employed in the experiments are of cubic shape, which simplifies
the attachment process and thus the encoding of the genotypes, especially the defin-
ition of parameter ranges. The influence of shape and attachment constraints on the
generation of diverse morphologies is analyzed in the following sections.

3.1.1 The General Attachment Problem

The goal is to attach an object O with shape SO on a structure S with shape SS as
illustrated in Fig. 6. The rotation of the object is given by a rotation matrix RO, and
the rotation of the structure S is defined by the rotationmatrix RS. For the attachment,
at least one contact point between the shapes SS and SO must be present without any
overlap of the respective shapes. Therefore, there is a limited set of valid attachment
vectorsΓ (α, d), which is defined by the direction angle α and the distance d between
the structure and the object. Given an angle α, the distance d is determined by the
geometry of the problem:

d = f (SS, SO, RS, RO, α) . (1)

For this general attachment problem—assuming a point contact is sufficient to
connect the two bodies—all parameters but the distance d can be freely chosen.
Structure and object can have arbitrary shape and orientation, only the distance
depends on the other parameters to fulfill the geometrical constraints for attachment
as illustrated by the function f in (1).
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3.1.2 Attachment of Flat Surfaces

However, for the practical realization of attachment, point contacts are not sufficient.
For the connection with HMA, for example, both bodies must be in contact with a
large enough attachment area A ≥ Amin . To realize this, in the next step it is assumed
that both shapes SS and SO are polyhedra (the set of polyhedra here is denoted asΠ ).
For the two-dimensional illustrations in Fig. 6, polygons are used. For attachment,
one surface of each polyhedronmust be brought into contact,which requires a parallel
orientation of the surfaces. Given the shapes of both bodies SS, SO ∈ Π and the
orientation RS of the structure, only a limited set of orientations RO of the object is
admissible. The choice of the object orientation further constrains the set of valid
attachment vectors Γ , and also the angle α can no longer be freely chosen:

SS, SO ∈ Π (2)

RO ∈ g(SS, SO, RS) (3)

α ∈ h(SS, SO, RS, RO, Amin) (4)

d = f (SS, SO, RS, RO, α) . (5)

The functions g and h which define the admissible set of rotations RO and angles
α are not necessarily easy to determine, depending on the geometry of the problem.

3.1.3 Practical Attachment of Cubic Shapes

For the practical attachment based on the presented experiments a set of cubic shapes
Σ with side lengths s and 2s is considered. It is assumed the object is of such
shape (SO ∈ Σ). The structure’s shape is a combination of elementary cubes, i.e.
SS ∈ Σ̂ ⊃ Σ .

Based on the body shapes and fabrication processes, additional constraints are
introduced. Both bodies’ rotations are restricted to a multiple of ±90◦ around the
elementary axes. For the attachment, only the topmost surface of the structure is
considered, restricting the admissible values of the direction angle α:

SS ∈ Σ̂ ⊃ Σ (6)

SO ∈ Σ (7)

RS, RO ∈ Rx

(
kx

π

2

)
+ Ry

(
ky

π

2

)
+ Rz

(
kz

π

2

)
, k ∈ Z (8)

α ∈ h′(SS, SO, RS) (9)

d = f ′(SS, SO, RS, α) . (10)

This is simplifies the problem in many ways as compared to the previous problem
discussed in Sect. 3.1.2. The admissible values for the orientations are from a fixed
set (8) as compared to the complex function g in (3), which depends on the problem
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geometry and the structure orientation. Furthermore, given the cubic shape of the
object and the fact that only elementary rotations are considered, its overall shape
is predefined, and thus does not have to be considered in the calculation of the
attachment vector Γ (α, d) in Eqs. (9)–(10).

3.1.4 Real-World Fabrication Constraints

Apart from the shape and attachment mechanism, further system constraints have
to be considered for the physical implementation of automated assembly processes.
In the implementation presented in this paper, a validation step (Sect. 2.1.2) checks
each genotype for a range of conditions to ensure most constraints are met.

To evaluate the effect of four main constraints of the physical assembly system, a
simulation experiment was performed. 1.25 million genotypes were randomly gen-
erated with one to ten components. Their morphologies were built in simulation and
based on the simulation results, they were checked for all of the four constraints.
The constraints considered are the maximum agent weight, maximum agent dimen-
sions, stability of agents during fabrication (no toppling) and the connection of new
modules to the agent’s topmost surface only (for details please refer to [2]).

In Fig. 7, the diversity of shape factors for a given number of components that was
achieved by the simulated population is plotted. For the calculation of the diversity,
the all agents were categorized based on their shape factor (see [2] for definition).
The diversity is calculated as the effective number of types based on the population’s
Shannon index, an entropy measure [8]. The diversity measure takes into account the
number of classes present in a population, as well as their relative abundance. The
population was further categorized based on whether all four fabrication constraints
are fulfilled, all but the stability constraint are fulfilled or none are fulfilled. The
stability constraint is of particular interest, as it was relaxed in experiment 2.

Fig. 7 Shape diversity for
differently sized robots with
different building constraints
active. The diversities were
obtained based on
1.25 million randomly
generated genotypes and
their corresponding
morphologies calculated in
simulation. A diversity value
of 3.0 for example is
equivalent to the diversity of
a population with three
equally abundant shape
classes
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The results show, that for small agents, the constraints have only aminor influence,
as they are easily fulfilled. However, the constraints complicate the fabrication of
large agents, and restrict their diversity. Therefore, to scale this approach to more
complex scenarios, fabrication constraints must be carefully addressed.

3.2 Generating New Designs

After the evaluation of one generation in the real world is completed, the fitnesses of
all candidate solutions are known. In a next step, the evolutionary algorithm needs to
map the ten old genotypes of generation n − 1 to the ten new genotypes of genera-
tion n. The chosen process is a mixture of elitism, combined with random mutations
and crossover. For the selection of parent genotypes, the selection probabilities are
proportional to parent fitness.

In Fig. 8, the evolution of fitness in experiment 1c is shown, indicating the genera-
tionmechanism of new genotypes with color (green: elite, blue: crossover, red: muta-
tion) and the relationships through lines from one to another generation. Crossover
is based on two parent genotypes, the other mechanisms use a single parent. In the
case of elitism, the child genotype is an exact copy of the parent genotype. However,
because of the stochasticity in the real-world testing, also identical genotypes exhibit
some fitness variation.
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Fig. 8 Fitness evolution in experiment 1c on carpet. This figure shows the evolution of locomotion
fitness through the course of one experiment. The color indicates the way each agent was generated
(green: elite, blue: crossover, red: mutation). The graph shows the variance of identical genotypes
due to real-world interactions (elite) as well as the increased fitness variation in positive and negative
direction for new genotypes (mutation and crossover)
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Fig. 9 Parent versus child
fitness for all offsprings
evaluated in the five
experiments. The offsprings
which are part of the elite
mostly have comparable
fitnesses to their parents,
while mutated/crossed
offsprings exhibit larger
fitness variation. For
crossover, the average fitness
of parents is considered as
the parent fitness. The
marker color indicates the
way each agent was
generated (green: elite, blue:
crossover, red: mutation)
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Figure9, which shows the parent versus child fitnesses over all five experiments,
indicates that elitism (green triangles) results in child fitnesses comparable to the
parent fitness as expected. Both, mutation (red boxes) and crossover (blue circles),
produce a larger fitness variation. There is a chance that the child completely fails,
but on the other hand, 30 offsprings were at least 50% better than their parents.
While we are interested in the fitness optimization, there is no guarantee that the
random changes of the genotypes result in a preferable outcome. However, through
the combination with the selection strategy, the overall fitness increases through the
course of evolution.

4 Analysis of Behavioral Diversity

The behavior of a robot emerges through the interactions of the robot’s body and
control with the task environment [10].Most of the successful agents exhibit periodic
behaviors, but some fit robots also showed more complex behaviors. The complete
overview of the experiments shows that not only morphologies and behaviors are
fine-tuned to the task, but also new morphologies (see Fig. 5) and behaviors are
discovered by the evolutionary optimization.

For the fitness evaluation, only the start and end points of the robot trajectories
were considered, but from themovies recorded by the overhead camera, the complete
2D trajectories can be extracted. In Fig. 10, a selection of such trajectories is plotted.
The trajectories were selected from the top 10% of locomotion agents over all five
experiments.
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(a) (b) (c) (d)

Fig. 10 These trajectories were selected from the 10% of fittest locomotion agents over all five
experiments. The selected trajectories show that although most successful agents exhibit periodic
motion patterns, also less structured behavior can be successfully developed. All scale bars measure
60mm, i.e. one side length of an active module

Fig. 11 Correlation between
morphological complexity
(measured by the number of
constituent components) and
behavior complexity
(measured by the
approximate entropy
(ApEn)) based on the real
data from all five
experiments
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It is much harder to engineer complex, non-periodic behaviors than the steady
solutions. To better understand under which conditions such innovations are more
likely to develop, the behavioral complexity based on the agent’s trajectories is further
analyzed. To quantify the complexity of the agents’ behaviors, the “Approximate
Entropy” (ApEn) of their trajectories was calculated as described by Peng et al.
(p. 11 in [9]), with the only difference, that the trajectory segments compared are
normalized by their initial positions to account for the translations during the course
of the robot’s motion. The parameters used for the calculation of the ApEn arem = 2
and r = 5.

Assessing the influence of morphology onto behavior, a measure for morpholog-
ical complexity is required. Here, we approximate an agents’ morphological com-
plexity by its number of constituent modules. Putting the number of modules and
approximate entropy of all built locomotion agents into relation, it can be seen that
larger agents tend to exhibit more complex trajectories as plotted in Fig. 11.

As shown already by the simulation results plotted in Fig. 7, it is a challenging
task to develop diverse structures from many components, which at the same time
fulfill the building constraints. On the other hand, the real-world results show the
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(a) (b) (c) (d) (e)

Fig. 12 Trajectories of an agentwith fixedmorphology andmotor control in different environments.
The tested grounds are: a plywood, b carpet, c soft foam, d fine sandpaper and e textile. The scale
bar in all plots is 60mm, i.e. the side length of an active module

benefits of larger structures to achieve complex behaviors. The fabrication process
therefore has to be carefully implemented to take these considerations into account.

Apart from morphology and control (the parameters under control of the evo-
lutionary algorithm), the testing environment has a large influence on an agent’s
behavior. In Fig. 12, the trajectories of one robotic agent with fixed control parame-
ters in five different environments are shown. From these trajectories it can be seen
that not only the performance varies, but also different behaviors emerge through the
complex system-environment interactions.

Since the evaluation of the robotic agents is based on real-world tests, the results
are not deterministic. The stochasticity can be introduced both in the fabrication and
the evaluation steps. During the genotype-phenotype mapping, i.e. the fabrication
of physical locomotion agents, small differences always occur, which influence the
robot’s morphology. The second source of uncertainty is the morphology-behavior
mapping, i.e. the real-world evaluation of agents. The initial conditions and local
details of the environment or internal parameters of the modules influence an agent’s
behavior in a stochastic way.

5 Conclusion

In this article, the design optimization of physical locomotion agents is presented. An
evolutionary algorithm was applied directly onto the encoded fabrication process,
which enabled the automatic implementation of candidate solutions in real-world
for their performance evaluation in the task environment. For the successful opti-
mization, a process is required which can generate diverse mechanical designs and
autonomously generate new design based on the solution performance.

Over five experiments, 500 candidate solutions were built with about 96% success
rate and subsequently tested. The evolutionary process led to a relevant increase of
locomotion fitness over ten generations in all five experiments. After the fabrication
the robot morphologies interact with the task environment. The emerging behavior
determines the performance at the given task. It was shown that although many
successful agents exhibit periodic motions, the automatic design can generate more
complex working behaviors.
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Analysis of these experiments emphasized the importance of the fabrication con-
straints for the physical implementation of the presented system. The fabrication
constraints directly influence the diversity of designs which can successfully be con-
structed, especially if larger structures are considered. On the other hand, to achieve
more complex and nontrivial behaviors, it is beneficial to fabricate larger structures—
an ability which is directly influenced by the fabrication constraints.
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Part IV
Knowledge-Based Robotics and Knowledge

Session Summary

Bridging the gap between symbolic knowledge-based representations and control
systems for robot systems acting in the real world is one of the major challenges
for establishing truly autonomous systems that can reason about activities to be
carried out and transform them into proper actions to be carried out. This session
included two papers addressing the problem of using knowledge about objects or
actions to infer trajectories or actions. It also included a paper studying the problem
of building robots from functional specifications. In addition, authors presented an
approach to a neuromorphic sense of touch for robotic fingertips. Two further papers
are concerned with the identifiability analysis of frictional contacts as well as proper
distance functions for belief-space planning.

The paper entitled “Robobarista: Object Part Based Transfer of Manipulation
Trajectories from Crowd-Sourcing in 3D Pointclouds” by Jaeyong Sung, Seok Hyun
Jin and Ashutosh Saxena provided an innovative approach to manipulation plan-
ning by exploiting the fact that many objects share similarly operated object parts.
The authors provide an approach based on deep learning to determine manipulation
trajectories based on past experience.

In the paper “Cloud-Based Probabilistic Knowledge Services for Instruction
Interpretation” by Daniel Nyga and Michael Beetz, the authors present a framework
for learning and reasoning about action-specific probabilistic knowledge bases. In
this framework, the information about actions and objects is compactly represented
by first-order probabilistic models, which are used to learn joint probability distrib-
utions for inferring the most probable executable instruction.

The paper “Neuromorphic Artificial Sense of Touch: Bridging Robotics and
Neuroscience” by Udaya Bhaskar Rongala, Alberto Mazzoni, Domenico Cam-
boni, Maria Chiara Carrozza and Calogero Maria Oddo presents a system that
allows to code tactile information by means of a sequence of spikes, mimicking
the neural dynamics of Merkel Slowly Adapting and Meissner Fast Adapting human
mechanoreceptors. It furthermore presents a neuromorphic finger with a bio-inspired
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tactile sensor and describes a dedicated processing architecture to generate a neuro-
morphic output in the form of spikes. The experimental results show a high classifi-
cation performance for the data obtained from sliding the finger over different types
of textures.

The paper “Identifiability Analysis of Planar Rigid-Body Frictional Contact” pre-
sented by Nima Fazeli, Russ Tedrake and Alberto Rodriguez investigates the iden-
tifiability of the inertial parameters and the contact forces associated with an object
making and breaking frictional contact with the environment. The paper demon-
strates that given a time history of the kinematic measurements of the object without
external force, the parameters ratio of mass moment of inertia to mass of the object
as well as ratio of the tangential and normal forces to mass can be identified.

In the paper “Robot Creation from Functional Specifications”, the authors Ankur
M. Mehta, Joseph DelPreto, Kai Weng Wong, Scott Hamill, Hadas Kress-Gazit and
Daniela Rus describe an integrated end-to-end system for rapidly creating printable
robots from a Structured English description of desired behavior. The authors use lin-
ear temporal logic and a modular component library to allow the automatic synthesis
of complete mechanical, electrical and software designs.

Finally, the paper entitled “The Importance of a Suitable Distance Function in
Belief-Space Planning” by Zakary Littlefield, Dimitri Klimenko, Hanna Kurniawati
and Kostas E. Bekris investigates the problem of finding a suitable distance function
for belief-space planning. It considers the Wasserstein distance, the Hausdorff Dis-
tance, the KL-Divergence and the L1 Distance and compares them using a sampling-
based framework on two popular problem classes. Based on the experimental data,
the paper comes to the conclusion that the Wasserstein distance in belief-space plan-
ning provides significant improvements over the considered alternatives.
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A Complete Algorithm for Generating Safe
Trajectories for Multi-robot Teams

Sarah Tang and Vijay Kumar

1 Introduction

Multi-robot systems have become attractive solutions for a wide variety of tasks.
One prominent initiative is the Amazon Prime Air project [5], which proposes using
autonomous Unmanned Aircraft Systems (UASs) to deliver packages under five
pounds to customerswithin a tenmile radius of a fulfillment center in less than 30min.
In this setting, hundreds to thousands of robots could be in the air simultaneously.
Each robot is assigned a fixed and non-interchangeable goal, or labeled.

While it may seem promising to simply stagger the UASs’ altitudes, recent Fed-
eral Aviation Administration (FAA) proposed guidelines [4] limit the maximum
altitude of these small UASs to 400 ft, essentially confining vehicles to the horizon-
tal plane. Thus, this work focuses on finding safe motion plans for robots operating in
a two-dimensional space. This problem is harder than the three-dimensional version,
because the latter provides an additional degree of freedom.

There are, broadly speaking, three guarantees of interest for planning algorithms:
safety — robots will be collision-free with obstacles and each other, optimality —
the solution is minimum cost, and completeness — the planner will always find a
solution if one exists and indicate that there is none if one does not.

Approaches to the labeled multi-robot planning problem can be characterized as
coupled or decoupled. Coupled planners search for optimal paths in the joint config-
uration space of all team members, either by directly applying planning algorithms
such as A* [7] or with specialized variants [6]. These approaches typically guarantee
optimality and completeness. However, as the search space grows exponentially with
the number of robots, they quickly become computationally impractical.
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Decoupled planners, on the other hand, plan for each robot separately. One
approach is to plan each robot’s motion in priority order. Lower priority robots
must avoid higher priority ones [1, 3]. An alternative is to first find paths that avoid
static obstacles, then design velocity profiles that avoid inter-robot collisions [9, 11].
These planners tend to be faster, but are typically not complete.

As a result, algorithms that combine both approaches have been proposed. van
den Berg et al. [17] decouple the problem into smaller coupled subproblems, mini-
mizing the dimensionality of the highest-dimensional subproblem. Subdimensional
expansion [18] first plans in each robot’s individual configuration space and searches
a joint state space in regions where collisions occur. These approaches offer signifi-
cant computational improvements, but can still perform poorly in the worst case.

Other planning approaches include rule-based [2] or networkflow [19] algorithms.
Alternatively, van den Berg et al. [16] frame the problem as a reciprocal collision
avoidance problem. In air traffic control, Tomlin et al. [13] find safe conflict resolution
maneuvers in the presence of uncertainties. However, this approach requires com-
putation of solutions to the Hamilton–Jacobi–Isaacs PDE equation, which becomes
computationally difficult for large teams.

Other settings allow for robots to be completely interchangeable. Proposed solu-
tions to the unlabeledmulti-robot planning problem must solve both the task assign-
ment and trajectory generation problems [14]. In particular, Turpin et al. propose an
O(N 3) solution to the unlabeled planning problem in obstacle-free environments [14]
for teams of N robots.

Our work proposes a centralized algorithm for finding collision-free trajectories
for a teamof labeled robots operating in an obstacle-free two-dimensionalworkspace.
In essence, each robot pursues its own optimal motion plan until an impending
collision is detected. This causes the affected robots to enter a holding pattern, similar
to the racetrack patterns used in civilian aviation in congested airspace. Our approach
is similar to subdimensional expansion, however, collisions are resolved through
analytically constructed maneuvers as opposed to a high-dimensional graph search.
While this is suboptimal, our algorithm offers completeness guarantees and allows
for greater scalability to large teams.

The remainder of this paper will proceed as follows. Section2 presents terminol-
ogy and Sect. 3 discusses a known solution to the unlabeled multi-robot planning
problem. Section4 details our algorithm for the labeled problem and discusses its
safety and completeness guarantees. Section5 characterizes the algorithm’s perfor-
mance through simulation experiments and Sect. 6 presents conclusions and direc-
tions for future work.

2 Problem Definition

Let IZ = {1, 2, . . . , Z} denote the set of integers between 1 and Z , inclusive. Let
N denote the number of robots in the team. We represent the start and goal positions
of robot i ∈ IN with si ∈ R

2 and gi ∈ R
2, respectively, and the sets of all start and
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goal positions with S and G, respectively. x denotes a position in R2 and xi denotes
the state of robot i . Each robot has identical first-order dynamics:

ẋi (t) = ui (t), ‖ui (t)‖2 ≤ vmax (1)

In the centralized paradigm, each robot knows the states and goals of all robots.
We define a trajectory as a piecewise smooth function of time, γ (t) : [t0, t f ] →

R
2. Let γ (x0,x1)(t) denote an optimal trajectory between x0 and x1 and γi (t) denote

robot i’s trajectory between si and gi . Let γ (t) denote the set of all trajectories γi (t).
We model each robot as a disk of radius R. We use B(xi (t)) to denote the area

robot i occupies at xi (t) andB(γi ) to denote the area it sweeps out traversing γi (t).
The goal of the labeled planning problem is to plan a trajectory γi (t) for each

robot such that γi (0) = si , γi (t f,i ) = gi . All robots’ trajectories start simultaneously
but each robot can reach its goal at a unique t f,i . We assume robots remain stationary
at their goals for all t > t f,i , and we require B(xi (t)) ∩ B(x j (t)) = ∅ for all t ∈
[0,maxi∈IN t f,i ], j �= i ∈ IN .

3 Concurrent Assignment and Planning of Trajectories
(CAPT)

First, consider the unlabeled planning problem: given N robots and M goals, plan
a trajectory γi (t) for each robot such that each goal is visited by one robot. When
M > N , some goals will remain unvisited while when M < N , some robots will not
visit any goals. In this section, we outline the Concurrent Assignment and Planning
of Trajectories (CAPT) algorithm [14] to solve this problem.

Suppose the start and goal locations are at least 2
√
2R away from each other:

‖si − s j‖2 > 2
√
2R ∀i �= j ∈ IN , ‖gi − g j‖2 > 2

√
2R ∀i �= j ∈ IM

(2)

Define the assignment mapping robots to goals as φ : IN → IM ∪ 0, where φi = j
indicates that robot i is assigned to goal j and φi = 0 if robot i is unassigned. The
CAPT algorithm finds the assignment and trajectories that solve:

min
φ,γ (t)

N∑

i=1

∫ t f

0
ẋi (t)T ẋi (t)dt (3)

The solution to this problem consists of straight-line trajectories that minimize the
sum of the squares of the distances traveled. In other words, the optimal assignment
is given by:
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φ� = argmin
φ

N∑

i=1

‖si − gφi ‖22 (4)

This assignment can be found in O(N 3) time using the Hungarian Algorithm [10].
Denote the assigned goal of robot i with g�

i , where g
�
i = si if robot i is unassigned

and g�
i = gφ�

i
otherwise. The optimal trajectories are the constant velocity straight-

line trajectories from γi (0) = si to γi (t f ) = g�
i . We want all robots to arrive at their

goals simultaneously at t f , which can be found with:

t f = max
i∈IN

‖si − g�
i ‖2

vmax
(5)

Wewill refer to such trajectories as synchronized. Turpin et al. show these trajectories
are collision-free [14].

4 Optimal Motion Plans + Circular HOlding Patterns
(OMP+CHOP) for the Labeled Planning Problem

Wenowpresent our algorithm to solve the labeled planning problem. First, we discuss
the best-case scenario, where all robots can move directly to their goals following an
Optimal Motion Plan (OMP). Next, we consider the worst-case scenario, where all
robots must enter a single Circular HOlding Pattern (CHOP). Finally, we describe
the full algorithm, which combines these two strategies.

We again assume the start and goal positions satisfy the separation assumptions
given in Eq.2, however, in the labeled setting, M = N .

4.1 Optimal Motion Plans (OMPs)

Given any two waypoints and times of arrival at these points, we can design an
optimal trajectory taking robot i from xi (t0) = x0 to xi (t f ) = x f by solving:

γ (x0,x f )(t) = argmin
γ (t)

∫ t f

t0

ẋi (t)T ẋi (t)dt

subject to: γ (t0) = x0, γ (t f ) = x f (6)

As before, the optimal trajectory is the constant-velocity straight-line path:

γ (x0,x f )(t) = (
x f − x0

) t − t0
t f − t0

+ x0 (7)
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The Optimal Motion Plan (OMP) for a robot is the optimal trajectory from its
current position to its goal. In the best case, all robots’OMPs from their start positions
are collision-free. Then, for each robot, γi (t) = γ (si ,gi )(t), t0 = 0, and t f,i = ‖si−gi‖2

vmax
.

Trajectories are unsynchronized: all robots travel at vmax to arrive at different times.

4.2 Circular HOlding Patterns (CHOPs)

When their OMPs are not collision-free, robots enter a Circular HOlding Pattern
(CHOP) to safely maneuver to their goals. Algorithm 1 presents the CHOP construc-
tion algorithm and Sects. 4.2.1–4.2.4 detail its key steps. Its inputs are theCHOP start
time, τs , the index set of robots involved, Rm , a set of CHOP start positions, Xs ,
from which robots enter the CHOP, and the set of goals Xg = {gi | i ∈ Rm}. The
equality sign denotes the assignment of a value, a left arrow indicates the addition
of discrete elements to an existing set, and Xa,i denotes element i of set Xa .

For now, assume all robots immediately enter a single CHOP. This represents the
worst-case scenario, where robots are densely packed and smaller CHOPs cannot be
created. In this case, the algorithm inputs are τs = 0, Rm = IN , Xs = S, Xg = G.

Algorithm 1 (m, xc, rc) = Create CHOP(τs,Rm, Xs, Xg, R, vmax )
1: Nm = number of robots in Rm

2: xc =
∑

i∈INm
Xs,i

Nm
// Define center of the CHOP

3: nw = 2Nm // Designate number of intermediate waypoints in the CHOP
4: rc = Find CHOP Radius(nw, xc, Xg, R) //Find minimum safe radius for the CHOP
5: // Find the set of intermediate waypoints
6: Xm = {xc + rc[cos(θi ) sin(θi )]T | θi = (i − 1) 2πnw , i ∈ Inw }
7: // Assign entry waypoint for each robot
8: Xw = {Xm,1, Xm,3, ..., Xm,nw−1}
9: φs = CAPT(Xs , Xw)
10: // Define Exit Condition for each robot
11: for all i ∈ INm do
12: φ

g
i = argmin j∈Inw

‖Xm, j − Xg,i‖2 // Assign the exit waypoint
13: end for
14: Pi = ∅ ∀i ∈ INm // Find priority sets
15: for all i ∈ INm do
16: for all j ∈ INm \i do
17: if B(Xg,i ) ∩ B(γ

(X
m,φ

g
j
,Xg, j )

) �= ∅ then
18: Pi ← j
19: end if
20: end for
21: end for
22: (m) = Construct CHOP(τs ,Rm , Xs , Xm , Xg, φ

s , φg,P, vmax )
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4.2.1 Define Intermediate Waypoints

First, we find a set of nw intermediate waypoints, Xm , distributed evenly about a
circle with center xc and radius rc. These waypoints must satisfy safety conditions:

1. The distance between all points in the set Xw, defined in Line 8, is at least 2
√
2R.

2. The distance of every goal in Xg from every waypoint in Xm is at least 2
√
2R.

3. The distance of every goal in Xg from every path between a pair of consecutive
intermediate waypoints in Xm is at least 2R.

We designate nw as twice the number of robots in Rm and xc as the mean of the
robots’ start positions. rc, the minimum radius that satisfies the safety criteria, can
be found analytically. Note that robots’ goals can be inside or outside the CHOP.

4.2.2 Define Entry Waypoints

To enter a CHOP, robots move synchronously from their CHOP start positions to
an intermediate waypoint designated as their entry waypoint. Line 8 chooses every
other waypoint from Xm to form the set of candidate entry waypoints, Xw. In Line 9,
these waypoints are assigned to robots with the optimal assignment returned by the
CAPT algorithm when considering Xs as start positions and Xw as goals.

4.2.3 Define Exit Conditions

Next, robots synchronously and sequentially visit intermediate waypoints in clock-
wise order until they satisfy their Exit Condition (EC). First, Lines 11–13 assigns the
intermediate waypoint closest to each robot’s goal as its exit waypoint. Robots can
only exit the CHOP from this waypoint. Second, Lines 14–21 construct each robot’s
priority set, Pi . A robot can exit via its exit waypoint only if all robots in Pi have
exited. Line 17 ensures that if robot i remaining stationary at its goal will result in a
collision with robot j moving towards its goal, robot i cannot exit before robot j .

4.2.4 Construct CHOP

To execute a CHOP, each robot follows optimal trajectories to sequentially visit its
CHOP start position, its entry waypoint, a series of intermediate waypoints, and its
exit waypoint at the appropriate times. Upon satisfying its EC, it returns to pursuing
an OMP starting from its exit waypoint. Thus, we can fully represent the motion
of all robots in a CHOP with m = {{Xi | i ∈ Rm}, T, Tgoal}. Xi is the series of
waypoints robot i visits, starting from its CHOP start position and ending with its
exitwaypoint.Note that the sets Xi can be different lengths. T = {t1, t2, . . .} indicates
arrival times at waypoints, where robot i must be at position Xi, j , if it exists, at time
t j . T is common to all robots, and |T | = maxi∈Rm |Xi |, where | · | denotes a set’s
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cardinality. Finally, Tgoal = {tgoal,i | i ∈ Rm} is a series of goal arrival times. Robot
i must reach its goal at time tgoal,i after exiting the CHOP.

We already know Xi for each robot. Line 22 additionally defines the series T and
Tgoal . Section4.4 will show that to guarantee safety, trajectories between waypoints
in the CHOP and the OMPs of robots that have exited must all be synchronized. To
achieve this while respecting all robots’ velocity constraints, we define t1 = τs and:

t j = t j−1 + max
i∈Rm j

‖xnext,i − Xi, j−1‖2
vmax

j = 2, . . . , jmax (8)

Here, jmax = maxi∈Rm |Xi |. Rm j ⊆ Rm is the subset of indices for which |Xi | ≥
j − 1, xnext,i refers to Xi, j if |Xi | ≥ j and Xg,i if |Xi | = j − 1. Then:

tgoal,i =
{
t|Xi |+1 if |Xi | < jmax

t jmax + maxi∈Rm jmax

‖Gi−Xi, jmax ‖2
vmax

if |Xi | = jmax
(9)

We further define the CHOP exit time for each robot, denoted τ f,i , as the time it
leaves its exit waypoint, which we will use in later algorithms.

4.2.5 Example Problem

We illustrateAlgorithm1using the example problempresented in Fig. 1a, b illustrates
the placement of the intermediate waypoints, pictured as black squares. Figure1c
shows the assigned entry waypoint for each start position with a circle of the same
color. Figure1d shows each robot’s assigned exit waypoint with a circle of the same
color, with higher priority robots indicated by larger circles. Figure1e–h illustrate
the resulting motion plan. As an example, robot 2’s planned trajectory is:

γ2(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ (s2,Xm,3)(t) t0 ≤ t ≤ t1
γ (Xm,3,Xm,2)(t) t1 < t ≤ t2
γ (Xm,2,Xm,1)(t) t2 < t ≤ t3
γ (Xm,1,g2)(t) t3 < t ≤ texi t,2

(10)

4.3 The Motion Planning Algorithm

Now, we combine the previous techniques into a single motion planning algorithm,
referred to as OMP+CHOP, that allows robots to follow their OMPs when possi-
ble and directs them into appropriately designed CHOPs in congested areas. This
algorithm is presented in Algorithm 2 and described in detail in Sects. 4.3.1–4.3.3.
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(a)

Problem definition: robots begin at start positions indicated by circles and must navigate to
assigned goal positions indicated by stars of the same color.

(b)

Identify intermediate points

(c)

Identify entry waypoints

(d)

Identify exit conditions

(e)

Resulting motion

(f) (g) (h)

Fig. 1 We design a Circular HOlding Pattern (CHOP) for the problem in (a). b–d show key steps
of Algorithm 1. e–h illustrate the motion plan

Algorithm 2 γ = OMP_CHOP(S,G, R, vmax )
1: M = ∅
2: γ = Compute Motion Plan (S,G,M )
3: C = Find Imminent Collision(γ, R)
4: while C �= ∅ do
5: (τs ,Radd , Xs , Xg,Madd ) = Compute CHOP Parameters(γ,M ,C ,G)
6: (mnew, xc, rc) = Create CHOP(τs ,Radd , Xs , Xg, R, vmax )
7: M ← mnew
8: M = Remove CHOPs(Madd )
9: γ = Compute Motion Plan (S,G,M )
10: C = Find Imminent Collision(γ, R)
11: end while

4.3.1 Compute Motion Plan

M contains the set of all CHOPs in themotion plan, fromwhich the set of trajectories
γ can be derived. Initially, in Line 2, M is empty and all robots follow their OMPs
from their start positions.WhenM contains CHOPs, as in Line 9, each robot follows
its OMP until its earliest CHOP’s start time. It then follows optimal trajectories to
each waypoint designated by the CHOP to its exit waypoint, when it again pursues
an OMP until it encounters another CHOP or its goal. This process is pictured in
Fig. 2. The choice of CHOP parameters, described in Sect. 4.3.3, will guarantee that
CHOPs inM will always start along its robots’ OMPs.
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Fig. 2 Overview of our algorithm’s motion plan: robots follow their OMP whenever possible,
entering CHOPs to resolve collisions

We will use a subscripted variable, such as mk , to denote a particular CHOP in
M and Rmk , τs,mk , τ f,i,mk to denote the indices of its robots, its start time, and the
CHOP exit time of robot i ∈ Rmk , respectively.

4.3.2 Find Imminent Collisions (ICs)

Line 3 finds the first Imminent Collision (IC) amongst robots following trajectories
γ . We characterize a collision with its time, tc, the number of robots in collision,
Nc, and the set of indices of the colliding robots, C . For all robots i ∈ C , there must
be at least one j �= i ∈ C for which B(xi (tc)) ∩ B(x j (tc)) �= ∅. We will use C to
denote both the collision and the set of robots in the collision.

4.3.3 Create Local CHOP

Line 5 of Algorithm 2 finds the parameters of a new CHOP, denoted mnew, that will
resolve the detected IC. This function is presented in Algorithm 3.

mnew is characterized by the set of indices of the robots it contains, Radd . As
shown in Line 1 of Algorithm 3,Radd initially contains only robots in the IC. Addi-
tionally, existing CHOPs in M might need to be merged with mnew. These CHOPs
are contained inMadd , which is initially empty.Mcurr , also initially empty, contains
only the CHOPs to be merged that were identified in the most recent iteration.

Algorithm 3 then grows Radd and Madd until a valid CHOP can be constructed.
Line 2 indicates that if any robots in C are executing a CHOP when the IC occurs,
their CHOPs must be merged with mnew. Lines 5–6 defines the CHOP start time
and start positions for the current Radd , ensuring that the start positions are always
on robots’ OMPs. Line 8 creates mcurr , the CHOP defined by the current Radd .
Additional robots and CHOPs are added based on three merging conditions:

1. Add robots and CHOPs whose paths intersect mcurr ’s circle (Lines 10–13), so
when moving between intermediate waypoints, robots in mcurr will be collision-
free, even with robots not in the CHOP. Note we only consider robots’ paths,
which simplifies this condition to fast line segment-circle intersection tests.

2. Merge CHOPs that will cause conflicting motion plans for robots in Radd

(Lines 15–19), soM will always translate to a valid motion plan.
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Algorithm3 (τs,Radd , Xs, Xg,Madd )=ComputeCHOPParameters(γ,M ,C ,G)

1: Madd = ∅,Radd = C , ts = tc,merge = 1 // Initialize variables
2: Mcurr = {mk ∈ M | ∃ r ∈ C ∩ Rmk for which tc ∈ [τs,mk , τ f,r,mk ]}
3: while true do
4: // Find valid starting conditions
5: τs = maxt≤ts t such that ‖xi (t) − x j (t)‖2 ≥ 2

√
2R ∀ j �= i ∈ Radd

6: Xs = {xi (τs) | i ∈ Radd }, Xg = {gi | i ∈ Radd }
7: if merge == 0, break end if
8: (mcurr , xc, rc) = Create CHOP(τs ,Radd , Xs , Xg, R, vmax )
9: // Merge robots and CHOPs whose paths intersect mcurr ’s circle
10: ta = t1,mcurr , tb = maxi∈Radd τ f,i,mcurr

11: l = Set of paths that all robots r ∈ IN \ Radd traverse between [ta, tb]
12: ROMP = Robots whose OMP’s paths are in l and intersect a circle at xc, radius rc + 2R
13: Mcurr ← CHOPs whose paths are in l and intersect a circle at xc, radius rc + 2R
14: // Merge CHOPs that will cause conflicting motion plans for robots in Radd
15: Radd ← ROMP ∪ {Rm j | m j ∈ Mcurr }
16: for r ∈ Radd do
17: τmin,r = min(τs ∪ {τs,m j | m j ∈ Mcurr and r ∈ Rm j })
18: end for
19: Mcurr ← {mk ∈ M | ∃ r ∈ Rmk ∩ Radd and τ f,r,mk ≥ τmin,r }
20: // Merge CHOPs that contain two or more common robots with Radd
21: Radd ← {Rm j | m j ∈ Mcurr }
22: Mcurr ← {mk ∈ M | |Radd ∩ Rmk | ≥ 2}
23: // If any additional robots or CHOPs were identified to be merged, iterate again
24: if ROMP �= ∅ or Mcurr \ Madd �= ∅ then
25: Madd ← Mcurr , Radd ← {Rm j | m j ∈ Mcurr }, ts = min(τs ∪ {τs,m j | m j ∈ Mcurr })
26: merge = 1,Mcurr = ∅
27: else
28: merge = 0
29: end if
30: end while

3. Merge CHOPs that contain two or more common robots with Radd (Lines 21–22).
This ensures that no two robots will be in the same CHOP more than once, which
will help provide algorithm completeness in Sect. 4.5.

Line 21 adds any new robots to Radd and Line 25 merges any new CHOPs. To
merge the CHOPs inMadd , their constituent robots are added toRadd . If any merged
CHOPs occur before mcurr , mcurr ’s start time is shifted to the earliest start time. We
then reconstruct mcurr with the updated Radd and iterate again as necessary.

With the returned parameters, we use Algorithm 1 to create the new CHOP,mnew,
which is added toM . The merged CHOPs inMadd are removed. A newmotion plan
is computed and the next IC is resolved until the motion plan is collision-free.
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(a) Problem definition. (b) Iteration 0:M = /0 (c) Iteration 1: M = {m1}

(d) Iteration 2:M = {m1,m2} (e) Iteration 3:mcurr created, and
additional merging is needed.

(f) Iteration 3:M = {m3}

Fig. 3 Illustration of Algorithm 2 on the example problem in (a). Robots start at circles and must
navigate to stars of the same color

4.3.4 Example Problem

Figure3 illustrates Algorithms 2 and 3 on the example problem in Fig. 3a.
Figure3b shows the initial motion plan, whereM = ∅ and all robots follow their

OMPs from their start positions. Figure3c, d shows the motion plans after the first
two ICs are resolved. Next, an IC between robots 1 and 3 is detected.

mcurr in Fig. 3e represents the initial CHOP created in Line 1 of Algorithm 3,
whereRadd = C = {1, 3}. In Lines 12–13, robot 5’s OMP’s path and robot 2’s path
in m1 are found to intersect mcurr ’s circle. Thus, ROMP = {5},Mcurr = {m1}. At
Line 15, Radd = {1, 2, 3, 5}. Evaluating Line 19, m2 contains robot 5, which is in
Radd , and τ f,m2,5 > τmin,5 = τs,mcurr . Thus, m2 is added to Mcurr . Lines 21–22 will
not change Radd or Mcurr . Finally, from Line 25, ts = τm1 ,Radd = {1, 2, 3, 4, 5},
and Madd = {m1,m2}. No further additions toRadd orMadd are needed.

We create mnew = m3 and add it toM , and m1 and m2 are removed fromM . No
other ICs exist. Figure3f illustrates the resulting motion plan.

Note Algorithm 2 can be modified to accommodate vehicles with a lower velocity
bound, vmin , instead of vmax .With an additional constraint that aCHOP’s intermediate
waypoints must be at least 2

√
2R away from its start positions, the minimum length

of any synchronized trajectory is dmin = 2
√
2R. The maximum length is dmax =√

2rc,max , where rc,max is the radius of a CHOP involving all N robots and contains
all goals in G. Thus, running Algorithm 2 with vmax = vmin

dmax
dmin

will ensure that
robots will not travel slower than vmin .
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4.4 Safety

Theorem 1 Robots are collision-free when executing a CHOP from Algorithm 1.

Proof Consider a CHOP m = {{Xi | i ∈ Rm}, T, Tgoal} with final goals Xg . Let
Xk
s = {Xi,k−1 | i ∈ Rmk } denote the positions of robots inRmk at tk−1 and Xk

g denote
the set {xnext,i | i ∈ Rmk }. Here,Rmk and xnext,i are defined as in Eq.8. We show that
robots’ trajectories are collision-free for all k = 2, . . . ,maxi∈Rm |Xi | + 1.

We use the CAPT algorithm to assign entry waypoints, so for k = 2, when robots
move from their CHOP start positions to their entry waypoints, the assignment of
goals Xk

g to robots at X
k
s minimizes the total distance squared.

In subsequent intervals, Xk
s contains only intermediate waypoints while Xk

g can
contain both intermediate waypoints and goals. Suppose robot i ∈ Rmk is moving
between intermediate waypoints. Robots enter at every other intermediate waypoint
and subsequent rotations are synchronized, so Xi, j �= X j,k−1∀ j �= i ∈ Rmk . Thus:

‖Xi,k − Xi,k−1‖22 ≤ ‖Xi,k − X j,k−1‖22 ∀ j �= i ∈ Rmk (11)

Now, suppose robot i is moving from its exit waypoint to its goal. By design, the exit
waypoint is the closest intermediate waypoint to the goal. Thus:

‖Xg,i − Xi,k−1‖22 ≤ ‖Xg,i − X j,k−1‖22 ∀ j �= i ∈ Rmk (12)

As a result, no alternate assignment of points in Xk
s to those in Xk

g will result in paths
with a lower total distance squared than the CHOP’s specified assignment. Thus,
in each time interval, robots move from their positions in Xk

s to the one in Xg
k that

coincides with the minimum total distance squared assignment.
Line 5 of Algorithm 3 and safety conditions 1 and 2 of Algorithm 1 guarantee

positions in Xk
s and Xk

g for all k meet the separation conditions in Eq.2. The CAPT
algorithm guarantees all synchronized trajectories between waypoints are collision-
free [14]. Finally, safety condition 3 and the priority sets in Algorithm 1 ensure robots
stationary at their goals will not collide with moving robots.

By assigning inter-waypoint motions that match the optimal unlabeled allocation,
we inherit the collision avoidance guarantees of the CAPT algorithm. In essence, we
use a series of solutions to the unlabeled problem to move towards labeled goals.

4.5 Completeness

Theorem 2 Algorithm 2 is complete.

Proof To be complete, an algorithm must always find a collision-free motion plan
in finite time if one exists and indicate that there is no solution when one does not.
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From Theorem 1, a CHOP containing all N robots will always be a valid solution.
We must additionally show that Algorithm 2 returns a solution in finite iterations.

First note that Algorithm 3 always returns in finite iterations, as there are finite
numbers of robots and CHOPs that can be added to Radd and Madd , and elements
are never removed. Define A as the set of interactions in M . An interaction is a
pair of indices of robots, {i, j}, such that i, j ∈ Rm for some m ∈ M . For example,
in Fig. 3d,A = {{1, 2}, {4, 5}}. When all robots are in a single CHOP,A = [IN ]2.

In each iteration of Algorithm 2, either the algorithm terminates, or a new CHOP
is added toM . In the latter case, the set of interactions in A is strictly growing.

To see this, first note that at each iteration, all removed CHOPs have been merged
intomnew, so interactions are never removed.Alternatively,A can remain unchanged.
This can only occur ifMadd contains a single CHOP,m1, identical tomnew. Suppose
mnew resolves the IC, C . Then, C ⊆ Rmnew = Rm1 . m1 resolves the first IC between
robots inC and guarantees they reach their goals collision-free. Thus, robots inC can
only collide if they abandon their OMPs to enter other CHOPs. LetMa f ter be the set
of CHOPs that robots in C enter after exiting m1. CHOPs in Ma f ter fulfill merging
condition 2, so Ma f ter ⊂ Madd , and Madd �= {m1}. We have a contradiction, so A
must contain at least one new interaction.

Merging condition 3 guarantees that robots will interact at most once. In finite
iterations, A will contain all unique interactions. This represents the case where all
robots are in a single CHOP, which is a collision-free motion plan.

5 Simulation Results

Finally, we examine the algorithm’s performance in simulations. Experiments were
done on a 2.5GHz Macbook Pro in MATLAB and C++ Mex, with a maximum
algorithm runtime of 10min.

We define a solution’s sub-optimality ratio using the total distance of its paths:

rd =
∑N

i=0

∫ t f,i
0 γ̇i (t)dt

∑N
i=0 ‖si − gi‖2

(13)

The denominator is an underestimate of the optimal total distance, as for problems
like Fig. 1a, the straight-line paths to goals have no collision-free velocity profile.

To detect ICs, we sample trajectories at dt = R
vmax

, where R = 1, vmax = 5, to
ensure no collisions occur between samples. We check for collisions using a spa-
tial hashing algorithm [8] and further eliminate checks for robots moving between
intermediate waypoints and between pairs of robots executing the same CHOP.
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(a) Computation time in average-case settings over 50 trials for each N.
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Fig. 4 a Displays our algorithm’s performance over 50 randomly generated case studies. b–d
illustrates the final motion plans for example problems

5.1 Variations in Team Size

To examine the effect of the team’s size on computation time, we randomly generate
case students for 500 robots. We then subsample 400 start to goal assignments from
the original set, 300 assignments from the remaining set of 400, and so on.

Figure4a plots the algorithm computation time for various team sizes. All motion
plans for N ≤ 100 were found in less than 4min. Figure7 plots the suboptimality
ratios of the solutions, rd , which is below 7 for all solved problems. Figure4b–d
shows the paths of the final motion plan for three example problems.

5.2 Variations in Problem Density

Next, for a given team size N , we deterministically generate a set of start positions
fromHalton sequences. These positions are sorted by y-coordinate and stored in Sinit .
For each experiment, we choose a constant Dk and construct the sets S = DkSinit and
G = S + [2R 0]T . Robot i ∈ IN is assigned start position si = Si and goal gi =
G

φ
Dk
i
. φDk

i = i for i ≤
⌈

Dk
Dk,max

N
⌉
, and φ

Dk
i for other robots are a random permutation

of each other’s indices. We designate Dk,max = 50. When Dk = Dk,max , φ
Dk
i = i for
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Fig. 5 Computation time over 25 trials for each combination of N and Dk

all robots, representing the best-case scenario: robots are sparsely located and their
OMPs, a simple translation rightwards, are safe. As Dk decreases, the available free
space decreases and the number of collisions increases.

Figure5 shows the computation time and Fig. 7 shows the corresponding rd values
over 25 trials for each combination of N and Dk . For small Dk , robots are tightly
packed and a single largeCHOPwill likely be created in a few iterations. Solutions are
found quickly, but rd values are high. As Dk increases, the available free space allows
for formation of more local CHOPs, causing smaller deviations from robots’ OMPs.
This decreases rd , but increases the computation time. This increase in computation
time is more dramatic for larger values of N .

For large Dk , collisions become sparse and fewer CHOPs need to be constructed,
decreasing both the computation time and rd . When Dk = Dmax , no CHOPs need to
be created, so the computation time required is small. In short, our algorithm finds
solutions quickly for both extremely sparse and dense settings, but requires more
computation time when planning many local CHOPs for large teams.

5.3 Worst-Case Distributions

We also evaluate the algorithm’s performance in the worst-case scenario. For a given
N , we find the densest packing of N equally-sized circles in a square that satisfies
the separation conditions [12]. We use these circles’ centers as both the start and goal
positions and generate 50 random assignments for each N . These problems pose the
additional challenge that each robot’s goal is the start position of another robot.

Figure6 shows we can efficiently solve these problems for N ≤ 504 in less than
3.5min. Again, once the first collision is found, it is probable that a CHOP containing
all N robots will be formed in a only a few iterations. As shown in Fig. 7, rd becomes
rather high for large teams. Nonetheless, we are able to find safe motion plans for
teams of hundreds of robots in a challenging environment.
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Fig. 6 Computation time in worst-case settings over 50 trials for each N
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Fig. 7 Suboptimality over all experiments

5.4 Comparison with Other Multi-robot Planning Algorithms

Finally, we discuss the performance of our algorithm in comparison with M* with
heuristic function inflated by ε [18] and Optimal Reciprocal Collision Avoidance
(ORCA) [16]. Table1 reports the algorithms’ performances for a problem generated
in Sect. 5.2 with N = 10, Dk = 1, 5, and 10.

TheM* algorithm builds on A* as an underlying algorithm, searching for optimal
paths to goals for each robot in its individual configuration space when robots are
collision-free and in a higher-dimensional joint configuration space when they col-
lide. M* retains the completeness and optimality guarantees of A*. In the best-case
scenario, M* is extremely fast, as its search space remains low-dimensional. How-
ever, its computation time scales up quickly as robots become more densely packed,
as the size of the search space grows exponentially with each additional robot in
collision. The computation time of our OMP+CHOP algorithm does not scale up
as quickly. We note that variants of M* can improve performance, but no results for
M*-based algorithms have been reported for problems where N > 200 [18].
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Table 1 Comparison of performances of multi-robot planning algorithms

OMP+CHOP M* (ε = 1.5) ORCA [15]

Best case Planning time (s) 2.78 0.0020 6.00

Dk = 10 Suboptimality
ratio

1.00 1.00 1.00

Average case Planning time (s) 2.59 0.027 70.25

Dk = 5 Suboptimality
ratio

1.07 1.001 1.001

Worst case Planning time (s) 2.65 16.09 23.00

Dk = 1 Suboptimality
ratio

5.35 1.11 1.07

ORCA is a decentralized, real-time algorithm that, at each time step, assigns each
robot a safe velocity based on the observed velocities of its neighbors. The assigned
velocity is guaranteed to be collision-free for a known time horizon. We report the
total time of the motion plan as the algorithm’s planning time, but note that these are
different measures. Compared to OMP+CHOP, ORCA’s solutions are more optimal.
However, in highly dense scenarios, it is possible that a guaranteed safe velocity
cannot be found and robots are forced to choose a “best possible” velocity instead.
While ORCA has been shown to perform well for large teams in dense settings in
practice [16], there are no safety or completeness guarantees.

6 Conclusions and Future Work

We present the OMP+CHOP algorithm to solve the labeled multi-robot planning
problem. This algorithm is scalable while still maintaining safety and complete-
ness guarantees. CHOPs are designed analytically, and no high-dimensional graph
searches are required to resolve imminent collisions between robots. This becomes
particularly beneficial in densely packed regions or when many robots converge at a
single collision point, where other motion planning algorithms reach bottlenecks.

However,we trade off optimality for safety and scalability. In particular, in densely
packed problems, the motion plan can be very suboptimal and some robots might
circle the CHOPmany times before exiting. Immediate directions for future research
are applying the algorithm to robots with higher order dynamics and developing a
decentralized algorithm requiring only local communication. Future work will also
work towards analytically characterizing the algorithm’s suboptimality.
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Neuromorphic Artificial Sense of Touch:
Bridging Robotics and Neuroscience

Udaya Bhaskar Rongala, Alberto Mazzoni, Domenico Camboni,
Maria Chiara Carrozza and Calogero Maria Oddo

1 The Challenge of Understanding and Emulating
the Somatosensory System

The scientific knowledge on human senses such as audition and vision is well
grounded as recognized by the Nobel prizes awarded in 1961 for the explanatory
findings about the physiology of the cochlea, and in 1911, 1967 and 1981 for the
description of optical refraction, transduction mechanisms in the eye and perceptual
processes in the vision cortex, respectively.1 Conversely, a well-integrated theory of
human tactile sensing is still lacking, i.e., the physical determinants of tactile coding
and perception are not yet fully understood, and the detailed neuronal mechanisms
and relative contributions of the different classes of mechanoreceptors remain to be
identified [40]. For instance, agreement has not yet been reached on the most infor-
mative mechanoreceptor composition or the coding strategy (e.g., temporal, spatial,
spatiotemporal, intensity) used by humans tomap the different perceptual dimensions
(force, roughness, softness and slipperiness) [17] of natural tactile interaction.

Another open debate in tactile processing concerns the coding of textural fea-
tures: some recent studies supported Katz’s duplex theory proposed in 1925, accord-
ing to which tactile experience is supposed to be mediated by different classes
of mechanoreceptors via the transition from spatial cues for coarse geometries

1Nobel Laureates in Physiology or Medicine (www.nobelprize.org/nobel_prizes/medicine/
laureates).
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towards vibrational cues for fine textures [4, 12, 13]. On the other hand, John-
son and colleagues presented human psychophysical studies and complementary
electrophysiological results with non human primates supporting a peripheral neural
mechanism for roughness, based on the spatial variation in the firing rate of slowly
adapting afferents [5, 8, 41]. Recently, a spatiotemporal model was proposed to
account for integration of tactile information from neighbouring receptors distributed
along the fingertip [16, 18], supporting an integrated approach rather than transition
from spatial to temporal coding of the duplex theory. Such integrated hypothetical
model proposes that: (i) the relative timing of neural spikes elicited in (neighboring)
tactile units of the fingertip conveys significant information during manipulation
activities; (ii) the spikes pass through neural afferents showing differentiated delays
(due to dispersion of conduction velocity) in the pathways up to the second order
(Cuneate) neurons; (iii) second order neurons propagate the firing events to the higher
stage in case that the differential delay introduced by the afferent pathways compen-
sates the relative spike timing at the level of mechanoreceptors in the fingerpad; (iv)
the tactile stimulus is pre-cortically represented through the population patterns of
second order neurons being activated during finger-surface mechanical interaction.

A deeper understanding of biological touch sensing would foster the development
of artificial tactile systems: adopting a biorobotic approach [10] to systematically
merge engineering of artificial touch and neurophysiology of human touch shows
great promises and mutual benefits for both robotics and neuroscience [35]. Neu-
romorphic biorobotics thus offers the possibility to emulate a biological sense of
touch, with variable characteristics and design features, to selectively evaluate their
related effects via artificial spiking implementations [6, 7, 19, 22, 24, 30, 31, 36].
This approach fosters in turn the design of new architectures for artificial tactile
sensory systems to enable various application scenarios (such dexterous manipula-
tion in service, assistive, human-augmentation, rehabilitation and industrial robotics
[9, 14, 21]), whilst also providing hints and suggestions as to how to further develop
experimental protocols and models in neurophysiology [24, 26, 28, 34].

The research strategy that we present in this study capitalizes on the availability of
aMicro Electro-Mechanical System (MEMS) piezoresistive tactile sensor developed
via silicon microfabrication technologies [2]. The sensor was previously shown to
guarantee excellent performances in the coding of normal and shear force [25], of
softness and slippage events [3], of textural characteristics [26]. It is appropriate
for integration in arrays targeting hand neuroprosthetics and for the implementation
of machine learning algorithms enabling autonomous development of motor skills
based on sensory information and artificial curiosity [29].

The most recent studies based on such MEMS tactile sensor investigate the neu-
romorphic conversion of raw sensor outputs to spike codes conveying tactile infor-
mation (Fig. 1a). Such neuromorphic artificial tactile system [36] grounds on the
natural coding observed with microneurographic human recordings [28] and was
implemented reproducing mechanosensor dynamics via the Izhikevich spiking neu-
ron model [15]. We assessed the ability of the neuromorphic approach in encoding
information about naturalistic textures in a variety of sensing conditions [33]. We
found that a decoding based on the fine temporal structure of the spike patterns over a
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Fig. 1 a Processing of tactile information by the neuromorphic finger. From left to right fingertip
structure, channels arrangements, preprocessing of sensors output and injection in the Izhikevich
model, neuromorphic output. Green spikes are associated to SA artificial receptors and blue spikes
to FA receptors. b Phases of passive touch protocol: indentation, sliding, retraction

single channel was able to correctly identify the presented naturalistic texture over a
set of 10 stimuli, with a performance between 83 and 97% for indentation forces and
tangential sliding velocities ranging between 200 and 600mN and 10 and 25mm/s
(Fig. 1b). This suggests that our neuromorphic spike trains might contain enough
information to convey an adequate sensory feedback to upper limb neuroprostheses
[32, 37] and to be useful in robotic applications.

In the present work we will illustrate our methods to implement and evaluate a
neuromorphic artificial sense of touch (Sect. 2.1). First we will show our state of the
art approach [33], based on a spikemetric technique, that results in spike patterns rich
enough to allow for a correct off-line decodingof naturalistic stimuli (Sect. 2.2). Then,
in Sect. 2.3 we will describe an extension of our approach with the aim to process
stimuli in real-time via a neuro-bio-inspired architecture. This biomimetic approach
makes possible to decode stimuli while the tactile data stream is gathered and not at
the end of the process as in the algorithms used in Sect. 2.2 The second processing
layer has a role similar to the Cuneate Nucleus in mammals [11, 18], since it receives
the combined inputs of the biomimetic fingertip artificialmechanosensors. Following
recent hypotheses on the way tactile information is processed pre-cortically [16, 18]
we devised a temporal structure of the connectivity between the two layers such that
the post-synaptic neurons are able to encode the angle of contact with the presented
object. Finally,wewill discuss (Sect. 3) how the results of our neuromorphic approach
can contribute to both developing novel robotic artifacts, with particular reference to
neuroprostheses, and understanding more about tactile information processing from
periphery to cortical areas.
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2 Neuromorphic Artificial Sense of Touch

2.1 Neuromorphic Mechanosensors Implementation
via Artificial Neuron Spiking Model

In the implemented neuromorphic artificial touch system [36] wemodeled with spik-
ing neurons bothMerkel SlowlyAdapting (SA) type Imechanoreceptors, sensitive to
the sustained level of mechanical interaction, and Meissner Fast Adapting (FA) type
I mechanoreceptors, mostly sensitive to dynamic changes [1, 38]. The difference
between the two artificial mechanoreceptor types relied in the input to the artificial
neuron. Sensors outputs were processed and normalized to generate a virtual current
as described by Eqs. 1 and 2, where Sx+(t) and Sx−(t) are the outputs of opponent
tethers of a sensor along the x-axis (e.g., 2 and 4, 5 and 7, 12 and 10, 15 and 13, see
Fig. 1a) that are subtracted in order to obtain a component related to local shear stress
[25]. We introduced a parameter K , in Eq.2 indicating the gain factor of the sensor
voltage when injected as input current to the artificial neuron model. We tested a
broad range of values for this parameter and found that high gain factors induced
a strong firing rate independently from the stimulus presented, resulting in a less
informative temporal structure of spikes. On the other hand, low gain factors led to
low firing rate and consequently to a long latency in spike responses affecting the
feature extraction. We found that a proper tradeoff between latency and information
was achieved for K = 10, 000, which induces informative responses with a short
latency [33]. For dimensionality coherence, the gain factor K is divided per the fixed
resistance R regulating the input current to the artificial neuron. In our implementa-
tion of SA receptor models the current defined in Eq.2 corresponded to the external
input I (Fig. 1a, Eq.3), whereas for FA receptor models the external input was given
by the time derivative of the current (Fig. 1a, Eq.4). τ and Cm are introduced as an
unitary fixed value of capacitance for dimensionality coherence.

To implement the artificial neuron we selected the Izhikevich model for its abil-
ity to exhibit adaptation, which is a key feature of mechanoreceptors. The model
combines the biological plausibility of the Hodgkin-Huxley dynamics along with
computational efficiency, and it is described by a system of Eqs. (from 3 to 6) that
account for the sub-threshold evolution of the membrane potential v and adaptation
variable u. Parameters A, B and C are the standard ones for the Izhikevich artifi-
cial neuron model. The value of the parameters a and b can be varied to reproduce
different kinds of adaptation: a defines the characteristic time of recovery variable,
b defines the sensitivity of recovery variable. In case that the membrane potential
reached the threshold value (Vth) of 30mV, one spike was released and themembrane
potential v was reset to value c and the adaptation variable u was decreased by d as
shown in Eq.6. Parameters c and d contribute as well in defining the adaptation prop-
erties of the neuron. We have chosen the values of parameters a, b, c and d to obtain
regular spiking dynamics [15], which is the case of human finger mechanoreceptors
that we want to mimic. Computations were performed in Matlab® environment with
a step Δt = 50μs.
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Table 1 Parameters of Eq.2–6

K A B C Cm R a b c d vth

15,000 0.04
sV

5
s

140V
s 1F 1Ω 0.02

s
0.2
s −65mV 8mV 30mV

All the parameters of the implemented neuromorphic artificial tactile sensing
system are summarized in (Table1).

Sx (t) = Sx+(t) − Sx−(t) (1)

Ix (t) =
{

K
R Sx (t), Sx (t) ≥ Sth

0, Sx (t) < Sth
(2)

dv(t)

dt
= Av(t)2 + Bv(t) + C − u(t) + 1

Cm
Ix (t) (3)

dv(t)

dt
= Av(t)2 + Bv(t) + C − u(t) + τ

Cm

d Ix (t)

dt
(4)

du(t)

dt
= a(bv(t) − u(t)) (5)

if (v(t∗) ≥ vth), then a spike occurs at t∗ and resulting

{
v(t∗ + Δt) ← c

u(t∗ + Δt) ← u(t∗) + d
(6)

Tactile stimuli were presented to the biomimetic fingertip with a passive touch
protocol implemented by means of a 2 DoFs mechatronic platform that could indent
and slide the surfaces tangentially to the fingertip [27]: in the tactile stimulation
sequence the platform was first moved vertically to cause indentation with the finger,
then horizontally during the sliding phase and then vertically again to retract from
indentation (Fig. 1b).

2.2 Off-Line Categorization via Spike Distance Metrics

Wefirst evaluated our neuromorphic approach to artificial touch [36]with 10 different
naturalistic tactile stimuli (Fig. 2) [33]. We tested five textile stimuli with different
spatial patterns, glass and paper, and three kinds of polymers with different friction
(high friction Latex, medium friction artificial skin Bioskin and the low friction cover
of the Nintendo® console Wii).
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Fig. 2 Textures and representative response. Each panel shows microscope picture of a 3mm
square patch of the tactile stimuli presented to the finger, and, on top, a representative neuromorphic
response to the stimulus by a SA artificial mechanosensor. Note that glass surface is smooth and
the appearing ridges are in transparency from the surface below

We checked whether it was possible to disambiguate between the 10 presented
stimuli based on the neuromorphic spike train responses produced during stimuli
sliding phase (Fig. 1b) by the SA neuron associated to channel 2 (Fig. 1a). The chan-
nel was chosen since it was mostly sensitive to the tangential force along the sliding
direction. All channels in similar positions (2, 5, 12 and 15) displayed similar behav-
ior. We based our first decoding algorithm on the spike rate, i.e. on a very simple
neural code to discriminate between stimuli, hypothesizing that different stimuli
elicited a reliably different number of spikes over the window of interest. We found
however that the firing rate of the neurons was not sufficient to discriminate between
the inspected textures (decoding performance 68%). Since from visual inspection
the temporal structure of spike patterns ranged from almost noisy to almost periodic
(e.g., was more regular in textiles than in non-textile materials as shown in Fig. 2),
we also performed a two-dimensional k-means clustering decoding (with leave one
out validation) combining the mean and the coefficient of variation of single neu-
rons firing rate. This two-dimensional decoding allow performance to raise to 78%
(from the 68% of firing rate only) [33] showing that the knowledge of the temporal
regularity of the spike response patterns contributes to the discrimination between
stimuli.

Building on this result we performed a decoding of the textures evaluating the
similarity between spike patterns by means of a spike train metrics [20] widely used
in neuroscience: the Victor-Purpura distance [39].
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Fig. 3 Victor-Purpura (VP) distance based textures decoding. a Example computation of VP dis-
tance between two spike trains. The distance of the two example spike trains in the panel is equal
to cost = 2 + q

∑
i Δti where the first term is the cost of 1 spike deletion (green, on the center)

and 1 spike addition (green, on the right), and the second is the total cost of all spike-time shifts
(red dashed arrows). bVP distances between SA responses for all presentations of all stimuli. Shift
cost coefficient q = 5/s. c Confusion matrix of k-means clustering texture decoding based on VP
distances in (b) (see Sect. 2.2). Note that each stimulus was presented 10 times so 6/10 textures were
identified 100% of the times. Overall performance was 90% for this specific stimulation condition

Briefly, this metrics computes the distance between two spike trains by measuring
the minimum cost necessary to transform one spike pattern into the other by means
of a sequence of the following two operations: adding/deleting a spike (cost = 1)
and shifting a spike time of an interval Δt (cost = q · Δt), as shown in Fig. 3a. The
variable q defines the relevant time scale: if we have a spike at t = A in the first train
and a spike at t = B in the second train and | A-B | is larger than 2/q then it is more
convenient to delete the spike at t = B and insert in the second train a new spike at
t = A. Coherently, for q = 0 shifting spikes is costless hence the distance between
two spike trains is equal to the difference between their spike counts, while for high
values of q even small jitters in spike timing are associated to high costs. Previous
studies of our group showed that the optimal q for this kind of textures and sensors is
in the 5–10s−1 range, corresponding to a timescale of 100–200ms [33].Wemeasured
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the VP distance between each pair of responses in the dataset using a cost q = 5/s
(Fig. 3b) and then we performed a k-means clustering decoding with leave-one-
out validation (Fig. 3c, that shows an example decoding with a 90% performance).
Using this VP based approach, the decoding performance rose up to 97% (with a
10% chance level), indicating that the temporal structure of the neuromorphic spike
patterns does contain enough information to allow a reliable disambiguation of real
life textures even when considering data from a single sensor channel.

2.3 Two Layers Neurobioinspired Real-Time Architecture

The decoding approach presented in the previous section demonstrated the possi-
bility to convey information about real life textures with neuromorphic sensors but
contained one overestimation and one underestimation of the decoding power of the
neuromorphic responses in real life robotics and neuroprosthetic applications. On
one hand decoding performance was overestimated because we performed an off-
line processing that might not be straightforward to implement online. On the other
hand performance was underestimated because we made use of only one channel of
the tactile array. We present here an approach that addresses both limitations at once.

We introduced a second layer of artificial neurons collecting inputs from both
SA-like and FA-like artificial mechanosensory neurons (Fig. 1). The encoding of
shapes in the second layer, as we will see in the following, is based on precise
relative spike latency rather than on the overall response pattern. This layer might
play a role similar to the one of the Cuneate Nucleus (CN) in the tactile information
pathway of mammals [16]. CN neurons were modeled as regular spiking Izhikevich
neurons (as for artificial mechanosensors). The input to CN neurons was given by
the sum of the excitatory inputs from mechanosensory neurons modeled as current-
based post-synaptic potentials [23], such that the differential equations determining
the evolution of their dynamics are:

dv(t)

dt
= Av(t)2 + Bv(t) + C − u(t) + J

∑
i∈PRE

PSP(t − t+i ) (7)

du(t)

dt
= a(bv(t) − u(t)) (8)

if (v(t∗) ≥ vth), then a spike occurs at t∗ and resulting

{
v(t∗ + Δt) ← c

u(t∗ + Δt) ← u(t∗) + d
(9)



Neuromorphic Artificial Sense of Touch: Bridging … 625

Fig. 4 Processing of stimulus orientation. a Contact between fingertip and stimulus during sliding.
b contact times between the two vertically aligned sensors with ridges having an angle of −45◦,
0◦ and 45◦ relatively to the direction orthogonal to stimulus-finger relative motion. c Illustration of
neuromorphic mechanosensors responses to the three stimuli

where A, B,C, a, b, c, d have the values listed in Table1, J is the fixed synaptic
strength (8mV/ms), t+i are the times of the spikes fired by the pre-synaptic neuron
i , PRE is the set of the pre-synaptic neurons for the neuron considered, and PSP(t)
is a bi-exponential function mimicking the temporal evolution of AMPA synapses
Post-Spike Potentials, with rise time 0.5ms and decay time 2ms [23].

In our current simplified model, neurons in CN do not differ for the set of pre-
synaptic neurons, but for the conduction delays of their inputs from peripheral neu-
rons.Wewant to implement in thisway a condition similar to the one hypothesized by
Johansson and Flanagan [16] in which differential delays between peripheral spike
trains play a role in the encoding of information.

If response latency and delay difference approximately compensate the post-
synaptic delay, the CN neuron will receive two superimposed excitatory stimuli,
increasing the probability that the membrane potential will cross spike threshold and
fire. In thisway, differential delaysmake possible to have angle-sensitiveCNneurons,
i.e., neurons firing only when the contact with the sensors occur with a given latency,
which for constant sliding speed corresponds to a specific presented edge angle (as
illustrated in Fig. 4b). This computational architecture, exploiting the details of the
convergent connectivity betweenmechanosensors and Cuneate Nucleus, will be very
easy to decode and straightforward to implement online while gathering the tactile
data stream.

In order to preliminarily test the properties of this architecture we devised a
set of stimuli consisting on 3 ridges forming an angle of −45◦, 0◦ and 45◦ with
the direction orthogonal to the stimulus sliding (Fig. 4), 3D printed on the same
surface. The surfaces were presented over the course of a single sliding with the same
stimulation conditions (20mm/s tangential sliding, 500mN indentation force) used
in the naturalistic textures (decoding analysis in Sect. 2.2). Our proof-of-principle
test involved only two mechanosensory channels (Fig. 4), but we considered both
SA and FA outputs from them. The relative latency of the neuromorphic responses
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Fig. 5 Cuneate processing of mechanoreceptors inputs. Every row shows, from left to right, SA-
like (green) and FA-like (blue) spike train responses for a single stimulation sequence as sensed
by two channels converging to the same Cuneate nucleus neuron. In each row the two channels
impinge on a different CN neuron with a specific relative delay. Due to these delays, CN1 responds
mainly to the first two stimuli, CN2 mainly to the vertical one, and CN3 to the last two

of the two sensors shifted (also changing sign) during the sliding as a function of
stimulus angle (Fig. 4b). Following the principles illustrated by Fig. 3, thanks to a
suited delays distribution, these latencies will result into the activation of a restricted
set of CN neurons (Fig. 5). This set being specific and reliable (Fig. 6), it allowed to
reconstruct the angle of the detected edge via the lookup strategy shown in Table2.
Note that although the 0◦ angle ridge induces a response in both CN2 and CN3 the
intensity of the response is different.

3 Perspectives

The sense of touch is currently the least understood among the human senses and
the neuronal mechanisms of the somatosensory system are still under hypothetical
modeling. For instance, little is known about whether and how the Cuneate Nucleus
contributes to signal processing and integration, although recent results show sparse
encoding of stimulus shape in Cuneate neurons [18]. Due also to the lack of experi-
mental results, the only artificial computationalmodel ofCuneateNucleus processing
of tactile sensory stimuli that we are aware of is the one proposed by Arleo and col-
leagues [6, 7]. Here we move forward from this model: first, we used spiking neuron
models instead of spike-response model, second (and more important) because we
used the model to test the feasibility of the encoding-though-delay model accounted
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Fig. 6 Full path of ridge
angle information
processing. a Presented
ridges. b Raster plots of
responses elicited over 10
trials by different ridges in
the FA and SA
mechanosensors associated
to the two channels. c Raster
plots of responses elicited
over 10 trials in the three CN
neurons illustrated in Fig. 5
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Table 2 Stimulus decoding table. For each column X marks the activated CN neurons. Note that
each spatial pattern of activation is univocally associated to a single stimulus, leading to a feasible
decoding

NO
stimu-
lus

\ | | | | ND /

Active
cuneate
neurons

CN 1 X X X X

CN 2 X X X X

CN 3 X X X X

by Johansson and Flanagan and by Jörntell andHayward [16, 18]. Our results suggest
that this process could indeed be used by the brain to generate the sparse encoding
of shapes in the Cuneate Nucleus. This is an example of how the neuromorphic
approach can generate a virtuous circle of interactions between neurophysiological
results and applications in robotics.

The main advantage of a neuromorphic implementation is the leanness, since the
burdenof data computation and storage isminimal: information is conveyedbymeans
of the timestamp of the binary spike events whereas traditional implementations
require a continuous sampling of amplitude-modulated data. As shown in the case-
study examples presented in this work, relevant information is preserved to allow
the decoding of textural and geometrical features. Such results pave the way towards
possible future applications of the developed neuromorphic touch system in limb
neurosthetics or in industrial applications requiring the artificial categorization of
tactile qualities.
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Robot Creation from Functional
Specifications

Ankur M. Mehta, Joseph DelPreto, Kai Weng Wong, Scott Hamill,
Hadas Kress-Gazit and Daniela Rus

1 Introduction

Although robots have becomeprevalent in academic and industrial applications, there
is a knowledge barrier which prevents them from fully integrating into daily life. The
creation of robots typically requires deep understanding of the available tools as well
as the expertise to combine parts in a way that will achieve some desired behavior.
Due to this intensive methodology, a discrepancy often arises between the end users
and the robot creators, leading to general-purpose robots being created before a task
is fully specified.

The long-term vision is to instead enable the creation of custom personal robots
on-demand by encapsulating the needed low-level knowledge into computational
tools that can automatically address a user’s high-level robotic needs. Typical end
users will have a task that they want the robot to perform and an understanding
of the task requirements, but may not be able to construct or even assemble inte-
grated programmed electromechanical mechanisms to realize a solution. This paper
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thereforemoves towards a system that can compile a high level behavioral description
into a completely fabricable robot design including software.

This work improves and expands the robot compiler system presented in [18].
Whereas the earlier system required a user to provide the complete structural spec-
ification for a robot design, from the selection of components to their connectiv-
ity and subsequent geometric layout, the system presented herein accepts a more
intuitive functional specification as initial input – a description of the relationships
between atomic robot action primitives. The selection of components from a library
is then aided by automated filtering, and a geometric layout is generated from basic
positional constraints. Connectivity and parameter relationships are automatically
derived from the generated geometric layout and robot controller. Furthermore, the
system presented here enhances design iteration by allowing users to simulate the
robot controller prior to fabrication.

2 Problem Formulation and Contributions

The goal of this work is to be able to generate a complete integrated design and
controller for a custom robot on demand. To minimize the requirements on an end
user, the inputs to the system must be as high level as possible, with the automa-
tion of low-level decisions. The process begins with a functional description of the
desired behavior, and ends with a programmed printed electromechanical machine
that executes the described task.Thepresented approachdecomposes the robot design
process into a series of stages that facilitates rapid prototyping and design iteration.

To define the desired behavior, the user first writes a functional specification, or
task specification, in Structured English [14], capturing the requirements and goals
of the robot. Though not to the level of natural language programming, this allows a
casual user to describe rather than command how the robot should operate through
the use of primitive elements called propositions. The ability to decompose a desired
task solution into this functional specification is the only technical requirement on
the user; no other mechanical, electrical, or computer engineering skills are assumed.
The input specification maps directly into Linear Temporal Logic (LTL) formulas,
which are the input to a controller synthesis algorithm [4]. If there exists a finite
state machine capable of achieving the goals given an adversarial environment, a
controller will be generated.

The propositions of this specification are then used to create a structural specifi-
cation – a specification used to build the custom robot. The structural specification
is constructed by mapping the propositions to parameterized robotic building blocks
drawn from a robot component library. The system filters the library to recom-
mend components appropriate to each proposition, aiding the user in grounding the
specification. In addition, the system assesses the mapped propositions for possible
behavioral conflicts, correcting the functional specification as needed. Depending on
the components chosen by the user, a single functional specification may generate
varied robot configurations that accomplish the same goal. The selected components
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are then automatically configured and connected, though advanced users can edit
and create custom configurations. The result is a parameterized robot design capable
of accomplishing the task.

Upon setting desired parameters, the structural specification can be compiled
to synthesize printable mechanical fabrication files, electrical wiring instructions,
and code for the custom robot. The robot controller generated from the functional
specification can be analyzed in simulation, then converted to microcontroller code
and directly programmed onto the robot. Once the user has built the robot with the
given instructions, the desired behavior will be carried out by the created robot.

The full algorithm for creating a robot from a Structured English specification is
described in pseudocode listing 1.

Algorithm 1 Robot creation from functional specifications
1: Input Structured English specification file
2: Convert Structured English into LTL
3: FSM ← Compile LTL into controller automaton

4: L ← Load Component library
5: G ← ∅ � Grounding list
6: A ← Filter(L , dataConsumers) � Actuators
7: for all a ∈ FSM[actuators] do
8: if a requires physical output then
9: A∗ ← Filter(A, hasMechanicalPorts)
10: else
11: A∗ ← Filter(A, ¬hasMechanicalPorts)
12: end if
13: c ← User select from A∗
14: G := G ∪ {Ground(a, c)}
15: end for
16: S ← Filter(L , dataGenerators) � Sensors
17: for all s ∈ FSM[sensors] do
18: c ← User select from S
19: G := G ∪ {Ground(s, c)}
20: end for

21: Component ← Core(FSM)
22: for all g ∈ G do
23: if g.component has MechanicalPort then
24: Attach(Component, g.component.structure)
25: end if
26: Connect(Component, g.component.signal)
27: end for

28: Save Component as structural specification
29: Output fabrication files for Component

The particular contributions of this work are:

• a process for grounding the propositions of an LTL specification to components
from a design library to generate a user-guided robot configuration,
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• automatic generation of a complete structural specification, including user-guided
physical layout and automated controller synthesis, for the compilation of inte-
grated robot designs,

• a process to detect potential behavioral conflicts during the proposition grounding
process, and to automatically correct the LTL specification accordingly,

• filtering algorithms to simplify user interactions with the robot compiler API,
• an implementation of all of the above into an integrated end-to-end system gener-
ating robots from a Structured English task description, and

• sample robots generated using the system.

3 Related Work

3.1 Functional Specification

There has been an increasing interest in the automatic construction of provably-
correct robot controllers from high-level or temporal logic task specifications in the
robotics community. These controllers, if successfully synthesized, will behave as
specified in the mission statements.

The synthesis and execution of these controllers from temporal logic specifications
have been shown by [6, 12]. Groups have since tackled a variety of challenges using
these controllers, such as the problem of a changing workspace during controller
execution [1, 16], conductingmotion planning for robots given temporal goals [2], or
generating optimized robot trajectories from temporal logic task specifications [24].
These controllers are also used to control multiple robots [11].

The AI and planning community also has planning languages, from STRIPS [7]
to PDDL [17] and more extensions, to create functional specification for machines.
Using the planning languages, a problem, or functional specification, is defined and
solved with the composition of different actions that each consist of preconditions
or post-conditions. The generated plans are similar to the controllers generated from
high-level task specifications. In this paper, we use high-level task specifications to
generate provably-correct robot controllers out of preference.

The functional specification system for this work stems mostly from [13]. Given a
robotmodel and its environment, controllers that satisfy high-level task specifications
are composed automatically. The synthesized controllers also respond to different
environment behaviors during controller execution.

3.2 Robot Creation

There has previously been substantial work regarding processes to fabricate robots.
For example, robots have been developed from 2Dprocesses [3, 19, 22] using a range
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of materials at many different size scales. Some of these methods have also been
applied to rapid prototyping [9], although the design phase typically still requires
significant time and expertise. Efforts have beenmade to automate the decomposition
of 3D shapes into 2D fold patterns [5, 15, 23], but these often do not address com-
pliant or kinematic structures. Furthermore, these works remain within the realm of
designing desired structures rather than abstracting the design input to a task-based
level.

There has also been significant work on modular robotic systems and behavior
[10, 21, 25, 26]. While these systems provide substantial configurational flexibility,
modular robots often lack the specialized physical components to address specific
behavioral tasks.

This work builds most directly upon the robot compiler presented in [18], which
describes a system for generating integrated mechanical, electrical, and software
designs for custom robots using amodular component library. The system is extended
here by abstracting the user input to a higher level: instead of starting with structural
specifications, the user can now begin with a desired behavioral task. Once this high-
level task has been processed to create functional requirements, the robot compiler’s
component library and computational tools are used to generate fully functional
origami-inspired foldable robots.

4 Design Flow

To facilitate the rapid prototyping of custom robots from a description of desired
behavior, the proposed approach here creates a user-friendly environment by provid-
ing a suite of integrated tools that break the process described in Algorithm 1 into
a series of well-defined, computer-aided stages, illustrated in Fig. 1. To detail this
process, we will consider the following example:

Example 1 The user wants to build a robot that can conduct a pick-and-place grasper
task.When the robot receives a request from theuser, itwillmove to a pick-up location
and wait for an object to be presented. The robot will then pick up the object, return
to the original position, release the object, and inform the user that it has completed
the task.

4.1 Behavioral Description to Functional Specification

To create a custom robot from a description of desired behavior, the user starts by
writing a mission specification for the task to be conducted. The specification of
Example 1 is shown in Fig. 2. Using the Linear Temporal Logic MissiOn Planning
toolkit (LTLMoP) [8], the user can write a specification in Structured English by first
defining different types of binary propositions. These propositions are abstracted
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Fig. 1 The system aids robot design by decomposing the procedure into a series of manageable
stages. The process can also become iterative at each stage, using feedback from simulation or
fabricated devices to encourage rapid prototyping. The dotted yellow box contains the previous
work from [18], employed by the system in this paper

Fig. 2 The desired behavior
of a robotic grasper can be
cast into Structured English,
from which a finite state
machine is automatically
generated and a functional
description is naturally
extracted

from the robot location and actions and its environment. The propositions can be
divided into four different types:

• Region propositions: If amap is given to the robot, themap can be decomposed into
different regions, with each region being one proposition. During the controller
execution, only one of the region propositions is true at any given time, representing
the current location of the robot. In Example 1, there are no region propositions
for simplicity.

• Sensor propositions: These are propositions abstracted from the robot’s surround-
ing environment. In Example 1, the presence of an object is abstracted into a
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proposition called “seeObject_d” that is true when an object is observed and false
otherwise. Note that even though these propositions describe different sensing
capabilities of the robot, they are independent of how this capability is implemented
on the custom robot; the propositions specify the functionality of the component
rather than the actual structural component. In Example 1, “userSummons_d” is
also a sensor proposition.

• Actuator propositions: These are propositions abstracted from the possible actions
of the robot. In Example 1, activating an actuator proposition “moveToSource_m”
specifies that the robot should move to the pick-up location (and if the proposition
is deactivated it implies the robot should be at the drop-off location). As with
the sensor propositions, these actions are functional rather than structural and
therefore independent of implementation; for example, a robot with legs may
move differently than a robot with wheels. In Example 1, “pickUpObject_m” and
“indicateComplete_ud” are also actuator propositions.

• Custom propositions: These are propositions that are directly linked to neither
robot sensing nor actions but that are necessary for specifying more complex
behaviors. In Example 1, once “userSummons_d” becomes true, the proposition
“waitingForObject” becomes and remains true until “pickUpObject_m” is true.

Using these propositions, the user can follow the grammar outlined in [14] towrite
a specification, and a robot controller can be generated with the synthesis algorithm
in [4]. This correct-by-construction robot controller, in the form of a finite-state
machine, will be automatically generated using the toolkit if the mission statement
from the user is feasible regardless of how the environment behaves. The finite state
machine generated for Example 1 can be found in the supplementary material at
http://web.mit.edu/mehtank/www/isrr2015/.

Once a controller is created, the finite state machine can be evaluated with an
integrated simulation engine in which sensors can be interactively triggered and the
proposition states can be visualized. A sample visualization of the engine is shown
in Fig. 3 for Example 1. This facilitates an iterative process in which the user can
immediately see how the robotwouldbehave and adjust the specificationor functional
requirements accordingly.

Fig. 3 The generatedfinite statemachine can be simulated to ensure desired behavior and encourage
iterative design. Here, the behavior of a pick-and-place grasper is being simulated. The simulation
displays the number of state changes, the time changes occur, and the status of the propositions

http://web.mit.edu/mehtank/www/isrr2015/
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4.2 Functional Description to Structural Specifications

4.2.1 Grounding

Once a functional description, or specification, of the robot has been obtained from
the behavioral description, a physical instantiation of the robot that achieves the target
taskmust be determined. In particular, the action and sensing tasks to be performed by
the robot can now be grounded to available robot components to generate a structural
description of the robot.

To ground the functional propositions to structural components, the grounding
editor in the toolkit, modified from [8] for robot creation as shown in Fig. 4, first
retrieves the library of possible modular robotic components from the robot com-
piler [18]. These components include basic building blocks as well as previously
constructed assemblies, each designed to implement a specific behavior. Each com-
ponent in the library encapsulates the design and fabrication information relevant to
the component, including the mechanical structure, the electrical properties and the
software of the component, and is parameterized to allow customizability.

Fig. 4 The functional description can be converted to a structural description by selecting modular
components from a robot library for each action and sensor proposition. Filtered lists of possibilities
are automatically provided, and the user can choose to customize them by setting parameters or
simply accept the default values
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The components are currently divided into three types: mechanical components,
which require constructed structural elements to interface an electromechanical trans-
ducer with the environment; device components, which are discrete devices with a
completely self-contained action; and UI components, which are purely virtual com-
ponents that include smartphone interface elements such as sliders or toggle switches.
A user can specify desired possible component type(s) for proposition by suffixing
its name; based on that suffix, the grounding editor displays a filtered list of allowable
components. For the case of Example 1, a list ofmechanical actuator componentswill
be shown for the proposition pickUpObject_m, while a list of device and UI actuator
components will be shown for the actuator proposition indicateComplete_ud.

The user can then ground each proposition to one of the available components on
the filtered list to obtain the desired actions and sensing capabilities. It is possible that
no library component can adequately satisfy a particular proposition, indicating that
the proposition is too complex given the existing contents of the library. In this case,
the user can either modify the original specification to decompose that proposition
into simpler constructs, or create a new component to satisfy the needed behavior.
In the latter case, the user would write a new functional specification to define the
needed component in terms of simpler propositions, and adding the successful design
back into the library.

When a component is chosen from the library, a list of the component parameters
is also presented so the user can customize the component if needed. Through this
process, a mapping is created between the propositions and the robot components.
More specifically, each actuator and sensor proposition is assigned to a port on a
component.

It is possible to map more than one proposition to a given component. To ensure
conflicting behaviors do not occur, the mapping interface evaluates each mapped
proposition andmodifies the original functional specification to includemutual exclu-
sions of propositions mapped to the same component. The user is then informed of
this modification so they can ensure that the desired behavior is still achieved. The
grounding editor creates a close-loop design process by providing feedback to the
user through amendments to the functional specification based on the structural spec-
ification. With the grounding editor, not only the functional specification affects the
structural specification, but the structural specification set by the user also changes
the functional specification.

When the compiler processes the design, it will automatically insert multiplex-
ers as appropriate to ensure that the correct command is sent to the component. It
should also be noted that some of the components employ analog signals; to meet
the boolean requirements of the generated controller, analog sensors get thresholded
before becoming inputs to the finite state machine, while the binary actuator com-
mands from the controller are scaled to a user-specified analog value before being
applied to the device.

Some possible groundings of propositions in Example 1 are shown in Fig. 5. The
conversion of functional description to structural specification is aided by the toolkit
but is ultimately chosen by the user; the user asserts control over the design according
to personal preference and task-specific requirements, such as environmental consid-
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Fig. 5 For each functional proposition needed for the robotic grasper, there are numerous possible
robot components in the library that can be used for implementation. Here, a few such options are
shown and the solid lines indicate those chosen for the current experiment

eration and component availability. Since there are often many components which
can be grounded to the same proposition, many different robots can result from the
same functional description. For example, a human-generated input may be mapped
to a button, a microphone, or a UI element, while an indicator action may be mapped
to a light, a buzzer, or a flag waver. This approach simplifies and guides the robot
design process for novice users without restricting expert users.

4.2.2 Mechanical Connections

A structural specification also requires the geometric layout of the physical com-
ponents into a single integrated electromechanical device. Though the design space
of geometric configurations can get intractably large, the system once again aids a
novice user by presenting a reduced set of options to handle general cases. An expert
user can bypass the filter and create arbitrary mechanical connections constrained
only by available interface points designed to limit component collision.

The mechanical-type components preferentially presented for grounding are
designed tomostly fit into a rectangular prism bounding box. This allows for physical
composition by tiling the selected components into orthogonal regions. The user can
select whether a particular component belongs in the front, back, left, right, or center
of the robot; the system then iterates through the full list of mechanical components
and appends them onto the core controller module, growing the robot as it goes.
Components with parameterized dimensions get scaled to fit the entire collection.
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In a similar manner, the remaining non-mechanical device-type components then
get mounted on any exposed face of the robot. The user can specify whether the
device should be facing forwards, backwards, left, right, up, or down, and the system
will mount the device onto the respective structures assembled in the previous step.

4.3 Integrated Robot Fabrication

Once the complete structural specifications have been generated, the robot compiler
processes the modular design into design files for the complete robot [18], producing
mechanical fabrication files, electrical wiring instructions, and microcontroller code.

The mechanical structure is fabricated using an origami-inspired cut-and-fold
process: the generated fabrication file gets sent to a desktop vinyl cutter to be cut
from a 2D sheet of plastic, and the user then follows the folding instructions and
the generated wiring instructions to fabricate the robot. Finally, the automatically
generated robot software can be loaded onto the main controller, ranging from low
level drivers to the implementation of the finite state machine created from the LTL
specification.

The robot can then simply be powered on to achieve the task specifications initially
provided by the user.

5 Assumptions, Generalizations and Guarantees

5.1 Functional Specification

Weconsider functional specificationswhere the lexicon, or the set ofwords that canbe
used, corresponds to physical and computational components of a possible robot. In
this paper, specifications are written in Structured English which has a deterministic
and well defined grammar [14]. This grammar allows for the specification of safety
constraints, goals and conditional expressions.Thedesignflowdescribed in this paper
easily generalizes to functional specifications given in natural language as long as
the natural language utterance can be represented formally using propositions that
can be grounded, such as the work in [20]. In future work, we will leverage natural
language processing tools to enrich the expressivity and ease of use of the design
tools.
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5.2 Grounding Propositions to Computational and Physical
Components

The current process allows a user to map more than one proposition to a single com-
ponent. This may be done by the user if different propositions are intended to dictate
different behaviors for the same component. As an example, the user may ground
the propositions secureObject and releaseObject to the same physical compo-
nent Gripper, with the intent of having the gripper open when releaseObject is
true and having the gripper close when secureObject is true. However, a prob-
lem may arise if the structured English specification allows both secureObject

and releaseObject to be true simultaneously, resulting in contradictory commands
to the same physical component, which will prevent the robot from achieving the
desired behavior and may damage the robot.

The grounding interface addresses this issue by evaluating the grounded propo-
sitions and assessing which propositions (if any) have been grounded to the same
component. The system then appends mutual exclusion clauses to the structured
English specification so that the propositions may not both be true simultaneously,
alerting the user to the change. This process is demonstrated with the Fetch Robot
case study described in Sect. 6. When parsing the specification into complete robot
designs, the compiler will automatically insertmultiplexers into the data flow in order
to ensure that the component receives the correct command.

5.3 Robot Behavior Guarantees

The controller generated for the robot is correct-by-construction, which means that
provided the assumptions made by the user hold during controller execution and the
user chose an appropriate grounding scheme, the robot will behave as expected.

6 Case Studies

6.1 Pick-and-Place Grasper

Asample robotmade using this system is a robotic grasper. In this case a user desires a
robot which, when prompted by the user, moves to a starting location andwaits for an
object; when an object is detected, it grasps it, moves to a target location, and notifies
the user. This behavior can be written in a Structured English description as shown
in Fig. 2, and the generated finite state machine can be examined via simulation as
shown previously in Fig. 3. There are a variety of ways in which this can be grounded
to generate a structural description, and a few such possibilities along with the one
chosen here are depicted in Fig. 5; custom propositions represent internal state that
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Fig. 6 A pick-and-place robotic grasper was designed using the presented system, starting with a
desired behavior and ending with an inexpensive, rapidly manufactured, functional prototype

do not become grounded in robot components. During the process of choosing robot
components from the library, various parameters such as arm length or gripper size
can be set by the user according to their task’s environment and restrictions.

Once the grounding is complete, the robot compiler generates a fold pattern along
with electrical instructions and Arduino code. The resulting robot is shown in Fig. 6.
After uploading the generated code, the armdemonstrates the desired behavior.When
the user claps, the robot moves to the source location andwaits for an object. It grasps
the object upon detection, moves to the target location, releases the object, and indi-
cates completion using a buzzer. Various metrics regarding the robot’s performance
as well as its design process are summarized in Table1.

Specification 1 Linear Temporal Logic Specification for Example 1

¬πwaitingForObject∧
�((©πuser Summonsd ∧ ¬πpickUpObjectm ) → ©πwaitingForObject )∧
�(πpickUpObjectm → ¬ © πwaitingForObject )∧
�((πwaitingForObject ∧ ¬πpickUpObjectm ) → ©πwaitingForObject )∧
�((¬πwaitingForObject ∧ ¬ © πuser Summonsd ) → ¬ © πwaitingForObject )∧
�(πwaitingForObject ↔ ©πmoveToSourcem )∧
�((πseeObjectd ∧ πmoveToSourcem ) ↔ ©πpickUpObjectm )∧
�((¬πpickUpObjectm ∧ ¬πmoveToSourcem ) ↔ ©πindicateCompleteud )

6.2 Fetch Robot

A second example robot is a mobile robot with an attachedmanipulator for retrieving
an object placed along a path. The desired behavior is to follow a path until the object
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Table 1 Performance of robotic grasper

Metric Result

Approximate design time 30min

Approximate fabrication time 30min

Approximate cost 25 USD

Mass 49.4g

Maximum actuated joint angle ±35deg

Gripper strength (on 1.5cm object) 100mN

Maximum gripper opening 110mm

Fig. 7 The desired behavior of a path-following object fetcher can be defined using Structured
English. The highlighted statements are necessary to enforce a mutual exclusion condition on
propositions grounded to the same physical component, and are automatically generated and added
to the behavioral specification

is reached, secure the object, continue following the path until the goal is reached,
release the object, and indicate completion. This behavior can be written using the
Structured English of LTLMoP as shown in Fig. 7.

To demonstrate the versatility and potential for rapid prototyping, two different
sets of groundings were implemented. The chosen components are enumerated in
Table2, and the completed robots can be seen in Fig. 8. Some metrics regarding the
performance aswell as design of these robots are summarized inTable3. In both cases
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Table 2 Two separate sets of groundings implemented for a path following fetch robot

Functional proposition Line follower Wall follower

Move forward and left Wheel 1 Wheel 1

Move forward and right Wheel 2 Wheel 2

Detect path Line detector Distance sensor

Detect object Touch sensor Light sensor

Detect goal UI toggle switch
1

Microphone

Secure object, release
object

Gripper Forklift

Indicate object secured UI toggle switch
2

LED

Indicate complete Wheel 1 Buzzer

Fig. 8 Two different robots made with the system which both achieve the desired task of following
a path to retrieve an object

Table 3 Performance of path following fetch robots

Metric Result

Line follower Wall follower

Approximate design time 30 5min

Approximate fabrication time 60 45min

Approximate cost 30 45 USD

Mass 64.1 72.1g

Speed 11.1 11.0cm/sec

Maximum gripper opening 45 N/A mm
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Fig. 9 The mapping process alerts the user when multiple propositions are mapped to the same
component. In this case, the propositions releaseObject_md and secureObject_md have
been mapped to the same component port

there are two propositions, releaseObject_md and secureObject_md, that are both
mapped to the same port of the same component (Gripper or Forklift depending
on the robot). In addition, the line follower instantiationmaps both leftForward_md

and indicateComplete_md to the same wheel servo in order to indicate completion
with a “victory dance” behavior, spinning in a circle. LTLMoP detects these potential
conflicts and notifies the user while automatically generating additional statements
necessary to enforce a mutual exclusion on the relevant propositions. A sample noti-
fication is shown in Fig. 9. The generated statements are then automatically appended
to the functional specification as shown in Fig. 7.

Once programmed with the generated code, both robot configurations performed
the desired task. In addition, the generated code included calibration routines for the
sensors when the robot first begins; it prompts the user to provide the minimum and
maximum values for each sensor in turn and thereby determines a suitable threshold
value for each sensor for converting the analog readings to boolean variables expected
by the state machine. For example, the line follower will be placed over white and
then over black, and the wall follower will be placed near the wall and then far from
the wall. This also grants the user some runtime control over the robot behavior;
for example, they can adjust how close the robot stays to the wall by adjusting the
positions provided during calibration. Note that the line following robot design also
includes UI elements; in this case, the user can use the provided Android app, which
will automatically communicates with the generated robot via Bluetooth and display
the appropriate user interface (in this case, two toggle switches).
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7 Conclusion

In this paper, we present an approach to building and controlling a custom on-demand
printable robot from a Structured English functional description, with an end-to-end
integrated system implementing the above. This addresses a number of problems
often faced by robot designers. Previously, despite the synthesis of a verified robot
controller from a task specification, a mission may fail if existing robots are not
suitable for the task. On the other hand, constructing custom robots to accomplish a
desired behavior requires experience, expertise, tools, and resources.

Thework presented here now allows users to start with a vision and follow system-
generated recommendations to create a robot to execute that task. The user need
not be experienced with robot creation or engineering principles, thus allowing even
casual users access to these custom robots; advanced creaters still benefit from design
automation. The correct-by-construction controller extends guarantees to the created
robot, ensuring a successful mission provided that certain constraints are met. These
guarantees coupled with online simulation simplify the design-build-test iteration
loop and could easily allow for sophisticated design requirements such as building
safety constraints into the robot. With the system demonstrated herein, functional
and structural specifications can be matched to each other, allowing for the creation
of on-demand robotic solutions for physical tasks.

This paper inspires a number of further research avenues addressing relaxing and
avoiding such constraints, while expanding the autonomy provided by the compiler
system. The system can be extended to integrate analog signals in a more automated
manner for a richer behavioral design space. In addition, more complex function-
ality can be implemented by enabling a many-to-many mapping between proposi-
tions and components; though the compiler supports such a topology, determining
mutual exclusion conditions is necessary to ensure provably correct constructions.
Finally, a natural language input parser can allow greater flexibility in task specifi-
cations, potentially allowing more fine-grained recommendations of components for
grounding through an analysis of the circumstances inwhich the proposition appears.
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Cloud-Based Probabilistic Knowledge
Services for Instruction Interpretation

Daniel Nyga and Michael Beetz

1 Introduction

In artificial intelligence, the problemof interpreting instructions ismostly approached
by applying automated action planning methods in order to generate plans for tasks
[21]. However, the plans generated by such systems are too abstract for competent
execution by robots since theymerely containwhat is given but not what is necessary.
A promising alternative is to generate plans for tasks from natural-language instruc-
tions that humans write for humans. Such instructions are available in abundance
in the world-wide web at websites like wikihow.com, ehow.com, and many others.
Instructions written for humans are more informative than automatically generated
action plans because they often describe how actions have to be performed to bring
about the desired effects, they talk about what can go wrong, and give additional
hints. For robotic agents it makes sense to consider instruction understanding to be
the computational problem of inferring how the agent could (successfully) perform
the instruction. This problem formulation is substantially different to the problem of
text understanding for question answering or machine translation. In those reason-
ing tasks, the vagueness and ambiguity of natural-language expressions can often
be kept and translated into other languages. In contrast, robotic agents have to infer
missing information pieces and disambiguate the meaning of the instruction in order
to perform the instruction successfully.

Thus, if a robotic agent is tasked with the instruction “neutralize 75ml of
hydrochloric acid”, for instance, the robot has to infer that neutralization requires
to add a some amount of base substance to the hydrochloric acid. It also has to infer
that this means that some amount of the base substance has to be transferred from the
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container which it is contained in into the container that holds the acid substance.
Finally, because the amount is small and accurately specified the adding step should
be performed through a pipetting action. As another example, consider the two
instructions “fill the kettle with water” and “fill a cup with coffee.” Though the
syntactic structure of the sentences as well as their semantics are identical, they fun-
damentally differwith respect to execution. Filling a kettlewithwater can be achieved
by using the tap, whereas filling a mug with coffee implies a pouring motion from a
coffee pot into a cup. In other words, understanding a natural-language instruction
for robot execution requires appropriate interpretation and completion.

For the purpose of this paper we consider robotic agents that are equipped with
a plan library that contains parameterizable plans for action verbs, which have to be
refined according to a given instruction. In this case instruction understanding can be
realized by retrieving the plan corresponding to the action required by the instruction
and by constraining its parameterization according to the instruction.

To deal with the incomplete and ambiguous nature of natural-language instruc-
tions, we phrase the problem as a probabilistic reasoning problem, namely that of
finding the most probable ‘executable’ refinement of the respective general plan
given the natural-language instruction as evidence:

argmax
plan

P

(
intended(plan)

“neutralize 75ml
of hydrochloric acid”

)
.

To perform this inference task we equip the robot with a joint probability distribution
over the source, destination, the object acted on, the tool to be used, and other action
roles for each action verb. To this end, we introduce the notion of action cores, which
are conceptualizations of action verbs that represent formal specifications of actions
and their parameters that are capable of interfacing the plans on a symbolic, linguistic
level. The resulting probabilistic first-order knowledge base of action cores and their
respective action roles is called probabilistic action cores (Prac). Pracs can be used
to performdisambiguation and completion of vague, underspecified natural-language
(NL) sentences and thus are suitable for NL instruction interpretation.

An example of such an inference process is depicted in Fig. 1 which will also be
the running example for our paper. We have equipped the robot with a plan library
including plans for pouring and pipetting, among many others. The parameters of
the plans for pouring and pipetting are the theme of the action, meaning the stuff
to be transported from one place to another one, the source of the stuff, and the
destination of the stuff. The problem of instruction interpretation for robot execution
can now be formulated as the reasoning task of inferring the most probable plan
(action_core(a,c)) and the most probable refinement of the formal plan parameters
(source, destination, theme) given the natural language instruction “neutralize 75ml
of hydrochloric acid”.

This is a very elegant and general formulation of instruction interpretation because
by doing the inference task on a joint probability distribution over action instructions
we can at the same time infer the plan that is most appropriate for performing the
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Fig. 1 Exemplary reasoning task in Prac for interpreting a NL instruction

instruction, the refinement of the parameters of the plan schema on the basis of the
information given in the instruction, and automatically fill in missing parameters by
inferring their most probable value from the distribution.
The key contributions of this paper are the following:

• We formalize Prac and the computational problem of inferring the most probable
executable action instruction.

• We show how Pracs can be realized asMarkov logic knowledge bases and learned
from few examples.

• Weshowhow the problemof inferring themost probable executable action instruc-
tion can be implemented to yield effective solutions as full size first-order proba-
bilistic reasoning problems.

In the remainder of this paper we proceed as follows.We start with an introduction
to the Prac framework and detail its conceptual components. Subsequently, we
give a formal definition of the reasoning tasks that Prac addresses and describe
our approach for tackling them. Then we discuss the state-of-the-art in instruction
interpretation for robot commanding and conclude our work.

2 Conceptual Framework

The Prac framework for translating natural-language instructions into abstractly
parameterized robot action plans is depicted in Fig. 2. Its main components are the
PRAC plan library, the PRAC knowledge base, and the PRAC dictionary. In a
nutshell, the roles of these components are the following ones.
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Fig. 2 Key concepts of the framework and their role in inferring the most probable executable
instruction

Fig. 3 Left Selection of logical predicates representing syntactic structure of words in a sentence.
A comprehensive list can be found in [9] Right Selection of different meanings of the word ‘cup’
obtained from WordNet

The PRAC dictionary provides all possible meanings of all the words that can
occur in a NL instruction to be executed by a robot. The meanings are concepts in an
ontological knowledge base defined in the dictionaryWordNet [12], which comprises
more than 117,000 concepts. For example, the possible meanings of ‘cup’ in the
Prac dictionary include a specialization of a physical object and, more specifically,
a container object, an amount specification, and a trophy (see also Fig. 3).

The PRAC knowledge base contains a collection of action verb-specific knowl-
edge bases, called action cores, that represent how possible action instructions for
a given action verb can be constructed on a conceptual level. For example, we can
formalize a pouring action on a concept level in terms of conjunctions of logical
assertions over the predicates action_core(a, Pouring), theme(a, t), source(a, s), des-
tination(a, d), etc. The assertion theme(a, t) states that the theme of action a is of the
type t, i.e. the entity which is poured. The parameters t, s and d are concepts in the
Prac dictionary.

Action-specific knowledge bases are then trained with a set of instructions stated
in first-order logic in order to learn a joint probability distribution over predicate
instantiations, which is induced by the given set of instructions. These distributions
are called the probabilistic action core (PRAC). The learned distribution represents
correlations between the concept restrictions of the parameters in instructions with
respect to an action verb. For example, the Prac of Pouring could entail that if the
Theme of a pouring action is the concept wine then it is more likely that the source
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for the pouring action will be an instance of the concept bottle and the destination an
instance of the concept glass. Conversely, if the Theme is of the concept water, then
the source is more likely to be a tap.

Finally, the PRAC plan library contains action specific plans. Prac plans are
equipped with plan signatures following the ‘design-by-contract’ principle: The plan
signature specifies the formal parameters of the plan, the concept restrictions for each
parameter and how the respective plan parameter can be computed from the Prac
knowledge base. For example, the signature of the plan for a pouring action looks as
follows:

pour-from-container(from :default (an object
(type container.n.01)
(contains (Pouring Theme))

amount :default (Pouring Quantity)
to :default (an object

(type container.n.01)
(contains (Pouring Goal))))

The plan schema specifies that the from parameter has to be a specialization of the
concept container.n.01 and that the from parameter can be retrieved from the Prac
knowledge base of Pouring by retrieving the value of the role Theme of Pouring. Like-
wise, the amount parameter can be obtained by querying for the Quantity predicate.

It is required that all formal parameters of the plan are linked to roles in the respec-
tive action core. By providing a plan signature, the designer of the plan guarantees
that for all plan refinements that satisfy the concept restrictions of the individual
parameters, executing the plan generates meaningful behavior. ‘Meaningful’ here
means that the plan generates behavior that makes sense but is not required to suc-
ceed. For a pouring action, for instance, the plan tells the robot to grasp the source
container, to hold it above the destination and to tilt it. However, the execution of
the parameterized plan hazards failures caused by inappropriate motor control or
inaccurate perception, such as spilling the liquid because the container is held too
high, off center, or the pouring angle is too steep. This requires that all parameters
needed to call sub-plans are computed by the plan and no call to a sub-plan contains
undefined parameters, which would cause the control system to crash.

The plans themselves are considered as black boxes in Prac reasoning. Plan exe-
cution systems that can handle such qualitative, symbolic constraints on parameters
includeRAP [13] and PRS [14]. If deeper reasoning about the ramifications of actions
is necessary, the Cram [6, 19] executive provides reasoning methods that translate
qualitative constraints into Prolog queries that use sampling and backtracking to
find parameter instantiations satisfying these constraints. Kinds of such parameters
include e.g. action effects, visibility, reachability and the like.

Using the components of the Prac system introduced above, the computational
process for computing the most probable executable instruction operates as follows:
In a first step, a given natural-language instruction ι is translated by a natural-language
parser into a logical representation of the instruction’s syntactic structure I , which
we call a Prac instruction. The Pracinstruction I is then interpreted by inferring the



654 D. Nyga and M. Beetz

meaning and semantic role of the individual syntactic structures and missing infor-
mation pieces using the Prac dictionary and the action core itself. This interpretation
process results in the most probable executable instruction of ι. In the remainder of
this sectionwewill describe inmore detail the concepts and components that learning
and reasoning about action cores is built upon.

2.1 PRAC Instructions

A Prac instruction I is a set of assertions about the grammatical relations referring to
the constituents of a natural-language instruction and their syntactic structure. These
grammatical relations are represented by predicates including the small selection
listed in Fig. 3. They are obtained for any sentence in natural language by a parser
like the Stanford parser [8]. Using these predicates, a natural-language instruction
such as ι = “neutralize the hydrochloric acid with sodium hydroxide”, for example,
is transformed into the logical assertions I,

dobj(neutralize-1, acid-4) has_pos(neutralize-1,VB)

det(acid-4, the-2) has_pos(acid-4,NN)

nn(acid-4, hydrochloric-3) has_pos(hydroxide-7,NN)

nn(hydroxide-7, sodium-5) has_pos(sodium-6,NN)

prep_with(neutralize-1, hydroxide-7), (1)

which we denote by I (ι). These syntactic dependencies indicate that the second
word ‘the’ depends on the fourth word ‘acid’ as a determiner, ‘hydrochloric’ and
‘acid’ represent a compound noun, which forms the direct object of the word ‘neu-
tralize’, which is connected to the word hydroxide via the preposition ‘with’. The
syntactic structure of the instruction thus forms a relational database that serves
as evidence in a probabilistic relational model. For a more detailed and exhaustive
description of the syntactic dependencies, we refer to [9].

2.2 PRAC Dictionary

The Prac dictionary is a set of logical assertions that assign meaning (word senses)
to words. It is filled with word senses (‘synsets‘) from the online dictionary Word-
Net1 (see Fig. 5). The word senses are organized in a taxonomy given by a directed
acyclic graph,whichwe denote by the relation�, i.e. c1 � c2 denotes that the concept
c1 is a specialization of concept c2.

1All concept names refer to concept names provided by the NLTK toolbox (http://www.nltk.org).

http://www.nltk.org
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In the Prac dictionary, a word w is assigned a particular meaning m by means
of a set of logical assertions has_sense(w,m) and is_a(m, c) ∀c m � c, where
has_sense(w,m) states that the word w has the sense m in the WordNet dictio-
nary and the is_a predicate is the transitive closure of m in �. The Prac dictionary
also provides a function μ: W × P �→ P(�), which returns the set of all possible
meanings of a word given its part of speech, where W denotes the set of all words,
P is the set of all parts of speech, � is the set of all concepts in � andP(·) denotes
the power set.

Words can have multiple meanings causing ambiguity in NL instructions. Con-
sider, for example, the terms ‘cup’ and ‘milk’ and their meaning in the two instruc-
tions “fill a cup with milk” and “add a cup of milk.” In the former case, ‘cup’ refers
to a drinking mug, a physical object that can hold milk. In the latter case, it rather
refers to a measurement unit specifying the amount of milk to be added. Though this
semantic difference may seem subtle, correctly distinguishing between word mean-
ings is crucial for successfully performing the actions. Thus, in finding an appropriate
interpretation of an instruction, selecting the most appropriate word meanings is a
necessity.

2.3 PRAC Knowledge Base

The Prac knowledge base is the central component of the Prac system. It contains
a library of data structures, which we call action cores. An action core is the con-
ceptualization of an action which constitutes an abstract event type and assigns an
action role to each entity that is needed in order to successfully perform the respective
action.

More formally, an action core AC is defined as a tuple 〈A, R〉, where A is the glob-
ally unique nameof the action core and R = {rAi }nA

i=1 is an indexed set of its associated
action roles. For an interpretation x of a Prac instruction I , interpretation(x, I ), the
following holds:

action_core(x, A) → ∃c1, . . . , cnA

nA∧
i=1

rAi (x, ci ), ci ∈ � (2)

The right side of the implication in (2) ensures that every instantiation of an action
core must have a complete assignment of its action roles to concepts in �, otherwise
it is not an instance of the action core. However, being able to assign all roles of
an action core does not imply that it must have an instance in x . Equation2 defines
the spaceX of possible interpretations of an instruction. A graphical representation
of one particular interpretation of the instruction “neutralize 75 ml of hydrochloric
acid” is shown in Fig. 4: There are instances of the three action cores Neutralization,
Adding and Pipetting with their respective roles assigned a concept. The set of action
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Fig. 4 Exemplary action instantiation for the instruction “Neutralize 75 ml of hydrochloric acid.”
Taxonomy paths (is-a) are truncated for better readability

cores and our definition of an interpretation can thus be regarded as a template for
constructing a graphical model of interpretations like the one in Fig. 4.

An example of the action core Pouring and its action roles was already given
above. In that context, the action core has a direct mapping to a plan schema in the
Prac plan library and its action roles Source, Destination and Theme interface the
formal parameters of the plan schema. As another example, consider the action core
Neutralization, representing the process of causing a chemical substance to take a neu-
tral pH-value by combining it with some other substance. For the chemical reaction
itself, there must always be two components reacting, an acid and a base. The corre-
sponding action core Neutralization thus is attached two action roles, AcidSubstance
and AlkalineSubstance. It is important to note that within Prac, the domains of action
roles and their corresponding parameter slots in the plan schemata are given by the
set � of all concepts from the ontological knowledge base in the Prac dictionary.
This ensures that all symbols have the same semantics across the different compo-
nents of Prac, the syntactic representation in the Prac instructions, the semantic
action representation of action cores as well as the plan schemata.

There is an action core for every verb in the Prac dictionary that represents a
meaningful action. However, there are action cores that do not have a direct corre-
spondence to a plan schema because they do not represent actions that are directly
executable but are subject to further reasoning. Neutralization is an example of such
an action core: It is not an executable action as such, but rather describes a chemical
process that is triggered by Adding one substance to the other. Adding itself is an action
core representing the process of making a new member part of an existing group.
It has three action roles, namely the Group, the NewMember and the Quantity. The
Adding action core, however, also represents a process that can be achieved in very
different ways depending on the context and the objects involved. For example, “add
one liter of water” could be achieved by using the tap or pouring from one container
to the other, whereas “add one milliliter of water” should be performed by using a
pipette. Conversely, “add a pinch of salt” can be done by using a salt cellar. Such an
action core A that does not have a direct mapping to an executable plan schema has
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attached a designated action role AchievedBy(A, A’), which is assigned another action
core A′ that represents the most likely refinement of the action represented by A.

The goal in natural-language instruction understanding is now to find the most
probable interpretation under the instruction given as evidence. Therefore, the Prac
knowledge base has a conditional probability distribution over all action cores and
their action roles, conditioned on the Prac dictionary and the Prac instructions, as
depicted in Fig. 2,

P

⎛
⎝ action_core(x, A) →

∃c1, . . . , cnA

nA∧
i=1

rAi (x, ci )
�,I

⎞
⎠ . (3)

We call (3) the probabilistic action core (Prac). The probabilistic action core is
a first-order probabilistic knowledge base about actions and their parameterizations
that is used to disambiguate, interpret, complete and refine NL instructions.

2.4 Examples

The probabilistic action core can be used to resolve ambiguity and to complete an
instruction to the most plausible action specification, based on what is given by the
instruction. In the following, we will illustrate the usage of the Prac distribution by
means of three simple exemplary queries.2

Action role assignment. Prac can be queried for the most likely assignment of
roles for a given set of objects with respect to a particular action core. Consider an
instruction, such as “add 3 drops of sodium hydroxide.” There are two objects o1
and o2 in the instruction given by the concepts naoh.n.01 and drop.n.02 in the Prac
dictionary. In context of the Adding action core, one can solve for the most probable
assignment of the action roles attached to Adding, i.e.

argmax
o′
1,o

′
2,o

′
3∈{o1,o2,⊥}

P

⎛
⎝ Quantity(o′

1),

NewMember(o′
2),

Group(o′
3)

is_a(o1, drop.n.02),
is_a(o2, naoh.n.01)

⎞
⎠ =

⎧⎨
⎩
o′
1 = o1,

o′
2 = o2,
o′
3 = ⊥

⎫⎬
⎭ ,

where ⊥ denotes the null assignment. In this example, the Quantity role has been
assigned the object drop.n.01, the NewMember role the object naoh.n.01 and the
Group could not have been assigned any of the objects mentioned in the instruction.
Note that this argmax solution is not a proper interpretation of the instruction in the
notion from above, because there is no Group specified.

2We are using a slightly modified notation, which technically does not precisely fit the previous
formulations. We think this simplified notation better supports the understanding of reasoning
considered in this paper.
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Fig. 5 Conditional distribution over an excerpt of the Prac taxonomy structure for containers,
substances and measuring units for an entity w taking the Goal role of the Filling action core

Action role completion. In order to fill missing role assignments such as
the Group in the previous example, one can solve for a different argmax query.
Consider the instruction “neutralize the hydrochloric acid” and suppose we have
already assigned the object hcl.n.01 the role AcidSubstance of theNeutralization action
core. According to its definition, there must be the role AlkalineSubstance assigned to
some concept, which is not given in the instruction. In order to infer its role assign-
ment, we introduce a Skolem constant s that hypothetically fills the missing role slot
of AlkalineSubstance. Since the taxonomy relation of the Prac dictionary is included
in the Prac distribution, one can query for the most probable type of s:

argmax
c∈�

P

⎛
⎝is_a(s, c)

∣∣∣∣∣∣
is_a(hcl, hcl.n.01),
AcidSubstance(hcl),
AlkalineSubstance(s)

⎞
⎠ = naoh.n.01,

which means that sodium hydroxide (NaOH) is the most probable alkaline counter-
part for the Neutralization of hydrochloric acid (HCl).

Joint distributions over taxonomies. One of the key features of Prac is the
ability to perform reasoning about unmodeled concepts, i.e. concepts that have not
been seen during learning. This enables (1) a compact representation of knowledge,
(2) efficient transfer of the learnt knowledge to new situations and (3) filling miss-
ing information pieces in underdetermined action specifications. Figure5 shows an
example of a conditional distribution over concepts in the Prac taxonomy for poten-
tial Goals of a filling action: From all concepts, specializations of containers gain
highest probability, which reasonably reflects our intuitions about a typical filling
action. Since Prac maintains joint distributions over the action roles and the con-
cepts in the Prac dictionary, we can compute any conditional distribution given any
evidence, which enables context-sensitive completion of actions like in the previous
example. Such out-of-domain inference tasks are implemented using the Fuzzy-
MLN reasoning framework [22].



Cloud-Based Probabilistic Knowledge Services for Instruction Interpretation 659

3 The PRAC Learning and Reasoning System

In this section, we describe in more detail how reasoning is implemented in the Prac
framework.We first depict the basic ideas of learning and inference in Prac, address
the issues of learning and present the processing pipeline for performing inference
about interpretations and completions of natural-language instructions. There are
two key paradigms in the Prac reasoning system.

Learning by generalization. Humans are capable of learning rapidly and flexi-
bly how to use different words in different situations by only having seen very few
examples. They have available an efficient apparatus for generalization, which allows
them to abstract away from a very small set of specific instantiations to more generic
patterns of everyday situations that we often encounter in their ‘typical’ form. Con-
sider the example of a ‘filling’ action. From hearing just a few specific instances of
that action verb, e.g., “fill a pot with water” and “fill a cup with milk”, humans are
capable of generalizing to a stereotyped pattern like “fill a container with a liquid.”
This kind of generalization is both powerful and efficient since, on the one hand,
it enables compact representation of knowledge and on the other hand, it allows to
treat new, unseen examples in a meaningful way.

Inference by specialization. Reasoning about new, unseen situations is done by
selecting one or more generic patterns that best fit the new situation and by adapting
them to reality as necessary in order to come up with an instantiated representation
which is as specific and unambiguous as possible. In the example from above, an
instruction like “fill a glass with juice,” for instance, is matched against the generic
‘filling’ action and is adapted accordingly by inspecting the conceptual subsumption
of the terms ‘juice’, which corresponds to the liquid being poured and ‘glass’, which
constitutes the goal container of the filling action.

Prac implements these two paradigms in a coherent probabilistic framework,
which automatically finds abstractions of common situations as illustrated in the
above examples by exploiting the semantic similarities of concepts in the taxonomy
graph. These abstractions reasonably reflect human intuitions of how specific terms
are to be used in certain situations. These principles of abstraction and generalization
from examples also constitute cornerstones of human cognition [3, 17, 26]. As an
implementational framework, we use Markov logic networks (MLN) [23] to encode
the knowledge about action cores, their action roles, the Prac dictionary and the
Prac instructions, which is a powerful knowledge representation formalism that
combines first-order logic with probability theory.

3.1 Reasoning

The probabilistic first-order knowledge base in (3) for solving inference problems
of the form argmaxQ P(Q | E) has an enormous size. It contains at least the cross
product of all possible word meanings squared and roles where the set of the possible
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Fig. 6 Flow diagram of the Prac reasoning pipeline with the steps (1) NL parsing (2) action core
identification (3) action role identification (4) checking for an executable plan schema attached to
an action core and (5) action core refinement

word meanings include all possible meanings of the words that occur in the training
data plus the number of their superconcepts in the taxonomy. To make the reasoning
problem feasible we decompose it into three weakly connected subproblems and
generate the probabilistic knowledge bases for each substep independently to keep
the knowledge bases as small as possible: (1) inferring the relevant Prac, (2) dis-
ambiguation and role assignment and (3) inferring missing information pieces and
refinements of action cores and their associated roles.

Reasoning in Prac about the most probable interpretation of a natural-language
instruction ι is implemented by the following multi-step composition of database
transformations by means of probabilistic relational inference:

argmax
RAmissing

P
(
RAmissing argmaxRAgiven

P
(
RAgiven argmaxA P

(
A I

) ) )
,

where I = I (ι) is a Prac instruction representing the syntactic structure of the NL
instruction, A is the action core referred to by the instruction, RAgiven are the action
role assignments of A given in I , and RAmissing are the action roles of A which do not
have a correspondence in I . Figure6 depicts the reasoning pipeline of Prac, which
we will describe in the following in more detail.

1. Parsing: The first step in Prac reasoning is to analyze the syntactic structure of
the instruction at hand, which yields a Prac instruction database I according
to (1) containing syntactic relations and the part of speech for each word.

2. Given thewords and their part of speech, the possible wordmeanings are obtained
from the Prac dictionary and the actioncore is identified that is ‘activated’ by I
with highest probability:

Â = argmax P
(
action_core(a, ac) I, μ(I )

)
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3. Given Â and its associated roles R̂ from the actioncore library, Prac performs
simultaneous word sense disambiguation and action role assignment taking into
account the concept taxonomy of the Prac dictionary:

Â′ = argmax P
(
has_sense(·, ·), R̂ Â ∪ I∪ � )

4. Subsequently, having assigned the action roles for the identified actioncore, Prac
checks if there is a plan schema in the plan library attached to the actioncore,which
can be parameterized with the inferred roles. If so, the schema is instantiated with
its parameters and sent to the plan executive.

5. If there is no plan schema attached, Prac incrementally computes refinements
of Â′ by alternately solving for the most probable actioncore ac′ ac can be
AchievedBy and its action roles:

Â′′ = argmax
a′

P
(
achievedBy(a, a′) Â′∪ � )

A visualization of an exemplary inference process in Prac and the execution of an
instantiated plan schema can be found in the video accompanying this paper.3

4 Related Work

In recent years, much work has been done in order to make knowledge sources avail-
able to robots, which are indented for human use [24, 27], and to generate robot
plans out of natural-language instructions [10, 16, 20, 25, 27]. Dzifcak et al. [10]
use a combinatorial categorial grammar for deriving a goal formulation in temporal
logics in order to find an action sequence that achieves this goal. Matuszek et al. [16]
use statistical machine translation techniques to match natural-language navigation
directives against a formal path description language. Others [24, 25] use probabilis-
tic models to derive plans to be executed by a robot.Misra et al. [18] take into account
the context of the environment for grounding objects in an instruction to objects in
the environment. They solve the ambiguity in instructions using an energy function
corresponding to a conditional randomfield.What these approaches have in common
is that they do not take into account that natural-language instructions typically are
severely underspecified, ambiguous and often not directly executable. They make
what is commonly referred to as the closed-world assumption postulating that all
knowledge about the world is given and complete. Additionally, most approaches to
teach robots by means of natural language are designed to capture and execute what
is specified by an instruction using ‘shallow’ mappings to robot control, but they are
not intended to accumulate more semantic action knowledge that can be recalled in
and adapted to different situations. Artzi et al. [2] and Kim et al. [15] learn proba-
bilistic context-free grammars for robot navigation tasks. Their approach is inspired

3https://youtu.be/iA6s7IGqubs.

https://youtu.be/iA6s7IGqubs
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from a more linguistic point of view, where such grammars are are typically induced
from large corpora of text consisting of sequences of navigational directives.

We take a different approach accounting for the variational complexity and rich-
ness of human-scale manipulation tasks with everyday objects. In Prac, the result
of a linguistic analysis of an instruction is taken only as evidence in a probabilistic
first-order knowledge base which allows us on the one hand to include any syntactic
characteristics of a sentence as evidence in a query, and on the other hand it enables
tight integration with the robot’s belief state, high-level knowledge base, executive
and perception system, which can provide comprehensive context information, such
as the objects perceived in a scene, for instance. In addition, Prac makes use of
a rich taxonomy of concepts which allows to transfer the lernt knowledge to new,
unseen concepts. Our work is not about finding action sequences given a particular
goal, but about how to perform complex everyday activities in presence of partial
and incomplete information. It is inspired by and closely related to Minsky’s [17]
frame representation and partially adapted from the FrameNet [4] specifications of
action verbs but extended and adapted for including knowledge necessary for robot
action execution. Our ultimate goal is a complete robotic agent that is able to suc-
cessfully perform complex manipulation tasks formulated in NL (cmp. [1, 5]). Com-
monly used linguistic corpora of instructions do not account for the behavior that the
analyzed instruction produces. This makes a large-scale corpus-based evaluation of
Prac nearly impossible. Our future work therefore focuses on thoroughly evaluating
Prac with respect to these points, such as the executability of an action or whether
or not it produces the desired effects and avoids undesired effects by executing the
generated robot plans in a simulated environment (cmp. [11]).

5 Conclusions

In this paper we have shown how interpretation of ambiguous and underdetermined
natural-language instructions can be formulated as the problem of computing the
most probable complete and unique instruction in an action specific knowledge base
called probabilistic action core (Prac). Within the Prac framework, the most proba-
ble complete and unique instruction enables robots to find the most appropriate plan
and with the most general refinement of the formal plan parameters given the NL
instruction. To perform this inference the Prac framework learns a joint probabil-
ity distribution over all possible ways in which instructions for a given action verb
can be formulated. Our Prac framework provides an attractive alternative to other
instruction interpretation approaches, in particular for the interpretation of complex
manipulation tasks.One important advantage is that Pracs are not limited to inferring
which sequences of actions should be executed but also how the individual actions
are to be executed. A second advantage is that the use of taxonomic reasoning in the
Prac inference results in the inference of themost general concept refinements of the
plan parameters. This generates least commitment calls of plans that keep maximal
flexibility at execution time and avoids the necessarity of grounding symbolic names
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Fig. 7 The browser-based webinterface to Prac on the openEASE cloud robotics platform

that are generated in the interpretation process (symbol grounding problem). Our
current implementation comprises a set of 12 Pracs and plan schemata from two
application domains, the household/cooking domain and the domain of conducting
chemical experiments, which we are continuously extending.We implemented Prac
as an open-source software framework which is accessible as a web service on the
cloud robotics platform openEASE [7] (http://www.open-ease.org), shown in Fig. 7.
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Identifiability Analysis of Planar Rigid-Body
Frictional Contact

Nima Fazeli, Russ Tedrake and Alberto Rodriguez

1 Introduction

Autonomous manipulation in an uncertain environment requires an autonomous
understanding of contact. A priori models of objects and their environment are rou-
tinely deficient or defective: In some cases it is not cost-effective to build accurate
models; others the complex and ever-transforming nature of nature renders it impos-
sible. This understanding of contact is often implicit in the design of a manipulator.
By carefully choosing materials and geometries we can passively deal with uncer-
tainty. However, when we want to monitor or actively control the execution of a
manipulation task, an explicit understanding of the algebra between motions, forces,
and inertias at contact is principal.

We are inspired by human’s unconscious but effective ability to make sense of
contact to understand its environment. It only takes us a small push to a cup of coffee
to estimate how full it is, and a quick glance to a bouncing ball to gauge its stiffness.
This work builds on the conviction that, similarly, robots can harness known laws of
physical interaction to make sense of observed motions and/or forces, and as a result
gain a better understanding of their environment and themselves.

In particular, in this initial study we explore the identifiability of inertial para-
meters and contact forces associated with planar frictional contact interactions. We
exploit the linear complementarity formulation (LCP) of contact resolution [1, 18] to
relate inertial parameters, contact forces, and observedmotions. Section3 reviews the
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Fig. 1 Stewart and Trinkle
[18] used the example of a
falling rod to introduce a
time-stepping
complementarity scheme for
contact resolution that has
become one of the standard
techniques for simulating
frictional contact. In this
paper we look at the same
formulation and similar
examples from the
perspective of identification.
Is the trajectory of the rod
indicative enough of the
dynamic system that governs
its motion?

structure of an LCP problem and describes the mathematical framework necessary
to outline the identifiability analysis.

The specific system we consider is a single planar rigid body undergoing impact
after a period of free fall, as in Fig. 1.What canwe say about an object from observing
its motions and/or forces? The falling trajectory is a simple ballistic motion, which
can be fitted to the dynamics of free fall. The key challenge, and focus of this paper,
is in finding a formulation suitable for system identification, that can handle the
complexity of unknown and spurious reaction forces due to frictional contact. Such a
formulationmight yield a systematic approach for a broader set of contact interactions
including sliding, pushing or grasping.

Our main contribution is a systematic analysis of the question of the identifiability
of the mass, the moment of inertia, and contact forces from kinematic observations
of frictional contact interactions. Section4 details the analysis both for cases when
contacts stick or slip, as well as when known external forces are applied during
contact.

In this paper we use a batch approach to system identification, where we extract
the best possible inertial parameters and contact forces that explain a series of obser-
vations. A potential benefit over more traditional calibration methods for parameter
fitting, is that equivalent on-line techniques are well understood and readily avail-
able. Section5 evaluates the validity of the approach analysis with simulated and real
experiments with a planar block and a planar ellipse falling on a flat ground, which
are captured with a high-speed camera.
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2 Background and Motivation

System identification studies the problem of fitting a model (i.e., inertial parame-
ters) to a series of inputs (i.e., forces and torques) and responses (i.e., displace-
ments/velocities/accelerations) of a dynamic system. The most basic idea behind
system identification is that, although the response of a dynamic system tends to
be complex, the governing dynamics are often linear in a set of observable parame-
ters. For example, while

∑
f = m · a can lead to complex trajectories, forces and

accelerations are still linearly related by m. This allows closed-form least-squares
formulations for the estimation of those parameters.

System ID is the process of identifying what parameters are instrumental and
what observations are informative, and then make estimates of the parameters from
measured data. This idea has been applied in robotics to the identification of serial
and parallel link manipulators [7, 8], and to identify inertial parameters sufficient for
control purposes [17].

In this paper we show that system identification has the potential to provide a
formal approach to observe rigid-body contact interactions, which, in turn, opens
with a wide set of possible applications: Contact-aware state estimation (Erdmann
[6], Atkeson [3], Koval et al. [9], Zhang and Trinkle [22], Trinkle [20], Yu et al. [21]);
Contact-aware planning and control (Lynch andMason [10], Platt andKaelbling [12],
Posa et al. [13], Chavan Dafle and Rodriguez [5]); Fault detection or task monitoring
(Rodriguez et al. [15], Salawu [16]).

One of the main assumptions in our approach is the selection of a time-stepping
Linear Complementarity Problem (LCP) scheme for the resolution of forces and
accelerations during frictional contact. Why LCP? Brogliato et al. [4] identifies 3
classes of methods for rigid body simulation:

i. Penalty methodsmodel interaction as a reaction force proportional to the amount
of interpenetration. Although easier to solve, they lack in realism.

ii. Event-driven methods rely on a listing, resolution, and selection of all possible
contact/impact events. They typically require some knowledge of contact time.
Müller and Pöschel [11] showed that they can lead to exceedingly high velocities
in situations with multiple contacts.

iii. Time-stepping methods integrate the equations of motion during a finite time
interval. Should a contact (or multiple) be detected during the interval, the algo-
rithm resolves the collisions and continues to integrate the equations of motion.

The time-stepping approach, in conjunction with the velocity-impulse resolution of
contact, which results in a Complementarity Problem (CP), has been advocated by
Stewart and Trinkle [18] and Anitescu and Potra [2] among others, and has been
shown to be robust to phenomena such as Painleve’s problem [19], and always to
have a solution, with linear approximations of the friction cone and for a positive
definite mass matrix.
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3 Complementarity Problems for Collision Resolution

The standard approach to resolve motion, is the following simple iterative scheme:

Current state −→ Compute resultant
of applied forces

−→ Integrate forward
to next state

(1)

One of the core difficulties in dealing with contact is that it breaks that basic scheme.
The motion of the system depends on the resultant of applied forces, but at the same
time these applied forces (friction and contact normal) depend on the motion of
the system. As a consequence, both contact forces and resulting motions must be
determined (searched for) simultaneously, instead of sequentially as in (1).

This section reviews the complementarity formulation for contact resolution
which solves simultaneously for contact forces and velocities. For further details
we refer the reader to Stewart [19].

A Linear Complementarity Problem

A general (i.e. nonlinear) complementarity problem is defined as:

Find: z s.t. 0 ≤ g(z), 0 ≤ z, 0 = z · g(z) (2)

A linear complementarity problem is formed when g is of the form g(z) = Mz + q.
The benefit of a complementarity formulation is that it allows us towrite the equations
of motion of a dynamic system with contact defined as unilateral constraints (and
that mathematicians have devised solvers for that kind of problem). Force balance
looks like:

M(q)
dv

dt
= J T

n cn + D(q)ct + k(q, v) − ∇V (q) + Fext (t) (3)

where:

• J T
n cn(t) and D(q)ct (t) represent the normal and tangential contact forces;

• Jn = ∇φn(q), is the gradient of a function φn(q) that determines the boundary
between no contact (φn(q) > 0) and penetration (φn(q) < 0);

• D(q) is a set of column vectors that linearly span the tangent space at contact, and
the product D(q)ct represents the actual frictional force at a contact;

• V (q) represents conservative forces, such as gravity;
• k(q, v) represents the centrifugal and Coriolis velocity components;
• and Fext represents all external non-conservative forces excluding contact.

The motion at contact, and the tangential contact forces due to friction are related
by the principle of maximal dissipation [1] which states that during contact the
selection of both has to maximize dissipation, i.e., generally that friction tends to
oppose motion:
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min
ct

(v+)T D(q)ct such that: ψ(ct ) ≤ μcn (4)

Contact resolution then will need to search for the components of ct such that the
frictional force D(q)ct opposes velocity, from within a valid domain of frictional
forces ψ(ct ) ≤ μcn . If we follow Coulomb’s law, all possible frictional forces must
lie inside a cone FC(q) = {D(q)ct s.t. ||ct ||2 ≤ μcn}, where nowψ(ct ) = ||ct ||2. In
general, ψ can be shown to be convex, coercive and positively homogeneous which
implies that D(q)ct ∈ cn FC(q) is equivalent to ψ(ct ) ≤ μcn .

We can convert (4) into a CP constraint by noting that the inequality constraint
can be incorporated in the minimization by using a Lagrange multiplier h(ct , λ) =
(v+)T D(q)ct − λ(μcn − ψ(ct )) where now the condition for minimum is:

∂h

∂ct
= μD(q)T v+ + λ

∂ψ(ct )

∂ct
= 0 (5)

Furthermore we can write:

0 ∈ μD(q)T v+ + λ
∂ψ(ct )

∂ψ

0 ≤ λ, 0 ≤ μcn − ψ(ct ), 0 = λ(μcn − ψ(ct )) (6)

which completes the CP formulation for contact resolution:

dq

dt
= vM(q)

dv

dt
= J T

n cn + D(q)ct − ∇V (q) + k(q, v) + Fext

s.t. 0 ≤ cn ⊥ 0 ≤ φn, 0 ∈ μD(q)T v+ + λ
∂ψ(ct)

∂ψ

s.t. 0 ≤ λ ⊥ 0 ≤ μcn − ψ(ct ), 0 = Jnv
+ if φn(q) = 0 (7)

Note that the formulation so far is nonlinear with respect to the friction surface
constraint (ψ). For the sake of resolution, it is common linearize the CP by approxi-
matingψ as a polyhedral convex cone. We construct it by using a finer discretization
of the tangent plane at contact with a set of vectors {Jn + μdi (q)|i = 1, 2, ...,m} that
positively span it. It is convenient to chose these vectors equiangular with respect to
each other, and are paired as di = −d j , which we stack in a new matrix D̃(q). Now
we can express the friction force as D̃(q)c̃t where c̃t ≥ 0 and �c̃t i ≤ μcn . Note that
we will drop the tilde from the notation but in the rest of the paper, we will assume
that the polyhedral approximation holds for all further analysis.

Finally, the CP formulation for contact resolution is:
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qk+1 = qk + h · vk+1

M(qk)(vk+1 − vk) = cn J
T
n (qk) + D(qk)ct − h · k(qk, vk) − h · ∇V (qk) + h · Fext

0 ≤ cn ⊥ 0 ≤ Jn(qk)(vk+1 + εvk)

0 ≤ ct ⊥ 0 ≤ λe + D(qk)
T vk+1

0 ≤ λ ⊥ 0 ≤ μcn − eT ct (8)

A Time-Stepping Approach

Next, to be able to simulate the evolution of the dynamics we convert the formulation
to its time-stepping equivalent, for which we integrate the contact forces over a time
step. The resulting equations of motion and constraints follow Stewart [19]. We
integrate the expressions in (8) forward in time using an Euler scheme. Distance to
contact is captured by a measure of the closest distance between boundary of two
rigid bodies:

Φ = [
φn φt

]T
(9)

where φn > 0 signals free space, φn = 0 contact, and φn < 0 interpenetration.
Figure2 depicts an arbitrary planar rigid body with active contact constraints:

Φ =
[

φn

φt

]

=
[
y − l(β) cos (β − θ)

x − l(β) sin (β − θ)

]

=
[
0
0

]

(10)

where angle β parameterizes the object boundary and localizes the contact point. It is
a function of θ such that 0 ≤ β(θ) < 2π . We compute the Jacobian of the constraint
for the equation of motion (3) as:

∂Φ

∂q
=

[
Jn
Jt

]

=
[
0 1 Jy(θ)

1 0 Jx (θ)

]

(11)

where the rows of ∂Φ
∂q can be seen as contact forces, and:

Fig. 2 2D rigid body in
contact
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Jy = −∂β

∂θ

(
∂l

∂β
cos(β − θ) − l sin(β − θ)

)

− l sin(β − θ)

Jx = −∂β

∂θ

(
∂l

∂β
sin(β − θ) + l cos(β − θ)

)

+ l cos(β − θ) (12)

In general, this formulation gives us the contact mode post-impact given pre-
impact kinematic measurements, and externally applied forces. On the other hand,
if the contact-mode is known, then there is no need to solve the CP. Impulses during
impact and velocities/positions post-impact can be solved strictly as functions of
these states and external influences pre-impact. We use this fact in Sects. 4.1 and 4.2
to find close form relations between forces, accelerations, and inertial parameters.

4 Identifiability Analysis

In this section we study the identifiability of the inertial parameters (mass and second
moment of inertia) and contact forces of a rigid body as it comes into contact with a
rigid and fixed flat surface. We assume that the positions, orientations and velocities
(linear and angular) of the object are given and the external forces acting on the object
are known. The second moment of inertia of the object is expressed with respect to a
reference frame attached to the center of mass. Given that kinematic measurements
of the trajectory are available, we can derive the direction of friction by invoking the
principle of maximum dissipation as outlined in Sect. 3. We will denote the direction
by Jt . We consider sticking and sliding contact modes separately in the following
subsections.

4.1 Sliding Contact Mode

During sliding the complementarity constraints from (8) become:

0 < cn, 0 < ct , 0 < λ (13)

The first inequality derives from the fact that at contact the distance constraint is
equal to zero so its dual must be greater than zero. To understand the second and
third inequalities we point out that since we have sliding contact then vk+1 must have
at least one component that is not perpendicular to the tangent plane spanned by
D and so max − divk+1 ≤ λ where di are the columns of D. This directly implies
that 0 < λ and the second inequality comes from the fact that since 0 < λ then
μcn = eT ct which implies that 0 < ct .

Utilizing the inequalities from (13) we revisit (8) and write it with cn , ct and λ as
variables:
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⎡

⎣
J T
n M−1 Jn J T

n M−1 Jt 0
J T
t M−1 Jn J T

t M−1 Jt 1
μ −1 0

⎤

⎦

⎡

⎣
cn
ct
λ

⎤

⎦ = −
⎡

⎢
⎣

J T
n b

J T
t b

0

⎤

⎥
⎦ (14)

where:

b = vk + hM−1(−∇V − k(q, v) + Fext ) (15)

M−1 = diag{ 1
m

,
1

m
,
1

I
}, ∇V = diag{0,mg, 0}, Fext = [

Fx Fy τ
]T

ω̃ =
⎡

⎣
0 −θ̇ 0
θ̇ 0 0
0 0 0

⎤

⎦ , R =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤

⎦ , k =
⎡

⎣
0
0

ω̃RI0RTω

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦

and we can solve for cn and ct to arrive at:

cn = m
ẏk + θk Jy,k − hg + h

m (Fy + h m
I τ)

1 +
(
J 2
y,k + μJx,k Jy,k

)
m
I

= ct
μ

(16)

At this stage we have explicitly solved for the contact forces as functions of the
inertial properties, geometry of contact and pre-contact kinematic measurements. To
perform identifiability analysis we require an equation that is strictly a function of
kinematic measurements and inertial properties so we replace the values derived for
cn and ct into the equation of motion (3):

⎡

⎣
ẋk+1 − ẋk

ẏk+1 − ẏk + hg
θ̇k+1 − θ̇k

⎤

⎦ = ẏk + θ̇k Jy,k − hg + h
m (Fy + h m

I τ)

1 +
(
J 2y,k + μJx,k Jy,k

)
m
I

⎡

⎣
μ

1
m
I

(
Jy,k + μJx,k

)

⎤

⎦ + h

⎡

⎢
⎢
⎣

Fx
m
Fy
m
τ
I

⎤

⎥
⎥
⎦

(17)

We can further manipulate (17) to yield the linear mapping:

Y = Ψ Θ (18)

where:

Y =
⎡

⎢
⎣

[
ẋk+1 − ẋk

ẏk+1 − ẏk + hg

]

−
[

μ

1

]
(
ẏk + θ̇k Jy − hg

)

θ̇k+1 − θ̇k

⎤

⎥
⎦

ψ1 =
⎡

⎣
hFyμ + hFx

hFy

0

⎤

⎦ , ψ2 =
⎡

⎣ h Jyτ

[
μ

1

]

+
(
J 2
y,k + μJx,k Jy,k

)
h

[
Fx

Fy

]

(
Jy + μJx

)
hFy + hτ

⎤

⎦

(19)
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ψ3 = (
Jy + μJx

)

⎡

⎢
⎣

−Jy

[
ẋk+1 − ẋk

ẏk+1 − ẏk + hg

]

ẏk + θ̇k Jy − hg − (
θ̇k+1 − θ̇k

)
Jy

⎤

⎥
⎦ , ψ4 =

⎡

⎣
0
0(

Jy − μJx
)
h Jyτ

⎤

⎦

Ψ = [
ψ1 ψ2 ψ3 ψ4

]

Θ =
[

1
m

1
I

m
I

m
I 2

]T

Equation (18) is linear in the inertial parameters and assuming thatΘ is the unknown
vector of inertial parameters then, given samples of Y and Ψ , we can set up a con-
strained least squares estimation problem to determine m and I . Furthermore with
the mass and moment of inertia identified we can infer the contact forces from (16),
and conclude that the uniquely identifiable set is {m, I, cn, ct }. Assuming external-
forces (excluding gravity) are set to zero then ψ1 = 0, ψ2 = 0 and ψ4 = 0 which
means that the only identifiable parameter is m/I . Replacing the value of m/I into
(16) we can find ct/m and cn/m therefore the set of parameters that we can estimate
uniquely in this case is {m/I, ct/m, cn/m}.

4.2 Sticking Contact Mode

During sticking contact the complementarity constraints in (8) become:

0 < cn, 0 < ct , λ = 0 (20)

The first inequality is direct consequence of being in contact, as in the previous case.
Since we are in sticking contact then a tangential force must exist to prevent sliding,
therefore ct must be greater than zero. A less intuitive justification can be garnered by
considering the complementarity constraints of (8) and noting that since the velocity
post contact will not have a component within the tangential plane of contact then
DT vk+1 = 0. In this scenario either eT ct = μcn which implies that frictional force
is at its boundary and the analysis will follow as in Sect. 4.1 or that eT ct ≤ μcn
which implies that the frictional force lies inside the friction cone. Note that simply
requiring that DT vk+1 = 0 will result in λ = 0. Where the frictional force lies inside
the boundary of its maximum, the LCP formulation from (8) simplifies to:

[
J T
n M−1 Jn J T

n M−1 Jt
J T
t M−1 Jn J T

t M−1 Jt

] [
cn
ct

]

+
[
J T
n b

J T
t b

]

= 0 (21)

We solve for cn and ct and replace expressions from (15):



674 N. Fazeli et al.

[
cn
ct

]

= −m

1 + m
I

(
J 2y + J 2x

)

[
1 + m

I J
2
x −m

I Jx Jy

−m
I Jx Jy 1 + m

I J
2
y

][
ẏk − hg + θ̇k Jy + h

m (Fy + m
I τ Jy)

ẋk + θ̇k Jx + h
m (Fx + m

I τ Jx )

]

(22)

Replacing the expressions for contact forces into the equation of motion (3), and
rearranging we have:

Y =
⎡

⎣
ẋk+1 + θ̇k Jx
ẏk+1 + θ̇k Jy
θ̇k+1 − θ̇k

⎤

⎦ , ψ1 =

⎡

⎢
⎢
⎢
⎢
⎣

−
(
J 2y + J 2x

)
ẋk+1 + J 2x ẋk + Jx Jy (ẏk − hg)

−
(
J 2y + J 2x

)
ẏk+1 + Jx Jy ẋk + J 2y (ẏk − hg)

−
(
J 2y + J 2x

)
θ̇k+1 − Jx ẋk − Jy (ẏk − hg)

⎤

⎥
⎥
⎥
⎥
⎦

ψ2 = h

⎡

⎣
−Fx J 2y + Fy Jx Jy − Jxτ
Fx Jx Jy − J 2x Fy − Jyτ
−Fx Jx − Fy Jy + τ

⎤

⎦ , ψ3 =
⎡

⎣
0
0

−(J 2x + J 2y )hτ

⎤

⎦ , ψ4 = h

⎡

⎣
Fx
Fy

0

⎤

⎦

Θ =
[

m
I

1
I

m
I 2

1
m

]T
, Ψ = [

ψ1 ψ2 ψ3 ψ4
]

(23)

By careful inspection we conclude that the inertial parameters m and I are uniquely
identifiable in the presence of known external forces (excluding gravity) and we can
infer contact forces from (22). Furthermore, if external forces are non-existent then
ψ2 = ψ3 = ψ4 = 0 and in this case only the ratio of mass to second moment of
inertia and the ratio of contact forces to the mass of the object are identifiable. These
results are consistent with sliding contact mode.

5 Examples: Block and Ellipse

In this section we apply the identifiability analysis in Sects. 4.1 and 4.2 to two exam-
ples: 2-D block and 2-D ellipse undergoing free-fall and colliding with a fix flat
surface perpendicular to the direction gravity. We use two data sets validating the
derivations: (i) simulated data using a numerical implementation of time-stepping
LCP and (ii) experimental data recorded with a high speed camera. In both scenarios
we measure the position, orientation and velocities of the bodies as they interact with
the environment and attempt to identify the inertial parameters.

5.1 Identification Formulation

We consider a rigid body as in Fig. 2 at contact, denoting pre-impact time step as k
and post impact time step as k + 1:
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⎡

⎣
ẋk+1

ẏk+1

θ̇k+1

⎤

⎦ =
⎡

⎣
ẋk
ẏk
θ̇k

⎤

⎦ + h

⎡

⎣
0

−g
0

⎤

⎦ + cn
m

⎡

⎣
0
1

m
I Jy

⎤

⎦ + ct
m

⎡

⎣
1
0

m
I Jx

⎤

⎦ (24)

Since we are interested in the inertial parameters and assume that no known external
forces (except gravity) act on the object during contact, from our analysis we can
identifym/I .With this inmind a simplemanipulation of (24) yields the least squares
optimization problem:

min
x

||Y − Ax ||2 (25)

where: Y = θ̇k+1 − θ̇k, A = (ẋk+1 − ẋk)Jx − (ẏk+1 − ẏk + hg)Jy, x = m

I

The solution of (25) yields an estimate of m/I . So far we have been agnostic to the
shape of the rigid body, we note that the shape of the object will affect the choice of
the contact Jacobian and will be case specific, in the subsequent sections we derive
expressions for the contact Jacobians of the block and ellipse.

5.1.1 2D Block

The block (Fig. 3) is modeled as a 2D square with length a, angle of rotation θ , center
of mass at location (x, y), mass m and second moment of inertia I . We define the
distance of the lowest vertex to the ground as a function of the configuration of the
block:

φn = min

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

f1(q) = y − a√
2
cos(π/4 − θ)

f2(q) = y − a√
2
cos(π/4 + θ)

f3(q) = y + a√
2
cos(π/4 − θ)

f4(q) = y + a√
2
cos(π/4 + θ)

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

(26)

Fig. 3 2D block in free-fall
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where fi (q) denotes the vertical distance of vertex i to the ground as a function of
the height of the center of mass of the block y and it orientation θ .

We derive the contact Jacobians by differentiating (12).We assume that the lowest
vertex is f1(q) and that we observe a single point contact, i.e., curvature does not
play a role, which means that ∂β

∂θ
= 0. Invoking (12) with this constraint and noting

that β = π/4 and l = a/
√
2 for vertex 1, the normal and tangential Jacobians are:

Jn =
[
0 1 − a√

2
sin(π/4 − θ)

]T
, Jt =

[
1 0 a√

2
cos(π/4 − θ)

]T
(27)

Note that for a simple case such as the square, we could arrive at the same expression
for the contact Jacobians simply by taking the partials of the contact constraints with
respect to the configurations:

h(q) =
[
y − a√

2
cos(π/4 − θ)

x − a√
2
sin(π/4 − θ)

]

, Jn = ∂h1(q)

∂q
, Jt = ∂h2(q)

∂q
(28)

5.1.2 2D Ellipse

The ellipse, depicted in Fig. 4, is geometrically interesting because of the relative
curvature between the surfaces in contact. Unlike the block, contact dynamics are
very sensitive to orientation. Small perturbations of the object’s orientation when in
contact produces small changes to the contact location.We parametrize the perimeter
curve of the ellipse by angle β, denote the major and minor radii of the ellipse with
a and b, and refer to the contact point by C . The angle θ denotes the orientation of
the ellipse with respect to line QC which for our purpose is the surface of contact.
To compute the Jacobian from (12) we use geometry to relate β and θ :

tan(π − θ) = −b

a
cot β

∂
∂θ−→ ∂β

∂θ
= −a

b

1 + tan2(π − θ)

1 + cot2(β)
(29)

Fig. 4 2D ellipse schematic
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We can write the distance of any point on the perimeter of an ellipse from its
center as:

l(β) = ab
√
b2 cos2 β + a2 sin2 β

∂l
∂θ−→ ∂l

∂θ
= ab(b2 − a2) sin 2β

2
√

(b2 cos2 β + a2 sin2 β)3

∂β

∂θ
(30)

Which allows us to find the expression for ∂l/∂θ . With these expressions we can can
complete the optimization of (25).

5.2 Results from Simulated Data

To demonstrate the identification procedure we implemented a time-stepping LCP
script to simulate a block and an ellipse with unit mass (kg), coefficient of restitution
of 0.6 bouncing on a flat rigid fixed surface that lies perpendicular to the direction of
the gravitational field and has 0.7 coefficient of friction. The ratio of mass to second
moment of inertia for the block and ellipse are 6 and 0.8 (m2) respectively. To generate
data, both bodies were given a random set of initial positions and velocities and the
simulation was run 100 times. Traces of example trajectories for the block and ellipse
are shown in Figs. 5 and 6.

Fig. 5 2D block trace
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Fig. 6 2D ellipse trace

We added gaussian noise ∼N (0, σ 2) to the simulated data collected (configura-
tions and velocities) where σ is a function of signal to noise ratio. We then used the
resulted signals to calculate m/J following the least squares formulation in (25).

Table1 shows the numerical results of the optimization as a function of signal to
noise ratiowhere thefirst columndenotes themean error betweenpredicted and actual
m/J value, the second column denotes the percent error and the final column denotes
the magnitude of the noise on measurements. We see good agreement between the
predicted and true parameter with low levels of noise and a steady deterioration of
prediction as noise is increased.We attribute the increasing errormostly to the contact
Jacobians. Poor evaluation of these variables results in poor behavior prediction,
which makes it difficult to estimate parameters.

Table 1 2D Block numerical simulation and identification results

Block Ellipse Noise

Mean error (m2)
± Std.

% error Mean error (m2)
± Std.

% error S.N.R. (dB)

−0.021±0.097 −0.35 −0.031 ± 0.101 −0.31 40

−0.125±0.311 −2.083 −0.136 ± 0.443 −2.34 30

−0.659±0.912 −10.98 −0.712 ± 0.820 −11.71 20

−3.491±1.366 −58.197 −4.891 ± 1.938 −80.44 10



Identifiability Analysis of Planar Rigid … 679

5.3 Results from Experimental Data

To further validate the identifiability analysis we constructed the experimental setup
in Figs. 7 and 8. We used two flat sheets of glass with support spacers to constraint in
the plane the motion of a falling object. For objects we used a 3D printed square of
2 in side and an ellipse with major and minor radii of 1.5 in and 1 in. For observing
the motion objects we used AprilTags [14] and a Fastec TS3 (Fastec Imaging Corp,
San Diego, CA) high speed camera recording at 500 fps, which proved relatively
sufficient to extract positions and orientations of the objects and velocity estimates
by low-pass filtering and differentiation. For each drop experiment we considered
the first 3 bounces and, and using the recovered configurations and velocities we
evaluated the contact Jacobians and formed the optimization in (25).

Figures 9 and 10 show the regression results from the data collected. We note
the very good agreement between the identified and true inertial parameter m/I. Part

Fig. 7 Experimental setup

Fig. 8 Frame from ellipse drop
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Fig. 9 Regression results: block, horizontal axes: A vertical axes: Y

Fig. 10 Regression results: ellipse, horizontal axes: A vertical axes: Y
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of the discrepancies can be attributed to small errors due to friction and jittering of
the objects as they slide over the glass and small deformations during contact. The
glass and the gap between were chosen to minimize friction and undesired motions
such as rotations out of plane, but small disturbances are difficult to prevent. The
deformations at contact were very small due to the rigidity of the objects but small
amounts of deformation may mean inaccuracies in the actual contact Jacobian and
can influence identification (Fig. 8).

6 Conclusions and Future Work

In this paper we investigated the problem of identifiability of inertial parameters and
contact forces for a rigid body as it interacts with the environment through contact.
The problem was broken down into the scenarios of sticking and sliding contact,
with and without the presence of known external forces acting on the body (other
than gravity). We showed that given a time history of the kinematic measurements of
the object, i.e. its positions, orientations and derivatives of these quantities, without
external force the parameters identifiable are the ratio of mass moment of inertia to
mass of the object, and the ratio of the tangential and normal forces to mass. We also
demonstrated that a known external force (other than gravity) acting on the object
during the contact phase, can help in decouple the mass and mass moment of inertia,
as well as the tangential and normal forces.

We validated the identifiability analysis on two planar free-falling rigid bodies
undergoing frictional impactwith the environment and showed that the results proved
to be consistent with the predictionsmade by the identifiability analysis. The analysis
was performed under assumptions which constitute the limitations of the work and
serve as possible motivation for future efforts in this type of analysis. Future work
could address issues such as increasing the number of simultaneous contacts, the
number of rigid bodies, articulated rigid bodies, and extending the formulation to
incorporate uncertainties in geometry.
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The Importance of a Suitable Distance
Function in Belief-Space Planning

Zakary Littlefield, Dimitri Klimenko, Hanna Kurniawati and Kostas E. Bekris

1 Introduction

Uncertainty is ubiquitous, since sensing is never perfect, actuators have errors, and a
robot’s operating environment is often unknown. Due to this imperfect information
and errors, the exact robot state is never perfectly known. Therefore, instead of
finding an optimal solution in the state space, many methods represent uncertainty
about the robot state as a probability distribution, and plan in the set of distributions
over states, called the belief space [12, 24, 25, 31]. The computational complexity
of planning in the belief space is much higher than in the state space because the size
of the belief space is doubly exponential in the number of state space dimensions.
Nevertheless, recent advances have shown that motion planning in belief space is
becoming practical for many medium size problems [1, 6, 9, 32].

Background: Interestingly, progress in belief-space planning has been achieved
through similar tools to those used in the deterministic case. In particular, this progress
was achieved by sampling a small set of representative beliefs and planning with
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respect to only this small set of sampled beliefs. In fact, many methods (e.g., [3,
18, 25]) in belief-space planning are extensions of sampling-based ones for the
deterministic case, such asPRM,RRT,PRM∗, andRRG [4, 7]. Thesemethods typically
restrict beliefs to be represented by Gaussian parameters or consider the maximum
likelihood estimate of the state.

Recentwork,which has shown that one can achieve asymptotic optimalitywithout
a steering function in the deterministic case [15, 20], has the potential to allow an
even more straightforward way to extend sampling-based planners to belief-space
planning. The similarity between deterministic planning without a steering function
and belief-space planning indicate that properties critical for deterministic motion
planning are likely to be critical for belief-space motion planning as well.

Similar to sampling-based methods for the deterministic case, many equivalent
approaches for belief-space planning rely on distances between beliefs to partially
guide their sampling and pruning operations [8, 12, 29].Many distance functions can
be potentially used and they can have significantly different effects in belief-space
planning. Nevertheless, the effectiveness of the different distance functions has not
been studied in the related literature on belief-space planning.

This paper focuses on understanding the suitability of commonly used distance
functions in belief-space motion planning. Commonly used functions, such as L1
and Kullback–Leibler divergence KL, in general ignore the underlying distance in
the state space. As a result, two beliefs whose supports do not overlap, but lie near
each other in the state space, will have the same distance as two beliefs whose sup-
ports lie very far away. Figure1 illustrates this issue. If the supports of the beliefs
are unbounded, the above problems are less severe, though they still exist. While the
Wasserstein or Earth Mover’s Distance (EMD) alleviates the aforementioned issue,
it has been rarely used in the related literature [11, 14]. This paper presents a com-
parative study of the effect of these metrics in two classes of belief space planning,
i.e., Non-ObservableMarkovDecision Processes (NOMDPs) and PartiallyObservable
Markov Decision Processes (POMDPs).

NOMDP Evaluation: NOMDP is the simplest class of belief-space planning, a
planning under uncertainty challenge where no observation is available. Despite its
simplicity, NOMDP has often been applied as an intermediate solution to complex
planning under uncertainty problems [10]. The simplicity of this class of problems
allow us to compare themetric on various complexmotion planning problems, which
are still unsolvable when the challenge is partially observable. To solve NOMDPs, this

Fig. 1 Illustration of the problem with L1 and KL. Suppose the state space X is the 1-dim. Natural
numbers and the distance dX(x, x ′) = |x − x ′|. Then, the L1 distance DL1(b1, b2) = DL1(b1, b3),
the KL distance DKL (b1, b2) = DKL (b1, b3), and the EMD distance DW (b1, b2) < DW (b1, b3)
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paper leverages recent results in deterministic motion planning that show asymptot-
ically optimal solutions [7] can be computed by sampling-based methods that do
not require steering functions [15, 20]. These methods are extended to solve NOMDP
problems. Such extensions are simpler compared to extending methods that require
a steering function, because computing a good steering function in the belief space
is non-trivial. Simulation results indicate that as the NOMDP problem becomes more
complex, the differences in the effectiveness of different distance functions become
quite prominent. In fact, in state spaceswithmore than 4 dimensions, just by replacing
L1 orKL distancewithEMD, the speed of solving the problems improves substantially
and the problems transition from virtually unsolvable to solvable.

POMDP Evaluation: The second class of problems in our comparative study
is the Partially Observable Markov Decision Processes (POMDP). To solve POMDP
problems, Monte Carlo Value Iteration (MCVI) [2] is used here, which is an offline
POMDP-solver designed for problems with continuous state spaces. In this paper,
we only apply the various metrics to a 2D navigation problem when evaluating the
performance in the POMDP framework, due to the limitation of existing POMDP
solvers in solving problems with large action spaces. Although this limitation means
we cannot yet show the full potential of EMD in POMDP, the preliminary result
reveals that EMD could significantly reduce the number of belief-space samples that
sampling-based POMDP-solvers need to reach a certain solution quality.

Overall Contributions: The results of this comparative study indicate that EMD
is more suitable than L1 and KL, and could significantly improve the performance
of belief space planning, even though its computation can be computationally more
expensive. Steps towards the efficient computation of the EMD are also described
here. Furthermore, this paper shows that EMD carries the Lipschitz continuity of the
cost function in the state space to Lipschitz continuity of expected cost in the belief
space. This is useful because this property is used in the convergence analysis of
several asymptotically optimal motion planning methods without a steering function
[15, 20], including methods for belief-space planning [12, 13].

2 Problem Setup for Comparative Study

A POMDP is a mathematically principled framework for planning under uncertainty
in discrete-time. Formally, a POMDP is defined as a tuple 〈S, A, O, T, Z , R, b0, γ 〉,
where S is the set of states, A is the set of actions, and O is the set of observations.
The notation T represents motion uncertainty and is defined as a conditional prob-
ability function T (s, a, s ′) = P(s ′|s, a), where s, s ′ ∈ S and a ∈ A. The notation Z
represents sensing uncertainty and is defined as a conditional probability function
Z(s ′, a, o) = P(o|s ′, a), where s ′ ∈ S, a ∈ A, and o ∈ O . At each step, a POMDP
agent is in a state s ∈ S, takes an action a ∈ A, moves from s to an end state s ′ ∈ S,
perceives an observation o ∈ O , and receives a reward R(s, a) for taking action a
from state s. However, a POMDP agent never knows this exact state, and instead rea-
sons with respect to distributions over states, called beliefs. At each step, the agent’s
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belief estimate is updated based on the action it just performed and the observation
perceived. The agent’s goal is to choose a suitable sequence of actions that will max-
imize its expected total reward, when the agent starts from the initial belief b0. When
the sequence of actions has infinite length, a discount factor γ ∈ (0, 1) is specified,
so that the total reward is finite and the problem is well defined.

The solution to aPOMDP problem is amapping frombeliefs to the best actions, and
is called an optimal policy.Apolicyπ induces a value functionVπ (b), which specifies
the expected total reward of executing policy π from belief b, and is computed as
Vπ (b) = E[∑∞

t=0 γ t R(st , at )|b, π ]. An optimal policy is the policy π∗ whose value
function Vπ∗(b) is the highest among all possible policies for any belief b.

A NOMDP is a class of POMDPs where observations are not available, i.e.,
Z(s, a, na) = 1 for any s ∈ S and a ∈ A. As a consequence, the solution of an
NOMDP is a nominal path, which maps time steps to the best actions.

The problem setups for both NOMDPs and POMDPs are geared towards motion
planningproblems, finding a strategy tomove fromone state to another.BothNOMDPs
and POMDPs use the same representation for state and action spaces, and for motion
uncertainty. The state space is a continuous metric space, denoted by X, that is
diffeomorphic to R

n , where n is the dimensionality of X. The action space is the
same as the control space, denoted as U, and typically has lower or equal dimension
than X. The motion uncertainty comes from actuation error, and is represented as a
stochastic dynamical system of the form:

x(t + Δt) = x(t) +
∫ t+Δt

t
f (x(t), ũ(t))dt, (1)

where x(t) ∈ X, ũ(t) ∈ U and Δt is a discrete time step. The control ũ(t) is the one
executed by the system, which does not always correspond to the input control u(t)
due to actuation error, i.e., there is an error vector w based on which:

ũ(t) = u(t) + w. (2)

The vector w is additive noise sampled from a probability distribution, which can be
any type of distribution.

Given that NOMDPs do not have observations, NOMDPs and POMDPs differ in
the objective function. NOMDPs use an objective function that is commonly used
in motion planning. In this paper, the defined NOMDP challenge involves finding a
sequence of control inputs that minimizes the cost, while ensuring that the collision
probability is lower than a given threshold and the probability of reaching the goal
is higher than a given threshold. More precisely, suppose p = (u1, u2, . . . , um) is
the sequence of input controls for the system. Each control input in the sequence is
applied for a unit time step, subsequently starting from the initial belief b0. This appli-
cation will induce a trajectory π

p
b = (b0, b1, b2, . . . , bm) that arises when applying

Eq.1 to the states in the support set of belief b0 and following the sequence p, given
the noise model w. The duration of a trajectory π is denoted as Tπ . If the trajectory π

is induced by pwith controls form time steps, then Tπ = m · Δt . A belief state along
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a trajectory π at time t is denoted as π(t). The cost of the trajectory π
p
b0
induced by p

is c(π p
b0

) = ∑m
i=1

∫
x∈X cost (x, ui ) · bi−1(x)dx . The goal of the NOMDP solver is to

find a control sequence p that generates a trajectory π
p
b0
for which the probability of

being in the goal region at time Tπ is above the threshold: P(π(Tπ ) ∈ XG)) > Pgoal ,
the probability for being in the free space is above the threshold: P f ree(π) > Pvalid ,
and which minimizes the cost c(π).

The objective function of POMDPs uses the commonly applied definition (Sect. 2).
The reward function, R(s, a) for any pair of state s and action a, is a summation
of collision cost and reward for being in the goal. The reason for this difference
in objective function is that solving a POMDP with probability constraints is still a
relatively open problem.

3 Distance Functions for Belief-Space Planning

Computing the optimal POMDP policy is computationally intractable [19]. In the past
several years, however, methods which can compute a good approximation to the
optimal policy fast have been proposed. Most of them rely on sampling, and depend
on distance functions. They can be classified into several distinct approaches.

Point-based techniques [12, 23, 27, 28] use sampling to construct a small but
representative set of beliefs, and find an approximately optimal policy by iteratively
computing Bellman backups [23] on the sampled beliefs. The key is the sampling
strategy, and some of the successful methods use distance functions to guide sam-
pling. For example, PBVI [23] only keeps a newly sampled belief whenever the L1
distance between the new and existing belief is larger than a certain threshold, while
GCS [13] uses EMD, and an alternative [8] uses KL divergence to perform similar
rejection sampling. A fast offline point-based solver [12] also uses L1 distance for
pruning. Point-based methods can handle any type of distributions but they have
difficulties in solving problems in large continuous action spaces.

This work evaluates four distance functions for belief-space planning. Two of
them, Kullback–Leibler (KL) and L1 divergence, are commonly used in belief-space
planning. In general, these two functions do not consider the underlying state-space
distance when computing distances between beliefs. This characteristic limits the
effectiveness of these two distance functions to guide sampling and pruning in the
belief space. To alleviate these problems, two alternatives are proposed here,Wasser-
stein (also known as Earth Mover’s Distance (EMD)) and Hausdorff distance. Both
of these functions compute distances based on an underlying state space distance.
They have not been widely used in belief-space planning, but they are widely used
in computer vision and optimal transport, which means efficient implementations
for these distance computations abound. For the following, the beliefs are defined as
distributions over a common state space, denoted as X.
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A. Wasserstein Distance/EMD: Intuitively, Wasserstein distance or EMD computes
the distance between two distributions as the amount of work to move the probability
mass of one distribution to another. More formally, EMD is defined as:

DW (b, b′) = inf
f

{∫

x∈X

∫

x ′∈X
dX(x, x ′) f (x, x ′)∂x∂x ′

∣
∣
∣
∣

b =
∫

x ′
f (x, x ′)dx ′ , b′(x ′) =

∫

x
f (x, x ′)dx

}

, (3)

where dX is the distance in the state space X and f is a joint density function.
EMD carries the Lipschitz continuity of a cost function in the state space to

Lipschitz continuity of expected cost in the belief space. Formally, let dX be
the distance function on a separable state space X and cost (x, u) be the cost of
applying control u ∈ U at state x ∈ X for the duration of one unit time. Let beliefs
b and b′ be distributions over X and let the cost function w.r.t. a belief b be
cost (b, u) = ∫

x∈X cost (x, u)b(x)dx .

Theorem For any control input u ∈ U, if the cost function satisfies Lipschitz continu-
ity in the state space, i.e., |cost (x, u) − cost (x ′, u)| ≤ C · dX(x, x ′) for any x ∈ X,
then the cost function in the belief space with the EMD metric is also Lipschitz
continuous: |cost (b, u) − cost (b′, u)| ≤ C · DW (b, b′).

Proof The proof is based on the well-known Kantorovich duality of the Wasserstein
distance [5]. The Kantorovich distance is defined as

DK (b, b′) = sup
g∈Lip1

(∫

x∈X
g(x)b(x) dx −

∫

x∈X
g(x)b(x) dx

)

,

where Lip1 is the set of all 1-Lipschitz functions over X. Now, by definition:

∣
∣cost (b, u) − cost (b′, u)

∣
∣ =

∣
∣
∣
∣

∫

x∈X
cost (x, u)b(x) dx −

∫

x∈X
cost (x, u)b′(x) dx

∣
∣
∣
∣ .

(4)
To satisfy the 1-Lipschitz requirement of the Kantorovich distance, we can use
the scaled distance function in the state space X, i.e., d ′

X
= C · dX. It is known

that if we use d ′
X

as the state space distance, then the belief space distance
D′

W = C · DW = C · DK . The last equality is due to the duality of the Kantorovich
and Wasserstein distance. This means that by using the state space metric d ′

X
,

Eq. (4) can be bounded as:
∣
∣cost (b, u) − cost (b′, u)

∣
∣ ≤ C · DK (b, b′), and hence∣

∣cost (b, u) − cost (b′, u)
∣
∣ ≤ C · DW (b, b′). 	


From the literature [11], it is known that the value function inPOMDPs is Lipschitz
continuous when the metric in the belief space is EMD. The above theorem uses a
similar proving strategy similar to the prior work [11] but generalizes the result to
any cost function that is Lipschitz continuous in the state space.
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B. Hausdorff Distance: Hausdorff distance is a popular metric in computer vision.
This function computes distance between two sets based on a max-min operation.
In terms of distances between beliefs, it is possible to define it with respect to the
beliefs’ support set. Slightly abusing the notation of the arguments, this function can
be defined in the belief space as:

DH (b, b′) = max{dH (b, b′), dH (b′, b)}

where dH (b, b′) = max
x∈support (b)

{

min
x ′∈support (b′)

{
dX(x, x ′)

}
}

,

and support (b) = {x ∈ X | b(x) > 0}, while dX(x, x ′) is the state space distance.
Hausdorff is simpler to compute than EMD. Nevertheless, since Hausdorff mea-

sures distances between sets, rather than distributions, it ignores the probability val-
ues. This means that if two distributions have exactly the same support, even though
the probabilities are significantly different, the two distributions will be considered
to lie at the same point in the belief space. This problem is exactly the opposite of
the problems faced by L1 and KL-divergence, as described below.

C. KL-Divergence: A commonly used distance function in belief-space planning
is the Kullback–Leibler (KL) divergence. It measures the difference in information
content between two distributions. More formally, KL divergence is defined as:

DKL(b, b
′) =

∫

x∈X
b(x)

(
ln b(x) − ln b′(x)

)
dx . (5)

In the general case, KL-divergence does not consider the underlying state space
distance. But, for certain distributions, it does so to some extent. For instance, when
applied to Gaussian beliefs, KL-divergence is partially based on the Euclidean dis-
tance of the mean. More completely, the KL-divergence between two multivariate
Gaussian beliefs, denoted as b1 = N (μ1,Σ1) and b2 = N (μ2,Σ2), is

DKL(b1, b2) = 1

2

(
(μ2 − μ1)

T Σ−1
1 (μ2 − μ1) + tr

(
Σ−1

2 Σ1
) + ln

|Σ2|
|Σ1| − K

)

,

(6)
where K is the dimension of the underlying state space.

When applied to general beliefs with continuous state space, one usually starts
by discretizing the state space X into uniform grid cells, and then computes the KL-
divergence using Eq. (5) as if the beliefs are discrete distributions. This computation
means that state-space distance is only considered up to the resolution of the grid
cells, which is very limited.

Note that KL divergence is not symmetric and hence is not a true metric. One
can symmetrize KL simply by adding the reverse distance or by computing distance

to the mean of the two distributions (i.e.,
DKL (b, b+b′

2 )+DKL (b′, b+b′
2 )

2 ). The later strategy
is called Jensen-Shannon divergence. In the accompanying comparative study, two
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implementations are used: (i) the Jensen-Shannon and (ii) an approximation of the
beliefs using Gaussian distributions per Eq. (6).

D. L1Distance: Another commonly used distance function in belief-space planning,
and also the simplest to compute, is L1, which is defined as:

DL1(b, b
′) =

∫

x∈X
|b(x) − b′(x)| dx .

Most belief-space planners use L1 distance for discrete distributions, that is X is
discrete and L1 is computed as a summation over X rather than an integration.

When the state space is continuous and L1 distance is used, then the state space
is discretized at a suitable resolution and the L1 distance computation is applied as
if the beliefs are distributions over the discretized state space. This discretization
means that L1 distance, similar to KL divergence, considers the underlying state-
space distance only up to the resolution of the state space discretization, which is
often very limited.

4 Algorithms for Comparative Study

To determine which distance function is most suitable for belief space planning given
its complexity, we employ a sampling-based framework.

A. Non-Observable Markov Decision Processes (NOMDPs): The framework fol-
lows tree sampling-based planners. It is based on a BestNear variant of RRT [17,
30] but is adapted to belief space planning. It has been formally shown - at least for
the deterministic case - that this method can improve path quality over time even
when there is no access to a steering function [15, 16]. Convergence to optimality
requires Lipschitz continuity in the state and control spaces.

Algorithm 1: SPARSE_BELIEF_TREE(B, U, b0, N , Tmax , δn, δs)

G = {V → {b0}, E → 0};1
for N iterations do2

bselected ← SelectNode (B,V ,δn);3
bnew ← Random_Prop (bselect , U, Tmax );4
if IsNodeLocallyBest (bnew, S, δs) then5

V ← V ∪ {bnew};6

E ← E ∪ {bselect → bnew};7
Prune_Dominated_Nodes(bnew, V, E, δs );8

An outline of the algorithmic framework is shown in Algorithm 1. As input, the
planner receives the belief space B, control space U, initial belief b0 and number
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of iterations N . In addition, Algorithm 1 receives a maximum propagation duration
Tmax and two radius parameters δn and δs , which are explained below. The selection
process (Line 3) is summarized in Algorithm 2. A random δ-belief distribution brand
is first sampled in the belief space B and the set of belief distributions Bnear within a
distance threshold δn is computed. If no belief is found within this threshold, then the
closest distribution is returned, similar to the basic RRT approach. If there are beliefs
in the set DB, then the one with the best cost, e.g., trajectory duration, is returned.

Algorithm 2: SelectNode(B, V, δn)

brand ← Sample_Belief(B);1
Bnear ←Near(V, brand , δn);2
If Bnear = ∅ return Nearest(V, brand );3
Else return argminb∈Bnearcost(b);4

Line 4 of Algorithm 1 is the propagation primitive used to add new belief states to
the tree. The subroutine is detailed in Algorithm 3. First, a time duration is uniformly
sampled up to amaximum time Tmax . The sampled timemust be a constantmultiple of
the minimum Δt in order to satisfy the requirement for piece-wise constant control
inputs, which are sampled after the time duration. Given these control inputs, the
belief distribution can be updated through the transition model.

Algorithm 3: Random_Prop(bprop, U, Tmax )

t ← Sample(0, Tmax ); ϒ ← Sample(U, t);1

return bnew ← ∫ t
0 T(b(t), ϒ(t))bprop dt ;2

To perform pruning, the set of nodes V in the tree data structure G(V, E) of
algorithm Algorithm 1 are split into two subsets Vactive and Vinactive. Nodes in Vactive

have the best cost from the start in a neighborhood of radius δs around them. These
nodes are considered for propagation by the algorithm. Nodes that are dominated by
others in terms of path cost in their local neighborhood, are:

• Pruned if they are leaves or have no children in Vactive.
• Or added to the set Vinactive if they do have children in Vactive. Nodes in Vinactive

are not selected for propagation.

Algorithm 4 details a simple operation to determine how to prune existing nodes in
the tree. It is called only if the new belief distribution bnew has the best cost in its
local δs neighborhood. Then, the set of existing nodes that are dominated in terms
of path cost are set to be inactive. If these nodes are also leaves of the tree, they are
removed from the tree. This process can continue up the tree if the parents were also
inactive. It helps to reduce the size of the stored tree and promotes the selection of
nodes with good path quality.
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Algorithm 4: Pruning(bnew,G, δs)
Bdominated ← FindDominated(G, bnew, δs);1
for b ∈ Bdominated do2

b.set_inactive();3
while IsLeaf (b) and b is inactive do4

xparent ←Parent(b);5

E ← E \ {bparent → b};6
V ← V \ {b};7
b ← bparent ;8

It is apparent that throughout the operation of this sampling-based framework for
belief space planning, there is heavy use of distance calls and a significant dependence
on the choice of the distance function.

B. Partially Observable Markov Decision Processes (POMDPs): The framework
follows a point-based approach, similar to Monte Carlo Value Iteration (MCVI)[2],
an extension of SARSOP [12]. The later is considered the fastest offline and general
POMDP solver for problemswith continuous state space. TheMCVImethod is slightly
modified to use the distance function for pruning sampled beliefs. Algorithm 5 details
the algorithm employed for POMDPs, which incorporates SARSOP as its sampling
strategy (Line 6). The function Nearest (b) in Line 7 and 8 returns the belief in the
treeT that is nearest to belief b. The only modification made to MCVI is the addition
of the condition in Line 7, which rejects a newly sampled belief whenever its nearest
neighbor in T is within a given threshold.

Algorithm 5: ModifiedMCVI(b0)

Initialize belief tree T by setting b0 as the root of T ;1
Initialize policy graph 	 with an empty graph ;2

Initialize the upper bound V of the value function to be ∞ ;3
Initialize the lower bound V of the value function to be -∞ ;4

while |V (b0) − V (b0)| > ε do5
Sample new belief b ;6
if distance(b, Nearest (b)) < δth then7

b ← Nearest (b) ;8

else9
Add b to T ;10

MCVI Backup(	, b) ;11

V = UpdateUpperBound(b) ;12
V = UpdateLowerBound(b) ;13

C. Algorithmic Details to Improve Speed: The implementation of the distance
functions was optimized to reduce computation time. KL and L1 distances were
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implemented through the use of binning. The full state space grid is not required,
only the nonzero entry bins. This allows dealing with high-dimensional problems,
saves space, and reduces computation time. The Hausdorff and EMD functions do not
require binning but become much more efficient using bins. The bin width is chosen
so that several individual bins can be contained within the pruning radius δs when
solving NOMDPs. This discretization introduces an approximation error.

To further speed up the EMD computation, an approximation is employed to occa-
sionally replace the expensive call to the standard method. The motivation stems
from the fact that if two distributions are too far apart, their EMD distance is close
to the distance between their centroids. So, if two distributions overlap according to
their diameters and their discretization, then the standard call to theEMD computation
is performed. Otherwise, the distance between the two centroids is used, which is a
fast operation.

In the following experiments KL-Gaussian represents the approximation of a set
of particles as a Gaussian distribution and performs distances using the closed form
expression from Eq.6. This distance function does not use binning as the Gaussian
parametrization provides an efficient representation.

5 Experimental Evaluation

5.1 Non-observable Markov Decision Processes (NOMDPs)

All distances are evaluated in the scenarios shown in Fig. 2. All scenarios produce
non-Gaussian belief distributions due to the nonlinear dynamics. The objective is to
reach a goal region in state-space with at least 90% probability. Valid trajectories
have a collision probability of less than 20%.

2D Rigid Body. This introductory example is a 2D rigid body moving among two
narrow corridors. Due to errors in actuation and requirement for collision avoidance,
the robot can only move through the lower corridor. The state space is 2D (x, y) and
the control space is also 2D (v, θ), where v ∈ [0, 10] and θ ∈ [−π, π ]. The dynamics

Fig. 2 The considered scenarios, which are better viewed in color. The 2D rigid body (left) must
move from the left to the right side. The car (left middle) must drive through one of 3 corridors.
The fixed-wing airplane (middle right), must move to the opposite corner while avoiding cylinders.
The manipulator (right) must push the round object into the storage location at the top right
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follow this model:
ẋ = ṽ cos(θ̃), ẏ = ṽ sin(θ̃),

where ṽ = v + N (0, 1) and θ̃ = θ + N (0, 0.3). Numerical integration is per-
formed using Euler integration.

2nd -order Car. A four-wheeled vehicle with dynamics needs to reach a goal region,
while ensuring low collision probability. The state space is 5D (x, y, θ, v, ω), the
control space is 2D (a, ω̇) ∈ ([−1, 1], [−2, 0.2]), actuation error is (N (0, 0.05),
N (0, 0.002)), and the dynamics are:

ẋ = v cos(θ) cos(ω), ẏ = v sin(θ) cos(ω),

θ̇ = v sin(ω), v̇ = ã.

Numerical integration is performed using Runge-Kutta order four (RK4). The envi-
ronment is more complex than before since there are multiple feasible paths through
each of the 3 corridors.

Fixed-wing airplane. An airplane flying among multiple cylinders. The state
space is 9D (x, y, z, v, α, β, θ, ω, τ), the control space is 3D (τdes ∈ [4, 8], αdes ∈
[−1.4, 1.4], βdes ∈ [−1, 1]) and the dynamics are (from [21]):

ẋ = v cos(ω) cos(θ), ẏ = v cos(ω) sin(θ)), ż = v sin(ω),

v̇ = τ ∗ cos(β) − Cdkv
2 − g sin(ω), ω̇ = cos(α)(

τ sin(β)

v
+ Clkv) − g

cos(ω)

v
,

θ̇ = v
sin(α)

cos(ω)
(
τ sin(β)

v
+ Clkv), τ̇ = τ̃des − τ α̇ = α̃des − α, β̇ = β̃des − β,

where τ̃des = τdes + N (0, 0.03), α̃des = τdes + N (0, 0.01), and β̃des = βdes +
N (0, 0.01). Numerical integration is performed using RK4. This problem has a
state space that is generally larger than most planners in belief space can handle
computationally. Leveraging sampling-based techniques with proper distance func-
tions makes planning for the airplane model possible.

Non-prehensile manipulator. The task is to push an object to the goal. The state
space is 5D (xman, yman, xobj , yobj , θmanip) and the control space is 2D (v, θ), where
v ∈ [0, 10] and θ ∈ [−π, π ]. The dynamics are:

ẋman = ṽ cos(θ̃), ẏman = ṽ sin(θ̃),

where ṽ = v + U (−1, 1) and θ̃ = θ + U (−0.3, 0.3). Numerical integration is per-
formed using RK4. The object cannot be moved unless the manipulator moves in the
direction of the object and pushes it, which implies that there is contact between the
manipulator and the object. Once pushed, the object moves as if it is attached to the
manipulator. Notice that the noise model used in this setup is a uniform distribution,
meaning that the resulting belief distributions are clearly non-Gaussian.
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Fig. 3 Results for the 2D rigid body - better viewed in color

Fig. 4 Results for the car. L1 and KL failed to produce solutions within the time constraint

Fig. 5 Results for the airplane. L1 and KL failed to produce solutions within the time constraint

Experimental Setup and Results: Each combination of distance function and algo-
rithm is evaluated in each of the four scenarios described in the previous subsection.
The key criterion is the success rate for finding solutions in the allotted time. The
distance thresholds in the algorithms for each metric are selected so that a similar
number of nodes is kept among all alternatives. This allows for a fair comparison on
the effect of a metric to the quality of sample placement. The experiments were exe-
cuted on Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70GHz machines. Each experiment
is repeated 30 times with different random seeds. The results are averaged over these
runs and are presented in Figs. 3, 4, 5 and 6.

In most scenarios, belief metrics that do consider the underlying state-space dis-
tance, such as EMD, Hausdorff, and KL-Gaussian, perform significantly better than
those that do not. KL and L1 metrics consider the state space distance up to the
resolution of the state space discretization (as described in Sect. 4). Such considera-
tion is sufficient when the state space is small (as in Fig. 3). As the size of the state
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Fig. 6 Manipulation results. L1 and KL failed to produce solutions within the time constraint

space increases, this is no longer sufficient. These results corroborated the hypothesis
regarding the importance of taking into account the underlying state space distance
in computing distance between beliefs.

EMD performs substantially better than the alternatives since it considers both
state space distance and the distributions. The Hausdorff distance performs better
than L1 and KL because it still considers the underlying state-space distance. But
Hausdorff does not consider the distribution, and therefore is outperformed by EMD.
KL-Gaussian performs better than L1 and KL because it considers the mean and
variance of the corresponding Gaussian and in this way considers the underlying
state space distance. Nevertheless, the usefulness of this distance function depends
on how well a Gaussian distribution approximates the actual distribution.

The path costs achieved by the different metrics for successful runs are compa-
rable. Therefore, the success rate is the key criterion for evaluating the effect of the
different metrics to the performance of belief-space planners.

Fig. 7 The normalized costs over time for EMD show the benefit of providing improving solutions.
Each trial’s initial solution is normalized to 1. The cost over time is shown with one st. dev
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Results on Cost Reduction Over Time: Figure7 normalizes to one the first solution
generated for each individual run of the algorithm using EMD. Then, all subsequent
improvements to the path cost are plotted relative to the initial cost. The figure
averages all runs, all of which show improvement over time. The improvement is
most prominent for the manipulator experiments. This comparison is performed only
for EMD as it provides the best performance. Path cost can also improve over time
using Hausdorff and KL-Gaussian but there are fewer data points to extract useful
conclusions given the reduced success ratio of these metrics.

5.2 Partially Observable Markov Decision Processes
(POMDPs)

The different distance functions are tested on a 2D navigation problem (Fig. 8a).
The robot is a point robot, and may start from any position marked by the blue
region. Its task is to reach the goal region (the large circular region on the right)
as fast as possible while avoiding collision with obstacles (the grey polygons) as
much as possible. The robot’s motion is discretized into 5 actions, which is moving
a unit distance in the direction of N, NE, E, SE, and S. Its motion has error, which
is represented as a bounded uniform distribution. The robot can only localize itself
up to a certain accuracy inside the small circular regions on the left of the obstacles.
The problem is modeled as a POMDP with continuous state space, but with discrete
action and observation spaces. The reward function of the POMDPmodel is a sum of
the goal reward, collision penalty, and moving cost.

Experimental Setup: The original and modified MCVI method (Algorithm 5) is
evaluated separately for the L1, KL, and EMDmetrics. To set the required parameters,
such as distance threshold, short preliminary runs with various parameters were
executed. The best parameters for each method were retained. Each method was then
executed with the appropriate parameters to generate 15 different sets of policies.
To generate each set of policies, the method is ran until the difference between the
upper and lower bound of the initial belief is less than a given threshold, so that at
the end of the runs, the quality of the policies generated by the different methods are
similar. Throughout each run, the method outputs the intermediate policies at every

ResultsScenario

Fig. 8 Comparative study on a POMDP problem
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time interval and at every time the policy graph reaches a certain size. Each policy is
then evaluated through 1, 000 simulation runs. The expected total discounted reward
of a method is computed as the average total discounted reward over all simulation
runs of all the policies generated by the same method within the same interval.

Results: The results are presented in Fig. 8b–c. They indicate that EMD significantly
improves placement of sampled beliefs. Nevertheless, the benefit of using EMD
degrades over time. The reason is that a naive implementation of distance computa-
tion is used, checking the distance between a new sampled belief and all beliefs that
are already in the belief tree. As time increases, the size of the belief tree increases,
and so is the time taken for this computation. This step affects the EMD computation
much more than other metrics because each EMD evaluation is more expensive. Nev-
ertheless, there has been a lot of work on speeding up EMD computation [22, 26],
which can help to alleviate this problem.

It would be interesting to see how the POMDP evaluation with EMD performs on
problems with similar scale as the NOMDP scenarios. Nevertheless, existing POMDP
solvers cannot solve problems with action spaces and planning horizon as large and
as long as the examples used in the case of NOMDPs (i.e., beyond the 2D rigid body
scenario). Nevertheless, as shown in the case of theNOMDP results, the benefit ofEMD
becomesmore visible as the problem becomesmore complex. This is likely to be true
for POMDPs as well. The cost of reward computation in the POMDP test case is neg-
ligible. In more complex motion planning problems, the reward computation often
includes expensive collision checks. In such problems, the ability to solve problems
with smaller number of sampled beliefs, which reduces the number of backup oper-
ations (and hence reward computations), would be more beneficial. Therefore, the
expectation is that EMD would show additional benefits when the POMDP problems
represent more complex planning problems.

6 Discussion and Conclusion

This work demonstrates that using the Wasserstein distance in belief space plan-
ning provides significant improvements over commonly used alternatives, such as
Kullback–Leibler divergence andL1 distance. This is especially apparent when plan-
ning for higher-dimensional systems. By considering an appropriate metric in belief
space, it is possible to gain benefits from recent advances in sampling-based planning,
which allow the computation of trajectories of increasing path quality.

With the rise of new methods for belief space planning, it is time to take a step
back to understand critical components that make belief space planners performwell.
This paper is a preliminary attempt to provide such an insight.
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Robobarista: Object Part Based Transfer
of Manipulation Trajectories from
Crowd-Sourcing in 3D Pointclouds

Jaeyong Sung, Seok Hyun Jin and Ashutosh Saxena

1 Introduction

Consider the espresso machine in Fig. 1 — even without having seen the machine
before, a person can prepare a cup of latte by visually observing the machine and by
reading a natural language instruction manual. This is possible because humans have
vast prior experience of manipulating differently-shaped objects that share common
parts such as ‘handles’ and ‘knobs’. In this work, our goal is to enable robots to
generalize their manipulation ability to novel objects and tasks (e.g. toaster, sink,
water fountain, toilet, soda dispenser). Using a large knowledge base of manipula-
tion demonstrations, we build an algorithm that infers an appropriate manipulation
trajectory given a point-cloud and natural language instructions.

The key idea in our work is that many objects designed for humans share many
similarly-operated object parts such as ‘handles’, ‘levers’, ‘triggers’, and ‘buttons’;
andmanipulationmotions canbe transferred even amongcompletely different objects
if we representmotionswith respect to object parts. For example, even if the robot has
never seen the ‘espresso machine’ before, the robot should be able to manipulate it if
it has previously seen similarly-operated parts in other objects such as ‘urinal’, ‘soda
dispenser’, and ‘restroom sink’ as illustrated in Fig. 2. Object parts that are operated
in similar fashion may not carry the same part name (e.g., ‘handle’) but would rather
have some similarity in their shapes that allows the motion to be transferred between
completely different objects.
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Fig. 1 First encounter of an espresso machine by our PR2 robot. Without ever having seen the
machine before, given the language instructions and a point-cloud from Kinect sensor, our robot
is capable of finding appropriate manipulation trajectories from prior experience using our deep
learning model

Fig. 2 Object part and natural language instructions input to manipulation trajectory as output.
Objects such as the espresso machine consist of distinct object parts, each of which requires a
distinct manipulation trajectory for manipulation. For each part of the machine, we can re-use a
manipulation trajectory that was used for some other object with similar parts. So, for an object
part in a point-cloud (each object part colored on left), we can find a trajectory used to manipulate
some other object (labeled on the right) that can be transferred (labeled in the center). With
this approach, a robot can operate a new and previously unobserved object such as the ‘espresso
machine’, by successfully transferring trajectories from other completely different but previously
observed objects. Note that the input point-cloud is very noisy and incomplete (black represents
missing points)

If the sole task for the robot is to manipulate one specific espresso machine or just
a few types of ‘handles’, a roboticist could manually program the exact sequence to
be executed. However, in human environments, there is a large variety in the types
of object and their instances. Classification of objects or object parts (e.g. ‘handle’)
alone does not provide enough information for robots to actually manipulate them.
Thus, rather than relying on scene understanding techniques [7, 17, 33], we directly
use 3D point-cloud for manipulation planning using machine learning algorithms.
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Such machine learning algorithms require a large dataset for training. However,
collecting such large dataset of expert demonstrations is very expensive as it requires
joint physical presence of the robot, an expert, and the object to be manipulated.
In this work, we show that we can crowd-source the collection of manipulation
demonstrations to the public over the web through our Robobarista platform and still
outperform the model trained with expert demonstrations.

The key challenges in our problem are in designing features and a learning model
that integrates three completely different modalities of data (point-cloud, language
and trajectory), and in handling significant amount of noise in crowd-sourced manip-
ulation demonstrations. Deep learning has made impact in related application areas
(e.g., vision [5, 29], natural language processing [47]). In this work, we present a
deep learning model that can handle large noise in labels, with a new architecture
that learns relations between the three different modalities. Furthermore, in contrast
to previous approaches based on learning from demonstration (LfD) that learn a
mapping from a state to an action [4], our work complements LfD as we focus on
the entire manipulation motion (as opposed to a sequential state-action mapping).

In order to validate our approach, we have collected a large dataset of 116 objects
with 250 natural language instructions for which there are 1225 crowd-sourced
manipulation trajectories from71non-expert users via ourRobobaristaweb platform
(http://robobarista.cs.cornell.edu). We also present experiments on our robot using
our approach. In summary, the key contributions of this work are:

• a novel approach to manipulation planning via part-based transfer between dif-
ferent objects that allows manipulation of novel objects,

• incorporation of crowd-sourcing to manipulation planning,
• introduction of deep learningmodel that handles threemodalities with noisy labels
from crowd-sourcing, and

• contribution of the first large manipulation dataset and experimental evaluation on
this dataset.

2 Related Work

Scene Understanding. There has been great advancement in scene understanding
[28, 33, 63], in human activity detection [21, 52], and in features for RGB-D images
and point-clouds [31, 48]. And, similar to our idea of using part-based transfers,
the deformable part model [17] was effective in object detection. However, classi-
fication of objects, object parts, or human activities alone does not provide enough
information for a robot to reliably plan manipulation. Even a simple category such
as kitchen sinks has so much variation in its instances, each differing in how it is
operated: pulling the handle upwards, pushing upwards, pushing sideways, and so
on. On the other hand, direct perception approach skips the intermediate object labels
and directly perceives affordance based on the shape of the object [16, 30]. It focuses

http://robobarista.cs.cornell.edu
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on detecting the part known to afford certain action such as ‘pour’ given the object,
while we focus on predicting the correct motion given the object part.

Manipulation Strategy. For highly specific tasks, many works manually sequence
different controllers to accomplish complicated tasks such as baking cookies [8] and
folding the laundry [35], or focus on learning specific motions such as grasping [26]
and opening doors [13]. Others focus on learning to sequence different movements
[36, 53] but assume that there exist perfect controllers such as grasp and pour.

For a more general task of manipulating new instances of objects, previous
approaches rely on finding articulation [41, 51] or using interaction [25], but they are
limited by tracking performance of a vision algorithm. Many objects that humans
operate daily have parts such as “knob” that are small, which leads to significant
occlusion asmanipulation is demonstrated. Another approach using part-based trans-
fer between objects has been shown to be successful for grasping [10, 12].We extend
this approach and introduce a deep learning model that enables part-based transfer of
trajectories by automatically learning relevant features. Our focus is on the general-
ization of manipulation trajectory via part-based transfer using point-clouds without
knowing objects a priori and without assuming any of the sub-steps (‘approach’,
‘grasping’, and ‘manipulation’).

Learning from Demonstration (LfD). The most successful approach for teaching
robots tasks, such as helicopter maneuvers [1] or table tennis [37], has been based
on LfD [4]. Although LfD allows end users to demonstrate the task by simply taking
the robot arms, it focuses on learning individual actions and separately relies on high
level task composition [11, 34] or is often limited to previously seen objects [39, 40].
We believe that learning a single model for an action like “turning on” is impossible
because human environment has many variations.

Unlike learning a model from demonstration, instance-based learning [2, 15]
replicates one of the demonstrations. Similarly,we directly transfer one of the demon-
strations but focus on generalizingmanipulation planning to completely new objects,
enabling robots to manipulate objects they have never seen before.

Deep Learning. There has been great success with deep learning, especially in the
domains of vision and natural language processing (e.g. [29, 47]). In robotics, deep
learning has previously been successfully used for detecting grasps on multi-channel
input of RGB-D images [32] and for classifying terrain from long-range vision [18].

Deep learning can also solve multi-modal problems [32, 38] and structured prob-
lems [46]. Our work builds on prior works and extends neural network to handle
three modalities which are of completely different data type (point-cloud, language,
and trajectory) while handling lots of label-noise originating from crowd-sourcing.

Crowd-sourcing. Teaching robots how to manipulate different objects has often
relied on experts [1, 4]. Among previous efforts to scale teaching to the crowd [9,
23, 54], Forbes et al. [15] employs a similar approach towards crowd-sourcing but
collects multiple instances of similar table-top manipulation with same object, and
others build web-based platform for crowd-sourcing manipulation [56, 57]. These
approaches either depend on the presence of an expert (due to a required special
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software) or require a real robot at a remote location. Our Robobarista platform
borrows some components of [3], but works on any standard web browser with
OpenGL support and incorporates real point-clouds of various scenes.

3 Our Approach

The intuition for our approach is thatmany differently-shaped objects share similarly-
operated object parts; thus, themanipulation trajectory of an object can be transferred
to a completely different object if they share similarly-operated parts. We formulate
this problem as a structured prediction problem and introduce a deep learning model
that handles three modalities of data and deals with noise in crowd-sourced data.
Then, we introduce the crowd-sourcing platform Robobarista to easily scale the
collection of manipulation demonstrations to non-experts on the web.

3.1 Problem Formulation

The goal is to learn a function f that maps a given pair of point-cloud p ∈ P of
object part and language l ∈ L to a trajectory τ ∈ T that can manipulate the object
part as described by free-form natural language l:

f : P × L → T

Point-cloud Representation. Each instance of point-cloud p ∈ P is represented
as a set of n points in three-dimensional Euclidean space where each point (x, y, z)
is represented with its RGB color (r, g, b): p = {p(i)}ni=1 = {(x, y, z, r, g, b)(i)}ni=1.
The size of the set vary for each instance. These points are often obtained by stitching
together a sequence of sensor data from an RGBD sensor [22].

Trajectory Representation. Each trajectory τ ∈ T is represented as a sequence
of m waypoints, where each waypoint consists of gripper status g, translation
(tx , ty, tz), and rotation (rx , ry, rz, rw) with respect to the origin: τ = {τ (i)}mi=1 =
{(g, tx , ty, tz, rx , ry, rz, rw)(i)}mi=1 where g ∈ {“open”, “closed”, “holding”}. g
depends on the type of the end-effector, which we have assumed to be a two-
fingered gripper like that of PR2 or Baxter. The rotation is represented as quaternions
(rx , ry, rz, rw) instead of the more compact Euler angles to prevent problems such as
the gimbal lock [43].

SmoothTrajectory. To acquire a smooth trajectory fromawaypoint-based trajectory
τ , we interpolate intermediate waypoints. Translation is linearly interpolated and the
quaternion is interpolated using spherical linear interpolation (Slerp) [45].
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3.2 Can Transferred Trajectories Adapt
Without Modification?

Even if we have a trajectory to transfer, a conceptually transferable trajectory is not
necessarily directly compatible if it is represented with respect to an inconsistent
reference point.

To make a trajectory compatible with a new situation without modifying the
trajectory, we need a representation method for trajectories, based on point-cloud
information, that allows a direct transfer of a trajectory without any modification.

Challenges. Making a trajectory compatible when transferred to a different object
or to a different instance of the same object without modification can be challenging
depending on the representation of trajectories and the variations in the location of
the object, given in point-clouds.

For robots with high degrees of freedom arms such as PR2 or Baxter robots, tra-
jectories are commonly represented as a sequence of joint angles (in configuration
space) [55]. With such representation, the robot needs to modify the trajectory for an
object with forward and inverse kinematics even for a small change in the object’s
position and orientation. Thus, trajectories in the configuration space are prone to
errors as they are realigned with the object. They can be executed without modifica-
tion only when the robot is in the exact same position and orientation with respect
to the object.

One approach that allows execution without modification is representing trajec-
tories with respect to the object by aligning via point-cloud registration (e.g. [15]).
However, if the object is large (e.g. a stove) and has many parts (e.g. knobs and han-
dles), then object-based representation is prone to errors when individual parts have
different translation and rotation. This limits the transfers to be between different
instances of the same object that is small or has a simple structure.

Lastly, it is even more challenging if two objects require similar trajectories, but
have slightly different shapes. And this is made more difficult by limitations of the
point-cloud data. As shown in left of Fig. 2, the point-cloud data, even when stitched
from multiple angles, are very noisy compared to the RGB images.

Our Solution. Transferred trajectories become compatible across different objects
when trajectories are represented (1) in the task space rather than the configuration
space, and (2) in the principal-axis based coordinate frame of the object part rather
than the robot or the object.

Trajectories can be represented in the task space by recording only the position and
orientation of the end-effector. By doing so, we can focus on the actual interaction
between the robot and the environment rather than the movement of the arm. It is
very rare that the arm configuration affects the completion of the task as long as there
is no collision. With the trajectory represented as a sequence of gripper position and
orientation, the robot can find its arm configuration that is collision free with the
environment using inverse kinematics.
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However, representing the trajectory in task space is not enough to make transfers
compatible. It has to be in a common coordinate frame regardless of object’s orienta-
tion and shape. Thus, we align the negative z-axis along gravity and align the x-axis
along the principal axis of the object part using PCA [20]. With this representation,
even when the object part’s position and orientation changes, the trajectory does not
need to change. The underlying assumption is that similarly operated object parts
share similar shapes leading to a similar direction in their principal axes.

4 Deep Learning for Manipulation Trajectory Transfer

We use deep learning to find the most appropriate trajectory for the given point-
cloud and natural language. Deep learning is mostly used for binary or multi-class
classification or regression problem [5] with a uni-modal input. We introduce a deep
learning model that can handle three completely different modalities of point-cloud,
language, and trajectory and solve a structural problem with lots of label noise.

The original structured prediction problem ( f : P × L → T ) is converted to a
binary classification problem ( f : (P × L ) × T → {0, 1}). Intuitively, the model
takes the input of point-cloud, language, and trajectory and outputs whether it is a
good match (label y = 1) or a bad match (label y = 0).

Model. Given an input of point-cloud, language, and trajectory, x = ((p, l), τ ), as
shown at the bottom of Fig. 3, the goal is to classify as either y = 0 or 1 at the top. The
first h1 layer learns a separate layer of features for each modality of x (= h0) [38].
The next layer learns the relations between the input (p, l) and the output τ of the
original structured problem, combining two modalities at a time. The left combines
point-cloud and trajectory and the right combines language and trajectory. The third

Fig. 3 Our deep learning model for transferring manipulation trajectory. Our model takes the input
x of three different modalities (point-cloud, language, and trajectory) and outputs y, whether it is a
good match or bad match. It first learns features separately (h1) for each modality and then learns
the relation (h2) between input and output of the original structured problem. Finally, last hidden
layer h3 learns relations of all these modalities
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layer h3 learns the relation between these two combinations of modalities and the
final layer y represents the binary label.

Every layer hi uses the rectified linear unit [65] as the activation function:

hi = a(Wihi−1 + bi ) where a(·) = max(0, ·)

with weights to be learned Wi ∈ RM×N , where M and N represent the number of
nodes in (i − 1)-th and i-th layer respectively. The logistic regression is used in last
layer for predicting the final label y. The probability that x = ((p, l), τ ) is a “good
match” is computed as: P(Y = 1|x;W, b) = 1/(1 + e−(Wx+b)).

LabelNoise.When data contains lots of noisy label (noisy trajectory τ ) due to crowd-
sourcing, not all crowd-sourced trajectories should be trusted as equally appropriate
as will be shown in Sect. 7.

For every pair of input (p, l)i , we have Ti = {τi,1, τi,2, ..., τi,ni }, a set of trajec-
tories submitted by the crowd for (p, l)i . First, the best candidate label τ ∗

i ∈ Ti for
(p, l)i is selected as one of the labels with the smallest average trajectory distance
(Sect. 5) to other labels:

τ ∗
i = argmin

τ∈Ti

1

ni

ni∑

j=1

�(τ, τi, j )

We assume that at least half of the crowd tried to give a reasonable demonstration.
Thus a demonstration with the smallest average distance to all other demonstrations
must be a good demonstration.

Once we have found the most likely label τ ∗
i for (p, l)i , we give the label 1 (“good

match”) to ((p, l)i , τ ∗
i ), making it the first positive example for the binary classifi-

cation problem. Then we find more positive examples by finding other trajectories
τ ′ ∈ T such that �(τ ∗

i , τ ′) < tg where tg is a threshold determined by the expert.
Similarly, negative examples are generated by finding trajectories τ ′ ∈ T such that
it is above some threshold �(τ ∗

i , τ ′) > tw, where tw is determined by expert, and
they are given label 0 (“bad match”).

Pre-training. We use the stacked sparse de-noising auto-encoder (SSDA) to train
weights Wi and bias bi for each layer [61, 65]. Training occurs layer by layer
from bottom to top trying to reconstruct the previous layer using SSDA. To learn
parameters for layer i , we build an auto-encoder which takes the corrupted output
h̃i−1 (binomial noisewith corruption level p) of previous layer as input andminimizes
the loss function [65] with max-norm constraint [49]:

W ∗ = argmin
W

‖ĥi−1 − hi−1‖22 + λ‖hi‖1
where ĥi−1 = f (Wihi + bi ) hi = f (WiT h̃i−1 + bi ) h̃i−1 = hi−1X

‖Wi‖2 ≤ c X ∼ B(1, p)
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Fine-tuning. The pre-trained neural network can be fine-tuned by minimizing the
negative log-likelihood with the stochastic gradient method with mini-batches:
NLL = −∑|D|

i=0 log(P(Y = yi |xi ,W, b)). To prevent over-fitting to the training
data, we used dropout [19], which randomly drops a specified percentage of the
output of every layer.

Inference. Given the trained neural network, inference step finds the trajectory τ

that maximizes the output through sampling in the space of trajectory T :

argmax
τ ′∈T

P(Y = 1|x = ((p, l), τ ′);W, b)

Since the space of trajectory T is infinitely large, based on our idea that we can
transfer trajectories across objects, we only search trajectories that the model has
seen in training phase.

Data pre-processing. As seen in Sect. 3.1, each of the modalities (p, l, τ ) can have
any length. Thus, we pre-process to make each fixed in length.

We represent point-cloud p of any arbitrary length as an occupancy grid where
each cell indicates whether any point lives in the space it represents. Because point-
cloud p consists of only the part of an object which is limited in size, we can represent
p using two occupancy grids of size 10 × 10 × 10 with different scales: one with
each cell representing 1 × 1 × 1 (cm) and the other with each cell representing
2.5 × 2.5 × 2.5 (cm).

Each language instruction is represented as a fixed-size bag-of-words representa-
tionwith stopwords removed. Finally, for each trajectory τ ∈ T , we first compute its
smooth interpolated trajectory τs ∈ Ts (Sect. 3.1), and then normalize all trajectories
Ts to the same length while preserving the sequence of gripper status.

5 Loss Function for Manipulation Trajectory

Prior metrics for trajectories consider only their translations (e.g. [27]) and not their
rotations and gripper status. We propose a new measure, which uses dynamic time
warping, for evaluating manipulation trajectories. This measure non-linearly warps
two trajectories of arbitrary lengths to produce amatching, and cumulative distance is
computed as the sum of cost of all matchedwaypoints. The strength of thismeasure is
that weak ordering is maintained among matched waypoints and that every waypoint
contributes to the cumulative distance.

For two trajectories of arbitrary lengths, τA = {τ (i)
A }mA

i=1 and τB = {τ (i)
B }mB

i=1, we
definematrix D ∈ R

mA×mB , where D(i, j) is the cumulative distance of an optimally-
warped matching between trajectories up to index i and j , respectively, of each
trajectory. The first column and the first row of D is initialized as D(i, 1) =∑i

k=1 c(τ
(k)
A , τ

(1)
B )∀i ∈ [1,mA] and D(1, j) = ∑ j

k=1 c(τ
(1)
A , τ

(k)
B )∀ j ∈ [1,mB],

where c is a local cost function between two waypoints (discussed later). The rest of
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D is completed using dynamic programming: D(i, j) = c(τ (i)
A , τ

( j)
B ) + min{D(i −

1, j − 1), D(i − 1, j), D(i, j − 1)}.
Given the constraint that τ

(1)
A is matched to τ

(1)
B , the formulation ensures that

every waypoint contributes to the final cumulative distance D(mA,mB). Also, given
a matched pair (τ

(i)
A , τ

( j)
B ), no waypoint preceding τ

(i)
A is matched to a waypoint

succeeding τ
( j)
B , encoding weak ordering.

The pairwise cost function c between matched waypoints τ
(i)
A and τ

( j)
B is defined:

c(τ (i)
A , τ

( j)
B ;αT , αR , β, γ ) = w(τ

(i)
A ; γ )w(τ

( j)
B ; γ )

(
dT (τ

(i)
A , τ

( j)
B )

αT
+ dR(τ

(i)
A , τ

( j)
B )

αR

)(
1 + βdG (τ

(i)
A , τ

( j)
B )

)

where dT (τ
(i)
A , τ

( j)
B ) = ||(tx , ty , tz)(i)A − (tx , ty , tz)

( j)
B ||2

dR(τ
(i)
A , τ

( j)
B ) = angle difference between τ

(i)
A and τ

( j)
B

dG (τ
(i)
A , τ

( j)
B ) = �(g(i)

A = g( j)
B )

w(τ (i); γ ) = exp(−γ · ||τ (i)||2)

The parameters α, β are for scaling translation and rotation errors, and gripper status
errors, respectively. γ weighs the importance of a waypoint based on its distance to
the object part. Finally, as trajectories vary in length, we normalize D(mA,mB) by the
number of waypoint pairs that contribute to the cumulative sum, |D(mA,mB)|path∗

(i.e. the length of the optimal warping path), giving the final form:

distance(τA, τB) = D(mA,mB)

|D(mA,mB)|path∗

This distance function is used for noise-handling in our model and as the final eval-
uation metric.

6 Robobarista: Crowd-Sourcing Platform

In order to collect a large number ofmanipulation demonstrations from the crowd,we
built a crowd-sourcing web platform that we call Robobarista (see Fig. 4). It provides
a virtual environment where non-expert users can teach robots via a web browser,
without expert guidance or physical presence with a robot and a target object.

The system simulates a situation where the user encounters a previously unseen
target object and a natural language instruction manual for its manipulation. Within
the web browser, users are shown a point-cloud in the 3-D viewer on the left and
a manual on the right. A manual may involve several instructions, such as “Push
down and pull the handle to open the door”. The user’s goal is to demonstrate how
to manipulate the object in the scene for each instruction.



Robobarista: Object Part Based Transfer of Manipulation Trajectories … 711

Fig. 4 Screen-shot of Robobarista, the crowd-sourcing platform running on Chrome browser. We
have built Robobarista platform for collecting a large number of crowd demonstrations for teaching
the robot

The user starts by selecting one of the instructions on the right to demonstrate
(Fig. 4). Once selected, the target object part is highlighted and the trajectory edit bar
appears below the 3-D viewer. Using the edit bar, which works like a video editor,
the user can playback and edit the demonstration. Trajectory representation as a set
of waypoints (Sect. 3.1) is directly shown on the edit bar. The bar shows not only the
set of waypoints (red/green) but also the interpolated waypoints (gray). The user can
click the ‘play’ button or hover the cursor over the edit bar to examine the current
demonstration. The blurred trail of the current trajectory (ghosted) demonstration is
also shown in the 3-D viewer to show its full expected path.

Generating a full trajectory from scratch can be difficult for non-experts. Thus,
similar to Forbes et al. [15], we provide a trajectory that the system has already seen
for another object as the initial starting trajectory to edit.1

In order to simulate a realistic experience of manipulation, instead of simply
showing a static point-cloud, we have overlaid CADmodels for parts such as ‘handle’
so that functional parts actually move as the user tries to manipulate the object.

A demonstration can be edited by: (1) modifying the position/orientation of a
waypoint, (2) adding/removing a waypoint, and (3) opening/closing the gripper.
Once a waypoint is selected, the PR2 gripper is shown with six directional arrows
and three rings. Arrows are used tomodify positionwhile rings are used tomodify the
orientation. To add extra waypoints, the user can hover the cursor over an interpolated
(gray) waypoint on the edit bar and click the plus(+) button. To remove an existing
waypoint, the user can hover over it on the edit bar and click minus(−) to remove.
As modification occurs, the edit bar and ghosted demonstration are updated with a
new interpolation. Finally, for editing the status (open/close) of the gripper, the user
can simply click on the gripper.

1We have made sure that it does not initialize with trajectories from other folds to keep 5-fold
cross-validation in experiment section valid.
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For broader accessibility, all functionality of Robobarista, including 3-D viewer,
is built using Javascript and WebGL.

7 Experiments

Data. In order to test our model, we have collected a dataset of 116 point-clouds of
objects with 249 object parts (examples shown in Fig. 5). There are also a total of 250
natural language instructions (in 155 manuals).2 Using the crowd-sourcing platform
Robobarista, we collected 1225 trajectories for these objects from 71 non-expert
users on the Amazon Mechanical Turk. After a user is shown a 20-s instructional
video, the user first completes a 2-min tutorial task. At each session, the user was
asked to complete 10 assignments where each consists of an object and a manual to
be followed.

For each object, we took raw RGB-D images with the Microsoft Kinect sensor
and stitched them using Kinect Fusion [22] to form a denser point-cloud in order to
incorporate different viewpoints of objects. Objects range from kitchen appliances
such as ‘stove’, ‘toaster’, and ‘rice cooker’ to ‘urinal’, ‘soap dispenser’, and ‘sink’
in restrooms. The dataset will be made available at http://robobarista.cs.cornell.edu.

Baselines. We compared our model against several baselines:

(1) Random Transfers (chance): Trajectories are selected at random from the set of
trajectories in the training set.

Fig. 5 Examples from our dataset, each of which consists of a natural language instruction (top),
an object part in point-cloud representation (highlighted), and a manipulation trajectory (below)
collected via Robobarista. Objects range from kitchen appliances such as stove and rice cooker
to urinals and sinks in restrooms. As our trajectories are collected from non-experts, they vary in
quality from being likely to complete the manipulation task successfully (left of dashed line) to
being unlikely to do so successfully (right of dashed line)

2Although not necessary for training our model, we also collected trajectories from the expert for
evaluation purposes.

http://robobarista.cs.cornell.edu
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(2)Object Part Classifier: To test our hypothesis that intermediate step of classifying
object part does not guarantee successful transfers, we built an object part classifier
using multiclass SVM [58] on point-cloud features including local shape features
[28], histogram of curvatures [42], and distribution of points. Once classified, the
nearest neighbor among the same object part class is selected for transfer.
(3) Structured support vector machine (SSVM): It is a standard practice to hand-code
features for SSVM [59], which is solved with the cutting plane method [24]. We
used our loss function (Sect. 5) to train and experimented with many state-of-the-art
features.
(4) Latent Structured SVM (LSSVM) + kinematic structure: The way an object is
manipulated depends on its internal structure, whether it has a revolute, prismatic,
or fixed joint. Borrowing from Sturm et al. [51], we encode joint type, center of the
joint, and axis of the joint as the latent variable h ∈ H in Latent SSVM [64].
(5) Task-Similarity Transfers + random: It finds the most similar training task using
(p, l) and transfer any one of the trajectories from the most similar task. The pair-
wise similarities between the test case and every task of the training examples are
computed by average mutual point-wise distance of two point-clouds after ICP [6]
and similarity in bag-of-words representations of language.
(6) Task-similarity Transfers+weighting: The previous method is problematic when
non-expert demonstrations for the same task have varying qualities. Forbes et al. [15]
introduces a score function for weighting demonstrations based onweighted distance
to the “seed” (expert) demonstration. Adapting to our scenario of not having any
expert demonstration, we select the τ that has the lowest average distance from all
other demonstrations for the same task (similar to noise handling of Sect. 4).
(7) Our model without Multi-modal Layer: This deep learning model concatenates
all the input of three modalities and learns three hidden layers before the final layer.
(8)Our model without Noise Handling: Our model is trained without noise handling.
All of the trajectory collected from the crowd was trusted as a ground-truth label.
(9) Our model with Experts: Our model is trained using trajectory demonstrations
from an expert which were collected for evaluation purpose.

7.1 Results and Discussions

We evaluated all models on our dataset using 5-fold cross-validation and the results
are in Table1. Rows list the models we tested including our model and baselines.
Each column shows one of three evaluations. First two use dynamic time warping for
manipulation trajectory (DTW-MT) from Sect. 5. The first column shows averaged
DTW-MT for each instruction manual consisting of one or more language instruc-
tions. The second column shows averaged DTW-MT for every test pair (p, l).

As DTW-MT values are not intuitive, we added the extra column “accuracy”,
which shows the percentage of transferred trajectories with DTW-MT value less
than 10. Through expert surveys, we found that when DTW-MT of manipulation
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Table 1 Results on our dataset with 5-fold cross-validation. Rows list models we tested including
our model and baselines. And each column shows a different metric used to evaluate the models

Models Per manual Per instruction

DTW-MT DTW-MT Accuracy (%)

Chance 28.0 (±0.8) 27.8 (±0.6) 11.2 (±1.0)

Object part classifier – 22.9 (±2.2) 23.3 (±5.1)

Structured SVM 21.0 (±1.6) 21.4 (±1.6) 26.9 (±2.6)

LSSVM + kinematic
[51]

17.4 (±0.9) 17.5 (±1.6) 40.8 (±2.5)

Similarity + random 14.4 (±1.5) 13.5 (±1.4) 49.4 (±3.9)

Similarity + weights
[15]

13.3 (±1.2) 12.5 (±1.2) 53.7 (±5.8)

Ours w/o Multi-modal 13.7 (±1.6) 13.3 (±1.6) 51.9 (±7.9)

Ours w/o
noise-handling

14.0 (±2.3) 13.7 (±2.1) 49.7 (±10.0)

Ours with experts 12.5 (±1.5) 12.1 (±1.6) 53.1 (±7.6)

Our model 13.0 (±1.3) 12.2 (±1.1) 60.0 (±5.1)

trajectory is less than 10, the robot came up with a reasonable trajectory and will
very likely be able to accomplish the given task.

Can manipulation trajectory be transferred from completely different objects?
Our full model performed 60.0% in accuracy (Table1), outperforming the chance as
well as other baseline algorithms we tested on our dataset.

Figure6 shows two examples of successful transfers and one unsuccessful transfer
byourmodel. In thefirst example, the trajectory for pullingdownona cereal dispenser
is transferred to a coffee dispenser. Because our approach to trajectory representation
is based on the principal axis (Sect. 3.2), even though cereal and coffee dispenser
handles are located and oriented differently, the transfer is a success. The second
example shows a successful transfer from aDC power supply to a slow cooker, which
have “knobs” of similar shape. The transfer was successful despite the difference in
instructions (“Turn the switch..” and “Rotate the knob..”) and object type.

The last example of Fig. 6 shows an unsuccessful transfer. Despite the similarity
in two instructions, transfer was unsuccessful because the grinder’s knob was facing
towards the front and the speaker’s knob was facing upwards. We fixed the z-axis
along gravity because point-clouds are noisy and gravity can affect some manipula-
tion tasks, but a more reliable method for finding the object coordinate frame and a
better 3-D sensor should allow for more accurate transfers.

Does it ensure that the object is actually correctly manipulated? We do not
claim that our model can find and execute manipulation trajectories for all objects.
However, for a large fraction of objects which the robot has never seen before,
our model outperforms other models in finding correct manipulation trajectories.
The contribution of this work is in the novel approach to manipulation planning
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Fig. 6 Examples of successful and unsuccessful transfers of manipulation trajectory from left to
right using our model. In first two examples, though the robot has never seen the ‘coffee dispenser’
and ‘slow cooker’ before, the robot has correctly identified that the trajectories of ‘cereal dispenser’
and ‘DC power supply’, respectively, can be used to manipulate them

which enables robots to manipulate objects they have never seen before. For some
of the objects, correctly executing a transferred manipulation trajectory may require
incorporating visual and force feedbacks [60, 62] in order for the execution to adapt
exactly to the object as well as find a collision-free path [50].

Can we crowd-source the teaching of manipulation trajectories? When we
trained our full model with expert demonstrations, which were collected for eval-
uation purposes, it performed at 53.1% compared to 60.0% by our model trained
with crowd-sourced data. Even with the significant noise in the label as shown in
last two examples of Fig. 5, we believe that our model with crowd demonstrations
performed better because our model can handle noise and because deep learning
benefits from having a larger amount of data. Also note that all of our crowd users
are real non-expert users from Amazon Mechanical Turk.

Is segmentation required for the system? In vision community, even with the
state-of-the-art techniques [14, 29], detection of ‘manipulatable’ object parts such
as ‘handle’ and ‘lever’ in point-cloud is by itself a challenging problem [31]. Thus,we
rely on human expert to pre-label parts of object to be manipulated. The point-cloud
of the scene is over-segmented into thousands of supervoxels, from which the expert
chooses the part of the object to be manipulated. Even with the input of the expert,
segmented point-clouds are still extremely noisy because of the poor performance
of the sensor on object parts with glossy surfaces.

Is intermediate object part labeling necessary? The Object Part Classifier per-
formed at 23.3%, even though the multiclass SVM for finding object part label
achieved over 70% accuracy in five major classes of object parts (‘button’, ‘knob’,
‘handle’, ‘nozzle’, ‘lever’) among 13 classes. Finding the part label is not sufficient
for finding a good manipulation trajectory because of large variations. Thus, our
model which does not need part labels outperforms the Object Part Classifier.

Can features be hand-coded? What kinds of features did the network learn?
For both SSVM and LSSVM models, we experimented with several state-of-the-art
features for many months, and they gave 40.8%. The task similarity method gave
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Fig. 7 Visualization of a sample of learned high-level feature (two nodes) at last hidden layer h3.
The point-cloud in the picture is given arbitrary axis-based color for visualization purpose. The
left shows a node #1 at layer h3 that learned to (“turn”, “knob”, “clockwise”) along with relevant
point-cloud and trajectory. The right shows a node #51 at layer h3 that learned to “pull” handle. The
visualization is created by selecting a set of words, a point-cloud, and a trajectory that maximize
the activation at each layer and passing the highest activated set of inputs to higher level

a better result of 53.7%, but it requires access to all of the raw training data (all
point-clouds and language) at test time, which leads to heavy computation at test
time and requires a large storage as the size of training data increases.

While it is extremely difficult to find a good set of features for three modalities,
our deep learning model which does not require hand-designing of features learned
features at the top layer h3 such as those shown in Fig. 7. The left shows a node
that correctly associated point-cloud (axis-based coloring), trajectory, and language
for the motion of turning a knob clockwise. The right shows a node that correctly
associated for the motion of pulling the handle.

Also, as shown for two other baselines using deep learning, when modalities were
simply concatenated, it gave 51.9%, and when noisy labels were not handled, it gave
only 49.7%. Both results show that our model can handle noise from crowd-sourcing
while learning relations between three modalities.

7.2 Robotic Experiments

As the PR2 robot stands in front of the object, the robot is given a natural language
instruction and segmented point-cloud. Using our algorithm, manipulation trajecto-
ries to be transferred were found for the given point-clouds and languages. Given the
trajectories which are defined as set of waypoints, the robot followed the trajectory by
impedance controller (ee_cart_imped) [8]. Some of the examples of successful
execution on PR2 robot are shown in Fig. 8 and in video at the project website: http://
robobarista.cs.cornell.edu.

http://robobarista.cs.cornell.edu
http://robobarista.cs.cornell.edu
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Fig. 8 Examples of transferred trajectories being executed on PR2. On the left, PR2 is able to rotate
the ‘knob’ to turn the lamp on. On the right, using two transferred trajectories, PR2 is able to hold
the cup below the ‘nozzle’ and press the ‘lever’ of ‘coffee dispenser’

8 Conclusion

In this work, we introduced a novel approach to predicting manipulation trajectories
via part based transfer, which allowed robots to successfully manipulate objects it
has never seen before.We formulated it as a structured-output problem and presented
a deep learning model capable of handling three completely different modalities of
point-cloud, language, and trajectory while dealing with large noise in the manipula-
tion demonstrations. We also designed a crowd-sourcing platform Robobarista that
allowed non-expert users to easily give manipulation demonstration over the web.
Our deep learning model was evaluated against many baselines on a large dataset of
249 object parts with 1225 crowd-sourced demonstrations. In future work, we plan
to share the learned model using the knowledge-engine, RoboBrain [44].

Acknowledgements We thank Joshua Reichler for building the initial prototype of the crowd-
sourcing platform. We thank Ian Lenz and Ross Knepper for useful discussions. This research was
funded in part by Microsoft Faculty Fellowship (to Saxena), NSF Career award (to Saxena) and
Army Research Office.

References

1. Abbeel, P., Coates, A., Ng, A.: Autonomous helicopter aerobatics through apprenticeship learn-
ing. IJRR (2010)

2. Aha, D.W., Kibler, D.: Albert. M.K.: Instance-based learning algorithms. Mach. Learn. 6(1),
37–66 (1991)

3. Alexander, B., Hsiao, K., Jenkins, C., Suay, B., Toris, R.: Robot web tools [ros topics]. IEEE
Robot. Autom. Mag. 19(4), 20–23 (2012)

4. Argall, B., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demon-
stration. Robot. Auton. Syst. 57(5), 469–483 (2009)

5. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives.
IEEE Trans. Pattern Analysis Mach. Intell. 35(8), 1798–1828 (2013)

6. Besl, P.J., McKay, N.D.: Method for registration of 3-d shapes. In: International Society for
Optics and Photonics, Robotics-DL tentative, pp. 586–606 (1992)

7. Blaschko, M., Lampert, C.: Learning to localize objects with structured output regression. In:
ECCV (2008)

8. Bollini, M., Barry, J., Rus, D.: Bakebot: baking cookies with the pr2. In: IROS PR2 Workshop
(2011)



718 J. Sung et al.

9. Crick, C., Osentoski, S., Jay, G., Jenkins, O.C.: Human and robot perception in large-scale
learning from demonstration. In: HRI, ACM (2011)

10. Dang, H., Allen, P.K.: Semantic grasping: planning robotic grasps functionally suitable for an
object manipulation task. In: IROS (2012)

11. Daniel, C., Neumann, G., Peters, J.: Learning concurrent motor skills in versatile solution
spaces. In: IROS, IEEE (2012)

12. Detry, R., Ek, C.H., Madry, M., Kragic, D.: Learning a dictionary of prototypical grasp-
predicting parts from grasping experience. In: ICRA (2013)

13. Endres, F., Trinkle, J., Burgard, W.: Learning the dynamics of doors for robotic manipulation.
In: IROS (2013)

14. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with dis-
criminatively trained part-based models. PAMI 32(9), 1627–1645 (2010)

15. Forbes, M., Chung, M.J.-Y., Cakmak, M., Rao, R.P.: Robot programming by demonstration
with crowdsourced action fixes. In: Second AAAI Conference on Human Computation and
Crowd sourcing (2014)

16. Gibson, J.J.: TheEcologicalApproach toVisual Perception. PsychologyPress,Hillsdale (1986)
17. Girshick, R., Felzenszwalb, P., McAllester, D.: Object detection with grammar models. In:

NIPS (2011)
18. Hadsell, R., Erkan,A., Sermanet, P., Scoffier,M.,Muller,U., LeCun,Y.:Deepbelief net learning

in a long-range vision system for autonomous off-road driving. In: IROS, pp. 628–633. IEEE
(2008)

19. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving
neural networks by preventing co-adaptation of feature detectors (2012). arXiv: 1207.0580

20. Hsiao, K., Chitta, S., Ciocarlie, M., Jones, E.: Contact-reactive grasping of objects with partial
shape information. In: IROS (2010)

21. Hu, N., Lou, Z., Englebienne, G., Krse, B.: Learning to recognize human activities from soft
labeled data. In: Proceedings of Robotics: Science and Systems, Berkeley, USA (2014)

22. Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P. et al.: Kinectfusion:
real-time 3d reconstruction and interaction using amoving depth camera. In: ACMSymposium
on UIST (2011)

23. Jain, A., Wojcik, B., Joachims, T., Saxena, A.: Learning preferences for manipulation tasks
from online coactive feedback. Int. J. Robot. Res. 34(10), 1296–1313 (2015)

24. Joachims, T., Finley, T., Yu, C.-N.J.: Cutting-plane training of structural svms. Mach. Learn.
(2009)

25. Katz, D., Kazemi, M., Bagnell, J.A., Stentz, A.: Interactive segmentation, tracking, and kine-
matic modeling of unknown 3d articulated objects. In: ICRA, pp. 5003–5010. IEEE (2013)

26. Kehoe, B., Matsukawa, A., Candido, S., Kuffner, J., Goldberg, K.: Cloud-based robot grasping
with the google object recognition engine. In: ICRA (2013)

27. Koppula, H., Saxena, A.: Anticipating human activities using object affordances for reactive
robotic response. In: RSS (2013)

28. Koppula, H., Anand, A., Joachims, T., Saxena, A.: Semantic labeling of 3d point clouds for
indoor scenes. In: NIPS (2011)

29. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

30. Kroemer,O.,Ugur, E.,Oztop, E., Peters, J.:Akernel-based approach to direct action perception.
In: ICRA (2012)

31. Lai, K., Bo, L., Fox,D.: Unsupervised feature learning for 3d scene labeling. In: ICRA (2014)
32. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. In: RSS (2013)
33. Li, L.-J., Socher, R., Fei-Fei, L.: Towards total scene understanding: classification, annotation

and segmentation in an automatic framework. In: CVPR (2009)
34. Mangin, O., Oudeyer, P.-Y. et al.: Unsupervised learning of simultaneous motor primitives

through imitation. In: IEEE ICDL-EPIROB (2011)

http://arxiv.org/abs/1207.0580


Robobarista: Object Part Based Transfer of Manipulation Trajectories … 719

35. Miller, S., Van Den Berg, J., Fritz, M., Darrell, T., Goldberg, K., Abbeel, P.: A geometric
approach to robotic laundry folding. IJRR (2012)

36. Misra, D., Sung, J., Lee, K., Saxena, A.: Tell me dave: context-sensitive grounding of natural
language to mobile manipulation instructions. In: RSS (2014)

37. Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select and generalize striking
movements in robot table tennis. IJRR 32(3), 263–279 (2013)

38. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In:
ICML (2011)

39. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of motor skills by
learning from demonstration. In: ICRA (2009)

40. Phillips, M., Hwang, V., Chitta, S., Likhachev, M.: Learning to plan for constrained manipula-
tion from demonstrations. In: RSS (2013)

41. Pillai, S., Walter, M., Teller, S.: Learning articulated motions from visual demonstration. In:
RSS (2014)

42. Rusu, R., Cousins, S.: 3D is here: Point Cloud Library (PCL). In: ICRA (2011)
43. Saxena, A. Driemeyer, J., Ng, A.: Learning 3-d object orientation from images. In: ICRA

(2009)
44. Saxena, A., Jain, A., Sener, O., Jami, A., Misra, D.K., Koppula. H.S.: Robo brain: large-scale

knowledge engine for robots. Technical report, August 2014
45. Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH 19(3), 245–254 (1985)
46. Socher, R., Lin, C.C., Manning, C., Ng, A.Y.: Parsing natural scenes and natural language with

recursive neural networks. In: ICML (2011)
47. Socher, R., Pennington, J., Huang, E., Ng, A., Manning, C.: Semi-supervised recursive autoen-

coders for predicting sentiment distributions. In: EMNLP (2011)
48. Socher, R., Huval, B., Bhat, B., Manning, C., Ng, A.: Convolutional-recursive deep learning

for 3d object classification. In: NIPS (2012)
49. Srivastava, N.: Improving neural networks with dropout. Ph.D. thesis, University of Toronto

(2013)
50. Stilman, M.: Task constrained motion planning in robot joint space. In: IROS (2007)
51. Sturm, J., Stachniss, C., Burgard, W.: A probabilistic framework for learning kinematic models

of articulated objects. JAIR 41(2), 477–526 (2011)
52. Sung, J., Ponce, C., Selman, B., Saxena, A.: Unstructured human activity detection from rgbd

images. In: ICRA (2012)
53. Sung, J., Selman, B., Saxena, A.: Synthesizing manipulation sequences for under-specified

tasks using unrolled markov random fields. In: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (2014)

54. Tellex, S., Knepper, R., Li, A., Howard, T., Rus, D., Roy, N.: Asking for help using inverse
semantics. RSS (2014)

55. Thrun, S., Burgard, W., Fox, D., et al.: Probabilistic Robotics. MIT press, Cambridge (2005)
56. Toris, R., Chernova, S.: Robots for me and robots for you. In: Proceedings of the Interactive

Machine Learning Workshop, Intelligent User Interfaces Conference, pp. 10–12 (2013)
57. Toris, R., Kent, D., Chernova, S.: The robot management system: a framework for conducting

human-robot interaction studies through crowdsourcing. J. Hum.-Robot Interact. 3(2), 25–49
(2014)

58. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for
interdependent and structured output spaces. In: ICML ACM (2004)

59. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y., Singer, Y.: Large margin methods for
structured and interdependent output variables. JMLR, 6(9) (2005)

60. Vina, F., Bekiroglu, Y., Smith, C., Karayiannidis, Y., Kragic, D.: Predicting slippage and learn-
ing manipulation affordances through gaussian process regression. In: Humanoids (2013)

61. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust
features with denoising autoencoders. In: ICML (2008)

62. Wieland, S., Gonzalez-Aguirre, D., Vahrenkamp, N., Asfour, T., Dillmann, R.: Combining
force and visual feedback for physical interaction tasks in humanoid robots. In: Humanoid
Robots (2009)



720 J. Sung et al.

63. Wu, C., Lenz, I., Saxena, A.: Hierarchical semantic labeling for task-relevant rgb-d perception.
In: RSS (2014)

64. Yu, C.-N., Joachims, T.: Learning structural svms with latent variables. In: ICML (2009)
65. Zeiler, M.D., Ranzato, M., Monga, R. et al.: On rectified linear units for speech processing. In:

ICASSP (2013)


	Foreword
	Preface
	Contents
	Part I Cognitive Robotics and Learning
	Session Summary

	Bridging the Robot Perception Gap  with Mid-Level Vision
	1 Introduction
	2 Related Work
	2.1 RANSAC-Based Object Pose Recognition

	3 Mid-Level Perception and Robust Pose Estimation
	3.1 Semantic Scene Segmentation Using Mid-Level  Visual Cues
	3.2 Recursive RANSAC-Based Registration for Pose Estimation

	4 Experiments
	4.1 LN-66 Dataset for Textureless Industrial Objects

	5 Conclusion
	References

	Deep Feature Learning for Acoustics-Based Terrain Classification
	1 Introduction
	2 Related Work
	3 Deep Convolutional Neural Network for Acoustic  Based Terrain Classification
	3.1 Preprocessing and Spectrogram Extraction
	3.2 Network Architecture and Training
	3.3 Noise Aware Fine-Tuning

	4 Data Collection and Labeling
	5 Experimental Results
	5.1 Baseline Comparison
	5.2 Overall DCNN Performance
	5.3 Varying Clip Length
	5.4 Robustness to Noise

	6 Conclusion
	References

	Generalizing Over Uncertain Dynamics  for Online Trajectory Generation
	1 Introduction
	2 Related Work
	3 Completely Observable Dynamics
	3.1 Representation and Learning
	3.2 Maximum Mean Discrepancy
	3.3 Trajectory Optimization
	3.4 Online Execution

	4 Partially Observable Dynamics
	5 Experiments
	5.1 Airplane Control
	5.2 Manipulation Control

	6 Conclusion
	References

	Inverse KKT -- Learning Cost Functions  of Manipulation Tasks from Demonstrations
	1 Introduction
	2 Constrained Trajectory Optimization
	3 Inverse KKT Motion Optimization
	4 Related Work
	4.1 Max-Entropy and Lagrangian-Based IOC Approaches
	4.2 Black-Box Inverse Optimal Control
	4.3 Task Space Extraction
	4.4 Model-Free Imitation Learning

	5 Experiments
	5.1 Different Weight Parametrizations in a Benchmark Scenario
	5.2 Sliding a Box on a Table
	5.3 Opening a Door with a PR2

	6 Conclusion
	References

	Autonomously Acquiring Instance-Based Object Models from Experience
	1 Introduction
	2 Grasping System
	2.1 Object Detection
	2.2 Object Classification
	2.3 Pose Estimation
	2.4 Grasping

	3 Autonomously Acquiring Object Models
	4 Bandit-Based Model Adaptation
	4.1 Algorithm
	4.2 Simulation

	5 Evaluation
	5.1 Mapping
	5.2 Pick and Place

	6 Related Work
	7 Conclusion
	References

	Transition State Clustering: Unsupervised Surgical Trajectory Segmentation for Robot Learning
	1 Introduction
	2 Related Work and Background
	3 Problem Setup and Model
	4 Transition State Clustering
	4.1 Background: Bayesian Statistics
	4.2 Transition States Identification
	4.3 Transition State Pruning
	4.4 Transition State Compaction
	4.5 State-Space Clustering
	4.6 Time Clustering

	5 Results
	5.1 Experiment 1. Synthetic Example of 2-Segment Trajectory
	5.2 Surgical Experiments: Evaluation Tasks
	5.3 Experiment 2. Pruning and Compaction
	5.4 Experiment 3. Can Vision Help?
	5.5 Experiment 4. TSC Evaluation
	5.6 Experiment 5. Comparison to ``Surgemes''

	6 Conclusion and Future Work
	References

	Robot Learning with Task-Parameterized Generative Models
	1 Introduction
	2 Adaptive Models of Movements
	2.1 Motivation
	2.2 Example with a Single Gaussian

	3 Task-Parameterized Gaussian Mixture Model (TP-GMM)
	4 Extension to Task-Parameterized Subspace Clustering
	5 Extension to Minimal Intervention Control
	6 Extension to Multimodal Data and Projection Constraints
	7 Discussion and Further Work
	8 Conclusion
	References

	Modeling Objects as Aspect Transition Graphs to Support Manipulation
	1 Introduction
	2 Related Work
	3 Object Model
	4 Visual Servoing
	5 Experimental Results
	6 Conclusion
	References

	An Approximate Inference Approach  to Temporal Optimization for Robotics
	1 Introduction
	2 Problem Formulation
	2.1 Finite Horizon Stochastic Optimal Control Problem
	2.2 Temporal Optimisation Problem
	2.3 Time Discretization

	3 Approximate Inference Approach
	3.1 AICOT Formulation
	3.2 Gradient Descent
	3.3 Expectation Maximisation
	3.4 Discussion

	4 Experiments
	4.1 Evaluation on Basic Via-Point Tasks
	4.2 7-DOF Robotic Manipulation Tasks

	5 Conclusion
	References

	Part II Humanoids and Legged Locomotion
	Session Summary

	A New Simple Model of Balancing  in the Plane
	1 Introduction
	2 The New Model
	3 The Balance Controller
	4 Extension to More General Robots
	5 Simulation and Analysis
	6 Conclusion
	References

	Slip Detection and Recovery for Quadruped Robots
	1 Introduction
	2 Slip Detection
	3 Surface Normal and Friction Coefficient Estimation
	4 Slip Recovery
	4.1 Dynamics of Slippage
	4.2 Smooth Correction of Friction Parameters
	4.3 Freezing Mode

	5 Simulation Results
	5.1 Ice Patches
	5.2 Slippery Ramp

	6 Conclusions and Future Works
	References

	Effective Generation of Dynamically Balanced Locomotion with Multiple Non-coplanar Contacts
	1 Introduction
	2 Conditions for Dynamically Balanced Locomotion in 3D
	3 Model Predictive Control with Dynamically  Balancing Objective
	3.1 Problem Formulation: Non-convex Optimization Problem
	3.2 An Algorithm Exploiting the Objective  Function Structure
	3.3 Results

	4 Model Predictive Control with Dynamically Balancing Constraints
	4.1 Problem Formulation: Non-convex Quadratically Constrained Quadratic Program
	4.2 Feasible Point Pursuit Successive Convex Approximation
	4.3 Results

	5 Discussion
	6 Conclusion and Future Work
	References

	The Yoyo-Man
	1 Introduction: Legs Versus Wheels?
	2 Origins of the Rationale 
	2.1  Mechanical Basics of Bipedal Walking
	2.2 Basics in Humanoid Robot Control
	2.3 Neurophysiology Basics in Human Walking

	3 In Search of a Geometric Center for the Yoyo-Man
	3.1 Experimental Setup
	3.2 Identification of the Foot-CoM Relationship
	3.3 Methodology
	3.4 Results

	4 In Search of a Control Center for the Yoyo-Man
	4.1 A Convenient Center of Control 
	4.2 The Model of Steady-Gait Head-Body Dynamics
	4.3 Estimating Balance: Ground Textures and MFPTs
	4.4 Results

	5 Conclusions
	References

	Quantifying and Optimizing Robustness  of Bipedal Walking Gaits on Rough Terrain
	1 Introduction
	2 Model
	2.1 The Biped
	2.2 The Terrain

	3 Control Scheme
	4 Discretization
	4.1 Discretization of the Dynamics
	4.2 Discretization of the Slope Set
	4.3 Meshing Reachable State Space

	5 Metastable Markov Chains
	5.1 Obtaining a Markov Chain
	5.2 Expected Number of Steps Before Failure

	6 Results
	7 Conclusions and Future Work
	References

	A Probabilistic Framework  for Semi-autonomous Robots Based  on Interaction Primitives with Phase Estimation
	1 Introduction
	2 Related Work
	3 Probabilistic Movement Primitives for Human-Robot Interaction
	3.1 Probabilistic Movement Primitives on a Single Degree-of-Freedom
	3.2 Correlating Human and Robot Movements  with Interaction ProMPs
	3.3 Estimating Phases and Actions of Multiple Tasks

	4 Experiments with a Semi-autonomous Robot
	4.1 A Multi-task Semi-autonomous Robot Coworker
	4.2 Discussion of the Experiment and Limitations

	5 Conclusions
	References

	Averaged Anchoring of Decoupled Templates in a Tail-Energized Monoped
	1 Introduction
	2 Hybrid Averaging
	3 Templates as Constituents of Planar Hopping
	3.1 Controlled 1DOF Vertical Hopper
	3.2 Controlled Forward Speed: 1DOF Active Rimless Wheel

	4 Average Anchoring in 3DOF Tail-Energized SLIP
	4.1 Average Invariance of Template Flows in Stance Dynamics
	4.2 Stability Derived from Templates

	5 Numerical and Empirical Results
	6 Conclusion
	References

	A Reachability-Based Planner for Sequences of Acyclic Contacts in Cluttered Environments
	1 Introduction
	1.1 State of the Art
	1.2 Paper Contribution and Organization
	1.3 Computation of a Guide Trajectory
	1.4 Generating a Discrete Sequence of Contact Configurations
	1.5 Notation Conventions and Definitions

	2 Computation of a Guide Trajectory in Creach (Stage 1)
	2.1 Conditions for True Feasibility
	2.2 Reachability: A Compromise Condition
	2.3 Computing the Guide Trajectory in Creachs with RB-PRM.

	3 From a Guide Trajectory to a Discrete Sequence  of Contact Configurations (Stage 2)
	3.1 Extension of the Guide Trajectory
	3.2 Contribution to the Global Movement: The EFORT Criteria

	4 Results
	4.1 Robot Models and Scenarios
	4.2 Parametrization of the Reachability Condition
	4.3 Performance

	5 Discussion and Future Work
	References

	On the Dualities Between Grasping  and Whole-Body Loco-Manipulation Tasks
	1 Introduction
	2 Taxonomy of Whole-Body Support Poses
	3 Detection of Whole-Body Poses and Segmentation
	3.1 Data Driven Analysis of Transitions Between Whole-Body Support Poses

	4 Whole-Body Affordances
	5 Conclusions
	References

	Part III Robot Planning and Navigation
	Session Summary

	Bayesian Learning for Safe High-Speed Navigation in Unknown Environments
	1 Introduction
	2 POMDP Planning
	2.1 Missing Prior Distribution Over Environments
	2.2 Approximations to the POMDP

	3 Predicting Future Collisions
	3.1 Training Procedure
	3.2 Learning Algorithm

	4 Results
	4.1 Simulation Results
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty
	1 Introduction
	2 Background on Monte Carlo Variance Reduction
	2.1 Simple Monte Carlo
	2.2 Control Variates
	2.3 Importance Sampling
	2.4 Comments

	3 Problem Statement
	4 The Problem of Computing Path CP
	5 Variance-Reduced Monte Carlo for Computing  Pathwise CP
	5.1 Control Variates
	5.2 Importance Sampling
	5.3 Combining the Two Variance-Reduction Techniques

	6 MCMP Algorithm
	7 Numerical Experiments
	8 Conclusion
	References

	A Computational Framework for Environment-Aware Robotic Manipulation Planning
	1 Introduction
	2 Related Work
	2.1 Exploitation of Environmental Constraints
	2.2 Traditional Grasp Planners
	2.3 General Purpose Planning Algorithms
	2.4 Machine Learning Approaches
	2.5 Optimization-Based Trajectory Planning

	3 Dynamics of Systems with Contacts
	3.1 Penalty-Based Contact Model
	3.2 Velocity-Based Time Stepping Scheme

	4 Trajectory Planning as an Optimization Problem
	4.1 Penalty-Based Contact Model
	4.2 Velocity-Based Time Stepping Scheme
	4.3 Final Optimization Problem

	5 Nonlinear Programming via an Interior-Point Algorithm
	5.1 The Barrier Problem Formulation
	5.2 Interior-Point Approach to NLP
	5.3 Main Computational Aspects: Calculating Derivatives and Solving (Sparse) Linear Systems
	5.4 The CasADi Framework

	6 Application Examples
	6.1 Environment-Aware Manipulation
	6.2 Dexterous Manipulation

	7 Conclusions and Future Work
	References

	Small and Adrift with Self-Control: Using  the Environment to Improve Autonomy
	1 Introduction
	2 Contaminant Source Localization in Turbulent Mediums
	3 Lagrangian Coherent Structures
	4 Collaborative LCS Tracking
	5 Conclusions and Future Outlook
	References

	Unifying Robot Trajectory Tracking  with Control Contraction Metrics
	1 Introduction
	2 System Description and Problem Setup
	3 Differential Dynamics and Control Contraction Metrics
	3.1 Solution via Convex Optimization

	4 CCM Designs for Fully-Actuated Robots
	4.1 Connection to Sliding Control
	4.2 Example: The Inverted Pendulum

	5 Energy-Based Control and Virtual Systems
	5.1 Example: Swingup of a Double Pendulum

	6 Underactuated Robots and Optimization-Based Synthesis
	6.1 Relation to LQR-Trees and Model Predictive Control
	6.2 Example: Underactuated Cart-Pole System

	7 Conclusions
	References

	Inference-Enabled Information-Theoretic Exploration of Continuous Action Spaces
	1 Introduction
	1.1 Related Work
	1.2 Paper Organization

	2 Problem Definition
	2.1 Information Gain
	2.2 Gaussian Process Regression
	2.3 Support Vector Regression

	3 Algorithm Description
	4 Analysis
	5 Computational Results
	5.1 Experimental Setup
	5.2 Results

	6 Conclusions and Future Work
	6.1 Complex Action Spaces

	References

	Relative Topometric Localization in Globally Inconsistent Maps
	1 Introduction
	2 Related Work
	3 Relative Topometric Localization
	3.1 Relative Topometric Paradigm

	4 Position Tracking in the Relative Topometric Paradigm
	5 Experiments
	5.1 Evaluation Criteria
	5.2 Accuracy Results
	5.3 Timing Results

	6 Conclusion
	References

	Fast Sample-Based Planning for Dynamic Systems by Zero-Control Linearization-Based Steering
	1 Introduction
	2 Review of Planning for Dynamic Systems
	3 Affine LTV State Exploration
	3.1 Open-Loop Exact Linear Shooting
	3.2 Closed-Loop Exact Linear Steering
	3.3 Inexact Linear Steering
	3.4 Efficient Inexact Linear Steering

	4 Extending to Nonlinear Systems
	5 Examples and Algorithm
	5.1 Algorithm
	5.2 Implementation
	5.3 Results
	5.4 Discussion

	6 Conclusion
	References

	Active Multi-view Object Recognition  and Online Feature Selection
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Action Selection
	4.1 Feature Selection
	4.2 View Planning

	5 Experiments
	5.1 RGB-D Object Dataset
	5.2 Online Feature Selection
	5.3 Multi-view Object Recognition
	5.4 Quadcopter Experiments

	6 Conclusion and Future Work
	References

	An Iterative Kalman Smoother for Robust 3D Localization and Mapping
	1 Introduction and Related Work
	2 Vision-Aided Inertial Navigation System (VINS)
	2.1 Inertial Measurements
	2.2 Visual Observations
	2.3 Visual Observations in Sliding-Window Estimators

	3 Estimation Algorithm Description
	3.1 IKS Algorithm: Input
	3.2 IKS Algorithm: Overview
	3.3 IKS Algorithm: Detailed Description

	4 Simulations
	5 Experiments
	6 Conclusion
	References

	Deterministic Sampling-Based Motion Planning: Optimality, Complexity,  and Performance
	1 Introduction
	2 Background
	3 Problem Statement
	4 Theoretical Results
	5 Numerical Experiments
	5.1 Simulation Environment
	5.2 Sampling Sequences
	5.3 Simulation Test Cases
	5.4 Summary of Results
	5.5 Nondeterministic Sampling Sequences
	5.6 Radius Scaling of (log(log(n))/n)1/d

	6 Conclusions
	References

	Path Following for Mobile Manipulators
	1 Introduction
	2 Class of Systems
	3 Problem Formulation
	4 Path Following Control Design
	5 Experiment
	6 Conclusions and Future Work
	References

	Incremental Sparse GP Regression  for Continuous-Time Trajectory  Estimation and Mapping
	1 Introduction and Related Work
	2 Batch Trajectory Estimation and Mapping as Gaussian Process Regression
	2.1 State Interpolation
	2.2 Sparse Gaussian Process Regression

	3 The Bayes Tree Data Structure for Fast Incremental Updates to Sparse Gaussian Process Regression
	3.1 The Bayes Tree Data Structure
	3.2 Faster Updates Through Interpolation

	4 Experimental Results
	4.1 Synthetic SLAM Exploration Task
	4.2 The Autonomous Lawnmower

	5 Conclusion
	References

	A General Region-Based Framework  for Collaborative Planning
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Motion Planning Preliminaries
	2.2 Related Work

	3 Framework
	3.1 Overview
	3.2 Completeness

	4 Framework Variants
	4.1 Collaborative Region-Biased Roadmap Construction
	4.2 Collaborative Region-Biased Tree Construction
	4.3 Collaborative Region-Biased Hybrid Methods

	5 Experimental Demonstration
	5.1 Region-Biased PRM
	5.2 Region-Biased RRT
	5.3 Region-Biased Spark PRM

	6 Conclusion
	References

	Robotic Invention: Challenges and Perspectives for Model-Free Design Optimization of Dynamic Locomotion Robots
	1 Introduction
	2 Processes and Outcome of the Experiments
	2.1 Materials and Methods
	2.2 Results

	3 Design Diversity and Evolutionary Dynamics
	3.1 Encoding of Morphological Variations
	3.2 Generating New Designs

	4 Analysis of Behavioral Diversity
	5 Conclusion
	References

	Part IV Knowledge-Based Robotics and Knowledge
	Session Summary

	A Complete Algorithm for Generating Safe Trajectories for Multi-robot Teams
	1 Introduction
	2 Problem Definition
	3 Concurrent Assignment and Planning of Trajectories (CAPT)
	4 Optimal Motion Plans + Circular HOlding Patterns (OMP+CHOP) for the Labeled Planning Problem
	4.1 Optimal Motion Plans (OMPs) 
	4.2 Circular HOlding Patterns (CHOPs)
	4.3 The Motion Planning Algorithm
	4.4 Safety
	4.5 Completeness

	5 Simulation Results
	5.1 Variations in Team Size
	5.2 Variations in Problem Density
	5.3 Worst-Case Distributions
	5.4 Comparison with Other Multi-robot Planning Algorithms

	6 Conclusions and Future Work
	References

	Neuromorphic Artificial Sense of Touch: Bridging Robotics and Neuroscience
	1 The Challenge of Understanding and Emulating  the Somatosensory System
	2 Neuromorphic Artificial Sense of Touch
	2.1 Neuromorphic Mechanosensors Implementation  via Artificial Neuron Spiking Model
	2.2 Off-Line Categorization via Spike Distance Metrics
	2.3 Two Layers Neurobioinspired Real-Time Architecture

	3 Perspectives
	References

	Robot Creation from Functional Specifications
	1 Introduction
	2 Problem Formulation and Contributions
	3 Related Work
	3.1 Functional Specification
	3.2 Robot Creation

	4 Design Flow
	4.1 Behavioral Description to Functional Specification
	4.2 Functional Description to Structural Specifications
	4.3 Integrated Robot Fabrication

	5 Assumptions, Generalizations and Guarantees
	5.1 Functional Specification
	5.2 Grounding Propositions to Computational and Physical Components
	5.3 Robot Behavior Guarantees

	6 Case Studies
	6.1 Pick-and-Place Grasper
	6.2 Fetch Robot

	7 Conclusion
	References

	Cloud-Based Probabilistic Knowledge Services for Instruction Interpretation
	1 Introduction
	2 Conceptual Framework
	2.1 Prac Instructions
	2.2 Prac Dictionary
	2.3 Prac Knowledge Base
	2.4 Examples

	3 The Prac Learning and Reasoning System
	3.1 Reasoning

	4 Related Work
	5 Conclusions
	References

	Identifiability Analysis of Planar Rigid-Body Frictional Contact
	1 Introduction
	2 Background and Motivation
	3 Complementarity Problems for Collision Resolution
	4 Identifiability Analysis
	4.1 Sliding Contact Mode
	4.2 Sticking Contact Mode

	5 Examples: Block and Ellipse
	5.1 Identification Formulation
	5.2 Results from Simulated Data
	5.3 Results from Experimental Data

	6 Conclusions and Future Work
	References

	The Importance of a Suitable Distance Function in Belief-Space Planning
	1 Introduction
	2 Problem Setup for Comparative Study
	3 Distance Functions for Belief-Space Planning
	4 Algorithms for Comparative Study
	5 Experimental Evaluation
	5.1 Non-observable Markov Decision Processes (NOMDPs)
	5.2 Partially Observable Markov Decision Processes (POMDPs)

	6 Discussion and Conclusion
	References

	Robobarista: Object Part Based Transfer  of Manipulation Trajectories from Crowd-Sourcing in 3D Pointclouds
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Problem Formulation
	3.2 Can Transferred Trajectories Adapt  Without Modification?

	4 Deep Learning for Manipulation Trajectory Transfer
	5 Loss Function for Manipulation Trajectory
	6 Robobarista: Crowd-Sourcing Platform
	7 Experiments
	7.1 Results and Discussions
	7.2 Robotic Experiments

	8 Conclusion
	References




