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Foreword

Robots! Robots on Mars and in oceans, in hospitals and homes, in factories and
schools; robots fighting fires, making goods and products, saving time and lives.
Robots today are making a considerable impact from industrial manufacturing to
health care, transportation, and exploration of the deep space and sea. Tomorrow,
robots will become pervasive and touch upon many aspects of modern life.

The Springer Tracts in Advanced Robotics (STAR) was launched in 2002 with
the goal of bringing to the research community the latest advances in the robotics
field on the basis of their significance and quality. During the latest fifteen years, the
STAR series has featured publication of both monographs and edited collections.
Among the latter, the proceedings of thematic symposia devoted to excellence in
robotics research, such as ISRR, ISER, FSR, and WAFR, have been regularly
included in STAR.

The expansion of our field as well as the emergence of new research areas has
motivated us to enlarging the pool of proceedings to be published in STAR in the
last few years. This has ultimately led us to launching a sister series in parallel to
STAR. The Springer Proceedings in Advanced Robotics (SPAR) is dedicated to the
timely dissemination of the latest research results presented in selected symposia
and workshops.

The twelfth edition of “Robotics Research” edited by Antonio Bicchi and
Wolfram Burgard in its 8-part volume is a collection of a broad range of topics in
robotics. The content of these contributions provides a wide coverage of the current
state of robotics research: the advances and challenges in its theoretical foundation
and technology basis, and the developments in its traditional and new emerging
areas of applications. The diversity, novelty, and span of the work unfolding in
these areas reveal the field’s increased maturity and expanded scope.



vi Foreword

From its beautiful venue to its excellent program, the twelfth edition of ISRR
culminates with this important reference on the current developments and new
directions in the field of robotics—a true tribute to its contributors and organizers!

Stanford, USA Oussama Khatib
November 2016 SPAR Editor



Preface

The 12th International Symposium of Robotics Research (ISRR 2015) was held
from September 12-15, 2015, in Sestri Levante, Italy. The ISRR series on con-
ferences began in 1983, and it is sponsored by the International Foundation of
Robotics Research (IFRR), an independent organization comprised of top
researchers around the world.

The goal of the ISRR is to bring together active, leading robotics researchers
from academia, government, and industry, to assess and share their views and ideas
about the state of the art of robotics and to discuss promising new avenues for
future research exploration in the field of Robotics.

The choice of the location of ISRR 2015 reflects a tradition in ISRR, holding the
conference in a beautiful place where the natural and cultural setting can inspire
deeper and longer-sighted thoughts in the pauses of a very intense working pro-
gram. Having the symposium in Italy was also meant to be suggestive of the ideal
link between the most advanced robotics research with the ideas and dreams of the
great engineers of the past. They, in particular those who are named “Renaissance
Engineers,” thought and dreamed of realizing intelligent machines, including
robots, but could not build them. Nowadays, robotics technology can make this
possible. Some ideas, like the openings toward human sciences and the concept of
human-centered design, are as much valid now as they were at that time.

Special emphasis in ISRR 2015 was given to the emerging frontiers, such as the
fields of flying robots, soft robotics and natural machine motion, hands and haptics,
multi-robot systems, cognitive robotics and learning, humanoids and legged loco-
motion, robot planning and navigation, and knowledge-based robots.

The goal of the ISRR Symposia is to bring together active leading robotics
researchers and pioneers from academia, government, and industry to assess and
share their views and ideas about the state of the art of robotics and to discuss
promising new avenues for future research. Papers representing authoritative
reviews of established research areas as well as papers reporting on new areas and
pioneering work were sought for presentation at the symposium. In addition to the
open call, a well selected number of leading researchers have been solicited to
contribute by personal invitation.

vii



viii Preface

A Greatest Hits track was introduced in ISRR 2015. A small number of research
papers which have been selected for the most prestigious awards in the last year
have been invited for presentation. This offered a unique possibility to have a
synoptic view of what the robotics community considered to be the best of robotics
research and put it in a larger context.

During the four-day symposium, 49 papers were presented in a single track, to
cover the broad research area of robotics; two forum sessions integrated the pro-
gram by facilitating group discussions. Poster sessions were also held, in a very
informal interactive style. The procedure to select the papers and the participants
was very strict. A number of selected leading researchers were invited to be part
of the program committee, providing overview talks and participating in the review
process. In addition to an open call for contributions, researchers who had made
significant new contributions to robotics were invited to submit papers to a com-
petitive review process. All papers were reviewed by the Symposium Program
Committee and the International Foundation of Robotics Research (IFRR, the
symposium sponsor) for final acceptance.

The symposium included visits to several beautiful sites in the area, as well as at
encouraging greater participant interaction, also by stimulating cultural discussions
and reflection on robotics, its historical background, and its future challenges. It
furthermore included a technical tour to the Instituto Italiano di Technologia where
a large variety of leading edge robotics science and systems were presented to the
participants.

This book collects the papers presented at the symposium, with authoritative
introductions to each section by the chairs of the corresponding sessions.

The ISRR 2015 co-chairs/editors would like to thank Floriana Sardi, for their
invaluable help in the organization of the program; Monica Vasco and Simona
Ventriglia for their tireless secretarial work on local organization; Nick Dring for
the management of the Web site; and Abhinav Valada for helping especially in the
final assembly of this book.

Genoa/Pisa, Italy Antonio Bicchi
Freiburg im Breisgau, Germany Wolfram Burgard
August 2016
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Part I
Cognitive Robotics and Learning

Session Summary

The Cognitive Robotics and Learning mini symposium was held on the third day of
the conference and consisted of eight contributions. Three of them were presented
as 15-minute talks, and five were presented as 5-minute spotlight talks followed by a
poster session. The papers address important topics related to learning from human
observation, novel representations for linking perception and action, and machine
learning methods for statistical generalization, clustering, and classification. In spite
of ISRR, the papers focused on discussing open research questions, challenges, and
lessons learned in the respective areas.

In Chapter “Bridging the Robot Perception Gap with Mid-level Vision,” Bohren
and Hager presented a method to jointly recognize, segment, and estimate the position
of objects in 3D. The goal was to integrate popular computer vision methods for
object segmentation with constrained rigid object registration required for robotics
manipulation, thereby connecting mid-level vision with the perception in 3D space.
This was achieved with a combination of efficient convolutional operations through
integral images with RANSAC-based pose estimation. Very comprehensive tests
were performed with RGB-D data of several industrial objects.

Valada, Spinello, and Burgard introduced a new method for terrain classifica-
tion in Chapter “Deep Feature Learning for Acoustics-Based Terrain Classification.”
Instead of using popular vision classification methods, the problem was formulated
with acoustic signals obtained from inexpensive microphones. A deep classifier based
on convolutional networks was then constructed to automatically learn features from
spectrograms to classify the terrain. Experiments were conducted by navigating out-
doors with accuracy exceeding 99% for the recognition of grass, paving, and carpet,
among other surfaces. This demonstrated the potential of the method to deal with
highly noise data.

Learning from demonstration was an important topic in our mini symposium,
with several papers directly addressing this problem. In Chapter “Generalizing Over
Uncertain Dynamics for Online Trajectory Generation”, Kim, Kim, Dai, Kaelbling,
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and Lozano-Perez described a novel trajectory generator to address problems with
variable and uncertain dynamics. The key insight was to devise an active learning
method based on anomaly detection to better search the state space and guide the
acquisition of more training data. Experiments were performed for an aircraft control
problem and a manipulation task.

In Chapter “Inverse KKT - Learning Cost Functions of Manipulation Tasks from
Demonstrations,” Englert and Toussaint proposed a framework based on constraint
optimization, specifically quadratic programming, to execute manipulation tasks that
incorporate contacts. The authors formulated the problem of learning parametrized
cost functions as a convex optimization procedure from a series of demonstrations.
Once the cost function is determined, trajectories can be obtained by solving a nonlin-
ear constrained problem. The authors successfully tested the approach on challenging
tasks such as sliding objects and opening doors.

Oberlin and Tellex presented a system to automate the collection of data for
novel objects with the aim of making both object detection, pose estimation and
grasping easier. The paper entitled “Autonomously Acquiring Instance-Based Object
Models from Experience” shows how to identify the best grasp point by performing
multiple attempts of picking up an object and tracking successes and failures. This
was formulated as an N-armed bandit problem and demonstrated on a stock Baxter
robot with no extra sensors, and achieve excellent results in detecting, classifying,
and manipulating objects.

In Chapter “Transition State Clustering: Unsupervised Surgical Trajectory
Segmentation for Robot Learning,” Krishnan and colleagues addressed the problem
of segmenting trajectories of a set of surgical trajectories by clustering transitions
between linear dynamic regimes. The new method, named transition state clustering
(TSC), uses a hierarchical Dirichlet process on Gaussian mixture models on transi-
tion states from several demonstrations. The method automatically determines the
number of segments through a series of merging and pruning steps and achieves
performance approaching human experts on needle passing segments and suturing
segments.

In Chapter “Robot Learning with Task-Parameterized Generative Models,” Cali-
non discusses the generalization capability of task-parameterized Gaussian mixture
models in robot learning from demonstration and the application of such models
for movement generation in robots with high number of degrees of freedom. The
paper shows that task parameters can be represented as affine transformation which
can be used with different statistical encoding strategies, including standard mixture
models and subspace clustering, and is able to handle task constraints in task space
and joint space as well as constraint priorities. The approach was demonstrated in a
series of problems in configuration and operational spaces, tested in simulation and
on a Baxter robot.

In modeling objects as aspect transition graphs to support manipulation, Ku,
Learned-Miller, and Grupen introduced an image-based object model that is able
to categorize an object into a subset of aspects based on interactions instead of only
on visual appearance. The resulting representation of an object model as aspect tran-
sition graph combines distinctive object views with the information of how actions
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change viewpoints or the state on the object. Further, an image-based visual servoing
algorithm is presented that works with the object model. The novel object model and
visual servoing algorithm are demonstrated on a tool grasping task on the Robonout
2 simulator.



Bridging the Robot Perception Gap
with Mid-Level Vision

Chi Li, Jonathan Bohren and Gregory D. Hager

1 Introduction

Despite the substantial progress made in computer vision for object recognition over
the past few years, practical “turn-key” use of object recognition and localization
for robotic manipulation in unstructured environments remains elusive. Traditional
recognition methods that have been optimized for large-scale object classification
[1, 2] from contextless images simply do not provide the reliability and precision
for object pose estimation necessary to support physical manipulation. In robotics,
both the identity and 3D pose of an object must be highly reliable since errors can
result in costly failures. Subsequently, roboticists are either forced to redesign tasks
to accommodate the capabilities of the available object registration algorithms, or
they need to modify the objects used in a task for easier recognition. Modifications
to the objects usually involve adding easily-classifiable colors, artificial texture, or
easily-recognizable artificial planar markers or marker constellations [3, 4]. Unfor-
tunately, such modifications are often impractical and sometimes even infeasible —
for example, in manufacturing and assembly applications, robotic search-and-rescue,
and any operation in hazardous or extreme environments.

As with many industrial automation domains, we face an assembly task in which
a robot is required to construct structures from rigid components which have no
discriminative texture, as seen in Fig. 1a. The lattice structures are built out of truss-
like “links” which are joined together with coupling “nodes” via gendered magnetic
surfaces, as seen in Fig. 1b. While these components were originally designed for

C. Li (X) - J. Bohren - G.D. Hager

Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA
e-mail: chi_li@jhu.edu
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© Springer International Publishing AG 2018 5
A. Bicchi and W. Burgard (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 3, DOI 10.1007/978-3-319-60916-4_1
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(a) Robotic assembly.  (b) Atomic objects. (c) Well-separated.  (d) Densely cluttered.

Fig. 1 In a robotic assembly scenario (a), for the objects (b) that have little or no distinguishing
texture features, most object recognition systems would rely on the objects being well-separated
(c) and fail when objects are densely packed (d)

open-loop assembly via quadcopter robots [5], their mechanical properties make
them ideal for autonomous and semi-autonomous [6] manipulation in assembly.

Unfortunately, many object registration algorithms [7-10] are developed to per-
form well only in “partially cluttered” scenes where individual objects are well-
separated like that shown in Fig. 1c. Furthermore, few existing recognition algorithms
are designed to reliably detect and estimate the poses of such textureless objects once
they have been assembled into composite structures as shown in Fig. 1d. Even if the
application allowed for it, augmenting the parts with 2D planar markers is still insuf-
ficient for precise pose estimation due to the small size of the parts and the range at
which they need to be observed.

While object recognition for these dense, textureless scenes is a challenging prob-
lem, we can take advantage of the inherent constraints imposed by physical envi-
ronments to find a solution. In particular, many tasks only involve manipulation of a
small set of known objects, the poses of these objects evolve continuously over time
[11], and often multiple views of the scene are available.

In this paper, we support this line of attack by describing the process of adapting
a state-of-the-art RGBD object classification algorithm [12] to support robot manip-
ulation. We show that by redesigning this algorithm to compute efficient semantic
segmentation on cluttered scenes containing a small number of known objects, we
can significantly improve a standard RANSAC-based pose estimation algorithm by
exploiting semantic labels of the scene.

In the process of creating this algorithm we have introduced three critical inno-
vations. First, we have adapted our previous state-of-the art feature-pooling-based
architecture [12] to operate efficiently enough for on-line robotic use on small sets
of known objects. Second, we have created and tested two variants on scene parsing,
making use of a semantic segmentation provided by feature pooling, that improves the
existing RANSAC-based recognition method [9] on highly cluttered and occluded
scenes. Lastly, we quantitatively and qualitatively evaluate this hybrid algorithm
on a new dataset including complex dense configurations of textureless objects in
cluttered and occluded scenes. For this dataset, our method demonstrates dramatic
improvement on pose estimation compared with the RANSAC-based algorithms
without the object class segmentation.
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The remainder of this paper is organized as follows. Section2 provides a review
of object instance detection and pose estimation. Section 3 introduces a new hybrid
algorithm which performs scene semantic segmentation and object pose recognition.
Experiments are presented in Sect.4 and we conclude the paper in Sect. 5.

2 Related Work

Most existing 3D object recognition and pose estimation methods [8, 13—17] employ
robust local feature descriptors such as SIFT [18] (2D) and SHOT/CSHOT [19]
(3D) to reduce the search space of object hypotheses, combined with some con-
straints imposed by 3D object structures. In particular, Hough voting [8, 13, 20] has
been applied to find hypotheses that preserve consistent geometric configurations
of matched feature points on each model. Hand-crafted global feature descriptors
which model partial views have also been examined [15, 16] to filter hypotheses.
A more principled framework is proposed by [14, 21] to select the optimal subset
of hypotheses yielding a solution that is globally consistent with the scene while
handling the interactions among objects. Other approaches only rely on simple geo-
metric features [9, 10, 22] for fast model-scene registration. However, this pipeline
of work suffers from the limited power of local features to robustly infer accurate
object poses, especially in the context of textureless objects, occlusions, foreground
and background clutter and large viewpoint variations.

Another line of work exploits detection results on 2D images for pose estimation.
One representative is the LINE-MOD system [10] which uses gradient templates
to match sliding windows to object partial views and initialize Iterative Closest
Point (ICP) for pose refinement. This template-based design does not capture fine-
grained visual cues between similar objects and does not scale well to multiple object
instances which occlude and/ or are in close contact with each other. Furthermore, the
precision of LINE-MOD’s similarity measure decreases linearly in the percentage
of occlusion [23]. Additionally, some unsupervised segmentation techniques [24,
25] partition the scene into different objects without any prior model knowledge.
[11] updates scene models for generic shapes like boxes and balls over time. These
methods are hard to generalize to segment objects with arbitrary shape.

Recently, the use of deep convolutional architectures [26—-31] and the availabil-
ity of huge datasets with hundreds to thousands of object classes have led to rapid
and revolutionary developments in large-scale object recognition. Although these
frameworks significantly boost object classification performance, accurate and effi-
cient pose estimation still remains an unsolved problem. Our recent work [12] shows
how color pooling, within a convolutional architecture, is effective for developing
robust object representations which are insensitive to out-of-plane rotations. This is
the foundation of the proposed method in this paper, which combines the advantages
of a pose-insensitive convolutional architecture with an efficient pose estimation
method [9].
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2.1 RANSAC-Based Object Pose Recognition

In this section, we briefly review an efficient pose estimation algorithm originally
reported in [9]. We used it as one option of object registration in our pipeline due to
its efficiency and robustness to complex occlusions. The reference implementation of
this algorithm is called “ObjRecRANSAC” and is available for academic use under
an open-source license.!

ObjRecRANSAC is designed to perform fast object pose prediction using oriented
point pair features ((p;, n;), (pj, n;)) where p;, p; are the 3D positions of the points
and n;, n; are their associated surface normals. In turn, a simple descriptor f (i, j)
is defined by:

lpi — pjll

Z(ni,nj)
Z(ni, pj — pi)
Z(nj,ni — p;)

fGJ) = (D

where Z(a, b) denotes the angle between a and b. Then a hash table is constructed
for fast matching of point pairs from object models to the scene. We refer the reader
to [9] for more details.

In ObjRecRANSAC, only oriented point pair features with fixed predefined dis-
tance d are used for RANSAC sampling. This prevents the algorithm from recog-
nizing scenes composed of objects with significantly different characteristic lengths.
If one object has a highly eccentric shape, it is best localized by sampling point
pairs which span it’s widest axis. This large pair separation, however, prevents any
smaller objects in the scene from being recognized. Moreover, for objects situated
in cluttered and occluded scenes, the probability of sampling point pairs from single
object instances significantly decreases, which leads to the strong degradation in
performance. One failure case of ObjRecRANSAC is shown in Fig. 2.

HAAH

Fig. 2 The illustration of failure cases of ObjRecRANSAC. Figures from the left to right are the
testing scene, estimated poses from ObjRecRANSAC and groundtruth

ISee http://github.com/tum-mvp/ObjRecRANSAC.git for the reference implementation of [9].
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From a high-level perspective, the information needed to improve the recogni-
tion accuracy in heterogeneous scenes is the object class membership. If such class
membership could be determined independently from object pose, it could be used
to partition the input data into independent RANSAC pipelines which are specifi-
cally optimally parameterized. Semantic segmentation techniques are well-suited to
provide this crucial information.

3 Mid-Level Perception and Robust Pose Estimation

This section presents details of a two-stage algorithm in which semantic segmentation
first partitions the scene and the ObjRecRANSAC, or one of its variants is applied to
estimate the poses of instances within each semantic class. Figure 3 shows the flow
chart for this hybrid algorithm.

3.1 Semantic Scene Segmentation Using Mid-Level
Visual Cues

There are three major challenges to achieve accurate and efficient semantic seg-
mentation. First, robust and discriminative features need to be learned to distinguish
different object classes, even for those with similar textureless appearances. Second,
“mid-level” object models should be produced in order to handle clutter and occlu-
sions caused by interactions among objects. Third, the state-of-the-art recognition
techniques in large-scale setting typically do not operate at the time scales consistent
with robot manipulation.

Here, we develop an algorithm for semantic segmentation based on the idea of
color pooling in our previous work [12], but modified to make use of integral images
to speed up the color pooling for sliding windows in the image domain. This enables
the algorithm to perform efficient dense feature extraction in practice. We also detail
how we exploit adaptive scales of sliding windows to achieve scale invariance for

RANSAC-based

Class_1 | Registration , Poses_1

RANSAC-based
RGB-D Semantic . |__Registration )
: > ; > Cl -
image Segmentation Class_i oses_i
RANSAC-based
Registration
Class_N x # Poses_N

Fig. 3 Overview of the hybrid algorithm for object detection and pose estimation
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Fig. 4 Illustration of the feature extraction for semantic segmentation, including from right to
left convolution of local feature codes (a—b), color pooling (b—c¢), integral image construction
(c—d), and final feature concatenation (d—e)

dense scene classification. The overview of the entire semantic segmentation pipeline
is illustrated in Fig.4.

3.1.1 Review of Color Pooling

Pooling, which groups local filter responses within neighborhoods in a certain
domain, is a key component in convolutional architectures to reduce the variability
of raw input signals while preserving dominant visual characteristics. Color pooling
[12] yields features which achieve superior 3D rotation invariance over pooling in
the spatial domain.

First, the convolutional feature is constructed as follows. Given a point cloud?
P ={pi1,..., pu}, we compute the rotationally invariant 3D feature CSHOT [19]
for each 3D point p;. Next, the CSHOT descriptor is divided into color and depth
components: f, and f;. Dictionaries D = {d;, d,, ..., dg} with K filters for each
component are learned via hierarchical K-means for randomly sampled CSHOT
features across different object classes. Finally, each CSHOT component f is trans-
formed into a feature code yu = {u,, ..., g} by the hard-assignment encoder® and
the final local feature x; = [, 1q] for each p; are constructed by concatenating the
two transformed CSHOT codes . and py. The hard assignment coding is defined
as follows:

1 :d; e M(f)

2
0 :dj ¢ M)

Mj =

ZFor efficiency purpose, raw point clouds are downsampled via octree with the leaf size as 0.005 m.
3We replace the soft encoder used in [12] with the hard encoder to speed up the computation.
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where 41 (f) returns the set of the first nearest neighbor of the CSHOT component
x in dictionary D. The convolution and encoding process is shown in stage (a—b)
in Fig.4.

Next, we pool features over LAB color space S because it achieves better recog-
nition performance than both RGB and HSV based on our experiences reported in
[12]. For a set of pooling regions R = {Ry, ..., R,} where each R; (1 < j <m)
occupies certain subspaces in S, the pooled feature vector y; associated with R; is
computed by sum pooling over the local feature codes {x;}:

vi= > x-1(ci € R)) 3)

where 1(.) is the indicator function to decide if the color signature ¢; (a LAB value) at
pi fallsin R ;. We choose sum pooling instead of max pooling (used in [12]) because it
is computationally expensive to compute maximum values over the integral structure.
Lastly, each y; is L2-normalized in order to suppress the noise [26] and the pooled
feature vector ¥ = [yy, ..., Y] is constructed as the final representation for the
given point cloud.

3.1.2 Efficient Computation via Integral Images

Integral images are often used for fast feature computation in real-time object detec-
tion such as [32]. We build the integral image structure for fast dense feature extrac-
tion. To do so, we first project each scene point cloud onto a 2D image using the
camera’s intrinsic parameters.* Suppose we obtain the local feature vector x; in
Sect.3.1.1 for each p;. For each pooling region R, the corresponding integral image
I; is constructed as follows:

Ij(u,v)=in~l(c,-eRjAu,-fu/\v,-fv) 4@

1

where (u, v) is the 2D coordinate of integral image and (u;, v;) is the projected 2D
location of 3D point p; in 3D point cloud.

The total complexity to construct all integral images is O ((Ky; + K.)W Hm)
where K; and K. are the number of codewords for color and depth components,
respectively, and W and H are the width and height of integral images, respectively.
Thus, with /;, the pooled feature y;(B) for sliding window B = {u;, v;, u,, v,} can
be computed in O(1):

vi(B) =1j(up,vi) + 1, vy) — 1 (up, ve) — I (up, vp) )

“In our implementation, PrimeSense Carmine 1.08 depth sensor is used. We found no difference in
performance between using default camera parameters and manual calibration.
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where (u;, v;) and (u,, v,) are 2D coordinates for top-left and bottom-right corners of
window B on the projection of the 3D scene. Stages (c— d) and (d— e)inFig. 4 show
the process of integral image construction and pooled feature extraction respectively.

3.1.3 Scale Invariant Modeling for Object Parts

Modeling object partial views from complete object segments does not account for
missing object parts due to occlusion and outliers from background clutter. To over-
come this, we train object models based on generic object parts randomly sampled
from object segments at different viewpoints. In order to achieve the scale invariance
for the learned models, all sampled parts are encompassed by a predefined fixed-size
3D bounding box . In turn, the sliding windows extracted for testing scene adopt
scales which are consistent with 2. Specifically, the scale of the iz sliding window
(wi, h;) with center (u;, v;) is equal to the scale of the projected bounding box %
onto the same location:

(Wi, hi) = g(Wga, hg) (6)

where (wz, h) is the predefined size in (x,y) coordinate of % in 3D and z; is the
depth corresponding to (u;, v;). f is the focal length of the camera. We note that
object parts here do not necessarily have specific semantic correspondences. Next,
we directly train a discriminative classification model using a linear SVM over object
parts with semantic labels inherited from corresponding partial views.

Given anew scene, we extract features with adaptive scales for all sliding windows
on integral images. Each window is classified into one of the trained semantic classes
and votes for all included 3D points. The final semantic label of each 3D point is the
one with the maximum votes.

3.2 Recursive RANSAC-Based Registration for Pose
Estimation

Although the semantic segmentation narrows down the space of RANSAC sampling
within only a single semantic class, the ratio of inlier correspondences may be still
small due to multiple adjacent or connected object instances. In this section, we
introduce two recursive pipelines that improve the performance of the RANSAC-
based registration algorithm detailed in Sect.2.1 in terms of stability and the recall
rate. In what follows, we denote the original ObjRecRANSAC as B short for Batch
Matching and introduce two improved variants as GB and GO.

Greedy-Batch Matching(GB): In this approach, we run the ObjRecRANSAC
recursively over the parts of the scene that have not been well explained by previous
detected models. Specifically, the initial inputs to the ObjRecRANSAC are the set of
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Fig. 5 Illustration of the algorithm pipelines of B, GB and GO

segmented points Py that share the same class label. At the ith round of recognition
(i > 1), the working space P; is constructed by removing the points in P;_; that can
be explained by the detected models M;_; at (i — 1)th round:

Pi={p| min |p—mlr>Tsy N p€ P} @)
meM;_;

where T} is the threshold (set to 0.01m) to determine the inlier. The detected models
M;_, are the transformed point clouds that are uniformly sampled from full object
meshes. Finally, this greedy registration pipeline stops once no more instances are
detected. The final set of estimated poses is the union of all previously detected poses:
Mying = Ui M;.

Greedy-One Matching(GO): The GB approach can fail to discover some object
instances because false positives in early iterations can lead to false negatives later
on. In order to achieve higher precision and recall detection rates, we adopt a more
conservative greedy approach in which we only choose the best detected object
candidate with the highest confidence score from ObjRecRANSAC as the current
detected model M; atith round. The rest follows the same implementation as in GB.
The simple flow charts for B, GB and GO are illustrated in Fig. 5.

4 Experiments

In all our experiments, we use data collected with a PrimeSense Carmine 1.09 depth
sensor. We choose 0.03m as the radius for both normal estimation and CSHOT
descriptor.’ Depth and color components in the raw CSHOT feature are decoupled
into two feature vectors. Dictionaries with 200 codewords for each component are

5The implementations of normal estimation and CSHOT come from PCL Library.
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learned by hierarchical K-means. For the LAB pooling domain, we adopt a 4-level
architecture where gridding over the entire domain at the k™ level is performed
by equally dividing each channel of LAB into k bins. Therefore, in this 4-level
architecture we have 100 = Z:: | k* pooling regions. Pooled features in different
levels and domains are concatenated as the final feature vector. Integral images are
constructed with the size that is é of the original RGB-D frame for efficiency. Sliding
windows with step size of 1px are extracted on integral images. For ObjRecRANSAC,
we build models separately for each object by setting the oriented point pair feature
separation to 60% of the largest diameter of the corresponding object. The rest of
the parameters are the same as the default ones used in [9]. Last, we capture object
partial views under both fixed and random viewpoints as the training data for the
SVM classifier in semantic segmentation. Specifically, three data sequences at fixed
viewing angles of 30, 45 and 60 degrees as well as one random viewing sequence are
captured. This follows the same procedure of data collection for JHUIT-50 dataset
[12]. In each partial view, we randomly sample 30 object patches encompassed by a
predefined 3D bounding box withsizewz = hz = 0.03 m (see detailsin Sect.3.1.3).
This size is also applied to compute the scale of sliding windows on integral images
for testing examples.

Next, unlike the matching function designed for LINE-MOD [10], we introduce a
more flexible matching criterion to determine whether an estimated pose is correct.
In the task of object manipulation, a good pose estimation needs to achieve high
matching accuracy only with respect to the 3D geometry but not the surface texture.
This implies that for objects with certain symmetrical structure (rotational and/or
reflective), there should exist multiple pose candidates having perfect matching to
the groundtruth. Thus, we design a new distance function between two estimated
poses (i.e. 3D transformation in SE(3)) 7 and 7, for model point cloud Py, with N
3D points uniformly sampled from the full object mesh:

> pepy 1min, e, IT1(pi) = Ta(p)lla < 8p)
N

D(T\, Tz; Pu) = (®)
where threshold 6p controls the matching degree. Another threshold Ry is used
to justify an estimated pose 7 with respect to the groudtruth 7, by the criterion:
D(T,T,; Pu) = Rp. We set §p = 0.01 and Rp = 0.7 for all our experiments.

The algorithm presented in this paper is implemented in C++ and all tests are
performed on a desktop with Intel Xeon CPU E5-2690 3.00 GHz.

4.1 LN-66 Dataset for Textureless Industrial Objects

We first evaluate our method on our new LN-66 dataset which contains 66 scenes
with various complex configurations of the two “link” and “node” textureless objects
shown in Fig. 1b. We combine the training and testing sequences (corresponding to
fixed and random viewpoints) of “link” and “node” objects in JHUIT-50 [12] as the
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(a) Testing Scene. (b) Semantic Labels. (c) Confidence Map.

Fig. 6 An example of semantic scene segmentation

training data so that each object has 300 training samples. We note that our algorithm
can easily be applied to scenes composed of more than 2 objects by simply adding
more training classes in the semantic classification stage. The LN-66 dataset and
the object training data are available at http://cirl.lcsr.jhu.edu/jhu-visual-perception-
datasets/. An example testing scene is shown in Fig. 6a. There are 6—10 example point
clouds for each static scene from a fixed viewpoint, where each cloud is the average of
ten raw RGB-D images. This gives a total of 614 testing examples across all scenes.
In our dataset, the background has been removed from each example by RANSAC
plane estimation and defining workspace limits in 3D space. Background subtraction
can also be done with the semantic segmentation stage if object models are trained
along with a background class. Therefore, the points in the remaining point cloud
only belong to instances of the “link” or “node” objects. However, robust object
detection and pose estimation are still challenging in such scenario due to similar
appearances between objects, clutter, occlusion and sensor noise. To quantitatively
analyze our method, we manually label the groundtruth object poses for each scene
and propagate them to all testing examples. Then the groundtruth poses are projected
onto 2D to generate the groundtruth for the semantic segmentation at each frame.
The overall segmentation accuracy is measured as the average ratio of correctly
labeled 3D points versus all in a testing scene point cloud. By running the classi-
fication algorithm in Sect.3.1 over all 614 testing frames, the average accuracy of
the semantic segmentation achieves as high as 91.2%. One example of semantic
scene labeling is shown in Fig. 6. The red and blue regions represent the “link” and
“node” object classes, respectively. In Fig. 6¢, we also show the confidence scores
returned from the SVM classifier for each class. The brighter color in either red
or blue indicates stronger confidence from the corresponding classifier. We could
visually observe that the semantic segmentation obtains high classification accuracy.
Next, we report the means and standard deviations(std) of precision, recall and F-
measure® of our algorithm on LN-66 in Table 1. For comparison, we run experiments
for different variants of our algorithm whose names are formatted as ‘S+O’. The
first entry ‘S’ indicates the degree of semantic segmentation used with three specific
options ‘NS’, ‘S’ and ‘GS’ as no segmentation, standard segmentation (Sect.3.1) and
groudtruth. The second entry ‘O’ stands for the three choices of ObjRecRANSAC

2-precision-recall

SF-measure is a joint measurement computed by precision and recall as — — .
precision+recall
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Table 1 Reported precision, recall and F-score by different methods on LN-66 dataset

Precision(%) Recall(%) F-measure
NS+B 84.47 £0.36 61.75 £0.27 71.30 £ 0.28
NS+GB 79.88 £+ 0.47 79.42 £0.37 79.65 +£0.40
NS+GO 88.63 £ 0.31 83.13+£0.32 85.80 £0.30
S+B 87.77£0.20 81.31 £0.27 84.42 £0.22
S+GB 91.89 £0.24 89.27 £0.19 90.56 £0.21
S+GO 94.50 £ 0.16 91.71 £0.13 93.09 £ 0.12
GS+B 97.27 £0.06 87.03 £0.14 91.87 £0.08
GS+GB 95.29 £0.10 92.33£0.13 93.79 £0.11
GS+GO 98.79 £0.20 9433 £0.13 96.51 £0.16

including ‘B’, ‘GB’ and ‘GO’. Due to the randomized process in ObjRecRANSAC,
we run 50 trials of each method over all testing data.

From Table1, we observe that: (1) the semantic segmentation significantly
improves all three RANSAC-based pose estimation methods in terms of preci-
sion/recall rates; (2) when using the segmentation computed by our algorithm, the
RANSAC stage performs only 2 ~ 4% behind in the final F-measure compared
to using the groundtruth segmentation. (3) Both GO and GB are more accurate
(higher F-measure) and stable (smaller standard deviation) than the standard ObjRe-
cRANSAC (B) regardless whether they are supported by semantic labeling.

Furthermore, we show an example of comparison between different methods in
Fig.7 and more results from S+GB are shown in Fig. 8. In each sub-figure of Fig.7,
the gray points represent the point cloud of the testing scene. The estimated poses for
the “link” and “node” objects are shown in yellow and blue meshes, respectively. We
can see that methods that work on semantically segmented scenes achieve noticeable
improvement over the ones without scene classification. In addition, the computed
semantic segmentation yields similar results ((d), (e), (f) in Fig. 7) compared with the
ground truth ((g), (b), (i) in Fig.7), which shows the effectiveness of our semantic
segmentation algorithm. Also, GO and GB outperform B whether or not semantic
segmentation is used. From Fig. 8, we can see S+GB could reliably detect and esti-
mate object poses in cluttered and occluded scenes. Finer pose refinement can be
made by incorporating physical constraints between adjacent objects.

Finally, Table2 reports the means and standard deviations of running times of
all main modules in the semantic segmentation as well as B, GB, GO in two con-
texts: (S) and (NS) indicating with and without semantic segmentation, respectively.
For semantic segmentation, we evaluate all three components: CSHOT extraction
(S-CSHOT), integral image construction (S-Int) and classification of sliding win-
dows (S-Det). From Table 2, we can see that the semantic segmentation is running
efficiently compared to the overall runtime of the algorithm. Furthermore, all three
sub-stages can be trivially parallelized and dramatically accelerated with GPU-based
implementations. We also observe that the semantic segmentation reduces the run-
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(2) NS+B (b) NS+GB (¢) NS+GO
(d) S+B (¢) S+GB () S+GO
(2) GS+B (h) GS+GB (i) GS+GO

VR

Fig. 7 An example of the comparison of the estimated poses by different methods

time of GO(NS) by half because it decreases the number of RANSAC hypotheses in
this greedy approach. For pose estimation, two proposed greedy approaches GB and
GO are slower than the standard one B due to multiple runs of ObjRecRANSAC.
Additionally, GB performs only slightly worse than GO (shown in Table 1) while
being much more efficient. These times were also computed for the CPU-based
implementation of ObjRecRANSAC, and did not use the GPU-accelerated imple-
mentation, which is already available under the same open-source license. The choice
of these three methods in practice can be decided based on the specific performance
requirements of a given application.
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Fig. 8 Example results of S+GB on LN-66. The left, middle and right columns show the testing
scenes, segmentation results and estimated poses, respectively

Table 2 Means and standard deviations of running times of different methods on LN-66 dataset

S-CSHOT | S-Int S-Det B(NS) | GB(NS) | GO(NS) | B(S) GB(S) | GO(S)
0.39+0.12/0.13+ |031+ [0.86+ 149+ |7.69+ |0.85+ |2.16+ |4.40+%
0.03 0.12 0.16 0.40 3.43 0.20 0.68 1.72
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Although the overall runtime of the entire perception system takes more than 1s
even without the semantic segmentation, this may not be a main issue to integrate our
algorithm into a real-time robotic system. First, GPU-based parallel programming
techniques could significantly speed up the current implementation. Second, standard
object tracking methods [7] can be initialized by our algorithm to track object poses
in real time and reinitialized when they fail.

5 Conclusion

In this paper, we present a novel robot perception pipeline which applies advan-
tages of state-of-the art large-scale recognition methods to constrained rigid object
registration for robotics. Mid-level visual cues are modeled via an efficient convo-
lutional architecture built on integral images, and in turn used for robust semantic
segmentation. Additionally, two greedy approaches are introduced to further augment
the RANSAC sampling procedure for pose estimation in the constrained semantic
classes. This pipeline effectively bridges the gap between powerful large-scale vision
techniques and task-dependent robot perception.

Although the recursive nature of our modification for RANSAC-based registra-
tion slows down the entire detection process, the better trade-off between time and
accuracy would be achieved. Moreover, we could adaptively select the suitable strat-
egy regarding the requirement of robotics systems in practice. We believe that this
approach can be used with other registration algorithms which are hindered by large
search spaces, and plan to investigate other such compositions in the future.

Acknowledgements This work is supported by the National Science Foundation under Grant
No. NRI-1227277 and the National Aeronautics and Space Administration under Grant No.
NNX12AM45H.
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Deep Feature Learning for Acoustics-Based
Terrain Classification

Abhinav Valada, Luciano Spinello and Wolfram Burgard

1 Introduction

Robots are increasingly being used for tasks in unstructured real-world environments
and thus have to be able to deal with a huge variety of different terrains. As every ter-
rain has a distinct physical property, it necessitates an appropriate navigation strategy
to maximize the performance of the robot. Therefore, terrain classification is para-
mount to determine the corresponding trafficability. However, it is a highly challeng-
ing task to robustly classify terrain. Especially, the predominantly used vision-based
approaches suffer from rapid appearance changes due to various factors including
illumination variations, changes in weather, damping due to rain and camouflaging
with leaves. Accordingly, researchers have also explored the utilization of alterna-
tive modalities such as ladars or vibrations measured using accelerometers. Each of
these approaches have their own advantages and disadvantages. For example, opti-
cal sensors are quintessential when there is good illumination and distinct visual
features, while accelerometer-based approaches are ideal to classify terrains with
varying degrees of coarseness. However, the use of sound to classify terrains in
the past has not been studied in a comparable depth, even though sound produced
from vehicle-terrain interactions have distinct audio signatures even utilizable for
fine-grained classification. Most importantly, the disturbances that affect other light-
based or active sensors do not affect microphones, hence they can even be used as
a complementary modality to increase robustness. We believe that utilization of a
complementary set of sensing modalities is geared towards long-term autonomy.

In this paper, we present a novel multiclass terrain classification approach that
uses only audio from the vehicle-terrain interaction to robustly classify a wide range
of indoor and outdoor terrains. As in any pattern recognition task, the choice of fea-
tures significantly dictates the classification performance. Vehicle-terrain interaction
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sounds are unstructured in nature as several dynamic factors contribute to the signal.
Instead of using handcrafted domain specific features, our approach employs a deep
convolutional neural network (DCNN) to learn them. DCNNs have recently been
achieving state of the art performance on several pattern recognition tasks [13, 14,
18]. They learn unsupervised hierarchical feature representations of their input by
exploiting spatial correlations. The additional advantage of this is that the features
learned from this approach generalize effectively as DCNNGs are relatively insensitive
to certain input variations.

The convolutional neural network architecture we introduce is built upon recent
advances in deep learning. Our network consisting of six convolution layers and
six cascaded cross channel parametric pooling layers is depicted in Fig. 1. In order
to make the learned feature representations invariant to certain signal variations
and also to increase the number of training samples, we performed a number of
transformations on the original signal to augment the data. We experimented with
several hyperparameters for our network and show that it significantly outperforms
classification methods using popular baseline audio features. To the best of our
knowledge, this is the widest range of terrain classes successfully classified using
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Fig. 1 Overview of our terrain classification pipeline. Raw audio signal of the terrain interaction
is first transformed into its spectrogram representation and then piped into a DCNN for feature
learning and classification. MP refers to max pooling
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any proprioceptive terrain classification system. Additionally, our method achieves
state of the art performance in classification using a proprioceptive sensor. Audio
classification is susceptible to background noise to a great extent. We stress test
our network with additive white Gaussian noise (WGN) at varying signal to noise
ratios (SNR). We also perform noise aware fine-tuning to increase the robustness
and show that our network performs exceptionally well even on audio data collected
by the robot with a low quality mobile phone microphone which adds significant
environmental noise.

2 Related Work

The use of sound as a modality for classifying vehicle-terrain interactions has very
sparsely been explored. The following are the only related works using acoustics
for terrain classification. Ojeda et al. [17], used a feedforward neural network and
a suite of sensors for terrain classification, including a microphone, gyroscopes,
accelerometers, motor current and voltage sensors, infrared, ultrasonics and encoders.
They had five terrain classes and their classifier achieved an average classification
accuracy of 60.3% using the microphone. They found that using the entire spectrum
gave them the same performance as using only 0-50 Hz components of the discrete
fourier transform. The authors concluded that overall the performance was poor using
the microphone, other than for classifying grass.

More recently, Libby and Stentz [15] trained a multiclass sound-based terrain clas-
sifier that uses Support Vector Machines (SVMs). They evaluated the performance
of various features using extraction techniques derived from the literature survey as
input to the SVM. Their multidimensional feature vectors consists of spectral coeffi-
cients, moments and various other temporal as well as spectral characteristics. Their
classifier achieves an average accuracy of 78% over three terrain classes and three
hazardous vehicle-terrain interaction classes. They further increase the accuracy to
92% by smoothing over a window of 2.

A patent by Hardsell et al. [8] describes an approach to terrain classification where
a classifier is trained on fused audio and video data. They extract scale invariant
transformation features from the video data and use Gaussian mixture models with
a time-delay neural network to represent the audio data. The classifier is then built
using expectation-maximization.

The use of contact microphones for terrain classification has also been explored.
Unlike air microphones that we use in our work, contact microphones pick up only
structure-borne sound. Brooks and lagnemma [2] use a contact microphone mounted
on their analog rover’s wheel frame to classify terrain. They extract the log-scaled
Power Spectral Density (PSD) of the recorded vibrations and used them to train a
pairwise classifier. Their classifier with three classes, achieves an average accuracy
of 74% on a wheel-terrain testbed and 85.3% on the test bed rover. They also present a
self-supervised classifier that was first trained on vibration data, which then provided
the labels for training a visual classifier [3].
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A number of methods have been developed for using accelerometer data to clas-
sify terrain [17, 19, 21]. Weiss et al. [21] use vibrations induced in the vehicles
body during traversal to classify the terrain. They train a seven class SVM with
features extracted from log-scaled PSD, discrete fourier transform and other statis-
tical measures. Their classifier produced an average accuracy of 91.8% over all the
classes. However, such approaches report a significant number of false positives for
finer terrains such as asphalt and carpet. For another similar application, Eriksson
et al. [5] employ a mobile sensor network system that uses hand selected features
from accelerometer data to identify potholes and other road anomalies. Their system
detects the anomalies over 90% of the time in real-world experiments.

There is a considerable amount of specialized audio features developed for speech
recognition and music classification, but it remains unclear which of these features
performs well for our application. We evaluated several traditional audio features
from our literature survey and compared them as baseline approaches. Libby and
Stentz [15] show that a combination of Ginna and Shape features perform the best
for classification of vehicle-terrain interactions. Gina features, based on the work
by Giannakopoulos et al. [6] is a 6D feature vector consisting of zero crossing rate
(ZCR), short time energy (STE), spectral centroid, spectral rolloff and spectral flux.
Shape features, based on the work by Wellman et al. [22], characterize the distribution
of moments of the spectrum. It is a 4D feature vector consisting of spectral centroid,
standard deviation, skewness and kurtosis.

Ellis [4] use a combination of mel-frequency cepstral coefficients (MFCCs) and
chroma features. MFCCs are the most widely used features for audio classification
and Chroma features are strongly related to the harmonic progression of audio sig-
nals. We use a combination of twelve bin MFCC’s and twelve bin Chroma features
for comparison. Trimbral features have been a popular set of features for various
audio classification applications. Tzanetakis and Cook [20] use a 19D feature repre-
sentation consisting of means and variances of spectral centroid, rolloff, flux, ZCR,
low energy and means and variances of the first 5 MFCCs. For our final feature set
comparison, we use a combination of 13 bin MFCC’s, line spectral pair (LSP) and
linear prediction cepstral coefficients (LPCCs) [1]. We call this Cepstral feature set
in the later discussions.

3 Deep Convolutional Neural Network for Acoustic
Based Terrain Classification

One of the main objectives of our work is to develop a new deep convolutional neural
network architecture tailored to classifying unstructured vehicle-terrain interaction
sounds. In this section, we detail the various stages of our classification pipeline
shown in Fig. 1. Our approach can be split into two main stages. The first stage
involves processing the raw audio samples into short windowed clips, augmenting
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the samples and spectrogram transformation. The second involves training our deep
convolutional neural network with this data.

3.1 Preprocessing and Spectrogram Extraction

We first split the audio signals from each class into small “clips” of ¢, seconds. We
experimentally determine the shortest clip length that gives the best classification
performance. Feature responses from each of these clips are then extracted and added
as a new sample for classification.

Features derived from spectrogram representations of audio signals have been
shown to outperform other standard features for environmental sound classification
applications [12]. Therefore in our approach, we extract the Short Time Fourier
Transform (STFT) based spectrogram of each clip in our dataset. We first block each
audio clip into M samples with 75% overlap between each frame. Let x[n] be the
recorded raw audio signal with duration of N, samples, f; the sampling frequency,
S(i, j) be the spectrogram representation of the 1-D audio signal and f'(k) = kf;/Ny.
By applying STFT on length M windowed frame of signal, we get

L. . 2rk
X@i,j)= D xlnlwin— jlexp(—p=—n), p=0,....N;—1 (1)
= Ny
A Hamming window function w[n] is used to compensate for Gibbs effect while
computing STFT by smoothing the discontinuities at the beginning and end of the
audio signal.

w[n]=0.54—0.4600s(2n ), n=0,....,.M—1 2)

n
M—1
We then compute the log of the power spectrum as

St (i, j) = 201log,o (|1 X (G, j)) 3)

We chose Ny as 2,048 samples, therefore the spectrogram contains 1,024 Fourier
coefficients. By analyzing the spectrum, we found that most of the spectral energy
is concentrated below 512 coefficients, hence we only use the lower 512 coefficients
to reduce the computational complexity. The noise and intensity levels vary a fair
amount in the entire dataset as we collected data in different environments. There-
fore, we normalized the spectrograms by dividing by the maximum amplitude. We
compute the normalized spectrogram as S(i, j) = Siog(i, j)/max; jSiog(i, j). We
then compute the mean spectrum over the entire dataset and subtract it from the
normalized spectrogram to remove any temporal artifacts.
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We created additional training samples by applying a set of augmentation strate-
gies A, on the audio signal in the frequency domain. Offsets in time and frequency
was used to perform shifting to transform the spectrogram. The transformations
were applied using 2D affine transform and warping, keeping the shape constant.
Furthermore we created more samples using time stretching, modulating the tempo,
using random equalization augmentation and by increasing as well as decreasing the
volume gain. We also experimented with frequency and time normalization with a
sliding window and local contrast normalization.

3.2 Network Architecture and Training

The extracted spectrograms in our training set are of the form § = {s', ..., s}
with s’ € RY. Each of them are of size v x w and number of channels d (d = 1
in our case). We assume M to be the number of samples and y' as the class label
in one-hot encoding, y* € R¢, where C is the number of classes. We then train the
DCNN by minimizing the negative log likelihood of the training data. Our network
shown in Fig. 1 has six Convolution layers, six Cascaded Cross Channel Parametric
Pooling (CCCP) layers, two Fully-Connected (FC) layers and a Softmax layer. All
the convolution layers are one dimensional with a kernel size of three and convolve
along the time dimension. We use a fixed convolutional stride of one. CCCP layers
follow the first, second and third convolution layers. CCCP layers was proposed by
Linetal. [16] to enhance discriminability for local patches within the receptive fields.
CCCEP layers are effectively employ 1x 1 convolutions over the feature maps and the
filters learnt are a better non-linear function approximator. A max-pooling layer with
a kernel of 2, then follows the second and fourth CCCP layers. Max-pooling adds
some invariance by only taking the high activations from adjacent hidden units that
share the same weight, thereby providing invariance to small phase shifts in the
signal.

DCNNSs that are used for feature learning with images are designed to preserve
the spatial information of objects in context, however for our application we are
not interested to localize features in the frame, rather we are only interested to
identify the presence or absence of features in the entire frame. Therefore, we added
three different global pooling layers after CCCP-9 to compute the statistics across
time. This global pooling approach is similar to that used for content based music
recommendation by Oord et al. [18]. For global pooling layers, we use max pooling,
L2 norm pooling and average pooling. We experimented with just one global pooling
layer and combinations of two global pooling layers and the accuracy dropped over
3% while compared to using all three global pooling layers. We also investigated the
effect of global stochastic pooling with the other three pooling combinations, but the
network did not show any significant improvement. Finally, a fully connected layer
is then used to combine outputs of all the global pooling layers.

Rectified linear units (ReLUs) have significantly helped in overcoming the vanish-
ing gradient problem. They have been shown to considerably accelerate the training
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compared to tanh units. We use ReLUs f(x) = max(0, x), after the convolution
layers and dropout regularization [10] on fully connected layers except the softmax
layer. We used a dropout probability of 0.5. We also experimented with Parameter-
ized Rectified Linear Units (PReLU) [9], which has shown to improve model fitting
but it drastically affected our performance compared to ReLUs.

We used Xavier weight initialization [7] for the Convolution, CCCP and FC
layers. The Xavier weight filler initializes weights by drawing from a zero mean
uniform distribution from [—a, a] and a variance as a function of the number of
input neurons, where a = /3 / n;, and n;, is the number of input neurons. Using
this strategy enables us to move away from the traditional layer by layer generative
pre-training. Let f;(s'; 6) be the activation value for spectrogram s’ and class j, 6
be the parameters of the network (weights W and biases »). The softmax function
and the loss is computed as

exp(f;(s'; 0))
e )

k; exp(fi(s'; 0))

P(y = j | s';0) = softmax(f(s’; 0)) =

where P(y = j | s'; 6) is the probability of the j* class and the loss can be computed
as L(u, y) = — > yrloguy. Using stochastic gradient decent (SGD), we then solve
k

N
ngnZL(softmax(f(si; 0)), y') (5

i=1

We use minibatch SGD with a momentum of 0.9 and a batch size of 128. Minibatch
SGD refers to a more efficient way of computing the derivatives before updating the
weights in proportion to the gradient, especially in large datasets such as ours. We
improve the efficiency by computing the derivative on a random small minibatch of
training samples, rather than the entire training set which would be computationally
exhaustive. Furthermore, we optimize SGD by smoothing the gradient computation
for minibatch ¢ using a momentum coefficient & as 0 < o < 1. The update rule can
then be written as

oE
aWij(l)

AWij(l)I(XAWij(t— 1) —¢ (6)

We employ a weight decay of A = 5 - 107* to regularize the network. We begin the
training with an initial learning rate of Ao and reduced it every iteration by an inverse
learning rate policy as A, = A¢ * (1 + y * N)~°. Where X is the base learning rate,
N is the number of iterations and c is the power. We use ¢ = 0.75 and y = 0.1. We
determine the hyperparameter Ay by experimenting with different rates in an initial
trial. The best performing rate of 1072 was then ascertained. The entire training of
350K iterations (~135 epochs) took about 4 days on a single GPU.
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3.3 Noise Aware Fine-Tuning

Classification performance is often strongly affected by noise from the environment.
Since the microphone is mounted on the robot and used in real-world environments,
it is inevitable that the recorded signals include the robot’s motor noise in addition
to environmental noise. Fortunately deep networks have good generalization to real-
world scenarios if they are trained with noisy samples. In order to quantify the
performance in the presence of noise, we added WGN to training samples at various
SNR'’s and measured the classification accuracy. WGN adds a very similar effect as
various physical and environmental disturbances including wind and water sources.
From experiments detailed in Sect.5.4, it can be seen that the classification per-
formance of our network quickly drops below SNRs of 40 dB. As a solution to this
problem, we augmented raw audio signals with additive WGN at SNRs ranging from
50 dB to —10 dB, in steps of 10 dB. We then performed noise adaptive fine-tuning
of all the layers in our network with the training set containing both noised and
original samples. The weights and biases are initialized by coping from our original
model trained as described in Sect. 3.2. The new model is then trained by minimiz-
ing the negative log likelihood as shown in Eq.(5). We again use minibatch SGD
with a learning rate 1/10th of the initial rate use for training the network, 10~3. The
learning rate was further reduced by a factor of 10, every 20,000 iterations.

4 Data Collection and Labeling

As we are particularly interested in analyzing the sounds produced from the vehicle-
terrain interaction on both indoor and outdoor terrains, we use the Pioneer P3-DX
platform which has a small footprint and feeble motor noise. Interference from nearby
sound sources in the environment can drastically influence the classification. It can
even augment the vehicle-terrain interaction data by adding its own attributes from
each environment. In order to prevent such biases in the data being collected, we use
a shotgun microphone that has a supercardioid polar pattern which helps in rejecting
off-axis ambient sounds. We chose the Rode VideoMic Pro and mounted it near
the right wheel of the robot as shown in Fig. 2. The integrated shock mount in the
microphone prevents any unwanted vibrations from being picked up.

We collected over 15h of audio data from a total of 9 different indoor and out-
door terrains. We particularly choose our terrain classes such that some of them
have similar visual features (Fig. 3a, h, 1) and hence pose a challenge to vision based
approaches. The data was collected at several different locations to have enough gen-
eralizability, therefore even signals in each class have varying temporal and spectral
characteristics. The robots speed was varied from 0.1 to 1.0 ms™1 during the data
collection runs. The data was recorded in the lossless 16-bit WAV format at 44.1kHz
to avoid any recording artifacts. Experiments were conducted by recording at vari-
ous preamp levels and microphone mounting locations. There was no software level
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Fig. 2 The Pioneer P3-DX platform showing the shotgun microphone with the shock mount,
mounted close to the wheel

boost added during the final recordings as they also tended to amplify the ambient
noise significantly, instead the microphones 20dB hardware level boost was turned
on.

‘We manually label the data by looking at live tags with timestamps from recordings
and we use a waveform analyzer tool to crop out any significant disturbances. The data
from each class was then split into overlapping time windows, where each window
is then used separately as a new data sample for feature extraction. As Libby et
al. mention in [15], choosing an appropriate length for the time window is critical,
as too short of a window might cut off a potential feature and by having too large
of a window we will loose the classification resolution. We also analyzed the effect
of different window sizes in our experiments. In order to train the classifier to be
generalizable to different locations with the same terrain, a ten-fold cross validation
approach was adopted. Furthermore, we ensured that all the sets and classes have
approximately the same number of samples to prevent any bias towards a specific
class.

5 Experimental Results

We performed the implementation and evaluations using the publicly available,
Caffe [11] deep learning toolbox and ran all our experiments on a system with an Intel
17-4790K processor and a NVIDIA GTX 980M GPU. We used the cuDNN library
for GPU acceleration. For all the baseline comparisons and noise robustness tests,
we chose a clip window length of 300 ms and performed ten-fold cross-validation.
The results from our experiments are described in the following sections.
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(b) Mowed- (c¢) Grass

(a) Asphalt Grass Med-High (d) Paving (e) Cobblestone
(f) Offroad (g) Wood (h) Linoleum (i) Carpet

Fig. 3 Terrain classes and an example spectrogram of a 2,000 ms clip (colorized spectrograms are
only shown for better visualization, spectrograms used for training are in gray scale)

5.1 Baseline Comparison

We chose two benchmark classifiers, k-Nearest Neighbors (kNNs) and SVMs. SVMs
perform well in high dimensional spaces and kNNs perform well when there are very
irregular decision boundaries. As a preprocessing step we first normalize the data to
have zero mean. We use the one-vs-rest voting scheme with SVM to handle multiple
classes and experimented with Linear and Radial Basis Function (RBF) kernels as
decision functions. We used inverse distance weighting for kNNs and optimized the
hyperparameters for both the classifiers by a grid-search using cross-validation. We
empirically evaluated six popular feature combinations described in Sect.2, with
SVM and kNN. We used scikit-learn and LibSVM for the implementation. It was
ensured that the training and validation sets do not contain the same audio split or
the augmented clip. The results from this comparison are shown in Table 1.

The best performing baseline feature-classifier combination was Cepstral features
using a linear SVM kernel, although the performance using Trimbral features are



Deep Feature Learning for Acoustics ... 31

Table 1 Classification accuracy of several baseline feature extraction approaches on our dataset

Features SVM Linear SVM RBF k-NN

Ginna 44.87 +0.70 37.51 £0.74 57.26 £ 0.60
Spectral 84.48 £ 0.36 78.65 £ 0.45 76.02 +£0.43
Ginna and Shape 85.50 £ 0.34 80.37 £ 0.55 78.17 £ 0.37
MFCC and Chroma 88.95 £ 0.21 88.55 £ 0.20 88.43 £0.15
Trimbral 89.07 £0.12 86.74 £ 0.25 84.82 £ 0.54
Cepstral 89.93 + 0.21 78.93 £ 0.62 88.63 £+ 0.06
DCNN (ours) 97.36 £+ 0.12

closely comparable. This feature set outperformed Ginna and Shape features by over
9%. Ginna and Shape features using an SVM RBF kernel was the best performing
combination in the work by Libby and Stentz [15]. The worst performance was from
Ginna features using an SVM RBF kernel. It can also be seen that the feature sets
containing MFCCs show comparatively better results than the others.

Our DCNN yields an overall accuracy of 97.36 & 0.12%, which is a substantial
improvement over the hand-crafted feature sets. We get an improvement of 7%
over the best performing Cepstral features and 12% over Ginna and Shape features
using the same clip length of 300 ms. Furthermore, using a clip window size of
500 ms, our network achieves an accuracy of 99.41%, a 9% improvement over the
best performing baseline approach. This strongly demonstrates the potential for using
sound to classify vehicle-terrain interactions in a variety of environments.

5.2 Overall DCNN Performance

To further investigate classification performance of our network we computed the
confusion matrix, which helps us understand the misclassifications between the
classes. Figure4 shows the confusion matrix for ten-fold cross validation.

The best performing classes were carpet and asphalt, while the most misclassified
was offroad and paving, which were sometimes confused with each other. Both
these classes have similar spectral responses when the clip window gets smaller than
500 ms. Our system still outperforms all baseline approaches by wide margin. We also
compared the per-class recall as it gives an insight on the ratio of correctly classified
instances. Figure5 shows the per-class recall using ten-fold cross validation. The
network achieves an overall recall of 97.61%.
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Fig.4 Confusion matrix of our approach for ten-fold cross validation, using an audio clip length of
300 ms. The network seemed to get mostly confused with Offroad and Paving, as well as Linoleum
and Wood

5.3 Varying Clip Length

We compared the average cross-validated accuracy of our network using varying
audio clip lengths and execution times. Each clip is essentially a new sample for
classification, therefore the shorter the clip, the higher is the rate at which we can
infer the terrain. In addition, the shorter the clip, the faster is the execution time.
For an application such as ours, fast classification and execution rates are essential
for making quick trafficability decisions. Table2 shows the overall classification
accuracy using the DCNN approach with various window sizes.

From the above table it can be seen that the deep network approach significantly
outperforms classification using hand-crafted feature sets. We get an improvement
of 7% over the best performing Cepstral features and 12% over Ginna and Shape
features using the same clip length of 300 ms. Furthermore, using a window size of
500ms, our network achieves an accuracy of 99.41%, a 9% improvement over the
best performing baseline approach.
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Fig. 5 Per-class recall of our network on ten-fold cross validation, using an audio clip length of
300ms. The class with the lowest recall was Paving

Table 2 Classification accuracy of our system at varying audio clip lengths and the corresponding
time taken to process though the pipeline

Clip Length (ms) 2000 1500 1000 500 300
Accuracy (%) 99.86 99.82 99.76 99.41 97.36
Time (ms) 45.40 34.10 21.40 13.30 9.15

5.4 Robustness to Noise

For real-world applications such as ours, robustness to noise is a critical property.
However models can only be insensitive to noise up to a certain level. We analyzed the
effect of Gaussian white noise on the classification performance at several SNRs as
shown in Fig. 6. It can be seen that for some classes such as carpet, grass and cobble,
the performance decreases exponentially at different intensities, while for others such
as linoleum and asphalt, the performance seems to be affected marginally compared
to others. On the other extreme, wood and paving show remarkable robustness for
SNRs upto 20dB, thereafter the performance drops to zero. This can be attributed
to the fact that spectral components are much wider for the classes that show more
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Fig. 6 Per-class precision of our network when subject to different levels of white Gaussian noise.
The levels mentioned in the legend are SNRs

Table 3 Influence of white Gaussian noise onto the classification rate. SNR is in dB and accuracy
is in percent. The standard deviations were less than 1%

SNR 40 30 20 10 0 -10
Before FT 91.42 76.45 70.66 45.06 4191 32.01
After FT 99.49 99.12 98.56 97.97 97.09 95.90

FT = Fine-tuning

robustness and for the —10dB SNR, only the classes that have certain pulses still
over the noise signal are recognizable.

As a solution to this problem, we fine-tuned our trained model on samples with
additive Gaussian white noise as described in Sect.3.2. Table3 shows the average
cross-validated recognition accuracy of our network at different SNR, before and
after fine-tuning. Our fine-tuned model significantly outperforms our base model on
a wide range of SNRs. The best performing classes were mowed grass, linoleum,
asphalt, wood and carpet, with over 99% accuracy in all the SNRs shown in Table 3.
Paving, cobble and offroad classes yielded a recognition accuracy of about 95%,
averaged over all the SNRs. The only class that was slightly negatively affected by
the fine-tuning was wood at SNR of 20 dB, where there was a 0.2% loss in recognition
performance.

We also tested our fine-tuned model on the test set with no noise samples and the
average accuracy over all the classes was 99.57%, which is a 2.21% improvement
over our base models performance, clearly showing that noise adaptive fine-tuning is
a necessary step. This improvement can be attributed to the fact that by augmenting
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Fig. 7 The map on the left shows the trajectory taken by the robot during a classification test run
using a mobile phone microphone. The variation in speed along the path is indicated in red and
wider red points denote slower speed. The graph on the right shows the classification result, along
with the corresponding probabilities for the path shown in the map. True positives are shown as
green markers and false positives are shown are red markers
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Fig.8 Confusion matrix for classification runs using data from a mobile phone microphone. Paving
and Cobble show decreased performance due to false positives with Offroad and Grass

the signals with noise samples, we provide the network some prior knowledge about
the distribution of the signals which boosts the recognition performance. The only
significant misclassification was in the offroad class, which was 1% of the times
misclassified as paving. The other classes had almost negligible misclassifications.
To further stress test our network, we collected noisy samples in a new environ-
ment using a mobile phone that also tagged each sample with a GPS location. The
mobile phone has a condenser microphone, which unlike the shotgun microphone
that we used before, collects sounds from every direction, thereby adding consider-



36 A. Valada et al.

able amount of background noise. One of the test paths that the robot traversed is
shown in the map in Fig.7. The figure also shows then variation in speed (02 ms~!)
along the path. Thicker red lines in the map, indicate slower speed. Our network
achieved an accuracy of 98.54% on the mobile phone dataset. This shows the recog-
nition robustness, not only to real-world environments but also invariant to the type
of microphone. In addition, the graph in Fig.7 shows the false positives and true
positives along the traversed path. It can be seen that most of the false positives are
in the paving class and this primarily occurs when the speed is above 1ms~' and
the height of the paving is highly irregular, thereby misclassifying as offroad. Inter-
estingly, there is also significant fluctuations in the class probabilities of the false
positives along the paving path when the speed is below Ims~!.

Figure 8 shows the confusion matrix for the entire mobile phone microphone
dataset which contains about 2.15h of audio data. The classes that show a dip in
performance are paving, cobblestones and offroad. The paving class shows a non-
negligible false positive rate as it is often misclassified as offroad. Part of this mis-
classification is due variation in speed and the false positives in the terrain transition
boundaries.

6 Conclusion

In this paper, we introduced a novel approach that uses only sound from vehicle-
terrain interactions to robustly classify a wide range of indoor and outdoor terrains.
We evaluated several baseline audio features and presented a new deep convolutional
neural network architecture that achieves state-of-the-art performance in proprio-
ceptive terrain classification. Our GPU-based implementation operates on 300 ms
windows and is 1,800 times faster than real-time, i.e., our system can classify a years
worth of audio data in roughly 4.8h. Additionally, our experiments in classifying
audio signal corrupted with white Gaussian noise demonstrate our networks robust-
ness to a great extent. We additionally show that our network fine-tuned with noisy
samples performs exceptionally well even at low signal-to-noise ratios. Furthermore,
our empirical evaluations with an inexpensive low-quality microphone shows that
our approach is invariant to the type of microphone and can handle significant amount
of real-world noise.
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Generalizing Over Uncertain Dynamics
for Online Trajectory Generation

Beomjoon Kim, Albert Kim, Hongkai Dai, Leslie Kaelbling
and Tomas Lozano-Perez

1 Introduction

Given a known deterministic model of the dynamics of a system, a start and goal
state, and a cost function to be minimized, trajectory optimization methods [1] can
be used to generate a trajectory that connects the start and goal states, respects the
constraints imposed by the dynamics, and (locally) minimizes the cost subject to
those constraints. A significant limitation to the application of these methods is the
computational time required to solve the difficult non-linear program for generating
a near-optimal trajectory. In addition, standard techniques [1] require the transition
dynamics to be known with certainty.

We are interested in solving problems online in domains that are not completely
understood in advance and that require fast action selection. In such domains we will
not know, offline, the exact dynamics of the system we want to control. Online, we will
receive information that results in a posterior distribution over the domain dynamics.
We seek to design an overall method that combines offline trajectory optimization and
inductive learning methods to construct an online execution system that efficiently
generates actions based on observations of the domain.

For example, we might wish a robot to move objects along a surface, potentially
picking them up or pushing them, and making choices of grasps and contacts. The
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best way to achieve this depends on properties of the object, such as the coefficient
of friction of the robot’s contacts with the object and the object’s center of mass
(COM), which determine the system’s dynamics. If we knew the friction and center
of mass, it would be relatively straightforward to find an appropriate trajectory using
trajectory optimization, but solving a non-linear optimization with large number of
decision variables and constraints generally takes a significant amount of time.

This work builds on recent advances in supervised imitation learning [2, 3] to
design a new learning-based online trajectory generation algorithm called TOIL
(Trajectory Optimization as Inductive Learning). We present two general problem
settings. In the completely observable setting, we assume that at execution time the
world dynamics will be fully observed; in the manipulation domain, this would cor-
respond to observing the friction and COM of the object. In the partially observable
setting, we assume that properties of the domain that govern its dynamics are only
partially observed; for example, observing the height and shape of an object would
allow us to make a “guess” in the form of a posterior distribution over these para-
meters to the dynamics, conditioned on the online observations. In both cases, we
desire the online action-selection to run much more quickly than would be possible
if it were necessary to run a traditional trajectory optimization algorithm online.

More concretely, we aim to build a trajectory generator that, for a given initial state
and goal, maps the values of the dynamics parameters to a trajectory in the observable
setting, or maps from an observation to a trajectory in the partially observable setting.
We do this by training a regression function that maps both the dynamics parameters
and the current system state to an appropriate control action. The trajectories used for
off-line training are generated by using an existing trajectory optimizer that solves
non-linear programs. To minimize the number of training trajectories required, we
take an active-learning approach based on MMD-IL [3], which uses an anomaly-
detection strategy to determine which parts of the state space require additional
training data.

The idea of reducing trajectory generation to supervised learning has been sug-
gested before, but it is quite difficult to learn a single regressor that generalizes
over a large number of trajectories. Our approach, instead, is to learn a number of
local controllers (regressors) based on individual trajectories, for a given value of the
dynamic parameter or observation. During training TOIL decides when additional
controllers are needed based on a measure of distance between the states reached
during execution and the existing set of controllers. During execution, TOIL uses the
same distance criterion to select which controller among the learned controllers to
use at each time step.

We evaluate TOIL in two domains: aircraft path-finding and robot manipulation.
The aircraft domain is a path-planning task in which a sequence of control inputs
that drive the aircraft to the goal must be found. For the observable case of this task,
we show that TOIL is able to generate a trajectory whose performance is on par with
the traditional trajectory optimizer while reducing the generation time by a factor of
44. In the partially observable case, we show TOIL’s success rate is better than that
of the trajectory optimizer, while the generation time is reduced by a factor of 52.
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In the manipulation domain, a robotic hand needs to move a cylindrical object
from an initial position to a target position. This involves high dimensional state and
control input. We show that in this domain, for both the observable and partially
observable settings, TOIL is able to reduce the trajectory generation time by a factor
of thousands. Moreover, we show that TOIL can generalize over different shapes
of the cylinder, and generate trajectories whose success rate is almost as same as
traditional trajectory optimization.!

2 Related Work

The idea of combining multiple trajectories to obtain a control policy has a long
history, for example [4-6]. Recently, there has been a surge of interest in learning-
based methods for constructing control policies from a set of trajectories obtained
from trajectory optimization [7-9]. These methods generalize a set of relatively
expensive trajectory optimizations to produce a policy represented in a form that can
be efficiently executed on-line.

Our goal is similar, except that we are trying to generalize over dynamic para-
meters. Our training examples are trajectories labeled either directly with dynamics
parameters or with observations that give a distribution over dynamic parameters.

Our approach is based on the paradigm of imitation learning [ 10, 11]. This learning
paradigm has had many successes in robotics, notably helicopter maneuvering, UAV
reactive control, and robot surgery [12—14]. In imitation learning, the goal is to
replicate (or improve upon) trajectories acquired from an “oracle,” usually an expert
human. The work in this paper can be seen as replacing the oracle in imitation learning
with a trajectory optimizer.

DAgger [2] is an influential algorithm that addresses a fundamental problem in
standard supervised approaches to imitation learning. Direct application of super-
vised learning suffers from the fact that the state distribution induced by the learned
policy differs from that of the oracle. DAgger adopts intuition from online learning,
a branch of theoretical machine learning, to address this problem by iteratively exe-
cuting the learned policy, collecting data from the oracle, and then learning a new
policy from the aggregated data. An important drawback of Dagger is that it queries
the oracle at each time step, which would require solving a non-linear optimization
program every time step during training in our case.

Our work extends Maximum Mean Discrepancy Imitation Learning
(MMD-IL) [3], a recently proposed imitation learning method designed to be effi-
cient in its access to the oracle. MMD-IL learns a set of trajectories to represent a
policy and uses the Maximum Mean Discrepancy criterion [15] as a metric to decide
when to query the oracle for a new trajectory. In this paper, we also take this approach
with a modification that makes it parameter free.

I'The video of this can be found at: https://www.youtube.com/watch?v=r900pUIXV6w.
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3 Completely Observable Dynamics

For clarity of exposition, we begin by defining the learning problem and the operation
of TOIL in the completely observable case; in Sect. 4 we extend it to the more realistic
partially observable case.

We assume a fixed initial state xo, goal state x, (or goal criterion) and cost func-
tional _#. We also assume that the transition dynamics are drawn from a known
class, with a particular instance determined by the parameter o drawn from set .27
X = fu(x, u). Our overall aim is to learn to map values of « to trajectories 7 that
go from xy to x, while respecting the transition dynamics and optimizing the cost
functional.

Rather than invent a direct parameterization of trajectories, we will represent a
trajectory implicitly as a policy m that maps a state x to a control output u. Thus,
we can think of the problem as learning a mapping /7 : &/ — (X — U), which can
be rewritten to a more traditional form: IT : &/ x X — U. Given a set of example
training trajectories of length H for a set of N different « values

@, 1) = (@ (& u N, j=1,...,N

we can use traditional supervised learning methods to find parameters 6 for a family
of regression functions, by constructing the training set {((«;, xt(j )), uﬁj ))}, and using
it as input to a regression method.

Because the training data represent trajectories rather than identically and inde-
pendently distributed samples from a distribution, we find that it is more effective
to use a specialized form of supervised learning algorithm and an active strategy for
collecting training data. The remaining parts of this section describe these methods
and the way in which the final learned regressor is used to generate action in the
on-line setting.

3.1 Representation and Learning

The key idea in TOIL is to construct a set of local trajectory generators m;, and to
appropriately select among them based on a two-sample test metric, MMD [15].
These trajectory generators are local in the sense that each of them specializes in a
particular region of the space X x .o/ and can be expected to generalize well to query
points that are likely to have been drawn from that same distribution of points. The
final policy is a regressor that has the form 7 (o, x) = m; (@, x), where the particular
7 is chosen based on the distance between the query point (¢, x) and the data
that were used to train ;. We then iterate between executing the current policy
and updating it with the new data. This is to mitigate the problems associated with
executing a learned policy without updating it, which has been shown to accumulate
error and cause cause the trajectory to be highly erroneous [2]. Pseudo-code for the
top level of TOIL is shown in Algorithm 1. It takes an initial state x, a goal state x,



Generalizing Over Uncertain Dynamics ... 43

and a sample set A = {«y, ..., oy} of dynamics parameters, and outputs a trajectory
generator, I1, which is a mapping from the state at time ¢ and the uncertain dynamics
parameter « to the control to be applied at time ¢.

TOIL comprises three procedures: LearnLocalTrajGenerator, SelectLocalTraj-
Generator and Optimize. The procedure LearnLocalTrajGenerator(t;, «;) is simply
a call to any supervised regression algorithm on the training set

{((eti, x1), up)} for (x,u;) €

We explain the remaining procedures as we describe Algorithm 1 below.

The algorithm begins by generating a set of training trajectories using the pro-
cedure Optimize. This procedure is responsible for getting a training trajectory, by
optimizing a nonlinear program for trajectory optimization. This nonlinear program
is discussed in detail in Sect. 3.3. From each of these training trajectories, it builds a
local trajectory generator and adds it to the set I7.

Once the initial training trajectories have been used to train local controllers,
we begin an iterative process of ensuring coverage of the input space that will be
reached by control actions generated by I1. For every value of «;, we try to execute
the trajectory that would be generated by IT starting from x,. At each step of exe-
cution we find the local controller 7 that applies to x, and « using the procedure
SelectLocalTrajGenerator. This procedure, given in Algorithm 2, is responsible for
selecting the most appropriate local trajectory generator based on the similarity met-
ric, called MMD, between the current state and training data . D associated with
each of the local controllers. This metric is described in detail in Sect.3.2. If there
is one, we use f, to simulate its execution and get a new state x,,. If there is no
local controller that covers the pair x;, o, then we call the Optimize procedure to
get a training trajectory from x; to x, with dynamics f,, and use it to train a new
local controller, r, which we add to I1. This process is repeated until it is possible
to execute trajectories for all the training «; to reach the goal, without encountering
any anomalous states. If the o; have been chosen so that they cover the space of
system dynamics that are likely to be encountered during real execution, then IT can
be relied upon to generate effective trajectories.

3.2 Maximum Mean Discrepancy

The process of applying trajectory generator I7 to generate an actual trajectory from
an initial (xg, ), as well as the process of actively collecting training trajectories,
depends crucially on identifying when a local trajectory generator is applicable to
an observed system state. This decision is based on anomaly detection using the
MMD criterion [15, 16], which is a non-parametric anomaly detection method that
is straightforward to implement. Other anomaly-detection methods might also be
suitable in this context, as surveyed in [17].

Given two sets of data, X = {xq,...,x,}and Y = {y;, ..., y,} drawn i.i.d. from
distributions p and g respectively, the maximum mean discrepancy (MMD) criterion
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Algorithm 1 TOIL(xo, f, x¢, A)

m=1{)
fori =1to N do
7; = Optimize(xo, f, Xg, ;)
IT = I1 U LearnLocalTrajGenerator(z;, ;)
end for
farPtsExists = True
while farPtsExists do
farPtsExists = False
fori =1to N do
fort =0to H do
1, = SelectLocalTrajGenerator(I1, x;, a;)
if isempty(r;) then
farPtsExists = True
T = Optimize(x;, fo;, Xg)
w = LearnLocalTrajGenerator(t, o;)
In=Irunmn
end if
Generate x;41 using fq, (x;, 7 (X7, o))
end for
end for
end while
return /7

Algorithm 2 SelectLocalTrajGenerator(I1, x;, o)

candidates = ()
for r; € IT do
if MMD(x;.D, (x;, ®)) < maxMMD(x;.D) then
candidates = candidates U T;
end if
end for
if size(candidates) == 0 then
return (
else
return argmin
end if

MMD(7, (x;, o))

7 €candidates

determines whether p = g or p # g, based on an embedding of the distributions in
a reproducing kernel Hilbert space (RKHS).

Definition 1 (from [15]) Let % be a class of functions f: 2 — R and let
P, q, X, Y be defined as above. Then MMD and its empirical estimate are defined
as:

MMD(%\’ ps f]) = Supfe.?(Exn;[f(x)] - Ey~q[f(y)])

1 — 1 -
MMD(.Z. X, Y) = supcs (Z PICIEED f(yi))
i=1

i=I
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local trajectory generators se-
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none of the states on TOIL’s tra-
jectory is navy.

MMD comes with an important theorem which we restate here.

Theorem 1 (from [15]) Let % be a unit ball in a reproducing kernel Hilbert
space FC, defined on compact metric space 2, with associated kernel k(-, -). Then
MMD(Z, p,q) =0ifand only if p = q.

Intuitively, we can expect M M D[.%, X, Y] to be small if p = g, and the quantity
to be large if distributions are far apart. This criterion can also be used as a metric
for anomaly detection, as described in [16]. Given a training dataset D and a query
point x, we can compute the following:

MMD(Z, x, D) = supser ()~ = 3 £()

x'eD;

= (k(x,x) — 2 k(x,x")+ iz k(x', x" : (D
n n

x'eD; X', x"eDj

and define maxMMD(D) = max,cp MMD(.%#, x, D). As illustrated in [16], we
report x as an anomaly for dataset D if MMD(x, D) > maxMMD(D).

Figure 1b shows the result of anomaly detection using the MMD criterion in one
of our domains, in which the robot needs to steer to the goal from a given initial
position and a forward velocity for the robot.
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Algorithm 3 TOILEx(xy, I1, )

fort =0to H do
7 = SelectLocalTrajGenerator(I1, x;, )
execute 7 (x;, o)
x¢+1 = ObserveState

end for

3.3 Trajectory Optimization

In trajectory optimization, the goal is to produce a locally optimal open-loop trajec-
tory that minimizes a cost function along this trajectory, for a given initial condition
xo. The problem of finding an optimal trajectory can be formulated generically as:

T
u*(-) =argmin J(xo; @) = argmin/ g(xs, uy) dt
u(-) u(-) t=0

st X = fo(x,u;)) Vit and xp = x, 2)

where, x, and u, respectively represent the state and the control input of the system
at time ¢, g(x;, u,) is the cost function, x, = f, (x;, u,) governs the dynamics of the
system, Xy is the initial state and x, is the goal state.

There are multiple way of solving nonlinear programs of this form [18], any of
which would be appropriate for use with TOIL.

3.4 Online Execution

Algorithm 3 illustrates the use of a learned I7 in an on-line control situation. We
assume that, at execution time, the parameter « is observable. At each time point, we
find the local controller that is appropriate for the current state and o, execute the u that
it generates, and then observe the next state. Assuming we have K local controllers,
each of which is trained with H data points, the worst-case time complexity for
computing a control for a given state and model is then O (H K). This can be achieved
by storing the Gram matrix of the dataset (i.e. the third part of Eq. 1) in a database, in
which case the computation of the second part of Eq. 1 becomes the dominant term.

4 Partially Observable Dynamics

In more realistic situations, the exact value of & will not be observable online. Instead,
we will be able to make observations o, which allow computation of a posterior
distribution Pr(« | 0). The TOIL approach can be generalized directly to this setting,
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but rather than selecting the u, to minimize J (xo, @) we minimize it in expectation,
hoping to obtain a trajectory that “hedges its bets” and performs reasonably well in
expectation over system dynamics f, where o ~ Pr(« | 0).

In practice, we use a sampled approximation of the expected value; in particular,
we assume that we have N as drawn from P (« | 0), and we formulate the constrained
optimization problem as

N T

1 .

u*(-) = argmin EO,NP(MO)[J()CO; a)] ~ argmin N E / g(x;, u,) dt
u(-) u(-) =0

i=I

sit. X = fo, (N u) Yi,i and xh=x, Vi 3)

Note that there are different state variables x; for each possible dynamics «;, allowing
the trajectories to be different, but that there is a single sequence of control variables
U.

The only additional change to the TOIL algorithm is that, instead of condition-
ing on « in the supervised learning and selection of local trajectory generators, we
condition on the observation o.

5 Experiments

We evaluate our framework on two domains: aircraft path finding and robot manip-
ulation. In all of our experiments, we use random forests [19] as our supervised
learner. Specifically, we use the TreeBagger class implemented in MATLAB for the
aircraft task, and RandomForestRegressor class implemented in scikit-learn [20] for
the manipulation task. We used a Gaussian kernel for the M M D metric in both tasks.

To evaluate TOIL, we compute three different measures: success rate, trajectory
generation time, and training time. The success rate is the percentage of the time
the trajectory generated by TOIL satisfied the constraints of the environment and
reached the goal. Trajectory generation time shows how much TOIL decreases the
online computation burden and training time measures the off-line computation time
required to learn /7 for a new domain.

We compared TOIL to three different benchmarks: (1) calling a standard tra-
jectory optimization procedure (solving Eq.2 using snopt [21]) online in each new
task instance, (2) using the initial training trajectories as input to a random forest
supervised learning algorithm; and (3) DAgger, which calls trajectory optimization
at every time step.



48 B. Kim et al.

5.1 Airplane Control

This task is to cause an airplane traveling at a constant speed in the plane to avoid
obstacles and reach a goal location by controlling its angular acceleration. Figure 1a
shows an instance of this task. System states s, and controls u, are defined to be:

St = [xrv ytvetrél]T y U = éz

where (x, y) is the location of the airplane in the 2D plane, ¢ is the heading angle,
and 0 and 6 are the angular velocity and acceleration, respectively. The dynamics of
the system is given by:

.. g =T . . T
S up) = [-xty Vi, 6, 9t] = [_V -sin(6,), v - cos(6;), 0y, Mt]

where v denotes the constant speed of the airplane. The objective function is inte-
grated cost g(s;, u;) = ut2 — distToNearestObstacle(s;).

We consider a trajectory to be a “success” if it does not collide with any obstacles,
and arrives at the goal.

Observable Case The aspect of the dynamics that is variable, corresponding to
« in the algorithms, is the speed of the aircraft, v; it is correctly observed by the
system at the execution time. For training, we sampled 30 different « values from
P(a) = Uniform(5, 30), and then generated training trajectories by solving Eq. 2.
For testing, we sampled 50 different « values from P ().

Figure2a shows the success rates of the different algorithms. Trajectory opti-
mization always returns a trajectory that is able to arrive at the goal without a
collision. DAgger frequently failed to find feasible trajectories, mainly because it
has not sampled training trajectories in the relevant parts of the state space. Simple
supervised learning was even less successful due to its inability to sample any extra

Success Rate for 50 Different Observable Models Success Rate for 50 Different Partially Observable Models
1

L 2
c @
g 2
Q Q
S S
(] (4]
trajopt DAgger  Supervised TOIL trajopt DAgger  Supervised TOIL
Algorithms Algorithms
(a) Observable Model (b) Partially Observable Model

Fig. 2 Success rates for airplane domain
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Table 1 Observable airplane domain trajectory generation and training times

Algorithm Trajectory generation | Training time (min) Number of traj opt
time (s) calls

TOIL 2.73 64.53 32

DAgger 2.10 375.01 186

Supervised 1.57 60.50 30

Traj opt 121.31 0 0

trajectories at training time. TOIL, in comparison, is able to generate trajectories
whose performance is almost on par with the trajectory optimizer.

Table 1 shows the online trajectory computation time required by each algorithm
for 21 knot points. All of the learning-based methods significantly reduce the online
computation time compared to the online trajectory optimization. In terms of training
time, we can see that DAgger makes a very large number of calls to the trajectory
optimizer, collecting training data at inappropriate regions of state space. In contrast,
TOIL is able to ask only when necessary, achieving much faster training time. Overall,
then, TOIL produces very good trajectories with reasonable time requirements for
both training and testing.

Partially Observable Case For the partially observable case, the observation o
is the mass of the aircraft, m. We assume a Gaussian distribution, P(«x | 0 = m) =
N (%, 1), where m is the mass of the aircraft. During training we pick 30 different
m values, and for each m we sample 5 different o values from P(« | 0 = m) and
solve Eq. 3 to produce 30 training trajectories, each of which is intended to be robust
to varying « values.

For testing, we sampled 50 different new m values, and for each, sampled 5 «
values from P (« | o = m). In this phase, the robot only sees m, but not « or P(x|0).
For online trajectory optimization, we computed a trajectory using those 5 o samples
by solving Eq. 3. Then, for all learning algorithms, we report the result of evaluating
the trajectory they produce on one of the five sampled « values.

Figure2b shows the success rate of different techniques in these problems. In
contrast to the observable case, the robust trajectory optimization cannot always find
trajectories that succeed. This is because the non-linear optimizer needs to find a
trajectory that is feasible for all 5 sampled « values, which makes the optimization
problem much more difficult.

TOIL performs much better than trajectory optimization, which sometimes gets
stuck in terrible local optima, such as one that collides with obstacles. TOIL is
more robust because the MMD criterion is able to pick appropriate local trajectory
generators depending on the initial state. In this task, most of the training trajectories
have heading angles facing forward and travel through the middle of the field due to
the placement of obstacles. Therefore, it is unlikely for a local trajectory generator
whose training data includes traveling towards obstacles to be selected, because x
is located at the middle of field, facing forward. This is well illustrated in Fig. lc.
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Table 2 Partially observable airplane trajectory generation and training times

Algorithm Trajectory generation | Training time (min) Number of traj opt
time (s) calls

TOIL 8.40 273 37

DAgger 7.84 1720.30 233

Supervised 1.75 221.50 30

Traj opt 443.12 0 0

& ! &

Fig. 3 Examples of the cylinders used in testing. The robotic hand is at its initial position, and the
red dot indicates the goal location for the center of the cylinder

Here, we can see that the local trajectory generator trained with data that collides
with obstacles by traveling to right is never selected during execution.

Now we consider the trajectory generation time and training time, as shown in
Table 2. As the generation times show, the learning methods reduce the online compu-
tation time significantly compared to online optimization. TOIL’s training time was
again significantly smaller than DAgger’s, and comparable with that of supervised
learning.

5.2 Manipulation Control

In this domain, the task is to move a cylindrical object with a multi-fingered robot
hand from an initial position to a goal position. A state of the robot is an element
of an 84 dimensional space which consists of: position and orientation of the palm
and the cylinder, as well as poses of the other 8 links relative to palm, g; associated
velocities, ¢, and accelerations §. We make use of an augmented position controller
whose inputs are desired poses and an amount of time that should be taken to achieve
them: u; = (q,+1, dt,+1). The aspect of the dynamics that variesis o = (Cx, C,, C.),
the center of mass of the cylinder, and in the partially observable case, the observation
o0 = (r,1) is the radius and length of the cylinder. We declare a trajectory to be
successful if it does not violate the dynamics constraints and moves the cylinder to a
desired goal pose. Figure 3 shows some example cylinders used in the testing phase.
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The nonlinear program for trajectory optimization has the following compo-
nents: decision variables {qt,q,,q,, F,(l), Ft(z), F,(S)}t=0 where F@ is the force
exerted by i'" finger at a contact point; objective function g(x;,u;) = ag? +

ﬂéjlz +y Z?zl F,(")2 where «, B, y € R. are weights on each component; constraints
between x;, u, and x,; that enforce the physics of the world; constraints on final
and initial states; finger-tip contact constraints that require the robot to contact
the object with its finger tips only; friction cone constraints between robot and
cylinder, and cylinder and the surface; complementarity constraints of the form
FYP . d(g) =0, Vf g, where, F') denotes the force being exerted by finger
f q; denotes the location of the hand at time ¢, and d(g;) denotes the distance from
the object to the finger f at time ¢. Our implementation of the physics constraints
embodies several approximations to real world physics. However, this still represents
a challenging test for the learning methods.

Intuitively, given the objective function and the constraints, the optimal behavior
is to simply push the object to the goal, because pushing requires the robot to exert
less total force and move along a shorter trajectory than lifting the object. However,
when there is uncertainty about the center of mass, pushing the object may be risky:
if the height at which it pushes is too far above or below the COM, the cylinder may
tip over, and so picking the object up may be preferable, in expectation. We find
that when the system dynamics are observable, TOIL selects appropriate pushing
trajectories, but when they are only partially observable, TOIL makes more robust
choices; an example is illustrated in Fig.4 and a few more examples are shown in
the video?

Observable Case In the observable case, we directly observe «. For training,
we sample 40 different ’s from P(«x = (Cy, Cy, C;)), which is defined as a joint
uniform distribution with its range defined by the length and radius of the cylinder.
For testing, we sample 50 different models from the same distribution.

Figure 5a shows the success rate of the same set of algorithms as for the airplane
domain. As the figure shows, even trajectory optimization sometimes fails to satisfy
the constraints within the given time limit for optimization, because the problem is
quite large. While TOIL again performed just slightly worse than trajectory optimiza-
tion, DAgger and supervised learning performed relatively poorly. Table 3 shows the
training and trajectory computation times. The learning approaches are much more
efficient at generating trajectories online than the optimizer is; Again, DAgger makes
extra calls to the trajectory optimizer, while the supervised learner makes too few.

Partially Observable Case In a more realistic scenario, the robot only gets to
observe length and radius of the cylinder, but not the exact center of mass. For
training, we sampled 40 different observations, and sampled two different «’s from
the conditional distribution P(a = [Cy, Cy, C;]lo = [r, []), which is defined as a
joint normal distribution centered at the center of the cylinder (i.e. o = (7, 7y, [/2))
and variance defined as half of radius for (x, y) direction, and length in z direction.
For testing, we sampled 50 different observations and tested the algorithms on one

Zhtps://www.youtube.com/watch?v=r900pUIX V6w.
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Fig.4 Trajectories for the observable (/eft) and partially observable case (right). For the observable
case, the robot simply pushes the object to the goal. For the partially observable case, the robot lifts
the object to to the goal, as to minimize the risk of tipping the cylinder over
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Fig. 5 Success rates for manipulation domain
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Table 3 Trajectory computation times and training times for various algorithms

Algorithm Trajectory generation | Training time (mins) | Number of traj opt
time (s) calls

TOIL 1.10 1012 44

DAgger 1.04 1320 60

Supervised 0.45 880 40

Traj Opt 1302 0 0
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Table 4 Trajectory computation times and training times of various algorithms

Algorithm Trajectory generation | Training time (mins) | Number of traj opt
time (s) calls

TOIL 1.16 1978 46

DAgger 1.04 2580 60

Supervised 0.45 1720 40

Traj Opt 2628 0 0

of the a’s sampled from the same distribution. The robot gets to see only o, but not
the conditional distribution or «.

Figure 5b shows the success rate of the different algorithms. The pattern of per-
formance is similar to the observable case. All the algorithms performed somewhat
better than in the observable case, presumably because the trajectories found are
less sensitive to variations in the dynamics. Table4 shows the training and trajec-
tory generation times. For this case, the learning algorithms are even more efficient
relative to trajectory optimization, because the optimization problem is so difficult.
As before, DAgger gathered much more data, while TOIL collected just enough to
perform almost as well as the trajectory optimizer.

6 Conclusion

We proposed TOIL, an algorithm that learns an online trajectory generator that can
generalize over varying and uncertain dynamics. When the dynamics is certain, our
generator is able to generalize across various model parameters. If it is partially
observable, then it is able to generalize across different observations. It is shown, in
two simulated domains, to find solutions that are nearly as good as, and sometimes
better than, those obtained by calling the trajectory optimizer on line. The online
execution time is dramatically decreased, and the off-line training time is reasonable.
A significant concern about TOIL, as well as other supervised learning based
algorithms for trajectory generation [7-9], is that the resulting controller has no
guarantee of stability. In contrast, controllers synthesized from a set of local stabi-
lizing controllers, such as LQRs, can guarantee that the controller would stabilize to
the goal state [5]. Investigating the stability guarantees of supervised learning based
trajectory generators would be an interesting research avenue for the future.
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Inverse KKT - Learning Cost Functions
of Manipulation Tasks from Demonstrations

Peter Englert and Marc Toussaint

1 Introduction

Most tasks in real world scenarios require contacts with the environment.
For example, the task of opening a door requires contact between the robot grip-
per and the door handle. In this paper, we address learning from demonstration for
the case of manipulation that incorporates contacts. Specifically, we want to extract
from demonstrations how to represent and execute manipulations in such a way that
the robot can perform such tasks in a robust and general manner.

Cost functions are a powerful representation for robot skills, since they are able
to encode task knowledge in a very abstract way. This property allows them to reach
high generalization to a wide range of problem configurations. However, designing
cost functions by hand can be hard since the right features have to be chosen and
combined with each other. Therefore, inverse optimal control, also known as inverse
reinforcement learning [18], automates the design of cost functions by extracting
the important task spaces and cost parameters from demonstrations. Many success-
ful applications in different areas have demonstrated the capabilities of this idea,
including the learning of quadruped locomotion [8], helicopter acrobatics [1] and
simulated car driving [10].

There are two parts necessary for applying learning from demonstration with IOC:
(1) The inverse optimization method for extracting the cost function from demon-
strations; (2) The motion optimization method that creates motions by minimizing
such cost functions. Both parts are coupled by the cost function, which is the output
of the first and input of the second part, see Fig. 1. Usually IOC algorithms try to find
a cost function such that the output of the motion optimization method is similar to
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Fig. 1 Concept of skill learning with inverse optimal control, where the cost function plays the
central role of encoding the demonstrated behavior. In this paper, we present our formulation of
learning a cost function for a constrained trajectory optimization problem

the input demonstrations of the inverse problem. Therefore, the cost function is used
as a compact representation that encodes the demonstrated behavior.

Our approach finds a cost function, including the identification of relevant task
spaces, such that the demonstrations fulfill the KKT conditions of an underlying
constrained optimization problem with this cost function. Thereby we integrate con-
straints into the IOC method, which allows us to learn from object manipulation
demonstrations that naturally involve contact constraints. Motion generation for such
cost functions (point 2 above) is a non-linear constrained program, which we solve
using an augmented Lagrangian method. However, for typical cost function para-
meterizations, the IOC problem of inferring the cost function parameters (point 1
above) becomes a quadratic program, which can be solved very efficiently.

The structure of the paper is as follows. We would like to defer the discussion of
related work to after we have introduced our method, in Sect. 4. First, in Sect. 2, we
introduce some background on constrained trajectory optimization, which represents
the counterpart to the IOC approach. Afterwards, we develop our IOC algorithm in
Sect. 3 by deriving a cost function based on KKT conditions. In Sect.5 we evaluate
our approach on simulated and real robot experiments.

The main contribution of this paper is the introduction of an IOC method for
constrained motions with equality and inequality constraints that is based on the
KKT conditions. This method allows to efficiently extract task spaces and parameters
from demonstrations.

2 Constrained Trajectory Optimization

We define a trajectory x .7 as a sequence of 7 + 1 robot configurations x;, € R". The
goal of trajectory optimizationis to find a trajectory x7.,, given aninitial configuration
X, that minimizes a certain objective function

T
G,y w) = c/(F, y,w) . (1

t=1

This defines the objective as a sum over cost terms ¢;(X;, y, w;), where each cost
term depends on a k-order tuple of consecutive states X; = (X;—k, ..., X;—1, X;),
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containing the current and k previous robot configurations [22]. This allows us to
specify costs on the level of positions, velocities or accelerations (for k = 2) in
configuration space as well as any task spaces. In addition to the robot configuration
state X,, we use external parameters of the environment y to contain information that
are important for planning the motion (parameters of the environment’s configuration,
e.g. object positions). These y usually vary between different problem instances,
which is used to generalize the skill to different environment configurations.

We typically assume that the cost terms in Eq. (1) are a weighted sum of squared
features,

(X, y,w) =, (%, y)Tdiag(wt)d),(it, y), )

where ¢,(x,, y) are the features and w, is the weighting vector at time . A simple
example for a feature is the robot’s endeffector position at the end of the motion
T relative to the position of a cup. In this example the feature ¢, (x,;, y) would
compute the difference between the forward kinematics mapping and cup position
(given by y). More complex tasks define body orientations or relative positions
between robot and an object. Transition costs are a special type of features, which
could be squared torques, squared accelerations or a combination of those, or veloc-
ities or accelerations in any task space.

In addition to the task costs we also consider inequality and equality constraints

\Z g,(x,,y) <0, h(x;,y)=0 €))

which are analogous to features ¢, (¥,, y) and can refer to arbitrary task spaces. An
example for an inequality constraint is the distance to an obstacle, which should not be
below a certain threshold. In this example g, (X;, y) would be the smallest difference
between the distance of the robot body to the obstacle and the allowed threshold. The
equality constraints are in our approach mostly used to represent persistent contacts
with the environment (e.g., i, describes the distance between hand and object that
should be exactly 0). The motivation for using equality constraints for contacts,
instead of using cost terms in the objective function as in Eq.(2), is the fact that
minimizing costs does not guarantee that they will become 0, which is essential for
establishing a contact.

For better readability we transform Egs. (1) and (3) into vector notation by intro-
ducing the vectors w, @, g and k that concatenate all elements over time. This allows
us to write the objective function of Eq. (1) as

fxir, y,w) =@ (x1r, y) diagw) ®(x .7, y) (4)

and the overall optimization problem as
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X}, = argmin f(x1.7, y,w) (5)
X7
st. glxrr,y) <0
h(leT5 y) = 0

We solve such problems using the augmented Lagrangian method [13]. Therefore,
additionally to the solution x7.; we also get the Lagrange parameters A}.;-, which
provide information on when the constraints are active during the motion. This
knowledge can be used to make the control of interactions with the environment
more robust [23]. We use a Gauss—Newton optimization method to solve the uncon-
strained Lagrangian problem in the inner loop of augmented Lagrangian. For this

problem, the gradient is
Vi f@r, y,w) =20 (1.7, p)  diag) @ (x1.7, ) 6)

and the Hessian is approximated as in Gauss—Newton as

Vi fir, y,w) 2 2] (xr, y) T diagw) J (17, ), (7)
where J = % is the Jacobian of the features. Using a gradient based trajectory

optimization method restricts the class of possible features @ to functions that are
continuous with respect to x. However, we will show in the experimental section
that this restriction still allows to represent complex behavior like opening a door or
sliding a box on a table.

3 Inverse KKT Motion Optimization

We now present an approach to the inverse problem for the constrained trajectory
optimization formulation introduced in the previous section. To this end we learn the
weight vector w in Eq. (5) from demonstrations. We assume that D demonstrations

of a task are provided with the robot body (e.g., through teleoperation or kinesthetic

teaching) and are given in the form (¥ f}, $“D_, where £\) is the demonstrated

trajectory and j)(d) is the environment configuration (e.g., object position).
Our IOC objective is derived from the Lagrange function of the problem in Eq. (5)

(®)

L(xir, ¥y, Ahow) = f(xpr, y,w) +A7 [g(xlzr, y)i|

h(xi.r,y)

and the Karush—Kuhn—-Tucker (KKT) conditions. The first KKT condition says that
for an optimal solution x7.; the condition Vy,  L(x7.;, ¥, A, w) = 0 has to be ful-
filled. With Eq. (6) this leads to
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2J (xrr, y) ' diagw)@ (X1, ) + 1" T, ) =0 ©)

where the matrix J. is the Jacobian of all constraints. We assume that the demon-
strations are optimal and should fulfill this conditions. Therefore, the IOC problem
can be viewed as searching for a parameter w such that this condition is fulfilled for
all the demonstrations.

We express this idea in terms of the loss function

D
Lw. x) =D LD w A D) (10)
d=1
2
D AD) = (Vi LED 5D W) an

where we sum over D demonstrations of the scalar product of the first KKT condition.
In Eq. (10), d enumerates the demonstrations and A?) is the dual to the demonstra-
tion fcgd% under the problem defined by w. Note that the dual demonstrations are
initially unknown and, of course, depend on the underlying cost function f. More
precisely, A =A@ (,\?f;, 3@, w) is a function of the primal demonstration, the
environment configuration of that demonstration, and the underlying parameters w.
And £@D (w, LD (w)) = £ (w) becomes a function of the parameters only (we think
of .i'id} and 5@ as given, fixed quantities, as in Eqs. 10 and 11).

Given that we want to minimize £@ (w) we can substitute A‘“’ (w) for each demon-
stration by choosing the dual solution that analytically minimizes £‘? (w) subject to
the KKT’s complementarity condition

LD, 2Dy =0 (12)

@

= Amw) = —(fcch)_lchTdiag(d))w ) (13)

Note that here the matrix fc is a subset of the full Jacobian of the constraints J . that
contains only the active constraints during the demonstration, which we can evaluate
as g and h are independent of w. This ensures that (13) is the minimizer subject to
the complementarity condition. The number of active constraint at each time point
has a limit. This limit would be exceeded if more degrees of freedom of the system
are constrained than there are available.

By inserting Eq. (13) into Eq.(11) we get

£ Dow) = 4w diag(®) J (I AN ch)‘lfc) J Tdiag(®)w (14)

A(d)

which is the IOC cost per demonstration. Adding up the loss per demonstration and
plugging this into Eq. (10) we get a total inverse KKT loss of
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D
tw)y=w'Aw  with A=4>" A9, (15)
d=1
The resulting optimization problem is
min w' Aw st. w>0 (16)
w

Note that we constrain the parameters w to be positive. This reflects that we want
squared cost features to only positively contribute to the overall cost in Eq. (4).

However, the above formulation may lead to the singular solution w = 0 where
zero costs are assigned to all demonstrations, trivially fulfilling the KKT conditions.
This calls for a regularization of the problem. In principle there are two ways to regu-
larize the problem to enforce a non-singular solution: First, we can impose positive-
definiteness of Eq. (4) at the demonstrations (cf. [10]). Second, as the absolute scaling
of Eq. (4) is arbitrary we may additionally add the constraint

min w' Aw (17)
w

st. w>0, Zw,-zl
i

to our problem formulation (16). We choose the latter option in our experiments.

Equation (17) is a (convex) quadratic program (QP), for which there exist efficient
solvers. The gradient w " A and Hessian A are very structured and sparse, which we
exploit in our implementations.

In practice we usually use parametrizations on w. This is useful since in the
extreme case, when for each time step a different parameter is used, this leads to
a very high dimensional parameter space (e.g., 10 tasks and 300 time steps lead to
3000 parameter). This space can be reduced by using the same weight parameter over
all time steps or to activate a task only at some time points. The simplest variant is
to use a linear parametrization w(@) = A@, where 0 are the parameters that the [OC
method learns. This parametrization allows a flexible assignment of one parameter
to multiple task costs. Further linear parametrizations are radial basis function or
B-spline basis functions over time ¢ to more compactly describe smoothly varying
cost parameters. For such linear parametrization the problem in Eq.(17) remains a
QP that can be solved very efficiently.

Another option we will consider in the evaluations is to use a nonlinear map-
ping w(#) = </ (#) to more compactly represent all parameters. For instance, the
parameters w can be of a Gaussian shape (as a function of ¢), where the mean and
variance of the Gaussian is described by 6. Such a parametrization would allow us
to learn directly the time point when costs are active. In such a case, the problem is
not convex anymore. We address such problems using a general non-linear program-
ming method (again, augmented Lagrangian) and multiple restarts are required with
different initializations of the parameter.
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Our approach also works in the unconstrained case. In this case the constraint term
vanishes in Eq. (9) and the remaining part is the optimality condition of unconstrained
optimization, which says that the gradient of the cost function should be equal to
zero.

4 Related Work

In the recent years, there has been extensive research on imitation learning and
inverse optimal control. In the following section, we will focus on the approaches and
methods that are most related to our work of learning cost functions for manipulation
tasks. For a broader overview on IOC approaches, we refer the reader to the survey
paper of Zhifei and Joo [24] and for an overview on general imitation learning we
recommend Argall et al. [3].

4.1 Max-Entropy and Lagrangian-Based 10C Approaches

The work of Levine and Koltun [10] is perhaps the closest to our approach. They use a
probabilistic formulation of inverse optimal control that approximates the maximum
entropy model of Ziebart et al. [25]. In our framework of trajectory optimization (cf.
Sect.2) this translates to

min Ve f 1 (V; /)7 Ve f —log |VEf. (18)

The first term of this equation is similar to our loss in Eq. (10), where the objective
is to get small gradients. Additionally, they use the inverse Hessian as a weighting
of the gradient. The second term ensures the positive definiteness of the Hessian
and also acts as a regularizer on the weights. The learning procedure is performed
by maximizing the log-likelihood of the approximated reward function. Instead of
enforcing a fully probabilistic formulation, we focus on finite-horizon constrained
motion optimization formulation with the benefit that it can handle constraints and
leads to a fast QP formulation. Further, our formulation also targets at efficiently
extracting the relevant task spaces.

Puydupin-Jamin et al. [16] introduced an approach to IOC that also handles linear
constraints. It learns the weight parameter w and Lagrange parameter A by solving a
least-squares optimization problem

2
min ([2JTdiag(¢) J!] [‘;] + J/W) (19)
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where /" denotes the part in the cost function that is not weighted with w. The method
only addresses equality constraints (no complementarity condition for ). Our main
concern with this formulation is that there are no constraints that ensure that the
weight parameter w do not become 0 or negative. If J/* is zero, as in our case,
the solution is identially zero (w, L). Starting with the KKT condition, they derive
a linear residual function that they optimize analytically as the unconstrained least
squares. In the experimental section they consider human locomotion with a unicycle
model, where they learn one weight parameter of torques and multiple constraints
that define the dynamics of the unicycle model and the initial and target position. The
idea of using KKT conditions is similar to our approach. However, our formulation
allows for inequality constraints and leads to a QP with boundary constraints that
ensures that the resulting parameters are feasible. Instead of optimizing for A, we
eliminate A from the inverse KKT optimization using Eq. (13).

The work of Albrecht et al. [2] learns cost functions for human reaching motions
from demonstrations that are a linear combination of different transition types (e.g.,
jerk, torque). They transformed a bilevel optimization problem, similar to [11], into
a constrained optimization problem of the form

2
min (47 (vr) — 7 (")) 0)
xlzr,w,l
s.t. Vi, Lxir, y, A, w) =0 21
h(xi7)=0 > wi=1 w>0 (22)
i

The objective is the squared distance between optimal and demonstrated final hand
position. They optimize this objective for the trajectory x .7, the parameter w and the
Lagrange parameter A with the constraints that the KKT conditions of the trajectory
x .7 are fulfilled. To apply this approach demonstrations are first preprocessed by
extracting a characteristic movement with dynamic time warping and a clustering
step. Their results show that a combination of different transition costs represent
human arm movements best and that they are able to generalize to new hand positions.
The advantage of their approach is that they do not only get the parameter weights w,
but also an optimal trajectory x7.;- out of the inverse problem in Eqs. (20)—(22). The
use of the KKT conditions differs from our approach in two ways. First, they use the
KKT conditions in the constrained part of the formulation in Eq. (21), whereas we
use them directly as scalar product in the cost function. Second, they use them on the
optimization variables x .7, whereas we use them on the demonstrations £@ (see
Eq. (10)). Instead of minimizing a function directly of the final endeffector position
and only learning weights of transition costs, we present a more general solution to
imitation learning that can learn transition and task costs in arbitrary feature spaces.
Our approach also handles multiple demonstrations directly without preprocessing
them to a characteristic movement.



Inverse KKT — Learning Cost Functions of Manipulation Tasks ... 65

4.2 Black-Box Inverse Optimal Control

Black-box optimization approaches are another category of methods for IOC. There,
usually an optimization procedure with two layers is used, where in the outer loop
black box optimization methods are used to find suitable parameter of the inner
motion problem. For this usually no gradients of the outer loop cost function are
required.

Mombaur et al. [11] use such a two-layered approach, where they use in the outer
loop a derivative free trust region optimization technique and in the inner loop a
direct multiple shooting technique. The fitness function of their outer loop is the
squared distance between inner loop solution and demonstrations. They apply it on a
human locomotion task, where they record demonstration of human locomotion and
learn a cost function that they transfer to a humanoid robot. Riickert et al. [17] uses
a similar idea to learn movements. They use covariance matrix adaptation [5] in the
outer loop to learn policy parameters of a planned movement primitive represented
as a cost function. Such methods usually have high computational costs for higher-
dimensional spaces since the black box optimizer needs many evaluations. One also
needs to find a cost function for the outer loop that leads to reasonable behavior.

Kalakrishnan et al. [7] introduce an inverse formulation of the path integral rein-
forcement learning method PI? [21] to learn objective functions for manipulation
tasks. The cost function consists of a control cost and a general state dependent cost
term at each time step. They maximize the trajectory likelihood of demonstrations
p(x1.7|w) for all demonstrations by creating sampled trajectories around the demon-
strations. Further, they L1 regularize w to only select a subset of the weights. The
method is evaluated on grasping tasks.

4.3 Task Space Extraction

Jetchev and Toussaint [6] discover task relevant features by training a specific kind
of value function, assuming that demonstrations can be modelled as down-hill walks
of this function. Similar to our approach, the function is modelled as linear in several
potential task spaces, allowing to extract the one most consistent with demonstrations.
In Muhlig et al. [12] they automatically select relevant task spaces from demonstra-
tions. Therefore, the demonstrations are mapped on a set of predefined task spaces,
which is then searched for the task spaces that best represent the movement. In con-
trast to these methods, our approach more rigorously extracts task dimensions in
the inverse KKT motion optimization framework, including motions that involve
contacts.
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4.4 Model-Free Imitation Learning

Another approach is the widely used framework of direct imitation learning with
movement primitives [14, 15, 19]. They belong to a more direct approach of imitation
learning that does not try to estimate the cost function of the demonstration. Instead
they represent the demonstrations in a parametrized form that is used to generalize
to new situations (e.g., changing duration of motion, adapting the target). Many
extensions with different parametrization exist that try to generalize to more complex
scenarios [4, 20]. They are very efficient to learn from demonstrations and have been
used for manipulation tasks (e.g., pushing a box [9]).

The major difference of such kind of approaches to our method is that they do not
need an internal model of the environment, which is sometimes difficult to obtain.
However, if such a model is available it can be used to learn a cost function that
provide better generalization abilities than movement primitives. This is the case
since cost functions are a more abstract representation of task knowledge. Examples
of such generalization abilities are demonstrated in Sect.5 with a box sliding task
where we generalized to different box positions and with the door opening task where
we generalized to different door angles.

S Experiments

In the following experimental evaluations, we demonstrate the learning properties
and the practical applicability of our approach and compare it to an alternative method
in terms of accuracy and learning speed.

For applying an IOC method a set of potential features @ has to be provided as
input. For the following experiments we implemented a simple feature generator to
produce a set of potential cost function features in a task independent manner. The
used feature types are:

e Transition features: Represent the smoothness of the motion (e.g., sum of squared
acceleration or torques)

e Position features: Represent a body position relative to another body.

e Orientation features: Represent orientation of a body relative to another body.

A body is either a part of the robot or belongs to the environment. In the following
experiments the time points are either learned with RBF parametrization or they
are heuristically extracted from points of interest of the demonstrations (e.g., zero
velocity, contact release). We demonstrate in the following experiments that by com-
bining such simple feature types at different time steps into a cost function allows to
represent complex behavior.

First, we present on a simple task the ability to reestimate weight functions
from optimal demonstrations with different weight parametrizations. Afterwards,
we present more complex tasks like sliding a box and opening a door with a real
PR2.
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5.1 Different Weight Parametrizations in a Benchmark
Scenario

The goal of our work is to learn cost functions for finite horizon optimal control prob-
lems, including when and how long the costs should be active. In this experiment
we test our approach on a simple benchmark scenario. Therefore, we create syn-
thetic demonstrations by optimizing the forward problem with a known ground truth
parameter set wGT and test if it is possible to reestimate these parameters from the
demonstrations. We create three demonstrations with 50 time steps, where we define
that in the time steps 25-30 of these demonstrations the robot endeffector is close to
a target position. For this experiments we use a simple robot arm with 7 degree of
freedom and the target is a sphere object. We compare the three parametrizations

e Direct parametrization: A different parameter is used at each time step (i.e.,
w = 0) which results in § € R,

e Radial basis function: The basis functions are equally distributed over the time
horizon. We use 30 Gaussian basis functions with standard deviation 0.8. This
results in § € R,

e Nonlinear Gaussian: A single unnormalized Gaussian weight profile where we
have @ € IR? with the weight as linear parameter and the nonlinear parameters are
directly the mean and standard deviation. In this case the mean directly corresponds
to the time where the activation is highest.

The demonstrations are used as input to our inverse KKT method (see Sect. 3) and
the weights are initialized randomly. A comparison of the learned parameters and the
ground truth parameter is shown in Fig. 2. The green line represents the ground truth
knowledge used for creating the demonstrations. The black dots show the learned
parameters of the direct parametrization. The red line shows the learned Gaussian
activation and the blue line shows the RBF network. As it can be seen all parametriza-
tion detect the right activation region between the time steps 25-30 and approximate
the ground truth profile. The Gaussian and RBF parametrization also give some
weight to the region outside the actual cost region, which is reasonable since in the
demonstrations the robot is still close to the target position. After learning with these
parametrizations, we conclude that the linear RBF network are most suited to learn
time profiles of cost functions. The main reason for this is the linearity of the para-

Ground truth
® Direct param

H — Gauss param
—— RBF param
oo ° ° .
15 20 25 30 35 40 45 50

time steps

Fig. 2 Learned time profiles of different weight parameterizations. For more details see Sect. 5.1
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metrization that makes the inverse KKT problem convex and the versatility of the
RBF network to take on more complex forms. Directly learning the time with the
nonlinear Gaussian-shaped parametrization was more difficult and required multiple
restarts with different initialization. This demonstrates that the framework of con-
strained trajectory optimization and its counterpart inverse KKT works quite well
for reestimating cost functions of optimal demonstrations.

5.2 Sliding a Box on a Table

In this experiment we use our approach to learn a cost function for sliding a box on
a table. This task is depicted in Fig. 3. The goal is to move the blue box on the table
to the green marked target position and orientation. The robot consist of a fixed base
and a hand with 2 fingers. In total the robot has 10 degrees of freedom. Additionally
to these degree of freedom we model the box as part of the configuration state,
which adds 3 more degrees of freedom (2 translational + 1 rotational). The final box
position and orientation is provided as input to our approach and part of the external
parameters y. We used three synthetic demonstrations of the task and created a set
of features with the approach described above that led to # € R37 parameters. The
relevant features extracted from our algorithm are

e transition: Squared acceleration at each time step in joint space

posBox: Relative position between the box and the target.

vecBox: Relative orientation between the box and the target.
posFinger1/2: Relative position between the robots fingertips and the box.
posHand: Relative position between robot hand and box.

vecHand: Relative orientation between robot hand and box.

The contacts between the fingers and the box during the sliding are modeled with
equality constraints. They ensure that during the sliding the contact is maintained. For
achieving realistic motions, we use an inequality constraint that restrict the movement
direction during contact into the direction in which the contact is applied. This ensures
that no unrealistic motions like sliding backwards or sidewards are created. For clarity
we would like to note that we are not doing a physical simulation of the sliding

Fig. 3 These images show the box sliding motion of Sect. 5.2 where the goal of the task is to slide
the blue box on the table to the green target region
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Fig. 4 Each image shows a different instance of the box sliding task. We were able to generalize
to different initial box states (blue box) and to different final box targets (green area)

3 | e transition
= posBox

o || = vecBox
= posFinger1

log(w)

= posFinger2

1 === posHand
e ve@cHand
g 40 50

0 10 20 30

60 70 80 90 100
timesteps

Fig. 5 The resulting parameters w of the extracted relevant features plotted over time. task is
depicted in this slideshow

Black box I0C: Method (x) —2)2 comp. time
repeat

Resample parameters {w(")}lryzl with CMA inverse KKT ~ 0.00021 49.29 sec

for all w") do black box IOC  0.00542 7116.74 sec

Optimize cost function with parameter w(")
Compute fitness £ = ¥, (x®) —£(@))2
end for
Update CMA distribution with fitness values
until

Fig. 6 On the left side is the black box IOC algorithm we used for comparison in Sect.5.2. On the
right side are the results of the evaluation that show that our method is superior in terms of squared
error between the trajectories and computation time

behavior in these experiments. Our goal was more to learn a policy that executes a
geometric realistic trajectory from an initial to a final box position. Figure 3 shows
one of the resulting motion after learning. We were able to generalize to a wide
range of different start and goal position of the box (see Figs.4 and 5). Videos of the
resulting motions can be found in the supplementary material.

We compare our method to a black-box optimization approach similar to [11,
17]. We implemented this approach with the black-box method Covariance Matrix
Adaptation (CMA) [5] in the outer loop and our constrained trajectory optimization
method (see Sect. 2) in the inner loop. The resulting algorithm is described in Fig. 6.
As fitness function for CMA we used the squared distance between the current
solution x™ and the demonstrations £ . We compare this method with our inverse
KKT approach by computing the error between the solution and demonstrations and
the computational time, which are shown in the table in Fig. 6. The black-box method
took around 4900 iterations of the outer loop of the above algorithm until it converged
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Fig. 7 The resulting motion after learning the door opening task is depicted in this slideshow. See
Sect. 5.3 for more details

to a solution. This comparison shows that using structure and optimality conditions
of the solution can enormously improve the learning speed. Further difficulties with
black box methods is that they cannot naturally deal with constraints (in our case
w > 0) and that the initialization is non-trivial.

5.3 Opening a Door with a PR2

In this experiment we apply the introduced inverse KKT approach from Sect.3 on
a skill with the goal to open a door with a real PR2 robot. The problem setup is
visualized in Fig.7. We use a model of the door for our planning approach and
track the door angle with AR marker. We use the left arm of the robot that consists
of 7 rotational joints and also include the door angle as configuration state into x.
This allows us to define cost functions directly on the door angle. The gripper is
fixed during the whole motion. For our IOC algorithm we recorded 2 demonstrations
of opening the door from different initial positions with kinesthetic teaching. The
motions also include the unlocking of the door by turning the handle first. During the
demonstrations we also recorded the door position with the attached markers. We
created a feature set similar to the box sliding motion from the previous experiment.
Our inverse KKT algorithm extracted the features:

e Relative position & orientation between gripper and handle before and after
unlocking the handle.

e Endeffector orientation during the whole opening motion.

e Position of the final door state.

‘We use equality constraints, similar to the box sliding experiment to keep the contact
between endeffector and door. Furthermore, we use inequality constraints to avoid
contacts with the rest of the robot body. A resulting motion of optimizing the con-
strained trajectory optimization problem with the learned parameter w* is visualized
in Fig. 7. We are able to robustly generate motions with these parameters that gener-
alize to different initial positions and different target door angles (see Fig. 8). Videos
of all these motions can be found in the supplementary material.
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Fig. 8 These images show the generalization abilities of our approach. The pictures in (a) show
different initial positions of the robot and the pictures in (b) show different final door angle positions.
After learning the weight parameter w* with inverse KKT it was possible to generalize to all these
instances of the door opening task

6 Conclusion

In this paper we introduced inverse KKT motion optimization, an inverse optimal
control method for learning cost functions for constrained motion optimization prob-
lems. Our formulation is focused on finite horizon optimal control problems for tasks
that include contact with the environment. The resulting method is based on the KKT
conditions that the demonstrations should fulfill. For a typical linear parameterization
of cost functions this leads to a convex problem; in the general case it is implemented
as a 2nd order optimization problem, which leads to a fast convergence rate. We
demonstrated the method in a real robot experiment of opening a door that involved
contact with the environment. In our future research we plan to further automate and
simplify the skill acquisition process. Thereby, one goal is to extend the proposed
method to be able to handle demonstrations that are not recorded on the robot body.
Another goal is to further improve the skill with reinforcement learning.
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Autonomously Acquiring Instance-Based
Object Models from Experience

John Oberlin and Stefanie Tellex

1 Introduction

Robotics will assist us at childcare, help us cook, and provide service to doctors,
nurses, and patients in hospitals. Many of these tasks require a robot to robustly
perceive and manipulate objects in its environment, yet robust object manipulation
remains a challenging problem. Transparent or reflective surfaces that are not visible
in IR or RGB make it difficult to infer grasp points [23], while emergent physical
dynamics cause objects to slip out of the robot’s gripper; for example, a heavy object
might slip to the ground during transport unless the robot grabs it close to the center
of mass. Instance-based approaches that focus on specific objects can have higher
accuracy but usually require training by a human operator, which is time consuming
and can be difficult for a non-expert to perform [18, 19, 31]. Existing approaches for
autonomously learning 3D object models often rely on expensive iterative closest
point-based methods to localize objects, which are susceptible to local minima and
take time to converge [16].

To address this problem, we take an instance-based approach, exploiting the
robot’s ability to collect its own training data. Although this approach does not
generalize to novel objects, it enables experience with the object to directly improve
the robot’s performance during future interactions, analogous to how mapping an
environment improves a robot’s ability later to localize itself. After this data collec-
tion process is complete, the robot can quickly and reliably manipulate the objects.
Our first contribution is an approach that enables a robot to achieve the high accuracy
of instance-based methods by autonomously acquiring training data on a per object
basis. Our grasping and perception pipeline uses standard computer vision techniques
to perform data collection, feature extraction, and training. It uses active visual ser-
voing for localization, and only uses depth information at scan time. Because our
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camera can move with seven degrees of freedom, the robot collects large quantities
of view-based training data, so that straightforward object detection approaches per-
form with high accuracy. This framework enables a Baxter robot to detect, classify,
and manipulate many objects.

However, limitations in sensing and complex physical dynamics cause problems
for some objects. Our second contribution addresses these limitations by enabling
a robot to learn about an object through exploration and adapt its grasping model
accordingly. We frame the problem of model adaptation as identifying the best arm for
an N-armed bandit problem [41] where the robot aims to minimize simple regret after
a finite exploration period [3]. Existing algorithms for best arm identification require
pulling all the arms as an initialization step [1, 5, 26]; in the case of identifying grasp
points, where each grasp takes more than 15 s and there are more than 1000 potential
arms, this is a prohibitive expense. To avoid pulling all the arms, we present a new
algorithm, Prior Confidence Bound, based on Hoeffding races [27]. In our approach,
the robot pulls arms in an order determined by a prior, which allows it to try the most
promising arms first. It can then autonomously decide when to stop by bounding
the confidence in the result. Figure 1 shows the robot’s performance before and after
training on a ruler; after training it grasps the object in the center, improving the
success rate.

Our evaluation demonstrates that our scanning approach enables a Baxter robot
with no additional sensing to detect, localize, and pick up a variety of household
objects. Further, our adaptation step improves the overall pick success rate from 55
to 75% on our test set of 30 household objects, shown in Fig. 6 (Fig.2).

—
1

-

(a) Before learning, the ruler slips. (b) After learning, the robot picks it up.

Fig. 1 Before learning, the robot grasps the ruler near the end, and it twists out of the gripper and
falls onto the table; after learning, the robot successfully grasps near the ruler’s center of mass
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Fig. 2 Results at each phase of the grasping pipeline

» Grasping

2 Grasping System

Our object detection and pose estimation pipeline uses conventional computer vision
algorithms in a simple software architecture to achieve a frame rate of about 2Hz
for object detection and pose estimation. Object classes consist of specific object
instances rather than general object categories. Using instance recognition means
we cannot reliably detect categories, such as “mugs,” but the system will be much
better able to detect, localize, and grasp the specific instances, e.g. particular mugs,
for which it does have models.

Our detection pipeline runs on stock Baxter with one additional computer. The
pipeline starts with video from the robot’s wrist cameras, proposes a small number
of candidate object bounding boxes in each frame, and classifies each candidate
bounding box as belonging to a previously encountered object class. When the robot
moves to attempt a pick, it uses detected bounding boxes and visual servoing to
move the arm to a position approximately above the target object. Next, it uses
image gradients to servo the arm to a known position and orientation above the
object. Because we can know the gripper’s position relative to the object, we can
reliably collect statistics about the success rate of grasps at specific points on the
object.

2.1 Object Detection

The goal of the object detection component is to extract bounding boxes for objects in
the environment from a relatively uniform background. The robot uses object detec-
tion to identify regions of interest for further processing. The input of the object
detection component is an image, /; the output is a set of candidate bounding boxes,
B. Our object detection approach uses a modified Canny algorithm which termi-
nates before the usual non-maximal suppression step [4]. We start by converting /
to a YCbCr opponent color representation. Then we apply 5 x 5 Sobel derivative
filters [39] to each of the three channels and keep the square gradient magnitude. We
take a convex combination of the three channels, where Cb and Cr and weighted the
same and more heavily than Y because Y contains more information about shadows
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and specular information, which adds noise. Finally we downsample, apply the two
Canny thresholds, and find connected components. We generate a candidate bound-
ing box for each remaining component by taking the smallest box which contains the
component. We throw out boxes which do not contain enough visual data to classify.
If a box is contained entirely within another, we discard it.

2.2 Object Classification

The object classification module takes as input a bounding box, B, and outputs a
label for that object, ¢, based on the robot’s memory. This label is used to identify the
object and look up other information about the object for grasping further down the
pipeline. For each object ¢ we wish to classify, we gather a set of example crops E.
which are candidate bounding boxes (derived as above) which contain c. We extract
dense SIFT features [21] from all boxes of all classes and use k-means to extract a
visual vocabulary of SIFT features [40]. We then construct a Bag of Words feature
vector for each image and augment it with a histogram of colors which appear in
that image. The augmented feature vector is incorporated into a k-nearest-neighbors
model which we use to classify objects at inference [40]. We use kNN because
our automated training process allows us to acquire as much high-quality data as
necessary to make the model work well, and kNN supports direct matching to this
large dataset.

2.3 Pose Estimation

For pose estimation, we require a crop of the image gradient of the object at a specific,
known pose. As during the bounding box proposal step, we approximate the gradient
using 5 x 5 Sobel derivative filters [39], but we use a different convex combination
of the channels which focuses even less on the Y channel. Camera noise in the color
channels is significant. To cope with the noise, we marginalize the gradient estimate
over several frames taken from the same location, providing a much cleaner signal
which matches more robustly. To estimate pose, we rotate our training image and
find the closest match to the image currently recorded from the camera, as detected
and localized via the pipeline in Sects. 2.1 and 2.2. Once the pose is determined, we
have enough information to attempt any realizable grasp, but our system focuses on
crane grasps.

Lighting changes between scan and pick time can make it difficult to perform
image matching. In order to match our template image with the crop observed at pick
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time, we remove the mean from the two images and L? normalize them. Removing the
mean provides invariance to bias, and normalizing introduces invariance to scaling.
These both help to provide compensation for inadequacies in the lighting.

2.4 Grasping

During grasp point identification, we use a model of the gripper to perform inference
over a depth map of the object. The grasp model scores each potential grasp according
to a linear model of the gripper in order to estimate grasp success. A default algorithm
picks the highest-scoring grasp point using hand designed linear filters, but frequently
this point is not actually a good grasp, because the object might slip out of the robot’s
gripper or part of the object may not be visible in IR. The input to this module is
the 3D pose of the object, and the output is a grasp point (x, y, 6); at this point we
employ only crane grasps rather than full 3D grasping, where 6 is the angle which
the gripper assumes for the grasp. This approach is not a state-of-the-art but is simple
to implement and works well for many objects in practice. In Sect.4, we describe
how we can improve grasp proposals from experience, which can in principle use
any state-of-the-art grasp proposal system as a prior.

3 Autonomously Acquiring Object Models

An object model in our framework consists of the following elements, which the
robot autonomously acquires:

e cropped object templates (roughly 200), ¢! ...t
e depth map, D, which consists of a point cloud, (x, y, z, 7, g, b)"/.
e cropped gradient templates at different heights, 7o . .. t¥

The robot collects gradient images by servoing to the center of the extracted
bounding box for the object, described in Sect.2.1, and then recording a gradient
image at several different heights. It records each image for several frames to average
away noise from the camera. Gradient images for the ruler appear in Fig. 3c.

Next, it acquires a depth image. Normally, this image could be acquired from an
RGB-D sensor such as the Kinect. However, in order to make our approach run on a
stock Baxter robot with no additional sensing, we acquire a depth scan using Baxter’s
IR sensor, turning the arm into a seven degree of freedom, one-pixel depth sensor.
After acquiring visual and IR models for the object at different poses of the arm,
we acquire view-based object models for detection and classification by moving the
camera around the object, extracting bounding boxes from the images, and storing
the resulting crops. Figure3a shows RGB images automatically collected for one
object in our dataset.
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(a) _ (b) (©)

Fig. 3 Autonomously acquired object model. a Cropped RGB images, b Depth map, ¢ Aerial
gradient images at four different heights

4 Bandit-Based Model Adaptation

The formalization we contribute treats grasp learning as an N-armed bandit problem.
Formally, the agent is given an N-armed bandit, where each arm pays out 1 with
probability u; and O otherwise. The agent’s goal is to identify a good arm (with
payout > k) with probability c (e.g., 95% confidence that this arm is good) as quickly
as possible. As soon as it has done this, it should terminate. The agent is also given
a prior 7 on the arms so that it may make informed decisions about which grasps to
explore.

4.1 Algorithm

Our algorithm, Prior Confidence Bound, iteratively chooses the arm with the highest
observed (or prior) success rate but whose probability of being below £ is less than
a threshold. It then tries that arm, records the results, and updates its estimate of the
probability of success, u;. If it is sufficiently certain that the arm’s payout is either
very good or very bad, it terminates; otherwise, it continues pulling the arm to collect
more information. Pseudo-code appears in Algorithm 1. Our algorithm takes as input
7, an estimate of the payout of each arm, as well as S4cceps and 8y¢jecr, parameters
controlling how certain it must be to accept or reject an arm. We need to estimate
the probability that the true payout probability, u;, is greater than the threshold, c,
given the observed number of successes and failures:

Pr(w; > kIS, F) (1)

We can compute this probability using the law of total probability:

k
Pr(u; > kIS, F) = 1 — / Pr(u; = ulS. F)dp ?)
0
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PriorConfidenceBound (m, k, Saccept> Sreject, maxTries)
Initialize Sp ... S, to 0

Initialize Fy ... F, to O

totalTries < 0

while ¢rue do
totalTries < totalTries + 1

So Sy
Set My ... M, to SoiFo St
Jj < bestValid Arm; // set j to the arm with ppejow < Srejecr that

has the highest marginal value
r < sample(arm )
if » = 1 then
‘ Sj <« Sj +1
else
| Fj < Fj+1
end
k
Pbelow < f() Pr(Mj = M|Sj, Fj)d,u
1
Pabove <— jk Pr(u; = ulS;, Fj)du
k+e
Pthreshold <— _[}(j—: Pr(,uj = M|Sj, Fj)d/L
if pabove > Baca'ept then

‘ return j ; // accept this arm
else if Pthreshold = (Saccepr then
‘ return j ; // accept this arm

else if totalTries > maxTries then
return maxl ; // return the arm with the best marginal value
out of those that were tried

else

| pass; // keep trying

end

end

Algorithm 1: Prior Confidence Bound for Best Arm Identification

‘We assume a beta distribution on pu:

1
= /k Sl —w¥du 3)

This integral is the CDF of the beta distribution, and is called the regularized
incomplete beta function [32].

The prior controls both the order that arms are explored and when the
algorithm moves on to the next arm. If the prior is optimistic (i.e., overestimates
W), the algorithm will more quickly move on to the next arm if it encounters fail-
ures, because its empirical estimate of w; will be lower than the estimate from the
prior of the next arm to pull. If the prior is pessimistic, the algorithm will be more
likely to continue pulling an arm even if it encounters failure. By using a prior that
incorporates probability estimates, it enables our algorithm to exploit information
from the underlying grasp proposal system and make more informed decisions about
when to move on.
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4.2 Simulation

We simulate our algorithm by creating a sequence of 50 bandits, where each arm i
pays out at a rate uniformly sampled between 0 and 1. For algorithms that incorporate
prior knowledge, we sample a vector of estimates for each w; from a beta distribution
with @ = 8 = 1 + e x u; where e controls the entropy of the sampling distribution.

To compare to a well-known baseline, we assess the performance of Thompson
Sampling [41] in the fixed budget setting, although this algorithm minimizes total
regret, including regret during training, rather than simple regret. Second, we compare
to a Uniform baseline that pulls every arm equally until the budget is exceeded.
This baseline corresponds to the initialization step in UCB or the confidence bound
algorithms in Chen et al. [5]. The state-of-the-art CLUCB algorithm from Chen
et al. [5] would not have enough pulls to finish this initialization step in our setting.
Finally, we show the performance of three versions of Prior Confidence Bound, one
with an uninformed prior (e = 0, corresponding to Hoeffding races [27]), one quite
noisy with e = 1(but still informative), the other less noisy e = 5).

We run each experiment for 100 trials, and report 95% confidence intervals around
the algorithm’s simple regret. For Thompson Sampling and Uniform, which always
use all trials in their budget, we report performance at each budget level; for Prior
Confidence Bound, we report the mean number of trials the algorithm took before
halting, also at 95% confidence intervals.

Results appear in Fig. 4. Thompson Sampling always uses all trials in its budget
and improves performance as larger budgets are available. The Uniform method fails

Fig. 4 Results comparing 1.0 T T T T T T
our approach to various e+ Thompson Sampling
baselines in simulation HH HH Uniform
0.8 | i®11®f Prior Confidence Bound (e = 5) ||
B BE Prior Confidence Bound (e = 1)
i i Prior Confidence Bound (e = 0)
£ 06} .
& i
X -
[a'=]
) A
= 04f ]
£ A F
ASESEORES:
0.2 ﬂ _
€]
0.0 |- —
l l l l l l
0 10 20 30 40 50 60

Training Trials
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to find the optimal arm because there is not enough information when pulling each
arm once. All variants of Prior Confidence Bound outperform these baselines, but
as more prior information is incorporated, regret decreases. Even with a completely
uninformed prior, bounding the confidence and decided when to stop improves per-
formance over Thompson sampling or a uniform baseline, but the approach realizes
significant further improvement with more prior knowledge.

5 Evaluation

The aim of our evaluation is to assess the ability of the system to acquire visual models
of objects which are effective for grasping and object detection. We implemented
our approach on a Baxter robot; a video showing our training and grasping pipeline
is available at https://www.youtube.com/watch?v=xfHOB3g782Y.

5.1 Mapping

Mapping assesses the ability of our robot to accurately localize and label objects in
a tabletop scene. The robot maps the scene by maintaining a data structure with an
entry for each cell in its work space, at approximately 1 cm resolution, and recording
the last time that cell was observed by the camera. It samples a new cell uniformly
from the set of oldest cells, moves to that location, then runs the detection step. If it
sees an object, it servos to that object, then adds the object’s bounding box and class
label to the map. By running object classification directly over the object, we obtain
high-accuracy recognition rates, since the robot sees the object from a consistent
pose. Figure 5 shows the map created in this way for a tabletop scene. We compute

(a) Tabletop scene with objects (b) Map created for the scene by scanning with
both arms.

Fig.5 The robot actively scans the table and maps its environment using learned models (Descrip-
tive object labels are provided by hand)


https://www.youtube.com/watch?v=xfH0B3g782Y
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colors for each cell by taking the average of camera pixel colors at that cell, given
the current table height.

5.2 Pick and Place

The robot acquired visual and RGB-D models for 30 objects using our autonomous
learning system. The objects used in our evaluation appear in Fig. 6. We manually
verified that the scans were accurate, and set the following parameters: height above
the object for the IR scan (to approximately 2cm); this height could be acquired
automatically by doing a first coarse IR scan following by a second IR scan 2cm
above the tallest height, but we set it manually to save time. Additionally we set the
height of the arm for the initial servo to acquire the object. After acquiring visual
and IR models for the object at different poses of the arm, the robot performed the
bandit-based adaptation step using Algorithm 1. The algorithm requires a scoring of
candidate grasps, 7, which we provided using the linear filter described in Sect. 2.4. In
principle, we could use any state-of-the-art system for proposing grasps in the prior
(e.g., [9, 34, 36]); if the proposed grasp is successful, the algorithm will quickly
terminate. Otherwise it will continue trying to pick until it finds a successful grasp.

After the robot detects an initially successful grab, it shakes the object vigorously
to ensure that it would not fall out during transport. After releasing the object and
moving away, the robot checks to make sure the object is not stuck in its gripper. If
the object falls out during shaking or does not release properly, the grasp is recorded
as a failure. If the object is stuck, the robot pauses and requests assistance before
proceeding.

Most objects have more than one pose in which they can stand upright on the
table. If the robot knocks over an object, the model taken in the reference pose is
no longer meaningful. Thus, during training, we monitored the object and returned

Fig. 6 The objects used in our evaluation, sorted from worst performing (left) to best performing
(right)



Autonomously Acquiring Instance-Based ... 83

(a) The depth map for the glass bowl (b) When a contrast agent is applied,

without a contrast agent applied is noisy  the depth map is clean and grasp perfor-

and leads to poor grasp hypothesis. mance improves. In our method, the con-
trast agent is only needed at scan time,
not at pick time.

Fig. 7 Depth map for a transparent object with and without a contrast agent

it to the reference pose whenever the robot knocked it over. In the future, we aim to
incorporate multiple components in the models which will allow the robot to cope
with objects whose pose can change during training.

5.2.1 Contrast Agents

Many objects are challenging to grasp for our approach because they are transparent
or dark in IR; grasping objects in spite of these issues is a challenging problem that
remains an active area of research [11, 28]. As in Lysenkov et al. [23], which used
paint to construct models of objects, apply a contrast agent to make the object visible
in IR. Because our approach only uses depth information at scan time, and not at
grasping time, and is heavily instance-based, it enables us to we apply a temporary
coating for the IR scan and then remove it for learning visual models and later
interaction with the object. (We found that hair spray coated with a layer of flour
gives good performance, but can be easily removed.) Figure 7 shows an object and
IR scan with and without a contrast agent. This demonstrates the advantage of our
view-based and instance-based approach, which uses IR only during the single, initial
scan, and not at inference time; once a good scan is obtained, grasps can be proposed
at any time in the future and high-quality grasps can be learned through training. For
the glass bowl in Fig. 7, pick accuracy improved from 0/10 without a contrast agent
to 8/10 with a contrast agent applied during the IR scan only and removed before the
pick trials.

5.2.2 Bandit-Based Adaptation

We evaluate our bandit-based adaptation step by allowing the robot to try grasps
on the object until it either halts or reaches a maximum of 50 grasp attempts. Our
algorithm used an accept threshold of 0.7, reject confidence of 0.95 and epsilon of
0.2. These parameters result in a policy that rejects a grasp after one failed try, and
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accepts if the first three picks are successful. Different observations of success and
failure will cause the algorithm to try the grasp more to determine the true probability
of success.

We report the performance of the robot at picking using the learned height for
servoing, but without grasp learning, then the number of trials used for grasp learning
by our algorithm, and finally the performance at picking using the learned grasp
location and orientation. These results appear in Table 1.

Some objects significantly improved performance. Objects that improved typi-
cally had some feature that prevented our grasping model from working. For exam-
ple, the triangular block failed with the prior grasp because the gripper slid over the
sloped edges and pinched the block out of its grippers. The robot tried grasps until
it found one that targeted the sides that were parallel to the grippers, resulting in a
flush grasp, significantly improving accuracy. For the round salt shaker, the robot
first attempted to grab the round plastic dome, but the gripper is not wide enough for
this grasp. It tried grasps until it found one on the handle that worked reliably.

Objects such as the round salt shaker and the bottle top are on the edge of tractabil-
ity for thorough policies such as Thompson sampling. Prior Confidence Bound, on
the other hand, rejects arms quickly so as to make these two objects train in relatively
short order while bringing even more difficult objects such as the sippy cup and big
syringe into the realm of possibility. It would have taken substantially more time and
picks for Thompson sampling to reject the long list of bad grasps on the sippy cup
before finding the good ones.

The garlic press is a geometrically simple object but quite heavy compared to the
others. The robot found a few grasps which might have been good for a lighter object,
but it frequently shook the press out of its grippers when confirming grasp quality.
The big syringe has some good grasps which are detected well by the prior, but due
to its poor contrast and transparent tip, orientation servoing was imprecise and the
robot was unable to learn well due to poor signal. What improvement did occur was
due to finding a grasp which consistently deformed the bulb into a grippable shape
regardless of the perceived orientation of the syringe. We observed similar problems
with the clear pitcher and icosahedron.

Objects that failed to improve fall into several categories. For some, performance
was already high, so there was not much room to move or a reasonable grasp was
accepted quickly without waiting to find a better one. A common failure mode for
poorly performing objects was failure to accurately determine the position and ori-
entation through visual servoing. If the grasp map cannot be localized accurately,
significant noise is introduced because the map does not correspond to the same
physical location on the object at each trial. For example, there is only about a 5 mm
difference between the width of the dragon and the width of the gripper; objects
such as these would benefit from additional servo iterations to increase localization
precision. If we double the number of iterations during fine grained servoing we can
more reliably pick it, but this would either introduce another parameter in the system
(iterations) or excessively slow down other objects which are more tolerant to error.
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Table 1 Results from the robotic evaluation of Prior Confidence Bound, sorted by pick success
rate. All objects either maintained or improved performance after learning except for one: Dragon

Low-performing objects

Before learning

During learning

After learning

Garlic press

0/10

8/50

2/10

Helicopter 2/10 8/39 3/10
Gyro bowl 0/10 5/15 3/10
Big syringe 1/10 13/50 4/10
Sippy cup 0/10 6/50 4/10
Clear pitcher 4/10 3/4 4/10
Red bucket 5/10 3/3 5/10
‘Wooden spoon 710 3/3 7/10
Dragon 8/10 5/6 710
Triangle block | 0/10 3/13 7/10
Bottle top 0/10 517 7/10
Ruler 6/10 5/12 7/10
High-Performing Objects

Epipen 8/10 4/5 8/10
Icosahedron 7/10 721 8/10
Stamp 8/10 3/3 8/10
Blue salt shaker | 6/10 5/10 8/10
Wooden train 4/10 11724 8/10
Packing tape 9/10 3/3 9/10
Purple marker 9/10 3/3 9/10
Round salt shaker; 1/10 4/16 9/10
Toy egg 8/10 4/5 9/10
Yellow boat 9/10 5/6 9/10
Vanilla 5/10 4/5 9/10
Brush 10/10 3/3 10/10
Red bowl 10/10 3/3 10/10
Shoe 10/10 3/3 10/10
Whiteout 10/10 3/3 10/10
Metal pitcher 6/10 7/12 10/10
Mug 3/10 3/4 10/10
Syringe 9/10 6/9 10/10
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6 Related Work

Pick-and-place has been studied since the early days of robotics [2, 22]. Initial
systems relied on models of object pose and end effector pose being provided to the
algorithm, and simply planned a motion for the arm to grasp. Modern approaches
use object recognition systems to estimate pose and object type, then libraries of
grasps either annotated or learned from data [8, 29, 36]. These approaches attempt
to create systems that can grasp arbitrary objects based on learned visual features or
known 3D configuration.

Collecting training sets is an expensive process and is not accessible to the average
user in a non-robotics setting. If the system does not work for the user’s particular
application, there is no easy way for it to adapt or relearn. Our approach enables the
robot to autonomously acquire more information to increase robustness at detect-
ing and manipulating the specific object that is important to the user at the current
moment. Other approaches that focus on object discovery and manipulation fail to
combine a camera that moves with an end to end system that learns to recognize
objects and improves grasp success rates through experience [6, 15, 24, 37].

We formalize the problem as an N-armed bandit [41] where the robot aims to per-
form best arm identification [1, 5], or alternatively, to minimize simple regret after
a finite exploration period [3]. Audibert and Bubeck [1] explored best arm identi-
fication in a fixed budget setting; however a fixed budget approach does not match
our problem, because we would like the robot to stop sampling as soon as it has
improved performance above a threshold. We take a fixed confidence approach as in
Chen et al. [5], but their fixed confidence algorithm begins by pulling each arm once,
a prohibitively expensive operation on our robot. Instead our algorithm estimates
confidence that one arm is better than another, following Hoeffding races [27] but
operating in a confidence threshold setting that incorporates prior information. By
incorporating prior information, our approach achieves good performance without
being required to pull all the arms. Kaufmann et al. [12] describe Bayesian upper
confidence bounds for bandit problems but do not use simple regret, with a train-
ing period followed by an evaluation period. Additionally these approaches do not
provide a stopping criterion, to decide when to move to the next object.

By formalizing grasp identification as a bandit problem, we are able to lever-
age existing strategies for inferring the best arm. Our system brings together key
techniques in autonomous data collection and online learning for persistent robotic
systems to establish a baseline grasping system which we show to be useful and
extensible. Nguyen and Kemp [30] learn to manipulate objects such as a light switch
or drawer with a similar self-training approach. Our work autonomously learns visual
models to detect, pick, and place previously unencountered rigid objects by actively
selecting the best grasp point with a bandit based system, rather than acquiring models
for the manipulation of articulated objects. We rely on the fixed structure of objects
rather than learning how to deal with structure that can change during manipulation.

Hudson et al. [10] used active perception to create a grasping system capable of
carrying out a variety of complex tasks. Using feedback is critical for good perfor-



Autonomously Acquiring Instance-Based ... 87

mance, but the model cannot adapt itself to new objects. Existing general purpose
grasp algorithms achieve fairly good performance on novel objects but leave appre-
ciable gaps which could be closed by using our system to learn from experience
[9, 20, 25, 33, 34]. Kroemer et al. [17] also use reinforcement learning to choose
where to grasp novel objects, operating in continuous state spaces. However their
approach does not incorporate prior knowledge and requires forty or more trials to
learn a good grasp; in contrast, because our approach incorporates prior knowledge,
we often obtain improvement after trying only a few grasps.

Collet et al. [6] describe an approach for lifelong robotic object discovery, which
infers object candidates from the robot’s perceptual data. This system does not learn
grasping models and does not actively acquire more data to recognize, localize, and
grasp the object with high reliability. It could be used as a first-pass to our system,
after which the robot uses an active method to acquire additional data enabling it to
grasp the object. Some approaches integrate SLAM and moving object tracking to
estimate object poses over time but have not been extended to manipulation [7, 35,
38, 42]. Crowd-sourced and web robotics have created large databases of objects and
grasps using human supervision on the web [13, 14]. These approaches outperform
automatically inferred grasps but still require humans in the loop. Our approach can
incorporate human annotations in the form of the prior: if the annotated grasps work
well, then the robot will quickly converge and stop sampling; if they are poor grasps,
our approach will find better ones.

7 Conclusion

The contribution of this paper is a system for automatically acquiring instance-based
models of objects using a Baxter robot. Using our approach, the robot scans objects
and collects RGB and depth information, which it then uses to perform detection,
classification, and grasping. We demonstrate that the robot can improve grasping
performance through active exploration by formalizing the grasping problem as best
arm identification on an N-armed bandit. This approach significantly improves the
robot’s success rate at grasping specific objects as it practices picking them.

A limitation of our system is the requirement that a target object be in a canonical
upright position with respect to the table, leaving only one degree of freedom to
describe its orientation and two for its position. In our evaluation, if the salt shaker
fell down, we reset it to a randomized upright position. With this paradigm, if we
want to be able to handle the salt shaker whether it is upright or on its side, we
must train two models and use logic outside the system to identify the models as
the same object. Our next goal is to automatically explore these object modes and
acquire classification, localization, grasping, and transition models for them over a
long period of time. This improvement will enable any Baxter robot to automatically
scan objects for long periods of time.

A second limitation is that by taking an instance-based approach, knowledge
obtained from interacting with one object does not generalize to another object. Our
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approach runs on a stock Baxter robot and does not require any additional sensing.
We aim to release our software so that anyone with a Baxter can train models using
our approach and automatically share their models through a common database. This
approach will enable us to scale up and distribute the scanning effort, so that a very
large corpus of instance-based models can be automatically collected. As more and
more models are collected, containing RGB image crops, point clouds, and logs
of grasp success rates at different geometries, this data set will provide a unique
opportunity to train new category-based models for general detection and grasping,
supplying well-annotated data of multiple views of many instances of individual
objects.

Our system focuses on manipulation of small objects; however, objects in the
environment have more affordances than just manipulation: bottles can be opened;
light switches can be flipped; buttons can be pushed, and doors can be unlocked.
We aim to expand our approach to instance-based semantic mapping of large-scale
environments, so that the robot can interactively learn about features of its environ-
ment such as drawers, door knobs, and light switches. By taking an instance-based
approach, the robot can automatically create robust detectors for object features and
fix up any problems through interaction with the environment. This approach will
create a true semantic map of the environment, including affordances of objects.
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Transition State Clustering: Unsupervised
Surgical Trajectory Segmentation for Robot
Learning

Sanjay Krishnan, Animesh Garg, Sachin Patil, Colin Lea,
Gregory Hager, Pieter Abbeel and Ken Goldberg

1 Introduction

Recorded demonstrations of robot-assisted minimally invasive surgery (RMIS) have
been used for surgical skill assessment [7], development of finite state machines for
automation [13, 25], learning from demonstration (LfD) [29], and calibration [22].
Intuitive Surgical’s da Vinci robot facilitated over 570, 000 procedures in 2014 [11].
There are proposals to record all of Intuitive’s RMIS procedures similar to flight
data recorders (“black boxes”) in airplanes [12], which could lead to a prolifera-
tion of data. While these large datasets have the potential to facilitate learning and
autonomy; the length and variability of surgical trajectories pose a unique challenge.
Each surgical trajectory may represent minutes of multi-modal observations, may
contain loops (failures and repetitions until achieving the desired result), and even
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identical procedures can vary due to differences in the environment. In this setting,
typical techniques for establishing spatial and temporal correspondence that employ
continuous deformations can be unreliable (e.g., Dynamic Time Warping [14] and
spline-based registration [31]).

Segmentation of a task into sub-tasks can be valuable since individual segments
are less complex, less variable, and allow for easier detection and rejection of out-
liers. Trajectory segmentation in robotics is an extensively studied problem [4, 5,
16, 20, 21, 26, 30]. However, prior work in robotic surgery focuses on the super-
vised problem setting, either requiring manual segmentation of example trajectories
or using a set of pre-defined primitive motions called “surgemes” [21, 30, 36]. Man-
ual labelling requires specifying consistent segmentation criteria and applying these
criteria to across demonstrations, which can be time-consuming and unreliable. Sim-
ilarly, it can be challenging to manually construct a dictionary of primitives at the
correct level of abstraction.

Outside of surgery, there have been several proposals for unsupervised segmen-
tation [5, 16, 20, 26], where the criteria are learned from data without a pre-defined
dictionary. The salient feature of these approaches is a clustering or local regres-
sion model to identify locally similar states. Inherently, the success of unsupervised
approaches is dependent on how well the demonstrations match the assumptions of
the model (i.e., the definition of “similar”). In surgery, the tissue and environment
may vary greatly between demonstrations making it difficult to directly compare
different trajectories. Our insight is that while the trajectories may be very differ-
ent, there can be a common latent structure in the demonstrations that can be learned
from the data. Segmentation can be performed with respect to these latent parameters
leading to robust segmentation criteria.

Transition State Clustering (TSC) combines hybrid dynamical system theory with
Bayesian statistics to learn such a structure. We model demonstrations as repeated
realizations of an unknown noisy switched linear dynamical system [8]. TSC iden-
tifies changes in local linearity in each demonstration, and leans a model to infer
regions of the state-space at which switching events occur. These regions are gener-
ated from a hierarchical nonparametric Bayesian model, where the number of regions
are determined by a Dirichlet Process and the shape of the regions are determined
by a mixture of multivariate Gaussian random variables. A series of merging and
pruning steps (controlled by user-specified parameters § and p respectively) remove
outlier transition states.

We also explore how to use the video data that accompanies kinematic data in
surgical demonstration recordings. In this work, we explore improving segmentation
through hand-engineered visual features. We manually label the video stream with
two features: a binary variable identifying object grasp events and a scalar variable
indicating surface penetration depth. We evaluate results with and without these
visual features (Sect.5.4). In future work, we will explore automated methods to
construct featurized representations of the video data.
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2 Related Work and Background

Motion Primitives and Skill Learning: Motion primitives are segments that dis-
cretize the action-space of a robot, and can facilitate faster convergence in LD [10,
23, 27]. On the other hand, TSC discretizes the state-space, which can be inter-
preted as segmenting a task and not a trajectory. Much of the initial work in motion
primitives considered manually identified segments, but recently, Niekum et al. [26]
proposed learning the set of primitives from demonstrations using the Beta-Process
Autoregressive Hidden Markov Model (BP-AR-HMM). Calinon et al. [2] also build
on a large corpus of literature of unsupervised skill segmentation including the task-
parameterized movement model [6], and GMMs for segmentation [5].

The ideas in Niekum et al. inspire the results presented in this work, namely,
the use of Bayesian non-parametric models for segmentation and switched linear
models. Unlike Niekum et al. and our work, Calinon et al. do not employ Bayesian
non-parametrics or multimodal data. In Niekum et al. transition events are only
dependent on the current dynamical regime, and in TSC they also depend on the
current state (as illustrated in Fig. 1 with a dashed line). In this paper, we extend this
line of work with non-parametric clustering on a GMM based model, and account
for specific challenges such as looping and inconsistency in surgical demonstrations.

Handling Temporal Inconsistency: The most common model for handling demon-
strations that have varying temporal characteristics is Dynamic Time Warping
(DTW). However, DTW is a greedy dynamic programming approach which assumes
that trajectories are largely the same up-to some smooth temporal deformations.
When there are significant variations due to looping or spurious states, this model
can give unreliable results [14], as shown by our results.

Another common model for modeling temporal inconsistencies is the Finite State
Markov Chain model with Gaussian Mixture Emissions (GMM+HMM) [1, 3, 15,
34]. These models, impose a probabilistic grammar on the segment transitions and
can be learned with an EM algorithm. However, they can be sensitive to hyper-
parameters such as the number of segments and the amount of data [32]. The prob-
lem of robustness in GMM-+HMM (or closely related variants) has been addressed
using down-weighting transient states [17] and sparsification [9]. In TSC, we explore
whether it is sufficient to know transition states without having to fully parametrize
a Markov Chain for accurate segmentation. In Fig. 1, we compare the graphical mod-
els of GMM-+HMM, and TSC. The TSC model applies Dirichlet Process priors to
automatically set the number of hidden states (regimes).

The TSC algorithm finds spatially and temporally similar transition states across
demonstrations, and it does not have to model correlations between switching events—
in essence, using the current state as a sufficient statistic for switching behavior. On
the other hand, the typical GMM-+HMM model learns a full £ x k transition matrix.
Consequently, we empirically find that the TSC model is robust to noise and temporal
variation, especially for a small number of demonstrations.

Surgical Task Recognition: Surgical robotics has largely studied the problem of
supervised segmentation using either segmented examples or a pre-defined dictionary
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of motions (similar to motion primitives). For example, given manually segmented
videos, Zappella et al. [36] use features from both the videos and kinematic data
to classify surgical motions. Simiarly, Quellec et al. [28] use manually segmented
examples as training for segmentation and recognition of surgical tasks based on
archived cataract surgery videos. The dictionary-based approaches are done with a
domain-specific set of motion primitives for surgery called “surgemes”. A number of
works (e.g., [19, 21, 33, 35]), use the surgemes to bootstrap learning segmentation.

3 Problem Setup and Model

The TSC model is summarized by the hierarchical graphical model in the previous
section (Fig. 1). Here, we formalize each of the levels of the hierarchy and describe
the assumptions in this work.

Dynamical System Model: Let 2 = {d;} be the set of demonstrations where each
d; is a trajectory x(¢) of fully observed robot states and each state is a vector in R?.
We model each demonstration as a switched linear dynamical system. There is a
finite set of d x d matrices {Ay, ..., A}, and an i.i.d zero-mean additive Gaussian
Markovian noise process W (¢) which accounts for noise in the dynamical model:

X(t+1) =Ax@)+ W) : A € {Ay, ..., Ay}

Transitions between regimes are instantaneous where each time ¢ is associated with
exactly one dynamical system matrix 1, ..., k.

Transition States and Times: Transition states are defined as the last states before a
dynamical regime transition in each demonstration. Each demonstration d; follows a

GMM+HMM TsC
Observations Observations
@ e Ty = Appr - + W, Tepr = App1cm + Wy
Regimes

Regimes
Arsr € {AM} iy
'a’:f+| ~ t‘.({f(f}. J!\]
O ~ DP

° ° At € {A{!J}i—l ..... k
ipq ~ cat(0, k)

] Transitions

. ° dig1 ~ Plieg | i)

Transition State Clusters
plic # i) ~ plze | Cy)
Cy ~ GMM({u};,{£};)

i=11,..,m}
O ~ DP

Fig. 1 a A finite-state Hidden Markov Chain with Gaussian Mixture Emissions (GMM + HMM),
and b TSC model. TSC uses Dirichlet Process Priors and the concept of transition states to learn a
robust segmentation
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switched linear dynamical system model, therefore there is a time series of regimes
A(t) associated with each demonstration. Consequently, there will be times ¢ at which
A(t) #A( +1).

We model the occurrence of these events as a stochastic process conditioned on
the current state. Switching events are governed by a latent function of the current
state S : 2"+ {0, 1}, and we have noisy observations of switching events §(x(t)) =
S(x(t) + Q(t)), where Q(t) is ai.i.d noise process. Thus, across all demonstrations,
the observed switching events induce a probability density f (x) over the state space
Z . In this paper, we focus on the problem where f(x) is a Mixture of Gaussian
densities.

Transition State Clusters: Across all demonstrations, we are interested in aggregat-
ing nearby (spatially and temporally) transition states together. The goal of transition
state clustering is to find a mixture model for f that approximately recovers the true
latent function S. Consequently, a transition state cluster is defined as a clustering
of the set of transition states across all demonstrations; partitioning these transition
states into m non-overlapping similar groups:

Cg = {Cla C25 AR ] Cm}
Every U; can be represented as a sequence of integers indicating that transition states

assignment to one of the transition state clusters U; = [1, 2, 4, 2].

Consistency: We assume, demonstrations are consistent, meaning there exists a
non-empty sequence of transition states %* such that the partial order defined by
the elements in the sequence (i.e., s; happens before s, and s3) is satisfied by every
U;. For example,

Uy =[1,3,4,U,=[1,1,2,4], %" =[1,4]
A counter example,
Uy =11,3,4], Uy = [2, 5], Z " no solution

Intuitively, this condition states that there have to be a consistent ordering of actions
over all demonstrations up to some additional regimes (e.g., spurious actions).

Loops: Loops are common in surgical demonstrations. For example, a surgeon may
attempt to insert a needle 2-3 times. When demonstrations have varying amounts
of retrials it is challenging. In this work, we assume that these loops are modeled
as repeated transitions between transition state clusters, which is justified in our
experimental datasets, for example,

Ul = [11 3?4]9 U2 = [17 31 17 3’ 11 37 4]’ %* = [11 3?4]

Our algorithm will compact these loops together into a single transition.
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Minimal Solution: Given a consistent set of demonstrations, that have additional
regimes and loops, the goal of the algorithm is to find a minimal solution, % * that
is loop-free and respects the partial order of transitions in all demonstrations.

Given a set of demonstrations 9, the Transition State Clustering problem is to find
a set of transition state clusters € such that they represent a minimal parametrization
of the demonstrations.

Multi-modal TSC : This model can similarly be extended to states derived from
sensing. Suppose at every time ¢, there is a feature vector z(¢). Then the augmented
state of both the robot spatial state and the features denoted is:

13
X(t) = (x( ))
z(1)
In our experiments, we worked the da Vinci surgical robot with two 7-DOF arms,

each with 2 finger grippers. Consider the following feature representation which we
used in our experiments:

1. Gripper grasp. Indicator that is 1 if there is an object between the gripper, 0
otherwise.

2. Surface Penetration. In surgical tasks, we often have a tissue phantom. This feature
describes whether the robot (or something the robot is holding like a needle) has
penetrated the surface. We use an estimate of the truncated penetration depth to
encode this feature. If there is no penetration, the value is 0, otherwise the value
of penetration is the robot’s kinematic position in the direction orthogonal to the
tissue phantom.

4 Transition State Clustering

In this section, we describe the hierarchical clustering process of TSC. This algorithm
is a greedy approach to learning the parameters in the graphical model in Fig. 1. We
decompose the hierarchical model into stages and fit parameters to the generative
model at each stage. The full algorithm is described in Algorithm 1.

4.1 Background: Bayesian Statistics

One challenge with mixture models is hyper-parameter selection, such as the number
of clusters. Recent results in Bayesian statistics can mitigate some of these problems.
The basic recipe is to define a generative model, and then use Expectation Maximiza-
tion to fit the parameters of the model to observed data. The generative model that
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we will use is called a mixture model, which defines a probability distribution that
is a composite of multiple distributions.

One flexible class of mixture models are Gaussian Mixture Models (GMM), which
are described generatively as follows. We first sample some ¢ from a categorical
distribution, one that takes on values from (1...K), with probabilities ¢, where ¢ is
a K dimensional simplex:

c~cat(K, )

Then, given the event {c¢ = i}, we specify a multivariate Gaussian distribution:
xi ~ N(ui, ;)

The insight is that a stochastic process called the Dirichlet Process (DP) defines a
distribution over discrete distributions, and thus instead we can draw samples of
cat (K, ¢) to find the most likely choice of K via EM. The result is the following
model:

(K,¢) ~DP(H,a) c~cat(K,p) X~ N(u,Z) (D

After fitting the model, every observed sample of x ~ X will have a probability of
being generated from a mixture component P (x | ¢ = i). Every observation x will
have a most likely generating component. It is worth noting that each cluster defines
an ellipsoidal region in the feature space of x, because of the Gaussian noise model
N(ui, Zp).

We denote this entire clustering method in the remainder of this work as DP-
GMM. We use the same model at multiple levels of the hierarchical clustering and
we will describe the feature space at each level. We use a MATLAB software package
to solve this problem using a variational EM algorithm [18].

4.2 Transition States Identification

The first step is to identify a set of transition states for each demonstration in Z. To
do this, we have to fit a switched dynamic system model to the trajectories. Suppose
there was only one regime, then this would be a linear regression problem:

argmin | AX, = X, |

where X, and X,,; are matrices where each column vector is corresponding x (¢)
and x (¢ + 1). Moldovan et al. [24] showed that fitting a jointly Gaussian model to
n() = (X(;(Jtr)l)) is equivalent to Bayesian Linear Regression.

Therefore, to fit a switched linear dynamical system model, we can fit a Mixture
of Gaussians (GMM) model to n(t) via DP-GMM. Each cluster learned signifies a

different regime, and co-linear states are in the same cluster. To find transition states,



98 S. Krishnan et al.

we move along a trajectory from t =1, ..., t;, and find states at which n(z) is in
a different cluster than n(t 4+ 1). These points mark a transition between clusters
(i.e., transition regimes).

4.3 Transition State Pruning

We consider the problem of outlier transitions, ones that appear only in a few demon-
strations. Each of these regimes will have constituent vectors where each n(¢) belongs
to ademonstration d;. Transition states that mark transitions to or from regimes whose
constituent vectors come from fewer than a fraction p demonstrations are pruned. p
should be set based on the expected rarity of outliers. In our experiments, we set the
parameter p to 80% and show the results with and without this step.

4.4 Transition State Compaction

Once we have transition states for each demonstration, and have applied pruning, the
next step is to remove transition states that correspond to looping actions, which are
prevalent in surgical demonstrations. We model this behavior as consecutive linear
regimes repeating, i.e., transition from i/ to j and then a repeated i to j. We apply
this step after pruning to take advantage of the removal of outlier regimes during
the looping process. These repeated transitions can be compacted together to make
a single transition.

The key question is how to differentiate between repetitions that are part of the
demonstration and ones that correspond to looping actions—the sequence might con-
tain repetitions not due to looping. To differentiate this, as a heuristic, we threshold
the L2 distance between consecutive segments with repeated transitions. If the L2
distance is low, we know that the consecutive segments are happening in a similar
location as well. In our datasets, this is a good indication of looping behavior. If the
L2 distance is larger, then repetition between dynamical regimes might be happening
but the location is changing.

Algorithm 1: The Transition State Clustering Algorithm

—

. Input: 2, p pruning parameter, and § compaction parameter.

Da@) = (XE(’:;)I)).

. Cluster the vectors n(r) using DP-GMM assigning each state to its most likely cluster.

. Transition states are times when n(¢) is in a different cluster than n(z + 1).

: Remove states that transition to and from clusters with less than a fraction of p demonstrations.

: Remove consecutive transition states when the L2 distance between these transitions is less than §.

. Cluster the remaining transition states in the state space x(t + 1) using DP-GMM.

: Within each state-space cluster, sub-cluster the transition states temporally.

: Output: A set . of clusters of transition states and the associated with each cluster a time interval of
transition times.

NeXo B NN YU, [ NUSIN (o]
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For each demonstration, we define a segment s'/)[¢] of states between each transi-
tion states. The challenge is that s¥)[¢] and sY*"[¢] may have a different number of
observations and may be at different time scales. To address this challenge, we apply
Dynamic Time Warping (DTW). Since segments are locally similar up-to small time
variations, DTW can find a most-likely time alignment of the two segments.

Let sY+D[¢*] be a time aligned (w.r.t to s¥”) version of sU* D, Then, after align-
ment, we define the L, metric between the two segments:

T
d(j,j+1) = % > (Vi) — sUTVLi*])?
t=0

when d < §, we compact two consecutive segments. § is chosen empirically and
a larger § leads to a sparser distribution of transition states, and smaller § leads
to more transition states. For our needle passing and suturing experiments, we set
8 to correspond to the distance between two suture/needle insertion points—thus,
differentiating between repetitions at the same point versus at others.

However, since we are removing points from a time-series this requires us to adjust
the time scale. Thus, from every following observation, we shift the time stamp back
by the length of the compacted segments.

4.5 State-Space Clustering

After compaction, there are numerous transition states at different locations in the
state-space. If we model the states at transition states as drawn from a GMM model:

x(1) ~ N(ui, Xi)

Then, we can apply the DP-GMM again to cluster the state vectors at the transition
states. Each cluster defines an ellipsoidal region of the state-space space.

4.6 Time Clustering

Without temporal localization, the transitions may be ambiguous. For example, in
circle cutting, the robot may pass over a point twice in the same task. The chal-
lenge is that we cannot naively use time as another feature, since it is unclear what
metric to use to compare distance between (X(t’ )). However a second level of cluster-
ing by time within each state-space cluster can overcome this issue. Within a state
cluster, if we model the times which change points occur as drawn from a GMM
t ~ N(u;, 0;), and then we can apply DP-GMM to the set of times. We cluster time

second because we observe that the surgical demonstrations are more consistent spa-
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tially than temporally. This groups together events that happen at similar times during

the demonstrations. The result is clusters of states and times. Thus, a transition states
my, is defined as tuple of an ellipsoidal region of the state-space and a time interval.

5 Results

5.1 Experiment 1. Synthetic Example of 2-Segment
Trajectory

In our first experiment, we segment noisy observations from a two regime linear
dynamical system. Figure 2 illustrates examples from this system under the different

(a) Nominal (b) Noisy Observations
2 -
—<— Regime 1 —<— Regime 1
] —<— Regime 2 ] —<— Regime 2

> 0 > 0
-1 _1
I 0 1 2 E 0 1 2
X X
(c) Spurious Regime (d) Looping
2 r
—<— Regime 1 —<— Regime 1
—<— Regime 2 —<— Regime 2

258
= g :4-/
y Ll Jﬁ\
= -1 1 2 = -1 0 1 2

X o
X

Fig. 2 a Observations from a dynamical system with two regimes, b Observations corrupted with
Gaussian Noise, ¢ Observations corrupted with a spurious inserted regime (red), and d Observations
corrupted with an inserted loop(green)
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types of corruption. Since there is a known a ground truth of two segments, we mea-
sure the precision (average fraction of observations in each segment that are from
the same regime) and recall (average fraction of observations from each regime seg-
mented together) in recovering these two segments. We can jointly consider precision
and recall with the FI Score which is the harmonic mean of the two. We compare
three techniques against TSC: K-Means (only spatial), GMM+T (using time as a
feature in a GMM), GMM-+HMM (using an HMM to model the grammar). For the
GMM techniques, we have to select the number of segments, and we experiment
with k = 1, 2, 3 (i.e., a slightly sub-optimal parameter choice compared to k = 2).
In this example, for TSC, we set the two user-specified parameters to § = 0 (merge
all repeated transitions), and p = 80% (prune all regimes representing less than 80%
of the demonstrations).

First, we generate 100 noisy observations (additive zero mean Gaussian noise)
from the system without loops or spurious states—effectively only measuring the DP-
GMM versus the alternatives. Figure 3a shows the F1-score as a function of the noise
in the observations. Initially, for an appropriate parameter choice k = 2 both of the
GMM-based methods perform well and at low noise levels the DP-GMM used by our
work mirrors this performance. However, if the parameter is set to be k = 3, we see
that the performance significantly degrades. k = 1 corresponds to a single segment
which has a F1 score of 0.4 on all figures. The DP-GMM miitigates this sensitivity to
the choice of parameter by automatically setting the value. Furthermore, as the noise
increases, the 80% pruning of DP-GMM mitigates the effect of outliers leading to
improved accuracy.

In Fig. 3b, we look at the accuracy of each technique as a function of the number of
demonstrations. GMM+HMM has more parameters to learn and therefore requires
more data. GMM+T converges the fastest, TSC requires slightly more data, and
the GMM+HMM requires the most. In Fig.3c, we corrupt the observations with
spurious dynamical regimes. These are random transition matrices which replace
one of the two dynamical regimes. We vary the rate at which we randomly corrupt
the data, and measure the performance of the different segmentation techniques as a
function of this rate. Due to the pruning, TSC gives the most accurate segmentation.
The Dirichlet process groups the random transitions in different clusters and the
small clusters are pruned out. On the other hand, the pure GMM techniques are less
accurate since they are looking for exactly two regimes.

In Fig. 3d, introduce corruption due to loops and compare the different techniques.
A loop is a step that returns to the start of the regime randomly, and we vary this
random rate. For an accurately chosen parameter k = 2, for the GMM—HMM, it
gives the most accurate segmentation. However, when this parameter is set poorly
k = 3, the accuracy is significantly reduced. On the other hand, using time as a GMM
feature (GMM+-T) does not work since it does not know how to group loops into the
same regime.
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Fig.3 Accuracy as afunction of noise: TSC, K-Means, GMM+T (GMM with time), GMM+HMM
(GMM with HMM). a The Dirichlet Process used in TSC reduces sensitivity to parameter choice
and is comparable to GMM techniques using the optimal parameter choice, b HMM based methods
need more training data as they have to learn transitions, ¢ TSC clusters are robust to spurious
regimes, and d TSC clusters are robust to loops—without having to know the regimes in advance

5.2 Surgical Experiments: Evaluation Tasks

We describe the three tasks used in our evaluation, and show manually segmented
versions in Fig.4. This will serve as ground truth when qualitatively evaluating our
segmentation on real data.

Circle Cutting: In this task, we have a 5 cm diameter circle drawn on a piece of gauze.
The first step is to cut a notch into the circle. The second step is to cut clockwise.
Next, the robot transitions to the other side cutting counter clockwise. Finally, the



Transition State Clustering ... 103

(a) Circle Cutting (b) Needle Passing (c) Suturing
11, Pull
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1. Start 1.Start

8.Pass 4 2.Pull

5. Handoff 1.Insert

Fig. 4 Hand annotations of the three tasks: a circle cutting, b needle passing, and ¢ suturing. Right
arm actions are listed in dark blue and left arm actions are listed in yellow

robot finishes the cut at the meeting point of the two incisions. As the left arm’s only
action is maintain the gauze in tension, we exclude it from the analysis. In Fig.4a,
we mark 6 manually identified transitions points for this task from [25]: (1) start,
(2) notch, (3) finish 1st cut, (4) cross-over, (5) finish 2nd cut, and (6) connect the
two cuts. For the circle cutting task, we collected 10 demonstrations by non-experts
familiar with operating the da Vinci Research Kit (dVRK).

We apply our method to the JIGSAWS dataset [7] consisting of surgical activity
for human motion modeling. The dataset was captured using the da Vinci Surgical
System from eight surgeons with different levels of skill performing five repetitions
each of Needle Passing and Suturing.

Needle Passing: We applied our framework to 28 demonstrations of the needle
passing task. The robot passes a needle through a loop using its right arm, then its
left arm to pull the needle through the loop. Then, the robot hands the needle off
from the left arm to the right arm. This is repeated four times as illustrated with a
manual segmentation in Fig. 4b.

Suturing: Next, we explored 39 examples of a 4 throw suturing task (Fig. 4c). Using
the right arm, the first step is to penetrate one of the points on right side. The next
step is to force the needle through the phantom to the other side. Using the left arm,
the robot pulls the needle out of the phantom, and then hands it off to the right arm
for the next point.

5.3 Experiment 2. Pruning and Compaction

In Fig. 5, we highlight the benefit of pruning and compaction using the Suturing task
as exemplar. First, we show the transition states without applying the compaction
step to remove looping transition states (Fig. 5a). We find that there are many more
transition states at the “insert” step of the task. Compaction removes the segments
that correspond to a loop of the insertions. Next, we show the all of the clusters found
by DP-GMM. The centroids of these clusters are marked in Fig. 5b. Many of these
clusters are small containing only a few transition states. This is why we created the
heuristic to prune clusters that do not have transition states from at least 80% of the
demonstrations. In all, 11 clusters are pruned by this rule.
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Fig. 5 We first show the transition states without compaction (in black and green), and then
show the clusters without pruning (in red). Compaction sparsifies the transition states and pruning
significantly reduces the number of clusters

5.4 Experiment 3. Can Vision Help?

In the next experiment, we evaluate TSC in a featurized state space that incorporates
states derived from vision (Described in Sect.5.1). We illustrate the transition states
in Fig.6 with and without visual features on the circle cutting task. At each point
where the model transitions, we mark the end-effector (x, y, z) location. In particular,
we show a region (red box) to highlight the benefits of these features. During the
cross-over phase of the task, the robot has to re-enter the notch point and adjust to cut
the other half of the circle. When only using the end-effector position, the locations
where this transition happens is unreliable as operators may approach the entry from
slightly different angles. On the other hand, the use of a gripper contact binary feature
clusters the transition states around the point at which the gripper is in position and

(a) Transition States Without Features (b) Transition States With Features
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Fig. 6 a We show the transition states without visual features, b and with visual features. Marked
in the red box is a set of transitions that cannot always be detected from kinematics alone
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ready to begin cutting again. In the subsequent experiments, we use the same two
visual features.

5.5 Experiment 4. TSC Evaluation

Circle Cutting: Figure 7a shows the transition states obtained from our algorithm.
And Fig. 7b shows the TSC clusters learned (numbered by time interval midpoint).
The algorithm found 8 clusters, one of which was pruned out using our p = 80%
threshold rule.

The remaining 7 clusters correspond well to the manually identified transition
points. It is worth noting that there is one extra cluster (marked 2’), that does not
correspond to a transition in the manual segmentation. At 2/, the operator finishes
a notch and begins to cut. While at a logical level notching and cutting are both
penetration actions, they correspond to two different linear transition regimes due to
the positioning of the end-effector. Thus, TSC separates them into different clusters
even though a human annotator may not do so.

Needle Passing: In Fig.8a, we plot the transition states in (x, y, z) end-effector
space for both arms. We find that these transition states correspond well to the log-
ical segments of the task (Fig.4b). These demonstrations are noisier than the circle
cutting demonstrations and there are more outliers. The subsequent clustering finds 9
(2 pruned). Next, Fig. 8b—c illustrate the TSC clusters. We find that again TSC learns
a small parametrization for the task structure with the clusters corresponding well
to the manual segments. However, in this case, the noise does lead to a spurious
cluster (4 marked in green). One possible explanation is that the two middle loops
are in close proximity and demonstrations contain many adjustments to avoid col-
liding with the loop and the other arm while passing the needle through leading to
numerous transition states in that location.

(a) Transition States (b) Transition State Clusters
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Fig. 7 a The transition states for the circle cutting task are marked in black. b The TSC clusters,
which are clusters of the transition states, are illustrated with their 75% confidence ellipsoid
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Fig. 8 a The transition states for the task are marked in orange (left arm) and blue (right arm).
b—c The TSC clusters, which are clusters of the transition states, are illustrated with their 75%
confidence ellipsoid for both arms

Suturing: In Fig. 9, we show the transition states and clusters for the suturing task.
As before, we mark the left arm in orange and the right arm in blue. This task was far
more challenging than the previous tasks as the demonstrations were inconsistent.
These inconsistencies were in the way the suture is pulled after insertion (some pull
to the left, some to the right, etc.), leading to transition states all over the state space.
Furthermore, there were numerous demonstrations with looping behaviors for the
left arm. In fact, the DP-GMM method gives us 23 clusters, 11 of which represent
less than 80% of the demonstrations and thus are pruned (we illustrate the effect of
the pruning in the next section). In the early stages of the task, the clusters clearly
correspond to the manually segmented transitions. As the task progresses, we see
that some of the later clusters do not.

5.6 Experiment 5. Comparison to “Surgemes”

Surgical demonstrations have an established set of primitives called surgemes, and we
evaluate if segments discovered by our approach correspond to surgemes. In Table 1,
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Fig. 9 a The transition states for the task are marked in orange (left arm) and blue (right arm). b—c
The clusters, which are clusters of the transition states, are illustrated with their 75% confidence
ellipsoid for both arms

Table 1 83 and 73% of transition clusters for needle passing and suturing respectively contained
exactly one surgeme transition

No. of No. of No. of TSC TSC-Surgeme | Surgeme-TSC
surgeme segments + (%) (%)
segments C/P

Needle passing| 19.3 £ 3.2 14.4 +2.57 11 83 74

Suturing 203 +£3.5 159 +3.11 13 73 66

we compare the number of TSC segments for needle passing and suturing to the
number of annotated surgeme segments. A key difference between our segmentation
and number of annotated surgemes is our compaction and pruning steps. To account
for this, we first select a set of surgemes that are expressed in most demonstrations
(i.e., simulating pruning), and we also apply a compaction step to the surgeme seg-
ments. In case of consecutive appearances of these surgemes, we only keep the 1
instance of each for compaction. We explore two metrics: TSC-Surgeme the fraction
of TSC clusters with only one surgeme switch (averaged over all demonstrations),
and Surgeme-TSC the fraction of surgeme switches that fall inside exactly one TSC
clusters.
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6 Conclusion and Future Work

We presented Transition State Clustering (TSC), which leverages hybrid dynamical
system theory and Bayesian statistics to robustly learn segmentation criteria. To
learn these clusters, TSC uses a hierarchical Dirichlet Process Gaussian Mixture
Model (DP-GMM) with a series of merging and pruning steps. Our results on a
synthetic example suggest that the hierarchical clusters are more robust to looping
and noise, which are prevalent in surgical data. We further applied our algorithm to
three surgical datasets and found that the transition state clusters correspond well to
hand annotations and transitions w.r.t motions from a pre-defined surgical motion
vocabulary called surgemes.

There are a number of important open-questions for future work. First, we believe
that the growing maturity of Convolutional Neural Networks can facilitate transition
state clustering directly from raw data (e.g., pixels), as opposed to the features studied
in this work, and is a promising avenue for future work. Next, we are also particularly
interested in closing-the-loop and using segmentation to facilitate optimal control or
reinforcement learning. Finally, we are also interested in relaxing the consistency
and normality assumptions in our parameter inference algorithm.
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Robot Learning with Task-Parameterized
Generative Models

Sylvain Calinon

1 Introduction

Robots are provided with an increasing number of sensors and actuators. This trend
introduces original challenges in machine learning, where the sample size is often
bounded by the cost of data acquisition, thus requiring models capable of handling
wide-ranging data. Namely, models that can start learning from a small number of
demonstrations, while still being able to continue learning when more data become
available.

Robot learning from demonstration is one such field, which aims at providing
end-users with intuitive interfaces to transfer new skills to robots. The challenges in
robot learning can often be reinterpreted as designing appropriate domain-specific
priors that can supply the required generalization capability from small training sets.
The position adopted in this paper is that: (1) generative models are well suited for
robot learning from demonstration because they can treat recognition, classification,
prediction and synthesis within the same framework; and (2) an efficient and versatile
prior is to consider that the task parameters describing the current situation (body
and workspace configuration encountered by the robot) can be represented as affine
transformations (including frames of reference, coordinate systems or projections).

By providing such structure to the skill generation problem, the role of the exper-
imenter is to provide the robot with a set of candidate frames (list of coordinate
systems) that could potentially be relevant for the task. This paper will show that
structuring the affine transformations in such way has a simple interpretation, that it
can be easily implemented, and that it remains valid for a wide range of skills that a
robot can experience.
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programme (Grant #635491).

S. Calinon ()
Idiap Research Institute, Martigny, Switzerland
e-mail: sylvain.calinon@idiap.ch

© Springer International Publishing AG 2018 111
A. Bicchi and W. Burgard (eds.), Robotics Research, Springer Proceedings
in Advanced Robotics 3, DOI 10.1007/978-3-319-60916-4_7



112 S. Calinon

The task-parameterized Gaussian mixture model (TP-GMM) was presented in
[8, 10, 11] for the special case of frames of reference representing rotations and
translations in Cartesian space. The current paper discusses the potentials of the
approach and introduces several routes for further investigation, aiming at applying
the proposed technique to a wider range of affine transformations (directly exploit-
ing the considered application domain), including constraints in both configuration
and operational spaces, as well as priority constraints. It also shows that the pro-
posed method can be applied to different probabilistic encoding strategies, including
subspace clustering approaches enabling the consideration of high dimension fea-
ture spaces. Examples are provided in simulations and on a real robot (transfer of
manipulation skills to the Baxter bimanual robot). Accompanying source codes are
available at http://www.idiap.ch/software/pbdlib/.

2 Adaptive Models of Movements

Task-parameterized models of movements/behaviors refer to representations that can
adapt to a set of task parameters describing for example the current context, situation,
state of the environment or state of the robot configuration. The fask parameters can
for example refer to the variables collected by the system to describe the position of
objects in the environment. The task parameters can be fixed during an execution
trial or they can vary while the motion is executed. The model parameters refer to
the variables learned by the system, namely, that are stored in memory (the internal
representation of the movement). During reproduction, a new set of rask parameters
(describing the present situation) is used to generate anew movement (e.g., adaptation
to new position of objects).

Several denominations have been introduced in the literature to describe these
models, such as task-parameterized [11, 40] (the denomination that will be used
here), parametric [26, 29, 49] or stylistic [7]. In these models, the encoding of skills
usually serve several purposes, including classification, prediction, synthesis and
online adaptation. A taxonomy of task-parameterized models is presented in [8],
classifying existing methods in three broad categories: (1) Approaches employing
M models for the M demonstrations, performed in M different situations, see e.g.
[12, 16, 21, 23, 25, 29, 45]; (2) Approaches employing P models for the P frames
of reference that are possibly relevant for the task, see e.g. [13, 32]; (3) Approaches
employing a single model whose parameters are modulated by task parameters, see
e.g. [20, 26, 49].

In the majority of these approaches, the retrieval of movements from the model
parameters and the task parameters is viewed as a standard regression problem. This
generality might look appealing at first sight, but it also limits the generalization scope
of these models. Our work aims at increasing the generalization capability of task-
parameterized models by exploiting the functional nature of the task parameters. The
approach arose from the observation that the task parameters in robotics applications
can most of the time be related to some form of frames of reference, coordinate
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systems, basis functions or local projections, whose structure can be exploited to
speed up learning and provide the robot with remarkable extrapolation capability.

2.1 Motivation

The core of the approach is to represent an observed movement or behavior as a
spring-damper system with varying parameters, where a generative model is used to
encode the evolution of the attractor, and the variability and correlation information
is used to infer the impedance parameters of the system. These impedance parameters
figuratively correspond to the stiffness of a spring and to the damping coefficient of
a viscous damper, with the difference that they can also be full stiffness and damping
matrices. The model shares links with optimal feedback control strategies in which
deviations from an average trajectory are corrected only when they interfere with
task performance, resulting in a minimal intervention principle [43].

In its task-parameterized version, several frames of reference are interacting with
each other to describe tracking behaviors in multiple coordinate systems, where
statistical analysis from the perspective of each of these observers is used to esti-
mate feedforward and feedback control terms with linear quadratic optimal control.
Figure | presents an illustration of the overall approach, which can be decomposed
into multiple steps, involving statistical modeling, dynamical systems and optimal
control.

q N “
(a) r, Multiple (b} ﬁ@ (c) Re-use of the {d} J"' nat
demonstrations @ o~ learned model _
£ ina new situation i . -
"g By exploiting the / Input: N,
( | o ST ek Jfs The estimated variability is used
|u Qﬂ Mation observed from | 1 variationg LY 1o determine how strongly the
b different perspectives | - % robot should track the estimated
- \ path with optimal control.
Reproduction in § (4’:- A - a0 wOutput: K|, K} ;
new situation - B B : K z
|!| / ] _____...-o-%-., / 2|
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Fig. 1 Illustration of the overall approach (see main text for details). a Observation of a task
in different situations and generalization to new contexts. Multiple demonstrations provide the
opportunity to discern the structure of the task. b Probabilistic encoding of continuous movements
in multiple coordinate systems. ¢ Exploitation of variability and correlation information to adapt
the motion to new situations. With cross-situational observations of the same task, the robot is able
to generalize the skill to new situations. d Computation of the underlying optimal control strategy
driving the observed behavior
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2.2 Example with a Single Gaussian

Before presenting the details of the task-parameterized model, the approach is moti-
vated by an introductory example with a single Gaussian.

Two frames will be considered, described respectively at each time step ¢ by
{b:,1, A; 1} and {b, », A, >}, representing the origin of the observer b, ; and a set of
basis vectors {ey, e, ...} forming a transformation matrix A, ; =[e, ;, €2, ...].

A set of demonstrations is observed from the perspective of the two frames. During
reproduction, each frame expects the new datapoints to lie within the same range
as that of the demonstrations. If N'(u", £V) and N (n®, X®) are the normal
distributions of the observed demonstrations in the first and second frames, the two
frames respectively expect the reproduction attempt to lie at the intersection of the
distributions A/ (A ,(]), b) ,“)) and N (Al(z), b) 1(2)). These distributions can be computed
with the linear transformation property of normal distribution as

ED — A, w45, > =4, >MAL, (1)
;2) = Af,z )u’( ) + bl‘,z ’ Z‘2‘2) = At,z E(Z)A-[rsz : (2)

A trade-off thus needs to be determined during reproduction to concord with the
distributions expected by each frame. The objective function can be defined as the
weighted sum of quadratic error terms

3 =argmmz —E0) 207 (€80, 3)

The above objective can easily be solved by differentiation, providing a point E /s
with an error defined by covariance b) .. This estimate corresponds to a product of
Gaussians (intersection between the two Gaussians). Figure 2 illustrates this process
for one of the Gaussians of Fig. 1.

Fig. 2 Minimization of the
objective function in Eq. (3)
composed of a weighted sum
of quadratic error terms,
whose result corresponds to

a product of Gaussians. It is -'\’_(5;- Er) g \__(Eﬂ;-_u S -_-:)
easy to show that (ét b 1) \\ > i : :
corresponds to the Gaussian &

outcoming from the product N (Eﬁf ) i, ! )

of the two Gaussians

N o E(l)) and
22 2

NED2P)
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3 Task-Parameterized Gaussian Mixture Model
(TP-GMM)

TP-GMM is a direct extension of the objective problem presented above, by consid-
ering multiple frames and multiple clusters of datapoints (soft clustering via mixture
modeling). It probabilistically encodes the relevance of candidate frames, which
can change throughout the task. In contrast to approaches such as [33] that aim
at extracting a single (most prominent) coordinate system located at the end of a
motion segment, the proposed approach allows the superposition and transition of
different coordinate systems that are relevant for the task (parallel organization of
behavior primitives, adaptation to multiple viapoints in the middle of the movement,
modulation based on positions, orientations or geometries of objects, etc.).

Each demonstration m €{1, ..., M} contains 7,, datapoints forming a dataset of
N datapoints {€,}Y, with N :sz T,. The task parameters are represented by P
coordinate systems, defined at time step ¢ by {b; ;, A; ; }‘f _»Tepresenting respectively
the origin and the basis of the coordinate system.

The demonstrations &€ € RP*V are observed from these different viewpoints, form-
ing P trajectory samples X /) e RP*V  These samples can be collected from sensors
located at the frames, or computed with

X = Al — b)) &)

The parameters of the proposed task-parameterized GMM (TP-GMM) with K
components are defined by {m;, {u}j ), X fj )} fz 1}1'K= | (m; are the mixing coefficients,
ugj )and ¥ l(’ ) are the center and covariance matrix of the i-th Gaussian component
in frame j).

Learning of the parameters is achieved by log-likelihood maximization subject to
the constraint that the data in the different frames arose from the same source, result-
ing in an EM process iteratively updating the model parameters until convergence,
see [10] for details. Model selection (i.e., determining the number of Gaussians
in the GMM) is compatible with techniques employed in standard mixture models
(Bayesian information criterion [37], Dirichlet process [34], small-variance asymp-
totics [27], etc.). For a movement in Cartesian space with 10 demonstrations and 3
candidate frames, the overall learning process typically takes 1-3 s. The reproduction
is much faster and can be computed online (typically below 1 ms).

The learned model is then used to reproduce movements in other situations (for
new position and orientation of candidate frames). A new GMM with parameters

{mi, S,, i b) t,,-}iK: , can thus automatically be generated with

P
p . () oy ()
N(ﬁt,i» Et,i) & HN< i Zt,ji)’
j=1

with €7 =A, ;pu+b,;, E) =4,,;274; .. (5)

i tj°
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Fig.3 Generalization capability of task-parameterized Gaussian mixture model. Each graph shows
a different situation with increasing generalization complexity. In each graph, the four demonstra-
tions and the associated adapted model parameters are depicted in semi-transparent colors

where the result of the Gaussian product is given by

2 P
N Ay —1\ 1 A N JRPIE DA
Sa=(20807) L Ea=2uX 20 (6)

J= J=1

For computational efficiency, the above equations can be computed with precision
matrices instead of covariances.

Several approaches can be used to retrieve movements from the proposed model.
An option is to encode both static and dynamic features in the mixture model to
retrieve continuous behaviors [22, 39, 51]. An alternative option is to encode time as
additional feature in the GMM, and use Gaussian mixture regression (GMR) [18] to
retrieve continuous behaviors. Similarly, if the evolution of a decay term is encoded
instead of time, the system yields a probabilistic formulation of dynamical movement
primitives (DMP) [20], see [11] for details. Figure 3 presents TP-GMR reproduction
results for the example in Fig. 1.

4 Extension to Task-Parameterized Subspace Clustering

Classical model-based clustering will tend to perform poorly in high-dimensional
spaces. A simple way of handling this issue is to reduce the number of parameters
by considering diagonal covariances instead of full matrices, which corresponds to a
separated treatment of each variable. Although common in robotics, such decoupling
can be a limiting factor to encode movements and sensorimotor streams, because it
follows a strategy that is not fully exploiting principles underlying coordination,
motor skill acquisition and action-perception couplings.

The rationale is that diagonal structures are unadapted to motor skill represen-
tation because they do not encapsulate coordination information among the con-
trol variables. The good news is that a wide range of mixture modeling techniques
exist between the encoding of diagonal and full covariances. At the exception of
[14, 47], these techniques have only been exploited to a limited extent in robot skills
acquisition. They can be studied as a subspace clustering problem, aiming to group
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Fig. 4 The mixture of factor analyzers (MFA) covers a wide range of covariance structures for the
modeling of the data, from diagonal covariances (left) to full covariances (right)

datapoints such that they can be locally projected in subspaces of reduced dimension-
ality. Such subspace clustering helps the analysis of the local trend of the movement,
while reducing the number of parameters to be estimated, and “locking” the most
important coordination patterns to efficiently cope with perturbations.

Several possible constraints can be considered, grouped in families such as
parsimonious GMM [6], mixtures of factor analyzers (MFA) [30] or mixtures of
probabilistic principal component analyzers [42]. Methods such as MFA provide a
simple approach to the problem of high-dimensional cluster analysis with a slight
modification of the generative model underlying the mixture of Gaussians to enforce
low-dimensional models (i.e., noninvasive regarding the other methods used in the
proposed framework). The basic idea of factor analysis (FA) is to reduce the dimen-
sionality of the data while keeping the observed covariance structure. MFA assumes
for each component i a covariance structure of the form ¥, =A; A} + ¥;, where
A; eRP*4 known as the factor loadings matrix, typically has d < D (providing a
parsimonious representation of the data), and a diagonal noise matrix ¥;.

Figure4 shows that the covariance structure in MFA can span a wide range of
covariances.

The TP-GMM presented in Sect. 3 is fully compatible with the subspace clustering
approaches mentioned above. Bayesian nonparametric approaches such as [48] can
be used to simultaneously select the number of clusters and the dimension of the
subspace in each cluster.

The TP-MFA extension of TP-GMM opens several roads for further investigation.
A possible extension is to use tied structures in the covariances to enable the organi-
zation and reuse of previously acquired synergies [17]. Another possible extension
is to enable deep or hierarchical learning techniques in task-parameterized models.
As discussed in [41], the prior of each FA can be replaced by a separate second-level
MFA that learns to model the aggregated posterior of that FA (instead of the isotropic
Gaussian), providing a hierarchical structure organization where one layer of latent
variables can be learned at a time.
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Demonstrations

Reproductions

Fig. 5 Learning of two behaviors with the Baxter robot. The taught tasks consist of holding a cup
horizontally with one hand, and holding a sugar cube above the cup with the other hand, where the
two task primitives can be combined in parallel. The demonstrations are provided in two steps by
kinesthetic teaching, namely, by holding the arms of the robot and moving them during the task
while the robot compensates for the effect of gravity. This procedure allows the user to move the
robot arms without feeling their weight and without feeling the motors in the articulations, while
the sensors are used to record position information. Here, the data are recorded in several frames
of reference (top image). During reproduction, the robot is controlled by following a minimal
intervention principle, where the computed feedforward and feedback control commands result
in different levels of stiffness obeying the extracted variation and coordination constraints of the
task. First sequence: Brief demonstration to show the robot how to hold a cup horizontally. Second
sequence: Brief demonstration to show how to hold a sugar cube above the cup. Third sequence:
Manual displacement of the left arm to test the learned behavior (the coordination of the two hands
was successfully learned). Last sequence: Combination of the two learned task primitives. Here,
the user pushes the robot to show that the robot remains soft for perturbations that do not conflict
with the acquired task constraints (automatic exploitation of the redundant degrees of freedom that
do not conflict with the task)
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5 Extension to Minimal Intervention Control

We showed in [10] that TP-GMM can be used to autonomously regulate the stiffness
and damping behavior of the robot, see also Fig. 1d. It shares similarities with the
solution proposed by Medina et al. in the context of risk-sensitive control for haptic
assistance [31], by exploiting the predicted variability to form a minimal intervention
controller (in task space or in joint space). The retrieved variability and correlation
information is exploited to generate safe and natural movements within an optimal
control strategy, in accordance to the predicted range of motion to reproduce the
task, evaluated for the current situation. TP-GMM is fully compatible with linear
quadratic regulation (LQR) and model predictive control (MPC) [4], providing an
approach to learn controllers adapted to the current situation, with feedforward and
feedback control commands varying in regard to external task parameters, see [10]
for details.

Figure 5 demonstrates that a TP-GMM with a single Gaussian, combined with an
infinite-horizon LQR, can readily be used to represent various behaviors that directly
exploit the torque control capability of the robot and the redundancy, both at the level
of the task and at the level of the robot kinematic structure.

It is worth noting that each frame in the TP-GMM has an associated sub-objective
function as in Eq. (3), which aims at minimizing the discrepancy between the demon-
strations and the reproduction attempt. By considering the combination of these sub-
objectives in the overall objective, the problem can be viewed as a rudimentary form
of inverse optimal control (I0C) [1]. This form of IOC does not have external con-
straints and can be solved analytically, which means that it can provide a controller
without exploratory search, at the expense of being restricted to simple forms of
objectives (weighted sums of quadratic errors whose weights are learned from the
demonstrations). This dual view can be exploited for further research in learning
from demonstration, either to bridge action-level and goal-driven imitation, or to
initialize the search in IOC.

6 Extension to Multimodal Data and Projection
Constraints

TP-GMM is not limited to coordinate systems representing objects in Cartesian space.
It can be extended to other forms of locally linear transformations or projections,
which opens many roads for further research.

The consideration of non-square A, ; matrices is for example relevant to learn
and reproduce soft constraints in both configuration and operational spaces (through
Jacobian operators). With a preliminary model of task-parameterized movements,
we explored in [9] how a similar approach could be used to simultaneously learn
constraints in joint space and task space. The model also provides a principled way to
learn priority constraints in a probabilistic form (through nullspace operators). The
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different frames correspond in this case to several subspace projections of the same
movement, whose relevance is estimated statistically from the demonstrations.

A wide range of motor skills could potentially be adapted to this framework, by
exploiting the functional nature of task parameters to build models that learn the
local structure of the task from a small number of demonstrations. Indeed, most task
parameterization in robot control can be related to some form of frames of reference,
coordinate systems or basis functions, where the involvement of the frames can
change during the execution of the task, with transformations represented as local
linear projection operators (Jacobians for inverse kinematics, kernel matrices for
nullspace projections, etc.).

The potential applications are diverse, with an objective that is well in line with
the original purpose of motor primitives to be composed together serially or in paral-
lel [15]. Further work is required to investigate in which manner TP-GMM could be
exploited to provide a probabilistic view of robotics techniques that are in practice
predefined, handled by ad hoc solutions, or sometimes inefficiently set as hard con-
straints. This includes the consideration of soft constraints in both configuration and
operational spaces. A wide range of robot skills can be defined in such way, see e.g.
the possible tasks described in Sect. 6.2.1 of [3]. In humanoids, the candidate frames
could for example be employed to learn the constraints of whole-body movements
from demonstration or experience, based on the regularities extracted from different
subspace projections.

An important category of applications currently attracting a lot of attention con-
cerns the problems requiring priority constraints [19, 28, 36, 44, 50]. With an appro-
priate definition of the frames and with an initial set of candidate task hierarchies,
such constraints can be learned and encoded within a TP-GMM. Here, the probabilis-
tic encoding is exploited to discover, from statistical analysis of the demonstrations,
in which manner each subtask is prioritized.

For a controller handling constraints both in configuration and operational spaces,
the most common candidate projection operators can be defined as

é;j,) -1 (J) +0 )

§7) =T, “>+q,, — Jq, )i @®)

q;) = Jq,_ DAY w’ +q, .+ Jq, b —xi1] )

) = Ng, ) w’ + Jq, I, g, (10)

i =N, DJa,_ ) P +a_ - Ng, DT g, x (1)

i) = Ng, )T (@, DA?  u? +q,+Ng, )T (@, D[ —x]. (12)
Az,j bt,f

covering a wide range of robotics applications.
Note here that the product of Gaussians is computed in configuration space (¢ and
X represent respectively poses in joint space and task space). Equation (7) describes
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Demonstration

Fig. 6 Illustration of the encoding of priority constraints in a TP-GMM. The top row shows 3
demonstrations with a bimanual planar robot with 5 articulations. The color of the robot changes
from light gray to black with the movement. The task consists of tracking two objects with the left
and right hands (the path of the objects are depicted in red). In some parts of the demonstrations, the
two objects could not be reached, and the demonstrator either made a compromise (left graph), or
gave priority to the left or right hand (middle and right graphs). The bottom row shows reproduction
attempts for new trajectories of the two objects. Although faced with different situations, the priority
constraints are reproduced in a similar fashion as in the corresponding demonstrations

joint space constraints in a fixed frame. It corresponds to the canonical frame defined
by A, j=1I (identity matrix) and b, ; =0. Equation (8) describes absolute position
constraints (in operational space), where J' is the Jacobian pseudoinverse used as
least-norm inverse kinematics solution. Note that Eq. (8) describes a moving frame,
where the task parameters change at each iteration (observation of a changing pose
in configuration space). Equation (9) describes relative position constraints, where
the constraint in task space is related to an object described at each time step 7 by
a position b, and an orientation matrix A; in task space. Equation (10) describes
nullspace/priority constraints in joint space, with N = I — J' J a nullspace projection
operator. Equation (11) describes absolute position nullspace/priority constraints,
where the secondary objective is described in task space (for a point in the kinematic
chain with corresponding Jacobian D). Finally, Eq. (12) describes relative position
nullspace/priority constraints.

The above equations can be retrieved without much effort by discretizing (with an
Euler approximation) the standard inverse kinematics and nullspace control relations
that can be found in most robotics textbooks, see e.g. [3].

Figure 6 presents a TP-GMM example with task parameters taking the form of
nullspace bases. The frames are defined by Eqs.(9) and (12) with two different
combinations of nullspaces N and Jacobians J corresponding to the left and right
arm.
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7 Discussion and Further Work

A potential limitation of the current TP-GMM approach is that it requires the
experimenter to provide an initial set of frames that will act as candidate projec-
tions/transformations of the data that can potentially be relevant for the task. The
number of frames can be overspecified by the experimenter (e.g., by providing an
exhaustive list), at the expense of potentially requiring a large number of demonstra-
tions to obtain sufficient statistics to discard the frames that have no role in the task.
The demonstrations must also be sufficiently varied, which becomes more difficult
as the number of candidate frames increases. The problem per se is not different
from the problem of selecting the variables that will form the feature vector fed to a
learning system. The only difference here is that the initial selection of frames takes
the form of affine transformations instead of the initial selection of elements in a
feature vector.

In practice, the experimenter selects the list of objects or landmarks in the robot
workspace, as well as the locations in the robot kinematic chain that might be relevant
for the task, which are typically the end-effectors of the robot, where tools, grippers
or parts in contact with the environment are mounted. It should be noted here that
if some frames of reference are missing during reproduction (e.g., when occlusions
occur or when frames are collected at different rates), the system is still able to
reproduce an appropriate behavior given the circumstance, see [2] for details.

The issue of predefining an initial set of frames of reference is not restrictive
when the number of frames remains reasonably low (e.g., when they come from
a set of predefined objects tracked with visual markers in a lab setting). However,
for perception in unconstrained environment, the number of frames could potentially
grow (e.g., detection of phantom objects), while the number of demonstrations should
remain low.

Further work is thus required to detect redundant frames or remove irrelevant
frames, as well as to automatically determine in which manner the frames are
coordinated with each other and locally contribute to the achievement of the task.
A promising route for further investigation is to exploit the recent developments in
multilinear algebra and tensor methods [24, 38] that exploit the multivariate structure
of data for statistical analysis and compression without transforming it to a matrix
form.

In the proposed task-parameterized framework, the movement is expressed simul-
taneously in multiple coordinate systems, and is stored as a multidimensional array
(tensor-variate data). This opens many roads for further investigation, where mul-
tilinear algebra could provide a principled method to simultaneously extract eigen-
frames, eigenposes and eigentrajectories. Multiway analysis of tensor-variate data
could imaginably offer a rich set of data decomposition techniques, which has been
demonstrated in computer imaging fields such as face processing [46], video analy-
sis [52], geoscience [35] or neuroimaging [5], but which remains underexploited in
robotics and motor skills acquisition.
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There are several other encoding methods that can be explored within the pro-
posed task-parameterized approach (e.g., with hidden Markov models (HMM), with
Gaussian processes (GP) or with other forms of trajectory distributions). Indeed,
it is worth noting that the approach is not restricted to mixture models and can be
employed with other representations as long as a local measure of uncertainty is
available.

8 Conclusion

An efficient prior assumption in robot learning from demonstration is to consider
that skills are modulated by external task parameters. These task parameters often
take the form of affine transformations, whose role is to describe the current situation
encountered by the robot (body and workspace configuration). We showed that this
structure can be used with different statistical modeling strategies, including standard
mixture models and subspace clustering. The approach can be used in a wide variety
of problems in robotics, by reinterpreting them with a structural relation between
the task parameters and the model parameters represented as candidate frames of
reference. The rationale is that robot skills can often be related to coordinate systems,
basis functions or local projections, whose structure can be exploited to speed up
learning and provide robots with better generalization capability. Early promises of
the approach were discussed in a series of problems in configuration and operational
spaces, including tests on a Baxter robot.
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Modeling Objects as Aspect Transition
Graphs to Support Manipulation

Li Yang Ku, Erik Learned-Miller and Roderic Grupen

1 Introduction

In the fields of human psychophysics and neurophysiology, the study of visual object
recognition is often motivated by the question of how humans recognize 3-D objects
while receiving only 2-D light patterns on the retina [29]. Two types of models for
objectrecognition have been proposed to answer this question. The structural descrip-
tion model represents each object by a small number of view-invariant primitives and
their position in an object-centered reference frame [23]. Alternatively, image-based
models represent each object as a collection of viewpoint-specific local features.
Since the development of these models, experiments in human psychophysics and
neurophysiology have provided converging evidence for image-based models. In
experiments done by Biilthoff and Edelman [2, 6], it was shown that when a new
object is presented to a human subject, a small set of canonical views are formed
despite the fact that each viewpoint is presented to the subject for the same amount
of time. Experiments on monkeys further confirmed that a significant percentage of
neurons in the inferior temporal cortex responded selectively to a subset of views of
a known object [20]. However, how an infinite set of possible views can be effec-
tively reduced to a smaller set of canonical views remains an open question. Different
approaches such as view interpolation [24] and linear combinations of views [31]
have been proposed.
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Closely related to the image-based models in the field of psychophysics, aspect
graphs were first introduced as a way to represent 3-D objects using multiple 2-D
views in the field of computer vision [16]. An aspect graph contains distinctive views
of an object captured from a viewing sphere centered on the object. Research on aspect
graphs has focused on the methodologies for automatically computing aspect graphs
of polyhedra [10] and general curved objects [17]. The set of viewpoints on the
viewing sphere is partitioned into regions that have the same qualitative topological
structure as an image of the geometric contours of the object. However, work done
in this field was mostly theoretical and was not applicable in practice [7]. One of
the difficulties faced in this work concerned the large number of aspects that exist
for normal everyday objects. An object can generate millions of different aspects,
but many of these may be irrelevant at the scale of the observation. In this work,
we propose an object model that provides a consistent treatment for classifying
observations into aspects within a practically-sized subset of all possible aspects for
most types of objects including deformable objects.

Object and tool manipulation are essential skills for a humanoid robot, and recog-
nizing known objects and tools is often a first step in manipulation tasks. In computer
vision and robotics, object recognition is often defined as the process of labeling seg-
ments in an image or fitting a 3-D model to an observed point cloud. The object models
used to accomplish these tasks usually include information about visual appearance
and shape. However, what these object recognition systems provide is merely a label
for each observed object. The sequence of actions that the robot should perform
based on the object label are often manually defined. Without linking actions to
object labels these object models themselves have limited utility to the robot.

Both aspect graphs and image-based models attempt to model 3-D objects with
multiple 2-D views. Research in aspect graphs has encountered difficulties in deter-
mining the threshold to differentiate two distinctive views while for image-based
models how to generalize from unfamiliar to canonical views remains an open ques-
tion. In this article we propose an object model that addresses both of these issues
and incorporates actions in a coherent way. In particular, we show how aspects can
be chosen in a unique and repeatable way that is defined by the object itself, and in
a way that supports manipulation.

While many of our examples use images and visual processing, our methodology
applies to other modes of perception such as audition and haptics. Below, we use the
terms “observation” and “aspect” instead of “view” and “canonical view” to reflect
the more general nature of our approach beyond just visual processing.

The three main contributions of this paper are the following. (1) We define a
principle that determines whether two observations should be differentiated or gen-
eralized to one aspect based on the actor’s capability. (2) We propose an image-based
visual servoing algorithm that allows the actor to manipulate an object to cause the
features in an image to conform with an aspect in memory. (3) We introduce a method
for determining whether a sequence of non-deterministic manipulation actions can,
under certain assumptions, be guaranteed to transition between two aspects. We
demonstrate our object model and our visual servoing algorithm on a tool-grasping
task using the Robonaut 2 simulator.
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2 Related Work

Besides work done in aspect graphs and image-based models mentioned in the last
section, our work also relates to a body of work in hybrid control theory. In [3], a
controller is described as a funnel that guides the robot state to convergence; multiple
controllers can be combined to funnel robot states to a desired state that no one single
controller can reach alone. In [30], an algorithm that combines linear quadratic regu-
lators into a nonlinear policy was also introduced. However under certain situations
the goal state may not be reachable through a combinations of controllers that act
like funnels. For example, the visual servoing controller implemented in our exper-
iment controls the end effector to a certain pose based on the robot hand’s visual
appearance. However to reach the goal state, a controller that transitions from a state
where the robot hand is not visible to one in which the visual servoing controller can
be executed is required. Such a controller can be an open loop controller that moves
the end effector to a memorized pose and may not necessarily converge to a certain
state like a funnel.

In this work we introduce the notion of a slide as a metaphor for this kind of action
that transitions from one set of states to another (see Fig. 1). Uncertainty of the state
may increase after transitioning down a slide, but may still reach the goal state if a
funnel-slide-funnel structure is carefully designed. We investigate how a sequence
of these two kinds of controllers will change how an object is observed. In previous
(on-going) work we have referred to funnels as track control actions and slides as
search control actions [11]. The search control action orients the visual sensor to
where the target is likely be found therefore transitioning states like a slide; the track
control action keeps the target in the visual center and converges to a subset of states
like a funnel. Figure 1 illustrates the funnel-slide-funnel concept using the same style
of figure demonstrated in previous work by Burridge et al. [3].

There is also a good deal of related work in visual servoing. This work can be
classified into two major types: position-based servoing, where servoing is based on
the estimated pose; and image-based servoing, where servoing is based directly on
visual features [14]. The image-based servoing approach has the advantage that it

Fig. 1 Funnel-slide-funnel
structure. We use the funnel
metaphor introduced in [3] to
describe a closed-loop
controller or a track control
action [11] that converges to
a subset of states and the
slide metaphor to describe an
open-loop controller or a
search control action [11]
that causes state transitions
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performs with an accuracy independent of extrinsic camera calibration and does not
require an accurate model of the target object or end effector. Our visual servoing
approach belongs to this class of image-based servoing techniques.

Our work is inspired by Jiagersand and Nelson [15], in which Broyden’s method is
used to estimate the visuomotor Jacobian online. Our algorithm uses a similar update
approach but is implemented on top of a changing set of features. Some other work
in visual servoing has also investigated approaches that do not rely on a predefined
set of features. In [26], a set of robust SIFT features are selected to perform visual
servoing. In [12] moments of SIFT features that represent six degrees of motion are
designed. An approach that is based on the image entropy was also introduced in
[4]. However these approaches all assume a setting in which the camera is mounted
on the end effector. In this article we are interested in a setting that is more similar
to human manipulation. Unlike a system where the camera is mounted on the end
effector, only part of the observed features move in correspondence with the end
effector. Our algorithm is used to guide the robot end effector, within the field of
view, to a pose that is defined relative to an object that was memorized. The features
that are controllable are learned and reused.

Our work also has many connections to prior work on affordances. The term
affordance [9] has many interpretations. We prefer the definition of affordance as
“the opportunities for action provided by a particular object or environment” [8].
Affordances can be used to explain the functionality and utility of things in the
environment. Our object models are based on this interactionist view of perception
and action that focuses on learning relationships between objects and actions specific
to the robot. An approach to bind affordances of objects with the robot was also
introduced by Stoytchev [27]. In this work, the robot learns sequences of actions that
will lead to invariant features on objects through random exploration. In the object
model introduced in [33], predefined base affordances are associated with object
surface types. Instead of defining object affordances from a human perspective,
our object models memorize how robot actions change perception with a graph
representation.

The aspect transition graph model employed in this work was first introduced by
Sen [25]. In our previous work [18, 19], we introduced a mechanism for learning
these models without supervision, from a fixed set of actions and observations. We
used these models to support belief-space planning techniques where actions are
chosen to minimize the expected future model-space entropy, and we showed that
these techniques can be used to condense belief over objects more efficiently. In
this article we extend the aspect transition graph model to handle an infinite variety
of observations and to handle continuous actions. We start with a discussion of our
aspect transition graph model.
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3 Object Model

The aspect transition graph (ATG) object model discussed in this paper is an extension
of the original concept of an aspect graph. In addition to distinctive views, the ATG
object model summarizes how actions change viewpoints or the state of the object
and thus, the observation. We define the term “observation” to be the combination of
all sensor feedback of the robot at a particular time and the “observation space” as the
space of all possible observations. This limits the model to a specific robot, but allows
the model to present object properties other than viewpoint changes. Extensions to
tactile, auditory and other sensors is possible with this representation. An ATG model
of an object can be used to plan manipulation actions for that object to achieve a
specific target aspect. For example, in order for the robot to pick up an object, the
target aspect is a view where the robot’s end effector surrounds the object. We expect
that this view will be common to many such tasks and that it can be the expected
outcome of a sequence of slides (i.e. like moving the effector to the same field of
view as the target object) and funnels (like visually servoing features from the hand
into the pregrasp configuration relative to the object).

Definitions

We define an “aspect” as a single observation that is stored in the object model.
This usage is consistent with the term “canonical view” coined in the psychophysics
literature to describe image-based models. As we will see below, many observations
will not be stored in the object’s memory and hence will not be categorized as aspects.
We will discuss in detail below how a given observation is categorized as an aspect
or not.

An ATG object model is represented using a directed multigraph' G = (X,U),
composed of a set of aspect nodes X’ connected by a set of action edges I/ that capture
the probabilistic transition between aspects. An action edge U is a triple (X, X», A)
consisting of a source node X, a destination node X, and an action A that transitions
between them. Note that there can be multiple action edges (associated with different
actions) that transition between the same pair of nodes. In contrast to aspect graphs
and image-based models that differentiate views based on visual appearance, we
argue that, in general, discriminating between object observations should depend on
whether the actor is capable of manipulating the object such that the observation
converges to a target aspect. That is, we define aspects that are functions of the visual
servoing and action abilities of the robot.

Figure 2 shows an example of an ATG model that contains two aspects x|, x, and
one action edge u connecting the two aspects in the observation space. An aspect is
represented as a single dot in the figure. The smaller ellipses around x;, x; represent
the e-region of the corresponding aspect. Inside the e-region, the observation is close
to the target aspect, and the funnel action is considered to have “converged”. The
e-region is task dependent; a task that requires higher precision such as picking up

! A multigraph allows multiple edges between a given pair of vertices.
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g-region of x; e-region of x,

region of attraction of x; region of attraction of x,

Fig. 2 An ATG model containing two aspects x| and x2, each a likely result of applying a funnel
action within their respective regions of attraction. The edge labeled u is a model-referenced “slide”
action that reliably maps the e-region of x; to the interior of the region of attraction of x,

a needle will require a smaller e-region. Each aspect x is located in the e-region but
does not have to be in the center. The location and shape of the e-region also depends
on the given task since certain dimensions in the observation space might be less
relevant when performing certain tasks.

The larger ellipses surrounding the e-regions are the region of attraction of the
“funnel” controller referenced to aspects x; and x,. Observations within the region
of attraction converge to the e-region of the target aspect by running a closed-loop
controller that does not rely on additional information from the object model. In our
experiment, a visual servoing controller is implemented to perform gradient descent
to minimize the observation error. The region of attraction for using such a controller
is the set of observations from which a gradient descent error minimization procedure
leads to the e-region of the target aspect.

Slides

The arrow in Fig.2 that connects the two aspects is an action edge (x1, x», a) that
represents a “slide” action. Action a is an open-loop controller that causes aspect
transitions. Instead of converging to an aspect, “slide” actions tend to increase uncer-
tainty in the observation space. If a funnel is used to describe a convergent controller
then a slide is suitable for describing this type of action. Figure 1 illustrates this
metaphor with an example structure that allows transitions from a converged aspect
to the mouth of another funnel.

We implement slide actions as open-loop controllers. In our experiments, a slide
action a can be represented in the forma = ¢|? where ¢ represents the potential func-
tion that the controller tries to minimize, & represents a set of memorized controller
parameters, and 7 represents the motor resources the action controls. An example
is an end point position controller that moves to a relative pose with respect to the
center of an object point cloud. Under situations when there is no randomness in
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observation, action execution and the environment, executing action a from aspect
x; will transition reliably to aspect x;.

Convergence

The arrow in Fig.2 that connects the observation x, within the e-region of x; to
observation xg represents a scenario where action a is executed when x,, is observed
in a system in which actions have stochastic outcomes. We define ¢, as the maximum
error between the aspect x, and the observation x3 when action a is executed while
the current observation is within the e-region of aspect x;. €, can be caused by a
combination of kinematic and sensory errors generated by the robot or randomness
in the environment. If the region of attraction of the controller that converges to
aspect x, covers the observation space within €, from x;, by running the convergent
controller we are guaranteed to converge within the e-region of aspect x, under such
an environment. Figure 1 illustrates this using the funnel and slide metaphor. As
long as the end of the slide is within the mouth of the next funnel we can guarantee
convergence to the desired state even when open loop controllers are within the
sequence. The target aspect x; is determined by estimating the most likely observation
after executing action a through the Bayesian filtering algorithm.

Completeness and Sufficiency

We call an Aspect Transition Graph model complete if the union of the regions of
attraction over all aspects cover the whole observation space and a path exists between
any pair of aspects. A complete ATG object model allows the robot to manipulate the
object from any observation to one of the aspects. Complete ATG object models are
informative but often hard to acquire and do not exist for irreversible actions. On the
other hand, it is not always necessary to have a complete ATG to accomplish a task.
For example, a robot can accomplish most drill related tasks without modeling the
bottom of the drill. Therefore, we define an Aspect Transition Graph object model
to be sufficient if it can be used to accomplish all required tasks of the object. In this
work we will focus on sufficient ATG object models.

4 Visual Servoing

In this section we introduce an image-based visual servoing algorithm under the
control basis framework [13]. This visual servoing controller is used to converge from
an observation within the region of attraction to the e-region of the corresponding
aspect. An action is written in the form ¢|7, where ¢ is a potential function, o
represents sensory resources allocated, and 7 represents the motor resources allocated
[13]. The control basis framework provides a means for robot systems to explore
combinations of sensory and motor controls. Although only visual data are used in
this work, the control basis framework allows us to combine controllers that utilize
sensory resources of different modalities in future work. In our experiment the visual
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Fig. 3 Visual servoing sequences. Each image pair shows the target aspect (left) and the current
observation (right). A line in between represents a pair of matching keypoints. The top image
pair represents the starting observation and the botfom image pair represents when the controller
converged

servoing controller is used to control the end effector of the robot to reach a pose
relative to a target object using visual sensor feedback. Unlike many visual servoing
approaches, our visual servoing algorithm does not require a set of predefined visual
features on the end effector or target object nor does it require an inverse kinematic
solution for the robot. The only information required is the current observation and
the target aspect. Figure 3 shows a trial of our visual servoing algorithm converging
to a stored target aspect.

Potential Function

In the control basis framework, a potential function ¢ represents an error function
that the controller minimizes. To reach minimum error a closed loop controller per-
forms gradient descent on the potential function to converge to a minimum. Artificial
potential functions that guarantee asymptotically stable behavior are usually used to
avoid local minima [11]. However in visual servoing, potential functions with a
unique minimum often do not exist due to occlusion, lighting and noisy sensory
data. Instead of trying to define a potential function with a unique minimum, we
define a potential function with possibly many local minima and call the region in
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Fig. 4 Components of the
signature of the target aspect
(left) and the current
observation (right). The
circle and the triangle
represent the ith and jth
matched keypoints

Target Aspect Current Observation

which gradient descent converges to a particular minimum the region of attraction.
If the current aspect is within the region of attraction we can guarantee convergence
to the target aspect through gradient descent.

Our potential function is defined as the weighted squared Euclidean distance
between the signature of the current observation § and the signature of the target
aspect s. This approach can be used with most feature detectors and feature descrip-
tors. In our experiment the Fast-Hessian detector and the SURF descriptor [1] are
implemented. A depth filter that uses the depth image is first used to filter out most
keypoints that belong to the background. The first step to calculate the signature
of an observation is to find a subset K of keypoints in the current observation that
match to keypoints in the target aspect. The signature of an observation can then be
calculated based on this subset K of keypoints. The signature is a combination of
the distance signature vector s? and the angle signature vector s*. s is a signature
vector that consists of Euclidean distances si‘; between all pairs of keypoints (k;, k;)

in K: sl? = \/(xi —x;)?+ (yi — y;)*. Here x;, y; are the X Y image coordinates
of keypoint k; € K. The angle signature vector s4 consists of angle differences s{}
between all pairs of keypoints (k;, k;) in K: s{} = wj; — 0;. Here w;; represents the
orientation of the ray from keypoint k; to keypoint k ; and 6; represents the orientation
of keypoint ;. Figure 4 illustrates examples of si? and si’} of the target aspect and the
current observation.

The potential ¢ is then the scaled squared Euclidean distance between distance
signature vectors of the target aspect s and the current observation §P plus the
weighted squared Euclidean distance between angle signature vectors of the target
aspect s4 and the current observation § A;

1 D ~D\2 A A ~AN2
=N D Gg =S 2w G =S

{i.jlki kjeK} {i.jlki kjeK}

where Np = |K |- (|K| —1)/2 andwi"} = silj?/Z{i,jlk;,k,»eK} si?. Here | K| is the num-
ber of matched keypoints between the current observation and the target aspect and
wiA} is a normalized weight proportional to the keypoint pair distance sg in the target
aspect. The purpose of wlf‘}. is to weight angle differences more heavily for keypoints
that are far apart.
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Gradient Descent

In order to perform gradient descent on the potential function we need to be able
to estimate the potential-motor Jacobian defined as J = 0¢(0)/0T. A seven degree

freedom arm is used in our experiment, therefore T = [qy, g2, ..., g7] where g;
represents the ith joint in Robonaut-2’s right arm. The control signal that leads to
the greatest descent can then be calculated by the expression: AT = —c(J¥¢(0)),

where c is a positive step size and J* is the Moore—Penrose pseudoinverse [22].

In order to calculate the partial derivative of the potential function ¢ with respect
to each joint ¢, we introduce the visuomotor Jacobian defined as J, = 0V /J7, where
V is the X Y positions and orientations of the set of keypoints detected in the current
observation that match to keypoints in the target aspect based on its feature descriptor.
Given AT and J, we can calculate the change in the keypoint positions and angles
through AV = J, - A7. Since the potential only depends on matched pairs we can
calculate an estimated potential for every joint value.

Learning the Visuomotor Jacobian

Our visuomotor Jacobian that models how features change with respect to joint
values is inspired by work done in understanding how humans obtain a sense of
agency by observing their own hand movements [32]. Our approach learns that
certain feature positions on the robot end effector are controllable while features in
the background are not. Our visuomotor Jacobians for each aspect are updated on-
line using a Broyden-like method J,,,, = J,, + (u(AV — J,, AT)ATT JATT AT),
where J,, is the visuomotor Jacobian at time ¢ and 1 € (0, 1] is a factor that specifies
the update rate [21]. When p = 1 the updating formula will converge to the correct
Jacobian J, after m noiseless orthogonal moves and observations, where m is the
dimension of J,. In our experiment we set ;1 = 0.1 to make the estimation more
robust. The visuomotor Jacobians for each aspect are initialized randomly for the first
run and memorized afterwards. The more trials the controller runs the more accurate
the estimated J, is on average. Using Broyden’s method to estimate Jacobians on-line
for visual servoing was first introduced in [15].

5 Experimental Results

The aspect transition graph object model in conjunction with the visual servoing
algorithm introduced in previous sections are tested on a tool grasping task on the
NASA Robonaut-2 simulator [5]. The goal of the task is to control Robonaut-2’s
right hand to a pose where a screwdriver on a tool stand is in between the robot’s
right thumb, index finger and middle finger as shown in Fig.5. An ATG object
model consisting of three aspects, that is sufficient for this task, was built through
demonstration. We show that the “slide-funnel-slide-funnel” controller sequence
decreases the average pose error over a “slide-slide” controller sequence.
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Fig. 5 Robonaut 2
approaching a pregrasp pose
for a screwdriver on a tool
stand in simulation

Building ATG Models

In this experiment our ATG object model is built through a teleoperated demon-
stration. An interface was implemented to allow the demonstrator to indicate when
to create a new aspect in the object model. The demonstrator can control the robot
end effector through interactive markers implemented by the Movelt! platform [28].
When a new aspect is created, the action edge that connects the previous aspect to
this new aspect can be inferred.

The ATG object model used in this experiment consists of three aspects. The first
aspect represents an observation in which the screwdriver is on a tool stand on a table
and is 0.6 m in front of the robot. In addition, no parts of the robot are visible. The
left image in Fig. 6 is the corresponding observation of this aspect. The second aspect
represents an observation where the robot’s right hand is about 0.07 m right of the
screwdriver. The action edge between the first and second aspects represents an action
that moves the robot’s right hand to a pose relative to the center of the segmented
point cloud observed in the first aspect. This point cloud is segmented based on the
distance to the camera. The middle image in Fig. 6 is the corresponding observation
of this aspect. The third aspect represents an observation where the robot’s right
thumb, index and middle finger surrounds the screwdriver handle. The right image
in Fig. 6 is the corresponding observation of this aspect. The action edge in between
the second and third aspects represents an action that moves the robot’s right hand
to a pose relative to the right hand pose of the previous aspect. The relative action
frame is determined based on the closest observable feature to the end effector. An
even better approach would be to assign action frames based on the intention of the
demonstrator but this is beyond the scope of this paper.

Region of Attraction

The region of attraction of the second and third aspect of the ATG object model with
respect to the visual servoing controller can be analyzed. It is possible to also have a
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Fig. 6 The first, second, and third aspect stored in the ATG model through demonstration are shown
from left to right. In the first aspect, the object on top of the table is a screwdriver on a tool stand. In
the second aspect, the robot hand is in a position where a straight movement toward the screwdriver
would lead to a pregrasp pose. The third aspect represents a pregrasp pose. This is the goal aspect
for the pregrasp task designed in this experiment

controller that is capable of converging to the first aspect through controlling joints
in the robot’s neck and waist, however since we assume the robot starts in a similar
pose with similar observation this controller is not implemented in this experiment.
The region of attraction of an aspect is defined as the observation space in which a
closed loop convergence controller that does not rely on additional information from
the object model can converge to the e-region of the aspect. An aspect or observation
lies in a high dimensional observation space and can be varied by multiple different
parameters or noise. In this experiment we are interested in two types of noise.
(1) Noise in the relative pose between the robot hand and the object. This kind of
noise can be caused by kinematic errors from executing an action or imperfect object
positions calculated from a noisy point cloud. This type of noise will result in a
different end effector pose relative to the object. (2) Noise in the object position.
This kind of noise can be caused by placing the tool stand and screwdriver in a
different position than the position previously observed in the demonstration. This
type of noise can cause the estimated object center position to vary and will affect
the visual servoing controller since the object and the robot end effector will look
visually different from a different angle. In this experiment our goal is to find the
region of attraction of the second and third aspects with respect to these two kinds
of noise.

These two kinds of noise are artificially added to our experiment and the num-
ber of gradient descent iterations required to reach the e-region of the aspect are
recorded. In this experiment we only consider noise on the X-Y plane for easier
visualization and analysis. For each type of noise and each aspect we tested 289
different combination of noise in the X and Y axes roughly within the scale that the
visual servoing controller can handle. The results for adding noise in the relative pose
between the robot hand and the object to the second aspect are shown in Fig.7. The
plot on the left indicates how many iterations the visual servoing controller executed
till convergence for different noise values. Each color tile is one single experiment
and dark blue means the controller converges fast while orange means the controller
took longer to converge. A yellow tile means that the controller could not converge
within the 1000 iteration threshold. We call the region of attraction the set of obser-
vations that include the aspect plus the set of noise positions that corresponds to a
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Fig. 7 Iteration till convergence with respect to noise in the relative pose between the robot hand
and the object for the second aspect
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Fig. 8 Iteration till convergence with respect to noise in the relative pose between the robot hand
and the object for the third aspect

non yellow tile connected to the origin. The plot on the right is a visualization of
the same result in 3D which has some resemblance to the funnel metaphor used in
Fig.1.

The results for adding noise in the relative pose between the robot hand and the
object to the third aspect are shown in Fig.8. Note that this aspect has a smaller
region of attraction with more tolerance in the direction perpendicular to the hand
opening. If there is a large error in the Y axis the robot’s hand may end up in front
or behind the screwdriver. Under such situations without additional information the
visual servoing controller will not be able to avoid colliding with the screwdriver
while trying to reach the goal. The results for adding noise in the object position are
shown in Fig. 9. Notice that the regions of attraction are much larger for this type of
noise.
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Fig. 9 Iteration till convergence with respect to noise in the object position for the second aspect
(left image) and the third aspect (right image)

Convergence and Accuracy

By analyzing the observed regions of attraction of the visual servo controller that
converges to the two aspects we can estimate the magnitude of noise this “slide-
funnel-slide-funnel” controller sequence can tolerate. Through Figs.7 and 8 we can
see that the visual servo controller has a region of attraction with about 1.5 cm radius
of kinematic noise around the second aspect and about 0.5 cm radius of kinematic
noise around the third aspect. We evaluate these sequences of actions by comparing
the final end effector position in the X-Y plane to the demonstrated pose relative to the
screwdriver. We tested noise of three different magnitudes to each open-loop action;
0.5, 1.0, and 1.5 cm for the action that transitions from the first aspect to the second
aspect and 0.1, 0.2, and 0.3 cm for the action that transitions from the second aspect
to the third aspect. For each combination of noise we test eight uniformly distributed
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Table 1 Average position error in the X-Y plane in centimeters

Complete test set (cm) “Slide-funnel-slide-funnel”
structure converged test set
(cm)
“slide-slide” structure 2.24 2.06
“slide-funnel-slide-funnel” 0.99 0.75
structure

directions. Among the 72 test cases 100% of them converged to the second aspect
and 87.5% of them converged to the third aspect.

We did not reach a 100% overall convergence rate for two possible reasons. First,
in addition to the artificial noise, randomness in the action planner and simulator also
exist in the system. Second, the region of attractions shown in the previous section
are estimated based on visual similarity. Two observations can be visually similar
but position wise quite different therefore causing a false estimate of convergence.
Figure 10 shows the test cases that the controller fails to converge on; most of the
failed test cases are located in the lower right corner. This is consistent with the shape
of the region of attraction of the controller with respect to the third aspect shown in
Fig. 8. The final poses of the end effector relative to the screwdriver are recorded and
compared to the demonstrated pose.

We further compare the result to a sequence of “slide-slide” controllers without
visual servoing acting as a funnel. The average position error is shown in Table 1. The
“slide-funnel-slide-funnel” structure reduces the error by 55.8% and has an average
error of 0.75 cm in the X-Y plane when only considering test cases that converged.

6 Conclusion

In this paper we introduce an image-based object model that categorizes different
observations of an object into a subset of aspects based on interactions instead of
only on visual appearance. We further propose that a sequence of controllers that
form a “funnel-slide-funnel” structure based on this object model can have high rates
of success even when open-loop controllers are within the sequence. To demonstrate
this proposition we created an aspect transition graph object model that represents a
pregrasp action through a teleoperation demonstration. In addition, we introduced a
novel visual servoing controller that funnels the current observation to a memorized
aspect using a changing set of visual features. The regions of attraction with respect to
the end effector pose of the visual servoing controller are then identified by manually
adding kinematic noise to the end effector position. Based on this region of attraction
we identified the magnitude of kinematic noise this sequence of controllers is capable
of handling and showed that under an environment with a similar magnitude of noise
this sequence of actions decreases the average final position error significantly.
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The biggest drawback of the current approach is its scalability to model more
complex objects. In this work we define aspects by manually indicating meaning-
ful observations. In future work we plan to identify transitions autonomously and
investigate hierarchical models that reuse existing sub-structures.
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An Approximate Inference Approach
to Temporal Optimization for Robotics

Konrad Rawlik, Dmitry Zarubin, Marc Toussaint
and Sethu Vijayakumar

1 Introduction

Control of sensorimotor systems, artificial or biological, is inherently both a spatial
and temporal process. Not only do we have to specify where the plant has to move
to but also when it reaches that position. In some control schemes, the temporal
component is implicit. For example, with an infinite horizon, discounted cost based
controller, movement duration results from the application of the feedback loop. In
other cases it is explicit, for example in finite horizon objective based formulations,
where the time horizon is set explicitly as a parameter of the problem [10].
Although control based on an optimality criterion is certainly attractive, practical
approaches for stochastic systems are currently limited to the finite horizon objective
or the first exit time objective. The former does not optimize temporal aspects of
the movement, i.e., duration or the time when costs for specific sub-goals of the
problem are incurred, assuming them as given a priori. However, how should one
choose these temporal parameters? This question is non-trivial and important, even
when considering a simple reaching problem. The solution of using an a priori fixed
duration, chosen experimentally, can result in not reaching the goal, having to use
an unrealistic range of control commands or excessive (wasteful) durations for short
distance tasks. The alternative first exit time formulation, on the other hand, either
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assumes specific exit states in the cost function and computes the shortest duration
trajectory which fulfils the task, or assumes a time stationary task cost function and
computes the control which minimizes the joint cost of movement duration and task
cost[1, 5, 15]. This is directly applicable only to tasks which do not require sequential
achievement of multiple goals. While this limitation could be overcome by chaining
together individual time optimal single goal controllers, such a sequential approach
has several drawbacks. First, if we are interested in placing a cost on overall movement
duration, we are restricted to linear costs if we wish to remain time optimal. A second
more important flaw is that future goals should influence our control even before we
have achieved the previous goal.

In this paper, we extend standard finite horizon Stochastic Optimal Control (SOC)
problem formulation with additional cost terms on temporal aspects of a control
policy.

2 Problem Formulation

2.1 Finite Horizon Stochastic Optimal Control Problem

Let us consider a general controlled process, with state x € RP+ and controls u e
RP«, given by the stochastic differential equation of the form

dx = f(x,u)dt +dg, (dEdET)=0. (1)

with non-linear dynamics f and Brownian motion &. Fixing a finite time horizon
t; we denote by x(-) and u(-) the state and control trajectories over the interval
t € [0, t7]. For a given state-control trajectory we define the cost function as

Iy
Cx(),ul)) = /O cx (@), u(r), 1) dr +cy(x(ty)) (@)

where c(x, u, t) is a cost rate for being in state x and applying controls « at time ¢,
and cy denotes a final state cost term. The finite horizon stochastic optimal control
problem is to find the (non-stationary) control policy 7* : (x, t) — u that minimizes
the expected total cost given a start state x (0) and 7,

7* = argmin (C(x ("), u(~))>x(.)’u(_)‘w(o) . 3)

Here we take the expectation w.r.t. the distribution P (x(-), u(-) | 7, x(0)) over state-
control trajectories conditional on the given start state and control policy.
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2.2 Temporal Optimisation Problem

In practical robotics applications cost can generally be divided into subgoals, where
costs depend only on state and incur at intermediate time instances, and stationary
costs incurred throughout the movement. We express this by considering a cost of
the following form,

ty f
C(X(~),u(~),9)=/o c(x(@), u(t)) dt+2i=1ci(X(ti))+Cy(9) 4)

where 7 = {ty,...,t r}is asetof time instances—the time course—at which specific
subgoals, captured by the corresponding c;’s, are to be fulfilled. For instance, in a
reaching movement, a cost that is a function of the distance to the target is incurred
only at the final time ¢, while intermediate costs may represent subgoals like the
alignment of an orientation some time before the reaching of a target. In our temporal
optimisation framework, our objective shall be the optimisation of the time course
7 itself, including an explicit cost term C 4 (7)) that arbitrarily penalizes these
time intervals. Note that this objective is broader than the duration optimisation, i.e.,
choice of only 7, but of course includes it as the special case T = {t}.

The problem now is to find the joint optimum for the control policy and the time
course 7,

(", 77) = argmin (€ (), 40, D)y iypmnor - 5)

2.3 Time Discretization

While our approach can equally be described fully in a continuous time framework,
the presentation will be simplified when assuming a time discretization. Below we
briefly discuss a continuous time formulation.

We discretize the time interval [0,77] in K time steps, where each interval
[#, ti+1] is discretized in K/f steps of uniform length 8, = (ti)+1 — tiw)/K/f,
and i(k) = | fk/K| denotes the interval that the k™ time step belongs to (see
Fig.1 for illustration). Conversely, by k(i) = i K/f we denote the step index that

time ¢ to t1 ta ty

interval i(k) ooo0oo0oo01 1 1 1 1 2 f

step k 012345 6 7 8 9 10 K
I =

Fig. 1 Illustration of the notation used (in the case K/f = 5)
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corresponds to the i™ intermediate cost ¢;. Choosing different numbers of time steps
per interval [#;, #;11] of non-uniform step lengths is a straight-forward extension of
all the following.

In the discrete time case the problem takes the general form

Xkt = f (e, uk, &) +&, &~ A0, Q(6)) (6)
K f
COng uk. T) =) clwu)de+ ), cilup) +C(7) ()

although the ideas presented can be easily adapted to alternative forms. For notational
convenience, we will absorb the task costs ¢; (xx(;) in the running costs by defining

Cr (Xk, Uk, ) = c(xg, u)dx + [k%K = 0] ;) (xx) (3
K
COrngmix, 7) =) Gl e, &) + C (7)), ©)

where k% K denotes the modulo operator.

If instead we would like to stay in a time continuous framework we would define
d(t) as a function of time, thus augmenting the state space by a dimension. The
quantity d(¢) can be regarded as a general resource variable and the general problem
formulation (4) reformulated as a first exit time problem - details can be found in [8].
Several algorithms applicable to problems with general non-linear dynamics have
been developed, e.g. DDP [11], ILQG [13] to name a couple, all of which can be
directly applied to this reformulation of the temporal optimisation problem. However,
our experience has shown that naive application of such algorithms, in particular those
listed, to the problem of temporal optimisation fails. This is generally due to the nature
of these approximate algorithms as local optimisers. With a poor initialisation, setting
d(-)=0,7(,-) =0, i.e., not moving for no time or close approximations thereof,
often proves to be a dominant local minimum. We are therefore compelled to seek
alternative optimisation schemes, which avoid the collapse of the solution to such
undesirable outcomes. In the following we describe an approach based on alternate
optimisation of the policy and .7". This is formulated in the AICO framework, which
frames the problem as an inference problem, although a similar approach can be
followed within classical stochastic optimal control formulations leading to similar
results.

3 Approximate Inference Approach

In previous work [9] it has been shown that a general SOC problem can be refor-
mulated in the context of approximate inference, or more precisely, as a problem of
minimizing a Kullback—Leibler divergence. This alternative problem formulation is
useful in particular for derivation of approximation methods which would be non-
obvious to derive in the classical formulation. In the following we will adopt the
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approximate inference perspective to propose a specific approximation method to
solve the temporal optimization problem.

3.1 AICOT Formulation

In the inference control formulation, given a stochastic control policy 7ty (uy|x;) we
define the process

K

P(xi.k,urxlm, T) = m(uglxo) Hﬂ(uk|xk)P(xk+||xk, Ui, 8) , (10)
k=1

where P (xjy1|xk, ur, 8;) is given by the discrete time dynamics (6). We further
introduce an auxiliary (binary) random variable r; with the likelihood

P(ri = Uxp, ug, 7) = exp {—ncx (xx, ug, 8)} , (11)

which can be interpreted as indicating (probabilistically) whether a task is fulfilled
(or rather whether costs are low). It is straight-forward to verify that

Clxig,urx, T)—Cq(T)=—log P(ri.x = lx.x, u1:5) , (12)

that is, we translated task and control costs into neg-log-likelihoods. In [9] it has been
show how for fixed .7 computing the posterior process P(x1.x, u.g|ri.x = 1, ),
thatis, the distribution over state-control trajectories conditioned on always observing
“task fulfillment” is related to solving the stochastic optimal control problem. In
particular, this posterior also includes the posterior policy P (uk|xk, r1.x = 1, ),
i.e. the posterior probability of choosing a control u; in state x; conditioned on
constant “task fulfillment”, which can be used in an interactive procedure to find the
optimal control policy.

In the context of temporal optimisation we are interested in the computation of
the posterior

K
P(T, x1:k, ui:krig = 1) o P(xo) [ | Pl uk, 7) expl—Clxrg, urk, 7)) -
k=0

From this the MAP policy, and in this case MAP .7, are extracted. As this problem
will in general be intractable, we proceed in two steps

FMAP arg?ax P(T |rnk=1 (13)

aMAP — argmax P(r | TMAP rix = 1) (14)
e
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Note that the second step reduces exactly to standard AICO and may be solved with
any of the methods proposed by [9, 14]. The main focus in the following is therefore
on solving (13). The proposed approach is based on an iterative procedure alternating
between approximation of the distribution P (xy.x, u1.x|.7°9, ri.x = 1) and utilisa-
tion of this distribution to obtain an improved .7"". We call this general method
AICOT. Two alternative forms of the improvement step are proposed, one gradient
and one EM based. The relative merits of these two methods are then discussed in
Sect.3.4.

3.2 Gradient Descent

We first consider direct optimisation of (13) by gradient descent. Let
L(T)=log P(T | rix =1) 15)

and note that

1
VAT « Zi7y VPUix = 117) = VC#(T)

In the general case P (r.x = 1|.7) will not be tractable. We therefore propose taking,
similar to the standard AICO algorithms, a Gaussian approximation. For brevity, let
Z1:.x = (x1:x, U1:x) denote the state-control trajectory. We define

p(zix|T) ~ P(rixk =1, 21:|T)

as the unnormalized Gaussian approximation to P(z.x|r1.x = 1, 7). Using this
approximation

Vo l(T)~ Vg / p(zik|T) .
1K

We derive the approximate gradient, assuming a state-control LQ approximation,
that is, we consider (6) and (9) are locally in the form

S (@i, 8) & ar(Be) + Ar(e) 2k + Bi@Bux ,  Qx = Q0 (16)
1 1
Cu(zi, ) % (k%K = 015 Cu(T)xic — () T+ Jug Hue, - (17)
where all terms may depend non-linearly on .7, or §. In the interest of an uncluttered

notation we will not further note this dependence explicitly. Equation (17) assumes
that the running costs are quadratic in u; as in [14] the squared control costs can
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equivalently translated to a Gaussian prior over u that combines with the process
noise Qy to a an uncontrolled process with noise Q; + By H ' By.

We can now write the unnormalized posterior p as the product of an uncontrolled
process and a Gaussian likelihood,

p(zik|T) = N (ziklm, X) - N zikle, Cl

dynamics prior cost likelihood

where A [x]a, A] x exp{—%xTAx + x"a} is a Gaussian in canonical form, with

precision matrix A and mean A'a, ¢ = (cy,...,cg)" is as in (17) neglecting the
ukT Huy terms, and C = diag(Cy, ..., Cg). The elements of u are given by
= (Ag---Ai- 1)20+Z (Ak+1 Aj—) ag

and X is the symmetric matrix with

Ty=2) = A A)Z (A,l - A(Qk + BeH ' BO(A] -+ A"

for i < j. In practise, given a local linearization the unnormalized posterior
P(z1.x|7) can be computed with same computational complexity as a Riccati or
Kalman filter iterating over k [14].

Now let us define Z to be the subset of z;.x which have an associated interme-
diate cost, i.e., Z = {zx : [k%C = 0] = {zx : cx # 0, C; # 0}}. (Note that, if we
subsumed the control costs u,;rH uy, in the uncontrolled process, only at [k% K = 0]
we have cost terms.) As we can marginalize the uncontrolled process for all z; ¢ Z,
we can retrieve p(z]|.7) as

A A

p@T) =N (@IC'e, £+ CY
where ji and b3 denote the appropriate sub-vector and -matrix of ;1 and X respectively.

Hence, with m := C'¢ and M := ¥ + C, the approximate derivatives take the
general form

N N 1 _ 1
Vf Pkl 7) = A Gelm, M) [T [Vm — )] =3 Tr (M 1VM)+5gT[VM]g]
1K

where g = M~ (ft — m).
Combining the results, the overall approximation to the derivatives is obtained as

Vs, L(T) ~ =V5,Cq (T) + [g"[Vs,(m — )] (18)

1 1 1 +
_ETI(M V(ng)—l—Eg [VsMlg | .
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The gradient V;,M and V;, (m — ft) are straight-forward by their definition. With

this we can use any gradient based scheme to obtain a new .7"", which in turn gives
rise to a new approximation.

3.3 Expectation Maximisation

The solution to (13) can alternatively be obtained using an Expectation Maximisation
approach. Specifically, we form the bound

Z(T) > f P(ziklrixk =1, 7)log P(ri.x = 1, 21:x|7)

Z1:K

P(z1k)

which is alternately maximised with respect to p and .7, in an E- and M-step.
In the E-Step we aim to calculate the posterior over the unobserved variables, i.e.
the trajectories, given the current parameter values &,

pzik) = P(ziklng =1, 7).
We approximate this with p using AICO as before. In the M-Step, we solve

gnew _ argmin(log P(rix =1, Z11K|y)>f7 ’
T

=L(T)

where p is the approximation calculated in the E-Step based on .7 °'. We may expand
the objective as

-1

~ K 5
27y =3, ((log Pz i) = Gtz o)) + €

where ( . ) denotes the expectation with respect to ¢ and %’ is a constant. The required
expectations, (Ek (zx» dk)) and

D, 1 T -1
k+t 1<k Gk = — kIl — < k+t — k k k+1 — k 5
(log P(zkselzk. di)) 5 log |04l 2((z f@) o' (@ f (@)

are in general not tractable. As previously, we therefore resort to a LQ approxima-
tion. This leads in the general case to an expression which can not be maximised
analytically w.r.t. 7. However, if the approximation and discretization are chosen
such that the system is also linear in 6, i.e.,

1
f@) ~ (ax + Axzi)d , Ok = 08k, 2k, 8) = (EZ;Cka - CkTZk) Sk
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) ; (19)
di

D? 1
5 &=5Tr (0 ' (zenzdr) = 2zearzy ) + (22 )

1 _ _
g==73 [Tr(Aka "Allzzl ) +a] 0; ' ax

it can be shown that,

I d
—P(T) =8¢, + 8" 2 —C;
ode () kgz+kg1+<go+ w7

g =-

T 207 0 Al + Tr(Culzial)) - zc,j<Zk>] |

In the general case we may use an efficient gradient ascent to compute the M-step
(for fixed p) and improve on §;’s. However, in the specific case where C5 is a
linear function of §;’s, (19) is quadratic in §, !and the unique extremum under the
constraint §; > 0 can be found analytically.

3.4 Discussion

The two proposed methods have different merits. From the point of view of com-
putational complexity the EM based updates are preferable as they only require
computation of the pair marginals (zi, zx+1) and operate entirely on matrices which
are the size of z;’s dimension. The gradient method instead requires computation of
the covariance of all cost conditioned states and controls. Due to the inversion of this
matrix, gradient updates are usually more expensive to compute.

While computationally attractive, EM updates suffer from numerical instability
in many problems. In general, the deficiency of EM algorithms in near deterministic
regimes is a well known problem, e.g., [1]. In our case it leads to instability when
QO = 0 or if the posterior trajectories are severally constrained by the cost terms. The
problem arises in the M-Step, which may be written as

argmax = KL (p(z1:k | 7O G i = 1.9) +1og/ Pk =1.2117)

1K

It is now apparent that for deterministic dynamics no change in & is possible, lest
the KL divergence becomes infinite.
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4 Experiments

4.1 Evaluation on Basic Via-Point Tasks

We first evaluate the proposed method in simulation on a simple plant. As a basic
plant, we used a simulation of a 2 degrees of freedom planar arm, consisting of two
links of equal length. The state of the plant is given by x = (g, ¢), with ¢ € R? the
joint angles and ¢ € R? associated angular velocities. The controls u € R? are the
joint space accelerations. We also added some noise with diagonal covariance.

For all experiments, we used a trajectory cost of the form

K T
COng.ug, 7) = clax) + ) SuClux +ad(7)  (0)

where C* = 10* - I. Note that Z;f:o 8k, where §; depends on .7, penalizes the total
movement duration linearly. The state dependent cost was

f
clrir) = D @) = 3D Ai(@alxg) = 3D 1)

where the tuplets (ki @i, A, y7), consisting of a time step, a task space mapping, a
diagonal weight matrix and the desired state in task space, define goals. For example,
for point targets, the task space mapping is ¢ (x) = (x, y, %, ¥) ', i.e., the map from
x to the vector of end point positions and velocities in task space coordinates, and
y* is the target coordinate.

4.1.1 Variable Distance Reaching Task

In order to evaluate the behaviour of AICOT we applied it to a reaching task with
varying start-target distance. Specifically, for a fixed start point we considered a
series of targets lying equally spaced along a line in task space. It should be noted
that although the targets are equally spaced in task space and results are shown with
respect to movement distance in task space, the distances in joint space scale non-
linearly. The state cost (21) contained a single term incurred at the final discrete
step with Ay = 10° - I Figure 2c, d shows the movement duration (= Zf:o ) and
standard reaching cost' for different temporal-cost parameters o (we used og = 2 -
107), demonstrating that AICOT successfully trades-off the movement duration and
standard reaching cost for varying movement distances. In Fig.2b, we compare the
reaching costs of AICOT with those obtained with a fixed duration approach, in this
case AICO. Note that although with a fixed, long duration (e.g., AICO with duration T
=0.41) the control and error costs are reduced for short movements, these movements

In.b. the standard reaching cost is the sum of control costs and cost on the endpoint error, without
taking duration into account.
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Fig. 2 Temporal scaling behaviour using AICOT. a Schematic of plant together with mean start

position O and list of targets Ob Comparison of reaching costs (control + error cost) for AICOT
and a fixed duration approach, i.e. AICO. ¢ and d Effect of changing time-cost weight «, (effectively
the ratio between reaching cost and duration cost) on duration and reaching cost (control + state
cost)

necessarily have up to 4x longer durations than those obtained with AICOT. For
example for a movement distance of 0.2 application of AICOT results in a optimised
movement duration of 0.07 (cf. Fig. 2¢), making the fixed time approach impractical
when temporal costs are considered. Choosing a short duration on the other hand
(AICO (T=0.07)) leads to significantly worse costs for long movements. We further
emphasis that the fixed durations used in this comparison were chosen post hoc by
exploiting the durations suggested by AICOT; in absence of this, there would have
been no practical way of choosing them apart from experimentation. Furthermore,
we would like to highlight that, although the results suggests a simple scaling of
duration with movement distance, in cluttered environments and plants with more
complex forward kinematics, an efficient decision on the movement duration cannot
be based only on task space distance.

4.1.2 Via Point Reaching Task

We also evaluated the proposed algorithm in a more complex via point task. The task
requires the end-effector to reach to a target, having passed at some point through
a given second target, the via point. This task is of interest as it can be seen as
an abstraction of a diverse range of complex sequential tasks that requires one to
achieve a series of sub-tasks in order to reach a final goal. This task has also seen
some interest in the literature on modelling of human movement using the optimal
control framework [12]. Here the common approach is to choose the time point at
which one passes the via point such as to divide the movement duration in the same
ratio as the distances between the start point, via point and end target. This requires on
the one hand prior knowledge of these movement distances and on the other, makes
the implicit assumption that the two movements are in some sense independent.
Here, we demonstrate the ability of our approach to solve such sequential prob-
lems, adjusting movement durations between sub-goals in a principled manner, and
show that it improves upon the standard modelling approach. Specifically, we apply
AICOT to the two via point problems illustrated in Fig.3a with randomised start
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Fig. 3 Comparision of AICOT (=) to AICO with the common modelling approach (= =) with
fixed times on a via point task. a End point task space trajectories for two different via points
O obtained for a fixed start point A. ¢ The corresponding joint space trajectories. b Movement
durations and reaching costs (control 4 error costs) from 10 random start points. The proportion of
the movement duration spend before the via point is shown in light gray (mean in the AICOT case)

states.? For comparison, we follow the standard modelling approach and apply AICO
to compute the controller. We again choose the movement duration for the standard
case post hoc to coincide with the mean movement duration obtained with AICOT
for each of the individual via point tasks. Each task is expressed using a cost function
consisting of two point target cost terms. Specifically, (21) takes the form

claig) = (@(x) = yD A G (x) — ) + (P (xx) — ¥ A (xk) — 30

2For the sake of clarity, Fig. 3a, ¢ show mean trajectories of controllers computed for the mean start
state.
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with diagonal matrices

Av = diag()\pm, )\'pos’ O, 0)
Ae = diag()\pa.m )\pos’ )\vela )‘-Vel) P

where A, = 10° & A, = 107 and vectors yi=C,-0, 07, yi=¢(¢,-0, 0T
desired states for individual via point and target, respectively. Note that the cost
function does not penalise velocity at the via point but encourages the stopping at the
target. While admittedly the choice of incurring the via point cost at the middle of the
movement (%) is likely to be a sub-optimal choice for the standard approach, one has
to consider that in more complex task spaces, the relative ratio of movement distances
may not be easily accessible and one may have to resort to the most intuitive choice
for the uninformed case as we have done here. Note that although for AICOT this
cost is incurred at the same discrete step, we allow §; before and after the via point
to differ, but constrain them to be constant throughout each part of the movement,
hence, allowing the cost to be incurred at an arbitrary point in real time. We sampled
the initial position of each joint independently from a Gaussian distribution with a
variance of 3°. In Fig. 3a, ¢, we show mean trajectories in task space and joint space
for controllers computed for the mean initial state. Interestingly, although the end
point trajectory for the near via point produced by AICOT may look sub-optimal than
that produced by the standard AICO algorithm, closer examination of the joint space
trajectories reveal that our approach results in more efficient actuation trajectories.
In Fig.3b, we illustrate the resulting average movement durations and costs of the
mean trajectories. As can be seen, AICOT results in the expected passing times for
the two via points, i.e., early vs. late in the movement for the near and far via point,
respectively. This directly leads to a lower incurred cost compared to un-optimised
movement durations.

4.1.3 Sequential and Joint Planning

In order to highlight the shortcomings of sequential time optimal control, we com-
pare planning a complete movement, referred to as joint optimisation, to planning
a sequence of individually optimised movements. We again use the via-point task
of the previous section and performed (i) planning using AICOT on the entire task
(ii) using AICOT to plan for to reaching tasks — start point to via-point and via-
point to final target — by splitting the cost function. In the latter the end state of the
first reaching movement, rather then the via-point, was used as initial state for the
second sub-task. Figure4 summarises the results. As can be seen in Fig.4a the two
approaches lead to solutions with substantially different end-effector trajectories in
task space. The joint optimisation, accounting for the need to continue to the even-
tual target after the via-point, yields a different approach angle. The profound effect
this has on the incurred cost can be seen in Fig.4b. While the joint planning incurs
higher cost before the via-point the overall cost is more than halved. Importantly, as
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Fig. 4 Joint (=) vs. sequential (= = ) optimisation using our approach on a via-point task as
described in the main text. a Task space trajectories for the fixed start point A Via-point and
target are indicated by Oand O, respectively. b The movement durations and reaching costs for
10 random start points. The mean proportion of the movement duration spend before the via point
is shown in light grey

Table1 Results for application of AICOT to the robotic manipulation with obstacles in the reaching
tasks illustrated in Fig. 5. Shown are the mean ratio of expected cost relative to AICO and it’s standard
deviation

Method Simple obstacles Complex obstacle
AICO 1 1

AICOT (end cost) 0.585 (£ 0.337) 0.635 (£ 0.085)
AICOT (full) 0.549 (£ 0.311) 0.123 (£ 0.047)

the plot of the movement durations illustrates, this reduction in cost is not achieved
by an increase in movement duration, with both approaches leading to not signifi-
cantly different durations. However, one should note that this effect would be less
pronounced if the cost required stopping at the via-point, as it is the velocity away
from the end target which is the main problem for the sequential planner.

4.2 7-DOF Robotic Manipulation Tasks

We now turn to evaluating the method for planning with the 7-DOF Kuka lightweight
robot. Our aim is two fold, on the one hand to demonstrate scalability to practical
applications, and on the other hand, to demonstrate that in practical tasks temporal
optimisation can significantly improve the results compared to naive selection of the
movement durations.

The state of the plant is given by x = (¢, ¢), with ¢ € R’ the joint angles
and ¢ € R’ the associated angular velocities. The controls u € R are the joint
space accelerations. We also added some i.i.d. noise with diagonal covariance. The
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trajectory cost takes the general form

K M
Ceriunis ) =3 (X w0 = yilly,, +ul8Cu)  (22)

where the tuplets (¢,,, Ak, ¥,) define the task variables, consisting of a task space
mapping, a time varying diagonal weight matrix and the desired state in task space.
In each task we compare three methods:

e AICOT((full) is the complete algorithm as described in Sect. 3.2.

e AICOT(end cost) is the algorithm as described in Sect. 3.2. However, the gradient
is calculated taking only the reaching cost into account, i.e., ignoring joint limit and
obstacle costs. The intention is to illustrate that selection of duration needs to take
into account the entire problem and can not be simply based on a target-distance
law as could be derived from, e.g., Fig.2.

e AICO is the algorithm with fixed duration. This is to provide a comparison to the
naive approach prevalent in the literature. Note however that, we set the duration
the mean duration obtained by AICOT(end cost). Hence it was in some sense
adapted to the task distribution. Without AICOT, selection would have, at best,
relied on manual selection based on an individual task instance or, at worst, a
random guess. Both approaches lead to substantially worse results.

4.2.1 Simple Obstacle Reaching Task

We first consider a standard reaching task with obstacles. The task is defined via the
following set of task variables

e Reaching: with ¢;(x) € R the arm’s end effector position and velocity. The cost
isincurred in the final time step only, i.e., Aj x2x = 0, and y* indicates the desired
state end-effector positions with zero velocities.

e Joint Limits: with ¢, (x) € R a scalar indicating danger of violating joint limits.
Specifically,

¢ (x) = ijf(d,- —e), (23)

with d; the distance to the joint limit between of joint j, .77 the heavy-side function
and margin ¢ = 0.1rad. This task variable is considered throughout the trajectory,
ie. Aqu = A2y1 == AZ’K.

e Collisions: with ¢, (x) € R a scalar indicating proximity of obstacles. Specifically
¢, takes the general form (23) with d; the shortest distance between a pair j
of collidable objects, i.e. the set of links of the arm and obstacles, and margin
& = 0.02 m. Like the joint limits, this task variable is also considered throughout
the trajectory.
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Although the resulting finite cost functions can not guarantee that collisions with
obstacles or joint limits will not occur, such approximations are typical in the litera-
ture (e.g., [4, 14]) and lead, under appropriate weighting between the reaching and
collision components, to good results with low collision probability.

We consider a randomised task with two spherical obstacles, an example configu-
ration being illustrated in Fig. Sa. Specifically, both the target and obstacle positions
are randomly sampled, the latter so that they lie near the direct path to the target so
as to influence the solution. The results are summarised in Table 1. As different task
instances can give rise to very different expected costs, we compare expected costs
relative to AICO, i.e., the improvement of the methods over the baseline without
temporal optimisation. The expected costs are estimated from sampled trajectories
and we consider 50 task instances. As can be seen, temporal optimisation improves
upon the naive application of AICO. In particular note that, instance specific dura-
tions as given by AICOT(end cost) improve significantly on selecting an informed
constant duration (the mean duration over task instances). Furthermore, taking the
entire problem into account leads to increasing gains as the problem complexity
increases.

In general we note that a possible straightforward extension of the gradient based
algorithm whereby we solve the problem incrementally, by using the solution of
a reduced problem with intermediate cost terms removed, i.e., the AICO-T (end
cost) approach, as an initialization of AICO-T (full) can significantly improve the
computational complexity of the gradient based method for problems with many
intermediate costs terms.

4.2.2 Complex Obstacle

We now consider a generic instance of a task involving manipulation in constrained
spaces. It comprises the same basic task variables as used with the simple obstacle
above. However instead of using spherical obstacles we use a wall with two holes as
illustrated in Fig. 5b. The end-effector starts reaching through one of the holes and
the reaching target lies in the other hole. Due to their local nature direct application
of AICO fails in this task, as do alternative local solvers like, e.g., iLQG. However,
in the context of AICO [16] suggested using parallel inference in the normal state
space and a abstract topological representations to overcome limitations of local
planning in such tasks. With a suitable topological representation the task becomes
nearly linear in the alternative representation, which then serves to regularise further
inference in the plant’s state space. Here we use the interaction mesh representation
suggested by [16], a scale and position invariant representation of relative positions
of the plant and markers in the environment. This representation has been used for
this task by [4] who also used AICO. For this experiment we again sampled the
position of the wall relative to the manipulator and compared the relative expected
costs averaged over 50 task instances. The results are shown in the second column
of Table 1.
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Fig.5 Example configurations for the tasks used with KUKA 7-DOF robotic system in simulation. a
The simple obstacle task. The manipulator has to reach with it’s end-effector to the target @ whilst
avoiding the obstacles @. The task is randomised by sampling both the target and the obstacle
positions. b The complex obstacle task. The manipulator starts in one hole and has to reach for the
target @ in the other, whilst avoiding collisions with the wall. The position of the wall is randomised

5 Conclusion

The contribution of this paper is a novel method for jointly optimizing a trajectory
and its time evolution (temporal scale and duration) in the stochastic optimal control
framework. In particular, two extension of the AICO method of [14] with com-
plementary strength and weaknesses are presented. The gradient based approach,
on the one hand, is widely applicable but can become computationally demanding.
Meanwhile, the EM method provides an algorithm with lower computational cost,
is however only applicable for certain classes of problems.

The experiments have concentrated on demonstrating the benefit of temporal
optimisation in manipulation tasks. However, arguably it is dynamic movements
which can benefit most from temporal adjustment. An example of this was seen in the
brachiation task of [7], where our framework was applied to brachiation with variable
stiffness actuation, showing that an coordinated interplay of stiffness and temporal
adjustment gives rise to gains in performance. We anticipate that, with the general rise
of interest in variable impedance, e.g., in throwing [2], locomotion [3] or climbing
robots [6], temporal optimisation will become a necessity if the capabilities of the
dynamical system are to be fully exploited. Our framework provides a principled
step in this direction.

Acknowledgements This work was supported by the EU FP7 project TOMSY (IST-FP7-270436).
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Part 11
Humanoids and Legged Locomotion

Session Summary

The advancement of walking skills is a fundamental perquisite for legged robots
to permit the utility of these machines within real world workspaces. This entails
substantial progress and a radical change in the locomotion control paradigm from
the slowly adaptive pre-planned bipedal gait generators and balancing stabilizers
towards more rapidly modulated generators combined with reflexive behaviours that
will allow humanoids and legged robots in general to cope with uneven terrains
and ground uncertainties and rapidly modulate their gait to adapt. Balancing as part
for the general locomotion control problem cannot be ensured in all cases through
only gait regulation actions, and lately, the research community have moved towards
more human-like whole body balancing skills exploiting the potential of whole-
body motions which can be harmonized for the purpose of compensating specific
motion dynamics, reducing the overall locomotion effort and generating effective
balancing reactions and recovery abilities under unpredicted moderate to strong dis-
turbances. The implementation requirements of all these techniques have recently
paved the development of several new tools in the areas of state estimation, whole
body motion optimization, locomotion and balancing modelling. In this session, eight
contributions were presented that dealt with the development of innovative models
and controllers for legged robot locomotion and balancing.

The first talk by Roy Featherstone introduced a new model of the dynamics of
balancing in the plane, which makes use of only two parameters of the robots bal-
ancing behaviour, both simple functions of basic physical properties of the robot
mechanism. A third parameter describes the effect of other movements on the robots
balance. Based on this this model, a high-performance balance controller was then
presented as a simple four-term control law with gains that are trivial functions of
the two model parameters and a single value chosen by the user that determines
the overall speed of balancing. The model and the balance controller were first
applied to a double pendulum, and then extended to a general planar mechanism.
Simulation results were presented showing the controllers performance at following
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commanded motion trajectories while simultaneously maintaining the robots bal-
ance. In the second talk of the session, Michele Focchi proposed a methodology for
foot slip detection in legged robots and estimation of the friction parameters using
only proprioceptive sensors. Indeed, the majority of locomotion controllers and state
estimation algorithms rely on the assumption that the stance feet are not slipping.
The capability to detect foot slippage at the very beginning and promptly recover
the traction is crucial for the body stability of legged robots and can assist to avoid
falling. Having detected the foot slip, a recovery strategy, which exploits the capabil-
ities of a whole body controller, implemented for locomotion, was used to optimize
the ground reaction forces (GRFs). The proposed method is general and can be
applied to any legged robot. In this talk, the application of the method to a quadruped
robot was presented demonstrating its effectiveness while the robot was walking on
challenging terrains. Nicholas Perrin presentation concerned with the development
of novel approaches to solve for 3D locomotion with multiple non-coplanar con-
tacts. Going further than the classical Zero Moment Point-based method, two new
techniques were presented. Both formulations are based on model predictive con-
trol (MPC) to generate dynamically balanced trajectories with no restrictions on the
trajectory of the centre of mass. The first formulation treats the balance criterion as
an objective function and solves the control problem using a sequence of alternat-
ing convex quadratic programs. The second formulation considers the criterion as
a constraint and solves a succession of convex quadratic ally constrained quadratic
programs (QCQPs). The main feature of the proposed MPC schemes is that they can
be efficiently solved through a succession of convex optimization problems, when
the problem formulation is of particular forms, such as bilinear problems or non-
convex QCQPs. In his talk, Jean-Paul Laumond briefly discussed The Yoyo-Man,
a research action that investigates the synergies of anthropomorphic locomotion. A
seminal hypothesis is made in which the wheel is considered as a plausible model of
bipedal walking. The presentation reported on preliminary results developed along
three perspectives combining biomechanics, neurophysiology and robotics. Firstly,
from a motion capture data basis of human walkers, the center of mass (CoM) is
identified as a geometric center from which the motions of the feet are organized.
It was then demonstrated how rimless wheels that model most passive walkers are
better controlled when equipped with a stabilized mass on top of them. CoM and
head play complementary roles that define what is called the Yoyo-Man. The next
talk by Katie Byl discussed on the evaluation of robustness of bipedal locomotion on
variable-height terrains. The work considers a point-foot biped on a variable-height
terrain and measure robustness by the expected number of steps before failure. The
proposed method uses quantification of robustness to benchmark and optimize a
given (low-level) controller. Two particular control strategies as case demonstrations
were studied. One scheme is the now-familiar hybrid zero dynamics approach and
the other is a method using piece-wise reference trajectories with a sliding mode
control. The presentation provided a methodology for optimization of a broad vari-
ety of parameterizable gait control strategies and illustrates dramatic increases in
robustness due to both gait optimization and choice of control strategy. Guilherme
Maeda talk dealt with an interaction learning method suited for semi-autonomous
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robots that work with or assist a human partner. The method aims at generating a
collaborative trajectory of the robot as a function of the current action of the human.
The trajectory generation is based on action recognition and prediction of the human
movement given intermittent observations of his/her positions under unknown speeds
of execution. The problem typically arises from motion capture systems in scenar-
ios that lead to marker occlusion. The ability to predict the human movement while
observing the initial part of his/her trajectory allows for faster robot reactions and
eliminates the need of time alignment of the training data. The method models the
coupling between human-robot movement primitives, and it is scalable in relation to
the number of tasks. The method is evaluated using a 7-DoF lightweight robot arm
equipped with a 5-finger hand in a multitask collaborative assembly experiment, also
comparing results with a previous method based on time aligned trajectories. Avik
De in his talk discussed a notion of parallel composition to achieve for the first time
a stability proof and an empirical demonstration of a steady-state gait on a highly
coupled 3DOF legged platform controlled by two simple (decoupled) feedback laws
that provably stabilize in isolation of two simple IDOF mechanical subsystems. A
limit cycle was stabilized on a tailed monoped to excite sustained sagittal plane
translational hopping energized by tail-pumping during stance. The constituent sub-
systems for which the controllers are nominally designed were a purely vertical
bouncing mass (controlled by injecting energy into its springy shaft) and a purely
tangential rimless wheel (controlled by adjusting the inter-spoke stepping angle).
The presentation described the use of averaging methods in legged locomotion to
prove that this parallel composition of independent 1DOF controllers achieves an
asymptotically stable closed-loop hybrid limit cycle for a dynamical system that
approximates the 3DOF stance mechanics of a physical tailed monoped. In the last
talk of the session, Steve Tonneau discussed the challenge of multiped locomotion
in cluttered environments as a problem of planning acyclic sequences of contacts
that characterize the motion. To overcome the inherent combinatorial difficulty, the
work proposed to divide the problem in two sub-problems: first, planning a guide
trajectory for the root of the robot, and then, generating relevant contacts along this
trajectory were considered. The presentation introduces theoretical contributions to
these two sub-problems. A theoretical characterization of the guide trajectory, named
true feasibility, which guarantees that a guide can be mapped into the contact mani-
fold of the robot was introduced. As opposed to previous approaches, this property
makes it possible to assert the relevance of a guide trajectory without explicitly
computing contact configurations. Guide trajectories are then easily mapped into a
valid sequence of contacts, and a particular sequence with desirable properties, such
as robustness, efficiency and naturalness, is considered. Based on this, a complete
acyclic contact planner was then introduced and its performance was demonstrated
by producing a large variety of motions.



A New Simple Model of Balancing
in the Plane

Roy Featherstone

1 Introduction

This paper considers the problem of a planar robot that is actively balancing on a
single point of support while simultaneously executing motion commands. In par-
ticular, the same motion freedom that is used for balancing is also subject to motion
commands. The robot is therefore overloaded in the sense that the number of task
variables to be controlled exceeds the number of actuator variables. Such overloading
is physically possible, and is routinely exhibited by circus performers and the like,
as well as by inverted pendulum robots [8] and wheeled robots that use the same
motion freedom both for balancing and for transport [4, 10].

The main contribution of this paper is a new model of the plant (i.e., the robot
mechanism) in which the essential features of the robot’s balancing behaviour have
been reduced to just two numbers. A third number summarizes the disturbance caused
by other movements being performed by the robot. The model is obtained by exploit-
ing a property of joint-space momentum variables. The advantages of this model are:
(1) it is exceptionally simple; (2) it applies to general planar robots, including robots
with kinematic loops; (3) it takes into account the effect of other movements of
the robot (i.e., movements for accomplishing tasks other than balancing); (4) the
model parameters have a clear physical meaning that is easy to understand; (5) they
can be computed efficiently using standard dynamics algorithms; and (6) a high-
performance balance controller is easily obtained by a simple feedback control law
acting directly on the new plant model.

A second contribution is the new balance controller derived from the plant model.
It resembles the one presented in [1, 3], and shares its robustness to effects such as
torque limits, modelling errors and slippage at the point of support. However, it is
simpler, and it can easily be applied to a general planar robot. It differs from the
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typical approach to balance control in the literature, as exemplified by [7, 9, 13],
in that it is a four-term controller using full state feedback, rather than a three-term
output-zeroing controller with a one-dimensional zero dynamics. Note that the great
majority of literature in this area is actually on swing-up control (e.g. [11, 12]) which
is not considered here. The paper concludes with some simulation results showing
the performance of the new controller at balancing an inverted triple pendulum while
simultaneously following a variety of motion commands.

2 The New Model

A fundamental aspect of balancing is that the controller must control more state
variables than the available controls. To understand how this can be done, consider
the system x = f(x, u), in which x is a vector of state variables and u is a control
input. (Bold letters denote vectors.) If x has the property that x; ., = X; for every i,
then any control policy that successfully controls x; has the side-effect of controlling
all of the other elements of x. Furthermore, the condition x; ; = x; is sufficient but
not necessary, and can be relaxed to some extent. Balancing is an activity that can
be accomplished in this way; and the new model described here is essentially a good
choice of x, having a simple function f, which allows balancing to be achieved using
a simple control law for u.

Figure 1 shows a planar 2R mechanism representing an inverted double pendulum.
Joint 1 is passive and represents the point contact between the foot of the mechanism
and a supporting surface (the ground). It is assumed that the foot neither slips nor
loses contact with the ground. The state variables of this robot are ¢, g2, ¢; and
¢>. The total mass of the robot is m; the coordinates of its centre of mass (CoM)
relative to the support point are ¢, and c,; and it is assumed that the support point is

Fig. 1 Planar 2R robot
mechanism representing an
inverted double pendulum
actuated at joint 2
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stationary, i.e., it is not a rolling contact. The equation of motion of the robot is

el e
21 Ho | [ G2 G )
where H;; are elements of the joint-space inertia matrix, C; are elements of the
bias vector containing Coriolis, centrifugal and gravitational terms, ¢; are the joint
accelerations, and 7 is the torque at joint 2. The conditions for the robot to be in a
balanced position are: ¢, = 0, g; = 0 and ¢, = 0. The robot is also subject to the
position command g, = g., where ¢ is an input to the controller.

Any mechanism that balances on a single point has the following special property,
which is central to the activity of balancing: the only force that can exert a moment

about the support point is gravity. If we define L to be the total angular momentum
of the robot about the support point then we find that

L = —mge,, 2

where ¢ is the magnitude of gravitational acceleration (a positive number). This
equation implies

L =—mgé, 3)
and
L= _mgé:x . (4)
We also have
L =p =Huq + Hog, @)

which follows from a special property of joint-space momentum that is proved in
the appendix: if p; is the momentum variable of joint i then, by definition, p; =
> j Hij ¢;; but if the mechanism is a kinematic tree then p; is also the component in
the direction of motion of joint i of the total momentum of the subtree beginning at
body i. As the whole robot rotates about joint 1, it follows that p; is the total angular
momentum of the robot about the support point, hence p; = L.

Observe that L is simply a constant multiple of c,, and that L and L are both
linear functions of the robot’s velocity, implying that the condition L = L = 0 is
equivalent to ¢; = ¢» = 0. So the three conditions for balance can be written as

L=L=L=0. (6)

Thus, any controller that successfully drives L to zero will cause the robot to balance,
but will not necessarily bring ¢, to the commanded angle.

We now introduce a fictitious extra joint between joint 1 and the base, which is a
prismatic joint acting in the x direction. To preserve the numbering of the existing
joints, the extra joint is called joint 0. This joint never moves, and therefore never
has any effect on the dynamics of the robot. Its purpose is to increase the number of
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coefficients in the equation of motion, which now reads

Hyo Hot Hpz | | O Co 70
HoHiHp||g|+[Ci|=]0]. N
Hyy Hy Hy | | G2 C, T

The position and velocity variables of joint 0 are always zero, and 7 takes whatever
value is necessary to ensure that ¢y = 0. The reason for adding this joint is that the
special property of joint-space momentum, which we used earlier to deduce that
p1 = L, also implies that py is the linear momentum of the whole robot in the x
direction. So py = m¢,. With the extra coefficients in Eq. 7 we can write

po = Hog1 + Hogy = mé, = =L /g, (8)

so that we now have a pair of linear equations relating L and L to the two joint

velocities: )
Li_| Hu Hp q ©)
L —gHor —gHo | | ¢2 |

Solving this equation for ¢, gives

G =Y\L+Y,L, (10)
where u H
Yi=—%, Y,=-b (1)
D gD
and
D = HyHyy — Hy Hop . (12)

Clearly, this only works if D # 0. The physical significance of D = 0 is explained
below. From a control point of view, a problem also arises if ¥; = 0, and this too is
discussed below.

We now have all the component parts of the new plant model, which is shown in
Fig.2 in the form of a block diagram. The state variables are g;, L, L and i, which

y
y

T—> 1/s

1/s 1/s

—> 42

Fig. 2 New plant model for balancing
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replace the original state variables. As will be shown in the next section, a simple
feedback control law closed around this plant can make g, follow a commanded
trajectory while maintaining the robot’s balance. To be more accurate, what really
happens is that the control law tips the robot slightly off balance so that the necessary
balance recovery movement just happens to make g, follow the commanded trajec-
tory. Once ¢, has reached its final position, the other state variables settle to zero,
thereby satisfying the conditions for balance in Eq. 6.

Observe that the new plant model has only two parameters: the two gains Y;
and Y,. These gains are calculated directly from the elements of the joint-space
inertia matrix in Eq. 7, which in turn can be calculated using any standard method for
calculating the joint-space inertia matrix of a robot. Thus, no special code is needed
to calculate the model parameters.

Physical Meaning of Y; and Y,

The two gains Y; and Y, are related in a simple way to two physical properties of
the mechanism: the natural time constant of toppling and the linear velocity gain
[6]. The former quantifies the rate at which the robot begins to fall in the absence of
movement of the actuated joint. The latter measures the degree to which motion of
the actuated joint influences the motion of the CoM.

If there is no movement in the actuated joint then the robot behaves as if it were a
single rigid body, and its motion is governed by the equation of motion of a simple
pendulum:

16 = mgc(cos(8y) — cos(d)) (13)

where [ is the rotational inertia of the robot about the support point, ¢ = |c| is the
distance between the CoM and the support point, 6 = tan~!(c,/c,) is the angle of
the CoM from the x axis, and the term mgc cos(fy) is a hypothetical constant torque
acting at the support point, which serves to make 6y an equilibrium point of the
pendulum. Linearizing this equation about 6, and defining ¢ = 6 — 6y, results in
the following equation:

16 =mgc,¢, (14)
which has solutions of the form
¢ = Ae'!Te 4 Be™/Te (15)

where A and B are constants depending on the initial conditions, and T, is the natural
time constant of the pendulum, given by

1

T? =
mgc,

C

(16)

If ¢, > Othen T is real and Eq. 15 contains both a rising and a decaying exponential.
This is characteristic of an unstable equilibrium. If ¢, < O then T, is imaginary
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and Eq. 15 is a combination of sines and cosines, which is characteristic of a stable
equilibrium. But if ¢, = 0 then we are at the boundary between stable and unstable
equilibrium and 7. is unbounded. As we are considering the problem of a robot
balancing on a supporting surface, it is reasonable to assume c, > 0.

From the definition of the joint-space inertia matrix [5, Sect. 6.2] we have Hy; =
sel$sy and Hyy = sTIjs;, where so = [010]",s; =[100]" and

I —mcy mc,
Is=Ii=|-mc, m O (17)
mcy 0 m

(planar vectors and matrices—see [5, Sect.2.16]). It therefore follows that Hy; =
—mcy and Hy; = I, implying that

—H
7r=—1. (18)
9Ho:
On comparing this with Eq. 11 it can be seen that
-Y
T?=—. 19
c Y, (19)

The linear velocity gain of a robot mechanism, Gy, as defined in [6], is the ratio
of a change in the horizontal velocity of the CoM to the change in velocity of the
joint (or combination of joints) that is being used to manipulate the CoM. For the
robot in Fig. 1 the velocity gain is

Acy
Gy=—, (20)
Aga

where both velocity changes are caused by an impulse about joint 2. The value of
G, can be worked out via the impulsive equation of motion derived from Eq. 7:

Lo Hyy Hoy Hpo 0
0| =|HoHi Ho||A4q |, 21
L Hyy Hyy Hy | | Agy

where ¢; is an arbitrary nonzero impulse. Solving this equation for ¢( gives

to = HorAq1 + Hpp Ago

Hoy H . -D .
U2YAgo = —=Ags . (22)

= (Hoz - o

But ¢ is the ground-reaction impulse in the x direction, which is the step change
in horizontal momentum of the whole robot; so we also have 1y = mA¢,, and the
velocity gain is therefore
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Tl 1/s 2l 15 2 176 E(R) |Y1 2 /s >

> T2

C

Fig. 3 Alternative version of new plant model for balancing

AC"x Lo —-D
Gy=S_ o _ 7D (23)
Agy  mAqg,  mHy,
The two plant gains can now be written in terms of 7. and G, as follows:
- Pp— (24)
-~ mgT2G,’ > 7 mgGy’
and another interesting formula for Y is
Cy
Y= —=. 25
TN (25)

Equation 19 suggests a small modification to the plant model in Fig.2, in which
Y, is replaced with 7% as shown in Fig. 3. In this version of the model, it can be seen
that everything to the left of ¥; is concerned with the balancing motion of the robot,
while Y| describes how the balancing motion affects joint 2. It was mentioned earlier
that the balance controller works by tipping the robot slightly off balance, so that
the corrective motion causes g, to follow the commanded trajectory. The model in
Fig. 3 makes this idea a little clearer.

We are now in a position to explain the physical significance of the conditions
D # 0, which is required by the plant model, and Y; # 0, which is required by the
control law in the next section. D # 0 is equivalent to G, # 0, and it is the condition
for joint 2 to have an effect on the horizontal motion of the CoM. If D = 0 in some
particular configuration then it is physically impossible for the robot to balance itself
in that configuration. ¥; = 0 occurs when ¢, = 0, which is on the boundary between
unstable and stable equilibrium. A similar analysis appears in [1, 3].

3 The Balance Controller

The new plant model is interesting in its own right, but its usefulness lies in the
simplicity of the balance controller and the ease with which it can be designed and
implemented. Consider the following four-term control law:

L =kaa(L — Le) +kg(L — L) + k(L — Lo) + k4 (g2 — qo) - (26)
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When the plant in Fig.2 is subjected to this control law, the resulting closed-loop
equation of motion is

L kaa ka ki kg | [ L kaaLe + kaLe + kpLe + kgge
A | 1 e A
q2 Y, 0Y, 0| |q 0
and the characteristic equation of the coefficient matrix is
M — kga N — (kg + kYN — kA — kY1 = 0. (28)

The simplest way to choose the gains is by pole placement. As the speed of balancing
is determined mainly by the slowest pole, a sensible approach is to place all of the
poles at a point — p on the negative real axis, the value of p being chosen by the user,
and choose the gains to make Eq. 28 match the polynomial

A+ =M +4p\P +6p* N +4p° N+ pt =0. (29)
The resulting gains are

kaa = —4p ky = —4p’ 30
ki =—6p*+ p*Ya/Yy  k,=—p*/Y;. 30)
Clearly, another polynomial could be used in place of Eq.29. The choice of p is not
critical, but also not arbitrary: if it is too small then balancing happens too slowly, and
if it is too large then the robot overshoots too much. A graph illustrating this effect
can be found in [1, p. 37]. Simulation studies suggest that a value around 1.2-1.5
times 1/ T, is about right.

It can be seen from Eq. 30 that this choice of gains is not possible if Y| = 0. How-
ever, this problem is unavoidable because Y| appears in the constant term of Eq. 28,
so if Y} = 0 then A = 0 is always a root of the characteristic equation regardless of
the choice of gains.

The input g. in Eq.26 specifies the trajectory that ¢, is being commanded to
follow. It can be arbitrary in the sense of not being required to have any particular
algebraic form. However, a sufficiently wild or pathological command will cause
the robot to fall over. Simulation studies suggest that the most likely cause of failure
is if the command makes the robot enter a region of configuration space where the
velocity gain is close to zero.

The inputs L, Leand L in Eq.26 help to improve the tracking accuracy of time-
varying trajectories. The simplest choice for these variables is to set them to zero.
In this case, the balance controller converges accurately to g. when it is constant,
but does not track accurately when ¢, is changing. Nonzero values can improve the
tracking accuracy. For example, setting
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_ i

L. =
c Y,

€Y

produces accurate tracking of linear ramps (constant ¢.). (L, in [1, 3] achieves the
same effect.) Additionally setting

L.==_—"L 32
e=y ~y L (32)

achieves accurate tracking of parabolic curves (constant g.). However, the improved
tracking comes at the expense of increased overshoots and a tendency to over-react
to the high-frequency component of the command signal.

The value computed by Eq.26 is I, but the output of the control system has to be
either a torque command or an acceleration command for joint 2; that is, either 7, or
g». These quantities are computed as follows. First, from Eq. 4 we have . = —mgé,;
but mc, is the x component of the ground reaction force acting on the robot, which
is 70. So I. = —g7y. Substituting this into Eq.7 and rearranging to put all of the
unknowns into a single vector produces the equation

0 Hy Hyp | | —L/g—Co
0 HiHp | |41 | = -C , (33)
—1 Hyy Hy | | ¢2 -G

which can be solved for both 7, and ¢».

4 Extension to More General Robots

If arobot has more than one actuated motion freedom then two aspects of the balance
problem change: (1) there is now a choice of which motion to use for balancing, and
(2) there are now motion freedoms that are separate from the balancing activity, and
can be controlled with little regard to the balancing activity. These motions can be
designed to lie in the balance null space, which is the space of motions that the robot
can make that do not affect c,. However, it may be easier to design these motions to
have very little effect on ¢, rather than no effect at all.

Let us now replace the double pendulum with a general planar mechanism, retain-
ing only the fictitious prismatic joint and the passive revolute joint that models the
contact with the ground. The rest of the mechanism is assumed to be fully actuated,
and it may contain kinematic loops. Let y = [yo y1 y2 ¥31" beavector of generalized
coordinates in which yy = g, y1 = ¢, 2 is the coordinate expressing the movement
to be used for balancing, and y; is a vector containing the rest of the generalized
coordinates. The movement expressed by y, can be any desired combination of the
actuated joint motions. In effect, y; is the variable of a user-defined virtual joint that
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is a generalization of joint 2in the previous sections. The equation of motion of this
system is

Hoo Hoi Hoo Hos 0 Co 70
Hyo Hyy Hix Hyz | | G Ci 0

1| - , 34
Hyy Hyy Hyy Hpz | | y2 &) up 34
Hzy H3; Hy His | | ¥ C; u3

in which u;, and u3 are the generalized forces corresponding to y, and y;, and H;;
are now the elements and submatrices of a generalized inertia matrix. This equation
replaces Eq.7. Equations 2—4 and 6 remain valid, but Eq.5 becomes

L =Hugi+ Hpy, + Hizy;. (35)
Likewise, Eq. 8 becomes

—L/g = Hodr + Hpyr + Hos s » (36)

and so Eq.9 becomes

L Hy Hp | |4 Hy; .
| = ! . 37
|:L:| |:—9H01 —9H02:| |:y2:| * I:—QH03:| I3 37)

Solving this equation for y, gives
V2 =YL+ VoL —Yij3, (38)

where Y| and Y, are as given in Eq. 11, and
Y; = E (39)
™D

where
E = Hi3Hy — Hy1Hy; (40)

(cf.Eq. 12). The modified plant model is shown in Fig. 4. Observe that the influence
of the non-balance motions is limited to the value of the scalar signal ¥;y;. If this
signal is zero then these motions have no effect.

L—1/s > 1/s > 1/s > Y,

—> U2

> Y,

~ Y3

Fig. 4 Modified plant model for a general planar robot
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The design of the control system is largely unaffected by Y;y;. In particular,
Eq.28 is unaffected, and the gains are still as given in Eq.30. However, there is
scope to include terms in L. and Lc to counteract the disturbances caused by Y3 y;.
For example, one could use

_&_‘r_Ys,%

L. =
v Y,

(41)

in place of Eq.31. Simulation studies indicate that this modification successfully
compensates for the low-frequency component of the disturbance, but causes the
balance controller to over-react to the high-frequency component. A low-pass filter
may help in this regard, but it is probably better to design the non-balance motion to
lie substantially in the balance null space so that ¥; is close to zero.

Finally, the generalized forces must be calculated and mapped to the actuated
joints. The first step is to solve

0 0 Hy Hp U —Z/g — Co — Hp3y;

0 0 Hy Hp | |us| _ —C — Hy3y; (42)
—1 0 Hy Hxn || g —Cy — Hyy, ’

0 —1Hs3 Hs || —C; — H33y;

which is the generalization of Eq.33. In this equation, y is the desired acceleration
calculated by a separate motion control law responsible for y;. The final step is to

calculate
_ T | U2
=G |:u3] , 43)

where T, is the vector of force variables at the actuated joints, and G is the matrix
(chosen by the user) that maps [y, j’g]T to the vector of actuated joint velocities.

5 Simulation and Analysis

This section presents a simulation experiment in which the balance controller makes
an inverted triple pendulum perform a variety of manoeuvres while maintaining its
balance. A triple pendulum is chosen because it is the simplest mechanism that
exhibits all of the phenomena discussed in this paper.

The robot is a 3R planar kinematic chain that moves in the vertical plane. Joint 1 is
passive, and the robot is pointing straight up in the configuration ¢; = ¢» = g3 = 0.
The link lengths are 0.2, 0.25 and 0.35 m, and the masses are 0.7, 0.5 and 0.3 kg.
The links are modelled as point masses with the mass located at the far end of each
link. These are the parameters of a mechanism identified in [6] as being good at
balancing.

The control system consists of the balance controller of Sect. 3, which controls the
generalized coordinate y;, plus a PD position controller with exact inverse dynamics,
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which controls y3. The tracking accuracy of the latter is essentially perfect everywhere
except where there is a step change in commanded velocity. The balance controller
is based on Eq. 26; the gains are as given in Eq. 30 with p = 7 rad/s; L. and L. are as
given in Egs.41 and 32; and L. = Y./ Y;. The position controller’s gains are chosen
to put both poles at 14 rad/s in order to make the point that the control of variables
not used for balancing can take place at a higher frequency than that chosen for the
balance controller.

Figure 5a shows the command signals and response, both expressed in generalized
coordinates. Times are expressed in seconds and angles in radians. To show the effect
of L, L and L., this graph includes a signal ‘y20’ showing what the response of
the balance controller would have been if L. = LC = ic = 0. Note that these are
relatively large, fast motion commands. Comparable graphs in the literature (e.g. [7])
typically show slower, smaller movements which can be tracked more accurately.

The commands consist of a step, a ramp and a sine wave for y, while y3 is held
at zero, a ramp of y; while y; is held at zero, and finally a ramp of y, with y; held at
1.5. Up until the final ramp, y, and y3 are defined by y, = ¢, and y; = g3, but then
¥, is redefined to be y» = g2 — ¢3. So the final ramp involves g, ramping from O to
1.5 while g3 ramps from 1.5 to 0. This can be clearly seen in Fig. 5b, which shows
the motion of the robot expressed in joint space.

One obvious feature of Fig.5a is the reverse movements at the beginning of
each y, manoeuvre and the overshoots at the end. These movements are physically
necessary for maintaining the robot’s balance. However, the magnitudes of some
of these movements (e.g. the one at 9.5 s) are probably larger than the minimum
necessary. Note also that the ramp in y; disturbs y, only at the beginning and end of
the ramp. In the middle portion, the balance controller has successfully compensated
for the disturbance caused by this motion, thanks to the term Y3y3/Y; in Eq.41.

Figure 5c, d show the values of 7; and Y;. Observe that T, varies in a narrow range
from approximately 0.21-0.233 s even though the robot is making large changes in
its configuration. This is a property of the robot mechanism, and will vary from one
robot to the next. However, for most balancing robots it will typically be the case
that 7, does not vary very much. This suggests that assuming a constant value for 7
could be a good approximation.

For the first 13.5s Y; varies in a range from approximately 26 to 33. However, at
the point where y, is redefined, it jumps to 282, and then rises to 311 and drops to
88 over the course of the final ramp and its overshoot. So for the first 13.5 s the plant
model is only slightly nonlinear, with the two gains varying in a narrow range, but
then the situation changes when y; is redefined.

The explanation can be found in Fig. 5e, which plots the velocity gains of joints 2
and 3 along with their difference, which is the velocity gain of the motion freedom
q>» — q3 [6]. For the first 13.5s Gy (y2) = Gy(q2); but then y; is redefined, and for the
remaining time Gy(y2) = Gy(¢q2) — Gy(g3). As G,(y) appears in the denominator
of Eq. 24, this accounts for the large change in Y.

So from this brief analysis we can conclude the following: the robot is generally
well-behaved, and the plant model is only slightly nonlinear, up until the beginning
of the final ramp. But then the balance controller is given an especially bad new
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Fig. 5 Simulation results for balancing a triple pendulum (times in seconds, angles in radians)
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definition of y,: a motion that has almost no effect on the CoM (i.e., a velocity gain
close to zero). So the final ramp is an especially difficult command to follow, and
that is why the controller does not track this ramp as accurately as the first ramp.
Without an analysis of the physics of the balancing process, it is not at all obvious
why the tracking of the final ramp is not as good as the first.

6 Conclusion

This paper has presented a new model of the physical process of balancing by a
general planar robot. The essential parameters of the robot’s balancing behaviour
are reduced to just two numbers, plus a third number to describe the influence of all
other movements on the balancing behaviour. All three numbers can be computed
efficiently using standard dynamics algorithms. The model gives rise to a simple
balance controller that allows the robot to balance while performing other motions;
and simulation results are presented showing the controller making a triple pendu-
lum perform a variety of large, fast movements while maintaining its balance. The
controller allows complete freedom in choosing which movements are to be used for
balancing and which for other tasks.

As planar balancing is a solved problem, the contribution of this paper is to
simplify the problem and its solution without loss of generality, and to present an
approach to balancing that appeals more to the physical process of balancing and less
to the control theory. Clearly, the ultimate objective is a simpler theory of balancing
in 3D, and a first step in that direction appears in [1, 2].

Acknowledgements The work presented here owes much to the work of Morteza Azad as described
in [1].

Appendix

This appendix proves the result that p; = siThl,(i), where p; and s; are the momentum
variable and axis vector of joint i, and k,; is the total momentum of the subtree or
self-contained subsystem consisting of body i and its descendants. A self-contained
subsystem, in this context, is defined to be a subsystem in which every kinematic
loop that involves at least one body in the subsystem is entirely contained within
the subsystem. In general, s; and h,(;) will be spatial vectors. However, if the whole
system is planar then they may instead be planar vectors.

Consider a kinematic tree consisting of N bodies and joints numbered from 1 to
N according to a regular numbering scheme. Without loss of generality, we assume
that every joint has only a single degree of freedom (DoF), which means that every
multi-DoF joint has already been replaced by a kinematically equivalent chain of
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single-DoF joints connected by massless bodies, and that these extra bodies and
joints are already included in N.

Let p and ¢ denote the joint-space momentum and velocity vectors of the tree, or
the spanning tree if there are kinematic loops. By definition, the two are related by
the equation

p=Hgq, (44)

where H is the joint-space inertia matrix. This implies that
N
pi =Y Hiq;. (45)
j=1

The definition of H for a general kinematic tree with single-DoF joints is

sTLas; ifi € v(j)
I_Iij = S?I,,(j)Sj lf] € 1/(1) (46)
0 otherwise

where s; is the joint axis vector (i.e., joint motion subspace vector) of joint i, I; is
the inertia of body i (spatial or planar as appropriate), (i) is the set of all bodies in
the subtree beginning at body i, and I,y = Zjey(i) I;.

Let k(i) be the set of all bodies on the path between body i and the base (body
0), excluding both body i and the base, and let x(i) = x(i) U {i} be the same set
including body i. If we use the terms ‘ancestor’ and ‘descendant’ in an inclusive
sense, meaning that body 7 is both an ancestor and a descendant of itself, and use the
term ‘proper ancestor’ in an exclusive sense, then the sets v (i), x(i) and < (i) can be
seen to be the sets of descendants, ancestors and proper ancestors, respectively, of
body i. k(i) is also the set of joints on the path between body i and the base.

We now rewrite Eq. 46 as follows:

siTI,,(,-)sj lf] € IZJ(Z)
Hij =1 siLgs; if j € v(i) 47)
0 otherwise

which makes it clear that H;; is nonzero only if j € x(i) or j € v(i). Substituting
Eq.47 into Eq.45 gives
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pi=s;( Z Ii)s;q; + Z Ljs5q;)

JeR(i) Jjev(i)

= s;F( Z Z Iijq.j + Z Z Iksj‘b)

JeR() kev(i) Jjev(i) kev(j)
_ T . .
=si (20 2 hsigi+ >, > Lsidy)
kev(i) jer() kev(i) jev(i)nm(k)

:s;rZIk Zquj. (48)

kev(i)  jer(k)

The step from the second to the third line works as follows: 3", ) 2 e, 18 the
sum over all j, k pairs where j is a descendant of i and & is a descendant of j, whereas
D kewli) 2o jen(nynmk) 1S the sumover all j, k pairs where k is a descendant of 7, and j
is both a descendant of i and an ancestor of k; but these two sets of pairs are the same.
The step from the third to the fourth line exploits the fact that (i) N (k) is the set
of all ancestors of body k from i onwards, whereas k(i) is the set of all ancestors of
body k prior to i, so the union of the two sets is (k).

Now let v, be the velocity of body k, let h; = I, v, be the momentum of body k,
and let h, ;) = Zkep(i) h;. be the total momentum of the subtree beginning at body
i. The velocity of any body in a rigid-body system is the sum of the joint velocities
along any one path between that body and the base, so v, = Z,- enty $74j- We can
now further simplify Eq. 48 as follows:

T T T
pi = si Zlkvk = Sl» th = Sl- hy(i) B (49)
kev(i) kev(i)

which establishes the desired result for the case of a kinematic tree. If the system
contains kinematic loops then we find that Eq.49 no longer holds for all joints,
but does still hold for any joint that is not involved in any kinematic loop. This is
equivalent to the condition stated at the beginning that the subsystem consisting of
the bodies in v(i) be self-contained.
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Slip Detection and Recovery for Quadruped
Robots

Michele Focchi, Victor Barasuol, Marco Frigerio, Darwin G. Caldwell
and Claudio Semini

1 Introduction

Being able to deal with slippage is of great importance for legged robots which are
meant to traverse unstructured terrains. In particular, a strategy for detecting slippage
and recover from it, becomes crucial when whole body inverse dynamics approaches
are implemented for robot control [1, 14, 18]. Actually, they rely on the assumption
that the stance feet constraints are not violated (e.g. they are not moving or are
supposed to move very little [8]). Indeed, a violation of the stance constraints makes
the inverse dynamics compute joint torques which are not physically meaningful
anymore. This would result in: (i) errors in the realization of the desired body wrench
(because the slip limits the amount of tangential force that the ground is able to
deliver) (ii) degeneration of the support triangle. These two facts would eventually
lead to a loss of stability even in case of very slow motions. On the same line,
kinematic-based state estimation or odometry techniques [3, 6], which rely on the
assumption that none of the stance feet is slipping, are prone to drift if the amount of
slip is relevant (or if there is a compliance between the base and the ground which
is not modelled). Even if the controller incorporates the optimization of the ground
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reaction forces, there are two types of uncertainties which can cause slippage during
locomotion:

1. Uncertainty on the estimate of the surface normal n. This is commonly estimated
by vision [17] or by fitting a plane (gradient-based terrain detection) through
the feet that are on the ground (stance feet) [26]. The fitting plane can be a
very crude approximation of the terrain surface inclination which can have local
discontinuities (e.g. like the ramp illustrated in Fig.4). Any deviation from a
planar shape results in errors in the estimation of the inclination of the surface
which is under the foot at the moment of the touch-down.

2. Uncertainty on the friction coefficient ;.. Most of the times 1 cannot be known in
advance and is commonly inferred according to semantic information (e.g. ice)
coming from vision [22].

An earlier work on slip recovery is from Takemura [26], who presented both a
long term and a short term strategy for slip recovery. The former aims to change gait
frequency and stride length when approaching slippery surfaces. However, changing
locomotion parameters to address slippage can be successful only on terrain with
limited roughness and moderate slipperiness. Conversely, if very challenging envi-
ronment is considered (e.g. crossing a river or walking on ice), the occurrence of
slippage might result in unrecoverable loss of stability because any other footstep
can be infeasible. A short term strategy is needed in these cases. At this extent,
Takemura proposes to instantaneously add a force (at the occurrence of slippage) to
have the ground reaction forces (GRFs) back in the friction cone. This approach has
several shortcomings: (1) itis based on the idea that the normal is properly estimated;
(2) the required force might not be necessarily realizable at the foot, since the ground
reaction force is the result of the robot motion in interaction with the environment.
More precisely, the GRFs can only be controlled to a limited extent (e.g. creating
internal forces) in the null-space of the contact constraints. In addition to this (in
static conditions) the maximum applicable total normal force is constrained by the
robot weight.

To address the above limitations we propose a short term slip recovery strategy,
which is built on top of a whole body controller [9, 10]. In essence the controller
we use, is formulated as a QP problem where the goal is to realize a certain body
wrench while optimizing for ground reaction forces (decision variables). We added
inequality constraints to the problem to obtain forces that obey friction cones limits,
additionally accounting for the fact that the ground can only push and not pull (uni-
lateral constraints). The body wrench is the 6D vector of forces/moments coming
from the body motion task that aims to track a specified trajectory for the CoM and
the trunk orientation.

In this context, assuming a reliable low level tracking of the joint torques and
no external disturbances, a slippage can only occur if the controller uses a wrong
estimate of the surface normal or of the friction coefficient. In fact, this results in
GRFs which are out of the real friction cones (cf. Sect.4.1). Therefore, differently
from Takemura, instead of striving to apply the correct GRFs (which might not
be feasible), we propose to correct the estimate of the surface inclination and of
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the friction coefficient in order to allow the robot to apply forces which satisfy the
friction limits.

More recently, in one of the online videos,' the BigDog robot demonstrated to
successfully recover from slipping on ice. However, to date, no experimental results
have been published and no details have been reported on the repeatability of the
used approach.

Within the context of legged robots, the main contribution of this paper is a
methodology to: (1) detect slippage, (2) on-line estimate the friction coefficient p
and the normal 7 of the surface making use of only proprioceptive information (torque
measurement and encoder readings) (3) on-line recovery from slippage by smoothly
accommodating (but in a short time interval) the value of the normal used in the
optimization to the estimated one. The whole slip recovery pipeline is graphically
summarized in Fig. . We have implemented the slip detection/estimation/recovery
strategy for a model of HyQ [24], a 80kg quadruped robot with point feet. HyQ is
shown to perform a (statically stable) walk on a highly slippery (flat) surface and on
a moderately slippery ramp.

The applicability of this approach is limited to torque controlled robots equipped
with a high-level controller which optimizes for ground reaction forces. We will
show simulations where the slip is detected only in one leg and when there are at
least three legs in contact with the ground. A possible solution for the detection in
the case of more than two legs slipping is only drafted.

This paper is structured as follows: Sect. 2 presents arobust way to detect slippage,
followed by Sect. 3 that illustrates the on-line estimation of the friction parameters.
Section4 describes the implemented strategy to recover traction during slippage.
Sections 5 and 6 contain the results of simulations with HyQ and the conclusions,
respectively.

1Video available at http://www.youtube.com/watch?v=cNZPRsrwumQ.
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2 Slip Detection

The approaches to address the problem of slip detection can be divided into two
big groups: force based and kinematic based approaches. The force based, require
the availability of a 6-axis force sensor which is usually located at the contact point
(e.g. the foot-tip). If the friction coefficient is known in advance, the slippage could
simply be detected by checking if the ratio of the tangential/normal component of the
contact forces [20] is within the limit of static friction. When the friction coefficient
1 s unknown, a possible strategy is to check the frequency content of the tangential
contact force signal. As a matter of facts, in presence of slippage, a high frequency
ripple in the force signal appears, due to the local stick-slip phenomena that occurs
between the contacting surfaces. First Holweg [15] and more recently Palli [21],
claimed that, after performing a Fourier analisis (FFT) of the higher harmonics of
the force signal, it was possible to recognize the deformations which precedes the
real slip. These approaches are of limited applicability to legged robots, because
they need a high cost force/torque sensor to be attached to the foot tip. However,
due to the repetitive impacts with the ground, in the long run, this can result in a
damage of the sensor. Furthermore, during locomotion, the touchdown event can
create discontinuities in the force signals and jeopardize the detection. As a matter
of facts, it is not easy to measure the instant when the force oscillation, due to the
touch-down, has settled down, in order to have a detection without false positives.
Conversely, a detection strategy based on kinematics, it preferable in the context of
legged robots where ground impacts are the order of the day.

A kinematic strategy can be implemented at the acceleration, velocity or position
level. In [26] Takemura considered slippage as an impulse-like leg acceleration, and
attached accelerometers to the lower-leg links to detect slippage. A drawback of this
approach is that accelerometers are usually affected by noise.

Alternatively, slippage could be estimated at the position level, by checking the
inter-distances between the stance feet. Indeed slippage of one (or more) feet can be
detected if the mutual distance of the stance feet (which is set at the moment a new
touchdown event occurs) changes within the duration of a single stance configuration.
However, when traction is lost the resulting acceleration will create also a velocity
difference among the stance feet. Being the position the integral of velocity this
difference can be detected more promptly in velocity than in position. Thus, we
propose to check the slippage at the velocity level. It is important to underline that
the choice of the frame in which the feet velocities are compared, directly affects
the robustness of the approach. The most intuitive way is to check if the Cartesian
velocities of the stance feet are all zero in an inertial (world V) frame. However,
expressing the foot velocity in the world frame (,,X ), requires an estimation of the
robot base linear velocity ,Xp:

0= yXr = uXp + Ry (X5 + pwp X pXy) (D
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where , R, € R¥*3 is the rotation matrix representing the orientation of the robot
base, while ,w;, is its angular velocity. ;X ¢, ,Xs are, respectively, the position and
velocity of the foot expressed in the base frame (5). The angular velocity ,wj, can be
measured with reasonable accuracy by an on-board IMU sensor, while the base linear
velocity, as common practice in robotics, can be inferred through leg odometry or state
estimation techniques [3]. Therefore, if we compare the feet velocities in the world
frame, they are influenced by errors in the state estimation, which can result into false
positives in the slip detection. A more robust approach would be to compare the feet
velocities in the base frame (term ;X in (1) which accounts also for the influence of
the moving frame). The advantage of this, is that the kinematics is always accurate
because it directly depends on direct sensor measurements (e.g. encoders, gyro).
Differently from the world frame case, the stance feet velocities ,X ¢ have to be equal
in norm and direction (and opposite to the base linear velocity ,X;). Thus, in a manner
similar to what a car ABS braking system is doing [2], a fruitful strategy for slip
detection is to compare the values of the norm v; = ||,Xy, || of the velocities of the
stance feet and discriminate the outlier with appropriate statistical tools. Henceforth,
for the sake of brevity, we denote the norm with v and the associated Cartesian vector
with v.

One leg slip detection: Following, we present a pseudo-code implementation of the
slip detection for one leg of a legged robot:

Algorithm 1 detectSlippageOneLeg()

1: for each stance_leg i do
2: vel_norm[i] < |pX |
end for
: M < median(vel_norm)
: for each stance_leg i do
legSlippingFlagli] < abs(vel_norml[i] — median) > th
end for

A

At each control loop the median of the norms of the stance feet velocities is
computed. The median will have a value in between the velocities of the non slipping
legs and the slipping one. The slipping leg will be the one with a velocity far from
the median beyond a certain margin th, that can be tuned experimentally. During
locomotion the detection algorithm is continuously checking, within the set of active
stance legs, if there is any slippage. Whenever a slip is detected, if the leg was a
stance leg, this should be removed from the set of stance legs accounted in the state
estimation/odometry, while it can be incorporated back at the end of the slip (see
Fig. 1). This is crucial to prevent the corruption of the state estimate.

Multiple leg slip detection: A more subtle situation is when two legs are slipping
at the same time. In this case, it is hard to detect with the median approach, who
are the slipping legs and who are the stance legs (we just know that they have pair-
wise different velocities). In this case, checking which of the feet velocities v, are
kinematically consistent with the base velocity ,X;,, could help us to discriminate the
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slipping legs. At this extent a short-time integration of the base linear acceleration
(IMU) can be the only resort. It is known that integrating accelerometers is prone to
drift but, for a limited time interval, the estimate should be accurate enough.

3 Surface Normal and Friction Coefficient Estimation

Once that the slip is in act, it is crucial to estimate the friction coefficient 4 and the
surface normal # in the early milliseconds of slippage, in order to be able to apply a
corrective action as described in Sect. 4.

Remark: Along the paper, we will not make a distinction between static and dynamic
friction.

Firstly, we make the following assumptions:

Assumption I: The frictional properties of the surface around the foot are isotropic
(coefficient of friction equal in all directions).

Assumption 2: when the leg starts to slip (it will start slow), it will cover a surface
where the normal is uniformly constant.

Assumption 3: we assume no soft contact. Since the robot has point feet we
can neglect the influence of the rotational friction about the normal direction (more
complex than the linear one because it depends on the size of the contact area).

We can get useful insights for the estimation considering the following facts:

1. if unilateral constraints are always satisfied (e.g. the legs are always pushing on
the ground and the feet are not detaching), the direction of the foot slip velocity
v will always be tangent to the surface. This means the surface normal n forms
a right angle with the velocity vector v. Furthermore, physics tells us that the
normal should lie in the plane IT passing through the direction of the ground
force F and of the velocity v (see Fig.2(left)). These two facts allow us to easily
determine the surface normal n by simple geometric computations:

v x F TXV
T= —— n-=— 2)
v x F| [l7e x v]|

where 7r is the normal to the plane /7.

2. during the slipping motion, the ground force F is always lying on one edge of
the friction cone. Therefore, while the foot is slipping, the angular distance ¢
between F and n (see Fig.2), can be an estimate of the real friction coefficient

(u = tan(@)):
sin(¢) _ |[F xn]

cos(¢)  F-n

p=tan(¢) = 3)

To obtain a noise-free estimation of the normal n, we compute a moving average
on N samples, by using a parametric representation of the geodesic [12], while for
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I~

Fig. 2 Left vector definitions for slip detection (for a generic foot on a slope). The red dot is the
foot location, I7 is the plane where the ground reaction force F and the foot velocity vector v lie
while n is the estimated surface normal. Right slip recovery definitions: i is the actual normal used
in the controller. € is the axis of rotation to move i towards n while A6 is the correction angle

the friction coefficient ;. we perform a moving average with linear weighting (last
sample is weighted most).

Observation: the value of ; found with this approach, represents a “sample” of
the friction coefficient in a certain direction. Depending on the way the friction con-
straints are implemented in the optimization (e.g. if the friction cone is approximated
with an inscribed polyhedron to have linear constraints [25]) an appropriate scaling
should be considered. For instance, in the case we approximate the cone with the
inscribed pyramid, the estimated y should be scaled by 1/+/2 which is the ratio
between the edge of the inscribed pyramid and the diameter of the cone.

4 Slip Recovery
4.1 Dynamics of Slippage

To obtain insights to draft a strategy for slip recovery it is useful to understand the
dynamics of slippage.

1D case: Let us consider the simple case of a mass standing on a plane with friction
under the effect of a vertical force (Fig. 3(top)). We can model the contact as a set of
tiny bristles [13]. If an external force is applied to the mass which has a tangential
component F,,,, the “bristles” at the contact interface start to deform (b) and the
friction force with the plane F; builds up until the breaking point |F 1= gl Fexs, |
is achieved, where the bristles start to slide over each other. From then onward they
will apply a constant resistance force 17" r which is opposing the motion direction (c).
The subsequent motion will depend on the mass dynamics (mdv/dt = F,y, — F )
and any tangential component of F,,, will increase the kinetic energy of the body,
increasing the slippage. If F,,;, is removed (d), the accumulated momentum will
keep the mass in motion but F r will decelerate it until v = 0.
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Fig. 3 Slip dynamics: (fop) 1D case (bottom) 3D case

3D case: Consider now the case of a point foot on a frictional plane (Fig. 3(bottom)).
In the situation (a), the ground reaction force F is able to balance the external force
F.,: and the body is in equilibrium (v = 0). If an external load is applied which
would require a force which is out of the friction cone to be balanced (b), the ground
will be able to balance only with a F which is constrained to lie on the boundary of
the cone (satisfying the relationship |F, || = w)IF ). The foot will then start moving
because there is a net force (black) accelerating it.

Now, as long as v # 0, F will stay on the cone boundary and be opposing the
motion. However, if the external force is applied inside the friction cone (c), by the
composition of vectors, the net force will have a decelerating component that will
slow down the slipping motion until v = 0 and the grip will be recovered (d). In this
situation F,,, will balance again F and the contact will be stable.

4.2 Smooth Correction of Friction Parameters

When slippage occurs some action should be undertaken. The detection phase, illus-
trated in Sect. 2, has provided the estimated values of n and . The goal of our short
term slip recovery strategy is to make the actual surface inclination n (e.g. coming
from a terrain estimation algorithm) and the friction coefficient /i, which are used
in the optimization, converge to the estimated ones. Once that 1 is set to the appro-
priate direction (inside the cone), the slippage will naturally end-up after a short
transient, because the tangential component of the GRF (see Sect.4.1) will “make
work’ against the slipping motion and eventually stop it. To prevent step-wise torque
discontinuities, we choose to perform the correction in a smooth fashion. The fol-
lowing recursive equations result in a smooth (1*' order) convergence of fi toward n
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and of f1 toward p:

Af(k) = atan (|[f x n||/( - n)) 4)
we(k) = é(k)K, AB(k)

ik + 1) = R(weg(k)dn)ii(k)

fk+1) =K,p+ (11— K,

where Af € R is the angular error between i and n at time k (see Fig. 2 (right)). & € R?
is the instantaneous rotation axis perpendicular to both fi and n, and R(.) € R¥*3 is
the rotation matrix associated to the rotation vector wydt, which is obtained by the
Rodrigues’ formula. K,, and K,, are scalar gains to set the convergence rates of i
and [1, respectively. dt is the control loop duration.

Comment: It is well known that for a legged robot static/dynamic stability is depen-
dent on the relationship between the CoM/ZMP and the support polygon [27]. In the
case the feet are standing on non-coplanar surfaces more elaborated computations
should be carried out [4, 5]. In our work we assume that a stabilizing controller is
available for the robot. The main goal of our approach is to eliminate slippage in a
very short time interval (tens of ms) such that the support polygon does not suffer
significant changes and hence the robot stability is not affected. An analysis of the
maximum amount of slippage which is tolerable in the context of locomotion in order
to preserve stability is out of the scope of this paper and will be part of future works.

4.3 Freezing Mode

If, during the slip recovery, the ground frictional force is not sufficient to reduce
the slip velocity in a reasonable time (tens of ms) the slipping foot accumulates a
significant position error (with respect to the desired set-point). This can likely result
in significant degradation of the support polygon shape and possible loss of stability.
In this case, the last resort is to stiffen all the joints in the actual configuration and
make the robot behave like a “wooden chair” (freezing mode in Fig.1). In such a
way, a stable situation can be achieved even if all legs are slipping at the same time.
Such a strategy is often successfully adopted by humans when slipping on ice.

5 Simulation Results

In this section we show the effectiveness of the proposed slip detecion/estimation/
recovery strategies simulating a walking of the dynamic model of the quadruped
HyQ [24] on very slippery surfaces. Namely, an ice slab with locally different fric-
tional properties and a ramp. HyQ is 1 m long and weights 80kg. Our simulation
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environment is composed of two software packages. The first, called SL [23], is a
multi-process application that provides a low level joint controller, a customizable
trajectory generator, and a simulator. The robot-specific software, namely the kine-
matics and dynamics engine, is implemented with RobCoGen which provides an
optimized C++ implementation of kinematics and dynamics [11] based on spatial-
vectors algebra and state-of-the-art numerical algorithms [7]. As far as contact forces
are concerned, the SL simulator implements a simple spring damper contact model,
together with a Coulomb model for friction. The simulation is based purely on rigid
body dynamics, and as such it assumes ideal force sources at the actuated joints. To
be consistent with a real implementation on the real robot, we estimate the ground
reaction forces at the feet from torque measurements (HyQ is not currently equipped
with foot sensors). Both the loop for the optimization and the rigid body simulation
run at 1 kHz, which is the frequency of the low level controller in the real platform.
The state (position/orientation) of the robot base is estimated through leg odome-
try. The terrain inclination (roll and pitch) is computed by fitting a plane through
the stance feet in a least-square fashion. The evaluation is carried out after each
touch-down event and this provides an initial estimate of the surface normal fi, (see
Fig.1).

5.1 Ice Patches

Figure 4(left) shows a simulation of the robot walking on a slippery set of patches
located on flat ground. The patches have friction coefficients (1 = 0.15 — 0.3) com-
parable to the one of an ice-shoe contact [16]. Refer to [19], for different pairs of
materials. The robot has point feet and, thus, the friction forces are lower compared
arobot which has flat feet. Indeed foot-ground contact in humanoids is usually mod-
eled with 4 contact points located at the foot edges and slippage occurs when all of

Fig. 4 Simulation screen-shots of the robot walking on ice patches (left) and on a ramp (right). In
the left plot, olive green lines represent the cone boundaries while the ground reaction forces are
depicted in light green. In the right plot i1 is converging toward n while the L F foot is slipping after
the touch-down
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them break the contact. For a point foot morphology, walking on ice is challenging
and slip recovery becomes crucial for the success of the task.

With the ice patches simulation we want to show the robustness of our algorithm
in estimating the friction coefficients of the different surfaces for all the 4 feets. The
blue/green patches have p = 0.25, 0.2 while the white/red 1+ = 0.3, 0.15. They are
all 75 cm long. Our online video? shows that, without any slip recovery strategy, the
robot falls at the very beginning after a few steps. Conversely, with the slip recovery
enabled, is able to traverse effectively all the patches, including the last ones which
have lower friction coefficients. In Fig. 5 we show the plots of the friction coefficient
estimates for the 4 legs starting from ;2 = 0.6 which is the default value set at the
beginning of the simulation, in the controller. LF, RF, LH and R H stand for Left-
Front, Right-Front, Left-Hind and Right-Hind leg, respectively. For the estimate we
used a moving average window of 4 samples. The percent error in the estimation is
always below 13%.

The slip recovery is beneficial also to avoid the accumulation of big estimation
errors in the leg odometry. From the same simulation data, the upper plot of Fig. 6,
shows that slippage created an estimation errors in the X direction (before falling) of
18 cm out of 50 cm walked, while using the slip recovery (lower plot) the maximum
error is below 1 cm for the same time window.

Observation: In the enclosed video, a little slip is always present at the touch-down,
that in principle should not occur, because the friction coefficient has been properly
identified after stepping on the surface. This is due to the actual implementation of
the stance detection. When the swing foot touches the ground it must apply a force
beyond a certain threshold, to trigger the stance and to start optimizing the force.
This little force (before the trigger) is not optimized and it causes a little slippage,
which however is immediately recovered.

2Video available at https:/youtu.be/Hrwi9-411AM.
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5.2 Slippery Ramp

A transition from walking on flat terrain to a ramp (inclination 0.25rad) is a good
template to demonstrate the effectiveness of the algorithm in estimating the surface
normal. Indeed, in the moment in which the robot is standing with only the front feet
on the ramp, there is a big error (see Fig. 4 (right)) on the terrain inclination estimate.
This results in a wrong estimation of the surface normal i which is set perpendicular
to the estimated plane. If the surface is slippery enough (we set © = 0.5) the front
legs will slip and the slip recovery intervention is necessary to climb the ramp. In
Fig.7 we magnify one slip event for the L F leg after the swing phase. The slip is
detected at time = 28 ms, the estimation phase is shaded in red, while the correction
phase is in blue. The slip transient ends at # = 80 ms. In the upper plots, we show the
convergence of n to the estimated value n while n, is the ground truth. The lower
plot shows that the friction cone constraint is violated (in a strict sense) for the whole
slippage situation (time interval + =28-80ms). We underline that the torques of the
stance legs (e.g. cf. the knee of RH in Fig. 7(bottom)), do not suffer from step-wise
discontinuity, because of the smooth correction implemented for 72 and /.

Differently from Fig.7 which shows the L F foot slipping after a swing phase,
Fig. 8 shows a slip occurring during the body motion where the L F leg is in stance.
The upper plot shows the velocities (norm) v of the feet while the lower one plots
boolean variables that tell which leg is slipping. Around r = 170ms the L F foot
starts to slip and this is visible looking at its velocity which significantly differs from
the ones of the other feet. The picture also shows that from the point of detection,
thanks to the recovery action the slip terminates (the norm of the velocity goes back
to the values of the other feet velocities) in less than 40 ms.



Slip Detection and Recovery for Quadruped Robots 197

Ui_\\ : =]
0'0§ =Ty =iy Ty, |
-0.02
1 [=Tz =i, T2y |
095 =
1r 0
- 5 1 E:
0.5 —%ﬂﬁ&{l(}(\. I?Ol (|11l. '/I
\_____ -
% 50 100 15050

Time [ms]

Fig. 7 Slip event for the LF foot at the touch-down (ramp simulation). (First 3 upper plots)
Cartesian components of the surface normal where: fi is the actual value, n is the estimated value
and ny, is the ground truth (from simulation). Lower plot the blue line depicts the friction cone
violation (in a [0—1] range) while the red line is the torque in the knee joint of the R H leg (stance).
The estimation phase is shaded in red, while the correction phase is in blue
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6 Conclusions and Future Works

We presented a methodology to detect slippage and estimate the relevant friction
parameters together with a short term strategy to recover from slippage during loco-
motion. The detection is based on kinematic measurement (plus the trunk angular
velocity) and, in the context of legged robots, is more suitable than a force-based
approach which involves the use of 6 axis force/torque sensors at the foot-tips. Hav-
ing an idea of the friction properties of the terrain during locomotion can be also
useful to set different level of “cautiousness”, selecting more or less conservative
gaits according to the situation at hand. On the other hand, the recovery strategy
(which was able to reduce slippage in less than 40 ms), was implemented at the force
level. The idea behind the strategy was to correct the surface normal toward the
estimated one resulting in GRFs which were back inside the real friction cone. The
slip recovery strategy has been demonstrated to be essential for locomotion on very
slippery surfaces, or in situations (ramp) where the terrain inclination was wrongly
estimated.
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In future works we plan to speed-up the recovery action by setting (in the opti-
mization) constraints on the tangential component on the GRF in order to “help” the
frictional force in decelerating the slipping foot. We are aware that with the actual
implementation, the estimated friction coefficient can only decrease. Indeed, if the
robot enters in a less slippery terrain after coming from a slippery one, it will keep
the previous friction coefficient which will be too conservative.

In the future, we are planning to fuse the actual approach with semantic informa-
tion coming from vision. according to the terrain the robot is traversing the purpose
of vision is to provide a default value for the friction coefficient together with an
estimate of its “difficulty”.

Finally, we plan to perform extensive experimental validation of the proposed
approach on the real robot platform (HyQ). In particular we are planning to make it
walk on slippery slopes and Teflon patches.
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Effective Generation of Dynamically
Balanced Locomotion with Multiple
Non-coplanar Contacts

Nicolas Perrin, Darwin Lau and Vincent Padois

1 Introduction

Locomotionis a challenging task for humanoid robots, even within completely known
environments. Although the dynamics of multibody systems are well understood,
direct approaches to resolve the motion of all degrees of freedom for locomotion
have remained computationally intractable due to the large number of degrees of
freedom and nonlinear behaviour. To generate dynamically balanced locomotion
trajectories efficiently, current methods are typically based on simplified models of
the robot dynamics.

One of the most widespread model is the Inverted Pendulum Model (IPM) [10],
where the mass of the robot is assumed to be concentrated at its center of mass
(CoM). Although more accurate models are sometimes required [11], the simple
IPM is suitable for many situations where the rotational inertial effects of the robot
arms, legs and torso are negligible or can compensate for each other. An example of
such a scenario includes walking at a moderately fast pace.

One of the main properties of multi-contact locomotion is that the robot’s CoM
acceleration depends only on the contact forces with the environment. Hence, an
important objective for the generation of locomotion is to design a CoM trajectory
that is dynamically balanced at any point in time. Dynamically balanced refers to
the existence of contact forces that can produce the desired CoM acceleration while
respecting the contact constraints, such as being within the friction cones.
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When all the contacts are coplanar, a point of particular interest, sometimes called
the Zero Moment Point (ZMP) [17], can be defined. Although this name has led to
confusion about its physical nature [3], the term ZMP will be used in the remainder
of the work. A system is considered dynamically balanced if the ZMP lies within
the support region, i.e. the 2D convex hull of the contact points. In the IPM, the
relationship between the CoM and ZMP dynamics is defined by nonlinear differential
equations. However, if the vertical displacements of the CoM are set in advance, the
relationship can be decoupled and expressed as linear differential equations. This
substantially simplifies the problem into one that can be more efficiently and easily
implemented for locomotion trajectory generation and gait control.

The trajectory generation problem has been studied through analytical approaches
[4], and more recently, using convex optimization with constraints on the ZMP in
discrete time [6, 7, 19, 20]. The efficiency of convex optimization solvers allows them
to be used within model predictive control (MPC) schemes and with the potential of
real-time implementation for reactive walking. However, the ZMP+MPC approach
suffers from two main drawbacks: (1) the trajectory of the CoM height (z-direction)
must be known or fixed in advance, and (2) the contact points must always be coplanar,
making this approach unsuitable for walking in complex unstructured environments
or if the arms are to also be used. Due to these two restrictions, the ZMP+MPC
approach can be regarded as a 2D CoM planner that operates in the horizontal xy-
plane only.

Several studies have looked into extending the concept of ZMP into 3D conditions,
such as GZMP [5] and 3DZMP [9], to handle non-coplanar contact points. These
criteria have been used in control algorithms to maintain the dynamical balance of a
humanoid robot interacting with its environment. However, no locomotion trajectory
generation algorithm has been designed based on these notions. In [8], a more general
criterion than the ZMP was proposed to evaluate the balance of contacts during the
motion of a legged robot. This criterion was used within a preview control algorithm
with additional restrictions, for example, the vertical motion of the CoM must be
approximately constant. Furthermore, a preliminary phase is needed to plan the
inertia and gravity wrenches appropriately, which is a difficult problem.

In this paper, two simple and novel MPC approaches to solve for 3D locomotion
with multiple non-coplanar contacts are presented. The 3D condition for dynami-
cally balanced gait allows for non-coplanar multiple contacts and no restrictions on
the CoM height trajectory. Using the proposed 3D dynamically balanced criterion,
the first MPC formulation treats the criterion as an objective function, where the
resulting non-convex MPC problem is solved using a sequence of alternating (con-
vex) quadratic programs (AQP). The second formulation considers the criterion as
non-convex constraints to the problem, and is solved through a succession of convex
QCQPs. The results for simple locomotion scenarios show the promise in using the
proposed 3D condition to generate the CoM trajectory within the control framework
of robots with multiple contacts.

Although generalizations, such as allowing for multiple contacts, non-coplanar
contacts and not predetermining height trajectory, inherently increase the problem
complexity, care has been taken to maintain balance between the computational
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efficiency and limitations of the model. Indeed, our approach is more general than
traditional simplified methods based on the IPM or ZMP, but thanks to our main
assumption, namely, that the CoM lies inside all the contact friction cones, the number
of variables that have to be taken into account is much smaller than with direct
methods, such as [15]. The feature of the proposed MPC schemes is that they can
be effectively and efficiently solved through a succession of convex optimization
problems, when the problem formulation is of particular forms, such as bilinear
problems or non-convex QCQPs.

The remainder of the paper is organised as follows: Sect.2 formulates the 3D
condition for dynamically balance. The two MPC formulations using the 3D condi-
tion as an objective or as constraints are formulated in Sects. 3 and 4, respectively.
Section 5 presents a brief discussion on the two approaches. Finally, Sect. 6 concludes
the paper and presents areas of future work.

2 Conditions for Dynamically Balanced Locomotion in 3D

Expressing wrenches with respect to the CoM of the robot x, the Newton-Euler
equations of motion for a multibody robot system in a fixed world frame can be
written as

Wiravity 4 W;ontuct — I:A;JX] , (1)

where W& V" s the gravity wrench in 6D vector notation [2], W<"%! the sum of
the contact wrenches, L is the angular momentum of the whole robot with respect
to its CoM, and M the total mass of the robot. The gravity wrench is equal to the

vector [07 M gT]T, where g is the gravity vector, and

N
Wiontact — Z |:(cj _;() X fji| , (2)

. J
J

where the ¢; and f; are the location and force of contact j, respectively, and N is the
total number of contacts. Substituting (2) into (1) results in

(cj—x)xf; | L
S lae ] @

J

The system can be regarded as dynamically balanced if (3) is satisfied. The goal
of the problem of CoM trajectory generation is to compute X(¢) such that the dynamic
wrench, the right hand side term of (3), can be compensated by the sum of contact
force wrenches. It is usually assumed that the contact forces belong to a cone (friction
cone) spanning from the contact point.
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Generally, it is not trivial to compute the set, or even a reasonable subset, of the
dynamic wrenches that can be compensated by a given set of contact cones [16].
However, by assuming that all contact cones contain the CoM x, as shown in Fig. 1,
it is possible to choose the force of contact j to be

fj:aj(x—cj),ajZO (4)

This assumption is equivalent to enforcing the constraintx — ¢; € F;, where F is the
friction cone for the contact point j. Given the contact point ¢;, normal vector to the
contact surface n ; and the coefficient of friction j ;, this constraint can be expressed
as a second order cone constraint or approximated by a set of linear constraints.

By this selection, substituting (4) into the criterion for dynamic balance (3) results

in .
0 L
[zwx—c»} = [M(ﬁ—g)] ' ®

From (5), the system is dynamically balanced if:

1. The angular momentum L of the whole robot with respect to its CoM is negligible.
2. M(g — X) can be expressed by a positive linear combination of the vectors ¢; —
x,j=1,...,N.

Itis worth noting that the proposed condition (5) holds in 3D without the restriction
that contacts are coplanar. Furthermore, although the assumption x — ¢; € F; limits
range of scenarios in which the simplified conditions for dynamic balance (5) can be
used, it is important to note that the restrictions are less limited and can be applied
in a larger range of scenarios compared with Zero Moment Point (ZMP) conditions.
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3 Model Predictive Control with Dynamically
Balancing Objective

3.1 Problem Formulation: Non-convex Optimization Problem

The aim of this problem is to determine the CoM trajectory for the locomotion of
a multi-limbed robot for a given sequence of contacts over a finite time horizon.
Although the number of contacts between the robot and the environment can theo-
retically be infinite, without loss of generality it can be supposed that only a finite
number of points N of the robot can be in contact with the environment. For exam-
ple, the contact points for a rectangular foot can be represented by the 4 vertices
of the foot sole. The positions of these time-varying contact points can be denoted
by ¢i(t), e2(t), ..., cy(t). A binary variable «;(¢) € {0, 1} can be defined to denote
whether ¢; (¢) is in contact («;(t) = 1) or not in contact (k; (t) = 0) with the environ-
ment at time ¢. In this work, the contact trajectory ¢;(¢) and «;(¢) are predetermined.

In this proposed model predictive control (MPC) scheme, the decision variables
are the CoM positions x(7) and the contact force multipliers o (t) Vj € {1, ..., N},
over the finite time horizon T, where ¢ € [fy, fp + T]. Discretizing the horizon
at a time step of 8¢ results in K discrete time instances, where 7 = K§¢ and
ti = to + i - 8t. Given the contact trajectory information ¢;(¢) Vj € {1, ..., N} and
ki) Vje{l,..., N}, the objective is to satisfy the translational components of (5)
by minimising

2
K

N
Ji = Z M(g —x(t;)) — sz(ti)Olj(fi)(cj(fi) —x(t;))
J

i=1

The constraints for this problem are:

Initial/current CoM position X(f) = Xg

Initial/current CoM velocity X () = Xo

Final CoM position at the end of the horizon x(tx) = Xy
Max acceleration [|X(#)|lo < @max, i =0,..., K — 1

Note that any constraints on the CoM velocity x and acceleration X can be expressed
with respect to x by the linear relationships

)k(t,-):%,i:l,...,l( ©)
i(zg:"‘(”%t_’k(t"),izo,...,l(—l. %

As a result, all constraints are either linear equality or inequality constraints with
respect to X. Thus, the MPC optimization problem to determine the CoM trajectory
over the finite time horizon can be expressed as
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min Ji ((X(fz))z e (@) )
(X(li))n(“.f(’f))i.

st X)) llse < maxs 1 =0, .
x(f) = Xo
X(to) = X
X(tg) = X5 . ¥

Remark: As it is presented here, to implement the approach as a model predictive
controller would require measuring the CoM velocity (Xy), which is not always easy.
If the contact forces are accessible, one could estimate their total wrench and use it
to obtain an approximation of M (g — X), which could potentially be used to make
the approach more robust.

3.2 An Algorithm Exploiting the Objective
Function Structure

On a computational level, the objective function J; is non-convex and it is therefore
difficult to obtain the global optimum. Finding a local minimum could be relatively
quick and provide good results, but in the next section we propose another approach
that exploits the form of the objective function. The alternating convex optimization
approach is inspired by [12], where successful results for a different application are
obtained by using an alternating sequence of convex QPs (AQPs) instead of trying
to solve head-on an optimization problem with a bilinear objective function. The
structure of function J; can be expressed as

Jy = Z e (xt), (j@);) 1%, 9)

with

N
= M(g —%(1)) — D s (1) (1) (¢ (1) — x(17)).

J

The functions ¢; are bilinear in the variables x(#;) and o (#;). Therefore, if x(t;)
are fixed, the optimization problem (8) becomes a convex QP that can be efficiently
solved. Similarly, if the «; (#;) variables are fixed, we obtain a convex QP in the x(#;)
variables. This property can be used to alternatively optimize the x(#;) and o (#;)
variables, using the solution of each step as the fixed variables of the next step.
This ensures that the objective J; decreases at each iteration of the algorithm until it
converges.

For the first step, an initial guess was made for the CoM trajectory that is consistent
with the constraints from (8), and the «; (#;) variables are optimized. The most direct
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motion from X to X is often a natural candidate for this initial guess, so in practice
this method does not require any tuning at all.

3.3 Results

The RobOptim [14] framework was used to illustrate the use of the proposed MPC
formulation (8) and alternating quadratic programs that exploit the bilinear form
(9) on CoM generation for locomotion. RobOptim provides a convenient interface
to try various optimization tools. One interesting aspect of the formulation of the
proposed MPC is that the matrices describing the constraints are very sparse, with
O (m) non-zero elements where m is the total number of variables. Thus, we chose
the IPOPT optimizer [18] that can exploit matrix sparsity. Three different scenarios
are simulated and presented:

1. 3 step walk with two foot supports (coplanar contacts);
2. 3 step walk with two foot supports and one hand support (non-coplanar contacts);
3. Jump-step with flight phase.

The 4.5 s trajectory for scenario 1 can be defined by the following sequence as
shown in Fig.2:

e 0 <t < 0.6 s: Robot initially begins in double support
0.6 <t < 1.2 s: Step 1 moving the left foot

1.2 <t < 1.9 s: Double support phase

1.9 <t < 2.5 s: Step 2 moving the right foot

2.5 <t < 3.2 s: Double support phase

3.2 <t < 3.8 s: Step 3 moving the left foot

3.8 <t < 4.5 s: Double support phase.

With a time horizon of 4.5 s and 8 = 0.1 s, the MPC scheme consists of 45
discrete steps. Without loss of generality, it should be noted that the MPC in this
setup solves for the entire trajectory, where in practice the time horizon would be

step 1 step 3
0.15r e .
01 single support phase
m
0.05- y/ ¥ §
0_
Z/m \‘
—0.05- : = T i
—0.1- < ¥
single support phase single support phase
OB TGS 03 04 05 0 07 08y 09

Fig. 2 The resulting trajectory from the MPC scheme (8) for scenario 1. In blue, the horizontal
CoM trajectory produced by our algorithm in 95 ms. In red, the projected ZMP trajectory (10)
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shorter to achieve better computational performance. The dimensions of the feet
10.45 cm x 28.3 cm and the total mass 36.66 kg correspond to the Romeo robot
[1]. Atz =0sand ¢t = 4.5 s, the CoM is set to be in the middle between the feet at
a height of 0.6 m, x(0) = [0.14 0 0.6]” and x(4.5) =[0.85 0 0.6]7, respectively.
The initial guess for the CoM trajectory follows a straight line from its initial to
its final position. Figure 2 shows the CoM motion generated after two steps of the
algorithm (i.e. one optimization of the o (#;) variables and then one optimization of
the CoM trajectory).

Figure 2 shows the resulting CoM trajectory (in blue) and the projection (in red)

Xomp = )Lzmp(x + M(g - X)), (10)

where A, > 0 is a scaling factor such that z.,, = 0. The projected point (10)
is equivalent to the ZMP point for the scenario 1 in which all contact points are
always coplanar. It can be observed that the projected ZMP lies within the foot
during single support phases. In this scenario, the results are similar to that of the
ZMP+MPC approach, since all contacts are coplanar on the ground plane. For this
scenario, the optimization problem (8) with horizon of K steps consists of 11K
decision variables, comprised of 3 for the CoM position and 8 for the two contact
supports (four contact points per support) at each time step, and 9 + K constraints
from (8). The trajectory was computed in 95 ms (on a 2.40GHz Intel(R) Core(TM)
17-4700MQ CPU) after solving two alternations of the AQP, and hence 4 convex QPs.
Executing more alternations of the algorithm showed that the cost J; quickly reached
small values, for example, more than 1000 times smaller than the initial value after 4
optimizations. Furthermore, it was observed that the algorithm had almost converged
after the 2 first optimizations.

In the second scenario, an additional contact corresponding to the right hand of the
robot on a wall is considered. The contact point is at a height of 0.6 m, and activated
only during the second step. This example demonstrates the ability of the proposed
3D condition and MPC algorithm to handle non-coplanar contacts. The resulting
trajectory in Fig. 3 shows how the proposed algorithm can handle this situation and
generated a different CoM trajectory. It could be observed from the results that the
additional hand contact point enabled the robot to avoid the sway motion to the left.

Finally, the third scenario illustrates the ability of the algorithm to determine the
CoM height without restrictions unlike the classical ZMP+MPC approach. The steps
were replaced by one jump defined by the following sequence of actions: at7 = 0.6 s
the left foot leaves the ground, and at 7 = 2.0 s the right foot leaves the ground. After
a flight phase of 0.4 s, the left foot lands at + = 2.4 s, and then the right foot lands at
t = 3.8 s. Remark: in this scenario the a,,,, bound must be at least equal to the norm
of the gravitational acceleration. Figure 4 shows the CoM trajectory produced after
2 optimizations. This example clearly shows the benefits in relaxing the fixed height
trajectory from the ZMP+MPC approach, such that the CoM trajectory generation
is able to produce a jump motion in the z-direction.
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Fig.3 The resulting trajectory from the MPC scheme (8) for scenario 2 with hand support. In blue,
the horizontal CoM trajectory produced after 2 steps of the algorithm (in 96 ms). In purple, the
trajectory produced after 6 steps of the algorithm (in 412 ms). These trajectories are almost exactly
the same, which shows that the convergence is fast
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Fig. 4 On the left the horizontal CoM trajectory generated (in 176 ms) for the jump scenario. On
the right the evolution of the CoM coordinates during the flight phase

4 Model Predictive Control with Dynamically Balancing
Constraints

4.1 Problem Formulation: Non-convex Quadratically
Constrained Quadratic Program

With the same aim of determining the CoM trajectory as Sect. 3, the problem in this
section will be formulated by considering the dynamically balanced condition (5)
as constraints over the time horizon. Furthermore, the objective to minimise is the
tracking error for a reference CoM trajectory X, (#). The reference CoM trajectory
is pre-planned based on the desired motion. In this MPC problem, the decision
variables are the CoM jerk vectors X (¢;), Vi € {1, ..., K}. The convex objective of
the problem is to minimise
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K
5= 01 Ix@) — %) + Qx [K)IP

i=1

where Q) and Q, are the relative weights between the tracking and jerk terms,
respectively. Note that the relationship between the CoM jerk X and the CoM position
X, velocity X and acceleration X is linear [19] in the form

X(ti41) x(#;)
X(tiy1) | =A| X(t) | + BX(1) .
X(ti1) X(%)

As a result, the objective and all constraints can be expressed with respect to the
CoM jerk. As presented in Sect. 2, the geometrical meaning of the constraint

D ajc;—x) =MEg—%) ;>0 (11)

is that the vector M (g — X) must lie within the positive cone of the vectors (¢; —
x)Vj € {l,..., N}. Such constraints will be derived in the following for the case of
one and two supports in contact.

As shown in Fig. 5a, when the system is in single support it will be assumed that
there are four contact points. The position of the vertices for the rectangular contact
surface relative to the center of the contact ¢; can be represented by ay, a, a3 and
a4. For the single support, the vector M (g — X) is inside the cone produced by the
vectors (€; +a; —X,¢; +a —X,¢; +a3 — X, ¢; + a4 —X) = (W, Wo, W3, Wy) if
the following triple products are positive:

Wi XW-(g—X)>0, wyxw3-(g—X)>0

W3 X Wi (8—%) >0, waxw-(g—X%X)>0. (12)

For the case of double support contacts, the expression of the convex cone would
be non-trivial if each support was assumed to consist of 4 contact points. This is
because the convex cone would be dependent on the locations of each support.

Fig. 5 The constraints
required to achieve dynamic
balance for: a when one
support is in contact with the
environment k;, = 1,kp =0
and b when two supports are
in contactk; = 1, kg =1
CRr

as ap

ay

(a) Single support contact (b) Double support contact
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Furthermore, this would increase the number of surfaces of the convex cone for the
vector M (g — X) to be checked, hence increasing the number of constraints. How-
ever, by assuming that each contact support only has two contact points, at the top
a, and bottom a,, then the resulting convex cone shown in Fig. 5b only consists of
four surfaces and is a strict subset of the 4 contact point convex hull regardless of the
support location. For the double support, the vector M (g — X) is inside the cone
produced by the vectors (¢, +a; —X,¢; +a, —X,Cg +a, —X,Cp+a —X) =
(w1, wa, w3, wy) as with the conditions in (12). In a similar manner, constraint equa-
tions for extra scenarios with additional contacts could be considered. For both math-
ematical and practical considerations, it will be assumed that contacts do not overlap,
such that the contact points in Fig. 5b can form a convex cone.

It can be observed that the constraints (12) for both single and double support are
non-convex quadratic inequality constraints if the contact trajectories are known. As
a result, the MPC optimization problem to determine the CoM trajectory over the
finite time horizon can be expressed as

K
min > 01 IXG) = x-@)]* + 02 1K)
=

st. (12)fork; =1, k, =0Va # j
(12) fork, =1, kg =1. (13)

The optimization problem (13) is a non-convex quadratically constrained quadratic
program (QCQP) with a convex objective function.

4.2 Feasible Point Pursuit Successive Convex Approximation

On a computational level, the objective function J, has non-convex constraints and
therefore it is non-trivial to obtain a feasible solution, let alone the global optimum.
The feasible-point-pursuit successive convex approximation (FPP-SCA) [13] is an
effective approach that solves the non-convex QCQP as a succession of QP convex
approximations. Considering the non-convex QCQP of the standard form with the
decision variable u € R”

min u’ Agu+ qju
st. w'Aqu+qlu<b, k=1,...,L, (14)

where Ay € R™*" is a positive semidefinite matrix, if any of Ay € R"*" from the L
constraints are not positive semidefinite, then (14) is non-convex and the problem
is N P-hard in general. By performing a linear restriction about any point z;, the
FPP-SCA approach aims to solve the following problem
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T T 2
A A E
min u o +qpu+ S

k
st. wAfu+ Qzf Ay +q)u < b +z] Az + s
x>0, k=1,...,L (15)

where A} and A; are the positive semidefinite and negative semidefinite matrices
from the decomposition A; = A,‘: + A, . The terms sy are slack variables that repre-
sent the violation of the k-th quadratic constraint and A >> 1 is a constant that gives
priority to minimise the constraint violation. The vector z; € R” is the initial guess
vector at iteration i. In the FPP-SCA approach, the convex QCQP (15) is repeated,
where the variable z;;; is set as the optimal solution u? at iteration i.

By using the FPP-SCA approach to solve the MPC problem (13) with horizon of
K steps, at each iteration of FPP-SCA the convex QCQP problem consists of 7K
decision variables, comprised of 3 for the CoM jerk and 4 constraint slack variables at
each time step, and 4 K quadratic constraints (12) at each time step. The initial guess
Zo can be any arbitrary vector, and in the simulations the zero vector was chosen. By
solving a succession of (15), it was shown in [13] and in the results of Sect. 4.3 that
the algorithm converges within a few successions.

4.3 Results

To demonstrate the MPC formulation (13), the CoM jerk trajectories were determined
using the FPP-SCA for the three following scenarios: scenario 1 from Sect.3.3,
scenario 2 from Sect. 3.3, and walking up 2 steps of a staircase with the same hand
support as in scenario 2 from Sect. 3.3. Scenarios 1 and 2 allow for a direct comparison
between the trajectories resulting from the two different MPC schemes. The number
of successive QCQPs solved was set as 5, however it was observed that convergence
typically happened in less than 3 successions. The reference trajectory for both
scenarios was set to be simply the forward linear motion of travel at a height of 0.6
m. The values for objective function weights in (13) and (15) were set as Q| = 1,
0, = 10~* and A = 10"

The trajectory for scenario 1 is shown in Fig. 6. From the projected ZMP points
using (10) it is clear that the produced CoM trajectory satisfies the 3D dynamically
balanced criterion. To maintain good tracking performance of the reference trajectory
for y = 0, it is expected that the projected ZMP would be as close to the boundary
of the single stance (SS) support region as possible. It can be observed that this MPC
scheme generated very similar CoM trajectory results from Fig. 2.

As with Fig. 2, the natural artifact of left-right swaying motion can be observed
in Fig. 6 due to the existence of single support instances. As such, a hand contact
was included (scenario 2) during step 2 of the motion. From the resulting trajectories
shown in Fig.7 (on the left), the MPC scheme generated a very similar, in fact near
identical, behaviour to that in Fig.3. The extra hand contact allowed the CoM to
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Fig. 6 The resulting trajectory from the MPC scheme (13) for scenario 1. In blue, the horizontal
CoM trajectory and in red, the projected ZMP trajectory (10) since all contacts are coplanar
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Fig. 7 On the left the resulting trajectory from the MPC scheme (13) for scenario 2 with hand
support. In blue, the horizontal CoM trajectory and in red, the projected ZMP trajectory (10). It can
be observed that the results are similar to that from Fig.3. On the right the resulting z-direction
trajectory from the MPC scheme (13) for scenarios 1 and 2. In black, the CoM trajectory and in
red, the reference height trajectory. The results show that the trajectory successfully lowers from
the initial height zo = 0.75m to the reference height 0.6 m

better track the reference trajectory as there is no single support phase sway required
during step 2. To show the tracking of the height trajectory, the initial height of the
CoM was set to be 0.75 m. Figure 7 (on the right) shows that the MPC CoM planner
was able to quickly converge to the desired reference height of 0.6 m. As such, it can
be claimed that for this scenario, the FFP-SCA formulation was able to achieve both
feasibility of the dynamically balancing constraints and good tracking performance.

Finally, scenario 3 demonstrates the ability for the proposed MPC formulation
to solve more complex behaviours, such as walking up stairs while using the hand
to hold onto the staircase rails. The steps of the stairs were set as 15 cm high and
the reference height trajectory for the CoM was set to be 0.6 m above the surface
of stair steps. Figure 8 (on the left) shows the x and y direction (top-down view)
CoM trajectories determined by the MPC. It can be observed that the CoM results
for the x and y directions are very similar to that of walking on a flat ground as
shown in Fig.7 (on the left). However, the resulting z trajectory shown in Fig. 8 (on
the right) shows significant differences with scenario 2. In addition to satisfying the
dynamically balanced constraints for the locomotion on the non-coplanar contacts,
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Fig. 8 On the left the resulting trajectory from the MPC scheme (13) for scenario 3 with hand
support walking up a staircase. The horizontal CoM trajectory is shown in blue. It can be observed
that the results are similar to that from Fig.7. On the right the resulting z-direction trajectory from
the MPC scheme (13) for scenario 3. In black, the CoM trajectory and in red, the reference height
trajectory. The blue lines show the left and right foot trajectories indicating that the robot is walking
up the staircase. The results show that the trajectory successfully tracks the desired height above
the staircase platform

the desired height trajectory represented by the red line in Fig. 8 (on the right) was
able to be tracked. This example shows the robustness of the formulation and the
QCAQP solver to various different scenarios.

5 Discussion

To demonstrate the advantages and use of the 3D model for dynamically balanced
locomotion in Sect. 2, two different example ways to use the criterion for MPC gen-
eration of CoM trajectory were presented. Both approaches have a fundamentally
common point: the generalisations to allow for 3D non-coplanar multiple contacts
naturally result in non-convex problems. However, regardless of the use of the crite-
rion as an objective or constraint, the nature of the criterion is that it is in a bilinear
form that can be converted into a convex quadratic function by restricting some vari-
ables. Both MPC approaches take advantage of this and then solve a succession of
convex optimization problems. This is important in the proposed MPC schemes to
ensure that it is still possible to implement them on a robot in real-time. Compar-
ing between the two MPC schemes, it can be observed that using the dynamically
balancing criterion in the objective function results in a problem with more deci-
sion variables than treating it as a constraint (11K vs. 7K, where K is the horizon
length). However, the number of constraints is significantly less in return (9 4+ K vs.
4K), and the resulting problem is only a Q P rather than a QC Q P. As a result, the
approach from Sect. 3 is expected to be more computationally efficient than the one
from Sect. 4. But the constraint MPC approach provides a stricter notion of feasibility
to dynamically balanced locomotion, and is less concerned with optimality.
Finally, it is also worth noting that compared to the traditional ZMP+MPC
approach, several restrictions have been removed, such as coplanar contacts and
predetermined height trajectory. The interesting point is that if any of these are



Effective Generation of Dynamically Balanced ... 215

relaxed, the problem complexity is identical to that if all are relaxed. As such, the 3D
formulation proposed relaxes many conditions from the ZMP+MPC approach while
still maintaining a balance with the computational cost of the resulting method. As
with the ZMP+MPC approach, the focus is typically more on generating dynami-
cally balanced motion rather than optimal gait behaviour. Hence, the development
of methods such as AQP and FPP-SCA provides the opportunity to generate feasible
motion for more general locomotion scenarios in real-time control.

6 Conclusion and Future Work

We proposed a novel model for dynamically balanced trajectory generation, more
general than the classical IPM+ZMP approach, but simple enough to enable fast
computations of CoM trajectories through an iterative resolution of convex QPs or
convex QCQPs. This claim is supported by the low number of decision variables
and constraint equations shown in the problem analysis. The generalizations gained
from the proposed model and MPC approach include the ability to allow for multiple
non-coplanar contacts and not having to predefine the CoM height trajectory. The
results of the two proposed MPC approaches support the belief that the proposed 3D
model of dynamically balanced locomotion is a good candidate for real-time model
predictive control for multi-contact locomotion.

In future work, we will focus on performing experiments on a real humanoid
robot, and address the following points:

1. Both the AQP and FPP-SCA approaches are observed to work well in practice and
converge quickly. However there is no mathematical guarantee on the optimality
of the solution, hence better understanding and analysis of such methods on the
particular structure of the proposed MPC formulations should be more precisely
studied.

2. In the optimisation of the CoM trajectories, the contact locations ¢; could also
be optimized without losing the convex QP structure. This allows the potential to
not only compute the CoM trajectory, but also optimised contact locations.
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The Yoyo-Man

Jean-Paul Laumond, Mehdi Benallegue, Justin Carpentier
and Alain Berthoz

1 Introduction: Legs Versus Wheels?

Goal oriented motion is a distinguished character of living beings. A stone does not
move by itself. Within the living systems, displacement is what makes the difference
between plants and animals. Animals make use of fins in the water and wings in
the air. On land, apart from exceptions as crawling snakes, most of the animals are
equipped with legs. Legged locomotion is based on rotating articulated limbs. The
rotation of the limbs around the contact points on the ground transfers the body
from a position to another one. Rotation then appears as a solution to translate an
articulated body. If nature applies this principle to legged animals, it is surprising that
it does not push this principle until the wheel discovery. Wheel has been invented
and developed by humans.! Our cars are equipped with wheels and not with legs.

The magic of the wheel is to transform a rotational motion into a translational
one as soon as the wheel touches the ground. In this paper we intend to reveal the
presence of a virtual wheel as condensing all the apparent complexity of the bipedal
locomotion.

IThe statement has to be nuanced: rotating engines exist at molecular scale and some insects
are able to shape objects as spheres to move them.
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The motivation is twofold. From a biomechanics and neuroscience perspective we
want to explore the synergies of human locomotion: how the walking body reveals
motion invariants beyond the well-known arm-leg coordination (Fig.1)? From a
robotics perspective [32] we seek to fill the gap between two opposite approaches
of humanoid locomotion control. The most robust one is based on the control of the
center of pressure between the feet and the ground allowing humanoid robots to walk
on rough terrains. The second approach is based on clever mechanical designs that
take advantage from the gravity. In the latter case the locomotion is much less energy
consuming; however it is very fragile with respect to the ground perturbations.

The Yoyo-Man project intends to contribute to new mechanical and control
designs for bipedal walkers inspired both by a better understanding of human walking
and by the current research on passive walkers.

Figure 2 illustrates the rationale underlying the project. The rationale is twofold.
From a mechanical perspective, a wheel rotating at the extremity of a string (i.e., a
yoyo) induces its own translation as soon as it touches the ground. Legs are made
of three rotating segments (foot, shank and thigh). A first question is addressed in
Sect. 3: is there a locomotion geometric reference center to describe the motion of
the foot independently from the motion of the shank and the thigh? On the other
hand, from a neuroscience perspective, it is known that humans stabilize their head
while walking. The second question we address in Sect.4 is the following one: is
there some mechanical benefit to equip passive walkers with a stabilized head on the
top of them, i.e. a locomotion control center?
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Fig. 2 The Yoyo-Man: The hand controls the height of the rotating wheel. The wheel translates
as soon as it touches the ground. The Yoyo-man is a human walker model made of the geometric
center of a virtual rotating wheel together with a control center located at the head

2 Origins of the Rationale

2.1 Mechanical Basics of Bipedal Walking

Anthropomorphic systems are made of a tree of articulated rigid bodies linked
together by rotational joints. This is true for all humanoid robots. This is also true for
human at first glance, if we neglect mechanical scapula or kneecap subtleties. Joint
positions define the system posture. The system configuration is made of all the joints
together with the three placement parameters that give respectively the position and
the orientation of the system on the ground. From a control viewpoint, muscles or
motors operates in the posture space. There is no direct control of the three placement
parameters. In that sense, humans and humanoid robots are underactuated systems.
What is called locomotion is the process that modifies the posture of the system in
such a way the reaction forces with the ground induce the variation of placement
parameters.

Bipedal walking is a cyclic process sequencing two phases: single support when
only one foot is touching the ground and double support when both feet are touching
the ground. This physical description holds for all bipedal walking systems. The
cycle of locomotion is then made of four phases after which it starts again from
(almost) the same starting posture. The stability of the locomotion is reflected by the
attractiveness of a periodic orbit called limit cycle. It is captured by the so-called
Poincaré map [16]. In our context, the Poincaré map is the intersection of the orbit
of the periodic walking motion with the posture space at a same instant of the cycle,
e.g., when the left foot touches the ground (Fig. 3).
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e
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Fig. 3 Locomotion cycle: Locomotion is a cyclic process sequencing the same postures alter-
natively (left). The stability of the underlying dynamical system is captured by the Poincaré map
(right)

2.2 Basics in Humanoid Robot Control

At each phase of the cycle the pressure applied by the surface of feet on the ground
may be concentrated onto a single point: the center of pressure. When both the ground
and the feet surfaces are flat, the center of pressure coincides with the so-called zero
moment point (ZMP) introduced in [30]. As soon as the ZMP remains within the
support surface, the system does not fall.

The property of the ZMP is at the origin of a popular locomotion control scheme.
The ZMP and the center of mass (CoM) are linked together by nonlinear equations.
The control of the CoM is easily derived from the control of the posture. So, in
theory, it is possible to control the placement of the ZMP within the surface sup-
port. However the nonlinearities linking CoM and ZMP variables make the problem
computationally challenging. Under some hypothesis the equations are linear and
the problem becomes easier. This is the case when the center of mass remains at the
same altitude. Maintaining the CoM at the same altitude is made possible thanks
to the redundancy of the anthropomorphic body. The hypothesis is at the origin of
the cart-table model introduced in [19] (Fig.4). The foundations of such control
schemes are based on the knowledge of the foot steps to be performed. The literature
refers to the so-called preview control [31]: locomotion consists in planning the foot
placement in advance.

Passive walkers are designed from a completely different control perspective [9].
They are minimally actuated. The mechanical design is devised to take advantage of
the gravity and to convert potential energy into kinetic energy. In its simplest version,
the passive walker is made of two articulated legs connected to the hip [10]. It can
be modeled as a compass whose gaits induced a motion of the hip that is the same
as the motion of the center of a rimless wheel. At that stage, it is noticeable that the
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Fig. 4 Cart-table: The cart-table model works under the hypothesis that the CoM moves on a
horizontal plane. The hypothesis can be applied to control the locomotion of humanoid robots
(left). Figure 1 suggests it does not hold for humans (right)

Fig. 5 Rimless wheel: At a first glance, the center of a rolling rimless wheel roughly accounts for
the motion the hip

motion of the center of a rimless wheel seems to be a rather good approximation
of the hip motion in human walking (Fig.5). The analogy is part of the Yoyo-Man
project rational.

2.3 Neurophysiology Basics in Human Walking

Neurophysiologists have observed that humans and animals stabilize their head when
moving (see an illustration in Fig.6). Head stabilization facilitates the fusion of
visual and vestibular information. It offers a consistent egocentric reference frame
for motion perception for locomotion [23]. In the Yoyo-Man project we argue that
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Fig. 6 Sketch of the
superimposition of walker
positions in different b
phases of the cycle. The -
superimposition is achieved
so that the head is in the
same position. The head is
stabilized to keep constant
orientation displayed by the
dotted blue line. (Inspired
by a drawing in [23])

head stabilization also contribute mechanically to the balance when walking. In depth
description of the sensory cognitive benefits of head stabilization and preliminary
results about its mechanical advantages are presented in Sect. 4.

Do humans plan their steps in advance? Sometimes, they obviously do, when the
ground is too uneven. However most of the time, they walk without thinking, i.e.
without consciousness of any planning phase computing in advance where they have
to place their feet. How does walking in the street differ from walking on a mountain
path? On the top part of the pavement depicted by Fig. 7, we have to anticipate what
stones will next be used for stepping. On the other hand, walking on the pavement at
the bottom part of the figure does not require any anticipation of the foot placements.
In which context do we start watching our steps? Sect. 4.4 addresses the question by
introducing the notion of ground texture.
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Fig. 7 Pavement in Roma:
two textured grounds. In
the bottom part, we walk
without thinking, in the
upper part, one has to watch
his/her steps

3 In Search of a Geometric Center for the Yoyo-Man

This section brings to light the geometrical similarity between the rimless wheel and
the human body during walking (Fig.5). While rolling on the floor, the center of
the rimless wheel describes a sequence of circle arcs whose radius correspond to
the stand beam. From a local viewpoint, this statement can be rephrased as follows:
the contact point describes an arc of circle around the center of the rimless wheel
during each supporting phase. In the case of human body, does there exist such a link
between the foot touching the ground and some point that plays the role of the center
of some rimless wheel? As far as we know, this question has never been addressed in
human motion modeling. At first glance, the articulation point between the thighbone
and the pelvis, i.e. the hip center, would be a good candidate to play the role of the
locomotion geometric center. This is not the case. In this section, we show both that
the proposed rimless wheel model holds for human walkers, and that the center of
the rimless wheel is the center of mass (CoM) of the walking body.

3.1 Experimental Setup

The experimental setup is based on an existing motion database used in [22]. It is
composed of 12 participants (5 women and 7 men, 32.8 £ 5.9 years old, 1.71 £ 0.09
m, 65.3 + 10.1 kg) who have been asked to walk straight at three different speeds
three times each: natural, slow, and fast walking speed. Subjects were equipped
with 41 reflective markers, with a standard markers placement allowing to compute
the center of mass trajectory by means of anthropomorphic tables [12]. Finally, the
segmentation of gait into simple et double support phases was achieved by using the
methodology described in [15].
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Fig. 8 Illustration of the right foot equipped with the heel, toe and ankle markers and
Poulaines of those markers along 8 steps. None of the poulaines describes a circular path relatively
to the pelvis center

In our study, we are interested by natural locomotion. So, from the database we
extracted the trials dealing with natural velocity. The the total number of analyzed
trajectories is 12 x 3 = 36.

3.2 Identification of the Foot-CoM Relationship

Poulaine® is a French word designating the trajectory of the anatomic feet markers
(e.g. ankle, heel, toe) relatively to the geometric center of the pelvis and expressed
in the world frame. For instance, Fig. 8 illustrates the poulaines of the heel, toe and
ankle markers respectively.

Atthe first sight, none of the aforementioned anatomic markers describes a circular
trajectory relatively to the pelvis center.> At most, some poulaines have a temporally
(i.e. during a short period) a constant curvature, but not during all the stance phase.
Our approach consists in moving the reference frame from the hip joint center to the
CoM. We then show that a particular convex combination of the heel, ankle and toe
markers of the stance leg describes a circular trajectory whose center is very close
to the center of mass itself.

Choosing the CoM as the center of the reference frame and considering a con-
vex combination of the toe, ankle and heel markers are supported by the following

2We did not find the exact translation of this word in English.
3In biomechanics, the pelvis center is considered as the root node from which the body segment
tree is built.
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rationale. Firstly, the shift from the root marker to the center of mass allows us not
to consider one precise segment (i.e. the root) but to take into account the overall
movement of the human body. Secondly, by choosing a convex combination of the
three aforementioned markers, we ensure that this particular point has an almost zero
velocity during the stance phase.* It can therefore be treated as the pivot point of the
rimless wheel.

3.3 Methodology

Each walking trial is composed of 10 steps. We divided each of these trials into
phases of single and double support phases. Then we introduce a virtual marker
at the convex combination of toe, ankle and heel markers by selecting a particular
convex combination for each subject, we fitted in the least-square sense the best
circle passing through this virtual marker during 85% of the single support phase.
On average, the root mean square error of the fitting part was around 2.5 mm. Figure 9
illustrates the procedure by showing the fitted circle having a center (yellow marker)
very close to the CoM (red marker) and passing on average by the convex combination
(in green). The other curves correspond to the anatomic markers of the foot, the hip
joint center and the pelvis center.

3.4 Results

For each subject, we computed the covariance matrix of the set of circle center
positions relative to either the center of mass or the hip joint center. From the inverse
of both covariance matrices, we define two distance metrics centered on the mean
position of the circle centers and relative to the both reference points: the center of
mass and the hip joint center. At the end, we obtained two dimensionless distances
which discriminate if the two reference points belong to the circle center distributions
or not.

Figure 10 summarizes the study over the 12 subjects. For the two metrics, the
bar errors plotted at the top of each orange or blue boxes of Fig. 10 corresponds to
the confidence interval [—1; 1]. While the height of the boxes corresponds to the
dimensionless distance between either the center of mass or the hip joint center and
the circle center distributions. We can remark that for all subjects, the CoM lives in the
confidence interval of the circle center distributions. It is never the case concerning
the hip joints center. Those observations allow us to conclude as following: first, there
exists a similarity between the rimless wheel and humans during nominal walking

“It is worth to mention at this stage that, due to the rolling of the foot on the ground, there is no
zero velocity point which is fixed in the feet during the stance phase.
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Fig. 9 The virtual marker location and its trajectory relative to the CoM. The virtual marker
(i.e. the convex combination of heel, toe and ankle markers) follows a circle whose center (yellow
point) is close to the CoM (red point)
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Fig. 10 Dimensionless distance between the fitted circle centers and the CoM or the hip joint
center. For all subjects, the center of mass belongs to the distribution of circle centers. This is not
true in the case of the hip joint center

gait and second, the center of this rimless does not correspond to the geometric pivot
center (i.e. the hip joint center) but rather to the center of mass itself.

Finally, it is worth mentioning that our results hold only in the case of nominal
gaits (i.e. walking gait with natural comfort velocity). Indeed, in the case of slow
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or fast walking velocities, we found that there is no convex combination of markers
belonging to the stance foot which has a circular path. Some other studies have been
focused on formulating a generic model describing the center of mass trajectory for
a large class of walking speeds [17]. Nonetheless, the proposed model overestimates
the vertical displacement of the center of mass while it fits well lateral motions.

4 1In Search of a Control Center for the Yoyo-Man

4.1 A Convenient Center of Control

One important property of the human steady gait dynamics is that it takes profit from
the natural passive dynamics of the body. The passive dynamics is the dynamics
of the body when no actuation is present, the robot is then subject only to gravity,
external forces and passive elasticity and friction of the joints. The body morphology
(especially the hip and knee joints [10]) allows the emergence of most prominent
features of walking dynamics. The benefits of this structure is to enable the gener-
ation of walking motion with high energy efficiency and low control frequency [1].
Furthermore, the control of steady gait has been investigated to suggest that it hap-
pens in a very low level of the brain, in a spinal level, consisting in a combination
of a simple rhythm generator and reflexes to external perturbations [11]. The steady
gait seems to require minimal muscular efforts and cognitive involvements: we walk
without thinking about it.

However, as we said earlier, neurophysiologists have observed that humans stabi-
lize actively their head when moving, including walking on flat surfaces. By stabiliza-
tion, we mean that the head tilt is controlled to remain relatively constant compared
to other limbs of the body. Head stabilization is a task prone to dissipate energy since
it works almost always against the motion. So why do humans stabilize their head?

The head carries most of the sensory organs, and specifically the visuo-vestibular
system, responsible for a great part of balance estimation, spatial localization and
motion perception. It can be understood then that stabilizing the head facilitates the
fusion of visual and vestibular information. Recent studies show also that head stabi-
lization improves the accuracy of estimation of vertical direction by vestibular-like
inertial sensor [14]. Head stabilization improves perturbation detection and safety
supervision. Moreover, head tilt conservation offers a consistent and stable ego-
centric reference frame for perception and generation of motion in general [6] and
locomotion in particular [18, 23].

These explanations fit with clinical observations on humans. The unsteadiness and
the loss of balance resulting from head-neck system sensorimotor disturbances have
been widely documented [7, 20, 25, 29]. It has even been suggested that the impair-
ments in the neck somatosensory inputs and sensorimotor control are as important for
balance as a lower-limb proprioception loss following a knee or an ankle injury [27].
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Therefore, we can consider that the head is the convenient center of locomotion
control: even when we happen to walk without thinking, it offers a comfortable
frame with stable dynamics and there takes place the perception, the cognition and
the generation of gait.

However, the head is a relatively rigid limb, representing 7% of the total mass
of the body, and occupies the top 12% of its height. That means a non-negligible
deal of the inertia lies in there. Therefore, head stabilization which actively modifies
the motion of the head, should have a noticeable impact on the dynamics of the
gait. This effect may be negative, perturbing the walking dynamics and requiring
the rest of the body to compensate for it. Alternatively it can be part of the desired
dynamics, enhancing balance and improving coordination. In few words: does the
head-stabilization by itself contribute to war effort against falling?

4.2 The Model of Steady-Gait Head-Body Dynamics

Based on mechanical concepts from passive robot walkers [8, 9], we introduce a
walking simulation scheme where two simple walking mechanical models are then
compared. These models include improvements to classical compass-like walkers,
by adding torso, interleg actuation, spring-damper at the feet, and rough terrains.

Figure 11 illustrates our mechanical model. It operates in the sagittal plane. It is
made of five articulated rigid bodies: two bodies for the (knee-free) legs, one body
for the torso, one for the neck and one for the head. Note that the neck is modeled
as an articulated body and not as a simple joint. This setting reflects the property
of the head-neck system to have two centers of rotation in the sagittal plane: one
at the base of the neck and the other at ear level [28]. The mass distribution and
the limb lengths are anthropometric (e.g., [3]). In the first of our two models, the
walker has a rigid neck and tends to stabilize the torso upright. In the second one
the neck is modeled as a limb of two joints and the walker tends to maintain the
head direction constant. Both walker models are inspired by the mechanical design
of passive walking robots [9].

Indeed, we do not aim at modeling perfectly the human gait. Up to now, only simple
dynamical models allow to reproduce locomotion gaits [21]. Dynamical modeling
of human walking is out of reach of all current simulators. Nevertheless the energy
efficiency of these robots, the low-frequency of their control and their natural limit-
cycle dynamics are common characteristics with human locomotion [1, 16].

Detailed technical description of the models is presented in [5].

4.3 Estimating Balance: Ground Textures and MFPTs

Due to difference in control, the whole body dynamics of the walkers is different.
However, both dynamics are balanced on flat surface and converge to a stable limit
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Fig. 11 A representation of the models we simulate. The A model is the same structure subject
to the constraints « = B = y. The B model has stabilized neck joints. The rough terrain is modeled
with a slope change at each step

cycle. Therefore both walkers can walk indefinitely on flat surface without falling.
However, the difference between the dynamics should lead to a difference in balance
performances. This difference should appear in the presence of external perturba-
tions. In our context the perturbation we study is ground fexture, because it is still
today a challenging problem, especially for passive-dynamics walkers.

A textured ground is a ground for which the unevenness follows a probability dis-
tribution. For our 2D walker, we model it by changing the ground inclination at each
step, following a centered Gaussian law. The standard deviation of the probability
distribution define the degree of ground unevenness (see Fig. 11).

Byl and Tedrake [8] present a metrics which is particularly suitable for limit
cycle walkers on uneven ground. This metrics is derived from classical analysis of
metastable systems and is called Mean First Passage Time (MFPT). Limit-cycle
walking is then considered as a metastable system, and MFPT is the mean number
of steps the walker makes before falling. This metrics has the property to explore all
the reachable dynamics of the walker subject to perturbations, to take into account
the repetitive property of ground texture, and to provide a synthetic estimator easy to
comprehend intuitively. However, the computation of MFPTs may be time consum-
ing using a naive approach, especially for good performance walkers. To solve this
problem, we developed then an optimized algorithm to compute MFPT in reasonable
time for complex walking systems [4].

We computed then MFPTs for both models on several ground textures. And we
present the results hereinafter.
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Fig. 12 Mean number of steps with an ideal orientation sensor. Mean number of steps of the
walker models equipped with an ideal orientation sensor on different textures of the ground. By

texture we mean the standard deviation of the ground slope. MFPTs are displayed in logarithmic

scale. For higher ground roughness, MRPT of both models drops such that they need to change
their walking control: watching their step becomes necessary

4.4 Results

On flat terrain, and for both control models, it has not been possible to find an
upper bound on MFPTs (see Fig. 12). However walker performances greatly differ
as soon as a slight texture change appears. The phenomenon can be seen from the
example of 0.01 rad standard deviation. In this case, MFPT of the rigid neck model
is 23 steps, while head stabilization guarantees MFPT of more than 3 million steps!
This performance improvement persists as the ground texture increases, even if the
difference declines. This is purely due to mechanical effects, i.e. to the contribution
of the head motion to the balance of the gait.

These results may be seen differently. The head stabilization curve of Fig. 12 can
be seen as a shift to the right for the rigid neck curve. In other words, head stabilization
enables to increase significantly the range of ground textures the walker can handle
with the same balance performances.

As this level we may conclude that head stabilization may improve substantially
the dynamic balance of walking systems. Head stabilization is an heuristic answer
to the question of taking advantage of the head mobility during walking. Indeed,

while it is likely not the optimal control of the neck regarding balance, it is a very
simple control that produces a complex behavior with significant benefits. Additional

explanations for the origin of this effect, including its impact on energy consumption
can be found in [5].
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5 Conclusions

The preliminary results presented in this paper supports the intuition that bipedal
walking can be understood as a wheel rotating around a fixed point (the CoM) while
being controlled by a stabilized mass on top of it (Fig.2). What we introduced as
the Yoyo-Man model then appears as a promising route to explore both to elucidate
the synergies of the human locomotion and to design new mechanical and control
architectures for humanoid robots. Here are the current research directions we are
exploring:

e First, we have seen that the rotating rimless wheel model is a rather good model
of human locomotion as soon as the center of the wheel is located at the center
of mass, and surprisingly not at the joint between the hip and the thighbone. The
result holds in the sagittal plane. However the model of the foot we have introduced
from the three markers on the heel, the toe and the ankle, does not account for the
continuous roll of the feet on the ground. To overcome these limitations, a deeper
observation of the CoM motion in the 3-dimensional space deserves to be pursued.

e Second, we have shown that a simple walking compass equipped with a stabilized
articulated mass on top of it is more robust to ground perturbations than a compass
equipped with the same but non-articulated mass. The result opens new perspec-
tives in the design of humanoid robots based on passive dynamic principles [2].
Why not equipping future humanoid robots with controlled articulated heads?

e Third, after the contribution of the head stabilization in sensing [13], the mechan-
ical contribution of the head stabilization to bipedal walking enhances the role
of the head in anthropomorphic action control. Furthermore the head yaw angle
anticipates body yaw (shoulder and trunk) and shift in locomotor trajectory [18,
26]. This behavior has been successfully implemented to steer a humanoid robot
by its head [24]. However the implementation remains based on a classical preview
control of the ZMP. The Yoyo-Man intends to truly “walk without thinking”. It
challenges us to devise new locomotion controllers that would be free of any step
anticipation and even free of contact force sensors.
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Quantifying and Optimizing Robustness
of Bipedal Walking Gaits on Rough Terrain

Cenk Oguz Saglam and Katie Byl

1 Introduction

Quantifying robustness of legged locomotion is essential toward developing more
capable robots with legs. In this work, we study underactuated biped walking models.
For such systems, various sources of disturbance can be introduced for robustness
analysis. While keeping the methods generic, this paper focuses on two-legged loco-
motion and studies stability on rough terrain, or equivalently, robustness to terrain
disturbance.

An intuitive and capacious approach is to use two levels for controlling bipedal
locomotion. Fixed low-level controllers are blind to environmental information, such
as the terrain estimation. Given environment and state information, the high-level
control problem defines a policy to choose the right low-level controller at each step.
Our previous work has always assumed a fixed set of low-level gait controllers exist
and focused on the high-level control design [1]; in this work, we finally address the
more fundamental issue of tuning a particular gait (low-level controller) itself.

For optimization of low-level control for stability, quantification is a critical step.
In many approaches to biped walking control, stability is conservatively defined as
a binary metric based on maintaining the zero-moment point (ZMP) strictly within
a support polygon, to avoid rotation of the stance foot and ensure not falling [2].
However, robust, dynamic, fast, agile, and energy efficient human walking exploits
underactuation by foot rolling. For such robots, including point-feet walkers, local
stability of a particular limit cycle is studied by investigating deviations from the
trajectories (gait sensitivity norm [3], Hy, cost [4], and L2 gain [5]), or the speed of
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convergence back after such deviations (using Floquet theory [6, 7]). The L2 gain
calculation in [5] was successfully extended and implemented on a real robot in [8].
Alternatively, the largest single-event terrain disturbance was maximized in [9] and
trajectories were optimized to replicate human-walking data in [10].

Another approach to robustness quantification begins by stochastic modeling of
the disturbances and (conservatively) defining what a failure is, e.g., slippage, scuff-
ing, stance foot rotation, or a combination of such events. After discretizing the
disturbance and state sets by meshing, step-to-step dynamics are studied to treat the
system as a Markov Chain. Then, the likelihood of failure can be easily quantified by
calculating the expected number of steps before falling, or mean first-passage time
(MFPT) [11]. Optimizing a low-level controller for MFPT was previously imprac-
tical due to high computation time of MFPT for a given controller. However, our
work over the years now allows us to estimate this number very quickly, and in turn,
various low-level controllers can be optimized and benchmarked.

The rest of this paper is organized as follows. The walker model we study and
the terrain model we employ are presented in Sect.2. We then present two low-level
control schemes in Sect.3: (1) A hybrid zero dynamics strategy, with trajectories
based on Bézier polynomials and joint-tracking via PD control as suggested in [12],
and (2) sliding mode control with time-invariant piece-wise constant joint references
adopted in [1]. Section 4 shows the discretization of the dynamics. Tools for generat-
ing and working on a Markov chain are presented in Sect. 5. Section 6 gives results,
including both performance benchmarks, using the MFPT metric, and also tables
documenting the optimal control parameters found using our algorithm. The latter
is of particular use to anyone wishing to repeat and build upon our methods. Finally,
Sect.7 gives conclusions and discusses future work.

2 Model

2.1 The Biped

The planar 5-link biped with point feet and rigid links illustrated in Fig. | is adopted
as the walker model in this paper. The ankles have no torque, so the model is under-
actuated. The ten dimensional state of the robot is given by x := [¢ ; ¢], where
q:=1[q1 q2 g3 g4 gs]" is the vector of angles shown in the figure.

When only one of the legs is in contact with the ground, the robot is in the single
support phase, which has continuous dynamics. Using the Lagrangian approach, the
dynamics can be derived as

D(q)§ + C(q.9)q + G(q) = Bu, (D
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— Stance Femur

> Stance Leg
D

Fig. 1 Illustration of the five-link robot with symmetric legs. As will be explained, @ is called the
phase variable

Swing Leg

where u is the input. Equation (1) can be equivalently expressed as

= [_D_l(gé + G):| + [DPIB] u=:f(x)+ gx)u. )

On the other hand, if both legs are contacting the ground, then the robot is in its
double support phase, which can be approximated as an impact map given by

Xt =AG0), 3)

where x~ and x ™ are the states just before and after the impact respectively. Conser-
vation of energy and the principle of virtual work give the mapping A [13, 14].

A step consists of a single support phase and an impact event. Since walking
consists of steps in sequence, it has hybrid dynamics. For a step to be successful,
certain “validity conditions” must be satisfied, which are listed next. After impact, the
former stance leg must lift from ground with no further interaction with the ground
until the next impact. Also, the swing foot must have progressed past the stance
foot before the impact of the next step. Only the feet should contact the ground.
Furthermore, the force on stance tip during the swing phase and the force on the
swing tip at impact should satisfy the no-slip constraint given by

Ffriction = Fnormal Hs > |Ftransversal|~ (4)

If validity conditions are not met, the step is labeled as unsuccessful and the system
is modeled as transitioning to an absorbing failure state. This is a conservative model
because in reality violating these conditions does not necessarily mean failure.
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2.2 The Terrain

In this paper we assume the terrain ahead of the robot is a constant slope until an
impact. So each step experiences a slope and the terrain is angular. As shown in
Fig. 1, we denote the slope by . This terrain assumption captures the fact that to
calculate the pre-impact state, the terrain for each step can simply be interpreted as
a ramp with the appropriate slope.

An alternative and perhaps more common choice is modeling the rough terrain
with varying heights like stairs. Both models of rough terrain are equally complex,
valid, and important for this paper’s purpose and combining the two is a topic of
future work. What they both do not consider is the possibility of various intermediate
“bumps” that might cause tripping.

3 Control Scheme

This section summarizes two low-level controller strategies that are used to demon-
strate the applicability of our method.

1. Hybrid Zero Dynamics Using Proportional-Derivative Control and Bézier
Polynomials

The hybrid zero dynamics (HZD) controller framework provides stable walking
motions on flat ground. We summarize some key points here and refer interested
reader to [12] for details.

While forming trajectories, instead of time, the HZD framework uses a phase
variable denoted by 6. Since it is an internal-clock, phase needs to be monotonic
through the step. As the phase variable, we use 6 drawn in Fig. 1, which corresponds
tof = cq withc =[—10 — 1/2 0 — 1]. Second, since there are only four actuators,
four angles to be controlled need to be chosen, which are denoted by /. Controlling
the relative (internal) angles means kg := [q1 ¢2 g3 g4]". Then hy is in the form of
h() = H()q, where H() = [[4 O]

Let h4(6) be the references for k. Then the tracking error is given by

h(q) = ho(q) — ha(0) = Hog — ha(cq). ®)
Taking the first derivative with respect to time reveals

. Oh. Oh .
hza_xx_a_xf(x) =: Lsh, (6)

where we used the fact that g—ﬁ g(x) = 0. Then, the second derivative of tracking error
with respect to time is given by

h=L5h+LoLihu. (7)
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Substituting the linearizing controller structure
u(x) = (LyLph) ™ (—=LGh 4 v) (8)

to (7) yields .
h=v. 9)

To force h (and /) to zero, a simple PD controller given by
v=—Kpy—Kpy (10)

can be employed, where K p and K, are the proportional and derivative gains, respec-
tively.

As suggested in [12], we use Bézier polynomials to form the reference (h4). Let
6" and 0~ be the phase at the beginning and end of limit cycle walking on flat terrain
respectively. An internal clock which ticks from O to 1 during this limit cycle can be
defined by

0(q) — 0"

(@) =T

(1)

Then, the Bézier curves are in the form of
M
i M! k M—k
bi(T)—kzz(;akk!(M—_k)!T (1 =Mk (12)

where M is the degree and a}; are the coefficients. Then, the reference trajectory is

determined as
by (1)

by (1)
b3 (1)
by(T)

ha(0) = 13)

Choosing M = 6 yields (6 + 1) x 4 = 28 o/ parameters to optimize. However,
for hybrid invariance, h = h=0 just before an impact on flat terrain should imply
h = h = 0 after the impact. This constraint eliminates 2 x 4 = 8 of the parameters
as explained in [12]. In total, 20 + 2 = 22 parameters must be chosen, including the
PD controller gains.

2. Sliding Mode Control with Time-Invariant Piece-Wise Constant References

The second controller strategy of this paper is adopting sliding mode control (SMC)
to track piece-wise constant references [1, 15].

As in the HZD control, let sy denote the four variables to control. As a result of
our experience in previous work [16], we proceed with
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ho =162 g3 qs gs1", (14)

where 0, := ¢ + g5 is an absolute angle. Equivalently we can write hy = Hygq,
where

01001
00100
Ho=100010 (15
00001
Substituting the control input
u=(HD"'B)"'(v+ HyD'(Cq + G)), (16)
into (1) yields .
ho = v. (17)

We then design v such that & acts as desired (k). The tracking error is again given
by h = ho — hy and the generalized error is defined as

Jl:h[+hl/7—l l:{1,2,3,4}, (18)

where 7;s are time constants for each dimension of /. Note that when the generalized
error is driven to zero, i.e. o; = 0, we have

0=h; +h;/7. (19)
The solution to this equation is given by
hi(t) = hi(to) exp(—=(t —10)/7:), (20)
which drives h; to 0 exponentially fast. Next, v in (17) is chosen to be
vi = —kiloy|*'sign(oy), i =1{1,2,3,4}, Q1)

where k; > 0 and 0.5 < o; < 1 are called the convergence coefficient and conver-
gence exponent respectively. Note that if we had a; = 1, this would simply be a
standard PD controller. Then, 7; and k; are analogous to the proportional gain and
derivative time of a PD controller. However, 0.5 < «; < 1 ensures finite time con-
vergence. For further reading on SMC please refer to [17]. Note that SMC has
4 x 3 = 12 parameters to be optimized.

For faster optimization, it is preferable to have fewer parameters to optimize.
Motivated by simplicity, we use references in the form of
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f1 _ref _refl ref —
hy = [[923 qge q:‘e Q5re 17, 6, := q1+gs >, 22)

1052 5 gi"* gEM1T . otherwise.

Note that the references are piecewise constant and time-invariant. What makes this
reference structure appealing is the fact that there are only 6 parameters to optimize.
So, in total, 12 + 6 = 18 parameters are optimized.

4 Discretization

4.1 Discretization of the Dynamics

The impacts when a foot comes into contact with the ground provide a natural
discretization of the robot motion. For the terrain profile described in Sect. 2.2, using
(2) and (3) the step-to-step dynamics can be written as

x[n + 1] = p(x[n], y[n], C[nD), (23)

where x[n] is the state of the robot and «([r] is the slope ahead at step n.

4.2 Discretization of the Slope Set

Our method requires a finite slope set 1", which we typically set as

r=1y°: dlez, —2057520], (24

!

where d, is a parameter determining the slope set density. The range needs to be
wide enough so that the robot is not able to walk at the boundaries of the randomness
set.

4.3 Meshing Reachable State Space

There are two key goals in meshing. First, while the actual state x might be any value
in the 10 dimensional state space, the reachable state space for system is a lower
dimensional manifold once we implement particular low-level control options and
allow only terrain height variation as a perturbation source. The meshed set of states,
X, needs to well cover the (reachable) part of state space the robot can visit. This
set should be dense enough for accuracy while not having “too many” elements for
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computational efficiency. Second, we want to learn what the step-to-step transition
mapping, p(x, v, ¢),is forall x € X and v € I". Next, an initial mesh, X;, should be
chosen. In this study, we use an initial mesh consisting of only two points. One of
these points (x;) represents all (conservatively defined) failure states, no matter how
the robot failed, e.g. a foot slipped, or the torso touched the ground. The other point
(x2) should be in the controllable subspace. In other words, it should be in the basin
of attraction for controller ¢.

Then, our algorithm explores the reachable state space deterministically. We ini-
tially start by a queue of “unexplored” states, X = {x € X; : x # x;}, which cor-
responds to all the states that are not simulated yet for all possible terrains. Then we
start the following iteration: As long as there is a state x € X, simulate to find all
possible p(x, 7, ¢) and remove x from X. For the points newly found, check their
distance to other states in X. If the minimum such distance exceeds some threshold,
a new point is then added to X and X.

A crucial question is how to set the (threshold) distance metric so that the resulting
X has a small number of states while accurately covering the reachable state space?
The standardized (normalized) Euclidean distance turns out to be extremely useful,
because it dynamically adjusts the weights for each dimension. The distance of a
vector x from X is calculated as

_ ) 5 —x)’
d(x,X)::r)gl}r(l{Z( - )] (25)

i

where r; is the standard deviation of i"" dimension of all existing points in set X. In
addition, the closest point in X to x is given by

. 2
¢(X, X) := argmin {Z (g) ] . (26)

xeX

‘We are now ready to present the pseudocode in Algorithm 1. Two important tricks
to make the algorithm run faster are as follows. First, the slope set allows a natural
cluster analysis. We can classify states using the inter-leg angle they possess. So,
the distance comparison for a new point can be made only with the points that are
associated with the same (preceding) slope. This might result in more points in the
final mesh, but it speeds up the meshing and later calculations significantly. Secondly,
consider a state x. We can simulate p(x, —20°, ) just once and then extract p(x, v, {)
for all v € I'. The reason is, for example, in order robot to experience an impact at
—20°, it has to pass through all possible (less steep) impact points in the slope set.

While meshing the whole 10D state space is infeasible, this algorithm is able
to avoid the curse of dimensionality because the reachable state space is actually a
quasi-2D manifold [18]. As a result, the meshing can be done with a relatively small
number of iteration steps.
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Algorithm 1 Meshing algorithm

Input: Controller ¢, Initial set of states X;, Slope set 1" and threshold distance d;,,
Output: Final set of states X, and state-transition map
1: X < X; (except x1)
2: X «— X;
3: while X is non-empty do
4 Yz <~ Y
5:  empty X
6
7
8

for each state x € X» do
for each slope v € I" do
Simulate a single step to get the final state x, when initial state is X, slope ahead is ~,
and controller ( is used. Store this information in the state-transition map.

9: if robot did not fall and d(x, X) > d;;, then
10: add x to X
11: add x to X
12: end if
13: end for
14: end for

15: end while

5 Metastable Markov Chains

5.1 Obtaining a Markov Chain

To obtain a finite state machine representation of the system, we need to approximate
the dynamics for points p(x, v, () ¢ X. The most elementary approach is 0’th order
approximation given by

x[n + 11 = c(p(x[n], v[n], C[n]), X), 27)

where c(x, X) is the closest point x € X to x for the employed distance metric. Then
the deterministic state transition matrix can be written as

1, ifx; = c(p(xi, v, 0, X)

. (28)
0, otherwise.

T4y, () =

The nearest-neighbor approximation in (27) appears to work well in practice. More
sophisticated approximations result in transition matrices not just having one or zero
elements, but also fractional values in between [19], and it does not provide much
increase in accuracy to the authors’ experience.
A Markov Chain can be represented by a stochastic state-transition matrix 7
defined as
T;j := Pr(x[n+ 1] = x; | x[n] = x;). 29)
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To calculate this matrix, the first thing we need to do is assume a distribution over
slope set, noted by
Pr(y) = Pr(y[n] = ). (30)

In this paper, we assume a normal distribution for Pr, with mean ., and standard
deviation o,. After distributing « values, T' can be calculated as

T) =D Pr(y) T'(. 0. 31)

yel’

As we make d;,, and d, smaller, we have more accurate representations of the
full dynamics at the expense of higher numbers of states in the final mesh.

5.2 Expected Number of Steps Before Failure

This section serves as a summary on how we estimate the expected number of steps
before failure, or mean first-passage time (MFPT). For details, we invite interested
reader to [20].

The eigenvalues of T cannot have magnitude larger than one. However, the largest
eigenvalue is equal to 1 because we model failure as absorbing. Also, the second
largest eigenvalue, denoted by \,, is non-negative and real.

No matter what the initial condition is, if the robot does not fall within several
steps, then the probability density function for the system converges to its metastable
distribution. Starting with this distribution, with 1 — X, probability the walker is
going to fall on the next step, otherwise the probability distribution does not change.
Then, the probability of taking n steps only, equivalently falling at the nth step is
simply

Pr(x[n] =x1, x[n =11 #x)) = )\371(1 — ). (32)

For A\, < 1, realize that as n — o0, the right hand side goes to zero, i.e., the system
will eventually fail. Note that we also count the step which ended up in failure as
a step. An intuitive check is to consider failing at the first step (taking 1 step only).
When n = 1 is substituted, we get 1 — ), as expected. Then, the average number of
steps can be then calculated as

MFPT = E[FPT]

= Z” Pr(x[n] = x1, x[n — 1] # x1)

n=I

= ZnAg—la —\) =

n=1

(33)

1
=X
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where we used the fact that A, < 1. As a result, MFPT can then be calculated using
(0. ¢] /\2 =
M = (34)

Note that being stable corresponds to A, = 1, but we will introduce enough roughness
so that we always have A, < 1. This is achieved with a wide-enough slope set and
high enough o,.

We would like to mention that instead of steps, expected distance before failure
can alternatively be calculated as explained in [21]. However, as listed later in the
following section, we did not observe high variances in step width values. So, number
of steps is a good indicator of how much the robot travels.

6 Results

Unless stated otherwise, we use the “minimize” function from [22], which is based on
fminsearch function, in MATLAB to optimize. At every iteration the reachable state
space for given controller parameters is meshed and the corresponding Markov chain
is obtained to calculate the expected number of steps as explained in the previous
sections. In this paper we optimize for ., = 0°,1.e., zero average slope. However, we
optimize control for each of a range of particular values of . If it is too small, then
the MFPT turns out to be very large, which may not be calculated due to numeric
software capabilities. Using MATLAB, we can calculate MFPT values up to around
10'* reliably. On the other hand, o, should not be too large, otherwise it may not
be as easy to differentiate different controllers’ performance with all controllers
performing “badly” as o, gets large enough. Appropriate range for o, can be easily
decided by calculating MFPT for different values with a single mesh. Once we decide
ono,, we pickd,.d, = 0,/21is the rule of thumb we apply in this paper. Just like d,
d;pr can be made smaller for higher accuracy in the expense of higher computation
time. Whether d,, and d;;, are small enough can be checked after the optimization by
using smaller values and confirming MFPT estimation does not change much. For
the d,, and d,;,, values listed later in this section, each cost computation (iteration)
took around a minute. Typically, a couple of hours are enough to optimize controller
parameters.

1. Hybrid Zero Dynamics Using Proportional-Derivative Control and Bézier
Polynomials

For the HZD scheme, the base controller, (4,.., is obtained by assuming flat terrain,
fixing speed to be 0.8 m/s and minimizing energy usage as in [12]. To obtain /gy,
we remove the speed constraint and optimize for cost of transport (COT) given by

w

coT = —,
mgd

(35)
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where m is the mass, g is the gravitational constant, and d is the distance traveled. In
this paper we use a conservative definition of “energy spent” by regarding negative
work is also done by the robot, i.e., W = [Wposirive| + |Whegarivel-

Both of these controllers assume flat terrain, i.e., o, = 0°, in optimization. In
addition, the HZD framework shows how to obtain the trajectories only, but not the
controller gains. So, we just picked Kp = 100 and K = 10, which works on flat
terrain. To obtain {};py, we used the “patternsearch” algorithm in MATLAB to opti-
mize for MFPT with 0., = 1°, d, = 0.5 and d,,, = 0.3. Table 1 lists the parameters
for each controller.

Table 1 Parameters for the first controller scheme in radians

Céase CéOT Cli/IFPT
Kp 100 100 169.2681
o} 3.6151 3.6151 3.6037
ol 3.6413 3.6475 3.5957
o) 3.3894 3.4675 3.3948
o 3.2884 3.2884 3.2914
ol 3.1135 3.1135 3.1136
ol 3.1708 3.1708 3.1701
o 3.0349 3.0349 3.0448
o3 3.0349 3.0349 3.0448
ol 2.9006 2.9081 2.9259
o3 2.9544 3.4544 3.0162
o3 3.5470 3.0939 3.5302
o? 3.5186 3.5186 3.5255
ol 3.6851 3.6929 3.7298
a2 3.6151 3.6151 3.6037
CIIB ase CéOT <I\l/l FPT
Kp 10 10 30.0166
o3 —0.4162 —0.3693 —0.4113
o3 —0.6657 —0.6079 —0.6018
o3 —0.3732 0.0124 —0.3126
o3 —0.3728 —0.6501 —0.3444
o3 —0.2359 —0.1880 —0.2366
ol —0.3780 —0.3819 —0.3478
ol —0.3200 —0.3141 -0.3221
o —0.3200 —0.3141 —0.3221
aof —0.2484 —0.2285 —0.2856
o} —0.3690 —0.7323 —0.3664
o} —1.1041 —0.1932 —1.1005
of —0.3973 —0.3817 —0.3834
ot —0.4260 —0.5139 —0.5082
ot —0.4162 —0.3693 —0.4113
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Fig. 2 Average number of 108

steps before falling _ C1
calculated using (33) versus '}AFPT
o for the first controller 10° : — CBase |
scheme. Slopes ahead of the o C1
robot are assumed to be coT

normally distributed with
py =0°

Expected Number of Steps Before

0.5 1 1.5 2 25 3
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Table 2 Estimation of MFPT for First Controller Scheme with p1, = 0° and o, = 2°

1 1 1
CBase CCOT CMFPT
Estimation using (33) |2.2085 2.2049 5.5206
Monte Carlo 2.1511 2.2487 6.1290
simulation

We compare the stability of each controller versus the roughness of the terrain in
Fig. 2. Noting the logarithmic y-axis, we immediately notice the huge improvement
in stability by optimizing with the suggested method.

We note that Monte Carlo simulations are not a computationally practical means
of verifying MFPT when it is very high, which has motivated our methodology
throughout. However, we present a Monte Carlo study in Table 2 for o, = 2°, where
MEFPT is small. To obtain the second row in this table, we simulated 10 thousand
times. To allow the robot to “forget” the initial condition, we omit the first step, i.e.,
we only consider cases where it took more than a single step and do not count that
first step.

2. Sliding Mode Control with Time-Invariant Piece-Wise Constant References

We start optimizing the second controller scheme with the hand-tuned parameters
taken from [16], which we refer to with (3,.. We first optimize for Cost of Transport
(COT) of the limit cycle gait on flat terrain to obtain (Zqr. We then optimize for
MFPT with o, = 2°, d, = 1 and d,;, = 1. This results with controller (}zpy. The
parameters for each controller are given in Table 3.

Figure 3 compares the stability of each controller versus the roughness of the ter-
rain. Again noting the logarithmic y-axis, the suggested method provides a dramatic
increase in the stability, just like in Fig. 2.

Table 4 presents the Monte Carlo study obtained assuming 0., = 5°. Just like in
Table 2, we omit the first step to allow the simulation to “forget” the initial condition.
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Table 3 Parameters for the second controller scheme

C.O. Saglam and K. Byl

Cl%ase C%OT CI%/IFPT
0! 225° 190.5977° 224.9460°
0, 204° 200.92392° 203.7358°
a5 0° —0.0008° —0.0169°
a5 —60° —19.6094° —60.0042°
a; " 210 —13.4718° —24.0150°
0 0° —0.0003° 0.0040°
ki 50 49.1126 403791
ko 100 84.2092 96.4343
ks 75 83.1357 77.1343
ka 10 7.5848 15.7245
C]% ase C(%OT <I%/IFPT
a 0.7 0.7977 0.7003
a 0.7 0.6063 0.6954
a3 0.7 0.6838 0.6991
ay 0.7 0.4873 0.7001
- 0.1 0.1354 0.0920
™ 0.1 0.0997 0.0905
- 0.05 0.0679 0.0632
7 0.2 0.1690 0.1918

Fig. 3 Average number of
steps before falling
calculated using (33) versus
o for the second controller
scheme. Slopes ahead of the
robot are assumed to be
normally distributed with
1o = 0°. Note that both the
range of o, and the y-axis
scaling are different from
Fig.2

Expected Number of Steps Before

Terrain Roughness (0+) (degrees)

Table 4 Estimation of MFPT for Second Controller Scheme with p1, = 0° and 0, = 5°

2 2 2
CBase CCOT CMFPT
Estimation using (33) |5.1766 1.1470 10.6433
Monte Carlo 5.0738 1.5716 10.4813
simulation
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Table 5 Comparison of controller schemes for p1, = 0°

Céase CéOT Cl%/IFPT Cl%ase C(ZZOT CI%/IFPT
0y =1° | MFPT 5.9 7.3 113.1 32x10° |22 1.6x10™
(Stochas-
tic
Terrain)
0y =0° | Step width| 0.413 0.43 0.4 0.456 0.388 0.439
(Flat
Terrain)

Speed 0.8 0.516 0.649 |0.752 0.513 0.928
COT 0.187 0.069 0.143  |0.869 0.225 0.93

3. Comparison

We first note that all six controllers are stable on flat ground (o, = 0°), because they
all exhibit stable limit cycles. However, as Table 5 shows, there is a huge difference
between Cf,IFPT and any of the HZD controllers. Comparing the results in Figs. 2 and 3
also emphasizes this dramatic difference. So, we conclude that the second controller
scheme is much more capable in terms of stability. One of the main goals of this
paper is to illustrate this benchmarking capability.

We note that many parameters of (3., and (}gpy in Table3 are very close. We
suspect that we only find local minimums. Indeed, starting with different initial
conditions yields different final gaits.

A major problem in the first controller scheme, we believe, is the fact that reference
is designed only for flat terrain. For example, the controller does not really know what
to do when 6 > 67 (or 7 > 1). This is because Bézier polynomials are designed for
0 < 7(g) <1, and they quickly deviate outside this range. As a result, Céase cannot
take more than several steps on inclined terrain with a slope of —1°. We discovered
an easy fix to the problem by adopting the following policy: If 7(g) > 0.95, then do
not apply any torque. With this update, the controller can still walk on flat terrain.
In addition, it seems to be stable on —9° degree sloped terrain! However, we did
not present the result with this policy because it ends up with a low MFPT for
t = 0°. The reason is, it works very badly on uphill slopes. The fact that turning
the controller off greatly helps when going downhill shows the need for a better
reference parametrization to keep controller on at all times. Reference [21] presents
an attempt to achieve this goal.

7 Conclusions and Future Work

In this work, we present a methodology for optimizing a low-level control scheme
and of benchmarking final performance on rough terrain using the MFPT met-
ric for reliability. We apply the approach to two particular control schemes as a
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motivating example; however, the approach is designed to provide a systematic means
of optimizing and benchmarking any of a wide variety of control strategies, not only
for walking systems but also for other dynamic systems subject to stochastic envi-
ronments, more generally.

As mentioned in the previous section, we end up with a local minimum for the
second controller scheme. We aim to find the global solution in a future study. The
sensitivity of our stability metric to model mismatch is another important future work
topic.

Reference [21] is a work that builds on this paper. It presents a controller scheme
that is more capable than the two studied in this paper. It also shows that we can also
optimize under constraints, e.g., for desired speed, step width, or ground clearance.
Furthermore, by designing multiple controllers for different mean slopes, it demon-
strates how to increase stability dramatically. Finally, we may use cost functions that
incorporate other performance metrics also, similar to [23]. For example, a practical
goal is to increase stability while decreasing energy consumption, balancing the two
aims as desired.
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A Probabilistic Framework

for Semi-autonomous Robots Based
on Interaction Primitives with Phase
Estimation

Guilherme Maeda, Gerhard Neumann, Marco Ewerton,
Rudolf Lioutikov and Jan Peters

1 Introduction

Assistive and collaborative robots must have the ability to physically interact with
the human, safely and synergistically. However, pre-programming a robot for a large
number of tasks is not only tedious, but unrealistic, especially if tasks are added or
changed constantly. Moreover, conventional programming methods do not address
semi-autonomous robots—robots whose actions depend on the actions of a human
partner. Nevertheless, once deployed, for example in a domestic or small industrial
environment, a semi-autonomous robot must be easy to program, without requiring
the need of a dedicated expert. For this reason, this paper proposes the use of inter-
action learning, a data-driven approach based on the use of imitation learning [17]
for learning tasks that involve human-robot interaction.

Amongst the several challenges posed by interaction learning, this paper focuses
on two intrinsically related problems. First, the problem of estimating the phase of
the human movement, that is, the progress or the stage of the execution of the human
trajectory under an intermittent stream of position data. This is a problem of practical
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Fig. 1 Collaborative and assistive robots must address both action recognition and movement
coordination based on human observations. a A robot coworker must recognize the intention of the
human before deciding which action to take. b Observing the human movement through corrupted
(e.g. occluded, sparse, intermittent) position data, poses the problem of identifying the correct phase
of the movement

importance since the majority of motion capture systems available, such as marker
tracking and depth cameras, rely on planned spaces and well positioned cameras;
requirements that are incompatible with most of the already existing collaborative
environments of interest (e.g. in a hospital, at home) where occlusions are prone to
occur. Second, based on this assessment, we address the problem of recognizing the
human action and generating the corresponding movement of the robot assistant. As
illustrated in Fig. 1a, by observing the movement of the human, a semi-autonomous
robot must decide if it should hand over a plate, or hold a screwdriver. The human,
however, may execute movements at different unobserved speeds, and position mea-
surements may be corrupted by occlusions, which cause the problem of temporally
aligning sparse position observations with the interaction model. Figure 1b illustrates
such a problem where the same sequence of three observed positions may fit two
models that are identically spatially, but have different phases of execution. Such an
ambiguity hinders the adaptation of the robot movement.

The contribution of this paper is a probabilistic framework for interaction learning
with movement primitives that allows a robot to react faster by estimating the phase
of the human, and to associate the outcome of the estimation to address different
tasks. As the algorithm relies on Probabilistic Movement Primitives [15] for human-
robot interaction, the method will also be referred to as Interaction ProMPs. An
Interaction ProMP provides a model that correlates the weights that parameterize
the trajectories of a human and a robot when executing a task in collaboration. The
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Interaction ProMP is conditioned on the observations of the human and the robot is
controlled based on a posterior distribution over robot trajectories.

This paper consolidates our recent efforts in different aspects of semi-autonomous
robots. It leverages on the representation of movements with ProMPs, our develop-
ments in the context of human-robot interaction [1, 13], and the ability to address
multiple tasks [7, 13]. While our previous interaction models were explicitly time-
dependent, here, we introduce a phase-dependent method. Section2 emphasizes the
most relevant works in phase and time representations and briefly addresses related
works in other aspects of the framework.! Section 3 describes the proposed method
with a brief background on ProMPs, followed by Interaction ProMPs, phase estima-
tion, and action recognition. Finally, Sect.4 provides experiments and discussions
on the application of the method in an assembly scenario.

2 Related Work

Dynamical Movement Primitives [8], or simply DMPs, have been known to address
temporal variations with a phase variable. The phase variable is used to govern the
spread of a fixed number of basis functions that encode parameters of a forcing func-
tion. ProMPs use the concept of phases in the same manner, with the difference that
the basis functions are used to encode positions. This difference is fundamental for
Interaction Primitives since estimating the forcing function of the human is nontrivial
in practice, while positions can be often measured directly [13].

Recently, a modified form of DMPs where the rate of phase change is related to
the speed of movement has been presented [20]. The method uses Reinforcement
Learning and Iterative Learning Control to speed up the execution of a robot’s move-
ment without violating pre-defined constraints such as carrying a glass full of liquid
without spilling it. A similar form of iterative learning was used to learn the time
mapping between demonstrated trajectories and a reference trajectory [19]. With
their approach, a robot was able to perform a surgical task of knot-tie faster than the
human demonstrator.

Dynamic Time Warping (DTW) [16] has been used in robotics applications for
temporally aligning trajectories. For example, as part of an algorithm that esti-
mates the optimal, hidden trajectory provided by multiple expert demonstrations [4].
Although DTW has been shown suitable for off-line processing of data, its online
application can be hard to achieve in practice due to exhaustive systematic search. A
different approach is to explicitly encode the time of demonstrations such as in [3],
where the structure of the model intrinsically generates smooth temporal solutions.
The measurement or estimation of velocity, for example, by differentiation of a con-
sistent stream of positions, removes the ambiguity of Fig. 1b and allows for the real-
ization of online algorithms that cope with very fast dynamics [9, 10]. Such methods,

IThe interested reader is referred to our previous works for additional and detailed literature review
in respect to their corresponding contributions.
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however, rely on a planned environment free from occlusions and fast tracking capa-
bilities; requirements difficult to achieve in environments where semi-autonomous
robots are expected to make their biggest impact, such as in small factories, hospi-
tals and home care facilities. A limitation of ProMPs in relation to representations
based on multiple reference frames such as the Dynamical Systems [3], and forcing
functions as in DMPs, is that ProMPs only operate within the demonstrated set of
demonstrations.

Several methods to learn time-independent models by imitation have been pro-
posed. For example, Hidden Markov Models (HMM) and Gaussian Mixture Regres-
sion (GMR) have been used to learn and reproduce demonstrated gestures [2] where
each hidden state corresponds to a Gaussian over positions and velocities, locally
encoding variation and correlation. In [5], a method to reactively adapt trajectories
of a motion planner due to changes in the environment was proposed by measuring
the progress of a task with a dynamic phase variable. While this method is suited
for cases where the goal is known from a planned trajectory—the phase is estimated
from the distance to the goal—a semi-autonomous robot is not provided with such
information: the goal must be inferred from the observation of the human movement,
which in turn requires an estimate of the phase.

This paper shares similar challenges faced in [21] where the robot trajectory had
to be adapted according to the observation of the human partner during handovers.
In [21] the authors encoded the demonstrations in a tree-structured database as a
hierarchy of clusters, which then poses the problem of searching matching trajectories
given partial observations. The use of a probabilistic approach in the present work
allows us to address the search for a matching trajectory simply computing the
likelihoods of various models given the observed trajectories.

Several other works have addressed the action recognition problem. Graphical
models, in particular, have been widely used. In human-robot interaction, HMMs
have been used hierarchically to represent states and to trigger low-level primi-
tives [12]. HMMs were also applied to predict the positions of a coworker in an
assembly line for tool delivery [18] while in [11], Conditional Random Fields were
used to predict the possible actions of a human. The prediction of the movement of
human coworkers was addressed in [14] with a mixture model. The cited methods
address the generation of the corresponding robot movement as an independent step,
either by pre-programming suitable actions [11], or by using motion planners [14].
In contrast, Interaction ProMPs intrinsically cor