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Lumican, a Small Leucine-Rich Proteoglycan,

and Its Biological Function in Tumor

Progression
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Abstract Lumican is a member of the small leucine-rich proteoglycan (SLRP)

family that was originally discovered in the chick cornea and is found in many other

tissues throughout the human body. The SLRP family includes decorin, lumican,

biglycan, and fibromodulin and constitutes an abundant component of the extracel-

lular matrix (ECM). Lumican plays a significant role in the ECM as an organizer of

collagen, although recent studies demonstrate that lumican also modulates numer-

ous cellular functions including proliferation, migration, and differentiation. The

contribution of lumican to cancer progression has been noted in several cancers

including breast, colorectal, and pancreatic; however, its precise biologic function

is still being uncovered. In cancer, lumican appears to play a context-specific role,

where high levels of lumican are associated with a poor prognosis in some cancers

and a better prognosis in others. This chapter focuses on the function of lumican in

cell biology and the ECM of solid tumors and is aimed at providing insights into

molecular mechanisms surrounding lumican and tumor biology.

3.1 Structure, Function, and Regulation of Lumican

Lumican, also known as LDC or SLRR2D, is located at chromosome 12q21.33

(Chakravarti et al. 1995). It is a member of the small leucine-rich proteoglycan

(SLRP) family that also includes decorin, biglycan, fibromodulin, keratocan,

epiphycan, and osteoglycin. Lumican was originally characterized as one of the

major keratan sulfate (KS)-containing proteoglycans and was initially purified by

DEAE chromatography from the chick cornea; its distribution is now known to

include interstitial collagenous matrices throughout the body (Blochberger et al.

1992a, b). Lumican contains an 18-amino acid signal peptide that facilitates secre-

tion, followed by an N-terminal domain containing four cysteines, a ~40 kDa core
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protein with a central domain containing 6–10 characteristic leucine repeats (LLRs;

Chakravarti et al. 1995), and a C-terminal domain with two cysteines and two

LRRs. Lumican also contains four potential N-linked glycosylation sites distributed

across the protein. When lumican assumes an arch-shaped tertiary structure (Kajava

1998), these glycosylation sites are presented on the convex surface, while the

concave surface binds collagen and facilitates spacing between fibers (Kalamajski

and Oldberg 2009; Weber et al. 1996).

Lumican was originally characterized for its role in collagen fibrillogenesis and

structural organization (Chakravarti et al. 1998). Deficiencies in lumican result in

abnormal collagen fibrillogenesis, which affects connective tissue structure and

function (Nikitovic et al. 2008b). In the cornea, lumican not only organizes collagen

(Chakravarti et al. 1998) but also influences corneal epithelial wound healing (Liu

and Kao 2012). Healing of corneal epithelium of Lum�/� mice was significantly

delayed compared to that of wild-type mice, and lumican was ectopically and

transiently expressed in the corneal epithelium during the early stages of wound

healing. In addition to controlling collagen fibril assembly, lumican participates in

the regulation of key biological events including cell proliferation (Ishiwata et al.

2004; Pietraszek et al. 2013), migration (Nikitovic et al. 2008a; Lee et al. 2009;

Fullwood et al. 1996), and adhesion (D’Onofrio et al. 2008; Brezillon et al. 2009;

Cole and Mccabe 1991; Liu and Kao 2012). However, the opposite effects were

noted in human embryonic kidney 293 (HEK293) cells, where cells stably

expressing and secreting lumican showed decreased adhesion and growth compared

to mock HEK293 cells, while migration and invasion were seemingly unaffected

(Ishiwata et al. 2010). Lumican has also been implicated in the inhibition of

matrix metalloproteases (MMPs). Specifically, the glycosylated form of lumican

decreased MMP-14 activity in B16F1 melanoma cells. Lumican may protect

collagen against MMP-14 proteolysis, thus influencing cell-matrix interaction in

tumor progression. (Pietraszek et al. 2014; Niewiarowska et al. 2011; Pietraszek

et al. 2013) and has also been implicated as an inhibitor of angiogenesis

(Niewiarowska et al. 2011; Nikitovic et al. 2014; Sharma et al. 2013).

The complexity and diversity of its proteoglycan structure suggest that lumican

may influence cell function through several mechanisms. Lumican can present

itself in a variety of forms depending on glycosylation. A highly substituted form

of lumican has been identified within aortic smooth muscle cells in rats (Qin et al.

2001), with serum analysis revealing proteoglycan, glycoprotein, and core protein

forms. Recently, the importance in lumican glycosylation in aortic valve stenosis

(AS) has begun to be studied (Suzuki et al. 2016). Insufficient glycosylation of

lumican was associated with thickened and calcified regions of AS valves, poten-

tially due to the impairment of collagen fibrils and induction of inflammation. In

lung tissues, lumican was found in a large number of different glycosylation states.

These studies demonstrated, however, that the glycosylation pattern of secreted

lumican is much more uniform than intracellular forms, suggesting a requirement

for a more uniform protein type when lumican is in the extracellular space.

Lumican forms can also depend upon age. Within the ECM of articular cartilage

(Grover et al. 1995), the highly substituted keratan sulfate proteoglycan form of

40 M. Pratt et al.



lumican is much more prevalent in juvenile tissues, whereas the keratan sulfate-

lacking glycoprotein is correlated with adults. Interestingly, there is a higher

abundance of lumican in adults, despite having the less substituted form. These

differences suggest that lumican forms and function differ depending upon age and

anatomic location.

3.2 Lumican Implications in Cancer

During the many steps of tumor metastasis, cancer cells must interact with their

microenvironment to grow, invade locally, intravasate into blood and lymphatic

vessels, migrate, and grow again at anatomically distant sites (Hanahan and Wein-

berg 2011). Throughout these events, cancer cells interact with the components of

the extracellular matrix (ECM), growth factors, and cytokines associated with the

ECM, as well as surrounding stromal cells (endothelial cells, fibroblasts, macro-

phages, mast cells, neutrophils, pericytes, and adipocytes; Bhowmick et al. 2004;

Lu et al. 2012). Modifications of ECM components during tumor progression have

been extensively reported, and the role of proteoglycans in particular has been

emphasized recently. Early studies have evaluated the effect of lumican on the

proliferation and metastasis of several cancers (Naito 2005; Fullwood et al. 1996;

Wight et al. 1992), but further studies into the biological mechanism of its effect on

cancer are still needed. The presence of lumican has been observed in breast,

colorectal, lung, melanoma, prostate, and pancreas cancers (Leygue et al. 1998;

Lu et al. 2002; Matsuda et al. 2008; Ping Lu et al. 2002; Pietraszek et al. 2013; Li

et al. 2016; Yang et al. 2013; Suhovskih et al. 2013; Coulson-Thomas et al. 2013;

Seya et al. 2006), among others. However, a consensus on whether lumican has a

positive or negative impact on tumor dynamics has not been reached.

3.2.1 Breast Cancer

Lumican in breast cancer has been localized to the tumor stroma and fibroblasts

surrounding the lesion, though not in the cancer cells themselves (Leygue et al.

1998). There is little to no expression of lumican in normal breast tissue, providing

strong evidence that it plays a role in breast tumor formation. A high expression

level of lumican in breast cancer is correlated to high tumor grade, low estrogen

receptor levels, and younger patient age. The lumican observed in these tumors

presents itself in an unsulfated state. The poorly sulfated form of this protein has

been shown to induce macrophage attachment and spreading (Funderburgh et al.

1997), indicating that lumican may participate in macrophage recruitment in these

tumors. Further studies are necessary to elucidate the influences and consequences

of lumican in breast cancer.
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3.2.2 Colorectal Cancer

Lumican in colorectal cancer, on the other hand, is strongly expressed in the cancer

cells themselves (Lu et al. 2002). No evidence of lumican was detected in normal

epithelial cells, but those within close proximity of a lesion were shown to have

weak expression of lumican. This suggests that the cancer cells may influence the

surrounding tissues to synthesize lumican in an effort to promote cancer cell

growth. As in breast cancer studies, the lumican extracted from these cells was

poorly sulfated, strengthening the notion that it contributes to cancer cell

proliferation.

3.2.3 Lung Cancer

Lumican in lung cancer has been studied in squamous cell carcinoma (SqCC) and

lung adenocarcinoma (ADC), with differing conclusions (Matsuda et al. 2008).

Lumican is present in normal lung tissues, specifically peribronchial connective

tissues and the bronchial epithelium (Dolhnikoff et al. 1998). However, enhanced

expression is detected in stromal tissues and in cancer cells for SqCC and ADC.

SqCC showed higher levels in the cancer cells than the stromal tissues, whereas

ADC showed higher levels in stromal tissues than cancer cells. In either disease,

secreted lumican was found to be variably and abnormally glycosylated, a feature

which has been linked to malignant transformation (Kannagi et al. 2004). However,

the glycosylation pattern was much more uniform within the cancer cells. This

difference suggests different roles for lumican between cancer cells and stromal

tissues. A particularly interesting finding was the increased vascular invasion in the

presence of lumican in SqCC. While the effect of lumican on angiogenesis has been

observed, most literature suggests lumican is an inhibitor of angiogenesis (Albig

et al. 2007; Niewiarowska et al. 2011). A possible explanation for this apparent

inconsistency is that the majority of lumican in SqCC is secreted by the cancer cells,

while the studies that imply angiogenic inhibition focused on epithelial cell expres-

sion of the protein (Kannagi et al. 2004). These observations underscore the

importance of the context within which lumican is studied. Additionally, these

results highlight that lumican exerts its influence on cancer through microenviron-

mental cues that are still largely unknown (Sharma et al. 2013).

3.2.4 Pancreatic Cancer

More extensive research has been conducted on the role of lumican in pancreatic

ductal adenocarcinoma (PDAC). Lumican is expressed in normal pancreas tissues,

localized primarily in the alpha cells of islets (Ping Lu et al. 2002). Aberrant
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expression of lumican has been observed in stromal cells and cancer cells of PDAC,

with differing patient prognoses depending on location (Ishiwata et al. 2007). It was

noted that patients with lumican-positive cancer cells had longer survival than those

with lumican-negative cancer cells, while patients with lumican-positive stroma

tended to survive for a shorter period than those that had stroma devoid of lumican.

However, a separate study noted an association between stromal lumican and

prolonged survival after surgery (Li et al. 2014). It should be noted that patient

tumors studied in these two reports were at very different stages of disease, with the

poor outcome identified in later-stage tumors versus the opposite trend identified in

earlier-stage tumors. This observation adds tumor stage as an additional consider-

ation to anatomic site when considering lumican in cancer. A study by Yang et al.

focused on lumican expression in patients with PDAC and noted exactly this shift in

effect and prognosis. Stromal expression of lumican was significantly higher in

patients with later stages of disease and correlated with lower expression of Ki-67,

vascular endothelial growth factor (VEGF), and mutated p53 (Yang et al. 2013).

Additional functional studies using PDAC cells identified that extracellular

lumican stimulates epidermal growth receptor (EGFR) dimerization and internali-

zation, resulting in decreased EGFR kinase activity and attenuation of its down-

stream activators Akt and HIF-1α. Reduced HIF-1α inhibits glycolytic metabolism

and triggers apoptotic cell death (Li et al. 2014). More recently, we further

demonstrated that extracellular lumican decreased AMP-activated kinase activity,

inhibiting chemotherapy-induced autophagy in in vitro and in vivo PDAC models.

Co-treatment of PDAC cells with lumican and gemcitabine increased mitochon-

drial damage, reactive oxygen species production, and cytochrome c release,

indicating that lumican-induced disruption of mitochondrial function may be the

mechanism of sensitization to gemcitabine (Li et al. 2016). Our data also identified

pancreatic stellate cells (PSCs) as a significant source of extracellular lumican

production through quantitative immunohistochemistry analysis of 27 PDAC

patient specimens. We demonstrated that the cytokine, transforming growth fac-

tor-β (TGF-β), negatively regulates lumican gene transcription within human PSCs

through its canonical signaling pathway and binding of SMAD4 to novel SMAD-

binding elements identified within the promoter region. Extracellular lumican

enhances stellate cell adhesion and mobility in a collagen-rich environment.

Pan02 mouse cells have been injected into the lumican�/� pancreas of mice. Histo-

logically, Pan02 cells grew a more moderately differentiated spherical growth pat-

tern (Fig. 3.1a, b) in C57/BL6 wild-type mice, while Pan02 grew a more irregular

finger-like or undifferentiated growth pattern in lumican�/� mice and showed local

invasiveness (Fig. 3.1c, d; data not published). Figure 3.2 summarizes extracellular

lumican regulation and biological functions in PDAC proliferation, apoptosis,

adhesion, and migration.

In summary, it is clear that lumican plays an active role in many solid tumors.

While its role in cell signaling is being elucidated, understanding how lumican

functions as a cell matrix modulator with respect to drug delivery and tumor

dynamics is of critical importance.
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3.3 Drug Delivery in Cancer and Its Association

with Lumican Expression

A variety of barriers can prevent cancer drug delivery, not the least of which is the

ECM in the tumor microenvironment (Sriraman et al. 2014). Achieving the neces-

sary concentration of drugs within the tumor cells is particularly hindered by their

inability to penetrate the tumor. This effect has been linked to the collagen content

(Netti et al. 2000) and lack of proper vascularity (Folkman et al. 1989) in many of

these tumors. Stromal lumican is typically identified within numerous human solid

tumor malignancies (Naito 2005; Dolhnikoff et al. 1998; Qin et al. 2001; Baba et al.

2001; Onda et al. 2002; Ping Lu et al. 2002; Matsuda et al. 2008; Nikitovic et al.

2008a; Leygue et al. 1998; Ishiwata et al. 2007). While its expression has been

observed in stromal and cancer tissue (Nikitovic et al. 2008b), this is not a consi-

stent feature over all types of cancer. In addition, the differential expression of

lumican based on tumor stage has also been noted (Panis et al. 2013). It is therefore

important to consider lumican when considering the problem of solid tumor drug

delivery.

Cancer has been described as an “over-healing” wound (Schafer and Werner

2008) in that there is a very often inflammatory response to the cancer cell growth

that results in increased fibrosis. This desmoplastic reaction carries with it a number

of side effects, which can build barriers to drug delivery. Of these obstacles, those

most likely to have some connection with lumican are ECM density, inadequate

vascularity, and increased tumor interstitial fluid pressure of many of these lesions.

3.3.1 Collagen Organization in Tumors

The ECM is a collection of extracellular molecules (including collagen, proteogly-

cans, etc.) that provide structural and biochemical support to the surrounding cells.

It has been shown that a well-organized ECM impedes the progress of macromol-

ecules through the tumor interstitium (Netti et al. 2000). Although as yet unproven,

it is probable that lumican acts to organize and create an evenly spaced network of

collagen fibrils within the TME. In so doing, this organized collagen could prevent

distribution of therapy throughout the tissue. Investigations into drug distribution in

lumican-negative tissues versus those with normal lumican are necessary to estab-

lish such a role in tumor dynamics. To counteract this obstacle, studies have

discovered that collagenase pretreatment increases the penetration and distribution

of therapy within solid tumors (Goodman et al. 2007). Matrix metalloproteases

(MMPs) actually fulfill a similar role in terms of matrix degradation and proteolysis

(Stetler-Stevenson and Yu 2001). Higher levels of MMP activity would result in

increased drug delivery to tumors due to collagen matrix clearing. However,

lumican has been shown to have MMP inhibitory activity (Pietraszek et al. 2014)

and protects collagen from degradation (Geng et al. 2006), therefore theoretically
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doubling its effectiveness in terms of creating a dense, organized ECM. However, it

remains to be seen how the presence of lumican within a solid tumor ECM affects

collagen organization, remodeling, and drug delivery.

3.3.2 VEGF and PDGF

Angiogenesis, and the associated increased levels of VEGF and platelet-derived

growth factor (PDGF) in the TME (Kerbel 2008), is necessary for solid tumor

progression beyond the earliest stages (Folkman et al. 1989). While VEGF and

PDGF encourage new vessel growth and increase vessel permeability (Bates and

Curry 1996; Harhaj et al. 2002), the delivery efficiency of tumor blood vessels is

low. Additionally, the high interstitial pressure in the tumor forces the diffusion

gradient into and not out of the vessels (Carmeliet and Jain 2000). Lumican inhibits

angiogenesis (Sharma et al. 2013), specifically through the inhibition of VEGF

(Albig et al. 2007). Another structurally similar SLRP, decorin, demonstrates

PDGF-inhibiting activity (Baghy et al. 2013; Iozzo 1997). Both VEGF and PDGF

have been reported to increase MMP and collagenase activity within the inter-

stitium (Unemori et al. 1992; Sun et al. 2013), leading to rapid turnover and

instability in ECM structures. One hypothesis about SLRPs is that they act to

stabilize the vasculature and collagen matrix within the ECM of tumors. The

normalization of tumor vasculature improves the delivery of cytotoxic therapy as

seen in animal models (Carmeliet and Jain 2000), which opens the door for lumican

as a therapeutic intervention to stabilize the TME.

3.4 Summary

Understanding all of the complex interactions between the tumor and its surround-

ing ECM is challenging; however, manipulating the ECM has proven to be an

effective strategy to combat tumor progression and improve therapeutic delivery.

Altogether, current evidence supports lumican as an antitumor molecule, although

the importance of patient age, cancer site, and tumor stage should be taken into

account when interpreting this data. In the proper context, however, lumican could

represent a useful diagnostic and prognostic marker. Certainly, further studies are

necessary to translate basic research on lumican into clinical application.
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