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Abstract Physiological and pathological aspects of soft biological tissues in terms
of, e.g., aortic dissection, aneurysmatic and atherosclerotic rupture, tears in tendons
and ligaments are of significant concern in medical science. The past few decades
have witnessed noticeable advances in the fundamental understanding of the mechan-
ics of soft biological tissues. Furthermore, computational biomechanics, with an
ever-increasing number of publications, has now become a third pillar of investiga-
tion, next to theory and experiment. In the present chapter we provide a brief review
of some constitutive frameworks and related computational models with the poten-
tial to predict the clinically relevant phenomena of rupture of soft biological tissues.
Accordingly, Euler-Lagrange equations are presented in regard to a recently devel-
oped crack phase-field method (CPFM) for soft tissues. The theoretical framework is
supplemented by some recently documented numerical results, with a focus on evolv-
ing failure surfaces that are predicted by a range of different failure criteria. A peel test
of arterial tissue is analyzed using the crack phase-field approach. Subsequently, dis-
continuous models of tissue rupture are described, namely the cohesive zone model
(CZM) and the extended finite element method (XFEM). Traction-separation laws
used to determine the crack growth are described, together with the kinematic and
numerical foundations. Simulation of a peel test of arterial tissue is then presented for
both the CZM and the XFEM. Finally we provide a critical discussion and overview
of some open problems and possible improvements of the computational modeling
concepts for soft tissue rupture.
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1 Introduction

Physiological and pathological aspects of soft biological tissues in terms of rupture
are of fundamental interest in medical science. In fact, aortic dissection, aneurysms,
atherosclerosis, tears in tendons and ligaments and interventional treatments such
as balloon angioplasty are common cases where rupture phenomena, mainly driven
by changes in the biomechanical environment, are encountered (Lee et al. [40],
Holzapfel et al. [32], Sharma and Maffulli [61], Katayama et al. [38], Criado [12],
Humphrey and Holzapfel [33] and Kim et al. [39]). This has rendered computational
mechanics very important to guide and improve medical monitoring and preopera-
tive planning. Although a relatively large number of fracture models have hitherto
been proposed in a diverse range of fields in mechanics, the current review article
focuses on those which have been implemented to predict the rupture of soft biolog-
ical tissues, including the cohesive zone model (CZM), the extended finite element
method (XFEM) and the crack phase-field model (CPFM).

Fracture mechanics was pioneered by the works of Griffith [22], Westergaard
[70] and Irwin [36]. That happened in the first half of the last century when the
concepts of energy release rate and the stress-intensity factor were established as
representations of crack growth in solids within the context of linear elastic fracture
mechanics (LEFM). In the 1960s, however, researchers turned their attention to crack-
tip plasticity wherein significant plastic deformations precede failure. During this
time, Dugdale [15] and Barenblatt [4], among others, studied yielding of materials
at the crack tip. Later, Rice [59] used a line integral, which became known as the
J -integral, to express crack initiation and growth which is basically evaluated along
an arbitrary contour near the crack tip. Subsequently, Hutchinson [35] and Rice
and Rosengren [60] managed to relate the J -integral to the crack-tip stress fields
which indicates that the J -integral can be perceived as a nonlinear stress-intensity
parameter as well as an energy release rate. Much of the theoretical foundations of
fracture mechanics was formulated by 1980. A more elaborate historical account
and details of the concepts can be found in the book by Anderson [1]. With the
recent advances in computer technology, computational mechanics has assumed an
increasingly significant role in the modeling of material fracture.

CZMs, introduced by Barenblatt [3] and Dugdale [15], consider fracture as a
separation of two bulk materials which takes place on a cohesive surface placed
in between the bulk element boundaries. The resistance to separation is specified
through a cohesive law (traction-separation law). In fact, tractions vanish when the
separation (opening displacement) reaches a critical value. This method became
particularly appealing for problems where the extent of crack growth or the size of
the yielding zone are unknown/not predetermined. Later on, Needleman [55], Xu
and Needleman [72] and Camacho and Ortiz [11], among several others, modeled
cohesive zones pertaining to the irreversible cohesive laws, adaptive insertion of
surface elements, and the dynamic fracture, respectively. The CZM was applied to
the fracture of a stenotic artery by Ferrara and Pandolfi [16] using an anisotropic
extension of the irreversible cohesive law, as proposed by Ortiz and Pandolfi [56].
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Later on, Ferrara and Pandolfi [17] simulated a peel test of a dissected aortic medial
strip based on the experimental work of Sommer et al. [66]. The main problems
regarding CZMs are the mesh dependency of the results, which can only be resolved
through an increase in the finite element size, and the necessity of remeshing in cases
when the crack path is not known a priori.

XFEM, developed by Belytschko and co-workers [5, 54], is a technique to deal
with fracture without (or with minimal) remeshing. The hallmark of XFEM relies
on the local enrichment functions with additional degrees of freedom on the basis of
partition of unity finite elements (PUFEM), which resorts to Melenk and Babuška
[45]. Moës et al. [54] also incorporated discontinuous displacement fields by using
Heaviside functions. Later, Moës and Belytschko [53] combined the CZM and
XFEM approaches, whereby the previously employed stress intensity factors and the
J -integral methods were replaced by the cohesive laws. The latter modality was then
adopted by Gasser and Holzapfel [21] to simulate dissections in a strip of an aorta.
The main problem associated with XFEM is that it is rather difficult to predict com-
plex crack patterns, e.g., a crack subject to branching.

In contrast to CZMs and XFEM, CPFM utterly bypasses the modeling of discon-
tinuities as the 2D crack surface smears out in a volume domain in 3D, as determined
by a specific field equation alongside the balance of linear momentum describing the
elastic mechanical problem in solids. The well-known limitations, e.g. curvilinear
crack paths, crack kinking and branching angles, emanating from the classical theory
of fracture mechanics are alleviated through a variational principal of the minimum
energy (see Francfort and Marigo [19]), which was followed by a numerical study
(Bourdin et al. [8]) using the �-convergence, see Braides [10] and Bourdin et al. [9].
In addition, a Ginzburg-Landau type of phase-field evolution was used by Hakim and
Karma [26]. The thermodynamically consistent and algorithmically robust formula-
tions of CPFM were introduced by the seminal works of Miehe and co-workers, [49,
52], and were successfully applied to several coupled multi-field problems ranging
from thermo-elastic-plastic fracture to chemo-mechanical fracture (Miehe et al. [47,
48, 51]). The application of CPFM in biomechanics dates back to Gültekin [23]
which was later applied by Gültekin et al. [24, 25] and Raina and Miehe [57] using
anisotropic failure criteria. The numerical aspects of aortic dissections in regard to
the experimental study of Sommer et al. [66] were also investigated by Raina and
Miehe [57] and Gültekin et al. [25].

This book chapter is organized as follows. Section 2 outlines the basics of the
variational setup of the coupled mechanical-fracture problem in the sense of CPFM,
featuring the Euler-Lagrange equations, from which emerge the quasi-static force
balance of momentum and the evolution of the phase-field. Therein, both rate-
independent and rate-dependent formulations are presented. Subsequently, a brief
account of anisotropic failure criteria is provided. Next, an overview of numeri-
cal examination of the phenomena of aortic dissection using CPFM is presented.
Section 3 is concerned with models that introduce a discontinuous domain due to
fracture, namely CZMs and XFEM. A short summary of the traction-separation laws
used to determine the crack growth is provided together with the key aspects of the
kinematic and numerical foundations. A numerical example of a dissecting aorta



116 O. Gültekin and G.A. Holzapfel

is demonstrated for both the CZM and the XFEM. Finally, Sect. 4 provides a criti-
cal discussion and overview of some open problems and possible improvements in
modeling concepts for soft tissue rupture.

2 Crack Phase-Field Modeling of Failure in Soft Tissues

This section deals with the CPFM to model fracture of solids at finite strains featuring
the primary field variables, namely the crack phase-field d and the deformation map
ϕ in relation to the evolution of the crack and the balance of linear momentum,
respectively. An anisotropic arterial tissue comprised of two families of collagen
fibers is used as the material. A mixed saddle point principle of the global power
balance then yields the Euler-Lagrange equations of the multi-field problem.

2.1 Primary Field Variables of the Multi-Field Problem

Let us consider a continuum body B ⊂ R
3 at time t0 ∈ T ⊂ R and S ⊂ R

3 at time
t ∈ T ⊂ R in the Euclidean space. The finite macroscopic motion of the body is
characterized by the bijective deformation map, i.e.

ϕt (X) :
{

B × T → S,

(X, t) �→ x = ϕ(X, t),
(1)

that transforms a material point X ∈ B onto a spatial point x ∈ S at time t ⊂ R
+, see

Fig. 1. As a second primary field variable we introduce the basic geometric mapping
for the time-dependent auxiliary crack phase-field d such that

d :
{

B × T → [0, 1],
(X, t) �→ d(X, t),

(2)

which interpolates between the intact (d = 0) and the ruptured (d = 1) state of the
material.

2.2 Kinematics

We start with the description of the deformation gradient, i.e.

F = ∇ϕ, (3)
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transforming the unit Lagrangian line element dX onto its Eulerian counterpart dx =
FdX (for the relevant nonlinear continuum mechanics used in this chapter see, e.g.,
the books by Holzapfel [29] and de Souza Neto et al. [14]). Note that ∇[•] and ∇x [•]
denote the gradient operators with respect to the reference configuration and the
spatial configuration, respectively. The determinant of F, the Jacobian J = detF > 0,
characterizes the map of an infinitesimal reference volume element to the associated
spatial volume element. Furthermore, in this chapter we adopt the formalism in the
sense of Marsden and Hughes [44] and equip the two manifolds B and S with the
covariant reference metric tensor G and the spatial metric tensor g transforming the
co- and contravariant objects in the Lagrangian and Eulerian manifolds. As a next
step, we exploit the multiplicative split of F into volumetric Fvol and isochoric F
parts, as introduced by Flory [18], and write

F = FvolF with Fvol = J 1/3I and F = J−1/3F, (4)

where I is the second-order identity tensor. Subsequently we define the unimodular
part of the left Cauchy-Green tensor b as

b = FG−1F
T
, (5)

which is a strain measure in terms of spatial coordinates. The energy stored in a
hyperelastic isotropic material is characterized by the three modified invariants

Ī1 = trb, Ī2 = 1

2

[
Ī 2
1 − tr(b

2
)
]
, Ī3 = det b. (6)

The anisotropic structure of biological tissues makes it necessary to consider addi-
tional invariants. Therefore, we introduce two reference unit vectors M and M′ rep-
resenting the mean fiber orientations, see Fig. 1, and their spatial counterparts as

m = FM, m′ = FM′, (7)

which idealizes the micro-structure of the tissue. Subsequently, we can express the
related Eulerian form of the structure tensors Am and Am′ as

Am = m ⊗ m, Am′ = m′ ⊗ m′. (8)

Finally, we introduce the (physically meaningful) additional invariants

I4 = g : (m ⊗ m), I6 = g : (m′ ⊗ m′), (9)

which measure the squares of stretches along each fiber direction.
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Fig. 1 Nonlinear deformation of an anisotropic solid with the reference configuration B ∈ R
3

and the spatial configuration S ∈ R
3. The nonlinear deformation map is ϕ : B × R �→ R

3, which
transforms a material point X ∈ B onto a spatial point x = ϕ(X, t) ∈ S at time t . The anisotropic
micro-structure of the material point X is rendered by two families of fibers with unit vectors M
and M′. Likewise, the anisotropic micro-structure of the spatial point x is described by m and m′,
as the spatial counterparts of M and M′ (adopted from Gültekin et al. [25])

2.3 Field Equation for Crack Phase-Field
in a Three-Dimensional Setting

The multi-dimensional problem of fracture consists of a deformable mechanical
domain and a non-deformable domain of the phase-field, as depicted in the Fig. 2a
and b, respectively. A sharp crack surface topology at time t can be denoted by
�(t) ⊂ R

2 in the solid body B, with the definition �(d) = ∫
�

dA. In contrast, a
diffusive crack simply approximates the sharp crack surface by a volume integral in
the form of a regularized crack surface functional as

∇d · N = 0σ ·n = t̃

∂Bd

∂Bt

∂Bϕ

Nn l
X ∈ BX ∈ B

dϕ

ϕ = ϕ

Crack phase-field

Γl(d)

Deformation field

(a) (b)

Fig. 2 Multi-field problem: a mechanical problem of deformation; b evolution of the crack phase-
field problem (adopted from Gültekin et al. [25])
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�l(d) =
∫
B

γ(d,∇d)dV, where γ(d,∇d) = 1

2l
(d2 + l2|∇d|2), (10)

denotes the isotropic volume-specific crack surface while l stands for the length-
scale parameter. This can be extended to a class of anisotropic materials via the
introduction of an anisotropic volume-specific crack surface γ up to first order, i.e.

γ(d, Q � ∇d) = γ(d,∇d), ∀Q ∈ G ⊂ O(3), (11)

where Q denotes the rotations in the symmetry group G, a subset of the orthogonal
group O(3) containing rotations and reflections, and � denotes an operator. The
anisotropic structure is then considered by a second-order structure tensor L such
that

L = l2[I + ωM(M ⊗ M) + ωM′(M′ ⊗ M′)], (12)

which aligns the evolution of the crack according to the orientation of fibers in the
continuum using the anisotropy parameters ωM and ωM′ , which regulate the transition
from weak to strong anisotropy. The anisotropic volume-specific crack surface can
now be represented by the alternative form

γ(d,∇d;L) = 1

2l
(d2 + ∇d · L∇d). (13)

We can now state the minimization principle

d(X, t) = Arg
{

inf
d∈W�(t)

�l(d)
}

, (14)

subject to the Dirichlet-type boundary constraint W�(t) = {d|d(X, t) = 1 at X ∈
�(t)}. The Euler-Lagrange equations of the above stated variational principle are
then

d − ∇ · (L∇d) = 0 in B and L∇d · N = 0 on ∂B, (15)

where the non-local effects are considered by the divergence term. In (15)2 N is the
unit surface normal oriented outward in the reference configuration (for a derivation
of the Euler-Lagrange equation see Gültekin [23]).

2.4 Constitutive Modeling of Artery Walls

The effective Helmholtz free-energy function describing the local anisotropic
mechanical response of the intact solid assumes a specific form comprising the effec-
tive volumetric U0(J ), the isotropic � iso

0 and anisotropic �ani
0 parts, i.e. (Dal [13])
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�0(g, F, Am, Am′) = U0(J ) + � iso
0 (g, F) + �ani

0 (g, F, Am, Am′). (16)

It needs to be emphasized that in (16) the multiplicative decomposition of the defor-
mation gradient F is only used for the description of the ground matrix of the artery
wall; in other words, we dispense with the multiplicative decomposition for the fiber
response. The effective volumetric part in (16) is defined as

U0(J ) = κ(J − lnJ − 1), (17)

while the effective isotropic � iso
0 and the effective anisotropic �ani

0 parts are functions
of the invariant arguments. Thus,

� iso
0 (g, F) = �̂ iso

0 ( Ī1), �ani
0 (g, F, Am, Am′) = �̂ani

0 (I4, I6), (18)

which takes on the neo-Hookean and the exponential forms according to Holzapfel
et al. [30],

�̂ iso
0 ( Ī1) = μ

2
( Ī1 − 3), �̂ani

0 (I4, I6) = k1

2k2

∑
i=4,6

{exp[k2(Ii − 1)2] − 1}, (19)

representing the elastic (and isotropic) response of the ground matrix and the two
(distinct) families of collagen fibers, respectively. To give an account of the parame-
ters, κ denotes the penalty parameter enforcing the quasi-incompressible material
behavior in (17), while μ indicates the shear modulus in (19)1. The parameters k1

and k2 in (19)2 denote a stress-like material parameter and a dimensionless parame-
ter, respectively. The anisotropic part contributes to the mechanical response only
when a family of fibers is under extension, that is when the invariants I4 > 1 (and
I6 > 1). Otherwise the relevant part of the anisotropic function should be excluded
from (19)2. For the derivations of the corresponding constitutive response, i.e. the
effective Kirchhoff stress tensor τ 0 and the effective elastic moduli C0 see Gültekin
et al. [25].

2.5 Variational Formulation Based on Power Balance

We hereby establish the theoretical edifice based on the mixed saddle point princi-
ple of the global power balance engendering the coupled Euler-Lagrange equations
governing the evolution of the crack phase-field in (i) a rate-dependent and (ii) a
rate-independent setting, in addition to the balance of linear momentum and the vol-
umetric constraints. For a degrading continuum the Helmholtz free-energy function
becomes

�(g, F, Am, Am′ ; d) = g(d)�0(g, F, Am, Am′), (20)
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where �0 is the effective Helmholtz free-energy function of the hypothetically intact
solid according to (16). The explicit form of the monotonically decreasing quadratic
degradation function g(d) is given by

g(d) = (1 − d)2. (21)

The function (21) describes the degradation of the tissue as the crack phase-field
parameter d evolves, with the following growth conditions:

g′(d) ≤ 0 with g(0) = 1, g(1) = 0, g′(1) = 0. (22)

Degradation is ensured by the first condition, whereas the second and third conditions
set the limits for the intact and the ruptured state of the material. The final condition
indicates a saturation as d → 1. Hence, the volumetric, isotropic and the anisotropic
parts of the free-energy function � = U + �̂ iso + �̂ani for a degenerating material
become

U (J, d) = g(d)U0(J ), �̂ iso( Ī1; d) = g(d)�̂ iso
0 ( Ī1), (23)

�̂ani(I4, I6; d) = g(d)�̂ani
0 (I4, I6),

respectively. In the subsequent treatment, we write the rate of the energy storage
functional by considering the time derivative of the isotropic and the anisotropic
contributions of (23)2,3, which integrated over the domain gives

E(ϕ̇, ḋ;ϕ, d) =
∫
B
(τ : g∇x ϕ̇ − f ḋ)dV . (24)

Therein, we have defined the Kirchhoff stress tensor τ and the energetic force f
such that

τ = g(d)(τ iso
0 + τ ani

0 ), f = −∂d [U (J ; d) + �̂ iso( Ī1; d) + �̂ani(I4, I6; d)].
(25)

The Kirchhoff stress tensor τ is essentially obtained via the effective isotropic and
anisotropic Kirchhoff stress tensors τ iso

0 and τ ani
0 , respectively. Meanwhile, f can be

interpreted as the work conjugate of ḋ . The external action on the body leads to the
external power functional described by

P(ϕ̇) =
∫
B

ρ0γ̃ · ϕ̇dV +
∫

∂Bt

t̃ · ϕ̇ da, (26)

where ρ0, γ̃ and t̃ represent the material density, the prescribed body force and the
spatial surface traction, respectively. In what follows, the crack dissipation functional
D accounting for the anisotropic dissipated energy in the body is introduced as

D(ḋ) =
∫
B

gc[δdγ(d,∇d;L)]ḋdV, (27)
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where δdγ defines the variational derivative of the anisotropic volume-specific crack
surface γ according to (Gültekin et al. [24])

δdγ = 1

l
[d − ∇ · (L∇d)], (28)

and gc indicates the critical fracture energy (Griffith-type critical energy release rate),
see Miehe et al. [49, 52] and Gültekin et al. [24, 25]. Concerning thermodynamics, the
dissipation functional has to be non-negative for all admissible deformation processes
(D ≥ 0), a primary demand of the second law of thermodynamics. This inequality
is a priori fulfilled by the local form of the dissipation functional (27) featuring a
positive and convex propensity (Miehe et al. [52] and Miehe and Schänzel [50]). The
local form of (27) can readily be stated by the principle of maximum dissipation via
the following constrained optimization problem

gc[δdγ(d,∇d;L)]ḋ = sup
β∈E

βḋ, (29)

which can be solved by a Lagrange method yielding

gc[δdγ(d,∇d;L)]ḋ = sup
β,λ≥0

[βḋ − λtc(β; d,∇d)], (30)

where β is the local driving force, dual to ḋ, and λ is the Lagrange multiplier that
enforces the constraint. In addition, the threshold function tc delineating a reversible
domain E is given by

E(β) = {β ∈ R|tc(β; d,∇d) = β − gc[δdγ(d,∇d;L)] ≤ 0}. (31)

Finally, the extended dissipation functional reads

Dλ(ḋ,β,λ; d) =
∫
B
[βḋ − λtc(β; d,∇d)]dV . (32)

2.5.1 Mixed Rate-Independent Variational Formulation Based
on Power Balance

The functionals (24), (26), and (32) are brought together for the description of a
rate-type potential �λ giving rise to the power balance, i.e.

�λ = E + Dλ − P. (33)

On the basis of the rate-type potential (33), the mixed saddle point principle for the
quasi-static process states that
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{ϕ̇, ḋ,β,λ} = Arg
{

inf
ϕ̇∈Wϕ̇

inf
ḋ∈Wḋ

sup
β,λ≥0

�λ
}

, (34)

with the admissible domains for the primary variables

Wϕ̇ = {ϕ̇ | ϕ̇ = 0 on ∂Bϕ}, Wḋ = {ḋ | ḋ = 0 on ∂Bd}. (35)

By considering the variation of �λ we obtain Euler-Lagrange equations describing
the mixed multi-field problem for the rate-independent fracture of an anisotropic
hyperelastic solid, i.e.

1: J div(J−1τ ) + ρ0γ̃ = 0,

2: β − f = 0,

3: ḋ − λ = 0,

(36)

along with the Karush-Kuhn-Tucker-type loading-unloading conditions ensuring the
principal of maximum dissipation for the case of an evolution of the crack phase-field
parameter d, i.e.

λ ≥ 0, tc ≤ 0, λtc = 0. (37)

The elimination of β and λ through (36)2,3 and the explicit form of the threshold
function tc results in

ḋ ≥ 0, f − gcδdγ(d,∇d;L) ≤ 0, [ f − gcδdγ(d,∇d;L)]ḋ = 0. (38)

The first condition ensures the irreversibility of the evolution of the crack phase-
field parameter. The second condition is an equality for an evolving crack, which is
negative for a stable crack. The third condition is the balance law for the evolution
of the crack phase-field subjected to the former conditions.

2.5.2 Mixed Rate-Dependent Variational Formulation Based
on Power Balance

In this section we deal with the viscous extension of the variational approach. To this
end, we introduce a Perzyna-type viscous extension of the dissipation functional, i.e.

Dη(ḋ,β; d) =
∫
B
[βḋ − 1

2η
〈tc(β; d,∇d)〉2]dV, (39)

where the viscosity η determines the viscous over-force governing the evolution of
ḋ. In (39) the positive values for the threshold function tc are always filtered out
owing to the ramp function 〈x〉 = (x + |x |)/2. The corresponding viscous rate-type
potential reads

�η = E + Dη − P. (40)
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On the basis of (40), we establish a mixed saddle point principle for the quasi-static
process, i.e.

{ϕ̇, ḋ,β} = Arg
{

inf
ϕ̇∈Wϕ̇

inf
ḋ∈Wḋ

sup
β≥0

�η
}

, (41)

with the admissible domains for the primary state variables as given in (35). One can
retrieve the coupled set of Euler-Lagrange equations for the rate-dependent fracture
by simply taking the variation of �η, which gives

1: J div(J−1τ ) + ρ0γ̃ = 0,

2: β − f = 0,

3: ḋ − 1

η
〈tc(β; d,∇d)〉 = 0.

(42)

The explicit form of the threshold function tc recasts the equality (42)3 in the form

f = ηḋ + gcδdγ(d,∇d;L). (43)

The rate-independent setting is recovered for η → 0.

2.6 Crack Driving Function and Failure Ansatz

Focusing on the rate-independent case in (43), for η → 0, we elaborate on the ener-
getic force (25)2. Accordingly, we substitute the Eqs. (21) and (23) into (25)2 to arrive
at

f = 2(1 − d)(U0 + �̂ iso
0 + �̂ani

0 ) = 2(1 − d)�0. (44)

Combining (43) and (44), and considering the rate-independent case together with
(28), the following relation holds

2(1 − d)
�0

gc/ l
= d − ∇ · (L∇d). (45)

With this notion at hand, one can define the dimensionless crack driving function

H = �0

gc/ l
. (46)

As discussed by Miehe et al. [51] the dimensionless characteristics of H allows the
incorporation of different failure criteria. Subsequently, we postulate that a particular
form of the failure Ansatz in accordance with two conditions, i.e. (i) irreversibility
of the crack and (ii) positiveness of the crack driving function ensuring that the crack
growth solely takes place upon loading. Thus,
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H(t) = max
s∈[0,t]

[〈H(s) − 1〉] . (47)

The above ramp-type function reckons on the positive values for H(s) − 1 and keeps
the solid intact below a threshold value, i.e. until the failure surface is reached;
therefore, the crack phase-field does not evolve for H(s) < 1. We also note that (47)
always considers the maximum value of H(s) − 1 in the deformation history thereby
ensuring the irreversibility of cracking. With these adjustments, (45) now takes on
the form

2(1 − d)H = d − ∇ · (L∇d), (48)

where the right-hand side of (48) is the geometric resistance to crack whereas the
left-hand side is the local source term for the crack growth (Miehe et al. [51]). Bearing
this in mind, we recall the rate-dependent case for η �= 0, i.e.

2(1 − d)H = d − ∇ · (L∇d) + ηḋ, (49)

which compares to (43) with the replacement of the dimensional energetic force by
the dimensionless failure Ansatz, the cornerstone of the crack phase-field model. It
needs to be highlighted that the use of a free energy is intrinsic in the phase-field
model; therefore the variational formulation does not apply to cases apart from an
energy-based criterion. Hence, a stress-based criterion can only be incorporated into
(48) or (49) on a rather ad hoc basis.

2.7 Anisotropic Failure Criteria

The dimensionless crack driving function stated in (46) already reflects an energy-
based criterion for a general isotropic material. However, it is well known that most
soft biological tissues exhibit an anisotropic morphology thereby an anisotropic
mechanical response to loading. We herein give a short description of the anisotropic
failure criteria which may manifest the rupture phenomena in coherence with clini-
cal observations. For simplicity the ensuing formulations are established according
to the assumption that the principal axes of anisotropy lie on the axes of reference.
Nonetheless, transformation of stress components can be achieved without much
effort. For more details the reader is encouraged to look at Gültekin et al. [25].

2.7.1 Energy-Based Anisotropic Failure Criterion

Two distinct failure processes are assumed to govern the cracking of the ground
matrix and the fibers, as suggested by Gültekin et al. [24]. Accordingly, the ener-
getic force in (44) can be additively decomposed into an isotropic part fiso and an
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anisotropic part fani such that

fiso = 2(1 − d)(U0 + �̂ iso
0 ), fani = 2(1 − d)�̂ani

0 , (50)

which, in their turn, modify (45) into two distinct fracture processes which are super-
posed to give the following relation

(1 − d)H = d − 1

2
∇ · (L∇d), with H = Hiso + Hani

, (51)

where the dimensionless crack driving functions are defined as

Hiso = U0 + �̂ iso
0

giso
c / l

, Hani = �̂ani
0

gani
c / l

. (52)

Therein, giso
c / l and gani

c / l are the critical fracture energies over the length scale for the
ground matrix and for the fibers, respectively. Finally, we mention here the modified
forms of the rate-dependent and rate-independent cases of the crack evolution, i.e.

(1 − d)H = d − 1

2
∇ · (L∇d), (1 − d)H = d − 1

2
∇ · (L∇d) + ηḋ. (53)

2.7.2 Stress-Based Anisotropic Tsai-Wu Failure Criterion

Composed of a scalar function of two strength tensors, i.e. linear and quadratic
forms, the Tsai-Wu criterion (Tsai and Wu [68]) recasts the dimensionless crack
driving function H in (46) in regard to the effective Cauchy stress tensor σ0 in the
following form

H = T : σ0 + σ0 : T : σ0, (54)

where T and T denote the second- and fourth-order strength tensors, respectively.
Through a series of assumptions and simplifications introduced by symmetry rela-
tions we end up with the following expression

Tii = 1

(σu
i )

2
(55)

for the diagonal terms of the fourth-order strength tensor related to ultimate normal
and shear stresses, where i ∈ {1, . . . , 6}. For a comprehensive analysis of the sim-
plifications and assumptions the reader is referred to Tsai and Wu [68] and Tsai and
Hahn [67].
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2.7.3 Stress-Based Anisotropic Hill Failure Criterion

Considered as an anisotropic extension of the von Mises-Huber criterion, the Hill
criterion (Hill [28]) is based on a quadratic form of the dimensionless crack driving
function H in (46) such that

H = σvm
0 : T : σvm

0 , (56)

where σvm
0 represents the effective von Mises stress tensor. The components of σvm

0
can be defined in terms of

σvm
01

= σ01 − σ02 , σvm
02

= σ02 − σ03 , σvm
03

= σ03 − σ01 ,

σvm
04

= σ04 , σvm
05

= σ05 , σvm
06

= σ06 .
(57)

The fourth-order strength tensor T pertains to the effective normal stresses and shear
stresses, as described in Gültekin et al. [25]. The Hill criterion essentially admits a
surface of von Mises-Huber-type along the isotropic directions.

2.7.4 Principal Stress Criterion

Developed on the basis of principal stresses the criterion of Raina and Miehe [57]
reports on the spectral decomposition of the effective Cauchy stress tensor and takes
the positive principal stresses into account, i.e.

σ+
0 =

3∑
i=1

〈σ0i 〉ni ⊗ ni , (58)

where σ0i denote the effective principal stresses, and ni are the corresponding eigen-
vectors for i ∈ {1, 2, 3}. Accordingly, the dimensionless crack driving function H in
(46) is rewritten in the following format

H = σ+
0 : T : σ+

0 , (59)

where the fourth-order strength tensor T is presented as

(T)i jkl = 1

4σ2
crit

(Aik A jl + Ail A jk) . (60)

Therein, σcrit denotes the reference critical stress associated with uniaxial loading in a
certain axis that can be conceptually replaced by an ultimate stress. The second-order
anisotropy tensor A is expressed in index notation for i, j, k, l ∈ {1, 2, 3}. Details
can be found in Raina and Miehe [57].
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2.8 Finite Element Formulation

By considering a discrete time increment τ = tn+1 − tn , where tn+1 and tn stand for
the current and previous time steps respectively, we carry out a decoupling of the
sub-problems, namely the mechanical and the crack phase-field by appealing to a
one-pass operator-splitting algorithm, i.e.

ALGOCM = ALGOC ◦ ALGOM. (61)

Here, such an algorithm yields a decoupling within the time interval and results in
partitioned symmetric structures for the two sub-problems. Accordingly, the algo-
rithm for each sub-problem is obtained as

(M) :
{
J div(J−1τ ) + ρ0γ̃ = 0,

ḋ = 0,
(C) :

{
ϕ̇ = 0,

d − ∇ · (L∇d) − 2(1 − d)H + ηḋ = 0.

(62)

The algorithm (M) is the mechanical predictor step which is solved for the frozen
crack phase-field parameter d = dn , while the algorithm (C) is the crack evolution
step for the frozen deformation map ϕ = ϕn . The remainder of the formulation is
summarized in Table 1. A staggered solution procedure is implemented based on a
one-pass operator-splitting of the coupled Euler-Lagrange equations on the temporal
side whereas a Galerkin-type weak formulation on the spatial side furnishes the finite
element formulation along with the rate-dependent setting of the phase-field. Such
a solution algorithm successively updates the crack phase-field and the deformation
map in a typical time step by means of a Newton-Raphson scheme. For an elaborate
treatment of discretization methods and a staggered solution procedure based on a
one-pass operator-splitting, the reader is referred to, e.g., Miehe [46], Wriggers [71],
Miehe et al. [49] and Gültekin et al. [24, 25].

Table 1 General algorithm for the multi-field problem in [tn, tn+1]

1. Initialization – At time tn given: deformation map, phase-field, history field ϕn , dn , Hn

2. Update – Update the prescribed loads γ̃, ϕ and t̃ at current time tn+1

3. Compute ϕn+1 – Determine ϕn+1 from the minimization problem of elasticity

ALGOM • Gϕ =
∫
B
[g∇x (δϕ) : τ ]dV −

∫
B

δϕ · ρ0γ̃dV −
∫

∂B
δϕ · t̃da = 0

4.Compute history – Check crack initiation/propagation condition, update history

• H(tn+1) ←
{
H(tn) if H(tn+1) < H(tn)

H(tn+1) else

5. Compute dn+1 – Determine dn+1 from the minimization problem of crack topology

ALGOC •
Gd =

∫
B

δd[d − 2(1 − d)H + η
(d − dn)

τ
]dV +

∫
B

∇(δd) · L∇ddV = 0
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2.9 Representative Numerical Examples

We now demonstrate the performance of the proposed model applied to rupture of
soft biological tissues. The other aim is to investigate the failure criteria introduced
in Sect. 2.7 from a numerical point of view. In particular, the failure surface and the
crack propagation associated with distinct failure criteria are compared with each
other for rather simple numerical examples.

2.9.1 Numerical Investigation of the Failure Surfaces

We provide an insight to the initiation of the crack with regard to different failure
criteria. The example, taken from Gültekin et al. [25], deals with a homogeneous
problem with a unit cube discretized by one hexahedral element resolving the ana-
lytical solution for the deformation and stress via discarding all non-local effects due
to the gradient of the crack phase-field ∇d, see Fig. 3a. As a loading protocol, we
first consider uniaxial extension tests along the x-, y- and z-directions with a stretch
ratio λx = λy = λz = 2 which is followed by a series of planar biaxial deformations
in the xy-plane with stretch ratios λx : λy = 2 : 1.1, 2 : 1.25, 2 : 1.5, 2 : 1.75, 2 : 2,
1.75 : 2, 1.5 : 2, 1.25 : 2, 1.1 : 2. Stretch ratios in the xz- and yz-planes for λx : λz

and λy : λz are applied in an analogous manner as for λx : λy , see Fig. 3b–d. The
tissue is regarded as transversely isotropic consisting of one family of fibers with
orientation M along the x-direction, and it is embedded in the ground matrix. The
elastic material parameters and the crack phase-field parameters are listed for each
failure criterion in Table 2 (for more details see Gültekin et al. [25]).

Figure 4a–c illustrate the resulting failure surfaces at the instance when d �= 0 for
the energy-based criterion, the Tsai-Wu criterion and the principal stress criterion,
respectively. The results conspicuously retrieve ellipsoidal failure surfaces. It needs to
be emphasized that one can envisage a zone between the macroscopic onset (d �= 0)
and the completion (d = 1) of the crack in the context of diffusive crack modeling

λxλx

λyλy

λzλzx
y

z

M

(a) (b) (c) (d)

Fig. 3 a Unit cube of a transversely isotropic tissue consisting of one family of fibers with orien-
tation M parallel to the x-direction, initially subjected to uniaxial deformations in the x-, y-, and
z-directions followed by a series of planar biaxial deformations b in the xy-plane; c in the xz-plane;
d in the yz-plane (adopted from Gültekin et al. [25])
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Table 2 Elastic material parameters and crack phase-field parameters for a transversely isotropic
material studied in Sect. 2.9.1

Elastic μ = 10 kPa

k1 = 20 kPa

k2 = 1

Crack phase-field Energy-based
criterion

giso
c = 5 kPa mm gani

c = 15 kPa mm

Tsai-Wu criterion σu
x = 140 kPa σu

y = σu
z = 20 kPa

Principal stress
criterion

σcrit = 140 kPa a1 = 1 a2 = a3 = 7

Hill criterion σu
x = 30 kPa σu

y = σu
z = 20 kPa

σxxσxx

σxx σxx

σyy σyy

σyyσyy

σzz σzz

σzzσzz

(a) (b)

(c) (d)

Fig. 4 Failure surfaces in regard to Cauchy stresses σxx , σyy and σzz in kPa at which the failure
conditions are satisfied, leading to d > 0 for a the energy-based; b the Tsai-Wu; c the maximum
principal stress; d the Hill failure criterion (adopted from Gültekin et al. [25])
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such as the crack phase-field. This example points out the associated macroscopic
onset of the crack. Figure 4d shows the failure surfaces obtained at d �= 0 for the Hill
criterion (Sect. 2.7.3). In fact, these criteria induce surfaces diverging from being
ellipsoidal. In particular, the isotropic failure envelope on the yz-plane eventually
becomes discernable, see Fig. 4d, which recovers the von Mises-Huber criterion, as
expected.

2.9.2 Peel Test Numerically Analyzed with Different Failure Criteria

Peel tests bear an immense resemblance to the physical phenomena of, e.g., aortic
dissections and allow a numerical investigation of the dissection propagation in terms
of various failure criteria mentioned in Sect. 2.7. The benchmark with an initial tear
models a hypothetical artery comprised of a single family of fibers with orientation
M. The geometric and discrete descriptions of the problem are illustrated in Fig. 5a
and b, respectively. The strip was discretized with 2 640 mixed Q1P0 eight-node
hexahedral elements. Nodes on the plane at y = 0 are fixed in all directions and a
horizontal displacement ux = 4 mm is incrementally applied at the arms on the top
plane in the x-direction. Plain strain conditions are considered in the z-direction.
The elastic material parameters are according to Gasser and Holzapfel [21]. The
penalty parameter and the length-scale parameter are chosen as κ = 1 000 kPa and
l = 0.05 mm, respectively. The viscosity parameter is adjusted to be η = 1 kPa s
for the energy-based criterion and η = 10 kPa s for the stress-based criterion while
the anisotropy parameters are selected as ωM = 1.0 and ωM′ = 0 fulfilling weak
anisotropy. The other phase-field parameters are taken from Gültekin et al. [25].

The analyses are performed according to the energy-based, the Tsai-Wu, the prin-
cipal stress and the Hill criterion while the two arms of the strip separated by an initial
tear are being pulled in opposite directions, see Fig. 6. It has been observed that the
use of stress-based criteria, in general, leads to a crack propagation susceptible to
boundary effects not observed in the case of the energy-based criterion.

ux

uxx
y

z

(a) (b)

M

4.01.2

0.6

0.05

Fig. 5 a Geometry of the strip with a single family of fibers with orientation M in the y-direction,
corresponding to the collagenous component of the material. The strip is torn apart by means
of a displacement ux applied at the two arms in the positive and negative x-direction; b finite
element mesh of the corresponding geometry. Dimensions are provided in millimeters (adopted
from Gültekin et al. [25])
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10

d

(a)

(b)

(c)

(d)

Fig. 6 Evolution of the crack phase-field d for a the energy-based; b the Tsai-Wu; c the principal
stress criterion; d the Hill criterion, as the arterial tissue with an initial tear is being pulled in two
opposite directions (adopted from Gültekin et al. [25])

We close this section by providing a short discussion on the study by Raina and
Miehe [57] in which the phase-field of fracture is used to simulate the delamination of
the aortic media with the principal stress criterion imparted in Sect. 2.7.4. Although
the overall problem setup is akin to the one explained in this section, the finite element
mesh comprises of 7 000 displacement-based four-noded quadrilateral elements in
2D. The selected material parameters agree favorably with the parameters identified
by Gasser and Holzapfel [21]. Figure 7 shows the contours of the phase-field para-
meter d at different stages of the deformation, while Fig. 8 provides the load per unit
width on one side of the pre-crack at the top line versus the displacement. A good
agreement of the plot with the average experimental curve identified by Sommer et
al. [66] is discernable.
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Fig. 7 Contours of the crack phase-field d illustrate the crack propagation in the deformed config-
uration (adopted from Raina and Miehe [57])

Fig. 8 Plot of load per unit
width on one side of the
pre-crack at the top line
against the applied
displacement, which is
compared with the average
experimental data from
Sommer et al. [66] (adopted
from Raina and Miehe [57])

3 Discontinuous Models of Rupture in Soft Biological
Tissues

Endeavors were made to obtain a variational framework for the XFEM and the CZM.
In the XFEM, cracks are represented by the enriched nodes enabling asymptotic and
discontinuous fields through additional degrees of freedom. CZMs are, however,
described by (surface-like) interface elements compatible with general finite element
discretization. The concept of cohesive law and XFEM are combined in Moës and
Belytschko [53] so that tractions on the crack surface are governed by a traction-
separation law. This mixed concept was implemented to model the dissection of
an aorta in Gasser and Holzapfel [21] along with the PUFEM. In the forthcoming
sections we describe this approach and exploit the mixed saddle point principle.
Model implementations are verified by finite element analyses of an abdominal aortic
media subject to delamination (mode-I), in accordance to Gasser and Holzapfel [21]
and Ferrara and Pandolfi [17].
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3.1 Discontinuous Kinematics

Let us assume a continuum body B ⊂ R
3 at time t0 ∈ T ⊂ R and S ⊂ R

3 at time
t ∈ T ⊂ R in the Euclidean space. In view of the entire domain, we assume a strong
discontinuity surface ∂Bd and ∂Sd in the reference and the spatial configuration,
see Fig. 9. The discontinuity separates B into two subdomains B+ and B− located
in the reference configuration rendering the features ∂Bd ∩ B+ = ∅, ∂Bd ∩ B− = ∅
and ∂Bd ∪ B+ ∪ B− = B. Their spatial counterparts are delineated by ∂Sd, S− and
S+. The orientations of a material point Xd and the related spatial point xd located
on the discontinuous surfaces are characterized by their normal vector Nd and nd,
respectively. The essential and the neutral boundary conditions with respect to the
reference and spatial configurations are shown in Fig. 9.

Next, we rephrase the deformation map and introduce an additive split of ϕ into
a compatible part ϕc and an enhanced part ϕe, see Simo et al. [65] and Armero and
Garikipati [2]. Thus,

∂Bd ∂Sd

∂Bt

∂St

ϕ= ϕ̄

ϕ= ϕ̄ ∂Bϕ

∂Sϕ

Xd xd

N

n

Nd nd

T̃ = SN

t̃ = σn

B+

B−

S+

S−

Fe

Fd

Fc

Fig. 9 Discontinuous kinematics representing the reference configuration ∂Bd ∪ B+ ∪ B− = B
and the spatial configuration ∂Sd ∪ S+ ∪ S− = S of a body subject to the essential and the neutral
boundary constraints with the associated deformation gradients Fd, Fe and Fc. Surface tractions on
the body surface are denoted by t̃ (spatial) and T̃ (referential) with respect to the Cauchy stress tensor
σ and the second Piola–Kirchhoff stress tensor S along with the unit normal vectors n (spatial) and
N (referential). The cohesive tractions on the cohesive surfaces are related to nd, the unit spatial
normal on ∂Sd
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ϕ = ϕc + Hϕe, (63)

whereH denotes the Heaviside function, with values 0 and 1 associated with X ∈ B−
and X ∈ B+, respectively. The assumption that ∂Sd is the map of ∂Bd enables the
introduction of an average deformation gradient Fd which resorts to Wells [69], i.e.

Fd = ∇ϕc + 1

2
ϕe ⊗ Nd, (64)

where the spatial discontinuity normal nd is defined by a contravariant push-forward
of the normal vector Nd such that

nd = FT−1
d Nd

|FT−1
d Nd|

, (65)

which gives the preferred direction for anisotropic traction-separation laws. Addi-
tionally, we define the compatible deformation gradient Fc as

Fc = ∇ϕc from B− to S−, (66)

and the enhanced deformation gradient Fe as

Fe = ∇ϕc + ∇ϕe from B+ to S+. (67)

3.2 Traction-Separation Law

The theory of standard dissipative solids treated via potential-based models are well-
established by Biot [7] and Halphen and Nguyen [27], among others. Accordingly,
Ortiz and Pandolfi [56] postulated the general form of an objective free-energy density
per unit undeformed area ∂Bd which can be interpreted as a cohesive potential or
elastic energy stored in the cohesive surfaces, see, e.g., Xu and Needleman [72]. The
constitutive law for the cohesive surface is conjectured to be a phenomenological
relation between the traction and the displacement jump across the surface. The
general form reads

φ = φ̂(ud, d), (68)

where ud is referred to as the discontinuous displacement representing the displace-
ment jumps, while d is an internal scalar variable accounting for damage. Now, we
give an account for two particular forms of this cohesive potential.
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3.2.1 Isotropic Cohesive Law

Gasser and Holzapfel [21] uses an isotropic particularization of the cohesive potential
according to

φ = φ̂(i1, d) = t0
2d

exp(−adb)i1, (69)

where i1 = ud · ud defines the first invariant, t0 denotes the cohesive tensile strength
whereas a and b are non-negative parameters which retrieve the softening response
of the material based on mode I fracture. Then the cohesive traction td is defined by

td = ∂udφ = t0
2d

exp(−adb)ud. (70)

Details about the calculation of the cohesive traction and how to extend it to the
anisotropic case can be found in Gasser and Holzapfel [20, 21].

3.2.2 Anisotropic Cohesive Law

Ferrara and Pandolfi [16] implement cohesive laws by postulating specific forms of
the cohesive potential as, e.g.,

φ = φ̂(ud,1, ud,2, ud,n, d), (71)

where the opening displacements are introduced as

ud,1 = ud · m, ud,2 = ud · m′, ud,n = ud · mn. (72)

Therein, m and m′ designate the unit vectors representing the mean fiber orientations
on ∂Sd (compare with (7)), with their normal component mn = m × m′. Then, the
cohesive traction td is given by

td = ∂udφ = ∂ud,1 φ̂m + ∂ud,2 φ̂m′ + ∂ud,n φ̂mn. (73)

For further simplifications on the cohesive tractions the interested reader is
encouraged to see the papers by Ortiz and Pandolfi [56] and Ferrara and Pandolfi
[16].

3.3 Finite Element Formulation

The above elucidated mixed modeling (XFEM/PUFEM and CZM for cohesive crack
growth) requires that the discontinuities at the crack tip are adequately described by
enriching functions such as H. The displacement field u is, e.g., interpolated as
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u =
nelem∑
I=1

N IuI
c + H

nelem∑
I=1

N IuI
e , (74)

where N I denotes the standard (polynomial) interpolation functions with the index I
running from 1 to nelem, the number of nodes per element. Therein, uc and ue indicate
the matrix notation of the associated compatible and enhanced nodal displacement
vectors. An important aspect is that the sum of the shape functions must be unity,
see Melenk and Babuška [45]. What follows is a standard Galerkin procedure of
the problem at hand and the corresponding linearization. It should be noted that as
the element stiffness matrix generally becomes non-symmetric, the application of
appropriate solvers are indispensable if a quadratic rate of convergence is sought.
Details in regard to finite element formulations and their implementations can be
found in Gasser and Holzapfel [20, 21].

3.4 Representative Numerical Examples

For the sake of comparison, numerical examples handling the peel test, based on the
experimental data of Sommer et al. [66], are presented.

3.4.1 Analysis of a Peel Test According to Gasser and Holzapfel [21]

The contribution [21] uses both XFEM and CZM in order to model a 3D medial aortic
strip with geometry and boundary conditions by analogy with Fig. 5. Two families
of collagen fibers oriented by an angle of ±5◦ with respect to the circumferential
direction manifests the morphology of the tissue. The finite element mesh consists
of 9 993 standard tetrahedral elements and involves a refinement around the regions
where the crack growth is expected.

The required elastic parameters are accommodated from Holzapfel et al. [31],
whereas the cohesive materials are identified according to the experimental data by
Sommer et al. [66]. Therein, the dissection failure response of the media, albeit sub-
ject to a rather large standard deviation, is found to be anisotropic as the load required
to dissect a strip in the longitudinal direction is higher than that in the circumferen-
tial direction (35.0 ± 16.0 vs. 23.0 ± 3.0 mN/mm). The cohesive law used here, see
Sect. 3.2.1, delineates an isotropic failure where only the tensile strength normal to
the cohesive surface is taken into account.

Computations are performed by using approximately 200 displacement incre-
ments and the non-symmetric system of algebraic equations are monolithically han-
dled by a direct solver. The distribution of the radial component σr = r · σ · r of
the Cauchy stress, with r being the spatial radial direction vector, is demonstrated in
Fig. 10. Thereby five different stress states are illustrated which are labeled as (a)–
(e). The corresponding load-displacement response is provided via Fig. 11. Upon
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Fig. 10 Spatial distribution and evolution of the radial Cauchy stress σr during the propagation of
a dissection within a strip of an aortic media (adopted from Gasser and Holzapfel [21])

Fig. 11 Comparison of the
(average) experimental
load/width with the
computed load/width
required to propagate a
dissection in an aortic human
media (adopted from Gasser
and Holzapfel [21])
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exceeding a threshold value of the load, the response starts to exhibit an oscilla-
tory behavior followed by a gradual degradation after a gap displacement of 4 mm.
The plateau region obtained through numerical analysis is in accordance with the
experimental data.
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3.4.2 Analysis of a Peel Test According to Ferrara and Pandolfi [17]

The study [17] applies the cohesive zone approach to handle a 3D medial aortic strip
with geometry and boundary conditions by analogy with Fig. 5. The strip represents
a specimen cut out in the circumferential direction with two families of fibers defined
by an angle ± 5◦ with respect to the circumferential axis. In order to study the effect
of the mesh size, the geometry is discretized by a coarse, a medium, and a fine mesh
with 10-node standard tetrahedral elements, respectively. The material parameters
for the hyperelastic model and the anisotropic cohesive law can be found in Ferrara
and Pandolfi [17]. Although the anisotropic cohesive law is employed according to
Sect. 3.2.2, problems related to a higher degree of anisotropy occurred which resulted
to a breakage of the arms due to bending. This undesired behavior can only be evaded
by restricting the crack path along the middle surface of the 3D model.

Figure 12 shows the deformed configurations of three snapshots as the two arms
are stretched apart, and the contour levels indicate (a) the first and (b) the second
principal Cauchy stress, respectively. As a matter of fact, the second principal Cauchy
stress represents the normal component of the stress to the dissecting plane. Figure 13
shows the relationship between the force/width and the total separation of the two
arms. The asymptotic behavior of the numerical results is verified through the imple-
mentation of three simulations with three different mesh sizes. It is found that the
remarkable decrease in the amplitude of the oscillations upon reaching the plateau
region is achieved with the finer mesh which resolves the characteristic length scale.
Besides, the average pulling force per unit width of 28 mN/mm falls in the range
described by experimental data.

Fig. 12 Evolution of the dissection at three different stages: onset of the dissection, 2 and 4 mm of
imposed displacement. Contour levels in MPa refer to a the first and b the second principal Cauchy
stress. With reference to the arterial geometry, the second principal stress corresponds to the radial
component (adopted from Ferrara and Pandolfi [17])
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Fig. 13 Effects of the mesh
size on the numerical
simulation of the artery
dissection, and comparison
with the experimental data
from Sommer et al. [66]
(adopted from Ferrara and
Pandolfi [17])
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4 Discussion

Apart from the traditional finite element method relying on mesh-based discretization
of the spatial domain, other methods that do not rely on finite element discretization
such as meshfree methods based on peridynamic models (Silling [63] and Silling
and Askarib [64]), the element-free Galerkin method (Belytschko et al. [6]), and
smoothed particle hydrodynamics (Libersky and Petschek [42]), have recently been
applied to soft tissue mechanics, see, e.g., Jin et al. [37] and Rausch et al. [58]. The
study of Rausch et al. [58] simulated the delamination of an aortic strip according
to the experiments performed by Sommer et al. [66], and demonstrated a qualitative
agreement of the numerical results with experimental data. Nonetheless, it is also
worth mentioning that meshless methods, when utilized in the finite strain context,
may require several expedients to suppress non-physical results, e.g., local viscosity
augmented to hyperelasticity models to help stabilize the solution, or tracking of free
surface particles in order to impose traction-free responses.

Ferrara and Pandolfi [17] adjusted the cohesive law in order to prevent the breakage
of the arms and to capture a physically relevant peeling which occurs at the middle of
the pre-cracked region. It is worth mentioning that such interventions are not required
for the CPFM when an energy-based failure criterion is used. Apart from that, in
both CZM and XFEM, due to their discontinuous setting, the allowed crack paths
are prescribed to be along the middle surface of the geometry which render these
approaches impractical for complex geometrical and morphological situations as,
e.g., a 3D model of dissection propagating through an ascending aorta. It also needs to
be emphasized that the presented approaches focus only on the mechanical fracture of
solids/tissues, and they completely ignore the intricate feed-back mechanism between
the mechanical and the biochemical environment of tissues which may evoke bio-
chemo-mechanical fracture.
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The mechanical behavior of arterial walls before and after crack initiation is very
much dependent on the local variability of collagen, and on the presence of micro-
defects and micro-calcifications, see, e.g., Marino and Vairo [43] and Hutcheson
et al. [34]. On the top of that, the hierarchical structure of collagen fibers, the main
contributor of the mechanical response of soft tissues, is evident from morphological
investigations (Sherman et al. [62]). Hence, multi-scale approaches to rupture of soft
tissues may provide more physically relevant and holistic approximations than the
above-stated macro models.

There is a pressing need for more advanced computational models that can predict
the propagation of cracks and the ultimate rupture of soft biological tissues resulting
from atherosclerotic plaques, aneurysms, aortic dissection etc. based on clinically
available patient-specific data. Such models should also be informed by the under-
lying mechanobiology of, e.g., the lipid absorbing leukocytes (Libby et al. [41]),
matrix-metalloproteinases, Marfan’s syndrome, to name but a few (Humphrey and
Holzapfel [33]). Growth and remodeling of lesions triggered by mechanobiology
should also be taken into account. The focus of modeling and simulation should
be more on the tissue structure rather than on a phenomenological description, and
should move towards personalized data, ultimately leading to the establishment of
soft tissue rupture simulation as a key tool in medical monitoring and planning of
surgical intervention.
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