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Abstract A viscoelastic-viscoplastic combined constitutive model is presented to

represent large deformations of amorphous thermoplastic resins. The model is

endowed with viscoelastic and viscoplastic rheology elements connected in series.

The standard generalized Maxwell model is used to determine the stress and char-

acterize the viscoelastic material behavior at small or moderate strain regime. To

realize the transient creep deformations along with kinematic hardening due to fric-

tional resistance and orientation of molecular chains, a proven finite strain viscoplas-

tic model is employed. After identifying the material parameters with reference to

experimental data, we verify and demonstrate the fundamental performances of the

proposed model in reproducing typical material behavior of resin.

1 Introduction

Thermoplastic resins are known to exhibit peculiar material behavior. Early

researches were inspired by the work done by Eyring [10] who studied it physic-

ochemically based on reaction kinetics of molecular chains. Among them, Argon’s

double kink hypothesis [5, 6], which is based on disclination loop theory Li and

Gilman [21], has been widely used for the viscoplastic multiplier in various consti-

tutive models for thermoplastic resins to represent the initial yielding at a moderate

deformation regime; see also Liu and Li [22] in this context. With the help of high-

performance of computational resource, these early theoretical developments enjoys

the fruits of computational plasticity [26] in representing complex material behavior

and accelerates further elaboration of material models for thermoplastic resins.
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Boyce et al. [8] proposed a phenomenological constitutive model that can suc-

cessfully represent the stress-softening behavior after initial yielding by introducing

pressure dependency and evolution of shear yield strength into the Argon’s model

[6]. This model is extended by Wu and Giessen [31, 32] to reproduce shear bands and

necking phenomena at a moderate deformation regime. Also, based on the Boyce’s

theory, Anand and Gurtin [4] provide a model within the thermodynamics frame-

work that represents smooth transition from the initial yielding to stress-softening

in consideration of the evolution of free volume in the viscoplastic deformations.

Moreover, Fleischhauer et al. [11] extend the models developed by Mulliken et al.

[23] and Dupaix and Boyce [9] and propose a rheology model involving a viscoplas-

tic element connected with a Langevin element in parallel to represent compressive

material behavior of both thermosetting and thermoplastic resins.

Apart from the Argon’s framework [5, 6], the cooperative model, which is devel-

oped by Richeton et al. [27–29] based on the model introduced by Fotheringham

and Cherry [13], is worthy of attention. By extending the cooperative model, Anand

et al. [3] and Ames et al. [2] propose phenomenological models within the thermo-

dynamics framework, which incorporate the viscoplastic defect energy to represent

the dynamic recovery behavior during unloading. The extension of these models,

which is proposed by Srivastava et al. [30], is a rheology model composed of multi-

ple viscoplastic elements to adjust for the material behavior above a glass-transition

temperature. This model enables us to work with the change of physical properties

around the glass-transition temperature, but entails a bunch of parameters and seems

to be remotely related to physical ground. In the meantime, according to Aleksy et al.

[1] and Kermouche et al. [18], glassy thermoplastic resins behave as a viscoelastic

material in small and moderately large deformation regimes, whereas the viscoplas-

tic behavior tends to be dominant in a large deformation regime. Surprisingly few

studies have so far been made at the constitutive modeling in this context, though

there seem to be some models representing the coupling between viscoelastic and

viscoplastic material responses; see, e.g., Nedjar [24, 25].

To encompass various material responses depending on different amounts of

deformation, the article presents a new rheology-based constitutive model for glassy

amorphous thermoplastic resins that is composed of viscoelsatic and viscoplastic

elements in series. The distinct feature of the proposed model is that the elastic ele-

ments are installed in the viscoelastic part only so that the viscoplastic part is not

directly related to the stress. Also, thanks to the series combination, three types of

rheology elements are introduced in the model to represent different characteristic

features of the material behavior according to the amount of deformation. Specifi-

cally, the uniform creep behavior in a small deformation regime is represented by

the standard generalized Maxwell model [15, 16]. Two sets of rheology elements

are connected in parallel to construct the viscoplastic part of the model. One of

them is composed of serially connected frictional slider-dumper element to rep-

resent non-uniform creep deformation along with the initial yielding followed by

stress-softening in a moderately large deformation regime. In this study, the model

proposed by Boyce et al. [8] is employed for this part. The other is a special type of

spring elements introduced by Ames et al. [2] to represent the orientation hardening
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in a large deformation regime. As a ground for the argument of such a viscoelsatic

and viscoplastic combination in series, we start the formulation with the first and

second laws of thermodynamics. The experimental data for polymethylmethacrylate

(PMMA) available in the literature are used to identify the material parameters and

the fundamental performances of the proposed model in reproducing typical material

behavior of resin are verified and demonstrated with simple numerical examples.

2 A Viscoelastic-Viscoplastic Combined Constitutive Law

This section is devoted to the formulation of the viscoelastic-viscoplastic combined

constitutive law within the finite strain framework. Themomechanical deformation

is also considered without loss of generality, but isotropy is assumed for both the

thermal and mechanical deformations in this study.

2.1 Kinematic Variables

Figure 1 shows the rheology model corresponding to the constitutive law proposed in

this study. The model is composed of viscoelastic and viscoplastic parts connected in

series, each of which corresponds to viscoelastic and viscoplastic components, Fve

and Fvp
, obtained as a result of the following multiplicative decomposition of the

mechanical deformation gradient ̃F with reference to the initial, thermally dilated,

viscoplastic (intermediate) and current configurations depicted in Fig. 2 along the

line of Kröner [19] and Lee [20]:

̃F = FveFvp
(1)

1

2

nve

Fig. 1 Rheology model of coupled viscoelasticity with viscoplasticity. The model combines a

viscoplastic element with a generalized Maxwell model in series and necessitates the multiplicative

decomposition of the deformation gradient into viscoelastic and viscoplastic ones. The total stress

is determined only with the generalized Maxwell model
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Fig. 2 Configurations associated with multiplicative decomposition of deformation gradient;

Bvp
: viscoelastically unloaded configuration with viscoplastic deformation gradient Fvp

; thermally

dilated configuration Bth
; current configuration Bt

with viscoelastic deformation gradient Fve

Here, the total deformation gradient is expressed as

F = ̃FFth
(2)

with Fth
being the thermal deformation gradient, which, due to isotropy, can be

expressed as

Fth = (1 + 𝛼

t
𝜃)1 (3)

where 1 is the second-order identify tensor, 𝜃 is the change in temperature and 𝛼

t
is

the coefficient of thermal expansion (CTE).

The viscoelastic part of this rheology model corresponds to a finite strain ver-

sion of the generalized Maxwell elements, whereas the viscoplastic part covers a

lot of ground for corresponding constitutive models. However, the spring element

set in parallel with the serially connected frictional slider-dumper element is wor-

thy of attention, as the back stress due to orientation hardening is developed in it

after the expansion according to the viscoplastic deformation. In what follows, kine-

matic variables necessary in the formulation are defined based on the multiplicative

decomposition introduced above.

The mechanical deformation gradient ̃F can be decomposed into the volumetric

and isochoric components, J
1
3 and ̄F, as

̃F = J
1
3 ̄F (4)

where J ∶= det
(
̃F
)

[12]. These volumetric and isochoric components can also be

decomposed into viscoelastic and viscoplastic parts as

J = JveJvp
, and ̄F = ̄Fve

̄Fvp

(5)
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where we have defined Jve ∶= det
(
Fve

)
and Jvp ∶= det

(
Fvp

)
. In this study, incom-

pressibility is assumed for the viscoplastic deformation so that Jvp = 1, from which

(5)1 and (1) yields J = Jve
and ̃F = Fve

̄Fvp

, respectively.

The right Cauchy-Green and left Cauchy-Green tensors associated with the

mechanical deformation are given as ̃C =
(
̄Fvp)T Cve

̄Fvp

and ̃b = Fve
̄bvp (Fve

)T

.

Here, Cve
and ̄bvp

are the viscoelastic right Cauchy-Green and viscoplastic left

Cauchy-Green tensors that have respectively been defined as

Cve =
(
Fve

)T Fve
and ̄bvp = ̄Fvp (

̄Fvp)T

(6)

Also, the mechanical velocity gradient can be additively decomposed as

̃l = ̇

̃F ̃F−1 = lve + Fve
̄lvp(Fve)−1 (7)

where we have respectively defined the viscoelastic and viscoplastic velocity gradi-

ents referring to the viscoelastically unloaded configuration Bvp
as lve = ̇Fve (Fve

)−1

and ̄lvp = ̇

̄Fvp
(
̄Fvp)−1

. Each of these velocity gradients can be decomposed into the

symmetric and anti-symmetric parts as

̃l = sym
[
̃l
]
+ skew

[
̃l
]
= ̃d + w̃, (8)

̄lvp = sym
[
̄lvp] + skew

[
̄lvp] = ̄dvp + w̄vp

, (9)

lve = sym
[
lve
]
+ skew

[
lve
]
= dve + wve

(10)

where sym[∙] and skew[∙] are the symmetric and anti-symmetric parts of a second-

order tensor ∙.
We assume that the viscoplastic deformation of thermoplastic resins is affine

so that the mapping between viscoelastically unloaded configuration Bvp
and cur-

rent configuration Bt
is irrotational (as suggest by Boyce et al. [8]) as Rve = 𝟏 and

wve = 𝟎. This assumption postulates that the flow direction of the viscoplastic perma-

nent deformation in current configuration Bt
be coincident with the slip direction of

molecular chains. In this case, the second term of the right-hand side of (7) becomes

Fve
̄lvp(Fve)−1 = Vve

̄lvp(Vve)−1 = ̄lvp

so that ̃l = lve + ̄lvp

. Therefore, with (10), we

have ̃d = dve + ̄dvp

and w̃ = w̄vp
.

2.2 Free Energy

The total free energy 𝜓 for the material under consideration is defined as

𝜓 = 𝜓

th
(
Fth

, 𝜃

)
+ 𝜓

ve
(
̃C, ̄Fvp

,𝜞
𝛼

, 𝜃

)
+ 𝜓

vp
(
̄bvp

, 𝜃

)
(11)
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where 𝜓

th
and 𝜓

ve
are the free energies for thermal, viscoelastic-viscoplastic defor-

mations [15, 16], respectively, and 𝜓

vp
is the defect energy associated with vis-

coplastic deformation [4]. Here, 𝜞
𝛼 (𝛼 = 1, ⋯ , n

ve
) are thermodynamic strains

of rheology elements referring to viscoelastically unloaded configuration Bvp
.

In consideration of stress-free dilation volume pth = − 𝜕𝜓

th

𝜕Fth
= 𝟎, the material time

derivative of the total free energy 𝜓 becomes

�̇� = 𝜕𝜓

ve

𝜕

̃C
∶ ̇

̃C + 𝜕𝜓

ve

𝜕

̄Fvp
∶ ̇

̄Fvp + 𝜕𝜓

vp

𝜕

̄Fvp
∶ ̇

̄Fvp +
n

ve∑

𝛼=1

𝜕𝜓

ve

𝜕𝜞
𝛼

∶ ̇𝜞
𝛼 + 𝜕𝜓

𝜕𝜃

̇

𝜃 (12)

in which the 2nd Piola-Kirchhoff stress and the entropy density can be identified as

S = 2𝜌0
𝜕𝜓

ve

𝜕

̃C
and 𝜂 = −𝜕𝜓

𝜕𝜃

. (13)

Here, 𝜌0 is the initial mass density. Then, applying the 1st and 2nd laws of thermody-

namics along with (12), we have the internal or intrinsic dissipation energy referring

to the thermally dilated configuration Bth
, as

𝜙

internal
= 1

2
S ∶ ̇

̃C − 𝜌0
(
�̇� + ̇

𝜃𝜂

)

= −𝜌0
𝜕𝜓

ve

𝜕

̄Fvp
∶ ̇

̄Fvp − 𝜌0
𝜕𝜓

vp

𝜕

̄Fvp
∶ ̇

̄Fvp −
n

ve∑

𝛼=1
𝜌0

𝜕𝜓

ve

𝜕𝜞
𝛼

∶ ̇𝜞
𝛼

(14)

where the sum of the first and second terms of the right-hand side is the viscoplastic

dissipation energy density and the third term represents the viscoelastic dissipation

energy density.

2.3 Viscoelastic Rheology Element

The viscoelastic part of the rheology element is formulated based on the theory pre-

sented by Holzapfel et al. [15, 16]. First, we introduce the following form of the

viscoelastic-viscoplastic coupled free energy density:

𝜌0𝜓
ve = 𝜌0𝜓

∞ +
n

ve∑

𝛼=1

[
𝜞

𝛼 ∶ ℂ𝛼 ∶ 𝜞
𝛼 − 2𝜌0

𝜕𝜓

𝛼

𝜕Cve
∶ 𝜞

𝛼 + 𝜌0𝜓
𝛼

]
(15)

where 𝜓
∞ = 𝜓

∞ (
̃C, ̄Fvp

, 𝜃

)
is the free energy density of the purely elastic element.

Also, 𝜓
𝛼 = 𝜓

𝛼

(
̃C, ̄Fvp

, 𝜃

)
is the ideally elastic energy density of Maxwell elements,

each which is virtually defined as the elastic stored energy during the relaxation

process. Futhermore, ℂ𝛼 = ℂ𝛼

(
̃C, ̄Fvp

, 𝜃

)
is a positive definite fourth-order tensor

introduced for each Maxwell element, which has is the same unit with that of the

elastic moduli tensor.
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With this definition of the free energy density 𝜓

ve
, Eq. (13) becomes

S = 2𝜌0
𝜕𝜓

ve

𝜕

̃C
=
(
Fvp

)−1
[
2𝜌0

𝜕𝜓

ve

𝜕Cve

] (
Fvp

)−T =
(
Fvp

)−1 H
(
Fvp

)−T

(16)

which defines the 2nd Piola-Kirchhoff stress referring thermally dilated configura-

tion Bth
. Here, we have defined the thermodynamic non-equilibrated stress that refers

to viscoelastically unloaded configuration Bvp
as

H = 2𝜌0
𝜕𝜓

ve

𝜕Cve

= 2𝜌0
𝜕𝜓

∞

𝜕Cve
+

n
ve∑

𝛼=1

[
𝜞

𝛼 ∶ 2 𝜕ℂ
𝛼

𝜕Cve
∶ 𝜞

𝛼 − 2 𝜕H
𝛼

𝜕Cve
∶ 𝜞

𝛼 + 2𝜌0
𝜕𝜓

𝛼

𝜕Cve

]

= H∞ +
n

ve∑

𝛼=1

[
𝜞

𝛼 ∶ 2 𝜕ℂ
𝛼

𝜕Cve
∶ 𝜞

𝛼 − 4𝜌0
𝜕

2
𝜓

𝛼

𝜕Cve
𝜕Cve

∶ 𝜞
𝛼 +H𝛼

]
(17)

along with the viscoelastic thermodynaimc strain 𝜞
𝛼

. Here, H∞
and H𝛼

have been

defined as

H∞ = 2𝜌0
𝜕𝜓

∞

𝜕Cve
and H𝛼 = 2𝜌0

𝜕𝜓

𝛼

𝜕Cve
. (18)

In this study, we employ the following St. Venant-Kirchhoff hyperelastic strain

energy for the free energy of the purely elastic element in the generalized Maxwell

model:

𝜌0𝜓
∞ = 1

2
K∞[tr(Eve)]2 + G∞[dev(Eve) ∶ dev(Eve)] (19)

so that the stress in the purely elastic element referring to the viscoelastically

unloaded configuration Bvp
yields

H∞ = K∞
tr(Eve)𝟏 + 2G∞

dev(Eve) (20)

where viscoelastic Green strain Eve
is expressed as Eve = 1

2

(
Cve − 𝟏

)
using the

right-Cauchy-Green viscoelastic deformation tensor Cve
in (6). Also, K∞

and G∞

are equivalent to the bulk and shear moduli.

We postulate that the ideal elastic free energy of each Maxwell element (15) be

proportional to the purely elastic free energy as 𝜓
𝛼 = 𝛾

𝛼

𝜓

∞
so that the stress refer-

ring to viscoelastically unloaded configuration Bvp
becomes

H𝛼 = 2𝜌0
𝜕𝜓

𝛼

𝜕Cve
= 𝛾

𝛼H∞
(21)
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where 𝛾

𝛼 ∈ (0, 1] is the relative elastic modulus defined as 𝛾
𝛼 = E𝛼

E∞ . Here, E𝛼

and

E∞
are Young’s moduli of each Maxwell element and of the purely elastic element.

Also, by defining the tangent modulus of each Maxwell element as

𝔻𝛼 = 4𝜌0
𝜕

2
𝜓

𝛼

𝜕Cve
𝜕Cve

= 𝛾

𝛼

(
K∞Isym + 2G∞Idev

)
(22)

we assume that the fourth-order modulus tensor ℂ𝛼

is proportional to the tangent

modulus tensor 𝔻𝛼

such that 2ℂ𝛼 = 𝔻𝛼

so that

2 𝜕ℂ
𝛼

𝜕Cve
= 𝜕𝔻𝛼

𝜕Cve
= 𝟎 (23)

This assumption is valid, since the St. Venant-Kirchhoff model is convex with respect

to Cve
. It should be noted, however, that some elastic energies that may not have

convexity do not advocate this assumption [7]. Finally, with (18), (21) and (23),

Eq. (17) can be written as

H = H∞ +
n

ve∑

𝛼=1

[
𝛾

𝛼H∞ − 𝔻𝛼 ∶ 𝜞
𝛼

]
(24)

The thermodynamic non-equilibrated stress that drives thermodynamic strain 𝜞
𝛼

is defined asR𝛼 = −𝜌0
𝜕𝜓

ve

𝜕𝜞
𝛼

and its evolution equation can be derived with the internal

dissipation energy (14) along the line of Holzapfel et al. [15, 16] as

̇R𝛼 + 1
𝜏

𝛼

R𝛼 = d
dt

[
𝛾

𝛼H∞] − R
cpl

(25)

where 𝜏
𝛼

is the relaxation time of each Maxwell element, which is defined as a coef-

ficient of the following relationship:

𝔻𝛼 ∶ ̇𝜞
𝛼 = 1

𝜏

𝛼

R𝛼

(26)

Also, R
cpl

is the relaxation stress defined as

R
cpl

= D𝔻𝛼

Dt
∶ 𝜞

𝛼

(27)

Here, since the components of 𝔻𝛼

are constants, the relaxation stress in (27) is zero

in this study. Thus, the thermodynamic non-equilibrated stress can be expressed as

R𝛼 = ∫
t

0
𝛾

𝛼

dH∞

ds
exp

[
s − t
𝜏

𝛼

]
ds (28)
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Also, the thermodynamic strain 𝜞
𝛼

can be represented as

𝔻𝛼 ∶ 𝜞
𝛼 = 𝛾

𝛼H∞ − R𝛼

(29)

Finally, the substitution of (29) into (24) provides the non-equilibrated stress H refer-

ring to Bvp
as the sum of H∞

and R𝛼

as

H = H∞ +
n

ve∑

𝛼=1
R𝛼

(30)

2.4 Viscoplastic Rheology Element

The viscoplastic constitutive laws for amorphous thermoplastic resins must be capa-

ble of representing pseudo yielding followed by stress-softening in a small deforma-

tion regime and orientation hardening behavior in a large deformation regime.

2.4.1 Pseudo Yielding and Stress-Softening

The stress is exclusively determined in the viscoelastic rheology element described

above and is applied to the viscoplastic rheology element, which is composed of

viscoplastic slider and back-stress elements. Thus, the driving force acting on the

viscoplastic slider element is the following effective stress referring to viscoelasti-

cally unloaded configuration Bvp
:

Meff = dev
(
CveH(t) −Mback

)
(31)

Here,Mback
is the back stress. Defining the viscoplastic potential by𝜙 = 𝜙(Meff

, 𝜃) =
(Meff ∶ Meff)

1
2 , we postulate the viscoplastic flow rule of the form

̄dvp = �̇�

vp(𝜃)N(𝜃) (32)

where �̇�

vp
is the viscoplastic multiplier, which is non-negative, and the flow vector

has been defined as

N(𝜃) = 𝜕𝜙

𝜕Meff
= 1

√
2
Meff

𝜏

(33)
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Here, 𝜏 is recognized as the equivalent stress of Meff
defined as

𝜏 = 1
√
2
||Meff|| (34)

As for the evolution equation of the viscoplastic multiplier, we employ the follow-

ing phenomenological model, which was proposed by Boyce et al. [8] along the line

of Argon [5] to represent pseudo yielding followed by stress softening in a relatively

small deformation regime:

�̇�

vp(𝜃) = �̇�

vp

o
exp

[
−As∗

𝜃

{
1 −

(
𝜏

s∗
)n}]

(35)

where �̇�

vp

o is the initial viscoplastic multiplier. Here, along with n, A is the material

parameter determined from the activation energy of Argon [5, 6] and is referred to as

the activation volume. Also, s∗ is a sort of yield strength representing the deformation

resistance and has the following function form that depends on both the shear yield

strength s and the hydrostatic pressure p = −1
3
tr
(
CveH

)
:

s∗ = s + 𝛼

v
p (36)

Here, 𝛼
v

is the pressure coefficient and the evolution law for s is postulated as

ṡ = h
(
1 − s

s
ss

)
�̇�

vp
(37)

where h is the inclination of the stress-softening response with respect to plastic

strain after the initial yielding and s
ss

is the shear yield strength in the steady state.

Also, the athermal initial shear yield strength is introduced as s
o
= mG∕ (1 − 𝜈),

where m is the material parameter associated with the activation energy. Here, we

have used the shear modulus of elasticity defined as G =
(
1 +

∑n
ve

𝛼

𝛾

𝛼

)
G∞

and Pois-

son’s ratio 𝜈 of the purely elastic element in the viscelastic rheology element.

2.4.2 Back Stress to Represent Orientation Hardening

When the conformation motion of a molecular chain transitions to the configuration

motion due to its extension, the amorphous thermoplastic resin tends to exhibit an

orientation hardening phenomenon, which has an analogy with the elastic behavior

of rubber materials. Along the line of Ames et al. [2], we employ the following Gent’s

hyperelastic energy function [14] to represent the orientation hardening.

𝜌0𝜓
vp = −1

2
𝜇J

m
ln

(
1 −

I1 − 3
J

m

)
(38)
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Here, I1 = tr( ̄bvp) is the first invariant of the viscoelastic left-Cauchy-Green deforma-

tion tensor ̄bvp

, J
m

is the characteristic length of extended molecular chains, which is

supposed to satisfy J
m
> I1 − 3. Also, 𝜇 is the shear modulus-like material parameter

associated with the back stress. Then, it can be derived as

Mback = 2𝜌0
𝜕𝜓

vp

𝜕

̄bvp
̄bvp = 𝜇

(
1 −

I1 − 3
J

m

)−1
̄bvp

(39)

3 Identification of Material Parameters

The set of constitutive equations proposed in this study is summarized in Fig. 3.

This section is devoted to the identification of the material parameters used in these

equations. The experimental data are borrowed from Hope et al. [17] who conducted

a series of uniaxial tension tests for PMMA with different deformation rates. The

tests were carried out with four levels of true strain rates 0.1, 0.01, 0.001 and 0.0001 s

at ambient temperature of 90
◦
C . The obtained empirical relationships between true

stresses and true strains are shown in Fig. 4. Although the maximum tensile strain

attains 1.5, the parameter identification in this study is made for the data up to true

strain of 1.0.

Fig. 3 Summary of the proposed constitutive model
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Fig. 4 Experimental data of

the uniaxial tensile test in

Hope et al. [17]. The data

shows the relationship

between the true stress and

true strain for 4 levels of

deformation rates; “0.1, 0.01,

0.001, 0.0001 (/s)” under

temperature 90
◦

0

100
Experiment 1
Experiment 2
Experiment 3
Experiment 4

True strain

Tr
ue

 st
re

ss
 [M

Pa
]

10

It should be noted that the relaxation times and CTE can hardly be identified

with the referential experimental data. Therefore, these parameters are assumed as

in Table 1, where the number of Maxwell elements are presumably set at 18. Thus,

the number of unknown parameters to be identified is 27, which counts eighteen

relative elastic moduli in the generalized Maxwell model.

The method of differential evolution (DE) is used for meta-heuristic optimiza-

tion of the material parameters. Displacement is imposed on the end nodes of a

cubic single eight-node hexahedral element with dimension of 1.0 × 1.0 × 1.0mm
3

for each tensile test with a specified strain rate. The boundary condition is set to real-

ize the uniform uniaxial stress state. Then all the calculated relationships between

true stresses and true strains are compared with experimental ones provided in Fig. 4.

The material parameters thus determined are presented in Tables 2 and 3. Figure 5

shows the corresponding curves representing relationships between true stresses and

true strains. As can be seen from the figure, the stress softening behavior after the ini-

tial yielding can be captured, as the viscoelastic model of Boyce et al. [8] employed

Table 1 Fixed parameters
Maxwell elements CTE (1∕◦C) Relaxation time (s)

18 5.0 × 10−5 10x
(x are integers

from 1 to 18)

Table 2 Identified

parameters
Parameter Value

E (MPa) 2061

𝜈 0.3772

�̇�

vp

o (/s) 1.145 × 1011

A (K/MPa) 166

𝛼 0.2289

h (MPa) 844.6

s
ss

(MPa) 81.55

J
m

22.28

𝜇 (MPa) 4.651
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Table 3 Identified relative elastic moduli

𝛼 Value 𝛼 Value

1 1.328 × 10−3 10 2.818 × 10−2

2 2.174 × 10−3 11 1.930 × 10−2

3 2.974 × 10−3 12 7.350 × 10−2

4 1.674 × 10−3 13 3.400 × 10−2

5 1.106 × 10−4 14 2.642 × 10−2

6 5.612 × 10−3 15 2.707 × 10−2

7 3.951 × 10−4 16 4.294 × 10−2

8 1.139 × 10−2 17 8.415 × 10−3

9 2.290 × 10−2 18 9.351 × 10−2

0
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ss
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Experiment 2
Experiment 3
Experiment 4
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Fig. 5 Identification results. The result successfully captures the stress softening after quasi-

yielding and followed by the orientation-hardening phenomenon. However, in all the cases, the

initial elastic regime deviate from the experimental one and the hardening progresses in a large

deformation regime are almost in parallel. These discrepancies must be due to the lack of the data

of dynamic viscoelastic behavior

in the proposed model takes into account the variation of the shear yield strength.

However, since the time-variation of the free volume caused by molecular chain slip-

page is not considered, the calculated curves lack the smoothness of the softening

behavior around the upper yielding points. Also, the orientation hardening can be

represented thanks to the introduction of the back stress, though the representation

of the effect of extended chains are insufficient. This discrepancy is probably due

to the fact that the viscoplastic deformation rates of all the rate levels are almost

the same in a large strain regimes and so are the evolutions of the back stresses that

depends on the viscoplastic deformation. The improvement of these performances

are future subjects of study.

Finally, in order to reflect the temperature-dependent behavior and viscoelastic

characteristics in the proposed model, we need more tensile test results with differ-

ent temperature levels, dynamic viscoelastic measurements and strain recovery tests.

It is therefore to be noted that the material behavior presented in this study with the

assumed material parameters are not relevant to these properties and cannot be rep-

resentative of actual thermoplastic materials.
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4 Numerical Examples

Using the proposed constitutive laws with the material parameters determined in

the previous section, we demonstrate the fundamental material behavior that can be

represented by the proposed constitutive model.

4.1 Behavior Under Loading, Unloading and Uncontrolled
States

With the same single element model used for the parameter identification in the pre-

vious section, consecutive uniaxial responses under loading, unloading and uncon-

trolled conditions are demonstrated. Three levels of deformation rates at ambient

temperature of 90
◦
C are considered in this example. The corresponding analysis

cases are labelled as Maximum, Intermediate and Minimum Cases in the order of

the rates. For Maximum Case, the single element is subjected to loading in the first

10 s, unloading in the next 10 s and then uncontrolled for the last 30 s. For Interme-

diate and Minimum Cases, the time intervals are 10 and 100 times longer than the

maximum case, respectively. In each of these analysis cases, the maximum tensile

true strain is set to be 1.0.

Figure 6 shows the calculated relationships between true stresses and true strains.

As can be recognized from this figure, the yielding behavior depends on the deforma-

tion rates; that is, the higher the initial yield stress, the higher the deformation rate.

Also, after the stress softening, all the stress responses evolve in the same manner.

Specifically, the stresses are increased at the same rate so that the curves are almost

parallel. This is probably due to the fact that the evolution rates of the viscoplastic

multiplier are the same for all the cases, implying that the evolution rates of the shear

yielding strength s∗ are the same regardless of deformation rates.

In the unloading process, the higher the deformation rate, the larger the inclina-

tion. More specifically, the stress in Maximum Case is almost linearly decreased and

only a small amount of strain is recovered by the stress-free state. This is due the

fact that, as the deformation rate becomes lower, the inelastic deformation becomes

Fig. 6 Relationships

between true stresses and

true strains obtained under

tensile loading, unloading

and uncontrolled conditions
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more prominent during the unloading process. On the other hand, as the deformation

rate becomes lower in the unloading process, the curves are more gently inclined. In

fact, almost half of the total true strain is recovered in Minimum Case. This is due to

the viscoplastic deformation in the unloading process caused by the residual stress.

These responses in the unloading process are not consistent with the experimental

evidence reported in the literature (see, for example, Srivastava et al. [30]) and the

discrepancy must be due to the assumed values of viscoelastic material parameters

such as elastic moduli and relaxation times.

In the uncontrolled process with the external loading being zero, the amount of

strain recovery is the same for all the cases, implying that the corresponding resid-

ual stresses due to viscoelastic deformation are comparable. Although this kind of

strain recovery is always observed in experiments with cyclic loading, few existing

constitutive models for amorphous thermoplastic resins direct attention towards the

representation of strain recovery along with viscoplastic characteristics.

To study the underlining mechanisms of the above-mentioned apparent behav-

ior, we provide the variations of viscoelastic non-equilibrated stresses in some

Maxwell elements in Fig. 7 Here, we have chosen elements No. 12, 16, 17 and 18,

as they exhibit relatively large viscelastic stresses. First, in the loading process, the

dominant stress responses in each of the subfigures are similar to those of the total
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Fig. 7 Thermomechanical viscoelastic stresses of Maxwell elements
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true stresses depicted in Fig. 6. This must be due to the fact that the stress in the pro-

posed constitutive model is realized only in the set of viscoelastic rheology elements

and directly affected by viscoplastic flow and back stress. Also, in the unloading

process, most of the viscoelastic stresses are decreased in an almost linear manner,

but some of them exhibit negative or compressive values, even though the total stress

are positive. Then, these negative stresses remain when the external loading becomes

zero and gradually relaxed in the uncontrolled process. Thus, the main sources of the

residual stress that plays a driving force for the strain recovery mentioned above must

be these negative viscoelastic stresses.

In addition, element No. 12 and 16 are active in all the cases. However, element

No. 17 and 18 contribute the total stress in Maximum Case, while the effect of ele-

ment No. 18 disappears in Intermediate Case. Moreover, both the effects of element

No. 17 and 18 are not negligible in Minimum Case. These viscoelastic responses

that depend on deformation rate are relevant to the relationship between relaxation

time and time rate of change of deformation. In fact, the time spent in the loading

process of Maximum Case is 10 s, which is comparable with the relaxation time of

element No. 18. It is reasonable for Maxwell’s elements with short relaxation times

to respond to higher rates of deformation.

4.2 Stress Relaxation and Strain Recovery in a Standard
Specimen

Using the same material parameters determined above, we carry out two simulations

of uni-axial tests for a standard specimen shown in Fig. 8 to demonstrate the capa-

bility of the proposed constitutive model. One of them is a stress relaxation test and

the other is a strain recovery test. The finite element (FE) model used here is com-

posed of 2160 eight-node hexahedral elements with 3597 nodes and one-quarter of

the specimen. The maximum elongation in the loading process is set at 60 mm for

both of the simulations and the ambient temperature of 50
◦
C is kept constant during

the entire process.

For both cases of numerical simulations, the specimen is loaded in 10 s. Then the

elongation of 60 mm is kept for 10 s in the stress relaxation case. In the strain recovery

case, the reaction force at the end section is reduced to zero in 10 s and the specimen

is left untouched for 10 s. Figures 9 and 10 show the time-variations of the apparent

stress and the relationships between true stress and strain for the stress relaxation and

strain recovery cases, respectively. Here, the apparent stress is defined as the reaction

force divided by the end section area of the specimen, which is referred to as nominal

stress in this study. On the other hand, the true stress and strain are measured at the

center of element A indicated in Fig. 8. In these figure, State (F) corresponds to the

end of the loading, while (L) in Fig. 9 and (J) in Fig. 10 correspond the ends of the

processes of stress relaxation and strain recovery, respectively.
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Figure 11 shows the deformed configurations with the distributions of von-Mises

stresses at six deformation states calculated in the loading process. As can be seen

in the figure, when the specimen reaches a moderate deformation level, the neck-

ing phenomenon becomes visible around the central part of the specimen, which is
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followed by the stress concentration due to large deformation. The subsequent

deformed configurations with the von-Mises stress distributions are shown in Fig. 12

for the stress relaxation case and Fig. 13 for the strain recovery case, in which each

of the deformed configurations corresponds to the state indicated in Figs. 9 and 10.

The deformation process from States (A)–(F) depicted in Fig. 11 is common to

both the stress relaxation and strain recovery cases. In State (B) at the beginning

of tensile deformation, both the apparent and true stresses attain their maximum

values and then decrease towards State (C). Although the decrease in the apparent

stress here is also typical in standard specimens of metals, the decrease in the true

stress is unique to the mechanical behavior of amorphous thermoplastic resins. It is,

however, known that, in actual experiments, the specimen exhibits the localization

of viscoplastic strain due to necking at the central part of the specimen and its region

expands towards the end section during the stress softening behavior after the initial

yielding. The proposed model is capable of representing stress softening, but not

such localization phenomena. In fact, the necking starts after State (D) of moderate

deformation in our numerical simulation. As can seen in (E) and (F) of (c) in Figs. 9

and 10, the orientation hardening is observed in the true stress at the last stage of

the loading process. This has also been demonstrated in the previous subsection.

In these states of deformation, the stress is concentrated around the central part of

Fig. 12 Deformed

configurations with the

von-Mises equivalent stress

distributions in tensile

specimen during sustained

tensile process in stress

relaxation case
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Fig. 13 Deformed

configurations with

von-Mises equivalent
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the specimen. On the contrary, the apparent stress is not affected by such hardening

behavior and provides almost constant level reflecting only the resistance against the

viscoplastic flow.

The deformed configurations with stress distributions from States (F)–(L) for the

stress relaxation case, which is illustrated in Fig. 12, show that the stress relaxation

is observed in the whole part of the specimen, but predominant around the central

part of the specimen. However, the amount of stress relaxation is small, because the

sustained period of constant elongation was set short.

For the strain recovery case, the whose deformation states during unloading and

sustaining processes are illustrated in Fig. 13. In the unloading process, which cor-

responds to States (G) and (H), the nominal and true stresses significantly decrease

due to the rapid recovery of elastic springs of each Maxwell element. As can be seen

from Fig. 10, some of the Maxwell elements are supposed to be non-equilibrated in

State (I) in Fig. 13 and then equilibrated in State (J) so that a small strain is recovered

in the sustaining process.

Both the stress transitions and deformation states have been obtain as we orig-

inally intended. It should be noted that the stress relaxation and strain recovery

responses simulated here are attributed to the coupling between viscoelasticity and

viscoplasticity whose rheology elements are aligned in series. However, mainly due

to inadequate parameter setting, the extents of stress relaxation and strain recovery

are scarce. Also, there must be some room for improvement in function forms of the

constitutive laws.

5 Conclusion

We have proposed a viscoelastic-viscoplastic combined constitutive model for amor-

phous thermoplastic resins within the finite strain framework. The simple rheology

morel introduced consisted of viscoelastic and viscoplastic elements connected in

series. The standard generalized Maxwell model was used to determine the stress and

characterize the viscoelastic material behavior at small or moderate strain regimes.

On the other hand, we employed a proven finite strain viscoplastic model to realize

the creep deformations along with the kinematic hardening behavior due to orienta-

tion of molecular chains. After the material parameters were identified with reference

to experimental data, the fundamental performances of the proposed model were ver-

ified in representative numerical examples. In particular, it has been confirmed that

the proposed model is capable of reproducing stress softening and strain recovery

simultaneously.

However, due to the lack of experimental data that consistently represent both

viscoelastic and viscoplastic responses, the quantitative agreement with the actual

material behavior could not be confirmed. Indeed, a simple viscoplastic model seems

not to have adequate performance in reflecting the limiting extensibility of polymer

chains. Also, the identification accuracy of the viscoelastic spectral characteristics

was not satisfactory and accordingly the strain recovery phenomenon were unreal-
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istic. Nonetheless, it was our original contribution that the elastic characteristics of

thermoplastic resins were totally taken by the set of viscoelastic rheology elements

because of the connection of these two separate rheology elements in series.

Of course, various improvements must be introduced to our model. For example,

the present model neglects the dependencies of the elastic and orientation harden-

ing responses on temperature. It is also known that viscoelastic properties of amor-

phous thermoplastic resins become prominent when microscopic Brownian motions

of molecular chains become active around the glass transition temperature and when

pseudo chemical crosslink is constructed by the change in molecular chain orienta-

tion caused by crystallization. Thus, the rubber-like material behavior must appear

above the glass-transition temperature. It remains a challenge for future research to

incorporate these temperature dependencies.
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