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Abstract. Regularly, hackers steal data sets containing user identifiers
and passwords. Often these data sets become publicly available. The
most prominent and important leaks use bad password protection mech-
anisms, e.g. rely on unsalted password hashes, despite longtime known
recommendations. The accumulation of leaked password data sets allows
the research community to study the problems of password strength esti-
mation, password breaking and to conduct usability and usage studies.
The impact of these leaks in terms of privacy has not been studied.

In this paper, we consider attackers trying to break the privacy of
users, while not breaking a single password. We consider attacks reveal-
ing that distinct identifiers are in fact used by the same physical person.
We evaluate large scale linkability attacks based on properties and rela-
tions between identifiers and password information. With these attacks,
stronger passwords lead to better predictions. Using a leaked and publicly
available data set containing 130× 106 encrypted passwords, we show
that a privacy attacker is able to build a database containing the mul-
tiple identifiers of people, including their secret identifiers. We illustrate
potential consequences by showing that a privacy attacker is capable of
deanonymizing (potentially embarrassing) secret identifiers by intersect-
ing several leaked password databases.

1 Introduction

Data sets containing user identifiers and password related information are regu-
larly published. In general, these data sets have been hijacked by some hackers,
who then published the data on the Internet. The list of such leaks is quite long
and only a small fraction of it is listed in Table 1. Taken all together this con-
stitutes a large corpus of personal information. Two factors are worrying in this
context. First, the size of the leaks tends to increase, putting more and more
users at risk. Second, the passwords are often insufficiently protected, despite
long time known recommendations.1 The most prominent and important leaks
over the last years - some of which are listed in Table 1 - use bad password
protection mechanisms.

It is commonly accepted that insufficiently protected passwords - e.g. relying
on unsalted password hashes or using the same encryption key - have weak
1 Such as recalled in the OWASP Password Storage Cheat Sheet.
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Table 1. Large leaked password databases. Most of them use password-equivalents.

Top 5 confirmed password leaks on “’;–have i been pwned?”a in February 2017

Site #identifiers Yearb Protection Password-equivalent?

MySpace 360 million 2008 (2016) hash, sha1 yes

LinkedIn 164 million 2012 (2016) hash, sha1 yes

Adobe 153 million 2013 encryption, 3des yes

VK 100 million 2012 (2016) plaintext yes

Rambler 100 million 2014 (2016) plaintext yes

Data sets used in this paper

Name #identifiers Category Protection Password-equivalent?

A 1, 5 million Adult Plaintext yes

B 1 million Social network salt + hash, md5 no

C 164 million Social network hash, sha1 yes

D 153 million Software company encryption, 3des yes
a https://haveibeenpwned.com/PwnedWebsites - retrieved February 2017.
b If the release year is different from the hack year, the release year is provided in
parenthesis.

security properties and ease the breaking of passwords. Still, in the light of
the important number of leaks that actually use a bad password protection
mechanism, it is important to understand all the different types of attacks -
including privacy attacks - that an attacker can perform.

These last few years, research focused on password user studies [1,5,25],
password breaking [18,26] and estimation of password strength [1–3,6,13,15,
24]. Most existing attacks apply to passwords that are used by an important
number of users. E.g. dictionary attacks or grammar based attacks [26] focus
on passwords that a human would generate. Password popularity is also used
to measure the strength of a password [7,14,24]. The intuition is that the more
frequent a password is, the less secure it is. Conversely, rare password are found to
be more secure. The popularity distribution of passwords typically follows a Zipf
law [7,14] - meaning that the frequency of a password is inversely proportional
to its rank - as exemplified for the data set D used in our study in Fig. 1. Related
work mainly concentrates on frequent passwords represented on the left hand
side of this figure.

In this work, we focus on rare passwords (i.e. supposedly secure passwords),
corresponding to the heavy tail of the password distribution. In our example
distribution (Fig. 1), this corresponds to the passwords located at the bottom
right of the curve. We worry about the information that a privacy attacker
can find automatically without recovering the password clear text. Data sets
with insufficiently protected passwords provide password-equivalents that can be
reused in subsequent attacks, even though the corresponding clear text password

https://haveibeenpwned.com/PwnedWebsites
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Fig. 1. Distribution of passwords in the data set D used in our study. For each pass-
word appearing in the data set we compute its rank in the data set (horizontal axis)
and its number of occurrences (vertical axis). The relatively flat aspect on a log/log
representation is characteristic of a Zipf law [21].

is never disclosed. Typical password-equivalents are unsalted password hashes
and passwords encrypted with a fixed unknown key.

Contributions. We introduce a model for leaked identifier and password data
sets regarding privacy matters. We formalize the notion of password-equivalents.
We further describe the privacy attacker and define the tools and relations she
will operate on identifier names and passwords.

We present classifiers for linking identifiers and revealing secret links, i.e.
links that people do not reveal publicly. Using these classifiers, for a subset of
these secret links the privacy attacker is able to deanonymize the associated
secret identifiers.

We use a publicly leaked data set (named D in this paper) to evaluate our
classifiers. It is one of the largest publicly available data set in its kind containing
153 × 106 identifiers and 130 × 106 encrypted passwords. With this dataset we
show that a privacy attacker can link millions of identifiers, and deanonymize
hundreds of thousands secret identifiers. Having no ground truth (for obvious
privacy reasons), we estimate the precision of the classifiers through indirect
measurements. Finally, we illustrate the consequences of a privacy attack that
deanonymizes secret identifiers appearing in a data set related to adult content
(denoted A in this paper), by intersecting A with D.
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2 Problem Statement

This section defines the problem being addressed by our work. We introduce the
attacker model and define linkability properties. We finish with a note on legal
and ethical aspects and the precautions used throughout our experiments.

2.1 Attacker Model

We consider a privacy attacker that retrieved a data set D containing identifiers
(e.g. name@mail) and password-equivalents. The privacy attacker’s objective is
to link identifiers within D. In contrast, most related work consider the confi-
dentiality attacker willing to retrieve clear text passwords.

The privacy attacker is interested in building a large database revealing sen-
sitive links of potential victims. This is different from an attacker focusing on
a specific person and gathering information on this victim (via search engines,
online social networks, approaching the victim, etc.). The privacy attacker might
not carry out the final targeted attack, such as targeted scam or spam, herself.
Instead, she might just sell the resulting database.

The privacy attacks presented in this paper target the passwords that are
less sensitive to password breaking. Consequently, users that are subject to the
privacy attacker are not necessarily subject to the confidentiality attacker and
vice-versa.

2.2 Model and Definitions

Throughout the paper, we use the privacy related notions defined hereafter.

Definition 1. A password-equivalent is the output of a function f(p) applied
to a plain-text password p. f(p) is a function in its strict sense, meaning that
each plain-text password is related to exactly one password-equivalent.

With this definition a password-equivalent encompasses unsalted hash values
such as sha1(p), hash values with a fixed salt such as sha1(p. “0xdeadbeef ”),
unsalted encrypted values such as 3DES(p, S) where S is a secret key, etc.
This excludes outputs of randomized hash-functions as in [11]. In this paper, we
consider f(p) to be injective; we are thus neglecting collisions of hashes.

Consistently with [19], we define linkability and k-linkability.

Definition 2. Identifiers x and y are linked, denoted L(x, y), if x and y are
identifiers of the same real person.

We also introduce the informal notions of secret link and secret identifier.
L′(x, y) is a secret link if the attributes of x provide no information about y.

Informally, x and y hide their connection, e.g. by using identifier names that are
sufficiently different to not reveal the link.

x is a secret identifier of y (i) if there exists a secret link L(x, y) and (ii) if the
identifier x does not reveal the identity of the person (the identity being e.g. the
person’s family name or the URL of a public profile page) while the identifier y
does.
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Definition 3. Given a data set D of identifiers, a person is k-linkable in D if
there exists a subset D̂ of D such that L(xi, xj);∀xi, xj ∈ D̂ and |D̂| = k.

In this work, we evaluate a linkability attack on the data set D. This link-
ability attack infers links between identifiers, and we provide a lower bound
probability p that identifiers are indeed linked. More formally, we define p as
Pr[L(xi, xj);∀xi, xj ∈ D̂] ≥ p. In Sect. 5, we provide estimates and statistics for
k and p.

The privacy attacker employs similarities to compare identifiers. One first
similarity, denoted ls(x, y), is the complement of the normalized Levenshtein dis-
tance between character strings x and y. A second similarity, denoted jw(x, y),
is the Jaro-Winkler similarity. The Jaro-Winkler similarity was created for re-
conciliating user names from heterogeneous databases, the so-called record link-
age problem. The Jaro-Winkler similarity provides good results for short strings
such as names [4]. Noticeably, jw(x, y) is generally higher than ls(x, y) for pair-
wise comparisons of strings such as: “ic”, “icomputing”, “ingrid.computing”,
“computing.ingrid”.

Last, the privacy attacker computes the sets defined below.

Definition 4. For any identifier x in D, let sp(x) = {y|y ∈ D and pwd(y) =
pwd(x)}, the Same Rare Password function is:

srpr(x) =
{
sp(x) if |sp(x)| = r
∅ otherwise

The extension of srpr to subsets of D is srpr({x1, . . . , xn}) =
⋃n

i=1 srpr(xi)

In practice, we consider values in the range 2 ≤ r ≤ 9.

2.3 Note on Ethics

Dealing with passwords and personal identifiers raises legal and ethical concerns.
Accordingly, we took a set of considerations and employed appropriate precau-
tions.

The objective of this work is to understand, as researchers, the privacy impli-
cations of password leaks, poor password storage practices, and to raise aware-
ness amongst colleagues, administrators and the community at large.

As a first precaution, all our results are non-nominative, i.e., they do not
include any real personal identifiers. In particular, in this paper, we build exam-
ples such that: (i) the exemplified property is still clear, (ii) no single element
leads back to any real identifier attribute. The example names, emails and
encrypted passwords are invented, such as “ingrid.computing” in Table 2.

As a second precaution, for all treatments not requiring word distance com-
putations or requiring the detection of some pattern, we anonymize the name
part of the account using a keyed SHA256 function. For all treatments requir-
ing word distance computations or requiring the detection of some pattern (e.g.
detection of separators) we perform the same anonymization operation just after
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Fig. 2. Top: original text. Bottom: result after normalization. uid: internal user iden-
tifier zero-padded to 9 digits. pwdl: significant bytes of the encrypted left part of the
password. pwdr: significant bytes of the encrypted right part of the password if any.
name: identifier before ‘@’ if any. mail: identifier after ‘@’. hint: hint string.

the distance computation or pattern detection. These precautions guarantee that
no real identity appears as a result of a treatment.

As a third precaution, we key-hashed the passwords regardless whether there
were already protected or not in their initial dataset. None of our treatments
require the knowledge of the real password.

In addition, we took classical security measures to protect and clean the files
and the programs used for this study.

Our results rely on leaked and publicly available password data sets, and
there is a debate whether researchers should use such data sets (see [8]). Still,
there exists an important body of related work that already rely on such type of
data sets [2,3,5–7,14,23,26]. Individuals willing to know if their accounts appear
in publicly leaked datasets may use online services such as haveibeenpwned.com
or sec.hpi.uni-potsdam.de/leak-checker.

We would also like to emphasize our ethics regarding identifier providers.
While we use publicly available data sets leaked from real organizations, our
conclusion are not targeted against these organization. Our conclusions apply
to any identifier provider using password-equivalents. Even though it is easy to
reconstruct which data set we used, we anonymized the names of the related
organizations or companies in this paper.

3 Description of the Databases

In this section, we describe the databases that we use for our study. We use
four leaked password databases that we call A, B, C and D. Table 1 summarizes
some characteristics of these data sets. We set emphasis on the database D as
it is our main data set for this paper.

3.1 Data Set D

In October 2013, a password and identifier database - denoted D in the rest
of the paper - was stolen from a software company and publicly released. At
the time of its release, D was the largest data set in its kind, with 153 × 106

identifiers (including email addresses) and 130 × 106 encrypted passwords. The

http://haveibeenpwned.com
http://sec.hpi.uni-potsdam.de/leak-checker
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company quickly reacted by warning users and locking accounts. Anticipating
contagion due to password reuse [5,9], other identifier providers promptly asked
their users to change their password.

D was probably used by an authentication server used to access numerous
products and services offered by the software company. D covers a long time
span of 12 years; the first identifiers were created in 2001. It seems that are very
large and diverse set of services and applications of that company relied on the
identifiers and passwords in D. While we do not know the exact list of services
and applications that use D, they certainly include many standard applications
provided by this software company. Users showing up in D may also just have
tried once an application, on a PC, on a phone, on a tablet, or registered to
some web service (possible third party). Because of the above reasons a given
user might have multiple identifiers and forgotten identifiers in D.

Analysts focused on password retrieval from D. Despite 3DES encryption,
some passwords could be recovered because of three main reasons: (i) D con-
tains user provided hints in the clear, (ii) the passwords are encrypted with
an unsalted 3DES, allowing comparison across different users, (iii) the encryp-
tion mode is Electronic Code Book, allowing the comparison of independent
ciphertexts blocks of 8 characters. This combination of factors leads to an online
“crossword” game for retrieving weak passwords2. D has long been searchable
through sites like pastebin.com and it is still accessible through peer-to-peer
downloads.

The raw file contains 153 004 874 lines. We removed irregularities such as
absurdly long or short lines, empty lines every 10 000 records, etc. In order to
ease subsequent searches, we normalized the fields. Figure 2 shows the result of
the normalization. The password equivalents in D have the following structure:
pwdl = 3DES(left, S), pwdr = 3DES(right, S) where left is the first 8 charac-
ters of the clear password, right is the next 8 characters. S is a 3DES key only
known by the software company. Only the owner of S is able to formally verify
clear passwords. In contrast, password equivalents made from unsalted hashes
allow public verification. Without the key S, only an accumulation of evidences
will reveal possible pairs of clear text passwords and password equivalents. Typ-
ical evidences are explicit hint such as: ‘my password is frog35’, ‘frog + 7x5’,
‘53gorf reverse’.

3.2 Other Password Databases

Data Set C - A Social Network. The leaked data set contains 164x106

identifiers of a social network. The data set stores the users email address
(name@mail) and a non-salted password hash. An entry in the data set C is
associated with a profile page on the social network.

2 See game http://zed0.co.uk/crossword and picture http://xkcd.com/1286.

http://pastebin.com
http://zed0.co.uk/crossword
http://xkcd.com/1286
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Data Set B - A Social Network. The leaked data set contains 1 057 596
identifiers of a social network. This data set stores the users email address
(name@mail) and a salted and hashed password. The data set includes URLs
towards public profile pages (Facebook, Twitter, LinkedIn, Yahoo) if provided
by the user.

Data Set A - An Adult Content Site. The leaked data set contains 1 504 128
identifiers of an adult content site. This data set stores the users email address
(name@mail) and a password in clear-text.

4 Privacy Attacks

In this section we describe three privacy attacks on D. We propose a set of
classifiers that reveal potential links and secret links in Sects. 4.1 and 4.2 respec-
tively. We also describe a method to deanonymize potentially secret identifiers
in Sect. 4.3. Throughout this section we depict our classifiers and methods using
the examples of Table 2 (k = 2) and Table 3 (k = 4).

We evaluate, extend and discuss the presented classifier and methods in
Sect. 5.

Table 2. Example case for 2-linkability.

uid pwdl pwdr name mail hint

042...89 gt...dfm Qa...D ingrid.computing mycompany.com as usual

151...06 gt...dfm Qa...D sexy single 69 somedatingsite.com

4.1 Revealing Links

Let us consider the fictive case of Ingrid Computing as shown in Table 2. The
privacy attacker will notice that only two identifiers in D have the same pass-
word cipher “gt...dfm Qa...D”. The attacker suspects a link between the two
identities ingrid.computing@mycompany.com and sexy single 69@somedating-
site.com. Both identifiers may of course relate to different persons, in which
case the attacker makes a false positive in assessing a link. A motivated attacker
may use external sources (search engines, OSN etc.) to collect more evidences,
which is out of our scope. The above imaginary example depicts our first simple
classifier for revealing links that we describe below.

A classifier for 2-linkability: The classifier tells that L(x, y) (i.e. x and y are
linked) if {x, y} ∈ srp2(D). srp2(D) is the set of identifiers having encrypted
passwords appearing only twice in D.

The above classifier can be extended to k-linkability, i.e. to cases of password
ciphers appearing exactly k times in D. An illustrative example for k = 4 is
provided in Table 3.

A classifier for k-linkability: The classifier tells that x1, x2 . . . xk are k-linked
if {x1, x2 . . . xk} ∈ srpk(D). srpk(D) is the set of identifiers having encrypted
passwords appearing exactly k times in D.
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4.2 Revealing Secret Links

Secret links are a subset of links. Coming back to the example shown in Table 2
the attacker might suspect a secret link since the name of both identifiers have
nothing in common (have a small similarity). We propose the following classifier
for secret links:

A classifier for secret links for k = 2: The classifier tells that L(x, y) is
a secret link if {x, y} ∈ srp2(D) and jw(x, y) < s with a small s. jw is the
Jaro-Winkler similarity as defined in Sect. 2.2.

We also propose a classifier for secret links for cases where k > 2. We consider
the cases where k−1 identifiers employ similar names and the remaining identifier
is either a pseudonym of the same user or a different user. An example is provided
in Table 3.

A classifier for secret links for 3 ≤ k ≤ 9: We consider identifiers x ∈ D
such that srpk(x) �= ∅ and having the following properties: (i) k − 1 identifiers
in srpk(x) have similar name, for a chosen similarity and a threshold s, (ii) the
remaining single identifier in srpk(x) does not have a similar name to any of the
k − 1 identifiers.

Table 3. Example data for a secret link with k = 4.

uid pwdl pwdr name mail hint

05 G...F ic.computing email.xx 1st cat

05 G...F 0699999996 telco.xx 1st cat

06 G...F computing.ic telco.xx kitty

15 G...F iccomputing corp.xx kitty

We use the Stochastic Outlier Selection (SOS) [12] method to automate and
build the above classifier. SOS is an unsupervised outlier-selection algorithm
that provides an outlier probability for each data point. In our case the outlier is
the remaining single identifier, which uses a name very different from the k − 1
others. We apply SOS on srpk(x) and keep all sets of linked identifiers that
exhibit a single and clear outlier. We conservatively consider an outlier to be
an outlier if the SOS outlier probability is at least 0.98. Privacy attackers may
adjust the threshold differently, according to their needs and resources.

4.3 Deanonymizing Secret Identifiers

Secret links can be used to deanonymize secret identifiers. Within the sets of
identifiers that have a secret link, we search for sets of identifiers where at least
one identifier reveals an identity, while the other linked identifiers do not. In
the example of Table 2 the attacker might suspect that both identifiers relate to
the same person, the first revealing a person’s identity (the name of the person)
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while the second by itself does not reveal the person’s identity (thus being a secret
identifier). Similarly in Table 3, the phone number might be a secret identifier
of a person which identity is revealed by the name of the other identifiers. We
employ three heuristics, described below, to determine if an identifier reveals an
identity of a person or not.

Social network B: The first heuristic uses the leaked data set B of a social
network. We consider that an identifier reveals an identity of a person if there
exists an URL to a public profile page in the data set B. The data sets D and B
both store the users email address (name@mail), allowing us to calculate joins
of the two data sets.

Social network C: The second heuristic uses the leaked data set C of a social
network. An identifier in the data set C is associated with a profile page on the
associated social network, and we therefore consider that it reveals the iden-
tity of a person. The data sets D and C both store the users email address
(name@mail), allowing us to calculate joins of the two data sets.

US census: The last heuristic verifies if the name part by itself reveals the
identity of its owner. We use surnames provided by the US census3. We consider
that an identifier reveals its owner’s identity if the name contains a substring of
at least four characters long equal to any surname occurring 100 or more times
in the US. This heuristic is not very strict and may therefore include many false
positives.

5 Evaluation

5.1 Evaluating Classifiers for Links

One objective of our analysis is to demonstrate k-linkability in D, and to provide
an estimate of the probability p that identifiers are actually linked. The main
obstacle in such an analysis is the lack of ground truth. This prevents us from
evaluating the results of our classifiers (e.g. calculate accuracies, false positives
etc.) as it is done classically with machine learning problems. From a user per-
spective, the lack of such widely available ground truth in this domain is good
news.

Instead of ground truth we use a set of heuristics on the password, the iden-
tifier name and the password hint. We also analyze the frequencies of these
features to provide further evidence that two identifiers are in fact linked.

2-Linkability. We first evaluate the classifier for 2-linkability proposed in
Sect. 4.1. The cumulated number of identifiers returned by this classifier is
13 507 724 (6 753 862 identifier pairs), representing 8.8% of identifiers out of D.

To estimate p (the probability that two identifiers are actually linked) we use
the heuristic that two identifiers link to the same person if the name fields are

3 See https://www.census.gov/genealogy/www/data/2000surnames.

https://www.census.gov/genealogy/www/data/2000surnames
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similar, i.e. jw(x, y) ≥ s or ls(x, y) ≥ s. The strict equality (s = 1) provides
a lower bound for p. The strict equality on the name field e.g. establishes that
ingrid.computing@gmail.com and ingrid.computing@hotmail.com are the same
person. The intuition is that the probability that two different users use the
same rare password and the same name is almost zero. 10% identifier pairs have
identical name in srp2(D). We consider this value as a pessimistic lower bound
for p, i.e. p ≥ 0.1.

By decreasing s we obtain more optimistic values for p (e.g. establishing
that ingrid.computing@gmail.com and i.computing@hotmail.com are the same
person). At the same time we may introduce more false positives. Figure 3 plots
the cumulative distribution function of similarities of identifier pairs in srp2(D)
for ls and jw-similarities. Using a rather strict value for s = 0.7, we increase
the proportion of linked identifiers to 23% with ls-similarity and 29% with jw-
similarities. While we cannot provide more precise evidence, we strongly suspect
that identifiers in srp2(D) are 2-linkable with probability p greater than the
pessimistic value 0.29.

Fig. 3. Cumulative distribution function of similarities in srp2 and in randomly sam-
pled pairs of identifiers of D.

We now compare the similarities of name between randomly sampled pairs
out of D (supposedly not linked) and identifier pairs in srp2(D) (supposedly
linked). Figure 3 plots the cumulative distribution function of the similarities for
both sets. We notice that the similarities are in general higher in srp2(D); the
mean ls-similarity in srp2(D) is 0.42 versus 0.19 for random pairs. Similarly,
the mean jw-similarity in srp2(D) is 0.58 versus 0.40 for random pairs. Finally,
the proportion of random identifier pairs having identical name is in the range
of 0.003%, compared to 10% in srp2(D). These numbers confirm the name is
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in general closer between identifier pairs in srp2(D), than any other random
identifier pair.

As a further indirect evidence, we show that the propensity of a user to reuse
passwords is much higher within srp2(D). We use the hint field to estimate the
propensity of a user to reuse passwords. More precisely, we count the number
of hint fields containing terms indicating password reuse: ‘as usual’, ‘always’,
etc. See Appendix A.1 for the full list. The result is shown in Fig. 4. Among
the 66 493 790 identifiers with unique passwords within D, 435 842 identifiers
(0.7%) have a ‘as usual’ kind of hint. Among the 13 507 724 identifiers that share
their password exactly once with some other identifier, 173 272 (1.3%) have a
‘as usual’ kind of hint. The proportion almost doubles, confirming the higher
propensity of users in srp2(D) to reuse passwords.

Fig. 4. Percentage of “as usual” terms in the hint, as a function of k in k-linkability.
k takes values in {1, 2, . . . , 10, 11 − 20, 21 − 40}.

In light of the above discussion, we propose a more accurate classifier for
2-linkability, i.e. the classifier has higher values for p, at the price of returning a
smaller number of identifiers. The classifier tells that L(x, y) if: (x, y) ∈ srp2(D)
and jw(x, y) ≥ s for a similarity parameter s. With s = 1, we link 683 722
identifier pairs of D with a p close to 1. As discussed before, decreasing s increases
the number of linked identifiers but decreases p. The precision of this classifier
can be further extended by adding the condition that the hint indicates password
reuse.

K-Linkability. Figure 5 shows the number of k-links (being |srpk(D)|) revealed
by the classifier for k-linkability of Sect. 4.1. Table 4 provides the cumulative
number of links for k = 2 . . . 9. We can observe, that the number of revealed
k-links gradually decreases with k. As discussed in Sect. 5.1, the probability p
that the corresponding identifiers are linked to a same user should decrease when
k increases. To demonstrate this trend we consider the propensity of a user to



On the Privacy Impacts of Publicly Leaked Password Databases 359

reuse a password (Fig. 4). The ratio of hints indicating password reuse is similar
with k = 3 and k = 2. For k > 3 this ratio regularly decreases, indicating that
p also decreases.

The absolute numbers of k-links of Fig. 5 are difficult to interpret, particularly
because it is difficult to estimate the probability p. Still, the results of the k-link
classifier can be further filtered and refined to reveal secret links and secret
identifiers.

5.2 Evaluating Classifiers for Secret Links and Secret Identifiers

We now evaluate the classifier for secret links and secret identifiers proposed in
Sects. 4.2 and 4.3. Secret links and secret identifiers are supposed to be secret and
it is even more difficult to find ground truth than with links (e.g. the secret links
will in general not appear on Google, Facebook or LinkedIn profile pages). We
therefore first provide global results and numbers and then focus on a corner-case
experiment consisting in deanonymizing role based emails. We also intersect the
revealed secret identifiers with external data sets (A) and discuss the potential
impacts.

Fig. 5. Number of links, secret links and secret identifiers in D for k between 2 and 9.

Secret Links and Secret Identifiers Global Results. For secret links, we
set s = 0.4 (as defined in Sect. 4.2) and therefore require that jw(x, y) < 0.4.
This threshold corresponds to the first “elbow” in Fig. 3. Doing so, we estimate
that an attacker would reveal 1 million potential secret links. Figure 5 also shows
the number of revealed potential secret links with k > 2; Table 4 provides the
cumulative numbers. While it is difficult to assess the p of this classifier, we know
that we can increase p by adding the condition that the hint indicates password
reuse. Figure 5 and Table 4 further shows the number of secret identifiers we could
deanonymize in D, according to the three deanonymization heuristics proposed
in Sect. 4.3.
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Table 4. Cumulative number of links, secret links and secret identifiers in D for k
between 2 and 9.

#links 11 038 079

#secret links 1 937 634

#secret identifiers using US census 763 348

#secret identifiers using social network C 348 892

#secret identifiers using social network D 4 003

in comparison: size of D 153 004 874

Deanonymizing Role-Based Emails. The classifiers may discover real names
behind generic email addresses like support, admin, security, etc. An attacker can
use this knowledge to bypass an ‘administrator’ or ‘support’ email address and
directly contact the real person in charge. For this application, we select pairs of
identifiers in srp2(D) such that: (i) one name is generic (see Appendix A.2), (ii)
both identifiers have the same mail part, (iii) the mail part is rare within D (less
than 100 occurrences in our experiment). From such pairs, the privacy attacker
can automatically generate a human readable statement such as: “Ingrid Com-
puting is ‘sysadmin’ at this-company.com”. The fact that linked identifiers have
the same rare mail part reinforces the link, at least from a Bayesian perspective.
The above method generates 25 253 statements involving at least one generic
identifier. Among those, 2 858 statements involve a name part with a separator
(“.”,“ ”) and forenames and lastnames that are not reduced to a single letter.

Intersecting with Other Databases. We demonstrate the impact of our
attack by deanonymizing secret identifiers in the data set A, a data set related
to adult content. We use the A since we expect to find more users that would like
to remain anonymous with a service related to adult content. This is confirmed
by the numbers of identifiers revealing person identities using the US census,
social network C and social network B heuristics (see Table 5). The proportion
of identifiers that reveals person identities is systematically smaller in the data
set A.

We deanonymize a secret identifier in the data set A by (i) extracting all
secret identifiers in D and (ii) keeping only the secret identifiers (name@mail)
that also appear in A. The data sets A, B, C and D all include email addresses

Table 5. Proportion of identifiers in D and A revealing person identities according to
different heuristics.

US census Social network C Social network B

D 93.83 % 8.33 % 0.07 %

A 78.03 % 3.91 % 0.02 %
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Table 6. Number of deanonymized secret identifiers in A, and number of secret links
according to different criterions

Deanonymized secret identifiers Secret links

US census Social network C Social network B All Corporate Gov. Univ.

851 337 5 2979 3 4 104

(name@mail), allowing us to calculate joins. Table 6 reports the number of
deanonymized identifiers.

We further highlight the existence of embarrassing secret links. In Table 6,
we report the number of secret links between an identifier in A and identifiers
that verify a set of criteria: (all) no restriction on the mail address, (corporate)
corporate mail addresses from major companies, (gov) mail addresses from gov-
ernment agencies, (univ) mail addresses from universities.

6 Related Work

Related work focuses on password cracking, password strength, password user
studies and deanonymization of public data sets.

The most common password cracking attacks are the brute-force and dic-
tionary attacks using popular tools such as John the Ripper. Many improve-
ments for password cracking have been proposed: using rainbow tables [22],
using Markov models [18], using probabilistic context-free grammars [26], etc.

Some works try to assess or measure the strength of a password [1,2,6,7,13,
15,24]. In this context, password meters are supposed to help users to improve
their password. However, Ur et al. [25] show that in general password meters
only marginally increase the resistance to password cracking. Only very strict
password meters tend to increase the password strength [3,25]. Password popu-
larity is also used to measure the strength of a password [7,14,24]. To strengthen
a password, Schechter et al. [24] use the quite simple idea of discouraging the use
of popular passwords. This latter approach is clearly beneficial for the privacy
attacker of this work. The above works often use well-known password data sets
to evaluate their performance.

Other work considered user behavior regarding passwords [5,9,15]. [5,9]
study the problem of password reuse across sites. Both show that the reuse
of the same or a similar password is a predominant practice for end-users. In
particular, [5] studies how users transform their password for different online
accounts. Both papers focus on an attacker breaking passwords, e.g. [5] builds a
password guessing algorithm based on the observed user behavior. These works
do not consider the privacy attacker which does not require to break passwords.

Most privacy attacks focus on the deanonymization of social networks and
rating systems. [19] deanonymizes the public Netflix data set, by matching movie
ratings provided by users of the Internet Movie Database. [20] re-identifies users
of an anonymized Twitter graph, matching them against Twitter and Flicker
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identifiers. [17] identifies anonymous online authors by comparing writing styles.
[16] links reviewers of community review sites. We consider a radically different
type of data set that has not been studied in terms of privacy so far.

To the best of our knowledge, the work that comes closest to ours is [23].
The authors use identifier names to link or uniquely identify users. They further
leverage textual similarities between identifier names for estimating the linka-
bility probabilities. Our work is different as (i) we use encrypted information
rather than textual information and (ii) we link to secret identifiers that are –
by definition – very dissimilar from their linked identifiers.

7 Discussion and Conclusion

We presented linkability attacks based on password equivalents in leaked identi-
fier and password data sets. The attacks do not require breaking a single pass-
word, and the efficiency increases with the password strength. Having no ground
truth, which is expected in this domain, we provided indirect assessment of
the performance of our classifiers. We demonstrated the consequences of our
attack by showing that a privacy attacker can reveal sensitive private informa-
tion such as secret identifiers. In particular, we evaluated how privacy attackers
can deanonymize secret identifiers of users of adult content sites. State of the art
attacks analyzing online social networks do not reveal this kind of information.

7.1 Tractability of Privacy Attacks

We would like to emphasize several risks for people’s privacy. First, the pre-
sented privacy attacks require little computation resources. For instance, the
k-linkability analysis on D took only 400 cumulated computation hours. The
complexity of most treatments does not exceed O(n.log(n)). The attacker does
not need to break any password, which saves a lot of resources. Further, the
attacks can be performed using publicly available data sets. There is no need
to crawl social networks or to have access to a social network graph. These two
facts make our attacks tractable to most individuals without requiring any spe-
cific privileges or computing power. Finally, D is much larger than other data
sets in this domain. This allows retrieving a fair amount of results, typically
thousands, even when using multiple refinement requests. The number and size
of publicly available data sets of that kind tends to increase, meaning that the
number of retrieved results will also further increase over time.

7.2 Mitigations

The mitigations and countermeasures are rather classical. End-users achieve best
results in terms of both privacy and security by using a strong and different
password for each service. Since it might be difficult for a user to remember all
these passwords, we recommend users to segment linkability according to their
estimated privacy needs. Users should use unique passwords for the few services
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that they never want to be linked to. For other non-privacy critical services,
users may use a password based on one single root (e.g. frog35!), and prefix the
password with a character or string related to the service (e.g. FB for Facebook,
LI for LinkedIn). This “poor man’s salt” does not reinforce the security of the
password, but decreases the impact of linking attacks. Password managers that
generate randomized passwords also provide an efficient countermeasure. Finally,
identifier providers should use salted hashing functions. These recommendations
have been published several years ago and still, numerous leaked files reveal bad
practices. In addition, we encourage identifier providers to encrypt both the hints
and the email addresses. Obviously the hints are private, while massively leaked
email addresses are a gift to spammers. Finally, identifier providers should avoid
incremental uid’s and use random numbers [10].4

Table 7. Probable history of a user w.r.t data set D.

uid pwdl pwdr name mail hint

06...83 hc...si joe.target corp1.com

10...68 sj...f2 Tr...G joe target corp2.com

16...80 sj...f2 Tr...G tryjoe isp.com usual

17...22 Fg...st tryjtarget corp3.uk other

7.3 Future Work

We found several cases where additional private information can be inferred from
the available data sets. For instance, a privacy attacker could deduce people
“histories” from the set of successive identifiers of a same person. Table 7 shows
one example. Using time reconciliation this history reads: “In 2001, Joe was
at corp1, he joined corp2 before mid-2008, then he went to corp3 before 2012”.
Building such histories requires linking identifiers through names [23], in addition
to the links established through passwords. The first entry in Table 7 is linked
to the second via distances introduced in [23]. The second entry is linked to
the third entry via the password. The fourth item is linked to all others via a
combination of both techniques.

Acknowledgements. We thank the Program Committee and reviewers for the many
valuable comments that significantly improved the final version of this paper.

4 The uid of D increases monotonically with the time of creation of the identifier. It
allows the reconstruction of a timeline, by e.g. using creation dates of some identifiers
or by searching in the fields name and hint for events having a worldwide notoriety.
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A Appendix

A.1 Terms for ‘as usual’

always, usual, the rest, for all, normal, same as, standard, regular, costumbres,
siempre, sempre, wie immer, toujours, habit, d’hab, comme dab, altijd.

A.2 List of generic email addresses

abuse admin administrator contact design email info intern it legal kontakt mail
marketing no-reply office post press print printer sales security service spam
support sysadmin test web webmaster webmestre.
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