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Preface

On behalf of the Program Committee, it is our pleasure to present the proceedings of the
14th International Conference on Detection of Intrusions and Malware and Vulnera-
bility Assessment (DIMVA), which took place in Bonn, Germany, during July 6–7,
2017. Since 2004, DIMVA has been bringing together leading researchers and practi-
tioners from academia, industry, and government to present and discuss novel security
research in the broader areas of intrusion detection, malware analysis, and vulnerability
assessment. DIMVA is organized by the Special Interest Group – Security, Intrusion
Detection, and Response (SIDAR) – of the German Informatics Society (GI).

This year, DIMVA received 67 valid submissions from academic and industrial
organizations from 25 different countries. Each submission was carefully reviewed by
at least three Program Committee members or external experts. The submissions were
evaluated on the basis of scientific novelty, importance to the field, and technical
quality. The final selection of papers was decided during a day-long Program Com-
mittee meeting that took place at Stony Brook University, USA, on April 7, 2017. In
all, 18 full papers were selected for presentation at the conference and publication in the
proceedings, resulting in an acceptance rate of 26.9%. The accepted papers present
novel ideas, techniques, and applications in important areas of computer security,
including enclaves and isolation, malware analysis, cyber-physical systems, detection
and protection, code analysis, and Web security. Beyond the research papers, the
conference program also included two insightful keynote talks by Thomas Dullien
(Google) and Prof. Christopher Kruegel (University of California at Santa Barbara).

A successful conference is the result of the joint effort of many people. We would
like to express our appreciation to the Program Committee members and external
reviewers for the time spent reviewing papers, participating in the online discussion,
attending the Program Committee meeting in Stony Brook, and shepherding some
of the papers to ensure the highest quality possible. We also deeply thank the members
of the Organizing Committee for their hard work in making DIMVA 2017 such a
successful event, and our invited speakers for their willingness to participate in the
conference. We are wholeheartedly thankful to our sponsors ERNW, genua, Google,
Huawei, Rohde & Schwarz Cybersecurity, Springer, and VMRay for generously
supporting DIMVA 2017. We also thank Springer for publishing these proceedings as
part of their LNCS series, and the DIMVA Steering Committee for their continuous
support and assistance.

Finally, DIMVA 2017 would not have been possible without the authors who
submitted their work and presented their contributions as well as the attendees who
came to the conference. We would like to thank them all, and we look forward to their
future contributions to DIMVA.

July 2017 Michalis Polychronakis
Michael Meier
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Malware Guard Extension:
Using SGX to Conceal Cache Attacks

Michael Schwarz(B), Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard

Graz University of Technology, Graz, Austria
michael.schwarz@iaik.tugraz.at

Abstract. In modern computer systems, user processes are isolated
from each other by the operating system and the hardware. Additionally,
in a cloud scenario it is crucial that the hypervisor isolates tenants from
other tenants that are co-located on the same physical machine. However,
the hypervisor does not protect tenants against the cloud provider and
thus the supplied operating system and hardware. Intel SGX provides a
mechanism that addresses this scenario. It aims at protecting user-level
software from attacks from other processes, the operating system, and
even physical attackers.

In this paper, we demonstrate fine-grained software-based side-
channel attacks from a malicious SGX enclave targeting co-located
enclaves. Our attack is the first malware running on real SGX hard-
ware, abusing SGX protection features to conceal itself. Furthermore, we
demonstrate our attack both in a native environment and across mul-
tiple Docker containers. We perform a Prime+Probe cache side-channel
attack on a co-located SGX enclave running an up-to-date RSA imple-
mentation that uses a constant-time multiplication primitive. The attack
works although in SGX enclaves there are no timers, no large pages, no
physical addresses, and no shared memory. In a semi-synchronous attack,
we extract 96% of an RSA private key from a single trace. We extract
the full RSA private key in an automated attack from 11 traces.

1 Introduction

Modern operating systems isolate user processes from each other to protect
secrets in different processes. Such secrets include passwords stored in pass-
word managers or private keys to access company networks. Leakage of these
secrets can compromise both private and corporate systems. Similar problems
arise in the cloud. Therefore, cloud providers use virtualization as an additional
protection using a hypervisor. The hypervisor isolates different tenants that are
co-located on the same physical machine. However, the hypervisor does not pro-
tect tenants against a possibly malicious cloud provider.

Although hypervisors provide functional isolation, side-channel attacks are
often not considered. Consequently, researchers have demonstrated various side-
channel attacks, especially those exploiting the cache [15]. Cache side-channel

c© Springer International Publishing AG 2017
M. Polychronakis and M. Meier (Eds.): DIMVA 2017, LNCS 10327, pp. 3–24, 2017.
DOI: 10.1007/978-3-319-60876-1 1



4 M. Schwarz et al.

attacks can recover cryptographic secrets, such as AES [29] and RSA [33] keys,
across virtual machine boundaries.

Intel introduced a new hardware extension SGX (Software Guard Exten-
sions) [27] in their CPUs, starting with the Skylake microarchitecture. SGX is
an isolation mechanism, aiming at protecting code and data from modification
or disclosure even if all privileged software is malicious [10]. This protection uses
special execution environments, so-called enclaves, which work on memory areas
that are isolated from the operating system by the hardware. The memory area
used by the enclaves is encrypted to protect application secrets from hardware
attackers. Typical use cases include password input, password managers, and
cryptographic operations. Intel recommends storing cryptographic keys inside
enclaves and claims that side-channel attacks “are thwarted since the memory
is protected by hardware encryption” [25].

Hardware-supported isolation also led to fear of super malware inside
enclaves. Rutkowska [44] outlined a scenario where an enclave fetches encrypted
malware from an external server and executes it within the enlave. In this sce-
nario, it is impossible to debug, reverse engineer, or analyze the executed malware
in any way. Costan et al. [10] eliminated this fear by arguing that enclaves always
run with user space privileges and can neither issue syscalls nor perform any I/O
operations. Moreover, SGX is a highly restrictive environment for implement-
ing cache side-channel attacks. Both state-of-the-art malware and side-channel
attacks rely on several primitives that are not available in SGX enclaves.

In this paper, we show that it is very well possible for enclave malware to
attack its hosting system. We demonstrate a cross-enclave cache attack from
within a malicious enclave that is extracting secret keys from co-located enclaves.
Our proof-of-concept malware is able to recover RSA keys by monitoring cache
access patterns of an RSA signature process in a semi-synchronous attack. The
malware code is completely invisible to the operating system and cannot be
analyzed due to the isolation provided by SGX. We present novel approaches
to recover physical address bits, as well as to recover high-resolution timing in
absence of the timestamp counter, which has an even higher resolution than
the native one. In an even stronger attack scenario, we show that an additional
isolation using Docker containers does not protect against this kind of attack.

We make the following contributions:

1. We demonstrate that, despite the restrictions of SGX, cache attacks can be
performed from within an enclave to attack a co-located enclave.

2. By combining DRAM and cache side channels, we present a novel approach
to recover physical address bits even if 2 MB pages are unavailable.

3. We obtain high-resolution timestamps in enclaves without access to the native
timestamp counter, with an even higher resolution than the native one.

4. In an automated end-to-end attack on the wide-spread mbedTLS RSA imple-
mentation, we extract 96% of an RSA private key from a single trace.

Section 2 presents the required background. Section 3 outlines the threat
model and attack scenario. Section 4 describes the measurement methods and
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the online phase of the malware. Section 5 explains the offline-phase key recov-
ery. Section 6 evaluates the attack against an up-to-date RSA implementation.
Section 7 discusses several countermeasures. Section 8 concludes our work.

2 Background

2.1 Intel SGX in Native and Virtualized Environments

Intel Software Guard Extensions (SGX) are a new set of x86 instructions intro-
duced with the Skylake microarchitecture. SGX allows protecting the execution
of user programs in so-called enclaves. Only the enclave can access its own mem-
ory region, any other access to it is blocked by the CPU. As SGX enforces this
policy in hardware, enclaves do not need to rely on the security of the operat-
ing system. In fact, with SGX the operating system is generally not trusted. By
doing sensitive computation inside an enclave, one can effectively protect against
traditional malware, even if such malware has obtained kernel privileges. Fur-
thermore, it allows running secret code in a cloud environment without trusting
hardware and operating system of the cloud provider.

An enclave resides in the virtual memory area of an ordinary application
process. This virtual memory region of the enclave can only be backed by phys-
ically protected pages from the so-called Enclave Page Cache (EPC). The EPC
itself is a contiguous physical block of memory in DRAM that is encrypted
transparently to protect against hardware attacks.

Loading of enclaves is done by the operating system. To protect the integrity
of enclave code, the loading procedure is measured by the CPU. If the resulting
measurement does not match the value specified by the enclave developer, the
CPU will refuse to run the enclave.

Since enclave code is known to the (untrusted) operating system, it can-
not carry hard-coded secrets. Before giving secrets to an enclave, a provisioning
party has to ensure that the enclave has not been tampered with. SGX there-
fore provides remote attestation, which proves correct enclave loading via the
aforementioned enclave measurement.

At the time of writing, no hypervisor with SGX support was available. How-
ever, Arnautov et al. [4] proposed to combine Docker containers with SGX to
create secure containers. Docker is an operating-system-level virtualization soft-
ware that allows applications to run in separate containers. It is a standard
runtime for containers on Linux which is supported by multiple public cloud
providers. Unlike virtual machines, Docker containers share the kernel and other
resources with the host system, requiring fewer resources than a virtual machine.

2.2 Microarchitectural Attacks

Microarchitectural attacks exploit hardware properties that allow inferring infor-
mation on other processes running on the same system. In particular, cache
attacks exploit the timing difference between the CPU cache and the main mem-
ory. They have been the most studied microarchitectural attacks for the past 20
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years, and were found to be powerful to derive cryptographic secrets [15]. Mod-
ern attacks target the last-level cache, which is shared among all CPU cores.
Last-level caches (LLC) are usually built as n-way set-associative caches. They
consist of S cache sets and each cache set consists of n cache ways with a size of
64 B. The lowest 6 physical address bits determine the byte offset within a cache
way, the following log2 S bits starting with bit 6 determine the cache set.

Prime+Probe is a cache attack technique that has first been used by
Osvik et al. [39]. In a Prime+Probe attack, the attacker constantly primes (i.e.,
evicts) a cache set and measures how long this step took. The runtime of the
prime step is correlated to the number of cache ways that have been replaced
by other programs. This allows deriving whether or not a victim application
performed a specific secret-dependent memory access. Recent work has shown
that this technique can even be used across virtual machine boundaries [33,35].

To prime (i.e., evict) a cache set, the attacker uses n addresses in same cache
set (i.e., an eviction set), where n depends on the cache replacement policy
and the number of ways. To minimize the amount of time the prime step takes,
it is necessary to find a minimal n combined with a fast access pattern (i.e.,
an eviction strategy). Gruss et al. [18] experimentally found efficient eviction
strategies with high eviction rates and a small number of addresses. We use
their eviction strategy on our Skylake test machine throughout the paper.

Pessl et al. [42] found a similar attack through DRAM modules. Each DRAM
module has a row buffer that holds the most recently accessed DRAM row. While
accesses to this buffer are fast, accesses to other memory locations in DRAM
are much slower. This timing difference can be exploited to obtain fine-grained
information across virtual machine boundaries.

2.3 Side-Channel Attacks on SGX

Intel claims that SGX features impair side-channel attacks and recommends
using SGX enclaves to protect password managers and cryptographic keys
against side channels [25]. However, there have been speculations that SGX
could be vulnerable to side-channel attacks [10]. Xu et al. [50] showed that SGX
is vulnerable to page fault side-channel attacks from a malicious operating sys-
tem [1].

SGX enclaves generally do not share memory with other enclaves, the oper-
ating system or other processes. Thus, any attack requiring shared memory is
not possible, e.g., Flush+Reload [51]. Also, DRAM-based attacks cannot be per-
formed from a malicious operating system, as the hardware prevents any oper-
ating system accesses to DRAM rows in the EPC. However, enclaves can mount
DRAM-based attacks on other enclaves because all enclaves are located in the
same physical EPC.

In concurrent work, Brasser et al. [8], Moghimi et al. [37] and Götzfried et al.
[17] demonstrated cache attacks on SGX relying on a malicious operating system.
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2.4 Side-Channel Attacks on RSA

RSA is widely used to create asymmetric signatures, and is implemented by
virtually every TLS library, such as OpenSSL or mbedTLS , which is used for
instance in cURL and OpenVPN. RSA essentially involves modular exponen-
tiation with a private key, typically using a square-and-multiply algorithm. An
unprotected implementation of square-and-multiply is vulnerable to a variety of
side-channel attacks, in which an attacker learns the exponent by distinguishing
the square step from the multiplication step [15,51]. mbedTLS uses a windowed
square-and-multiply routine for the exponentiation. Liu et al. [33] showed that
if an attack on a window size of 1 is possible, the attack can be extended to
arbitrary window sizes.

Earlier versions of mbedTLS were vulnerable to a timing side-channel attack
on RSA-CRT [3]. Due to this attack, current versions of mbedTLS implement
a constant-time Montgomery multiplication for RSA. Additionally, instead of
using a dedicated square routine, the square operation is carried out using the
multiplication routine. Thus, there is no leakage from a different square and
multiplication routine as exploited in previous attacks on square-and-multiply
algorithms [33,51]. However, Liu et al. [33] showed that the secret-dependent
accesses to the buffer b still leak the exponent. Boneh et al. [7] and Blömer et al.
[6] recovered the full RSA private key if only parts of the key bits are known.

3 Threat Model and Attack Setup

In this section, we present our threat model. We demonstrate a malware that
circumvents SGX and Docker isolation guarantees. We successfully mount a
Prime+Probe attack on an RSA signature computation running inside a different
enclave, on the outside world, and across container boundaries.

3.1 High-Level View of the Attack

In our threat model, both the attacker and the victim are running on the same
physical machine. The machine can either be a user’s local computer or a host
in the cloud. In the cloud scenario, the victim has its enclave running in a
Docker container to provide services to other applications running on the host.
Docker containers are well supported on many cloud providers, e.g., Amazon [13]
or Microsoft Azure [36]. As these containers are more lightweight than virtual
machines, a host can run up to several hundred containers simultaneously. Thus,
the attacker has good chances to get a co-located container on a cloud provider.

Figure 1 gives an overview of our native setup. The victim runs a crypto-
graphic computation inside the enclave to protect it against any attacks. The
attacker tries to stealthily extract secrets from this victim enclave. Both the
attacker and the victim use Intel SGX features and thus are subdivided into two
parts, the enclave and loader, i.e., the main program instantiating the enclave.

The attack is a multi-step process that can be divided into an online and
an offline phase. Section 4 describes the online phase, in which the attacker first
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SGX

Malware

(Prime+Probe)

Loader

Attacker

L1/L2 Cache

SGX

RSA

(private key)

Public API

Victim

L1/L2 Cache

Shared LLC

Fig. 1. The threat model: both attacker and victim run on the same physical machine
in different SGX enclaves.

locates the victim’s cache sets that contain the secret-dependent data of the RSA
private key. The attacker then monitors the identified cache sets while triggering
a signature computation. Section 5 gives a detailed explanation of the offline
phase in which the attacker recovers a private key from collected traces.

3.2 Victim

The victim is an unprivileged program that uses SGX to protect an RSA sign-
ing application from both software and hardware attackers. Both the RSA
implementation and the private key reside inside the enclave, as suggested by
Intel [25]. Thus, they can never be accessed by system software or malware on
the same host. Moreover, memory encryption prevents physical information leak-
age in DRAM. The victim uses the RSA implementation of the widely deployed
mbedTLS library. The mbedTLS library implements a windowed square-and-
multiply algorithm, that relies on constant-time Montgomery multiplications.
The window size is fixed to 1, as suggested by the official knowledge base [2].
The victim application provides an API to compute a signature for provided
data.

3.3 Attacker

The attacker runs an unprivileged program on the same host machine as the
victim. The goal of the attacker is to stealthily extract the private key from the
victim enclave. Therefore, the attacker uses the API provided by the victim to
trigger signature computations.

The attacker targets the exponentiation step of the RSA implementation.
The attack works on arbitrary window sizes [33], including window size 1. To
prevent information leakage from function calls, mbedTLS uses the same function
(mpi montmul) for both the square and the multiply operation. The mpi montmul
takes two parameters that are multiplied together. For the square operation, the
function is called with the current buffer as both arguments. For the multi-
ply operation, the current buffer is multiplied with a buffer holding the multi-
plier. This buffer is allocated in the calling function mbedtls mpi exp mod using
calloc. Due to the deterministic behavior of the tlibc calloc implementation,
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the used buffers always have the same virtual and physical addresses and thus
the same cache sets. The attacker can therefore mount a Prime+Probe attack
on the cache sets containing the buffer.

In order to remain stealthy, all parts of the malware that contain attack
code reside inside an SGX enclave. The enclave can protect the encrypted real
attack code by only decrypting it after a successful remote attestation after
which the enclave receives the decryption key. As pages in SGX can be mapped
as writable and executable, self-modifying code is possible and therefore code
can be encrypted. Consequently, the attack is completely stealthy and invisible
from anti-virus software and even from monitoring software running in ring 0.
Note that our proof-of-concept implementation does not encrypt the attack code
as this has no impact on the attack.

The loader does not contain any suspicious code or data, it is only required
to start the enclave and send the exfiltrated data to the attacker.

3.4 Operating System and Hardware

Previous work was mostly focused on attacks on enclaves from untrusted cloud
operating systems [10,46]. However, in our attack we do not make any assump-
tions on the underlying operating system, i.e., we do not rely on a malicious
operating system. Both the attacker and the victim are unprivileged user space
applications. Our attack works on a fully-patched recent operating system with
no known software vulnerabilities, i.e., the attacker cannot elevate privileges.

We expect the cloud provider to run state-of-the-art malware detection soft-
ware. We assume that the malware detection software is able to monitor the
behavior of containers and inspect the content of containers. Moreover, the
user can run anti-virus software and monitor programs inside the container. We
assume that the protection mechanisms are either signature-based, behavioral-
based, heuristics-based or use performance counters [12,21].

Our only assumption on the hardware is that attacker and victim run on the
same host system. This is the case on both personal computers and on co-located
Docker instances in the cloud. As SGX is currently only available on Intel Skylake
CPUs, it is valid to assume that the host is a Skylake system. Consequently, we
know that the last-level cache is shared between all CPU cores.

4 Extracting Private Key Information

In this section, we describe the online phase of our attack. We first build primi-
tives necessary to mount this attack. Then we show in two steps how to locate
and monitor cache sets to extract private key information.

4.1 Attack Primitives in SGX

Successful Prime+Probe attacks require two primitives: a high-resolution timer
to distinguish cache hits and misses and a method to generate an eviction set
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for arbitrary cache sets. Due to the restrictions of SGX enclaves, implement-
ing Prime+Probe in enclaves is not straight-forward. Therefore, we require new
techniques to build a malware from within an enclave.

High-Resolution Timer. The unprivileged rdtsc and rdtscp instructions,
which read the timestamp counter, are usually used for fine-grained timing out-
side enclaves. In SGX, these instructions are not permitted inside an enclave,
as they might cause a VM exit [24]. Thus, we have to rely on a different timing
source with a resolution in the order of 10 cycles to reliably distinguish cache
hits from misses as well as DRAM row hits from row conflicts.

To achieve the highest number of increments, we handcraft a counter
thread [31,49] in inline assembly. The counter variable has to be accessible across
threads, thus it is necessary to store the counter variable in memory. Memory
addresses as operands incur an additional cost of approximately 4 cycles due to
L1 cache access times [23]. On our test machine, a simple counting thread exe-
cuting 1: incl (%rcx); jmp 1b achieves one increment every 4.7 cycles, which
is an improvement of approximately 2% over the best code generated by gcc.

We can improve the performance—and thus the resolution—further, by
exploiting the fact that only the counting thread modifies the counter vari-
able. We can omit reading the counter variable from memory. Therefore, we
introduce a “shadow counter variable” which is always held in a CPU regis-
ter. The arithmetic operation (either add or inc) is performed on this register,
unleashing the low latency and throughput of these instructions. As registers
cannot be shared across threads, the shadow counter has to be moved to mem-
ory using the mov instruction after each increment. Similar to the inc and add
instruction, the mov instruction has a latency of 1 cycle and a throughput of 0.5
cycles/instruction when copying a register to memory. The improved counting
thread, 1: inc %rax; mov %rax, (%rcx), jmp 1b, is significantly faster and
increments the variable by one every 0.87 cycles, which is an improvement of
440% over the simple counting thread. In fact, this version is even 15% faster
than the native timestamp counter, thus giving us a reliable timing source with
even higher resolution. This new method might open new possibilities of side-
channel attacks that leak information through timing on a sub-rdtsc level.

Eviction Set Generation. Prime+Probe relies on eviction sets, i.e., we need
to find virtual addresses that map to the same physical cache set. An unprivi-
leged process cannot translate virtual to physical addresses and therefore cannot
simply search for virtual addresses that fall into the same cache set. Liu et al.
[33] and Maurice et al. [35] demonstrated algorithms to build eviction sets using
large pages by exploiting the fact that the virtual address and the physical
address have the same lowest 21 bits. As SGX does not support large pages,
this approach is inapplicable. Oren et al. [38] and Gruss et al. [18] demonstrated
automated methods to generate eviction sets for a given virtual address. Due
to microarchitectural changes their approaches are either not applicable at all
to the Skylake architecture or consume several hours on average before even
starting the actual Prime+Probe attack.
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Fig. 2. Access times when alternately accessing two addresses which are 64 B apart.
The (marked) high access times indicate row conflicts.

We propose a new method to recover the cache set from a virtual address
without relying on large pages. The idea is to exploit contiguous page alloca-
tion [28] and DRAM timing differences to recover DRAM row boundaries. The
DRAM mapping functions [42] allow to recover physical address bits.

The DRAM organization into banks and rows causes timing differences.
Alternately accessing pairs of two virtual addresses that map to the same DRAM
bank but a different row is significantly slower than any other combination of
virtual addresses. Figure 2 shows the average access time for address pairs when
iterating over a 2 MB array. The highest two peaks show row conflicts, i.e., the
row index changes while the bank, rank, and channel stay the same.

Table 1. Reverse-engineered DRAM mapping functions from Pessl et al. [42].

Address Bit

22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06

2 DIMMs Channel ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
BG0 ⊕ ⊕
BG1 ⊕ ⊕
BA0 ⊕ ⊕
BA1 ⊕ ⊕
Rank ⊕ ⊕

To recover physical address bits we use the reverse-engineered DRAM map-
ping function as shown in Table 1. Our test machine is an Intel Core i5-6200U
with 12 GB main memory. The row index is determined by physical address bits
18 and upwards. Hence, the first address of a DRAM row has the least-significant
18 bits of the physical address set to ‘0’. To detect row borders, we scan memory
sequentially for an address pair in physical proximity that causes a row conflict.
As SGX enclave memory is allocated contiguously we can perform this scan on
virtual addresses.

A virtual address pair that causes row conflicts at the beginning of a row
satisfies the following constraints:
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1. The least-significant 18 physical address bits of one virtual address are zero.
This constitutes a DRAM row border.

2. The bank address (BA), bank group (BG), rank, and channel determine the
DRAM bank and must be the same for both virtual addresses.

3. The row index must be different for both addresses to cause a row conflict.
4. The difference of the two virtual addresses has to be at least 64 B (the size of

one cache line) but should not exceed 4 kB (the size of one page).

Physical address bits 6 to 17 determine the cache set which we want to
recover. Hence, we search for address pairs where physical address bits 6 to 17
have the same known but arbitrary value.

To find address pairs fulfilling the aforementioned constraints, we modeled
the mapping function and the constraints as an SMT problem and used the
Z3 theorem prover [11] to provide models satisfying the constraints. The model
we found yields pairs of physical addresses where the upper address is 64 B
apart from the lower one. There are four such address pairs within every 4
MB block of physical memory such that each pair maps to the same bank
but a different row. The least-significant bits of the physical address pairs are
either (0x3fffc0, 0x400000), (0x7fffc0, 0x800000), (0xbfffc0, 0xc00000) or
(0xffffc0, 0x1000000) for the lower and higher address respectively. Thus, at
least 22 bits of the higher addresses least-significant bits are 0. As the cache set
is determined by the bits 6 to 17, the higher address has the cache set index 0.
We observe that satisfying address pairs are always 256 KB apart. Since we have
contiguous memory [28], we can generate addresses mapping to the same cache
set by adding multiples of 256 KB to the higher address.

In modern CPUs, the last-level cache is split into cache slices. Addresses with
the same cache set index map to different cache slices based on the remaining
address bits. To generate an eviction set, it is necessary to only use addresses
that map to the same cache set in the same cache slice. However, to calculate
the cache slice, all bits of the physical address are required [34].

As we are not able to directly calculate the cache slice, we use another app-
roach. We add our calculated addresses from the correct cache set to our evic-
tion set until the eviction rate is sufficiently high. Then, we try to remove single
addresses from the eviction set as long as the eviction rate does not drop. Thus,
we remove all addresses that do not contribute to the eviction, and the result
is a minimal eviction set. Our approach takes on average 2 s per cache set, as
we already know that our addresses map to the correct cache set. This is nearly
three orders of magnitude faster than the approach of Gruss et al. [18]. Older
techniques that have been comparably fast do not work on current hardware
anymore due to microarchitectural changes [33,38].

4.2 Identifying and Monitoring Vulnerable Sets

With the reliable high-resolution timer and a method to generate eviction sets,
we can mount the first stage of the attack and identify the vulnerable cache sets.
As we do not have any information about the physical addresses of the victim,
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we have to scan the last-level cache for characteristic patterns corresponding to
the signature process. We consecutively mount a Prime+Probe attack on every
cache set while the victim is executing the exponentiation step.

We can then identify multiple cache sets showing the distinctive pattern of
the signature operation. The number of cache sets depends on the RSA key size.
Cache sets at the buffer boundaries might be used by neighboring buffers and
are more likely to be prefetched [20,51] and thus, prone to measurement errors.
Consequently, we use cache sets neither at the start nor the end of the buffer.

The measurement method is the same as for detecting the vulnerable cache
sets, i.e., we again use Prime+Probe. Due to the deterministic behavior of the
heap allocation, the address of the attacked buffer does not change on consecutive
exponentiations. Thus, we can collect multiple traces of the signature process.

To maintain a high sampling rate, we keep the post-processing during the
measurements to a minimum. Moreover, it is important to keep the memory
activity at a minimum to not introduce additional noise on the cache. Thus,
we only save the timestamps of the cache misses for further post-processing. As
a cache miss takes longer than a cache hit, the effective sampling rate varies
depending on the number of cache misses. We have to consider this effect in the
post-processing as it induces a non-constant sampling interval.

5 Recovering the Private Key

In this section, we describe the offline phase of our attack: recovering the private
key from the recorded traces of the victim enclave. This can either be done inside
the malware enclave or on the attacker’s server.

Ideally, an attacker would combine multiple traces by aligning them and aver-
aging out noise. From the averaged trace, the private key can be extracted more
easily. However, most noise sources, such as context switches, system activity
and varying CPU clock, alter the timing, thus making trace alignment difficult.
We pre-process all traces individually and extract a partial key out of each trace.
These partial keys likely suffer from random insertion and deletion errors as well
as from bit flips. To eliminate the errors, we combine multiple partial keys in
the key recovery phase. This approach has much lower computational overhead
than trace alignment since key recovery is performed on partial 4096-bit keys
instead of full traces containing several thousand measurements.

Key recovery comes in three steps. First, traces are pre-processed. Second,
a partial key is extracted from each trace. Third, the partial keys are merged
to recover the private key. In the pre-processing step we filter and resample raw
measurement data. Figure 3 shows a trace segment before (top) and after pre-
processing (bottom). The pre-processed trace shows high peaks at locations of
cache misses, indicating a ‘1’ in the RSA exponent.

To automatically extract a partial key from a pre-processed trace, we first
run a peak detection algorithm. We delete duplicate peaks, e.g., peaks where the
corresponding RSA multiplications would overlap in time. We also delete peaks
that are below a certain adaptive threshold, as they do not correspond to actual
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Fig. 3. A raw measurement trace over 4000000 cycles. The peaks in the pre-processed
trace on the bottom clearly indicate ‘1’s.

multiplications. Using an adaptive threshold is necessary since neither the CPU
frequency nor our timing source (the counting thread) is perfectly stable. The
varying peak height is shown in the right third of Fig. 3. The adaptive threshold
is the median over the 10 previously detected peaks. If a peak drops below 90% of
this threshold, it is discarded. The remaining peaks correspond to the ‘1’s in the
RSA exponent and are highlighted in Fig. 3. ‘0’s can only be observed indirectly
in our trace as square operations do not trigger cache activity on the monitored
sets. ‘0’s appear as time gaps in the sequence of ‘1’ peaks, thus revealing all
partial key bits. Note that since ‘0’s correspond to just one multiplication, they
are roughly twice as fast as ‘1’s.

When a correct peak is falsely discarded, the corresponding ‘1’ is interpreted
as two ‘0’s. Likewise, if noise is falsely interpreted as a ‘1’, this cancels out two
‘0’s. If either the attacker or the victim is not scheduled, we have a gap in the
collected trace. However, if both the attacker and the victim are descheduled,
this gap does not show up prominently in the trace since the counting thread is
also suspended by the interrupt. This is an advantage of a counting thread over
the use of the native timestamp counter.

In the final key recovery, we merge multiple partial keys to obtain the full
key. We quantify partial key errors using the edit distance. The edit distance
between a partial key and the correct key gives the number of bit insertions,
deletions and flips necessary to transform the partial key into the correct key.

The full key is recovered bitwise, starting from the most-significant bit. The
correct key bit is the result of the majority vote over the corresponding bit in
all partial keys. To correct the current bit of a wrong partial key, we compute
the edit distance to all partial keys that won the majority vote. To reduce the
performance overhead, we do not calculate the edit distance over the whole
partial keys but only over a lookahead window of a few bits. The output of the
edit distance algorithm is a list of actions necessary to transform one key into the
other. We apply these actions via majority vote until the key bit of the wrong
partial key matches the recovered key bit again.
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6 Evaluation

In this section, we evaluate the presented methods by building a malware enclave
attacking a co-located enclave that acts as the victim. As discussed in Sect. 3.2,
we use mbedTLS , in version 2.3.0.

For the evaluation, we attack a 4096-bit RSA key. The runtime of the multi-
plication function increases exponentially with the size of the key. Hence, larger
keys improve the measurement resolution of the attacker. In terms of cache side-
channel attacks, large RSA keys do not provide higher security but degrade
side-channel resistance [41,48,51].

6.1 Native Environment

We use a Lenovo ThinkPad T460s with an Intel Core i5-6200U (2 cores, 12
cache ways) running Ubuntu 16.10 and the Intel SGX driver. Both the attacker
enclave and the victim enclave are running on the same machine. We trigger the
signature process using the public API of the victim.

Cache Set Detection (3min)

Prime+Probe (5 s)

Pre-Processing (110 s)

Key Recovery (20 s)

Fig. 4. A high-level overview of the average times for each step of the attack.
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Fig. 5. The 9 cache sets that are used by a 4096-bit key and their error ratio when
recovering the key from a single trace.

Figure 4 gives an overview of how long the individual steps of an average
attack take. The runtime of automatic cache set detection varies depending on
which cache sets are used by the victim. The attacked buffer spans 9 cache sets,
out of which 6 show a low bit-error ratio, as shown in Fig. 5. For the attack we
select one of the 6 sets, as the other 3 suffer from too much noise. The noise
is mainly due to the buffer not being aligned to the cache set. Furthermore,
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as already known from previous attacks, the hardware prefetcher can induce a
significant amount of noise [20,51].

Detecting one vulnerable cache set within all 2048 cache sets requires about
340 trials on average. With a monitoring time of 0.21 s per cache set, we require a
maximum of 72 s to eventually capture a trace from a vulnerable cache set. Thus,
based on our experiments, we estimate that cache set detection—if successful—
always takes less than 3 min.

One trace spans 220.47 million CPU cycles on average. Typically, ‘0’ and ‘1’
bits are uniformly distributed in the key. The estimated number of multiplica-
tions is therefore half the bit size of the key. Thus, the average multiplication
takes 107662 cycles. As the Prime+Probe measurement takes on average 734
cycles, we do not have to slow down the victim additionally.
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Fig. 6. Relation between number of traces, lookahead window size, number of bit errors,
and runtime.

When looking at a single trace, we can already recover about 96% of the RSA
private key, as shown in Fig. 5. For a full key recovery we combine multiple traces
using our key recovery algorithm, as explained in Sect. 5. We first determine a
reasonable lookahead window size. Figure 6a shows the performance of our key
recovery algorithm for varying lookahead window sizes on 7 traces. For lookahead
windows smaller than 20, bit errors are pretty high. In that case, the lookahead
window is too small to account for all insertion and deletion errors, causing
relative shifts between the partial keys. The key recovery algorithm is unable to
align partial keys correctly and incurs many wrong “correction” steps, increasing
the overall runtime as compared to a window size of 20. While a lookahead
window size of 20 already shows a good performance, a window size of 30 or more
does not significantly reduce the bit errors. Therefore, we fixed the lookahead
window size to 20.

To remove the remaining bit errors and get full key recovery, we have to
combine more traces. Figure 6b shows how the number of traces affects the key
recovery performance. We can recover the full RSA private key without any bit
errors by combining only 11 traces within just 18.5 s. This results in a total
runtime of less than 130 s for the offline key recovery process.
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Generalization. Based on our experiments we deduced that attacks are also
possible in a weaker scenario, where only the attacker is inside the enclave. On
most computers, applications handling cryptographic keys are not protected by
SGX enclaves. From the attacker’s perspective, attacking such an unprotected
application does not differ from attacking an enclave. We only rely on the last-
level cache, which is shared among all applications, whether they run inside an
enclave or not. We empirically verified that such attacks on the outside world
are possible and were again able to recover RSA private keys.

Table 2 summarizes our results. In contrast to concurrent work on cache
attacks on SGX [8,17,37], our attack is the only one that can be mounted from
unprivileged user space, and cannot be detected as it runs within an enclave.

Table 2. Our results show that cache attacks can be mounted successfully in the shown
scenarios.

Attack from Attack on

Benign userspace Benign kernel Benign SGX enclave

Malicious userspace ✓ [33,39] ✓ [22] ✓ new

Malicious kernel — — ✓ new [8,17,37]

Malicious SGX enclave ✓ new ✓ new ✓ new

6.2 Virtualized Environment

We now show that the attack also works in a virtualized environment. As
described in Sect. 2.1, no hypervisor with SGX support was available at the
time of our experiments. Instead of full virtualization using a virtual machine,
we used lightweight Docker containers, as used by large cloud providers, e.g.,
Amazon [13] or Microsoft Azure [36]. To enable SGX within a container, the
host operating system has to provide SGX support. The SGX driver is then
simply shared among all containers. Figure 7 shows our setup where the SGX
enclaves communicate directly with the SGX driver of the host operating sys-
tem. Applications running inside the container do not experience any difference
to running on a native system.

Considering the performance within Docker, only I/O operations and net-
work access have a measurable overhead [14]. Operations that only depend on
memory and CPU do not see any performance penalty, as these operations are
not virtualized. Thus, caches are also not affected by the container.

We were successfully able to attack a victim from within a Docker container
without any changes in the malware. We can even perform a cross-container
attack, i.e., both the malware and the victim are running inside different con-
tainers, without any changes. As expected, we require the same number of traces
for a full key recovery. Hence, containers do not provide additional protection
against our malware at all.
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Fig. 7. Running the SGX enclaves inside Docker containers to provide further isolation.
The host provides both containers access to the same SGX driver.

7 Countermeasures

Most existing countermeasures cannot be applied to a scenario where a malicious
enclave performs a cache attack and no assumptions about the operating system
are made. In this section, we discuss 3 categories of countermeasures, based on
where they ought to be implemented.

7.1 Source Level

A generic side-channel protection for cryptographic operations (e.g., RSA) is
exponent blinding [30]. It will prevent the proposed attack, but other parts of
the signature process might still be vulnerable to an attack [45]. More generally
bit slicing can be applied to a wider range of algorithms to protect against timing
side channels [5,47]

7.2 Operating System Level

Implementing countermeasures against malicious enclave attacks on the operat-
ing system level requires trusting the operating system. This would weaken the
trust model of SGX enclaves significantly, but in some threat models this can be
a viable solution. However, we want to discuss the different possibilities, in order
to provide valuable information for the design process of future enclave systems.

Detecting Malware. One of the core ideas of SGX is to remove the cloud
provider from the root of trust. If the enclave is encrypted and only decrypted
after successful remote attestation, the cloud provider has no way to access the
secret code inside the enclave. Also, heuristic methods, such as behavior-based
detection, are not applicable, as the malicious enclave does not rely on malicious
API calls or user interaction which could be monitored. However, eliminating
this core feature of SGX could mitigate malicious enclaves in practice, as the
enclave binary or source code could be read by the cloud provider and scanned
for malicious activities.
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Herath and Fogh [21] proposed to use hardware performance counters to
detect cache attacks. Subsequently, several other approaches instrumenting per-
formance counters to detect cache attacks have been proposed [9,19,40]. How-
ever, according to Intel, SGX enclave activity is not visible in the thread-specific
performance counters [26]. We verified that even performance counters for last-
level cache accesses are disabled for enclaves. The performance counter values are
three orders of magnitude below the values as compared to native code. There
are no cache hits and misses visible to the operating system or any application
(including the host application). This makes it impossible for current anti-virus
software and other detection mechanisms to detect malware inside the enclave.

Enclave Coloring. We propose enclave coloring as an effective countermeasure
against cross-enclave attacks. Enclave coloring is a software approach to partition
the cache into multiple smaller domains. Each domain spans over multiple cache
sets, and no cache set is included in more than one domain. An enclave gets
one or more cache domains assigned exclusively. The assignment of domains is
either done by the hardware or by the operating system. Trusting the operating
system contradicts one of the core ideas of SGX [10]. However, if the operating
system is trusted, this is an effective countermeasure against cross-enclave cache
attacks.

If implemented in software, the operating system can split the last-level
cache through memory allocation. The cache set index is determined by physical
address bits below bit 12 (the page offset) and bits >12 which are not visible
to the enclave application and can thus be controlled by the operating system.
We call these upper bits a color. Whenever an enclave requests pages from the
operating system (we consider the SGX driver as part of the operating system),
it will only get pages with a color that is not present in any other enclave.
This coloring ensures that two enclaves cannot have data in the same cache set,
and therefore a Prime+Probe attack is not possible across enclaves. However,
attacks on the operating system or other processes on the same host would still
be possible.

To prevent attacks on the operating system or other processes, it would be
necessary to partition the rest of the memory as well, i.e., system-wide cache
coloring [43]. Godfrey et al. [16] evaluated a coloring method for hypervisors by
assigning every virtual machine a partition of the cache. They concluded that
this method is only feasible for a small number of partitions. As the number of
simultaneous enclaves is relatively limited by the available amount of SGX mem-
ory, enclave coloring can be applied to prevent cross-enclave attacks. Protecting
enclaves from malicious applications or preventing malware inside enclaves is
however not feasible using this method.

Heap Randomization. Our attack relies on the fact, that the used buffers for
the multiplication are always at the same memory location. This is the case, as
the used memory allocator (dlmalloc) has a deterministic best-fit strategy for
moderate buffer sizes as used in RSA. Freeing a buffer and allocating it again
will result in the same memory location for the re-allocated buffer.
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We suggest randomizing the heap allocations for security relevant data such
as the used buffers. A randomization of the addresses and thus cache sets bears
two advantages. First, automatic cache set detection is not possible anymore, as
the identified set will change for every run of the algorithm. Second, if more than
one trace is required to reconstruct the key, heap randomization increases the
number of required traces by multiple orders of magnitude, as the probability to
measure the correct cache set by chance decreases.

Although not obvious at first glance, this method requires a certain amount
of trust in the operating system. A malicious operating system could assign only
pages mapping to certain cache sets to the enclave, similar to enclave coloring.
Thus, the randomization is limited to only a subset of cache sets, increasing the
probability for an attacker to measure the correct cache set.

Intel CAT. Recently, Intel introduced an instruction set extension called CAT
(cache allocation technology) [24]. With Intel CAT it is possible to restrict CPU
cores to one of the slices of the last-level cache and even to pin cache lines.
Liu et al. [32] proposed a system that uses CAT to protect general purpose
software and cryptographic algorithms. Their approach can be directly applied
to protect against a malicious enclave. However, this approach does not allow to
protect enclaves from an outside attacker.

7.3 Hardware Level

Combining Intel CAT with SGX. Instead of using Intel CAT on the operat-
ing system level it could also be used to protect enclaves on the hardware level.
By changing the eenter instruction in a way that it implicitly activates CAT
for this core, any cache sharing between SGX enclaves and the outside as well as
co-located enclaves could be eliminated. Thus, SGX enclaves would be protected
from outside attackers. Furthermore, it would protect co-located enclaves as well
as the operating system and user programs against malicious enclaves.

Secure RAM. To fully mitigate cache- or DRAM-based side-channel attacks
memory must not be shared among processes. We propose an additional fast,
non-cachable secure memory element that resides inside the CPU.

The SGX driver can then provide an API to acquire the element for tem-
porarily storing sensitive data. A cryptographic library could use this memory
to execute code which depends on secret keys such as the square-and-multiply
algorithm. Providing such a secure memory element per CPU core would even
allow parallel execution of multiple enclaves.

Data from this element is only accessible by one program, thus cache attacks
and DRAM-based attacks are not possible anymore. Moreover, if this secure
memory is inside the CPU, it is infeasible for an attacker to mount physical
attacks. It is unclear whether the Intel eDRAM implementation can already be
instrumented as a secure memory to protect applications against cache attacks.
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8 Conclusion

Intel claimed that SGX features impair side-channel attacks and recommends
using SGX enclaves to protect cryptographic computations. Intel also claimed
that enclaves cannot perform harmful operations.

In this paper, we demonstrated the first malware running in real SGX hard-
ware enclaves. We demonstrated cross-enclave private key theft in an automated
semi-synchronous end-to-end attack, despite all restrictions of SGX, e.g., no
timers, no large pages, no physical addresses, and no shared memory. We devel-
oped a timing measurement technique with the highest resolution currently
known for Intel CPUs, perfectly tailored to the hardware. We combined DRAM
and cache side channels, to build a novel approach that recovers physical address
bits without assumptions on the page size. We attack the RSA implementation of
mbedTLS , which uses constant-time multiplication primitives. We extract 96%
of a 4096-bit RSA key from a single Prime+Probe trace and achieve full key
recovery from only 11 traces.

Besides not fully preventing malicious enclaves, SGX provides protection
features to conceal attack code. Even the most advanced detection mechanisms
using performance counters cannot detect our malware. This unavoidably pro-
vides attackers with the ability to hide attacks as it eliminates the only known
technique to detect cache side-channel attacks. We discussed multiple design
issues in SGX and proposed countermeasures for future SGX versions.
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DIMVA 2016. LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). doi:10.1007/
978-3-319-40667-1 14

20. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX Security Symposium (2015)

21. Herath, N., Fogh, A.: These are not your grand Daddys CPU performance counters
- CPU hardware performance counters for security. In: Black Hat USA (2015)

22. Hund, R., Willems, C., Holz, T.: Practical timing side channel attacks against
kernel space ASLR. In: S&P 2013 (2013)

23. Intel: Intel R© 64 and IA-32 Architectures Optimization Reference Manual (2014)

http://dx.doi.org/10.1007/978-3-540-45146-4_2
http://dx.doi.org/10.1007/978-3-540-45146-4_2
http://dx.doi.org/10.1007/3-540-49649-1_3
http://arxiv.org/abs/1702.07521
http://arxiv.org/abs/1702.07521
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://docs.docker.com/machine/drivers/aws/
https://docs.docker.com/machine/drivers/aws/
http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://dx.doi.org/10.1007/978-3-319-40667-1_14
http://dx.doi.org/10.1007/978-3-319-40667-1_14


Malware Guard Extension: Using SGX to Conceal Cache Attacks 23

24. Intel: Intel R© 64 and IA-32 Architectures Software Developer’s Manual, Volume 3
(3A, 3B & 3C): System Programming Guide 253665 (2014)

25. Intel Corporation: Hardening Password Managers with Intel Software Guard
Extensions: White Paper (2016)

26. Intel Corporation: Intel SGX: Debug, Production, Pre-release what’s the
difference? https://software.intel.com/en-us/blogs/2016/01/07/intel-sgx-debug-
production-prelease-whats-the-difference. Accessed 24 Oct 2016

27. Intel Corporation: Intel Software Guard Extensions (Intel SGX) (2016). https://
software.intel.com/en-us/sgx. Accessed 7 Nov 2016

28. Intel Corporation: Intel(R) Software Guard Extensions for Linux* OS (2016).
https://github.com/01org/linux-sgx-driver. Accessed 11 Nov 2016

29. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-VM
attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS,
vol. 8688, pp. 299–319. Springer, Cham (2014). doi:10.1007/978-3-319-11379-1 15

30. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

31. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: ARMageddon: cache
attacks on mobile devices. In: USENIX Security Symposium (2016)

32. Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser, G., Lee, R.B.: Catalyst:
defeating last-level cache side channel attacks in cloud computing. In: IEEE Inter-
national Symposium on High Performance Computer Architecture (HPCA 2016)
(2016)

33. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: S&P 2015 (2015)

34. Maurice, C., Scouarnec, N., Neumann, C., Heen, O., Francillon, A.: Reverse engi-
neering intel last-level cache complex addressing using performance counters. In:
Bos, H., Monrose, F., Blanc, G. (eds.) RAID 2015. LNCS, vol. 9404, pp. 48–65.
Springer, Cham (2015). doi:10.1007/978-3-319-26362-5 3

35. Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Boano, C.A., Mangard,
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Abstract. To enable privacy-preserving computation on encrypted
data, a class of techniques for input-oblivious execution have surfaced.
The property of input-oblivious execution guarantees that an adversary
observing the interaction of a program with the underlying system learns
nothing about the sensitive input. To highlight the importance of obliv-
ious execution, we demonstrate a concrete practical attack—called a
logic-reuse attack—that leaks every byte of encrypted input if oblivi-
ous techniques are not used. Next, we study the efficacy of oblivious
execution techniques and understand their limitations from a practical
perspective. We manually transform 30 common Linux utilities by apply-
ing known oblivious execution techniques. As a positive result, we show
that 6 utilities perform input-oblivious execution without modification,
11 utilities can be transformed with O(1) performance overhead and 11
other show O(N) overhead. As a negative result, we show that theoret-
ical limitations of oblivious execution techniques do manifest in 2 real
applications in our case studies incurring a performance cost of O(2N )
over non-oblivious execution.

1 Introduction

Many emerging techniques provide privacy preserving computation on encrypted
data. These techniques can be categorized into two lines of work—secure com-
putation and enclaved execution. Secure computation techniques enable oper-
ations on encrypted data without decrypting them. Examples of such tech-
niques include fully homomorphic encryption [24–26], partially homomorphic
encryption [20,31,50,52,61], garbled circuits [34,36,68] and so on. A second
line of research uses hardware-isolation mechanisms provided by Intel SGX [48],
TPM [5], Intel TXT [4], ARM Trustzones [7,44]. Systems such as Haven [10],
XOM [60], Flicker [47] use these mechanisms to provide enclaved execution. In
enclaved execution the application runs in a hardware-isolated environment in the
presence of an untrusted operating system. The sensitive data is decrypted only
in the hardware-isolated environment and the computation result is encrypted
before it exits the enclaved execution. Enclaved execution can be achieved via
hypervisor-based mechanisms as well (cf. OverShadow [14], Inktag [32]).

One fundamental challenge in privacy preserving computation is to make the
program execution input-oblivious. Input-oblivious execution guarantees that the
c© Springer International Publishing AG 2017
M. Polychronakis and M. Meier (Eds.): DIMVA 2017, LNCS 10327, pp. 25–47, 2017.
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execution profile of a program observed by an adversary reveals nothing about
the sensitive input. This challenge goes beyond the mechanism of enabling indi-
vidual operations on encrypted inputs, whether done in enclaved execution envi-
ronments or via cryptographic techniques for secure computation. In concept,
it is easy to show that making all programs oblivious may be undecidable; such
a result is neither surprising nor particularly interesting to practice. We study
this problem from a practical perspective—whether it is feasible to make exist-
ing commodity applications execute obliviously without unreasonable loss in
performance. If so, to what extent is this feasible and whether any theoretical
limitations manifest themselves in relevant applications.

We explain the problem conceptually, considering various channels of leakage
in the scenario of enclaved execution. To highlight the importance of oblivious
execution, we show that enclaved execution is highly vulnerable to leakage of
sensitive data via a concrete attack—called a logic-reuse attack. Specifically, we
show that chaining execution of commonly used utilities can leak every byte of
an encrypted input to the enclaved application.

Next, we study how existing oblivious execution techniques such as padding
of dummy instructions [46], hiding message length [19] or hiding address accesses
using Oblivious RAM [28] proposed in different contexts can be used to block
the leakage in enclaved execution. Our work explains the symmetry among these
lines of research, systematizing their capabilities and explaining the limits of
these techniques in practical applications. Specifically, we manually transform
30 applications from the standard CoreUtils package available on Linux operat-
ing system. As a positive result, we show that 6 utilities perform input-oblivious
execution without modification, 11 utilities can be transformed with O(1) per-
formance overhead and 11 other show linear performance overhead of O(N).

As a negative result, we show that theoretical limitations of oblivious execu-
tion techniques do manifest in 2 utilities which incur an exponential performance
overhead of O(2N ). Of course, they can be made oblivious conceptually, since
everything on a digital computer is finite—in practice, this is hard to do without
prohibitive loss in performance.

Contribution. We summarize our contributions as follows:

– 1. Logic-reuse attack: We demonstrate a concrete attack in the enclaved exe-
cution setting that leaks every byte of encrypted input by chaining execution
of common applications.

– 2. Systematization of oblivious execution techniques: We systematize exist-
ing defenses for oblivious execution and show new limitations for enclaved
execution of practical applications.

– 3. Study of practical applications: To study an empirical datapoint, we man-
ually transform 30 applications from CoreUtils package to make them input-
oblivious using existing defenses and find that 28 applications can be trans-
formed with acceptable overhead. The limitations of oblivious execution tech-
niques manifest in 2 applications which cannot be transformed without pro-
hibitive loss in performance.
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2 The Problem

Baseline Setting. Various existing solutions such as OverShadow [14],
SecureMe [15], Inktag [32], SGX [48], Haven [10] and Panoply [57] support
enclaved execution of applications. Here, the OS is untrusted whereas the under-
lying processor is trusted and secure. The file system is encrypted under a secret
key K to protect the data on the untrusted storage. The trusted application
executes in an enclaved memory which is inaccessible to the untrusted OS. The
secret key K is available to the enclaved memory for decrypting the sensitive
data. This system guarantees confidentiality and integrity of sensitive content
using authenticated encryption. However, the application still relies on the OS to
interact with the untrusted storage using read-write channels such as file system
calls, memory page management and others.

Our baseline setting (shown in Fig. 1) is a system (such as Panoply [57])
where the read-write channels correspond to the read and write system calls.
Although our discussion here is for the system call interface, our attack and
defenses are applicable to other read-write operations that expose information
at the granularity of blocks or memory pages, when caching or swapping out
pages (for eg. in Haven [10], OverShadow [14]).

Fig. 1. Baseline setting for enclaved execution with untrusted read-write channels

Attack Model. In our model, the untrusted (or compromised) OS acts as a
“honest-but-curious” adversary that honestly interacts with the application and
the underlying encrypted storage. It passively observes the input/output (I/O)
profile of the execution, but hopes to infer sensitive encrypted data. The I/O
profile of an application is the “trace” of read-write file system calls made during
the execution. The execution of an application A with sensitive input I and
output O generates an I/O profile P = (P1, P2, ...Pn). Each Pi is a read/write
operation of the form [type, size, address, time] requested by the application A.
Each Pi consists of four parameters:

– (C1) type of operation (read or write)
– (C2) size of bytes read or written
– (C3) address (e.g. file name/descriptor) to read or write the content
– (C4) time interval between current and previous operation.
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We assume the application A is publicly available and known to the adversary.
Thus, the attacker’s knowledge set consists of ψ = {A, |I|, |O|, P} where |I| and
|O| are the total input and output size, and A is the application logic. We assume
the OS is capable of initiating the execution of any pre-installed application on
encrypted inputs, in any order.

Goal. The goal is to make a benign enclaved application input-oblivious. An
application that exhibits I/O profile P which is independent of the sensitive
inputs exhibits the above security property. This security property guarantees
that an adversary cannot distinguish between any two encrypted inputs of the
same size when executed with the same application,leaking nothing beyond what
is implied by knowledge of ψ.

2.1 Logic-Reuse Attack

To emphasize the importance of input-oblivious execution in the enclaved execu-
tion scenario, we demonstrate a concrete attack called the logic-reuse attack. In
this attack, the adversary chains the execution of permitted applications to do
its bidding (as shown in Fig. 2). Specifically, we show the use of four applications:
nl, fold, split and comm from the CoreUtils package commonly available in
commodity Linux systems [3]. These applications accept sensitive user argu-
ments and file inputs in encrypted form. The attack exploits the execution I/O
profile to eventually learn the comparison value of any two characters in the
input encrypted file. The result is that the adversary infers the frequency and
position of every byte in the target encrypted file. The 4 attack steps are:

Fig. 2. Attack example that leaks the frequency and position of characters in an
encrypted file

Step 1 - Get a known ciphertext value: The nl command in CoreUtils
adds a line number to each line in the input and writes the modified line to the
output. The attacker executes this nl program with the target encrypted file
(input.txt in Fig. 2) as its input. Every ciphertext is of 16 bytes given the use
of AES encryption. Thus, the adversary learns that the first ciphertext of each
write call contains the encryption of a number along with other characters (see
nl out.txt in Fig. 2).
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Step 2 - Generate the ciphertext for individual characters: This step uses
the fold program that folds input lines according to the given width size. The
adversary runs this command on the output of the previous step. The ciphertext
for encryption of number “1” (along with other characters) learned in Step 1 is
used as encrypted input argument to the width size. This step folds the input
file such that every line contains the ciphertext of a single character and makes
a separate call to write it. After this step, the ciphertext for every individual
character in the file is available to the adversary (as shown in fold out.txt in
Fig. 2).

Step 3 - Save each ciphertext in a separate file: In this step, the adversary
uses the split program that splits an input file either line-wise or byte-wise and
writes the output to different files. The command is run on the output of Step 2.
The ciphertext of the character “1” learned in Step 2 is passed as an option to it.
It generates separate files as output each having encryption of a single character
(s1.txt - s6.txt in Fig. 2). Thus, the adversary learns the total number of
characters and their positions in the input file.

Step 4 - Compare the characters in each file: Finally, the adversary exe-
cutes the comm program that takes two files as input and writes the lines present
in both the files as output. Any two files generated as output in the previous
step can be provided as input to this command. The program does not perform
a write call if there are no common lines in the input files. Thus, the I/O profile
leaks whether two lines (or characters) in the input files are the same.

Result: In the end, this allows the attacker to infer a histogram of encrypted
bytes. Once the histogram is recovered, it can be compared to standard frequency
distribution of (say) English characters [1]. Using the values in the histogram
and the positions learned in Step 3, the adversary learns the value of every byte
in the encrypted file!

Remarks. Note that, the adversary neither tampers the integrity of the sensitive
input nor disrupts the execution process in any manner throughout the attack.
It simply invokes the applications on controlled arguments and honestly executes
the read-write operations from the application without tampering any results.
The adversary only passively observes the input-dependent I/O profile of the
execution. Thus, we establish that it is practical to completely leak every byte
in an encrypted file system in the absence of input-oblivious execution, when
program logic running in enclave is sufficiently expressive.

3 Analysis of Information Leakage Channels

Recall that in our model, parameters in I/O profile P form the four channels
C1 to C4 discussed in Sect. 2. The type parameter is either R (read) or W (write)
call, size is the bytes read or written to the untrusted storage, and the address
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signifies the file descriptor (fd) in use. Let time be the difference in the time-
stamp1 for the occurrence of present and previous call. This section analyses
the channels C1 to C4 in P for information leakage and their role in expanding
attackers knowledge set ψ.

Fig. 3. Sample program which writes repeated lines in the input to repeat out file and
the non-repeated lines to uniq out file.

Throughout the rest of the paper, we consider a running example similar
to the uniq Unix utility (refer to Fig. 3) that has 4 information leakage chan-
nels. The example reads the data from an input file (line 1) and writes out
consecutive repeated lines to repeat out file (line 8) and non-repeated lines to
uniq out file (line 11). The code performs a character-by-character comparison
(line 4) to check whether two lines are equal. Figure 4 shows the I/O profile that
this program generates for two different inputs of the same size and the overall
information learned about each input file. The I/O profile leaks the total number
of input lines, output lines, repeated and non-repeated lines in the encrypted file.

Sequence of Calls (C1). The sequence of calls is an input-dependent parameter
that depends on the if and loop terminating conditions in the application. In
particular, the sequence of calls in the example are control-dependent on the bits
from the sensitive input used in branch conditions.

Example. The program in Fig. 3 uses a separate write call (highlighted) to output
a new line2. Every time the adversary observes a write call in the I/O profile, it
learns that a newline is written to the output file. This is beyond the allowed set
ψ because it leaks the total number of lines in the output. From the I/O profiles
in Fig. 4, the adversary learns that input 1 and 2 yield total of 3 and 4 lines as
output respectively.
1 The granularity of the clock is units of measurement as small as what the attacker

can measure (e.g., ms, ns or even finer).
2 This is a common programming practice observed in legacy applications such as

CoreUtils as shown later in Sect. 6.
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Difference in Size of Bytes (C2). The return values of the read and write
system calls act as the size channel for information leakage. As the size parame-
ter in the I/O profile P shows a direct data dependency on the input values, any
difference in the value of this parameter leaks information about the encrypted
inputs.

Example. In Fig. 4, the adversary observes that the difference in the size of total
read and write bytes for input 1 is 130 bytes, inferring that 1 line is repeated.
For input 2 the difference is 185 (90 + 95) bytes. Observing the size values in
the profile for input 2, the adversary can infer that it has 2 lines repeated since
no other combination of sizes result in a difference of 185 bytes.

Fig. 4. I/O profiles generated for two different inputs Input1 and Input2 of size 600
bytes. The numbers 1, 2 and 3 in the I/O profile are the file descriptors for infile,
repeat out and uniq out respectively. The last part shows the information learned by
observing the I/O profile.

Address Access Patterns (C3). We consider the file descriptor (fd) to the
read and write system call as the address parameter in the I/O profile P . This
is assuming the OS organizes its underlying storage in files. The untrusted OS
infers the input dependent accesses patterns to different files from this parameter,
as shown in the example below.

Example. In Fig. 4, the address parameter in P leaks that input 1 reads the
repeat out file (fd = 2) once and input 2 reads it twice leaking that they contain
1 and 2 repeated lines respectively. Similar observation for uniq out file (fd = 3)
leaks that input 1 and input 2 both have 2 unique lines.

Side Channels - Time (C4). There are several well-known side channels
such as power consumption [41], cache latency [51], time [11,42] that could leak
information about sensitive inputs. We focus on the computation time difference
between any two calls as a representative channel of information leakage. Our
discussion applies more broadly to other observed channels too.

Example. In Fig. 4, readers can see that the computation time before a call that
writes to repeat out file is 50 units and uniq out file is 10 units. A careful
analysis of the time difference between all consecutive calls reveals that input 1
and 2 have 1 and 2 repeated lines respectively. This is because for repeated lines
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the character-by-character comparison (line 4 in Fig. 3) proceeds till the end of
the line, thus taking more time. However, the comparison fails immediately if
the lines are not the same, reducing the time difference.

The above explanation with our running example establishes that every para-
meter in the I/O profile acts as an independent channel of information leakage.
Each channel contributes towards increasing the ψ of an adversary.

Table 1. Systematization of existing defenses to hide leakage through I/O profile and
their known limitations. ‘D’ and ‘L’ denote defenses and limitations.

Channel D/L Determinising I/O Profile Randomizing I/O Profile

Type D Memory trace obliviousness [46]
Ascend [22], CBMC-GC [34]

RandSys [38]
RISE [9]

L Undecidability of
static analysis [21,43]

Infeasible sequences [33,64]

Size D Rounding [13,67],
BuFLO [19]

Random padding [13],
Random MTU padding [19]

L Storage Overhead Assumption about
input distribution

Address D Linear Scan [30,40,63,71] ORAM [28], [59]

L Access Overhead [30,63] polylog N overhead [56]

Time D Normalized timing [11,37]
Language-based
Approach [6,17,49,70]

Fuzzy Time [35]

L Worst Case
Execution Time [65]

Insufficient Entropy [27]

4 Defense: Approaches and Limitations

To block the above information channels (C1 to C4), the execution of an appli-
cation should be input-oblivious i.e., the adversary cannot distinguish between
two inputs by observing the I/O profile. We formally define the security property
of “input-oblivious execution” as:

Definition 1 (Input-Oblivious Execution). The execution of an application
A is input-oblivious if, for any adversary A given encrypted inputs E(i), E(j)
and a query profile P , the following property holds:

AdvA := |Pr[P = P[E(i)]] − Pr[P = P[E(j)]]| ≤ ε (1)

where ε is negligible.

There are two common approaches to achieve input-oblivious execution: (a)
determinising the I/O profile and (b) randomizing the I/O profile. We study
these existing defenses and show whether their limitations manifest in practical
applications. Table 1 systematizes existing defenses and their limitations.
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4.1 Approach 1: Determinising the Profile

The idea is to make the execution of an application input-oblivious by deter-
minising the parameters in the I/O profile. This forces a program operating on
different inputs of the same size to generate equivalent I/O profiles. Figure 5
shows the modified code for our example (in Fig. 3) and its determinised I/O
profile.

Channel C1 - Type. To determinise the type parameter in P , a program should
have the same sequence of calls for different inputs irrespective of the path it
executes. This requires making the execution of read/write calls independent
of the sensitive data used in the branches or loops of a program. One way to
achieve this is to move the read/write calls outside the conditional branches or
the loop statements. This removes their dependence on any sensitive data that
decides the execution path. The other method is to apply the idea of adding
dummy instructions to both the branches of an if condition, as proposed in
works on oblivious memory trace execution [22,46]. This makes the I/O profile
input-oblivious with respect to the if statements in the program. Loops can
be determinised by fixing a upper bound on the number of iterations. Previous
work on privacy preserving techniques use this method to remove the input-
dependence in loops [34,46].

Example: We show how to apply this idea to our running example. In Fig. 5,
we determinise the sequence of calls by moving the write call outside the loop
making them data-indpendent. All the lines are combined into a single buffer
and are written outside the loop. This makes the profile P deterministic with
respect to the type parameter while retaining the performance.

Fig. 5. Modified code with the defense to hide the channels of information leakage in
I/O profile and a deterministic I/O profile for input of size 600 bytes.
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Channel C2 - Size. To hide the leakage through size parameter, a straight-
forward method is to pad the data with dummy bytes up to a certain maximum
value. Padding technique is used in several other contexts to hide leakage through
message length. Chen et al. and Wright et al. use the idea of rounding messages
to fixed length to prevent information leakage in web applications and encrypted
VoIP conversations [13,67]. Dyer et al. proposed the idea of BuFLO (Buffered
Fixed Length Obfuscator) as a countermeasure against traffic analysis [19]. Sim-
ilarly, in program execution, padding can be used to determinise channel C2 by
forcing the same value of size parameter in profile P .

Example: In Fig. 5, we pad the arguments to the write calls upto the size of total
read bytes. This is because in our running example, the maximum output size
equals the total input size when none of the input lines are repeated.

Channel C3 - Address. The pattern of address (file descriptor) parameter
in profile P acts as a channel of information leakage. This is analogous to the
memory access patterns observed in RAM memory. A memory address in the
RAM model corresponds to a file descriptor in our setting. The simple approach
to hide the address access patterns is to replace each access with a linear scan of
all addresses [40]. In the context of secure two-party computations, Wang et al.
and Gorden et al. show that linear scan approach is efficient for small number
of addresses [30,63]. Privacy preserving compilers such as PICCO use the linear
scan approach to access encrypted indexes [71]. Linear scanning approach can
be used to determinise the I/O profile with respect to the address parameter.

Example: In Fig. 5, we modify the program to access both the repeat out and
uniq out file for every execution no matter whether the input file contains any
repeated or unique lines. This makes the execution oblivious with respect to the
address parameter.

Channel C4 - Time. Even if channels C1 to C3 are deterministic, the time
parameter in the I/O profile leaks information about the sensitive input. Previ-
ous work have proposed hiding timing channels by making execution behaviour
independent of sensitive values such that the security of program counter is pre-
served [17,49]. Other approach is to transform applications to satisfy a specific
type system that guarantees to hide the leakage through timing channel [6,70].
For determinising the time parameter in P , we can use the idea of adding dummy
instructions in the program to make the execution time a constant value as sug-
gested in [11,37].

Example: The input-oblivious version of the program (in Fig. 5) takes a constant
time between the read and write calls in the I/O profile. For all inputs of size
600 bytes, the program will always take time of 400 units before it performs the
first write call. The second write call follows immediately, thus taking less time.

4.2 Limitations of Determinising I/O Profile

Readers will notice that all the defenses to determinise the channels C1 to
C4 exhibit one common characteristic. Each of the solution modifies their
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corresponding parameters in the I/O profile to the worst-case execution time.
This introduces a performance trade off in most of the applications. Determin-
istic approach requires statically deciding the upper bound for the worst-case
values of all the profile parameters. This is not always possible due to the theo-
retical limitations of static analysis [21]. Statically identifying the upper bounds
for loops is itself an undecidable problem and notoriously difficult in practice
too [43,54]. To explain the limitations, we use the split utility from CoreUtils
package (shown in Fig. 6) which reads from an input file (line 1), splits a given
input file line-wise (line 3) and writes the maximum B bytes as output to N
different files (line 8).

Fig. 6. split program code that splits the lines in input file and writes to different
output files

Type. In Fig. 6, it is difficult to statically decide a “feasible” upper bound on
the number of loop iterations. In the worst case, a file can have a single character
on each line in the input file. To explicitly decide an upper bound for a file of
size around 1 GB, a determinised profile will execute the loop for N = 230 times
(assuming one byte on each line) which is not a reasonable solution.

Address. The simple strategy of linearly accessing all addresses suffers from
an overhead proportional to the maximum addresses an application uses during
the execution [63]. In split program performing linear access incurs a total
overhead of N2 i.e., accessing N files for each of the N loop iterations (where
N = 230 in worst case). This is impractical for real usage, unless N is small.

Size. Padding data with dummy bytes up to a maximum output size incurs
huge storage overhead as shown in previous work [13,19]. In our split example,
for a 1 GB input file, the maximum possible bytes in a line is B = 1 GB, when
no newline characters are present in the file. Thus, determinising the split
program results in total storage overhead of N GB. It becomes N2 GB when
the I/O profile is determinised with respect to address channel.

Time. Determinising the time channel results in worst case execution time for
the application for different inputs of the same size [11,65]. For a file of 1 GB,
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split program will take equal time for input file having single character on every
line or the whole file having just a single line.

4.3 Approach 2: Randomizing the I/O Profile

The second approach to making application execution input-oblivious is trans-
forming the original I/O profile to a randomized profile. Randomizing the I/O
profile involves addition of sufficient noise to every parameter in P . One advan-
tage of randomization over determinising the profile is that it scales better in
terms of performance for most of the applications. We explain this paradigm of
randomization techniques using the split example in Fig. 6.

Oblivious RAM. A strategy for randomizing the address access patterns
which is the focus of many current research works is to use Oblivious RAM
(ORAM) [28,56,58,59,62]. ORAM technique replaces each read/write opera-
tion in the program with many operations and shuffles the mapping of content
in the memory to hide the original access patterns [28]. With the best ORAM
techniques, the application only needs to perform poly log N operations to hide
the access pattern where N is the total address space [56,58]. This is strictly
better as compared to linear overhead of N operations in the trivial approach.
Use of ORAM has been proposed in various areas such as cloud storage [29],
file system [66] and so on. Similarly, we can apply ORAM to randomize the file
descriptor parameter in the I/O profile during program execution.

Example: In Fig. 6, split program splits the input file and writes the output to
N files, we can make the I/O profile oblivious by making the program write only
to poly log N files using ORAM. Thus, the overhead reduces to N.polylog N and
is strictly better than N2 in the case of determinising the profile.

Addition of Noise. Randomization involves addition of random noise to the
parameters in profile P such that the I/O profiles for two different inputs are
indistinguishable. For this to work, we assume the enclaved application has access
to a secure source of randomness. We can employ the techniques similar to
those used in determinising the profile such as insertion of calls, padding of
bytes and addition of dummy instructions to randomize the I/O profile as well.
Randomization as a defense is popularly used in Instruction Set Randomization
(ISR) and Address Space Layout Randomization (ASLR) techniques to prevent
attacks on execution of benign applications [9,39,55]. RandSys combines these
two techniques and proposes randomization at the system call interface layer [38].
This approach can be used to randomize the sequence of calls in the I/O profile
of applications. Hiding of message length using random padding is explored in
depth in previous work in the context of web applications [13,19]. Effects of
using same random number for all messages versus different random number for
each message was shown in [19]. Recent work has focussed on use of differential
privacy techniques [18], to randomly pad the traffic in web application [8]. We
can apply similar techniques to randomize the bytes in the I/O profile of an
application. Finally, to randomize the time channel, we can use existing ideas



On the Trade-Offs in Oblivious Execution Techniques 37

that makes all the clocks available to the adversary noisy for reducing the leakage
through timing channels [35].

Example: For a file size of 1 GB, an efficient random padding technique for split
program in Fig. 6 writes bytes less than the maximum value for most of the write
calls. This requires storage less than the worst case scenario.

4.4 Limitations of Randomizing I/O Profile

Although randomizing I/O profile provides better performance in most applica-
tions, it does not imply ease of deployment in real applications.

Infeasible Sequence. Randomizing the type parameter in the I/O profiles may
introduce sequence of system calls which are not possible for a given application.
An adversary detecting such infeasible sequences learns about the additional
(fake) system calls inserted to make the profile input-oblivious. This is a valid
threat as adversary has access to the application logic and hence can notice
any irregular sequences. We call this as the “infeasible profile detection” attack.
To avoid this, an application needs to guarantee that a randomized sequence is
always a subset of feasible sequences. This requires generating a complete set
of feasible sequence of calls for a given application which is a theoretical and
practical limitation using path-feasibility analyses (eg. symbolic execution) [43].

Example: A simple example is the split program in Fig. 6 which compulsorily
performs a read operation followed by a series of writes to different files. A ran-
domized sequence of calls such as read, write, write, read, write alarms
the adversary that the second read call is a fake. This immediately leaks that at
most 2 lines are written out by the program before the occurrence of the fake call
i.e., the value of variable n (at line 7 in Fig. 6) is at most 2. The adversary can
iterate the execution sufficient number of times and collect different samples of
I/O profile for the same input. With the knowledge of infeasible sequences and
identifying the fake calls in each profile, the adversary can recover the original
sequences in finite time and learn the actual number of lines in the encrypted
input file.

Assumption About Input Distribution. The randomization approach often
performs better than determinising the profile as it does not always effect the
worst case behaviour. However, to reap the performance benefits of randomiza-
tion, it is necessary to know the input distribution [13].

Example: To efficiently pad the size channel in the split program, the distrib-
ution of output bytes (B) for an input file with English sentences can be known
using possible sentence lengths in English [53]. But the distribution is differ-
ent for a file that contains numerical recording of weather or genome sequence
information. When we compile the application, we may not know this distrib-
ution. However, a significant challenge is to know beforehand the appropriate
distribution of all possible inputs to an application. It is practically infeasible
for common applications such as found it CoreUtils which take variety of input.
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Insufficient Entropy. With insufficient entropy, the adversary can perform
repeated sampling to remove the randomization effect and recover the original
profile. Gianvecchio et al. show how entropy can be used to accurately detect
covert timing channel [27]. Cock et al. perform empirical analysis to show that
although storage channels are possible to eliminate, timing channels are a last
mile while thwarting leakage through side channels [16]. Similarly, other channels
can be recovered if the source of randomness does not provide sufficient entropy—
well-known from other randomization defenses [55]. It is necessary to ensure that
the source of random number which the application uses is secure and the amount
of entropy is large enough.

5 Insufficiency of Hiding Selective Channels

Defenses for both determinising and randomizing the profile have limitations that
affect their use in practical applications. One might hope to selectively hide one
or more leakage channels so that the transformed applications are still practical
to use. This hypothesis assumes that blocking one channel as well hides the
leakage through other channels. This section attempts to answer the question:
Is it sufficient to hide partial channels to get input-oblivious execution? Or, does
hiding one channel affect the amount of leakage through another channel?

Hiding Only the Address Channel. In the logic-reuse attack (Sect. 2.1),
recall that the split application writes the ciphertext of each character in the
input to a separate output file (refer Fig. 2). Using ORAM in the split program
hides the exact file to which the ciphertext is written. It replaces every write call
with poly log N calls where N is the total number of characters in the input
file. But this is not sufficient to mitigate the attack. The adversary can get the
ciphertext for number “1” by brute forcing all the ciphertexts written by the first
poly log N calls. ORAM just makes it harder for the adversary to get exactly
the required ciphertext. With ORAM, the adversary has to try the Step 2 of
attack with poly-log input ciphertext. This is expected as ORAM only blocks
the leakage through address parameter but does not hide the sequence of calls.
Recall that the leakage through other parameters like type, size and time are
sufficient for the attack to succeed. The adversary can observe the partially
oblivious I/O profile and still infer every byte in the encrypted file. Our logic-
reuse attacks even works in the presence of ORAM defense for hiding address
access patterns.

Hiding Only the Type Channel. Let us assume that the size parameter for
write calls in our running example in Fig. 3 always has the same value. This
is possible when all the lines in an input file have the same length. Such an
I/O profile is deterministic with respect to the size channel. To hide the leakage
through type channel, let us move the write calls outside the loop (as shown in
Fig. 5). In this case, the type channel is determinised but the leakage is not actu-
ally blocked. The leakage is shifted to the size channel which now has different
values depending on the number of repeated lines and unique line. This shows
that in determinising the type channel the leakage simply gets “morphed” to the



On the Trade-Offs in Oblivious Execution Techniques 39

Fig. 7. cksum code with no channel of information leakage

Fig. 8. shuf utility code that leaks the number of lines in input file

size channel, not really eliminated. This shows that its often misleading to selec-
tively hide some subset of information channels due to this channel morphism
problem.

In summary, transforming an application to input-oblivious execution
involves two important steps: (a) correctly identifying all the channels of informa-
tion leakage in profile P and (b) applying either deterministic or randomization
approach to hide all the channel simultaneously.

6 Case Studies

Selection of Benchmarks. We select CoreUtils and BusyBox that are com-
monly available on Unix system as our benchmarks [2,3]. We choose all the 28
text utilities3 from GNU CoreUtils package, 1 utility (grep) from BusyBox and
the file utility as our case studies. All of them perform text manipulation on
input files. With this benchmark, our goal is to answer the following questions.

(a) Does information leak through I/O profile in practical applications?
(b) Is it possible to convert practical applications to input-oblivious execution?

6.1 Analysis Results

We analyze these 30 applications for read/write channels and manually transform
them to perform input-oblivious execution. We use the strace utility available
3 The class of utilities that operate on the text of the input files. Other classes in

coreutils include file utilities that operate on file metadata and shell utilities.
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Fig. 9. file utility code that leaks the file type through the time channel

in Linux system to log all the interactions of the application with the untrusted
OS. The “-tt” option of strace gives the time-stamp for every system call made
by the application. We categorize each application into one or more channels
(discussed in Sect. 3) which need to be blocked for providing input-oblivious
execution. The type, size, address and time channel leak information in 22, 11,
2, 24 applications respectively. Table 2 summarizes our analysis results.

No Channels. Out of the 30 case studies, 6 applications perform nearly input-
oblivious execution without modification. These programs include sum, cksum,
cat, base64, od and md5sum. Figure 7 shows the code for cksum program as a
representative to describe the behaviour in these applications. The while loop at
line 1 uses the input size for termination which is a part of adversary’s knowledge
set ψ. Therefore the program generates the same sequence of calls for different
inputs of the same size. As the same computation is performed on every character
(line 5), the time interval between the calls is the same for different inputs.
Thus, the I/O profile of the program execution does not depend on sensitive
input. These 6 applications generate deterministic profiles by default and thereby
exhibit the property of input-oblivious execution.

Type. Of the remaining 24, 22 generate sensitive input-dependent sequence of
calls. We observe that 8 of the 22 applications specifically leak the number of
newline characters present in the input file. Figure 8 shows the code for shuf util-
ity that shuffles the arrangement of lines in the input file and outputs every line
with a separate write call (line 4). These 8 applications include ptx, shuf,
sort, expand, unexpand, tac, nl and paste. Other applications such as
cut, fold, fmt, tr, split and so on leak additional information about the
sensitive input depending on the options provided to these applications. Recall
that in our logic-reuse attack, the command “fold -w E(1 Hello)” leaks the
ciphertext for individual characters in the input file.

Size. In our case studies, applications that writes as output either partial or
complete data from the input file are categorized as leaking channel through size
parameter. 11 of our 30 case studies fall under this channel namely tr, comm,
join, uniq, grep, cut, head, tail, split, csplit and tsort. All these
applications as well leak information through the type parameter. This means
that none of the 11 utilities leak information exclusively through size parameters.
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Such a behaviour indicates that even if one of the channels is blocked, information
is still leaked and shifted over to another channel (refer Sect. 5).

Address. Most of the applications in our case studies read and write to a single
file with the exception of two utilities. The split and csplit programs access
different output files during the execution process. Thus, these two application
leak information via the address access pattern. From Table 2, readers can see
that these are the only two applications that leak information through all the
four channels in the I/O profile.

Time. All the 24 applications that do not fall in the no channel category leak
information through the time parameter in the I/O profile. Readers can observe
from Table 2 that only two programs i.e., wc and file leak information explicitly
through timing channel. The code snippet of file utility in Fig. 9 explains this
behaviour. The file reads the input and checks it for each file type (line 1, 4 and
7). The I/O profile contains only one read and write call but the time difference
between the them leaks information about the input file type.

Table 2. Categorization of CoreUtils applications into different leakage channels. �
denotes that the channel should be blocked to make the application input-oblivious

paste sort shuf ptx expand unexpand tac grep cut join uniq comm
Type � � � � � � � � � � � �
Size � � � � �
Address
Time � � � � � � � � � � � �

fold fmt nl pr split csplit tr head tail tsort file wc
Type � � � � � � � � � �
Size � �
Address � �
Time � � � � � � � � � � � �

No Channel - cat , cksum , sum , base64 , md5sum , od

6.2 Can Be Transformed to Input-Oblivious Execution?

To answer our second evaluation goal, we manually transform the applications
using the defenses discussed in Sect. 4. Since all the applications leak information
through timing channel for a fine grained measurement by adversary, we ignore
the timing channel in our manual transformation. We find some positive results
where the existing defenses can be directly applied to make commonly used
applications input-oblivious. Surprisingly, our findings yield negative results as
well. We show that the limitations of oblivious execution techniques do manifest
in 2 real applications.

Transformed with O(1) Overhead. We find that 11 applications can execute
obliviously by the determinising the profile with respect to the type parameter.
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These are the applications in Table 2 which fall only under type and time chan-
nels and no others. In all these applications the sequence of call can be made
independent of the loops that use sensitive data for termination. The code for
shuf in Fig. 8 is an example of such an application. Thus, there is no perfor-
mance overhead due to determinising the type channel. We consider this to be
a positive result as the applications can be transformed with O(1) overhead.

Transformed with O(N) Overhead. We find that 11 applications that leak
information through both the type and size channel can be converted to input-
oblivious execution by making the sequence of calls loop independent as well as
padding the output bytes to the total input size. These transformed applications
incur a performance penalty of O(N) i.e., linear to the size of input file.

Transformed with Exponential Performance Penalty. We find that 2
applications namely split and csplit show the limitation of statically deciding
a feasible upper bound for loops. In these programs, the number of loop iteration
depends on the number of newline characters present in the input file (line 3 in
Fig. 6) which is not known at the compile time. Hence, transforming these appli-
cations to input-oblivious execution is not possible without exponential perfor-
mance overhead of O(2N ). We explain this behaviour for split program earlier
in Sect. 4. The csplit application is similar to split with additional options
to it and therefore exhibits same limitations. This confirms that limitations of
existing oblivious execution techniques do manifest in practical applications.

7 Related Work

Attacks on Enclaved Systems. On a similar setting as this paper, Xu
et al. demonstrate controlled-channel attack using page faults that can extract
complete text documents in presence of an untrusted OS [69]. This confirms that
enclaved execution techniques are vulnerable to information leakage through dif-
ferent channels. Our work specifically focuses on file system calls as the read-
write channels in these systems. Iago attacks [12] demonstrate that untrusted
OS can corrupt application behaviour and exploit to gain knowledge about sen-
sitive inputs. This attack however assumes the OS is malicious and can tamper
the parameter of return values in memory management system calls like mmap.
In this paper, we have shown that information leakage is possible even with a
weaker i.e., semi-honest adversarial model.

Oblivious Execution Techniques. A discussion of closely related oblivious
execution techniques is summarized in Sect. 4 (see Table 1). Here we discuss
a representative set of recent work on these defenses. Liu et al. [46] propose a
type system for memory-trace oblivious (MTO) execution in the RAM model.
In their solution, they add padding instructions to ‘if’ and ‘else’ branches to
achieve memory trace obliviousness. We use this technique to hide the system call
sequences in I/O profile. Along with this, they use the ORAM technique to hide
address access patterns. GhostRider [45] provides a hardware/software platform
for privacy preserving computation in cloud with the guarantees of memory-
trace oblivious execution. Along with hiding address access pattern Ghostrider
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determinises the time channel by making the application take worst case execu-
tion time. Ascend [22] is a secure processor that uses randomizes access pattern
using ORAM and determinises the time channel by allowing access to memory at
fixed intervals. The fixed interval is a parameter chosen at compile time. It uses
the idea of inserting dummy memory access to hide the timing channel. Fletcher
et al. have proposed a solution that provides better performance while still hid-
ing the timing channel [23]. However, their solutions leaks a constant amount of
information, thus introducing a tradeoff between efficiency and privacy.

8 Conclusion

In this paper we demonstrate a concrete attack called—a logic-reuse attack—to
highlight the importance of oblivious execution. We systematize the capabilities
and limits of existing oblivious execution techniques in the context of enclaved
execution. Finally, our study on 30 applications demonstrate that most of the
practical applications can be converted to oblivious execution with acceptable
performance. However, theoretical limitations of oblivious execution do manifest
in practical applications.
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Abstract. Integrity checking using inline reference monitors to check
individual memory accesses in C/C++ programs remains prohibitively
expensive for the most performance-critical applications. To address this,
we developed MemPatrol, a “sideline” integrity monitor that allows us
to minimize the amount of performance degradation at the expense of
increased detection delay. Inspired by existing proposals, MemPatrol uses
a dedicated monitor thread running in parallel with the other threads
of the protected application. Previous proposals, however, either rely
on costly isolation mechanisms, or introduce a vulnerability window
between the attack and its detection. During this vulnerability window,
malicious code can cover up memory corruption, breaking the security
guarantee of “eventual detection” that comes with strong isolation. Our
key contributions are (i) a novel userspace-based isolation mechanism
to address the vulnerability window, and (ii) to successfully reduce the
overhead incurred by the application’s threads to a level acceptable for
a performance-critical application. We evaluate MemPatrol on a high-
performance passive network monitoring system, demonstrating its low
overheads, as well as the operator’s control of the trade-off between per-
formance degradation and detection delay.

Keywords: Integrity monitoring · Isolation · Buffer overflow attacks ·
Concurrency · Cryptography

1 Introduction

The inlined reference monitor approach [7] has become indispensable for find-
ing memory errors in C/C++ programs during development and testing. By
embedding checks into the binary code during compilation or via binary rewrit-
ing, inline reference monitors can enforce integrity guarantees for the program’s
memory accesses or control-flow. Violations are detected promptly, with the
instruction at fault identified, which greatly facilitates debugging.
c© Springer International Publishing AG 2017
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However, the performance overhead of inline monitoring applied at so fine a
granularity makes it unattractive for production deployment in performance-
critical applications, such as passive network monitoring systems. Widely
used debugging solutions such as Google’s AddressSanitizer [31] typically slow
down applications to roughly 2× of the original run-time. Other performance-
optimized solutions for inline monitoring also incur high and unpredictable over-
heads [11].

The unpredictability of the performance overhead incurred from inline refer-
ence monitoring is a problem by itself. Its runtime overhead is highly dependent
on the code being instrumented. A few instructions inserted in a tight loop can
translate to a large number of dynamic instructions during runtime, causing a
significant performance impact. Moreover, additional memory accesses for secu-
rity checks may increase memory bandwidth and cache misses. Inlined checks
cannot abstain from using the cache hierarchy without slowing down the appli-
cation.

To avoid the costs of inlined reference monitors, researchers proposed replac-
ing inline security enforcement with concurrent monitors [33,37]. In principle,
such approaches can minimize the performance overhead on the protected appli-
cation by offloading checks to the concurrent monitor. Detection, however, now
happens asynchronously, introducing a detection delay. This weaker security
guarantee is nevertheless still useful. For example, in the case of passive network
monitoring systems, it helps validate the integrity of the system’s past reports.

Existing proposals, however, face significant challenges. For some, the delay
introduced before the detection of memory safety violations opens up a vulner-
ability window during which the attackers have control of the program’s exe-
cution and may attempt to disable the detection system. This undermines the
guarantee of eventual detection. For others, attempts to isolate the monitor dur-
ing the vulnerability window degrade performance. Finally, these solutions have
been designed for general purpose systems, and their communication and syn-
chronization overheads between the monitor and the application threads can be
prohibitive for high-performance applications.

In this paper, we present MemPatrol, a sideline memory integrity monitoring
system that detects a class of memory corruption attacks with very low perfor-
mance overhead, using available Linux kernel primitives and Intel CPU encryp-
tion facilities. MemPatrol aims (i) to guarantee the eventual detection of integrity
violations regardless of the detection delay, by reliably protecting itself against a
compromised application during the time window between the occurrence of the
attack and its eventual detection, and (ii) to give engineers the flexibility of tuning
the cost of integrity monitoring in a reliable and predictable way by configuring the
desired amount of computational resources allocated to it.

MemPatrol implements a userspace-based isolation mechanism by using CPU
registers as the integrity monitor’s private memory, allowing the monitor to
safely run as a thread inside the address space of the protected application.
The CPU registers cannot, obviously, hold all the information required to run
an integrity monitoring system, such as the addresses and expected values of
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memory locations. However, they are sufficient to store cryptographic material
and run a register-only message authentication code (MAC) algorithm to reliably
access the rest of the data required for the monitor’s operation.

Attackers in control of a compromised application thread cannot tamper with
the monitor thread’s information that is offloaded to memory without detection,
because they lack access to the key used to authenticate it. The authentication
key is only available to the integrity monitor, and threads cannot address each
other’s registers. The key and intermediate states of the MAC algorithm stay
only in registers, never being flushed into userspace memory. The monitor’s
code never spills registers and does not use primitives such as setjmp/longjmp.
The registers may only be flushed to kernel-space memory during a context
switch, where they remain unreachable to a potentially compromised userspace
application. Besides this main idea, we discuss how we prevent replay attacks,
and the mechanisms based on SELinux and the clone Linux system call which
are required to protect the monitor thread from forced termination by its parent
process using kill or modification of its code memory to alter its execution.

We study a concrete special case of sideline integrity monitoring for detecting
heap buffer overflows in a commercial high-performance passive network moni-
toring system [23] where existing memory safety techniques are too expensive to
apply. We believe, however, that periodic integrity checking of memory locations
in a program’s memory can have additional applications. For example, it could
be used to detect malicious hooks installed by modifying persistent function
pointers.

Of course, even a concurrent monitoring system incurs performance over-
heads that may affect application threads, for example, memory bandwidth
overheads from increased reads, cache coherency overheads, and other cross-
CPU communication in NUMA systems. The low overhead imposed by our iso-
lation mechanism, however, enables engineers to minimize monitoring overheads
arbitrarily by throttling integrity monitoring without compromising eventual
detection.

In summary, we make the following contributions:

1. An effective, userspace-based isolation mechanism for the monitor thread that
does not require new Linux kernel modifications

2. Demonstration of tunable and predictable allocation of resources to security
monitoring, in particular memory bandwidth

3. Avoidance of synchronization overheads for heap monitoring by taking advan-
tage of the memory allocation mechanisms used in performance-critical sys-
tems

The remainder of the paper is organized as follows. Section 2 describes
our threat model. Section 3 presents our monitor thread isolation mechanism.
Section 4 applies our mechanism to monitoring of heap integrity, and Sect. 5
evaluates its performance. Section 6 reviews related work, and Sect. 7 concludes
with final remarks on the current limitations and future directions of this work.
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2 Threat Model

In this section we discuss MemPatrol ’s threat model. Firstly, we discuss the
threat model for integrity monitoring using a concurrent thread in general. Sec-
ondly, we discuss the threat model for heap memory corruption attacks that we
use as a concrete case study of integrity monitoring.

2.1 Sideline Integrity Monitoring

Our threat model for integrity monitoring in general considers attacks as mali-
cious modification of memory contents, whether on the stack, heap, or static
variables. It divides the life cycle of a protected application into two phases: the
trusted and the untrusted phase. We assume the program starts in the trusted
phase, during which the application is responsible for registering all memory
locations to be monitored and then launching the monitor. The program, then,
enters its untrusted phase before the application receives any inputs from poten-
tially malicious third parties that could compromise it.

We assume that at some point after entering the untrusted phase of its life-
time, the application becomes vulnerable, for example, by starting to process
external input. After this point, it is no longer trusted by the monitor that was
launched before the process became vulnerable. In particular, we assume that
a compromised process may access any memory location that lies in its address
space, and may attempt to restore any data corrupted during the attack leading
to the compromise, in order to avoid detection. A compromised process may also
invoke any system calls, such as kill to terminate other processes or threads,
subject to OS controls. Attacks against the OS kernel, however, are outside the
scope of this paper.

Finally, while the application is under the control of the attacker, we assume
the attacker may perform replay attacks, meaning that older contents of the
memory can be saved and reused to overwrite later contents.

2.2 Heap Integrity

We built a concrete case study of MemPatrol by applying it to heap buffer
overflow detection based on detecting canary data modifications, and evaluated
it with a high-performance passive network monitoring system [23]. Other threats
such as stack-based buffer overflows are handled by existing defences, such as
GCC’s stack protector (-fstack-protector set of options), or fall outside the
scope of this case study.

The program is assumed to be compromised through heap buffer overflows
employing only contiguous overwrites. Buffer overflows often belong to this cat-
egory, and we do not consider other memory safety violations, such as those
enabling corruption of arbitrary memory locations.

The attacker may corrupt any kind of data in heap objects by overruns
across adjacent memory chunks. For instance, attackers can overwrite a function
pointer, virtual function table pointer or inlined metadata of a free-list-based



52 M.J. Nam et al.

memory allocator by overflows. We assume that attackers may overwrite contents
across multiple buffers in both directions, i.e. underflows and overflows.

Finally, we assume that the canary value cannot be learned through memory
disclosure attacks. However, note that the standard form of memory disclosure
attack is impractical with passive network monitoring systems, such as [23],
because there is no request-response interaction with an attacker to exfiltrate
the data. An “indirect” elaboration of the attack is conceivable, that deposits
the contents of the canary to another buffer inside the process, used later to
restore the canary. For this to work, the copy must not corrupt another canary,
so it must be achieved using random access, which the current solution does not
cover. These attacks are outside the scope of this case study.

In summary, we assume the attacker can gain control of the execution of
the application through heap buffer overflows, but we cannot defend against
overflows that stride over heap canaries without overwriting them, other kinds
of memory safety violations, or against information leakage through memory
disclosure attacks.

3 Monitor Thread Isolation

Sideline integrity monitoring systems offer asynchronous detection with a delay.
Crucially, if this detection latency can be exploited to disable the monitor, no
deterministic security guarantees can be made. To avoid this, we need to antic-
ipate all possible scenarios under which a compromised application can disrupt
the monitor thread, and thwart them. We have identified the following ways that
an attacker with full control of the application can disrupt a monitor thread run-
ning in the same address space:

1. Tampering with the monitor’s data structures on heap or its stack
2. Hijacking the control flow of the monitor by manipulating the monitor

thread’s stack
3. Hijacking the control flow of the monitor by altering the monitor thread’s

executable code in memory
4. Terminating the monitor thread via the kill system call
5. Faking application termination

In the following sections, we discuss how to block these attacks.

3.1 Protection of Data Structures in Memory

Attackers may attempt to subvert the monitor thread by corrupting data in the
program’s memory used by the monitor, such as the list of memory locations to
monitor. This would effectively disable monitoring. Besides these data structures
that are stored on the heap, an attacker could alter local variables or spilled
registers on the stack of the monitor thread.

Our solution is for the monitor thread to only trust data in its registers. Of
course not all data can be saved in the register file due to the limited space of
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Fig. 1. The cryptographic key is only accessible to the monitor thread by stor-
ing it in a register, and additional information stored in memory is authenticated
cryptographically.

registers. Instead, any data stored outside of registers must be authenticated to
prevent tampering. We achieve this using cryptographic techniques. The crypto-
graphic key used for authentication is stored only in a register as shown in Fig. 1.
Compromised application threads cannot succeed in corrupting data without
detection, because they do not have access to the cryptographic key required
for counterfeiting the stored information. Of course, it is not sufficient to merely
protect the key in a register. It is also required that the entire authentication
mechanism is implemented using only registers, and that the main loop of the
monitor thread also only trusts registers and authenticates any memory used.
Next, we describe the memory authentication primitives and the methodology
followed to implement the monitor code using only registers for its trusted data
instead of memory.

Authenticated Memory Accesses. To secure data stored in untrusted mem-
ory from being counterfeited, we use AES-based Message Authentication Codes
(MAC) to sign the value and its location. We chose AES because we can utilize
the AES-NI [8] instruction set of Intel processors which provides a hardware
implementation of AES using the aesenc and aesenclast instructions for the
encryption operation. Each of them performs an entire AES round without any
access to RAM. We use the compiler’s intrinsics to access these instructions. Note
however that these hardware extensions are used in this work for convenience
and performance. In principle, our solution does not depend on the availability
of dedicated cryptographic instructions, as CPU-only implementations of AES
on processors without AES-NI exist [32].
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typedef struct {

__m128i m; /* Data word and its (albeit redundant) address */

__m128i mac; /* Message authentication code */

} sec64_t;

/* Store a verifiable word */

void store_sec64(uint64_t word, sec64_t *sec, __m128i key);

/* Return a verified word or execute an illegal instruction */

uint64_t load_sec64(sec64_t *sec, __m128i key);

Fig. 2. Untrusted-memory data type and access routines

Every AES round requires a different round-specific key expanded from the
initial key. These are typically expanded once and stored in a memory-based
array and reused for every operation. We cannot use a memory-based table and
we also avoid using 10 registers, one for each round’s key, by interleaving the
key expansion with the encryption rounds. This technique cannot be used with
decryption, because decryption requires the expanded key in reverse order, so
all the stages would have to be kept in registers. Fortunately, the decryption
operation is not required for implementing message authentication codes.

Figure 2 illustrates the authenticated memory access routines used by the
monitor thread. The routines can store and load data in units of 64-bits expanded
into 256 bits of memory, namely the sec64 t type that includes the value and its
signature. Specifically, we pack the 64-bit address of the sec64 t object and the
64-bit value into 128 bits of data, and produce an additional 128 bits of MAC
by encrypting the concatenation of the address and value using the key with the
help of the store sec64 routine.

To retrieve the value, the load sec64 routine regenerates the signature using
the address of the sec64 t passed to it, the value from the sec64 t, and the
key passed to it in a register. If the signature does not match, it raises a trap,
otherwise it returns the value.

Replay Attacks. To block attackers from maliciously overwriting an entry
with a signed datum from a different memory location, we include the memory
address in the authenticated data. To block attackers from reusing signed data
representing previous values of the same memory location, we avoid storing new
data to the same address. Note, however, that we can enable a limited form
of secure updates by using append-only tables and keeping the table size in a
register.

Writing Register-Only Code. While it is entirely possible to implement the
monitor thread in assembler by hand, we found that this was not necessary. Here
we describe the methodology used to achieve the same result and to verify its
correctness.
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First, we isolated the code that must avoid using unauthenticated memory
into its own source file, compiled with a controlled set of GCC options, and man-
ually inspected the generated assembly. Initially we attempted to instruct GCC
to use specific registers by using asm annotations on variable definitions. This
achieved control of the registers used, but unfortunately it generated memory
accesses for superfluous temporaries. Instead, we had to rely on GCC eliminating
register usage through optimization, by compiling the code with -O3 (and also
-msse4 -maes for SSE2 and AES-NI). Using stock AES-NI routine implemen-
tations for the MAC routines produced code with register spilling. Obviously
these routines must not use any memory, as they are the ones that we rely on
for authenticating memory use elsewhere. We solved this by modifying the stock
encryption routines to interleave the round-key generation with the encryption
rounds. This was sufficient for implementing a MAC algorithm and the memory
access routines.

Next, we worked in a similar way on the register-only implementation of
the main loop of the monitor thread. We could not use functions calls, because
they would use the stack to save their return address and temporary variables
from registers, so we placed the previously crafted store sec64 and load sec64
routines in a header file and annotated them with the always inline GCC
attribute. After some experimentation, we achieved the desired code. Of course,
the solution does not rely on these techniques, as we could always write the core
routines of the system directly in assembler.

Finally, besides manual verification of the generated assembly code, we zero
out the rsp register at the start of the integrity checking loop using inline assem-
bly, forcing any stack frame access to cause a crash. This ensures we do not acci-
dentally introduce memory accesses due to spilled local or temporary variables
as the code evolves, or in subsequent recompilations.

3.2 Protection of Code

Another way the application’s threads can subvert the monitor thread is by
modifying its executable code in memory while it runs. On x86 there is no need
to flush instruction caches for program memory modifications like this to take
effect. Code segments are write-protected by default, but attackers in control of
the process could easily call mprotect on a vanilla Linux kernel to gain write
access to the code section of the monitor thread. They could then neutralize the
monitor thread without causing it to exit by replacing its code with a version
that does not perform integrity checks.

With a vanilla Linux kernel, this attack is entirely possible. However, solu-
tions to prevent the modification of program code are already included in most
Linux distributions. For example, the PaX project introduced MPROTECT [25],
a kernel patch designed to prevent the introduction of new executable code
into the task’s address space by restricting the mmap and mprotect interfaces.
Security-Enhanced Linux (SELinux) [30] also contains the execmem access con-
trol, to prevent processes from creating memory regions that are writable and
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executable. One of these common solutions needs to be used to prevent this
attack. We use Red Hat Enterprise Linux which provides SELinux.

3.3 Terminating or Tracing the Monitor Thread

A trivial attack scenario that must be tackled is termination of the monitor
thread by the compromised process using the kill system call, or subverting it
using ptrace. We address this scenario by using the Linux clone system call
which allows fine grained control over sharing parts of the execution context.
We start the application as a privileged user and, instead of the regular POSIX
thread interfaces, we use clone with the CLONE VM flag to create the monitor
thread. After the monitor thread is launched, the main application drops its
privileges by executing setuid and setgid. This results in two threads/processes
(the distinction between thread and process is not so clear when using clone)
running in the same address space without sharing user credentials. The monitor
thread retains the privileged user credentials, while the rest of the application
is running with reduced privileges, and thus cannot use the kill system call to
signal the privileged thread, nor ptrace to debug it.

3.4 Faking Application Termination

Under this scenario the attacker may call exit in order to terminate the process
before the monitor thread had a chance to detect the attack. Uninitiated ter-
mination of the application process could be considered sufficient grounds for
raising an alarm, but we also address this scenario by ensuring that a final
integrity scan is performed on exit.

3.5 Detection of Normal and Abnormal Termination

The monitoring system needs to detect normal application termination, in order
to also terminate, as well as abnormal termination triggered by a MAC failure
in order to raise an alarm.

Unfortunately, it is impossible to receive notification of the termination of the
process by a signal through the prctl mechanism with the PR SET PDEATHSIG
option, because of the different user credentials used for isolation with the explicit
purpose of disallowing signals. Instead, the monitor needs to detect the termina-
tion of its application by polling its parent PID using kill with a signal number
of 0.

As we have discussed, the execution of the monitor thread is severely con-
strained, to the extent that calling the libc wrapper for kill can compromise it
by dereferencing the return address saved on the stack. It is technically possible
to send a signal to another process in a safe manner on x86 Linux by running the
syscall machine instruction directly. It accepts its input parameters in registers
and stores the return address in a register. However, it is more convenient to use
a more flexible scheme described next.
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To detect termination, we use an additional monitor process, spawned as
a child of the monitor thread using the normal fork mechanism. Unlike the
monitor thread, this process does not share its address space with the monitored
application. Therefore it is free of the draconian execution constraints imposed
on the monitor thread. This process can poll the main application using kill in
a loop to detect its termination and signal the monitor thread, which is possible,
as they are running under the same UID. The monitor thread must perform a
final integrity check of the application before exiting, to handle the possibility
of a process termination initiated by the attacker, as discussed earlier.

As for abnormal termination, once the monitor thread detects an
integrity violation, it has limited options due to its constraints. We call the
builtin trap intrinsic instruction which on x86 Linux compiles to an illegal

instruction and generates a SIGILL signal, terminating the monitor thread. The
termination is detected by the monitor process, which has the flexibility required
to alert operators.

3.6 Minimizing Performance Impact

The execution of a concurrent monitor thread, unlike inline reference monitors,
does not increase the dynamic instruction count of the monitored program’s
threads. However, its presence may still incur other kinds of overheads affecting
them including cache pollution, memory bandwidth increases, and cross-CPU
communication.

To minimize last-level cache pollution, we ensure that the monitor thread is
using non-temporal memory accesses, which are available to C code by using the
builtin prefetch intrinsic. Unlike inline monitoring, refraining from cache

use only affects the performance of the monitor thread itself, which translates
to detection delays, rather than slow down of application threads.

Moreover, network monitoring systems go to great lengths to avoid paging
overheads because the jitter introduced to execution time by having to walk the
page tables on a miss may lead to packet loss. For example, they utilize so-called
huge pages introduced in modern processors, typically sized at 2 MiB or 1 GiB
instead of the default page size of 4 KiB on x86. We additionally avoid any such
overheads by sharing the entire address space, page tables included, with the
monitored threads.

To avoid hogging memory bandwidth and minimize cross-CPU communica-
tions, the monitor thread should pace its memory accesses. In fact, we allow the
rate of memory accesses to be configurable as a means to allow the user to select
the desired level of overhead, at the expense of detection delay. This allows the
user to tune for minimal impact on the application threads.

In summary, we explore a set of design trade-offs to avoid overheads to the
application threads at the cost of the monitor thread’s speed. This highlights
the importance of protecting the monitor thread itself so that this trade-off does
not result in invalidating the approach.
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4 Case Study: Heap Integrity

Heap canaries can be used for detecting heap buffer overflows. They are fashioned
after stack-based canaries and work in a similar way. Typically the canaries are
checked on deallocation, which for our use case would lead to frequent checking
and overhead to the main application threads for short-lived objects, or excessive
detection delays for long-lived ones.

As a case study of integrity monitoring, we apply MemPatrol to canary-
based heap integrity checking. We use the monitor thread to patrol heap buffers,
and detect illegal memory overwrites across boundaries between heap objects by
checking corruption of canary values placed strategically between heap-allocated
objects. In this section we describe our implementation of sideline integrity check-
ing for heap canaries.

4.1 Memory Pools

To check heap canaries, the monitor needs to keep track of heap allocations.
Existing sideline heap buffer overflow detection systems achieve this by inter-
cepting heap allocation functions to collect the addresses and sizes of live heap
buffers. This can be a significant source of overhead, slowing down the main
application threads.

High-performance applications typically use fixed-size memory pools for per-
formance, such as the memory pool library for network monitoring systems pro-
vided by the DPDK [10] toolkit. We designed our monitoring system to take full
advantage of such memory pools. Instead of tracking individual object alloca-
tions, we track information at the granularity of memory pools: the base address
of each pool, the number of blocks, and the size of a block in the pool are
included in an entry and added to the append-only table used by the monitor
thread. This enables the bulk setup of heap canaries before their use in the
fast path of the program. Memory pools also enable reusing canaries between
allocation lifetimes (since typically the object size is fixed per memory pool).
Such canary recycling eliminates synchronization overheads suffered by existing
solutions designed around a malloc-style arbitrary object size interface.

4.2 Integration with the Monitored Application

MemPatrol is implemented in the form of a library offering an API for inte-
gration with applications. To use MemPatrol the application needs to augment
its memory pool implementation with canary objects. These are defined in the
MemPatrol library by the canary t type. The monitored application is responsi-
ble for registering all its canaries using the patrol register function provided
by our library. This integration effort is similar to what is required for using
debugging solutions such as Google’s AddressSanitizer [31] with custom mem-
ory allocation schemes.

In the current implementation, all canaries must be registered before the
application enters its untrusted execution phase, signified by starting the monitor
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typedef int8_t canary_t[16]; // Data type for canaries

void patrol_init(void); // Called at system startup

// Used for registering canary locations

void patrol_register(void *base, size_t stride, size_t count);

void patrol_start(int cpu); // Start monitoring

Fig. 3. Canary-monitoring integration API

thread with the patrol start function and dropping its privileges. Figure 3
illustrates the API used by the application to integrate with MemPatrol.

Upon calling the patrol register function, the value of the base address
as a 64-bit integer and the values of the pool’s object size and object count, as
32-bit integers concatenated into a 64-bit integer, are stored in a table using two
sec64 t entries generated using the store sec64 function. The monitor thread
has not been started yet, so the key, generated by the patrol init function on
program startup, is temporarily stored in memory inside the MemPatrol library.

Once the patrol start function is called, it loads the key into a register,
zeroes out the copy in memory, and launches the monitor thread. The number
of table entries is also kept in a register to prevent it from being tampered to
trick the monitor into ignoring table entries.

Fig. 4. Secure canary checking
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4.3 Cryptographically Generated Canary Values

Some existing approaches [22] using random valued canaries safely store the orig-
inal copies in the kernel or a hypervisor. In our technique, we generate canaries
using cryptographic techniques to prevent attackers from inferring the original
canary values and recovering them to prevent detection after a compromise. We
use 128 bits for a canary, storing a MAC of the address of the canary. Unlike
using random canary values, this does not require storing copies of canary values
for comparison.

Since possibly compromised threads of the application do not have access
to the key, even if attackers succeed in exploitation through heap buffer over-
flows, they cannot recover the overwritten canary’s expected value. The overall
checking procedure is illustrated in Fig. 4.

We place one canary at the end of each block. Memory blocks are typically
padded to match a requested alignment. This has to be done after the addition
of the canary size to the allocation size. There is a choice on whether to place the
canary back-to-back with the actual object, or to align the canary in memory.
We chose to pack canaries tightly, to detect even small, accidental heap buffer
overflows and to save memory, at the cost of unaligned memory accesses from
the monitor thread.

4.4 Canary Recycling

The integrity monitor does not have to track the life cycle of each heap buffer.
This is possible since the location and values of canaries are fixed throughout the
execution of the program, thanks to the fixed size of pool elements. This allows us
to setup all canaries during the memory pool’s initialization, and avoid updates
on every individual block’s deallocation and reuse.

With such canary recycling, blocks with a corrupted canary may be returned
to the pool before being checked by the monitor, and later re-allocated. The
monitor, however, will eventually inspect the canary and detect the violation,
even if the affected objects have been deallocated.

Canary recycling eliminates the communication overheads, but on the other
hand, this approach incurs the burden of scanning all blocks of the memory pool,
whether they are currently occupied or not. This has the effect of increasing
the detection delay but is not a serious problem with appropriately provisioned
memory pools.

5 Evaluation

We evaluated MemPatrol ’s performance by integrating it with NCORE [23],
a proprietary Deep Packet Inspection (DPI) system, and running experiments
using high bandwidth network traffic.
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5.1 Integration with NCORE

We modified NCORE’s memory pool library to reserve 16 bytes for one canary
at the end of each block, and to call patrol register when the memory pool
is created to register all its canaries. Each canary also helps protect against
buffer underflows in the next block. NCORE does not store allocator metadata
between blocks, but stores free-list pointers at the start of free blocks. These are
protected since canaries are active even when their block is free. Finally, we added
a call to the MemPatrol initialization routine (patrol init) at the beginning of
NCORE’s startup, and a call to MemPatrol ’s monitor thread launching routine
(patrol start) after the NCORE has initialized but before it drops privileges.
The system’s memory pools are initialized between these two calls.

5.2 Experimental Results

We ran NCORE on an iXsystems Mercury server with 2 Intel(R) Xeon(R) E5-
2690 v4 CPUs, nominally clocked at 2.60 GHz (but running at 3.20 GHz thanks
to Turbo Boost) with HyperThreads enabled and 256 GiB of RAM at 2133 MHz
distributed over all four memory channels of the two CPUs. This system has
56 logical cores, out of which NCORE was configured to use 41 logical cores
for pattern matching, and 5 logical cores for packet capture and internal load
balancing, with their sibling logical cores left idle to avoid interference. One
logical core on the first CPU was assigned to the MemPatrol monitor thread,
and one physical core per CPU (4 logical cores in total) was left for general
purpose use, such as user shells and OS services. We configured NCORE for
a pattern matching workload inspecting all network traffic against a list of 5
million random substring patterns with an average pattern length of 100 bytes.

Space Overhead. After launch, NCORE had registered 203 million heap
canaries in 120 contiguous ranges. Thanks to memory pools, the overhead of
metadata kept for each contiguous range of canaries is low. Also, the system
used 129 GB of heap memory for objects and their canaries. Thus the average
object size without canaries is 619 bytes, and the 16 bytes used for each canary
amount to a memory overhead of 3.25 GB or 2.58%.

CPU Overhead. We used another iXsystems server as a traffic generator
replaying an 650 MB real traffic trace with a tool that rewrites the IP addresses
on the fly to simulate an unlimited supply of flows. To evaluate the performance
overhead, we generated traffic at the rate of 50 Gb/s at 9.3 M packets/s and 170 K
bidirectional flows/s. Under this load, the baseline NCORE without MemPatrol
had 77% CPU utilization on the pattern matching cores. The traffic capture cores
are constantly polling a network interface so are always at 100% utilization irre-
spective of actual load. There was no packet loss observed in this baseline setup.
We repeated the experiment with the monitor thread running, and observed no
increase in CPU utilization, with packet loss also remaining zero. By running on
a separate core and performing non-temporal memory accesses, MemPatrol did
not interfere with the instruction count of the application’s processing threads.



62 M.J. Nam et al.

Cache Overhead. We used the Intel Performance Counter Monitor (PCM)
tool [35] to measure the cache hit rates on each logical core. The results are
shown in Table 1. We show separate results for the traffic capture threads (RX),
the pattern matching threads (Workers) and the monitor thread (Patrol). The
first row is the baseline without the monitor thread. The second row shows
the results with the monitor thread running and using non-temporal memory
accesses. We observe that there is a small decrease of the L3 cache hit rate.
If we disable the non-temporal memory access hinting, or instead we specify a
high degree of temporal locality using the value 3 to the third argument of the
GCC prefetch intrinsic, we measure a slightly higher degradation. We further
justify adding the hints for non-temporal memory access to the monitor thread
by observing that its cache hit rate is zero.

Table 1. Cache hit rates for different types of application threads and different tem-
poral locality hints used by the monitor thread.

RX Workers Patrol

L3 Hit L2 Hit L3 Hit L2 Hit L3 Hit L2 Hit

No patrol 0.31 0.10 0.64 0.66

Prefetch 0 0.31 0.10 0.62 0.66 0.00 0.00

No prefetch 0.30 0.10 0.59 0.66 0.00 0.00

Prefetch 3 0.30 0.10 0.60 0.66 0.00 0.00

Memory Bandwidth Overhead. Subsequently, we used the PCM tool to
measure the system memory throughput. The measurement was done over a
60 s interval to smooth out variations. As expected, there was no impact on the
memory write throughput, but we could observe the effects of the patrol thread
on the system’s memory read throughput: An 18.1% increase over the baseline
read throughput of 15.5 GB/s.

Detection Delay. Running at full speed, MemPatrol required 5 s to scan all
203 million canaries. This corresponds to the worst-case detection delay after
the corruption of a canary. We confirmed the detection capability end-to-end by
introducing an artificial buffer overflow.

Overhead Control. Next, we ran experiments to demonstrate control of the
overhead by trading-off detection latency. We slowed down the monitor thread by
a configurable amount by adding pause hardware instructions (via the mm pause
compiler intrinsic). Figure 5 illustrates the effect of different delays determined
by the number of additional pause instructions executed in each iteration of
MemPatrol ’s monitoring loop that is checking one canary. Insertion of a single
delay instruction results in a sharp drop of the read throughput overhead from
18.1% to 5.2% and a roughly proportional increase in detection latency from 5 to
17.7 s. By further tweaking the number of pause instructions we can bring down
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(time to scan all canaries). The user can select the trade-off by controlling the number
of pause instructions inserted to throttle the monitor thread.

the memory throughput overhead to 0.65% for an increased detection delay of
120 s. This experiment confirms that the user can decide the amount of overhead
that is acceptable for the application, at the cost of detection delay. At the same
time, the design of the system does not allow an attacker to disable detection
by exploit the detection delay introduced for performance reasons.

NUMA Effects. Modern multi-processor systems employ non-uniform memory
access (NUMA). We investigated the performance effects of the CPU socket
placement of the monitor thread. In the baseline setup we use a single monitor
thread running on socket 0 to monitor memory on both NUMA sockets. We wish
to evaluate the performance of a monitor thread only inspecting local memory on

Table 2. Effects of the NUMA placement of the monitor thread on the detection
latency and local/remote memory bandwidth of the monitor thread’s core.

Monitored sockets

Both Local Remote

#Canaries 203, 159, 920 76, 184, 970 126, 974, 950

Scan Duration (µs) 5, 151, 152 1, 865, 777 3, 553, 998

#Canaries/µs 39.4 40.8 35.7

Remote memory bandwidth 1, 576 0 3, 339

Local memory bandwidth 915 3, 399 0.1
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the socket that it is running. In Table 2 we compare this against the default setup
inspecting both NUMA nodes, but also against an artificially suboptimal setup
where a monitor thread inspects memory on the remote socket only. The number
of canaries on each socket is different, because the second socket is running more
worker threads that maintain more state compared to RX threads. We normalize
this by reporting the number of canaries inspected per unit of time, and observe
that the difference, while matching our expectations in quality, is not significant.
The reason must be that remote memory accesses suffer significantly in terms of
latency, but not throughput. That is of course as long as the interconnect between
the CPUs is not overloaded. This is not the case in our experiments, but we can
observe the effects of NUMA placements on the interconnect by showing the
local vs. the remote memory traffic. We can see that with the optimal NUMA
placement there is no remote memory traffic for the core running the monitor
thread. This would motivate using multiple monitor threads, one on each NUMA
node, inspecting only local memory.

6 Related Work

Concurrent Monitoring. With the advent of multicore machines, utilizing
spare CPU cores for security became an attractive approach. Multi-Variant Exe-
cution Environments (MVEE) [28,29] use spare cores to run several slightly
different versions of the same program in lockstep, monitoring them for discrep-
ancies. This approach, however, is impractical for high-performance multicore
programs utilizing the majority of the CPU’s cores.

Cruiser [37] is one of the original system to decouple security checks from
program execution, running them instead in a thread inside the address space
of the monitored process. Unlike MemPatrol, Cruiser’s guarantees are proba-
bilistic. Its low detection latency, for the programs it was evaluated on, helps
defend against tampering with its data structures, but is not a reliable solution
on its own. Moreover, for performance critical applications using large amounts
of heap memory, like NCORE, the detection latency would increase significantly
due to the sheer number of canaries, and should not be relied upon for secu-
rity. Cruiser also employs pseudo-isolation using ASLR and surrounding its data
structures with inaccessible guard pages, in the hope that blind access will trig-
ger segmentation faults. Recent techniques [24], however, demonstrate that faith
in ASLR-based information hiding is misplaced. Therefore, these systems do not
offer a strong guarantee against tampering with the monitor’s execution before
a compromise is detected. Without reliable isolation, the risk of exploitation
remains as long as there is detection delay.

Other software-based techniques utilizing spare CPU cores include Shad-
owReplica [12] and TaintPipe [17], which aim to improve the performance of
dynamic information flow tracking (DIFT) for security. DIFT is a comprehensive
protection mechanism, and these solutions demonstrated significant performance
improvements over inline DIFT, but the remaining overhead due to the presence
of inline stub code remains significant (> 2× slowdown over native execution).
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Monitor Isolation. The problem of the isolation of monitoring systems has
been addressed by using OS kernel or VM hypervisor mechanisms [5,22,33].
These are comparatively safer, but come with additional overheads and engi-
neering costs. Instead, we present a userspace solution sharing the address space
of the main application. Our solution minimizes the overhead to the execution
of the main application threads while at the same time it allows monitoring the
entire memory of the application if so required. Finally, it avoids any engineering
costs for the maintenance of custom kernel modifications.

Other software-based isolation mechanisms using Software Fault Isolation
(SFI) (e.g. NativeClient [36]) suffer from overheads because they inline checks to
the code that needs to be contained (in our case the application’s code). Native-
Client has an average overhead of 5% for CPU-bound benchmarks. MemPatrol ’s
overheads on the other hand are taxing mostly the monitor thread, which we
can afford.

Kernel Integrity Monitors. Kernel integrity monitors (KIMs) periodically
inspect critical kernel memory regions, such as syscall tables and persistent func-
tion pointers, isolating themselves from the kernel by residing in hypervisors [9]
or hardware such as PCI cards [26]. Some KIMs tackle transient attacks by
snooping the bus traffic using PCI cards [18] or even commodity GPGPUs [14].
MemPatrol is quite similar to KIMs using periodic memory inspection, but mon-
itors applications, so does not require a hypervisor or dedicated hardware.

Cryptographic Key Protection. MemPatrol takes advantage of the AES
instruction set of Intel processors [8] to implement CPU-only cryptographic
message authentication codes (MACs), and stores critical information in reg-
ular registers of user-mode programs. TRESOR [19], a disk encryption system
that defends against main memory attacks, uses a similar CPU-only crypto-
graphic mechanism based on AES-NI, but stores its secret key in special CPU
debug registers in each core and is kernel-based.

Note that the availability of the AES-NI instruction set is not a hard require-
ment, but rather an optimization and implementation convenience. For example,
Loop-Amnesia [32], a disk encryption system similar to TRESOR, does not rely
on AES-NI. We could avoid the dependency on the special AES instruction set
by using their CPU-only implementation of AES.

MACs have been previously used in Cryptographic Control Flow Integrity
(CCFI) [16] to protect control flow elements such as return addresses, func-
tion pointers, and vtable pointers. CCFI also takes advantage of the AES-NI
instruction set. Compared to MemPatrol, CCFI offers comprehensive protection
against control flow violations but does not protect against some non-control-
flow data corruptions that MemPatrol can detect. Moreover, CCFI is an inline
solution, hence it directly affects the performance of the application threads
(3–18% decrease in server request rate).

Memory Safety. Much research has been done on enforcing spatial [4,13,20]
and temporal [2,21] memory safety in C/C++ programs. Some of these solutions
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offer extensive memory safety, but they slow down applications significantly. For
example, SoftBound [20], a solution for comprehensive spatial memory safety,
incurs an average execution time overhead of 79% for CPU-bound benchmarks.
Our target, however, is to protect applications where almost any execution over-
head must be avoided.

A number of approaches aim for a favourable security-to-overhead ratio
rather than complete memory safety. For example, some focus on preventing
illegal control flow, e.g. [1,15,16], and can block the majority of attacks, but
still incur inline overheads (21% on average for CPU-bound benchmarks for [1]
and 8.4% for [15]). Other solutions focus on preventing buffer overflows that
overwrite adjacent memory locations. StackGuard [6] detected exploitations of
stack-based buffer overflows by placing a canary word before the return address,
and checking it when the stack frame is deactivated. Similar solutions are cur-
rently widely deployed due to their effectiveness and simplicity, and the idea
has been extended to heap buffer overflow detection [22,27] with canary checks
triggered by memory management routines, library routines, or system calls.

Our case-study for heap memory integrity is based on heap-canary counter-
measures, and specifically those that use a monitor running in parallel with the
protected application [33,37]. Note, however, that NCORE also uses stack-based
overflow protections on top of MemPatrol, and the mere use of memory pools
also offers some level of protection against temporal-safety violations through
the reuse of memory only for objects with identical layout, which can prevent
most abuses of function pointer fields [2].

Finally, it is worth comparing MemPatrol with inline solutions offering simi-
lar security guarantees. For example, inline heap canary checking [27] can be very
efficient, but suffer from unbounded detection delay, as detection relies on checks
triggered by events such as deallocations. In the case of NCORE, heap allocations
for certain objects such as host state may linger for several days. MemPatrol,
on the other hand, puts a bound on the detection delay. Other inline solutions
detect buffer overflows immediately by instrumenting every memory write to
check whether it overwrites a canary. WIT [3], for example, uses this approach,
which contributes the bulk of its runtime overhead of 4–25% for CPU bound
benchmarks, which is prohibitive for some performance-critical applications.

Tunable Overhead. MemPatrol offers developers and operators control over
its runtime overhead. A similar idea was pursued by ASAP [34], which automat-
ically instruments the program to maximize its security while staying within a
specified overhead budget. Unlike MemPatrol, ASAP controls the overhead by
decreasing coverage, while MemPatrol achieves this by increasing detection delay
without compromising eventual detection. Cruiser [37] also discussed a possible
approach to increase its efficiency using back-off strategies to pace the monitor
thread with nop instructions or sleep calls. However, without proper isolation
of the monitor thread, this approach undermines Cruiser’s security guarantees.
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7 Conclusion

In summary, we applied our integrity monitoring solution, MemPatrol, to a high-
performance network monitoring system, demonstrating 0% CPU-time overhead
for the application’s threads. The hidden memory bandwidth overheads also
concerned us, but we demonstrated how to minimize them to under 1%. We
conclude with some remarks on current limitations and future directions.

Importantly, our case study’s memory safety guarantees are limited to heap
buffer overflow detection, and can be thwarted by memory disclosure attacks.
Future work is required to identify additional memory integrity applications.

Moreover, the current MemPatrol prototype cannot register additional mem-
ory locations to monitor after initialization, but this limitation is not funda-
mental. We could intermix monitoring with processing of registration requests
received through a message queue. As long as bookkeeping data structures are
append-only, the threat of replay attacks is averted. A general solution for sup-
porting arbitrary updates, however, is an interesting future direction.

Creating the binary code for a system like MemPatrol is currently a tedious,
manual process. As pointed out in Loop-Amnesia [32], some level of compiler
support, e.g. to control register spilling, would help.

Finally, the full security of AES may be overkill given the bound on detection
latency, and lowering the number of AES rounds used could be considered as a
way to increase the monitor thread’s performance.
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Abstract. Malware authors constantly develop new techniques in order
to evade analysis systems. Previous works addressed attempts to evade
analysis by means of anti-sandboxing and anti-virtualization techniques,
for example proposing to run samples on bare-metal. However, state-of-
the-art bare-metal tools fail to provide richness and completeness in the
results of the analysis. In this context, Dynamic Binary Instrumentation
(DBI) tools have become popular in the analysis of new malware samples
because of the deep control they guarantee over the instrumented binary.
As a consequence, malware authors developed new techniques, called
anti-instrumentation, aimed at detecting if a sample is being instru-
mented. We propose a practical approach to make DBI frameworks more
stealthy and resilient against anti-instrumentation attacks. We studied
the common techniques used by malware to detect the presence of a
DBI tool, and we proposed a set of countermeasures to address them.
We implemented our approach in Arancino, on top of the Intel Pin
framework. Armed with it, we perform the first large-scale measurement
of the anti-instrumentation techniques employed by modern malware.
Finally, we leveraged our tool to implement a generic unpacker, showing
some case studies of the anti-instrumentation techniques used by known
packers.

1 Introduction

Malware is still one of the Internet’s major security threat and dynamic analysis
systems are an essential component to a defend from it. By running malicious
samples in a controlled environment, security analysts can observe their behav-
ior [30], unpack obfuscated code [25], identify command and control (C&C)
servers, generate behavioral signatures, as well as remediation procedures for
infections [12]. However, modern malware samples present many techniques,
called anti-debugging and anti-sandboxing, to hide their behavior when they
detect that they are running in a controlled environment. Generally, such mal-
ware is known as “evasive”.

Previous research proposed different mechanisms to defeat evasive mal-
ware, mainly based on two approaches. A first approach draws upon techniques
c© Springer International Publishing AG 2017
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(commonly known as “multi-path execution”) used to increase the coverage of
dynamic analysis tools [10,28,42]. Binaries are executed multiple times, either
providing different inputs that invert the outcomes of conditional branches (i.e.,
trying to disarm detection triggers) [10,28], or simply forcing the execution along
a different path [42]. The second approach tries to analyze malware samples in
environments that minimize the artifacts that can be exploited to detect the
analysis system, for instance running samples on bare-metal [20], or porting the
instrumenting framework in hardware [37]. While the former approach is more
generic, it is often unfeasible since it leads to an explosion in the need of compu-
tational resources. Instead, the latter is more practical and, in fact, it has been
recently adopted by security researchers [20,21,37].

To evaluate a malware analysis system, one should consider three factors:
quality, efficiency, and stealthiness [20]. Quality refers to the richness and com-
pleteness of the analysis results. Efficiency measures the number of samples that
can be analyzed per unit time. Stealthiness refers to the undetectability of the
presence of the analysis environment. Intuitively, there is a constant trade-off
between these factors. Despite the effort of the research community in develop-
ing approaches and tools to enforce the stealthiness of malware analysis systems,
state-of-the-art tools provide either stealthiness or quality. For instance, Kirat
et al. [20] proposed a framework for performing analyses on bare-metal. However,
such systems cannot guarantee a good quality, i.e., they do not provide the ana-
lysts a good level of details in the inspection of the malware behavior. Instead,
in some specific scenarios (e.g., manual and automated reverse engineering) we
need deeper control of the running binary. In fact, the use of Dynamic Binary
Instrumentation (DBI) frameworks has become a valid alternative for analyz-
ing malware samples [4,16,26,27]. By injecting instrumentation code inside the
binary under analysis, DBI tools give a deep control over the analyzed pro-
gram, providing both a low-level (i.e., instruction) and a high-level (i.e., system
call) view. Given that, in order to keep on hindering the reverse engineering of
their code, malware authors developed a new series of techniques, called anti-
instrumentation, aimed at detecting the presence of a DBI tool at runtime.

We propose a dynamic protection framework to defend a generic DBI Tool
against anti-instrumentation attacks. First, we classified state-of-the-art tech-
niques in four categories (code cache artifacts, environment artifacts, just in
time compiler detection, and overhead detection); then, we designed a set of
generic countermeasures to defeat every identified class. In order to achieve this,
we leverage the power of DBI tools to fully control the execution flow of the
instrumented process. This allow us to detect and dismantle possible evasion
attempts. We implemented our approach in Arancino, on top of the Intel Pin
framework [23].

We tested our system against eXait [15], a tool containing a set of plugins
that aim at detecting when a program is instrumented by Intel Pin, showing
that Arancino is able to hide Intel Pin, allowing the analysis of evasive binaries.
Then, we used our tool to perform a large-scale study of the anti-instrumentation
techniques used by malware: we collected and analyzed 7,006 malware samples,
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monitoring the evasive behaviors that triggered our system. Finally, to show a
useful application scenario of our system, we leveraged Arancino to implement
a generic, dynamic, unpacker that can handle anti-instrumentation-equipped
packers. Moreover, we show case studies of known packers that employ anti-
instrumentation techniques in the unpacking process.

In summary, we make the following contributions:

– We proposed an approach to practically defeat the techniques that malware
employs to detect instrumentation systems (i.e., DBI tools).

– We performed a study of the common techniques adopted by modern malware
authors to perform evasion of instrumentation systems. We measured how
malware detects DBI tools on a dataset of 7,006 samples.

– We leveraged our anti-evasion approach to implement a generic, dynamic,
evasion-resilient unpacker, showing some case studies of the evasion tech-
niques used by know packers.

In the spirit of open science, we make our datasets and the code developed for
Arancino publicly available1.

2 Background and Motivation

Dynamic Binary Instrumentation (DBI) is a method to analyze the behavior of
a binary application at run-time by injecting instrumentation code, which exe-
cutes transparently as part of the normal instruction stream after being injected.
Commonly, DBI tools exploit a Just In Time (JIT) compiler to instrument the
analyzed binary at run-time, translating originally x86 code into an interme-
diated representation. Translation units used by different frameworks differ in
size. For instance, Valgrind [29] uses standard basic blocks as traces, caches the
translation, and jumps inside the corresponding cache each time a basic block is
hit. DynamoRIO [9], instead, uses an extended definition of basic block as trace,
including all instructions until a conditional jump. This includes also code inside
function calls or after an unconditional jump. Intel Pin, uses traces defined as
all the code between the previous trace and the next unconditional jump.

DBI tools turned out to be particularly useful in malware analysis, for
instance to detect malicious software [4], identify cryptographic primitives [16],
or to efficiently perform taint analysis [26]. However, DBI tools are not com-
pletely transparent to the analyzed malware, and, in fact, anti-instrumentation
techniques have been developed to detect the instrumentation process. We clas-
sified such anti-instrumentation techniques in four categories.

Code Cache Artifacts. These techniques aim at detecting artifacts that are
inherent of a DBI cache. For example, the Extended Instruction Pointer (EIP) is
different if a binary is instrumented. In fact, in a DBI Tool the code is executed
from a different memory region, called code cache, rather than from the main
module of the binary.
1 https://github.com/necst/arancino.

https://github.com/necst/arancino
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Environment Artifacts. The memory layout of an instrumented binary is
deeply different respect to the one of a not instrumented one. Searching for DBI
artifacts such as strings or particular code patterns in memory can eventually
reveal the presence of a DBI tool inside the target process memory. Also, the
parent process of an instrumented binary is often the DBI tool itself.

JIT Compiler Detection. JIT compilers make a lot of noise inside the process
in terms of Windows API calls and pages allocation. These artifacts can be
leveraged by the instrumented program to detect the presence of a DBI tool.

Overhead Detection. Instrumentation adds an observable overhead in the
execution of a target program. This overhead can be noticed by malware by
estimating the execution time of a particular set of instructions.

3 ARANCINO: Approach

A DBI tool can work at three granularities: (1) Instruction, a single instruction
inside a collected trace; (2) Basic block, a sequence of instructions terminated by
a conditional jump; (3) Trace, a sequence of basic blocks terminated by an uncon-
ditional jump. Our approach leverages the complete control that a DBI tool has
on the instrumented binary to hide the artifacts that the DBI tool itself intro-
duces during the instrumentation process. In fact, by instrumenting a binary,
we can identify when it tries to leverage such artifacts to evade the analysis.
In practice, we designed a set of countermeasures for the anti-instrumentation
techniques we mentioned in Sect. 2. We implemented our approach in Arancino
using Intel Pin. While we developed our countermeasures specifically targeting
Intel Pin, the approach on which such countermeasures are based is generic and
can be adapted to any DBI tool.

3.1 Code Cache Artifacts

DBI tools do not execute the original code of a program. Instead, they execute a
particular memory region called code cache in which they copied an instrumented
version of the original code.

EIP Detection. A malware sample can detect if the Instruction Pointer (EIP)
is different from the expected one. This technique exploits particular instructions
that save the execution context, including the current value of the EIP register.
Once obtained the effective value inside EIP register, this value is compared
with the base address in which the program expects the Instruction Pointer to
be (main module of the program). If these two values are different, the program
under analysis become aware that it has been instrumented. Here we report
the currently working methods we identified to retrieve EIP. Examples of such
instructions are int 2e, fsave, and fxsave. An easier technique to retrieve the
EIP is monitoring the stack after a call instruction. However, this scenario is
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already inherently handled by Intel Pin, which does not alter the original EIP
value on the stack. In order to defeat this technique, since there are a set of
instructions that expose the presence of the DBI by leaking the effective EIP, we
track these instructions in the collected trace and block the information leakage.
Specifically, when we detect such instructions we execute a user defined function
that patches the value inside registers or memory with the expected one, so that
the analyzed program can be fooled.

int 2e is the legacy instruction used in Windows in order to perform a
system call (now replaced by sysenter). The interrupt handler called as conse-
quence of the int 2e saves the current state information parameters, such as the
EIP and the EFLAGS, in order to eventually return correctly from kernel-mode to
user-mode after the execution of the syscall. Practically, this behavior has the
side effect to store the EIP in the EDX register. When we detect the presence of
int 2e, we insert a call to a function right after its execution that patches the
value stored in EDX with the real EIP of the current instruction inside the main
module.

fsave/fxsave/fstenv instructions save the floating-point context, includ-
ing the effective EIP, at the moment of the execution of the last floating-point
operation. When we detect one of these instructions in a trace, we insert a call
to a function that manipulates the floating-point context by modifying the value
of EIP with the correct address inside the main module of the program.

Self-modifying Code. Another way to detect the presence of a code cache is
using self-modifying code, i.e., code that changes the instructions at run-time by
overwriting itself. Because a DBI tool executes the cache where the code is not
modified, it will execute a wrong trace breaking the semantic of the program.
This violates the property of semantic equivalence between the original program
and the instrumented one. To handle this technique, we force the DBI tool to
build a new trace with the correctly patched code and abort the execution of the
wrong one. When a new trace is collected, we first retrieve its boundaries, then
for each write instruction we check if the written address is inside the boundaries
of the current trace. If this happens, the address is marked as written. At the
same time, for each instruction we check if the EIP that has to be executed is
marked as written and, if so, we force the DBI tool to discard the trace and
build a new one.

3.2 Environment Artifacts

DBI tools introduce further environment artifacts during instrumentation.

Parent Detection. Since the instrumented program is launched by the DBI
tool as its child, it can obtain its parent process and check if it is not the
expected one. In order to hide the parent process name, we took into account
the possibility to get the parent process not only by using the standard Win-
dows APIs, but also using more advanced methods. Analyzing the various tech-
niques aimed to retrieve the process list we have identified two countermeasures
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that can correctly defeat this type of attacks. The first one consists in hooking
the NtQuerySystemInformation and faking the returned SYSTEM PROCESS INFO
structure by replacing every process named pin.exe with cmd.exe. Second, we
deny the instrumented program to open the process CSRSS.exe. In fact, this
process is responsible to maintain its own process list in user-space. To do so, we
create a list of PID of processes that we want to hide from the target program,
then we hook the NtOpenProcess to check if the target PID is included in the
list. If so, we trigger an NTSTATUS ACCESS DENIED.

Memory Fingerprinting. Malware can identify the presence of several arti-
facts that a DBI tool unavoidably leaves in memory. The most straightforward
technique is to scan the entire memory of the process looking for allocated pages
and searching inside these pages for a set of DBI-related artifacts (like strings and
code patterns). This kind of attack is thwarted by hiding all the memory regions
where the DBI-related code and data reside. This is done by intercepting and
controlling the results of the functions (VirtualQuery, NtQueryVirtualMemory)
used to determine the state of a particular memory page. We check if the queried
memory is inside a whitelist of addresses that the instrumented process is autho-
rized to access. In the case the address is in the whitelist, we return the cor-
rect value, otherwise we return a MEM FREE value. In other words, the memory
space inside the whitelist is the only part that the analyzed program can see as
allocated.

The whitelist is created at the beginning of the instrumentation process and
updated at run-time when we detect a new dynamic memory allocation made
by the analyzed program. Initially, the whitelist contains the main module of
the executable. Then, when we detect that a new library is being loaded, we
update the whitelist including such memory region. The heap and stack mem-
ory space is also whitelisted. We use getProcessHeaps at start-up in order to
add to the whitelist the heap memory addresses created during the initialization
process. We hook heap allocation functions to keep track of the dynamically allo-
cated contents. By hooking the NtAllocateVirtualMemory, RtlAllocateHeap,
and RtlReAllocateHeap functions we can actually cover all allocation func-
tions since all the higher level APIs end up using one of them. Instead, to iden-
tify the stack we recover the address from ESP register and, using the default
stack size (1048576 bytes), we whitelist its memory address space. Moreover,
we need to add to our whitelist the PEB and TEB data structures, which con-
tain information about the current process and threads. While analyzing these
structures we also whitelist different memory regions pointed by fields in these
structures. Last, we whitelist mapped files. Mapped files are particular mem-
ory structures in which the content of a file is associated with a portion of
the process memory space. Some memory mapped files are created during the
loading process of the executable, e.g., locale.nls, while others are created at
run-time using the MapViewOfFile function, which at a lower level invokes the
NtMapViewOfSection system call. Therefore, we scan the memory of the process
as soon as it is loaded whitelisting all the memory regions marked as MEM MAPPED.
This allows us to consider the memory mapped files which are created before we
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get actual control of the execution. Moreover, we hook the NtMapViewOfSection
system call to track the mapped files which are created by the application itself
at run-time.

Note that a sample could detect our system by trying to allocate memory
that is already allocated but hidden by our system. To this end, malware should
allocate and deallocate through the entire address space to identify such memory
regions. However, this is inefficient for the malware, and Arancino could easily
detect such weird behavior.

3.3 JIT Compiler Detection

As briefly explained in Sect. 2, DBI tools use JIT compilers to instrument a
binary. Malware can leverage JIT artifacts to spot the presence of a DBI tool.

DLL Hook. DBI tools need to hook functions in order to intercept the execution
at the end of a not instrumented trace. Specifically, they insert jumps (Hooks)
at the beginning of some functions. Consequently, an instrumented program can
check if the initial instructions of common functions have been modified. In order
to hide these differences, at the beginning of the instrumentation we retrieve the
addresses in memory of the hooked functions (for example using the Windows
API GetModuleHandle). Using this method, we can correctly retrieve addresses
even if Address Space Layout Randomization (ASLR) is active on the machine.
Once we know these addresses, we label them as protected, and we store the
original values in a different memory region. When the binary wants to read a
protected memory region, we simply redirect the read to our fake pages. In this
way, the instrumented binary obtains the original value.

Memory Page Permissions. A JIT compiler needs to write and then exe-
cute a significant amount of code, hence the number of pages marked as RWX
inside the address space is substantially larger respect to the not-instrumented
execution of the program. A binary can scan the entire process address space
counting the number of page encountered with RWX permissions. If this num-
ber is considerably high, it can spot the presence of the DBI. To address this
technique, we leverage a whitelist of memory pages as we described in Sect. 3.2.
When the instrumented binary performs a query of a memory region, we check
if the address of such region is included in the whitelist of authorized addresses.
If not, we return a MEM FREE value, hiding the pages used by the JIT compiler.

Memory Allocations. As we mention before, the JIT compiler intensely
uses RWX memory pages to instrument and cache instrumented traces.
To this end, the DBI tool allocate the memory to fulfill the need. All
these allocations are executed going through the low-level Windows API
ZwAllocateVirtualMemory. A detection mechanism is to count the num-
ber of invocations of the ZwAllocateVirtualMemory and compare it with
the number of invocations performed during a non-instrumented execution;
if the difference is considerably high, the program can spot the presence of
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the JIT compiler. Usually, a program that wants to implement this anti-
instrumentation technique inserts a simple assembly routine at the beginning
of the ZwAllocateVirtualMemory which increments a counter every time the
function is invoked; if the counter exceeds a predefined threshold then the JIT
compiler is detected. The approach we used to defeat this technique aims at
(1) redirecting every write attempt of the process inside the .text segment of
libraries, and (2) faking the results of suspicious read instructions that have
their target addresses inside the .text segment of libraries. This (1) prevents
the insertion of hooks (e.g., in ZwAllocateVirtualMemory), and (2) denies the
possibility to check if an hook is in place or not. Note that this approach is
generic and can defeat every attempt to overwrite the original code of functions
and to insert hooks inside protected memory regions.

3.4 Overhead Detection

Despite DBI tools’ effort to reach good instrumentation performance, they
introduce an observable overhead, which can be detected by performing
small benchmarks tests. To do so, malware leverages Windows APIs such as
NtQueryPerformanceCounter, GetTickCount, timeGetTime to obtain execution
times and reveal the presence of instrumentation tools. Our countermeasure tries
to fool the process to think that the elapsed time is less despite the introduced
overhead. We can achieve this by lowering the results returned from the previ-
ously described functions.

Windows Time. Windows APIs, such as GetTickCount and timeGetTime,
retrieve the time information by accessing different fields in a shared user page
mapped at the end of the process memory space. In this memory area, we can
find the structure KUSER SHARED DATA. Our approach is to implement a “Fake-
Memory” in the locations that these functions access, lying about its content
to cause the functions to return controlled time values. Hooking the API is not
enough, because it is possible to read such data structure directly from the mem-
ory without calling any API. The strategy adopted in order to return fake values
varies for the GetTickCount and the timeGetTime, because in order to calculate
the elapsed time they employ two different methods.

GetTickCount accesses the fields TickCountMultiplier and TickCountQuad
and performs a computation that returns the number of milliseconds elapsed
since the start of the system. Our approach is to intercept the read of the
TickCountMultiplier, retrieve the real value, divide it by a user defined TICK
DIVISOR and finally return this value to the read instruction. This approach relies
on a user defined divisor that must be tuned in order to successfully defeat this
technique. timeGetTime accesses the field interrupt_time that is represented
by a struct called KSYSTEM TIME. The time is retrieved by concatenating two
fields of this struct: the High1Time and the LowPart as High1Time:LowPart.
We reassemble the value, divide it by the user defined divisor, split it again in
high and low part, and finally return to the read instruction the part that it was
reading.
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The second way that can be followed in order to retrieve the time elapsed
is to employ the QueryPerformanceCounter. Since it is only a wrapper of
NtQueryPerformanceCounter, we hooked directly the system call. Following
this strategy after the execution we divide the value of the field QuadPart (a
signed 64-bit integer) inside the LARGE INTEGER struct returned by the syscall,
with a user defined constant.

CPU Time. The last technique that we consider in order to defeat the time
attack is the use of the assembly instruction rdtsc. This assembly instruction
returns the processor timestamp defined as the number of clock cycles elapsed
since the last reset. Since this is a 64-bit integer it returns, in a i386 architecture,
the high part and the low part respectively in EDX and EAX registers. In order to
fake the value returned from this instruction we recognize the rdtsc in a trace,
then after its execution, we insert a call to a function that compose the 64-bit
integer as specified (EDX:EAX), divide it by a user defined constant, and patch
the value of the two registers according to their new value.

4 Large-Scale Anti-Instrumentation Measurement

We performed a study to measure which anti-instrumentation techniques are
used by recent, malware samples found in the wild. To do this, we refer to the
techniques that we described in the previous sections.

Environment Setup. We prepared a set of identical VirtualBox virtual
machines running Windows 7 (64-bit), in which we installed common utilities
such as Adobe Reader, alternative Web browsers, and media players. We also
included typical user data such as saved credentials and browser history and,
at runtime, our analysis system emulates basic user activity (e.g., moving the
mouse, launching applications). This is useful to create a legitimate-looking envi-
ronment. As suggested by Rossow et al. [32], we followed the best practices for
malware experiments. We let the malware samples run for 5 min allowing samples
to communicate with their control servers, and denying any potentially harmful
traffic (e.g., spam). We automated our analysis environment to manage and con-
trol such VMs. For each analysis, our agent inside the VM receives the sample
to be analyzed and executes it, instrumenting it with Arancino. After each
execution, we save the logs produced by Arancino and roll back each virtual
machine to a clean snapshot.

Dataset. Between October 2016 and February 2017, we used the VirusTotal
Intelligence API to obtain the most recent Windows executables labeled as mali-
cious by at least 3 AVs. We obtained a dataset of 7,006 samples. We then lever-
aged AVClass [34] to cluster AV labels and identify each sample’s family. Table 1
shows the top 20 malware families in our dataset.
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Table 1. Top 20 malware families in our dataset.

Family No. Samples No. Evasive No. Techniques

virlock 619 (8.8%) 600 (96.9%) 2

confidence 505 (7.2%) 68 (13.5%) 4

virut 242 (3.5%) 13 (5.4%) 2

mira 230 (3.3%) 9 (3.9%) 1

upatre 187 (2.7%) 2 (1.1%) 1

lamer 171 (2.4%) 0 (0.0%) 0

sivis 168 (2.4%) 0 (0.0%) 0

installcore 164 (2.3%) 0 (0.0%) 0

ipamor 164 (2.3%) 0 (0.0%) 0

vtflooder 152 (2.2%) 2 (1.3%) 1

downloadguide 135 (1.9%) 1 (0.7%) 1

bladabindi 103 (1.5%) 22 (21.4%) 2

dealply 98 (1.4%) 1 (1.0%) 1

mydoom 88 (1.3%) 0 (0.0%) 0

parite 86 (1.2%) 18 (20.9%) 1

zusy 84 (1.2%) 10 (11.9%) 3

installmonster 79 (1.1%) 2 (2.5%) 1

allaple 68 (1.0%) 0 (0.0%) 0

razy 66 (0.9%) 10 (15.2%) 3

neshta 62 (0.9%) 0 (0.0%) 0

Others 3,535 335 4

Total 7,006 1,093 (15.6%) 5

Table 2. Top 10 most evasive malware families in our dataset. We considered only the
families with at least 10 samples.

Family No. Samples No. Evasive No. Techniques

sfone 19 19 (100.0%) 1

unruy 11 11 (100.0%) 1

virlock 619 600 (96.9%) 2

vilsel 13 8 (61.5%) 2

urelas 19 9 (47.4%) 2

confuser 18 8 (44.4%) 1

vobfus 52 19 (36.5%) 1

swisyn 29 10 (34.5%) 1

softcnapp 17 5 (29.4%) 1

downloadsponsor 24 7 (29.2%) 1
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Table 3. Anti-instrumentation techniques used by malware in our dataset.

Category Technique No. Samples

Code Cache Artifacts Self-modifying code 897

Environment Artifacts Parent detection 259

JIT Compiler Detection Write on protected memory region 40

Environment Artifacts Leak DEBUG flag 5

Environment Artifacts Memory fingerprinting 3

Results. We found out that 1,093 (15.6%) samples presented at least one anti-
instrumentation technique. In particular, as shown in Table 3, we identified mal-
ware employing 5 different techniques, with the majority of the samples expos-
ing self-modifying code capabilities. Table 2 shows the 10 most evasive malware
families in our dataset. We leveraged AVClass [34] to determine the most likely
family of each sample, and then we ranked families with more than 10 samples
by the percentage of samples showing at least one anti-instrumentation tech-
nique. Interestingly, from Tables 1 and 3 we can see that, in some cases, not all
the samples of a given family presented anti-instrumentation capabilities. This
might mean that, at a certain point, malware authors decided to update their
samples providing them with such features.

As further discussed in Sect. 7, we cannot assure that some of the detected
anti-instrumentation techniques were added for the precise purpose of DBI eva-
sion (instead of generic evasion techniques). Intuitively, this is dependent from
the specific technique. For instance, while the detection of parent process could
be performed by malware for different reasons (e.g., detecting a debugger or a
specific agent inside a known sandbox) other than spotting the presence of Intel
Pin, detecting writes and reads on protected memory regions is more specific to
DBI-evasion.

From our study, we conclude that ant-instrumentation techniques, are
employed by a significant amount of malware samples, motivating the effort
in enforcing DBI tools and showing that systems such as Arancino can be
useful in defeating these evasion techniques.

5 Application Scenario: Unpacker

On top of Arancino, we implemented a generic, anti-instrumentation-resilient
unpacker. Our tool leverages the functionality provided by Intel Pin to track,
with an instruction level granularity, the memory addresses that are written
and then executed. As explained in Sect. 5.1, first of all, we identify a subset
of instructions that are relevant for our analysis. Then, we keep track of each
written memory region in order to create a list of contiguous written memory
ranges, defined as write intervals. At the same time, we check if each executed
instruction belongs to a write interval—this is the typical behavior of a packed
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binary that is executing the unpacked layer. If so, we trigger a further stage that
consists of: (1) Dumping the main image of the PE and a memory range of the
heap; (2) Reconstructing the Import Address Table (IAT) and generating the
correct Import Directory; (3) Applying a set of heuristics (entropy, long jump,
jump outer section, pushad popad, init function calls) to evaluate if the current
instruction is the Original Entry Point (OEP). The result of our tool is a set
of memory dumps or reconstructed PEs (depending on the success of the IAT
fixing phase), and a report which includes the values of each heuristic for every
dump. Based on those heuristics we can choose the best dump.

5.1 Unpacking Phases

In this section, we describe more in detail our unpacking approach.

Instructions Filtering. Since our tool works with an instruction level granu-
larity, limiting our analysis to the relevant instructions of the program is critical.
For this reason, we have introduced some filters, based on the common behaviors
showed by packers. Specifically, we do not track two kinds of instructions: (1)
write instruction on the Thread Environment Block (TEB) and on the stack,
and (2) instruction executed by known Windows libraries.

The write instructions on the stack are ignored because unpacking code on
the stack is not common. The same consideration can be applied to the instruc-
tions that write on the TEB, since most of these writes are related to the creation
of exception handlers. The instructions executed by known Windows libraries are
never considered when checking if the current instruction address is contained
inside a write interval because this would mean that the packer writes the mali-
cious payload in the address space of a known Windows library. This behavior
has never been identified in the analyzed packers; moreover, this approach would
break the application if it explicitly uses one of the functions which have been
overwritten.

Written Addresses Tracing. In order to correctly operate, most packers need
to write the original program in memory and then execute it. We can detect this
behavior by tracing each write operation performed by the instrumented pro-
gram and annotating a set of memory ranges that identify contiguously written
memory addresses.

WxorX Addresses Notifier. As expressed before, packers need to both write
and execute a specific memory region. Indeed, this behavior is distant from how
common benign programs act during execution. Although some benign programs
may present such behavior, e.g., JIT compiler, virtual machine, programming
languages interpreters, we can exploit such behavior as an evidence of some-
thing that was unpacked. Therefore, the first time we detect that the instruction
pointer is inside one of the traced memory ranges, we trigger the analysis and
dumping routines, and mark the memory range as unpacked. We call the property
of having a memory region that is either written or executed WxorX rule.
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Dumping Process. While many memory dumping tools only look at the main
module of the target program, which includes sections containing code, data, and
the resources used by the binary, in order to handle more unpackers, we need to
collect also code that has been unpacked on dynamic memory regions such as
the heap. If the packer’s stub unpacks new code on the heap and then redirects
the execution there, a naive dump strategy that only looks at the sections of the
PE would miss the unpacked code. We correctly catch this behavior by using
the WxorX address notifier, and including in the dump all the memory regions
that contain the unpacked code.

IAT Fixing and Import Directory Reconstruction. We focus our attention
on three different techniques. The first technique we have to deal with is called
IAT redirection: instead of having the addresses of the APIs directly in the
IAT, entries contain addresses that point to jump instructions to the real API
functions. The second technique is known as stolen API : it copies N instructions
of the API function code at the address pointed by the IAT entry and then inserts
an unconditional absolute jump to the N+1 instruction to the real API function
code. The last one is a generalization of the stolen API technique. It differs
from stolen API function because multiple parts of the original API functions
are copied and they are connected together by absolute jumps until the last one
reaches the original API code (Fig. 1).

Fig. 1. (1) The execution is redirected to the address inside the IAT entry. (2) The first
two instructions of the original API are executed followed by a jump to the next chunk
of instructions. (3) The chunk is executed together with another jump instruction. (4)
The last instruction is executed and finally a jump goes inside the original memory
space of the API. (Color figure online)

Thanks to Intel Pin, our system can deal with all these techniques using
static analysis. Indeed, for each IAT entry we statically follow the control flow
counting the number of instructions different from jumps, those are instructions
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belonging to the real API function (green, yellow and orange instruction in
Fig. 1). We follow the control flow until the target of a jump is inside a memory
region occupied by the DLL. When the target address and the instructions count
are retrieved, the value of the current analyzed IAT entry is replaced with the
difference between the target address and the instructions count.

Heuristics Description. We used a set of heuristics during the unpacking
process to understand when the program reaches the Original Entry Point (OEP)
and can be considered fully unpacked. Howewer, as demonstrated in [33], under-
standing if the unpacking process is finished is not a decidable problem. The
heuristics we have collected come from different works and books [24,36], and
we use them to tag a taken dump. These tags are useful at the end of the work
of our tool in order to understand if a taken dump and the associated recon-
structed PE represent the original program or not (since often the number of
taken dumps is more than one). Here we describe the heuristics that we used:

– Entropy. We trace the entropy evolution of the main module of the target
program and trigger a flag when the difference of the current entropy com-
pared with the original one is greater than a threshold, as shown by Arora
et al. [6].

– Jump outer section. A long jump is defined as a jump in which the offset
between the target address and the previous EIP is larger than a threshold.
This scenario identifies the typical behavior that transfers control from the
packer’s stub to the original program’s code, or to another stub.

– Registers context switch. Usually stubs of packers show a particular behavior
that is storing on the stack values of all the registers with a pushad instruc-
tion and, after the unpacking process has been completed, using a popad
instruction to restore the previously saved values. This is done to maintain
the correct context of the registers and avoid issues when the stub of a packer
resumes the execution to the original code. Hence, the two instructions can
be used to delimit the unpacking stub and help to identify the OEP.

– Suspicious imports. A packed binary usually includes very few imports, and
reconstructs the correct IAT only at run-time. This is an obfuscation tech-
nique used by packers in order to hide the real behavior of the malware. The
purpose of this heuristic is to search, in the reconstructed Import Directory,
functions commonly used by the malware and not by the unpacking stub. For
example, if a malware has to contact an Internet domain to download some
malicious code, it has to have in its imports some Internet communication
APIs, such as connect and send. Since the unpacking stub generally does
not need them to perform its job, when the binary is packed, it does not have
these API functions in its Import Directory initially. In some cases, the packed
binary has as imports only the GetProcAddress and LoadLibrary functions,
because these two are then used to dynamically load further functions.
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6 Testing and Validation

6.1 Defeating Anti-instrumentation Techniques

We tested Arancino to evaluate its capabilities in defeating anti-
instrumentation techniques. To do so, we leveraged eXait [15], a benchmark
tool specifically designed to highlight different techniques aimed at spotting the
presence of Intel Pin instrumentation. First, we instrumented and executed eXait
with Intel Pin, then we did the same using Arancino. In both cases, we looked
at the output of eXait to check if any of the techniques detected the instru-
mentation framework. Specifically, eXait implemented the following detection
techniques: detecting common JIT API calls, detecting code and string arti-
facts, leaking the effective EIP, detecting by page permission, detecting ntdll
hooks, detecting parent process, measuring overhead. While instrumented with
Intel Pin, eXait flagged all of these techniques, spotting the presence of the DBI.
Instead, when we instrumented it using Arancino, eXait did not produce any
positive results, showing that our system successfully hid the presence of Intel
Pin.

6.2 Unpacking Capabilities

Testing Known Packers. We tested our unpacker against 14 known pack-
ers, used to pack two binaries: a simple Message-Box (100 KB) and WinRAR
(2 MB). We used different programs with different sizes because the behavior of
a packer can be influenced by the size of the target program. Table 4 shows the
effectiveness of our generic unpacking algorithm and PE reconstruction system
against the different packers. For some packers, such as ASProtect, eXpressor
and Obsidium we managed to take a dump at the correct OEP but, due to
the presence of IAT obfuscation techniques, we were not able to reconstruct a
working PE.

Unpacking Malware Samples Found in the Wild. We downloaded random
samples from VirusTotal and we classified them with Exeinfo PE [1], a packer
detection tool, in order to discard not packed samples. Eventually, we obtained
a dataset of 1,066 packed samples, protected by known or custom packers, the
latter tagged by Exeinfo PE as “unknown.” Then, we tested the effectiveness of
our unpacker against malicious samples spotted in the wild protected with both
known and unknown packers. We automated the analysis of such samples using
a VirtualBox VM and letting each sample, instrumented with our unpacker, run
for 5 min. After the analysis performed by our tool, all the results were manu-
ally validated. Our unpacker managed to successfully unpack 808 (75.8%) sam-
ples, producing a working executable in 669 cases, while it failed to unpack the
remaining 258 ones. The reasons of the failures can be different: evading the vir-
tual environment, messing with the environment in a way that our script cannot
manage to collect results, employing IAT obfuscation techniques, or exploiting
packing techniques with a level of complexity out of our scope.
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Table 4. Results of our tests against known packers. For each packer, here we show the
packed program, if the original code of the binary has been successfully unpacked (U),
if the reconstructed PE is a working executable (EX), the number of imports observed
in the packed program, and the number of imports observed in the reconstructed PE.

Packer Binary U EX Packed Imports Recon/Tot Imports

Upx MessageBox � � 8 55/55

FSG MessageBox � � 2 55/55

Mew MessageBox � � 2 55/55

Mpresss MessageBox � � 2 55/55

Obsidium MessageBox � ✗ 4 4/55

PECompact MessageBox � � 4 55/55

EXEpacker MessageBox � � 8 55/55

WinUpack MessageBox � � 2 55/55

ezip MessageBox � � 4 55/55

Xcomp MessageBox � � 5 55/55

PElock MessageBox � ✗ 2 3/55

Asprotect MessageBox � ✗ 7 46/55

Aspack MessageBox � � 3 55/55

Hyperion MessageBox � � 2 55/55

Upx WinRAR � � 16 433/433

FSG WinRAR � � 2 433/433

Mew WinRAR � � 2 433/433

Mpress WinRAR � � 12 433/433

Obsidium WinRAR � ✗ 2 0/433

PEcompact WinRAR � � 14 433/433

EXEpacker WinRAR � � 16 433/433

WinUpack WinRAR � � 2 433/433

ezip WinRAR � � 12 433/433

Xcomp WinRAR � � 5 433/433

PElock WinRAR � ✗ 2 71/433

Asprotect WinRAR � � 16 433/433

Aspack WinRAR � � 13 433/433

Hyperion WinRAR � � 2 433/433

6.3 Case Studies

In this Section, we present two case studies that show how known packers employ
anti-instrumentation capabilities, and how Arancino successfully managed to
overcome these techniques and instrument the binaries.
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Obsidium. We found that Obsidium [2] performs a call to the function
QueryInformationProcess using as ProcessInformationClass argument an
undocumented class called ProcessDebugFlags. When QueryInformation-
Process is called with this parameter, it returns the inverse of the field
EPROCESS.NoDebugInherit, i.e., TRUE if the process is debugged, FALSE oth-
erwise. Since this flag is set when a program is instrumented with Intel Pin,
this attack can successfully reveal the presence of the DBI in memory. Instead,
using Arancino, we managed to defeat this anti-instrumentation technique. In
fact, by hooking the NtQueryInformationProcess system call and patching the
ProcessInformation struct, as described in Sect. 3, Arancino correctly man-
aged to instrument and execute a test binary. As result, our dynamic unpacker
successfully unpacked samples packed with Obsidium.

PEspin. We found that PEspin [3] makes use of self-modifying code. In fact,
when we instrumented a test binary packed with PEspin without Arancino, the
program crashed. Instead, when using our tool, the execution reached its normal
end flawlessly. To understand precisely the reason of the crash, we manually
analyzed the packed binary. We ran it in a debugger and we identified two
instructions, IN and OUT that provide a direct access to I/O devices and require
to be executed in protected mode. As a consequence, a program running in
user space, which is not allowed to do it, crashes. During normal executions,
these instructions are overwritten before EIP reaches them, so they are never
executed and they never cause the crash of the program. However, when the
binary is instrumented, Intel Pin places a trace composed by the two instructions
in the code cache, eventually running them. Instead, as explained in Sect. 3.1,
Arancino is able to detect if instructions are modified, and discard the current
trace forcing Intel Pin to collect a new one. This avoids the crash of the program.

6.4 Performance

The efforts made to improve the transparency of Intel Pin come with a perfor-
mance cost. We measured three different times. First, the execution time of the
program when not instrumented, used as reference to estimate the final overhead.
Second, execution time of the instrumented executable without Arancino, used
to evaluate the overhead introduced by Intel Pin alone. Finally, the execution
time of the executable instrumented with Arancino, used to evaluate the over-
head introduced by our tool. As shown in Table 5 the overhead introduced by our
countermeasures is strictly dependent from the specific technique. For instance,
while handling int2e, fsave, fxsave, fstenv instructions, Arancino intro-
duces a low overhead. On the other hand, when we defeat detection of DLL
hooks or memory fingerprinting, the overhead introduced by Arancino is high,
because Arancino has to analyze each read instruction to find its destination
address and check if it belongs to the whitelist.

7 Discussion of Limitations

Our work presents some limitation that we describe in the following paragraphs.
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Table 5. Overhead introduced by Arancino to defeat each technique.

Technique Execution
time [s]

Instrumentation
time [s]

Arancino
time [s]

Arancino
overhead [%]

EIP Detection - int2e 0.01 0.71 1.15 61%

EIP Detection - fsave 0.01 0.90 1.20 33%

EIP Detection - fxsave 0.01 0.90 1.15 27%

EIP Detection - fstenv 0.01 0.82 1.05 28%

Memory Page Permissions 0.01 0.82 0.90 9%

DLL Hook 0.01 0.81 2.00 145%

Memory Allocations 0.01 2.00 2.90 45%

Windows Time 0.01 2.93 5.51 88%

Parent Detection 0.02 0.85 0.87 2%

Memory Fingerprinting 0.04 2.00 7.09 254.5%

ARANCINO’s Artifacts. Even if Arancino correctly hides a vast number of
DBI artifacts, we cannot guarantee that it is completely immune to detection
attempts. In fact, some of the anti-evasion techniques that we proposed might
be leveraged as detection criteria. For instance, malware could exploit that fact
that Arancino hides all the protected memory pages. Specifically, a malicious
sample could try to allocate memory through the entire address space failing to
access memory regions that are already allocated for those hidden pages. This
does not tell the analyzed sample which libraries are loaded or the reason the
OS is denying memory allocation, but it is a particular behavior that could
be fingerprinted. Another example is the denied access to CSRSS.exe. On one
side this prevents to know the list of running processes, on the other side this
could be detected by a malware sample. However, although these limitations are
present in the current implementation of Arancino, it is possible to implement
more sophisticated mechanisms to hide such artifacts (e.g., allowing access to
CSRSS.exe and altering its internal data structures) and partially overcome these
limitations. In summary, we believe that Arancino definitely raises the bar for
the attacker, making DBI evasion much harder.

Anti-Instrumentation vs. General Artifacts. The techniques we observed
to identify DBI-evasion attempts are indicators of potential anti-instrumentation
attacks, but they do not capture the intention of the malware authors. For
instance, a self-modifying behavior, even if it breaks the use of code cache, may
be used as an obfuscation technique as well as an anti-instrumentation feature.
Similarly, the detection of parent process could be performed for different reasons
(e.g., detecting agents of a known sandbox) other than spotting the presence
of a DBI tool. We can only speculate why malware authors are adopting the
techniques that we identified in our study. Independently from the intention of
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malware authors, our experiments showed that Arancino is able to hide many
artifacts that malware uses to evade analysis systems.

Measurements. We based our approach and our study on the known techniques
employed to detect instrumented environment. While we cannot assure that the
current version of Arancino covers all the possible techniques used to detect
the presence of a DBI tool, our approach and our tool can be easily extended in
order to add support for new ones.

Environment Setup. We performed our study running malware on a virtual-
ized environment (i.e., VirtualBox). While we setup our VMs to minimize the
presence of VirtualBox artifacts, sophisticated malware samples can detect they
are running in a virtualized environment and hide their malicious behavior. How-
ever, this is not a fundamental limitation of our approach, in fact, Arancino
can perfectly work on top of bare-metal system such as [20,21,37] improving the
quality of such systems without affecting the stealthiness.

Implementation. Arancino currently supports only 32-bit binaries. Extend-
ing Arancino to 64-bit binaries can introduce a new attack vector that exploits
the Windows 64-bit backward compatibility with 32-bit applications to spot the
presence of a DBI, making it crash. In fact, in order to implement the backward
compatibility Windows runs each application using two different code segments,
one for the execution in 32-bit compatibility mode and one for the 64-bit mode.
Each segment has a flag indicating in which mode its instructions have to be
interpreted. Particular instructions, such as far jmp or far ret, can be used to
jump from one segment to the other. This behavior can cause the program to
switch between the 32- and the 64-bit segments. Unfortunately, DBI tools can-
not correctly handle this behavior and, consequently, they may disassemble and
instructions wrongly or, in the worst case, they may be unable to disassemble
them at all. While we leave the implementation of 64-bit support for future work,
the majority of malware samples nowadays are 32-bit binaries.

Performance. As shown in Sect. 6.4, Arancino inevitably introduces an over-
head on the execution of the instrumented binary. While this overhead is often
acceptable, it is quite high when Arancino handles some particular techniques.

Unpacker. First, our unpacker does not handle the process hollowing tech-
niques, so runtime unpacking that injects the payload inside new processes
and/or make use of DLL injection techniques are not considered by our tool.
Second, if a packer implements a custom IAT obfuscation technique, we cannot
reconstruct a runnable PE. Third, it does not track unpacking on the stack, so
if the original code of the program is written on the stack our tool cannot dump
the correct memory region and consequently it cannot reconstruct a working PE.
However, this technique is not commonly employed by known packers. Finally,
referring to the packer taxonomy presented in [38], our unpacker can handle
packers with a maximum level of complexity of 4. To handle more sophisticated
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packer, our approach could be combined with approaches such as [39], which is
less generic and targets specifically complex packers.

8 Related Work

DBI-Evasive Malware. Despite the fact that it is theoretically impossible to
build a completely transparent analysis tool, different works have been done
regarding the development of stealthy instrumentation systems.

SPiKE [41] adopts an approach completely different from other DBI tools,
such as Intel Pin or DynamoRIO, because it does not use a JIT compiler in order
to instrument traces. Instead, it places a series of breakpoints in memory, called
drifters, that, when are hit, trigger appropriate hooks, called instruments. The
drifters are implemented following the technique explained in VAMPiRE [40],
which guarantees a certain level of transparency and the impossibility of removal
by the malware—they are placed in not accessible memory regions. While this
work is stealthier than other DBI tools, it is also much less powerful than the
aforementioned ones, because it offers very few APIs. Another work that relies
on setting stealthy breakpoint is

SPIDER [14]. It duplicates the program in two different views: the code
view, and the data view. The former can be modified by the instrumentation
framework with the insertion of breakpoint and it is where the instructions are
fetched, while the latter is where all the write and read operations made by
the program are redirected and it can be modified only by the program itself,
ensuring transparency of the framework. If the instruction fetched and executed
from the code view hits a breakpoint, then a user-defined hook is invoked. As
the work described before, SPIDER is less powerful than other DBI tools, as it
only works at function-level.

Malware Unpacking. Ugarte-Pedrero et al. [38] recently proposed a taxonomy
to classify packers by their complexity. Generally, we can classify unpackers in
three categories: static [13], dynamic and hybrid unpackers. Most of the recent
proposed works are dynamic unpackers [7,8,17,18,31,43,44]. These approaches
leverage the fact that packers need of unpack the code in memory at runtime to
obtain the unpacked code.

Omniunpack [25], monitors memory page writes, exploiting a memory protec-
tion mechanism provided by the operating system, to access unpacked code pages
and notify external tools when such pages are ready to be analyzed. Another
attempt of exploiting operating system capabilities was made in Eureka [35]. This
tool uses a kernel driver to trace system calls and identify the time when the
analyzed sample is unpacked in memory. Similarly to our tool, Renovo [19] instru-
ments a packed binary to trace writes in memory and execute until the instruc-
tion pointer fall inside written regions. Unfortunately, Renovo is easily detectable
by anti-instrumentation techniques. Moreover, its output is a not working PE
because it is does not try to recover the IAT table. Rambo [39] exploits a multi-
path execution technique to trigger the unpacking of code regions. This is useful
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to defeat those packers who check the environment to understand if they are
under analysis. Complementary to our approach, Rambo tries to solve this prob-
lem by forcing the execution of not executed code, while our unpacker exploits
Arancino to hide artifacts.

Hybrid unpacking mixes some static analysis techniques with dynamics ones.
The strategy for hybrid unpacking can generally follow two approaches. First,
static analysis followed by dynamic analysis: An initial static analysis phase
is performed in order to extract a model of how the execution will look like
and, after that the program is executed, the static model built before is checked
against the dynamically executed instructions [33]. Second, dynamic analysis
followed by static analysis: This scheme relies on collecting traces of the execution
of the packed program, and eventually extracting, by static analysis, the interface
and the body of the unpacking function [11].

Our dynamic unpacker provides, respect to the existing solutions, a richer
synergy of heuristics aimed to automatically detect a possible OEP. Following
the taxonomy proposed in [38], our unpacker is able to handle packers up to
type 4. These packers are multi-layer, cyclic and interleaved. This means that
they use different layers with both forward and backward transitions. Moreover,
our unpacking algorithm is more generic respect to solution such as [22] since we
remove the assumption about the last written at page: We do not assume that
the last written and executed page is the one that contains the OEP; in fact, as
demonstrated in [5], this is not always necessarily true. Finally, while previous
approaches aim only at unpacking obfuscated code, our tool is able, in most of
the cases, to produce a working (i.e., runnable) executable.

9 Conclusions

Dynamic Binary Instrumentation (DBI) frameworks provide useful features in
the analysis of malware samples. However, modern malware samples imple-
ment anti-instrumentation techniques to detect if they are being instrumented.
We proposed a practical approach to enforce DBI frameworks and make them
stealthier against anti-instrumentation attacks by studying the common tech-
niques used by malware to detect their presence, and proposing a set of coun-
termeasures to address such techniques. We implemented our approach in
Arancino on top of Intel Pin. Then, we used Arancino to perform a mea-
surement of the anti-instrumentation techniques employed by malware. We ana-
lyzed 7,006 recent malware samples showing that 15.6% of them employ at least
one anti-instrumentation technique. Moreover, we leveraged our evasion-resilient
approach to implement a generic unpacker showing interesting case studies of the
anti-instrumentation techniques used by known packers. Combining Arancino
with our unpacker we provided a tool that can successfully analyze malware that
employs both anti-static-analysis and anti-instrumentation techniques.
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Abstract. Malicious software, better known as malware, is a major
threat to society. Malware today typically employ a technique called
obfuscation. Obfuscation detection in malware is a well-documented
problem and has been analyzed using dynamic analysis. However, many
tools that detect obfuscation in malware make no attempts to use the
presence of obfuscation as a method of detecting malware because their
schemes would also detect benign applications. We present three main
contributions. First, we conduct a unique study into the prevalence of
obfuscation in benign applications. Second, we create discriminating fea-
tures that can distinguish obfuscation in benign applications versus mal-
ware. Third, we prove that using the presence of obfuscation can detect
previously hard-to-detect malware. Our results show that for our set of
programs, we are able to reduce the number of malware missed by five
market-leading AV tools by 25% while only falsely detecting 2.45% of
tested benign applications.

Keywords: Malware detection · Dynamic analysis · Binary instrumen-
tation

1 Introduction

Malicious software, better known as malware, is a problem in today’s growing
cyber community. Malware has continued to grow at an increasingly rapid rate,
which brings the need for advanced and innovative defenses to an all-time high.
Symantec reported discovering more than 430 million unique pieces of malware
in 2015 alone [7]. The sheer number of malware with their growing complexi-
ties make detecting them a difficult task. Malware has been a cornerstone for
cyberthieves and attackers to steal money, compromise information and under-
mine the security of all people. In order to combat advanced malware today, secu-
rity companies use a combination of static and dynamic techniques for extracting
unique indicators of maliciousness (IOM) from malware. Static techniques refer
to analyzing a program without execution whereas dynamic techniques involve
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executing the program. These techniques are used to extract malicious indicators
that can be employed to differentiate malware from benign programs.

Malware writers have used a technique called obfuscation [22] to thwart
extraction of such IOM from malware and evade static detection [21]. Examples
of obfuscation techniques are self-modifying code, and dynamic code generation.
Although dynamic analysis tools have detected most types of obfuscation, obfus-
cation successfully thwarts static techniques such as [37] when analyzing mal-
ware. Obfuscated malware is a heavily studied subset within the field of malware
[30]. The tools mentioned here [3,9,18,26–28,33,34,36] are capable of detecting
and, in some cases, reversing obfuscation in malware. However, such tools are
largely forensic tools and cannot be used for automatically distinguishing mal-
ware from benign programs because their schemes would detect obfuscation in
both.

In this paper, we study obfuscations present in programs with a goal of auto-
matically distinguishing malware and benign programs. First, we present our
study of the presence of six different obfuscation types in 6,192 benign appli-
cations. This study is the first that looks at which obfuscations (or code pat-
terns that appear indistinguishable from obfuscation) are present in benign pro-
grams. Next, obfuscation is classified in two ways – allowed obfuscations (present
in benign applications) vs. disallowed obfuscations (usually only in malware).
Through the study, we find that three of the six obfuscations we analyze are
regularly present in benign applications. For these three, we create a set of dis-
criminating features that reduce false positives. The remaining three obfuscation
types are found to be largely restricted to malware. With our set of six obfusca-
tions with discriminating features, we produce a malware detection technique,
which is able to detect malware with high confidence. This includes the ability to
detect previously missed malware using the presence of disallowed obfuscations
as an IOM.

We present DynODet, a dynamic obfuscation detection tool built as an Intel
Pin DLL [17] that detects binary-level obfuscations, and uses discriminating fea-
tures to filter out benign application behaviors. When configured with discrimi-
nators, DynODet is not a general obfuscation detection tool and is not meant to
generically detect obfuscation in all programs. Rather, DynODet is the first tool
of its kind that can detect advanced malware, and hence is meant to be used
in addition to existing detection tools. DynODet is meant for use in a sandbox
[39], such as those in widely used sandbox based malware detectors. Enhancing
the sandbox with DynODet increases malware detection without significantly
increasing false positives. We present the following contributions:

– A unique study into the prevalence of obfuscations in benign applications
– Methods, implemented in our tool DynODet, to classify obfuscation types

into two types - allowed obfuscations that are prevalent in benign programs
and disallowed obfuscations that are present in malware

– Results showing that 33% of malware in a set of 100,208 have at least one of
the six disallowed obfuscations DynODet detects
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– Results showing a false positive rate of below 2.5% in a test of 6,192 real
world benign applications

– Results showing a decrease of 24.5% in malware missed by five market-leading
AV tools by using DynODet’s disallowed obfuscations

The paper is structured as follows: Sect. 2 discusses the theoretical idea behind
detecting obfuscation in malware. Sections 3 through Sect. 8 give an in-depth
explanation of each of the six obfuscation types, including related work.
Section 9 discusses DynODet’s capabilities. Section 10 discusses current findings.
Section 11 looks ahead at future work.

2 Detecting Dynamic Obfuscation

Obfuscation is defined as the deliberate attempt of programs to mislead a static
analysis tool. Obfuscation works by thwarting or misleading static disassembly
that is used in static analysis tools to understand the instruction-level structure
of the program. Obfuscation has become a widespread tool in malware given its
ability to defeat static analysis [21]. DynODet leverages the strength of dynamic
analysis in order to improve static analysis efforts against obfuscated programs.

Although static analysis has been shown to be ineffective against obfucsation,
it is still useful in determining a program’s expected path. Using just-in-time
recurisive-traversal disassembly is advantageous because it allows DynODet to
produce a limited expected path of the program prior to its execution. Then dur-
ing execution, for some of the obfuscations, DynODet can compare the expected
path to the actual path to detect if any obfuscation is present. DynODet imple-
ments just-in-time disassembly at run-time, which is the process of performing
disassembly recursively during execution. It uses this in order to disassemble por-
tions of the program just before they are executed in groups of code called fron-
tiers. A frontier is the set of instructions reachable from the current instruction
using direct control-transfer instructions (CTIs) only1. Hence frontiers terminate
at a set of indirect CTIs. Frontiers are disassembled when execution reaches the
current instruction at its beginning. Because indirect branch targets cannot be
always determined until just before the instruction executes, just-in-time disas-
sembly stops at all indirect branches. When an indirect branch target at the end
of a frontier becomes known because the execution reaches that point, DynODet
then restarts recursive traversal disassembly at its target.

DynODet chose to detect the following six obfuscations because these were
among the obfuscations studied in academic papers, as shown through the related
work sections below, and were discovered through our program-analysis of mal-
ware. The six chosen obfuscations are not an exhaustive list, but do show the
potential of using the presence of obfuscations as IOMs. Also, by detecting these
obfuscations, DynODet limits the ability of malware to escape static analysis.

1 A CTI is called direct where the CTI’s target is a constant; otherwise it is called
indirect.
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3 Self-modification

Definition. Self-modifying code is when a program overwrites existing instruc-
tions with new instructions at run time. Self-modification defeats static analy-
sis by producing instructions at run time that were not present during static
analysis.

Fig. 1. Example of Self-modification

Malware can implement this behavior by first changing the write permis-
sion on a region of existing code. Then the malware can overwrite the existing
instructions with new instructions as seen in the example in Fig. 1. The malware
can then re-execute the same region with the new instructions in place.

Presence in Benign Applications. When detecting self-modification by com-
paring an initial snapshot of a program with a current one after some exe-
cution time, we found that self-modification occurs in benign applications, in
part because of dynamic address relocation. Dynamic address relocation is
the process of updating a program with the runtime addresses for functions
that exist in other DLLs or binary images. Static linking does not cause self-
modification. In order to perform this relocation, the operating system loader
overwrites instruction operands that are dependent on the addresses of other
DLL functions because the addresses is unknown statically. By naively imple-
menting self-modification detection, this dynamic address relocation behavior
would be flagged. DynODet uses the comparison of two snapshots of the pro-
gram’s code from different points of execution as its overall detection scheme,
but also incorporates two discriminating features to distinguish malware from
benign programs.

Detection Scheme. First, DynODet detects self-modification by comparing
only the opcodes of instructions rather than the instructions along with their
operands. We found that the dynamic linking process described above only mod-
ifies operands, whereas malware may modify both the operands and opcodes.
Detecting only opcode modification reduces the detection of self-modification in
benign programs while still detecting it in malware. By not being able to change
the opcodes, malware is limited in its ability to perform malicious actions.

Second, DynODet does not flag a dynamic optimization found in a small
percentage of benign programs as malicious. The dynamic optimization allows
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programs to overwrite the first instruction of a function with a JMP instruction.
At run-time, a program may decide that it can reduce the runtime of the program
by simply jumping to some other location every time this particular function is
called [23]. A program can also overwrite a JMP instruction in order to enable a
function to execute based on a runtime decision. Thus, DynODet allows a single
instruction per frontier of code to be replaced by a JMP instruction or have
a JMP instruction replaced without it being considered malicious. DynODet’s
goal is not to generally detect self-modification, but to only distinguish self-
modification in malware vs. benign applications.

DynODet does not detect self-modification in any dynamically allocated
memory outside of the program’s main image because it found this behavior
in both benign applications and malware without a clear discriminating feature.
During the course of execution, a program in Windows can allocate memory with
read/write/execute permissions, which allows a program to use the region as a
code cache where it can write code, execute it, and repeat. Benign interpreter
programs will do this as confirmed in Sect. 10.2.

At first, it may seem like malware can simply mimic benign programs in order
to evade detection. However, it has been shown in studies such as [32] that static
analysis of opcode sequences can be used to detect malware. Thus, malware can
either only modify its instructions’ operands and be detected by their opcode
sequences, or it can overwrite its instructions and be caught by DynODet.

Related Work. Previous work, as explained below, detecting self-modification
has largely focused on detecting it in a forensic setting, rather than using it as
an IOM. Previous schemes would not be a viable detection tool because their
methods of detecting self-modification would also detect it in benign applica-
tions.

PolyUnpack [31] detects self-modification by performing static analysis on
a program, then comparing the dynamically executed instructions to those in
the static disassembly. If they do not match, then PolyUnpack outputs the code.
MmmBop [2] is a dynamic binary instrumentation scheme that uses a code cache
to help unpack a program and determine the original entry point. It detects self-
modification by checking the write target of every write instruction to determine
if the program wrote to a code cached instruction. However, both of these tools
do not use the detection of self-modification as a method of catching malware,
since their goals were malware understanding, not malware detection.

The following works [1,8,19] also detect self-modifying code, but do not pro-
pose their techniques as a method of detecting malware. [1,19] in particular did
not build their tools with the intention to use it on malware. [8] is a forensic
tool and not meant for live detection. Work from the University of Virginia [10]
provides a way, such as using a dynamically generated check-sum, to protect
binaries against self-modification to preserve software integrity, but do not use
the presence of self-modification as an IOM.
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4 Section Mislabel Obfuscation

Definition. Section mislabel obfuscation is the process of dynamically changing
the permissions of a section within the binary to execute a non-code region. By
marking some sections of its binary as a non-code section, a static analyzer may
not analyze it for instructions, thus missing potentially malicious code.

Fig. 2. Example of permission change

As an example of section mislabel obfuscation, Fig. 2 shows a malware that
first changes the permissions on a data section to executable, then it executes
from the data region. This type of obfuscation allows malware to avoid statically
marking sections of code in their binary, which can help evade static detection.
It also allows the malware to possibly make changes to the non-code regions
prior to changing the permissions on the section to further its obfuscation.

Self-modification, explained in Sect. 3, can include the changing of permis-
sions on a memory region. However, section mislabel obfuscation is distinct
because it tracks when a malware intentionally mislabels a section or sections of
a binary as a non-code region, only to later modify the permissions to execute
the section. Self-modification, per our definition, only occurs in code sections.

Presence in Benign Applications. From our study of benign applications,
section mislabel obfuscation does not occur in most benign programs. This is
most likely due to the use of standard compilers when compiling benign applica-
tions. Thus, DynODet does not employ a discriminating feature for this obfus-
cation.

Detection scheme. DynODet detects section mislabel obfuscation by using
Pin’s API to determine a program’s sections when first loaded into memory.
Each binary has several sections such as code, and data. DynODet stores which
address ranges are marked as code regions and which are not. It then monitors
the execution of the program and if the PC lies within a non-code region then



DynODet: Detecting Dynamic Obfuscation in Malware 103

section mislabel obfuscation has occurred. DynODet does not detect the actual
request of the program to change the permissions on its section, but is still able to
determine if such an event did occur by watching the execution of the program.

Because DynODet does not employ a specific discriminating feature in order
to detect this obfuscation, there is no way for malware to hide this obfuscation.

Related Work. We are not aware of any tool that explicitly detects section
mislabel obfuscation in the manner that DynODet does, but there are existing
schemes that try to prevent the execution of non-code sections.

Windows and other OSs have implemented a protection called data execu-
tion prevention (DEP) [6]. DEP prevents programs from executing code from
non-executable memory regions such as data sections. Although it seems DEP
employs a similar goal to our method, the goals are not identical – DEP is pri-
marily meant to prevent hijacking of control of critical Windows system files
using data execution, for example in a stack smashing attack. DynODet aims
to detect malware payload files. Consequent to its goals, most DEP implemen-
tations do not prevent adding execute permissions to segments. DynODet will
detect such permission changes. Another drawback of DEP with regard to Dyn-
ODet’s goals is that with DEP, if a piece of malware on an end point performs
some malicious actions prior to attempting to execute data, then those prior will
be allowed. In contrast, DynODet is meant to be an integral part of a sandbox
mechanism, which means detection of section mislabeling will imply that the
malware will be prevented from reaching the end point in its entirety.

5 Dynamically Generated Code

Definition. Dynamically generated code is the process of creating code
in a dynamically allocated memory region. Malware dynamically generates
code because it wants to hides its malicious instructions from static analy-
sis. As in Fig. 3, malware can first allocate a new region of memory with
read/write/execute permissions. It can then copy over instructions to the new
memory region and then execute it. To add a level of obfuscation, malware could
also decrypt a data section that holds malicious instructions prior to copying
over the instructions. Static analysis is defeated here because it cannot reliably
decrypt the data section to reveal the instructions in addition to its inability to
know with high confidence that the data section is encrypted.

Dynamically generated code differs from self-modification because dynami-
cally generated code is the action of allocating new memory, copying code to
it, then executing that region. Self-modification refers to overwriting existing
instructions (i.e. instructions that have already executed) with new instructions
and then executing the new instructions.

Presence in Benign Applications. In our experiments, we found that benign
applications also dynamically generate code for a variety of reasons. For example,
we found that some benign programs generate jump tables that can only be built
after the linking of other DLLs at runtime because the addresses of DLL functions
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Fig. 3. Example of dynamically generated code

are not known statically. Benign applications may also copy a function to a new
region of memory to create a wrapper function. In the cases where a benign
program dynamically generates code, we found that the code that is copied to
new memory is in an existing code section of the binary image loaded at run time.
This is because the dynamically generated code that is copied to new memory
is often generated by a compiler, which naturally places code in a code section.
Understanding that dynamically generated code occurs in benign applications,
discriminating features are needed in order to eliminate false positives.

Detection Scheme. DynODet detects dynamically generated code in a three-
step manner. First it hooks into Windows systems calls that are related to the
allocation and changing of permissions of memory. DynODet begins to track
any region that is marked as executable and is not a part of any loaded binary
image. Second, it instruments any write instructions to tracked memory regions
from the program so that right before it executes, DynODet can determine if
such a memory region is written to. If such a write occurs, DynODet checks to
see if the source address of the write instruction is from one of the program’s
non-code regions. If so, DynODet watches for the newly copied code to execute
at which point DynODet detects dynamically generated code.

With DynODet’s unique method of detecting dynamically generated code,
malware cannot simply try to mimic the behavior of benign applications in
order to evade detection. If the malware tried to specifically evade DynODet’s
detection, it would only be allowed to copy code into the newly allocated region
of memory from statically-declared code sections. If the code is copied from a
code section, then the code is discoverable statically and thus defeats the purpose
of dynamic code generation. In regards to self-modification in external memory
regions, if the code that is replacing existing code is from a data section inside
of the main image of the binary, then DynODet will detect it. If the code is from
a code section, then static analysis can discover it.

Just-in-time (JIT) compilation and interpretation of code are two types of
programs that are closely tied to dynamically generated code. JIT compilation
and interpretation of code are present in platforms that take an input of data
or bytecode and translate it into machine code. Unfortunately, interpretation of
code is a powerful tool that malware can misuse. For example, malware can use
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tools such as Themida and VMProtect to obfuscate attacks [33]. Further research
is needed to mitigate this risk. The current implementation of our detection
scheme for dynamically generated code with discriminating features does not flag
interpretation or JIT compilation as malicious. However, one potential solution
to this problem is to whitelist benign interpreter and JIT-platform programs,
which is feasible given their small number and well-known nature- this has the
added benefit of preventing the malicious use of interpreters unknown to the
user.

Related Work. As noted above, detecting and tracking dynamically generated
code is a solved problem. However, none of the following tools are able to use
their detection of dynamically generated code to catch malware.

OllyBonE [36], a plug-in to OllyDbg [41] is a kernel driver which reports
when pages are written to then executed. However, OllyBonE was only tested
on common packer code and not on benign applications. OmniUnpack [20] is
a similar tool that tracks memory page writes and then analyzes the contents
when a dangerous system call is made. When such a call is made another malware
analysis tool is invoked to analyze the written pages. ReconBin [40] also ana-
lyzes dynamically generated code. Renovo [13] attempts to extract hidden code
from packed executables by watching all memory writes, and determining if any
instructions executed are generated. It does not check the source of the writes
and was not tested on benign applications. None of these tools use the presence
of dynamically generated code as an IOM, since, lacking our discriminant, they
would have found such code in several benign applications as well. These tools
are also limited in their malware analysis only to dynamically generated code.

6 Unconditional to Conditional Branch Obfuscation

Definition. Unconditional to conditional branch obfuscation is the process of
converting an unconditional branch to a conditional branch by the use of an
opaque predicate [5]. An opaque predicate is an expression that always evaluates
to true or false and thus can be used in a conditional branch to always transfer
control one way. This obfuscation can be used to thwart static analysis by adding
more control-paths that static analysis has to analyze.

For example, in Fig. 4, malware can take an unconditional branch and convert
into a conditional branch. The malware can set the R1 and R2 registers such

Fig. 4. Example of Unconditional to Conditional Obfuscation
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that they are never equal thus always jumping to the target address of 0x10A.
Now the malware can insert junk code or invalid opcodes at the always not-taken
direction of the conditional branch in order to confuse the static disassembler.

This type of obfuscation is generally defeated by any dynamic analysis tool by
watching the actual execution of the program, and seeing which paths were taken
and never taken. However, merely having one outcome of a conditional branch
never execute is not indicative of the presence of this obfuscation, since benign
program may have branches outcomes which never happen (for example error
checks that never trigger in a particular run). In order to detect this obfuscation
specifically, some additional analysis has to be done.

Presence in Benign Applications. Although benign programs rarely use this
obfuscation, having one side of a branch in a benign program never execute is
common. Thus, we need a discriminating feature to distinguish this behavior in
malware vs. benign applications.

Detection Scheme. To distinguish malware from benign applications, Dyn-
ODet uses the observation that if malware uses this obfuscation, then the
untaken path is likely not code, and can be detected as such by just-in-time
disassembly. DynODet disassembles both the target and fall through address
of each conditional branch until an indirect branch is reached. If either control
flow path contains an invalid instruction prior to reaching an indirect branch,
this obfuscation is detected. DynODet stops inspecting the control flow paths at
indirect branches because the targets of indirect branches are unknown statically.

This is as far as DynODet is able to detect unconditional to conditional
branch obfuscation because it is hard to determine whether code is doing useful
work or not. However, it does eliminate the malware’s ability to place junk code
at either the target or fallthrough address of a conditional branch, which can
thwart some static disassemblers.

Related Work. DynODet is not aware of any work that explicitly detects this
obfuscation. In most dynamic analysis tools, this obfuscation is partially detected
as a by-product, but is not documented as being used to distinguish malware
from benign programs.

7 Exception-Based Obfuscation

Definition. Exception-based obfuscation is the process of registering an excep-
tion handler with the OS then causing an exception intentionally. Static analyz-
ers fail to see this because exceptions can occur in programs in ways that are
not statically deducible. For example, a divide instruction, which usually take
registers as operands, can have the divisor equal to zero. It is very difficult for
static analysis tools to reliably confirm that the divisor register will be set to
zero.

An example is shown in Fig. 5. The malware first registers an exception han-
dler that jumps to harmful code. Then, the malware causes an intentional excep-
tion such as division by zero. In Fig. 5, R6 would be equal to zero. The registered
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Fig. 5. Example of exception-based obfuscation

exception handler will then execute and the program will jump to the harmful
code. This instruction execution sequence would not have been predicted or
analyzed by static analyzers due to the dynamic nature of exceptions.

Presence in Benign Applications. Exception-based obfuscation has been
studied in the past as the related work section below shows, but we are not
aware of any work that uses this as an IOM for malware. Unsurprisingly, handled
exceptions do occur inside of benign applications. Legitimate exception handlers
may execute because of an invalid input from the user or bad input from a file.
Because of this, simply classifying any exception handler execution as exception-
based obfuscation is not a viable detection technique.

Detection Scheme. Benign applications do not intentionally cause exceptions,
such as divide by zero, in their programs because these would cause a system
error. Malware, however, to ensure that its malicious exception handler executes,
will cause an intentional exception. Using this, DynODet incorporates the fol-
lowing discriminating features to catch exception-based obfuscation in malware.

DynODet detects exception-based obfuscation by monitoring exception han-
dler registration followed by an exception occurring. During execution, DynODet
monitors two methods of registering an exception handler. One is the standard
Windows API SetUnhandledExceptionFilter. The other method is directly writ-
ing to the thread information block (TIB). In order to detect this method, Dyn-
ODet watches all writes to the TIB and detects any changes to the current excep-
tion handler. Once an exception handler is registered, DynODet instruments the
beginning of it and is notified when it runs. Next, DynODet strengthens the
probability of detecting a malicious exception by catching an unexpected control
flow exception. DynODet defines an unexpected control flow exception as when
the control-flow of the program does not follow the expected path. In order to
detect an unexpected control flow exception, DynODet instruments every Pin
basic block and keeps track of the first and last instruction addresses. Prior to the
dynamic execution of each basic block, DynODet checks if the entire prior basic
block executed. A basic block is a sequence of instructions that should execute
from top to the bottom, unless an exception occurred. If DynODet determines
that a previous basic block did not execute in its entirety, it turns an internal flag
on. If the next basic block executed is in a registered exception handler and the
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internal flag is on, exception-based obfuscation has occurred. The internal flag
is used because DynODet is only concerned with exceptions that occur within
the application because malware, when employing this obfuscation, triggers the
exception in its code to ensure that the exception will occur.

This type of obfuscation is rare, as will be seen in the results below. The point
of this obfuscation is to hide a malware’s true path of execution from a static
analysis tool. If malware chose to implement exception-based obfuscation in a
manner that deliberately evades DynODet’s detection scheme, such as by using
an explicit interrupt instruction, the interrupt could be discovered through static
analysis, thus making the obfuscation less useful. DynODet’s detection scheme
allows it to broadly detect most exception-based obfuscation scenarios such as
divide by zero or writes to address zero.

Related Work. There have been a few works that looked at how exception-
based obfuscation may be present in malware, but none have created a gen-
eral solution and used it as an IOM. Prakash [25] introduced an x86 emulator
that attempts to detect exception-based obfuscation in attempts to generically
unpack malware. The emulator only detects common exception-based obfusca-
tions, such as using the x86 interrupt instruction or a divide by zero, to ensure
that the emulator continues running. It does not use exception-based obfuscation
as a detection mechanism and did not study it in benign programs. Work from
the University of Arizona [24] proposes using exception handlers as a method of
obfuscation, but does not propose or deliver a mechanism of detecting it.

8 Overlapping Code Sequences

Definition. Overlapping code sequences occur when jumping into the middle of
an existing instruction. This method allows malware to hide instructions within
other instructions, which can trick static disassemblers. In the complex instruc-
tion set computing (CISC) x86 architecture, instructions have variable length so
the same range of addresses can have several different instruction sequences.

As shown in Fig. 6, to implement this behavior, a malware can use an instruc-
tion with an immediate value that is an encoding of an instruction. A static
disassembler will not be able to see the hidden instruction because it is not
located at a natural instruction address and could miss malicious behavior.

Fig. 6. Example of Overlapping Code Sequences
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A push instruction is represented in the immediate value of a MOV instruc-
tion as a proof-of-concept in Fig. 6.

Presence in Benign Applications. During benign testing, DynODet found
a very small number of benign programs with this behavior. To the best of our
knowledge, there are no high-level construct that would produce this behavior
when compiled by a standard compiler. Thus, no discriminating feature is needed
to use this as an IOM.

Detection Scheme. During disassembly, DynODet checks if the current PC
is in the middle of an existing instruction in the disassembly map produced by
recursive traversal. If it is, DynODet checks if all bytes of the current instruction
match the original code. If they do not match, self-modification has occurred. If
they do, overlapping code sequences are present.

Related Work. Work at the University of Louisiana at Lafayette [14] imple-
ments segmentation to produce a collection of potentially overlapping seg-
ments, where each segment defines a unique sequence of instructions. Their tool
attempts to uncover all potential sequences of instructions. Their tool does not
provide much insight into which sequence of instructions actually ran, and pro-
vides superfluous instructions that may never be executed dynamically. Their
scheme also does not try to detect overlapping code sequences as an IOM.

9 DynODet Capabilities and Limitations

9.1 Capabilities

Multithreaded Applications: DynODet can handle multithreaded applica-
tions so long as the underlying dynamic binary instrumentation (DBI) tool it
uses (such as Pin) handles multi-threading. Pin assigns each created thread a
thread ID that is used to distinguish which thread is executing and being instru-
mented. DynODet analyzes each thread’s dynamic execution separately, and
combines all detections found in all threads.

Spawned Child Processes: DynODet is able to handle programs that spawn
other processes. This is a common behavior for many programs so DynODet is
injected by Pin into each child process and each process gets its own unique
analysis, but ultimately gets grouped into the parent process’s analysis.

9.2 Limitations and Assumptions

Malware detection is a constant arms race between the malware writers and
cybersecurity companies. As with any new scheme, malware can specifically tar-
get to defeat our scheme and bypass our detections. However, our detection
schemes do make it considerably more difficult for malware to bypass both con-
ventional static detection and our tool’s detections.
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10 Results

10.1 Test Set up

Our tool is currently built as an Intel Pin [17] dynamically linked library (DLL).
Pin is a DBI tool that provides all of the necessary capabilities described above.
Although the current implementation of DynODet is tied to Pin, our detection
mechanisms are universal and can be implemented using other dynamic binary
rewriters. As a Pin DLL, DynODet gets injected into the program being moni-
tored in a sandbox environment. After the program is finished running or killed
by our timeout, the results are collected and sent back to the host computer.

The Cuckoo Sandbox [11] is a popular malware analysis environment that
provides an infrastructure for dynamic malware testing. We perform all of our
malware testing in duplicated Cuckoo sandboxes, one sandbox per malware,
which are reverted to a clean environment prior to each execution. We give our
Cuckoo Sandbox process 32 KVM [15] instances, which are running Windows
7 with 1 GB of RAM each. We also set up INetSim [12] in order to give the
KVM machines a fake Internet connection to trick malware into thinking it has
access to Internet. INetSim is used here to get better code coverage in malware.
DynODet has an internal timeout of one minute per malware.

10.2 Benign Applications

We performed benign application testing for 6,192 Windows programs. In order
to ensure that our testing was comprehensive, we tested two sets of benign
programs. First were 119 programs that had to be installed prior to execut-
ing (referred to as the installed benign set). Second was a set of 6,073 benign
programs from a list produced by the National Institute of Standards and Tech-
nology (NIST) [35].

For the installed benign set, some of the installed programs tested were Adobe
Acrobat, Mozilla Firefox, QuickTime Player, Notepad++, Google Chrome, Win-
Scp, Open Office, 7zip, and Java Virtual Machine (JVM). The other installed
programs were a mix of media players, music players, text editors, IDEs, mail
clients, digital recorders, and standard system tools. When testing these installed
benign applications, there was no easy method of interaction automation because
these programs require a complex level of input. A generic interaction script can-
not be created to robustly test all of the benign applications. In our best attempt,
we modified human.py, Cuckoo’s python script that is responsible for simulating
human interaction, to click in a grid pattern, left to right, top to bottom, in fixed
intervals across the window of the benign application in order to click as many
buttons as possible. Human.py also input random text in order to give input into
text fields of applications. Although this was a simple method of interaction, the
purpose of this was to increase code coverage in each application.

For the second part of our dataset, we obtained a list of Windows executables
from the National Software Reference Library (NSRL) produced by NIST. The
NSRL set contains millions of hashes of benign software. From the initial list, we



DynODet: Detecting Dynamic Obfuscation in Malware 111

extracted the unique hashes of Windows 7 compatible executables and queried
Virus Total in order to download the binaries. This resulted in 6,073 benign
applications that we were able to test. The NSRL Set is largely considered to
be a set of known benign software as noted in [16,38]. However, there is a small
subset of known hacker tools and other unknown software that are considered
to be malicious [29]. For testing purposes, we removed these programs to ensure
that our benign dataset was truly benign in order to evaluate our tool properly.
Ground truth is important, thus we felt that the preceding precautions were
justified. Additionally, due to the sheer number of samples, it was not feasible to
test and install each by hand. The ability to thoroughly test benign applications
that arrive as standalone executables is outside of the scope of DynODet.

NSRL Set. The results for the 6,073 programs from the NSRL set are listed
below in Table 1. In Table 1, the second column shows the obfuscation types
that were detected in benign applications when no discriminating features were
implemented. Without discriminating features, 8.35% of benign programs tested
contain at least one type of obfuscation. The third column shows the obfuscations
present with discriminating features. With discriminating features, the false pos-
itive rate is reduced by nearly 70% for programs with one or more obfuscations to
2.45% and 75% for programs with two or more obfuscations to .13%. As with any
detection tool, the false positive rate is important and using these obfuscation
types without discriminating features as IOM of malware is not viable.

The 149 programs falsely flagged, from manual inspection, seem to have no
single attribute that explain their false detection. Using PeID, a popular packer
identifier, we were able to determine that 58 of the 149 programs were packed
with a variety of packers and compressors. Our conjecture is that these falsely
flagged programs are very uncommon and do not follow standard compilation
tools as supported by our testing results. These programs, rather than intention-
ally implementing unallowed obfuscations, are most likely flagged due to some
extreme corner cases that our current implementation does not allow. A possible
solution to this problem is addressed in Sect. 11.

The subset of programs tested from the NSRL set were obtained from Virus
Total. This leads us to believe that the programs tested in this dataset are more
representative of the types of executables that would be tested in an intrusion
detection system. Thus, the results here show the versatility of DynODet in that
it can work for both large, installed programs as well as standalone executables
such as those arriving at a network’s firewall.

Standard Installed Applications. The results for 117 out of the 119 appli-
cations are also listed in Table 1. Only 117 were tested here because two of the
programs, JVM and Python interpreter, cannot be run without input. These are
tested and explained in the next sub-section. Out of the 117 benign applications
tested, only one program had a false positive in any of our obfuscation detectors,
namely a section mislabel obfuscation. The program with the false positive was a
graphical viewer called i view.exe. This false positive is caused by Pin’s inability
to detect a code region along with the program’s possible use of a non-standard
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Table 1. Benign application results

Detection W/O discriminating features W/ discriminating features

NSRL Installed NSRL Installed

Self-modification 135 5 2 0

Section Mislabel 51 1 51 1

Dynamically

Generated Code

296 29 86 0

Unconditional to

Conditional

12 0 12 0

Exception-based 27 1 5 0

Overlapping Code

Sequences

5 0 5 0

Had 1 or more

obfuscations

507/6,073 (8.35%) 34/117 (29.05%) 149/6,073 (2.45%) 1/117 (.85%)

Had 2 or more

obfuscations

33/6,073 (.54%) 2/117 (1.71%) 8/6,073 (.13%) 0/117 (0%)

compiler that may have produced an irregular header. As shown in Table 1, none
of the indicators outside of the one explained above, were detected in 117 benign
applications. This shows that the modifications that were made in DynODet
reduce false positives for three of the indicators to nearly 0%.

Interpreters and JIT-platform Programs. We also studied interpreter pro-
grams, which are programs take in data containing executable code. For example,
Adobe Acrobat Reader (AR) takes in a PDF as input, which can contain exe-
cutable code. DynODet’s goal is not to detect malicious PDFs. Rather, we aimed
to find out whether DynODet detects behaviors such as dynamically generated
code in the interpreter program.

Each interpreter program was tested with a small set of inputs. AR was
tested with 12 PDFs that included scripts, such as a template form. The Python
interpreter (PyInt) was tested with a set of nine python scripts that performed
small tasks such as analyzing a directory for mp3s or printing the date and time.
Firefox was tested with eight websites running javascript such as www.cnn.com,
www.youtube.com, and www.amazon.com. JVM was tested with 11 benchmarks
out of Decapo Benchmarks, a Java open-source benchmark suite [4].

As Table 2 shows, when our tool did not use discriminating features, it
detected dynamically generated code in AR, Firefox and JVM. With our dis-
criminating features incorporated, there were no detections. This proves that
our discriminating features are valuable in not detecting obfuscation in benign
applications.

As noted in Sect. 3, we did not test for self-modification in dynamically allo-
cated memory. We found that Firefox and JVM allocate memory outside of
their main images to use as a code cache when executing chunks of interpreted
code. As mentioned in Sect. 5, there are other methods of detecting malicious
interpreter and JIT-platform programs.

www.cnn.com
www.youtube.com
www.amazon.com
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Table 2. Benign interpreter results

Detection W/O discriminating features W/ discriminating features

AR PyInt Firefox JVM AR PyInt Firefox JVM

Self-modification 0/12 0/9 0/8 0/11 0/12 0/9 0/8 0/11

Section Mislabel 0/12 0/9 0/8 0/11 0/12 0/9 0/8 0/11

Dynamically

Generated Code

12/12 0/9 8/8 11/11 0/12 0/9 0/8 0/11

Unconditional to

Conditional

0/12 0/9 0/8 0/11 0/12 0/9 0/8 0/11

Exception-based 0/12 0/9 0/8 0/11 0/12 0/9 0/8 0/11

Overlapping

Code Sequences

0/12 0/9 0/8 0/11 0/12 0/9 0/8 0/11

Had 1 or more

obfuscations

12/12

(100%)

0/9

(0%)

8/8

(100%)

11/11

(100%)

0/12

(0%)

0/9

(0%)

0/8

(0%)

0/11

(0%)

10.3 Malware

The malware samples were collected by our group from Virus Total, a database
of malware maintained by Google. We tested in total of 100,208 malware selected
randomly from 2011 to 2016. The malware test set used is a comprehensive set
including viruses, backdoors, trojans, adware, infostealers, ransomware, spyware,
downloaders, and bots. It is worth noting that Virus Total does contain some
benign applications as well; hence we only tested samples that had at least three
detections in their corresponding Virus Total report to filter out false positives.

As seen in Table 3, DynODet found examples of each obfuscation in malware.
The table shows the number of detections in the 100,208 malware tested when
discriminating features are used. With discriminating features enabled, 32.7% of
malware are detected. DynODet here is not claiming that the results below show
the true number of malware that have these characteristics. Rather, DynODet
is showing the number of malware that can be detected despite having made
modifications to some of the dynamic obfuscation detection schemes.

Although some of the detections such as overlapping code sequences and
exception-based obfuscation were not that common in malware, it is still useful
to include them as malware detectors for two reasons. The first is that these are
rarely found in benign programs so adding to the list of distinguishable charac-
teristics between malware and benign applications will always be useful. Second,
an advantage of DynODet is that it uses all of these detections in combination in
order to catch malware. Thus, although the detections of individual obfuscations
may be small, when combined, they can be substantial.

As seen in Table 3, DynODet found that 32.74% of malware tested had at
least one disallowed obfuscation. When compared to benign programs, in which
less than 2.5% had at least one indicator, there is a clear distinction between
malware and benign programs. This allows DynODet to be employed as a detec-
tion tool, rather than just an analysis tool. If a use case of DynODet could not
tolerate any false positives, then it can be altered to only classify programs with
2 obfuscations as malware, which still results in a 5.74% detection rate.
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Table 3. Obfuscation in malware results

Detection for 100,208 Malware

Detection W/ discriminating features

Self-modification 10,264 10.24%

Section Mislabel 19,051 19.01%

Dynamically Generated Code 7,106 7.09%

Unconditional to Conditional 7,889 7.87%

Exception-based 334 0.33%

Overlapping Code Sequences 1,710 1.71%

Had 1 or more obfuscations 32,811 32.74%

Had 2 or more obfuscations 5,750 5.74%

Table 4. Malware detection improvement

Detection of 12,833 missed malware

W/O discriminating features W/ discriminating features

4,445 34.64% 3,141 24.48%

Another indication of the capability and novelty of DynODet is shown in
Table 4. We analyzed the detections of the following five market-leading AV
tools: Kaspersky, ClamAV, McAfee, Symantec, and Microsoft Security Essentials
and gathered the subset of malware that were not detected by any of the tools.
The set resulted in 12,833 malware. We are able to show that DynODet is able
to detect 4,445 (34.63%) without discriminating features and 3,141 (24.48%)
with discriminating features out of the previously missed malware. This also
shows the efficacy in using obfuscation detection in order to detect malware that
was previously hard to catch. The detection rate of each tool listed below was
obtained through Virus Total’s reports for each malware.

10.4 Limitations with Evasion

As with any detection scheme, there are ways for malware to evade our tool
specifically. We have listed below possible evasion techniques for three of the
obfuscations detected in DynODet.

– Section mislabel obfuscation: In order to evade section mislabel detection,
malware can mark all sections in their program executable so that regardless
of which section it executes from, it will not be caught by our detection.
However, this becomes problematic for the malware for two reasons. First,
from our analysis of benign programs, we found that almost no program had
all executable sections. If malware, in order to evade our detection scheme,
started to mark all sections executable, this would be an easy sign for analysis
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tools to pick up on. Second, if malware marks all sections as code, every
analysis tool will analyze all of its sections expecting code. This leads to two
scenarios. Either the malware’s malicious code will be revealed, or in attempts
to hide its code, the malware’s code sections will have high entropy due to
encryption or no valid code at all, which is suspicious and will also be caught
by detection schemes.

– Exception-based obfuscation: Our tool currently detects all hardware excep-
tions that lead to the execution of a registered exception handler as a poten-
tially malicious indicator. Although hardware exceptions can occur in benign
programs, through our study, we found that the frequency of occurances in
benign programs differ from those in malware. As supported by our data, this
occurs about three times more often in malware than in benign applications.
Although this is not a great indicator, we conjecture that it might be useful
in a machine-learning framework as one feature among many used to weigh
the likelihood of a program being malicious.

– Unconditional to conditional obfuscation: Malware can evade this detection
by putting legitimate code at every conditional branch in the program. As
mentioned in Sect. 6, DynODet is unable to prevent this evasion. However,
it does constrain the malware writer’s flexibility in placing data in the code
section, since not all data values also represent valid instructions. Moreover,
it increases the work of the malware writer.

11 Future Work

Although our current scheme above has shown promise in being able to detect
malware solely based on the presence of these features, this is not how real-world
malware detection tools operate. They use a combination of features in order to
classify a program as malicious or benign. Using this, we propose to first expand
our list of obfuscations to other program-level features in order to detect more
malware. Second, we will incorporate other static and dynamic features that have
already been discovered to enhance our tool. We plan to feed these features into
a machine learning algorithm to help distinguish the difference in the presence of
these features in malware versus benign. The machine learning algorithm, based
on statistical data, will choose which combinations of obfuscations are indicators
of maliciousness, eliminating the need to manually inspect what allowed versus
disallowed obfuscations look like. Our work thus far shows there is a viable
avenue for using program-level obfuscations to detect advanced malware.

12 Conclusion

DynODet, a dynamic obfuscation detection tool, is able to detect that 33% of
malware contain at least one disallowed obfuscation while less than 2.5% of
benign applications contain any. Without our unique discriminating features, at
least one of the six obfuscations we measure are found in over 29% of installed
benign applications. This has prevented the use of obfuscation as an IOM for
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malware. By categorizing obfuscations into allowed and disallowed obfusca-
tions, DynODet is able to accurately detect versions of self-modification, section
mislabel obfuscation, dynamically generated code, overlapping code sequences,
exception-based obfuscation, and unconditional to conditional obfuscation that
are specific to malware. Additionally, DynODet makes it more difficult for mal-
ware to use these obfuscations to hide from static analysis. Previous work did not
make any attempts to distinguish obfuscations that can occur in both benign
applications and malware. DynODet was also able to decrease the number of
malware missed by five market-leading AV tools by nearly 25%. DynODet is
a deployable detection tool that contains the technology to strengthen today’s
defenses against malware.
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Abstract. Performing triage of malicious samples is a critical step in
security analysis and mitigation development. Unfortunately, the obfus-
cation and outright removal of information contained in samples makes
this a monumentally challenging task. However, the widely used Portable
Executable file format (PE32 ), a data structure used by the Windows
OS to handle executable code, contains hidden information that can pro-
vide a security analyst with an upper hand. In this paper, we perform
the first accurate assessment of the hidden PE32 field known as the
Rich Header and describe how to extract the data that it clandestinely
contains. We study 964,816 malware samples and demonstrate how the
information contained in the Rich Header can be leveraged to perform
rapid triage across millions of samples, including packed and obfuscated
binaries. We first show how to quickly identify post-modified and obfus-
cated binaries through anomalies in the header. Next, we exhibit the
Rich Header’s utility in triage by presenting a proof of concept similarity
matching algorithm which is solely based on the contents of the Rich
Header. With our algorithm we demonstrate how the contents of the
Rich Header can be used to identify similar malware, different versions
of malware, and when malware has been built under different build envi-
ronment; revealing potentially distinct actors. Furthermore, we are able
to perform these operations in near real-time, less than 6.73 ms on com-
modity hardware across our studied samples. In conclusion, we establish
that this little-studied header in the PE32 format is a valuable asset for
security analysts and has a breadth of future potential.

1 Introduction

The shear volume of malware samples that analysts have to contend with makes
thorough analysis and understanding of every sample impractical. As a result,
effective and timely triaging techniques are vital for analysts to make sense of
the collective information and focus their limited time on agglomerated tasks
through uncovering commonalities and similar variants of malicious software.
This in turn, allows analysis to better hone in their effort and avoid wasting costly
cycles on previously analyzed or unrelated samples. Unfortunately, it is common
practice for malware authors to design malware that hinders automated analysis
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and otherwise thwart triaging efforts; thereby allowing malware to operate under
the radar for a longer period of time.

One of the common practices used in triaging samples is to leverage header
information from the Portable Executable file format (PE32 ) [3,6,7]. This is
primarily done as the derived information can: (i) reveal how the executable
was built and who built it, (ii) provide an understanding of what the executable
does, and (iii) identify entry points for disclosing packed and obfuscated code.
For example, when investigating the Rustock Rootkit, the PE32 Headers iden-
tified the location of the first deobfuscation routine [3]. Additionally, numerous
clustering and similarity matching algorithms are often exclusively based on the
data derived from the PE32 file format [5,11,24,26].

Unfortunately, malware authors are well aware of the valuable data contained
in the PE32 file format. As a result, they routinely take steps to strip or otherwise
distort any useful information from the PE32 format through packing binaries,
adjusting compiler flags, and manually removing data in the header [1,10]. While
unpacking malware and performing manual reverse engineering can recover this
useful information, the process is extremely costly. As stated by Yan et al. [27],
“Who has the time to reverse all the bytecodes given that security researchers are
already preoccupied with a large backlog of malware?” Needless to say, stripping
the headers leaves little useful information available for triage.

Fortunately for security analysis, the PE32 Header contains information that
is often poorly understood or simply hidden. In this work, we perform an in-depth
study of one of these hidden attributes commonly known as the Rich Header.
While rich in information, this header is also common in malware, present in
71% in our random sample set, and is found in any PE32 file assembled by the
Microsoft Linker. Through the knowledge we derive from our in-depth study,
we show how to properly dissect the information and explain what the resulting
data means. We then study the extracted headers from malicious samples, which
we gather from four distinct datasets. Leveraging this information, we present
proof of concept methods to demonstrate the significant value the Rich Header
can provide for triage.

Overall, in this paper, we show that the Rich Header field is valuable in
triage and can be a catalyst for past and future work. As such, we provide
the first accurate assessment of the Rich Header and detail how to extract its
clandestine data. We then present a series of statistical studies and describe two
proof of concept methods in which the Rich Header can be used in triage. The
first method allows for the rapid detection of post-modified and packed binaries
through the identification of anomalies. The next method leverages machine
learning to perform rapid and effective triage based solely on the values in the
Rich Header’s @comp.id field; specifically the 516 unique ProdID, 29,460 distinct
ProdID and mCV pairs, and their Count values we have identified across 964,816
malicious samples. This method can identify similar malware variants and build
environments in 6.73 ms across 964,816 malware samples using only a consumer
grade laptop. In summary, we prove that leveraging the data contained in this
often forgotten and overlooked aspect of the PE32 file format, called the Rich
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Header, establishes a major boon for performing analytic triage operations and
opens the door for a plethora of future work.

In summary, we make the following main contributions:

– We present the first accurate and in-depth study of the Rich Header field and
describe how to extract its data.

– We demonstrate how anomalies in the Rich Header can identify 84% of the
known packed malware samples.

– We present a proof of concept approach that utilizes machine learning tech-
niques to identify similar malware variants and build environments in near
real-time, 6.73 ms, by only leveraging the Rich Header.

2 Background

In this section, we provide a background on the Portable Executable file for-
mat, commonly known as PE32 .1 We then present an overview of the com-
piler linking and describe how it creates the sections contained in the header.

DOS Header

Rich Header

COFF Header

Optional Header

Section Table

⋮

e_
lfa

ne
w

Fig. 1. High level view of the PE32 format

2.1 Portable Executable File
Format Headers

The Portable Executable file for-
mat was introduced by Micro-
soft to provide a common format
for executable files across the Win-
dows Operating System family [17].
As such, the format is the primary
standard used for shared libraries,
binaries, among other types of exe-
cutable code or images in Windows.
The Portable Executable file for-
mat is also often called the Com-
mon Object File Format (COFF ),
PE/COFF, and PE32 .

The PE32 format includes an
MS-DOS stub for backwards compatibility, with the e lfanew field pointing
to the beginning of the COFF Header, as Fig. 1 illustrates. The COFF Header,
in turn, is followed by optional headers that control (among others) imports,
exports, relocations, and segments [14]. Together, these headers contain valuable
information for program execution, identification, and debugging. Including the
base address of the image in virtual memory, the execution entry point, imported

1 For simplicity, we will use the 32 bit version of the Portable Executable file format.
The 64 bit version behaves similarly.
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and exported symbols, and information on the code and data sections that form
the program itself.

The PE32 Header is openly documented by Microsoft and as such its internal
mechanics are well understood by the development community [13]. However,
as we will discuss in this work, the PE32 format does contain undocumented
sections that have eluded understanding.

2.2 Compiler Linking

The typical process of building an executable image is subdivided into two parts:
the compilation phase in which the compiler translates code written in a high-
level language into machine code and the linking phase where the linker combines
all produced object files into one executable image. These are both compart-
mentalized processes introducing a one-to-one relation between compile units
(usually files containing source code) and the resulting object files.

The Microsoft Visual C++ (MSVC) Compiler Toolchain is a commonly used
solution for building executable images from source code written in a vari-
ate of programming languages. During the compilation phase cl.exe provides
the interface to the Front-End compilers (c1.dll and c1xx.dd) as well as the
Back-End compiler c2.dll. Then, c2.dll will create object files (.obj) from
intermediate files from the Front-End compilers. While creating the objects, the
Microsoft Compiler assigns each object file an ID, which in this work referred to
as the @comp.id , and stores the ID in the header of the respective object file. It
is important to note that also the Microsoft assembler as well as the part of the
tool chain that is responsible for converting resource files into a format suitable
for linking generated @comp.ids.

Once the compilation phase is complete, link.exe will collect the objects
needed and begin to stitch the PE32 file or static library (.lib) together. Con-
sequently, static libraries consisting of more than one object contain multiple
@comp.ids. For executables and dynamic link libraries, link.exe builds up the
Rich Header during generation of the appropriate PE32 headers.

3 Rich Header

The Rich Header name originates from the fact that one of the elements in the
header contains the ASCII values for “Rich.” The header is an undocumented
field in the PE32 file format that exists between the MS-DOS and the COFF
Headers. While rumors of its existence and speculation on its purpose have
existed across multiple communities for a long time, it was not until July of 2004
that an article by Lifewire started to unveil information about the Rich Header
[8]. Unfortunately, this article provided limited technically correct information
and the drawn conclusions—especially regarding the purpose of the @comp.id
field—were incorrect. Four years later, on January 2008, Trendy Stephen fur-
thered the understanding of Rich Header by discovering some of the meaning
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behind the @comp.id field and a relatively correct assessment of how the check-
sum is generated [22]. Few months later, Daniel Pistelli released an article that
provided a guide for extracting the Rich Header and portions of the @comp.id
field [18]. Then, two years later, in November 2010, Daniel Pistelli updated his
article with information describing how the high value bits in @comp.id corre-
spond to a “Product Identifier” (referred to in this paper as ProdID) [18].

While the work of these pioneers provided crucial details on how to reverse
engineer the Rich Header, aspects of the header are still poorly understood.
Specifically, the full structure of the @comp.id has not yet been identified,
information about how to map the ProdID is unknown, and mistakes were
made regarding how to extract the fields. In this section we perform a tech-
nical deep dive of the Rich Header, which has not previously been com-
pletely and accurately described in any single source. We then explain how the
header is added to PE32 files, reveal the meaning behind the ProdIDs, and
present our algorithm for generating the hashes used to obfuscate the header.
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Fig. 2. Structure of the Rich Header

3.1 Core Structure

During building, the Microsoft
Linker (link.exe), via calling
the function CbBuildProdidBlock
[18], adds the Rich Header to
the resulting binary. Although this
action is performed during the
building of the COFF Header, it
is undocumented in the Microsoft
specification [13] and begins before
the official start of the COFF
Header, as designated by the sym-
bol e lfanew in the MS-DOS stub.
Additionally, this field is ubiqui-
tous and cannot be disabled by
compilation flags or by selecting
different binary formats. The only notable exception is when the linker is not
leveraged. For example, .NET executable files do not use the MSVC linker and
these executables do not contain a detectable Rich Header.

The Rich Header has been added as far back as 1998 with the release of
Microsoft VC++ 6. Since then, each iteration of the Microsoft Toolchain adjusts
how the header is generated and updates the ProdID mapping that the MSVC
can generate. However, we suspect that this header has been included prior
to VC++ 6. This is because we can have seen evidence of a potential Rich
Header like field in samples that were generated before the release of VC++ 6.
Unfortunately, it was not possible to confirm this belief because we were unable
to obtain an older version of the Microsoft Linker and received only a smattering
of samples generated before 1998.
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Diving deeper, the generated structure of the Rich Header is composed
of three distinct sections: the header, an array of @comp.id blocks, and the
footer, as Fig. 2 depicts. Together, these provide four core pieces of information:
(i) a checksum composed from a subset of the PE32 MS-DOS header and the
@comp.ids, (ii) the ProdID used when building the binary, (iii) the minor ver-
sion information for the compiler used when building the product, and (iv) the
number of times the linker leveraged the product during building.

The header of the Rich Header is composed of four blocks where each is 0x04
bytes in length. The first block contains the ASCII representation of “DanS”—
it is speculated that “DanS” probably refers to Daniel Spalding who ran the
linker team in 1998 [2]—while the next three blocks contain null padding. During
linking, this section is XORed with a generated checksum value that is contained
in the footer of the Rich Header.

The next section of the Rich Header is represented by an array of @comp.id
blocks. Each block is 0x08 bytes in length and contains information related to
the Product Identifier (ProdID), the minor version information for the compiler
used to create the product (mCV ), and the number of times the product was
included during the linking process (Count). All fields are stored in little endian
byte order and XORed with the previously mentioned checksum value. The
@comp.id block consists of the following three values:

1. The mCV field contains the minor version information for the compiler used
to build the PE32 file. This version information allows the establishment of
a direct relationship between a particular version of the Microsoft Toolchain
and this @comp.id block in the Rich Header. For example, Microsoft’s latest
Visual Studio 2015 release ships version 14.00.23918 of the MSVC compiler
(cl.exe). Therefore, object files created by this compiler will contain the
value of 0x5d6e. During the linking process for the building of a PE32 , the
value will be added into the produced PE32 ’s Rich Header in the mCV field
of the @comp.id block representing this object.

2. The ProdID provides information about the identity or type of the objects
used to build the PE32 . With respect to type, each Visual Studio Version
produces a distinct range of values for this field. These values indicate whether
the referenced object was a C/C++ file, an assembly blob, or a resource file
before compilation as well as a subset of the compilation flags. For example,
a C file compiled with Visual Studio 2015 will result in the value 0x104 being
copied into the Rich Header as ProdID in all PE32 files that include the
respective object file.

3. The Count field indicates how often the object identified by the former two
fields is referenced by this PE32 file. Using a simple C program as an example,
this fields will hold the value 0x1 zero-extended to span 32 bits, indicating
that the object file is used once by the PE32 .

The final section of the Rich Header, the footer, is composed of three blocks
of information. The first block is 0x04 bytes in length and represents the ASCII
equivalent of “Rich”. The next 0x04 bytes are the checksum value that are used
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as the XOR key for enciphering the Rich Header. The final block section is used
as padding, typically null, and ensures that the total length of the Rich Header
is a multiple of 8. Unlike the previous two sections, the footer is not XORed with
the checksum value.

3.2 Hashes Contained Within the Rich Header

In the Rich Header, the checksum value appears at four distinct places, as shown
in Fig. 2. The first three occurrences are located immediately after the ASCII
equivalent of “DanS”. As the linker initially places null values in this location,
they only appear after the header is XORed with the checksum value. The final
checksum is located in the footer and immediately after the ASCII equivalent of
“Rich”.

While checksum values are traditionally straight forward to generate, the
Rich Header’s checksum has interesting properties. Specifically, only 37 of each
@comp.id ’s 64 bits are calculated. As such, we present the following algorithm2,
based on our reverse engineering work, which produces a valid Rich Header
checksum.

The Rich Header checksum is composed of two distinct values cd and cr that
are summed together. To calculate cr, we define the rol operator, which zero
extends its first argument to 32 bits and then performs a rotate left operation
equal to the second arguments value of the first argument’s bits. We define rol
as:

rol(val, num) := ((val << num) & 0xffffffff) |
| (val >> (32 − num))

where << and >> denote logical left and right shift, and | and & are the binary
or/and operators. Then, the distinct parts of the checksum csum are calculated
in the following way:

1. For cd, all bytes contained in the MS-DOS header with the “e lfanew” field
(offset 0x3c) set to 0 are rotated to the left by their position relative to
the beginning of the MS-DOS header and summed together. Zeroing the
“e lfanew” field is required as the linker can not fill in this value because
it does not know the final size of the Rich Header. Therefore is unable to
calculate the offset to the next header. Let n denote the length of the MS-
DOS header in bytes (most commonly 0x80) and let dosi be the i-th byte of
the (modified) MS-DOS header:

cd =
n∑

i=0

rol(dosi, i)

2 For a copy of the checksum algorithm, please see Sect. 8.
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2. To calculate cr, the algorithm first retrieves the list of m @comp.id blocks.
Then the algorithm combines the corresponding mCV and ProdID parts into
one 32 bit value. Finally, this value is rotated to the left by its respective
Count value:

cr =
m∑

j=0

rol(ProdIDj << 16 | mCVj ,Countj & 0x1f)

It is noteworthy that despite the fact that Count beings as a 32 bit field, the
checksum algorithm only considers the least significant byte value (& 0xff).
Combined with the fact that m ≡ n mod 32 =⇒ rol(v, n) = rol(v,m), it is
sufficient to perform the calculation as indicated above.

The two values cd and cr, and the size of the MS-DOS header (0x80) are
then added together to form the final checksum value:

csum = 0x80 + cd + cr

3.3 Generation of @comp.id and ProdID

Table 1. Subset of ProdIDs generated by Visual Stu-
dio 2015

ProdID VS Release Object Type Generator

0x105 2015 C++ c2.dll via cl.exe

0x104 2015 C c2.dll via cl.exe

0x103 2015 Assembly c2.dll via ml.exe

0x102 2015 Linker link.exe

0x101 2015 Imported sym c2.dll via cl.exe

0x100 2015 Exported sym c2.dll via cl.exe

0xff 2015 Resource file cvtres.exe

The @comp.id is gener-
ated for each object file
before linking. The type of
the object being created is
determined during the cre-
ation of the object file. With
this information, the respec-
tive generator (see Table 1)
will then assign a ProdID
and mCV that map to
object type and the Visual
Studio release version in
which the object was compiled.3 For instance, a ProdID value of 255 to 261
corresponds to a Visual Studio 2015 Resource, Export, Import, Linker, Assem-
bler, C, and a C++ file respectively. The same range of values can be shifted
to base values 0xab, 0xcf, and 0xe1 which correspond to Visual Studio 2010,
2012, and 2013. Additionally, the ProdID is adjusted based on the compilation
flags used to create the object. To date we have identified that the MSVC Tool-
chain is capable of assigning 265 ProdID. During our research we found that the
generated ProdIDs cannot be manually changed without patching the compiler
backend.

In cases where a ProdID is already present, such as a third party static
library (.lib) containing multiple object files, the linker uses the preexisting
ProdIDs and mCV s. Inside of the library, the data is represented as a linked list.
Interestingly enough, in our research we have found that these ProdIDs do not
3 For a mapping of ProdIDs that the MSVC Toolchain can generate, see Sect. 8.
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necessarily correlate to what the MSVC Toolchain can generate. Specifically, we
have identified 251 ProdIDs that cannot be generated by MSVC and appear to
map to either a bundled library or the libraries supplied by major corporations.

3.4 Adding the Rich Header to the PE32 File Format

During the build process, the section that generates the data contained in the
Rich Header is located in the Microsoft Compiler backend (c2.dll). The Microsoft
Linker (link.exe) then collects the data required to build the Rich Header and
places it in the generated PE32 file.

4 Statistical Analysis

To study the effectiveness of using the Rich Header for triage operations, we
developed a custom extractor and studied the values extracted across approxi-
mately one million malware samples.

4.1 Data Sources

We leveraged four sets of PE32 samples during our evaluation. The first set is
composed of 964,816 randomly selected malicious PE32 samples from 2015 and
is supplied by VirusShare [19]. The second set contains 1875 samples from the
Mediyes dropper [28]. The third set contains 2031 samples related to the Zeus
derivative Citadel [21]. The final set is composed of 293 samples associated to
the APT1 espionage group [4].

In total, these binaries represent a diverse set of malware types that range
from traditional criminal malware, highly advanced state-sponsored malware,
and programs which have not been confirmed to be malicious but are highly
suspicious. It is worth to mention that in order to study the effectiveness of the
Rich Header during triage, we made no efforts towards unpacking or deobfus-
cating these samples.

4.2 Extracting the Rich Header

While the Rich Header has been identified for a number of years, to our knowl-
edge, no articles have completely and accurately explained the header’s struc-
ture. As a result, we found that most common triage engines and libraries that
parse the PE32 Headers either ignore, do not fully process, or perform incorrect
parsing of the Rich Header. For example, two of the most common and openly
available malware triage systems, Viper and MITRE’s CRITs, do not prop-
erly extract this field. In the case of Viper, the supplied PE32 Header extractor
ignores the Rich Header field entirely, whereas CRITs will attempt to process the
Rich Header but performs an incomplete extraction. Specifically, CRITs will only
process the first 0x80 bytes of the Rich Header and does not extract the fields
contained in the @comp.id data structure. Unfortunately, this is not unique to
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triage systems. When looking at major PE32 parsing libraries, we found that the
very popular PEFile has a similar issue to CRITs in that it also only parses the
first 0x80 bytes of the Rich Header and also does not extract the values contained
in the @comp.id. Furthermore, the PE32 extraction script, pescanner.py, from
the Malware Analyst’s Cookbook [9] ignored the Rich Header field entirely. Last,
when the Rich Header is attempted to be parsed, we have found it to be common
to only attempt to identify the Rich Header at location 0x80. As a result, we
developed a custom service to accurately extract the Rich Header information.

4.3 Information Gathering

To generate our information we used an automated infrastructure based on
SKALD that executed five services across our datasets [25]. These services
(i) extracted the Rich Header using our custom tool, (ii) performed Yara
signature matching with 12,693 signatures provided by YaraExchange [15],
(iii) retrieved malicious scan results from VirusTotal, (iv) performed identifi-
cation on the compiler and any potential packer used to create the sample, and
(v) generated pseudocode via IDA Pro.

4.4 Statistical Results

With our gathered information we performed a series of statistical studies. This
was done to better understand the Rich Header’s prevalence in malicious samples
and identify which packers or compilers omit the Rich Header. Additionally, we
developed a statistical check that is capable of rapidly identifying packed and
post-modified PE32 files, leveraging data only contained within the Rich Header.

Table 2. Samples containing a Rich Header with total
percentages rounded

Family Total Rich Header Percent

Random Set 964,816 683,238 71%

APT1 292 286 98%

Zeus-Citadel 1928 717 37%

Mediyes 1873 30 2%

Samples with a Rich
Header. We identified that
a surprisingly high percent-
age of samples contain the
Rich Header, as shown in
Table 2. For instance 71%
of the random sample set
and 98% of APT1 sample
set contained parseable ver-
sions of the Rich Header.
This is surprising as our initial assumption was that malware authors would
use a variety of compilers when creating samples and potentially attempt to
strip the Rich Header. However, the results show that the majority of malware
authors are in fact leveraging the Microsoft Linker and pay no mind to the Rich
Header.

Based on the above information, we conclude that the Rich Header is com-
monly found in malware and that malware authors do not deliberately strip
the Rich Header. Furthermore, we can conclude that compilation of malicious
binaries are most often done using compilers that leverage the Microsoft Linker.
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Compilers and Packers without a Rich Header. While the high rate for
malware containing a Rich Header is positive for triage, this was not a uniform
result. Specifically, some malware variants reported a low match for samples
containing the Rich Header, such as Mediyes reporting 2%. In Sect. 2.2 we dis-
cussed that the Rich Header is generated by the Microsoft Linker. This implies
that compilation tools not using the official Microsoft Linker should not generate
the Rich Header. While this can explain why some samples do not include the
Rich Header, in this section we further explore other reasons behind the absence
of the field. Specifically, we identify common tools and packers used by malware
to either strip or corrupt the Rich Header.

Table 3. Samples not containing a Rich Header

Family Total Rich Header Percent

Random Set 964,816 683,238 71%

APT1 292 286 98%

Zeus-Citadel 1928 717 37%

Mediyes 1873 30 2%

To do this we used our
service that performs com-
piler and packer identifica-
tion to scan all samples
without a Rich Header. This
was done to identify if there
are any commonalities with
these sample. As Table 3
shows, the percentage of
samples built by either Bor-
land C++ Builder or MinGW, which is based on GCC, is relatively high and
accounts for approximately a third of all samples that do not contain a Rich
Header in the random and Zeus-Citadel datasets. However, this was not the
case in the APT1 and Mediyes dataset. Upon further analysis, we identified
that most packers, while sometimes introducing anomalies, did not often strip
the Rich Header from samples. With respect to the Mediyes set, we had a high
rate of matches for the Themida Packer [23]. As we discuss further in Sect. 4.4,
Themida is one of the packers that rewrites the entire PE32 file and does not
include the Rich Header. Instead, we identified that the absence of a Rich Header
was a result of corruption caused during the packing of the sample.

To identify if other packers caused similar corruption, we leveraged our iden-
tification service again to detect the most common packers used by our malware
datasets. Our results showed that UPX, ASPacker, mingw, dUP, and the Null-
soft Scriptable Install System were the top five most commonly used packers. As
we already understood that samples created with mingw and dUP will remove
or otherwise corrupt the Rich Header, we manually created test samples with
variants of UPX (v1, v2, and v3.91), ASPacker, and Nullsoft. In every manual
test case, we were unable to cause a corruption or exclusion of the Rich Header
field.

Identifying Modified Binaries Based on Rich Header Corruption. In
our previous results, we found that it was uncommon for malware authors to
deliberately strip the Rich Header. As such, we re-evaluated our samples to
search for cases where the Rich Header was inadvertently corrupted.

The first approach we took was to identify cases where the Rich Header
contained duplicate @comp.id blocks. We took this approach because under



130 G.D. Webster et al.

normal operation, the Microsoft Linker should never produce duplicate entries.
This is because during the linking process, the Microsoft Linker will search for
existing instances of the ProdID and mCV and if identified, will increment the
number of times it was used, Count , to the existing entry.

The second approach we took was to re-calculate the Rich Header checksum
and compare it to the sample’s reported Rich Header checksum. This was done as
an unsuccessful check would indicate that either the MS-DOS Header or the Rich
Header was modified after the linking process; potentially revealing Trojanized
or post modified binaries.

As Table 4 shows, the amount of malicious samples containing a corrupted
Rich Header varies and can rise upwards to 50% based on the malware family.
Additionally, across the random one million dataset, this corruption occurred
approximately 31% of the time. Knowing this and the fact that no official
Microsoft Linker should produce these forms of corruption, identifying corrup-
tion of the Rich Header can be a fast and efficient triage step to use for screening
samples for potential maliciousness.

@comp.id and mCV Values Present in Malware. To develop an under-
standing of how we can potentially leverage the Rich Header for more advanced
triage operations, we studied the @comp.id values in our malware datasets. By
doing so, we identified 516 unique ProdIDs. This was surprising as all versions
of the MSVC Toolchain, dating back to VS++ 6, are only capable of generating
265 ProdIDs. While researching the 251 unknown ProdIDs, we identified that
these appear to more than likely correlate to bundled libraries and major corpo-
rations. However, while in practice this assumption appears to be accurate, we
cannot conclusively confirm this.

Table 4. Samples containing a Rich Header that have
duplicate entries and invalid checksums

Family Total Dup. ID csum Err

Random Set 683,238 15,006 137,965

APT1 286 0 34

Zeus-Citadel 717 17 357

Mediyes 30 0 0

Digging in deeper, we
discussed in Sect. 3 that
the ProdID is paired with
the mCV . Thus, potentially
providing more fine grained
information for identifying
specific objects. To confirm
this we created tuples of
all the ProdID and mCV
pairings. We then single out
29,460 distinct ProdID and mCV pairs across our approximately one million
malware samples. These numbers show relatively substantial variability in the
@comp.ids found in malware and malware authors build environments.

5 Case Study

The data obtained in Sect. 4 showed promise in using the Rich Header for more
complex triage operations. This is especially true considering the vast majority
of our datasets are from the same date range and the fact that the Rich Headers



A Study of the PE32 Rich Header and Respective Malware Triage 131

of malicious samples contain numerous @comp.ids along with the number of
times the object was used during linking.

In order to demonstrate the potential of leveraging the Rich Header in future
work, we created a basic proof of concept machine learning algorithm. The algo-
rithm was designed to only process the @comp.id values contained in the Rich
Header. Specifically, the values for ProdID, Count , and mCV . As the Rich
Header identifies linked object and version information of the build environ-
ment, our algorithm is specifically focused on identifying similar samples, based
on linked objects, and also samples using a similar build environment. In crafting
the algorithm, we used a feature hashing strategy which transformed the features
into a 50-dimensional vector. We then leveraged a Stacked Autoencoder to turn
our data into a denser, lower-dimensional space. Finally, in order to improve
performance and allow us to scale to support datasets containing millions of
malware samples, we utilized a Ball Tree for fast storage and retrieval of the
vectors.

In the following case studies, we demonstrate the ability of solely using the
Rich Header to perform similarity matching leveraging our proof of concept
machine learning algorithm. In the case studies, we compare the exemplar sam-
ples, selected at random, with the collected vector similarities from the Ball
Tree populated by the random one million, APT1, and Zeus-Citadel datasets,
and analyze their closest matches. For our ground truth in the case studies,
we compare the results of our algorithm to the results returned by Kaspersky
and Symantec Antivirus, as implemented by VirusTotal, and perform manual
reverse engineering. We selected this ground truth method primarily due to the
limited matches across Yara and the high percentage of no detection or generic
signatures across the other popular AV vendors.

5.1 Similarity Matching with the APT1 Dataset

We selected three exemplar samples from the APT1 dataset for our first case
study. APT1 was selected as the actor is a relatively skilled APT and 98% of
the samples in the APT1 dataset contain a Rich Header.

We randomly selected our first exemplar sample, E1. Kaspersky classifies
this sample as HEUR:Trojan.Win32.Generic which means that through heuris-
tic analysis, Kaspersky believes that this is a Trojan but has not classified the
sample further. When querying our algorithm, we identified that it had an iden-
tical Rich Header feature vector with another APT1 sampled, which we will
refer to as E1-R1. Inspecting E1-R1, Kaspersky classified the sample also as
HEUR:Trojan.Win32.Generic. While a generic classification does not tell us
much, manual analysis of the generated source code, produced by IDA Pro,
confirmed that these two samples were in fact identical.

Going a step further, we then queried the nearest neighbor to E1. This returned
three samples: E1-N-R1, E1-N-R2, and E1-N-R3. All three matches were also
contained in the APT1 dataset and shared the HEUR:Trojan.Win32.Generic
Kaspersky classification. Our algorithm reported that the distance between these
vectors was 1; the smallest possible difference without the vectors being identical.
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We then performed manual analysis and identified that the generated source code
produced by IDA Pro for E1-N-R1 was identical to our exemplar. However, as the
vectors were slightly off, we further analyzed the cause for this and concluded that
the variance was caused by slightly different build environments when compiling
the binaries.

The other two nearest neighbor matches, E1-N-R2 and E1-N-R3, produced
even more interesting results. In both cases, the generated source code produced
by IDA Pro had slight differences. In the case of E1-N-R3, E1-N-R3 adds a call to
function FlushFileBuffers right after it writes the buffer to a file. Furthermore,
E1-N-R2 seemed to build upon the changes made to E1-N-R3. Specifically, E1-
N-R2 includes an additional change in that E1-N-R2 adjusted how it wrote the
buffer to files. In our exemplar sample, E1 first writes the buffer to the file and
then performs a second write that adds \r\n to the file. In the case of E1-N-R2,
the sample does not write \r\n to the file and instead calls strcat on the buffer
in order to add \n to the buffer before it writes the buffer to the file.

Our second exemplar, E2, was selected from the APT1 dataset because its
signature was different than E1 and it shares its feature vector with no other sam-
ples. After running our algorithm, we identified E2-N-R1 as the nearest neighbor
to E2 at a distance of 1.732. While it is reasonable to argue that the distance is
very near, it is indicative of a clear similarity between the samples.

When analyzing the results, both E2 and E2-N-R1 are classified by Kasper-
sky as “Agents”. However, the generated source code produced by IDA Pro for
both samples is quite different and the programs have different functionality. To
understand why our algorithm identified this as a match, we performed addi-
tional research on the binaries and found that both E2 and E2-N-R1 are very
small, had a nearly identical import table with only one variation, and were
packed with Armadillo v1.71. Looking at the Rich Header vectors we found
that the vast majority of the objects imported all had identical version infor-
mation; which led us to conclude that the samples were more than likely built
on the same machine or the machines at least had an identical build environ-
ment. Open-source research further validated this opinion as both samples were
used by APT1 in cyber operations [20]. While not a direct match in terms of
functionality, this example demonstrates the power in using the Rich Header to
identify not only similarly behaving malware but also malware that is related
because the malware is presumably built on the same machine.

Our final exemplar, E3, was selected as it had five samples that shared the
same Rich Header feature vector: E3-R1, E3-R2, E3-R3, E3-R4, and E3-R5. In
all cases, these samples ended up being members of the APT1 dataset and shared
the HEUR:Trojan.Win32.Generic Kaspersky classification. Manual reverse engi-
neering also showed that the samples shared a nearly identical code base and
performed the same functionality.

We then queried our algorithm for the nearest neighbors to E3 that were
not in the APT1 sample set. The query returned six samples at a dis-
tance of 2.236: E3-N-R1, E3-N-R2, E3-N-R3, E3-N-R4, E3-N-R5, and E3-
N-R6. Kaspersky classified E3-N-R2, E3-N-R4, E3-N-R5, and E3-N-R6 as
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HEUR:Trojan.Win32.Generic. E3-N-R1 and E3-N-R3 were classified by Kasper-
sky at Net-Worm.Win32.Cynic.in and Net-Worm.Win32.Cynic.am, respec-
tively. However, although the Kaspersky classifications were different, manual
analysis revealed that all E3-N-R* samples were nearly identical to themselves.
The only differences between the samples in this cluster were caused by artifacts
left by the obfuscation engines and by the language settings on the build envi-
ronment. Furthermore, the two clusters for the same vector, E3 and E3-R*, and
nearest neighbors, E3-N-R*, were remarkably similar in functionality.

During the evaluation we identified that the similarity matching algorithm
produced very strong results for the exemplar samples E1 and E3. However, with
E2 and E3, the algorithm further identified samples of similar nature and with
a similar build environment.

5.2 Similarity Matching with the Zeus-Citadel Dataset

In this case study we opted to explore the results of two exemplar samples
from the Zeus-Citadel botnet. We selected this dataset because the Zeus-Citadel
actors are typical of basic cyber criminals and as such have a different target
and mission than the actors behind the first test case.

Kaspersky classified our first exemplar, E4, as a generic Trojan. Our algorithm
though was able to identify 23 similar samples, E4-R*, that shared the feature vec-
tor of E4. Kaspersky classified them as either HEUR:Trojan.Win32.Generic or
not-a-virus:AdWare.Win32.FakeDownloader.ac whereas Symantec identifies all
the E4-R* samples as Trojan.Gen or Trojan.Zbot. When comparing the IDA Pro
generated source code, we confirmed that the E4 and E4-R* samples were nearly
identical; the differences in E4 and E4-R1 are that sections of the code has moved
under different functions and that E4 uses a “for loop” while R4-R1 uses a “do
while” for their XOR algorithm. Thus, the difference in E4 and E4-R* appear to
be related to slightly different version, compiler optimization, or artifacts left by
the obfuscation engines.

When looking at the nearest neighbor cluster for E4 we identified four addi-
tional samples: E4-N-R1, E4-N-R2, E4-N-R3, E4-N-R4. While Kaspersky classi-
fied the sample as HEUR:Trojan.Win32.Generic, Symantec identified E4-N-R1
and E4-N-R3 as clean. However, when looking at the samples, we observed only
a slight variation in that E4-N-R* ran the XOR loop 220,712 times where E4 and
E4-R* ran the XOR loop 51,700 times. As with E4-R*, E4-N-R* also moved code
segments into different functions. When verifying the Rich Header we observed
that the reason for being classified as a nearest neighbor was because of varia-
tions in the number of times one product was included. This is a clear example
where using Rich Header values as a triage system could prove useful for an
investigative team by identify similar malware samples from potentially differ-
ent version.

The next exemplar, E5, shares its vector hash with 36,606 samples. This is
notably high, no less so due to the fact that Kaspersky fails to identify 16,123
of those samples with a classification of any kind, not even the most generic
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of names. However, when comparing the IDA Pro generated source code, we
observed only small variations; specifically the value for a constant was changed.

The nearest neighbor grouping for, E5, has a distance of 2 and contained
a total of 1,567 samples, where 511 samples have no Kaspersky listing. In
fact, the majority of samples in both groups are listed as generic Trojans,
HEUR:Trojan.Win32.Generic. While the inclusion of a known Zeus-Citadel sam-
ple is not enough to convict these samples as Zeus-Citadel members, it provides
an interesting jumping off point for analysis.

5.3 Similarity Matching with the Mediyes Dataset

In our final case study, we selected a random Mediyes sample, E6, to use as
our exemplar. We chose this sample because it would allow us to perform an
out-of-set comparisons as the Mediyes dataset was not originally vectorized and
included in the Ball Tree.

Querying our algorithm for identical Rich Header feature vectors, we received
a list of 266 other samples: E6-R*. When querying for the nearest neighbors we
receive 86 additional samples, E6-N-R*, with a distance of 1. Analysis of the
IDA Pro generated source code showed a strong correlation between the samples.
Furthermore, the vast majority of both E6-N-R* and E6-R* were classified by
Kaspersy as Zango samples; an instance of adware frequently associated with
Mediyes.

6 Future Work and Limitations

In this paper we present an important yet little-studied header of PE32 , the
Rich Header. We show that the Rich Header has been largely ignored by malware
authors and is not removed by most packers and obfuscation engines. In fact,
71% of the 964,816 samples in our random dataset include the Rich Header.
Our experiments revealed that the Rich Header contains useful information that
can be leveraged by defenders; analysis of the data contained within the header
allows for the rapid triage of samples using a cost effective approach. This is
true even for samples that are stripped and contain little to no PE32 Header
information.

We strongly believe that by leveraging the Rich Header, current and future
triage algorithms will perform a more accurate and cost effective triage function-
ality. In future work, we will explore how to combine the Rich Header features
with other aspects of the PE32 file format to generate robust similarly matching
and clustering algorithms. As the Rich Header artifacts helps to identify simi-
lar malware as well as characterizing the build environment in which the mal-
ware was built, this presents new opportunities for attribution and tool-chain
identification.

Furthermore, as knowledge of the Rich Header grows, it is understandable
that malware authors will attempt to obfuscate this field. This is an expected out-
come but also presents interesting future work potentials when the Rich Header
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is combined with additional features. This is because leveraging compiler finger-
printing and additional PE32 header information can be used to determine if
the Rich Header should be included and approximate the expectant values of
this field. As such, future algorithms can identify anomalies in the Rich Header
field. This increases the complexity required when performing obfuscation and
adds resiliency.

7 Related Work

Leveraging the data derived from the PE32 file format has been widely explored
for triage purposes. One common technique, as shown by Mandiant’s Imphash,
is to generate a hash of the values located in the PE32 Import Address Table
(IAT) [11]. These hashes are then used in analytic queries and by machine learn-
ing algorithms to identify similar strains and families of malware. In this vein,
JPCERT recently released Impfuzzy to improve upon this technique through
incorporation of a fuzzy hash [24]. However, these algorithms require accurate
IAT and their accuracy is greatly reduced if the malware strips or otherwise
provides a misleading IAT.

In light of this issue, more advanced techniques use additional meta data
that can be derived from the PE32 file format. For example, PEHash uses the
structural characteristics of the PE32 file format to generate hashes that are
then used in clustering operations [26]. Unfortunately, the above methods only
work well when the data is available and not being misconstrued.

Identifying the weaknesses in this approaches, specifically PEHash’s lack of
robustness, Jacob et al. [5] expand upon these method by focusing their efforts
on the PE32 ’s code section. While this approach is more tamper resistant, it is
still not immune. On the other side of the spectrum, Perdisci et al. [16] focused
their efforts on using patter recognition to identify packed samples and then
send those samples to universal unpacking algorithms before matching occurs.
However, while this process does reduce the cost and improve the accuracy in
clustering and similarity matching, unpackers are known to be unreliable and
exceedingly expensive [12,16].

In a change of pace, our work illustrates a hidden aspect of the PE32 file
format, the Rich Header, that has been largely ignored by malware authors.
Using this section of the PE32 file formation, we show how to cheaply identify
packed malware, perform similarity matching solely using this field, and identify
malware that was created using similar build environments. Our work does not
aim to directly compete with the existing research. Instead the knowledge gained
from our novel approach aims to be a catalyst for triage when combined with
these, and other, triage techniques. In turn, this work enables existing and future
algorithms to provide better results, be more resistant to tampering due to
the wider scope, and improve returned information by allowing matching based
not just on the samples characteristics but also the characteristics of the build
environment used to create the samples.



136 G.D. Webster et al.

8 Conclusion

In this paper we performed an in-depth study of the Rich Header and showed its
significant potential in being leveraged for triaging malicious samples. To the best
of our knowledge, this assessment of the Rich Header is the most complete and
accurate report for this hidden and undisclosed section of the PE32 header so
far. With this knowledge, we created a custom Rich Header parser and extracted
the headers’ contents in over 964,816 malicious samples. We demonstrated the
Rich Header’s potential in enabling the rapid triage of malicious samples. By
doing so, we showed how to leverage the Rich Header to identify post-modified
and packed PE32 files, detecting 84% of the known packed malware samples.
We also demonstrate the value in leveraging the Rich Header by developing a
proof of concept machine learning algorithm and performing three case studies.
In these studies we are capable of rapidly returning results in 6.73 ms using a
single CPU core, identifying similar malware variants, and highlight malware
developed under the same build environments.

Availability

The feature extraction methods and additional reference material have been
open-sourced under the Apache2 license. They can be freely downloaded at the
following location:

https://holmesprocessing.github.io
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Abstract. Industrial control systems are becoming increasingly inter-
connected, and with it their vulnerability to malicious actors. While
intrusion detection systems are suited to detect network-based attacks,
they remain unable to detect more sophisticated attacks against control
systems, for example a compromise of the PLCs. This paper makes the
case that the evolving landscape of threats such as the Stuxnet malware
requires an alternative approach to intrusion detection in industrial con-
trol systems. We argue that effective control of such advanced threats
needs to happen in the last link of the control network, hence building a
last line of defense. A proof of concept of this new paradigm was imple-
mented for the control system of a dredging vessel, and we describe main
lessons learned and pose open research questions we find based on these
experiences for ICS intrusion detection.

Keywords: Cyber physical security · Intrusion detection · Industrial
control systems

1 Introduction

Industrial control systems (ICS) monitor and control physical systems, form-
ing a cooperative bond between the digital and the physical world. They are
to be found, amongst others, in critical infrastructures, building monitoring or
production systems [1]. In recent years these systems are becoming increasingly
connected to IP-based networks or even the Internet, either indirect through
corporate networks or by direct connection. As such these systems are exposed
to much of the same weaknesses as traditional IT systems. The effects of their
failure, though, are potentially much more severe. Causing irreparable harm to
the physical system being controlled, its environment, and to the people who
depend on said system [2].
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Unfortunately this potential for abuse is no longer just speculation. There
exists numerous incidents resulting in significant damage, ranging from the flood-
ing of a water treatment facility in Maroochy Australia caused by a disgruntled
ex-employee with knowledge of the system and old access credentials [3], the often
referenced attack on the Natanz nuclear facility in Iran by the Stuxnet malware
[4–6], to the massive damage to a blast furnace in a steel mill in Germany after
an attacker gained access to the control systems [7,8].

Industrial control systems security is still in its infancy [9]. Although the
topic is now attracting significant attention and there are many technical solu-
tions to protect IT environments, controls such as intrusion detection systems
or firewalls are not easily bridged to ICS systems. As we argue in this paper,
many of the classic IT controls are not directly applicable to ICS or would actu-
ally not provide effective mitigation against the kind of real-world attacks listed
above. While firewalls, intrusion detection systems and packet inspection tools
are capable of filtering out unusual traffic in regular IT systems in terms of origin,
access destinations and content, this defense is less applicable for ICS systems as
packets will only flow between the programmable logic controllers (PLCs) and
the ICS control node. As past attacks have compromised the control node and
used this host to inject malicious commands or upload malicious binaries to the
field devices, these types of attacks would not stand out from a network-packet
analysis: packets are still flowing between the authorized control host and the
ICS devices, and also in terms of packet sizes or from a protocol-interaction
standpoint no anomalies would stand out.

Given these new types of threats and potential attack vectors, we argue that
a new type of intrusion detection system is needed. As intrusion detection cannot
successfully detect and mitigate such advanced vectors on the process network
by looking at traffic between the controller and the PLCs, ICS defense needs to
move closer towards the field devices that have actually been compromised in
past incidents. It is necessary to (also) apply detection and mitigation on the
last link of the field network, hence drawing a last line of defense that is difficult
to subvert.

This paper contains three main contributions: first, we propose the idea of
rethinking IDS approaches to meet advanced threats in industrial control sys-
tems, and argue that advanced vectors can only effectively be met deep inside
the control network. Together with placing an IDS deeper into the ICS, it is also
necessary to extend the current approach of anomaly detection in terms of pack-
ets and network flows, by interpreting the content and context of the packets
and adding knowledge about the actual ICS process into the anomaly detection.
Second, we have implemented this new paradigm for the control system of a
dredging vessel and evaluated in extensive simulations the utility of this new
IDS paradigm. Since detection rates are highly system- and model-specific and
difficult to abstract, we do not go into the performance results in this paper,
but rather present a number of observations and lessons learned about building
intrusion detection for industrial control systems and discuss in our view open
research challenges to solve. This is our third contribution.
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Fig. 1. Security zones and components of an industrial control system and corporate
network.

The remainder of this paper is structured as follows: Sect. 2 describes the new
threat model industrial control systems face, and reviews current approaches
to ICS intrusion detection. Section 3 discusses related work. Section 4 presents
an alternative approach to IDS design for ICS. Section 5 briefly introduces the
evaluation of a prototype built to test the new design, while Sect. 6 discusses the
major lessons learned. Section 7 concludes and summarizes our work.

2 Threat Model

Although industrial control systems have always posed high value targets, three
major developments over the last decade have greatly increased the attack sur-
face and risk of these systems: First, previously entirely separated systems are
now routinely furnished with remote access possibilities, allowing the continu-
ous retrieval of measurements and statistics from the industrial processes inside
the business operations. Second, increased value opportunities from cyber crime
have resulted in a steadily increasing influx of actors, as well as a continuously
growing specialization and sophistication of these actors [10]. Third, originally
state-sponsored activities such as the Stuxnet incursion have demonstrated to
a wider audience the general vulnerability of these systems. We have already
seen in the recent past that the ideas and source code developed by nation-
state actors have proliferated towards cyber criminals, and interactions of cyber
criminals [11] with ICS – accidental or intentional – such as [8] thus need to be
considered in the risk analysis of such systems.

Figure 1 shows the typical system architecture of an organization operating
an industrial control network inside its perimeter. The different security zones
are typically enforced by firewalls or network diodes, and meant to ensure that
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no unauthorized traffic flows take place across a trust zone boundary or within
a particular compartment. Techniques such as firewalls, diodes, or authenticated
proxies have proven their merit for securing regular enterprise networks, and
it is common practice to identify malicious activities or compromised hosts
through automatic anomaly detection of network traffic based on traffic des-
tination, packet types, payload sizes, or otherwise coinciding request patterns.

An industrial process network however provides almost no opportunities for
such traffic anomaly-based threat detection. Although in the special case of a
zone breach between the DMZ and process network some unusual traffic patterns
could be observed, process network traffic will always flow between the exact
same hosts. The human-to-machine-interface (HMI) will query the status of the
PLCs in regular intervals, which are reported back by these units to the HMI
and archived at the historian. In case of process changes, new logic is uploaded
by the HMI directly to the PLCs. As industrial control systems are secured by
an intrusion detection system monitoring the network traffic inside the process
network, the following threats will remain undetected:

– Incorrect operational process instructions. Intentionally malicious or a
benign operational mistake, the person controlling the system from the HMI
could send incorrect commands to the devices in the field area, triggering a
situation with severe consequences. From the perspective of the network there
would be no anomalous flows, as commands – although unsafe ones – would
be issued from the operator’s station and sent to the field devices as usual. A
problem could however be detected if the IDS would go beyond network-flow
analysis, and parse and interpret the content of the network packets. While
the packets are compliant to the protocol and also unlikely to be matched by
a signature database of known threats (as commonly used by IDS), an IDS
with knowledge about the physical process model as proposed in this paper
would be able to spot a deviation from the expected state.

– Malicious control software on PLCs. In the example of the Natanz facil-
ity, the Stuxnet malware uploaded modified program code to the PLCs which
executed malicious process logic in addition to the normal program [6]. When
the devices were queried by the control host, the PLCs reported back incor-
rect values and did not reveal the presence of the malicious additions to the
control program. Viewed from a network perspective, none of these activities
would typically be flagged as abnormal: the control system would routinely
upload new program code to the PLCs, query the devices and receive pack-
ets back. Even for a protocol-aware IDS, any of the packets are valid, and
completely compliant with the access policy of such control network.

The sober conclusion, especially from the latter example, is that against
advanced threats with the ability to modify the behavior of the PLCs itself,
a mitigation approach centered around the process network is unlikely to pro-
vide merit, unless the scope of detection is greatly extended to include in-depth
verification of control logic before application, as well as stringent access con-
trol and supply chain security of the field devices. Given the changing threat
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profile and documented instances of such incidents, we believe it is necessary
to extend the risk analysis and mitigation plans for industrial control systems
towards these potential threats, and given the difficulty in achieving threat local-
ization in the process network build up an additional layer of defenses one layer
deeper inside the field network. Although an advanced adversary might in the-
ory launch an attack in which all process control variables and sensor values
would remain identical to the benign scenario, a pervasive tracking of the sys-
tem at the process level will reduce the degree of freedom drastically, thereby
eliminating most adversaries and slowing attack progressing down significantly.
The proposed IDS should only be one of many techniques in a portfolio of con-
trols. It may however augment and complement existing controls and address
other operational questions, for example the detection of wear and tear, with
the additional use cases and added benefit making an adoption more likely. The
following section will describe current practices in industrial control system secu-
rity, Sect. 4 describes our alternative proposal for introducing security in the last
link of the ICS network.

3 Related Work

Two areas of existing work are relevant for the design proposed in this paper,
(a) security challenges for control systems, and (b) intrusion detection systems.

3.1 Challenges Faced by ICS

Despite the similarities between control and IT systems, such as basic compo-
nents used, the challenges they face in securing them are very different. As are
their responses to security breaches [2,12–14]. Three challenges which must be
faced to strengthen control networks are identified; improving access controls,
security inside the network, and the security management of control networks.
Despite the similarities between control and IT systems, the challenges they face
in securing them are quite different. Cheminod [14] additionally raises the chal-
lenge that while most ICS security studies focus on prevention and/or detection,
there is relatively little research available into the response to threats. Histor-
ically these threats originate from the inside, these days this is shifting to the
majority of security threats emanating from the outside.

3.2 Intrusion Detection Systems

Historically, the origin of intrusion detection systems evolved out of a set of
tools mostly intended to help administrators review audit trails such as user
access logs. In 1987 Denning published a paper titled “An intrusion-detection
model”[15], describing what to this day remains the basis for many monitoring
systems. Today, there is a large body of IDS related research available. Almost all
of these focus exclusively on IT-based environments, where the offered solutions
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are not directly suitable for ICS environments. This applies even when underlying
protocols and infrastructure used are the same [2,12–14,16].

Research investigating monitoring solutions for ICS environments are not
completely absent, however almost all of these make use of IT based approaches
such as network traffic analysis and packet inspection [17–20]. These proposed
solutions are thus focussing on the protocols utilized and ignore the physical
domain entirely. As such a large and presumable the most important resource is
missed. Researchers have however suggested to utilize this resource and incorpo-
rate knowledge of the physical system into the workings of the IDS itself [19,20].
By understanding the network traffic it is possible to simulate the physical,
the result of which can then be used to take the physical state into account [21].
Research investigating a direct tap into the physical state by going directly to the
field devices (sensors and actuators) seems to be missing however. [19] presents
a taxonomy of ICS security related work. Besides presenting a new validation
metric, they look into the advantages and disadvantages of different evaluation
setups. Simulations here have the benefit that they are easily adaptable, and
possibly provide the best method for initial proof-of-concept work. This is also
reflected by the majority of the taxonomy, which rely on simulation for their
validation step. Especially noteworthy is the conclusion by Urbina et al. [19]
about the untreated risk if an attacker can falsify readings from the field devices
itself, an issue that is mitigated by the work in this paper.

Change Detection. As part of a series of studies into the security of ICS systems,
Cardenas concluded that only limited research into ICS security is available
and that what is published are generally tweaks of solutions aimed at an IT
environment [2,13,22]. As such, incorporating knowledge of the physical system
might very well trigger a paradigm shift in the sector. This realization leads to
the proposal of a linear mathematical model which is used to analyse the actual
system and determine if an attack is ongoing. Their main aim being to “protect
the operational goals from a malicious party attacking our cyber infrastructure”,
which they separate into a two stage process: first, the detection of attacks on
cyber-physical infrastructures, and second their survival [16,23].

For the detection problem Cardenas suggest that when having knowledge
on how the output sequences should react to the control input sequence it is
probably possible to detect an attack by comparing this expected output with
the actual received output signal. The effectiveness of this idea will depend on
the quality of the estimated output signal. Further investigating this idea they
created a model of a physical system and formulated an anomaly detection algo-
rithm based on change detection. Change detection works under the assump-
tion that a set of measurements starts out under the normal hypothesis, H0.
The thought is that this hypothesis will then be rejected in favor of the attack
hypothesis H1 at a certain measurement. To avoid making any assumptions on
the probability of an actual attacker their work does not assume a parametric
distribution but only puts mild constraints on the measured sequence.
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Virtual Image. Having researched the effects that malware has on industrial
control systems, both for the case of IT malware as samples specifically target-
ing ICS, [21] suggests to leverage available knowledge on the physical system to
enhance its protection. Following this suggestion [24,25] does exactly that by
creating an new intrusion detection system which maintains an internal repre-
sentations of the physical state of the controlled systems in a virtual image. To
define and build this virtual image a new formalized language has been specifi-
cally defined, which has been named Industrial State Modeling Language (ISML)
[24]. The virtual image is meant to operate parallel to the monitored system,
providing real time insights and analysis. At start-up the IDS will load the sys-
tems model from an XML file which comes with predefined settings and values.
During operation, the IDS received a copy of the network traffic which it scans
for ICS protocols. The ICS packets are then processed and the commands they
contain send on towards the virtual image where they are used to update the
internal representation of the control system. Each update also triggers a mon-
itoring module that compares the (virtual) system state to a list of predefined
critical states. If a match is found the IDS will raise an alarm. Implementation of
a prototype and conducting of experiments have demonstrated that the proposed
solution is successful, proving the approach has merit.

By adding a multidimensional metric that provides a parametric measure of
the distance between a given state and the set of critical states further extends
the IDS, giving it the ability to estimate future instability in the system [26].
Conducting experiments using a prototype implementation of the extended IDS
demonstrated the improved functionality and that the approach indeed has
merit.

Network Based. The solutions given by the research above operate on the con-
trol network, which also applies to the research discussed by [19]. These solutions
obtain their information on which their system works from the network traffic
between controllers and the larger ICS systems. This means that their effective-
ness directly builds on the security and trust placed upon the controllers within
the system. If an malicious entity is able to compromise such devices the previous
solutions can be evaded.

4 A Cyber-Physical IDS Architecture

In this section we present an alternative approach for intrusion detection in con-
trol systems. Previous work such as [19,20,24,25] is centered around an anomaly
detection based on information flows over the network connecting PLCs and the
larger control network, which we have seen in the discussion of the threat model
would not detect malicious or accidental instructions sent to the field devices
or an upload of malicious control programs to the PLC. By moving intrusion
detection one level deeper into the industrial control network, the field network,
intrusion detection can also exploit the physical state of equipment - such as
temperature and pressure readings -, as opposed to looking at network traffic
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Fig. 2. The concept architecture

solely. As “communication” with the field network is analog only, a sensor would
map temperature into a voltage and an actuator would switch depending on the
voltage level applied to the control wire, the absence of more sophisticated data
exchange provides a number of advantages for defense: first, as there is no digital
communication link this makes it much harder for malware to compromise the
system. Second, by monitoring these lines it is possible to obtain the raw values
measured in the field area, and in combination with an analysis of packets on
the control network thereby also find faulty or maliciously acting PLCs.

Figure 2 shows a conceptual view of the shift to the last link. In addition to
passively observing the communication between the control system and the PLC,
values are taken from all or the most important sensor and actuator connections
on the other side of the PLC. This design approach provides a number of distinct
advantages:

1. Extensibility and Multi-vector Detection. The system may be extended
to include more sensors to accommodate evolving attacks and new vectors,
including sensors not connected to the ICS system such as a microphone list-
ing to the acoustics of machinery, sensors reading power usage and output of
equipment, or even radio frequencies readings. One of Stuxnet’s attack vec-
tors for example cause damages by changing the spinning speed of centrifuges,
causing mechanical damage. While a microphone could have easily recognized
such changes, it is exemplary for additional types of sensors that are (nor-
mally) not providing input to an ICS system, but would help within the
context of our IDS to detect abnormal events, making it significantly harder
to launch attacks that would go unnoticed by other off-the-ICS sensors.

2. Unmodified signal path. Existing network-based IDS are located in
between devices (here the controller and the PLCs) to scan and block mali-
cious traffic. As scans however change the latency of communication messages,
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may in some cases change packet order and the blocking of select packets
within a larger control packet train may cause significant side effects, control
engineers in our pre-study voiced concerns about placing such devices inside
a production environment. As the proposed system does not interfere with
IDS communication and control messages are interpreted off the bus, timings,
packet order and the integrity of packet trains remain unmodified.

3. Ability to detect compromised ICS infrastructure. As the Stuxnet
malware compromised both the control system as well as the PLCs reading
and responding to sensor values, it was able to send back falsified sensor read-
ings and remain unnoticed while bringing the ICS outside of the safe operating
context. An IDS system reading both the state of actuators and sensor read-
ings at the last line (which are assumed to be analog voltages) and comparing
them with the readings reported by the regular control infrastructure has the
ability to detect malfunctioning or purposely compromised equipment. While
this would seem like a duplication of the control infrastructure, the addi-
tional expenditures for such an approach are actually minimal: they simply
require a single microcontroller per group of sensors and actuators digitizing
analog voltages and reporting them cryptographically-signed via Ethernet to
the IDS.

4. Upgrade without compliancy issues. As no changes to the existing ICS
infrastructure are necessary, the approach would allow for an effective upgrad-
ability of existing legacy systems. Note that since nothing is placed into the
signal path that may intercept or alter its behavior, no compliancy issues or
the necessity of re-certify the system would arise which would make a roll-out
within certain critical infrastructures very expensive or time consuming.

From Network Anomalies to Physical Process Knowledge

The other main modification that is necessary to accommodate today’s threat
landscape is to move away from a detection solely based on network anomalies
and include information about the physical processes and their behavior into
an IDS. As discussed during Sect. 2, several relevant threats in IDS would not
deviate in terms of communication endpoints or packet sizes from normal traffic,
nor trigger any exception in terms of protocol or access policy compliance. While
this complicates the design of IDS, and means that instead of short training of
off-the-shelf an extensive customization period of the IDS to the system at hand
is necessary, an IDS with information about the physical processes can evaluate
how a command sent from the control system to the PLCs would play out and
thus be able to stop these threats previously uncovered.

In our work we implemented the physical model behind a general trailing
suction hopper dredger design, which will be briefly introduced in Sect. 5. Ulti-
mately though, the last line of defense approach can be adapted to any kind of
ICS given some knowledge of the underlying system. In the following we will
briefly discuss four detection strategies we apply in our prototype system. These
strategies are basic and generic and cover different information sources avail-
able in system operation, as well as the design, engineering and control process.
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When the physical system is designed, we know from the engineering documen-
tation the boundary conditions under which the system is designed to operate.
A monitoring system can directly apply these values to maintain process safety
and security, as deviations from the normal are cause for concern. In the next
step, it is meaningful to compare the consistency between the action and val-
ues of the devices in the field area, and those being reported on the control
network and inside the control system. This uncovers faulty devices, as well as
those operating with malicious hard- and software. Finally, in case of a phys-
ical process (e.g., a chemical reaction), detailed knowledge of how the process
will behave based on changes in input. Based on this information, an internal
representation of the ICS can be kept by the IDS. This allows commands be
evaluated for their potential effect and an evaluation whether the obtained sen-
sor values would be feasible and expected from the current state of the system.
Incoming sensor values and events, either input from a monitoring point such
as an I/O measurement or communication and control messages, are subjected
to four analysis methods in the proposed architecture: consistency comparison,
value and signature analysis and envelope escalation. Each method is explained
in further detail below:

Consistency Comparison. In a first step, the value emitted by an instrument is
compared to the value in the control system, as assuming the PLC and/or control
system is not tampered with these values should match up. Any deviations are
thus a basis for alarm and further investigation, indicating a malfunction or
deliberate action.

Value Analysis. In addition to a basic consistency check, instrument readings
are compared against the device, component and system level specifications,
describing the minimum/maximum operating context for specific components
or the rating alarm and trip setting (RATS) list for the entire design. Think for
example of the flow rate in a pipeline, which the control system only monitors
for a lower bound value - no flow for example. There is also an physical upper
limit though, which could be the maximum capacity the pumps can sustain.
Any deviations from this are flagged for immediate investigation, especially if
not reported as such by the main ICS control system.

Signature Analysis. Industrial control systems run very structured processes,
onto which a form of signature analysis is applied. The value under considera-
tion and the context in which it appeared is matched against a list of logic rules
and reference traces, raising an alarm when deviations are encountered. These
rules can take any form, as long as they can be specified in a machine-readable
and -interpretable format. Within this initial proof-of-concept we are consider-
ing (a) timing analysis of ICS control packets (since PLCs will show a different
answer time and deviations from their otherwise exact response patterns in case
they are executing different software branches than usual), (b) request-responsive-
sequence analysis of packets (PLCs communicate in set intervals status messages
to which other devices hen react), and (c) power-trace analysis of PLCs (as PLCs
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Fig. 3. Signature detection for timing analysis of request-response packets, as well as
power consumption during the servicing of requests

execute other code branches than usual their relative power consumption over
time will change). Figure 3 shows a schematic representation of this method.

Envelope Escalation. As in control engineering the various states of the system,
the failure domains and safe operating conditions are well defined, we can utilise
knowledge of the system’s secure and insecure states to follow the actions and
reactions in a multi-level multi-dimensional model, thereby creating a safe-state
envelope. Envelopes have been used for dependability engineering of communi-
cation networks to provide hard performance guarantees during challenge events
[27,28], however the method may directly be applied to control engineering as
well. Each independent subcomponent of an ICS is described by one or more
envelopes, which are defined by a set of metrics assessing a particular compo-
nent from various angles. Each envelope hence captures an N-dimensional state
space, which is annotated based on the system specifications indicating which
operating context is safe or not.

Figure 4 shows this concept in a two-dimension plot for 2 independent met-
rics, with green indicating a safe operating context, red an unsafe system con-
dition and yellow an operation outside norm values which may be temporarily
acceptable or after a legitimate operator override. As can be seen in the figure,
the IDS system monitors the development of the system’s status based on the
envelope specification and tracks whether it can still be considered safe. As com-
mands are issued and controls are actuated that would take it into an unsafe
condition, an alarm is generated. This tracking and detection can be done in
two ways: First, many control processes are well defined, i.e., it is possible to
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Fig. 4. Envelope escalation (Color figure online)

determine before-hand how say a chemical process will change given a partic-
ular change in input variables. Second, in case such information is not directly
modelable, it is usually generated and available after the testing period during
a system’s commissioning, during which normal and various boundary cases of
a system are being tested.

Both cases will let the IDS directly flag a command as abnormal to the oper-
ator, and in case an actor conducts a previously unknown attack a comparison
with historical commands and system responses will help the system maintainer
to at least identify, where and how things went out of the ordinary with concrete
pointers on how to roll back.

5 Experiments

To verify that our proposed new IDS approach has validity and can detect mali-
cious tampering within an ICS, we implemented and evaluated a proof-of-concept
prototype. This prototype is based on a generic trailing suction hopper dredger
design. As the prototype is subjected to intentional tampering of the control
systems, it is for security reasons not running on any production systems, but
in an simulated environment. This has the additional advantage of enabling us
to control system state and repeat scenarios under identical circumstances, and
evaluate the performance of different detection strategies.

The remainder of this section will further elaborate on the source model,
followed by a discussion of the experiments and the obtained results.
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Source Model

The source model can be created using three approaches: (1) first principles1,
(2) empirical input and output obtained from the field, and (3) a combination of
both. This quickly narrows down to first principles as obtaining such empirical
data is infeasible within this works scope. The approach used is to start out with
the most simplistic first principles model with the option to increase complexity
after initial evaluation. Reasoning for this is that the goal is to evaluate the IDS
system and not to create the most complex and realistic TSHD model.

A TSHD has either a fixed or dynamic overflow system. Within the generic
design use is made of a dynamic overflow system, which will also be used in
the model as this offers a possible vector for malicious behaviour. The main risk
within the loading cycle is that this overflow does not work as intended. This
has the potential to cause the system to overload and sink the vessel. There are
other parts that could malfunction, such as a suction pump not turning off. In
those cases however lowering the overflow would win time and safety by simply
ensuring excess cargo is discharged overboard.

The source model is built in such a way that there is a physical model rep-
resenting the TSHD, and a separate controller that influences the state of the
modeled THSD. This mimics the functionality of a real controller, which also
operates on a process. The physical model includes the following main compo-
nents: the hopper, the dynamic overflow and the inflow pipeline. In reality there
would be many other parts involved but for the purposes of the evaluation these
are not required and will be presented abstractly within the model.

The control network receives the sensor information from the physical model
and processes this. After processing the controller computes the required change
and sends a control message that influences the state of the source system. This
has been represented with Fig. 5, displaying the field devices in play and their
connection to the controller.

Fig. 5. The THSD modeled network.

1 In physics the first principles approach relates to something which is based directly
on established science.
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Experiments

There is a total of three experiments which aim to evaluate the prototype and the
proposed detection strategies. Each is based on vulnerabilities identified by the
threat model and inherent weaknesses in the source model. These experiments
are cyber incident, manipulation attack and envelope escalation, each targeting
a specific detection strategy.

Cyber Incident. A cyber incident occurs when a unwanted situation occurs but
there is no malicious intent trying to cause the situation. An example is the
overflowing of a tank because a control engineer has entered the wrong maxi-
mum volume for said tank. While these events might resemble a cyber attack,
the differentiator is intent. The evaluation is accomplished by introducing two
incidents that each target a different part of the system. During each iteration
one of these is randomly selected. The two incidents used are then: The first case
mimics the changing of a system set-point. The second case alters process logic
used within the controller. Both of these incidents mimic an operator, engineer-
ing or operational error which can cause the physical process to move outside of
its (safe) operating specification.

Manipulation Attack. An manipulation attack is said to have occurred when a
malicious entity manipulates a controller to act in a malicious way. For example
by ignoring specific sensor reading and always reporting all is safe. This experi-
ments implements three attacks: the first is a controller that thinks the cargo is
not changing, the second is where the controller will effectively keep the overflow
static and the final where the controller has access to a misleading draught. This
produces three possible incidents, one of which is chosen at random during each
iteration.

Envelope Escalation. An envelope incident has occurred when either a cyber
incident or attack causes a monitored part of the physical system to move outside
of the safety envelope. This experiment makes use of two incidents (set-point
and static overflow) selected from the previous experiments, and additionally
implements a new situation where the flow speed of the slurry is reduced to
below a critical value.

Results

The main aim behind the proof-of-concept and the experiments was to demon-
strate that the idea to reframe intrusion detection from a network-based view to
a process-aware approach has merit. The obtained results are based on the initial
experiments, without improvements, and simply marking a sample as malicious
when somewhere in the model an unwanted situation was occurring. For each
proposed analysis method, the results are as follows:

It is important to note here that the signature method, as mentioned earlier,
is not included in the experiments. The reason for this is the implementation
of a model instead of making use of an actual control system and hardware.
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Method True positive rate False alarm rate

Value analysis 88.7% 1.31%

Consistency analysis 100% 6.3 · 10−6%

Envelope analysis 92.3% 10.7%

As this approach does not directly allow for signature detection, it was decided
to keep it for future work.

It is evident that a system protected by the last-line-of-defense approach will
be somewhat more complex than a design where a single IDS module monitors
the flow of packets on the system’s network, after all additional wires are needed
from sensors and actuators to devices that cryptographically sign and report
sample values to the main IDS component. This requirement in deployment
complexity needs however be weighted against the added operational complexity
when intrusion detection were to be deployed right into the system’s signal path,
potentially necessitating re-certification and measures to deal with dropped and
modified control messages as discussed in Sect. 4. Whether such an approach
should be pervasively deployed or only a few sensors covered on the last line
of defense is subject to a risk and cost-benefit analysis, a solution could be to
cover the most essential sensors and parts of the process whose deviation would
result in the highest impact, or instead redefine the measurement strategy by
measuring multiple properties through orthogonal sensors not otherwise included
in the control system. This point will be further elaborated in the lessons learned
in the next section.

Regardless of the placement and coverage, the resulting defense in depth will
increase the resilience of the system. In case where no formal description of an
underlying process is available, a detection of process deviation can to some
extent be accomplished by empirical learning of sensor values at the expense of
loosing the predictive power of the IDS.

6 Lessons Learned and Open Research Questions

Based on the experiences building the proof of concept for the dredging hopper
and the evaluation of the prototype with practitioners, we did find the alternative
approach to have merit, but also raise a number of interesting aspects that
have not found consideration in the academic literature. In the following we
discuss five of the most important lessons learned and open research questions
we identified.

Measuring ICS Intrusion Detection Success

Coming from a traditional network-security background, measuring the perfor-
mance of an intrusion detection system is straight forward. Given a number
of packets, some of which are tagged as malicious, success is easily quantified
by means of the true/false positive and true/false negative ratios. While we
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Fig. 6. In many contexts, ICS intrusion detection can be more efficiently measured by
time-to-detect, instead of benchmarks such as TPR or FPR.

may attach benign and malicious labels to packets on the control network, this
packet-driven view on IDS success is however less expressive when viewed from
the operational side of industrial control system owner.

To demonstrate this issue imagine some metric measuring one particular
aspect of an industrial process which is monitored over time as shown in Fig. 6.
At some point in time t0, a command is sent from the HMI to the PLCs that
will guide the system to an undesired operating condition. At the scale of most
industrial processes, the effects are however not immediately visible but will only
manifest in time, for example a closed value will lead to a build up in pressure
that will ultimately raise an alarm once a predefined threshold is exceeded. We
see from this example that a packetized view to measure the success of intrusion
detection may be rethought in case of ICS. While a single packet may be the
root cause for an developing issue, categorizing packets as malicious and non-
malicious is not straight forward. Although the system state could be defined
as “infected” at any point after t0, the problem would only be detected as soon
as the metric exceeds the tolerance and detection threshold at t1. By definition
samples between t0 and t1 could thus be seen as false negatives as the IDS was
unsuccessful in detecting the compromised system state. Even when counting
packets, changing the sampling and reporting rates of the field units will change
the TPR and FPR of the system without changing the IDS performance in itself.
We believe that a better approach for ICS IDS evaluation would be operational
characteristics such as the time to detect an issue, or the time between false
positives as suggested by [19].

Rethinking Detection with Orthogonal Sensor Inputs
A recurring principle in IT security is the principle of “defense in depth”, in
which multiple layers of control require an adversary to circumvent multiple
defenses thus slowing down the attack progression and increasing the likelihood
of detection. The ideal defense in depth scenario would contain a set of comple-
mentary detection and defense mechanisms, so that any attempt to bypass one
layer would be detected by another.

Industrial control system intrusion detection could embrace this principle of
orthogonal detection at comparatively low complexity and overhead. While the
sensors connected to a PLC and control network are all directly process related,
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there exist a plethora of other industrial sensor types that can be leveraged
for asserting the process’ stability. With sensors measuring the ship engine’s
rotations per minute and fuel consumption, an attacker could still change the
parameters of the fuel injection process and increase the wear and tear. Although
invisible in the existing measurements, an additional microphone and a finger-
print of the engine’s sound would add an additional dimension to the attack,
drastically increasing the complexity to successfully complete the compromise
without being detected and remain invisible to the adversary as these additional
sensors are not connected to the regular process network and thus do not show
up in the HMI.

While not directly stopping attack progression, such additional sensory val-
ues significantly reduce the available attack surface, a malicious actor would
need to account for the monitoring of multiple process variables while pursuing
the attack. This will address unintentional misconfiguration incidents, eliminate
most adversaries, and slow down the attack progression of advanced ones. As
augmenting today’s systems with additional sensory capabilities will increase
both cost and complexity of such deployments, deployment of these sensors then
depends on a risk evaluation of a control system and limited to the most critical
failure points or processes with the highest impact upon failure.

Slow Response Time Reduces Urgency of Comprehensive Detection
When a command is executed to change the state of a physical system this
change does not happen instantly, some amount of time will transition between
the initial state and the resting state. This passing of time means that in the event
of a malicious command the system will not instantly transition into an unwanted
state. This “extra” time reduces the urgency for instant, and extremely, accurate
detection as multiple samples can be taken and even combined for analysis, prior
the system actually transitioning into the unwanted state.

Digital Sensor Security
While the bulk of sensors and actuators we found in practice were analog, newer
types of sensors are increasingly making the transition to a digital integrated
system. Basic building blocks such as pressure gauges that used to translate
the measured quantity into an output voltage, now frequently include a net-
work interface to stream out data independently, as well as extensive embedded
software stacks such as a web server to control and configure the device. This
additional software does not only introduce new features, but likely also new vul-
nerabilities and the possibility for an attacker to compromise the sensor itself.
Attacks can thus be embedded even one layer deeper into an industrial control
system, if a compromise of the firmware of digital sensors and actuators cannot
be effectively mitigated by an IDS operating anywhere in the field network.

Additional Value Provided by ICS IDS
A significant portion of the use cases sought after by current IDSes is also accom-
plished by safety systems in industrial control systems. Based on the values
provided by the PLC, redundant backups monitor the correct behavior of the
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Fig. 7. Current safety systems do not extend beyond the control network into the field
network.

primary control and raise an alert if the behavior of the primary deviates from
the actions considered appropriate by the safety system.

Current safety systems however do not extend beyond the control network
into the field network, and typically do not establish the correct functioning of
the field devices and their embedded software as shown in Fig. 7. Such devia-
tions of sensor values from the actual process state may be the result of two
causes, either a malicious attack or the result of malfunctioning devices and
instrumentation.

As it can be expected that in most operating contexts, the likelihood of sensor
and actuator failure will significantly outweigh the likelihood of a device failure
caused by an intentional attack, an intrusion detection system that includes
the last line of defense has the potential to extend the scope of safety systems
and augment them, for example by detecting a malfunctioning sensor device
or a component damaged by wear and tear, ultimately leading to a merging of
safety and security in ICS. The fusion of these two domains will both cut costs
and result in more comprehensive coverage of the system, and the simultaneous
view of the network on both sides of the PLCs also enables new functionality,
such as the detection of faulty sensors or the measurement of wear and tear.
These aspects might create a sufficiently attracting selling proposition as it can
lower the operational costs, allow for better maintenance scheduling, and entice
the development of new detectors and controls in ICS, and ultimately be less
expensive even when considering the additional costs for extra instrumentation.

Still, in situations with malicious intent, the components in the process net-
work will be the first ones to be targeted, and research results and practical
experiences – such as the steel mill incident – highlight that existing controls
are unsuited to stop advanced adversaries, requiring in addition to orthogo-
nal detection extra rings of security beyond the current ones implemented by
network-based IDS and safety systems.

7 Conclusion

This paper presents a novel intrusion detection system for industrial control
systems which exploits their well defined nature and physicality. Our approach
differentiates from related research in that it also exploits the physical state of
the system, as opposed to the network traffic between PLC and control system.
This state information is then analyzed by three detection strategies: (a) value
comparison that compares actual instrument values to what the control system
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reports, deviation of which could indicate a faulty or compromised controller;
(b) signature analysis which checks the instrument value(s) to pre-set and state
independent rules; (c) an envelope escalation strategy where a multi-level multi-
dimensional envelope is created depending on the actual system state, checking if
each sensor reading is still within this envelope from a system operation context.
We built a working prototype of our IDS, for which initial validation experiments
demonstrated the general feasibility of this approach. Although this research is a
work in progress the initial results are promising and indicate that approaching
intrusion detection from the physical instead of the networking side is indeed
feasible and provides additional detection capabilities not existing in current
solutions. As with all security research it will not provide a catch-all solution,
but used along side other strategies offers a firm last line of defense.
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20. Hadžiosmanović, D., Sommer, R., Zambon, E., Hartel, P.H.: Through the eye of the
PLC: semantic security monitoring for industrial processes. In: Annual Computer
Security Applications Conference (2014)

21. Fovino, I.N., Carcano, A., Masera, M., Trombetta, A.: An experimental investi-
gation of malware attacks on scada systems. Crit. Infrastruct. Protection 2(4),
139–145 (2009)

22. Cardenas, A., Baras, J., Seamon, K.: A framework for the evaluation of intrusion
detection systems. In: 2006 IEEE Symposium on Security and Privacy, pp. 15–77,
May 2006

23. Cardenas, A., Amin, S., Sastry, S.: Secure control: towards survivable cyber-
physical systems. In: Distributed Computing Systems Workshops, pp. 495–500,
June 2008

24. Fovino, I.N., Carcano, A., Murel, T.D.L., Trombetta, A., Masera, M.: Modbus/dnp.
3 state-based intrusion detection system. In: International Conference on Advanced
Information Networking and Applications (2010)

25. Carcano, A., Fovino, I.N., Masera, M., Trombetta, A.: State-based network intru-
sion detection systems for SCADA protocols: a proof of concept. In: Rome, E.,
Bloomfield, R. (eds.) CRITIS 2009. LNCS, vol. 6027, pp. 138–150. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-14379-3 12

26. Carcano, A., Coletta, A., Guglielmi, M., Masera, M., Fovino, I.N., Trombetta, A.:
A multidimensional critical state analysis for detecting intrusions in scada systems.
Trans. Ind. Inf. 7, 179–186 (2011)

27. Doerr, C., Hernandez, J.M.: A computational approach to multi-level analysis of
network resilience. In: Third International Conference on Dependability, DEPEND
(2010)

28. Doerr, C.: Challenge tracing and mitigation under partial information and uncer-
tainty. In: Communications and Network Security (CNS) (2013)

http://dx.doi.org/10.1007/978-3-642-14379-3_12


LED-it-GO: Leaking (A Lot of) Data
from Air-Gapped Computers via the (Small)

Hard Drive LED

Mordechai Guri(&), Boris Zadov(&), and Yuval Elovici(&)

Cyber Security Research Center,
Ben-Gurion University of the Negev, Beer-Sheva, Israel

{gurim,elovici}@post.bgu.ac.il, borisza@gmail.com

Abstract. In this paper we present a method that allows attackers to covertly
leak data from isolated, air-gapped computers. Our method utilizes the hard disk
drive (HDD) activity LED which exists in most of today’s desktop PCs, laptops,
and servers. We show that a malware can indirectly control the HDD LED,
turning it on and off rapidly (up to 5800 blinks per second) – a rate that exceeds
the visual perception capabilities of humans. Sensitive information can be
encoded and leaked over the LED signals, which can then be received remotely
by different kinds of cameras and light sensors (Demonstration video: https://
www.youtube.com/watch?v=4vIu8ld68fc). Compared to other LED methods,
our method is unique, because it is also covert; the HDD activity LED routinely
flickers frequently, and therefore the user may not be suspicious of changes in its
activity. We discuss attack scenarios and present the necessary technical
background regarding the HDD LED and its hardware control. We also present
various data modulation methods and describe the implementation of a
user-level malware that doesn’t require a kernel component. During the evalu-
ation, we examined the physical characteristics of different colored HDD LEDs
(red, blue, and white) and tested different types of receivers: remote cameras,
‘extreme’ cameras, security cameras, smartphone cameras, drone cameras, and
optical sensors. Finally, we discuss hardware and software countermeasures for
such a threat. Our experiment shows that sensitive data can successfully be
leaked from air-gapped computers via the HDD LED at a maximum bit rate of
120 bit/s (bits per second) when a video camera is used as a receiver, and 4000
bit/s when a light sensor is used for the reception. Notably, the maximal speed is
10 times faster than the existing optical covert channels for air-gapped com-
puters. These rates allow rapid exfiltration of encryption keys, keystroke log-
ging, and text and binary files.

Keywords: Covert channel � Air-gap � Exfiltration � Optical � LED � Hard
drive � Network security

1 Introduction

In the modern cyber era, attackers have proven that they can breach many organizations
thought to be secured. They employ sophisticated social engineering methods and
exploit zero-day vulnerabilities in order to infiltrate the target network, while bypassing
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defense measures such as intrusion detection and prevention systems (IDS/IPS), fire-
walls, antivirus programs, and the like. For that reason, when highly sensitive infor-
mation is involved, so-called air-gap isolation is used. In air-gap isolation, a network is
kept separate, physically and logically, from public networks such as the Internet.
Air-gapped networks are commonly used in military defense systems, critical infras-
tructure, banks and the financial sector, and others industries [1, 2].

But despite the high degree of isolation, air-gapped networks are not immune to
breaches. In recent years it has been shown that even air-gapped networks can become
compromised. In order to breach such networks, attackers have used complex attack
vectors, such as supply chain attacks, malicious insiders, and social engineering. While
the most well-known breach cases are Stuxnet [3] and agent.btz [4], other attacks have
also been reported [3, 5–8].

1.1 Leaking Data Through an Air-Gap

While infiltrating air-gapped systems has been shown feasible in recent years, the
exfiltration of data from systems without networking, physical access, or Internet
connectivity is still considered a challenging task. Over the years, different types of
air-gap covert channels (that is, covert channels aimed at leaking data from air-gapped
computers) have been proposed. The electromagnetic emission from computer com-
ponents is one type of covert channel that has been extensively studied. In this method,
a malware controls the electromagnetic emission from computer parts, including the
screen, cables, processors, and other peripherals [9–13]. Leaking data over ultrasonic
waves [14, 15] and via thermal manipulations [16] has also been studied.

A few types of optical covert channels have been presented as well. In particular,
leaking data via the blinks made by keyboard LEDs, or by inserting malicious hardware
with controlled LEDs into an organization. However, these methods are not considered
completely covert, since they can easily be detected by people who notice the
anomalous LED blinking. Generally speaking, because optical and LED methods are
considered less covert, they have not received as much attention from researchers.

1.2 Our Contribution

In this paper we present a method that enables malware to leak data from air-gapped
computers using the HDD activity LED which is present in nearly all desktop and
laptop computers today. A malware can manipulate the HDD LED and control its
blinking period and speed by using certain HDD I/O operations, such as ‘read’ and
‘write.’ We show that arbitrary data can be modulated and transmitted over the optical
signals.

Compared with existing optical methods, our method is unique in five ways:

• Covertness. Until now, leaking data through PC LEDs has not been considered
covert – given the irregular and inconsistent nature of the blinking of keyboard and
screen power LEDs, hence leaking data through these LEDs can easily be detected.
In contrast, our method is considered covert, because unlike the keyboard and
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screen LEDs, HDD activity LEDs are frequently active, and manipulations of the
blinking timing and speed may not draw special attention.

• Speed. Our measurements show that the HDD LED can be controlled and adjusted
to operate at a relatively fast speed (over 6000 Hz). Therefore, we were able to
transmit messages at a much faster speed than other LED methods were able to
achieve. This rate allowed the exfiltration of an encryption key of 4096 bits in a
matter of minutes (and even seconds), depending on the receiver.

• Visibility. When the HDD LED blinks for a short period of time, humans may not
be able to perceive its activity [17]. Moreover, at high speeds (e.g., above 400 Hz),
the LED flickering is invisible to humans, making the channel even more covert.

• Availability. Our method does not require any special hardware. It works with any
computer that has an HDD activity LED. This component is found on most desktop
PCs, laptops, and servers today.

• Privilege level. Activating the HDD LED can be initiated from an ordinary
user-level code and does not require a special component in the OS kernel.

The rest of the paper is organized as follows. In Sect. 2 we present related work.
Section 3 describes the adversarial attack model. Section 4 provides technical back-
ground. Data modulation and transmission are discussed in Sect. 5. Section 6 presents
the evaluation and results. Countermeasures are discussed in Sect. 7, and we present
our conclusions in Sect. 8.

2 Related Work

Leaking data from air-gapped computers via covert channels has been the subject of
research for the past twenty years. Air-gap covert channels can be categorized as
electromagnetic, acoustic, thermal, and optical channels.

2.1 Electromagnetic

In electromagnetic methods, the attacker modulates data over of the electromagnetic
signals generated by various components within the computer. Back in 1998, Kuhn and
Anderson [10] introduced the ‘Soft Tempest’ attack which involved hidden data
transmission using electromagnetic emanations from a video cable. AirHopper [9],
introduced in 2014, is a type of malware aimed at leaking data from air-gapped
computers to a nearby mobile phone by generating FM radio signals from the video
card. GSMem malware [13], presented in 2105, enables leaking data at cellular fre-
quencies via electromagnetic emission generated by the computer RAM bus. More
recently, researchers presented USBee [18] and Funthenna [19] which exploit the
electromagnetic interference generated by the USB and GPIO buses, respectively.
Matyunin et al. use the magnetic field sensors of mobile devices as a covert channel
[20]. Other electromagnetic and magnetic covert channels are discussed in [21].
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2.2 Sonic/Ultrasonic

Near ultrasonic methods for air-gap covert channels are discussed in a number of
academic works. Hanspach and Goetz [22] present a method for near ultrasonic covert
networking using speakers and microphones in laptops. The concept of communicating
over inaudible sounds has been comprehensively examined by Lee et al. [23] and has
also been extended for different scenarios using laptops and mobile phones [24]. Guri
et al. introduced Fansmitter [25] and Disfiltration [26], new methods enabling acoustic
data exfiltration from computers without speakers or audio hardware. The proposed
methods utilized computer fans and the moving heads (the ‘actuator arm’) of hard
drives to generate acoustic signals.

2.3 Thermal

BitWhisper [27], presented in 2015, is a unique air-gap covert channel, allowing
bidirectional covert communication between adjacent air-gapped computers, using the
computers’ heat emissions and the built-in thermal sensors of the computers’ moth-
erboards. The two computers communicate by using so-called ‘thermal pings’ to
exchange command and control data. Notably, such a thermal channel is relatively
slow and hence relevant for brief commands and small amounts of data.

2.4 Optical

In the optical domain, Loughry and Umphress [28] and Sepetnitsky and Guri [29]
discussed the risks of intentional information leakage through optical signals sent from
keyboard and screen LEDs. They implemented malware that controls the keyboard and
screen power LEDs to transfer data to a remote camera. The main drawback of these
methods is that they are less covert: since the keyboard and screen LEDs don’t blink
typically, users can easily detect this type of communication. Shamir et al. demon-
strated how to establish a covert channel with a malware over the air-gap using a
blinking laser and standard all-in-one-printer [30]. However, this method is not covert
and its success relies upon user absence. More recently, Lopes and Arana [31] pre-
sented a novel approach for air-gap data exfiltration using a malicious storage device
which transmits data through blinking infrared LEDs. In this way, an attacker can leak
sensitive data stored on the device, such as credentials and cryptographic keys, at a
speed of 15 bit/s. The computer need not be infected with a malware, but this approach
does require that the attacker finds a way to insert the compromised hardware
implanted with infrared LEDs into the organization. Brasspup [32] demonstrated how
to conceal secret images in a modified LCD screen. His method required removing the
polarization filter of the LCD screen which makes it less practical for real world
attacks. VisiSploit [33] is another optical covert channel in which data is leaked from
the LCD screen to a remote camera via a so-called ‘invisible image.’ With this method,
a remote camera can reconstruct an invisible QR code projected on the computer
screen.
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Table 1 provides a summary of the different types of existing air-gap covert
channels, including their maximum bandwidth and effective distance.

The method presented in this paper has two main advantages compared to other
LED based methods: its covertness and its speed. The state of keyboard and screen
power LEDs changes frequently, and it is likely that any blinking caused by tampering
with this channel will be obvious to observers. On the other hand, the HDD activity
LED blinks frequently (due to OS background operations), and hence the effects of
communication via this channel (changes in the blinking pattern) will not arouse
attention. By using the HDD LED we achieved an exfiltration speed of up to 4000 bit/s,
more than 10 times faster than existing air-gap LED methods.

3 Adversarial Attack Model

The attack model consists of four phases: (1) infecting the target computer with a
malware and collecting data, (2) transmitting the data through the HDD LED signals,
(3) receiving the signals remotely, and (4) decoding the signals back into binary
information.

Infection. As demonstrated in recent years, infecting a computer within a secure
network can be accomplished. Attackers may employ supply chain attacks, use social
engineering techniques, or launch hardware with preinstalled malware to obtain a
foothold in the target machine [35–37]. The malware then gathers sensitive information
from the user’s computer (e.g., keystrokes, password, encryption keys, and
documents).

Table 1. Different types of air-gap covert channels and distances

Method Examples Max
bandwidth

Effective distance

Electromagnetic AirHopper [9]
GSMem [13]
USBee [18]
Funthenna [11]

480 bit/s
1 to 1000 bit/s
4800 bit/s

*5–10 m

Acoustic [14, 15, 23, 24, 34]
Fan noise (Fansmitter) [25]
Hard disk noise (DiskFiltration)
[26]

<100 bit/s
900 bit/h
10 K bit/h

*15 m

Thermal BitWhisper 1–8 bit/h 40 cm
Optical (LEDs) Keyboard LEDs (unmodified)

[28]
Screen LEDs [29]
Implanted infrared LEDs [31]

150 bit/s
20 bit/s
15 bit/s

Line of sight (0–30
m)

Hard drive LED (this paper) 4000 bit/s Line of sight
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Transmission. Eventually the malware starts transmitting the binary data through the
blinking HDD LED using a selected encoding scheme. The data may be transmitted
repeatedly at certain times, which are specified by the attacker.

Reception. The attack model requires a digital camera or optical sensor which has a
line of sight with the compromised computer’s front panel. We identify two scenarios
in which this threat model is relevant: (1) the ‘malicious insider’ [38] (also known as
the ‘evil maid’ [39] attack), in which a person carrying a hidden camera can obtain a
line of sight with the compromised computer, and (2) a scenario involving a remote
camera or optical sensor pointed at the compromised computer [40].

There are several types of equipment that can play the role of the receiver in this
attack model.

• Local hidden camera. A hidden camera that has a line of sight to the front panel of
the transmitting computer.

• High resolution remote camera. A high resolution camera (or other type of optical
sensor) that is located outside the building, but positioned so it has a line of sight to
the front panel of the transmitting computer.

• Drone camera. A camera installed on a versatile drone which is flown to a location
which has a line of sight with the front panel of the transmitting computer, e.g., near
the window. This type of receiver is relevant for leaking a small amount of data
(e.g., leaking encryption keys). In practice, the drone attack might be used during
the night hours or only for short transmission periods, to minimize the chance of
being detected by humans.

• Camera carried by a malicious insider. A person that stands in close proximity to
the computer and can position him/herself so as to have a line of sight with the front
panel of the transmitting computer, carrying a smartphone or wearable video camera
(e.g., hidden camera).

• Compromised security camera. A security camera positioned in a location where
it has a line of sight with the front panel of the transmitting computer. In recent
years, there were several cases in which security and surveillance cameras has been
compromised by attackers [41, 42]. For example, in January 2017, two hackers
were reportedly arrested in London on suspicion of hacking 70% of the CCTV
cameras in Washington [43]. A comprehensive analysis of the threats, vulnerabil-
ities, and attacks on video surveillance, closed-circuit TV, and IP camera systems
was conducted by Costin in [40].

• Optical sensors. An optical sensor capable of sensing the light emitted from the
HDD LED. Such sensors are used extensively in VLC (visible light communica-
tion) and LED to LED communication [44]. Notably, optical sensors are capable of
sampling LED signals at high rates, enabling data reception at a higher bandwidth
than a typical video camera. In the context of an attack model, optical sensors can
be secretly installed within the room, e.g., in the walls or ceiling, within furniture,
and so on. They can also be attached to a focusing optical lens with a line of sight
with the transmitting computer placed remotely, inside or outside of the building.
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Decoding. After receiving the digital videos or data sampled by the optical sensors, the
information has to be demodulated and decoded back into the original binary form.
This is done offline on the attacker’s side by employing an appropriate decoding
scheme.

An example of the covert channel is provided in Fig. 1 in which sensitive data is
encoded in binary form and covertly transmitted over a stream of HDD LED signals.
A hidden video camera films the activity in the room, including the LED signals. The
attacker can then decode the signals and reconstruct the modulated data.

4 Technical Background

LED (light emitting diode) is a two-lead semiconductor light source that illuminates
when an electrical charge passes through it. LEDs are used as activity indicators in a
wide range of electronic devices. In addition, LEDs of different sizes and colors are
also used in various applications such as advertising, home lighting, the automotive
industry, and traffic signals. The wavelength of the emitted light (which is indicated by
its color) is determined by the material used in the semiconducting element within the
LED. Generally, aluminum gallium indium phosphide (AlGaInP) is used in red,
orange, and yellow LEDs, and indium gallium nitride (InGaN) is used in green, blue,
and white LEDs.

Fig. 1. Example of the attack. A leaking HDD LED (the red LED at the center of the image) as
captured by a hidden video camera located eight meters away from the transmitting computer.
(Color figure online)
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LED indicators are commonly used in desktop and laptop computers and their
peripheral hardware components. Computer LEDs include the power and keyboard
LEDs, and many motherboards have an internal onboard power LED that indicates
whether there are hardware errors.

4.1 HDD Activity LED

The HDD activity indicator is a small LED that blinks whenever the hard drive is active
(being read from or written to). A schematic flow of the HDD activity LED’s operation
is provided in Fig. 2. Technically, internal hard disk drives in desktop and laptop
computers are connected to the motherboard via a SATA/IDE interface or another type
of mass storage device interface (Fig. 2-1). The motherboard hard drive controller
sends signals via the HDD activity header pins over the standard 2-pin HDD LED
extension cable (Fig. 2-2). These signals cause an LED on the front of a computer to
flash when the drive is active. The signals are sent to the LED whenever ‘read’ or
‘write’ operations have been issued to the HDD. Some large computer cases (e.g.,
server PCs) have multiple hard disk activity LEDs to allow for the separate connection
of a number of drives. External hard drives and flash drives are usually equipped with
an activity LED as well. In these cases, the LED is connected to the embedded con-
troller of the flash drive.

On a desktop PC the HDD LED is located on the front panel of the computer. On a
laptop the HDD LED is usually located on the front control bar (located above the
keyboard) or on the front edge of the computer. The activity LED of an external HDD
is usually located on the front of its case. The LED light may be any color, depending
on the type of computer, but it is usually white, red, green, yellow, or blue.

4.2 HDD Activity LED Circuit Hardware

The HDD activity LED is connected to the motherboard circuit using a 2-pin extension
cable. To activate the component, two parameters are needed: forward voltage of at
least 2 V, and forward current of 20–130 mA, depending on type of LED. Digital
output ports cannot provide the amount of current needed to operate the LED, and thus
an extra electronic circuit, called an LED driver, is needed to meet this requirement.
Figure 3 presents the two driver circuits commonly used in motherboards. The circuit

Operating System

HDD Indicator LED

SATA Controller
(motherboard)

storage

read/write

SATA cable

2-wire 
power cable

1

2

Fig. 2. Schematic flow of the HDD activity LED’s operation.
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in Fig. 3(a) is based on an NPN transistor connected in common emitter configuration.
The circuit in Fig. 3(b) is based on an operational amplifier. Both circuits can provide
the amount of current needed to operate the LED.

The circuit presented in Fig. 3(a) is less expensive than the circuit in Fig. 3(b), and
it has more limited current amplification (150–550). The more expensive circuit in
Fig. 3(b) is based on an operational amplifier and has a comparator configuration with
open loop amplification of 106, allowing faster responsivity to the input signal; in
addition it has only two voltage levels (5 v and 0 v). This circuit also has better
immunization to the input.

5 Data Transmission

In this section we present the data transmission. We discuss the basic signal generation
and describe different modulation methods, along with their implementation details.

5.1 Signal Generation

In our method, the data carrier is the state of the HDD LED. The basic signal is
generated by turning the LED on and off. Technically, the HDD LED is controlled
directly by the motherboard chipset. We found that there is no reliable generic API that
can be used to enable software to request the motherboard to turn on the HDD indicator
LED. In order to generate the signal, we can indirectly control the LED by performing
specific HDD ‘read’ or ‘write’ operations. These operations cause the motherboard to
turn on the HDD LED for a specified amount of time, depending on the size of the
buffer being read from or written to the storage device. Table 2 lists the OS level
operations and the corresponding LED states, denoted as LED-ON and LED-OFF. As
can be seen, reading or writing a buffer size S causes the HDD LED to be turned on for
the time period of Ton. Sleeping for time Toff causes the HDD LED to be turned off for a
period of Toff .

Activity 
signal 
input

HDD
LED

2R1R

T1

V+

2R1R

LED 
Driver

Activity 
signal 
input

V+

HDD
LED

(b)(a)

Fig. 3. The two common motherboard LED driver circuits. (a) A common emitter configuration
with self-biasing implementation. (b) Operational amplifier based implementation.
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5.2 Data Encoding

The topic of visible light communication has been widely studied in the last decade. In
particular, various modulations and encoding schemes have been proposed for LED to
LED communication [44–46]. For our purposes, we present three basic encoding
schemes which enable the transmission of digital data over the HDD LED: (1) on-off
keying (OOK), (2) Manchester encoding, and (3) Binary Frequency Shift Keying
(B-FSK).

On-Off keying (OOK)
This is the simplest form of the more general amplitude-shift keying (ASK) modula-
tion. The presence of a signal for a certain duration encodes a logical one (“1”), while
its absence for the same duration encodes a logical zero (“0”). In our case, LED-ON for
a duration Ton encodes “1” and LED-OFF for duration of Toff encodes “0”. Note that in
the simple case Ton = Toff :

Manchester Encoding
In Manchester encoding each logical bit is sent using two physical bits. The sequence
of physical bits “01” (LED-OFF, LED-ON) encodes a logical “0” and the sequence of
physical bits “10” (LED-ON, LED-OFF) encodes a logical “1.” Manchester encoding
solves the LED flickering problem by sending an equal number of ones and zeroes.
Manchester encoding’s transfer rate is half of OOK’s rate, since it uses two physical
bits for each logical bit. This type of encoding is considered more reliable because of
the redundancy of each transmitted bit; therefore it is heavily used in communication.

Binary Frequency Shift Keying (B-FSK)
In this encoding scheme both a logical “1” and “0” are encoded by LED-ON. We
denote S1 and S0 as the size of buffer used for the transmission of logical “1”s and “0”s,
respectively. A logical “1” is encoded by the LED-ON state for time duration of
Ton(S1), and a logical “0” is encoded by the LED-ON state for time duration of Ton(S0).
Each logical bit is followed by a guard interval (LED-OFF) for a time interval of Toff .

5.3 Bit Framing

We transmit the binary data in frames. The frames have two roles: (1) providing
periodic synchronization signals to the receiver, and (2) providing a basic error check
mechanism for each packet of bytes sent. We used two types of bit framing: (1) fixed
length framing, and (2) variable length framing.

In fixed length framing (Table 3) the binary data is transmitted in small, fixed size
packets. Each packet is composed of a preamble (8 bits), a payload (256 bits), and a
checksum (16 bits). The preamble consists of a sequence of eight alternating bits

Table 2. Signal time

OS operation HDD-LED state

Read/write (SÞ LED-ON for time Ton(S)
Sleep (Toff ) LED-OFF for time Toff
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(‘10101010’) and is used by the receiver to periodically determine the channel timing
(Ton and Toff ). In addition, the preamble header allows the receiver to identify the
beginning of a transmission and calibrate other parameters, such as the intensity and
color of the transmitting LED. The payload is a chunk of 256 bits to be transmitted. We
used a 16-bit CRC (cyclic redundancy check) for error detection. The CRC is computed
on the payload and added to the end of the frame. The receiver calculates the CRC for
the received payload, and if it differs from the received CRC, an error is detected. In
variable length framing (Table 4) the binary data is transmitted in packets of varying
length. The preamble is followed by 16 bits which determine the payload size. The
payload size may differ between packets. Finally, the 16-bit CRC of the payload is
added to the end of the frame.

Note that fixed length bit framing is more suitable for cases in which a small
amount of fixed sized data is about to be transmitted (e.g., encryption keys and pass-
words). With a larger amount of data (e.g., files), variable length framing may be better,
because it can transmit the entire amount of data in fewer packets, while saving on the
overhead of the frame headers. However, in some circumstances larger frames are more
wasteful, since a single bit error may corrupt the whole frame.

5.4 Transmission Overhead

The modulation schemes and bit framing add overhead on the transmitted data. Con-
sequentially, the net payload can be considerably smaller than the amount of raw
signals transmitted. The overhead for various modulation schemes and types of bit
framing is summarized in Table 5.

The large amount of overhead associated withManchester encoding is due to the state
transition time required for every modulated bit. In our implementation, this doubles the
amount of time required for the transmitted frame. Infixed length bit framing the source of

Table 3. Fixed length framing

8 bits 256 bits 16 bits

Preamble (10101010) Payload CRC

Table 4. Variable length framing

8 bits 16 bits n bits 16 bits

Preamble (10101010) Payload size (n) Payload CRC

Table 5. Transmission overhead

Modulation/bit framing Fixed length Variable length

On-off keying (OOK) 8.5% 100�40
nþ 40 %

Manchester encoding 58.5% 50% + 100�40
nþ 40 %

Binary Frequency Shift Keying (B-FSK) 8.5% 100�40
nþ 40 %

LED-it-GO: Leaking (A Lot of) Data 171



the overhead is associated with the preamble and the CRC (24 bits), and in variable length
bit framing the source is due to the preamble, CRC, and the payload size (40 bits).

5.5 Implementation

We implemented a prototype of the transmitter for the Linux (Ubuntu 16.04 LTS,
64-bit) and Windows (Windows 10, professional 64-bit) OSs. We choose to use the
read operation to turn on the HDD activity LED, because it leaves no traces on the file
system. We executed a C program which uses the direct addressing system calls and the
fseek(), fopen(), and fread() system calls [47, 48]. We also implemented a shell script
version of the transmitter using the Linux dd command-line utility [49]. This is a low
level utility of Linux that can perform a wide range of HDD operations (e.g., read or
copy) at the file or block level. A pseudocode for on-off keying transmission (Linux
version) is provided in Algorithm 1.

The procedure HDDLED_TransmitBit takes three parameters: the stream of bits
to transmit (bits), time Toff (T0), and the size of the buffer for the read operation
(ReadSize), which determines Ton(S). Initially, the cache is cleared (line 2), and then we
open the main hard drive for reading (line 3). Since the OS performs HDD reads in
small sized blocks (BLOCK_SIZE), we must ensure that two consecutive reads are
taken on different blocks in the HDD; otherwise, the second read operation will not
generate HDD access (LED activity), because the block is already in the cache. For
each bit in the bit stream, if the bit is ‘0,’ we do nothing for time T0 (line 8–9). If the bit
is ‘1,’ a read operation is performed, and we advance to the next block (line 11–13).
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5.6 Caching Avoidance

In order to efficiently modulate data over the LED signal, we need to precisely control
the duration of the read operations. In particular, we need to be able to perform the read
operation at a given time without delay. Modern OSs employ disk and file I/O caching
mechanisms in their kernel or device drivers. Such caching can cause timing delays and
inconsistencies in the generation of LED signals. For efficient and error-free signal
generation, we must avoid any type of caching during the read operation. Before the
transmissions, we turned off the disk caching using the /proc/sys/vm/drop_
caches, in order to instruct the kernel to free the pagecache, dentries, and inodes. We
also turned off the HDD write-back cache mechanism, using the hdparm command
line tool [50]. In the shell script, we used the dd tool with ‘direct’ flag (use direct I/O
for data), and ‘sync’ flag (use synchronized I/O for data). Note that employing a
system-wide (e.g., to all processes) cache avoidance requires root privileges. Another
option for bypassing OS caching that does not require root privileges is to specify
appropriate flags in the file access related system calls invoked from the transmitting
process. For example, the O_DIRECT flag for the open system call in Linux tries to
minimize the cache effects of the I/O to and from a file [51]. In the Windows OS, the
FILE_FLAG_WRITE_THROUGH and FILE_FLAG_NO_BUFFERING system call
can be specified in the CreateFile API [52] to avoid some of the OS caching.

6 Evaluation

In this section we present the evaluation of the transmitter and its characteristics. Note
that the concept of LED communication was the subject of a considerable amount of
research in recent years. Today it is possible to transmit signals over LEDs at a rate of
500 Mbit/s [46, 53]. Other research shows that it is possible to decode LED signals
from more than 30 m away [28]. Our evaluation focuses on the characteristics of the
HDD LED and its rate. In our evaluation, we adopt the approach commonly used in
visible light communication (VLC), which assumes a line of sight between the light
source and the camera [28, 45].

6.1 Experimental Setup

The experimental setup consists of three off-the-shelf standard desktop PCs, each with
a different type of HDD LED (Table 6). Note that although most HDD indication LEDs
are red, many vendors today are using different colors. For the evaluation we used red,
blue, and white types of HDD LEDs.

The main PC has an Infinity case with a Gigabyte H87 M-D3H motherboard with
Intel H87 chipsets. We tested two hard drives. The first is the WD Blue 1 TB Desktop
Hard Disk Drive - 7200 RPM SATA 6 Gb/s 64 MB Cache 3.5 in. Based on a
benchmark that we conducted in our lab, this HDD has a read rate of 144.2 MB/s and
an access time of 14.7 ms. We also tested the 240 GB Kingston HyperX Savage solid
state drive (SSD). A small circular red HDD indicator LED is located on the front of
the computer chassis. This LED is connected to two pins in the motherboard (HD LED
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pins), which supply its voltage. In terms of software, we used the user-level trans-
mitting program described in the Implementation sub-section. This program receives
the channel parameters (LED-ON and LED-OFF times) and the array of bits to
transmit.

6.2 LED Measurement Setup

To evaluate the HDD LED at high speeds we designed a measurement setup based on
photodiode light sensors.

Very simply, a photodiode is a semiconductor that converts light into electrical
current. The measurement setup is shown in Fig. 4. The photodiode was connected to
the charge configuration amplifier AD549 [54] (with 0.11 fA current noise density) and
the data acquisition system. Data was collected with the NI cDAQ measurement system
with a 16-bit ADC NI9223 measurement card [55] which is capable of 200 K samples
per second. The system was driven by the LabVIEW dataflow visual programming
language.

We used two types of photodiodes: (1) SIEMENS photodiode SFH-2030 (Fig. 5
(a)), a device which is suitable for sensing light at wavelengths of 400–1100 nm, dark
current of 1 nA, 55 nsec of current rise and fall time, and (2) Thorlabs PDA100A Si
Switchable Gain Detector [56] (Fig. 5(b)), suitable for sensing light at wavelengths of
320–1100 nm, 2.4 MHz BW, 0.973–27 pW/Hz1/2 with a built-in amplifier.

Table 6. PCs used in our experimental setup with red, blue, and white HDD indicator LEDs

# Case
type

LED Motherboard Hard drive

PC-1 Infinity Red Gigabyte
H87 M-D3H

WD Blue 1 TB Desktop Hard Disk Drive -
7200 RPM SATA 6 Gb/s 64 MB Cache
3:500 - Kingston HyperX Savage SSD,
240 GB

PC-2 Gigabyte Blue Gigabyte
H77-D3H

Seagate Desktop HDD 1 TB 64 MB
Cache SATA 6.0 Gb/s 3:500

PC-3 Dell
Optiplex
9020

White Intel Q87
(LYNX
POINT)

WD Blue 1 TB Desktop Hard Disk Drive -
7200 RPM SATA 6 Gb/s 64 MB Cache
3:50000

Fig. 4. The light measurement experimental setup, based on a photodiode and NI acquisition
system with a high speed sampling rate.
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The two sensors fit into different attack models. The SIEMENS photodiode circuit
is a simple, small sensor that could be hidden in the room in which the transmitter
computer is located. The Thorlabs PDA100A is a larger device with a built-in opti-
mized amplifier and an option to connect an external lens used to magnify and focus the
light signal. A larger sensor like this may be located remotely (e.g., outside the win-
dow), carried by human, or integrated on a flying drone.

Ambient Light
Our experiments took place in a typical office with six desktop workstations in the
room. During the experiments, the room was illuminated by a fluorescent lamp. The
room has a transparent glass window and a transparent glass door, so it is exposed to
natural sunlight as well. The experiments described in this section were conducted in
daylight (daytime hours) to simulate an attack environment. The room also included
additional sources of light such as LCD screens and router LEDs.

6.3 Transmission and Reception

As mentioned, the HDD activity LED cannot be controlled directly by software.
Instead, we perform the read operation from the OS, which in turn causes the HDD
controller on the motherboard to turn on the HDD indication LED. We examine the
correlation between S and Ton(S), denoting the number of bytes we read as S and the
time the LED was on as Ton(S). This information is important, because it enables us to
configure the parameters of the transmitting software. We also evaluate the channel
boundaries to determine the maximum frequency on which the HDD LED can operate
and the maximum bandwidth.

We configured the transmitter to perform the read operation, varying the number of
bytes (S). Using the LED measurement setup described above, we measured the cor-
responding LED-ON time (Ton(S)). The photodiodes were positioned directly in front
of the HDD LED and located a distance from zero to several meters away. Table 7
contains the main values of S and the corresponding Ton(S), tested on PC-1.

Fig. 5. (a) SIEMENS photodiode SFH-2030, and (b) Thorlabs PDA100A sensor.
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Figures 6(a), (b), (c), and (d) show the waveforms of binary ‘101010…’ (encoded
in OOK modulation) transmitted at a rate of 1.6 bit/s, 30 bit/s, 277 bit/s, and 4000 bit/s,
respectively. In this case, the transmitter is the PC-1 (red LED), and the receiver is the
SIEMENS photodiode. Note that our LED-ON measurement includes a duty cycle of
50%. As can be seen, performing the SATA read operation on the 60 MB buffer causes
an LED-ON time (Ton(S)) of 60 ms which implies a transmission rate of 1.6 bit/s.
Performing the SATA read operation on buffers of 4 KB or less causes an LED-ON
time (Ton(S)) of 0.18 ms which implies a transmission rate of 4000 bit/s. We identify
two reasons for the effect of the lower limit of the transmission buffer and the corre-
sponding Ton(S) time. At the software layer, our transmission code operates from a
user-level process. In modern operating systems such as Windows and Linux, the HDD
I/O operations pass through a stack of drivers (e.g., file system drivers, volume drivers,
disk port drivers, and so on). These drivers employ internal caching and scheduling
mechanisms which deliver the I/O buffers to the hardware level in small packages. At
the hardware layer, the use of small I/O blocks is enforced by the hardware itself. More
specifically, reading and writing to HDDs is done in units of sectors which are the
smallest storage unit of a hard drive. While the standard sector size is 512 bytes, newer
HDDs use 4096-bytes (4 KB) sectors known as the Advanced Format (AF) [57]. In
practice this means that in most cases HDDs will exchange (read or write) data in
chunks of no less than 4 KB.

Figure 7 provides measurements for transmissions made from PC-1 (red LED),
PC-2 (blue LED), and PC-3 (white LED). In this experiment we use the PDA100A
sensor with S ¼ 4K. PC-1 has a pulse width of 0.18 ms and an amplitude of 5.3 V.
PC-2 has a pulse width of 0.12 ms and an amplitude of 0.71 V. PC-3 has a pulse width
of 0.1 ms and an amplitude of 0.18 V. The amplitude represents the amount of charge
converted to voltage with the electrical current amplifier. As can be seen, the blue
LEDs produce the strongest optic signals.

Table 7. LED-ON measurements (PC-1)

Read volume (SÞ LED-ON Time (Ton(S)) Bit/s

60000000 (60 MB) 630 ms 1.6 bit/s
15120000 (15 MB) 250 ms 4 bps bit/s
80000000 (8 MB) 60 ms 16 bit/s
5120000 (5 MB) 32 ms 30 bit/s
1280000 (1.2 MB) 5 ms 180 bit/s
800000 (800 KB) 3.6 ms 277 bit/s
600000 (600 KB) 3.2 ms 312 bit/s
512000 (512 KB) 2 ms 500 bit/s
256000 (256 KB) 1.2 ms 833 bit/s
<4 KB 0.18 ms 4000 bit/s
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Fig. 6. PC-1 measurements with pulse width of (a) 680 ms (S ¼ 60 MB), (b) 32 ms
(S ¼ 5 MB), (c) 3.6 ms (S ¼ 0:8 MB), and (d) 0.18 ms (S ¼ 4K).

Fig. 7. Measurements for (a) PC-1 (red LED), (b) PC-2 (blue LED), and (c) PC-3 (white LED).
(Color figure online)
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6.4 Camera Receivers

Table 8 shows the maximum bandwidth for the various receivers and attack models.
The main factor in determining the maximum bandwidth in video cameras is the
number of frames per second (FPS). For video cameras, we have identified a setting of
two frames per bit as the optimal setting needed to achieve successful detection of the
LED-ON timing.

6.5 Distances

Other research has shown that the activity of computer LEDs can be detected from more
than 30 m away [28]. In fact, in LED to LED communication, given a line of sight with
the transmitter it is possible to detect the LED transmission from even farther away [45].
The quality of the optical LED signal (as received by the camera) is affected by the
receiver’s location (its distance away, angle, and position), the ambient light, LED
wavelength, and other factors. Comprehensive analysis of optical signals is a complex
task which goes beyond the scope of this paper. Notably, the environmental conditions
can directly influence the effective distance. For example, during the night we were able
identify the LED signals from outside the building at a distance of 20 m away. In
addition, using optical zoom lenses it is possible to extend the range further. Figure 8
shows the signals transmitted from PC-1, as measured in daylight by an optical sensor
within the room at distances of three, four, and five meters away. The amplitudes

Table 8. Maximum bandwidth of different receivers

Tested
Camera/Sensor

Model Resolution Max
bandwidth

Entry-level DSLR Nikon D7100.
lens: Nikon18–140 mm
F3.5-5.6 ED VR

1920 � 1080
(video)
1280 � 720 (60 fps
video)

15 bit/s

High-end security
camera

SNCEB600
Network 720p/30fps HD Fixed
Camera

1280 � 1024 15 bit/s

Extreme camera GoPro Hero5 4 K - WVGA 100–120
bit/s

Webcam (HD) Microsoft LifeCam 1280 � 720
(video)

15 bit/s

Smartphone
camera

Samsung Galaxy S6 1920 � 1080
(video)

15–60 bit/s

Wearable camera Google Glass Explorer Edition 2528 � 1856
1280 � 720 (video)

15 bit/s

Photodiode sensors SIEMENS photodiode
SFH-2030
Thorlabs PDA100A sensor

– <4000 bit/s
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represent the amount of charge converted to voltage with the current amplifier. In this
test the payload ‘010101010101010101’ was transmitted with OOK modulation.

6.6 Signal Interferences

Because HDDs are shared access devices, it is possible (in multitasking OSs) that
several processes will simultaneously access the HDD by performing read/write/seek
operations. In the context of our proposed covert channel, the I/O operations performed
by background processes can interfere with the I/O operations of the transmitting
processes. Consequentially, the optical signals generated by the transmitting processes
will be mixed with the optical signals generated by the background processes. Note that
such interference is detected by the CRC calculations performed in every frame. We
employed two strategies to eliminate the interference problems. We found that during
the computer’s ‘idle’ times (e.g., night hours) the interference caused by background
processes is limited in practice. In particular, our evaluation shows that the interfer-
ences was limited to 1%, when no special user processes were running in the back-
ground (Table 9). By transmitting only during ‘idle’ times, the attacker may be able to
minimize or eliminate the occurrences of interference.
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Fig. 8. Signals transmitted from PC-1, as measured in daylight by an optical sensor within the
room at distances of (a) three, (b) four, and (c) five meters away. The amplitude represents the
amount of charge converted to voltage with the current amplifier.

Table 9. Interference in PC-1 with Linux Ubuntu 16.04 (64-bit)

Processes Interference (per 10 s)

Compilation (GCC) + transmission >%10
Browsing (Chrome) + transmission *%5
Idle (default system processes) + transmission <%1
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Another solution that can be used to completely eliminate interference during both
idle and non-idle periods is to execute the transmitting code from a kernel driver. The
I/O operations performed in a kernel driver can be locked in such a way they will not be
preempted by the OS scheduler [58, 59]. Notably, installing such a kernel driver
requires root privileges.

7 Countermeasures

Countermeasures for emanation-based data leakage, can be classified into procedural
and technological countermeasures. Procedural countermeasures may include organi-
zational practices aimed to restrict the accessibility of sensitive computers by placing
them in secured rooms where only authorized staff may access them; typically, all types
of cameras are banned from such secured rooms. Some of the NATO standards con-
cerning TEMPEST have been leaked or released [60, 61], and these standards define
that certified equipment is classified by zones which refer to the perimeter that needs to
be controlled to prevent signal leakage [62]. In these areas, the presence of surveillance
cameras may serve as a deterrence measure. However, as mentioned previously in the
attack model, the surveillance camera itself may be compromised by a malware [40,
63]. A less sophisticated countermeasure against LED attacks is to disconnect the HDD
indication LED or cover it with black tape [28]. Equipment shielding is another
countermeasure commonly recommended by TEMPEST standards. In the case of
optical emanation, a special window film that prevents optical eavesdropping may be
installed [64]; note that this type of countermeasure doesn’t protect against cameras
located within the building.

Technological countermeasures may include the detection of the presence of
malware that triggers the HDD activity LED. However, practical implementation of
such countermeasures appear to be nontrivial, since the read operation used for the
LED control is commonly used by many processes running on the computer. Another
possible countermeasure is video monitoring the computer’s front panel in order to
detect hidden signaling patterns. Again, practical implementation is nontrivial, because
the HDD LED routinely blinks frequently due to read and write operations triggered by
benign processes. Another interesting solution is to execute a background process that
frequently invokes random read and write operations – that way, the signal generated
by the malicious process will get mixed up with a random noise, limiting the attack’s
effectiveness. Another option is to limit the LED blinking frequency by adding a low
pass filter (LPF) component. A simple LPF is built from a resistor and a capacitor,
which is connected between the motherboard and the HDD LED. LPFs attenuate the
output voltage above the cut off frequency and prevent the signal from passing through.
Similarly, the blinking frequency can be limited by modifying the firmware within the
HDD controller in the motherboard.
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The list of countermeasures is summarized in Table 10.

8 Conclusion

We present a new method to leak data from air-gapped computers. Our method uses the
HDD activity LED which is present in most PC workstations, laptops, and servers
today. We show how the malware can indirectly control the status of the LED, turning
it on and off for a specified amount of time, by invoking the hard drive’s ‘read’ and
‘write’ operations. Our method is unique in two respects: it is covert and fast. It is
covert, because the HDD activity LED routinely blinks frequently; hence, additional
blinks caused by the attack may raise no suspicions. In terms of speed, our evaluation
shows that the LED is capable of performing almost 6000 blinks per second, which
enables a transmission rate of up to 4000 bit/s. This is 10 times faster than other air-gap
covert channels relying on optical emissions. We examined the physical characteristics
of HDD LEDs of different colors (red, blue, and white) and tested remote cameras,
extreme cameras, security cameras, smartphone cameras, drone cameras, and optical
sensors. Our results show that it is feasible to use this optical channel to efficiently leak
different types of data (passwords, encryption keys, and files) from an air-gapped
computer, via the HDD activity LED.
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Abstract. Modern vehicles incorporate tens of electronic control units
(ECUs), driven by as much as 100,000,000 lines of code. They are tightly
interconnected via internal networks, mostly based on the CAN bus stan-
dard. Past research showed that, by obtaining physical access to the net-
work or by remotely compromising a vulnerable ECU, an attacker could
control even safety-critical inputs such as throttle, steering or brakes. In
order to secure current CAN networks from cyberattacks, detection and
prevention approaches based on the analysis of transmitted frames have
been proposed, and are generally considered the most time- and cost-
effective solution, to the point that companies have started promoting
aftermarket products for existing vehicles.

In this paper, we present a selective denial-of-service attack against
the CAN standard which does not involve the transmission of any com-
plete frames for its execution, and thus would be undetectable via frame-
level analysis. As the attack is based on CAN protocol weaknesses, all
CAN bus implementations by all manufacturers are vulnerable. In order
to precisely investigate the time, money and expertise needed, we imple-
ment an experimental proof-of-concept against a modern, unmodified
vehicle and prove that the barrier to entry is extremely low. Finally, we
present a discussion of our threat analysis, and propose possible coun-
termeasures for detecting and preventing such an attack.

1 Introduction

The automobile, starting from the late seventies, has witnessed massive and
radical changes over the years, due to the ever increasing addition of electron-
ics and software. Almost every aspect of a car operation (e.g., steering, locks,
windows, airbag deployment) is nowadays supervised by in-vehicle embedded
systems, communicating among each other via an internal network typically
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based on the Controller Area Network (CAN) standard. The unavoidable conse-
quence of this increased complexity and co-presence of electronic and computer-
based components is a wider digital attack surface. The feasibility of such
attacks has extensively been demonstrated by security researchers over the past
decade [4,10,13,14,26], to the point that “car hacking” is now being taken into
serious consideration by US government agencies [25], already acting toward
strengthening automotive cybersecurity regulations [1].

Most of the attacks demonstrated thus far leverage one or more vulnerabil-
ities with the aim of indiscriminately sending messages into the car’s internal
network and proving that it is possible to alter the behavior of safety-critical
elements such as engine, brakes or steering. The frame-based nature of these
attacks makes them effectively recognizable by proper intrusion detection or
prevention systems (IDSs/IPSs), which monitor all messages circulating on the
network and trigger countermeasures in case they detect that an attack is in
progress. Previous work [6,12,13,20,21,26,27] has shown the feasibility of port-
ing classic intrusion detection methodologies to the automotive domain, and car
cybersecurity companies have already proposed aftermarket solutions for exist-
ing vehicles [2,17,23].

In this paper, we present a novel link-layer denial-of-service (DoS) attack
that is inherently harder to detect via frame-level analysis mechanisms, because
it does not require the transmission of any complete frame for its execution.

The attack is able to selectively cause malfunction or even a complete shut-
down of any CAN node connected to the bus, including safety-critical components
(e.g., electronic stability control, electric power steering). Since it exploits design
weaknesses of the CAN protocol standard, any implementation and manufacturer
is vulnerable, even beyond the automotive domain such as factory automation
(e.g., CANopen- or DeviceNet-based machinery), building automation (e.g., ele-
vator management), and hospitals (e.g., lights, beds, X-Ray machines).

The attack works locally, through the standard diagnostic port—which is
mandatory in essentially every country [19]—or via a tampered/counterfeited/
remotely-compromised replacement part. Therefore, the attacker model is rather
generic, including for example a malicious mechanic, a malicious over-the-air
(OTA) firmware upgrade, a malicious passenger or driver in a car sharing (or
even self-driving car) setting, and similar scenarios.

In order to precisely evaluate the required time, level of expertise and cost,
we concretely implemented a proof-of-concept of the attack against a modern,
unaltered production vehicle (an Alfa Romeo Giulietta), and prove that it can
be efficiently and conveniently mounted against a specific frame with 99.9974%
accuracy using a development board as simple as an Arduino Uno.

In the end, we discuss examples of possible threats to car occupants, examine
which are potential attack vectors and real-world scenarios where such attack
could be staged by attackers, and propose possible remediation approaches.

In summary, our paper makes the following contributions:

– We describe a stealth, denial-of-service attack against the CAN standard, to
which all CAN bus implementations are vulnerable.
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– We demonstrate the attack feasibility by implementing a low-cost proof-of-
concept against an unmodified vehicle and release full source code to the
community.

– We propose practical solutions for detecting the attack in existing CAN net-
works and discuss possible network modifications for preventing it in future
vehicles.

2 Background

2.1 Controller Area Network (CAN) Bus

The Controller Area Network (CAN) bus is a multi-master asynchronous soft
real-time serial bus standard designed for the interconnection of multiple compo-
nents called nodes. It was designed and first developed by Robert Bosch GmbH,
released in 1986, and standardized in 1993 as ISO 11898.

Fig. 1. Example architecture of a generic two-wire CAN network.

Physical Layer. ISO 11898 CAN buses are characterized by two wires, CANH
(high) and CANL (low), terminated at each end by a 120 Ω resistor.
As shown in Fig. 1, each CAN node comprises three parts:

Microcontroller: is responsible for sending and processing complete CAN
frames to and from the CAN controller and supervising the CAN controller
operation.

CAN Controller: implements the CAN specification. It synchronizes with the
CAN signal, sends and receives logical data to and from the CAN transceiver,
automatically adds stuff bits, and performs error handling. Notably, in our
attack we leverage such error handling mechanism. Therefore, we describe
thoroughly in Sect. 3.
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CAN Transceiver: serves as an interface between the CAN controller and the
physical bus by translating logical signals coming from the CAN controller
into bus electrical levels.

Stuff bits are added whenever a transmitter detects five consecutive identical
bits to be sent. When this happens, the transmitter automatically inserts a
subsequent complementary bit in the transmitter bit stream. This so-called stuff
rule is necessary to keep the nodes synchronized. CAN buses have no clock sync
signal, and use a Non Return to Zero encoding.

The CAN standard mandates that one of the two logical values shall be
dominant over the other one. In case one “dominant” and one “recessive” bit
are sent at the same time, the bus state—and thus the logical signal received
by all CAN nodes—is “dominant.” Most CAN bus implementations feature a
wired-AND configuration, hence the dominant bit is the logical 0 whereas the
recessive bit is the logical 1. The state read by the nodes is determined by the
voltage measured between CANH and CANL lines; whenever it exceeds a certain
threshold (usually 0.9 V), a dominant state is encoded (recessive otherwise).

Data Link Layer. The CAN standard describes four types of frames: data,
remote, error, and overload frame.

The data frame is composed of Start of Frame, Arbitration Field, Control
Field, Data Field, CRC Field, ACK Field, and terminates with the End of Frame.
The Arbitration Field contains the Frame Identifier, which identifies the meaning
of the message content, and determines the frame priority when two or more
nodes are contending the bus. The Arbitration Field is either 11 or 29 bits long,
depending on the specification (CAN 2.0A or 2.0B).

The error frame consists of an Error Flag and an Error Delimiter. The Error
Flag is characterized by six consecutive identical bits (dominant or recessive,
depending on the current CAN controller error state, as explained in Sect. 3),
which violate the bit stuffing rule. A node sends an error frame whenever an
error is detected. In particular, there exist 5 types of errors: bit error, stuff error,
CRC error, form error, and acknowledgment error.

A message is valid for the transmitter if there is no error until the end of
End of Frame. A message is valid for the receivers if there is no error until the
last but one bit of End of Frame.

2.2 Applications of CAN Bus

The CAN bus standard has been designed specifically for the automotive domain,
which is where it finds most applications.

Although other protocols have been proposed through years—e.g., Local
Interconnect Network (LIN), Flexray—, CAN has been established as the de-
facto standard by car manufacturers due to its general-purpose ability of carrying
data for a great variety of applications [15] (which, for instance, LIN is not able
to ensure due to its slow speed and master-slaves architecture [16]) while still
preserving competitive prices (cost per node of a CAN bus network is approx-
imately half the cost per node of a Flexray network [18]). In addition to that,
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some countries, such as the USA, recently started mandating the exclusive use
of CAN for diagnostics purposes for all light duty cars sold on the market [24]:
this further encouraged the majority of car makers into adopting CAN bus for
the implementation of the entire car’s internal network.

There are typically two types of CAN data frames in current automotive
systems:

Standard messages: exchanged between two or more ECUs for regular com-
munications, in order to coordinate for the correct execution of an application.
For example, the frames sent from the engine control module to the instru-
ment panel to display engine status.

Diagnostic messages: exchanged between diagnostic devices connected to the
car internal network (e.g., via the on-board diagnostics OBD-II port) and one
or more ECUs for diagnostic sessions. For example, for emission testing or,
in case of malfunctioning vehicle, for checking diagnostic trouble codes.

One of the major applications of CAN bus standard messages in modern vehicles
is for active safety systems, which reactively (and even proactively) intervene and
correct car inputs in real time to avoid or minimize the effects of an accident, or to
enhance the driving experience. In the past, active safety systems were included
as standard equipment in luxury vehicles only; however, given the (measured)
effectiveness of such systems in terms of road casualties and injuries reduction,
governments started mandating a minimum set of active safety systems on all
cars sold on their national market. At the same time, national crash-test evalu-
ation agencies began fostering their adoption by means of safety ratings boosts.
As a result, the majority of modern cars are equipped with on-board active
safety systems.

Nevertheless, the CAN standard is not restricted to the automotive domain
only. Beginning in 2002, with the Ducati 999, motorcycle manufacturers started
adopting CAN buses, mainly due to the weight savings provided by the reduced
wire harness requirements. The CAN standard is also employed for train-wide
communication networks (e.g., linking door units, brake controllers coordination,
passenger-counting units), maritime (e.g., controlled-by-wire ships), avionics
(e.g., flight-state sensors, navigation systems, or communications with research
PCs in the cockpit), or aerospace (e.g., fuel systems, pumps, or linear actuators).
The CAN standard is also used for regulating CANopen- or DeviceNet-based
machinery networks in industries (e.g., packaging machines, knitting systems or
for semiconductor manufacturing), for managing operating rooms equipment in
hospitals (e.g., lights, beds, X-Ray or other diagnostic machines), or for control-
ling elevators in modern, automated buildings.

2.3 Known Attacks

The constant addition and coupling of embedded systems inside vehicles and the
inclusion of more and more interfaces with the outside world immediately raised
concerns about the impact of vulnerabilities.
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Researchers of ESCRYPT were the first to theoretically investigate the pos-
sible risks to which vehicles would be exposed in case of attack and to propose
possible countermeasures [29].

Notably, starting from 2010, researchers have also been investigating practical
attacks on CAN networks, especially focusing on frame-injection attacks because
of their potential ability to deeply alter the vehicle’s behavior. The authors
of [8,10] first showed how a local attacker capable of injecting frames into the
vehicle’s network could control the majority of its subsystems, including safety-
critical devices like engine or brakes, and even bypassing the driver inputs.

In the following years, the famous “Jeep hack” by Charlie Miller and Chris
Valasek [14], anew completed via frame-injection attacks, further contributed to
raising security awareness among car manufacturers.

2.4 Proposed Countermeasures

A survey conducted in March 2016 by the US Government Accountability
Office [25] among major industry stakeholders identified the following counter-
measures that could be applied to mitigate the impact of digital attacks against
current and future cars:

Trusted Computing Base: hardware security modules or trusted software in
order to preserve and guarantee ECUs integrity.

Network Segmentation: safety-critical ECUs decoupling from non safety-
critical ECUs, or from ECUs featuring external interfaces, by confining them
in different networks and restricting inter-networks communications via fire-
walls/gateways.

Cryptography: by means of ECUs code signing or frames encryption and
authentication.

Intrusion Detection or Prevention Systems (IDSs, IPSs): security
appliances that monitor network traffic, try to establish if an attack is in
progress and, in case of prevention systems, attempt to stop it automatically.

Among these, frame-analysis based detection or prevention systems are cur-
rently believed to be the most time- and cost-effective solution for circumventing
security threats in CAN networks [6,12,13,20,21,26,27]. Indeed, frame-injection
attacks are based either on the transmission of normal frames at a much higher
rate than usual1 or on the transmission of diagnostic frames that are not expected
to be seen in standard circumstances. Hence, a proper detection system can
recognize signs of such attacks. Moreover, the bus topology of CAN-based net-
works makes the deployment of IDSs or IPSs into current architectures effortless,
to the point that companies have already developed aftermarket detection and
prevention systems for current generation vehicles [2,17,23].
1 The reason is that spoofed frames will be sent at the same time as legitimate frames.

Thus, in order to trick the receiving ECU into considering only the maliciously
crafted messages, these must be sent at a much faster rate with respect to the
rightful ones.
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2.5 Related Work

The idea of mounting denial-of-service attacks against CAN networks is not
novel. In the aforementioned papers [8,10,14,26,29], several examples of DoS
attacks via frames injection have been proposed (e.g., by sending frames that
counteract driver inputs, or frames with the highest priority so as to indefinitely
delay other nodes’ transmissions). However, these kinds of attacks are effectively
detected and stopped with frame-analysis based IDS/IPS approaches. Indeed,
the essential aspect of such attacks is the injection of either unexpected frames
or the transmission of frames at abnormal rates.

A more subtle denial-of-service attack exploiting CAN error handling and
fault confinement protocols was published in July 2016 [5]. However, the attack
is restricted to periodic messages only as it requires precise predictability of
transmission instants of target frames, and it still involves the communication of
a few complete messages for its execution. The attack presented in this paper,
instead, is not affected by any restrictions and does not require any full message-
sending capability at all.

These types of frame-less attacks were theorized in the past. For instance,
in [29] the authors explore the feasibility of performing frame-less DoS attacks
by sending well-directed error flags into the CAN network, forcing other nodes to
reject a message. In [9] the authors briefly mention that similar situations could
occur if a corrupted node started to upset CAN traffic bits. In [28] many bus
networks (including CAN) are described as being vulnerable to “bit banging”
attacks. However, all previous work described such attacks from a purely the-
oretical standpoint, without any proof-of-concept implementation nor in-depth
threat-model analysis.

To the best of our knowledge, the only prior work which proposed an imple-
mentation of a mechanism capable of inserting faults in CAN networks is [7].
Yet, the research focused on injecting errors in CAN networks for pre-production
testing purposes only, without covering any security considerations. Moreover,
in order to perform such faults injection, the network had to be topologically
altered to a non-ordinary star schema, tampering which a potential attacker is
not expected to perform in a reasonable amount of time.

3 Protocol Analysis and Attack Description

In this section, we describe the two weaknesses that have been exploited by the
proposed denial-of-service attack. The main one lies in how the CAN standard
handles errors. A second weakness further exacerbates the impact of the first
one, making its DoS capabilities more relevant. Finally, we present our attack,
along with a description of its technical requirements.

3.1 CAN Error Handling Weakness

As mentioned in Sect. 2, there are five possible error types. For our attack, the
relevant one is the bit error type.
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By design, each node must monitor the bus signal every time it sends a
frame. A bit error occurs (and must be detected within the sampling frequency)
whenever a transmitting node notices that the logical value of the bus is different
from the bit value that it is trying to send2. Should a node observe such condition,
it must interrupt the frame transmission and send immediately an error frame,
which breaks the stuff rule (or generates other errors) and causes all other nodes
to reject the frame received up to this point, effectively denying the broadcast
of that frame.

Therefore, considering that a dominant bit always overwrites a recessive bit,
the transmission of just one single dominant bit, by any node, when a recessive
bit is being transmitted, is enough to trigger a bit error, causing the other nodes
to discard the current frame.

3.2 CAN Fault Confinement Weakness

The impact of bit errors is not limited to frame-wise DoS due to a second security
weakness of the CAN standard induced by the automatic fault confinement
protocol.

In order to automatically overcome node faults and avoid situations such as
a malfunctioning node causing a complete bus failure, each CAN node can be
in three distinct error states (Fig. 2), depending on how many errors a certain
node has generated or observed:

Fig. 2. CAN fault confinement finite state machine.

Error Active: the CAN node normally takes part in bus communications and
sends an active error flag (six dominant bits) when it detects an error.

Error Passive: the CAN node can normally take part in bus communica-
tions, but can only send a passive error flag (six recessive bits) when it
detects an error and must wait an additional 8-bit time before starting a
new transmission.

Bus Off: the CAN node cannot take part in any bus communication, not even
reading frames off the bus.

2 With the exception of the Arbitration Field and the ACK Field, in which a bus value
different than the transmitted one is an expected condition in regular CAN protocol
operations.
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Transitions between these three error states are determined by the values of two
counters, the Transmit Error Count (TEC) and the Receive Error Count (REC).
According to the protocol, whenever a transmitting node sends an error flag, its
TEC must be increased by 8. This means that, after 16 invalid transmissions,
an Error Active node with a zeroed TEC will go in Error Passive state (TEC =
16×8 = 128), and after another 16 invalid transmissions it will enter the Bus Off
state (TEC = 256), denying all bus communication until a bus idle condition or
a reset command (or both) are observed. Unfortunately, forcing an idle condition
is practically impossible, because it would mean disabling or disconnecting the
majority of devices attached to the bus. Similarly, forcing a reset command,
which can be done by the node’s microcontroller, is problematic, because the
Bus Off node could be a legitimate faulty node.

By means of the previous weakness, the practical consequence is that 32
straight bit overwrites on a frame sent by a node are sufficient for making that
node unable to either send or receive any message on and off the bus, effectively
denying the service that such node is implementing.

3.3 Technical Requirements

The attack is based on a deliberate violation of the CAN protocol, which man-
dates that all nodes that have lost arbitration shall in no way further interfere
with CAN traffic.

The adversary must be able to directly read the RXD signal coming from the
transceiver (which transports the current logical CAN bus value) and manipu-
late the TXD signal entering into the transceiver (which transports the logical
value the CAN bus will be driven to), as depicted in Fig. 3. This requires the
microcontroller to be directly attached to the transceiver, a common architecture
among ECU manufacturers [11], such as in the case of the Renesas V850ES/FJ3

Fig. 3. Examples of attacking nodes architectures.
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of the Jeep Cherokee’s Uconnect [14], due to the induced cost-effectiveness and
space-saving reasons.

The microcontroller is simply required to support pin-edge-change external
interrupts and a timer that can be set to trigger at custom values (i.e., to match
the CAN bus bit rate), both largely diffused features in modern microcontrollers
(the aforementioned V850ES/FJ3 supports both). Obviously, the microcontroller
must be fast enough to account for interrupt latency, pin read-write latency and
compilation-induced overhead, a requirement which is nowadays not restricting
thanks to the availability of low-price multi-core high-frequency microcontrollers
(e.g., Parallax Propeller).

3.4 Proposed Attack Algorithm

The attack, which runs in a microcontroller attached to the CAN bus, consists
of a setup phase (Algorithm 1), whose goal is to prepare the microcontroller
for the attack execution, and an interrupt service routine (ISR) (Algorithm2),
which will monitor the bus and, when necessary, will execute the actual attack
payload.

The setup algorithm is executed only once, when the microcontroller boots.
The procedure consists in setting the TXD signal to recessive and initializing a
buffer of size B—which, during the attack, will always contain the last B bits
read from the CAN bus—with a series of 1s (as the ISR will start its execution
after the first RXD falling edge for synchronization purposes, thus after a series
of 1s have been transmitted on the bus). The size B of the buffer depends on the
implemented CAN specification (11 bit or 29 bit): For instance, if the attacker
wants to disable a node which is sending frames with a 29 bit ID, a buffer of
at least B = 29 bits is needed. Then, the algorithm sets the timer expiration
value—which regulates the rate at which the attack ISR will be executed—to
match the target CAN bus bit rate. Finally, it waits for the first RXD falling
edge and, when perceived, activates the Attack ISR.

Algorithm 1. Setup procedure
1: procedure Setup
2: TXD ← Recessive
3: Buffer ← 111 . . . 1
4: Set timer to expire every CAN bit time seconds
5: Wait until RXD falling edge
6: Activate Attack ISR
7: end procedure

The attack ISR is executed periodically, at the same rate of the CAN bus
signal. The algorithm first checks if the frame currently being transmitted on the
bus has the target ID. If the frame is a target frame, the algorithm overwrites the
first recessive bit with a dominant bit. Else, if the frame is not a target frame,
the algorithm updates the buffer by sampling the bus signal and appending the
sampled bus value to the buffer (Fig. 4).
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Fig. 4. Visualization of the proposed attack algorithm on a time graph.

Algorithm 2. Attack ISR
1: procedure Attack
2: if Current frame in Buffer is a target frame then
3: Wait until first recessive bit
4: TXD ← Dominant
5: Wait CAN bit time seconds
6: TXD ← Recessive
7: else
8: Append RXD value to Buffer
9: end if

10: end procedure

4 Experimental Proof-of-Concept Implementation
and Testing

In this section we describe how an adversary can implement our attack. Our
goal is twofold. First, we want to assess the technical feasibility of our attack
and quantify its performance on a modern automobile. Secondly, we want to
show how low the barrier to mount the attack is nowadays, given the ample
availability of rapid-prototyping frameworks (e.g., Arduino).

A full demonstration video of the attack in action is available at https://
www.youtube.com/watch?v=PmcqCbRMCCk and the source code running on
the attacking device at https://github.com/stealthdos/CAN-Denial-of-Service.

4.1 Target Automobile

The automobile at our disposal for the test was a 2012 Alfa Romeo Giulietta
2.0 JTDm-2. The car features two CAN buses: a high-speed CAN (class C,

https://www.youtube.com/watch?v=PmcqCbRMCCk
https://www.youtube.com/watch?v=PmcqCbRMCCk
https://github.com/stealthdos/CAN-Denial-of-Service
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according to SAE networks classification) working with 29 bit IDs (500 kbps),
and a medium-speed CAN (class B) working with 29 bit IDs (50 kbps). Both
lines are reachable via the OBD-II port (Fig. 5).

Fig. 5. Architecture of the 2012 Alfa Romeo Giulietta 2.0 JTDm-2 internal CAN
networks.

For ethical reasons, we performed the proof-of-concept attack against a CAN
B bus node, namely the parking sensors module. This choice is guided by the fact
that CAN B buses typically do not connect safety-critical nodes: This should
reduce the chances that, by simply reading this paper and taking our open-
source prototype, a malicious attacker or a “script kiddie” could directly reuse
our attack on safety-critical subsystems connected to CAN C buses. This does
not imply any loss of generalization: bit rate apart, CAN Bs and CAN Cs operate
identically.

4.2 CAN Traffic Analysis

In order to capture CAN traffic, we purchased for $30 a Scantool OBDLink
SX USB-to-OBDII cable. The device features an embedded STN1130 micro-
controller that, besides emulating the very common ELM327 1.3a AT instruc-
tion set, allows to capture even partial or erroneous CAN frames thanks to the
additional ST commands. Moreover, it performs frame decoding automatically,
writing ID-Data Length Code (DLC)-Data Field directly on the serial port.

We plugged the device into a laptop, then into the OBD-II connector, and
we started listening on the serial port to capture all CAN messages sent on the
bus for a fixed amount of time (until we noticed no different frames) in various
conditions (e.g., with neutral gear, with reverse gear, with reverse gear and near
an obstacle).
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We filtered the captured CAN traffic and inspected it manually to remove
uninteresting CAN frames. Eventually, we isolated the frame responsible for noti-
fying the obstacle position, sent by the parking sensors module. Some examples
of that frame follow:

CAN ID: 0x06314018;
Data Length Code: 8 bytes;
Data Field:
- Ignition off: frame not sent;
- On, N: C000000F0F000000;
- On, R, no obstacle: 0000000F0F000000;
- On, R, central obst: 0300000X0XY00000,

X: chime sound frequency,
Y: distance on driver’s LCD.

An attacker who wants to target another device would have to either perform the
same procedure offline, on another instance of the same car, or know the CAN
ID in advance. Overall the whole procedure could require from minutes (e.g.,
for capturing the frame issued by a dashboard button) to hours or days (e.g.,
when trying to thoroughly reverse engineer a complex active safety protocol).
The corner case is when the target CAN bus is not directly reachable via the
OBD-II port. In this case, however, the attacker could simply reach the bus line
by other means, as thoroughly discussed in Sect. 5.

4.3 Attacking Device Implementation

We implemented our attack as a hand-crafted OBD-II dongle, which can be
physically plugged into the car’s OBD-II port. Its architecture is reported in
Fig. 6. We opted for an Arduino Uno Rev 3 and a Microchip MCP2551 E/P,
the cheapest (total expense was around $25) and most common microcontroller
and CAN transceiver available on the market which are capable of fulfilling the
aforementioned minimum requirements.

Fig. 6. Schematic of the crafted attacking device.
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In order to execute the attack payload against the target vehicle, all it is
necessary to do is plug the device into the car’s OBD-II port. The operation
requires less than 30 s, the device will be instantly powered by the 12 V battery
and will immediately start the algorithm.

4.4 On Bench Testing

To adequately test our attacking device implementation and investigate its reli-
ability, we implemented a bench test CAN bus.

On-bench Attack Test. In addition to the OBDLink SX and the attacking
device, we used a breadboard and two 120 Ω resistors for creating a CAN net-
work, a 12 V rechargeable battery for simulating the car battery, and a Linklayer
Labs CANtact 1.0, an open-source, Python-scriptable, low-cost USB-to-CAN
adapter. This setup ensured that we had at least two nodes, as required by the
CAN specifications for correct operation.

First, we tested whether, without the attacking device, both nodes were able
to correctly exchange messages with each other. Then, we connected the attack-
ing device to the CAN bus and tried to send (target) CAN frames; first, from
the OBDLink SX, then from the CANtact. In both cases the attacking device
managed to correctly “kill” the target frames: The receiving nodes were not
able to retrieve the message. Moreover, we confirmed that the CAN fault con-
finement weakness (Sect. 3.2) caused the CANtact node to enter the Bus Off
state, after exactly 32 erroneous frames. Note that, being a mere testing tool,
the OBDLink SX does not implement the CAN automatic fault confinement
protocol, but retries to send an erroneous message for 160 times before halting
the transmission.

Reliability Measurement. In order to investigate the reliability of our attack-
ing device in a realistic scenario—comprising both target and non-target CAN
frames—we developed a Python CAN-fuzzing script. The script automatically
generates random, yet valid, CAN frames, sends them through the OBDLink
SX, waits to receive them from the CANtact, and compares the received frames
with the original ones. We left the script running for 24 h and report the results
in Table 1.

Despite a negligible fraction of false negatives—caused by distortions or
spikes in the signal due to imperfect connections or hardware noise, and by
Arduino interrupts timing drifts—, we measured a 99.9974% accuracy, which
makes our basic and remarkably low-cost device already suitable for effectively
performing the attack in a real-world situation.

4.5 On Vehicle Testing

Finally, we tested our attack on our testing vehicle, an unmodified 2012 Alfa
Romeo Giulietta.
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Table 1. CAN fuzzer/checker test statistics.

Description Value

Test duration 24 h

Total number of frames sent 9,403,842 frames

Average throughput 108.84 frames/s

Average frame length 101 bits

Average CAN utilization 0.21985834

Number of correctly processed frames 9,403,598 frames

Number of false positives 0 frames

Number of false negatives 244 frames

Accuracy 0.99997405

After plugging the attacking device to the OBD-II port, the parking sensors
immediately stopped working altogether: Neither visual information nor warning
proximity chime could be heard, even in the presence of a very close obstacle, and
the dashboard display notified the driver about the malfunctioning subsystem
(Fig. 7a and b).

(a) The attacking device attached to the
Giulietta’s OBD-II port.

(b) The parking sensors malfunction re-
ported on the driver’s LCD.

Fig. 7. Our attack in action on a real-world modern vehicle.

The subsequent fabrication of an ad-hoc forked cable, which allowed to con-
nect both the attacking node and the OBDLink SX to the OBD-II port at the
same time, and the following CAN traffic capture also revealed that the park-
ing sensors module reached the Bus Off state—only 32 transmission attempts
were recorded—, without any doubt confirming the complete denial-of-service
accomplishment.
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5 Threat Model Discussion and Remediation Approach

5.1 Threat Assessment

In this section, we discuss the practical impact of our work in terms of threats
arising if an adversary decides to mount this type of attack against a vehicle in
the real world, even in the presence of frame-analysis based detection or pre-
vention systems. In all cases, the envisioned attacker is only required to execute
our denial-of-service attack. Therefore, differently than previous work, we do not
require that the attacker has frame-injection capabilities.

Active Safety Systems Attacks. One of the main purposes of CAN standard
messages is to support active safety systems communications. Despite their unde-
niable usefulness, active safety systems may induce double-edged sword situa-
tions while driving, especially when the drivers have grown accustomed to their
presence, and begin to blindly rely on them. As a result, an abrupt malfunction
in such systems may cause unpredictable and potentially dramatic consequences.
Given this premise, a potential threat is that an adversary could start using our
attack to induce specific “faults” in the CAN frames generated by active safety
systems. For instance, mounting our attack on traction control systems may
lead to perilous vehicles loss of control; on autonomous cruise control systems
may lead to vehicles not autonomously stopping as expected by drivers, a failure
which, last year, caused even fatal accidents [22].

Car Ransom. Although CAN is not suitable for supporting steer-by-wire or
brake-by-wire functionalities, CAN has been employed in the past to carry
throttle-by-wire messages. For instance, as described in [26], the 2010 Toyota
Prius internal combustion engine throttle actuator is controlled by CAN frames
sent from the power management control ECU to the engine control module.
An adversary may use our attack against such frames, causing inability for the
driver to control throttle position and thus to move the vehicle. Though this
would not necessarily generate hazardous conditions, a financially motivated
attacker, after exploiting a vulnerability in an externally reachable module (e.g.,
the infotainment system), could leverage the DoS to mount a ransomware-like
attack and later show the classic message on the infotainment display, in an
utter similar fashion to desktop computers ransomware. An analogous condition
might also be caused by blocking the frames sent by the key-less access control
unit at car startup to all other modules, preventing anti-theft systems from being
disengaged and hence the car from being started.

Theft Support. Both the aforementioned attack scenarios, despite perfectly
feasible, would require a previous substantial reverse-engineering effort. In this
section we discuss a third option, focusing on resource-bound attackers. We also
assume that the attacker has a very narrow time window to gain physical access
to the target vehicle.

Most modern premium cars’ door locks are controlled by CAN B-connected
ECUs (for instance, the 2014 Jeep Cherokee [14]), which is typically accessible via
the OBD-II port. Isolating the frames responsible for locking the doors is much
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simpler and faster than reverse-engineering active safety equipment messages.
Indeed, the aforementioned door locks are under complete control of the user: A
single press of the lock-unlock button on the driver’s door corresponds exactly
to one fixed set of frames issued to the door modules actuators. Therefore, in
a matter of minutes, an adversary may isolate the frames responsible for doors
locking, modify a software parameter in the attacking device in order to DoS
locking frames, and then leave the device plugged into the car’s OBD-II port,
preventing car doors from being locked again after being unlocked. The attacking
device architecture can be as simple as our experimental proof-of-concept or may
include other components for additional functionality: For instance, GPS or GSM
shields in order to track the vehicle position or command the attack payload
execution remotely. The result of this attack is the ability, for the attacker, to
gain cost-effective aposteriori access to the car, allowing her to subsequently
steal any valuable goods or replacement part inside the vehicle.

5.2 Threat Vectors Analysis

After discussing the possible threats that a potential attacker may pose by selec-
tively stopping specific CAN frames, we hereby examine the attack vectors that
can be leveraged.

The easiest way by which the attack can be mounted is via a crafted device
attached to the OBD-II port. As a matter of fact, in most vehicles the OBD-
II port serves as a direct interface into all car internal buses, provides 12 V
direct current output for powering connected devices, and is conveniently located
underneath the steering wheel. Therefore, in a matter of seconds, an adversary
with physical car access is able to install a working attacking device inside a car.
Real-world scenarios in which this may happen are numerous, and include for
instance valet parking, car sharing, car renting, car lending or self-driving car
settings.

A similar situation may arise if the car owner decides to use a rogue (tro-
janized/counterfeited) aftermarket OBD-II device. The reasons for doing so
could be various. For instance, the owner may opt for a low-cost “compatible”
replacement part, be willing to obtain discounted fees from insurance companies
by installing so-called “black boxes”, could be interested in performing do-it-
yourself car diagnostics, or simply for enriching car infotainment functionality.

Nonetheless, physical-access attacks are by no means limited to the diagnostic
port. An adversary may or must opt for attaching and hiding the attacking device
anywhere along the car internal network (see the attacker depicted under the
two wires in Fig. 3). This, for instance, may happen in a malicious-mechanic
scenario, while the car is undergoing tests or repair. The same holds for the
installation of rogue replacement parts that require CAN bus connections for
their operation, like aftermarket infotainment units, parking sensors modules, or
anti-theft systems.

In addition, the denial-of-service attack may also be staged without requir-
ing any physical interaction with the target vehicle at all. In this case, how-
ever, there must be an on-board CAN node with a fast-enough microcon-
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troller that supports external and timer interrupts, and obviously there must
be a vulnerability that allows an attacker to remotely re-flash the microcon-
troller firmware. Although this setting is certainly restrictive, in [14] the authors
proved that, by leveraging a chain of vulnerabilities in the Harman Kardon
Uconnect system of a 2014 Jeep Cherokee, it is possible to remotely re-flash
the embedded Renesas V850ES/FJ3 microcontroller—responsible for the Ucon-
nect CAN communications—with an ad-hoc firmware. Like many automotive-
specific microcontrollers, the V850ES/FJ3 embeds an on-chip CAN controller—
therefore, it is directly connected with CAN transceivers via re-programmable
GPIO pins—and supports both edge-triggered and timer interrupts. As a conse-
quence, the very same exploitation chain that led to the Cherokee remote com-
promise via CAN frames injection could be used for mounting our DoS attack
as well.

In all depicted scenarios, the envisioned attacker is able to obtain persistent
presence on the CAN network, even surviving through vehicle’s power-cycles.
In order to eliminate the threat, the vehicle’s owner is required to physically
disconnect the device from the vehicle’s network in case of surreptitiously added
or trojanized replacement part, or to reflash the compromised ECU with factory
firmware in case of a remote reprogramming.

5.3 Detectability and Countermeasures

Last, we briefly compare our attack with detection approaches recommended so
far in literature for identifying security incidents in current CAN networks, and
propose possible detection and prevention solutions for recognizing and impeding
the execution of the DoS, in the hope that car manufacturers would take them
into account during the design of future vehicles’ internal networks.

Comparison with Current Detection Mechanisms. CAN bus intrusion
detection systems proposed up to now in literature are essentially based on the
anomaly detection of a measure concerning well-formed frames, because, in the
majority of attacks, in order to trigger actions on cyber-physical systems, a
transmission of frames is required. The evaluated measures are the frequency
of messages of a specific ID—such as in [13,21,26,27]—, the time differences of
messages with a specific ID [20], the specification of the behavior of messages
with a specific ID [12], or the clock skews of periodic frames, again given a fixed
ID [6]. This attack, instead, is not based on the transmission of new frames, but
on the transmission of bits concurrently to the transmission of a legitimate frame.
If this is done as described in Sect. 3.4, there would not be anomalous activity
such as, for instance, unexpected message transmissions or even something as
subtle as spikes in the CAN signal: From the receiving devices’ point of view,
there would simply be a frame transmission interrupted by an error. In brief,
a frame-analysis based IDS could only notice the effect of our attack, i.e. the
lack of frames sent from a particular device, not the attack itself. At this point,
it could effectively signal the anomaly to the driver, however the attack has
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already successfully taken place at least one time and the target device has
already reached Bus Off state.

Attack Detection. The most problematic challenge to address is the detection
of a forthcoming attack before the denial-of-service has been executed, as the
attacking node will not participate in any way with the CAN activity but will
remain completely silent to all other nodes.

To mitigate the surreptitious addition of rogue devices into the car’s internal
network, we propose a novel solution based on simple electronics principles. All
CAN nodes are characterized by a differential internal resistance (Rdiff), within
a standard interval according to the CAN specifications. Such Rdiff influences
the total bus load that a transmitting unit must drive in order to correctly send
a dominant or a recessive bit on the bus. Any additional node attached to the
bus would change the load, and thus would change the necessary current flow
for driving a dominant bit on the bus. Therefore, a detection mechanism could
find out when a (new) node is connected by measuring the amount of current
necessary for a dominant condition at each vehicle startup and comparing this
value with the previously registered ones.

This mechanism, unfortunately, can by no means protect from remotely com-
promised nodes. However, a remote vector for our attack would require prior
re-flashing of a node’s microcontroller, thus altering its functionality. This opens
the possibility for detecting signs of such alterations (e.g., via code-integrity
checks) before the actual DoS attack takes place.

While the attack is in progress, a possible way to distinguish a deliberate
DoS from an occasional node fault stands in the determinism by which errors
are manifested. The malicious node that executes our attack will always send a
dominant bit at a certain position of a specific frame, resulting in that frames
regularly triggering bit errors in the same way. This is very unlikely to happen in
the case of a fault. A detection approach could be to account for errors statistics
for all frames and identify suspiciously correlated error scenarios.

Attack Prevention. Since our attack relies both on link-layer and physical-
layer weaknesses proper of the CAN protocol, caused by a lack of consideration
over security requirements at design time, preventing the DoS without a major
nodes and network architecture revision is hardly feasible. Nevertheless, there
exist a number of solutions that could be considered during the design of next-
generation vehicles.

Network Segmentation. The main precondition of our attack is that the
attacking node must be able to physically sense the target frame during its
transmission. Should the target and attacking nodes be attached to separate
CAN networks, the DoS would not be possible. Therefore, network segmenta-
tion by means of trusted mediators (e.g., CAN firewalls) is a viable solution.
This approach would not prevent an attacker from physically connecting the
attacking device directly on target CAN bus, but, at least, would very likely
contain damages by possible counterfeited or remotely compromised nodes.
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Network Topology Alteration. A more radical segmentation approach con-
sists in changing the network topology from the current bus topology to a star
topology, with a trusted network dispatcher in the middle, as proposed in a few
prior studies [3,9]. Unfortunately, this solution would dramatically increase the
wiring harness and limit the flexibility of the network, which was one of the core
reasons which favored CAN bus adoption in the past.

Diagnostic Port Access Control. Another countermeasure consists in secur-
ing the access to the OBD-II port, which is the easiest attack vector. Apart from
physical access prevention (e.g., via a separate hardware key), another approach
is to rely on an authentication gateway between the OBD-II port and the other
networks, designed to exclusively allow transmission of OBD-II PIDs data queries
to unauthenticated users, and full CAN access to authenticated personnel only.
This could deter both our attack as well as previous attacks based on frames
injection, without breaking the OBD-II diagnostics capability.

Encryption. Another option is to implement encryption to the ID and Data
Field of CAN frames (e.g., via stream ciphers or block ciphers in stream mode).
The attacking node would not be able to distinguish target frames from unrelated
ones and, thus, would be unable to selectively attack certain ones. This approach
would not prevent the attacking node from brute-forcing the ID space to inject
faults in the whole CAN traffic. Nevertheless, this would make the attacking
node noisy and thus easier to detect.

Other Protocols. The ultimate solution for preventing this kind of attack in
automotive networks would be to use non-vulnerable protocols. For instance,
albeit not immune to other security issues [29], Flexray is not susceptible to our
attack because both logical 0s and 1s are represented by dominant conditions
on the bus.

6 Disclosure

An official disclosure to the Computer Emergency Response Team (CERT) of
the attack and its impact has been performed, in the hope to reach the greatest
number of members of the CAN bus community.

7 Conclusions

In this paper, we have presented and analyzed a novel design-level DoS attack
against CAN buses. The attack does not require the transmission of any com-
plete data frame. All it demands is the transmission of 1 bit, resulting in being
potentially capable of deceiving all frame-analysis based detection and protection
approaches, which are currently believed to be the most time- and cost-effective
solution for securing CAN networks from digital attacks.

As the leveraged weaknesses lie in the CAN design, and are by no means
implementation or manufacturer specific, all instances of CAN bus networks
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(including, but not limited to, land vehicles, maritime, avionic, medical or indus-
trial applications) are vulnerable to this attack.

In our research we have focused on the impact on the automotive area. We
implemented (and released to the public) an experimental proof-of-concept on a
modern, unaltered vehicle, proving that the barriers for mounting the attack are
slim. Then, we have described the possible threats against car owners and pas-
sengers descending from the discovery of our attack. Last, we have discussed the
potential attack vectors, and proposed possible short- and long-term mitigation
approaches.

The ultimate hope of the research is to instill awareness over the security
risks that an aggressive and unrestricted interconnection approach of nodes—
now equipped with external interfaces—via a fragilely security-wise designed
network protocol such as CAN bus could pose, and propose practical solutions in
order to ensure the security that a safety-critical components’ backbone network
is not expected to lack.
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Abstract. Malware predominantly employs code injections, which allow
to run code in the trusted context of another process. This enables mal-
ware, for instance, to secretly operate or to intercept critical information.
It is crucial for analysts to quickly detect injected code. While there are
systems to detect code injections in memory dumps, they suffer from
unsatisfying detection rates or their detection granularity is too coarse. In
this paper, we present Quincy to overcome these drawbacks. It employs
38 features commonly associated with code injections to classify memory
regions. We implemented Quincy for Windows XP, 7 and 10 and com-
pared it to the current state of the art, Volatility ’s malfind as well as
hollowfind. For this sake, we created a high quality data set consisting
of 102 current representatives of code injecting malware families. Quincy
improves significantly upon both approaches, with up to 19.49% more
true positives and a decrease in false positives by up to 94,76%.

Keywords: Malware · Memory forensics · Host-Based Code Injection
Attacks · Machine learning

1 Introduction

Malware families implement many different behaviors such as form grabbing,
information leakage, persistence or code injections. Host-Based Code Injection
Attacks (HBCIA) are a family-inherit technique utilized to execute code in a
trusted context of another process. There are two processes involved: the attacker
process Pa and the victim process Pv, which both run on the same system. Pa

injects code from its own process space into the one of Pv. Subsequently, Pa trig-
gers the execution of this code within Pv. HBCIAs allow malware, for instance,
to intercept critical information within a browser or to hide from antivirus soft-
ware. A study indicates that almost two thirds of recent malware samples utilize
this technique [7]. Amongst others, this includes prevalent families like Dridex,
Rovnix, Tinba and Zeus. This points out the relevance of HBCIAs and renders
them an interesting and valuable topic to investigate in order to detect and
mitigate malware in general.
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Analysts face HBCIAs on a daily basis. Forensic analysts are confronted with
memory dumps of unknown systems and in case of a malware infection without
an initial sample. Malware analysts continue to integrate forensic analyses in
their work flow due to the improvement of memory forensic frameworks like
Volatility [27]. In both cases, a fast and accurate initial detection of malicious
code in a memory dump is crucial. There are systems such as Volatility ’s malfind
[27], hollowfind [20] and Membrane [24] that support the detection of HBCIAs in
memory dumps. However, they suffer from major drawbacks. Whereas malfind
suffers from a high false positive rate, hollowfind detects only a subgroup of
all relevant types of HBCIAs. For example, malfind fails to detect Ponmocup,
driving one of the biggest botnets out in the wild [26]. It fails because it only
considers two features: the access property of memory regions as well as the
hiding of libraries. In contrast to malfind and hollowfind, Membrane is limited
to a coarse grain detection, i.e. it detects infected processes instead of the actual
malicious regions within a process. Although this reduces the size of the hay
stack to search in, it does not pinpoint the malware exactly: for instance, the
process Explorer contains 554 memory regions yielding 405 MB of data on an
idling Windows 10 system.

In this paper, we overcome the limitations of the aforementioned systems
by presenting Quincy. Its detection heuristic is based on 38 features from seven
categories commonly associated with injected code. They include, among oth-
ers, memory region permissions, memory region sparseness and the presence of
shellcode. Quincy embeds these features in a vector space and classifies consec-
utive memory pages (in the following just memory regions) as either malicious
or benign. We implemented Quincy for three Windows versions and released it
as a Volatility plugin on our website [5]. Our evaluation with a set of 102 cur-
rent malware families and 1794 benign programs shows that our system has a
higher detection rate with only few false positives (up to 94,76%) and more true
positives (up to 19,49%) when compared to malfind and hollowfind.

The contributions of this paper can be summarized as follows:

(I) A novel approach for HBCIA detection
We propose a fully-automated system to detect Host-Based Code Injection
Attacks in memory dumps. Quincy has the idea of platform-independence
in mind and hence focuses on concepts found among all modern multi-
tasking operating systems. Our approach is based on supervised machine
learning and utilizes a combination of 38 features to detect HBCIAs. This
allows it to significantly improve upon the state of the art malfind.

(II) Implementation and evaluation
We implemented Quincy and released it as a Volatility plugin on our web-
site [5]. We evaluated it in a systematic evaluation with current real world
malware families and goodware. In addition, we compared it to malfind as
well as hollowfind to prove that it significantly improves upon them.

(III) Creation and publication of our data set
During our investigation on HBCIAs in memory dumps, we gathered
the most comprehensive data set of representatives of HBCIA-employing
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malware families that is available today. We crafted YARA signatures for
each family to verify a successful infection and to ensure a precise ground
truth. We share this data set on our website [5].

2 Quincy

In this section, we present Quincy, our approach to detect HBCIAs in memory
dumps. At first, we give an overview of its architecture. The system consists
of the following phases: feature extraction, feature selection, embedding of these
features into a vector space, learning and classification. Subsequently, we describe
each of these phases in detail.

2.1 Overview

Figure 1 sketches Quincy ’s work flow: first, it receives memory dumps as input
and closes the semantic gap, i.e. the gap between the binary representation of
data in a memory dump and its meaning to the operating system. Internally,
this is done by the memory forensic framework Volatility [27].

Second, it extracts low-level information, including processes, threads and
memory regions. The features are based on this low-level information. They are
closely related to HBCIAs such as memory region permissions, dynamic API
resolving and the presence of shellcode. Quincy extracts these features for each
region in a memory dump. A memory region is a set of consecutive pages within
a process. Whereas the typically page size is four kilobyte on x86, a memory
region consisting of many pages may have a size of several megabytes. Virtual
Address Descriptor (VADs) is the term for a memory region on Windows. Note
that such regions may be shared between processes, e.g. system libraries that
are mapped with EXECUTE WRITECOPY permissions on Windows.

Third, Quincy embeds these features for every memory region in a multi-
dimensional vector space. Fourth, it induces a binary classifier. As a result, it
can classify previously unseen memory region as either malicious or benign.

memory dumps

– Memory Pages
– Threads
– Modules
– ...

(a) collect features (b) embed in vector space (c) learn

negative

positive

(d) classify new samples

Fig. 1. The four phases of Quincy : it receives dumps with labeled memory regions
as input. Then, it extracts 38 HBCIA-related features, which are organized in seven
categories (a). Subsequently, it selects valuable features and embeds them in a multi-
dimensional vector space (b). It then induces a binary tree-based classifier (c). Finally,
it can classify previously unseen memory regions (d).
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2.2 Feature Extraction

The following sections describe the 38 features organized in seven categories
that Quincy may employ for classification. We engineered these features based
upon domain knowledge in the fields of malware analysis and memory forensics.
Table 1 summarizes the features. Later, we conduct a feature selection to dis-
card less valuable features (see Sect. 4.1). Thereby, we create a feature set for
each operating system. This optimizes our detection rate while minimizing the
resources required.

(1) API. System interaction such as network communication and file access
can only be accomplished through the operating system via syscalls. On most
operating systems high-level APIs are available that are more comfortable to use.
This included Windows. These APIs are an important keystone in the malware
analysis process: the presence of certain function calls allows to draw conclusions
about the behavior of a binary. For instance, we can deduce from a call to
CreateRemoteThread that an HBCIA is likely to occur.

The feature apigeneral api strings checks for the presence of API calls in general
by scanning for common string prefixes such as Create, Get or Open. This enables
us to differentiate memory regions that might communicate with the OS and the
ones that might not. As a consequence this detects regions hosting executable
files. The feature apihbcias explicitly scans for a set of API calls that are related
to HBCIAs such as CreateToolhelp32Snapshot and ZwSetContextThread.

Since the presence of API calls lessens the analyst’s burden, malware authors
obfuscate API names. Hence, they deobfuscate them just in time and dynam-
ically resolve the pointers to the API code. This can also be done via a set of
special functions. The feature apidynamic loading checks for the presence of such
functions like LoadLibrary and GetProcAddress. A more sophisticated method
is to manually resolve APIs by enumerating all libraries that are mapped into
the process space. This requires access to process data structure, e.g. the Process
Environment Block (PEB) on Windows. The feature apihashing searches for code
patterns that access such data structures to detect code that implements api
hashing.

(2) Binary. Executable programs and libraries are building blocks of each
process. They are also known as modules, which typically pose as a memory
region. Programs and libraries match formats like the Portable Executable (PE)
standard on Windows or the ELF standard on Linux and have a well-defined
header. The following features interpret header structures in memory regions in
case they are available.

The feature binaryhas header checks if a memory region starts with a well-
known header. However, malware may overwrite its header to impede its analy-
sis. The feature binarywiped header covers this case by checking for a zeroed-out
beginning of a memory region that is followed by code. Although benign pro-
grams come in the form of a stand-alone executable or a library, malware often
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Table 1. Summary of the 38 features utilized by Quincy. The categories and features
within them are alphabetically arranged. The rank of a feature is based on its impor-
tance determined in the feature selection on Windows XP/7/10. Note that the final
models do not employ all features (see Sect. 4.6).

Overview of Quincy features

Category Feature Rank Description

(1) API dynamic loading 29/26/16 Presence of dynamic loading APIs

general api strings 08/11/13 Common API call prefixes

hashing 09/10/17 Code fragments related to API hashing

(2) Binary exports 30/19/33 Exports API calls

has header 23/21/20 Starts with a header

imports 35/33/28 Imports API calls

is dynamic library 32/20/27 Has been loaded dynamically

is module 16/13/22 Registered module known to the OS

is pe or dll 14/16/10 A PE executable or shared library

wiped header 37/34/36 Executable header has been wiped

(3) Code functions 10/08/18 Common assembler function prologues

hooks 04/05/12 Memory region contains code hooks

indirect calls 05/03/05 Ratio of indirect calls to all calls

indirect jumps 12/04/07 Ratio of indirect jumps to all jumps

shellcode 01/15/11 Shellcode patterns

(4) Cryptography cipher 33/29/30 Constants of ciphers

encoding 26/23/21 Constants of encoding schemes

hashing 28/20/25 Constants of hashing algorithms

(5) Countermeasure

detection

debugger 17/18/29 Strings and code patterns to detect

debuggers

sandbox 22/27/15 Strings and code patterns to detect

sandboxes

vm 36/36/35 Strings and code patterns to detect

virtual machines

(6) Memory embedded exe 38/38/38 Embedded executable after header

english strings 27/35/23 Strings of Google’s top 1000 English

search terms

high entropy areas 07/06/06 Areas of high entropy

is heap 34/32/32 Memory region is a heap

is sparse 03/01/02 Ratio of zero bytes

mapped 15/37/37 Corresponds to a memory mapped file

network strings 06/07/14 Strings related to networking

persistence 24/30/19 Strings related to persistence

private 18/14/08 Tagged as private memory

protection 13/17/01 Protection of memory region

tag 20/09/05 Tagged by allocation functions

threads 11/12/09 Count of threads originated in memory

region

victim strings 19/31/26 Names of typical HBCIA victims

(7) Trojan banking 25/28/31 Strings related to online banking

cookies 21/23/24 Strings related to cookie stealing

credentials 31/24/34 Strings related to credential stealing
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injects shellcode into its victim processes. The feature binaryis pe or dll checks
if a memory region is a stand-alone executable or library by reading a field of
the corresponding header. Benign executables and libraries are either loaded at
process start or dynamically during runtime with the help of the OS, which
keeps track of these modules. The feature binaryis module encodes if a memory
region is registered as an official module by parsing the PEB. Malware obfus-
cates its API usage and therefore imports few or none API functions. The feature
binaryimports encodes whether or not a memory region imports such functions.
Malware may also inject entire libraries into victim processes. System libraries
export up to several hundreds functions. In contrast, malware may only export
a handful of functions, if any. The feature binaryexports checks if a region has
exported functions.

(3) Code. The following features scrutinize assembly code properties of a
memory region. We assume that every meaningful program is split into sev-
eral units of code, which is reflected by low-level assembly functions. Therefore,
the feature codefunctions searches for patterns of common function prologues
in memory regions. We assume these byte sequences to indicate code presence.
Malware families like GozNym do not inject executable modules such as stand-
alone executables and libraries but rather shellcode. On execution, this position-
independent code has to determine its current address in memory to act. The
feature codeshellcode scans memory regions for code patterns that determine their
position in memory. For example, it considers patterns like a call to the next
instruction, followed by a pop to a register, which determines the current address
in memory.

Due to position-independence and obfuscation reasons, malware contains sig-
nificantly more branches with dynamically calculated targets in relation to direct
calls and jumps. The features codeindirect calls and codeindirect jumps describe the
ratio of indirect calls/jumps to all calls/jumps. The feature codehooks searches
for code hooks that point from one memory region into another region. The
presence of such hooks may reveal, for example, the presence of banking tro-
jans that hook libraries in browsers to intercept banking credentials. On the
downside, searching for hooks in memory dumps is computational expensive.
For instance, Volatility ’s apihooks may take up to a couple of minutes to scan a
memory image. Therefore, we opted to scan memory regions for strings related
to hooking of browser APIs functions like Firefox ’s Netscape Portable Runtime
(NSPR), which are commonly hooked by code-injecting banking trojans.

(4) Cryptography. Malware may try to hide its presence and communication
by extensive use of cryptography, e.g. files are encrypted with AES, network traf-
fic is encoded with Base64 or network packets are hashed with SHA256. Usually
malware does not rely on external libraries like Microsoft’s Cryptographic API,
but rather statically links the cryptographic algorithms into its binary in order
to increase analysis costs. Features of this category look for constants or strings
related to prominent encryption (cryptocipher), encoding (cryptoencoding) and
hashing algorithms (cryptohashing).
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(5) Countermeasure Detection. Malware authors want to postpone analysis
as long as possible. Therefore, many malware families impede their analysis
by including countermeasure techniques. We distinguish between three types:
first, the feature counterdebugger checks for traces of anti-debugging techniques
that aim at manual analysis. These traces include code fragments, e.g. accessing
the beingDebugged flag of the process space, and strings related to malware
analysis tools such as debuggers and process inspectors. Second, the feature
countersandbox checks for the presence of certain sandbox related strings, e.g.
such as Anubis or Cuckoo. Third, the feature countervm scans for strings and
code fragments that detect virtual machines, which are commonly employed in
malware analysis. For example, malware can detect VirtualBox VMs due to its
default MAC address prefix 0x080027.

(6) Memory. The following features focus on the properties of memory regions
themselves. They are arranged in three subcategories.

Statistical features: many memory regions are sparse, i.e. they have a high
ratio of zero bytes. In contrast, memory regions of binaries are more densely
filled with data. Therefore, the feature memoryis sparse measures the ratio of
zero bytes to find nearly empty regions.

Lyda et al. [18] proposed the entropy of data to detect compressed or
encrypted data. Quincy leverages entropy analysis to detect areas of high
entropy. We chose the area size to be four kilobyte as the typical page size
on the Intel x86 architecture and the entropy threshold to be 6.5 as suggested
by Lyda et al. [18]. The feature memoryhigh entropy areas encodes the percentage
of high entropy areas within a memory region.

Memory region properties: this subcategory considers mostly flags assigned
to a memory region by the operating system: heap flag (memoryis heap), its
protections (memoryprotection) such as readable, writable or executable, mem-
ory mapped file flag (memorymapped), private memory flag (memoryprivate)
and memory allocation function tag (memorytag). Furthermore, the feature
memorythreads determines if any thread has been started within a region.

Strings: whereas strings may be obfuscated on hard disk, there are surpris-
ingly many strings in memory. This also holds for malware employing executable
packing. The feature memoryenglish strings matches a word frequency list of the
thousand most frequent search terms on Google consisting of more than three
characters. We assume that this may help to identify rather benign regions.
The feature memorynetwork strings detects memory regions that contain net-
working vocabulary such as HTTP or POST since network communication is
an integral part of today’s malware. HBCIA-employing malware prefers cer-
tain victim processes [7]. The feature memoryvictim strings searches for victim
names in regions such as explorer.exe or svchost.exe to identify memory regions
of HBCIA-employing malware. The feature memorypersistence detects strings
related to persistence, e.g. the Windows registry key . . . \CurrentVersion\Run
to find code that may have achieved persistence on the system.
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(7) Trojan. One reason to inject code into another process is to intercept
information. Therefore, code injections are especially important to trojans like
GozNym, Xswkit or KINS. Since the main objective of banking trojans is to
divert money in banking sessions, the feature trojansbanking scans every mem-
ory region for a comprehensive list of financial vocabulary and bank names.
Furthermore, they target cookies and general credentials such as Facebook or
LinkedIn accounts. The two features trojanscookies and trojanscredentials scan
for strings related to cookies and credentials correspondingly.

2.3 Feature Selection and Embedding in Vector Space

Before utilizing machine learning, we select a set of appropriate features and
embed them in a vector space without standardization. We employ machine
learning algorithms that are unaffected by varying feature scales (tree-based
algorithms, see next section). Most features are of binary nature, e.g. the feature
memoryembedded executable. However, there are also continuous features such as
memoryhigh entropy areas and codeindirect calls.

Initially, the vector space has 38 dimensions. We carry out a recursive feature
elimination (RFE) as proposed by Guyon et al. [16]. RFE employs an exter-
nal estimator that weights features based on their importance. It is recursively
trained with decreasing feature sets, where it pruns the weakest feature in each
iteration. For this sake, we employ Random Forests as external estimator as
proposed by Genuer et al. [13].

2.4 Learning and Classification

Quincy learns a model to classify memory regions either as malicious or benign.
There are several classes of machine learning algorithms for classification prob-
lems such as Support Vector Machines, Logistic Regression and Decision Tree-
based algorithms. Tree-based algorithms pose several advantages including the
comprehensibility of predictions, the simplicity of the algorithms and the min-
imal effort required in data preparation. Therefore, we opt for Decision Tree-
based algorithms, considering CART-Decision Trees [10], Random Forests [9],
Extremely Randomized Trees [14], AdaBoost [11] and GradientBoosting [12].

2.5 Implementation

We implemented Quincy in Python. It leverages the memory forensic framework
Volatility [27] to extract features and scikit-learn [3] to learn. Our implementa-
tion analyzes all Windows NT versions from Windows XP onwards.

To speed up the analysis process, Quincy copies memory images to a RAM
disk and conducts the feature extraction in memory. Hence, the read speed of
the machine’s memory is crucial to the general runtime. Furthermore, Quincy ’s
feature extraction is single-threaded. Therefore, we expect further speed up by
parallelizing the feature extraction.
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3 Data Set Creation

We follow the advices of Rossow et al. [25], based on the fact that an evaluation
requires a comprehensive data set. This section describes how we created the data
set for our evaluation and what kind of data it comprises. First, we describe
the considered binaries and how we generated memory dumps from them for
the evaluation. Next, we show how we properly labeled the memory regions to
ensure a reliable ground truth. Finally, we conduct an initial data analysis of the
extracted data.

3.1 Data Set

We require an evaluation data set to contain:

R1 a considerable amount of HBCIA-employing malware families
R2 recent malware families
R3 only Windows malware
R4 goodware programs to estimate false positives

The data set should contain a considerable amount of different families to
evaluate the systems with different code injection techniques (R1). Next, we
want to ensure that our evaluation results are valid for recent malware (R2) that
runs on the prevalent target Microsoft Windows (R3). Finally, the set should
contain goodware programs to estimate false positives (R4). Table 2 matches
these four requirements to three publicly available data sets. cwsandbox as well
as malicia contain only older malware strains and hence violate requirement R2.
Malware Classification Challenge consists of a considerable amount of samples.
However, they belong to less than ten families, not all of which employing code
injections. Since none of these data sets matches our requirements, we opted to
create our own and contribute it to the research community.

Table 2. Matching of publicly available data sets to our four requirements to an
evaluation data set discussed in Sect. 3.1

Data set Year Publication R1 R2 R3 R4

cwsandbox 2007 [29] ✗ ✗ ✓ ✗

Malicia 2013 [21] ✗ ✗ ✓ ✗

Malware Classification Challenge 2015 [19] ✓ ✗ ✓ ✗

We considered 1794 benign as well as 102 malicious binaries and generated
a memory dump for each of them. Memory dumps of malware contain benign
and malicious memory regions, while dumps generated with benign binaries are
assumed to contain only benign regions. In the following sections, we describe
which binaries we considered in detail.
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Benign Binaries. Benign binaries comprise software included in Windows and
other widespread programs. For this sake, we extracted programs from the sys-
tem directory of Windows XP, 7 and 10. Additionally, we collected binaries of
widespread programs from an archive of portable freeware applications [1]. In
total, we collected 1794 benign binaries. However, the programs that we were
able to execute varied among Windows versions. Some programs were not com-
patible with each version. Moreover, we did not execute system programs of one
version on another to ensure compatibility. A list of all benign binaries and their
hashes is provided on our website [5].

Malicious Binaries. Our set of malicious binaries consist of 102 representa-
tives of HBCIA employing malware families. Barabosch et al. [6] showed that
HBCIAs are an inherent malware family feature, i.e. it is unlikely to change
between versions and variants of a family. Therefore, it is sufficient to consider
one representative per family. Note that this minimizes family specific overfitting
by focusing on the employed HBCIA techniques. We gathered family representa-
tives over the last months. On the one hand, we consulted IT security blogs, e.g.
of antivirus companies, that carried out in-depth analysis of malware families.
On the other hand, we included families that we internally analyzed at our insti-
tute. Later, we manually verified the HBCIA capability of the obtained families
(see Sect. 3.3). The set of malicious families contains a wide range of current
malware that represent today’s threat landscape, for instance, viruses (Sality),
banking trojans (Xswkit), spamming bots (Cutwail) and droppers (Nymaim).
Some samples are not compatible with every Windows version, therefore the
number of executable families varies. We share the malicious binaries on our
website [5].

3.2 Creation of Memory Dumps

We generated memory dumps for Windows XP SP3, Windows 7 SP1 and Win-
dows 10. We automated the memory dump generation process with a tool, which
is based on the virtualization software VirtualBox [22]. First, it creates an ISO
image containing the sample. Then, it starts the virtual machine in a predefined
state and mounts the ISO image on the virtual CD Drive. The guest system runs
a script, which executes the sample with administrator privileges. We grant each
sample two minutes to initialize, which is a common timeout of sandboxing sys-
tems. At the end, it dumps the memory state of the virtual machine to a file.

The virtual machines were not connected to the Internet during the infection,
since no command and control server communication was required. They were
hardened against several virtual machine detection techniques, since malware
may be environment sensitive [17]. First, we utilized the tool Pafish [23] to
find ways to detect our VMs. Subsequently, we hardened detection points, e.g.
by removing strings of the hypervisor from the registry. Note that sometimes
hardening is not feasible. For instance, fixing subtle differences between a real
x86 CPU and the implementation provided by VirtualBox are out of scope for
this work.
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Table 3. Data distribution of benign and malicious binaries as well as benign and
malicious memory regions for all three considered Windows versions.

OS Binaries Memory regions

Benign Malicious Benign Malicious

Windows XP 1205 71 2729563 398

Windows 7 1264 72 5306368 319

Windows 10 977 73 7266226 710

Total (unique) 1794 102 15302157 1427

3.3 Establishing a Ground Truth

A proper labeling of the data set is essential for a reliable evaluation of our model
and comparison with the state of the art malfind [27] and hollowfind [20]. We
established our labeling as follows: we assumed all memory regions of goodware
dumps as benign. We can not make a similar assumption for malware dumps: the
regions may be malicious or benign. Therefore, we opt to employ YARA signa-
tures [2] to reliably detect malicious artifacts in memory dumps. For this sake, we
manually reverse engineered the malware families and wrote signatures for each
of them. Even though some preliminary work on automatic signature generation
exists [15], it is limited to static signatures. However, malware usually is packed,
i.e. the original binary and the executed code in memory significantly differ.

We estimated the detection rates of malfind and hollowfind by interpreting
their results as follows: in case they did not mention a memory region then it
was labeled as benign. In the other case, it was labeled as malicious.

3.4 Initial Data Analysis

We conducted an initial analysis of the extracted data to get a first impression.
According to Table 3, it exhibits a skewed class distribution. The benign binaries
outnumber the malicious binaries by an order of magnitude. Benign binaries
are easier to access than properly labeled representatives of HBCIA-employing
malware. Thereby, the distribution is even more skewed in the case of benign
and malicious memory regions, because there are typically more benign processes
and hence more benign memory regions than infected processes and malicious
regions, respectively. Nevertheless, we argue that this is exactly the haystack
scenario that detection systems face in the wild.

4 Model Evaluation

We select features and conduct an optimization and evaluation of our model in
Sects. 4.1–4.3. This is followed by the evaluation of our optimized model and a
comparison with malfind as well as hollowfind in Sect. 4.4. Then, we conduct a
temporal analysis to estimate how well Quincy detects future malware families
in Sect. 4.5. Section 4.6 summarizes the final models that we learned on the whole
data sets. Finally, we discuss evasion strategies for Quincy in Sect. 4.7.
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Fig. 2. Relative feature importance in percent for the top 15 features on Windows XP.
We obtained these values during the recursive feature elimination phase in the model
learning stage. They are based on the estimation of the Random Forests.

4.1 Methodology of the Model Evaluation

We did the following ten times for each data set of the three Windows versions,
in a cross-validation loop in order to cope with variance.

At first, we randomly split the whole data set consisting of the malicious
and benign memory regions into two sets. The first set is the training set dtrain
and the second set is the validation set dvalidation. dtrain was utilized in model
training and model optimization, whereas dvalidation was exclusively utilized to
estimate the final performance of our optimized model. Therefore, we evaluated
our optimized model on unseen data to estimate its potential for generalization.
Please note that we split the data set such that the malicious regions of one
family were either in dtrain or in dvalidation but never in both sets. This ensured
that our model did not face malicious regions of one family in training and
validation.

We showed that the class distribution is heavily skewed in our initial data
analysis (see Sect. 3.4). Machine learning algorithms may perform poorly and
misclassify many minority class instances due to optimizing the overall accuracy
and hence shifting their focus to the majority class. Therefore, we treated the
two classes separately. We split malicious regions with a ratio of 60%/40% into
dtrain and dvalidation and benign regions with a ratio of 10%/90%. On the one
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hand, this ensured that there are sufficient malicious samples in dtrain. On the
other hand, this added noise in form of benign regions to dvalidation. Noise that
Quincy, malfind and hollowfind are confronted with in the real world.

We selected the optimal set of features on dtrain using Recursive Feature
Elimination (RFE) with Random Forests. Afterwards, we trained and optimized
several tree-based models on dtrain for comparing them later. The model opti-
mization took place on the whole set of dtrain and was carried out in form of
a randomized grid search. Finally, we evaluated the optimized models together
with malfind and hollowfind on dvalidation.

4.2 Feature Selection

The feature selection took place on dtrain using Recursive Feature Elimination
(RFE) with Random Forests. Figure 2 shows the relative feature importance on
Windows XP. Note that the results are similar on Windows 7 and Windows 10.
Table 1 lists the ranking of the features for the three operating systems.

There are only a few features that significantly contribute to the model
with an average of more than 5%. The top three features are codeshellcode,
memorycontains HBCIA strings and memoryis sparse. Whereas the first two fea-
tures directly aim at detecting malicious memory regions, the third feature
detects close to empty and hence probably benign memory regions. Surprisingly,
memorycontains HBCIA strings performs well even though it scans for strings.
Furthermore, all features of the categories code and API as well as one half of
the features of memory are contained within the top 15 features. They cover
the two integral parts of a code injection: the injected code and its execution
context. In contrast, the two categories trojan and cryptography do not perform
as expected. The assumptions on which these two categories are based did not
hold. Whereas in the case of cryptography we assumed that malware prefers to
statically link cryptographic algorithms, in the case of trojan we assumed that
data theft related vocabulary is present in many malware strains.

There are few features that have an importance of less than one percent. They
are either rare cases like memoryembedded executable and binarywiped header or they
are common in regular programs like cryptocipher. The feature memoryprotection
on which malfind heavily relies on is only of medium importance to our model.

4.3 Optimization of Hyperparameters

The optimization of hyperparameters is an important step towards an optimal
model. They are defined outside of the machine learning algorithm, e.g. maximal
tree depth or the number of base estimators in a learning ensemble. We opted
for a randomized grid search to optimize the hyperparameters of our tree-based
models. It does not search over every grid point of the hyperparameter space,
instead it randomly samples grid points and evaluates the model with them.
Bergstra et al. [8] showed that randomized grid search is more effective than
exhaustive grid search as it converges to a close-to-optimum solution at a high
rate. We sampled 64 grid points in total as suggested by Bergstra et al. [8] and
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Table 4. Hyperparameters to optimize and their value ranges for the five tree-based
machine learning algorithms. f denotes the total number of features.

Algorithm Trees Learning rate Max. features Tree depth

AdaBoost [11] [10,400] [0.1, 1.0] – –

CART [10] 1 –
√|f |, |f | [3, 12] + ∞

Extremely Randomized Trees [14] [10,400] –
√|f |, |f | –

GradientBoosting [12] [10,400] [0.1, 1.0] – [4, 8]

Random Forest [9] [10,400] –
√|f |, |f | –

conducted a 10-fold cross validation for every sampled grid point. We chose the
best performing parameters for our final model. The evaluation metric was the
area under the receiver operating characteristic curve (ROC AUC score).

We considered five algorithms: CART-Decision Trees, Random Forests,
Extremely Randomized Trees, AdaBoost and GradientBoosting. All of them have
several hyperparameters: some of these hyperparameters affect the whole ensem-
ble like the learning rate and some of them affect the individual trees like
the maximal tree depth. Optimizing all of these parameters is computation-
ally expensive. Therefore, we decided to optimize only the most significant four
hyperparameters and set the others to scikit-learn’s [3] default values. Table 4
lists the hyperparameters and their respective value ranges.

4.4 Model Evaluation

After having trained and optimized our models, we evaluated their final per-
formance on unseen data to estimate how well they generalize. In addition, we
compared them to the state of the art approach malfind in version 2.5 [27] as
well as hollowfind [20], the Volatility plugin contest winner of 2016. malfind
extensively focuses on memory region related features like memory region per-
missions. hollowfind detects process hollowing by finding discrepancies in process
data structures. For an exact description of malfind and hollowfind see Sect. 5.

We evaluated Quincy with five tree-based machine learning algorithms. The
following holds true for all three operating systems: the standard decision tree
algorithm CART yields more true positives than malfind but comes with an
order of magnitude more false positives. AdaBoost and GradientBoosting detect
less false positives than malfind, however they also detect less malicious regions,
resulting in an overall worse performance. These two algorithms exhibit far better
results than non-boosting algorithms on the training data, which lets us conclude
that they most likely overfit. The two best performing algorithms are Random
Forests and Extremely Randomized Trees. Both algorithms are bagging-based.
They dominate malfind in all cases, with Extremely Randomized Trees being the
most successful. Quincy and malfind dominated hollowfind in all cases, which
showed only slightly better performance than throwing a coin.
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Table 5. Final data of the evaluation of Quincy with Extremely Randomized Trees,
malfind and hollowfind on dvalidation: Area Under Curve (AUC), True Positives (TP)
and False Positives (FP).

Windows Quincy Malfind Hollowfind

AUC TP FP AUC TP FP AUC TP FP

XP 93.8% 149.1 813.5 90.2% 137.9 15538.3 52.24% 7.7 1306.4

7 88.5% 94.4 547.3 80.4% 76.0 7488.0 52.70% 6.6 9176.8

10 84.4% 187.3 1828.5 81.9% 175.6 3672.0 51.57% 8.8 110.1

Table 5 lists the final results of Quincy with Extremely Randomized Trees,
malfind and hollowfind. All values represent the mean of the 10-fold cross valida-
tion. Our system dominates malfind when comparing their area under the ROC
curve. Its highest score is 93,8% on Windows XP. The greatest difference between
their AUC scores can be observed on Windows 7 with 8,09%. Both Quincy and
malfind outperform hollowfind, which only detects process hollowing. This is a
special case of HBCIAs.

Quincy with Extremely Randomized Trees detects more true positives than
malfind with up to 19,49% on Windows 7. Since Quincy incorporates one of
malfind ’s two features, we assumed equal performance at least. However, our
system considers more features and detects more malicious memory regions. In
contrast to malfind, it detects, for instance, malware families like Ponmocup and
Dridex, which inject libraries into their victim processes.

Quincy has also less false positives than malfind with up to 94,76% on Win-
dows XP. malfind considers every non-empty memory area with RWX permis-
sions as malicious. Malware authors might forget to cover their traces or the
architecture (e.g. shellcode) demands these permissions. This allows malfind at
least to partially detect a family. However, once these permissions are adjusted
well (i.e. only RX permissions are set), Quincy outperforms malfind due to its
comprehensive set of other features. False positives of our approach include pro-
grams like Dropbox Portable that exhibit similar signs like the malicious regions:
high entropy areas (probably due to packing), presence of shellcode to determine
its position in memory, RWX memory permissions and extensive use of cryptog-
raphy. This results in similar features like of malicious regions. They are therefore
falsely classified as malicious. Another observation is that falsely assumed mali-
cious regions decrease with more modern Windows versions. Therefore, malfind
false positive rate decreases, however our system benefits from this as well.

Table 6 shows the family detection and family completeness. We consider
a family detected if one approach detects at least one of the family’s memory
regions. Note that a malware infection may result in many distinctive memory
regions distributed over several processes. A detection is considered complete
when all memory regions are detected. On average, Quincy detects more malware
families on Windows 7 than malfind. Even though both exhibit a similar family
detection on Windows XP and Windows 10, malfind often just detects small
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Table 6. Family detection and family completeness of Quincy with Extremely Ran-
domized Trees, malfind and hollowfind on dvalidation.

Windows Families Quincy Malfind Hollowfind

Detection Complete Detection Complete Detection Complete

XP 29 24.3 20.9 24.4 19.5 4.7 0

7 29 26.4 18.1 24.3 11.9 4.6 0

10 30 23.7 18.1 23.6 15.2 4.9 0

malicious regions with RWX permissions but misses on the main module of the
malware family. While this may confirm an infection, it does not yield the main
payload responsible for the infection, which is essential to carry out further
investigations. This assumption is also supported by the family completeness.
On average, our system completely detects more families since it does not solely
focus on memory region permissions. hollowfind detected only the families that
employ process hollowing and none of them completely. Overall our proposed
model dominates the other approaches in all evaluation metrics.

4.5 Temporal Evaluation

After evaluating Quincy with malfind and hollowfind and showing its superiority,
we conducted a temporal evaluation of these three systems. The objective was to
evaluate how well they perform in a temporal setting, i.e. training them on older,
historical data and evaluating them on recent data. This evaluation proceeds
similar to the general one, limited to one iteration of the cross validation loop.
The chronological order is based on a family’s first occurrence in the wild. For
this sake, we queried VirusTotal [4] to arrange the malware in chronological
order and split it with a 60%/40% ratio.

Figure 3 shows the final performance as ROC curve of the three approaches
averaged over all three operating systems. It documents the superiority of Quincy
in the temporal evaluation comparing an AUC score of 90.9% versus 87.6%
of malfind and 54.3% of hollowfind. An interesting finding is that the ways of
injecting code, e.g. hollowing processes by using memory mapped files or creating
a remote thread, do not substantially differ in the two data sets, meaning that
newer families exhibit similar injection traces as older families. An explanation
may be that malware authors tend to copy from each other.

4.6 Final Models

We precomputed three models based on the full data sets, which we distrib-
ute with Quincy ’s source code [5]. Therefore, we chose Extremely Randomized
Trees as learning algorithm based on its performance. Moreover, we carried out
a feature selection using RFE with Random Forests and optimized the hyper-
parameters number of trees and maximal number of considered features. Table 7
presents the number of selected features and the final hyperparameters.
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Fig. 3. Final performance of Quincy (green), malfind (orange) and hollowfind (red)
in temporal evaluation illustrated as ROC curves averaged over all three evaluated
operating systems (XP, 7, 10) (Color figure online)

4.7 Discussion of Evasion

As with every detection system, an adversary can try to understand and circum-
vent its detection heuristic. However, we utilize 38 features from seven categories.
These categories scrutinize several aspects of a memory region, from its mem-
ory properties to its embedded code. An adversary may try to circumvent some
features, e.g. by bloating the code with zeros to resemble a sparse region, but
there are still other features like codefunctions that would indicate that the region
may contain relevant code. The number of different features and their correla-
tions increases the challenge to circumvent our system, when compared to other
systems like malfind or hollowfind.

But there are HBCIAs that might not be detectable during a post-mortem
memory dump analysis. Several operating systems offer the possibility to load
arbitrary libraries into a process during its creation, e.g. AppInit DLLs on Win-
dows. If malware employs such means then detection may fail for several reasons.
Foremost, the library has been loaded by the system loader in the same fashion
as a regular library. Such modules have therefore the same permissions or they
are listed in the same data structures as regular system libraries. In the case of
the absence of other indicators these injections are especially difficult to detect.

5 Related Work

There are four systems allowing forensic detection of HBCIAs in memory
dumps, which are closely related to our approach: malfind [27], hollowfind [20],
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Table 7. The number of optimal features and hyperparameters for Quincy with
Extremely Randomized Trees on the evaluated operating systems. The number of fea-
tures describes the amount of features that were selected during the feature selection.
The two hyperparameters were selected during a randomized grid search on the whole
data set of each operating system.

Windows Number of features Number of trees Maximal features

XP 27 445
√|f |

7 34 475
√|f |

10 23 435
√|f |

Membrane [24] and Hashtest [28]. All of them are based on the memory forensic
framework Volatility. There are public implementations of each except Mem-
brane. Table 8 compares them to Quincy.

Malfind. Hale Ligh proposed the current state of the art malfind [27]. It imple-
ments a combination of two features to classify memory regions. At first, it marks
entirely empty regions as benign. Pages with RWX protections and unlinked
libraries (from the PEB) are marked as malicious. Furthermore, it detects wiped
PE headers in RWX -protected memory regions. The remaining regions are
assumed to be benign. Its detection heuristic may be completely circumvented
by not utilizing RWX permissions and not unlinking libraries. Lassalle proposed
malfinddeep [27], an improvement to malfind that utilizes whitelisting of mem-
ory regions based on ssdeep hashes. We did not evaluate malfinddeep since there
is no official whitelist available. Our work significantly improves upon malfind,
as shown in the evaluation. Quincy considers a superset of malfind ’s features
adding many more in order to decrease false positives, increase true positives
and render evasion more difficult.

Hollowfind. The volatility plugin hollowfind [20] detects process hollowing,
which is a code injection technique, replacing code of a legitimate process and
manipulating the initial thread to execute malicious code. The behavior of the
malware blends in a trusted process, e.g. svchost.exe. hollowfind detects process
hollowing by comparing two process management data structures for discrepan-
cies. It considers the Process Environment Block (PEB), which amongst others
list the loaded modules with their paths. Furthermore, it considers a data struc-
ture in kernel space (VAD structure), which contains information about the
modules’ paths. If hollowfind finds a discrepancy for a process, then it assumes
it to be hollowed out and outputs its memory regions with RWX protection like
malfind does. Its heuristic may be circumvented by not using process hollowing
or by removing the discrepancies from the PEB. Overall, the scope of hollowfind
is narrower than Quincy ’s. Our system detects HBCIAs in general, a superset
including process hollowing.
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Table 8. Comparison of related approaches. XP + implies that the approach runs on
every Windows version since Windows XP.

Approach Heuristic Features Granularity Compatibility

malfind [27] Rule-based 2 Memory region XP +

hollowfind [20] Rule-based 2 Memory region XP +

Membrane [24] Random Forrest 23/28a Process XP and 7

Hashtest [28] Hash comparison 1 Memory region XP and 7

Quincy Extremely Randomized Trees 38 Memory region XP +
aMembrane considers 23 features on Windows XP and 28 features on Windows 7.

Membrane. Pek et al. propose Membrane [24]. It reconstructs low-level mem-
ory paging information of Windows’s software memory management unit (MMU)
and leverages this information to detect HBCIAs. Based on domain knowledge,
they identified 23 features on Windows XP and 28 features on Windows 7 and
applied a Random Forest classifier to detect HBCIAs on process-granularity.

There are overlappings between Quincy and Membrane such as the imple-
mentation as a Volatility plugin and the utilization of one common feature
(memorymapped). However, Quincy significantly differs from Membrane. First,
Quincy ’s detection is finer. Whereas Membrane detects HBCIAs on process-
granularity, Quincy detects them on memory region-granularity. Therefore, a
direct comparison between them is not possible. Second, Pek et al.’s approach is
very prone to noise. Their results drastically decline from 98% accuracy on Win-
dows XP to 73% on Windows 7. We assume that on Windows 10 this problem
gets even worse since the noise level increases with every Windows version as our
evaluation showed. Third, they implemented their approach for two older Win-
dows versions (XP and 7). Quincy is not limited to a certain Windows version,
hence it also runs on the latest version. Fourth, Membrane is based on low-level
features. The authors had to reverse engineer parts of the Windows kernel to
implement their system. Porting Membrane to a new Windows version or even
new OS requires tedious reverse engineering.

Hashtest. White et al. present Hashtest [28]. They detect HBCIAs by hashing
memory regions and subsequently searching for these hashes in a previously built
hash database. This reduces the amount of memory regions to analyze. Quincy
does not rely on whitelisting. Therefore, our approach generalizes better and can
deal with previously unseen data.

6 Conclusion

Host-Based Code Injection Attacks (HBCIAs) play an important role in modern
malware with at least two thirds employing them [7]. A fast initial detection
of injected malicious code in memory dumps is crucial. Therefore, we presented
Quincy, a system for detecting these attacks on memory region basis. It is based
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on supervised machine learning, utilizing 38 HBCIA-related features, selecting
the optimal feature set, embedding these features in a vector space and train-
ing a tree-based model for classification. The evaluation showed that Extremely
Randomized Trees fit especially well to the problem.

We evaluated our system on Windows XP, 7 and 10. For this purpose, we cre-
ated a data set according to the best practices and published the data set online.
We generated memory dumps for more than one thousand benign and malicious
binaries and created a comprehensive data set of benign and malicious memory
regions based on a sound ground truth. Based on this data set, we evaluated
Quincy and compared it to the current state of the art malfind and hollowfind.
Our results show that Quincy significantly improves upon them. It has less false
positives as well as more true positives and dominates the other approaches on
all three considered Windows versions. Finally, we enable practitioners to take
advantage of our findings by publishing our implementation [5].
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Abstract. Linux containers have recently gained more popularity as an
operating system level virtualization approach for running multiple iso-
lated OS distros on a control host or deploying large scale microservice-
based applications in the cloud environment. The wide adoption of con-
tainers as an application deployment platform also attracts attackers’
attention. Since the system calls are the entry points for processes trap-
ping into the kernel, Linux seccomp filter has been integrated into pop-
ular container management tools such as Docker to effectively constrain
the system calls available to the container. However, Docker lacks a
method to obtain and customize the set of necessary system calls for
a given application. Moreover, we observe that a number of system calls
are only used during the short-term booting phase and can be safely
removed from the long-term running phase for a given application con-
tainer. In this paper, we propose a container security mechanism called
SPEAKER that can dramatically reduce the number of available system
calls to a given application container by customizing and differentiat-
ing its necessary system calls at two different execution phases, namely,
booting phase and running phase. For a given application container, we
first separate its execution into booting phase and running phase and
then trace the invoked system calls at these two phases, respectively.
Second, we extend the Linux seccomp filter to dynamically update the
available system calls when the application is running from the boot-
ing phase into the running phase. Our mechanism is non-intrusive to
the application running in the container. We evaluate SPEAKER on the
popular web server and data store containers from Docker hub, and the
experimental results show that it can successfully reduce more than 50%
and 35% system calls in the running phase for the data store containers
and the web server containers, respectively, with negligible performance
overhead.
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1 Introduction

Linux containers have emerged as one popular operating system level virtual-
ization approach, and state-of-the-art container managers such as Docker [2]
and Rocket [13] are enabling the wide adoption of Linux containers. Recently,
major cloud providers are adding support for Docker containers on Linux VMs
[8,19,49]. In general, there are two types of Linux containers, OS container and
application container. OS containers are useful for running identical or different
flavors of an OS distro. Basically, they are designed to run multiple processes and
services. Container technologies, such as LXC [21], OpenVZ [48], Linux VServer
[32], BSD Jails [25] and Solaris zones [40], are suitable for creating OS containers.
In contrast, application containers are designed to package and run a single ser-
vice. Platforms for creating and deploying application containers include Docker
[2] and Rocket [13]. The idea behind application containers is to create different
containers for each of the components in a specific application. This approach
works especially well when it comes to deploy a distributed, multi-component
system using the microservices architecture.

In traditional hypervisor-based virtualization technologies, virtual machines
(VMs) are presented with a hardware abstraction layer created by the hypervisor.
Direct communications between the processes in the VMs and the host hardware
are mediated by the hypervisor. In comparison, Linux containers, as one OS level
virtualization technology, relies on security primitives such as namespace and
cgroups provided by the Linux kernel to achieve the isolation among containers.
A container can be considered as a group of processes sharing a bunch of isolated
but dedicated Linux kernel resources. Therefore, applications running in the
containers can achieve near native performance. Essentially, all containers share
the same host OS kernel. Unfortunately, this sharing also exposes the entire host
kernel interface to malicious processes running in any one of the containers. It
has been demonstrated that an unwary container process can manage to escape
into the host kernel space [7].

A number of security mechanisms have been proposed or adopted to enhance
the security of containers [6,9,14,20,36,37,44,48]. Since the system calls are the
entry points for processes in the container trapping into the kernel, seccomp
[6] has been integrated into the popular container management tools such as
Docker to effectively constrain the system calls available to the container. For
instance, Docker provides a whitelist of available system calls. However, Docker
lacks a method to obtain and customize the set of system calls in the seccomp
profile for a given application. Instead, it only provides a coarse-grained setting
recommendation for all application containers.

We observe that an application container usually requires different sets of
available system calls at different phases during the lifetime of its execution.
Since most of the application containers are used to run long-term services such
as web servers and database servers, the lifetime of those containers can be
generally divided into two phases, namely, the booting phase and the running
phase. The booting phase is responsible for setting the container environment
and initializing the service within a couple of minutes. In the long-term running
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phase, the container service begins to accept service requests and send back
responses. Due to the different sets of functions demanded in these two phases, a
number of system calls invoked in the booting phase may no longer be needed and
thus can be removed in the running phase. For instance, compared to the default
313 available system calls through the entire lifetime of a Docker container, our
experiments show only 116 system calls are invoked in the booting phase and 58
system calls are needed in the running phase of the MySQL database server.

In this paper, we develop a split-phase container execution mechanism called
SPEAKER to dramatically reduce the number of necessary system calls dur-
ing the lifetime of an application container’s execution. For a given application
container, it first profiles the two sets of system calls required for the booting
phase and the running phase, respectively. Based on the profiling results, it can
constrain the available system calls accordingly. Both system call profiling and
constraint setting run outside the container, so it requires no changes on the
image of the container.

To profile the system calls required in either booting phase or running phase,
we first need to find a time point to separate the two phases. We provide a
polling-based method to identify an accurate phase splitting time point for a
given container image. In addition, we implement a coarse-grained phase sepa-
ration approach, which can find a generic separation time point for application
containers running on a specific platform. After obtaining the phase splitting
time point, we perform dynamic program analysis to record the system calls
invoked during the container booting and running phases.

For the split-phase container execution, we statically configure the set of
available system calls in the booting phase and then dynamically change the
available system calls when the container switches from the booting phase into
the running phase. In the Linux kernel, the available system call list can be
represented as a seccomp filter of one process, which can be set by two system
calls prctl() and seccomp(). However, they can only be called to install the
seccomp filters onto the calling process, but we need to change the seccomp filters
of the processes inside the container from another process outside the container.
Otherwise, a malicious process with the root privilege inside the container may
be able to disable the constraints on the system calls. Since all processes inside
one container share the same seccomp filter, we can change the seccomp filter
of one process to update the available system calls for the entire container. To
modify a container’s seccomp filter from outside, we need to fill the semantic
gap to find and change the data structures of seccomp filter.

The most popular usage of Docker containers is to deploy web applications
[11], so we apply our mechanism on two closely related categories of applica-
tion containers from Docker hub, namely, web server containers and data store
containers. We study the top four web server container images (i.e., nginx, Tom-
cat, httpd, and php) and the top four data store container images (i.e., MySQL,
Redis, MongoDB, and Postgres). The experimental results show that SPEAKER
can reduce more than 50% and 35% system calls in the running phase for the
data store containers and the web server containers, respectively. The number
of system calls for web server containers may vary when deploying different web
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applications; however, they share most of system calls since the primary func-
tions of web servers such as processing HTTP requests and web pages are the
same. Actually, for all website applications tested in our experiments, about 80%
system calls will be invoked for just fetching one web page.

In summary, we make the following contributions.

– We develop a split-phase execution mechanism called SPEAKER to minimize
the system call interface in one container at two different execution phases. It
can successfully reduce the attack surface of containers by removing unneces-
sary system calls that may be misused by malicious processes in the container.

– We develop an out-of-the-box method to profile the necessary system calls
for a given application container in the booting phase and the running phase,
respectively.

– We develop a new method to dynamically change the sets of available sys-
tems calls by filling the semantic gap on the data structure of seccomp filter.
SPEAKER does not require any modifications to the existing container man-
agement software or the application images.

– We implement SPEAKER as a tool set and evaluate its effectiveness on the
popular container images downloaded from Docker hub. The experiments
show that SPEAKER can effectively reduce the number of available system
calls for both data store containers and web server containers with negligible
performance overhead.

2 Background

In this section, we provide some background on namespace and seccomp mech-
anisms, which are highly related to our system design and implementation.

2.1 Linux Namespace

Namespace is one core mechanism that allows isolation of an application’s view of
system resources within a container. Linux kernel utilizes six types of namespaces:
pid, user, uts, mnt, net, and ipc. Specifically, pid namespace isolates the process
ID number space, which means each container may have a process whose PID is 1
and processes in different pid namespace can have the same PID value. In addi-
tion, all processes inside a container have a mapping PID on the Linux Kernel host
outside the container. For instance, the process with PID 1 in one container could
be the process on the host with PID 1001. In this paper, we use this mapping to
help profile container’s system calls from outside.

2.2 Seccomp

Secure computing (seccomp) is a sandboxing tool in the Linux kernel to restrict
a process from making certain system calls. Since the system calls provide entry
points for the processes in one container into the host kernel, a malicious app
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may misuse system calls to disable all the security measures and escape out of
the container [52]. Seccomp can be used to reduce the number of entry points
into the kernel space, thereby reducing the kernel attack surface. Since Docker
version 1.11.0, a --security-opt seccomp option is supported to set a seccomp
profile when the container is launched. It allows the user to set the list of system
calls available to be called inside the container. Currently the default seccomp
profile by Docker has 313 available system calls [5].

Seccomp has three working modes: seccomp-disabled, seccomp-strict, and
seccomp-filter. The seccomp-filter mode allows a process to specify a filter for
the incoming system calls. Linux kernel provides two system calls, prctl() and
seccomp(), to set the seccomp filter mode. However, they can only be used to
change the seccomp filter mode of the calling thread/process and cannot set the
seccomp filter mode of other processes.

3 Design and Implementation

Figure 1 shows the architecture of SPEAKER, which consists of two major mod-
ules, the Tracing Module and the Slimming Module, working in five sequential
steps. For a given application container, the tracing module is responsible for
profiling the available system calls in the booting phase and the running phase,
respectively. The tracing module shares the system call lists with the slimming
module, which is responsible for constraining the available system calls when the
container boots up and runs. Both modules run outside of application contain-
ers as root-privileged processes in the host OS. SPEAKER is non-intrusive, so
it does not require any modification to the applications or the container deploy-
ment tool.

Booting RunningApplication
Containers

Tracing Module

System Call 
Tracing

Linux 
Control Host
(Outside the 
Containers)

Slimming Module

Booting Running

Phase 
Separation

1 2

System Call Lists

4 5

Booting Phase
System Call List

Running Phase
System Call List

3

Fig. 1. SPEAKER architecture
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3.1 Tracing Module

This module is to generate system call sets for the booting phase and the running
phase, respectively. It is transparent to the applications inside the container and
consists of two components, phase separation and system call tracing.

Phase Separation. The phase separation is in charge of separating the execu-
tion of the application containers into two phases, namely, the booting phase and
the running phase. Though the booting phase is short, it may require a number
of extra system calls to setup the execution environments, and those system calls
are no longer necessary in the running phase. Moreover, the running phase may
require some extra system calls to support the service’s functions. Thus, it is
important to find the running point that separates these two phases in order to
profile their system calls. For instance, in the booting phase of the Apache web
server, the container and the web server are booted and all modules needed for
the service execution, such as mod php and mod perl, are loaded. In the running
phase, the Apache web server accepts and handles the requests and generates
the responses.

Fig. 2. Number of system calls invoked over container execution time.

We can achieve a reliable phase separation through a polling-based method,
which can find the splitting time point by continuously checking the status
changes of the running service. Once the booting up finishes, the service enters
the running status. Most current Linux distributions provide a service utility
to uniformly manage various services, such as apache, mysql, nginx etc. There-
fore, our polling-based method can find the split-phase time point by checking
the service status through running the service command with status option.
This method works well when the service creates its own /etc/init.d script.

We also develop a coarse-grained phase separation approach, which is generic
and service independent. This method is based on two observations. First, the
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container and service booting can finish quickly in tens of seconds. Second, the
number of invoked system calls keeps increasing during the booting phase and
becomes stable after the booting process ends and the container enters an idle
running state. We verify both observations using the 15 most popular application
container images in the Docker hub. Figure 2 shows that the numbers of system
calls increase quickly in the first 10 s after the container starts to boot for all the
15 containers, and the number of system calls becomes stable after 70 s when all
15 containers enter the idle running state. Therefore, we can choose a rough time
point (e.g., 100 s) for all containers. This time point may be different for other
services on different hardware platform; however it should not be larger than a
couple of minutes. Though it may include some extra system calls invoked in the
service idle state into the whitelist of booting phase, since the booting phase is
short, the chance for those extra system calls being misused by attackers is minor.

Fig. 3. Workflow of the tracing module.

System Call Tracing. The system call tracing component is responsible for
tracing the execution of the container as well as the hosted application to obtain
the necessary system calls used in each phase. In most cases, multiple processes
may be running inside a container even if only one service is hosted. Therefore,
the system call tracing needs to ensure that all the processes inside the container
are correctly identified to adequately collect the invoked system calls.

System call tracing can be done either using a static analyzer to extract
all the system calls used from a container image or using a dynamic analyzer
to collect the system calls invoked during the container booting and running
stages. We choose to use the Linux strace tool to dynamically trace the nec-
essary system calls for a given application container. We solve the challenge
of tracing container processes from outside the container through utilizing the
process mapping between the container and the host OS.
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As shown in Fig. 3, the tracing process consists of 7 steps, where steps 1 to
4 target at creating the booting phase system call list and steps 5 to 7 are to
generate the running phase system call list. To guarantee the completeness of
the tracing results, we enable the -f option of strace to trace the children of the
processes currently being traced.

Since a container is a group of processes sharing the same set of ker-
nel resources, a process inside a container is a normal process with different
attributes such as pid, uid, and gid when viewed from the host OS. For example,
each container contains a process with PID 1, but the same process may have
a PID larger than 1000 on the host OS. Therefore, instead of running strace to
trace the processes inside one container, we can trace the same process on the
host OS using a different PID.

The arrowed dash lines in Fig. 3 demonstrate the parent-child relationship
among the container processes from the host’s point of view. We can see that
each container contains a docker-containerd-shim process, which is the parent of
all the remaining container processes. All the docker-containerd-shim processes
are spawned from the process docker-containerd. Therefore, we can obtain the
booting phase system call list through tracing the process docker-containerd.
Similarly, the running phase system call list can be obtained through tracing all
processes inside the container when the booting is finished, which refer to the
child processes of the container’s docker-containerd-shim process.

3.2 Slimming Module

The slimming module is responsible for monitoring the execution of the container
and dynamically changing the available system call list for all processes inside
one container during the different execution phases. It restricts the container to
use only system calls in the booting phase system call list during the booting
phase. During the running phase, it only allows system calls in the running
phase system call list, which may add new system calls and remove old system
calls in the booting phase system call list. Note we cannot rely on one process
inside the container to implement the slimming module, otherwise, a malicious
process with the root privilege in the container may also be able to manipulate
the slimming module to disable the constraints on the system calls. To solve this
problem, we put the slimming module out of the target container.

The slimming module is implemented as a user space program on the host OS
with root privilege. Since it is based on the seccomp mechanism in Linux kernel,
we first introduce some detailed internal design of the seccomp mechanism and
then present our implementation details.

A seccomp filter records an available system call list. In Linux, it is possible
for a process to be attached with multiple seccomp filters, and all seccomp filters
are organized in an one-way linked list. Each seccomp filter is implemented as
a program code composed of seccomp instructions, which is represented as a
bpf prog structure. Each seccomp filter structure has a prog pointer pointed
to the bpf prog structure. Each instruction is a 4-tuple structure that includes
the actual filter code, the jump offset when the filter codes returns true, the jump
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offset when false is returned, and a generic value. Figure 4 shows an example of
a process attached with two seccomp filters. The first filter restricts the process
to use the system calls read(), write(), rt sigreturn() and exit(), as shown
in the right-bottom bpf prog structure. The k values in the bpf prog structure
correspond to the system call numbers of these four system calls. The second
seccomp filter in the left bottom of Fig. 4 restricts the process to use only read()
and write() system calls.

struct task_struct {
    ...
     seccomp.filter;
    ...
}

struct bpf_prog {
   ….
 /* Instructions for Interpreter */
   ….
   code=0x7015,jt=14,jf=0,k=0
   code=0x7015,jt=13,jf=0,k=1
   ….
};

BPF_interpreter

struct bpf_prog {
   ….
/* Instructions for Interpreter */
   ….
   code=0x7015,jt=14,jf=0,k=0 
   code=0x7015,jt=13,jf=0,k=1
   code=0x7015,jt=12,jf=0,k=15
   code=0x7015,jt=11,jf=0,k=60
   ….
};

struct seccomp_filter {
  struct bpf_prog *prog;
};

struct seccomp_filter {
  struct bpf_prog *prog;
};

  1  2

Seccomp Filter List

Go Through All Seccomp Filters

Fig. 4. Seccomp data structure in Linux kernel

Seccomp Filters in Linux Kernel. Seccomp mechanism restricts the set of
system calls available to a process. The list of available system calls is repre-
sented as a seccomp filter data structure, as shown in Fig. 4. Each process has
a task struct structure that contains an seccomp structure, which defines the
seccomp state of the process. If the process is being protected by seccomp, the
filter field of the seccomp structure points to the first seccomp filter defined
as a seccomp filter structure.

The BPF interpreter running in the Linux kernel is in charge of enforcing the
system call filtering. When the process invokes a system call, it goes through all
the seccomp filters attached to this process. As long as one seccomp filter does
not include this system call, this process is not allowed to invoke this system
call. Now let’s see an example in Fig. 4. When a rt sigreturn() system call
is invoked by the process, the BPF interpreter first checks the seccomp filter
on the right bottom and finds that the rt sigreturn() system call is allowed.
However, when it continues to check the second seccomp filter on the left-bottom,
it finds that rt sigreturn() system call is not allowed. After combining these
two results, the BPF interpreter denies the rt sigreturn() system call.
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Linux kernel provides two system calls prctl() and seccomp() to change
the seccomp filters of one process. However, we cannot directly use them to
dynamically change the seccomp filters of one container. First, they can only
install the seccomp filters onto the calling process, but we need to change the
seccomp filters of the processes inside the container from outside the container.
Second, after one seccomp filter is installed, it cannot be removed or changed
when the process is running. In other words, we can use these two system calls
to add new seccomp filters but cannot remove any existing filters. Meanwhile,
our experimental results show that some system calls used in the running phase
are not necessary for the booting phase, and vice versa. Therefore, we choose
to locate the memory address of the seccomp filters and directly modify their
contents in the memory. It requires us to fill the semantic gaps on recovering the
seccomp filter related data structures.

Workflow of Slimming Module. The basic idea of the slimming module is
to first construct a new bpf prog struct in the memory based on the available
system call list, and then redirect the prog pointer to it. The slimming module
workflow consists of three steps, as shown in Fig. 5. First, the container is booted
with the system calls in the booting phase system call list. Second, we develop
a Seccomp Filter Constructor to generate a bpf prog struct that records the
seccomp instructions according to the running phase system call list. The third
and final step is changing the seccomp filters of all the processes inside a container
to the newly crafted one.

Booting Container with 
Seccomp Filter

Dynamically Changing
the Seccomp Filter

Seccomp Filter 
Constructor

Booting Phase System Call List Running Phase System Call List

task_struct{
      filter
}

task_struct{

struct seccomp_filter {
    prev=NULL;
    prog;
};

bpf_prog bpf_prog_new

struct seccomp_filter {
    prev=NULL;
    prog;
};

Kernel 
Memory  
of  
the
Processes
Inside 
Container

PID 1 Process 

task_struct{

Child Process Set 

task_struct{

}

Seccomp Filter in Booting Phase Seccomp Filter in Running Phase

Working Flow: 

1 2 3

bpf_prog

X

task_struct{
      filter
}

task_struct{

PID 1 Process 

task_struct{

Child Process Set 

task_struct{

}

Fig. 5. Workflow of the slimming module.
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Booting Container with Seccomp Filter. As shown in Fig. 3, before a con-
tainer is created, a docker-containerd-shim process is spawned. It is the parent
process of all the remaining processes inside the container. The seccomp filter
for the booting phase can be enabled to protect the booting phase once the
docker-containerd-shim process has been created. Alternatively, we can trans-
form the booting phase system call list into a Docker seccomp profile and utilize
the Docker “–security-opt seccomp” optional function to launch the container by
the command “docker run -id –security-opt seccomp:booting-phase-system-call-
profile.json image name”. This approach is less secure than the first one, since
the seccomp filter may not be enabled immediately after the container starts to
boot. However, this time gap is small.

Seccomp Filter Constructor. We develop a seccomp filter constructor to
generate the kernel data structure of the seccomp filter for a given system call
list. The constructor is composed of a user level process called UIApp and a
Linux kernel module to perform a three-step transformation, as shown in Fig. 6.
First, the UIApp takes the system call list as the input and generates the corre-
sponding bpf filter program. We use the libseccomp [12] library to convert one
available system call list to the bpf filter instructions. Particularly, we use the
seccomp rule add() method from the libseccomp library to add all available
system calls and use the seccomp export bpf() method to export the resulting
bpf filter program. Next, the bpf filter program generated in the user space is
passed into the kernel module, which converts the program into a seccomp fil-
ter. Since some code of the bpf filter program is specific to seccomp filter, they
are slightly different from those in the classic bpf filters. Finally, the bpf prog
structure is generated, that is the bpf prog new structure in Fig. 5. For the
sake of performance, in Linux kernel a bpf program with a new instruction set
totally different from the ones in the seccomp filter program is accepted by the
BPF interpreter, which is included in bpf prog structure.

Normally, we can use an internal kernel function bpf prog create
from user() to do the last two steps of transformation. The function accepts
two parameters, a pointer to the user space filter program and a function
pointer to an internal kernel function seccomp check filter(). First, the
user space filter buffer is copied into a kernel buffer, and then the passed-in
seccomp check filter() function is called to transform the classic bpf filter
program into a seccomp bpf filter program. Finally, the bpf prog struct includ-
ing a bpf program with a new instruction set is generated.

bpf prog create from user() is an internal non-exported kernel function.
In addition, when we install the kernel module with the system(‘‘insmod
kernel-module’’) function call in UIApp, the installed kernel module is
not running in the same address space as the UIApp. Therefore, we could
not pass user space filter buffer pointer created in step one directly into
bpf prog create from user(). In our implementation, we directly pass the
data content of the user space bpf filter into kernel module as the kernel
module parameter, and create a copy one in the kernel. Then we change
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bpf prog create from user() slightly to enable it accept the kernel buffer fil-
ter data, and incorporate it into our kernel module. In addition, the function
seccomp check filter() is not exported too. Thus, we extract all related code
and implement the function of seccomp check filter() as a kernel module.

Available System Call 
List in User Space

Classic Bpf Filter 
in User Space

Seccomp Filter in 
Kernel Space

bpf_prog in 
Kernel Space

UI App Kernel Module
1 2 3 4

Fig. 6. Seccomp filter constructor.

Dynamically Changing the Seccomp Filter. With the new bpf prog new
structure, we can dynamically change the seccomp filters of all the container
processes to enforce the available system calls in the running phase. When the
container is successfully booted, usually more than one process will be running
inside the container. For example, 6 processes will be created after the Apache
service is launched in the container. Therefore, we need to change the seccomp
filter for all processes. The inheritance attribute of the seccomp filter indicates
that a forked child process will inherit the seccomp filter of its parent. As shown
in Fig. 5, when the service and the container is booted through command “docker
run -id –security-opt seccomp”, the first process in the container has only one
seccomp filter. All its child processes inherit this seccomp filter and contain the
same pointer pointing to the bpf prog structure. When we change the bpf prog
structure of one process in the container, the seccomp filters of all processes will
be changed. In Fig. 5, initially all processes possess the same bpf prog struct
in the booting phase. After changing the system call list, all the processes now
share the new bpf prog new structure, which records the running phase system
call list. In brief, the kernel module in Fig. 6 first locates the task struct of the
first process inside the container through its PID, which is the process with PID
1 in Fig. 3. Next, it finds the pointer of bpf prog through the task struct, as
shown in Fig. 5 and then modifies the pointer to point to the new constructed
bpf prog new structure.

4 Experimental Results

We apply the SPEAKER toolkit on the popular web server containers and
data store containers downloaded from Docker hub. We measure its effective-
ness on reducing the number of available system calls from the default setting.
We observe minimal performance overhead triggered by our system. Our exper-
iments are conducted on the machine with a 4-core 1.6 GHz Intel i5 CPU and
8 GB of RAM. We use the Ubuntu 15.10 Desktop Edition with Docker 1.11.0
installed.



242 L. Lei et al.

4.1 System Call Reduction

We evaluate both web server containers and data store containers, which count
around half of the deployed Docker application containers in real world.

Web Server Containers. We study four popular web server images in Docker
Hub, namely, nginx, php, httpd, and tomcat. Httpd is the Apache HTTP server
and php is the Apache httpd server with PHP installed. Therefore, we only
need to evaluate php, nginx, and tomcat. For all three web server containers,
we directly pull the images from Docker hub and deploy a wiki software on
it. For Tomcat a JSP-based open source wiki software JSPWIKI is deployed.
Nginx and php are web servers with PHP installed, so we deploy the PHP-based
open source wiki application DOKUWIKI. Since the available system calls in the
running phase vary among different applications, we deploy a popular bulletin
board system PHPBB3 on the Apache php web server. The installed software
versions are Nginx web server 1.4.6 with PHP 5.5.34, Apache web server 2.4.10
with PHP 5.6.20, and Apache Tomcat 8.0.33 with JVM 1.7.0.

We use the HTTPERF [39] tool to access the web server continuously with
increasing numbers of requests per second. We also scan the web servers using
Skipfish in order to exercise as many code paths as possible. Skipfish is a tool
conducting automated security check for the web applications by recursive crawl
and dictionary-based probes, hence exercising many edge-cases. In addition, we
manually access the websites to trigger all popular functions.

Table 1. System call reduction on web servers.

Server name Booting & running Booting phase Running phase

Nginx 124 107 (86.3%) 79 (63.7%)

Tomcat 111 106 (95.5%) 46 (41.4%)

Php(Apache)DOKUWIKI 117 102 (87.2%) 70 (59.8%)

Php(Apache)PHPBB3 112 102 (91.1%) 67 (59.8%)

Table 1 shows the tracing results. We can see that the number of system
calls invoked in the booting phase ranges from 90 to 120, but a large fraction
of these system calls are not needed in the running phase. Moreover, accessing
the web server through HTTPS does not incur substantially more system calls
compared to the case of accessing through HTTP. By default, all the system
calls needed in both the booting phase and the running phase must be enabled
when the container enters the running phase. In contrast, SPEAKER can sig-
nificantly reduce the system calls in the running phase by dynamically changing
the seccomp filter. At the running phase, the system call reduction rates are
36.3%, 58.6%, 40.2%, and 40.2% for nginx, tomcat, php with DOKUWIKI, and
php with PHPBB3, respectively.
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Though the system call numbers may vary when deploying different web
applications, the primary functions on processing HTTP requests and rendering
web pages are similar in web servers. For all four web applications tested, about
80% system calls are invoked when just fetching one page through WGET and
HTTPERF [39]. Moreover, half of the remaining 20% are file-operation-related
system calls such as chmod(), ftruncate(), rename(), unlink(), sendfile(),
dup(), pread64() etc. All three PHP-enabled applications invoke 61 identical
system calls, which occupy 77.21%, 87.14%, and 91.04% of the total running
phase system calls for three web applications, respectively. It means the system
calls invoked are more affected by the programming language used rather than
the functions of the applications. The number of system calls does not correlate
with the complexity of the web application, and we see that the seemingly more
complicated bulletin board system invokes less system calls than DOKUWIKI.

Table 2. System call reduction on DB servers.

Server name Booting & running phase Booting phase Running phase

Redis 102 92 (90.2%) 42 (41.2%)

MongoDB 116 110 (94.8%) 55 (47.4%)

MySQL 118 116 (98.3%) 58 (50.0%)

Postgres 118 116 (98.3%) 52 (44.1%)

Data Store Containers. We evaluate four data store containers, namely, Redis
server v3.2.0, MongoDB v3.2.6, MySQL v5.7.12, and Postgres v9.5.3, directly
pulled from the Docker hub. The last three are traditional database platforms,
while Redis is an in-memory data structure store that can serve as the database,
cache and message broker. Since the operations on the data store containers
are more deterministic when comparing to the web application containers. We
generate their workloads in three aspects. First, we exercise the commands man-
ually according to the official manual references of each data store [4,15,38,45].
Second, we utilize the load testing tools to test the case when accessing these
platforms concurrently. The load testing and benchmarking tool HammerDB is
used to exercise on Postgres, MySQL, and Redis. For MongoDB, we use Cloud
System Benchmark provided by Yahoo. Third, we use penetration testing tools
to enumerate all the data in the data store platforms, (e.g., databases and tables
in MySQL). As our purpose is to simulate normal user behavior, other pene-
tration tests such as attacks exploiting are not triggered. SQLMap is used on
sql-based databases including MySQL and Postgres, while NoSQL-Exploitation-
Framework and NoSQLMap are used for Redis and MongoDB, respectively.

Table 2 shows the experimental results for the data store containers. We
observe that the number of system calls necessary for the container booting
ranges from 90 to 120, and more than half of the system calls invoked in the
booting phase are not needed in the running phase. The system call reduction
achieved by SPEAKER is above 50% for all data store containers.
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4.2 Performance Overhead

We evaluate the performance impacts of SPEAKER on the running contain-
ers. In general, our system introduces negligibly small overhead on both system
resource and application performance. Since all the processes in one container
share the same set of seccomp filter, when updating the system call whitelist, we
only need to add one new bpf prog struct to record bpf instructions and release
the old bpf prog struct. Since the seccomp filter is enabled by default for Linux
application containers, the changes of the filtering rules can barely have impacts
on application performance. For a list with 116 system calls, it only takes around
41 ms to change the seccomp filter, and it only occurs once. For the Apache web
server container, we measure the throughput using HTTPERF [39]. For the
MySQL data store container, we use benchmark tools coming with the MySQL
to measure the response delay. Figure 7 shows that the performance differences
on request throughput are minor when we enable either Docker default seccomp
profile or SPEAKER.

Fig. 7. Performance overhead.

We implement the tracing module as a bash script with 570 SLOC. The
slimming module is written in C language, consisting of a user level code with
2256 SLOC for converting the system call lists into Bpf filter format and a kernel
module with 1088 SLOC for dynamically updating the seccomp filter.

5 Security Analysis

Since containers share the same kernel, it is critical to constrain the available
system calls for each container to reduce the attack surface. Our security analysis
mainly targets at the system calls being removed in our experiments, so those
system calls not invoked by the containers (e.g., seteuid() and setegid())
are out of the scope. For the containers we tested in kernel 4.2, the number of
available system calls during both booting and running phases could be reduced
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from 370 to 111–124. By separating running phase from the booting phase our
method can further reduce the number of available system calls. In the long-term
running phase, we reduce the number of system calls to 46–79 out of 111–124.

By shrinking the number of available system calls, we can efficiently reduce
the attack surface of the host OS and lower the risk that a malicious process may
escape from the container and gain control of the host OS. On the one hand, we
can remove the system calls which are vulnerable due to lack of sanity checking
and thus may be misused by attackers. For instance, among the 47 system calls
removed from the running phase of the Apache web server with DOKUWIKI,
we found 14 vulnerable system calls with CVE security level MEDIUM or above,
including getrlimit(), listen(), sigaltstack(), socketpair(), prctl(),
setsid(), setsockopt(), uname() etc. Similarly, 23 vulnerable system calls
can be prevented after we remove 60 unnecessary system calls in the running
phase of the MySQL server, including bind(), brk(), chdir(), epoll ctl(),
execve(), io setup(), socketpair(), setsid(), listen(), setgroups(),
setgid(), uname(), setuid(), etc. Among those removed vulnerable system
calls, 6 and 12 system calls may be exploited to achieve privilege escalation for
Apache and MySQL containers, respectively. On the other hand, since attack-
ers may misuse some high-privileged system calls (e.g., fchown(), fchmodat(),
mknodat()) to launch attacks, we can reduce the attack surface by removing
those high-privileged system calls. For instance, among the removed system calls,
around 25% may be called to gain full control of the system [10,35].

Particularly, setuid() is a dangerous system call frequently used in shell-
code, it is eliminated from all data store containers we tested. And we remove the
exec family of system calls such as execve() from the running of MySQL server.
execve() system call is usually used to run a binary executable after creating a
new process, and it may be misused by attackers to create a shell. By default,
Docker seccomp profile has all the exec system calls enabled. After eliminating
execve() from the system call interface, we can at least increase the difficulty on
exploiting shellshock vulnerability. As another example, when the setsockopt()
system call is eliminated from the Apache server with DOKUWIKI, we remove
potential vulnerabilities that can be exploited by setsockopt() for launching
heap memory corruption and denial of service attack against the host.

Our mechanism targets at reducing the attack surface; however, since the
available system call list may still contain vulnerable system calls, we cannot
prevent attackers from exploiting those remaining system calls. For the Apache
web server container with Dokuwiki, 22 out of the total 70 available system calls
may expose vulnerabilities. Similarly, for the MySQL server container, 16 out of
the 58 available system calls may expose some vulnerabilities. To further con-
strain those vulnerable system calls, we can combine SPEAKER with careful
sanity checking on the parameters of system calls [23,28,34] and strict resource
access control [16,17,26,41,53]. For example, we can combine our SPEAKER
system and the Linux capability mechanism [20] to block the exploitation of
vulnerability CVE-2016-9793 [1], which requires both CAP NET ADMIN capa-
bility and setsockopt() system call. When setsockopt() cannot be removed
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from some containers, we still can prevent this vulnerability by removing the
CAP NET ADMIN capability from the vulnerable processes in the container.

Since we cannot change the container processes’ seccomp filter inside the
container, we rely on a kernel module to dynamically change the seccomp filter
from outside of an container. The kernel module does not export any APIs, and
it can be removed from the system once the container enters the running phase
and the seccomp filter has been changed. Therefore, it can hardly be misused by
malicious processes in the container. In addition, it is difficult, if not impossible,
for the attackers in the container to modify the seccomp filter through direct
memory overwriting. First, it is difficult for the user processes in the containers
to understand and locate the seccomp filter related structures in the kernel space.
Second, even if the programs in the user space could resolve the semantic gap
and locate the seccomp filter related structures, they cannot write into the kernel
space memory.

6 Limitations and Discussion

System Call Tracing Completeness. We trace system calls involved in the
container boot-up phase and application running phase using both automatic
workload generation tools and manual operations. However, this tracing process
may still be incomplete. First, different versions of the services on different plat-
forms may use various kinds of system calls, which greatly increases the com-
plexity of the tracing procedure. Second, some corner cases may exist and may
not be accounted in our tracing process. For example, the Apache web server can
exhibit abnormal running patterns when experiencing extremely large amount
of request traffic. As SPEAKER is a tool transparent to the applications run-
ning inside the container, we can combine the system call tracing phase with the
testing process [24] of the application development to better trace the system
call profile of a specific application. In addition, the static analysis approach
(e.g., [50,54]) can be integrated to further improve the profiling accuracy. We
consider them as our future work to enhance our toolkit. Third, the existence
of dynamically generated scripts such as PHP script can make the tracing more
complicated, as these scripts can arbitrarily invoke certain system calls. A reiter-
ative method can be adopted to add new available systems calls during a longer
trace and verification stage.

System Call Control Granularity. We adopt a simple container-specific
whitelist model to reduce the unnecessary system calls, which is easy for deploy-
ment with its near zero overhead, comparing to the sophisticated and costly
FSA or PDA [18,47,50] models based system call intrusion detection system.
As other stateless model [54], SPEAKER also suffers a risk of system call mis-
use attacks, such as mimicry attack [51], which transforms a malicious attack
sequence to a seemingly valid sequence by inserting no-op system calls. How-
ever, Kruegel et al. [27] and Zeng et al. [54] work illustrates that a stateful FSA
or PDA model is actually not much better than the stateless whitelist model,
as it is easy and can be automated for a mimicry attack to evade FSA models.
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To achieve a more fine-grained protection of the system calls, we could integrate
the system call interposition based approach such as MBox [26] or the argument
constraint solutions [23,28,34]. We leave it as our future work.

Deployment Extensibility. We divide one container’s lifetime into the booting
phase and the running phase; however, the same paradigm can be extended
to achieve multiple phase execution. Moreover, for those application containers
deployed using tools other than Docker, our approach works well as long as the
container execution can be dissected into separated phases. SPEAKER can be
smoothly integrated into the container management services, such as Amazon
EC2 container service (Amazon ECS) [8], Docker Datacenter [3], and OpenShift
Enterprise [22] to prevent malicious applications in one container from escaping
into the hosting virtual machine (VM).

Phase Separation Efficiency. We provide a polling-based method and coarse-
grained timing-based method for phase separation. However, the timing-based
solution might cause some extra system calls invoked in the service idle state
being added into the whitelist of booting phase. While the polling-based method
will subject to the implementation constraints of the services, e.g. it will not
work well for the services without their own /etc/init.d scripts. We can adopt
a binary-based execution partition scheme [31] to achieve a fine-grained phase
separation. It is based on one observation that most long running applica-
tions include an initialization phase followed by certain event-handling loops
for processing inputs/requests. Thus, by locating those loops, we can separate
the initialization phase (booting phase) from the running phase. We leave it as
one of our future work.

Diversity of the Container Evaluation. Our current evaluation focuses on
two most popular categories of Application containers, i.e. web server container
and data store container, which count for half of all real deployed containers. A
more variety of application containers could boost the impact of the proposed
approach. We will leave it as our future work to perform evaluation on other
types of containers, such as RabbitMQ, Redis, Node.js, Logstash etc.

7 Related Work

Linux Kernel Security Primitives. Linux kernel provides other primitives
which can be utilized to enhance container security. CGroups can be used for fine-
grained limitation and prioritization of resources. By setting up a quota of the
maximum resources available to a container, cgroups can be utilized to mitigate
the resource exhaustion attacks initiated from inside a compromised container.
Mandatory Access Control (MAC) refers to the access control enforced at the
kernel level based on a predefined set of rules. By default, Docker on Ubuntu
uses Apparmor, and Docker on Redhat uses SELinux. Discretionary access con-
trol (DAC) mechanisms can be used to protect kernel resources from malicious
containers. DAC mainly involves capabilities and file mode access control. In the
docker container, by default only 14 out of the 38 capabilities are allowed [20].
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Contrary to MAC, for DAC the access is determined by the owner of the object
or resource in question.

Container Security. Reshetova et al. [46] gives a comparative study of several
OS-level virtualization systems and identify the gaps in current security solu-
tions based on a spectrum of attack models. [14] analyzes the security level of
Docker containers and how Docker interact with the security features of Linux
kernel. However, they only talk about how container isolation is achieved through
namespaces and cgroups. An extension to the Dockerfile is proposed in [9] to ship
a specific SELinux policy for processes running in a Docker image, which incurs
great burden for container image maintainers to build up a dedicated policy
module. In contrast, we have designed a practical, non-intrusive, and system-
atic framework to enhance the security of application containers. [36] proposes
an approach that combines customized AppArmor/SELinux rules based on con-
tainer operation tracing with host-based intrusion detection. However, we focus
on proactively eliminating the unnecessary system calls to reduce the potential
vulnerabilities exploitable by malicious containers.

Application Sandboxing. System call interposition based application sand-
boxing [16] regulates and monitors application behavior by intercepting each sys-
tem call according to a predefined policy profile. Our system traces the execution
of the running application to create a tailored seccomp policy instead of inter-
cepting every system call. MBOX [26] is a lightweight sandboxing mechanism
that interposes on a sandboxed program’s system calls to layer a sandbox filesys-
tem on the host filesystem. Similarly, we also utilize seccomp/BFP as a means for
interposing system calls invoked by processes in the containers. The Capsicum
sandboxing framework [53] isolates processes from global kernel resources by dis-
abling system calls which address resources via global namespaces. Their app-
roach is different from ours as we utilize the seccomp mechanism. Systrace [41]
is a solution that confines multiple applications running according to accurate
policies. We have adopted its tracing capability to generate audit logs for execu-
tion of container processes. Moreover, some other system call monitoring based
anomaly detection and prevention solutions have been proposed [18,33,47,50]
and may be integrated to further enhance the container security.

Attack Surface Reduction. Seccomp [6] allows a process to restrict a set of
system calls it can execute. Although our system is built on seccomp, we aim to
adjust the set of available system calls for the entire application container instead
of letting the process to determine the policy itself. In addition, we split the con-
tainer execution into two different phases and dynamically change the seccomp
filters from outside the container to further reduce the attack surface. Cimplifier
[43] and Docker-slim [42] use dynamic or static analysis to identify a minimal set
of resources for running a specific application, thereby greatly reducing the size of
application container images. However, our approach can dynamically adjust the
runnable system call list during various phases of container booting and running.
A different approach for system hardening is trimming [29,30], which effectively
reduces the attack surface by removing or preventing the execution of unused
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kernel code sections. Specifically, they are able to remove unnecessary features
through automated compile-time kernel configuration tailoring. This approach
can serve as a complement to our system to guarantee the general security of
the container host.

8 Conclusions

In this paper, we design and develop a system call reduction mechanism called
SPEAKER to reduce the attack surface of Linux application containers. It works
by first tracing the available system calls necessary for the booting phase and the
running phase of the application containers, and then dynamically changing the
seccomp filter to update the available system calls for each phase. SPEAKER
runs outside the container and is completely non-intrusive to the application
containers. Our evaluation results show that SPEAKER can significantly reduce
the system call interface and incurs almost no performance overhead.
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48. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based
operating system virtualization: a scalable, high-performance alternative to hyper-
visors. In: ACM SIGOPS Operating Systems Review, pp. 275–287. ACM (2007)

49. van Surksum, K.: Microsoft announces support for docker container virtualization
for next version of windows server (2014)

50. Wagner, D., Dean, R.: Intrusion detection via static analysis. In: Proceedings of
the 2001 IEEE Symposium on Security and Privacy (2001)

51. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security, pp. 255–264. ACM (2002)

52. Walsh, D.J.: Docker security in the future. https://opensource.com/business/15/
3/docker-security-future

53. Watson, R.N., Anderson, J., Laurie, B., Kennaway, K.: Capsicum: practical capa-
bilities for UNIX. In: USENIX Security Symposium, vol. 46, p. 2 (2010)

54. Zeng, Q., Xin, Z., Wu, D., Liu, P., Mao, B.: Tailored application-specific system
call tables. Technical report, Pennsylvania State University (2014)

https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://docs.mongodb.com/manual/reference/command/
https://docs.mongodb.com/manual/reference/command/
https://github.com/docker-slim/docker-slim
https://github.com/docker-slim/docker-slim
http://arxiv.org/abs/1602.08410
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/container-security-guide/chapter-6-docker-selinux-security-policy
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/container-security-guide/chapter-6-docker-selinux-security-policy
https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/7/container-security-guide/chapter-6-docker-selinux-security-policy
http://redis.io/commands
http://dx.doi.org/10.1007/978-3-319-11599-3_5
http://dx.doi.org/10.1007/978-3-319-11599-3_5
https://opensource.com/business/15/3/docker-security-future
https://opensource.com/business/15/3/docker-security-future


Deep Ground Truth Analysis
of Current Android Malware

Fengguo Wei1(B), Yuping Li1, Sankardas Roy2, Xinming Ou1, and Wu Zhou3

1 University of South Florida, Tampa, FL, USA
fwei@mail.usf.edu

2 Bowling Green State University, Bowling Green, OH, USA
3 Didi Labs, Mountain View, CA, USA

Abstract. To build effective malware analysis techniques and to eval-
uate new detection tools, up-to-date datasets reflecting the current
Android malware landscape are essential. For such datasets to be max-
imally useful, they need to contain reliable and complete information
on malware’s behaviors and techniques used in the malicious activities.
Such a dataset shall also provide a comprehensive coverage of a large
number of types of malware. The Android Malware Genome created
circa 2011 has been the only well-labeled and widely studied dataset the
research community had easy access to (As of 12/21/2015 the Genome
authors have stopped supporting the dataset sharing due to resource lim-
itation). But not only is it outdated and no longer represents the current
Android malware landscape, it also does not provide as detailed infor-
mation on malware’s behaviors as needed for research. Thus it is urgent
to create a high-quality dataset for Android malware. While existing
information sources such as VirusTotal are useful, to obtain the accurate
and detailed information for malware behaviors, deep manual analysis is
indispensable. In this work we present our approach to preparing a large
Android malware dataset for the research community. We leverage exist-
ing anti-virus scan results and automation techniques in categorizing our
large dataset (containing 24,650 malware app samples) into 135 varieties
(based on malware behavioral semantics) which belong to 71 malware
families. For each variety, we select three samples as representatives, for
a total of 405 malware samples, to conduct in-depth manual analysis.
Based on the manual analysis result we generate detailed descriptions of
each malware variety’s behaviors and include them in our dataset. We
also report our observations on the current landscape of Android malware
as depicted in the dataset. Furthermore, we present detailed documenta-
tion of the process used in creating the dataset, including the guidelines
for the manual analysis. We make our Android malware dataset available
to the research community.

1 Introduction

The Android platform continues to dominate the smartphone market with more
than 80% share according to the study by International Data Corporation [8]
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and Gartner [29]. Over the last five years, the Android world has been chang-
ing dramatically with more features added, and more sensitive operations (e.g.,
banking and wallet) becoming popular on smartphones. Along with the Android
platform’s popularity, the Android malware has been growing as well, with more
complex logic and anti-analysis techniques.

As expected, research groups across academia and industry put enormous
effort to design novel methods to detect Android malware. However, the above
effort is adversely affected by the lack of clear understanding of the latest Android
malware landscape. A reliable ground truth dataset is essential for building effec-
tive malware analysis techniques and verifying the validity of new detection
methods. For understanding the nefarious techniques used in the state-of-the-
art malware apps, detailed behavior profiles for each malware variety
must be provided in such a dataset. While creating such a dataset is a
must-do ground work, this task is extremely difficult. In particular, to provide
the rich information for malware behaviors, manual analysis is indis-
pensable. However it is not feasible to manually analyze all Android malware
at our hands (we have 24,650 from various sources). Thus the first step is to
categorize the samples into semantically equivalent groups; then we only need
to study a few samples from each group.

One can use AV scanning service like VirusTotal [7] to group malware samples
into families; however, the family labels returned are often inconsistent [16,25].
Moreover, we observe that malware samples within one family may actually
contain different varieties with different behaviors. Thus we cannot simply rely
upon the grouping provided by AV products, even after being refined by tools
like AVclass [25]. Even if grouping has been done perfectly, the amount of work
of manually analyzing representative apps from each malware variety is still
daunting. Advanced obfuscation methods are widely adopted in recent Android
malware apps, further complicating the manual analysis process.

Due to the above reasons, there has not been any effort on creating such a rich
Android malware dataset, except for the Android Malware Genome [34] project.
The Android Malware Genome dataset is no longer available to researchers due
to resource limitations.

It provided a malware dataset containing 1260 malware samples categorized
in 49 families, discovered in 2010 and 2011. We have collected a more recent
Android malware dataset from several sources (VirusShare, Google Play and
third party security companies). The malware in this collection were discovered
between 2010 and 2016. We made comparative study of the Genome dataset
with our malware samples of 2011 and later, and found that the majority of the
threats in those newer samples are not captured by the Genome samples. As a
result, we not only need a more up-to-date malware dataset for Android, we also
need one with much richer semantic information than what the Genome dataset
provided.

The main contributions of this work are as follows

1. We present a systematic method of analyzing large volumes of Android mal-
ware samples with high confidence, which helps us prepare a large ground
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truth Android malware dataset with rich profile information. This method
addresses the scalability challenge by leveraging a two-step grouping tech-
nique followed by a systematic and deep manual analysis.

2. We present a detailed guideline for performing the manual analysis so other
researchers can replicate the process on other Android malware samples in
their possession. Our manual analysis provides profiles for each variety of the
Android malware regarding their behaviors. This provides insights into the
landscape of the current Android malware.

3. We prepare a comprehensive dataset which contains 24,650 labeled Android
malware samples that are classified in 135 varieties within 71 families, whose
discovery dates range from 2010 to 2016. We publish detailed reports includ-
ing behavior information for each malware variety at our Android malware
website http://amd.arguslab.org/. We are sharing the whole dataset with the
research community.

The rest of the paper is organized as follows. Section 2 discusses the process of
preparing the dataset. Section 3 discusses in details the behaviors and techniques
of malware in our dataset, and Sect. 4 discusses our analysis and observation of
the malware evolution trends. We discuss related research in Sect. 5, and conclude
in Sect. 6.

2 Methodology

We collect Android malware apps from multiple sources, analyze the sam-
ples, and report their detailed behaviors. Figure 1 illustrates the pipeline of the
methodology, which consists of a two-step grouping process followed by a manual
procedure: (a) Group malware samples with the same family name, (b) Catego-
rize each family into semantically different varieties using a customized clustering
analysis, (c) Conduct a systematic and deep manual analysis for each variety of
malware samples to obtain the accurate and detailed behavior information for
the malware.

Fig. 1. Methodology pipeline: After malware families are identified, each family is
categorized into semantically different varieties. For each variety we generate a malware
behavior report, which is available at our Android malware website.

http://amd.arguslab.org/
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2.1 Identifying Malware Families

After raw malware samples are collected, it is an industry common practice to
assign a family name to each app and group malware into families. The family
name typically indicates the origin of the malware samples, such as in terms of
the malware writer, malicious campaign, individual characteristics, etc.

We collect sample apps from multiple sources, including VirusShare, Google
Play1, and third party security companies. Most of the malware do not have an
assigned malware family name. For such “unassigned” apps, the first step is to
identify the family name.

Challenge. Existing state-of-the-art malware scanning service such as Virus-
Total often provides multiple labels when it lists the scan result for an app using
different anti-virus tools. However, due to inconsistent naming schemes from dif-
ferent anti-virus vendors [20,21], how to reliably identify a family name for a
malware sample is a challenge.

Solution. We collected 1,464,590 unassigned app samples, and applied the fol-
lowing two steps:

(a) For each app x we get scan results of 55 antivirus products from VirusTotal
(each result is either a candidate label or not-a-malware). If at least 50% of
anti-virus products used in the VirusTotal recognize app x as a malware,
we mark x as malware and move to the second step to obtain the family
name. After this step, out of the collected apps, 1,216,885 are not labeled
as malware by any AV product; about 195,185 are labeled as malware by
some AV but did not reach the 50% threshold. We have 52,520 apps left.

(b) We obtain the family name of app x using a “dominant keyword algorithm”
as follows. First, take the scanning results of app x from VirusTotal as label
candidates. Second, normalize all the label candidates into individual Eng-
lish keywords, and meanwhile remove generic English keywords if any, e.g.,
Trojan, Android, A, B, etc. There are a few hundred English keywords
extracted and we identify the generic terms manually. Finally, we use the
dominant keyword among the remaining labels as the family name. A key-
word is dominant when: (a) the count of the keyword is greater than 50% of
the anti-virus products used in the VirusTotal result; (b) the count of the
most popular keyword is equal or more than twice of any other keyword,
i.e., there are no ambiguous labels that are highly popular at the same time.
If for an app no dominant family name is found, we filter out the app from
our dataset.

This process is very similar to AVclass [25], although we developed the app-
roach independently without the knowledge of the AVclass work. An example is
illustrated in Fig. 2, in which (1) We show VirusTotal result for an app (to save
space we show only 10 anti-virus products’ candidate labels for this app) (2) We

1 Some malware can get pass Google’s vetting system and end up in Google Play.
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Fig. 2. Dominant keyword algorithm: identifying the malware family name of app x
from VirusTotal scan results of app x. Not all AV tools are listed here to save space

extract the keywords from each of the result, and get a list of keywords such as
Android, AndroidOS, Bankum, Wroba, etc. We filter out the generic keywords
such as Android, AndroidOS, and Trojan. (3) We count the remaining keywords,
and get Bankun as the dominant keyword, which is thus considered the family
name. In particular, Bankun appeared 6 times, which is greater than 50% of the
total results (6 > 10 × 50%), and more than twice of the count of the second
dominant keyword Wroba (6 > 2 × 2).

Out of the 52,520 apps obtained from step (1), we have 24,650 samples left
after step (2). The rest are filtered out due to inconsistent family labels.

Discussion. Our goal is to provide a reliable ground truth dataset that presents
insights into the up-to-date landscape of Android malware. The more anti-virus
companies agree with the labeling for a malware sample, the more popular such
family is and thus it is a more important representative to serve our purpose.
We leave as future work to analyze those apps that as of now have no dominant
family names.

2.2 Identifying Malware Behavior Groups – Varieties

It will not be feasible to perform deep manual analysis on each of the sample
apps due to the large number of samples. How to reduce the amount of labor
while maintaining the reliability of the result is a big challenge. While one may
think that samples under the same family name should have similar behaviors,
the reality is that the family name of a malware typically does not carry much
semantic information. Anti-virus scanners name a malware with different and
often inconsistent conventions [16]. Sometimes, a scanner names a malware after
the malware writer Id; Other times the assigned family name is to highlight the
main activities of the app (e.g., FakePlayer) or main goal of the app (e.g.,
BankBot), and so on. A malware app can achieve a goal through different
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schemes. Thus the samples of a malware family can be very different in terms of
their behaviors. Hence, we have to categorize the family members into seman-
tically different groups which we call varieties. During our study, we observed
that many families have more than one varieties.

This motivates us to apply a clustering analysis for a malware family to cat-
egorize the samples into different varieties. For a given family malware apps,
we use a Android malware clustering analysis tool [18] to further categorize
the labeled malicious apps into multiple varieties (Fig. 1). Each variety of apps
reported by the clustering algorithm contains a unique version of malicious pay-
load. Then, we only need to study a few representatives of each variety (not all
apps therein) in the later manual analysis phase. This makes the whole manual
analysis process scale. Details of the clustering algorithm can be found in our
technical report [18].

2.3 Manual Analysis

We manually analyze each variety of malware samples. If a variety contains
more than three samples, we randomly select three of them for manual analysis.
Otherwise, we analyze all samples in the variety. Through a systematic study of
the samples, we generate a detailed report on the malware variety’s behavior.

Challenges

(a) Manually analyzing a malware sample warrants a systematic strategy; with-
out a strategy it is nearly impossible to understand the comprehensive pic-
ture of a malware’s behaviors.

(b) Anti-analysis/obfuscation techniques are commonly used in Android apps
as well as in malware payloads, which has an adverse impact both on static
analysis tools and to the analyst who wants to understand the semantics of
the given app.

(c) The malware app itself may not always contain the full information. Many
components could be fetched from a remote server while the malware runs
on the infected device, and those servers may have already been taken down
after the malware app was identified. Thus it may be impossible for us to
obtain those missing parts for analysis.

Assistance Tools. When manually analyzing malware apps, we leverage avail-
able tools and frameworks wherever they are relevant and helpful. A static analy-
sis tool with capability of collecting apk information and performing reachability
analysis can help the analyzer quickly prioritize the analysis process. An appro-
priate tool can help obtain the trace to critical APIs. For instance, when analyz-
ing renamed obfuscated apps, we cannot easily guess the semantics of the classes
and methods. In that case, we should locate the critical API calls (e.g., open-
Connection, sendTextMessage) and perform reachability analysis to understand
from which component this API gets invoked, and track the call chain to get
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a more clear picture of what the app is doing. To serve this purpose, we lever-
age Amandroid [28] which is a publicly available2 comprehensive static analysis
framework for analyzing Android apps.

In addition, an IDE-like editor that provides functionality of class hierarchy
resolution, def-use chain building, method invocation tracing in the decompiled
IR (intermediate representation) is also to the human analysts to understand
the code flow. We built such an analysis tool for this purpose3.

An Android app development environment is also important for manual
analysis. An analyst may need to “re-implement” certain parts of the malware
to test the real functionality, or to get the runtime value of certain variables.
For instance, many malware apps encrypt the string constant and the malicious
payloads to avoid detection. When analyzing such a malware, we first identify
the decryption routine, extract and load it in a separate app, and then provide
the encrypted content to get the plaintext information.

The Overall Strategy of Manual Analysis. With the help from the afore-
mentioned assistance tools, we performed manual analysis of 405 Android mal-
ware samples representing 135 varieties. Here we present a systematic way of
how to manually analyze Android malware, which serves as a guideline for other
people who want to reproduce our analysis results, or to analyze other Android
malware apps.

Identifying Malicious Components. An Android app is organized as a col-
lection of components. To understand the behavior of a given malware sample we
have to identify which components belong to the malware payload, or whether
the whole app is a standalone malware. As the clustering analysis (CA) tool [18]
we use is imperfect, the payload it outputs for each variety could be the full
payload or a partial payload. For the latter case, we need more effort to identify
the full payload. We get help from the following observations: (1) Since a com-
ponent is the basic functional block for an Android app, we can expect that the
full component is likely to belong to the payload, if a few of the component’s
methods or reachable methods appear in the CA-extracted payload; (2) In most
cases, the package name is a good indicator; if some of a package’s classes appear
in the CA-extracted malicious payload, then the whole package is very likely to
belong to the payload. Malware writers could also instrument the benign part
of the repackaged malware to initialize the payload, so we should also search
for any use of payload package names inside the benign components. This will
enrich our understanding of the activation strategy for this malware.

Prioritizing Component Analysis. We should not start the analysis from a
random component as that will not put the analysis in a meaningful context.
After obtaining the malicious components using the CA tool, we follow a triaging
scheme, and analyze the components in the following sequence:

2 Tool website: http://pag.arguslab.org/argus-saf.
3 Tool website: http://pag.arguslab.org/argus-cit.

http://pag.arguslab.org/argus-saf
http://pag.arguslab.org/argus-cit
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(a) Event handlers: Event handlers mostly serve as the entry points in
an Android app. More specifically, the main Activity and the Broad-
castReceiver receiving “android.intent.action.BOOT COMPLETED” event
(BootReceiver) is the initializer, which can be used to start the core com-
ponent (e.g., monitor service) of the malware, so it should be analyzed
first. Other event handlers are mainly related to monitoring user informa-
tion and the environment of infected device. They also can be considered
as entry points of certain malware. Take as example a BroadcastReceiver
which receives “android.provider.Telephony.SMS RECEIVED”. This com-
ponent is used to listen to any new incoming SMS message for this device.
When we analyze such a component, we should check how it handles the
message, whether it performs some operation related to the device inbox, if
it matches the incoming message phone number with some list (e.g., bank
phone numbers, vendor phone numbers, etc.), and aborts the SMS using
abortBroadcast() method call.

(b) The services that are started by initializers normally contain the main logic
of the malware (monitor service); thus they need to be analyzed as soon
as possible. It is the core component for most malware, which the malware
will try to keep running as long as possible. It is common to see that many
entry point components or scheduled tasks will start such service. The mon-
itor service normally is used to fetch and reply to commands from a com-
mand and control server. It is also common to schedule some TimerTask
or BroadcastReceiver to constantly check the internet connectivity, whether
an anti-virus product is running, whether itself is still alive, and so on.

(c) All remaining components. The purpose of those components vary. The
guideline is to start from such a component and trace all the reachable
code to understand: (i) what role the component plays, (ii) which other
components this component communicates with, (iii) which BroadcastRe-
ceiver this component registers, (iv) whether this component starts some
thread or AsyncTask and what is the purpose.

Building the Behavior Report. After we analyze all the relevant compo-
nents, we generate a report that includes an inter-component graph where a
node represents a component (present in the malicious payload) or a worker
thread loaded by such a component, and an edge represents the communica-
tion/interaction between two nodes. The graph also illustrates behavior descrip-
tion for each node and edge, such as the activation method, communication
message, C&C commands, etc. This gives us a comprehensive picture of the
malware on top of which we can understand its richer behavior, e.g., what is
the monetizing method, how it maintains the persistence, its main goal, and so
on. The behavior report including the inter-component graph for each malware
variety is available at the Android malware website.
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Handling Anti-analysis/Obfuscation

(a) Renaming: Class name, method name and field name are important hints
for understanding the malware’s purpose. Renaming them to meaningless
words makes manual analysis difficult. We can get help from static analysis
tools to perform a reachability analysis to see all the reachable methods
from a given component. This can help us locate the interesting APIs (as
the system API names cannot be renamed). We follow the call trace to
understand how an API gets invoked and how the calling parameters are
prepared.

(b) String encryption: Oftentimes, we understand the malware behavior based
on the strings used in the code, like URL, C&C command, class names,
phone number, etc. If those strings are encrypted, it is very difficult to
understand the semantics of those actions. To address this issue, we analyze
the malware code to figure out the decryption routine and key. We then
re-implement it in a separate app to decrypt the strings.

(c) Dynamic loading: Malware may hide its functionality in a separate apk/dex
file and load it dynamically at runtime. Even worse, apk/dex file may be
encrypted. To handle such cases, we first retrieve the decryption routine to
decrypt the apk/dex file. For either case we decompile the code to study it
as a regular app, which adds to our understanding of the malware.

(d) Native payload: Most Android static analysis tools do not handle native
code. Thus malware writers like to put some core function or data in the
native payload. For us to understand how the native payload works, we
use standard binary reverse-engineering tools including IDA [5] and hex-
dump [4].

Handling Missing Contents. Sometimes, we may not be able to obtain the
full payload of the malware, but we still have ways to maximize our understand-
ing. The basic idea is to understand how the malware leverages the missing
content. For instance, if we observe that the malware downloads an apk file, we
could see whether this malware sends an installation request for this apk or it
uses DexClassLoader to load some new classes. In the first case, we could check
the description of the installation request (which will show up on the screen to
the device user) to understand the purpose of such action. For example, this
description may say “Crucial update found for xxx.” Then we know it is mis-
leading the user to install a malware. In the second case, we know this malware
is dynamically loading some code; we should expect to see multiple java reflec-
tion calls to such code, and from those reflection calls we could infer what role
it plays.

Discussion. One may wonder what is the benefit of our study given the fact
that after a malware family is discovered, anti-virus companies usually publish a
report/bulletin on a sample app from that family. In fact, for each family under
our study (71 in total), we did find such reports on the web. However, such
reports usually only highlight the security breaches and main activities of the
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malware family and do not describe the malware behaviors in details. This is
not sufficient for malware research. In addition, those reports do not provide the
varieties for each family and the different malware behaviors from those varieties.

3 Android Malware Profiling

We present an overview of our Android malware dataset, and discuss the detailed
profiles for the samples along two main dimensions: behaviors and monetization
methods. The detailed information of each malware variety can be found at our
Android malware website.

3.1 Malware Dataset Overview

Table 1 provides an overview of the malware families in our dataset. For each
family we show the time it was first discovered. The malware type roughly indi-
cates the main purpose of the family. The table shows the number of samples,
and the number of varieties in each family. The dataset consists of 24,650 mal-
ware samples categorized in 135 varieties within 71 families.

Table 1. Dataset overview.

Family Type Samples Variety Detection

Lnk Trojan 5 1 07/2010
FakePlayer Trojan-SMS 21 2 08/2010
DroidKungFu Backdoor 546 6 05/2011
GoldDream Backdoor 53 2 07/2011
GingerMaster Backdoor 128 7 08/2011
Boxer Trojan-SMS 44 1 09/2011
Zitmo Trojan-Banker 24 2 10/2011
SpyBubble Trojan-SMS 10 1 11/2011
Fjcon Backdoor 16 1 11/2011
Steek Trojan-Clicker 12 1 01/2012
FakeTimer Trojan 12 2 01/2012
Opfake Trojan-SMS 10 2 01/2012
FakeAngry Backdoor 10 2 02/2012
FakeInst Trojan-SMS 2172 5 05/2012
FakeDoc Trojan 21 1 05/2012
MobileTX Trojan 17 1 05/2012
Nandrobox Trojan 76 2 07/2012
Mmarketpay Trojan 14 1 07/2012
UpdtKiller Trojan 24 1 07/2012
Vidro Trojan-SMS 23 1 08/2012
SmsZombie Trojan-Spy 9 1 08/2012
Lotoor HackerTool 333 15 09/2012
Penetho HackerTool 18 1 10/2012
Ksapp Trojan 36 1 01/2013
Winge Trojan-Clicker 19 1 01/2013
Mtk Trojan 67 3 02/2013
Kyview Adware 175 1 04/2013
SmsKey Trojan-SMS 165 2 04/2013
Obad Backdoor 9 1 06/2013
Vmvol Trojan-Spy 13 1 06/2013
AndroRAT Backdoor 46 1 07/2013
Stealer Trojan-SMS 25 1 07/2013
Boqx Trojan-Dropper 215 2 07/2013
Bankun Trojan-Banker 70 4 07/2013
Mseg Trojan 235 1 08/2013
FakeUpdates Trojan 5 1 08/2013

Family Type Samples Variety Detection

Minimob Adware 203 1 09/2013
Tesbo Trojan-SMS 5 1 09/2013
Gumen Trojan-SMS 145 1 10/2013
Svpeng Trojan-Banker 13 1 11/2013
Spambot Backdoor 15 1 12/2013
Utchi Adware 12 1 02/2014
Airpush Adware 7843 1 03/2014
FakeAV Trojan 5 1 04/2014
Koler Ransom 69 2 05/2014
SimpleLocker Ransom 173 4 06/2014
Cova Trojan-SMS 17 2 06/2014
Jisut Ransom 560 1 06/2014
Univert Backdoor 10 1 07/2014
Aples Ransom 21 1 07/2014
Finspy Trojan-Spy 9 1 08/2014
Erop Trojan-SMS 46 1 08/2014
Andup Adware 45 1 11/2014
Ramnit Trojan-Dropper 8 1 11/2014
Kuguo Adware 1199 1 02/2015
Youmi Adware 1301 1 02/2015
Dowgin Adware 3385 1 02/2015
Fobus Backdoor 4 1 03/2015
BankBot Trojan-Banker 740 8 03/2015
Roop Ransom 48 1 05/2015
Ogel Trojan-SMS 6 1 06/2015
Mecor Trojan-Spy 1820 1 07/2015
Ztorg Trojan-Dropper 20 1 08/2015
Gorpo Trojan-Dropper 37 1 08/2015
Leech Trojan-SMS 128 3 09/2015
Fusob Ransom 1277 2 10/2015
Kemoge Trojan-Dropper 15 1 10/2015
SlemBunk Trojan-Banker 174 4 12/2015
Triada Backdoor 210 1 03/2016
RuMMS Trojan-SMS 402 4 04/2016
VikingHorde Trojan-Dropper 7 1 05/2016

Total: 71 24650 135



262 F. Wei et al.

3.2 Malware Behaviors

Table 2 illustrates the behaviors of malware families4 we analyzed. Due to space
constraint we only present part of the analysis result. The more detailed informa-
tion can be found at our Android malware website. Behavior tags in one category
may not be mutually-exclusive — some apps may present multiple behaviors in
a category.

Composition. There are three ways an Android malware is composed: a stand-
alone app where the malware was written from scratch, a repackaged app
where the malware was repackaged within a legitimate app, and library where
the malicious components exist in the library code of an otherwise legitimate
app. For the library case, this is the common way adware gets on the user’s
device. The difference between this method and repackaging is that the mali-
cious payload here may get tagged on the app by the app developer (who may
not be aware of the malicious activity inside the library) as opposed to being
repackaged by a malware writer.

In our dataset, we observe that 63% of malware varieties and 35% of malware
apps (shorthanded 63%/35% thereafter) are standalone, 30%/7% of malware are
repackaged, and in 7%/58% of malware the malicious payload is installed as a
library of the “legitimate” app. This means repackaging is no longer the domi-
nant method for composing Android malware. The reason could be that malware
writers nowadays put more effort in Android, and have started to design more
comprehensive and sophisticated malware from scratch. For instance, FakeAV
is a fake anti-virus family; its behavior looks exactly the same as a typical anti-
virus application and its appearance looks very professional. Bankun masquer-
ades as the legitimate Korean bank app – in fact it looks exactly the same as
the legitimate one.

Even in decline repackaging is still frequently used in distributing malware.
We define two types of repackaging: isolated repackaging and integrated repack-
aging.

Isolated repackaging means the malware payload is packaged into a legiti-
mate application x but not in any way connected with x ’s original functionality.
It declares its own event handler as the activation component, and does all the
malicious tasks on its own without affecting x ’s functionality.

Integrated repackaging is the more advanced way where the malware author
modifies the workflow of (or injects code into) the host app, and lets the payload
run together with the host app. This makes the malware more stealthy, and
more likely to be activated. For instance, VikingHorde [22] replaces the app’s
launcher Activity with its own launcher; the launcher will activate its monitoring
service and then start the host app’s launcher component.

4 Table 2 aggregates the behaviors over all malware varieties in a family. The more
specific per-variety breakdown can be found at our Android malware website.
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Table 2. Malware behaviors.

Legend
Composition Standalone (ST) Repackaging (RPKG): Isolated (O), Integrated (T) Library (LIB) Installation Drop (DR) Drive-by Download (DD)
Activation Event (EV) By Host App (BHA) Scheduling (SC) Info Stealing Device Info (DI) Personal Info (PI)

Persistence
Stealthy (TH): Block (BL), Clean (CL), Hide Icon (HI), Rootkit (RK)
Prevent destroy (PD): Hide Admin (HA), Kill AV (KA), Lock Device (LD), Monitor Destroy Action (MDA), Reinstall (RI), System App (SYS)

Privilege Request Admin (RA) Root Exploit (RE)
C&C Internet (IN) Command Encoding (CE): JSON (J), Java Script (JS), XML (X), Custom Protocol (P)

Anti-analysis
Renaming (RN) String Encryption (SE) Dynamic Loading (DL) Native Payload (NP)
Evade Dynamic Analysis (EDA): Check Device Info (CDI), Encrypt Communication (EC), Check Installed App (CIA)

Family
Composition Installation Activation Info Stealing Persistence Privilege C&C Anti-analysis

ST RPKG LIB DR DD EV BHA SC DI PI TH PD RA RE IN SMS CE RN SE DL NP EDA

Airpush � � � � � � J �
AndroRAT � � � � � � � P
Andup � � � � � � �
Aples � � � � LD � � P
BankBot � � � � � � � BL&HI MDA � � � J&P � � � CDI
Bankun � � � � � � � BL&HI � � J&X CDI
Boqx O � � �
Boxer � � � � �
Cova � � � � � BL � JS �
Dowgin � � � � � � J � � � EC
DroidKungFu � O&T � � � � � � KA � � J&P � � �
Erop � � �
FakeAV � � � BL
FakeAngry O � � � � P � �
FakeDoc � � � � BL �
FakeInst � � � � BL � J&P � �
FakePlayer � � BL �
FakeTimer � � � � �
FakeUpdates T � � � � � X � �
Finspy � � � � HI � P � EC
Fjcon O � � � BL � X
Fobus � � � � BL&HI � � � X � � EC
Fusob � � � � LD&MDA � � J � � �
GingerMaster O&T � � � � � � � � P � �
GoldDream � T � � � � � P
Gorpo O � � � � J � � EC
Gumen T � � � � BL � X � DI
Jisut � � LD
Kemoge O � � � � � P
Koler � � � � LD&MDA � � JS&P � CDI
Ksapp T � � � � � � � P EC
Kuguo � � � � � � � P �
Kyview � � � � � � J � �
Leech T � � � � � � BL MDA � � J � � � EC
Lnk T � �
Lotoor � � � � � � �
Mecor � � � � � JS
Minimob � � � � � � � J �
Mmarketpay O � � � � � BL � P
MobileTX � � � �
Mseg O � � � � � BL � P �
Mtk O&T � � � � � � P � � �
Nandrobox T � � � � � BL � J
Obad � � � � � � � BL&HI HA � � � J � � CDI&EC
Ogel � � � � � BL � P � �
Opfake � � � � � � BL&CL&HI � P �
Penetho � �
Ramnit T �
Roop � � � HI LD � � JS �
RuMMS � � � � � � � BL&HI � � J � � �
SimpleLocker � � � � � HI LD � � � J&P �
SlemBunk � � � � � � � BL&HI � � � J � � �
SmsKey T � � �
SmsZombie � � � � � � BL&CL � � X
Spambot � � � BL �
SpyBubble � � � � � � BL&CL � X
Stealer � � � � � � BL MDA � JS �
Steek � �
Svpeng � � � � � � BL LD � � P CDI
Tesbo O � � BL&CL � X � �
Triada � � � � � CL&RK SYS � P � � � CDI&CIA
Univert � � � � � BL � J
UpdtKiller T � � � � BL KA&MDA � � X � �
Utchi � � � � � � �
Vidro � � � � � BL � J
VikingHorde T � � � � � RI � � J �
Vmvol � � � � � BL&CL � J
Winge O � � � � � X �
Youmi � � � � � � P �
Zitmo � � � � � BL&HI � P �
Ztorg T � � � � � J � � � EC

Total families: 41 24 9 40 9 64 20 34 39 58 34 15 15 8 50 9 53 39 22 11 8 14
Total varieties: 85 40 9 76 15 120 23 58 92 61 53 27 30 32 83 12 86 64 35 13 19 15
Total apps: 8567 1833 14231 9231 1218 14980 14687 12341 21333 15035 2839 3549 2823 1061 22108 367 22145 18143 7211 5072 972 4051

Malware
ST RPKG LIB DR DD EV BHA SC DI PI TH PD RA RE IN SMS CE RN SE DL NP EDA

Composition Installation Activation Info Stealing Persistence Privilege C&C Anti-analysis

Installation. Besides being installed by users, there are a couple other ways
Android malware get on a victim’s device.

Drop: There are more than 56%/37% of malware that try to download and
install applications on the victim’s device; the downloaded application could be
the malware’s real payload, upgraded version, or other risky applications. There
are different ways malware use to install applications on victim’s device. Vmvol
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will show a dialog with critical update message to trick the victim user to install
the payload as an update.

Drive-by Download: We adopt the following definition for Drive-by down-
load [3]: (1) Downloads which a person authorized but without understanding
the consequences; and (2) Any download that happens without a person’s knowl-
edge. As one example, SlemBunk [31,33] gets on the device when the user visits
some porn website. The website will show a prompt that asks the user to upgrade
the Flash Player; if the user chooses to upgrade, it will actually download the
Slembunk malware. Another example: Bankun will collect victim’s contacts,
and send a message saying “We will send you a mobile birthday invitations
http://vik6.pw” to each of the contacts. As people normally trust what they get
from their friends, the friend will likely click on the link, and the malware will
be downloaded.

Activation. Android Malware Genome only reported event-based activation
methods. Our analysis found two more options: by-host-app and scheduling.

The by-host-app option is closely related to the integrated repackaging
method, where the attacker instruments code into the host app to activate
the malware together with the host app. This is the typical way for activat-
ing adware, which we will discuss in Sect. 3.3.

The scheduling option is also frequently used to start their monitoring or
data collection in a periodic manner. Typically, the malware registers a Timer
task thread, or uses Android’s AlarmManager with PendingIntent. When certain
time goes by, the malware’s monitor service is activated to get new commands
from the C&C server. One extreme use of scheduling is in ransomware. Some
ransomware apps schedule a periodic task using a very short interval, making
the victim device non-responding. We discuss this more in Sect. 3.3.

Information Stealing. In our dataset, more than 68%/87% malware col-
lect users’ device information, such as international mobile station equipment
identity (IMEI), international mobile subscriber identity (IMSI), kernel version,
phone manufacturer, network operator, etc. We observe that information items
such as IMEI and IMSI are unique for each device and thus could be used as
an identifier to register the compromised device with the C&C server. Other
device information items, such as the OS version, the baseband version, the OS
language, and installed applications give the C&C server some idea of the target
device’s specification, based on which the C&C server can decide the strategy
for using the compromised device.

Persistence. In our dataset, 48%/22% malware use at least one persistence
technique, which shows that persistence is one of the important attributes the
malware writers consider in the app design. The longer the malware can stay
in the victim’s device, the more revenue they can produce for the adversary.
Persistence can be achieved over multiple dimensions, including:

http://vik6.pw
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(a) Making malware’s presence stealthy. We observed multiple stealthy methods
malware use to hide evidence of malicious activity: (a) Blocking the appear-
ance of items such as audio, call, notification, or SMS, (b) Cleaning items
such as call log and SMS history – important for the malware since the auto-
matically added messages or phone records may alert the victim user that
something wrong may have happened, (c) Hiding the malware’s launcher
icon despite the malware’s background service running, (d) Hooking system
APIs to mask its existence.

(b) Preventing itself from being destroyed by the system, anti-virus product, or
the user via techniques such as hiding itself from appearing in the device
administrator list, killing AV process, locking device, etc.

Privilege Escalation. Obtaining admin privilege can make the malware much
harder to remove, and can allow the malware to perform privileged oper-
ations such as changing lock-screen pin code, locking device, wiping device
data, etc. More and more malware these days try to acquire admin-privilege.
Obad leverages admin-privilege to make it disappear. Another notable mal-
ware family is Fobus. Once Fobus gets admin-privilege, it will listen to the
DEVICE ADMIN DISABLE REQUESTED event. If the user tries to disable
admin-privilege for this malware, it will lock the screen before the user can click
the confirm button. Even if the user is fast enough to click the confirm button,
it will display a message saying that if the user continues, the malware will do
a factory reset of the device resulting in all the user’s data being lost. Users
usually know that granting admin-privilege is risky. Nevertheless, malware apps
always try to convince the victim that they are security related services (e.g.,
Updtkiller), or they can make the device more efficient (e.g., Fobus). If the vic-
tim does not grant admin-privilege, many malware apps (e.g., SmsZombie) will
aggressively ask for it, which annoys the victim and makes the device unusable.

Lotoor is a generic name for a collection of hacking tools that exploit vulner-
abilities to root a device and perform privileged actions by leveraging the root
privilege. Our dataset has 15 varieties of different hacking tools under the name
Lotoor . Those tools either help user root their device, or perform actions needing
root privilege. Most rooter malware contain one to three root exploits targeting
2.x Android devices. The mostly used root exploits are Exploid, RageAgain-
stTheCage (RATC), and GingerBreak. However, Lotoor.FramaRoot changes
the story – it is the most comprehensive hacking tool containing at least eleven
exploits that target devices with all kinds of processors (e.g., Exynos, Qualcomm,
Mediatek, etc.) ranging from 2.x to 4.x. Lotoor.MasterKey does not use any
root exploit, but leverages a MasterKey vulnerability to hide its payload in a sys-
tem app and bypasses the Android cryptographic verifier to infect the victim’s
device up to 4.x.

At the end of 2014 malware with root exploits appeared again while they
still targeted devices before 4.x. Leech , Ztorg , Gorpo work together [13] and
form a kind of “malvertising botnet.” They leverage root privilege to drop new
malware on the “network” of infected devices. For instance, Triada is dropped
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by this network. Triada has some interesting behaviors. It is a modular malware
(with well-defined interfaces) with active use of root privilege. Once it is installed
on the rooted device, it will try to exchange a configuration file with the C&C
server, which contains the communication rate, the modules that need to be
downloaded, etc. The modules include downloader, SMS trojan, and banking
trojan. Triada is as sophisticated as traditional PC malware, which raises the
alert that Android malware are evolving from the more primitive form to the
next level.

Kaspersky reports [14] that Android devices running versions higher than
4.4.4 have much fewer exploitable vulnerabilities. This may explain why malware
with root exploits are becoming less popular than reported in Android Malware
Genome. However, there are still about 60% devices running old versions of
Android that are vulnerable to rooting attack. Thus root exploit is still a major
threat to Android devices.

Command and Control (C&C). 64%/90% have C&C servers. C&C increases
the functionality and flexibility of the malware, helps it adapt to its run-
ning environment, continuously monitors the victim, and makes the best strat-
egy to generate revenue. A C&C module generally contains a message builder
and a command handler. Android malware have a variety of ways to trans-
mit the collected items to the server. For example, SmsZombie builds a
formatted text message and sends it to the server via SMS; one version of
FakeAngry builds a URL like http://l.anzhuo7.com:8097/getxml.do?flagid=-
500&mediaver=7&channel=202 109&imei=xxx&... which contains information
items as the parameters; a newer version of FakeAngry puts the data into the
HTTP POST request entity; SpyBubble stores all the messages into an XML
file; RuMMS [32] encodes data into JSON format.

Upon receiving a command from the C&C server, the malware will perform
certain actions according to the command. We observe that there are at least
the following ways by which a command handler is designed.

(a) Commands can be in a standard formatted such as XML or JSON. The
decoding routine reads contents from the command and perform the tasks
accordingly.

(b) Android Webview allows the developer to specify a Javascript to Java bridge
interface [1]; when the server sends javascript code back to the Webview, it
will automatically be mapped to the corresponding Java method to perform
the task.

(c) Many malware varieties use plain text or a self-defined protocol for the
command format. A custom protocol is not necessarily less sophisticated
than the other types. One of the most notable is Ksapp, which uses a
self-designed language MDK as the command. In the malware payload, it
contains a full interpreter of MDK including a lexer, a parser, and an MDK
to Java type mapper. Whenever the malware receives a new command file,
it will first parse it, generate a function table, and start executing from
a predefined entry point function “start.” In the execution, the MDK will
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map MDK types to Java types, and for the invocation, MDK will issue
the invocation in JVM via reflection. When analyzing this kind of malware,
analysts cannot see any functionality in the malware payload, but the mal-
ware can perform whatever actions allowed by permissions specified in the
AndroidManifest.

Anti-analysis Techniques. We observe that 63%/79% of malware use at least
one anti-analysis technique.

Renaming is one of the most adopted obfuscation techniques. It translates
the original meaningful package, class, method, field, and parameter names into
some meaningless or unreadable form. This makes the manual analysis much
harder. However, it does not impact static analysis tools, and API calls cannot
be renamed.

String Encryption is also widely found in malware. Strings in the code like
server URL, JSON/XML key values, intent action, component name strings, or
reflection strings can help anti-virus product or analysts identify the malware.
Malware can use string encryption to change the constant strings to ciphertext,
which increases the difficulty of understanding the malware behavior. Normally,
malware uses the following ways or their combination to encrypt the string:
byte permutation, one-time pad, base64 encoding, DES/AES, etc. To manually
inspect those malware, we had to reimplement the decryption/decoding routine
and map the ciphertext back to the plaintext form to understand their behavior.

Fig. 3. Obad Code Snippet. The obfuscated code is on the top; the de-obfuscated
version is at the bottom.
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One notable family that extensively adopts renaming and string encryption
techniques is Obad . Figure 3 shows the code snippets in Obad and the cor-
responding translation. We can see that, the obfuscation renames all classes,
methods, fields to human unreadable forms (e.g., IljIllj, IliijIIl, etc.). Further-
more, all invoke statements in the unobfuscated bytecode are translated to java
reflection in the obfuscated version, and the name strings of such reflection are
further encrypted and stored in a byte array list “IliijIIl.” The decrypting method
“IljIllj.IliijIIl” takes the byte array from “IliijIIl” and decrypts it and makes the
reflection call. This clearly shows that the obfuscation can make both manual
analysis and static analysis extremely difficult.

Dynamic Loading dex file becomes more popular nowadays. Normally it
contains a dropper payload, which is lightweight and looks benign. But this
dropper payload will then load the real payload from its assets or resource folder
(e.g., RuMMS), or download the real payload from internet (e.g., SlemBunk).
To further complicate the analysis, the real payload can even be encrypted (e.g.,
Fobus).

Native Payload: Most of the static analysis tools focus on Dalvik bytecode.
So the native library seems to be a good place to hide malware behavior. In our
analysis, we observed that native payloads are becoming more popular. Malware
apps not only hide functionalities, but also hide sensitive strings, like server
URL, premium numbers in the native code.

Evade Dynamic Analysis: The basic idea of evading dynamic analysis is to
detect the malware’s current running environment. For example, when BankBot
[26] gets activated, it will check whether IMEI, MODEL, FINGERPRINT,
MANUFACTURE, BRAND and DEVICE are of certain value. If the running
environment satisfies the condition, it will act benignly and stop itself. Tri-
ada will check if IMEI matches some pattern, and check whether “com.qihoo.
androidsandbox” is installed. To thwart dynamic analysis that monitors the
communication channel (e.g., Internet, SMS.) of the malware, many malware
encrypt communication with their C&C servers.

Many of these anti-analysis techniques involve encryption; thus how to obtain
the key is important to the analyst. In most of the cases, the key is just hardcoded
in the application code. Some malware put the key in the manifest, a resource
XML file, or in the native payload. We also observed a few smart ways to hide
or generate the keys. Fobus reads the JVM stack trace and uses the class and
method name of the fourth entry in the stack to construct the key. Obad obtains
its key by requesting a webpage from Facebook, and reads certain location from
that webpage to generate the key.

3.3 Monetization
We observe that many malware attempt to make money from the victims as
Table 3 illustrate.

Premium Service Subscription. Subscribing to a premium service is one
of the main ways cybercriminals use to make money. In general, subscribing to
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Table 3. Monetization techniques.

Family
Premium Service

Bank Ransom
Aggressive

Subscription Advertising

Airpush Dynamic �
AndroRAT Dynamic
Andup �
Aples �
BankBot �
Bankun �
Boqx
Boxer Static
Cova Dynamic&Static
Dowgin �
DroidKungFu
Erop Static
FakeAV �
FakeAngry
FakeDoc Static
FakeInst Dynamic&Static
FakePlayer Static
FakeTimer
FakeUpdates
Finspy
Fjcon Dynamic
Fobus Dynamic
Fusob �
GingerMaster
GoldDream Dynamic
Gorpo �
Gumen Dynamic
Jisut �
Kemoge
Koler �
Ksapp
Kuguo �
Kyview �
Leech �
Lnk
Lotoor
Mecor

Family
Premium Service

Bank Ransom
Aggressive

Subscription Advertising

Minimob Dynamic �
Mmarketpay Dynamic
MobileTX Static
Mseg Dynamic
Mtk
Nandrobox Static
Obad Dynamic
Ogel
Opfake Dynamic&Static �
Penetho
Ramnit
Roop �
RuMMS Dynamic �
SimpleLocker �
SlemBunk �
SmsKey Static
SmsZombie �
Spambot Static
SpyBubble
Stealer Dynamic
Steek
Svpeng Dynamic � �
Tesbo
Triada Dynamic �
Univert Dynamic
UpdtKiller Dynamic
Utchi �
Vidro Dynamic
VikingHorde �
Vmvol Dynamic
Winge Dynamic
Youmi �
Zitmo �
Ztorg �
Total families: 30 9 8 12
Total varieties: 41 27 13 13
Total apps: 11839 1652 2166 14336

a premium service requires the malware app to send a request to the service
provider. The premium service sends back a confirmation message, which has to
be entered back to finish the subscription process. A comprehensive premium-
service-subscription module includes a premium service requester and an incom-
ing message handler. The service requester makes phone calls, sends SMS or
network request to the premium service. After that, the malware waits for the
services to reply with confirmation message. The incoming message handler inter-
cepts the confirmation message and parses it. It then applies a handler logic based
on different subscription routines, and cleans any evidence that might alert the
victim user.

In our analysis, we found the following ways to obtain the premium numbers
and handler logic: hard coded into the bytecode, hidden in the resource XML
files or native library, encrypted, and dynamically configured from C&C server.

Banking Trojan. Online payment and mobile wallet are becoming more pop-
ular nowadays. Cybercriminals are also putting much effort to increase their
revenue by designing banking trojans. In 2013, banking trojan Bankun came
into picture. Once activated this trojan will check the compromised device for
installed Korean banking applications, and try to replace them with fake ones.

Newer versions of banking trojans are capable of overlaying the on-screen
display of a legitimate banking app with a phishing window. Slembunk
falls into this category. When this malware is activated, it will schedule a
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Fig. 4. Slembunk Phishing Windows Fig. 5. Ransom Windows by Aples

java.lang.Runnable every 4 seconds to monitor the current running applications
by looking at the Activity at the top of the Activity stack. If the current running
Activity belongs to certain banking application, it will overlay a phishing win-
dow on top of the screen. Figure 4 shows what the phishing window looks like
for different banking applications. As an example, if the current application is
com.android.vending the left top window will be popped, and so on. Slembunk
not only overlays phishing windows, it is also capable of forwarding phone calls
and SMS from bank numbers, and applying the response logic. To effectively
conceal the arrival of text messages or phone calls from banks, it will mute the
device’s audio system. Later versions of Slembunk even apply most sophisti-
cated string encryption and dynamic loading obfuscation techniques (Sect. 3.2).
Recently, IBM and FireEye report [9,17] that the source code of SlemBunk
was leaked, which could result in the emergence of more variants.

Ransom. Ransomware locks the victim device by making it non-responsive or
encrypting its data, and then coerces the victim to pay for the restoration.

Device Locking Techniques
Svpeng is both a banking trojan and ransomware. If its C&C server

sends a command “forceLock,” it will lock the infected device by using
SYSTEM ALERT WINDOW permission and WindowManager LayoutParams
with certain flags (e.g., FLAG SCREEN, FLAG LAYOUT IN SCREEN,
FLAG WATCH OUTSIDE TOUCH, etc.) to achieve an unremovable full screen
floating window.

Aples first appeared in 2014 – when activated, it will schedule a
Runnable in every 0.1 second to load the threatening window with flag
FLAG ACTIVITY NEW TASK which looks like Fig. 5. Clicking on “PRO-
CEED” at the first window will lead to the second window that asks the victim
user to fill in a $300 MoneyPark code to unlock. Another malware family Sim-
pleLocker has applied similar techniques, at the same time also encrypting all
the data in the compromised device’s external storage using AES with a hard-
coded key.
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Jisut once activated will launch a ransom window, and override onKeyDown
method of Activity to redirect key press event (e.g., return key, volume key, menu
key, etc.) to some meaningless action to achieve the lock screen purpose.

Device UnLocking Techniques. After the victim has paid the money, the
cybercriminal will tell the victim how to unlock the device or unlock it remotely.
The most common way is to type in the pin. The pin in one variety of Sim-
pleLocker is generated by obtaining a serial number at beginning (which is a
random number), then uses some calculation logic (in one sample, the logic is key
= (serial number - 2016)*2 + 2016). The second way is using remote control.
For instance, Koler uses network command to clear a lock tag at the malware’s
shared preference. The third way is by installing an unlock app. One variety
of Jisut constantly checks whether an app with package “tk.jianmo.study” is
installed or not; if yes, it will release the lock.

Aggressive Advertising. Mobile advertising is the main revenue source for
app developers as well as malware writers. Advertising in malware is usually
more aggressive, and this kind of apps are called adware.

Potentially Unwanted Application (PUA). A PUA adware performs tasks
such as monitoring victim’s personal data, showing unwanted advertisement con-
tent, annoying victim user with aggressive advertisement push, showing and
tempting the victim to download and install potential harmful applications.
Dowgin is one adware app. It will be activated once the device connectivity
changes, user comes into presence, or a new application is installed or deleted.
Once activated, it will display unwanted advertisements in the system’s notifica-
tion bar. If the victim clicks on this notification, it will show an application wall
which attracts the victim to install new applications. At the same time, it will
send device information and the list of installed apps to a remote C&C server
using JSON, and receive commands for showing a new advertisement, upload-
ing client info etc. Many other adwares have similar behaviors, e.g., Airpush ,
Kuguo, Youmi .

Malware Dropper. Gorpo, Kemoge [30], Leech and Ztorg are some exam-
ples. Their task is to gain the root privilege on the infected device as discussed in
Sect. 3.2, and then silently drop all the active malware apps that are available on
the “malvertising campaign network” to the infected device. VikingHorde is
running in two modes: rooted and not-rooted. If the device is not rooted, it per-
forms in a regular fashion: uploading victim’s data, fetch command from C&C to
execute, etc. If the device is rooted, it will install some additional components,
which are capable of constantly and silently downloading new malware onto the
device. We include this as part of aggressive advertising even though their main
purpose is spreading malware.



272 F. Wei et al.

4 Evolution

We have performed a longitudinal study of our malware dataset with an attempt
to discover the trend of malware behaviors and techniques used over the years
from 2010 to 2016. For each type of behaviors and techniques, we observe the
trend in terms of percentage of malware varieties manifesting a specific behav-
ior/technique within a year. Figure 6 presents the results.

Figure 6a shows that the repackaging usage was growing until 2012, but later
standalone malware became dominant. The reason could be that there are many
effective anti-repackaging solutions made available during the last few years,
which gives cybercriminals less incentive to use such techniques. On the other
hand, the bad guys are putting more effort into designing comprehensive and
sophisticated malware apps from scratch, and their malware design skill has
matured.

Not surprising to see in Fig. 6b that listening to system events to activate
malware’s functional units is the main trick given the nature of Android system
design. Scheduling a task to periodically start its functional unit is an alarmingly
growing trend. By scheduling timer task or leveraging the AlarmManager the
malware can constantly upload victim’s information to or retrieve commands
from the C&C server; in the ransomware apps, it is also one of the techniques
to lock victim’s device.

We observe that persistence has become a core feature of Android malware
apps. Figure 6c shows that malware apps are evolving to be harder to notice by
the victim, and harder to be destroyed by the system, anti-virus solutions, or
users.

Fig. 6. Malware behavior trends
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Root exploit is becoming less popular as we have discussed in Sect. 3.2,
but obtaining device-admin-privilege seems to have become popular as seen in
Fig. 6d.

The anti-analysis techniques are one of the key weapons of cybercriminals
in the battle against security analysts. From Fig. 6e we can see that renaming
and string encryption are the most growing techniques; dynamic loading and
evading dynamic analysis are catching up while the practice of hiding behaviors
in native payload is staying at the similar level.

Figure 6f shows that banking malware is becoming the main channel for
cybercriminals to make money. Ransomware is a new threat that has started
an uptick.

5 Related Work

The Android Malware Genome [34] was the first research project that has pro-
vided the community an Android malware dataset. This dataset has been the
only well-labeled one and has been widely studied and used by the research com-
munity. Unfortunately, it has not been updated after its creation time around
2011. We comparatively studied this dataset with the new malware samples we
have, and found that the Genome dataset does not include many of the new
threats, which motivated us to carry out this work. Our dataset also provides
much more detailed information on Android malware behaviors than that in
Genome. Moreover, we provide detailed documentation of the process used in
creating the dataset, including the guidelines for the manual analysis, to help
other researchers do the same.

Recently, the AndroZoo [10] dataset has been published, which contains more
than 3 million Android apps from Google Play, other smaller markets, and app
repositories. AndroZoo’s goal is to create a comprehensive app collection for
software engineering studies. Our goal is different and we focus on (only) malware
apps to study their security related behaviors. Our dataset provides malware
labels and detailed behavior information of the malware.

There are a few other repositories for Android malware apps which
researchers can use, such as Contagio Minidump [2] and VirusShare [6]. How-
ever, they do not provide a comprehensive malware collection or comprehensive
label and behavior information on the malware.

The ANDRUBIS [19] combines static and dynamic analysis to automatically
extract feature and behaviors from Android apps, and studies the changes in
the malware threat landscape and trends among “goodware,” or benign apps,
developers. However, as many behaviors are either unknown or can evade the
automated analysis method, this work cannot give a comprehensive understand-
ing of the malware landscape as we produced through the systematic and deep
manual analysis.

AVclass [25] provides a method to extract malware family name by processing
the AV labels obtained from VirusTotal. We adopted a similar approach for
identifying malware family label. Our work is focused on deep manual analysis
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of malware samples from different malware varieties, and reporting the detailed
behavioral profiles for Android malware.

There has been quite some work on how to detect malicious apps. The
Drebin [11] work applies machine learning (ML) techniques to Android malware
detection. The authors made the set of feature vectors used in the ML work
available to the community. More recently, MassVet [15] provides a method to
detect malware apps by observing the repackaging traits (if any) compared to
that of other apps. Rastogi, et al. [24] conducted research on identifying adware
tricks and drive-by-download techniques. Harvestor [23] attempts to extract the
run-time values from obfuscated apps to detect malware. Researchers have iden-
tified ways in which Android users can be deceived to misidentify a malicious
app window as a legitimate app’s [12]. Moreover, CopperDroid [27] is a dynamic
analysis system which attempts to reconstruct the behaviors of Android mal-
ware. Our work complements these and other Android malware analysis work
by providing a comprehensive dataset of Android malware with detailed label
and behavior information, which can facilitate future research in this area.

6 Conclusion

We created a large volume of well-labeled and well-studied Android malware
dataset containing 24,650 samples, categorized in 135 varieties among 71 families
ranging from 2010 to 2016. For each variety of this dataset we conduct a compre-
hensive study to profile their behaviors and evolution trends. We document in
details the process of creating this dataset to enable other researchers to replicate
the process. We observe that Android malware are evolving towards monetiza-
tion, and becoming sophisticated and persistent. The extensive usage of anti-
analysis techniques in the malware samples shows the urgent need for advanced
de-obfuscation and dynamic analysis methods. We will make the dataset avail-
able to research community.
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Abstract. This paper presents a semi-automated approach to detect
hidden functionality (such as backdoors) within binaries from consumer
off-the-shelf (COTS) embedded device firmware. We build a classifier
using semi-supervised learning to infer what kind of functionality a given
binary has. We then use this classifier to identify binaries from firmware,
so that they may then be compared to an expected functionality profile,
which we define by hand for a range of applications. To specify these
profiles we have developed a domain specific language called Binary
Functionality Description Language (BFDL), which encodes the static
analysis passes used to identify specific functionality traits of a binary.
Our tool, HumIDIFy achieves a classification accuracy of 96.45% with vir-
tually zero false positives for the most common services. We demonstrate
the applicability of our techniques to large-scale analysis by measuring
performance on a large data set of firmware. From sampling that data
set, HumIDIFy identifies a number of binaries containing unexpected func-
tionality, notably a backdoor in router firmware by Tenda. In addition
to this, it is also able to identify backdoors in artificial instances known
to contain unexpected functionality in the form of backdoors.

1 Introduction

Embedded devices are not only part of our everyday life but also part of our
critical infrastructure. Internet routers, network switches, sensors and actuators
assembled overseas are part of our electricity, banking and telecommunication
infrastructure. When introducing a new device in a security critical environment
you are implicitly trusting the device manufacturer together with the whole
production and distribution chain.

In recent years there have been a number of incidents where hidden, unex-
pected functionality has been detected in both the software (firmware) [1,13] and
hardware [18] of embedded devices. In many cases, this additional functionality
is often referred to as a backdoor. In other cases, this functionality is consid-
ered undocumented functionality; but both types of functionality can manifest
as real-world threats. Additional functionality inserted into hardware is notori-
ously hard to detect, but requires a much more powerful adversary – such as
a nation-state, or chip manufacturer. Conversely, inserting hidden functionality
into binary software, while still difficult to detect is much easier for an adver-
sary. The most common types of such functionality found in the real-world are
c© Springer International Publishing AG 2017
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authentication bypass vulnerabilities and additional, undocumented functional-
ity added to common services that weaken a system’s security – such as so-called
debugging interfaces (arguably) left over from development. This work focuses
on the detection of the latter threat class.

Many companies and governmental organisations need to ‘manually’ analyse
the firmware used in devices which are to be deployed in security-critical loca-
tions. This is a tedious and time-consuming task which requires highly-skilled
employees. When we say a piece of software contains unexpected functionality,
or a backdoor we require context to make this statement. Certain behaviour
found in one piece of software that is considered abnormal, might be considered
standard functionality in another. The formalisation of this notion of expected
functionality inevitably requires a degree of human intervention, but the thor-
ough analysis of the whole firmware can, to a large extent, be automated. One
big challenge in developing techniques to perform this automation is the huge
diversity in the binaries themselves that arise from having different embedded
architectures, operating system versions, compiler options and optimisation lev-
els. Another challenge is the fact that a large portion of the firmware which is
readily available online only consist of partial updates, containing just modified
files and not a complete system image. A further challenge is the sheer quantity
of firmware available. In this paper we aim to provide a useful tool to automate
as much of the process of finding hidden/unexpected functionality as possible,
that is able to handle different architectures and compiler optimisations and is
lightweight enough to scale to analyse large amounts of firmware in reasonable
time. The approach we propose is nessessarily semi-automated and requires a
human analyst to confirm identified abnormalities; despite this, when compared
to manual analysis alone, we find the overall time taken to analyse firmware is
greatly reduced.

1.1 Our Contribution

This paper presents a novel approach to detect unexpected, hidden function-
ality within embedded device firmware by using a hybrid of machine learning
and human knowledge. Our techniques support an expert analyst in a semi-
automated fashion: automatically detecting where common binaries from Linux-
based embedded device firmware deviate from their expected functionality. While
the proof-of-concept tool supports only Linux-based firmware, the techniques we
present can easily be generalised to support other systems. Concretely our tool,
HumIDIFy implements the following components which are used to identify unex-
pected functionality:

– A classifier for common classes of binaries contained within COTS embed-
ded device firmware images, that is resilient to the heterogeneity of device
architectures, including those binaries that contain unwanted data due to the
current deficiencies in firmware extraction methods.

– A domain-specific language, BFDL and a corresponding evaluator for specifica-
tion of so–called functionality profiles that encode expert human knowledge
to aid with the identification of hidden/unexpected functionality in binaries.
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HumIDIFy takes as input a firmware image, which it unpacks and runs each
binary extracted through the (previously trained) classifier in order to infer
what kind of well-known services it provides, e.g., FTP, HTTP, SSH, Telnet,
etc. The classifier will assign to each binary file a functionality category label
and a confidence value – representing the degree of certainty that the binary
contains functionality associated with the assigned category.

The binary file is then subject to static analysis against the functionality
profile corresponding to its assigned functionality category. This profile is defined
by a human for each functionality category in our domain-specific language. In
this way we provide enough flexibility for the tool to capture a wide range of
abnormalities and allow it to be refined and adapted to the evolving threats.

We have collected a data set of 15,438 firmware images for COTS embedded
devices from 30 different vendors. Of this dataset a total of 800 were selected
uniformly at random to train a semi-supervised classifier. An additional 100
were selected to be a hold-out test set to evaluate the performance of the final
classifier.

The classifier has been developed from extensive evaluation of a suite of 17
existing supervised learning algorithms alongside an adaptation of the semi-
supervised self-training [21] algorithm which we show produces a classifier with
significantly better performance than supervised learning alone.

In addition to real-world sample binaries, we evaluated the effectiveness of
HumIDIFy on binaries we have embedded hidden functionality into. These were
produced using the methodology proposed in [16] and manifested as backdoors
in both the mini httpd web server and the utelnetd Telnet daemon. In both
cases HumIDIFy was able to accurately flag the binaries as containing hidden
functionality – across both different architectures and differing compiler optimi-
sation levels. Finally we used a further random sample of 50 firmware images
which HumIDIFy was executed on resulting in detection of 9 binaries potentially
containing hidden functionality one of which being a previously discovered back-
door present within Tenda routers1.

We intend to release HumIDIFy as an open source tool under the LGPL v2.1
licence.

1.2 Expectations of Our Approach

Our approach does not claim to solve the problem of automating the identifi-
cation of unexpected, hidden functionality within firmware, rather it lessens the
effort of an analyst by automating as much of the process as possible.

Further, we do not claim to detect all kinds of hidden functionality such as
authentication bypass vulnerabilities (like Firmalice [17]), cryptographic back-
doors, highly complex backdoors [19] or functionality that is hidden due to obfus-
cation. From our analysis, complex and cryptographic backdoors on embedded
devices are non-existent and thus, we conjecture are very rare.

1 http://www.devttys0.com/2013/10/from-china-with-love/.

http://www.devttys0.com/2013/10/from-china-with-love/
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We note that on many devices, the mere presence of a Telnet or SSH daemon
should signify a real threat—a large portion of firmware does not contain firewall
rules for protecting such services—many of which, are Internet-facing. In addi-
tion, we have found that on many devices, user accounts generally have weak
passwords—some not even protected by cryptographic hashing and on almost
all devices, the only user available has privileges equivalent to the root user
on UNIX-like systems. Again, we do attempt to detect such threats with our
approach.

A generic approach to detecting all kinds of hidden, potentially backdoor-like
functionality is infeasible for any approach. Instead we focus on a class of threat
that covers hidden, additional functionality that deviates from the expected
functionality of a binary.

Finally, we do not evaluate the effectiveness of our approach in the case of
an adversary introducing the hidden functionality; we address the problem of
detecting if device vendor, deliberately or otherwise has inserted unexpected
functionality into common firmware services.

1.3 Related Work

Schuster and Holz [16] propose a dynamic analysis technique based on delta
debugging to identify regions within binaries which may contain backdoors. They
illustrate this technique by introducing backdoors in popular software tools such
as ProFTPD and OpenSSH and then apply their methodology to identify them.
Zaddach et al. [20] describe their framework, Avatar which allows for semi-
automatic analysis of embedded device firmware. The framework is capable of
performing complex dynamic analysis which is facilitated by insertion of a min-
imal debugger stub into the firmware itself and thus requires a live system; for
this reason Avatar requires physical access to the device under analysis. Avatar
relies on KLEE [4], where execution is performed both on commodity hard-
ware through emulation, symbolic execution and in a standard manner upon the
device itself. FIE, a tool developed by Davidson et al. [8] is also based upon
KLEE and is designed to locate vulnerabilities in embedded microcontrollers by
means of symbolic execution. FIRMADYNE [5] is another framework proposed
by Chen et al., which like Avatar, allows for dynamic analysis via emulation of
embedded device firmware. However, by restricting itself to Linux-based firmware
mitigates the need for physical access to the device under analysis; as a result,
a higher degree of automation is possible when compared to Avatar.

Costin et al. [6] presented the first large-scale simple static analysis of
embedded device firmware whereby they studied 32, 000 firmware images. Their
analysis technique is based upon a variant of fuzzy hashing and what essen-
tially amounts to pattern matching. These techniques are ineffective in iden-
tifying binary similarities when modifications are more widespread, for exam-
ple, different compiler optimisation levels. Shoshitaishvili et al. [17] present Fir-
malice, which focuses on the identification of firmware authentication bypass
backdoors—in contrast to the potential backdoors identified by the sys-
tem presented in this paper—which focuses on backdoors that manifest as
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hidden functionality. We also note that our tool HumIDIFy is better suited to
larger scale analysis due to the inherent complexity of identifying authentication
bypass backdoors.

Pewny et al. [14] propose a method to identify bugs and vulnerabilities over
multiple CPU architectures. They apply their technique to firmware from various
vendors. Similarly, Eschweiler et al. [9] also devise a method of cross-architecture
discovery of known bugs within binaries, and [6,7] provide details of a large-
scale analysis of consumer embedded device firmware, however restricts itself
specifically to the identification of web-frontend vulnerabilities.

2 Overview of HumIDIFy

Figure 1 provides an overview of our system architecture. Our system takes as
input a firmware image as obtained directly from a device vendor or a compressed
file system extracted from a device, then:

Fig. 1. HumIDIFy system architecture

1. We use our unification of unpacking tools (BinWalk2, Firmware Mod Kit3 and
Binary Analysis Toolkit4) with the improvements detailed in Sect. 3.5. This
process yields a file-system which we scan for ELF binaries; these binaries are
used as input to both the classifier and the profile evaluator.

2 https://github.com/devttys0/binwalk.
3 https://code.google.com/p/firmware-mod-kit/.
4 http://www.binaryanalysis.org/en/home.

https://github.com/devttys0/binwalk
https://code.google.com/p/firmware-mod-kit/
http://www.binaryanalysis.org/en/home
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2. The classifier takes as input a binary executable and outputs a corresponding
category label and confidence value. The set of categories match one-to-one
with possible functionality profiles of the profile evaluator and represent gen-
eral functionality classes such as web-server or secure-shell daemon. The exe-
cutable, label and confidence value are used as input to the profile evaluator.

3. The profile evaluator first locates the appropriate profile description for the
input category from the profile database. It then performs static analy-
sis passes upon the input binary dependent on the given profile. If hid-
den/unexpected functionality is detected, it is reported along with the confi-
dence in the assigned label to the analyst.

The output of HumIDIFy for a firmware image is a list of binaries that contain
potential hidden/unexpected functionality along with the assigned classification
label and the classifier’s confidence in that assigned label.

3 Classification of Binaries

3.1 Data Set Composition

In order to train and evaluate the classifier, a set of binaries taken from firmware
is required. To obtain these binaries, we built custom HTTP and FTP crawlers to
download firmware from 30 different vendors. This firmware was then processed
by our unpacking engine—which acts as a unification layer over the previously
described unpacking tools. Firmware which could not be unpacked due to tool
failure, or exceeded a reasonable threshold of time taken to unpack was discarded.
In total our data set consisted of 15,438 firmware images, of those 7,590 could
successfully be unpacked; giving us a total of 2,451,532 binaries.

3.2 Scope and Device Functionality

Through the manual analysis of samples of our data set we observe that in
general, the firmware obtained (although targeted at performing a number of
domain-specific functions) tends to adhere to a common structure: device con-
figuration is usually performed via a web-interface and firmware upgrades are
integrated into this same interface. Other common services present include file-
servers, Telnet and SSH daemons.

A major problem in the analysis of binaries within embedded device firmware
is the heterogeneousness of the architectures they are compiled for. Unlike more
traditional malware analysis, where the predominant architectures are x86 and
x86-64 which have been studied extensively in the literature, embedded devices
are deployed on more esoteric architectures such as ARM, MIPS and PowerPC.
Further, the predominant deployment Operating Systems are variants of Linux—
so, the possibility to utilise existing tooling across such platforms is significantly
hampered. Our implementation targets the predominant architectures: ARM
and MIPS and restricts itself to Linux-based firmware. Although these choices
may appear as limitations in our approach, we observe that the vast majority of
firmware falls within these boundaries, as highlighted in [6].
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3.3 Choice of Classification Domain

A näıve approach would be to classify binaries based on their filename: for exam-
ple, FTP daemons might be called ftpd, vsftpd, etc. However, a significant
amount of the firmware we examined does not unpack cleanly, that is we could
extract files, but not the filenames. Additionally, for firmware that did unpack
cleanly we saw a range of names for the same service. For example, we saw
web servers called webs, httpd, mini httpd, goahead and web server. Hav-
ing attempted to use just filenames initially, we found the classifer constructed
overfit the data set with bias towards detecting services from particular vendors.

We considered two approaches to classifier construction: supervised learning
and semi-supervised learning. Supervised learning demands a subset of the input
data set be labelled, and a reasonable number of examples collected for each such
label. Thus, the labels chosen for classification do not cover all possible binary
types found within firmware. From a manual analysis of 100 firmware images
we create an initial data set with 24 labels. This process yields an inital set of
419 unique binaries to train from; cryptographic hashing is used to ensure the
uniqueness of the binaries. A number of labels we construct are meta-labels in
that they encode a particular functionality: one such label is web-server which
itself covers a number of distinct example binaries within our data set: from very
simple servers such as uhttpd to more complex such as lighttpd; the reasoning
for this is that we wish to construct a classifier that is robust to different, not
seen before examples of labels. While we acknowledge our initial training set is
relatively small in proportion to the overall number of firmware images collected,
manual analysis of binaries is very time consuming for a human analyst and one
of the problems we attempt to address with this work.

An alternative to the techniques proposed in this paper would be to follow the
example of others (such as [15]) who use supervised learning to classify binaries as
anomalous. While this approach is applicable for binaries on commodity systems
due to exsitence of large, balanced data sets of malicious binaries; such large data
sets do not exist for binaries found on embedded systems. Further, supervised
learning requires roughly equal sized input sets for each label; in the case of
binaries for embedded device firmware this is also not possible to construct due
to the relatively small number of binaries known to contain hidden functionality
or backdoors on such systems.

Our approach overcomes the issues with supervised learning by employing
semi-supervised learning to classify binaries based on general classes—using
machine learning as a filter to aid in more precise, targeted static analysis—
which can be used to detect anomalous binaries irrespective of the inital number
of anomalous binaries known.

We use IDA Pro5 to manually analyse the binaries used to construct the
initial data set. Those binaries analysed are used to derive set of labels. The
set of labels corresponds to those services that are prevalent amongst our initial
data set.

5 https://www.hex-rays.com/products/ida/.

https://www.hex-rays.com/products/ida/
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3.4 Attribute Selection

To perform both attribute selection and construction of the classifier, we utilise
the open-source machine learning toolkit WEKA [11].

Since our technique aims to extend to multiple architectures, we restrict
the possible attributes to those that are homogeneous among binaries across
different architectures. These consist of high-level meta-information: strings and
the contents of function import and export tables, these are obtained using
IDAPython. Our technique demonstrates that this meta-information is sufficient
to derive a classifier capable of inferring the general class of an arbitrary binary
taken from a firmware image with high precision.

Although the number of possible attribute types that are considered for con-
structing the classifier is small, the number of distinct values associated with
each class of attributes is impractically large. To overcome this, we apply fea-
ture selection methods to remove needless, non-discriminating attributes that
do not characterise a general category.

We use two passes of attribute filtering. The first pass filters attributes based
on their association with a given class. For each binary of a given class, if an
attribute is to be included in the set of all possible attributes, it must be present
in a relatively high proportion of examples of that given class. For example,
for web servers, the string GET / HTTP/1.1 is included in a large proportion
of examples whereas, in those same binaries there exist unique compiler strings
which are irrelevent. Thus we define a threshold delta to filter the initial features:
this delta is selected based upon constructing a supervised classifier using the
BayesNet classifier (chosen arbitrarily and kept consistent for uniform results)
and seeing which delta produces the best performing classifier when evaluating
using 10-fold cross validation. Concretely the selected delta that performed best
(in respect to maximising the precision of the classifier) was 0.6 when used as
input to the second stage of attribute selection. Figure 2 details the quantities
of remaining features for each evaluated value for the delta.

The second pass utilises a standard feature selection algorithm found in
WEKA. From evaluation of all algorithms available, we found CfsSubsetEval
combined with the BestFirst ranker using default parameters performed best.
Figure 3 outlines the results of this evaluation; the overall evaluation was per-
formed with data sets produced using thresholds from 0 to 0.7 from the first
stage of processing and utilisation combined with attribute selection algo-
rithms. In the interest of space, we omit the results of evaluation of all but
CfsSubsetEval; the remaining algorithms used (CorrelationAttributeEval,
GainRatioAttributeEval, InfoGainAttributeEval, OneRAttributeEval,-
ReliefAttributeEval, SymmetricUncertAttributeEval all used with Ranker)
resulted in classifiers that perfomed considerably worse than those trained fol-
lowing use of CfsSubsetEval and BestFirst ranking. We also note that we did
not evaluate the performance of those processed data sets from the first stage of
attribute selection due to the absence of API features.

The CfsSubsetEval algorithm outlined in [12] evaluates the merit of subsets
of features by correlating the predictive nature of individual features with respect
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Fig. 2. First stage attribute filtering Fig. 3. Second stage attribute filtering
with CfsSubsetEval

to the relative redundancy amongst the subset. Those subsets that are highly
correlated with a given class whilst maintaining a low degree of intercorrelation
are considered the most useful. The BestFirst ranking algorithm searches the
subsets of features by hill climbing; that is, starting from an inital solution
attempts to find a better solution incrementally by changing a single element
upon each iteration until a fix point is reached. For BestFirst, hill climbing is
performed in a greedy manner with backtracking.

Our feature, or attribute vectors as input to the classification algorithm con-
sist of nominal attributes representing if a given API name or string is present
in the binary being represented. That is, for each attribute ai within the feature
vector: ai ∈ {0, 1} with 1 representing inclusion and 0 the converse. As a spe-
cific example, suppose the API names: socket, bind and puts are selected as
attributes and a given training instance is given the label web-server, import-
ing only the first two API names, we would represent its corresponding feature
vector as: 〈1, 1, 0,web-server〉.

3.5 Construction of the Classifier

Prior to classifier construction, we evaluated an extensive set of supervised learn-
ing algorithms on the initally labelled set following processing from attribute
selection. We attempt to maximise the precision of the classifier in assigning
labels: maximising the number of correctly classified instances and minimising
the number of incorrectly classified instances, whilst attempting to minimise the
time taken to train the classifier. We note that minimisation of the traning time
for semi-supervised learning is particularly important: training is an iterative
process with each iteration processing more input data. Concretely, we trained
each classifier upon the same labelled data set, and evaluated using 10-fold cross-
validation; Fig. 4 details the results.
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Fig. 4. Supervised learning algorithm evaluation

Amongst the possible choices for classification algorithm, the two best per-
forming in terms of optimising the number of correctly/incorrectly classified
instances were BayesNet and RandomForest. Of those, the time taken to train
the BayesNet classifier was less than that using RandomForest: 0.00 s compared
to 0.11 s.

From the inital classifier, we used binaries from a further 700 firmware images
as input to construct the final classifier; all of which were previously unlabelled.
Final evaluation of the classifier was performed on an additional set of labelled
binaries from 100 firmware images. We adapted the self-training algorithm as
outlined in [21] using the BayesNet classifier as the supervised learning algo-
rithm and a threshold bound on the iteration. We detail that algorithm in Algo-
rithm 1. The number of iterations required to reach our chosen threshold bound
of 0.05 was 8 iterations; that is between the 7th and 8th iterations the percentage
difference was less than 0.05% we count the inital supervised learning step as the
first iteration. We use a value of 0.9 as the required confidence bound to move
a given binary from the set of unclassified data to the set of classified data; a
value less than 1.0 is required in order to avoid over-fitting the training data.
A value of 1.0. would produce a classifier that after being trained over multiple
iterations would learn to only correctly classify instances that were of high sim-
ilarity to those used to initially train the supervised classifier. After running the
first stage of semi-supervised learning on a range of values we found 0.9 to be
the most suitable—lower values in fact produced classifiers that performed worse
when using 10-fold cross-validation. Figure 5 details the monotonic nature of the
number of correctly classified instances at each iteration of training. The final
classifier acheived a correct classification rate of 99.3691% when evaluated using
10-fold cross-validation. Evaluation on a completely unseen hold-out test set of
labelled binaries resulted in the correctly classified rate dropping marginally to
96.4523%. The resulting drop in performance is observed due to a number of
instances being mislabelled; of those instances mislabelled the maximum confi-
dence the classifier supplied in the label it assigned was 0.65 which resulted in
a binary manually labelled as a dhcp-daemon being incorrectly classified as a
upnp-daemon.
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Algorithm 1. Bounded self-training
function boundedSelfTraining(labelledData, unlabelledData, v, bound)

L ← labelledData, U ← unlabelledData, k ← 0
loop

train f from L using supervised learning
(k’, L’, U’) ← apply f to unlabelled instances in U where u ∈ U’ if confi-

dence(f(u)) ≥ v
if U = U’ ∨ k’ − k ≤ bound then return f
end if
k ← k’, L ← L’, U ← U’

end loop
end function

Iteration 1 2 3 4 5 6 7 8

Correct (%) 88.4848 95.4819 97.0760 97.9021 98.5462 99.2366 99.3256 99.3691

Fig. 5. Semi-supervised iterations

Avoiding Over-Fitting. As with any use of machine learning, over-fitting can
become a problem when the classifier becomes biased to the data presented to it
during the training phase, and thus, the chance of introducing such a bias needs
to be minimised in order to produce a useful classifier. In the case of identifying
classes of binaries, we identify two sources of bias. The first, is that by only
using firmware from a small subset of vendors, which generally use the same web
servers, Telnet daemons, and so on, on their devices our classifier shall be biased
towards identifying a limited number of binaries from each class. Further, by
using only particular types of firmware, for example for routers or IP cameras,
the aforementioned problem manifests in that the types of service present in
such firmware would be non-representative of those found if all possible types of
firmware was considered. Thus, in training our classifier we ensure that our data
set is representative of the overall state of COTS embedded device firmware in
terms of vendor and device type selection. We do this by random sampling of
the firmware data set. Additionally, our data set includes firmware from some 30
device vendors and includes firmware from all embedded devices they produce,
thus has sufficient representation.

Overcoming Limitations in the Classification Method. A limitation in
the classification method selected is the fact that a label must be assigned to
every input instance; thus, if a binary that contains functionality never seen
before is presented to the classifier, rather than returning an unknown classifi-
cation label, it must assign a known label. We overcome this deficiency by using
the confidence value in the results returned by our system. Namely, an analyst
is able to see those binaries classified as a given label with low confidence not
matching their functionality profiles are less likely to contain unexpected func-
tionality and require further manual analysis. Conversely those labelled with
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high confidence not matching their expected functionality profiles are likely to
contain additional functionality.

Overcoming Limitations in Data Collection. Our system can handle bina-
ries that are carved from raw binary files—which do not have an assigned file
name. We observe that BinWalk fails to correctly extract binaries in cases such
as that shown in Fig. 6.

Fig. 6. ELF binary carving

BinWalk operates by identifying contiguous files by locating so-called “magic
numbers”. Unfortunately if it happens that an ELF binary is followed by a chunk
of data that does not contain a “magic number” that data is appended to the
binary. Thus, when we extract strings from the binary additional strings found
within the appended data can potentially corrupt the classification result. We
overcome this by parsing the ELF file header and calculating the correct file
size: if the calculated size is smaller than the extracted binary we remove the
additional data.

4 Hidden and Unexpected Functionality Detection

The result of the classification method we described in the last section is a
tuple, (ei, ci, vi), where ei is the binary itself from the firmware image, ci is
an identifier representing the label assigned by the classifier and vi represents
the confidence of the classifier in the assigned label. We have built functionality
profiles pi for all classification labels, these are obtained via a lookup into a
profile database P . Generation of these profiles has been performed manually.
Adding additional binary classes to the system assumes a knowledgeable analyst
capable of describing the expected functionality of that binary class. Hence when
a binary being analysed does not conform to the expected functionality profile,
potential unexpected functionality has been detected. As a concrete example,
suppose a given binary has been classified as a web-server, then an analyst
might expect that is a TCP-only service—something classified as a web-server
additionally performing UDP networking should then (in this case) be considered
as unexpected and further analysed to ascertain if this additional functionality
is malicious or benign.
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4.1 Binary Functionality Description LanguAge

We encode the description of the expected functionality of a given class of bina-
ries using our domain specific language. The syntax of our Binary Functionality
Description Language (BFDL) is shown in Fig. 7. A functionality profile for a
given class of binary is defined by the use of the rule top-level expression, where
the name supplied corresponds to the class of binary. The body of these rules will
evaluate to true if the binary matches the profile, and it will evaluate to false if
the binary shows evidence of deviating from the profile. Rules may additionally
be parametrised; making available parameter names as bound variables within
the body of the rule. Rules may also be used to define reusable components
that can be used within multiple other rules. The import keyword allows for
further rule reuse: it allows rules to be defined within separate files—essentially
providing a facility to implement libraries of predefined rules for common static
analysis passes.

Fig. 7. BFDL language specification

The key feature of the language are the built-in rules that test specific
properties of binaries. The most primitive are: import exists, export exists and
string exists. These rules do not constitute program analysis per se, rather,
their results are derived from parsing the underlying binary file format. Both
import exists and export exists check for the existence of strings representing
imported or exported function names within the import and export tables of
the ELF file format. string exists disregards the file format entirely—essentially
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searching for a given string within the entire binary file. The architecture takes a
case-insensitive string argument representing the architecture name—evaluating
to true if the binary under analysis is indeed of said architecture, otherwise
false—this rule allows for architecture-specific analysis passes to be performed.

For implementation of more complex analysis rules, we leverage both BAP
[3]—a binary analysis library for the OCaml language which supports code–
lifting, disassembly and CFG recovery functionality, and IDA Pro—a state of
the art commercial disassembler. To ascertain if a function is called within the
binary we provide a rule named function ref. It operates first by inspection of
the call graph of the binary, and attempts to verify the existence of an incoming
edge to the node representing the function name being searched for; if such a
relation does not exist, then a search is made for references to the function—
which could indicate the use of the function as a callback, or indirect use such
as via a function pointer. For example, the expression function ref(“listen”) can
be used to check if the binary makes a call to the listen function in order to open
an incoming socket. In a similar fashion, string ref searches for references to a
given string within the binary—this is implemented in the same manner as the
aforementioned method of locating potential indirect uses of functions.

The forall and exists keywords allow us to quantify over the parameters of
a function call made by the binary, and allow us to define constraints on these
arguments. As an example of the use of these rules, we could check that a binary
makes a call to the socket function with the type argument equal to 2 using the
following expression:

exists socket(domain: int, type: int, protocol: int) ⇒ type == 2

We use BAP as a basis for writing binary analysis routines to estimate the
arguments passed as part of function invocations. In the case where a function is
passed constants or static data that is independent of prior branching constructs,
this always succeeds. In order to statically compute the constant arguments we
first determine the function boundaries; that is, the start and end addresses
of the functions deemed to contain calls to the function of interest. For each
of the boundaries found we take the start address and perform disassembly,
deriving a control flow graph to the granularity of basic blocks. In the interest
of maintaining reasonably lightweight analysis we make the assumption that the
basic block containing the call to the function of interest shall contain all of
the argument loading instructions for that given call and any argument loading
instructions related to the call in parent blocks are conditional and hence cannot
be determined without further processing of the disassembled code. Since for
both the ARM and MIPS instruction sets, argument passing is implemented by
passing values in registers, we are able to estimate integer constants and string
references to the data section of the binary by examination of load operations
into registers. Concretely, for integer constants, the implementation is trivial
as both instruction sets have instructions for loading constant integers directly
into registers. For strings, the implementation is more difficult, we first identify
loads into registers from the data section and then verify the data is a string: we
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perform this by checking for a consecutive block of ASCII characters followed by
a terminating NULL byte (i.e., a C-style string). From manual analysis, C-style
strings are found to be used in the vast majority of binaries from embedded
device firmware, hence we check for those exclusively for efficiency. Inputs into
the analysis pass are the function name and a list of arguments, which may either
be constants or variable names. The expression specified following the function
name and arguments defines a constraint over such variables used as arguments.
If the arguments of a function are the result of a complex calculation (more
complex than constant propagation and folding) our system will not find them.
To represent such a failure at the language level, we augment each type with
an additional value ⊥ which is represented by the error keyword; a comparison
with error that is not itself an error value will always result in false. In a boolean
context when used as part of a logical expression error is automatically coerced
into the boolean value false.

To compose expressions, BFDL supports all of C’s logical and equality oper-
ators. It implements conditionals by way of an if expression, and allows for
binding names to values through the let keyword—the semantics of which follow
that of ML-like languages. The expected behaviour may be encoded in a number
of ways: some rules make it possible to estimate “behaviour” in a manner that
has a bias towards minimising the execution time of the profile evaluator, while
others trade execution time and resources for greater precision. BFDL supports
a number of primitive data types: strings, integers, booleans.

Figure 8 illustrates an excerpt from our standard prelude included with
BFDL. It shows how both socket and file (stream) behaviour is encoded within
the language. We note that these rules do not provide an absolute check of the
behaviour being tested for example, uses udp() checks if the socket API is used
with an appropriate parameter (2 for MIPS, 1 for other architectures) as a value
our analysis tools can detect. It would be possible for a program to implement
its own version of UDP, which this rule would not detect, or it would be possible
for a program to generate the traffic type parameter as a result of a complex
calculation. So what this rule tests is if UDP is used in the standard way, rather
than if UDP is used at all.

Fig. 8. An excerpt of BFDL rules from our standard prelude.

Figure 9 shows toy examples of how one might encode the functionality pro-
files for a web-server and telnet-daemon. As in this example, we are primar-
ily interested in detecting unexpected functionality, these rules are focused on
checking that the binaries conform to their expected network and file behaviour.
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Fig. 9. Toy example profiles for web servers and Telnet daemons

They emphasise how basic rules may be composed to implement a more complex
analysis.

As evidenced in the examples, the functionality profiles do not specify how
a particular service might work, rather, what given the assumed behaviour in a
given service might be deviation from the norm.

5 Experimental Results

In this section we evaluate the separate components of our contribution accord-
ing to the points outlined in Sect. 1.1. First, we examine the performance of the
classifier on a new hold-out set of manually labelled binaries. We then evaluate
the entire system using a set of binaries known to have hidden functionality
embedded within them, we then evaluate the tool on a sample of binaries taken
from real-world firmware images. Following this, we examine the run-time per-
formance of our tool and demonstrate its applicability to large-scale analysis.
Finally we look at how one might attempt to evade our techniques within the
limitations outlined in Sect. 1.1 and possible way to mitigate such attempts.

5.1 Evaluation of Classifier

As outlined in Sect. 3.5, our classifier was trained on a data set consisting of
binaries from 800 firmware images and subsequently tested against an additional
(separate, manually labelled) data set of binaries from 100 firmware images. It
achieves a correct classification rate of 99.3691% on the training set using 10-fold
cross-validation and a correct classification rate of 96.4523% on the independent
test set which in total consisted of 451 individual binaries that exactly matched
the functionality labels. The overall TP (true positive) rate over all 24 classes
on the test set was 0.965 while the FP (false positive) rate was 0.002. Of those
instances that were incorrectly classified seven labels were involved. Figure 10
outlines the TP/FP rates as well as the precision and recall rates for those
labels.

These results show that for the most commonly found services, our classifier
is highly effective in assigning the correct labels to services – irrespective of their
origin (i.e. they are new instances of common services).

In the test set gathered, we found a single instance that corresponded directly
to the label cron-daemon, this can be explained by the existence of busybox on
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Fig. 10. Statistics for labels that were misclassified

the majority of those firmware images which includes the functionality for cron;
we found what should have been labelled a web-server was mislabelled in this
case. The mislabelled cron-daemon was labelled as a dhcp-daemon. We similarly
found four instances of dhcp-daemon (of eleven) mislabelled; they received the
labels: ftp-daemon, nvram-get-set, ping and upnp-daemon. A single instance of
the ping utility was mislabelled as nvram-get-set ; the small number of binaries
corresponding to the ping label (three) was again due to its functionality being
implemented within busybox; this was also the case for the tcp-daemon label.
Of the mislabelled telnet-daemon label, one was labelled as nvram-get-set. Of
the two (of thirty-three) mislabelled web-server instances, one was labelled as
upnp-daemon while the other was labelled as cron-daemon; we see similarity in
the API used by these services which led to the mislabelling. The upnp-daemon
label was mislabelled in six instances (of twenty-three) as web-server in four
cases (for the reasons previously described); the remaining two were mislabelled
as nvram-get-set.

We note that the nvram-get-set label represents binaries that include gen-
eral functionality to access and modify the non-volatile storage of the embedded
device. Thus, of all labels we would expect it to induce the highest FP rate.
On many devices there exist binaries specifically for NVRAM interaction (com-
monly called nvram-get and nvram-set), however we have found some instances
whereby NVRAM interaction is implemented directly rather than in a separate
utility, hence the possibility of mislabelling.

While a number of FP results exist, for the most pervasive services found
within firmware, the classifier is highly successful in assigning the correct label
to binaries.

5.2 Performance on New Artificial Instances

In this section we assess the ability of the whole system to recognise hidden func-
tionality in well-known application modified by ourselves to contain additional,
unexpected functionality.
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We modified the source code of two services – mini httpd and utelnetd –
two of the most common services found in embedded device firmware from all
device vendors. The hidden functionality takes the form of a remote control
backdoor and is implemented using the same methodology proposed in [16].

Our tests consisted first of running the two services, unmodified through our
system (acting as a base-line); each was classified correctly with a confidence
value of 1.000 and said to not contain additional functionality. Then, each mod-
ified binary was run through our system; in all cases each binary was assigned
the correct classification label with a confidence of 1.000 – the feature vectors
remained unchanged between the base-line and each modified binary indicating
the features chosen to define binary functionality for the classes chosen are dis-
criminating enough to represent the core functionality for those labels. Similarly,
in all cases, the profiling engine correctly identified all modified binaries as con-
taining unexpected functionality.

This evaluation demonstrates both the effectiveness of our system in identify-
ing hidden functionality and the generality of our approach to extend to multiple
device architectures and different compiler optimisations.

5.3 Real-World Performance Using Sampling

In this section we evaluate the performance of our system using real-world data.
The number of binaries within our data set is too large to feasibly evaluate
manually, therefore we use a random sample of 50 firmware images from our
data set. This yields a total of 15,507 binaries to use as input to HumIDIFy. A
confidence value threshold of 0.9 was chosen to determine if a binary is evaluated
by the functionality profiler of HumIDIFy; we selected this value for two reasons:
it maintains consistency with the value chosen to train the classifier, and those
binaries that are classified with confidence above this threshold value are likely
to match the functionality of their assigned label with a (known) high probability
(96.4523%).

For the purposes of our experiment, binaries processed that are assigned a
label with a confidence value below 0.9 are considered to be classified as unknown.

From the 15,507 binaries, 4,012 were classified with a confidence value of 0.9
or greater. After removing duplicates, 425 unique binaries were classified with a
confidence value equal to or above 0.9. From manual analysis, 392 were classified
correctly, and of those classified correctly nine were flagged by HumIDIFy as
potentially containing unexpected functionality.

Of those nine binaries, six of them were found within the web-server class,
one within the ssh-daemon class, one within the telnet-daemon class and one
within the tcp-daemon class.

HumIDIFy identified a web-server binary that contained a previously doc-
umented backdoor; it manifests as an embedded management interface which
provides shell execution upon the device. It is found within the firmware of a
number of devices from Tenda.

Another contained a built-in DNS resolver—which was unexpected. Two
instances contained the same unexpected feature: an undocumented internal
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interface for device configuration listening on a non-default port; this interface
provides privileged access to anyone with shell access on the device in question.

The telnet-daemon identified was implemented in a non-standard manner
and thus, was flagged as containing unexpected functionality.

A binary appearing as an ssh-daemon in the first stage of classification mis-
matched the second stage of processing due to being statically linked. The first
stage of classification was correct as the classifier was able to correctly label the
instance based upon string features alone.

A further web-server was found to interact with the Syslog daemon over UDP
to perform logging, and hence failed to match its expected functionality profile
which assumes only TCP based networking. Another example was a custom
application implementing HTTP proxy functionality; this was actually middle-
ware for Trend Micro kernel engine. It was classified as containing unexpected
functionality as not only does it implement HTTP request processing using TCP,
it also provides additional functionality via UDP.

Another custom service was detected by HumIDIFy that serves as an Internet
telephony proxy that was classified as a tcp-daemon; the service additionally
supports UDP as a means of data transmission; thus, is classified as containing
unexpected functionality.

We observe that our method not only supports finding instances of services
that are strictly adhereing to the original set of functionality labels, but also
those services that share the same core functionality with additional features;
this is indeed useful for an analyst as it allows them to filter those services that
are known but contain unexpected functionality and those services that may be
of interest that contain functionality unknown to HumIDIFy.

In this evaluation we have demonstrated both the flexibility and effective-
ness of our system: an analyst wanting to evaluate a firmware image in a more
“paranoid” mindset can set the confidence threshold for classifier label assign-
ment to a low value to have the system identify a larger amount of potential
hidden, unexpected functionality, whereas an analyst wishing to analyse a large
amount of firmware quickly can set this confidence threshold to a high value to
limit the amount of manual analysis required. On real-world data our system
with a modest confidence threshold was able to sucessfully identify a number
of binaries containing unexpected functionality, some of which representing a
real-world threat.

Our BFDL language is relatively high-level in terms of the checks that can
be defined and performed on binaries – this allows us to perform lightweight
analysis. This is however at some the cost to the accuracy and ability to check
for precise, lower-level functionality that could eliminate some of the misclassified
results in this section.

5.4 Run-Time Performance

In this section we examine the run-time performance of our analysis approach.
For a single binary, the average time taken to perform feature extraction is
1.31 s. The average time taken to classify a single binary is 0.291 s (not including
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the time taken to invoke the Java virtual machine in order to run WEKA).
The time taken to execute a profile is dependent upon the complexity of that
profile. In the worst case (where we reconstruct function CFGs) the average
time taken is 1.53 s; this value is proportional to the number of functions present
within the binary under analysis. A single firmware image contains around 310
binaries; thus the average time to process a single firmware image assuming
the worst case scenario—the classifier assumes a confidence threshold of 0.0 in
which every binary passes through each stage of analysis is 970.61 s. We note
that this evaluation does not take into account the time taken to perform the
final stage of analysis—that performed by a human to manually analyse the
binaries containing unexpected functionality.

In contrast to other work, such as Firmalice [17] – which has similar goals, but
identifies binaries containing authentication bypass vulnerabilities as opposed to
hidden, unexpected functionality, HumIDIFy performs well. Processing an entire
firmware image on average in roughly the same time taken to process a single
binary with Firmalice. From this analysis, we demonstrate the feasibility for our
techniques to be used on a large-scale.

5.5 Security Analysis of HumIDIFy

HumIDIFy relies on certain meta–data: both strings and imported symbol names.
While strings are present within all binaries, imported symbol names are only
present within dynamically—linked binaries. Thus, when classifying a binary
that does not contain all of the required meta—data incorrect labelling will
occur and thus lead to false positives (i.e. the binary will be reported as contain-
ing unexpected functionality). Since our technique is intended to reduce the time
taken for manual analysis, as opposed to being completely automated, report-
ing the binary as potentially containing unexpected functionality and therefore
prompting manual analysis is the correct behaviour. From manual analysis of a
large number of firmware images, we have found that an overwhelming majority
use dynamic—linking; we attribute this to the general lack of storage space avail-
able on embedded devices and the space savings afforded by utilising dynamic–
linking.

An attempt to evade the classifier, with for example a binary that is inher-
ently a web-server manifesting as say, a Telnet daemon, HumIDIFy would still
detect the binary as containing unexpected functionality due to the two-stage
classification mechanism: the expected profile of a Telnet daemon would obvi-
ously be quite different from that of a web-server and thus fail to match. Thus,
our overall approach is robust inspite of potential limitations in the individual
components.

6 Conclusion

We have presented a semi-automated framework for detecting hidden and unex-
pected functionality in firmware. At the heart of our approach is a hybrid of
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machine learning and human knowledge encoding within our domain specific
language, BFDL. As we have shown, this is a highly effective method for detect-
ing unexpected functionality and (in some cases) backdoors in firmware.
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Abstract. Identifying library functions in program binaries is impor-
tant to many security applications, such as threat analysis, digital foren-
sics, software infringement, and malware detection. Today’s program
binaries normally contain a significant amount of third-party library
functions taken from standard libraries or free open-source software pack-
ages. The ability to automatically identify such library functions not only
enhances the quality and the efficiency of threat analysis and reverse engi-
neering tasks, but also improves their accuracy by avoiding false correla-
tions between irrelevant code bases. Existing methods are found to either
lack efficiency or are not robust enough to identify different versions of
the same library function caused by the use of different compilers, dif-
ferent compilation settings, or obfuscation techniques. To address these
limitations, we present a scalable and robust system called BinShape to
identify standard library functions in binaries. The key idea of BinShape
is twofold. First, we derive a robust signature for each library function
based on heterogeneous features covering CFGs, instruction-level char-
acteristics, statistical characteristics, and function-call graphs. Second,
we design a novel data structure to store such signatures and facilitate
efficient matching against a target function. We evaluate BinShape on a
diverse set of C/C++ binaries, compiled with GCC and Visual Studio
compilers on x86-x64 CPU architectures, at optimization levels O0−O3.
Our experiments show that BinShape is able to identify library functions
in real binaries both efficiently and accurately, with an average accuracy
of 89% and taking about 0.14 s to identify one function out of three
million candidates. We also show that BinShape is robust enough when
the code is subjected to different compilers, slight modification, or some
obfuscation techniques.

1 Introduction

Binary code analysis is an essential security capability with extensive applica-
tions, ranging from threat analysis, reverse engineering, cyber forensics, recog-
nizing copyright infringement, to malware analysis. However, today’s reverse
engineers still largely rely on manual analysis with only limited support from
automated tools, such as IDA Pro [4]. Such manual analysis is typically tedious
and error-prone due to the complex code transformation performed by the com-
pilers, which usually involves highly optimized control flows, varying registers,
c© Springer International Publishing AG 2017
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and the assignment of memory locations based on the CPU architectures and
optimization settings [19]. Therefore, automated tools are highly desirable to
assist reverse engineers in binary code analysis, which is especially relevant to
security applications where the source code is unavailable.

Since modern software typically contain a significant number of library func-
tions, identifying such functions in a binary file can offer a vital help to threat
analysts and reverse engineers in many practical security applications. Further,
it has a strong positive impact in various applications such as clone detection
[9,10,14,20,27], function fingerprinting [38], authorship attribution [8,45], vul-
nerability analysis [12,13,19,40,47], and malware analysis [32,34,48]. Since it
helps to filter out those library functions and focus on the analysis of user func-
tions. In addition, the labeled library functions could provide valuable insights
about the functionality of program binaries. Hence, the ability to automati-
cally identify library functions cannot only enhance the efficiency of such threat
analysis and reverse engineering tasks, but also improve the accuracy.

Automating the process of accurately identifying library functions in binary
programs poses the following challenges: (i) Robustness: the distortion of fea-
tures in the binary file may be attributed to different sources arising from the
platform, the compiler, or the programming language, which may change the
structures, syntax, or sequences of features. Hence, it is challenging to extract
robust features that would be less affected by different compilers, slight changes
in the source code as well as obfuscation techniques. (ii) Efficiency: another chal-
lenge is to efficiently extract, index, and match features from program binaries
in order to detect a given target function within a reasonable time, consider-
ing the fact that many known matching approaches imply a high complexity
[36]. (iii) Scalability: due to the dramatic growth of software packages as well as
malware binaries, threat analysts and reverse engineers deal with large numbers
of binaries on a daily basis. Therefore, designing a system that could scale up
millions of binary functions is an absolute necessity. Accordingly, it is important
to design efficient data structures to store and match against a large number of
candidate functions in a repository.

To address the library identification problem, security researchers elaborated
techniques to automatically identify library functions in binaries. For instance,
the widely-used IDA FLIRT [3,15] applies signature matching to patterns gen-
erated according to the first invariant byte sequence of the function. This simple
method is indeed very efficient but the robustness is a major issue. It suffers
from the limitation of signature collisions and might require a new signature for
each new version as the result of a slight modification, since various compilers
and build options usually would affect byte-level patterns. Similarly, most other
existing methods, e.g., UNSTRIP [28], which is based on the interaction of
wrapper functions with the system call interfaces, and libv [41], which employs
data flow analysis and graph isomorphism, also rely on one type of features and
thus might also be easily affected by compiler families and compilation settings.
Furthermore, these methods are usually not as efficient as FLIRT due to the
need for complex operations, e.g., graph isomorphism testing.
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In this paper, we aim to address aforementioned challenges and limitations
of existing works. Specifically, we focus on following research problems. Can we
generate a “robust” signature for each library function to be resilient against
compiler effects and obfuscation techniques? Can we rely on only those features
who extraction, indexing, and matching can be performed in an efficient manner?
Can we design an efficient data structure to allow a target function be matched
against millions of candidate functions stored in a repository in a short time
(e.g., less than a second)? The key idea of Binshape is twofold. First, we derive
a robust signature for each library function, called the shape of function, based
on heterogeneous features covering CFGs, instruction-level features, statistical
features, and function-call graphs. The shape of a library function captures a
collection of most segregative characteristics along one or more dimensions of
the features, which is automatically determined using selection evaluators, such
as mutual information-based feature ranking and decision tree learning. Second,
the shapes of library functions are extracted and stored in a repository and
indexed using a novel data structure based on B+trees for efficiently matching
against a target function.

The main advantages of our approach are as follows: First, by relying mostly
on lightweight features and the proposed data structure, our technique is effi-
cient, and outperforms other techniques that rely on time-consuming computa-
tions such as graph isomorphism. Second, incorporating different types of fea-
tures significantly reduces the chance of signature collisions compared to most
existing works which rely on a single type of features. Therefore, by extracting
the aforementioned heterogeneous features and furthermore selecting the best
features amongst them, our approach achieves a great deal of robustness. As
demonstrated by the experimental results, there is only a slight drop in accu-
racy when the code is generated by different compilers or has been moderately
modified. Third, our technique is general in the sense that it is not limited to
a particular type of functions, e.g., the wrapper functions provided by standard
system libraries [28]. Finally, testing against a large number (over a million) of
functions in a repository confirms the efficiency and scalability of our system.

Contribution. In summary, our main contributions are enlisted as follows:

– Extracting Heterogeneous Features: To the best of our knowledge, this
is the first effort in employing a diverse collection of features, including
graph features, instruction-level characteristics, statistical characteristics, and
function-call graphs, for library function identification.

– Generating a Robust Signature: The novel concept of function shape
induces a single robust signature based on heterogeneous features, which
allows our system to produce good accuracy even when the code is com-
piled with different compilers and compilation settings, and is subjected to
slight modifications and some obfuscation techniques.

– Proposing a Scalable Technique: By designing a novel data structure
and using filters to prune the search space, our system demonstrates superior
performance and provides a practical framework for large scale applications
with millions of indexed library functions.
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2 Overview

This section illustrates our motivating example, explains the threat model, and
finally provides an overview of our system.

2.1 Motivating Example

Most of the existing works rely on a particular type of features (a review of
related works is given in Sect. 6), and they typically organize those features as
a vector. In addition, for every version of the function a new signature must
be generated and indexed in the repository. Our first observation here is that,
instead of using one type of features as in FLIRT, the diverse nature of library
functions demands a rich collection of features in order to increase the robust-
ness of detection. In addition, as will be demonstrated shortly in Fig. 1, the
most segregative features for different library functions will likely be different,
and therefore a feature vector may not be the best way for representing a signa-
ture. Specifically, the CFGs of memmove, memchr, and lock file functions are
depicted in Fig. 1. We observe that two graph features of memmove function are
enough to be distinguishable from others in our repository. On the other hand,
the CFG of lock file function contains smaller number of nodes (i.e., five),
and the CFG of memchr function is almost flat. Therefore, the best features
to identify two different functions, one with few basic blocks and one with a
large and complex CFG, would be very different; for instance, basic block level
features for the former, and graph features for the latter.

a) _memmove b) _memchr c) _lock_file

Fig. 1. CFGs of three library functions

2.2 Threat Model

In designing the features and the methodology of our system, we take into con-
sideration several ways by which adversaries may attempt to evade detection
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by our system. First, adversaries may intentionally apply obfuscation techniques
(discussed in more details below) to alter the syntax of binary files. Second, since
the syntax of a program binary can be significantly altered by simply changing
the compilers or compilation settings, adversaries may adopt such strategies to
evade detection. Finally, attackers may slightly modify the source code of library
functions and reuse them so as to evade detection. However, our system is not
intended to replace threat analysts or reverse engineers. Thus, it is not designed
to overcome the hurdles imposed by packers, obfuscation, or encryption. There-
fore, the scope of our work is limited to function identification, and our tool is
designed to work together with other reverse engineering tools or efforts [16,37]
(e.g., those for de-obfuscation) instead of replacing them completely.

In general, obfuscation techniques may be applied to three types of binary
analysis platforms: disassemblers, debuggers, and virtual machines [49]. Since we
perform static analysis, the anti-disassembler category, which includes a variety
of techniques such as dead code insertion, control flow obfuscation, instruction
aliasing, binary code compression, and encryption will be considered in this work.

2.3 Approach Overview

Our approach is divided into two phases: offline preparation (indexing) and
online search (detection). As illustrated in the upper part of Fig. 2, the offline
preparation includes: (1) feature extraction; (2) feature selection, which includes
feature ranking to extract the elements of the function shape, as well as best
feature selection; and (3) signature generation to index the functions in a repos-
itory. The lower part of Fig. 2 depicts online search, which includes: (A) feature
extraction; (B) filtration; and (C) detection components.

First, the binaries in our training set are disassembled by IDA Pro disas-
sembler. Second, the graph features along with the instruction-level features,
statistical features, and function-call graphs (explained in Sects. 3.1, 3.2, 3.3
and 3.4 respectively) are extracted. To select subsets of the features that are

Fig. 2. Approach overview
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useful to build the best signature, mutual information (Sect. 3.5) is employed on
the extracted features. The top-ranked features are fed into a decision tree [22],
and the outcome of the decision tree is stored in a data structure (Sect. 4.1) to
form a signature for each library function. In addition to such signatures, we
also store the top-ranked features that compose the signature of each function.
For detection, all the features are extracted from a given target binary, two fil-
ters (Sect. 4.2) based on the number of basic blocks (BB#) and the number
of instructions (Ins#) are used to prune the search space. Consequently, a set
of candidate functions are returned as the result of filtration. Finally, the best
matches are returned as the final results.

3 Feature Extraction

This section first describes different types of features, then presents feature selec-
tion, and finally defines the so-called function shape.

3.1 Graph Feature Metrics

We extract the control flow graph (CFG) of a binary function. To extract the
best features for each library function and to describe the shape of a func-
tion, we extract graph features based on different characteristics of the CFG.
Among existing graph metrics [24], we only employ those which are inexpen-
sive to extract. The selected graph features are listed in Table 1. Below we
show an example to illustrate the application of graph features to two func-
tions. Our graph metrics are applied to two different library functions, memcpy s
and strcpy s, as listed in Table 1. The corresponding CFGs have identical fea-
ture values for some metrics; for instance, numnodes, numedges, and cc values
are equal, while other metrics such as graph energy, and pearson (shown in bold-
face) are different and can be used to distinguish between them in this example
(more generally, we will certainly need more features to uniquely characterize a
function).

As discussed before (Sect. 2.1), the graph features of memmove function could
be part of the best features, since these features can segregate memmove function
from others. However, graph features alone are not sufficient since there are cases
where all the graph features of two different functions are identical, especially for
functions of relatively small sizes. In addition, the CFG of a library function may
differ due to compilation settings or slight changes in the source file. Therefore,
we consider additional features discussed in the following subsections.

3.2 Instruction-Level Features

Instruction-level features carry the syntax and semantic information of a disas-
sembled function. Some instruction-level features are shown in Table 2a, such as
the number of constants (#constants), and the number of callees (#call list).
In addition, inspired by [33], we categorize the instructions according to their
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operation types, as shown in Table 2b. We record the frequency of each instruc-
tion category as a feature. By enriching standard CFGs with such information
as different colors, there is a better chance to distinguish two functions even if
they have the same CFG structure. Since these categories carry some informa-
tion about the functionality of a program; for instance, encryption algorithms
perform more logical and arithmetic operations.

3.3 Statistical Features

Statistical analysis of binary code can be used to capture the semantics of a func-
tion. Several works have applied opcode analysis to binary code; for instance,
opcode frequencies are used to detect metamorphic malware in [42,46]. There-
fore, each set of opcodes that belong to a specific function will likely follow
a specific distribution according to the functionality they implement. For this

Table 1. Comparing graph features of memcpy s and strcpy s

Graph metric Description memcpy s strcpy s

n, numnodes Number of nodes 13 13

e, numedges Number of edges 18 18

p, num conn comp Number of connected components 1 1

CC Cyclomatic complexity: e − n + 2p 7 7

num conn triples Number of connected triples 6 6

num loop Number of independent loops 6 6

leaf nodes Number of leaves 7 7

average degree 2 ∗ e/n 2.7692 2.7692

ave path length Average distance between any two
nodes

2.2308 2.5

r, graph radius Minimum vertex eccentricity 5 6

link density e/(n(n − 1)/2) 0.2308 0.2308

s metric Sum of products of degrees across all
edges

150 159

rich club metric Extent to which well-connected nodes
also connect to each other

0.2778 0.2778

graph energy Sum of the absolute values of the real
components of the eigenvalues

18.7268 18.0511

algeb connectivity 2nd smallest eigenvalue of the
Laplacian

1 0.3820

pearson Pearson coefficient for degree sequence
of all edges

0.4635 0.3415

weighted clust coeff Maximum value of the vector of node
weighted clustering coefficients

0.3334 0.5
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Table 2. An example of instruction-level features and mnemonic groups

purpose, we calculate the skewness and kurtosis measures to convert these dis-
tributions into scores by the following formulas [6]:

Sk = (

√
N(N − 1)
N − 1

)(
∑N

i=1(Yi − Y )3/N
s3

),Kz =
∑N

i=1(Yi − Y )4/N
s4

− 3

where Yi is the frequency of each opcode, Y is the mean, s is the standard
deviation, and N is the number of data points. Similarly, we calculate z-score
[50] for each opcode, where the corpus includes all the functions in our repository.

Normalization. Each assembly instruction consists of a mnemonic and a
sequence of up to three operands. The operands can be classified into three
categories: memory references, registers, and constant values. We may have two
fragments of a code that are both structurally and syntactically identical, but
differ in terms of memory references, or registers [20]. Hence, it is essential that
the assembly code be normalized prior to comparison. Therefore, the memory
references and constant values are normalized to MEM and VAL, respectively.
The registers can be generalized according to the various levels of normalization.
The top-most level generalizes all registers regardless of types to REG. The next
level differentiates General Registers (e.g., eax, ebx), Segment Registers (e.g.,
cs, ds), and Index and Pointer Registers (e.g., esi, edi). The third level breaks
down the General Registers into three groups by size - namely, 32, 16, and 8-bit
registers.

3.4 Function-Call Graph

Function-call graph is a structural representation that abstracts away
instruction-level details, and can provide an approximation of a program func-
tionality. Moreover, function-call graph is more resilient to instruction-level
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obfuscation that usually are employed by malware writers to evade the detec-
tion systems [23]. In addition, it offers a robust representation to detect variants
of malware programs [26]. Hence, the caller-callee relationship of the library
functions is extracted.

The derived function-call graphs from those relationships are directed graphs
containing a node corresponding to each function and edges representing calls
from callers to callees. For labeling the nodes to exploit properties shared
between functions, a neighbor hash graph kernel (NHGK) is applied to subsets
of the call graph [25]. Those subsets include library functions and their neighbor
functions (callees and callers). The function G maps the features of function fk
to a bit vector of length l, where l is the number of mnemonic categories (9)
as shown in Table 2. Function G checks each value of the mnemonic groups of a
function; if the value is greater than 0, the corresponding bit vector is set to 1;
otherwise, it would be 0.

G : fk → vk = {0, 1}l
The neighborhood hash value h for a function fi and its set of neighbor

functions Nfi can be computed using the following formula [23]:

h(fi) = shr1(G(fi)) ⊕ (⊕fj∈Nfi
G(fj))

where shr1 denotes a one-bit shift right operation and ⊕ indicates a bit-wise
XOR. The time complexity of this computation is constant time, O(ld), where d
is the summation of outdegrees and indegrees, and l is the length of bit vector.
For instance, suppose fi is called by two other functions f1 and f2, and calls one
function f3. Therefore, the bit vectors based on the mnemonic group values of
each function are generated (by the function G) to construct the set of neighbor
function Nfi = {v1, v2, v3}. Finally, the hash value h(fi) would be equal to
(shr1(vi) ⊕ (v1 ⊕ v2 ⊕ v3)).

3.5 Feature Selection

After extracting all the aforementioned features, we will end up with a number
of features among which some might be the most relevant ones - those that
appear more frequently and are most segregative in one function. Therefore, a
feature selection process is conducted to reduce the number of features as well
as to find the best ones. Our feature selection phase contains two major steps:
feature ranking and best feature selection, which are described as follows.

Feature Ranking. We measure the relevance of the aforementioned features
based on the frequency of their appearance in each library function. Mutual
information [39] represents the degree depending on which the uncertainty of
knowing the value of a random variable is reduced given the value of another
variable. To this end, we employ a Mutual Information (MI) measure to indicate
the dependency degree between features X and library function labels Y as
follows:
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MI =
∑

x∈X

∑

y∈Y

p(x, y)log2
p(x, y)

p(x)p(y)

where x is the feature frequency, y is the class of library function (e.g., memset),
p(x, y) is the joint probability distribution function of x and y, and p(x) and
p(y) are the marginal probability distribution functions of x and y. The main
intention of this feature ranking is to shorten the training time and to reduce
overfitting. We measure mutual-information-based feature ranking on all cate-
gories of aforementioned features. In addition to mutual information, we apply
feature selection evaluators including ChiSquared [43], GainRatio [43], and Info-
Gain [44] using WEKA [7] on our features. Finally, we select the top-ranked
features of our training dataset based on the MI.

Best Feature Selection. Our aim is to build a classification system which
separates library functions from non-library functions. As such, we choose to
apply a decision tree classifier on the top-ranked features obtained from the
feature ranking process. Each library function is passed through the decision
tree and the best provided features for that specific function are recorded. This
automated task is performed on all library functions to create a signature for
each. For instance, according to our dataset, the best features for strstr func-
tion are #DataTransConv, instrnum, algeb connectivity, #id to constants, and
average degree as shown in Listing 1.1.

Listing 1.1. strstr best feature selection

#DataTransConv > 32.500
| instrnum > 237: other {_strstr=0,other =69}
| instrnum ? 237: _strstr {_strstr =11,other =0}
#DataTransConv ? 32.500
| algebraic_connectivity > 2.949
| | #id_to_constants > 3
| | | average_degree > 2.847: other {_strstr=0,other =591}
| | | average_degree ? 2.847
| | | | instrnum > 171: _strstr {_strstr=1,other =0}
| | | | instrnum ? 171: other {_strstr=0,other =48}
| | #id_to_constants ? 3: _strstr {_strstr=2,other =0}
| algebraic_connectivity ? 2.949: other{_strstr=0,other =4745}

4 Detection

Given a target binary function, the disassembled function is passed through two
filters to obtain a set of candidate functions from the repository. The classi-
cal approach to detection would be to employ the closest Euclidean distances
[18] between all top-ranked features of target function and candidate functions.
However, such an approach may not be scalable enough for handling millions of
functions. Therefore, we design a novel data structure, called B++tree, to effi-
ciently organize the signatures of all the functions, and to find the best matches.
Our experimental results (Sect. 5) confirm the scalability of our method.
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4.1 B++tree Data Structure

Due to the growing number of free open-source libraries and the fact that bina-
ries and malware are becoming bigger and more complex, indexing the signatures
of millions of library functions to enable efficient detection has thus become a
demanding task. One classical approach is to store (key, value) pairs as well
as the indices of best features; however, the time complexity of indexing/detec-
tion would be O(n), where n is the number of functions in the repository. To
reduce the time complexity, we design a data structure, called B++tree, that
basically indexes the best feature values of all library functions in the repository
in separate B+trees, and links those B+tree to corresponding features and func-
tions. We also augment the B+tree structure by adding backward and forward
sibling pointers attached to each leaf node, which points to the previous and
next leaf nodes, respectively. The number of neighbors is obtained by a user-
defined distance. Consequently, slight changes in the values that might be due
to the compiler effects or the slight changes in the source code is captured by
the modified structure. Therefore, the indexing/detection time complexity will
be reduced to O(log(n)), which is asymptotically better.

f1 f2 f3 f4 fm

Feature Vector of a Target Function (FT)

. . .
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Fig. 3. Indexing and detection structure

We explain the B++tree structure with a small example illustrated in Fig. 3.
The best features of all library functions in our repository are indexed in B+trees
depicted in the middle box. For instance, the best features of library function
F1 are f1, f2 and fm; hence, these three feature values linked to the function F1

are indexed in the corresponding B+trees (shown in boldface). For the purpose
of detection, (a) all the features of a given target function are extracted. For
each feature value, a lookup is performed on the corresponding B+tree, and (b)
a set of candidate functions based on the closest values and the user-defined
distance are returned (we assume that {F1, F2, F3, Fn} are returned as the set of
candidate functions). For instance, one match is found for the f2 feature with the
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second feature of function F3 (shown in boldface in part b), whereas this feature
is indexed as the best feature for F1 function as well. Finally, the candidate
functions are sorted based on the distance and total number of matches: {F2,
Fn, F1, F3}. If we consider the first most frequent functions (t = 1), the final
candidates would be {F2,Fn} functions.

The details are shown in Algorithm 1. Let fT be the target function, and
F retains the set of candidate functions and their frequency as output. First,
all top-ranked features are extracted from the given target binary fT (line 6).
By performing m (total number of features) lookups in each B+trees (line 7), a
set of candidate functions will be returned (line 8). In order to choose the top t
functions, the most t frequent functions are returned as the final set of matched
functions (line 10).

Algorithm 1. Function Detection
Input: fT : Target function.
Output: F : Set of candidate functions.
Initialization

1 m ← total number of features;
2 n ← total number of functions in the repository;
3 Fc ← {} ; dictionary of candidate functions ;
4 t ← number of most frequent functions to be considered;
5 distance ← user-defined distance;
6 feature[m] ← array of size m to hold all the extracted features;

begin
7 feature[] = featureExtraction(fT );
8 foreach feature[i] ⊂ FT do
9 Fc = Fc + B+TreeLookup(feature[i], distance);

10 end
11 F = t most frequent functions(Fc, t);
12 return F ;

13 end

4.2 Filtration

To address the scalability issue of dealing with large datasets, a filtration process
is necessary. Instead of a pairwise comparison, we prune the search space by
excluding functions that are unlikely to be matched. In the literature, discovRe
[19] applies the k-Nearest Neighbors algorithm (kNN) on numerical features as a
filter to find similar functions. However, Genius [21] re-evaluates discovRe, and
illustrates that pre-filtering significantly reduces the accuracy of discovRe. To
this end, two simple filters are used in our work, which are described hereafter.

Basic Blocks Number Filter (BB#). It is unlikely that a function with
four basic blocks can be matched to a function with 100 basic blocks. In addi-
tion, due to the compilation settings and various versions of the source code,
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there exist some differences in the number of basic blocks. Thus, a user-defined
threshold value (γ) is employed, which should not be too small or too large to
prevent discarding the correct match. Therefore, given a target function fT , the
functions in the repository which have γ% more or less basic blocks than the
fT are considered as candidate functions for the final matching. Based on our
experiences with our dataset, we consider γ = ±35.

Instruction Number Filter (Ins#). Similarly, given a target function fT ,
the differences between the number of instructions of target function fT and
the functions in the repository are calculated; if the difference in the number of
instructions is less than a user-defined threshold value λ, then the function is
considered as a candidate function. According to our dataset and experiments,
we consider λ = 35%.

5 Evaluation

In this section, we present the evaluation results of proposed technique. First,
we explain the environment setup details followed by the dataset description.
Then, the main accuracy results of library function identification are presented.
Furthermore, we study the impact of different obfuscation techniques as well
as the impact of compilers on the proposed approach and discuss the results.
Additionally, we examine the effect of feature selection on our accuracy results.
We then evaluate the scalability of BinShape on a large dataset. Finally, we
study the effectiveness of BinShape on a real malware binary.

5.1 Experiment Setup

We develop a proof-of-concept implementation in python to evaluate our tech-
nique. All of our experiments are conducted on machines running Windows 7
and Ubuntu 15.04 with Core i7 3.4 GHz CPU and 16 GB RAM. The Matlab
software has been used for the graph feature extraction. A subset of python
scripts in the proposed system is used in tandem with IDA Pro disassembler.
The MongoDB database [5] is utilized to store our features for efficiency and
scalability purposes. For the sake of usability, a graphical user interface in which
binaries can be uploaded and analyzed is implemented. Any particular selection
of data may not be representative of another selection. Hence, to mitigate the
possibility that results may be biased by the particular choice of training and
testing data, a C4.5(J48) decision tree is evaluated on a 90 : 10 training/test
split of the dataset.

5.2 Dataset Preparation

We evaluate our approach on a set of binaries, as detailed in Table 3. In order
to create the ground truth, we download the source code of all C-library func-
tions [1], as well as different versions of various open-source applications, such as
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Table 3. An excerpt of the projects included in our the dataset

Project Version No. Fun. Size(kb) Project Version No. Fun. Size(kb)

7zip/7z 15.14 133 1074 nspr 4.10.2.0 881 181

7zip/7z 15.11 133 1068 nss 27.0.1.5156 5979 1745

7-Zip/7zg 15.05 beta 3041 323 openssl 0.9.8 1376 415

7-Zip/7zfm 15.05 beta 4901 476 avgntopensslx 14.0.0.4576 3687 976

bzip2 1.0.5 63 40.0 pcre3 3.9.0.0 52 48

expat 0.0.0.0 357 140 python 3.5.1 1538 28070

firefox 44.0 173095 37887 python 2.7.1 358 18200

fltk 1.3.2 7587 2833 putty/putty 0.66 beta 1506 512

glew 1.5.1.0 563 306 putty/plink 0.66 beta 1057 332

jsoncpp 0.5.0 1056 13 putty/pscp 0.66 beta 1157 344

lcms 8.0.920.14 668 182 putty/psftp 0.66 beta 1166 352

libcurl 10.2.0.232 1456 427 Qt5Core 2.0.1 17723 3987

libgd 1.3.0.27 883 497 SQLite 2013 2498 1006

libgmp 0.0.0.0 750 669 SQLite 2010 2462 965

libjpeg 0.0.0.0 352 133 SQLite 11.0.0.379 1252 307

libpng 1.2.51 202 60 TestSSL 4 565 186

libpng 1.2.37 419 254 tinyXML 2.0.2 533 147

libssh2 0.12 429 115 Winedt 9.1 87 8617

libtheora 0.0.0.0 460 226 WinMerge 2.14.0 405 6283

libtiff 3.6.1.1501 728 432 Wireshark 2.0.1 70502 39658

libxml2 27.3000.0.6 2815 1021 Wireshark/libjpeg 2.0.1 383 192

Notepad++ 6.8.8 7796 2015 Wireshark/libpng 2.0.1 509 171

Notepad++ 6.8.7 7768 2009 xampp 5.6.15 5594 111436

7-zip. The source code are compiled with Microsoft Visual Studio (VS 2010, and
2012), and GNU Compiler Collection (GCC 4.1.2) compilers, where the /MT
and -static options, respectively, are set to statically link C/C++ library. In
addition, the O0 − O3 options are used to examine the effects of optimization
settings. Program debug databases (PDBs) holding debugging information are
also generated for the ground truth. Furthermore, we obtain binaries and cor-
responding PDBs from their official websites (e.g., WireShark); the compiler of
these binaries are detected by a packer tool called ExeinfoPE [2]. Finally, the
prepared dataset is used as the ground truth for our system, since we can verify
our results by referring to source code. In order to demonstrate the effectiveness
of our approach to identify library functions in malware binaries, we additionally
choose Zeus malware version 2.0.8.9, where the source code was leaked in 2011
and is reused in our work1.

1 https://github.com/Visgean/Zeus.

https://github.com/Visgean/Zeus
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5.3 Function Identification Accuracy Results

Our ultimate goal is to discover as many relevant functions as possible with less
concern about false positives. Consequently, in our experiments we use the F-
measure, F 1 = 2· P ·R

P+R , where P is the precision, and R is the recall. Additionally,
we show the ROC curve for each set of features used by BinShape. To evaluate
our system, we split the binaries in the ground truth into ten sets, reserving one
as a testing set and using the remaining nine as training sets. We repeat this
process 1000 times and report the results that are summarized in Fig. 4.
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Fig. 4. ROC curve for BinShap features

We obtain a slightly higher true
positive rate when using graph fea-
tures (including function-call graph
feature) and statistical features. This
small difference can be inferred due
to the graph similarity between two
library functions that are semanti-
cally close. Similarly, statistical fea-
tures convey information related to
the functionality of a function, which
cause a slight higher accuracy. On the
other hand, instruction-level features
return lower true positive rate. How-
ever, when all the features are combined together, our system returns an average
F1 measure of 0.89.

5.4 Impact of Obfuscation

In the second scenario, we investigate the impact of obfuscation techniques on
BinShape as well as FLIRT and libv approaches. Our choices of obfuscation
techniques are based on the popular obfuscator LLVM [29] and DaLin [35],
which include control flow flattening (FLA), bogus control flow (BCF), instruc-
tion substitution (SUB), register renaming (RR), instruction reordering (IR),
and dead code insertion (DCI). Other obfuscation techniques, such as code com-
pression and encryption, will be investigated in our future work.

For this purpose, we collect a random set of files (i.e., 25) compiled with com-
pilers. The binaries are converted into assembly files through disassembler, and
the code is then obfuscated using DaLin. We initially test the original selected
files and report accuracy measurements. The obfuscation is then applied and new
accuracy measurements are obtained. The effectiveness of obfuscation is shown
in Table 4. As can be seen, BinShape can tolerate some obfuscation techniques.
The accuracy remains the same when RR and IR techniques are applied, while it
is reduced slightly in the case of DCI and SUB obfuscations. The reason is that
most of the features which are not extracted from the instruction-level features
(e.g., graph features), are not significantly affected by these techniques. In addi-
tion, normalizing the assembly instructions eliminates the effect of RR, whereas,
statistical features are more affected by DCI and SUB techniques, since these
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Table 4. F-measure before/after
(F1/F

∗
1 ) applying obfuscation

Obfus. Tech. BinShape FLIRT libv

F1 = 0.89 F1 = 0.81 F1 = 0.84

F∗
1 F∗

1 F∗
1

RR 0.89 0.81 0.84

IR 0.89 0.78 0.82

DCI 0.88 0.80 0.82

SUB 0.86 0.79 0.80

All 0.86 0.76 0.80

Table 5. Impact of compiler versions
(Ver.), Optimizations (Opt.), and com-
pilers (Com.)

Project Ver. Opt. Com.

Prec. Rec. Prec. Rec. Prec. Rec.

bzip2 1.00 0.98 0.90 0.85 0.82 0.80

OpenSSL 0.93 0.78 0.91 0.80 0.83 0.78

Notepad++ 0.98 0.97 0.95 0.82 0.84 0.72

libpng 1.00 1.00 0.91 0.74 0.81 0.72

TestSTL 0.98 1.00 0.90 0.84 0.81 0.75

libjpeg 0.93 0.90 0.88 0.76 0.81 0.69

SQLite 0.91 0.87 0.89 0.85 0.78 0.71

tinyXML 1.00 0.99 0.90 0.82 0.84 0.79

features rely on the frequency of instruction. However, the accuracy results after
applying FLA and BCF through LLVM obfuscator are not promising, and we
exclude them from our experiments. Therefore, additional de-obfuscation tech-
niques are required for handling these kinds of obfuscations.

5.5 Impact of Compilers

In this section, we examine the effects of compilers on a random subset of bina-
ries as follows. (i) The impact of compiler version (Ver.). We train our system
with binaries compiled with VS 2010 (O2) and test it with binaries compiled
with VS 2012 (O2). (ii) The impact of optimization levels (Opt.). We train our
system with binaries compiled with VS 2010 at optimization level O1, and test
it under the same compiler at optimization level O2. (iii) The impact of different
compilers (Com.). We collect binaries compiled with VS 2010 (O2) as training
dataset, and test the system with binaries compiled with GCC 4.1.2 compiler
(O2). The obtained precision and recall for the scenarios are reported in Table 5.
We observe that our system is not affected significantly by changing either the
compiler versions or the optimization levels. However, different compilers affect
the accuracy. Examining the effects of more possible scenarios, such as compar-
ing binaries compiled with the same compiler and at optimization levels O1 and
O3, is one of the subjects of our feature work.

5.6 Impact of Feature Selection

We carry out a set of experiments to measure the impact of feature selection
process, including top-ranked feature selection as well as best feature selection.
First, we test our system to determine the best threshold value for top-ranked
features as shown in Fig. 5. We start by considering five top-ranked featrures and
report the F1 measure of 0.71. We increment the number of top-ranked features
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by five each time. When the number of top-ranked features reaches 35 classes,
the F1 measure is increased to 0.89 and it remains almost constant afterwards.
Based on our findings, we choose 35 as the threshold value for the top-ranked
feature classes.

Next, we pass the top-ranked features into the decision tree in order to select
the best features for each function. The goal is to investigate whether considering
the subset of best features would be enough to segregate the functions. In order
to examine the effect of best features, we perform a breadth first search (BFS)
on the corresponding trees to sort best features based on their importance in the
function; since the closer the feature is to the root, the more it is segregative.
Our experiments examine the F1 measure while varying the percentage of best
features. We start by 40% of the top-ranked best features and increment them
by 10% each time. Figure 6 shows the relationship between the percentage of
best features and the F1 measure. Based on our experiments, we find that 90%
of the best features results in an F1 measure of 0.89. However, for the sake of
simplicity, we consider all the selected best features in our experiments.
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5.7 Impact of Filtration

We study the impact of the proposed filter (e.g., BB# and Ins#) on the accuracy
of BinShape. For this purpose, we perform four experiments by applying: (i) no
filtering (ii) BB# filter, (iii) Ins# filter, and (iv) the two filters. As shown in
Fig. 7, the drop in the accuracy caused by the proposed filters is negligible.
For instance, when we test our system with two filters, the highest drop in
accuracy is about 0.017. We observe through this experiment that Ins# filter
affects accuracy more than BB# filter.

5.8 Scalability Study

To evaluate the scalability of our system, we prepare a large collection of binaries
consisting of different ‘.exe’ or ‘.dll’ files (e.g., msvcr100.dll) containing more
than 3, 020, 000 disassembled functions. We gradually index this collection of
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functions in a random order, and query the 7-zip binary file of version 15.14
on our system at an indexing interval of every 500, 000 assembly functions. We
collect the average indexing time for each function to be indexed, as well as
the average time it takes to respond to a function detection. The indexing time
includes feature extraction and storing them in the B+trees. Figure 8 depicts the
average indexing and detection time for each function.
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The results suggest that our system scales well with respect to the repository
size. When the number of functions increases from 500, 000 to 3, 020, 000, the
impact on response time of our system is negligible (0.14 s on average to detect a
function amongst three million functions in the repository). We notice through
our experiments that the ranking time and filtering time are very small and
negligible. For instance, ranking 5, 000 features takes 0.0003 ms, and to filter
high likely similar functions in the repository to a function having 100 basic
blocks and 10, 000 instructions, takes 0.009 ms.

5.9 Application to Real Malware

Table 6. Function identification in Zeus

Library No. of functions BinShape
Found FP

UltraVNC 20 28 11
info-zip 30 27 0
xterm 17 18 2
BEAEngine 21 20 0

We are further interested in studying
the practicability and applicability of
our tool in identifying library func-
tions in malware binaries. However,
one challenge is the lack of ground
truth to verify the results due to the
nature of malware. Consequently, we
consider Zeus version 2.0.8.9, where
the leaked source code is available.
First, we compile the source code with
VS and GCC compilers, and keep the
debug information for the purpose of verification. Second, we compile UltraVNC,
info-zip, xterm and BEAEngine libraries with VS and GCC compilers and index
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inside our repository. We choose the aforementioned libraries based on the tech-
nical report [30] that reveals which software components are reused by Zeus.
Finally, we test the compiled binaries of Zeus to find the similar functions with
the functions in our repository. By manually examining the source code as well
as the debug information at binary level, we are able to verify the results listed in
Table 6. We observe through our experiments that the statistical features as well
as graph features are the most powerful features in discovering free open-source
library functions.

6 Related Work

Various approaches for library function identification have been proposed. The
well-known FLIRT [3] technique builds the signatures from the first invariant
byte sequence of the function. However, the main limitations of FLIRT are
signature collision as well as requiring a new signature even for slight changes
in a function. UNSTRIP [28] employs pattern matching to identify wrapper
functions in the GNU C library based on their interaction with the system call
interface. However, UNSTRIP is limited to the wrapper functions. In libv [41],
a graph isomorphism is applied on execution dependence graphs (EDGs) to iden-
tify both full and inline functions. However, various library functions may have
the same EDGs. In addition, compiler optimization might affect the instructions
of inline functions. The well-known BinDiff [14] technique and BinSlayer [11]
(inspired by BinDiff), perform a graph isomorphism on function pairs in two
differing but similar binaries. However, these approaches are not designed to label
library functions and rely on graph matching, which is expensive to be applied
to large scale datasets. Moreover, a few binary code search engines have been
proposed. For instance, Rendezvous [31] extracts multiple features, such as n-
grams and control flow subgraphs, to form the tokens and query terms in order
to construct the search query. However, this approach is sensitive to structural
changes. TRACY [13] decomposes the CFG into small tracelets and uses longest
common subsequence algorithm to align two tracelets. However, much structure
information may be lost by breaking down the CFGs into tracelets. In addition,
TRACY is suitable for the functions with more than 100 basic blocks [13].

Some cross-architecture approaches for searching known bugs in firmware
images have been proposed. For instance, discovRE [19] extracts structural
features and applies maximum common subgraph (MCS) isomorphism on the
CFGs to find similar functions. This approach utilizes pre-filtering on statis-
tical features in order to perform subgraph isomorphism efficiently. However,
the effectiveness of the proposed pre-filtration is evaluated in Genius [21] and
demonstrates that it can cause significant reduction in accuracy. Inspired by
discovRE, Genius [21] extracts statistical and structural features, generates
codebooks from annotated CFGs, converts the codebooks into high-level numeric
feature vectors (feature encoding), and finally compares the encoded features
using locality sensitive hashing (LSH) in order to tackle scalability issues. How-
ever, the authors mentioned that codebook generation may be expensive, and
also some changes in the CFG structures affect the accuracy of Genius.
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Table 7. Comparing different existing solutions with BinShape. The symbol (•) indi-
cates that proposal offers the corresponding feature, otherwise it is empty. We use
following abbreviations for different methods: (PM) Pattern Matching, (GI) Graph
Isomorphism, (GED) Graph Edit Distance, (LSH) Locality Sensitive Hashing, (LCS)
Longest Common Subsequence, (MCS) Maximum Common Subgraph Isomorphism,
(SPP) Small Primes Product, Symbolic Execution (SE), Data Flow Analysis (DFA),
Jaccard Distance (JD), and VLAD (Vector of Locally Aggregated Descriptors).

All of the aforementioned approaches employ static analysis, however, there
exist other techniques which perform dynamic analysis. For instance, a binary
search engine called Blanket Execution (BLEX) [17], executes functions for
several calling contexts and collects the side effects of functions; two functions
with similar side effects are deemed to be similar. However, dynamic analysis
approaches are often computationally expensive, and rely on architecture-specific
tools to run executables. As a result, they are inherently difficult to support other
architectures [19].

We compare BinShape with aforementioned proposals in Table 7. A direct
comparison between Genius [21] and BinShape is not possible, since the authors
have not made Genius prototype available. However, a high-level comparison
has been done as follows. Genius is designed to identify known bugs in firmware
images, while the goal of BinShape is to identify library functions in program
binaries and malware samples. Genius extracts few statistical and structural
features where some salient features might be missing, while a richer set of
features (in terms of types and numbers) is extracted by BinShape. Genius
detects a function out of three million functions in about 0.007 s, whereas 0.14 s
takes for BinShape. However, in the preparation time (which includes codebook
generation) reported by Genius, the number of functions is not indicated to be
compared with BinShape. Based on the provided ROC curve in Genius [21] we
have obtained the average true positive rates of 0.96, while that of BinShape
is equal to 0.91. In summary, BinShape differs from existing works as follows.
BinShape extracts a rich set of heterogeneous features, which could overcome
some code changes; BinShape supports large scale of dataset and does not involve



BinShape: Scalable and Robust Binary Library Function 321

expensive computation methods; Finally, BinShape can be extended easily to
support other compilers or architectures.

7 Conclusion

Limitations. Our work has the following limitations: (i) We have not scruti-
nized the impact of inline functions. (ii) Our system is able to tackle some code
transformation such as instruction reordering, however, some other obfuscation
techniques, such as control flow flattening, affect the accuracy of BinShape. In
addition, our system is not able to handle the packed, encrypted, and obfuscated
binaries. (iii) We have tested BinShape with VS and GCC compilers, however,
binaries compiled with ICC and Clang have not been examined. (iv) We have not
investigated the impact of hardware architectures such as MIPS in this study.
These limitations are the subjects of our future work.

Concluding Remarks. In this paper, we have conducted the first investiga-
tion into the possibility of representing a function based on its shape. We have
proposed a robust signature for each library function based on diverse collec-
tion of heterogeneous features, covering CFGs, instruction-level characteristics,
statistical features, and function-call graphs. In addition, we have designed a
novel data structure, which includes B+tree, in order to efficiently support accu-
rate and scalable detection. Experimental results have been demonstrated the
practicability of our approach.
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Abstract. The behavior of copying existing code to reuse or modify
its functionality is very common in the software development. However,
when developers clone the existing code, they also clone any vulnerabil-
ities in it. Thus, it seriously affects the security of the system. In this
paper, we propose a novel semantics-based approach called SCVD for
cloned vulnerable code detection. We use the full path traversal algo-
rithm to transform the Program Dependency Graph (PDG) into a tree
structure while preserving all the semantic information carried by the
PDG and apply the tree to the cloned vulnerable code detection. We
use the identifier name mapping technique to eliminate the impact of
identifier name modification. Our key insights are converting the com-
plex graph similarity problem into a simpler tree similarity problem and
using the identifier name mapping technique to improve the effectiveness
of semantics-based cloned vulnerable code detection. We have developed
a practical tool based on our approach and performed a large number of
experiments to evaluate the performance from three aspects, including
the false positive rate, false negative rate, and time cost. The experiment
results show that our approach has a significant improvement on the vul-
nerability detection effectiveness compared with the existing approaches
and has lower time cost than subgraph isomorphism approaches.

Keywords: Vulnerability detection · Cloned code · Semantics

1 Introduction

Developers often copy the existing code to reuse or modify its functionality in
the software development. The behavior of copying similar or exactly the same
code from the existing code is called code clone. There are a lot of cloned code
segments in the large software development. Examples are abundant: 22.3% of
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Linux kernel source code was reported as the reused code, even a small num-
ber of code segments were copied at least 8 times [21]; 145 unpatched cloned
vulnerable code were confirmed in the Linux kernel 2.6.6 of Debian Squeeze
packages [10]. If the cloned code is vulnerable, it might result in the vulnerabil-
ity prevalence problem [20] because the published vulnerability probably exists
in other software but cannot be patched completely. Utilizing the information of
published vulnerabilities, an attacker could exploit unpatched cloned code and
produce disastrous influence on the software system. Therefore, we urgently need
an accurate and efficient method to detect the cloned vulnerable code.

Many approaches have been proposed for cloned vulnerable code detection
[16], such as CP-Miner [21], Deckard [11], and CBCD [19]. In these approaches,
token-based approaches leverage lexical analysis to generate the token collection
from source code, and find similar sub-sequences in the target token collection
for the cloned vulnerable code detection. Syntax-based approaches parse the
Abstract Syntax Tree (AST) [14] from the vulnerable code, and then use the AST
as vulnerability feature to detect cloned vulnerable code. However, token-based
and syntax-based approaches cannot be used to detect the code clones which
are only functionally similar without being textually similar. In fact, these code
clones can be applied to semantics-based approaches.

Program Dependency Graph (PDG) is a typical representative of the
semantics-based approaches. Finding the subgraph isomorphism in the PDG can
be used to detect cloned code segments [17], but the subgraph isomorphism prob-
lem is a NP-complete problem [23]. In order to reduce the performance impact
of the subgraph isomorphism as far as possible, Gabel et al. [9] mapped the PDG
to the corresponding AST tree, and used the similarity of AST to replace the
similarity of PDG to find the clone code. However, the process of transformation
loses part of the semantic information, which leads to the incomplete semantic
comparison. CBCD [19] adopted four optimizations to reduce the size of PDG
before the subgraph query by removing irrelevant nodes and edges or splitting
the source code with too many lines. Although it could improve the efficiency
of the cloned vulnerable code detection, it does not solve the subgraph isomor-
phism problem directly. Especially the simply source code splitting separates the
complete semantics which might produce more false positives. Consequently, we
aim to optimize the NP-complete problem of subgraph isomorphism and present
a practical cloned vulnerable code detection approach with both high accuracy
and low time cost.

In this paper, we propose a novel lightweight semantics-based approach called
SCVD for cloned vulnerable code detection which can be used for the large-scale
software. The approach converts the PDG into a program feature tree by full path
traversal from PDG while ensuring the integrity of the semantic information of
the PDG, and searches subtree in the program feature tree to detect the cloned
vulnerable code. Specifically, we have the following three contributions:

– Convert the PDG into program feature tree to reduce the execu-
tion time cost. We generate the program feature tree by parsing the PDG
and convert complex graphs into relatively simple trees while preserving the
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semantic information of the PDG. More importantly, we use program feature
tree for the cloned vulnerable code detection, thus the subgraph isomorphism
problem is bypassed.

– Apply program syntax information and the identifier mapping tech-
nique to improve the accuracy. While using the semantics-based program
feature tree, we also deal with the vertex code values in the program feature
tree at the syntax level. Through the fuzzification of the identifier names in
the program, we make the semantics-based approaches be able to deal with
the case of modified identifiers in the cloned vulnerable code effectively.

– Develop a lightweight cloned vulnerable code detection tool for
large programs. Based on our approach, we develop a lightweight practical
tool for the cloned vulnerable code detection of large programs, and perform
a comprehensive performance evaluation. The experiment results show that
our approach has a significant improvement on the vulnerability detection
effectiveness compared with the existing approaches and has lower time cost
than subgraph isomorphism approaches.

The rest of this paper is structured as follows. We first present a detailed
design of our approach and explain the important principles with typical exam-
ples (Sect. 2). Then we describe the implementation of SCVD (Sect. 3) and dis-
cuss the evaluation of SCVD (Sect. 4). After that, we discuss the limitations
of our approach (Sect. 5) and summarize the related work (Sect. 6). Finally, we
conclude the present work with a discussion of future work (Sect. 7).

2 Design

2.1 Overview

Figure 1 shows the overview of SCVD. In general, SCVD is divided into five steps:
(1) Select the vulnerability diff hunks and the target program as the raw input
data; (2) process the raw input data to obtain the valid input data; (3) generate
the PDGs for vulnerability program and target program respectively; (4) convert
each PDG into program feature tree; and (5) detect the cloned vulnerable code

Fig. 1. Overview of SCVD. The program signature generation phase generates program
feature tree from the raw input data. The cloned vulnerable code detection phase
searches similar sub-trees in the target program feature trees to detect the cloned
vulnerable code.
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from target programs by program feature sub-tree matching. In the following
subsections, we introduce the details of these five main parts: preparing the input,
preprocessing, PDG generation, program feature tree generation, and program
feature tree detection engine.

2.2 Preparing the Input

For the vulnerability signature generation, we select the diff which is used to
patch the vulnerability and the corresponding original source code as the vul-
nerability raw input. Diff is a formatted text file for code modification which is
applied to popular revision control systems. As shown in Fig. 2, a diff consists of
a series of diff hunks. Each diff hunk starts with a header containing the modified
function name and followed by a series of formatted code. In these formatted
code, each line is prefixed by a “+” symbol, “−” symbol, or no symbol which
represents line addition, line deletion, and no change, respectively. Therefore,
the vulnerability diff hunk records the changes from the vulnerable piece of code
to the patched one. Thus the vulnerable piece of code from the diff can be used
to generate the PDG of vulnerability.

Fig. 2. A diff file commited in ffmpeg.git

For the target program signature generation, we represent source code func-
tion as a basic unit of target program and search the cloned vulnerable code in
these functions.
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2.3 Preprocessing

We use the diff and the vulnerable source code as the raw inputs of vulnerable
program. Combined with the vulnerability information, we analyze the vulner-
ability diff and extract the diff hunks that are directly related to fixes. If the
source code extracted directly from the diff hunks has the incomplete syntax
structure and the fragmentary context, it may lead to wrong results. Therefore,
we need to do the following preprocessing.

First, extract the vulnerable code fragment. We can obtain the vulnerable
code fragment from the diff by extracting the lines prefixed by a “−” symbol and
the lines with no prefix. Second, process the whitespace, format, and comment.
These meaningless modifications in the diff hunk may impact the result of cloned
vulnerable code detection. Therefore, we need to filter them out. Third, complete
the structure of code fragment. A diff hunk is a snippet of code and may lose
the necessary context in some cases. For example, the code fragment might only
have “if” statement but have no execution statement block. In the case of no
complete context, it is difficult to describe the characteristics of the vulnerability
accurately. For this reason we compare the vulnerable code fragment with the
original function source code to complement enough context for all incomplete
structures.

We also need to process the target program. The target software source code
is relatively integrity, therefore we only need to complete the first two steps in
the preprocessing phase.

2.4 PDG Generation

We use the open source platform Joern [27] to generate the PDG. On the one
hand, each vertex in the PDG is a code entity such as a statement, a predicate
expression, or an operand. It records the source code text, the location of source
code, and the vertex type such as declaration or control-point. On the other
hand, the PDG uses the data dependency edges to reflect the data transfer
between two vertexes and uses control dependency edges to reflect the change
of the program execution process.

After obtaining the PDG, what we need to do next is to identify the identifiers
in each vertex and map the identifier names. We realize that the semantics-based
approaches use the code value in vertex as the conditions to decide whether the
two vertexes are the same. However, using this comparison method is unable to
detect the modification of the identifier name in the cloned vulnerable code.
In fact, according to our statistics in the Vulnerability Code Instance Data-
base (VCID) [20] which contains code reuse instances of vulnerabilities, there
are 26.5% of these code reuse instances contained local modifications, such as
variable name or function name modifications. Therefore, the locally modified
code-clone is very necessary to be solved. Through mapping all variables (or
functions) to a same name, or mapping the same type of variables to a same
name, we eliminate the differences in identifier names and preclude the false
negatives due to the identifier name modification.
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2.5 Program Feature Tree Generation

In this subsection, we present the details of program feature tree generation.
It is known that subgraph isomorphism algorithm is too inefficient to be used
for the vulnerability detection of large-scale programs directly. Therefore, we
use the program feature tree to describe the feature of program. The program
feature tree consists of a control dependency tree converted from the control
dependence part of PDG and a set of data dependency edges extracted from the
data dependence part of PDG.

We use the full path traversal algorithm to generate the program feature tree
from the PDG. The main idea of the full path traversal algorithm is to use depth-
first traversal in the PDG and ensure all reachable paths are accessed. In the
PDG, the vertex represents the code entity and the edge indicates the relation-
ship between two vertexes. Through traversing all reachable paths and recording
the vertexes and edges encountered during the traversal, we can obtain all the
program semantic information carried in the PDG. The process is elucidated in
the following Algorithm 1. There are three steps.

First, we record all the real entrance vertexes into a set (lines 4–8). In the
PDG, there is a virtual vertex named “Entry”. The “Entry” vertex connects each
vertex directly which has no previous vertex, consequently these vertexes are the
real entrances of the PDG. We traverse from the “Entry” vertex of the PDG and
record all the real entrance vertexes into a set. Second, starting with each vertex
in the set, we traverse all the reachable paths in the PDG (lines 9–25). Third,
during the traversal, we apply all the vertexes and the control dependency edges
to construct the control dependency tree, and store all the data dependency
edges in the other set (lines 18–20). Thus, we divide the program feature tree
into two parts after the traversal. The first part is the control dependency tree
consisting of vertexes and the control dependency edges from the PDG, and it
is used to find the candidate matched tree. The second part is the set of data
dependent edges of the PDG, and this part is used to confirm the existence of
the cloned vulnerable code.

It is important to note that the traversal only has two conditions to backtrack
to the upper level. One condition is when the current vertex has no successor
vertex. This is an obvious condition. The other condition is when the traversal
returns to the entrance vertex of a circle once again. PDG, as a directed graph,
could form a circle because of the existence of data dependency edges and control
dependency edges. When a traversed vertex is encountered in the current tra-
versal path, we deem that the vertex is an entrance vertex in a circle. Then the
traversal begins backtracking. In this way, all the reachable paths are traversed
until all of them have been visited.

Considering that the “Entry” node of PDG is a meaningless node and just
connects the PDG nodes that have no parent nodes, we remove the “Entry”
node and get a forest consisting of many program feature trees after traversing
the PDG. Thus the large-scale program feature tree is transformed into some
smaller trees which makes the subtree searching cheaper.
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Algorithm 1. The full path traversal algorithm
Input: A graph G = {graphNodes, graphEdges}, where graphNodes =

(node1, node2, . . . , noden) is a set of nodes in the graph and graphEdge =
(edge1, edge2, . . . , edgem) is a set of edges in the graph

Output: A set of program feature tree Trees = {tree1, tree2, tree3, . . .}, where each tree in
it is a tree-like data structure

1: Trees ← ∅
2: EntryNodeStack ← ∅
3: EntryNode ← Entry {refer to the EntryNode as the “Entry” vertex in the PDG}
4: for each nodei ∈ graphNodes do
5: if nodei = EntryNode then
6: consider nodei as the real entrance of the PDG and push it into EntryNodeStack
7: end if
8: end for
9: while EntryNodeStack is not empty do
10: set curEntryNode ← EntryNodeStack.topNode()
11: curGraphNode ← curEntryNode
12: Tree ← ∅
13: curTreeNode ← create a new tree node for curGraphNode
14: add curTreeNode into Tree
15: repeat
16: if curGraphNode has already been traversed in this path or curGraphNode has no

successor node then
17: backtrace and reset curGraphNode as the upper level node
18: else if curGraphNode has successor node to traverse then
19: select one successor graph node nodei and set curGraphNode ← nodei
20: curTreeNode ← create a new tree node for curGraphNode
21: add curTreeNode and relevant edge information into Tree
22: end if
23: until curGraphNode = curEntryNode
24: got an independent tree, and then add Tree into Trees
25: EntryNodeStack.pop()
26: end while
27: return Trees

The full path traversal algorithm requires special emphasis on two points. The
first point is that the data dependencies and control dependencies are separated
in the program feature tree, and the second point is the full path traversal algo-
rithm eliminates the inconsistent traversal order caused by the different entries
for a circle traversal.

Separation of data dependency and control dependency. For the separa-
tion of data dependency and control dependency, we are based on the following
two considerations.

First, the number of data dependency edges may be several times larger than
the number of control dependency edges in many cases (the explosion problem of
data dependency edges). Such a large number of edges will seriously reduce the
execution efficiency of the approach. We randomly selected 1000 functions from
the source code of Wireshark 2.2.4 and found that there were 12% functions in
which the number of data dependency edges is at least 5 times more than the
number of control dependency edges.

Second, data dependency edges are more sensitive to program modification.
Data dependency edges are more sensitive for subtle changes in the program
than control dependency edges. For example, the addition of an assignment
statement in a consecutive code fragment could cause a huge increase of the data
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dependency edges. However, many of these edges are irrelevant to vulnerability
feature. Thus these irrelevant data dependency edges pose a challenge to our
approach of the discontinuous cloned vulnerable code.

In order to solve the first problem as much as possible, we divide the process
of vulnerability detection into two steps. First, we compare the similarities of the
control dependency tree which consists of control dependency edges and vertexes
to search for matching candidate subtree. Second, we compare the similarity
of the parts of data dependency edges between the candidate subtree and the
vulnerability program feature tree. If there are no candidate subtrees in the
target program feature tree, then we will no longer compare the similarity of
data dependency edges. Thus we use two separated steps to eliminate the impact
from the explosion problem of data dependency edges.

To solve the second problem, our approach does not require data dependency
edges exactly the same, but rather we set a threshold to indicate the similarity
of data dependency edges. If the data dependency edges similarity between the
candidate subtree and vulnerability feature tree is higher than the threshold,
then we conclude that this is a cloned vulnerable code.

Elimination of the inconsistent traversal order caused by the different
entries in a circle traversal. It is known that the different traversal order
will be obtained if the traversal starts from different entries of a circle. In this
situation, it is difficult for us to find the isomorphic subgraphs containing the
circles.

However, the full path traversal algorithm can solve this problem. As shown
in Fig. 3 there is a circle consisting of three vertexes: C, D, and E. The circle
has two entries C and D. We use two different types of lines to distinguish two
different vulnerability PDGs. It is obvious that these two vulnerabilities can
enter the same circle from different entries. In this condition, different traversal
entries will produce completely different trees. From the target program control
dependency tree obtained using the full path traversal algorithm, we can see that
no matter which entry the traversal starts from, we can always find the subtree
which matches with the vulnerability control dependency tree.

From the above example, we can easily see that although the approach can
ensure the integrity of paths, it will produce a lot of redundant nodes. We use
the shared node technique to optimize this problem. Despite the graph vertex
may generate multiple tree nodes after traversal, we do not copy all information
from the graph vertex to each tree node. Instead, in each tree node we use a
pointer to point out the original graph vertex. This makes all the redundant
tree nodes share the information of the original graph vertex. The use of share
node technique not only reduces the large amount of memory overhead caused
by these redundant nodes, but also retains all the information in the PDG at the
maximum degree, which is also helpful in the process of vulnerability detection.
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Fig. 3. Full path traverse algorithm. We use depth-first traversal policy and ensure all
reachable paths are accessed.

2.6 Program Feature Tree Detection Engine

The program feature tree detection engine is responsible for finding cloned vul-
nerable code using program feature tree. Specifically, our cloned vulnerable code
detection process can be divided into the following three steps.

First, find all the matched candidate root nodes. We first find all the candi-
date nodes in the target program data dependency tree. These candidate nodes
match with the root node of vulnerability data dependency tree in both the code
text and the type of node, and are used for matching subtree. Then we filter
the candidate root nodes which have less successor nodes than the vulnerabil-
ity data dependency tree’s root node. Because this kind of node must have no
subtrees matching the vulnerability data dependency tree, we use the number
of sub-nodes to filter completely impossible candidate nodes.

Second, search the matched candidate subtree. For each node obtained in
the previous step, we find the subtree which matches the vulnerability control
dependency tree in the target software control dependency tree as the candidate
tree. Two nodes are considered to be matched if both the vertex code value and
vertex type are the same.

Third, confirm the matching subtree using data dependency edges. For each
candidate subtree, we compare data dependency edges between these matching
nodes and compute the similarity of data dependency edges. If the similarity
value is higher than the threshold which we set in advance, then we record it as
a cloned vulnerable code. Finally, we output the information of target program
into the detection result report file, such as the similarity value and the location
of matching code.
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3 Implementation

We implemented our approach as a cloned vulnerable code detection tool using
Python. The tool consists of four primary components: preprocessing module,
PDG generation module, program feature tree generation module, and cloned
vulnerable code detection module. In the preprocessing module, we received
the vulnerability diff, vulnerability source code and target program source code
as the raw inputs. After a series of extraction steps described in Sect. 2.3, we
obtained the formatted vulnerability program segment and target program seg-
ment.

We utilized Joern [27] to generate the PDG for the preprocessed program
segment. Joern is a code analysis platform for the analysis of software source
code programmed by C/C++. Subject to the restrictions of Joern in the PDG
generation, SCVD can only handle the source code written in C/C++ language
at present. Moreover, in the process of our development, we found that Joern
would generate a new vertex for each character in the statement when it cannot
parse the statement. In this situation, hundreds of thousands of meaningless
vertexes will be generated by Joern, which leads to a serious impact on the
subsequent vulnerability detection. In view of the limitation of Joern, we monitor
the occurrence of such a situation, and once it happens we will terminate the
PDG generation directly.

After the PDG generation, we generated the program feature tree by using
full path traversal algorithm. In order to make the semantics-based approach
deal with the variable (or function) name modification, we mapped the identifier
name in each vertex of the PDG. Thus we reset all variable (or function) name
to the same value so that we can quickly complete the identifier mapping in a
very short time.

The redundant nodes generated in the full path traversal bring challenges
to our implementation. A large number of redundant nodes will not only cause
memory wasting, but more importantly, it will make the vulnerability searching
process extremely complex. In order to solve this problem, we used share node
technique when we designed the data structure for the program feature tree.
In our design, all the original information retained in the original PDG nodes
and all the tree nodes shared the data through one pointer. Thus each tree
node only needs to carry their own unique information instead of copying all the
information in graph nodes. More importantly, all the redundant nodes can share
the information through the corresponding graph nodes. As a result, once the
state of the node has been changed, we only need to modify the original graph
node data. Then all the tree nodes created by the graph node can perceive the
change of the information. Thus we can avoid a lot of inefficient data modification
and prevent the possible repetitive traversal.

4 Evaluation

We evaluated our approach SCVD in three open-source software including FFm-
peg, Wireshark, and Linux kernel. Moreover, we evaluated the performance of
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SCVD from three aspects: false positive rate, false negative rate, and time cost.
In this section, we first describe the experimental setup, then show the results
of our experiments.

4.1 Experimental Setup

We evaluated the performance of the approach on a Centos 7/64bit with two
2 GHz Intel Xeon processors and 8 GB of memory. In order to obtain the original
test case, we chose three software from Vulnerability Patch Database (VPD) and
Vulnerability Code Instance Database (VCID) [20]. VPD contains 3454 diff hunks
and these diff hunks correspond to 1761 vulnerabilities in 19 products. VCID
contains 455 code reuse instances of vulnerabilities. The main reasons why we
choose these three software are as follows.

– Joern [27] can only generate the PDG for software written in C/C++, thus
we have to choose the software programmed in these languages.

– The software should have sufficient number of vulnerability test cases (vul-
nerability diff hunks and vulnerability source function code) and code reuse
instances. We must ensure that there are enough test cases to evaluate the
performance accurately.

– The types of vulnerabilities in the test cases and the ways to fix them should
be comprehensive. If we only use a single test case type, the results cannot
fully reflect the performance of the approach in a various aspects.

Finally, we selected 832 vulnerability diff hunks from VPD to evaluate the
false positive rate, including 117 vulnerabilities of FFmpeg, 169 vulnerabilities
of Wireshark, and 546 vulnerabilities of Linux kernel. We selected 230 code reuse
instances from VCID to evaluate the false negative rate, including 14 vulnera-
bilities of FFmpeg, 15 vulnerabilities of Wireshark, and 201 vulnerabilities of
Linux kernel. We randomly selected 2000 functions from FFmpeg, Wireshark,
and Linux kernel, respectively, and used these 6000 functions to test the time
cost.

We compared the false positive rate and the false negative rate among CBCD
[19], Deckard [11], ReDeBug [10], and our approach SCVD. For the false positive
rate, we used the patched vulnerability code as the target program. If we find
the matching part in the target program, we deem this is a false positive test
case. For the false negative rate, we used the code reuse instances as the target
program. If we do not find the matching part in the target program, we deem
this is a false negative test case.

In order to compare our approach with other types of approaches, we also
used the same data to test CBCD (Semantics-based), Deckard (AST-based),
and ReDeBug (Token-based). According to the default value of CBCD, we set
the parameter as 8 lines when the vulnerability source code was split to sub-
segments. For Deckard, we set the parameters min tokens to 3, stride to 2, and
the similarity threshold to 0.95. For ReDeBug, we set the parameter ngram size
to 4 when the number of lines for the vulnerable code is greater than or equal
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to 4, and set ngram size to 1 when the number of lines is less than 4. For
SCVD, we set the data dependency edges similarity threshold to 0.8, which was
an empirical value obtained by a number of experiments.

We compared the time cost of our approach with the subgraph isomorphism
function get subisomorphisms vf2() provided by igraph [6]. The function uses
VF2 [5] algorithm as the implementation. VF2 is recognized as the best graph
similarity detection algorithm. CBCD also uses the function in the subgraph
isomorphism matching. The reason why we do not compare the time cost with
CBCD and Deckard directly is that SCVD mainly focuses on converting the PDG
into program feature tree to bypass the NP-complete subgraph isomorphism.
However, CBCD is committed to accelerate vulnerability detection by reducing
the size of the PDG before the subgraph isomorphism operation. It is believed
that if SCVD uses the methods proposed in CBCD to reduce the size of the
PDG before the vulnerability detection, it will get faster than it does now.

4.2 Experimental Results

We describe the results of evaluation in this subsection, including false positive
rate, false negative rate, and time cost.

False Negative Rate. Figure 4 shows the false negative rate of three
approaches for software FFmpeg, Wireshark, and Linux kernel. Compared with
CBCD, Deckard, and ReDeBug, it is obvious that SCVD has a significant
decrease in the false negative rate. Especially for FFmpeg, the false negative
rate of SCVD is only 14.2%, while that of CBCD is 64.2%, and that of Deckard
and ReDeBug even reaches as high as 85.7%.

Though both SCVD and CBCD are semantics-based approaches, SCVD has
a much lower false negative rate because it has mapped the identifiers. The exist-
ing PDG-based cloned vulnerable code detection approaches could tolerate the
replacement of program control statements, but could not identify the variable
name modification effectively. For example, 44% of the false negative test cases
for CBCD are due to the variable name modification. However, we use the iden-
tifier name mapping technique, which maps all the variable (or functions) name
to the same value and eliminates the difference between the identifier names.
Thus our approach obtains a lower false negative rate.

It is not surprising that SCVD has a lower false negative rate than Deckard.
First of all, SCVD is semantics-based, and it maps the variable name in the syn-
tax level. Therefore, SCVD could fully consider the syntax and semantic infor-
mation of the code in the cloned vulnerable code detection. Although Deckard
also considers the syntax information using AST, it ultimately uses the gener-
ated vectors for each node in the AST to detect the code similarity. In this way,
Deckard might have a faster execution speed, but it greatly reduces the accuracy
of the approach. Second, compared with the semantics-based approach, Deckard
has a great dependence on the syntax of the code, which is very sensitive to the
code modification. As a result, Deckard cannot identify some situations of code
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Fig. 4. False negative rate Fig. 5. False positive rate

modifications robustly, such as re-ordered statement clones and non-contiguous
clones. In fact, Li et al. [19] also compare CBCD and Deckard in their experi-
mental results and show the similar problems of Deckard.

For ReDeBug, the hash value for the n-token window is used for the code
similarity comparison. Thus, any modification can change the hash value, which
results in the false negatives directly. However, almost all of the code reuse
instances we use involve identifier modifications. Therefore, the false negative
rate of ReDeBug is very high. This also shows that ReDeBug can hardly detect
the cloned vulnerable code except non-substantive modifications such as com-
ments and whitespaces.

We also analyze the false negative test cases in SCVD and find out a disad-
vantage of the semantics-based clone detection approach, that is, the changes of
macro variables. In general, we always prefer to use macros to replace the hard-
coding numbers. Because these hard-coding numbers called magic numbers can
cause a lot of problems in the code maintenance. However, Joern cannot identify
macros correctly at the time of writing, thus the macros are treated as a general
variable in the PDG generation. For example, the vulnerability in our test case,
which named CVE-2014-8544 in NVD, modifies the hard-coded function return
value “−1” to the macro variable “AVERROR INVALIDDATA”. This is a typ-
ical example of code reuse instances, but the semantics-based approach cannot
handle correctly.

False Positive Rate. Figure 5 shows the false positive rate of the three
approaches for software FFmpeg, Wireshark, and Linux kernel. The false posi-
tive rate of our approach is lower than that of CBCD, but higher than that of
Deckard and ReDeBug. The reason why Deckard and ReDeBug have a relatively
low false positive rate is that it is more sensitive to the code modification. Thus
they report the cloned vulnerable code only when the two code fragments are
highly consistent. However, it is also the reason why Deckard and ReDeBug have
a fairly high false negative rate which is unacceptable in practice.
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For CBCD, there are mainly two reasons causing the high false positive rate.
First, the parameters of functions called in the target program are not exactly
the same as the vulnerability program. CBCD exempts all the vertexes that rep-
resent the parameters of function calls, thus some semantics are lost. However,
we consider both function names and function parameters in the vulnerability
detection, which makes it handle the parameters of function more precisely. Sec-
ond, when the vulnerability source code exceeds 8 lines, CBCD splits the source
code to sub code segments by lines simply, and uses these sub code segments
for the vulnerability detection. However, this splitting without considering the
context makes the original PDG be split into several isolated graphs, and the
complete semantics be separated. If the size of the graph becomes smaller, it will
increase the possibility of finding a complete matching graph, but also lead to
an increase in the false positive rate undoubtedly.

For our approach SCVD, two main situations causing false positives are as
follows. First, the coarse-grained identifier mapping leads to the false positives. In
some target programs, there are exactly the same structure as the vulnerability
program, but only the name of the variable is different. We map all the variables
(or functions) to the same value. Therefore, SCVD gets two identical programs,
but that is not the case actually. Second, a common approach to vulnerability
patching is checking the validity of variable before using it. The changes of PDG
in this situation is adding the control vertex and the corresponding edges in
the periphery of the vulnerability PDG. As a result, the original PDG becomes
the subgraph of the new PDG, thus the matching will be reported when the
target program is detected, which leads to the emergence of false positives. For
example, CVE-2013-3674 is a buffer overflow vulnerability caused by the function
call ignoring the check of parameter size. Figure 6 clearly shows that the patching
of CVE-2013-3674 is adding the validity check for the parameters of the function.
Because the original statements still exist, SCVD reports the existence of the
vulnerability falsely.

These two situations mentioned above make the false positive rate of SCVD
a little high. In fact, these two situations in the actual applications are either
unusual or very easy to exclude, therefore the false positive rate of SCVD will be
lower than that shown in Fig. 5 actually. Compared with Deckard and ReDeBug
which have a low false positive rate and a very high false negative rate, SCVD
is obviously more practical and effective.

Time Cost. Table 1 shows the time cost of each step in SCVD and the subgraph
isomorphism function get subisomorphisms vf2() provided by igraph [6]. We
use a total of 6000 functions to test the time cost, that is, we randomly select
2000 functions from FFmpeg, Wireshark, and Linux kernel, respectively. Because
the running time of the program is affected by many factors, we test ten times and
take their average values as the final experimental results. For software FFmpeg,
Wireshark, and Linux kernel, we can clearly see that SCVD is faster than the
approach using sub-graph isomorphism algorithm. Although converting PDG
into the program feature tree also spends extra time, it can significantly improve
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Fig. 6. The diff hunk of CVE-2013-3674

the performance of approach on the whole. Considering that CBCD is optimized
before the PDG comparison, we believe that SCVD will have a more significant
improvement in accuracy and execution speed if the optimization operations
proposed in CBCD are used to reduce the size of PDG before converting.

Table 1. Time Cost (ms)

Target software Step 1 SCVD get subisomorphisms vf2()

Step 2 Step 3 Total

FFmepg 850789 1526 307697 309223 468446

Wireshark 788126 758 433485 434243 681094

Linux kernel 663011 903 545041 545944 892744

In addition, we also list the time cost of each step during the execution of
SCVD in Table 1. We divide the execution process of SCVD into three steps. Step
1 is the PDG generation for two input programs. We can see that this step is
very time-consuming, especially for larger programs. But every semantic-based
algorithm goes through this step, and it uses either Joern as we do or other
program-analysis tools such as CodeSurfer [2]. Step 2 in SCVD is the program
feature tree generation. From the implementation point of view, using the full
path traversal algorithm to convert PDG into a program feature tree might be
very complex. However, from the experimental results, we are surprised to find
that this part of time cost is very little, almost negligible. Step 3 in SCVD
is the program feature tree detection. Compared with step 1, this step also
costs very little time. Although the generation of PDG takes a lot of time, the
generated PDG can be reused. For this reason, we are not take the generation
of PDG into account when comparing the execution time of the SCVD with
get subisomorphisms vf2().

In theory, the time complexity of SCVD is not less than the subgraph isomor-
phism algorithm. However, SCVD is indeed faster than subgraph isomorphism
algorithm in actual test results. There are mainly three reasons. First, the large-
scale tree is transformed into some smaller trees after removing the “Entry” node
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of PDG. This makes the subtree searching cheaper. Second, the separation of
data dependency and control dependency improves the efficiency of execution.
By filtering the dissimilar subtrees in the control dependency part in the first
step, we can save considerable time for the data dependency comparison. Third,
we use the shared node technique in the implementation to reduce the impact
of redundant nodes on both time complexity and space complexity to a certain
extent.

5 Limitations

In the following, we discuss the limitations of our approach. First, although
SCVD performed very well in experimental results, there are still many places
in the implementation of SCVD to be optimized. Specifically, we need to optimize
the implementation of the program feature tree detection engine to improve the
execution efficiency of the approach.

Second, the coarse-grained identifier mapping leads to the increase of false
positive rate. Considering the mapping efficiency, we map all variables (or func-
tions) to a same name. Unfortunately, as shown in Sect. 4.2, this coarse-grained
identifier mapping leads to the increase of false positive rate. It is possible that
two pieces of code with the same structure but different variables will become
exactly the same after the coarse-grained identifier mapping. Therefore, we need
to refine the granularity of the identifier mapping in the future. We can divide
the identifiers into several categories, such as variable, const variable, macro, or
different type of variable, then map the same category of variables to a same
name.

Third, our experiments focuses on C/C++ open source software. This is
because SCVD is implemented by Joern in the PDG generation and Joern can
only generate the PDG for software written in C/C++. While SCVD is language
agnostic, experiments need to be conducted to analyze target programs written
in other languages.

6 Related Work

In this section, we discuss the related work about the cloned vulnerable code
detection. The approaches can be classified into four categories: token-based
approach, string-based approach, syntax-based approach, and semantics-based
approach.

The token-based approaches [10,15,21,24] firstly generate the token sequence
collection from the source code by lexical analysis. Then they find the similar
subsequences in the target token collection to detect the vulnerable code. The
suffix tree algorithm is the most commonly used technique in these approaches
such as CCFinder [15]. Besides, CP-Miner [21] utilized the frequent subsequence
mining technique to find the subsequence. Sajnani et al. [24] used MapReduce
parallel processing techniques to improve the efficiency of token comparisons.
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The token-based approach is language agnostic and it always has a highly effi-
ciency in the cloned vulnerable code detection. But these methods cannot toler-
ate the modification in the cloned vulnerable code, such as inserting or deleting
some code lines.

The string-based approaches [7,12,13] compare the source code strings for the
cloned vulnerable code detection. Generally, the direct source code comparison is
very inefficient, thus the raw strings tend to be processed before the comparison.
Johnson [13] first proposed a text-based cloning detection method using hash
technique, and leveraged the incremental hash function to find the code segment
which had the same hash value. In his another article [12], the Karp-Rabin
Fingerprinting technology was used to process the source code strings. Ducasse
et al. [7] developed a language independent cloned vulnerable code detection
tool. They put every line of source code as a code segment, and transformed the
entire source code into an ordered set of code segments as the matching target
before the direct string matching. The string-based approaches use the string
matching in the cloned vulnerable code detection, so it is only efficient for the
exactly identical cloned vulnerable code.

The syntax-based approaches [1,3,4,11,18,22,26] suggest that similar code
segments should have similar syntax structures. The AST and parse tree are
the most commonly used structures for syntax-based cloned vulnerable code
detection. Baxter [4] first applied the AST technique to this field. However, it
is inefficient to generate the AST for large programs and look for vulnerabilities
in the AST tree directly. As a result, the syntax-based approaches, such as
Deckard [11] and CloneDR [1], used the hash to speed up the execution of the
approach. For example, Deckard generated a subtree-type vector for each node
of the AST, and then used the local sensitive hash technique to calculate the
similarity between the generated vectors. Mayrand et al. [22] extracted 21 kinds
of metrics from the generated AST, and compared the vectors of these metrics
from four aspects to check the similarity of the source code. In addition, White
et al. [26] utilized the machine learning to establish the vulnerability pattern on
the syntactic level to determine the existence of the clone vulnerability code.

The semantics-based approaches [8,9,17,19,25] compare the similarity of the
code from the semantic level. Most of these approaches are represented by PDG.
Ferrante et al. [8] proposed the PDG which combined data dependence and con-
trol dependence for all operations in a program. Komondoor et al. [17] proposed
that looking for isomorphism PDG subgraph could be used to find the clone
code segment. Sheneamer et al. [25] proposed a machine learning framework to
classify vulnerabilities by different characteristics in the cloned vulnerable code
detection. In fact, semantics-based approaches consider the similarity of code
from the semantic of the program, which makes it more robust than the above
three approaches.

However, the subgraph isomorphism is a NP-complete problem, the time cost
could hardly be tolerated for the large scale programs. To solve this problem,
CBCD [19] reduced the size of PDG before the subgraph isomorphism execu-
tion by removing irrelevant nodes and edges, or splitting the source code which
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has too many lines. The optimization approach could reduce the size of PDG
effectively and improve the efficiency of the cloned vulnerable code detection,
but the subgraph isomorphism problem still existed. Gabel et al. [9] joined the
PDG on the basis of Deckard. They mapped the PDG to the corresponding AST
tree and then replaced PDG with AST to calculate the similarities between two
programs. In this way they could speed up the PDG-based approach, but the
process of transformation lost part of the semantic information which could lead
to a wrong comparison result. Unlike CBCD and Gabel et al.’s work, we con-
verted the PDG into program feature tree, while preserving all the semantics
information in PDG. Using program feature tree to represent program features,
we could solve the subgraph isomorphism problem directly and ensure the accu-
racy of the algorithm at the same time.

Recently, there are some token-based, syntax-based, or semantics-based vul-
nerability detection approaches [24–26] using machine learning or distributed
techniques. Indeed, these approaches improved the efficiency to some extent,
but we did not compare the performance with these approaches. The reason is
that these approaches required a lot of vulnerability data for training, while our
approach focused on the situation that a vulnerability should be detected even
if it matched with one case in the past.

7 Conclusion

In this paper, we have proposed a novel semantics-based cloned vulnerable code
approach SCVD. We use the full path traversal algorithm to transform the PDG
into program feature tree for the cloned vulnerable code detection. The algorithm
can preserve all the semantic information carried by PDG, and use the simple
tree searching to detect the cloned vulnerable code instead of the NP-complete
subgraph searching. We also apply the program syntax information and the
identifier mapping technique to improve the accuracy.

We have developed a cloned vulnerable code detection tool and evaluated
the performance by a large number of experiments. Our experimental results
indicate that the program feature tree generated by the full path traversal could
replace the PDG for cloned vulnerable code detection completely. SCVD has
a significant improvement on the vulnerability detection effectiveness compared
with the existing approaches such as CBCD, Deckard, and ReDeBug, and has
lower time cost than subgraph isomorphism approaches.

For future research, it is interesting to address the limitations mentioned
above and strive to detect the cloned vulnerable code more effectively. In addi-
tion, we will try to integrate the optimization methods proposed in CBCD into
our approach to further reduce the time cost.
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Abstract. Regularly, hackers steal data sets containing user identifiers
and passwords. Often these data sets become publicly available. The
most prominent and important leaks use bad password protection mech-
anisms, e.g. rely on unsalted password hashes, despite longtime known
recommendations. The accumulation of leaked password data sets allows
the research community to study the problems of password strength esti-
mation, password breaking and to conduct usability and usage studies.
The impact of these leaks in terms of privacy has not been studied.

In this paper, we consider attackers trying to break the privacy of
users, while not breaking a single password. We consider attacks reveal-
ing that distinct identifiers are in fact used by the same physical person.
We evaluate large scale linkability attacks based on properties and rela-
tions between identifiers and password information. With these attacks,
stronger passwords lead to better predictions. Using a leaked and publicly
available data set containing 130× 106 encrypted passwords, we show
that a privacy attacker is able to build a database containing the mul-
tiple identifiers of people, including their secret identifiers. We illustrate
potential consequences by showing that a privacy attacker is capable of
deanonymizing (potentially embarrassing) secret identifiers by intersect-
ing several leaked password databases.

1 Introduction

Data sets containing user identifiers and password related information are regu-
larly published. In general, these data sets have been hijacked by some hackers,
who then published the data on the Internet. The list of such leaks is quite long
and only a small fraction of it is listed in Table 1. Taken all together this con-
stitutes a large corpus of personal information. Two factors are worrying in this
context. First, the size of the leaks tends to increase, putting more and more
users at risk. Second, the passwords are often insufficiently protected, despite
long time known recommendations.1 The most prominent and important leaks
over the last years - some of which are listed in Table 1 - use bad password
protection mechanisms.

It is commonly accepted that insufficiently protected passwords - e.g. relying
on unsalted password hashes or using the same encryption key - have weak
1 Such as recalled in the OWASP Password Storage Cheat Sheet.
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Table 1. Large leaked password databases. Most of them use password-equivalents.

Top 5 confirmed password leaks on “’;–have i been pwned?”a in February 2017

Site #identifiers Yearb Protection Password-equivalent?

MySpace 360 million 2008 (2016) hash, sha1 yes

LinkedIn 164 million 2012 (2016) hash, sha1 yes

Adobe 153 million 2013 encryption, 3des yes

VK 100 million 2012 (2016) plaintext yes

Rambler 100 million 2014 (2016) plaintext yes

Data sets used in this paper

Name #identifiers Category Protection Password-equivalent?

A 1, 5 million Adult Plaintext yes

B 1 million Social network salt + hash, md5 no

C 164 million Social network hash, sha1 yes

D 153 million Software company encryption, 3des yes
a https://haveibeenpwned.com/PwnedWebsites - retrieved February 2017.
b If the release year is different from the hack year, the release year is provided in
parenthesis.

security properties and ease the breaking of passwords. Still, in the light of
the important number of leaks that actually use a bad password protection
mechanism, it is important to understand all the different types of attacks -
including privacy attacks - that an attacker can perform.

These last few years, research focused on password user studies [1,5,25],
password breaking [18,26] and estimation of password strength [1–3,6,13,15,
24]. Most existing attacks apply to passwords that are used by an important
number of users. E.g. dictionary attacks or grammar based attacks [26] focus
on passwords that a human would generate. Password popularity is also used
to measure the strength of a password [7,14,24]. The intuition is that the more
frequent a password is, the less secure it is. Conversely, rare password are found to
be more secure. The popularity distribution of passwords typically follows a Zipf
law [7,14] - meaning that the frequency of a password is inversely proportional
to its rank - as exemplified for the data set D used in our study in Fig. 1. Related
work mainly concentrates on frequent passwords represented on the left hand
side of this figure.

In this work, we focus on rare passwords (i.e. supposedly secure passwords),
corresponding to the heavy tail of the password distribution. In our example
distribution (Fig. 1), this corresponds to the passwords located at the bottom
right of the curve. We worry about the information that a privacy attacker
can find automatically without recovering the password clear text. Data sets
with insufficiently protected passwords provide password-equivalents that can be
reused in subsequent attacks, even though the corresponding clear text password

https://haveibeenpwned.com/PwnedWebsites
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Fig. 1. Distribution of passwords in the data set D used in our study. For each pass-
word appearing in the data set we compute its rank in the data set (horizontal axis)
and its number of occurrences (vertical axis). The relatively flat aspect on a log/log
representation is characteristic of a Zipf law [21].

is never disclosed. Typical password-equivalents are unsalted password hashes
and passwords encrypted with a fixed unknown key.

Contributions. We introduce a model for leaked identifier and password data
sets regarding privacy matters. We formalize the notion of password-equivalents.
We further describe the privacy attacker and define the tools and relations she
will operate on identifier names and passwords.

We present classifiers for linking identifiers and revealing secret links, i.e.
links that people do not reveal publicly. Using these classifiers, for a subset of
these secret links the privacy attacker is able to deanonymize the associated
secret identifiers.

We use a publicly leaked data set (named D in this paper) to evaluate our
classifiers. It is one of the largest publicly available data set in its kind containing
153 × 106 identifiers and 130 × 106 encrypted passwords. With this dataset we
show that a privacy attacker can link millions of identifiers, and deanonymize
hundreds of thousands secret identifiers. Having no ground truth (for obvious
privacy reasons), we estimate the precision of the classifiers through indirect
measurements. Finally, we illustrate the consequences of a privacy attack that
deanonymizes secret identifiers appearing in a data set related to adult content
(denoted A in this paper), by intersecting A with D.
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2 Problem Statement

This section defines the problem being addressed by our work. We introduce the
attacker model and define linkability properties. We finish with a note on legal
and ethical aspects and the precautions used throughout our experiments.

2.1 Attacker Model

We consider a privacy attacker that retrieved a data set D containing identifiers
(e.g. name@mail) and password-equivalents. The privacy attacker’s objective is
to link identifiers within D. In contrast, most related work consider the confi-
dentiality attacker willing to retrieve clear text passwords.

The privacy attacker is interested in building a large database revealing sen-
sitive links of potential victims. This is different from an attacker focusing on
a specific person and gathering information on this victim (via search engines,
online social networks, approaching the victim, etc.). The privacy attacker might
not carry out the final targeted attack, such as targeted scam or spam, herself.
Instead, she might just sell the resulting database.

The privacy attacks presented in this paper target the passwords that are
less sensitive to password breaking. Consequently, users that are subject to the
privacy attacker are not necessarily subject to the confidentiality attacker and
vice-versa.

2.2 Model and Definitions

Throughout the paper, we use the privacy related notions defined hereafter.

Definition 1. A password-equivalent is the output of a function f(p) applied
to a plain-text password p. f(p) is a function in its strict sense, meaning that
each plain-text password is related to exactly one password-equivalent.

With this definition a password-equivalent encompasses unsalted hash values
such as sha1(p), hash values with a fixed salt such as sha1(p. “0xdeadbeef ”),
unsalted encrypted values such as 3DES(p, S) where S is a secret key, etc.
This excludes outputs of randomized hash-functions as in [11]. In this paper, we
consider f(p) to be injective; we are thus neglecting collisions of hashes.

Consistently with [19], we define linkability and k-linkability.

Definition 2. Identifiers x and y are linked, denoted L(x, y), if x and y are
identifiers of the same real person.

We also introduce the informal notions of secret link and secret identifier.
L′(x, y) is a secret link if the attributes of x provide no information about y.

Informally, x and y hide their connection, e.g. by using identifier names that are
sufficiently different to not reveal the link.

x is a secret identifier of y (i) if there exists a secret link L(x, y) and (ii) if the
identifier x does not reveal the identity of the person (the identity being e.g. the
person’s family name or the URL of a public profile page) while the identifier y
does.
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Definition 3. Given a data set D of identifiers, a person is k-linkable in D if
there exists a subset D̂ of D such that L(xi, xj);∀xi, xj ∈ D̂ and |D̂| = k.

In this work, we evaluate a linkability attack on the data set D. This link-
ability attack infers links between identifiers, and we provide a lower bound
probability p that identifiers are indeed linked. More formally, we define p as
Pr[L(xi, xj);∀xi, xj ∈ D̂] ≥ p. In Sect. 5, we provide estimates and statistics for
k and p.

The privacy attacker employs similarities to compare identifiers. One first
similarity, denoted ls(x, y), is the complement of the normalized Levenshtein dis-
tance between character strings x and y. A second similarity, denoted jw(x, y),
is the Jaro-Winkler similarity. The Jaro-Winkler similarity was created for re-
conciliating user names from heterogeneous databases, the so-called record link-
age problem. The Jaro-Winkler similarity provides good results for short strings
such as names [4]. Noticeably, jw(x, y) is generally higher than ls(x, y) for pair-
wise comparisons of strings such as: “ic”, “icomputing”, “ingrid.computing”,
“computing.ingrid”.

Last, the privacy attacker computes the sets defined below.

Definition 4. For any identifier x in D, let sp(x) = {y|y ∈ D and pwd(y) =
pwd(x)}, the Same Rare Password function is:

srpr(x) =
{
sp(x) if |sp(x)| = r
∅ otherwise

The extension of srpr to subsets of D is srpr({x1, . . . , xn}) =
⋃n

i=1 srpr(xi)

In practice, we consider values in the range 2 ≤ r ≤ 9.

2.3 Note on Ethics

Dealing with passwords and personal identifiers raises legal and ethical concerns.
Accordingly, we took a set of considerations and employed appropriate precau-
tions.

The objective of this work is to understand, as researchers, the privacy impli-
cations of password leaks, poor password storage practices, and to raise aware-
ness amongst colleagues, administrators and the community at large.

As a first precaution, all our results are non-nominative, i.e., they do not
include any real personal identifiers. In particular, in this paper, we build exam-
ples such that: (i) the exemplified property is still clear, (ii) no single element
leads back to any real identifier attribute. The example names, emails and
encrypted passwords are invented, such as “ingrid.computing” in Table 2.

As a second precaution, for all treatments not requiring word distance com-
putations or requiring the detection of some pattern, we anonymize the name
part of the account using a keyed SHA256 function. For all treatments requir-
ing word distance computations or requiring the detection of some pattern (e.g.
detection of separators) we perform the same anonymization operation just after
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Fig. 2. Top: original text. Bottom: result after normalization. uid: internal user iden-
tifier zero-padded to 9 digits. pwdl: significant bytes of the encrypted left part of the
password. pwdr: significant bytes of the encrypted right part of the password if any.
name: identifier before ‘@’ if any. mail: identifier after ‘@’. hint: hint string.

the distance computation or pattern detection. These precautions guarantee that
no real identity appears as a result of a treatment.

As a third precaution, we key-hashed the passwords regardless whether there
were already protected or not in their initial dataset. None of our treatments
require the knowledge of the real password.

In addition, we took classical security measures to protect and clean the files
and the programs used for this study.

Our results rely on leaked and publicly available password data sets, and
there is a debate whether researchers should use such data sets (see [8]). Still,
there exists an important body of related work that already rely on such type of
data sets [2,3,5–7,14,23,26]. Individuals willing to know if their accounts appear
in publicly leaked datasets may use online services such as haveibeenpwned.com
or sec.hpi.uni-potsdam.de/leak-checker.

We would also like to emphasize our ethics regarding identifier providers.
While we use publicly available data sets leaked from real organizations, our
conclusion are not targeted against these organization. Our conclusions apply
to any identifier provider using password-equivalents. Even though it is easy to
reconstruct which data set we used, we anonymized the names of the related
organizations or companies in this paper.

3 Description of the Databases

In this section, we describe the databases that we use for our study. We use
four leaked password databases that we call A, B, C and D. Table 1 summarizes
some characteristics of these data sets. We set emphasis on the database D as
it is our main data set for this paper.

3.1 Data Set D

In October 2013, a password and identifier database - denoted D in the rest
of the paper - was stolen from a software company and publicly released. At
the time of its release, D was the largest data set in its kind, with 153 × 106

identifiers (including email addresses) and 130 × 106 encrypted passwords. The

http://haveibeenpwned.com
http://sec.hpi.uni-potsdam.de/leak-checker
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company quickly reacted by warning users and locking accounts. Anticipating
contagion due to password reuse [5,9], other identifier providers promptly asked
their users to change their password.

D was probably used by an authentication server used to access numerous
products and services offered by the software company. D covers a long time
span of 12 years; the first identifiers were created in 2001. It seems that are very
large and diverse set of services and applications of that company relied on the
identifiers and passwords in D. While we do not know the exact list of services
and applications that use D, they certainly include many standard applications
provided by this software company. Users showing up in D may also just have
tried once an application, on a PC, on a phone, on a tablet, or registered to
some web service (possible third party). Because of the above reasons a given
user might have multiple identifiers and forgotten identifiers in D.

Analysts focused on password retrieval from D. Despite 3DES encryption,
some passwords could be recovered because of three main reasons: (i) D con-
tains user provided hints in the clear, (ii) the passwords are encrypted with
an unsalted 3DES, allowing comparison across different users, (iii) the encryp-
tion mode is Electronic Code Book, allowing the comparison of independent
ciphertexts blocks of 8 characters. This combination of factors leads to an online
“crossword” game for retrieving weak passwords2. D has long been searchable
through sites like pastebin.com and it is still accessible through peer-to-peer
downloads.

The raw file contains 153 004 874 lines. We removed irregularities such as
absurdly long or short lines, empty lines every 10 000 records, etc. In order to
ease subsequent searches, we normalized the fields. Figure 2 shows the result of
the normalization. The password equivalents in D have the following structure:
pwdl = 3DES(left, S), pwdr = 3DES(right, S) where left is the first 8 charac-
ters of the clear password, right is the next 8 characters. S is a 3DES key only
known by the software company. Only the owner of S is able to formally verify
clear passwords. In contrast, password equivalents made from unsalted hashes
allow public verification. Without the key S, only an accumulation of evidences
will reveal possible pairs of clear text passwords and password equivalents. Typ-
ical evidences are explicit hint such as: ‘my password is frog35’, ‘frog + 7x5’,
‘53gorf reverse’.

3.2 Other Password Databases

Data Set C - A Social Network. The leaked data set contains 164x106

identifiers of a social network. The data set stores the users email address
(name@mail) and a non-salted password hash. An entry in the data set C is
associated with a profile page on the social network.

2 See game http://zed0.co.uk/crossword and picture http://xkcd.com/1286.

http://pastebin.com
http://zed0.co.uk/crossword
http://xkcd.com/1286
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Data Set B - A Social Network. The leaked data set contains 1 057 596
identifiers of a social network. This data set stores the users email address
(name@mail) and a salted and hashed password. The data set includes URLs
towards public profile pages (Facebook, Twitter, LinkedIn, Yahoo) if provided
by the user.

Data Set A - An Adult Content Site. The leaked data set contains 1 504 128
identifiers of an adult content site. This data set stores the users email address
(name@mail) and a password in clear-text.

4 Privacy Attacks

In this section we describe three privacy attacks on D. We propose a set of
classifiers that reveal potential links and secret links in Sects. 4.1 and 4.2 respec-
tively. We also describe a method to deanonymize potentially secret identifiers
in Sect. 4.3. Throughout this section we depict our classifiers and methods using
the examples of Table 2 (k = 2) and Table 3 (k = 4).

We evaluate, extend and discuss the presented classifier and methods in
Sect. 5.

Table 2. Example case for 2-linkability.

uid pwdl pwdr name mail hint

042...89 gt...dfm Qa...D ingrid.computing mycompany.com as usual

151...06 gt...dfm Qa...D sexy single 69 somedatingsite.com

4.1 Revealing Links

Let us consider the fictive case of Ingrid Computing as shown in Table 2. The
privacy attacker will notice that only two identifiers in D have the same pass-
word cipher “gt...dfm Qa...D”. The attacker suspects a link between the two
identities ingrid.computing@mycompany.com and sexy single 69@somedating-
site.com. Both identifiers may of course relate to different persons, in which
case the attacker makes a false positive in assessing a link. A motivated attacker
may use external sources (search engines, OSN etc.) to collect more evidences,
which is out of our scope. The above imaginary example depicts our first simple
classifier for revealing links that we describe below.

A classifier for 2-linkability: The classifier tells that L(x, y) (i.e. x and y are
linked) if {x, y} ∈ srp2(D). srp2(D) is the set of identifiers having encrypted
passwords appearing only twice in D.

The above classifier can be extended to k-linkability, i.e. to cases of password
ciphers appearing exactly k times in D. An illustrative example for k = 4 is
provided in Table 3.

A classifier for k-linkability: The classifier tells that x1, x2 . . . xk are k-linked
if {x1, x2 . . . xk} ∈ srpk(D). srpk(D) is the set of identifiers having encrypted
passwords appearing exactly k times in D.
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4.2 Revealing Secret Links

Secret links are a subset of links. Coming back to the example shown in Table 2
the attacker might suspect a secret link since the name of both identifiers have
nothing in common (have a small similarity). We propose the following classifier
for secret links:

A classifier for secret links for k = 2: The classifier tells that L(x, y) is
a secret link if {x, y} ∈ srp2(D) and jw(x, y) < s with a small s. jw is the
Jaro-Winkler similarity as defined in Sect. 2.2.

We also propose a classifier for secret links for cases where k > 2. We consider
the cases where k−1 identifiers employ similar names and the remaining identifier
is either a pseudonym of the same user or a different user. An example is provided
in Table 3.

A classifier for secret links for 3 ≤ k ≤ 9: We consider identifiers x ∈ D
such that srpk(x) �= ∅ and having the following properties: (i) k − 1 identifiers
in srpk(x) have similar name, for a chosen similarity and a threshold s, (ii) the
remaining single identifier in srpk(x) does not have a similar name to any of the
k − 1 identifiers.

Table 3. Example data for a secret link with k = 4.

uid pwdl pwdr name mail hint

05 G...F ic.computing email.xx 1st cat

05 G...F 0699999996 telco.xx 1st cat

06 G...F computing.ic telco.xx kitty

15 G...F iccomputing corp.xx kitty

We use the Stochastic Outlier Selection (SOS) [12] method to automate and
build the above classifier. SOS is an unsupervised outlier-selection algorithm
that provides an outlier probability for each data point. In our case the outlier is
the remaining single identifier, which uses a name very different from the k − 1
others. We apply SOS on srpk(x) and keep all sets of linked identifiers that
exhibit a single and clear outlier. We conservatively consider an outlier to be
an outlier if the SOS outlier probability is at least 0.98. Privacy attackers may
adjust the threshold differently, according to their needs and resources.

4.3 Deanonymizing Secret Identifiers

Secret links can be used to deanonymize secret identifiers. Within the sets of
identifiers that have a secret link, we search for sets of identifiers where at least
one identifier reveals an identity, while the other linked identifiers do not. In
the example of Table 2 the attacker might suspect that both identifiers relate to
the same person, the first revealing a person’s identity (the name of the person)
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while the second by itself does not reveal the person’s identity (thus being a secret
identifier). Similarly in Table 3, the phone number might be a secret identifier
of a person which identity is revealed by the name of the other identifiers. We
employ three heuristics, described below, to determine if an identifier reveals an
identity of a person or not.

Social network B: The first heuristic uses the leaked data set B of a social
network. We consider that an identifier reveals an identity of a person if there
exists an URL to a public profile page in the data set B. The data sets D and B
both store the users email address (name@mail), allowing us to calculate joins
of the two data sets.

Social network C: The second heuristic uses the leaked data set C of a social
network. An identifier in the data set C is associated with a profile page on the
associated social network, and we therefore consider that it reveals the iden-
tity of a person. The data sets D and C both store the users email address
(name@mail), allowing us to calculate joins of the two data sets.

US census: The last heuristic verifies if the name part by itself reveals the
identity of its owner. We use surnames provided by the US census3. We consider
that an identifier reveals its owner’s identity if the name contains a substring of
at least four characters long equal to any surname occurring 100 or more times
in the US. This heuristic is not very strict and may therefore include many false
positives.

5 Evaluation

5.1 Evaluating Classifiers for Links

One objective of our analysis is to demonstrate k-linkability in D, and to provide
an estimate of the probability p that identifiers are actually linked. The main
obstacle in such an analysis is the lack of ground truth. This prevents us from
evaluating the results of our classifiers (e.g. calculate accuracies, false positives
etc.) as it is done classically with machine learning problems. From a user per-
spective, the lack of such widely available ground truth in this domain is good
news.

Instead of ground truth we use a set of heuristics on the password, the iden-
tifier name and the password hint. We also analyze the frequencies of these
features to provide further evidence that two identifiers are in fact linked.

2-Linkability. We first evaluate the classifier for 2-linkability proposed in
Sect. 4.1. The cumulated number of identifiers returned by this classifier is
13 507 724 (6 753 862 identifier pairs), representing 8.8% of identifiers out of D.

To estimate p (the probability that two identifiers are actually linked) we use
the heuristic that two identifiers link to the same person if the name fields are

3 See https://www.census.gov/genealogy/www/data/2000surnames.

https://www.census.gov/genealogy/www/data/2000surnames
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similar, i.e. jw(x, y) ≥ s or ls(x, y) ≥ s. The strict equality (s = 1) provides
a lower bound for p. The strict equality on the name field e.g. establishes that
ingrid.computing@gmail.com and ingrid.computing@hotmail.com are the same
person. The intuition is that the probability that two different users use the
same rare password and the same name is almost zero. 10% identifier pairs have
identical name in srp2(D). We consider this value as a pessimistic lower bound
for p, i.e. p ≥ 0.1.

By decreasing s we obtain more optimistic values for p (e.g. establishing
that ingrid.computing@gmail.com and i.computing@hotmail.com are the same
person). At the same time we may introduce more false positives. Figure 3 plots
the cumulative distribution function of similarities of identifier pairs in srp2(D)
for ls and jw-similarities. Using a rather strict value for s = 0.7, we increase
the proportion of linked identifiers to 23% with ls-similarity and 29% with jw-
similarities. While we cannot provide more precise evidence, we strongly suspect
that identifiers in srp2(D) are 2-linkable with probability p greater than the
pessimistic value 0.29.

Fig. 3. Cumulative distribution function of similarities in srp2 and in randomly sam-
pled pairs of identifiers of D.

We now compare the similarities of name between randomly sampled pairs
out of D (supposedly not linked) and identifier pairs in srp2(D) (supposedly
linked). Figure 3 plots the cumulative distribution function of the similarities for
both sets. We notice that the similarities are in general higher in srp2(D); the
mean ls-similarity in srp2(D) is 0.42 versus 0.19 for random pairs. Similarly,
the mean jw-similarity in srp2(D) is 0.58 versus 0.40 for random pairs. Finally,
the proportion of random identifier pairs having identical name is in the range
of 0.003%, compared to 10% in srp2(D). These numbers confirm the name is
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in general closer between identifier pairs in srp2(D), than any other random
identifier pair.

As a further indirect evidence, we show that the propensity of a user to reuse
passwords is much higher within srp2(D). We use the hint field to estimate the
propensity of a user to reuse passwords. More precisely, we count the number
of hint fields containing terms indicating password reuse: ‘as usual’, ‘always’,
etc. See Appendix A.1 for the full list. The result is shown in Fig. 4. Among
the 66 493 790 identifiers with unique passwords within D, 435 842 identifiers
(0.7%) have a ‘as usual’ kind of hint. Among the 13 507 724 identifiers that share
their password exactly once with some other identifier, 173 272 (1.3%) have a
‘as usual’ kind of hint. The proportion almost doubles, confirming the higher
propensity of users in srp2(D) to reuse passwords.

Fig. 4. Percentage of “as usual” terms in the hint, as a function of k in k-linkability.
k takes values in {1, 2, . . . , 10, 11 − 20, 21 − 40}.

In light of the above discussion, we propose a more accurate classifier for
2-linkability, i.e. the classifier has higher values for p, at the price of returning a
smaller number of identifiers. The classifier tells that L(x, y) if: (x, y) ∈ srp2(D)
and jw(x, y) ≥ s for a similarity parameter s. With s = 1, we link 683 722
identifier pairs of D with a p close to 1. As discussed before, decreasing s increases
the number of linked identifiers but decreases p. The precision of this classifier
can be further extended by adding the condition that the hint indicates password
reuse.

K-Linkability. Figure 5 shows the number of k-links (being |srpk(D)|) revealed
by the classifier for k-linkability of Sect. 4.1. Table 4 provides the cumulative
number of links for k = 2 . . . 9. We can observe, that the number of revealed
k-links gradually decreases with k. As discussed in Sect. 5.1, the probability p
that the corresponding identifiers are linked to a same user should decrease when
k increases. To demonstrate this trend we consider the propensity of a user to
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reuse a password (Fig. 4). The ratio of hints indicating password reuse is similar
with k = 3 and k = 2. For k > 3 this ratio regularly decreases, indicating that
p also decreases.

The absolute numbers of k-links of Fig. 5 are difficult to interpret, particularly
because it is difficult to estimate the probability p. Still, the results of the k-link
classifier can be further filtered and refined to reveal secret links and secret
identifiers.

5.2 Evaluating Classifiers for Secret Links and Secret Identifiers

We now evaluate the classifier for secret links and secret identifiers proposed in
Sects. 4.2 and 4.3. Secret links and secret identifiers are supposed to be secret and
it is even more difficult to find ground truth than with links (e.g. the secret links
will in general not appear on Google, Facebook or LinkedIn profile pages). We
therefore first provide global results and numbers and then focus on a corner-case
experiment consisting in deanonymizing role based emails. We also intersect the
revealed secret identifiers with external data sets (A) and discuss the potential
impacts.

Fig. 5. Number of links, secret links and secret identifiers in D for k between 2 and 9.

Secret Links and Secret Identifiers Global Results. For secret links, we
set s = 0.4 (as defined in Sect. 4.2) and therefore require that jw(x, y) < 0.4.
This threshold corresponds to the first “elbow” in Fig. 3. Doing so, we estimate
that an attacker would reveal 1 million potential secret links. Figure 5 also shows
the number of revealed potential secret links with k > 2; Table 4 provides the
cumulative numbers. While it is difficult to assess the p of this classifier, we know
that we can increase p by adding the condition that the hint indicates password
reuse. Figure 5 and Table 4 further shows the number of secret identifiers we could
deanonymize in D, according to the three deanonymization heuristics proposed
in Sect. 4.3.
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Table 4. Cumulative number of links, secret links and secret identifiers in D for k
between 2 and 9.

#links 11 038 079

#secret links 1 937 634

#secret identifiers using US census 763 348

#secret identifiers using social network C 348 892

#secret identifiers using social network D 4 003

in comparison: size of D 153 004 874

Deanonymizing Role-Based Emails. The classifiers may discover real names
behind generic email addresses like support, admin, security, etc. An attacker can
use this knowledge to bypass an ‘administrator’ or ‘support’ email address and
directly contact the real person in charge. For this application, we select pairs of
identifiers in srp2(D) such that: (i) one name is generic (see Appendix A.2), (ii)
both identifiers have the same mail part, (iii) the mail part is rare within D (less
than 100 occurrences in our experiment). From such pairs, the privacy attacker
can automatically generate a human readable statement such as: “Ingrid Com-
puting is ‘sysadmin’ at this-company.com”. The fact that linked identifiers have
the same rare mail part reinforces the link, at least from a Bayesian perspective.
The above method generates 25 253 statements involving at least one generic
identifier. Among those, 2 858 statements involve a name part with a separator
(“.”,“ ”) and forenames and lastnames that are not reduced to a single letter.

Intersecting with Other Databases. We demonstrate the impact of our
attack by deanonymizing secret identifiers in the data set A, a data set related
to adult content. We use the A since we expect to find more users that would like
to remain anonymous with a service related to adult content. This is confirmed
by the numbers of identifiers revealing person identities using the US census,
social network C and social network B heuristics (see Table 5). The proportion
of identifiers that reveals person identities is systematically smaller in the data
set A.

We deanonymize a secret identifier in the data set A by (i) extracting all
secret identifiers in D and (ii) keeping only the secret identifiers (name@mail)
that also appear in A. The data sets A, B, C and D all include email addresses

Table 5. Proportion of identifiers in D and A revealing person identities according to
different heuristics.

US census Social network C Social network B

D 93.83 % 8.33 % 0.07 %

A 78.03 % 3.91 % 0.02 %
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Table 6. Number of deanonymized secret identifiers in A, and number of secret links
according to different criterions

Deanonymized secret identifiers Secret links

US census Social network C Social network B All Corporate Gov. Univ.

851 337 5 2979 3 4 104

(name@mail), allowing us to calculate joins. Table 6 reports the number of
deanonymized identifiers.

We further highlight the existence of embarrassing secret links. In Table 6,
we report the number of secret links between an identifier in A and identifiers
that verify a set of criteria: (all) no restriction on the mail address, (corporate)
corporate mail addresses from major companies, (gov) mail addresses from gov-
ernment agencies, (univ) mail addresses from universities.

6 Related Work

Related work focuses on password cracking, password strength, password user
studies and deanonymization of public data sets.

The most common password cracking attacks are the brute-force and dic-
tionary attacks using popular tools such as John the Ripper. Many improve-
ments for password cracking have been proposed: using rainbow tables [22],
using Markov models [18], using probabilistic context-free grammars [26], etc.

Some works try to assess or measure the strength of a password [1,2,6,7,13,
15,24]. In this context, password meters are supposed to help users to improve
their password. However, Ur et al. [25] show that in general password meters
only marginally increase the resistance to password cracking. Only very strict
password meters tend to increase the password strength [3,25]. Password popu-
larity is also used to measure the strength of a password [7,14,24]. To strengthen
a password, Schechter et al. [24] use the quite simple idea of discouraging the use
of popular passwords. This latter approach is clearly beneficial for the privacy
attacker of this work. The above works often use well-known password data sets
to evaluate their performance.

Other work considered user behavior regarding passwords [5,9,15]. [5,9]
study the problem of password reuse across sites. Both show that the reuse
of the same or a similar password is a predominant practice for end-users. In
particular, [5] studies how users transform their password for different online
accounts. Both papers focus on an attacker breaking passwords, e.g. [5] builds a
password guessing algorithm based on the observed user behavior. These works
do not consider the privacy attacker which does not require to break passwords.

Most privacy attacks focus on the deanonymization of social networks and
rating systems. [19] deanonymizes the public Netflix data set, by matching movie
ratings provided by users of the Internet Movie Database. [20] re-identifies users
of an anonymized Twitter graph, matching them against Twitter and Flicker
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identifiers. [17] identifies anonymous online authors by comparing writing styles.
[16] links reviewers of community review sites. We consider a radically different
type of data set that has not been studied in terms of privacy so far.

To the best of our knowledge, the work that comes closest to ours is [23].
The authors use identifier names to link or uniquely identify users. They further
leverage textual similarities between identifier names for estimating the linka-
bility probabilities. Our work is different as (i) we use encrypted information
rather than textual information and (ii) we link to secret identifiers that are –
by definition – very dissimilar from their linked identifiers.

7 Discussion and Conclusion

We presented linkability attacks based on password equivalents in leaked identi-
fier and password data sets. The attacks do not require breaking a single pass-
word, and the efficiency increases with the password strength. Having no ground
truth, which is expected in this domain, we provided indirect assessment of
the performance of our classifiers. We demonstrated the consequences of our
attack by showing that a privacy attacker can reveal sensitive private informa-
tion such as secret identifiers. In particular, we evaluated how privacy attackers
can deanonymize secret identifiers of users of adult content sites. State of the art
attacks analyzing online social networks do not reveal this kind of information.

7.1 Tractability of Privacy Attacks

We would like to emphasize several risks for people’s privacy. First, the pre-
sented privacy attacks require little computation resources. For instance, the
k-linkability analysis on D took only 400 cumulated computation hours. The
complexity of most treatments does not exceed O(n.log(n)). The attacker does
not need to break any password, which saves a lot of resources. Further, the
attacks can be performed using publicly available data sets. There is no need
to crawl social networks or to have access to a social network graph. These two
facts make our attacks tractable to most individuals without requiring any spe-
cific privileges or computing power. Finally, D is much larger than other data
sets in this domain. This allows retrieving a fair amount of results, typically
thousands, even when using multiple refinement requests. The number and size
of publicly available data sets of that kind tends to increase, meaning that the
number of retrieved results will also further increase over time.

7.2 Mitigations

The mitigations and countermeasures are rather classical. End-users achieve best
results in terms of both privacy and security by using a strong and different
password for each service. Since it might be difficult for a user to remember all
these passwords, we recommend users to segment linkability according to their
estimated privacy needs. Users should use unique passwords for the few services
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that they never want to be linked to. For other non-privacy critical services,
users may use a password based on one single root (e.g. frog35!), and prefix the
password with a character or string related to the service (e.g. FB for Facebook,
LI for LinkedIn). This “poor man’s salt” does not reinforce the security of the
password, but decreases the impact of linking attacks. Password managers that
generate randomized passwords also provide an efficient countermeasure. Finally,
identifier providers should use salted hashing functions. These recommendations
have been published several years ago and still, numerous leaked files reveal bad
practices. In addition, we encourage identifier providers to encrypt both the hints
and the email addresses. Obviously the hints are private, while massively leaked
email addresses are a gift to spammers. Finally, identifier providers should avoid
incremental uid’s and use random numbers [10].4

Table 7. Probable history of a user w.r.t data set D.

uid pwdl pwdr name mail hint

06...83 hc...si joe.target corp1.com

10...68 sj...f2 Tr...G joe target corp2.com

16...80 sj...f2 Tr...G tryjoe isp.com usual

17...22 Fg...st tryjtarget corp3.uk other

7.3 Future Work

We found several cases where additional private information can be inferred from
the available data sets. For instance, a privacy attacker could deduce people
“histories” from the set of successive identifiers of a same person. Table 7 shows
one example. Using time reconciliation this history reads: “In 2001, Joe was
at corp1, he joined corp2 before mid-2008, then he went to corp3 before 2012”.
Building such histories requires linking identifiers through names [23], in addition
to the links established through passwords. The first entry in Table 7 is linked
to the second via distances introduced in [23]. The second entry is linked to
the third entry via the password. The fourth item is linked to all others via a
combination of both techniques.

Acknowledgements. We thank the Program Committee and reviewers for the many
valuable comments that significantly improved the final version of this paper.

4 The uid of D increases monotonically with the time of creation of the identifier. It
allows the reconstruction of a timeline, by e.g. using creation dates of some identifiers
or by searching in the fields name and hint for events having a worldwide notoriety.
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A Appendix

A.1 Terms for ‘as usual’

always, usual, the rest, for all, normal, same as, standard, regular, costumbres,
siempre, sempre, wie immer, toujours, habit, d’hab, comme dab, altijd.

A.2 List of generic email addresses

abuse admin administrator contact design email info intern it legal kontakt mail
marketing no-reply office post press print printer sales security service spam
support sysadmin test web webmaster webmestre.
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Abstract. HTTP is the main protocol used by attackers to establish
a command and control (C&C) channel to infected hosts in a network.
Identifying such C&C channels in network traffic is however a challenge
because of the large volume and complex structure of benign HTTP
requests emerging from regular user browsing activities. A common app-
roach to C&C channel detection has been to use supervised learning
techniques which are trained on old malware samples. However, these
techniques require large training datasets which are generally not avail-
able in the case of advanced persistent threats (APT); APT malware
are often custom-built and used against selected targets only, making
it difficult to collect malware artifacts for supervised machine learning
and thus rendering supervised approaches ineffective at detecting APT
traffic.

In this paper, we present a novel and highly effective unsupervised
approach to detect C&C channels in Web traffic. Our key observation
is that APT malware typically follow a specific communication pattern
that is different from regular Web browsing. Therefore, by reconstructing
the dependencies between Web requests, that is the Web request graphs,
and filtering away the nodes pertaining to regular Web browsing, we can
identify malware requests without training a malware model.

We evaluated our approach on real Web traces and show that it can
detect the C&C requests of nine APTs with a true positive rate of 99.5–
100% and a true negative rate of 99.5–99.7%. These APTs had been used
against several hundred organizations for years without being detected.

Keywords: Malware detection · Web request graph · Command and
control channel · Click detection · Graph analysis · Advanced persistent
threat

1 Introduction

An increasing number of high-profile cyber attacks against companies and gov-
ernments were reported in the last years. In contrast to untargeted attacks
that aim at infecting as many hosts in the Internet as possible, these so called
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-60876-1 17



Unsupervised Detection of APT C&C Channels using Web Request Graphs 367

Advanced Persistent Threats (APTs) target a certain organization over long peri-
ods of time, focus on a specific objective and are conducted by adversaries with
significant resources in a stealthy way [11,28]. Because these APT campaigns are
supposed to run for a long time, the malware used is often tailored-made and
attackers take great care in hiding its traces. This makes it difficult to obtain
APT malware samples for analysis—in contrast to general purpose malware
that can, due to their widespread presence1, easily be collected and analyzed.
As a result, traditional signature-based threat protection solutions and super-
vised learning techniques struggle to identify APT malware. As an example, the
Swiss defense contractor RUAG had been compromised for at least one year
until an external organization provided information that lead to the detection
of the HTTP C&C channel [1].

Once in place, APT malware typically rely on HTTP-based Command
& Control (C&C) channels [1,12–14,21,24,35,39]. Using HTTP provides the
attacker with two main advantages. First, this C&C channel is widely available
as most organizations allow their employees to browse the Web. Second, normal
Web browsing generates a huge amount of requests destined to a large number of
servers. This makes it very difficult to tell apart benign HTTP requests caused
by employees’ browsing from malicious activity, allowing attackers to hide their
communication in plain sight.

Detecting and blocking C&C channels under these constraints is challenging.
Indeed, the large number of Web servers contacted daily makes it impractical to
operate with a default-block policy and a whitelist for Web browsing. Therefore,
most organizations use a default-accept policy in combination with a blacklist
to detect C&C channels in the Web traffic of internal clients. The employed
blacklists typically combine the Indicators Of Compromise (IOC) from different
commercial and freely available intelligence feeds, such as abuse.ch, cymon.io,
autoshun.org, and www.openbl.org. Unfortunately, since the target scope of APT
malware is very narrow, traces of APT samples are often only detected by acci-
dent and it can take years until corresponding malware samples are recovered
and IOC are added to intelligence feeds. Furthermore, the fact that there are
only few APT malware samples available makes it difficult to apply supervised
learning techniques for the detection of APT campaigns.

In this paper, we propose an unsupervised detection approach that does not
need any malware samples for training. Our one-class classifier only requires
labeled benign traces for training. Our approach is built around the observation
that C&C channels typically follow a specific communication pattern that is
unrelated to regular Web browsing. Therefore, after analyzing and reconstructing
all the artifacts caused by human Web browsing, i.e., creating the Web request
graph of the recorded Web traffic [25,42], the malicious requests to C&C servers
stand out because they do not have any dependency or interaction with other
Web requests; they are so-called unrelated nodes in the Web request graph.
The key challenge behind this approach is that simply relying on the HTTP

1 430 million malware samples have been released in 2015 according to Symantec’s
Internet security threat report [37].

http://abuse.ch
http://cymon.io
http://autoshun.org
www.openbl.org
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referrer for Web request dependency reconstruction, such as done by [17,42],
results in many unrelated benign nodes. For this reason, we studied the Web
traffic caused by benign browsing in detail and introduce several new heuristics
to reconstruct missing links in the request graph. For instance, if the requested
URL of an unrelated node can be found in the HTML source code of a recently
accessed Web page, we can connect both requests. In combination with a small
whitelist of benign services causing unrelated requests, such as OCSP servers
and software update services, this approach allows us to identify C&C requests
with high accuracy—after running the link completion process and applying the
whitelist, all remaining requests are considered as suspicious.

This paper provides the following key contributions:

– Link completion heuristics that extend and complete the request graph gen-
erated in our previous work Hviz [17] by linking unrelated Web requests to
their most likely parent. Link completion reduces the number of unrelated
nodes in benign Web traffic by a factor of 8–30.

– A malware detection approach that marks non-whitelisted, unrelated Web
requests in (completed) request graphs as malicious. Our whitelist only con-
tains certificate authority domains and the update server of the operating
system.

– A comprehensive evaluation in which we evaluate the performance of our
approach by randomly inserting C&C traces covering the activities of trojan
horses, exploit kits, botnets, ransomware and APTs into benign Web traffic
traces2. We detect 99.5% of all malicious C&C requests (true positive rate)
while falsely labeling 0.3–0.5% of the benign requests as malicious (false pos-
itive rate).

The rest of this paper is structured as follows. Section 2 presents our malware
detection approach that applies a click detection classifier and link completion
heuristics to connect unrelated, benign Web request to their most likely par-
ent. Section 3 evaluates our approach and Sect. 4 discusses our results. Section 5
compares our approach to related work and Sect. 6 concludes the paper.

2 Approach

Our three-step malware detection approach is shown in Fig. 1. It detects C&C
channels of APT malware (used in targeted attacks) and ‘general purpose’
malware (used in untargeted attacks). In a first step, we extract the (incom-
plete) request graph from Web traffic logs. In a second step, we complete the
request graph by (i) click detection (see Sect. 2.3) and (ii) link completion (see
Sect. 2.4). In a third step, we filter the remaining unrelated requests. The remain-
ing unrelated requests are considered as suspicious unless the contacted server
is whitelisted. We use Bro IDS [31] and Hviz [17] to create the request graph.

2 We use benign Web traffic generated by scripts accessing the top 250 Web sites for
Switzerland and user traffic logs from ClickMiner [25].
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In the following we first give an overview on request graphs in Sect. 2.1, which
are the base for our detection approach. Section 2.2 describes the idea behind
our approach in more detail and the applied click detection and link completion
are discussed in Sects. 2.3 and 2.4, respectively.

Web logs unrelated nodesWeb request
graph

completed Web
request graph

extract complete filter

link completionclick detection

Fig. 1. Our malware detection approach: First, we extract the request graph from Web
traffic logs. Second, we complete the request graph by (i) click detection and (ii) link
completion. Third, we filter the remaining unrelated requests that are not whitelisted.

2.1 Background on Web Request Graphs

Web traffic logs store HTTP requests and corresponding responses. The requests
can be connected to a request graph. In a request graph, a node corresponds to
an HTTP request and its response. Two nodes i and j can be connected using
a directed edge (i, j) if the request j has been issued by the response of i. For
most HTTP requests, these links can be derived from the referrer field in request
j, which points to i. If there is a directed edge (i, j) from i to j, then i is the
parent of j and j is the child of i. If there are two edges (i, j1) and (i, j2) then
j1 and j2 are siblings. Unfortunately, the referrer is not always set. Therefore,
request graphs are often incomplete if they are constructed solely based on the
referrer information.

time

head request

embedded request

http://www.example.com

http://cdn.example.com/...

http://img.example.com/...

http://www.example.com/ticker

http://stream.example.com/...

http://live.example.com/...

http://advertisement.com/tracking.php

http://analytics-site.com/...

http://windowsupdate.microsoft.com

unrelated requesthttp://www.malware.com

Fig. 2. Example request graph
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We distinguish between three types of requests: ‘head’, ‘embedded’ and ‘unre-
lated’ requests, as can be seen in Fig. 2. Head requests are requests that have
been issued by the user directly, for example by typing an URL into the browser,
clicking on a link, a browser bookmark or submitting a Web form. Embedded
requests are generated as a result of head requests. For instance, accessing a
Web page triggers embedded requests to content delivery networks and analyt-
ics services. Unrelated nodes have no dependency to previous requests. They do
not have any parent or children. Figure 2 shows an example request graph where
the user has directly accessed two URLs, marked as head requests. Both head
requests trigger further requests, marked as embedded requests. Figure 2 also
contains two unrelated requests.

2.2 Malware Detection in Web Request Graphs

Our detector is based on the idea that any HTTP request must have one of the
following root causes:

1. Triggered by users’ Web browsing: The request is directly or indirectly trig-
gered by a user’s Web browsing. These requests are part of a larger graph
component that represents Web browsing.

2. Triggered by benign software applications: Many benign software applications
running on end hosts issue HTTP requests, for example to check for updates
or load information. These requests are unrelated to a user’s Web browsing
and thus classified as “unrelated”. End hosts in larger organizations typically
run a pre-build image that contains a limited number of benign software
applications. Thus the Web services that are contacted by valid application
software can easily be whitelisted.

3. Triggered by malicious software: Any request not being part of one of the
previous categories falls into this category.

The assumption behind this scheme is that regular Web browsing results in
perfectly connected request graphs. However, as we will show in Sect. 3.2 between
2.6% and 9% of the links in the request graph are typically missing. Therefore
we introduce an heuristical approach that adds the missing links in the request
graph. After applying the graph completion heuristic, our detector considers all
remaining unrelated nodes as either being triggered by a benign software that
accesses a server, such as the Windows update server, or by a malware accessing
a command and control server.

2.3 Click Detection

The goal of click detection [17,25,40,42] is to distinguish between user clicks and
other requests (embedded and unrelated requests). We use the features shown in
Table 1 as input for the machine learning. We use labeled data for training, but
we only train on benign traces. Hence, we do not require any labeled malware
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trace. After evaluating different machine learning classifiers using Python scikit-
learn [32], we found that a random forest classifier performs best, which is in-
line with the work of Vassio et al. [40]. The detailed results are shown in our
evaluation in Sect. 3.1.

Table 1. Feature set for click detection

# Feature Description

F1 Content type Content type such as text/html or image/jpeg

F2 Response length Number of bytes of the HTTP response body

F3 Number of referrals Number of children in request graph

F4 Time gap Time gap between current and parent request

F5 URL length Number of characters of the URL

F6 Advertisement Is the request an advertisement (in EasyList)?

F7 Presence of parent Does the node have a parent node (referrer)?

2.4 Link Completion

The goal of our link completion algorithm is to add missing edges to the
request graph. Referrer-based request graphs of benign Web browsing contain
many unrelated nodes. In the following we discuss the primary reasons we have
observed in our traces:

– Certificate status checks: The Online Certificate Status Protocol (OCSP) [18]
is an Internet protocol which is used as an alternative to certificate revoca-
tion lists (CRLs). It allows applications to determine the validity of a digital
certificate. An OCSP client (e.g., the browser) issues a status request to the
Certificate Authority (CA). The browser suspends the acceptance of the cer-
tificate until it receives a response from the CA. Those requests/responses do
not have a referrer header set and do not cause any embedded requests. Thus,
the nodes corresponding to them are unrelated. The same is happening with
the usual transfer of certificates and CRLs. These requests can be identified
by their content type which is application/ocsp-response, application/pkix-
cert and application/pkix-crl. However, note that we can not simply whitelist
all requests with these content types, as this would make it very easy for
attackers to hide their HTTP requests by including a corresponding (fake)
header.

– Favicons: We observed that whenever Firefox sends an HTTP request to
retrieve the favicon of a website, it does not include the referrer field in
the HTTP request headers. As it turned out, this happens due to the link
rel=’icon’ tag found in the HTML source code of web pages. There is a known
bug associated with the above behavior [9] which has been resolved but not
fixed yet. The same bug is not present in Google Chrome.
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– Privacy : There are cases where the referrer header can affect the user’s pri-
vacy. For instance, a URL might contain personal information in its query
strings in case of a GET request. For example, this was the case with Facebook
in 2010 [20]. More specifically, advertisers could identify users who clicked on
their advertisement since their user ID was contained in the referrer header.
Thus, security-aware developers remove this information from the referrer by
specifying referrer policies [41], which were recently developed by the World
Wide Web Consortium (W3C). These referrer policies allow developers to
limit the referrer to only the visited domain of the origin website or to even
remove referrers completely. Another case which results in a missing refer-
rer is the transition from an object loaded via HTTPS to an HTTP object
(downgrade). The main reason for this behavior is to avoid leaking sensitive
information in the plain-text HTTP request.

– Cross-Origin Resource Sharing (CORS) [3]: When browsers make cross-
domain HTTP requests, the referrer can be missing while the origin header
is set. For example, this can happen when an OPTIONS preflight request is
being sent, in order “to determine the options and/or requirements associ-
ated with a resource before performing the actual HTTP request” [4]. Firefox
does not set the referrer header when performing this kind of requests, in
contrast to Chrome. As a result, nodes that relate to this HTTP method
become unrelated in Firefox.

– Invalid Referrer : The referrer header can have an invalid value which means
that it does not correspond to a request URI of any previous node in the
graph. A possible reason for this behavior could be bugs in the software.

– Redirect Implementation: There are several different ways for a user to be
redirected from a source to a destination website. Firstly, the recommended
way is to provide a 302 HTTP status code combined with the Location value
in the HTTP response headers. Another way is to send a regular 200 HTTP
status code and set the Refresh header or an HTML meta tag. In addition,
a user can be redirected using Javascript. Depending on the implementation
of the redirection, there are different behaviors of browsers to either keep or
suppress the referrer [20].

The link completion algorithm completes the request graph to reduce the
number of unrelated nodes in benign traffic. Our algorithm, which is depicted
in Fig. 3, takes as main input an unrelated node n and a request graph G. The
output is the most likely parent in the graph or False if the node does not fit
into the graph sequence.

Firstly, the algorithm uses a whitelist in order to filter requests from benign
software that can be running on the host (step 1). The whitelist consists of
37 entries and includes OS update domains as well as Certificate Authorities.
The latter domains can be reduced since companies usually set up their own
OCSP responder which acts as an OCSP proxy server. Further, domains and IP
addresses contacted by deployed software can be added to this list. We argue
that the overhead for maintaining a corresponding whitelist is small, primarily
because of two reasons: (I) Even if an organization does not use an OCSP proxy
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Fig. 3. The link completion algorithm tries to find the most likely parent of a node
n inside a request list L. L is sorted by time and only contains the previous requests
of a given time window. Steps 3–5 are processed twice, first for the click requests and
second for the embedded requests in L.

server, the number of contacted OCSP servers is limited as certificate issuers
typically only operate few OCSP servers and there are publicly available lists
of these servers. (II) Security-aware organizations should already be aware of
the software deployed in their network and the corresponding external servers
contacted by the software, which allows them to add the corresponding domains
and IP addresses either proactively or reactively to the whitelist. In fact, our
approach can be helpful to identify software that has been installed without
authorization because most software includes an update process that operates
over HTTP(S). The corresponding requests will most likely be unrelated such
that our system will trigger an alert when the software contacts its update server.

If the node is not whitelisted, its possible parent is predicted as follows (step
2): Based on the fact that the HTTP requests of an unrelated node’s possible
parents were performed before it, we create a list with all the candidate nodes
falling into a time window covering few seconds before the analyzed request.
The time window’s length is not fixed and can be provided as input to the algo-
rithm. Before adding a possible parent node in the list, the algorithm confirms
that it is a candidate depending on its content type. There are certain con-
tent types which have much more embedded objects (and therefore cause child
requests) than others. For instance, an HTML document is more likely to per-
form more requests to load additional content (e.g., third-party content) than
a Javascript file. In contrast, a node representing a request to a PNG image
should not have any children since it is not rational for this type of content to
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make additional requests. The algorithm encodes the knowledge on likely and
unlikely parent-child relations as bigrams of content types. For instance, a node
whose content type is text/html will usually have children with content types
image/jpeg, text/css, application/javascript, etc., whereas a text/css object is
more likely to have children with image/png, image/gif, application/font-woff
etc. content types. The bigrams are constructed by traversing all the graphs of
the network traces in the training set and counting the top length-two sequences
of the content types with most children.

For each candidate parent node in the list, its response body is examined
(step 3). The idea behind this step is that the absolute or relative URLs of child
objects are often contained in the parent’s response body. For example,the URL
of a displayed image is typically contained in an src attribute in the webpage
embedding the image and if the user clicked on a link, then the corresponding
URL often previously appeared as href attribute. While this method is quite
accurate, it requires complete response bodies to be stored, which can be large
– especially if users consume videos. Therefore, we only apply this approach
to response bodies for content types that have been found to have the most
children, such as text/html responses.

Favicons can partially be linked using the above methods, but there is also a
more accurate way (step 4): If the unrelated node’s request URI is www.example.
com/favicon.ico then, the parent’s should be www.example.com. By default the
favicon is placed in the root directory of the web page and browsers know where
to find it. However, it is a common practice that developers place their favicons
in other directories. In that case, the algorithm finds the parent based on the
domain name and the content type of the possible parent nodes. Further, if a
request’s HTTP method is OPTIONS and the origin header value is set, then
the parent is identified based on this value (step 5).

The steps 3–5 are run twice. In a first run, only nodes in the time window
L that the click detection identified as head nodes are considered. If no parent
has been found in the first run, then a second run is started which considers all
nodes in the time window L. This way, identified clicks have a higher priority.

In order to handle requests with invalid referrers, the algorithm extracts the
domain of the invalid referrer and searches for the parent that is closest in the
time domain (step 6). The algorithm connects requests according to the origin
header field, if the header field is available (step 7). If a request’s content type
relates to an image, then the time windows L is traversed and the first parented
node that is either a head node, a node with text/html or text/css content is
returned (step 8).

Finally, the algorithm matches nodes of the same content type and domain to
the same parent (step 9). In other words, the algorithm tries to find the closest
sibling s, which has the same content type and domain as the analyzed node n,
and connects n to the parent of its closest sibling s.

www.example.com/favicon.ico
www.example.com/favicon.ico
www.example.com
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3 Evaluation

For our evaluation we have merged benign Web browsing traces with malicious
C&C requests. We have two types of benign Web traces, script-generated traces
and user traffic collected by Neasbitt et al. [25]. We collected C&C requests from
general purpose malware and APT malware samples from Weblogs [2,5–7]. We
only use the post infection traffic of that general purpose/APT malware samples.

Table 2 shows our benign datasets. We have generated datasets S1 and S2

with a python script that emulates the Web browsing behavior of users by access-
ing the Alexa top 250 websites of Switzerland. Our script is based on the Sele-
nium WebDriver [36]. It visits each of the top 250 websites in random order. We
have removed websites with adult content from that list. The script makes five
clicks per average on each website and stays on each resulting page for a ran-
dom time interval. The time spent on each page has an upper bound of 30 s. We
record only unencrypted HTTP traffic. This is achieved by visiting the HTTP
versions of the websites included in the input list. In case the website is forcing
SSL by redirecting the client to its secure version, the connection is terminated
and the next URL in the list is fetched.

Table 2. Benign Web traffic: S1 and S2 have been generated by a script and C1 has
been taken from the ClickMiner dataset [25]

ID Data source Browser #traces # train # test

requests requests

S1 script Firefox 46.0.1 10 132k 278k

S2 script Chrome 54.0.2840.71 10 112k 257k

C1 ClickMiner Firefox 14.0.1 24 - 74k

We recorded 10 browsing traces using Mozilla Firefox as a browser and 10
browsing traces using Google Chrome. The user clicks have been recorded in
order to train and evaluate the click detection classifier. Three out of the ten
traces are used for training the click detection classifier. The other seven traces
are used for testing in click detection, link completion and malware detection.

For evaluation we additionally used a third benign dataset C1 that contains
traffic from real users. The dataset has been published together with the Click-
Miner paper [25] and contains 24 traces. These traces were accumulated from a
user study with 21 participants. Each participant was requested to browse any
website they wished for twenty minutes while preserving their privacy.

Table 3 summarizes the general purpose malware samples that have been
collected from Contagiodump [2], Malware-traffic-analysis [6], the malware cap-
ture facility project [5] and pcapanalysis.com [7]. We labeled the C&C requests
of these 49 malicious traces manually. We used a variety of general purpose
malware that can be categorized in five malware families: botnets, exploit kits,
trojan horses, sality and ransomware.

http://pcapanalysis.com


376 P. Lamprakis et al.

Table 3. C&C requests from published general purpose malware traces [2,5–7].

id Malware type #traces #C& C requests

M1 Botnet 6 478

M2 Exploit Kit 13 357

M3 Trojan 25 274

M4 Sality 3 155

M5 Ransomware 2 3

Table 4 lists our APT malware samples. Again, we labeled the C&C requests
manually. Section 3.4 explains the APTs in more detail. Unfortunately, some
of the APT malware traces only consist of few HTTP samples. We decided
to include these traces in our evaluation in order to investigate whether our
approach mistakenly connects these requests to benign traffic or not.

Table 4. C&C requests collected from published APT malware traces [2].

id APT type #traces #C& C requests APT report

A1 TrojanCookies 1 720 [24]

A2 Lagulon 1 561 [12]

A3 Taidoor 1 35 [39]

A4 Netraveler 1 11 [21]

A5 Tapaoux 1 8 [23]

A6 Sanny 1 6 [14]

A7 Taleret 1 1 [13]

A8 Likseput 1 1 [24]

A9 Darkcomet 1 1 [35]

3.1 Click Detection

The information gain of each feature F1–F7 for click detection is depicted in
Fig. 4 for the datasets S1 and S2 separately. It can be seen that the results are
similar for both tested browser types. The content type (F1) has the highest
information gain. Most user clicks are performed on a text/html content type,
while embedded requests often contain images, scripts, style sheets but also
text/html. The response length contains more bytes for user clicks than for
embedded requests (F2). The number of referrals (F3) is higher for user clicks
since the accessed websites often trigger many embedded requests that refer
to the clicked website. The time gap (F4) between a request and its parent is
usually longer for user clicks since they are manually triggered as compared to
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embedded requests that are automatically generated. The URL length (F5) of
user clicks are longer than the one of embedded requests. Users do not often
directly access servers that are listed on EasyList as advertisement sites (F6).
The presence of a parent feature (F7) provides only limited information gain.

Fig. 4. Information gain per feature.

We have evaluated click detection for the datasets S1 and S2 separately.
A separate investigation shows us, how well the approach works for different
browsers. We have tested Mozilla Firefox in S1 and Google Chrome in S2, which
are two of the most popular Web browsers. For both datasets, we used the same
testing methods. We randomly selected three out of ten traces for training and
used the remaining seven traces for testing. The actual user clicks have been
recorded while capturing the network traffic. We assume that every access to a
Web server that is listed in our recorded click database is a user click. We have
evaluated various machine learning approaches and found that a random forest
classifier with 1000 estimators shows the best performance. A decision tree was
the runner up.

The results of the random forest classifier are listed in Table 5. The trained
random forest classifier has a recall of 0.96 for both browsers. The precision is
higher for Google Chrome with 0.96 as compared to Mozilla Firefox with 0.94.
The resulting f1 score is therefore slightly better for Google Chrome. Our click
detection performance is comparable to the one published by Vassio et al. [40].
We refer to Vassio et al. [40] for a more detailed analysis of click detection based
on a random forest classifier.

Table 5. Click detection classification results

Dataset Recall Precision f1 score

S1 0.96 0.94 0.95

S2 0.96 0.96 0.96
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In the following, all presented results are based on Web request graphs that
have been updated by the click detection classifier, such that only requests that
have been classified as user clicks are marked as head nodes. The remaining
results are only based on the test datasets of S1, S2 and C1. We have also
applied click detection to the Web request graphs of the ClickMiner dataset.
We have used the trained classifier of S1, since ClickMiner has used (a previous
version of) Mozilla Firefox.

We have merged the malicious datasets M1−5 randomly into the benign test
datasets S1, S2 and C1 to evaluate our approach for general-purpose malware.
The merged datasets are labeled as {S1,M}, {S2,M} and {C1,M}. Similarly, we
have merged the malicious traces A1−9 randomly into the benign test datasets
S1, S2 and C1 to evaluate our approach for APT malware. The merged datasets
are named {S1, A}, {S2, A} and {C1, A}.

3.2 Link Completion

Table 6 gives an overview of our results for link completion and malware detection
for all merged datasets. It can be seen that the malicious requests are mostly
unrelated. Only six requests from general-purpose malware are related. When we
only rely on the referrer, we see that the vast majority of the unrelated requests

Table 6. Statistics on the number of related/unrelated and benign/malicious requests
for all merged datasets. The majority of the requests are benign for all datasets. Our
approach significantly reduces the number of unrelated benign requests without reduc-
ing the number of unrelated malicious requests.

Datasets {S1,M} {S2,M} {C1,M} {S1, A} {S2, A} {C1, A}
# benign 278 367 257 123 74 037 278 367 257 123 74 037

# malicious 1 267 1 267 1 267 1 344 1 344 1 344

Referrer-based approach

# related 253 239 250 490 70 851 253 233 250 484 70 845

# unrelated 26 395 7 900 4 453 26 478 7 983 4 536

# related malicious 6 6 6 0 0 0

# unrelated malicious 1 261 1 261 1 261 1 344 1 344 1 344

# related benign 253 233 250 484 70 845 253 233 250 484 70 845

# unrelated benign 25 134 6 639 3 192 25 134 6 639 3 192

Our approach: click detection and link completion

# related 277 551 256 411 73 650 277 545 256 405 73 644

# unrelated 2 083 1 979 1 654 2 166 2 061 1 737

# related malicious 6 6 6 0 0 0

# unrelated malicious 1 261 1 261 1 261 1 344 1 344 1 344

# related benign 277 545 256 405 73 644 277 545 256 405 73 644

# unrelated benign 822 718 393 822 718 393
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is benign (72–95%). After applying click detection and link completion, only
23–39% of the remaining unrelated requests are benign.

We evaluated our link completion algorithm with the test datasets S1, S2

and C1. The results are depicted in Fig. 5. We can see that the S2 dataset has
less unrelated nodes as compared to dataset S1 before applying link completion.
Chrome produces a more complete request graph as compared to Firefox since it
sets the referrer header more often than Firefox as explained in Sect. 2.4. Our link
completion algorithm decreased the number of unrelated nodes by an average
factor of 30 for S1 dataset, nine for S2 and eight for ClickMiner. After applying
link completion, each test dataset contains between 0.28–0.53% unrelated nodes.

Fig. 5. Share of unrelated nodes before and after link completion. Link completion
decreases the number of unrelated nodes by an average factor of 30 for S1, nine for S2

and eight for C1.

3.3 General Purpose Malware Detection

We evaluated the ability of the algorithm to perform malware detection over
the above metrics using the merged datasets in the following way. For each data
source we randomly merged its traces with malicious ones by injecting the whole
malicious graphs inside the benign graph at random timestamps. This would
simulate a real case scenario where a user browses the Web and at the same
time a general purpose malware is running in the background (e.g., exfiltrating
data to the C&C server). We run the algorithm on each merged trace for each
data source and the results can be seen in Table 7. 99.5% of the C&C requests
were successfully detected while 0.5% were missed, independently of the benign
dataset used. The true negative and false positive rates are the same as shown
in Fig. 5. Hence, we can see that the link completion algorithm does not falsely
connect benign and malicious nodes. The false positive rate is a bit different
for each dataset and relates to the benign nodes (requests/responses) that the
algorithm was not able to connect in the graph.
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Table 7. Malware detection results.

Data set TPR FPR TNR FNR

{S1,M} 0.995 0.005 0.995 0.005

{S2,M} 0.995 0.003 0.997 0.005

{C1,M} 0.995 0.003 0.997 0.005

3.4 Advanced Persistent Threat Malware Detection

Advanced persistent threats employ targeted malware. They are hard to detect,
because they only attack selected high-profile targets, such as governments, mil-
itary, diplomats and research institutes. The attackers use advanced methods to
infect the target’s computers, because their targets are often better protected
against malware than the average user. APTs can operate for years without being
noticed by the victims. When an APT has successfully infected a high-profile
target, it is often reused to attack other high-profile targets.

Nettraveler is an APT that has been in operation since at least 2005. It
automatically extracts large amounts of private data over long time periods.
The APT malware compresses the private data and sends it to C&C servers in
HTTP requests. Kaspersky Labs [21] revealed this cyber espionage campaign
in 2013. More than 350 high-profile targets have been attacked in 40 countries
during this campaign. When Kaspersky revealed the campaign, 22 GB of stolen
data was still on the C&C servers. However, it is likely that stolen data had been
removed from the servers during the campaign. Therefore the total amount of
stolen data cannot be estimated.

The attackers send spear phishing e-mails to selected users. The Nettraveler
APT malware is hidden inside a Microsoft Office document. The APT malware
takes advantage of one of two vulnerabilities in Microsoft Office that can lead to
remote code execution. Both vulnerabilities have been patched in the mean time,
the vulnerability CVE-2010-3333 in 2010 and the vulnerability CVE-2012-0158
in 2012. Interestingly, this APT has been recently used to attack high-profile
targets in Russia, Mongolia, Belarus and other European countries in 2016 [34].
This indicates that even high-profile targets do not continuously and consistently
apply critical software updates on their computers. Hence, attackers can still find
a machine that can be attacked in order to get access to the corporate network.

We have also investigated malicious samples of the following APTs.

– Likseput (trace A8) is an APT malware which was used by a government-
sponsored Chinese APT group, called APT1, in order to control compro-
mised systems in cyber espionage campaigns that took place since at least
2006. APT1 has already extracted hundreds of terabytes from at least 141
organizations according to the Mandiant report [24].

– TrojanCookies (trace A1) is another APT malware used by APT1. It com-
municates with the C&C server by encoding the commands as well as the
responses in the cookie using base64 and a single-byte xor obfuscation.
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– Lagulon (trace A2) was used in several targeted campaigns performed by
an Iranian group, named Cleaver, in 2013. The APT malware can log the
user’s keystrokes, download and execute code, take screenshots and period-
ically exfiltrate data to a remote HTTP-based C&C server. The attackers
gained highly sensitive information from government agencies and infrastruc-
ture companies in many countries [12].

– Sanny (trace A6) was used in targeted attacks primarily against major indus-
tries in Russia. It was detected in 2012. The attackers sent a malicious
Microsoft Word document via spear phishing emails. The APT malware pro-
files the victims regarding their region and language. It extracts credentials
such as saved passwords in applications [14].

– Taidoor (trace A3) APT malware, a remote access trojan, was used to com-
promise targets since at least 2008. The threat actors sent out spear phishing
emails to Taiwanese government email addresses [39].

– Taleret (trace A7) APT malware was also used in the Taidoor campaign.
Unlike Taidoor, it connected to Yahoo blogs to retrieve a list of C&C
servers [13].

– Tapaoux (trace A5) is an APT malware used by the Darkhotel APT cam-
paign which appeared to have been active for seven years since 2007 [23]. The
attackers also used spear phishing with advanced zero-day exploits.

– Darkcomet (trace A9) is a remote access trojan, which was developed in 2008.
The Syrian government used it to spy on dissidents during the Syrian Civil war
in 2014 according to Fidelis Security [35]. It was also associated with operation
hangover, a cyber espionage campaign against Pakistani organizations that
took place from 2010 until 2013 [29].

We have evaluated our malware detection approach on malicious traces for all
nine mentioned advanced persistent threats, see Table 4. All of these APTs have
lead to severe damages on high-profile targets as described before. We randomly
integrated the C&C requests and responses of A1−9 to the benign test data sets
S1, S2 and C1. Our malware detection approach successfully detects all C&C
requests, as can be seen in Table 8. Therefore, the true positive rate is one and
the false negative rate is zero for all tested data sets. The false positive rate has
not changed as compared to Table 7.

Table 8. Advanced persistent threat detection results.

Data set TPR FPR TNR FNR

{S1,M} 1.000 0.005 0.995 0.000

{S2,M} 1.000 0.003 0.997 0.000

{C1,M} 1.000 0.003 0.997 0.000
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4 Discussion

In total 2605 of 2611 C&C requests (99.8%) are unrelated in the Web request
graphs of the malicious datasets of general purpose malware M1−5 and APT
malware A1−9. Only six C&C requests are related. There are three traces that
each contain a pair of related C&C requests. Each pair of C&C requests happens
due to an URL redirection. Table 9 shows the three traces that contain related
C&C requests. It can be seen that the HorstProxy trace is the only tested trace
without any unrelated C&C request. All other 57 traces contain unrelated C&C
requests, which are identified by our approach. This means that our approach
detects C&C traffic in 57 out of 58 malicious traces (including APT traces).

Table 9. Malicious traces with false negatives

Set Trace # related # unrelated

M3 HorstProxy EFE5529D697174914938F4ABF115F762-2013-05-13 [7] 2 0

M5 BIN sality CEAF4D9E1F408299144E75D7F29C1810 [7] 2 6

M5 InvestigationExtraction-RSA Sality [2] 2 8

Our experiments show that most C&C requests are indeed unrelated and
are correctly identified as malicious. Only HTTP redirects of malicious requests
are not identified. Such redirects could be merged in a request graph to single
nodes. In this case, we would have identified the redirected C&C requests as
malicious. However, we did not combine redirections and redirection targets into
single nodes in this work as this could result in additional false positives if the
benign requests have no relation to other nodes in the Web graph.

Our approach works on single clients and equally good for general purpose
and APT malware. This is a strong result considering the fact that some of
the considered APTs were active for years without being noticed. Our approach
would have detected the general purpose/APT malware in few minutes. We
consider 30 s time windows, this means that a real-time implementation of the
detection approach can react in a granularity of 30 s to a C&C request. Our
C&C detection approach can significantly improve the response time to attacks,
which might last for several years until the vulnerability has been identified and
patched.

As with any malware detection approach, attackers might change their behav-
ior in order to better obfuscate their activities and circumvent detection. How-
ever, the fact that the investigated malware traces caused considerable damage,
clearly shows that there is need for an approach like ours. We see several future
challenges for our approach. Firstly, the C&C traffic can be adapted such that
it sends related requests that mimic benign Web browsing traffic. Fake referrers
could be detected by analyzing the popularity of links in the request tree, as
outlined in our previous work [17]. Further, click detection could be used to ana-
lyze the sites visited by users. In case malware builds its own sequence of related
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requests, this could still identify the C&C channel since it is a Web site that is
visited repeatedly.

Secondly, C&C requests can set a referrer to a benign request in order to
better hide inside Web browsing. In this scenario, one has to take the referrer
field into question. One will look at other features such as the timing behavior
between related requests in order to see, whether the general purpose/APT
malware performs the requests in the same manner as a Web browser.

Thirdly, the number of false positives might increase in future due to a grow-
ing complexity of Web request graphs and removal of referrers due to privacy
constraints. In this case, one can develop further heuristics to improve the link
completion. Furthermore, one could reduce the number of detection alerts by
summarizing the unrelated requests on domain level. One can send a detection
alert whenever a server has been contacted with unrelated requests for at least
a given number of times. This should significantly reduce the number of alerts.

Finally, benign and malicious Web traffic might mostly consist of HTTPS
connections instead of HTTP. This challenge can be overcome by using man-in-
the-middle proxies, which allows a network application to inspect the otherwise
encrypted traffic. This is already done in many companies and other high-profile
targets.

5 Related Work

Supervised malware detection: Most related approaches that detect C&C
channels in network traffic use supervised machine learning that trains on labeled
malware samples. For instance, Perdisci et al. [33] propose a scalable malware
clustering system for HTTP-based malware, which has a detection rate of 65%–
85%. BotFinder [38] creates botnet traffic inside a controlled environment in
order to learn bot detection models with a detection rate of 80%. ExecScent [26]
learns adaptive control protocol templates in order to determine a good trade-
off between true and false positive rates. DISCLOSURE [8] detects C&C traffic
using a large-scale NetFlow analysis that relies on labeled training samples. Their
detection rate is about 90%. They use external reputation scores to reduce the
false positive rate.

HAS-Analyzer [22] uses a random forest classifier with an accuracy of 96%
and a false positive rate of 1.3% without using any whitelist. JACKSTRAWS [19]
correlates host behavior with network traffic to detect C&C channels of botnets.
The authors use machine learning with labeled malicious samples and achieve a
detection rate of 81.6% at a false positive rate of 0.2%. In contrast to [8,19,22,
26,27,33,38], our detector works without learning from malware samples while
providing a very high true positive rate and a low false positive rate.

Our link completion algorithm uses similar techniques as the ones devel-
oped by Nelms et al. [27] for the WebWitness system. WebWitness classifies
the infection method as malicious drive-by, social engineering and update/drop
downloads. However, in contrast to our approach, Nelms et al. do not build
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a malware detector, instead they focus on enabling forensic investigations of
already identified malware infections.

Unsupervised malware detection: BotSniffer [16] presents an unsupervised
network-based anomaly detector without prior knowledge of the malware. The
detection rate is 100% with a false positive rate of 0.16%. BotMiner [15] clusters
communication patterns and malicious activities traffic and identifies botnets
due to a cross cluster correlation. The detection rate is 100% for HTTP bots
with a false positive rate of 0.003%. However, BotSniffer and BotMiner only work
on network level with multiple infected hosts. BotSniffer takes advantage of the
observations that bots communicate in a similar spatial-temporal behavior to
the malicious server. However, these approaches do not work for APTs, which
only infect a single computer.

Burghouwt et al. [10] and Zhang et al. [43] correlate Web request graphs with
user interactions to detect malware. Burghouwt et al. achieve a detection rate of
70%–80% with a false positive rate of 0.17%, Zhang et al. achieve an accuracy
of 96%. In contrast to our approach, they continuously record user interactions
such as clicks and keystrokes. We only record the accessed domains in an initial
training stage for click detection. After training is completed, we do not need to
record any user interaction. Furthermore, [10,43] do not employ link completion.

Oprea et al. [30] propose a graph-theoretic framework based on belief prop-
agation to detect early-stage APT campaigns. Unlike our approach, they do
not fully rely on the network traffic but also collect registration information of
the accessed domains. Furthermore, their approach only works on the enterprise
network level, while our approach also works for single hosts.

6 Conclusion

We propose a novel APT and general purpose malware detection approach that
identifies command and control channels in Web request graphs. Our approach
relies on the observation that malware communicates to malicious servers period-
ically with single, unrelated HTTP requests. This communication pattern is dif-
ferent from Web browsing where page requests usually result in several requests
that are related to each other. Software applications and the operating system
also send single, unrelated request to dedicated servers. Their traffic patterns are
similar to C&C requests. However, we assume that these servers are well known
and can be whitelisted. In our experiments, we whitelist 37 update servers and
certificate authorities.

Our malware detection approach improves the request graphs of related work
by automatically detecting user clicks (click detection) and restoring dependen-
cies between unconnected requests (link completion). In a first step, we use a
random forest classifier to detect user clicks inside request graphs. Our classifier
relies on seven features on node and graph level, such as content type (node
level) and number of children (graph level). We evaluate our click detection clas-
sifier with generated benign browsing traffic that accesses the Alexa top 250 of
Switzerland. Our classifier has a f1 score of 95% for Firefox and 96% for Chrome.
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In a second step, we connect unrelated nodes to their most likely parent.
We evaluated link completion on the script-generated traffic and real user traffic
provided by ClickMiner [25]. We find that 91–97% of the HTTP requests in Web
browsing are already connected to other requests after extracting the request
graphs with Hviz [17]. Our heuristic algorithm, called link completion, connects
unrelated requests to their most likely parent. Our experiments show that link
completion adds many missing links to the request graph. Between 99.5% and
99.7% of the benign nodes are connected after link completion.

We have evaluated our detection approach for 49 general purpose malware
and nine APT malware packet traces, which are publicly available. The post-
infection C&C traffic of these traces consists of 99.8% unrelated requests and
0.2% related requests. When we randomly merge these requests to benign Web
browsing traffic, we can detect 99.5% of the malware and 100% of the APT
C&C requests while having a false positive rate of 0.3–0.5%. Our approach can
be applied in real-time at the granularity of single clients. This means that C&C
traffic can be recognized in the order of 30 s. The Web request graphs can be
tracked and completed on a per client base. This allows the proposed algorithm
to scale horizontally as well as vertically. We hope that our findings will help to
significantly shorten the timespan until new pieces of malware, especially those
used by APTs, are discovered.
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Decker, B., Zúquete, A. (eds.) CMS 2014. LNCS, vol. 8735, pp. 63–72. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44885-4 5

https://www.melani.admin.ch/dam/melani/en/dokumente/2016/technical%20report%20ruag.pdf.download.pdf/Report_Ruag-Espionage-Case.pdf
https://www.melani.admin.ch/dam/melani/en/dokumente/2016/technical%20report%20ruag.pdf.download.pdf/Report_Ruag-Espionage-Case.pdf
https://www.melani.admin.ch/dam/melani/en/dokumente/2016/technical%20report%20ruag.pdf.download.pdf/Report_Ruag-Espionage-Case.pdf
http://contagiodump.blogspot.com
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://mcfp.weebly.com
http://www.malware-traffic-analysis.net
http://www.pcapanalysis.com
https://bugzilla.mozilla.org/show_bug.cgi?id=1282878
http://dx.doi.org/10.1007/978-3-319-03584-0_10
http://dx.doi.org/10.1007/978-3-662-44885-4_5


386 P. Lamprakis et al.

12. Cylance: Operation cleaver report. http://cdn2.hubspot.net/hubfs/270968/assets/
Cleaver/Cylance Operation Cleaver Report.pdf. Accessed Feb 2017

13. FireEye: Evasive Tactics: Taidoor. https://www.fireeye.com/blog/threat-research/
2013/09/evasive-tactics-taidoor-3.html. Accessed Feb 2017

14. FireEye: To Russia With Targeted Attack. https://www.fireeye.com/blog/
threat-research/2012/12/to-russia-with-apt.html. Accessed Feb 2017

15. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: Proceedings
of the USENIX Security Symposium. USENIX Security 2008 (2008)

16. Gu, G., Zhang, J., Lee, W.: Botsniffer: detecting botnet command and control
channels in network traffic. In: Proceedings of the Network and Distributed System
Security Symposium (NDSS 2008) (2008)

17. Gugelmann, D., Gasser, F., Ager, B., Lenders, V.: Hviz: Http(s) traffic aggregation
and visualization for network forensics. In: Proceedings of the DFRWS Europe
(DFRWS 2015 Europe) Digital Investigation 12, Supplement 1, pp. 1–11 (2015)

18. IETF: Online Certificate Status Protocol - OCSP. https://tools.ietf.org/html/
rfc6960. Accessed Feb 2017

19. Jacob, G., Hund, R., Kruegel, C., Holz, T.: Jackstraws: picking command and con-
trol connections from bot traffic. In: Proceedings of the USENIX Security Sympo-
sium. USENIX Security 2011 (2011)

20. Jones, M.: Protecting privacy with referrers (2010). https://www.facebook.com/
notes/facebook-engineering/protecting-privacy-with-referrers/392382738919/.
Accessed Feb 2017

21. Lab, K.: The Nettraveler (aka ‘Travnet’). https://kasperskycontenthub.com/
wp-content/uploads/sites/43/vlpdfs/kaspersky-the-net-traveler-part1-final.pdf.
Accessed Jan 2017

22. Kim, S.J., Lee, S., Bae, B.: Has-analyzer: detecting http-based c&c based on the
analysis of http activity sets. TIIS 8(5), 1801–1816 (2014)

23. Lab, K.: The Darkhotel APT, a story of unusual hospitality. https://securelist.
com/files/2014/11/darkhotel kl 07.11.pdf. Accessed Feb 2017

24. Mandiant: APT1 - Exposing One of China’s Cyber Espionage Units. https://www.
fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf.
Accessed Feb 2017

25. Neasbitt, C., Perdisci, R., Li, K., Nelms, T.: Clickminer: towards forensic recon-
struction of user-browser interactions from network traces. In: Proceedings of the
ACM CCS 2014, pp. 1244–1255. ACM (2014)

26. Nelms, T., Perdisci, R., Ahamad, M.: Execscent: mining for new c&c domains
in live networks with adaptive control protocol templates. In: Proceedings of the
USENIX Security Symposium, pp. 589–604. USENIX, Washington, D.C. (2013)

27. Nelms, T., Perdisci, R., Antonakakis, M., Ahamad, M.: Webwitness: investigat-
ing, categorizing, and mitigating malware download paths. In: Proceedings of the
USENIX Security Symposium, pp. 1025–1040. USENIX (2015)

28. NIST: Managing Information Security Risk. http://nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-39.pdf, nIST Special Publication 800–39

29. Norman: Operation Hangover. http://enterprise-manage.norman.c.bitbit.net/
resources/files/Unveiling an Indian Cyberattack Infrastructure.pdf. Accessed Feb
2017

30. Oprea, A., Li, Z., Yen, T.F., Chin, S.H., Alrwais, S.: Detection of early-stage enter-
prise infection by mining large-scale log data. In: Proceedings of the IEEE/IFIP
Int. Conf. on Dependable Systems and Networks, DSN 2015, pp. 45–56. IEEE
Computer Society (2015)

http://cdn2.hubspot.net/hubfs/270968/assets/Cleaver/Cylance_Operation_Cleaver_Report.pdf
http://cdn2.hubspot.net/hubfs/270968/assets/Cleaver/Cylance_Operation_Cleaver_Report.pdf
https://www.fireeye.com/blog/threat-research/2013/09/evasive-tactics-taidoor-3.html
https://www.fireeye.com/blog/threat-research/2013/09/evasive-tactics-taidoor-3.html
https://www.fireeye.com/blog/threat-research/2012/12/to-russia-with-apt.html
https://www.fireeye.com/blog/threat-research/2012/12/to-russia-with-apt.html
https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc6960
https://www.facebook.com/notes/facebook-engineering/protecting-privacy-with-referrers/392382738919/
https://www.facebook.com/notes/facebook-engineering/protecting-privacy-with-referrers/392382738919/
https://kasperskycontenthub.com/wp-content/uploads/sites/43/vlpdfs/kaspersky-the-net-traveler-part1-final.pdf
https://kasperskycontenthub.com/wp-content/uploads/sites/43/vlpdfs/kaspersky-the-net-traveler-part1-final.pdf
https://securelist.com/files/2014/11/darkhotel_kl_07.11.pdf
https://securelist.com/files/2014/11/darkhotel_kl_07.11.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-39.pdf
http://enterprise-manage.norman.c.bitbit.net/resources/files/Unveiling_an_Indian_Cyberattack_Infrastructure.pdf
http://enterprise-manage.norman.c.bitbit.net/resources/files/Unveiling_an_Indian_Cyberattack_Infrastructure.pdf


Unsupervised Detection of APT C&C Channels using Web Request Graphs 387

31. Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput.
Netw. 31(23–24), 2435–2463 (1999)

32. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

33. Perdisci, R., Ariu, D., Giacinto, G.: Scalable fine-grained behavioral clustering of
http-based malware. Comput. Netw. 57(2), 487–500 (2013)

34. Proofpoint: Nettraveler apt targets russian, european interests. https://www.
proofpoint.com/us/threat-insight/post/nettraveler-apt-targets-russian-european-
interests. Accessed Jan 2017

35. Security, F.: Looking at the Sky for a DarkComet. https://www.fidelissecurity.
com/sites/default/files/FTA 1018 looking at the sky for a dark comet.pdf.
Accessed Feb 2017

36. SeleniumHQ: http://www.seleniumhq.org. Accessed Jan 2017
37. Symantec: Internet security threat report. Technical Report 21, Symantec, April

2016. https://www.symantec.com/security-center/threat-report
38. Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: Botfinder: finding bots in network traffic

without deep packet inspection. In: Proceedings of the International Conference
on Emerging Networking Experiments and Technologies (CoNEXT), pp. 349–360.
ACM (2012)

39. TrendMicro: The Taidoor Campaign. https://www.trendmicro.de/cloud-content/
us/pdfs/security-intelligence/white-papers/wp the taidoor campaign.pdf.
Accessed Feb 2017

40. Vassio, L., Drago, I., Mellia, M.: Detecting user actions from HTTP traces: toward
an automatic approach. In: International Wireless Communications and Mobile
Computing Conference (IWCMC), pp. 50–55 (2016)

41. W3C: Referer Policy. https://w3c.github.io/webappsec-referrer-policy. Accessed
Feb 2017

42. Xie, G., Iliofotou, M., Karagiannis, T., Faloutsos, M., Jin, Y.: Resurf: reconstruct-
ing web-surfing activity from network traffic. In: Proceedings of the International
Conference on Networking, IFIP (2013)

43. Zhang, H., Banick, W., Yao, D., Ramakrishnan, N.: User intention-based traffic
dependence analysis for anomaly detection. In: IEEE Symposium on Security and
Privacy Workshops, pp. 104–112, May 2012

https://www.proofpoint.com/us/threat-insight/post/nettraveler-apt-targets-russian-european-interests
https://www.proofpoint.com/us/threat-insight/post/nettraveler-apt-targets-russian-european-interests
https://www.proofpoint.com/us/threat-insight/post/nettraveler-apt-targets-russian-european-interests
https://www.fidelissecurity.com/sites/default/files/FTA_1018_looking_at_the_sky_for_a_dark_comet.pdf
https://www.fidelissecurity.com/sites/default/files/FTA_1018_looking_at_the_sky_for_a_dark_comet.pdf
http://www.seleniumhq.org
https://www.symantec.com/security-center/threat-report
https://www.trendmicro.de/cloud-content/us/pdfs/security-intelligence/white-papers/wp_the_taidoor_campaign.pdf
https://www.trendmicro.de/cloud-content/us/pdfs/security-intelligence/white-papers/wp_the_taidoor_campaign.pdf
https://w3c.github.io/webappsec-referrer-policy


Measuring Network Reputation
in the Ad-Bidding Process

Yizheng Chen1(B), Yacin Nadji2, Rosa Romero-Gómez2, Manos Antonakakis2,
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Abstract. Online advertising is a multi-billion dollar market, and there-
fore a target for abuse by Internet criminals. Prior work has shown mil-
lions of dollars of advertisers’ capital are lost due to ad abuse and focused
on defense from the perspective of the end-host or the local network
egress point. We investigate the potential of using public threat data to
measure and detect adware and malicious affiliate traffic from the per-
spective of demand side platforms, which facilitate ad bidding between ad
exchanges and advertisers. Our results show that malicious ad campaigns
have statistically significant differences in traffic and lookup patterns
from benign ones, however, public blacklists can only label a small per-
centage of ad publishers (0.27%), which suggests new lists dedicated to
ad abuse should be created. Furthermore, we show malicious infrastruc-
ture on ad exchanges can be tracked with simple graph analysis and
maliciousness heuristics.

1 Introduction

On-line advertisement is a complex ecosystem that enables one of the most pros-
perous Internet businesses. Naturally, it has become the target of abuse. Only
in the last few years are we beginning to grasp the scale of the economic loss for
advertisers from ad abuse [10,15,24,28]. Using armies of compromised machines
(i.e., botnets), sophisticated affiliate programs, and ad injection techniques, mil-
lions of dollars are stolen from advertisers. If we want to reduce abuse on the
Internet, we will have to eliminate the monetization opportunities attackers use.

For almost a decade, security researchers and network operators have studied
how to detect and stop advertisement abuse. The focus of past research efforts
has been on detecting ad abuse at the edge (i.e., the infected host), at the egress
point of a network, or “outside” of the ad ecosystem. Little is known, however,
about the network policies that are being enforced within the ad ecosystem,
especially during the ad bidding process. Advertisers do not want to display
ads on low quality publishers that may include automated visits from adware
c© Springer International Publishing AG 2017
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and affiliate marketing entities, and thus they need to selectively respond to ad
bidding requests based on the reputation of the publishers. Unfortunately, little
work has been done to measure reputation of publisher domains.

In this paper, we examine if open source intelligence data from the security
community can be used to ascertain publisher reputation. To this end, we analyze
anonymized ad bidding requests between a large demand side platform (DSP)
in North America and six ad exchanges over a period of three months. Using
open source intelligence from public blacklists and malware execution traces, we
investigate the reputation properties of publishers in the advertisement bidding
process (Sect. 5). Our study makes the following key observations:

– We explain the ad bidding process and measure it in detail to improve the
network and security communities’ understanding of the advertising ecosys-
tem. These measurements include bidding request traffic from six large ad
exchanges for request volume, publisher domains, and client distribution.
We find that malicious publisher domains tend to be present on more ad
exchanges and reach more clients than non-blacklisted publisher domains on
average. These differences are statistically significant and suggest that repu-
tation systems for advertisement publishers are possible.

– We identify that of all publisher domains seen in the DSP, 13,324 (0.27%) are
on blacklists, which generate only 1.8% of bid requests, and 134,262 (2.74%)
are queried by malware. This underestimates the amount of ad abuse based
on other studies [14,16], which has been measured as high as 30%. This
also indicates that traditional sources of maliciousness used in the security
community are insufficient to understand ad abuse seen from DSPs.

– Using graph analysis, we demonstrate how to track advertising infrastruc-
ture over time. To focus on potentially malicious campaigns, we use a sim-
ple suspiciousness heuristic based on open-source intelligence feeds. Using
this technique, we identify case studies that show ad network domains sup-
port Potentially Unwanted Programs (PUP), rely on domain name generation
algorithms, and are occasionally used to distribute malware.

2 Background

In this section, we briefly describe the key components of the ad ecosystem and
the real-time bidding process.

2.1 Ad Ecosystem

Figure 1 gives an overview of the online advertising ecosystem. When a user
visits a publisher webpage (step 1, Fig. 1) its elements are loaded (step 2), during
which the iFrame representing the ad inventory requests the ad server for an ad
to display (step 3). The ad server asks for an ad from the ad network (step
4), and reports ad metrics for payment logging. An ad network can also sell ad
inventories to an ad exchange (step 5). If an ad request cannot be fulfilled, it
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will be relayed to a Demand Side Platform provider (DSP) (step 6), and then
advertisers who work with the DSP can purchase the impression (scenario A).
The advantage of using a DSP is that advertisers will have access to multiple ad
exchanges. In this paper, we focus on the vantage point of a DSP (scenario A).

Fig. 1. An overview of the online advertising ecosystem.

The DSP, ad exchanges, and ad networks consolidate advertisers’ audience
target and budget information, and show the optimal ad back to the publisher’s
page (step 7 to 10). An impression is therefore fulfilled and logged. Impressions
are often charged according to the CPM (Cost Per Mille, or cost per thousand
impression). If the ad is clicked, the ad server will log it (step 11), and redirect
the user (step 12) to the page of the advertiser (step 13). In such an event, the
advertiser is charged for the click. The CPC (Cost Per Click) varies according
to the keywords of the webpage and the user category.

Publishers can resell (syndicate) the ads to other publishers. In turn, these
publishers can sell (subsyndicate) the ads further to other publishers. Syndication
enables the ads to reach a wider audience. Thus, there can be several redirections
among publishers before an ad request reaches the ad server (step 3).

2.2 Real-Time Bidding

Figure 2 shows a simplified view of the Real-Time Bidding (RTB) process. The
JavaScript from the publisher page requests an ad through a bid request. In a
request, the publisher includes information such as category of the page, size of
the ad space, country, user’s browser and OS version, cookie, etc., and sends it
to the ad exchange (step 1).

Once the ad exchange receives the bid request from a seller, it then consoli-
dates the request into seller site information (e.g., URL of the publisher page),
device information, and user data. The ad exchange sends the bid request to its
buyer applications (step 2), for instance, through a DSP.

After receiving the bid request, the buyer replies with a bid response con-
taining the ad URL and the markup price (step 3). The RTB protocol typically
waits for a fixed amount of time (e.g., 100 ms) to collect bids, and then chooses
the winning bid under the auction’s rules (e.g., OpenRTB [27]). The ad exchange
then notifies the winner and returns the ad to the publisher (step 4).
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Fig. 2. A simplified view of the
Real-Time Bidding process.

Table 1. Summary of all datasets.

Date range Size

DSP traffic 12/10/14–3/24/15 2.61 T

Blacklists 12/9/09–1/15/16 22G

Malware 1/1/11–11/17/15 136G

DNS 12/10/14–3/24/15 1.54 T

Fig. 3. Number of daily bid requests from ad exchanges seen in the DSP.

In the aforementioned example, the bid request comes from the publisher
directly. Therefore, the publisher page is the referrer for the bid request. Very
often, the bid request comes from the market place, where the original request
was purchased and resold by many intermediaries. In that case, the referrer is
the last entity that sold the ad inventory to the ad exchange. Ad exchanges do
not have visibility of the user-side publisher if the request comes from the market
place. This is one of the challenges for ad exchanges to detect and stop fraud.

3 Datasets

In this section, we describe the datasets we obtained including Demand Side
Platform provider (DSP) traffic, public blacklist data, and malware domain data.
Table 1 provides a brief summary of the datasets.

3.1 DSP Traffic

The DSP provides ad bidding logs extracted from step 3 of Fig. 2. The traffic is
aggregated into eight fields per hour every day: the ad exchange that issued the
bid request, the publisher domain name of the referrer URL, the hashed IP
address of the user, the country code and autonomous system number
of the IP address, the hourly timestamp of when the bid request was sent,
and lastly the number of bid requests seen within the specific hour that
match all the previous fields. Within the fields, the publisher domain name
represents either the webpage that users saw, or the last traffic reseller before
the bid request reached the ad exchange. Next, we describe DSP traffic using
the volume of bid requests and publisher domain names.
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Fig. 4. Number of daily publisher domains from ad exchanges seen in the DSP.

Bid Request Volume. It is reasonable to assume that for each bid request,
some advertiser wins the bid eventually. Therefore, the bid request volume can
be considered to be the number of ad inventories purchased and shuffled through
the ad exchanges from the visibility of the DSP.

Figure 3 shows the bid request volume from six different ad exchanges from
12/10/2014 to 3/24/2015. One of these ad exchanges is ranked top five in market
share. On average, there are 3.45 billion bid requests daily in total. Individually,
Exchange A processed the most bid requests of all, with an average of 1.77
billion requests per day. Exchange B comes next, with an average of 695 million
requests per day. In addition, Exchange E, Exchange F, and Exchange C received
bid requests on the order of hundreds of millions. Finally, Exchange D had an
average of 30 million bid requests daily, which fluctuated the most compared to
other ad exchanges.

Comparing the volume of the last day from the DSP traffic (3/24/2015)
with that of the first day (12/10/2014), there is a decline in the overall bid
request volume from Exchange A (63.2%), Exchange B (34.3%), Exchange C
(83.2%), and Exchange D (31.2%). However, the volume increased for Exchange
E (18.34%) and Exchange F (64.26%). Our DSP confirmed that this was not a
traffic collection problem but could not identify the root cause of these changes.

Publisher Domains. The publisher domain field in the DSP traffic indicates
the source of an ad request. It is either the publisher website where the ad will
be shown, or the reseller domain redirected from some previous publisher.

An average of 391,430 total publisher domains were seen from all ad
exchanges every day. Figure 4 shows the number of unique publisher domains
from each ad exchange. Although Exchange A had the highest number of bid
requests (Fig. 3), it represented the lowest number of unique domains (average:
955) per day. It is likely that many of them are traffic resellers. For instance,
coxdigitalsolutions.com is a subsidiary of Cox specializing in buying and
selling digital media. It is the most popular publisher domain in Exchange A,
generating more than 20% of all bid requests. The small set of publisher domains
of Exchange A is quite stable. There were no new publishers in 39 days out of
three months, and an average of 91 new publisher domains on the other days.
Exchange D has the fewest bid requests and also had very few publisher domains,
an average of 14,732 every day. If an ad exchange works with few publishers, it
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is easier to provision them and block malicious traffic. On the other hand, it is
harder to know the source of ad inventories from reseller publishers, meaning
detection may need to happen at the reseller’s perspective.

Two ad exchanges saw the largest number of new publisher domains.
Exchange E had an average of 22,647 new publisher domains, while Exchange
F had an average of 23,405 new publisher domains daily. Towards the end of
March 2015 in Fig. 4, there were as many as 35,794 new domains from Exchange
E and 56,151 new domains from Exchange F. Both ad exchanges also increased
the volume of bid requests during the same time period in Fig. 3. The churn rates
of the publisher domain names in these two ad exchanges were quite high. This
presents a challenge for ad exchanges to track the reputation of new publishers.

Lastly, Exchange B had a stable number of publisher domains every day,
on the order of 100,000. There was a decrease in the number of daily publisher
domains seen from Exchange C around the end of 2014, and then the number
increased again, reaching the 150,000 mark towards the end of March 2015.

3.2 Other Datasets

In order to measure reputation in the DSP bid request traffic, we also obtained
other datasets that provide threat information, which includes public blacklists
and dynamic malware execution traffic. Both provide insight into known abuse
in the ad exchanges. We crawled seven public blacklists [2–5,7,8,39] daily from
12/9/2009 to 1/15/2016. In total, 1.92 million unique domains appeared on the
public blacklists. Dynamic malware execution feeds are from one university [20]
and two industry partners. The binaries were each executed for five minutes in
a controlled environment. We extracted date, malware md5, and the domain
names queried during the execution of the binaries. The feeds are collected from
1/1/2011 to 11/17/2015. There are 77.29 million unique malware md5s, querying
a total of 14.3 million domain names. We use PBL to denote the public blacklists
dataset and Md5 to denote the malware domains dataset.

Lastly, we collected DNS resolution data every day from a passive DNS repos-
itory in North America between 12/10/2014 to 3/24/2015. The dataset contains
domain name, query type, and resolved data every day for A, NS, CNAME, and
AAAA query types. We observed a daily average of 891 million unique map-
pings between domain names. On average, the DNS resolution dataset matches
71.56% of all publisher domain names seen in the DSP in the same day. Among
the 28.55% publisher domains from DSP not seen in passive DNS, the majority
of them are long tail content sites. For example, unpopular blog sites, user’s own
fantasy sport pages, customized lists pages, etc. Long tail content can be specific
to certain users’ interests and not commonly accessed across different networks.
In full disclosure, this is perhaps the only not fully open source intelligence source
we used in our experiments. However, commercial passive DNS offerings are very
simple to obtain today [6]. We will use the resolution information to construct
infrastructure graphs and track them over time in Sect. 6.
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Fig. 5. Examples of blacklisted publisher domains seen in the DSP traffic.

4 Fraudulent Publisher Domains

In this section we provide examples of blacklisted publisher domains that gen-
erated ad bidding requests through the ad exchanges. These domains are from
adware and affiliate marketing programs.

4.1 Case 1: PUP

Blacklisted publisher domains can be generated by Potentially Unwanted Pro-
grams (PUP) such as browser hijacker and pop-up ads.

Figure 5(1) shows domain names of pattern websearch.*.info that are used
by browser hijackers [22]. The adware forces the user to use a different search
engine to steal impressions that would have otherwise been delivered through
typical search engines (e.g., Google, Bing, Yahoo, etc.). The adware hijacks user
search queries and makes ad bidding requests from these publisher domains to
generate revenue.

Figure 5(2) shows “update” domains used by pop-up ads. The adware shows
pop-up ads that masquerade as fake updaters for legitimate software, such as
Windows, Flash, and video players [23]. These publisher domains make ad bid-
ding requests from pop-up windows generated by the adware.

4.2 Case 2: Affiliate Marketing

Blacklisted publisher domains may represent affiliate marketing domains. These
affiliate domains request ads through ad exchanges on behalf of adware or mal-
ware. We manually analyzed network traces from dynamic execution of malware
md5s that contained domains in Fig. 5(3). The malware uses fake referrers to
send HTTP GET requests through domains in Fig. 5(3). Then the requests go
through a chain of redirections until finally receiving an ad to generate revenue.

5 Measurement

We first discuss client IP location distribution in DSP traffic in Sect. 5.2. Then,
we perform reputation analysis of publisher domains by correlating them with
blacklists and malware domains in Sect. 5.3.
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Fig. 6. Distributions of client IP address locations.

5.1 Summary of Findings

In summary, we found that:

– There are 13,324 (0.27%) known malicious domains generating bid request
traffic through the ad exchanges in our datasets. On average, they gener-
ate 1.8% of overall bid requests daily, much less than previously published
values [14,16]. However, 68.28% of blacklisted domains were identified by pub-
lic blacklists before they appeared in DSP traffic. This suggests traditional
sources of maliciousness are valuable, but insufficient to understand ad-abuse
from the perspective of DSPs.

– On average, blacklisted publisher domains tend to use more ad exchanges
(average: 1.85) and reach more clients (average: 5109.47) compared to non-
blacklisted domains (average ad exchanges: 1.43, average hashed client IP
addresses: 568.78) (Sect. 5.3). This suggests reputation systems for ad pub-
lishers are possible.

– Contrary to the observation of blacklisted publisher domains, malware
domains use a similar number of ad exchanges (average: 1.44), but are seen
from more hashed client IP addresses (average: 2310.75), compared to pub-
lisher domains never queried by malware (average ad exchanges: 1.43, average
hashed client IP addresses: 485.36) (Sect. 5.3).

5.2 Client Analysis

We observed 436 million hashed client IPs that sent bid requests for ads. Accord-
ing to information provided by the DSP, the hashed client IP addresses are from
37,865 different Autonomous Systems in 234 different countries.

Table 2a shows the top six countries where hashed client IP addresses reside.
Nearly 40% of clients are located in the United States. Next, it is the United
Kingdom with 8% of hashed IP addresses. The top six countries also include
Germany (7.11%), Canada (4.82%), France (3.90%), and Mexico (2.98%). There
is a long tail of 228 other countries for the remaining clients. Overall the top six
countries account for 66.75% of all the hashed client IP addresses seen in DSP.
Figure 6 shows the country distribution of hashed client IP address locations.
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Table 2. a: The top six countries for 66.75% of hashed client IP addresses. b: The top
six Autonomous System Names for 17.66% of hashed client IP addresses.

Country Hashed IPs
millions

US 174 (39.91%)
GB 35 (8.03%)
DE 31 (7.11%)
CA 21 (4.82%)
FR 17 (3.90%)
MX 13 (2.98%)
Other 103 (23.62%)
Unknown 42 (9.63%)

Total 436 (100.00%)

(a) Client Location

AS Names Hashed IPs
millions

Comcast 18 (4.13%)
AT&T 17 (3.90%)
Deutsche Telekom 14 (3.21%)
MCI 12 (2.75%)
Verizon 9 (2.06%)
Uninet 7 (1.61%)
Other 359 (82.34%)
Unknown 42 (9.63%)

Total 436 (100.00%)

(b) AS Name

Table 2b presents the top six Autonomous System Names (ASNs) for hashed
client IP addresses. The ASN distribution is less biased compared to the country
distribution. Comcast, AT&T, and Deutsche Telekom are the top three ASNs,
each with under 5% of all hashed IP addresses. There are 37,859 different ASNs
in the long tail of the distribution, which contains 82.34% of all hashed IPs.

5.3 Reputation Analysis

In this section, we explain how we intersect publisher domains from DSP traffic
with blacklists and malware domains to perform reputation analysis.

Public Blacklist Traffic. Since 89.87% of the domains on the blacklists we
collected do not have semantic information, we filter them to ensure they are
bad publishers with high confidence. We want to be conservative about what we
keep, so we choose the following filters. First, we obtained all the domains that
appeared on the Alexa [11] top one million list for every day from 12/10/2014
to 3/24/2015. We excluded those consistent Alexa domains because they are
unlikely to be malicious. Second, we excluded all domains under the ad server
category of EasyList [1], because malware conducting impression fraud or click
fraud can generate traffic that goes through ad servers. Lastly, we excluded a
hand curated a whitelist of CDN effective second level domains (e2lds) and we
excluded all fully qualified domain names that overlapped with these e2lds.

Observation 1: 0.27% publisher domains appeared in DSP traffic were
blacklisted by the security community. They generated 1.8% of all bid
requests daily

We observed 4,905,224 unique domains in the DSP traffic from 12/10/2014
to 3/24/2014. Among them, 13,324 (0.27%) domains were blacklisted some time
between 12/9/2009 and 1/15/2016. Blacklisted domains were responsible for an
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Fig. 7. Density plot of first seen date date on PBL - first date seen from DSP (7a)
and last seen date on PBL - last date seen from DSP (7b).

average of 1.8% of all bid requests every day. Previous studies estimate nearly
30% of bid requests are malicious [14,16], which suggests this is only a fraction
of the actual abuse. While there are many potential causes, such as referrer
spoofing or lack of ad-abuse investigations, these findings show simply relying
on blacklists from the security community is insufficient to study and combat
abuse. While they are few, we investigated the potential to automatically detect
these abusive domains.

Observation 2: 68.28% of blacklisted publisher domains were known
to the security community before they appeared in DSP traffic

Figure 7a shows the density distribution for the difference of days between
when a domain was first blacklisted and when it was seen in DSP traffic. The
zero value in this case means that the domain name was blacklisted on the same
day as it was seen in the ad exchanges. Similarly, a value of −500 means that the
domain was blacklisted 500 days before it ever appeared in the datasets from the
DSP. The plot shows that 68.28% (9,097) of all blacklist domains were known
to the security community prior to they started requesting for ads in the DSP
traffic. Moreover, 32.49% (4,329) of blacklisted publisher domains were labeled
more than 535 days before they were seen in the DSP datasets. The peaks of
the distribution reflects several blacklists update events. One event was a major
update of 4,031 domains on 6/23/2013, which corresponds to the −535 days in
Fig. 7a. Another update event on 12/4/2014 was reflected around −6 days in the
plot. Eighty domains were blacklisted on 1/15/2011, which makes up the small
bump around −1500 days in the plot.

Figure 8 is a scatter plot of the first date a domain is blacklisted (x-axis)
and its corresponding first seen date in the DSP (y-axis). The size of the point
represents the number of domains in these dates. The points in the bottom side of
the plot are large because this is the first date we had the DSP data. The vertical
group of points represent domains being updated in the blacklist in the same
day. We highlighted a few days when blacklisted domains from the DSP traffic
were first labeled. The plot is more dense on the right side since 2013-06-23. We
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Fig. 8. Scatter plot of first date seen on PBL and first date seen from DSP for all DSP
domains that were on PBL.

increased the number of blacklists to crawl from 3 to 7 on that day, which resulted
in more domain names in PBL dataset and more overlap with the DSP traffic
from that point on. On 2013-11-17, the blacklists updated many domain names
including websearch.*.info used by browser hijackers. On 2015-02-04, there
were a lot of “update” domains used by pop-up ads added to the blacklists, e.g.,
soft12.onlineupdatenow.com. On 2015-06-14, the blacklists updated a group
of algorithmically generated domains with sub domains freempr#.

Observation 3: Most (77.01%) blacklisted publisher domains remained
on blacklists after they were last seen in DSP traffic

We would like to see whether the publisher domains remained on the black-
lists after they were seen in the DSP. We plotted the density distribution for the
number of days when a domain was last seen on blacklists minus when it last
appeared in the DSP (Fig. 7b). The distribution has shifted a lot towards the
right part of the x-axis this time. Figure 7b shows that the majority (77.01%)
of blacklisted domains were still on blacklists after they were seen in the DSP.
A total of 14.06% (1,873) of them remained on blacklists more than a year after
they were last seen in the DSP datasets. The peak of Fig. 7b reflects the last
date (1/15/2016) of our blacklist dataset. Overall 8,051 DSP domains belong to
this peak in the plot.

Observation 4: Blacklisted publisher domains tend to use more ad
exchanges and reach more hashed client IP addresses than those that
have never been blacklisted

Each day, we separate the publisher domains into two groups: those that
were seen in PBL (True) and not in PBL (False). For each group, we compute
the average number of distinct ad exchanges and the number of hashed client
IPs that a publisher domain was seen from, as well as the variance within the
group. We visualize the results in Fig. 9a–d.

Figure 9a shows the density distributions of the daily average number of
ad exchanges for the PBL group and non-PBL group across the entire DSP
dataset. The PBL group were seen from an average of 1.7 to 2 ad exchanges,
more than the non-PBL group. We perform a two-sample Kolmogorov-Smirnov
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Fig. 9. 9a to 9d are PBL plots. 9e to 9h are Md5 plots. 9i to 9l are CDFs for number of
publisher domains forming components of 12/10/2014 (9i), three scores for components
seen on 12/10/2014 (9j), number of components in ad campaigns (9k) and ad campaign
scores (9l).
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test (K-S test) where the null hypothesis is that x=y, i.e., that the datasets
are drawn from the same distribution. The K-S test demonstrates we can reject
this null hypothesis (p − value < 2.22 ∗ 10−16). Therefore, the two distributions
are significantly different. We also plot the mean and variance of the average
ad exchange number for each group in Fig. 9b. The figure shows that not only
do non-PBL domains use fewer ad exchanges in general, the difference of the
measure between non-PBL domains is small, as reflected by the variance. On
the other hand, PBL domains have relatively higher variance among themselves.

Similarly, we plot the density distribution for number of average hashed client
IP addresses in a day for the PBL and non-PBL groups (Fig. 9c), as well as the
mean and variance of the metric (Fig. 9d). These figures show that PBL domains
tend to be seen from more hashed client IPs than non-PBL domains. Since the
majority of the content on the web is in the unpopular “long tail”, only a few
hashed client IPs visit any non-PBL domain in general, and the variance of
number of clients is low (Fig. 9d). In contrast, PBL domains seen in the RTB
process aim to make money, and thus spread to as many hosts as possible.

Malware Traffic. Domains queried by malware are another type of threat
information commonly used by the security community. We filtered the malware
domains using the same three methods as in the PBL case. Within 4,905,224
unique domains from the DSP traffic, 134,262(2.74%) were queried by malware
samples collected over five years. There are ten times more publisher domains
queried by malware than from those on blacklists. Similarly, we can separate the
publisher domains into two groups: malware domain group (Md5 True) and non-
malware domain group (Md5 False). We computed the average daily number of
ad exchanges and hashed client IP addresses for each day in the DSP traffic.

Observation 5: Malware domains have different behavior than black-
listed domains. That is, malware domains were observed to employ
similar number of ad exchanges to non-malware domains, however,
with a higher number of hashed client IP addresses

Figure 9e–h show the measurement results. We observe bimodal distribu-
tions of malware vs. non-malware domains in Fig. 9e and g. Figure 9e and f show
that publisher domains queried by malware tend to use a similar number of ad
exchanges. In addition, the distributions between malware domains and non-
malware domains overlapped much more than when we compared PBL group
with non-PBL group. Therefore, the number of ad exchanges is not a distin-
guishing attribute for the MD5 group. On the other hand, DSP domains queried
by malware were still seen from a larger group of hashed client IP addresses,
compared to the rest of domains never queried by malware. Malware domains
that interact with ad ecosystem are relatively more popular than non-malware
domains.

Malware query non-malicious domains for various reasons, and only a few
of the domains are fraudulent publishers. Recall that when malware interacts
with the ad ecosystem from the client side (Fig. 1), there may be syndicated
publishers, or benign ad servers contacted by the malware, in order to reach ad
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exchanges. Despite our filtering efforts, it is likely that there are still numerous
benign domains in the malware domain set. Additionally, domains could remain
on blacklists after they become inactive or parked, which results in false positives
when using blacklists. These findings all point to the need for better ad-abuse
ground truth datasets.

6 Infrastructure Tracking

In this section, we show that traditional DNS infrastructure features can be
used to extend the ground truth set, discover new ad abuse cases and track the
threat evolution over time. This can be used by any entity in the ad ecosystem
with visibility of bidding requests to track advertising campaign infrastructure—
focusing on those that are likely to be malicious in intent. While we acknowledge
that the word “campaign” has an overloaded meaning, we define it in the fol-
lowing way and only in the context of ad abuse: a campaign will be defined as
the set of domain names that can be linked together over time based on their IP
infrastructure properties.

At a high level, we construct graphs of the relationship between the domain
name of the ad publisher and the infrastructure the domain name uses. By
building and merging these graphs over time, we can track the infrastructure
and focus on those campaigns that may be malicious, e.g., domains known to
have been blacklisted, queried by malware, or have never been seen before. We
present case studies based on this process in Sect. 7.

6.1 Constructing Infrastructure Graphs

An infrastructure graph is an undirected graph G, defined by its set of vertices
V and edges E. A disconnected graph is made up of multiple components or
subgraphs with no adjacent edges between them. These components correspond
to advertising campaigns that are tracked over time. Vertices in infrastructure
graphs are domain names or the RDATA the domain names resolve to. RDATA
can be an IPv4/IPv6 address (A/AAAA), a canonical name (CNAME), or a
nameserver (NS). Two vertices are adjacent if and only if exactly one is a domain
name, and the domain name resolved to the RDATA of one of the aforementioned
query types (A/AAAA/CNAME/NS) during time t when the domain name
appeared as a publisher for a bid request.

A Demand Side Platform provider (DSP) can build infrastructure graphs
by performing the following steps. First, the DSP collects all publisher domain
names Dp from the bid requests seen on day t. Second, the DSP resolves all
domain names d ∈ Dp, which results in zero or more domain name and IP
address tuples. More formally, resolving d will yield [(d, rdata0), · · · , (d, rdataN )]
if d resolves to N different IPs, CNAMEs, or NSes on day t. Each of these tuples
corresponds to an edge in our graph G. Finally, after G is built for day t, G is
decomposed into its connected components C, where each component c ∈ C is
ranked and tracked over time as a specific ad campaign. While we experimented
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Fig. 10. Number of vertices, edges and density values for the graph every day.

with more sophisticated community discovery or spectral methods, the benefits
gained were disproportional to the add-on complexity. Thus, we decided to select
the simplest and most straightforward way to mine the graph for campaigns.

Since the DSP bidding request traffic did not include DNS resolution infor-
mation, we chose to correlate that with the DNS dataset obtained from a passive
DNS database from a North American ISP (Table 1). By combining the DNS res-
olution seen in the same day in the ISP with the publisher domains from the
bidding request traffic, we were able to construct daily infrastructure graphs.
Next, we discuss how we analyze the produced graphs.

Graph Analysis. We study the infrastructure graphs using some basic graph
analysis metrics. Specifically, we first analyze overall graph properties including
vertices, edges and density measures. Then, we examine the connected compo-
nents of the graphs every day and over time. These analytics help us understand
the infrastructure of the publisher domains, and give us insights about how to
rank components based on how suspicious they are and track them over time.

First, we discuss three properties of daily infrastructure graphs. Figure 10
shows three statistics for graphs generated every day: number of vertices (V ),
number of edges (E), and the density measure. We use the following formula to
compute the graph density D :

D =
2E

V (V − 1)
(1)

On average, there are 472 thousand vertices, and 883 thousand edges every
day. The graphs are extremely sparse and the daily density is only 8.35 ∗ 10−6.
In fact, the majority of the edges only connect two vertices. There are 566,744
vertices on 12/10/2014, and it dropped to 342,426 (by 39.58%) on 1/29/2015.
Then the number of vertices slowly increased to 727,501 on 3/24/2015. Since
vertices include publisher domains and DNS resolution data, the change in the
number of vertices over time is largely consistent with the observation of how
the number of daily publisher domains changed (Fig. 4). On the other hand,
the change in the number of edges per day is different. The number of daily
edges decreased since 2/17/2015, and dropped to the lowest number 542,945
on 2/21/2015, before it jumped up to 1,203,202 on 3/5/2015. Through manual
analysis, we concluded that this was not caused by any single domain name.
There were fewer resolved data per domain in general in these days.
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Second, we study properties of connected components in the infrastructure
graphs. Figure 10 shows the number of connected components over time that
were in the daily infrastructure graphs. On average, there are 127,513 connected
components in a day. Figure 9i demonstrates that the daily infrastructure graph
is highly disconnected. The cumulative distribution for the size of the compo-
nents in a day follows the Zipf’s law. For instance, CDF in 12/10/2010 shows
that 86% of connected components have only one publisher domain in it. Fewer
than 0.7% components have more than ten publisher domains.

6.2 Identifying Suspicious Components

The number of graph components based on the results from Sect. 6.1 can be
hundreds of thousands in a day (Fig. 10), which is likely too many for man-
ual analysis. However, the measurement from Sect. 5 suggests we can prioritize
components that are likely to be interesting from a security perspective. We
know publisher domain names differ in behavior when they are known to appear
on blacklists. Conversely the subset of malware domains seen in DSP are very
noisy, and thus it is not a good metric to use for prioritizing components. We
also hypothesize that never-before-seen domains deserve close scrutiny as they
may represent infrastructure changing to avoid detection. The question remains
if these are indicative of true malicious behavior. To find out, we rank publisher
components by their domain names, specifically, if they are on blacklists, if the
domains have never been seen before and a combination of these two measures.

For each publisher component c ∈ C we compute two values βc and νc that
correspond to the proportion of domains in c that appear on blacklists, and
are under brand new from the perspective of the DSP, respectively. Intuitively,
the first one indicates an association with known malicious activity, and the
last suggests the potential threat may have just begun. Specifically, the way we
compute each value of a component is smoothed.

βc =
# of blacklisted publisher domains − 1

Total # of publisher domains
(2)

νc =
# of brand new publisher domains − 1

Total # of publisher domains
(3)

We offset the numerator count by one based on results of the infrastructure
graph analysis from Sect. 6.1. Since the majority of components have only one
publisher domain name in it, they are isolated singletons and do not provide any
information to other unlabeled domains from infrastructure point of view. We
prefer not to prioritize these singletons among all components even if they are
already blacklisted or brand new. Equations 2 and 3 give singleton components
both zero values. Moreover, we judge whether a domain name is “brand new”
using the effective second-level domains (e2ld) according to public suffix list [9].
An e2ld is the smallest registrable unit of a domain name and two domains under
an e2ld are likely operated by the same individual. Therefore, a new domain
under a new e2ld is more interesting to us.
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After getting these two values βc and νc, we also compute the linear com-
bination of these: ιc = 1

2 (βc + νc). Finally, we reversely sort the components
in a day based on the ιc score. Within a day, ιc can range between 0 and 1.
A component with higher ιc will be prioritized over a component with lower ιc
for inspection. Figure 9j presents cumulative distributions of the proportion of
pbl-related, never-before-seen domains and a linear combination of the two for
a day per component. A total of 98% of the components have zero PBL score
because they do not have any blacklisted domains, and 14% of the components
have a score for having new domains. The final component score combining the
two falls in between the two distributions.

6.3 Tracking Campaigns over Time

Building infrastructure graphs for an individual day is useful, but tracking the ad
campaigns over time will yield more comprehensive coverage of ad campaigns, as
well as advanced warning of potentially malicious ones. First, if an ad campaign
is determined to be malicious, tracking them over time through small infrastruc-
ture changes will enable more comprehensive blacklists to be built. Second, if
a tracked ad campaign is known to be malicious, newly added infrastructure
can be more pro-actively blacklisted. Finally, tracking infrastructure over time
allows us to build ground truth to eventually model malicious and benign adver-
tising campaign infrastructure. In our future work we plan to experiment with
predicting fraudulent publishers.

To unify ad campaigns across multiple infrastructure graphs, we simply join
ad campaigns that share IP addresses, canonical names, and name servers that
are the same. This allows us to not only construct graphs within days, but also
across time. We will show that this simple tracking method works well in practice.
While on average there are 127 K connected components every day, only 10 K of
them form new ad campaigns. A DSP can choose to only go through top-ranked
new components if there is limited time available for threat analysts.

ιad is used to sort advertising campaigns to identify case studies. It is calcu-
lated by adding up all the interesting scores of individual components ιc belong-
ing to that campaign. After we sort the ad campaigns by ιc, we then examine
the distribution of the interesting scores and number of components in the cam-
paigns. Figure 9l shows the cumulative distribution of ad campaign scores. Also,
Fig. 9k shows the CDF of the number of components in an ad campaign. Over-
all 99.99% ad campaigns have fewer than 1,000 components. The ad campaign
with the largest number of components (2.2 million in Fig. 9k) has the highest
ad campaign score. Domains in this campaign resolved to several parking, and
sinkholing IP addresses, as well as common names servers like GoDaddy. This
is the reason that this noisy campaign is not representative of maliciousness or
freshness of the domains. Starting from the second ad campaign, the interesting
score indicate suspicious activities in the ad exchanges. We now describe the
case studies this measure uncovers in Sect. 7.
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7 Case Studies

Among the campaigns with highest (top 0.1%) interesting scores, we found new
cases including Potentially Unwanted Programs (PUP), algorithm generated
domains and malware sites.

Fig. 11. Publisher domain examples.

7.1 Case 1: PUP

Among advertising campaigns with the highest interesting scores, one category
of publisher domains are generated by Potentially Unwanted Programs (PUP).
For example, domains in Fig. 11(1)–(5).

A VirusTotal report [35] suggests a machine communicating with domain
names in Fig. 11(1) (ιad ranked the 3rd highest) is likely infected with a tro-
jan known as LEMIR or Win32.BKClient by the AV industry. The malware
has many capabilities including changing default search engines to generate rev-
enue, disabling Windows AV, Firewall and Security Center notifications, and can
drop additional malicious binaries [33]. Similarly, ad campaigns with 2nd and 4th

highest ιad (Fig. 11(2) and (3)) are generated by ad injections of certain browser
extension. Different malware families communicate with domains in Fig. 11(3)
including Win.Trojan.Symmi [36]. These publisher domains may not be mali-
cious, but they are strongly associated with monetization behavior of malware.
These are interesting cases as traditional malware are involved in an area where
we would expect to see only adware or “potentially unwanted programs.” This
shows that malware uses advertising fraud to monetize infections and malware
can also be identified from the vantage point of a DSP.

In addition, several Pop-up Ads campaigns exhibit high level of agility sim-
ilar to traditional malware. The ad campaign ranked 1, 184th (Fig. 11(4)) uses
domain fluxing, likely to avoid browser extension detection systems. In total, we
observed more than 26,000 unique domain names from this campaign in three
months of DSP traffic. Moreover, the ad campaign in Fig. 11(5) not only uses
domain fluxing, it also uses the Amazon EC2 cloud to further decrease the chance
of detection. Each of these domains resolved into an EC2 cloud domain repre-
senting a unique Virtual Machine (VM), when active. The VM domains also
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change according to the domains that point to them. This shows that miscre-
ants are constantly employing fresh VMs to perform ad fraud. Since traditional
detection systems often use reputation of IP addresses of domains and URLs,
using cloud machines makes this campaign harder to be detected.

Fig. 12. Malware site example.

7.2 Case 2: Algorithm Generated Domains

Figure 12(1) and (2) shows two ad campaigns of algorithm generated domains
we found in the DSP traffic (ranked 142th and 183th), containing at least 195
domains. None of the domains were blacklisted, but a high percentage of brand
new domains results in a high score. A new group of domains appear every-
day, pointing to the same IP address. These publisher domains are suspicious.
Although no open threat analysis evidence is available to date, it is reasonable to
assume that anything that changes so often must be trying to evade a detection
process. With infrastructure tracking, ad exchanges or DSP can keep a close eye
on such campaigns to proactively deal with potential ad abuse.

7.3 Case 3: Malware Site

Figure 12(3) shows a group of malware site domains (ranked 1, 484th campaign)
seen from DSP traffic, none of which appeared on blacklists. A Virustotal
report [37] shows that the IP address these domains resolved to, had other simi-
lar domains pointing to it during the week ending on 3/24/2015. Related URLs
were detected as malware sites by several URL scanners from the AV industry.
This group uses domain fluxing with both the second level domain zone, and the
child labels. We saw other groups of domains tracked separately, with similar
domain name patterns, and short lifetime. However, they were not grouped into
one big campaign, because different groups were using different IP addresses. In
other words, this campaign uses both domain fluxing and IP address fluxing.
Since we only used exact the same IP address match to form a campaign, we
will need other information to further analyze campaigns like this.
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8 Related Work

Previous research has studied behavior of click bots [17,18,26]. The bots mimic
human behavior by generating fake search queries and adding jitters to click
delay. More advanced bots hijacked users’ original clicks and replaced the ads [12,
18,28? ]. The ZeroAccess botnet cost advertisers $100, 000 per day [28] and the
TDSS/TDL4 botnet cost advertisers at least $346 million in total. Ad fraud
detection work mainly focused on click fraud [19,25,32].

Impression fraud is harder to detect than click fraud. Springborn et al. [29]
studied pay-per-view networks that generated fraudulent impressions from invis-
ible iFrames and caused advertisers millions of dollars lost. Advertisers can pur-
chase bluff ads to measure ad abuse [18] and compare charged impressions with
valid impressions. The adware and ad injection problem has been systematically
studied by static and dynamic analysis of web browser extensions [21,31,38].
From within the ad ecosystem, Stone-Gross et al. [30] used ad hoc methods to
study specific attacks faced by ad exchanges, including referrer spoofing and
cookie replay attacks. Google also documented what they consider to be invalid
traffic in [34] but did not disclose the details of their traffic filters.

9 Conclusion

In this study, we measured ad abuse from the perspective of a Demand Side Plat-
form (DSP). We found that traditional sources of low reputation, such as public
blacklists and malware traces, greatly underestimate ad-abuse, which highlight
the need to build lists catered towards ad-abuse. The good news, however, is
malicious publishers that participate in ad-abuse can likely be modeled at the
DSP level based on their behavioral characteristics. Finally, malicious campaigns
can be tracked using graph analysis and simple heuristics, allowing DSPs to track
suspicious infrastructure.
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