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Abstract. Inverse kinematics is a very important issue in the field of mecha-
nisms and robotics, which is the fundamental problem in kinematical analysis,
design and synthesis for both serial mechanisms (SMs) and parallel mechanisms
(PMs). The objective of inverse kinematics is to formulate computable kine-
matic equation at the given pose of end-effector of a SM or moving platform of a
PM and then solve all the joint parameters (variables). Solving analytical
solution of inverse kinematics is the prerequisite for trajectory planning, precise
control and manipulation of mechanisms. This paper presents a generalized
method to analytically do inverse kinematics of PMs using finite screw theory.
Firstly, the kinematic equation of PM is algebraically formulated through
describing finite motions generated by the PM, its limbs and joints employing
finite screws. Then, the general procedures to analytically solve the finite screw
based kinematic equation are given. Finally, a PM with three translational and
one rotational Schoenflies motion is taken as an example to verify the validity of
the proposed method.
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1 Introduction

Inverse kinematics, which is also called inverse position problem, is aimed at formu-
lating kinematic equation of a mechanism at the given pose and solving all the joint
parameters (variables). It is a fundamental problem in kinematical analysis, design and
synthesis for both serial mechanisms (SMs) and parallel mechanisms (PMs) [3, 7].
Solving analytical solution of inverse kinematics is the prerequisite for trajectory
planning, precise control and manipulation of mechanisms. Because all the joint
parameters of a PM can be obtained through solving the joint parameters in each of its
limbs sharing the same moving platform, inverse kinematics of a PM can be decom-
posed into several inverse kinematics problems of SMs. According to the mathematical
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tools that are used to formulate kinematic equations, the existing methods to deal with
inverse kinematics can be classified into two categories, i.e., vector chain based method
and exponential matrix based method.

In vector chain based method, three-dimensional position vectors are used to for-
mulate the kinematic equations through building the mapping between the positions
and orientations of the given pose. In the formulated position equations, all joint
parameters are independent and decoupled. Hence, the equations can be solved by
means of elimination. The vector chain based method can be traced back to the early
research of theoretical kinematics, and detailedly discussed and concluded by Wampler
[8] and Craig [1]. Based upon this, inverse kinematics of SMs constituted by six
revolute (R) joints are solved by Raghavan and Roth [5] through engine value and
vector analysis of several univariate polynomial equation with high-order. Because
lower mobility SM can be regarded as the sub-chain of six degree-of-freedom
(DoF) SM, and six DoF SM can be regarded as the sub-chain of SM with higher DoFs,
this method can be extended to solve any SM. It should be noted that nonlinear
equations relating the joint parameters and the given orientations needed to be solved
when the number of DoFs of the SM is more than three. This brings huge difficulties to
analytical solution of inverse kinematics. Thus, numerical methods are usually needed
when solving higher DoF SMs.

Using exponential matrix with joint parameter to describe pose transformation
between adjacent links, the kinematic equation can be obtained by multiplying these
matrices together. In the formulated kinematic equation, all the joint parameters are in
the exponents, the algebraic operations can only be carried out using
Baker-Campbell-Hausdorff formula or Taylor series expansion. Because there are too
many terms in the expanded matrix polynomials, the kinematic equations are hard to be
analytically solved. Thus, solution of inverse kinematics mostly relies on numerical
methods [2]. For the kinematic equations formulated by exponential matrix based
method, inverse kinematics can also be solved by geometrical methods. Based upon
Kahan’s research work, Paden [4] decomposed the inverse kinematics of SMs into
several typical sub-problems through concluding the common structure units of SMs.
The analytical solution of each sub-problem is given by geometrical and algebraic
derivations. It should be noted that the Paden-Kahan sub-problems do not cover all the
possible structure units of SMs. Hence, some SMs cannot be solved applying these
sub-problems.

From the above analysis, it can be concluded that the existing methods cannot
obtain analytical solution of inverse kinematics for arbitrary SMs because of the
mathematical tools used. Both vector chain and exponential matrix have some limi-
tations in describing finite motions and formulating kinematic equations of mecha-
nisms. Hence, the clear algebraic mapping between all the joint parameters and the
given pose has not been built. As the concise and non-redundant description of finite
motions with analytical composition screw triangle product [6], finite screw has the
potential to overcome the limitations of vector chain and exponential matrix. As shown
in the authors’ previous work [6, 9, 10], the algebraic structures of finite screws were
revealed and the derivative mapping between finite and instantaneous screws was built,
resulting in a general and consistent method to unify type synthesis and kinematic
analysis under the umbrella of screw theory. In this paper, inverse kinematics will be
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carried out employing finite screws, which leads to a systematic and thorough theo-
retical framework that unifies topological, position and orientation (pose), velocity
modeling and analysis together.

Based upon the authors’ previous work, this paper presents a generalized method to
analytically do inverse kinematics of PMs using finite screw theory. The paper is
organized as follows. Having a brief review of the state-of-the-art of the existing
methods for inverse kinematics in Sect. 1, Sect. 2 presents the new method to alge-
braically formulate kinematic equations of a PM and its limbs employing finite screws.
In Sect. 3, the general procedures to analytically solve the finite screw based kinematic
equation are given. A PM with three translational and one rotational Schoenflies
motion is taken as an example to verify the validity of the proposed method in Sect. 4
before the conclusions are drawn in Sect. 5.

2 Finite Screw Based Kinematic Equations

A finite motion of a rigid body from its initial pose to arbitrary pose can be presented as
a rotation about the Chasles’ axis followed by a translation along that axis, which can
be described by a finite screw Sf in quasi-vector [6] form as

Sf ¼ 2 tan
h
2

sf
rf � sf

� �
þ t

0
sf

� �
ð1Þ

where sf and rf denote the unit vector and position vector of the finite motion axis, h
and t are the angular and linear displacement about/along that axis.

A SM constituted by n one-DOF joints (R joints and prismatic (P) joints) is shown
in Fig. 1. Using finite screws to describe the finite motions generated by R and P joints,
the finite motions realized by the end-effector can be expressed by screw triangle
product [6]. Thus, the kinematic equation of a SM at a given pose can be formulated as
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Fig. 1. Finite motions of a SM
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Sf ;SM;nMSf ;SM;n�1M � � �MSf ;SM;1 ¼ Sf ;SM ð2Þ

Sf ;SM;k ¼
2 tan hSM;k

2
sSM;k

rSM;k � sSMk

� �
R joint

tSM;k
0

sSM;k

� �
P joint

; k ¼ 1; 2; � � � ; n

8>><
>>:

where Sf ;SM denotes the given pose of the SM, the denotations of the symbols in
Eq. (2) can be referred to those in Eq. (1).

For a PM composed of l limbs, each limb is a SM sharing the same end-effector, i.e.
the moving platform of the PM. Hence, all the joint parameters can be obtained through
solving l kinematic equations relating l limbs in form of Eq. (2).

Sf ;i;niMSf ;i;ni�1M � � �MSf ;i;1 ¼ Sf ;PM ; i ¼ 1; 2; � � � ; l ð3Þ

where Sf ;i;k (k ¼ 1; 2; � � � ; ni) denotes the finite screw generated by the kth joint in the
ith limb, Sf ;PM is the given pose of the PM.

Equation (3) can be equivalently rewritten using screw triangle product, resulting in
clear algebraic mappings between the joint parameters hi;k, ti;k and the given pose Sf ;PM.
In this way, the joint parameters can be solved by algebraic derivations.

3 Generalized Method to Solve Kinematic Equations

According to Reference [6], the resultant finite screw composited by several finite
screws has the quasi-vector form of Eq. (1). Thus, the left side of Eq. (3) can always be
rewritten into the following form

Sf ;i;niMSf ;i;ni�1M � � �MSf ;i;1 ¼ 2 tan
hi
2

sf ;i
rf ;i � sf ;i

� �
þ ti

0
sf ;i

� �
ð4Þ

where sf ;i, rf ;i, hi and ti of the ith limb are functions of the joint parameters hi;k, ti;k of
that limb.

If the pose of the PM is given as

Sf ;PM ¼ 2 tan
hPM
2

sf ;PM
rf ;PM � sf ;PM

� �
þ tPM

0
sf ;PM

� �
ð5Þ

the following equations can be derived based upon Eqs. (3)–(5)

tan
hi
2
¼ tan

hPM
2

; sf ;i ¼ sf ;PM ð6Þ

rf ;i � sf ;i þ ti
2 tan hi

2

sf ;i ¼ rf ;PM � sf ;PM þ tPM
2 tan hPM

2

sf ;PM ð7Þ
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Equation (6) is the mapping between the joint parameters relating rotational
motions of the ith limb and the orientation of the moving platform. Equation (7) is the
mapping between the joint parameters relating translational motions of the limb and the
position of the moving platform. When Sf ;PM is given, all joint parameters can be
analytically solved using Eqs. (6) and (7). The detailed steps of inverse kinematics for
PMs are listed as follows:

Step 1: Formulate kinematic equations of each limb as Eq. (3) (Eqs. (6) and (7));
Step 2: Solve rotational parameters of each limb using Eq. (6);
Step 3: Solve translational parameters of each limb using Eq. (7).

4 Examples

A PM with Schoenflies motion is for example, this PM is composed of four limbs in
which every two limbs placed oppositely have the same structures, i.e., P1P2P3RaRb

and P1P2RaRaRc. Given Sf ;PM, we solve one limb P1P2P3RaRb and one limb P1P2Ra

RaRc in this Section.

Limb P1P2P3RaRb:
The kinematic equation can be formulated by Eqs. (3), (6) and (7)

2 tan
hb
2

sb
rb � sb

� �
M2 tan

ha
2

sa
ra � sa

� �
MtP3

0
sP3

� �
MtP2

0
sP2

� �
MtP1

0
sP1

� �
¼ Sf ;PM

ð8Þ

tan
hba
2

¼ tan ha
2 sa þ tan hb

2 sb þ tan ha
2 tan

hb
2 sa � sbð Þ�� ��

1� tan ha
2 tan

hb
2 s

T
a sb

¼ tan
hPM
2

;

sba ¼
tan ha

2 sa þ tan hb
2 sb þ tan ha

2 tan
hb
2 sa � sbð Þ

tan ha
2 sa þ tan hb

2 sb þ tan ha
2 tan

hb
2 sa � sbð Þ�� �� ¼ sf ;PM ð9Þ

pba þ
t� sba

2
þ t

2 tan hba
2

¼ rf ;PM � sf ;PM þ tPM
2 tan hPM

2

sf ;PM ð10Þ

where

pba ¼
tan ha

2 ra � sað Þ þ tan hb
2 rb � sbð Þ þ tan ha

2 tan
hb
2 sa � rb � sbð Þ þ ra � sað Þ � sbð Þ

tan ha
2 sa þ tan hb

2 sb þ tan ha
2 tan

hb
2 sa � sbð Þ�� �� ;

t ¼ tP1sP1 þ tP2sP2 þ tP3sP3
The two rotational parameters ha and hb can be solved from Eq. (9) as

ha ¼ 2 arctan
sTf ;PM sa � sbð Þ

sTf ;PMsb � sTa sbs
T
f ;PMsa

 !
; hb ¼ 2 arctan

sTf ;PM sa � sbð Þ
sTf ;PMsa � sTa sbs

T
f ;PMsb

 !
ð11Þ

The three translational parameters tP1 , tP2 and tP3 can be solved from Eq. (10) as
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tP1 ¼
tT sP2 � sP3ð Þ
sTP1 sP2 � sP3ð Þ ; tP2 ¼

tT sP1 � sP3ð Þ
sTP2 sP1 � sP3ð Þ ; tP3 ¼

tT sP1 � sP2ð Þ
sTP3 sP1 � sP2ð Þ ð12Þ

where

t ¼ E3

2 tan hba
2

� ~sba
2

 !�1

rf ;PM � sf ;PM þ tPM
2 tan hPM

2

sf ;PM � pba

 !
;

E3 is a unit matrix of order three, ~sba is the skew matrix of sba.

Limb P1P2RaRaRc:
The kinematic equation can be formulated

2 tan
hc
2

sc
rc � sc

� �
M2 tan

ha2
2

sa
ra2 � sa

� �
M2 tan

ha1
2

sa
ra1 � sa

� �
MtP2

0

sP2

� �
MtP1

0

sP1

� �
¼ Sf ;PM ð13Þ

The two rotational parameters ha1 þ ha2 and hb can be solved in the similar manner
as Eqs. (9) and (11). The three translational parameters ha1 , tP1 and tP2 can be solved
from the position part of Eq. (13)

t ¼ E3

2 tan hca
2

� ~sca
2

 !�1

rf ;PM � sf ;PM þ tPM
2 tan hPM

2

sf ;PM � pca

 !
ð14Þ

where

pca ¼

tan
ha1 þ ha2

2 ra2 � sað Þþ tan hc
2 rc � scð Þ

þ tan
ha1 þ ha2

2 tan hc
2 sa � rc � scð Þþ ra2 � sað Þ � scð Þ

 !

tan
ha1 þ ha2

2 sa þ tan hc
2 sc þ tan

ha1 þ ha2
2 tan hc

2 sa � scð Þ
��� ���
t ¼ exp ha1~sað Þ � E3ð Þ ra2 � ra1ð Þþ tP1sP1 þ tP2sP2

The solution of Eq. (14) is

ha1 ¼ 2 arctan
A� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þB2 � C2
p

BþC

 !
;

tP1 ¼
t� exp ha1~sað Þ � E3ð Þ ra2 � ra1ð Þð ÞT sP2 � sP1 � sP2ð Þð Þ

sTP1 sP2 � sP1 � sP2ð Þð Þ ;

tP2 ¼
t� exp ha1~sað Þ � E3ð Þ ra2 � ra1ð Þð ÞT sP1 � sP1 � sP2ð Þð Þ

sTP2 sP1 � sP1 � sP2ð Þð Þ ð15Þ
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where

A ¼ sa � ra2 � ra1ð Þð ÞT sP1 � sP2ð Þ; B ¼ ra2 � ra1ð ÞT sP1 � sP2ð Þ

C ¼ tþ ra2 � ra1ð ÞT sP1 � sP2ð Þ

In this way, all the joint parameters of this PM can be analytically solved.

5 Conclusions

This paper presents a generalized and analytical method to solve inverse kinematics of
SMs and PMs using finite screw theory. The main merits of this method are:

(1) The method can be applied to get analytical solution of inverse kinematics for
arbitrary SMs and PMs.

(2) The main advantage of this method is accuracy and the analytical solution can be
directly used in trajectory planning, precise control of mechanisms.

(3) United with the authors’ previous work, all topological, position and orientation
(pose), velocity modeling and analysis can be unified into the systematic and
consistent framework of screw theory.
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