
A Forward Kinematics Data Structure
for Efficient Evolutionary Inverse Kinematics

Sebastian Starke(B), Norman Hendrich, and Jianwei Zhang

Department of Informatics, Group TAMS
(Technical Aspects of Multimodal Systems),

University of Hamburg, 22527 Hamburg, Germany
{starke,hendrich,zhang}@informatik.uni-hamburg.de

Abstract. Various approaches to solving inverse kinematics implicitly
rely on computing forward kinematics in order to obtain an approxi-
mate solution. This work proposes an optimised data structure to effi-
ciently compute these equations by avoiding redundant transformations
and calculations. This is particulary relevant for highly articulated kine-
matic models and multiple end effectors with shared joints along their
kinematic chains. By integrating the developed OFKT (Optimised For-
ward Kinematics Tree), less computation time within each iteration
is required, which contributes to a significant speedup in convergence.
Experiments were conducted using a novel evolutionary approach which
was designed for handling complex kinematic geometries.

Keywords: Forward kinematics · Inverse kinematics · Data structures ·
Computational efficiency · Evolutionary optimisation · Robotics ·
Character animation

1 Introduction

A rigid body kinematic system can be described by a set of kinematic chains, each
consisting of a consecutive set of segments and joints from the root to the end
effectors. Each end effector results in a certain Cartesian configuration X given
a specific joint variable configuration θ. Together, the motion axes of the joints
define the DOF (Degree of Freedom) and thus the computational complexity of
the whole kinematic system. [1]

While forward kinematics (FK) is straightforward to compute by a consecu-
tive set of coordinate transformations, obtaining solutions for inverse kinematics
(IK) in contrast is not as easy. For any given IK query, a varying or even infinite
number of solutions can exist, and it is not generally clear which one to prefer.
However, IK takes an important role in various applications such as robotics,
including object manipulation and grasping with anthropomorphic hands, as well
as for character animation in computer graphics. Since analytical approaches to
this problem are not generally available as they must be derived individually for
specific kinematic structures, numerical algorithms for obtaining approximate
solutions have become more popular. In order to optimise an appropriate solu-
tion for IK, such methods rely on calculating the FK equations using the known
c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 64



A Forward Kinematics Data Structure for Efficient Evolutionary IK 561

kinematic structure. Then, sampling-based joint variable updates are generated
using gradient-based or probabilistic techniques, and the Cartesian end effector
configurations are calculated individually for each objective. Multiple end effec-
tor systems—such as the finger tips of an arm—usually contain many shared
joints along their kinematic chains, and the FK equations then become par-
tially equivalent. As a result, most computation time is typically required for
repeated FK computation, and many transformations become redundant when
only small joint variable changes are applied. This is especially the case for evolu-
tionary approaches, for which the genetic operators—such as recombination and
mutation—cause most joint variable configurations to be only slightly modified
within each generation. Given the joint variables which correspond to the genes
of an individual, the resulting end effector configurations X1,...k can be obtained
by evaluating the FK function. Based on this, it is then possible to define the
multi-objective fitness function Ω to be minimised as the root-mean-square error
over all individually weighted objectives L1,...k with end effector targets Y1,...k.

φ = Ω(x) =

√
√
√
√1

k

k∑

i=1

wiL 2
i (Xi,Yi) (1)

Repeated evaluation of the fitness φ of each individual within the population
then drives the evolutionary optimisation. Hence, efficient computation of the
FK is essential for the overall performance and convergence of the IK algo-
rithm. Figure 1 demonstrates solving articulated IK of the Kyle humanoid, with
the OFKT (Optimised Forward Kinematics Tree) data structure integrated to
achieve higher computational efficiency for repeated and only slightly varying
joint variable queries.

Fig. 1. Kinematic geometry from the pelvis to the head and finger tips of the Kyle
humanoid (28 DOF). Inverse kinematics is solved by evolutionary computation while
efficiently calculating forward kinematics using the OFKT data structure.



562 S. Starke et al.

2 Background and Related Work

Solving IK is a fundamental problem which is relevant in very different fields of
research, such as robotics, computer graphics or human-computer interaction.
Typical scenarios include control of virtual characters and runtime manipulation
of underlying animations, grasping with anthropomorphic hands, teleoperation
tasks as well as motion planning and trajectory generation. Therefore, numerous
sophisticated approaches have been developed that tackle the problem by the
specific requirements of their applications, typically regarding computational
efficiency, accuracy or flexibility. The numerical methods can be categorised into
four groups: gradient-based, probabilistic, geometric or learning. In this work,
we will primarily focus on the former two as they require generating FK samples
for IK optimisation.

Considering the FK calculation for a given a kinematic structure, homoge-
neous coordinate transformations in robotics are commonly represented using
Denavit-Hartenberg parameters, which can achieve a considerable reduction in
the required amount of calculations [4,5]. Implementing rotations by quaternions
rather than matrices is slightly more efficient from a computational perspective,
and also offers a unique representation for the resulting orientations. Further-
more, information about axis alignments in serial or parallel mechanisms can be
incorporated [2,3]. However, those computational optimisations are only appro-
priate for specific geometries and must be derived individually. It is also possible
to learn the FK equations by neural networks which can be used to create a func-
tional relation between joint and Cartesian space [6]. Nevertheless, this method
introduces an additional inaccuracy for the numerical IK optimisation due to
the inherent learning error.

Gradient-based Jacobian or SQP methods optimise an IK solution by slightly
modifying each joint variable to obtain the gradient [7–9]. These methods are
often applied in robotics as they can achieve a fast convergence, but can suffer
from multiple local extrema in the search space. In this regard, genetic algorithms
(GA) perform a more robust search space exploration by means of biologically
inspired probabilistic optimisation, and offer better scalability for higher DOF
[10,11]. The key idea is to encode joint variable configurations as individuals,
and to iteratively evolve new solutions until convergence. The fitness is obtained
by the resulting end effector errors using the FK equations. However, traditional
methods require many parameters to be tuned, or the required computation
time or attainable accuracy might remain insufficient. In our prior work, a novel
evolutionary hybridisation of GA and swarm intelligence achieved promising
results both in accuracy and computation time, with adaptive parameter control
for varying dimensionality and kinematic geometries [12,13]. As each fitness
evaluation for every individual requires a FK pass in order to obtain the resulting
errors in position and orientation, it was observed that most of the computation
time was due to the required coordinate transformations. More specifically, many
of those were redundant as with increasing accuracy, fewer genetic mutations
were applied, and partially shared kinematic chains for multiple end effectors
were computed repeatedly.



A Forward Kinematics Data Structure for Efficient Evolutionary IK 563

3 Algorithmic Approach

The main purpose of our OFKT data structure is to avoid calculating repeating
or redundant consecutive transformations. Given a single joint variable config-
uration θ = (θ1, ..., θn) as input, the individual Cartesian transformations for
end effectors X1,...,k can be obtained as denoted by (2). Hence, calculating FK
becomes processing a tree of single kinematic chains with either individual or
partially shared joints.

f(θ) = X1,...,k (2)

For each kinematic chain (3), the end effector configuration is computed by
consecutive transformations starting from its root.

rootTee =root T1
1T2 ... n−1Tee (3)

According to (4), these transformations between the single relevant segments
can be grouped into reference and local transformations, Ri and Li respectively.

Ri = Ri−1 Li Li = Si T (θj) (4)

However, not every segment of the kinematic chains is necessarily connected
to a joint. Thus, the static transformation Si denotes the constant transformation
between the segment’s preceding non-static segment to the segment’s local trans-
formation with θj = 0. Note that Si only needs to be computed once, and is then
stored to avoid recalculating non-changing transformations. The OFKT itself is
then represented by a linked list of segments, one for each moveable part of the
kinematic structure. Within each node, Ri and Li are individually computed and
stored, together with the currently assigned corresponding joint variable θj . While
the former depends on the preceding reference and the current local transforma-
tion, the latter is calculated using the segment’s static transformation Si modified
by θj . Algorithm 1 summarises building the OFKT data structure which can then
be used for efficiently processing multiple successive FK queries.

Algorithm 1. Building the Optimised Forward Kinematics Tree
Input : Geometry, Root, End Effectors

1 OFKT = CreateLinkedList(Root, End Effectors);
2 Chains = GetChains(Root, End Effectors);
3 foreach Segment in Chains do
4 if Segment.HasJoint() then
5 Node = OFKT.Insert(Segment);
6 Node.ComputeAndStoreStaticTransformation();
7 Node.StoreJointVariable();
8 Node.ComputeAndStoreLocalTransformation();
9 Node.ComputeAndStoreReferenceTransformation();

10 end

11 end



564 S. Starke et al.

When performing a FK query, a joint variable configuration is given as input
to the OFKT. The goal is to perform kinematic queries efficiently by using the
stored variables for the current transformation and the joint value within each
node. As described by Algorithm 2, the update procedure is started at the root
node of the linked list, and is recursively called for all childs. Also, a boolean
parameter is recursively passed which initially assumes that no update would
be required. The flag is set in case of joint variable changes, as otherwise the
stored local transformation can be reused. As soon as one local update occured
during the FK calculation, a relative update is also necessary for all subsequent
nodes. Note that transformation updates in local and reference space are treated
independently by propagating the boolean flag. After the tree traversal, the
resulting end effector transformations can be returned in world space using (5),
where the additional worldTroot transformation is prepended to handle movement
in world space. Thus, the OFKT keeps all transformations in reference to the
kinematic model while representing only non-static connections.

Wi =world Troot Ri (5)

Algorithm 2. Querying the Optimised Forward Kinematics Tree
Input : Joint Variable Configuration
Output: End Effector Transformations

1 Function UpdateFK(Node, RequireUpdate):
2 if HasJointVariableChanged() then
3 Node.StoreJointVariable();
4 Node.ComputeAndStoreLocalTransformation();
5 RequireUpdate = true

6 end
7 if RequireUpdate then
8 Node.ComputeAndStoreReferenceTransformation();
9 end

10 foreach Child of Node do
11 UpdateFK(Child, RequireUpdate);
12 end
13 return ;

14 UpdateFK(OFKT.Root, false);
15 foreach End Effector Node do
16 return Node.ComputeWorldTransformation();
17 end

Intuitively, the OFKT data structure is optimised to efficiently process multi-
ple FK queries by caching transformations from preceding calculations, assuming
that only a few joint values will change between successive queries. Consider-
ing the genetic evolutionary IK algorithm which was our original motivation,
only some genes (joint angles) of an individual are usually modified during one
generation, and many reference as well as local transformations can be reused,
resulting in a large performance increase.



A Forward Kinematics Data Structure for Efficient Evolutionary IK 565

4 Evaluation and Results

First, a theoretical evaluation for the OFKT data structure is done regarding the
total required transformations in four scenarios, summarised in Table 1. Given a
n-dimensional serial joint variable configuration, one FK pass requires calculat-
ing n local transformations which are then concatenated by n transformations,
and 1 further from world to root — this will be used as baseline for performance
comparison.

1. FK computation by updating a (random) number of values along a serial
kinematic chain: This is the typical query after evolving the genes of an
individual. In general, 2n + 1 calculations would be needed for independent
FK queries. Using the OFKT, previous results can be reused efficiently, and
the required amount of local transformation updates becomes equivalent to
the number of changed joint values j < n. Traversing the single segments
then results in n − i instead of n reference transformations, where i is the
first modified index along the serial kinematic chain.

2. Predicting the end effector world transformation by modifying exactly one
joint value: This is helpful for determining or estimating the error gradient.
Only 1 local L

′
i as well as 3 further transformations Ri−1 L

′
i R−1

i Ree are
necessary for calculating the end effector transformation, followed by 1 addi-
tional world transformation. In particular, the required transformations of
the single segments are already available, and enable to directly obtain the
relative end effector change.

3. Iteratively updating exactly one joint value while maintaining information
about all segment transformations: This is particularly important for enabling
efficient further computation of relative transformations within the kinematic
tree. n queries are performed iteratively, requiring n(2n + 1) calculations.
Using the OFKT, each of the n queries automatically avoids recalculating
unchanged transformations, resulting in n local updated segments and a total
of n(n+1)

2 calculations for the affected reference transformations.
4. FK calculations on different chains with multiple end effectors of an anthropo-

morphic arm: This is relevant in terms of scalability for complex geometries.
A 27 DOF anthropomorphic geometry is considered, starting with a 7 DOF
arm and splitting up into a hand with five 4 DOF fingers — giving rise to
k = 5 chains with 11 DOF each. Hence, calculating all end effectors individu-
ally would require k(2n + 1) transformations, while the OFKT automatically
avoids recalculating the shared s = 7 joints along the arm.

Table 1. Comparison of the required amount of transformations in different scenarios.

Scenario Standard OFKT

Random modifications 2n + 1 n− i + j + 1

End effector computation 2n + 1 5

Single iterative modifications 2n2 + n n2

2
+ 5n

2

Multiple end effectors k(2n + 1) k(2n + 1) − 2(k − 1)s



566 S. Starke et al.

In order to put the previous FK evaluations into practical context, exper-
iments were conducted in performing IK on an articulated 10 DOF kinematic
model using the presented algorithm in [12,13]. It was observed that ≈ 103 gen-
erations in average were required for solution convergence. In this regard, Fig. 2
demonstrates the computational improvement at each generation during one IK
query (left) and in average for increasing DOF (right) when using the OFKT.
In particular, note that less computation time per generation is required since
fewer genetic changes are applied as the population scores progress over several
generations. It can be observed that this computational improvement scales sig-
nificantly for more complex geometries, reaching a cost reduction per generation
by a factor of ≈ 8 for 30 DOF.

Fig. 2. Computational cost per generation for one IK query (left) and for increasing
DOF (right).

Ultimately, we investigated the speedup in solving evolutionary IK on different
robot geometries of 6 to 10 DOF. The results are shown in Fig. 3 and are averaged
over 10.000 randomly generated samples using full pose objectives. In particular,

Fig. 3. Computational cost in solving random reachable IK queries on different robots.



A Forward Kinematics Data Structure for Efficient Evolutionary IK 567

a considerable computational improvement can be observed by requiring approxi-
mately one third of the original time for convergence onall testedkinematicmodels.

5 Conclusions

This work proposed a method to efficiently compute the FK equations for mul-
tiple consecutive queries with only slightly varying joint variable configurations.
The developed OFKT data structure caches results that were computed in
preceding calls, and only updates the transformations along the kinematically
affected segments within the whole kinematic tree. Hence, the required amount of
costly calculations for sampling-based IK optimisation on complex and multiple
end effector geometries can be reduced. Integrating the OFKT into our evolu-
tionary IK algorithm, one third of the original computation time for solving full
poses on typical lower DOF industrial robots was required, with significantly
larger improvements obtained for increasing DOF. This work will be further
investigated applied to dexterous manipulation, humanoid robots and character
animation.

Acknowledgements. This research was funded by the German Research Foundation
(DFG) and the National Science Foundation of China (NSFC) in project Crossmodal
Learning, TRR-169.

References

1. Kathib, O., Siciliano, B.: Handbook of Robotics. Springer, Heidelberg (2008)
2. Wu, P., Wu, C., Yu, L.: An method for forward kinematics of stewart parallel

manipulators. In: Proceedings of the IEEE International Conference on Intelligent
Robotics and Applications, 171–178 (2008)

3. Song, S., Kwon, D.: Efficient formulation approach for the forward kinematics of
3-6 parallel mechanisms. Adv. Robot. 16(2), 191–215 (2002)

4. Denavit, J., Hartenberg, R.: A kinematic notation for lower-pair mechanisms based
on matrices. Trans. ASME J. Appl. Mech. 23, 215–221 (1955)

5. Denavit, J., Hartenberg, R.: Kinematic Synthesis of Linkages. McGraw-Hill Series
in Mechanical Engineering, p. 435. McGraw-Hill, New York (1965)

6. Sadjadian, H., Taghirad, H.D., Fatehi, A.: Neural networks approaches for comput-
ing the forward kinematics of a redundant parallel manipulator. Int. J. Comput.
Electr. Autom. Control Inf. Eng. 2(5), 1664–1671 (2008)

7. Beeson, P., Ames, B.: TRAC-IK: an open-source library for improved solving of
generic inverse kinematics. In: Proceedings of the IEEE RAS Humanoids Confer-
ence (2015)

8. Kim, I., Oh, J.: Inverse kinematic control of humanoids under joint constraints.
Int. J. Adv. Robot. Syst. 10 (2012)

9. Lee, D., An, S.: Prioritized inverse kinematics with multiple task definitions. In:
IEEE International Conference on Robotics and Automation (2015)

10. Tabandeh, S., Clark, C.M., Melek, W.W.: An adaptive niching genetic algorithm
approach for generating multiple solutions of serial manipulator inverse kinematics
with applications to modular robots. Robotica 28, 493–507 (2010)



568 S. Starke et al.

11. González Uzcátegui, C.E.: A Memetic Approach to the Inverse Kinematics Problem
for Robotic Applications. Doctoral Thesis, Carlos III University of Madrid (2014)

12. Starke, S.: A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics.
Master Thesis, University of Hamburg (2016)

13. Starke, S., Hendrich, N., Magg, S., Zhang, J.: An efficient hybridization of genetic
algorithms and particle swarm optimization for inverse kinematics. In: Proceedings
of the IEEE International Conference on Robotics and Biomimetics (2016)


	A Forward Kinematics Data Structure for Efficient Evolutionary Inverse Kinematics
	1 Introduction
	2 Background and Related Work
	3 Algorithmic Approach
	4 Evaluation and Results
	5 Conclusions
	References


