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Abstract. In the velocity analysis of mechanisms the instantaneous
screw axes and the corresponding axodes play an important role. The
instantaneous screw axis is computed via the velocity operator, this is
the skew-symmetric matrix ȦAT, where A is the transformation matrix.
From this operator the Plücker coordinates of the instantaneous screw
axis are known. When the Study parameters of a one parametric motion
are given a direct computation of the instantaneous screw axis would
be more convenient. Without computing A and its derivative first, this
paper shows a way of computing the instantaneous screw axis directly
from the Study parameterization of the one parametric motion.
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1 Introduction

In kinematics the velocity operator for a given motion in Euclidean three-space
is a well-known concept. In some applications it is important to determine the
velocity distribution and the axodes, these are the ruled surfaces representing
the instantaneous screw axis in the fixed and the moving frame of one parametric
motions. Let A(t) be the homogeneous 4 × 4 matrix description of such a one
parametric motion in E

3. The matrix representation of the velocity operator is
then given by the skew-symmetric 4 × 4 matrix

Ω = AȦ =

⎛
⎜⎜⎝

0 0 0 0
τx 0 −ωz ωy

τy ωz 0 −ωx

τz −ωy ωx 0

⎞
⎟⎟⎠ . (1)

The matrix representation in Eq. (1) is often rearranged to the vector notation,
the so-called velocity screw v = (ωx, ωy, ωz, τx, τy, τz)ᵀ, as stated by Bottema
and Roth [2] or Husty et al. [4]. Its entries determine the linear and angular
velocities.

In the last centuries Study parameters, a point model for Euclidean dis-
placements, were of great benefit in the investigation of kinematic properties of

c© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9 62



The Instantaneous Screw Axis of Motions in the Kinematic Image Space 545

mechanisms [5]. In this model one parameter motions are curves in the so-called
Study quadric S2

6 , which carries all points in the kinematic image space that
correspond to Euclidean displacements. Recently it turned out that S2

6 can be
neglected for some problems [6], for example for motion design in P 7.

To the best of the authors knowledge until now there exists no such veloc-
ity operator in the kinematic image space, not for curves on nor off the Study
quadric. Therefore one has to map the curve from P 7 back to the matrix descrip-
tion in E

3 and compute the velocity screw and the axodes there.
The scope of this paper is to investigate an operator that acts on the Study

parameters directly to compute the linear and angular velocities and furthermore
the instantaneous screw axes. These facts are shown for some examples.

The paper is organized as follows: In Sect. 2 a brief introduction to the used
notations and theories will be stated, which will be applied in Sect. 2.1 for curves
in the Study quadric and Sect. 2.2 for curves not included in the Study quadric.
The final Sect. 3 will show examples, such as the well-known RPRP and the
Bennett mechanism, and finally for a motion given by a line not included in the
Study quadric, which corresponds to a vertical Darboux motion.

2 Velocity Operator in Kinematic Image Space

Let the coordinates in kinematic image space P 7 be denoted by the homogeneous
coordinates (x,y)ᵀ, with x = (x0, x1, x2, x3)ᵀ and y = (y0, y1, y2, y3)ᵀ. For the
following computations (x,y)ᵀ is defined as column vector. Since [6] it is known
that curves in kinematic image space correspond to Euclidean motions in the task
space E

3, nevertheless if they are in the Study quadric, which can be written as

x0y0 + x1y1 + x2y2 + x3y3 = 0 ⇔ 〈x,y〉 = xᵀ · y = 0 (2)

or off the Study quadric.
In the following m(t) = (p(t),q(t))ᵀ, where p(t) = (p0(t), . . . , p3(t))ᵀ and

q(t) = (q0(t), . . . , q3(t))ᵀ, should describe a curve (or a one parameter motion)
in P 7. For brevity the parameter t is avoided in the notation and ṁ denotes
the derivative with respect to t. The curve m∞ = (0,p)ᵀ lies in the exceptional
generator of the Study quadric, this is the three space represented by x0 = x1 =
x2 = x3 = 0 and is connected with the original curve via the fibrization in [6]. A
fiber through an arbitrary point (x0 : . . . : y3) outside the exceptional generator
is defined by the straight line

(x0 : x1 : x2 : x3 : y0 + tx0 : y1 + tx1 : y2 + tx2 : y3 + tx3), (3)

where t is the parameter of the line. The intersection points with the Study
quadric correspond to the parameter values t1 = ∞ and t2 = −〈x,y〉/〈x,x〉
Note that the point of intersection with t = ∞ lies in the exceptional generator.

For the following inspections we use normalized coordinates, which means
that x2

0 + x2
1 + x2

2 + x2
3 = 1, which is no loss of generality.



546 M. Pfurner and J. Schadlbauer

2.1 Curves in the Study Quadric

At first we restrict the curve m = (p,q)ᵀ to be contained in the Study quadric.
Then it is straight forward to compute the operator Σ by collecting the coeffi-
cients of the derivatives in the vectorial version of the velocity screw AȦ. It can
be written as

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−p1 p0 −p3 p2 0 0 0 0
−p2 p3 p0 −p1 0 0 0 0
−p3 −p2 p1 p0 0 0 0 0
q1 −q0 q3 −q2 p1 −p0 p3 −p2
p2 −q3 −q0 q1 p2 −p3 −p0 p1
q3 q2 −q1 −q0 p3 p2 −p1 −p0

⎞
⎟⎟⎟⎟⎟⎟⎠

=
(
P 0
Q −P

)
(4)

and this yields via

v = Σ · ṁ = (ωx, ωy, ωz, τx, τy, τz)ᵀ (5)

the velocity screw. Using the notation v∞ = (0, 0, 0, ωx, ωy, ωz)ᵀ the Plücker
coordinates of the instantaneous screw axis can be written as

SI = v − 〈ṗ, q̇〉
〈ṗ, ṗ〉 · v∞ (6)

where the coefficient 〈ṗ, q̇〉/〈ṗ, ṗ〉 is the instantaneous pitch, which is zero for
instantaneous rotations. Combining Eqs. (4), (5) and (6) yields

SI = Φ · ṁ =

(
P 0

Q − 〈ṗ,q̇〉
〈ṗ,ṗ〉P −P

)
· ṁ. (7)

Equation (7) yields an operator, which computes the Plücker coordinates of the
instantaneous screw axes in the fixed frame using the motion m and its derivative
ṁ, as long as m lies in the Study quadric. The matrix Φ is a 6 × 8 matrix.
Geometrically SI are the Plücker coordinates of the fixed axode. Note that SI

really represent Plücker coordinates [8], because they fulfill the Plücker relation.
Using the embedding of those line coordinates of P 5 in the kinematic image
space P 7 like described in [9] the moving axode can be computed with the
inverse transformation.

2.2 Curves Not Contained in the Study Quadric

Lets consider m∗ = (p∗,q∗)ᵀ to be a curve in P 7 /∈ S2
6 , i.e. 〈p∗,q∗〉 �= 0. The

derivative of m∗ with respect to t is denoted by ṁ∗. Because of the fibrization
shown in Eq. (3) the curve m∗ and its derivative ṁ∗ are pulled onto S2

6 and its
tangent space, respectively, by

m = Π · m∗, ṁ = Π · ṁ∗ (8)
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where

Π =
(

I4 04

−〈p∗,q∗〉I4 I4

)
(9)

and

Π =
(

I4 04

〈p∗,q∗〉(2p∗ · p∗ᵀ − I4) − p∗ · q∗ᵀ I4 − p∗ · p∗ᵀ

)
. (10)

Note, that Π = Π = I8 if m∗ ∈ S2
6 . This can be computed by using the

equation 〈p∗, q̇∗〉 + 〈ṗ∗,q∗〉 = 0, which is the derivative of 〈p∗,q∗〉.
To compute the instantaneous screw axes SI of the motion given by m∗,

Eq. (7) has to be applied to the projected curve m and the projected derivative
ṁ computed in Eq. (8).

3 Examples

To illustrate this process, the fixed and the moving axode will be computed for
some one parametric motions.

3.1 The RPRP Mechanism

The RPRP is a single-loop four bar mechanism with two revolute (R) and two
prismatic (P) joints (see for example [3]). The motion of the coupler [7] is given
by

m =
1
Δ

(
0,−6t, 6, 0, 0,

√
3(12t + 5

√
3),

√
3t(12t + 5

√
3),−12(t2 + 1)

)ᵀ
(11)

where Δ = (−2 +
√

3)/
√

(7 − 4
√

3)(t2 + 1), which is a curve in S2
6 . Therefore

we can use the theory in Sect. 2.1 to compute

Φ =
1
Δ

⎛
⎜⎜⎜⎜⎜⎜⎝

t 0 0 1 0 0 0 0
−1 0 0 t 0 0 0 0
0 −1 −t 0 0 0 0 0

1
6

√
3δ1 0 −2t2 − 2 − 1

6

√
3δ2 −t 0 0 −1

1
6

√
3δ2 2t2 + 2 0 1

6

√
3δ1 1 0 0 −t

−2t2 − 2 1
6

√
3δ2 − 1

6

√
3δ1 0 0 1 t 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(12)

with δ1 = (−12t3 + 5
√

3) and δ2 = (24t2 + 12 + 5t
√

3). Then the instantaneous
screw axis, and therefore the Plücker coordinates of the fixed axode are

SI = Φ · ṁ = (0, 0, 1, 4t, 2(t2 − 1), 0)ᵀ. (13)

The moving axode can be computed via the inverse transformation and can
be written as

(
0, 0, t2 + 1, 4(t3 − t2s + ts2 + s), 2(t2s2 − 3t2 + 4ts − s2 − 1), 0

)ᵀ
(14)

where t is the parameter of the motion and s is the parameter on the surface.
Figure 1 shows the fixed axode and some discrete copies of the moving axode (in
the base frame) during the motion.
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Fig. 1. Fixed axode (red) and some discrete copies of the moving axode (blue) of the
RPRP (Color figure online)

3.2 Bennett Mechanism

Despite the spherical or planar four-bar, the Bennett mechanism is the only
spatial single-loop closed four bar with revolute joints only [1]. The motion of
the coupler [7] is given by

m =
1

Δ
√

t2 + 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
(2 − √

2)t√
2/2(t2 − 2

√
2 + 3)

−1/2(
√

3
√

2 − 2
√

3 − 2
√

2 + 2)(t2 + 1)
0

3/2(
√

3
√

2 − 2
√

3 − 2
√

2 + 2)t
3/4(3

√
3
√

2 − 4
√

3 − 4
√

2 + 6)(t2 + 2
√

2 + 3)
−3/4(2 − √

2)(t2 + 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

with Δ =
√

(t2 + 1)(3
√

3
√

2 − 4
√

3 − 5
√

2 + 8) − 6
√

2 + 8 and the instanta-
neous screw axis is

SI =

⎛
⎜⎜⎜⎜⎜⎜⎝

−8(
√

2 +
√

3)t
−4(

√
2 +

√
3)(t2 − 1)

−4(1 +
√

2)((
√

2 − 1)2 − t2)
−6/δ((

√
3 + 1)2 − 2t2)((

√
2 − 1)2 − t2)t

−3/δ((
√

3 + 1)2 − 2t2)((
√

2 − 1)2 − t2)(t2 − 1)
3/δ((

√
3 + 1)2 − 2t2)(

√
3
√

2 − √
3 − √

2 + 2)(t2 + 1)2

⎞
⎟⎟⎟⎟⎟⎟⎠

(16)

with δ =
√

3
√

2t2 + t4 − √
3t2 +

√
2t2 − 2

√
3
√

2 − t2 + 3
√

3 − 4
√

2 + 6.
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Although computation with the operator Φ is quite simple the expressions,
also in this simple example, are too complicated to be displayed here. The cor-
responding axodes are plotted in Fig. 2.

Fig. 2. Fixed axode (red) and some
discrete copies of the moving axode
(blue) of the Bennett (Color figure
online)

Fig. 3. Some point paths during the
motion given by m∗

3.3 Straight Line in P 7

As an example for a curve not included in the Study quadric, consider the
connecting line m = a1 ∨ a2 of the two arbitrarily chosen points a1 =
(5, 6, 7, 8, 13, 7, 9, 2)ᵀ and a2 = (9, 3, 1, 7, 13, 5, 13, 17)ᵀ. A parameterization of
this line is given by

m∗(t) =
1
Δ

(−4t + 9, 3t + 3, 6t + 1, t + 7, 13, 2t + 5,−4t + 13,−15t + 17)ᵀ, (17)

with Δ =
√

62t2 − 28t + 140.
As an example of a curve not contained in S2

6 the theory developed in Sect. 2.2
is applied. At first the line m∗ has to be pulled to the Study Quadric using Π
of Eq. (9). This yields

m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(9 − 4t)/Δ
3(t + 1)/Δ
(6t + 1)/Δ
(t + 7)/Δ

−(132t3 − 923t2 − 1097t + 556)/Δ3

(223t3 + 488t2 − 517t − 92)/Δ3

−(50t3 − 1221t2 + 2463t − 1556)/Δ3

−(897t3 − 1750t2 + 2525t − 532)/Δ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

with Δ =
√

62t2 − 28t + 140.
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In the second step ṁ∗ has to be mapped to the tangent space of S2
6 using Π

of Eq. (10) to compute

ṁ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2(251t + 217)/Δ3

−6(38t − 77)/Δ3

−2(73t − 427)/Δ3

−14(32t − 17)/Δ3

−2(25841t3 + 102195t2 − 188607t − 65114)/Δ5

−2(19811t3 − 75468t2 − 73257t + 38122)/Δ5

−18(4089t3 − 14851t2 − 999t + 15526)/Δ5

−2(35413t3 + 44070t2 − 177849t + 165578)/Δ5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

As shown in [6] the resulting motion m is a vertical Darboux motion, i.e. a
rotation around a fixed axis combined with a harmonic oscillation along the
same axis. In this motion all point paths are ellipses, as shown in Fig. 3 for some
points. Therefore the fixed and moving axodes have to be fixed lines in this
example. They can be written as

SI = (−1414, 53732, 36764,−2560,−70279, 102617)ᵀ. (20)

4 Conclusions

This article shows how to compute the instantaneous screw axis directly from
curves on the Study quadric. Furthermore it was shown how to pull a curve and
its derivative onto the Study quadric and its tangent space, respectively, via a
fibrization of the kinematic image space.

A developed operator in this publication can be used to directly compute the
axodes of a given motion in P 7.

The benefit of this work is that all the operators can be used on normal-
ized Study parameters and there is no need to use the matrix representation of
Euclidean displacements.
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