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Abstract. The planar 3-RRR parallel manipulator is known to have six
assembly modes. However, analysing it in the framework of spatial kine-
matics reveals that it has a total of twelve assembly modes, six in each of
the two possible operation modes. The modes are derived using a Study
parameter formulation first, and later confirmed in another formulation
in the joint-space, and finally visualised in terms of the planar constraint
curves generated by the sub-chains of the manipulator. Numerical results
show that all the twelve modes can be real for certain inputs.
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1 Introduction

The planar 3-RRR manipulator has six assembly modes, as mentioned in many
existing reports, e.g., Gosselin et al. [1]. However, if the forward kinematic analy-
sis of this manipulator is performed in the joint space, it shows twelve assembly
modes. In this work, this problem is investigated from multiple perspectives,
namely: the kinematic mapping of Study; the constraints in the joint space; and
the constraints generated by the sub-chains of the manipulator. This work is
similar to the study of the 3-RPR manipulator by Husty [3], using the Study
parameter representation of SE(2). However, in the current work, the full spatial
setup is used in the kinematic modelling, as in [4], which leads to results that are
strikingly similar. On the other hand, this work is also motivated by [6], where
the kinematic analysis is performed on the basis of the constraint equations in
the joint-space of the 3-RPS. Analogous results are obtained in this case as well,
and nice inferences can be drawn based on these to present a consistent inter-
pretation of the results obtained from various approaches. The main results are
that the manipulator has six assembly modes in each of the two of its operation
modes, though only one mode is apparent at a time, as unlike in the 3-RPS,
a transition between the modes is not (physically) possible in this case. It is
(mathematically) possible for all the assembly modes to be real at the same
time, as shown with the help of a numerical example. Also, the solutions can
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be explained geometrically in terms of the intersections of the constraint curves
generated by the sub-chains of the manipulator.

The rest of the paper is presented as follows: Sect. 2 describes the forward
kinematic analysis of the problem in the task space while Sect. 3 discusses the
same problem in the joint space. Section 4 concludes the paper.

2 Forward Kinematic Analysis Using Study Parameters

The forward kinematic problems of planar 3-degrees-of-freedom parallel manip-
ulators have been studied using the planar kinematic mapping (see, e.g., [3] in
case of 3-RPR manipulator). In the following, spatial kinematic mapping is used
to study the planar 3-RRR manipulator, leading to certain new and interesting
observations.

2.1 Kinematic Model

The manipulator is shown in Fig. 1. The fixed base b1b2b3 and the moving plat-
form p1p2p3 are both equilateral triangles, of side lengths b and a respectively.
Three limbs of R-R-R architecture, each having an actuated link of length l and
a passive link of length r, connect the two platforms. The active joint angles are
given by θ = [θ1, θ2, θ3]�, and the passive joint angles by φ = [φ1, φ2, φ3]�.
The frame {A}, given by OA-XAYAZA, serves as the global frame of ref-
erence. Likewise, frame {B}, attached to the moving platform, denotes the
moving frame. The vertices of the two platforms are expressed in projective

coordinates: Bp1 = [0, 0, 0, 1]�, Bp2 = [a, 0, 0, 1]�, Bp3 =
[

a
2 ,

√
3 a
2 , 0, 1

]�
, and

Fig. 1. Planar 3-RRR parallel manipulator
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Ab1 = [0, 0, 0, 1]�, Ab2 = [b, 0, 0, 1]�, Ab3 =
[

b
2 ,

√
3 b
2 , 0, 1

]�
, where the fourth

coordinate, 1, is the projective coordinate, and the leading superscripts A and B
indicate the frame of reference. The frame {B} is related to {A} through a
4 × 4 homogeneous transformation matrix, A

BT , expressed in terms of the Study-
parameters. The Study parameters, namely, x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3,
represent spatial motions of a rigid-body via the kinematic map κ : P7 → SE(3),
when they satisfy the following constraints (see, e.g., [5]):

Equation of the Study quadric: x0y0 + x1y1 + x2y2 + x3y3 = 0, (1)

Normalisation constraint: x2
0 + x2

1 + x2
2 + x2

3 = 1. (2)

2.2 Kinematic Constraint Equations and the Operation Modes

The loop-closure constraints are derived from the fact that the passive links are
rigid, and have a constant length r each:

‖Api − Asi‖2 − r2 = 0, i = 1, 2, 3, (3)

where Asi locate the tip of the active links, given by As1 = [l cos θ1, l sin θ1, 0, 1]�,
As2 = [b + l cos θ2, l sin θ2, 0, 1]�, As3 = [ b

2 + l cos θ3,
√
3 b
2 + l sin θ3, 0, 1]�.

Equations (3) locate each of the points pi on a sphere centered at si. To
incorporate the planar nature of the manipulator, additional constraints are
generated, by setting the Z component of Api − Asi to zero, and manipulating
them a little:

η1 : x3y0 + x2y1 − x1y2 − x0y3 = 0, (4)
η2 : x1x3 − x0x2 = 0, (5)
η3 : x0x1 + x2x3 = 0. (6)

The forward kinematic problem is represented by the set of Eqs. (1– 6). An analy-
sis of the planarity constraints (Eqs. (4–6)) along with the Study quadric equa-
tion (Eq. (1)) and the normalisation constraint (Eq. (2)) lead to two distinct
operation modes (see [4] for a similar analysis of the 3-RPS manipulator):

• Mode 1, characterised by x1 = x2 = 0, x2
0 + x2

3 �= 0:
From Eqs. (1) and (4), one finds that y0 = y3 = 0, as the non-trivial
solution leads to x2

0 + x2
3 = 0, which cannot be admitted. Thus, the vari-

ables x1, x2, y0, y3 are eliminated from the equations in this mode, and the
normalising constraint (in Eq. (2)) gets reduced to x2

0 + x2
3 = 1.

• Mode 2, characterised by x0 = x3 = 0, x2
1 + x2

2 �= 0:
Using a similar argument, it can be established that y1 = y2 = 0 in this
operation mode; the normalising constraint (Eq. (2)) becomes x2

1 + x2
2 = 1.

It may be noted that the two modes described above cover all the possible solu-
tions of the forward kinematics problem. Furthermore, the two modes are dis-
joint, as their intersection would lead to the exceptional generator, characterised
by x0 = x1 = x2 = x3 = 0, which is physically inadmissible.
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2.3 Derivation of the Forward Kinematic Univariate (FKU)

In the following, the loop-closure equations are reduced to a univariate polyno-
mial equation (termed as the Forward Kinematic Univariate (FKU) [6]) follow-
ing a sequence of elimination of variables. For the sake of brevity, only mode 1
is explained.

In mode 1, Eqs. (2 and 3) reduce to:

g1 : l2 − r2 + 4l sin θ1(x0y2 + x3y1) + 4l cos θ1(x0y1 − x3y2) + 4(y2
1 + y2

2) = 0, (7)
g2 : (a − b)2 + l2 − r2 + 2l cos θ2

(
a
(
2x2

3 − 1
)
+ b + 2x0y1 − 2x3y2

)
+ 4abx2

3

− 4x3y2(a + b) + 4l sin θ2(−ax0x3 + x0y2 + x3y1) − 4ax0y1

+ 4bx0y1 + 4(y2
1 + y2

2) = 0,

(8)

g3 : (a − b)2 + l2 − r2 + l sin θ3(a
(√

3
(
2x2

3 − 1
)− 2x0x3

)
+

√
3b + 4x0y2

+ 4x3y1) + l cos θ3
(
a
(
2x3

(√
3x0 + x3

)
− 1
)
+ b + 4x0y1 − 4x3y2

)

+ 4abx2
3 + 2x3(a + b)

(√
3y1 − y2

)
− 2ax0y1 − 2

√
3ax0y2 + 2bx0y1

+ 2
√
3bx0y2 + 4(y2

1 + y2
2) = 0,

(9)

g4 : x2
0 + x2

3 − 1 = 0. (10)

Therefore, mode 1 is represented by the ideal 〈g1, g2, g3, g4〉. The steps to
derive the FKU from this are:

1. Compute h1 = g2 − g1, and h2 = g3 − g1, which are linear in y1, y2.
2. Obtain y1, y2 from h1 = 0, h2 = 0.
3. Substitute the values of y1, y2 in g1 = 0, to obtain the equation g′

1 = 0 in x0

and x3. The polynomial g′
1 is of degree six in x3.

4. Divide the polynomial g′
1 by g4, treating both as polynomials in x3, and obtain

an expression for x3 by solving the linear equation resulting from setting the
remainder to zero.

5. Substitute x3 back in g4 to obtain the univariate in x0.

The FKU is of degree 6 in x2
0, hence there are a maximum of 6 real assembly

modes, as each root is counted twice due to the nature of the kinematic map. A
similar analysis leads to analogous results in mode 2.

2.4 Numerical Results and Interpretations

The above formulation is demonstrated via a numerical example, for the archi-
tecture parameters1 l = 6/7, r = 13/14, a = 11/14 and b = 1. The set of input
joint angles given by θ = [π/4, 5π/4, 3π/2]� is found to produce 6 real solutions
for each of the modes, which are listed in Table 1.

1 All the linear dimensions are scaled by the base length, b, and are therefore unit-less;
all angles are in radians.
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Table 1. Twelve real solutions to forward kinematics

Operation mode Assembly mode x0 x1 x2 x3 y0 y1 y2 y3

Mode 1 1 −0.985 0 0 −0.172 0 −0.057 0.025 0

2 −0.941 0 0 0.338 0 0.379 −0.033 0

3 −0.852 0 0 0.523 0 −0.360 0.353 0

4 −0.381 0 0 0.925 0 0.060 −0.011 0

5 −0.350 0 0 −0.937 0 −0.058 −0.299 0

6 −0.169 0 0 0.986 0 −0.116 0.795 0

Mode 2 1 0 −0.983 −0.185 0 −0.155 0 0 0.178

2 0 −0.941 0.338 0 0.278 0 0 −0.335

3 0 −0.845 0.535 0 −0.456 0 0 −0.127

4 0 −0.369 0.930 0 0.028 0 0 −0.835

5 0 −0.341 −0.940 0 −0.099 0 0 0.544

6 0 −0.172 0.985 0 −0.133 0 0 −0.083

It is of interest to study the operation modes of the manipulator in terms of
the finite screw motions generated by them. In mode 1, the motion is equivalent
to a pure rotation about the discrete screw axis (DSA) [4], which is parallel to
the Z axis and intersects the X Y plane at x = y2/x3, y = −y1/x3. The pitch
of the screw is null, as expected. Figure 2a shows the screw motion, using the
numerics corresponding to assembly mode 2 of operation 1 from Table 1.

(a) Mode 1: The triangle B p1
B p2

B p3 rep-

resented in local frame, when rotated about

the DSA, transforms to the final posi-

tion A p1
A p2

A p3 (filled triangle), indicating a

pure-rotation.

(b) Mode 2: The interim position (dashed)

is reached through π -rotation about the DSA

from the home position B p1
B p2

B p3 .The final

position A p1
A p2

A p3 (filled) is then attained

through translation along theDSA.

Fig. 2. Screw motion characteristics of the operation modes
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The motion generated in mode 2 is not physically realisable without a disas-
sembly of the manipulator, as it involves a rotation through π about a horizontal
DSA. The equation of the DSA in the plane is found to be y = (x2x + y3) /x1.
Such screws have been termed as the π-screws in [4]. Figure 2b depicts the motion
and the corresponding DSA for the assembly mode 3 of operation mode 2 listed
in Table 1.

3 Forward Kinematic Analysis in the Joint Space

In this section, the forward kinematic analysis is performed in terms of the
passive joint angles. Existence of the operation modes is brought out and the
relationship between the two modes is established in terms of certain properties
of the FKU.

3.1 Derivation of the FKU and Its Interpretation

In this case, the end-points of the passive links are expressed in terms
of the active and the passive joint angles as follows: Ap1 = As1 +
[r cosφ1, r sinφ1, 0, 1]�, Ap2 = As2 + [r cosφ2, r sinφ2, 0, 1]�, Ap3 = As3 +
[r cosφ3, r sinφ3, 0, 1]�, where Asi, i = 1, 2, 3 are given in Sect. 2.2. Equat-
ing the distance between each distinct pair of vertices of the moving platform to
the known value a, the loop-closure constraints are obtained as:

f1(φ1, φ2) �(Ap1 − Ap2) · (Ap1 − Ap2) − a2 = 0, (11)

f2(φ2, φ3) �(Ap2 − Ap3) · (Ap2 − Ap3) − 2a2(1 − cos γ) = 0, (12)

f3(φ1, φ3) �(Ap3 − Ap1) · (Ap3 − Ap1) − a2 = 0, (13)

where γ = π/3 is the interior angle of the triangular moving platform. The
parameter γ is retained in its symbolic form to facilitate certain inferences drawn
later in the paper. Equations (11–13) are linear in the sine and cosine of each of
the passive angles, from which an FKU in t2 = tan(φ2/2) can be obtained easily
following the elimination/transformation sequence depicted below2:

f1 (φ1, φ2) = 0
f3 (φ1, φ3) = 0

)
×φ1−→ u(φ2, φ3) = 0

φ3→t3−−−→ v1(t3, φ2) = 0

f2(φ2, φ3) = 0
φ3→t3−−−→ v2(t3, φ2) = 0

⎞
⎠ ×t3−→ w(φ2) = 0.

The notation ‘ ×x−→’ denotes the elimination of the variable x from two algebraic

equations preceding it, while ‘
φi→ti−−−→’ indicates the conversion of an equation

in φi to its polynomial equivalent in the variable ti = tan(φi/2). The equation
w(φ2) = 0, when converted to a polynomial in t2 = tan(φ2/2), is of degree 12,
2 The derivation of this FKU is neither difficult, nor novel; hence the details are

omitted for the sake of brevity.
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indicating the possibility of existence of 12 real assembly modes—a result that
matches with the previous analysis. The FKU decomposes into two factors as
follows:

w(γ, t2) = j1(γ, t2)j2(γ, t2), where j1(γ, t2) = j2(−γ, t2). (14)

Equation (14) confirms the relation between the two modes, as mode 2 corre-
sponds to a moving platform that has been flipped up-side down, or equivalently,
one in which the sequence of the vertices have been changed from CCW to CW.
Also, it has been verified symbolically, that ji(γ, t2) = 0 is the FKU for the
mode i, i = 1, 2.

3.2 Geometric Interpretation of the Operation Modes

It is well-known that the forward kinematics of certain planar three degrees-of-
freedom parallel manipulators is equivalent to the problem of intersection of the
coupler curve of a four-bar mechanism and a circle, which leads to a maximum of
six assembly modes (see, e.g., [2]). In Fig. 3a, the dotted (blue) curve is the locus
of p3 as a part of the four-bar sub-chain s1p1p2s2s1, with s1s2 as its ground
link, corresponding to mode 1 of operation, superimposed over the assembly
mode shown in Fig. 2a. The circle represents the locus of p3 as a part of the
sub-chain b3s3p3, once the input θ3 is given. The solid (red) curve in Fig. 3b
corresponds to the mode 2, and is obtained by rotating the coupler link p1p2

about the axis XB by π-radians, and then performing a similar analysis. The
solutions marked on Fig. 3b correspond to the numerics presented in Sect. 2.4.
These figures can be thought of as a visual interpretation of Eq. (14).

Fig. 3. Location of p3 as the intersection of the two planar curves. (Color figure online)
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4 Conclusion

This paper analyses the planar 3-RRR manipulator, to establish its two oper-
ation modes, and the six assembly modes in each. This result is first derived
using the Study parameters, and then corroborated with the results obtained
from the study of the kinematics of the manipulator in its joint space. Finally,
the results are unified using a graphical visualisation of the assembly modes, in
terms of the intersection of the constraint curves generated by the sub-chains
of the manipulator. It is shown, that mathematically all the twelve assembly
modes can be real at the same time, though physically it is impossible for the
manipulator to transit from one operation mode to the other, and hence only
one operation mode is apparent any time.
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