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Abstract. This paper presents an analytical error prediction model of a 3PRP
planar parallel manipulator using the screw theory. This analytical approach is
used to find the effect of mechanical inaccuracies contributing to the end-effector
pose errors and their sensitivity coefficients. Finally, parameter sensitivity analysis
of non-compensable errors of two different configurations based on their fixed
base shape namely D-shape and U-shape fixed bases are analysed and compared.
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1 Introduction

Planar parallel manipulators (PPMs) are having higher attention in the recent years due
to their simplicity in design and other potential advantages over serial manipulators [6].
In specific, manipulators having first joint as active prismatic joint in each leg has
several advantages than others [5]. In this respect, one of the commercially available
manipulators namely Hephaist [3] is a 3PRP U-shape PPM and the manipulator pro-
posed by Damien Chablat et al. is a D-shape 3-PRP PPM [1], both of them are promising
in terms of their kinematic and dynamic performances. This 3PRP configuration has
shown potential advantage in industrial usage but which of these two base configura-
tions is better in terms of accuracy in presence of mechanical inaccuracies are yet to be
explored. Accuracy analysis of these configurations due to the actuator inaccuracies
using the geometric approach is presented by Yu et al. [8], but in this work, effect of
other non-compensable errors and kinematic parameter errors are not included. It is
significant to quantify the sources of errors which are contributing the end-effector pose
errors in order to find the quality of task performed by the manipulator, which directly
affects the positional accuracy of the manipulator. These pose errors can be of three
kinds: kinematic errors, encoder errors and the errors due to joint clearances.

© Springer International Publishing AG 2018
S. Zeghloul et al. (eds.), Computational Kinematics, Mechanisms and Machine Science 50,
DOI 10.1007/978-3-319-60867-9_36



The kinematic errors are due to the misalignments and the manufacturing imperfections
and tolerances. These kinematic errors for manipulators can be estimated and many
researches has found methods to quantify and compensate them [3, 4]. Encoder errors
can be of two types, the first one is due to least count of the encoders and other one is due
to incorrect index of the encoder reading. Index errors can be corrected by zero point
confirmation, but least count errors are non-compensable. Similarly, error due to joint
clearances and backlashes are also non-compensable in nature.

Therefore, in this paper, a complete error prediction model considering all possible
errors i.e., due to mechanical inaccuracies (including the kinematic parameter errors
and error due to joint clearances in the rotary and prismatic joints which are
non-compensable in nature) based on screw theory [2] is derived and presented. This
technique is already been utilized and verified by G. Wu et al. [7] for modelling the
error prediction model for 3-PPR configuration. This configuration has a simple model
due to its forward kinematics relationship, which is independent of its end-effector
orientation. But, in case of 3-PRP configuration, the kinematic relationship is depen-
dent on the end effector orientation. The proposed mathematical error model has
incorporated all these changes and used it for the error sensitivity analysis. This errors
estimation is done for the xy-plane only, the error z-axis is not derived in this model as
manipulator functioning is restricted to xy-plane only. Further, the effects of the
non-compensable errors are compared to identify the best configuration among
U-shape and D-shape fixed base configurations (which one is less susceptible to the
non-compensable errors).

2 Kinematic Model of the Manipulator

Here in this section, a generalized kinematic solution for the 3PRP configuration is
presented. This kinematic model is established on the basis of screw theory. The
kinematic arrangement of the 3PRP configuration is presented in Fig. 1. In Fig. 1, the
point T is the position of the end-effector and u is its orientation angle, the point O
represents the origin of the frame of reference, points Gi, Pi, Ri and Fi represent the
beginning limit of the linear actuators, the current position of the linear actuators, the
point where the passive prismatic joint starts and the point at which the prismatic link
connects to the end effector of the ith link, respectively. The vectors i i, j i, k i, l i and m
i are the vectors leading from the fixed reference frame (origin) to the end-effector
(moving reference frame). Representation of the each vector for the first kinematic
chain (leg) is shown in Fig. 1, and it is similar to the other kinematic chains with
corresponding index number. These vectors are characterized by the angles ai, bi, ci, hi,
u and wi, where angles ai, bi, ci, hi and u are with respect to the origin reference frame
while wi is with respect to end-effector’s reference frame and i = 1,2,3, which is the
index of the kinematic link chain.

From the closed looped kinematic chain O� Gi � Pi � Ri � Fi � T � O
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Forward kinematics equation for the position vector of the end-effector,T, is given as:

T ¼ aiii þ biji þ ciki þ dili þ eimi; i ¼ 1; 2; 3 ð1Þ

With; ii ¼ cos ai sin ai½ �T ; ji ¼ cos b
0
i sin b

0
i

h iT
; ki ¼ cos c

0
i sin c

0
i

h iT
;

li ¼ cos h
0
i sin h

0
i

h iT
; mi ¼ cos /þwið Þ sin /þwið Þ½ �T and

b
0
i ¼ ai þ bi; c

0
i ¼ ai þ bi þ ci þ/; h

0
i ¼ ai þ bi þ ci þ/þ hi

The inverse kinematics solution for the manipulator can be derived from Eq. (1)

bi ¼ lTi Eji
� ��1

lTi E T� aiii � ciki � eimið Þ
di ¼ jTi Eli

� ��1
jTi E T� aiii � ciki � eimið Þ

ð2Þ

where, E is the right angle rotation matrix and defined as: E ¼ 0 �1
1 0

� �

Geometric parameters for the U-shape and D-shape fixed base 3-PRP manipulators
are given in Tables 1 and 2. The CAD models are presented in Fig. 2.

Fig. 1. Generalized kinematic parameter diagram for 3PRP manipulator
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3 Jacobian and Singularities of the Manipulator

Velocity expression can be derived from the Eq. (1) by taking time derivative and
eliminating the coefficient of l i, as below:

A _T _/
� �T¼ B_b ð3Þ

where, A and B are the forward and inverse Jacobian of the manipulators, respectively.
These matrices are analytically given as follows:

A ¼
lT1 E

T �d1 � c1lT1 k1 � e1lT1m1

lT2 E
T �d2 � c2lT2 k2 � e2lT2m2

lT3 E
T �d3 � c1lT1 k1 � e1lT2m2

2
4

3
5;B ¼

lT1 E
T j1 0 0
0 lT2 E

T j2 0
0 0 lT3 E

T j3

2
4

3
5

Table 1. Geometric parameters for the U-shape fixed base 3PRP manipulator

Parameters ai (in degrees) bi (in degrees) ci (in degrees) hi (in degrees)

i = 1 180° −90° −90° + / 0°
i = 2 0° +90° +90° + / 0°
i = 3 90° −90° −90° + / 0°

Table 2. Geometric parameters for the D-shape fixed base 3PRP manipulator

Parameters ai (in degrees) bi (in degrees) ci (in degrees) hi (in degrees)

i = 1 0° 120° −90° + / 0°
i = 2 0° 60° +90° + / 0°
i = 3 90° −90° −90° + / 0°

Fig. 2. CAD models of the U-shape and D-shape fixed base 3-PRP manipulators
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The kinematic Jacobain of the manipulator is given as:

J ¼ A�1B ð4Þ

where, Matrix A is never singular while matrix B is singular only when the angle
/ ¼ � 90�, which is not possible for the manipulator within workspace, so neither
serial nor parallel singularity is present in the manipulator. So this configuration is a
singularity-free within its given workspace.

4 Error Modelling

In order to include the effect of joint clearances, the rotary joint the clearance is
characterized by using a small distance dqi between the points Pi and P0

i in the ith link
as shown in Fig. 3. To obtain the error for the end effector at point T Eq. (1) is
differentiated to obtain Eq. (5).

dT ¼daiii þ aidaiEii þ dbiji þ bidb
0
iEji þ dqini þ dciki þ cidc0iEki þ ddili

þ didh
0
iEli þ eiðd/þ dwiÞEmi; i ¼ 1; 2; 3

ð5Þ

db0i ¼ dai þ dbi
dc0i ¼ dai þ dbi þ dci þ d/

dh0i ¼ dai þ dbi þ dci þ d/þ dhi

ð6Þ

where, dT and d/ are the positioning and orientation error at the end effector.

Fig. 3. Error variables in the joint parameters of 3PRP manipulator
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Other variables namely, dai, dai, dbi, dbi, dci, dci, ddi, dhi, dei and dwi show the
variations in the geometric parameters of the link arrangement. Other than these effects,
it is also introduced a joint distance which represents the joint clearance of a rotary joint
and denoted as dqi. The associated vector with this distance variable is
n i = cos fi sin fi½ �T , by substituting the values of Eq. (6) in Eq. (5) and eliminating
the variable ddi, it gives

lTi E
TdT ¼ dailTi E

Tii þ dai lTi aiii þ biji þ cikið Þþ di
� �þ dbilTi E

Tji
þ dbi l

T
i biji þ cikið Þþ di

� �þ dqil
T
i E

Tni þ dcilTi E
Tki þ dci cil

T
i ki þ di

� �

þ didhi þ d/ cilTi ki þ di þ eilTi mi
� �þ deilTi E

Tmi þ dwieil
T
i mi

ð7Þ

If substituting the values of i ¼ 1; 2; 3 in Eq. (7) and arrange it in vector form as:

A

dx

dy

d/

2
64

3
75 ¼ Ha

da1
da2
da3

2
64

3
75þHa

da1
da2
da3

2
64

3
75þB

db1
db2
db3

2
64

3
75þHb

db1
db2
db3

2
64

3
75þHq

dq1
dq2
dq3

2
64

3
75

þHc

dc1
dc2
dc3

2
64

3
75þHc

dc1
dc2
dc3

2
64

3
75þHh

dh1
dh2
dh3

2
64

3
75þHe

de1
de2
de3

2
64

3
75þHw

dw1

dw2

dw3

2
64

3
75

ð8Þ

By multiplying A�1 on both sides, using Eq. (4) and replacing Jq with A�1Hq,
where q 2 a; a; b; q; c; c; d; h; e;wf g. The error sensitivity equation for the manipulator
is given as:

dx

dy

d/

2
64

3
75 ¼ Ja

da1
da2
da3

2
64

3
75þ Ja

da1
da2
da3

2
64

3
75þ J

db1
db2
db3

2
64

3
75þ Jb

db1
db2
db3

2
64

3
75þ Jq

dq1
dq2
dq3

2
64

3
75

þ Jc

dc1
dc2
dc3

2
64

3
75þ Jc

dc1
dc2
dc3

2
64

3
75þ Jh

dh1
dh2
dh3

2
64

3
75þ Je

de1
de2
de3

2
64

3
75þ Jw

dw1

dw2

dw3

2
64

3
75

ð9Þ

The coefficients of the error vectors in the above relation are the corresponding
sensitivity matrices related to each error variables. These analytical expressions are
validated using the virtual prototype with the help of MSC ADAMS software. Further,
these relations are used for accuracy and sensitivity analyses in the following section.

5 Error Sensitivity Analysis

Errors due to joint (bearing) clearances and the actuator inaccuracies (least count errors)
may cause alteration in the end-effector’s pose which cannot be compensated. Other
structural parameter errors related to the link lengths and actuator indexing errors can
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be compensated by the help of the calibration techniques or parameter identification
methods suggested for parallel manipulators. But the error caused due to the presence
of clearances, actuator inaccuracies and encoder least count errors are non-compensable
by such calibration techniques. Therefore, pose errors are estimated due to the joint
clearances, actuator inaccuracies and encoder least count errors using commercially
available data for rotary and prismatic joints and, encoder resolution. For the rotary
joint, joint clearances are assumed as:

0mm � dqi � 0:016mm and the contact angle fi can vary from 0 to 2p radians,
where dqi is the center to center distance of the mating bodies of the rotary joints. The
error variable dhi depends on the joint clearance of the prismatic joint and angular
deviation because of that which is �0:04� � dhi � 0:04� and the least count error is
taken as half of the least count which cannot be detected by the encoders here taken as
0mm � dbi � 0:025mm. The analytical error prediction model is solved simultane-
ously as an optimization problem using the genetic algorithms. For numerical com-
putation, the Matlab function namely, “ga” an in-build genetic algorithms optimization
solver is used. The test region for the error sensitivity analysis is considered as a square
area of 80 mm � 80 mm for the given actuator span of 200 mm in all three legs. To
compare the effect of the non-compensable errors in U-shape and D-shape fixed base
parallel configurations the data for joint clearances and encoder resolutions are taken
from the industrial product catalogues [7]. Local maximum possible pose errors of the
end-effector are obtained through the optimization code for the given workspace region
for the constant end-effector orientation. Error contour plots are presented in Figs. 4
and 5.

The local maximum position errors due to the non-compensable errors in U-shape
and D-shape fixed base parallel configurations are presented in Figs. 4 and 5, respec-
tively. The result shows that the pose errors due the non-compensable errors for the
selected workspace region are varying from 110 lm to 150 lm for U-shape 3-PRP
PPM and 70 lm to 95 lm for D-shape 3-PRP PPM. From the results, it is observed that
D-shape (symmetric shape) fixed base configuration performs better than U-shape fixed
base configurations in presence of non-compensable errors for 3-PRP kinematic
arrangement.

Fig. 4. Non-compensable error contour plots of the U-shape fixed base 3-PRP PPM
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6 Conclusions

In this paper, an analytical error prediction model for the planar 3PRP parallel con-
figuration is derived by considering all possible mechanical inaccuracies. Solution for
the joint parameter’s dependency on the orientation angle of the end-effector is solved
and demonstrated. From the results, it is found that the D-shape fixed base configu-
ration is less sensitive to the non-compensable errors. These non-compensable errors
cannot be compensated by the offline calibration method. But, it can be minimized or
compensated by using a task-space motion control strategy in trajectory tracking, which
would be considered as a future work.
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