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Abstract. Kinematics and dynamics of cable-driven parallel robots are
affected by the cables used as force and motion transmitting elements.
Flexural rigidity of these cables is of major interest to better understand
dynamics of these systems and to improve their accuracy. The approach
for modeling spatial cable dynamics, as presented in this paper, is based
on the modified rigid-finite element method using rigid bodies and spring-
damper elements. With this, a simulation of a planar 3 degrees of free-
dom cable-driven parallel robot is constructed as a multi-body dynamics
model. Under consideration of holonomic constraints and Baumgarte sta-
bilization, a simulation framework for the simulation of cable-driven par-
allel robots including dynamics of the cables is developed and presented.

Keywords: Parallel kinematics · Multi-body dynamics · Flexible
joints · Holonomic systems · Model order reduction

1 Introduction

Cable-driven mechanisms have been known for thousands of years starting in
ancient Egypt and reaching all the way till modern centuries. Such systems, like
mooring, supporting, or lifting devices in offshore engineering, cable-suspension
bridges, or cranes are very likely known to the reader. Another field of applica-
tion comes from replacing rigid links usually found in Gough-Stewart platforms
(see Fig. 1a) with cables, yielding a cable-driven parallel robots (shortened cable
robot, see Fig. 1b). This enables such systems to outperform their rigid-link coun-
terparts by magnitudes when it comes to dynamics, workspace, or payload. On
the downside, these benefits come at a cost stemming from the use of flexible
links as force and motion transmitting elements as these introduce unilateral
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Fig. 1. Comparative display of a general Gough-Stewart platform (a) and a cable
robot (b).

constraints into the system: cables can only exert tensile forces i.e., can only
pull. Additionally, their resistance to transversal forces i.e., perpendicular to
the cable’s neutral axis, is negligible. This effect is very prominent when jerky
motions or sharp changes in the direction of motion along a trajectory occur.

Industrial application of the cable robot technology was first studied by Albus
et al. for the NIST RoboCrane [2]. To foster research, cables were assumed ideal
i.e., to be forming a straight line between two points without any longitudinal
flexibility or inherent dynamics. However, mechanical properties of cables differ
from rigid links thus modeling of cables was further extended. Besides considering
cable longitudinal flexibility by means of linear [10] or non-linear models [5,8],
the dynamics were researched in only very limited extend. In [7], the authors
employed XDE to simulate cable robots with discretized cables allowing for
coiling, yet the Reissner beam for cable modeling with a resolution of 0.02 m
makes for very slow simulation and induced oscillations. The cable robot analysis
and simulation framework CASPR [6] provides tools for designing cable robots,
yet simulation also allows for only state of the art cable models. A multi-body
approach for large-span suspended cable robots was introduced in [3], neglecting
extensibility of the cables as well as bending stiffness, yet the authors explicitly
consider winding of the cables.

In this contribution, the well-established finite element discretization method
for cables based on the modified rigid finite element method derived by [1],
accounting for both bending and longitudinal flexibility, is applied to simulation
of cable robots. The model is extended such that it allows for attaching multiple
cables to arbitrary points on a rigid body that is assumed to represent the mobile
platform of cable robots. To account for expensive evaluation of the extended sys-
tem dynamics, model order reduction techniques are further employed reducing
the computational complexity and enabling efficient simulation of the system.

The structure of this paper is as follows: in Sect. 2, the model of a single
cable is derived as well as the synthesis for a multi-cable setup including the
cable robot mobile platform is shown. Analysis of the model is performed and
numerical results are given, including application of model order reduction tech-
niques since calculation of the equation dynamics is time-consuming. After a
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discussion of the combined model in Sect. 3 highlighting its applicability to sim-
ulation of cable robots, a conclusion is drawn in Sect. 4 also pointing out further
steps to improving the model.

2 Model Synthesis and Analysis

In this section, we derive the dynamics of the system used for simulation of a
cable robot. The model is based on the modified rigid finite element approached
presented by Adamiec–Wójcik et al. [1]. Since our coordinate system and nota-
tion differ and due to the importance of several components to the work presented
here, we will briefly reproduce the derivation.

Fig. 2. Planar cable model used with division of the cable (a) into s segments composed
of two rfes adjoined through linear sde shown in (b).

2.1 Cable Dynamics

We assume a planar cable model as shown in Fig. 2 comprised of stretching and
bending stiffness. The cable is fixed at Ai and split into s rigid finite elements
(rfes) with generalized coordinates strain Δi and angle ϕi in qi = [Δi, ϕi]

T. Each
segment, denoted with (1) and (2), is composed of two rigid bodies of mass mi

and moment of inertia Ji connected via a linear spring-damper element (sde).
The full system state is

q =
[
Δ1, ϕ1, Δ2, ϕ2, . . . , Δs, ϕs

]T =
[
q1

T, q2
T, . . . , qs

T
]T

. (1)

The coordinate of each rfe segment can be readily derived to read

ri = r0 +
i∑

k=1

(l0 + Δk)
[

sin ϕk

− cos ϕk

]
, i = 1, . . . , s, (2)

where l0 = L/s is the unstrained length of each segment. Furthermore, the
position of the distal point of the cable is to be given by rend (t), which translates
to the holonomic constraint Φ (t) ≡ 0 with



Rigid Finite Element Method for Cable-Driven Parallel Robots 201

0 ≡ Φ (t) = rs (t) − rend (t) t ≥ 0. (3)

The governing system dynamics are established through Lagrangian
mechanics

d
dt

∂L

∂q̇i
− ∂L

∂qi
+

c∑

j=1

λj
∂Φj

∂qi
=

∂P

∂q̇i
+

s∑

j=1

Fj · ∂rj

∂qi
, i = 1, . . . , 2s (4)

in which L =
∑s

i=1 Ti − Ui is the Lagrangian, Φj is the jth component of
the geometric constraints vector from Eq. (3) (in planar case c ≡ 2) and λj are
Lagrange multipliers. Additional external forces Fj = [Fj,x, Fj,z]

T at the massless
sde rj (cf. Eq. (2)) are also considered. Kinetic energies Ti, potential energies Ui,
and dissipative energies Pi of the ith segment are

Ti =
mi

2

(
‖ṙ

(1)
i ‖2 + ‖ṙ

(2)
i ‖2

)
+

1
2

(
J
(1)
i + J

(2)
i

)
ϕ̇i

2, (5a)

Ui =
cL
2

Δ2
i +

cR
2

(ϕi − ϕi−1)
2 + mig

(
r
(1)
i,z + r

(2)
i,z

)
, (5b)

Pi =
dL
2

Δ̇2
i +

dR
2

(ϕ̇i − ϕ̇i−1)
2
, (5c)

considering spring and damper elements with respective linear and angular
spring coefficients cL, cR, and linear and angular damper coefficients dL and
dR, respectively.

The system dynamics can be described through the index-3 differential alge-
braic equation system

M(t, q, q̇) · q̈ = f(t, q, q̇) + B(t, q, q̇) · F (t) − Φq(t, q)T · λ , 0 = Φ(t, q). (6)

Stable numerical simulations without induced drift requires index reduction to
receive an index-1 system, which is achieved by applying Baumgarte stabilization
technique (compare [4]):

[
M Φq

T

Φq 0

] [
q̈
λ

]
=

[
f + B · F

γ − 2αΦ̇ − β2Φ

]
, γ ≡ − (Φqq̇)qq̇ − 2Φqtq̇ − Φ̈ (7)

2.2 Multi-cable Dynamics with Platform

We extend the model derived in Sect. 2.1 such that it is applicable to simulation
of cable robots consisting of a platform and m cables. To begin with, we assume
the platform to be of rectangular shape with width and height w and h, respec-
tively, mass mP, and moment of inertia JP. The platform can be described by the
generalized coordinates qp = [xp, zp, Θp]

T with Cartesian position rp = [xp, zp]
T

and angle of rotation Θp. Further stating the cables are attached to the platform
at the cable attachment points bi w.r.t. the platform’s coordinate system, the
holonomic constraints according to Eq. (3) for the distal point of the ith cable
ri,end (t) and the cable attachment point on the platform rbi (t) yield

r
(i)
end (t) = rp (t) + Rbi, rbi (t) = r(i)

s (t) . (8)



202 P. Tempel et al.

where R = R(Θp) is the rotation matrix for the current platform rotation. The
dynamics of the platform can be easily derived from Lagrangian mechanics under
consideration of holonomic constraints similar to Eqs. (4) and (7), respectively.

2.3 Model Order Reduction

The nonlinear DAE system Eq. (7) contains functions that are costly to evalu-
ate. This is due to the complex trigonometric couplings and interactions within
all nodes in the system. The overall computational demands might thus be too
high to allow for efficient simulations. Model order reduction (MOR) techniques
can help to overcome the above mentioned limitations by replacing the compu-
tationally expensive model with cheap yet accurate surrogates. For this purpose
we employ the so-called trajectory-piecewise-linear approach (TPWL-approach),
which was first introduced in [9]. By using this technique, the complex non-linear
functions are replaced by a weighted linear combination of linearizations around
several well-chosen points in the state space: We hence choose a set of lineariza-
tion points {t̄i, q̄i}i∈I for a preferably small set I = {1, . . . , NI}, and replace the
non-linear functions by linearizations of the following form:

f(t, q, q̇) ≈
∑

i∈I

ωi(q)
(
f(t̄i, q̄i, ¯̇qi) + Df(t̄i, q̄i, ¯̇qi)(q − q̄i)

)
. (9)

The weightings ωi(q) are chosen in such a way that
∑

i∈I ωi(q) = 1 and are
calculated in order to switch and interpolate between the linearized models,
depending on where in the state space the simulation currently is located. More
sophisticated techniques and dimension reduction via projection can further-
more yield significant speedups as discussed in [9]. In our case, we apply the
TPWL approach to the equations for f only, and keep the nonlinear holonomic
constraint equations to guarantee that the cables are correctly linked.

3 Discussion

For numerical simulation, we choose two cables with length L0 = 3 m and a
platform of size 1m × 0.3m. The cables are suspended at r

(1)
0 = [0, 0]T and

r
(2)
0 = [1,−0.25]T and are attached at b1 = [−0.5, 0.15]T m and b2 = [0.5, 0.15]T m,

respectively. We choose s = 20 segments for the discretization of either cable,
resulting in a DAE system of dimension 170, including the algebraic equations
and Lagrange multipliers. All functions in the DAE formulation from Eq. (6) are
derived analytically by utilizing the symbolic calculation techniques of MAPLE,
and are then exported to optimized MATLAB functions. The resulting DAE
system is solved by using MATLAB’s builtin ode15s solver with default accuracy.

As a test case, we simulate the system for T = 15 s, where we apply a time-
dependent force on the center of the platform as depicted in Fig. 3. With this setup
we aim to investigate the transition of the cables from tensed to non-tensed and
back to tensed state. For such, the external force on the platform is applied in
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Fig. 3. The simulation setting for our experiments (left). The solid line shows the
system at t = 0 s, the dashed line at t = 4.3 s. The right plots show the x-deflection of
the platform (top) for the full (Δx) and linearized (Δxlin) simulations, as well as the
applied external force (bottom).

the positive z-direction i.e., negative direction of gravity to make the cables slack.
During increasing force, the platform is being pushed up and the cables go slack.
With the external force decreasing, the cables get tensed again yet apply different
forces onto the platform. Comparing this behavior with the standard cable model
of straight lines, the platform’s bouncing motion looks more realistically since the
flexural rigidity of the cables is no explicitly considered.

The simulation was run with the full non-linear model and took 39.1 s. By
using the proposed TPWL-approach for f only, where we choose the initial con-
figuration and the true solution at times t ∈ {4.2 s, 5 s, 5.5 s} as linearization
points, we can simulate the system in 20 s and thus gain almost 53% speedup
while making a relative error of only 4.1%, measured in the space-time norm

‖q‖ :=
(∫ T

0
‖q(t)‖2 dt

)1/2

. Automatic techniques for the choice of the lin-
earization points and projection-based MOR techniques yield more accurate and
efficient results.

4 Conclusions

A cable model based on the modified rigid finite element method, as presented
in this paper, shows reasonable results for the motion of the cables and the
platform. Using the approach given in this work, cables can be attached to a rigid
body representing the mobile platform. Due to the time-consuming evaluation
of the system dynamics, advanced mathematical techniques are employed to
accelerate the calculations. A combination of the proposed linearization ansatz
and a projection-based technique will lead to even larger speed-ups.
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Currently, the dynamics of the platform can only be simulated very limitedly,
despite the model allowing for additional dynamics of the platform to simulate
cable robots with up to 6 degrees of freedom and additional cables. To further
improve numerical results, the mechanical properties of the cable need to be
more closely obtained. As is known by related contributions, elasticity of the
used fiber cables is non-linear thus applying Hooke’s law for tension may not be
accurate enough. Additionally, initial investigations make assuming a progressive
bending stiffness of the cable with very small resistance more accurate. With the
modularity of the model, all of these approaches can easily be integrated in the
presented simulation framework and thus will be investigated in future work.
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