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Abstract This chapter presents a combination of an OpenFOAM®-based contin-
uous adjoint solver and a Radial Basis Function (RBF)-based morpher forming a
software suite able to tackle shape optimization problems. The adjoint method pro-
vides a fast and accurateway for computing the sensitivity derivatives of the objective
functions (here, drag and lift forces) with respect to the design variables. The latter
control a group of RBF control points used to deform both the surface and volume
mesh of the CFD domain. The use of the RBF-based morpher provides a fast and
robust way of handling mesh and geometry deformations with the same tool. The
coupling of the above-mentioned tools is used to tackle shape optimization problems
in automotive and aerospace engineering. This work was funded by the RBF4AERO
“Innovative benchmark technology for aircraft engineering design and efficient de-
sign phase optimisation” project funded by the EU 7th Framework Programme (FP7-
AAT, 2007-2013) under Grant Agreement No. 605396 and the presented methods
are available for use through the RBF4AERO platform (www.rbf4aero.eu).
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Nomenclature

RBF Radial basis functions
SD Sensitivity derivatives
FD Finite differences

PDE Partial differential equation
SI Surface integrals
FI Field integrals

E-SI Enhanced surface integrals

1 Introduction

During recent years, CFD-based aerodynamic shape optimization has been attracting
the interest of both academia and industry. The constituents needed for executing an
automated shape optimization loop include the flow solver, the geometry parameter-
ization (the parameters of which act as the design variables), an optimization method
capable of computing the optimal values of the design variables and a way to adapt
(or regenerate) the computational mesh to each candidate solution.

In the studies presented herein, the steady-state flow solver of the open-source
CFD toolbox OpenFOAM® is used to numerically solve the Navier-Stokes equations
for incompressible, turbulent flows.

Shape parameterization techniques can be divided into two categories, i.e., those
parameterizing only the surface to be optimized and those that simultaneously also
deform the surrounding nodes of the interior mesh. The great advantage of the latter
is that the interior of the mesh is also deformed, thus avoiding costly re-meshing
and allowing for the initialization of the flow field from the solution of the previous
optimization cycle, since the mesh topology is preserved. Here, a number of param-
eters controlling the positions of groups of RBF control points are used as the design
variables, using technology and methods of the RBF Morph software [2].

Gradient-based optimization methods require a high degree of effort to develop
but can have a cost per optimization cycle that does not scale with the number of
design variables, if the adjoint method is used to compute the sensitivity deriva-
tives (SD). In this work, a continuous adjoint method that takes into consideration
the differentiation of the turbulence model PDE is used to compute the SD of the
force objective function w.r.t. the design variables [7]. The adjoint solver has been
implemented in-house, based on the OpenFOAM®software.

The above-mentioned tools are combined in order to form an automated opti-
mization loop. Two applications are presented, namely the drag minimization of the
DrivAer car model [3], and the lift-to-drag ratio maximization of a glider plane,
developed by Pipistrel, a partner of the RBF4AERO project.
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2 Continuous Adjoint Formulation

The derivation of the adjoint equations, their boundary conditions and the SD ex-
pression, concerning flows governed by the Navier–Stokes equations coupled with
the Spalart–Allmaras model, starts with the definition of the augmented objective
function L,

L = J +
∫

Ω

uiR
v
i dΩ +

∫
Ω

qRpdΩ +
∫

Ω

ν̃aR
ν̃dΩ, (1)

where J is the objective function.We assume that J is defined only along the boundary
S of the flow domain Ω , so J = ∫

S JS,inidS = ∫
SW

JSW ,inidS + ∫
SO
JSO,inidS, where

S = SW ∪ SO, SW is the controlled solid wall, SO any other boundary of Ω and ni
the outward unit normal vector to S. Apart from J , L also includes the integrals
of the residuals of the momentum (Rv

i = 0), continuity (Rp = 0) and turbulence
model (Rν̃ = 0) equations, multiplied by the fields of the adjoint velocities ui, adjoint
pressure q and adjoint turbulence model variable ν̃a, [8]. Dropping the last integral
on the r.h.s. of Eq. 1 results in the so-called “frozen turbulence” assumption, which
neglects variations in the eddy viscosity field and leads to reduced SD accuracy,
possibly even to wrong sensitivity signs [8]. A review of continuous adjoint methods
for turbulent flows can be found in [7].

A literature survey shows that continuous adjoint can be formulated in two differ-
ent ways, which both give the same adjoint field equations and boundary conditions,
yet different expressions for the gradient of J with respect to (w.r.t.) bn, where bn,
n = 1, . . . ,N are the design variables.

The first formulation leads to SD expressions with Field Integrals (FI), including
the variations in the spatial coordinates x w.r.t. b, a.k.a. grid sensitivities. A typical
way to compute δx/δb is through finite differences (FD) at a cost that scales linearly
with N . The FIapproach starts by formulating

δL

δbn
= δJ

δbn
+

∫
Ω

(
ui

δRv
i

δbn
+ q

δRp

δbn
+ ν̃a

δRν̃

δbn

)
dΩ

+
∫

Ω

(
uiR

v
i + qRp + ν̃aR

ν̃
)δ(dΩ)

δbn
, (2)

where the last integral vanishes, since Rv
i = Rp = Rν̃ = 0 inΩ . By developing Eq. 2,

[4], integrals of expressions multiplied by δvi/δbn, δp/δbn and δ̃ν/δbn arise. By
zeroing those expressions in Ω , the field adjoint equations are formulated [7, 8]:
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Rq = −∂u j
∂x j

= 0 (3a)

Rui = u j
∂v j
∂xi

− ∂(v j ui)

∂x j
−

∂τai j

∂x j
+ ∂q

∂xi
+ ν̃a

∂ν̃

∂xi
− ∂

∂xl

(
ν̃a ν̃

CY

Y
em jk

∂vk
∂x j

emli

)
= 0,

i = 1, 2, 3 (3b)

Rν̃a = −∂(v j ν̃a)

∂x j
− ∂

∂x j

[(
ν + ν̃

σ

)
∂ν̃a

∂x j

]
+ 1

σ

∂ν̃a

∂x j

∂ν̃

∂x j
+ 2

cb2
σ

∂

∂x j

(
ν̃a

∂ν̃

∂x j

)
+ ν̃a ν̃Cν̃

+ ∂νt

∂ν̃

∂ui
∂x j

(
∂vi
∂x j

+ ∂v j
∂xi

)
+ (−P(̃ν) + D(̃ν)) ν̃a = 0, (3c)

where P(̃ν) and D(̃ν) are the production and dissipation terms of the Spalart–
Allmaras RANS turbulencemodel, τ a

i j are the components of the adjoint stress tensor
and functionsCY ,Cν̃ can be found in [8]. Adjoint boundary conditions are derived by
zeroing the expressions multiplying δp/δbn, δvi/δbn, δ̃ν/δbn and δτi j/δbn in the sur-
face integrals of δL/δbn [7]. The remaining terms in δL/δbn yield the SD expression

δJ

δbn

∣∣∣∣
FI

=
∫
Ω

(
−uiv j

∂vi
∂xk

− u j
∂p

∂xk
− τai j

∂vi
∂xk

+ ui
∂τi j

∂xk
+ q

∂v j
∂xk

+ Atjk

)

∂

∂x j

(
δxk
δbn

)
dΩ + W (0), (4)

where
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∫
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and tIi , t
II
i are the components of the tangential-to-the-surface unit vectors (in 3D

shapes). In Eq. 4, one should notice the presence of the field integral containing the
spatial gradient of the grid sensitivities.

The alternative SI formulation, with an SD expression comprised of Surface In-
tegrals, is based on the Leibniz theorem for integral variations, namely
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δL

δbn
= δJ

δbn
+

∫
Ω

(
ui

∂Rv
i

∂bn
+ q

∂Rp

∂bn
+ ν̃a

∂Rν̃

∂bn

)
dΩ

+
∫
S

(
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v
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)
nk

δxk
δbn

dS. (6)

The last integral in Eq. 6 is usually ignored [6], by making the debatable assumption
that the flow PDEs are satisfied along the boundary. The SI formulation (by excluding
the last integral in Eq. 6) in shape optimization, leads to the SD expression

δJ

δbn

∣∣∣∣
SI

=
∫
SW

[
−

(
τ a
i j n j − qni + ∂JSW ,l

∂vi
nl

)
∂vi
∂xk

+ ∂JSW ,i

∂xk
ni

]
δxk
δbn

dS + W (1). (7)

The SI formulation is, by far, less expensive than the FI formulation in problems
with many design variables. However, because of the elimination of the last surface
integral in Eq. 6, the accuracy of the SI formulation is not guaranteed. In contrast,
the FI formulation provides accurate SD.

A new, third formulation, referred to as the E-SI (Enhanced-SI) adjoint formula-
tion, was recently proposed in [4] by the NTUA group and is intended to alleviate
the accuracy issue of the SI formulation, while having almost the same computation-
al cost. Since the E-SI formulation was developed after the commencement of the
RBF4AERO project, it is not included in this software suite. In Fig. 1, the sensitivity
derivatives computed by the three different adjoint formulations are compared in
an indicative turbulent flow problem, in which the loss of accuracy caused by the
utilization of the SI approach is showcased.
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Fig. 1 Turbulent flow around the NACA0012 airfoil (Re = 106, ainf = 3◦, average y+ = 0.2):
Comparison of the lift SD computed by the FI, SI, E-SI and FD methods. The SD are computed
w.r.t. the x (first half points in the abscissa) and y (second half) coordinates of 24 NURBS control
points parameterizing the pressure and suction sides. For scaling reasons, the SI results have been
divided by 10
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3 RBF-Based Morphing

In this section, the mesh morphing algorithm based on RBFs is described. RBFs are
mathematical functions able to interpolate data defined at discrete (source) points in
an n-dimensional space. The interpolation quality depends on the chosen RBF.

In general, solving the RBF problem requires the solution of a linear system of
sizeM , whereM is the source points number. The RBF system solution is computed
after defining a set of source points and their displacement. Once the solution has
been computed, the displacement of an arbitrary node of the mesh can be expressed
as the sum of contributions from all source points. Hence, a desired modification
of the mesh nodes position can be rapidly applied preserving mesh topology. RBFs
can be classified by the type of support (global or compact) they have, meaning
the domain where the chosen RBF is non zero-valued. The interpolation function
s(x) = ∑M

i=1 γiϕ
(∥∥x − xki

∥∥) + h(x) composed of an RBF ϕ and a polynomial h of
order m − 1, where m is the order of ϕ, guarantees the compatibility with rigid
motions. The degree of the polynomial has to be chosen depending on the kind of
the RBF adopted. A radial basis fit exists if the coefficients γi and the weights of
the polynomial can be found such that the desired function values are obtained at
source points and the polynomial terms gives no contributions at source points, i.e.,
s(xki ) = gi, 1 ≤ i ≤ M ,

∑M
i=1 γiq(xki ) = 0 for all polynomials q with a degree less

than or equal to that of polynomial h. The minimal degree of h depends on the choice
of the RBF. A unique interpolant exists if the basis function is a conditionally positive
definite function [5]. If the RBFs are conditionally positive definite of order m ≤ 2
[1], a linear polynomial can be used h(x) = β1 + β2x + β3y + β4z. The subsequent
development assumes that the aforementioned hypothesis is valid. The γ and β

coefficients are obtained by solving the system for each of the three spatial directions

(
M P
PT 0

) (
γ

β

)
=

(
g
0

)
, P =

⎛
⎜⎜⎜⎝

1 xk1 yk1 zk1
1 xk2 yk2 zk2
...

...
...

...

1 xkM ykM zkM

⎞
⎟⎟⎟⎠ , (8)

where g are the known values at the source points and M is the interpolation
matrix defined by computing all the radial interactions between source points,
Mi j = ϕ

(∥∥xki − xk j
∥∥)

, 1 ≤ i ≤ M , 1 ≤ j ≤ M . P is a constraint matrix that aris-
es to balance the polynomial contribution.

The RBF method has several advantages that make it very attractive for mesh
smoothing. The key point is that, being a meshless method, only grid points are
moved, regardless of which elements are connected to them; this makes the method
suitable for parallel implementation. Though meshless, the method is able to exactly
prescribe known deformations onto the surface mesh: this is achieved by using all
the mesh nodes as RBF centres with prescribed displacements, including the zero
field to guarantee that a surface is left untouched by the morphing action.
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(a) DrivAer rear window (b) wing-fuselage junction

Fig. 2 Example of RBF points arrangement for the definition of two shape parameters: a the height
of the rear window of the DrivAer car model is controlled by a cluster of RBF control points; a
Box Encapsulation is used to limit the effect of the displacement in the vicinity of the windows; b
a similar set-up is used to define the deformation of the wing-fuselage junction close to the leading
edge

The industrial implementation of RBF morphing poses two challenges: the nu-
merical complexity related to the solution of the RBF problem for a large number of
centres and the definition of suitable paradigms to effectively control shapes. RBF
Morph deals with both, as it comes with a fast RBF solver capable of fitting large
datasets (hundreds of thousands of points in a fewminutes) andwith a suite ofmodel-
ing tools allowing the user to set-up shape modifications in an expressive and flexible
way. This performance is due to iterative solutions, the Fast Multipole Method and
Partition of Unity, as well as shared memory parallelism, the efficiency of which
depend on the problem size and has been proven up to 48 cores. RBF Morph allows
to extract control points from surfaces and edges, to put points on primitive shapes
(boxes, spheres, and cylinders) or to specify them directly by individual coordinates.
Two shape modifications used in this study are represented in Fig. 2.

Once the adjoint fields are available, it is possible to compute the SD w.r.t. shape
parameters defined by the morphing tool. To take into account the nonlinear fashion
of the morphing field, the grid sensitivities are generated through second-order FD
of the morphing field around the current design point. It is worth noting that in case
the FI formulation is used, grid sensitivities are required for the entire grid while,
for the SI or E-SI formulations, these are needed only at the deformable boundaries.

4 Optimization Algorithm

The gradient-based algorithm used to minimize the objective function consists of
the following steps: (1) Define the shape modification parameters, and compute the
grid sensitivities through FD. These are kept fixed during the entire optimization
loop. (2) Solve the flow equations. (3) Compute J . (4) Solve the adjoint equations.
(5) Compute the SD. (6) Update the design variables by using a descent method. (7)
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Morph the parameterized surface and displace the interior mesh nodes. (8) Unless
the stopping criterion is met, go to step 2.

Apart from step 1, which runs in serial using the RBFMorph tools, the rest of the
steps are executed within a single OpenFOAM®-based executable, which performs
all tasks in parallel. Steps 2 and 4 are the most costly parts of the algorithm, since
they require the solutions of PDEs, and have approximately the same cost. If the
FI formulation is chosen, SD computation can become expensive as well, in case
of many (of the order of hundreds) design variables. In case the E-SI formulation is
used, the cost of computing SD is negligible, as is the cost of the remaining steps.

5 Applications

In the first application, the drag minimization of the DrivAer car model, developed
by the Institute of Aerodynamics and Fluid Mechanics of TUMunich [3], is studied.
Specifically, the fast-back configuration with a smooth underbody, with mirrors and
wheels (F_S_wm_ww) is used. Following the standard practice of the automotive
industry, wall functions are used to effect closure on a grid of about 3.8 million cells.
Six design variables are defined in total. The part of the car surface parameterized
by each of them and the corresponding grid sensitivities are depicted in Fig. 3. The
convergence of the optimization algorithm using the FI and SI adjoint formulations,
along with a comparison of the pressure fields between the initial and optimized
geometries, is illustrated in Fig. 4. Lowering the rear windshield, creating a spoiler
at the end of the trunk and a boat-tail-shaped rear side led to increased pressure on
the rear part of the car and, thus, lower drag.

(a) Boat tail (b) Car height (c) Underbody front

(d) Underbody back (e) Mirror rotation (f) Rear window

Fig. 3 DrivAer optimization: Six design parameters are used to morph different parts of the car,
by controlling: a the boat tail, b the car height, c the front bumper, d the rear bumper, e the mirror
shape, f the rear window shape. In color, one may see |δx/δbn|. By computing SD on the initial
geometry, the variables depicted in (a), (c), (d) and (f) are identified as the ones with the highest
optimization potential
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Fig. 4 DrivAer optimization: Left: Evolution of the normalized drag in terms of the number of
iterations of the flow solver, following the FI and SI formulations. In each optimization cycle, the
flow solver runs for 1000 iterations. Kinks in the drag value indicate the first iterations after each
shape update. With the FI formulation, a drag reduction of 7% was achieved, whereas the SI gave
no more than 1.5% at approximately the same CPU cost. Right: initial (starboard) and optimized
(port) (with the FI formulation) geometries, colored based on the surface pressure

The second application is concerned with the shape optimization of a glider
plane targeting the maximization of the lift-to-drag ratio. The Reynolds number is
Re = 1.55 × 106 based on the wing chord, the Spalart–Allmaras turbulence model
is used, the mesh consists of about 4.7 million cells and the far-field flow angle is
10◦. The geometry is parameterized using four RBF-based design variables, depicted
in Fig. 5. The FI adjoint formulation is used, the convergence of the optimization

Fig. 5 Glider optimization: the grid sensitivities magnitude for the four design variables. (a) and
(b) parameterize the wing-fuselage junction close to the leading and trailing edges, while (c) and (d)
affect the upper glider surface. All design variables are bounded in order to prevent the generation
of non-manufacturable solutions
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Fig. 6 Glider optimization: a convergence of the lift-to-drag ratio (L/D), alongwith the lift and drag
values, normalized with the ones obtained using the initial geometry. A 15% lift-to-drag increase
is observed in four optimization cycles by mainly reducing the drag value and slightly increasing
lift, b the optimized glider geometry, colored based on the projection of the cumulative surface
displacement to the surface normal vectors of the initial geometry. Positive numbers indicate an
inward displacement while negative ones, an outward movement

Fig. 7 Glider optimization: near-wall velocity isolines, plotted on the glider surface for the a initial
and b optimized geometries. It can be observed that the low velocity area close to the trailing edge
has been considerably reduced

algorithm is shown in Fig. 6a and the optimized geometry is illustrated in Fig. 6b. In
Fig. 7, the near-wall velocity isolines are plotted on the glider surface for the initial
and optimized geometries.

6 Conclusions

An in-house developed OpenFOAM®-based continuous adjoint solver and an RBF-
basedmorpher, combined into an automated optimization software in the context of a
research project funded by the EU, were used as the constituents of a gradient-based
optimization algorithm. Two optimization problems of automotive and aerospace
engineering were studied, giving a more than 7% drag reduction in the DrivAer case
and a 15% lift-to-drag ratio increase in the glider case.
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