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Abstract Anovel two-way coupled Eulerian–Eulerian CFD formulation was devel-
oped to simulate drifting snow based on turbulent drag and a new viscous treatment
of the drifting snow phase, derived from first principles. This approach allowed ex-
plicit resolution of the saltation layer without resorting to empiricism, unlike other
Eulerian–Eulerian models based on mixture formulations and one-way coupling.
Initial validations were carried out against detailed snow flux, airflow velocity, and
turbulent kinetic energy measurements in a controlled experimental simulation of
drifting snow in a wind tunnel using actual snow particles. The two-way coupled
approach was found capable of simulating drifting snow fluxes in both saltation and
suspension layers with reasonable accuracy. Recommendations were made to im-
prove the accuracy of the method for air velocity and turbulent kinetic energy, and
to allow simulating a drifting snow phase with a particle size distribution.

Keywords Drifting snow · Eulerian–Eulerian · Viscosity · Turbulent drag · Snow
flux

1 Introduction

Drifting snow results from the aeolian motion of snow particles deposited on the
ground. Such motion is possible when the drag force induced by the airflow exceeds
the opposing actions of interparticle cohesive bonding, particle weight, and surface
friction. This aerodynamic entrainment threshold is called the fluid threshold. If a
large enough amount of particles is displaced by the airflow it can extract enough
momentum from it that the airflow velocity is noticeably reduced; a two-way cou-

Z. Boutanios (B)
Binkz Inc, Laval, Canada
e-mail: ziad@binkz.ca

Z. Boutanios · H. Jasak
Faculty of Mechanical Engineering and Naval Architecture,
University of Zagreb, Zagreb, Croatia
e-mail: hrvoje.jasak@fsb.hr

© Springer Nature Switzerland AG 2019
J. M. Nóbrega and H. Jasak (eds.), OpenFOAM®,
https://doi.org/10.1007/978-3-319-60846-4_35

491

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-60846-4_35&domain=pdf
mailto:ziad@binkz.ca
mailto:hrvoje.jasak@fsb.hr
https://doi.org/10.1007/978-3-319-60846-4_35


492 Z. Boutanios and H. Jasak

pling phenomenon. Particle collisions also help sustain drifting by putting snowbed
particles in motion and making it easier for the slower airflow to carry them at a
lower threshold shear stress referred to as the impact threshold. Both definitions
were first coined by Bagnold [1] in his investigations of desert sand transport by
the wind. Bagnold also classified the aeolian motion of particles under three modes:
creeping, saltation, and suspension. These modes are shown in Fig. 1 as they per-
tain to drifting snow. Of particular interest to this research is the two-way coupled
saltation mode. Several aeolian snow transport models are available in the litera-
ture. Most are based on Reynolds-Averaged Navier–Stokes (RANS) formulations in
the Eulerian–Eulerian and Eulerian–Lagrangian frames regarding the air and snow
phases, respectively. Both approaches can yield reasonable results for particle-laden
flows, but the Eulerian–Eulerian approach requires a lower computational effort since
a lot of particles are required for Lagrangian particle tracking to yield statistically
meaningful results [2]. Presently, Eulerian–Eulerian modeling of drifting snow is
based on two main approaches: the transport of snowdrift density approach and the
Volume of Fluid (VOF) approach.

The snowdrift density approach solves a one-way coupled Partial Differential
Equation (PDE) for the drifting snow density in the suspension layer (where the
snow phase motion does not affect the airflow, a valid assumption in the suspension
layer thanks to the very low snow phase concentration) in addition to the airflow
continuity and momentum equations with a Prandtl mixing layer model [3]. Another
variation of the transport of snow density approach uses the mixture continuity and
momentum equations with a standard k–ε turbulence model corrected for turbulence
damping by particles [4]. Note that themixture formulation ofNaaim et al. [4] is in re-
ality two-way coupled. However, the snow phase momentum equation is not solved.
Instead, the snow velocity is set equal to a terminal velocity derived from empirical
and experimental considerations. This effectively fixes the two-way coupling effects
and the results are indeed quite comparable to other one-way coupled approaches

Fig. 1 The different modes of drifting snow
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discussed in this section. Another application of the snowdrift density approach uses
the airflow continuity and momentum equations with a modified Launder–Kato k–ε
turbulence model [5]. The drifting snow density is transported by the airflow, the
snowfall velocity is set constant, and the saltation layer, which is not resolved, is rep-
resented by a steady-state empirical formulation of the transport rate of drifting snow
in the saltation layer for equilibrium conditions over natural flat terrain [6]. However,
this empirical representation of the saltation layer has been experimentally shown to
overestimate the transport rate of drifting snow in accelerating and decelerating flows
[7]. This makes such a representation of the empirical layer at best conservative for
flows around bluff bodies where important regions of accelerating and decelerating
flows are present. The snowdrift density approach with the Launder–Kato turbulence
model has been lately modified to account for snow particle damping of turbulence
and with saltation computed with the snowdrift density one-way coupled transport
equation, without the empirical saltation flux relationships [8]. These modifications
resulted in some improvement, but substantial deviations remain from experimental
measurements of the snow surface in the lateral vicinity of a cube structure, where
accelerating and decelerating effects of bluff body aerodynamics dominate. The com-
putation overestimates the snow accumulation in the stagnation zone ahead of the
cube where the flow is reasonably steady state, and is quite good behind it but the
simulation authors wonder whether accumulation behind the cube is due to snowfall
or snowdrift.

The VOF approach is a one-way coupling interface capturing method that treats
the snow phase as a fluid and relies on the assumption that the fluids are not in-
terpenetrating. Capturing of the interface between the phases is done by solving a
continuity equation of one or more of the phases, in addition to the mixture con-
tinuity and momentum equations. The relative velocity of both phases is based on
drift-flux theory, which assumes low drift [9], a reasonable assumption for smaller
particles. The VOF approach relies on the same steady-state empirical equilibrium
saltation flux treatment as the transport of snowdrift density approach and both meth-
ods are equivalent. Different attempts at improving the VOF approach by accounting
for particle impingement in saltation as well as modifications of the turbulent wall
function roughness parameter based on experiment-specific measurements did not
show much improvement compared to experiment, especially close to bluff bodies
where accelerating and decelerating flows dominate [10]. No decisive improvement
was seen either by using mesh adaptation based on the balance of the convected
horizontal snow flux and flow divergence at the ground [11]. Yet another application
of the VOF approach uses two different snow phase continuity equations, one with
mass diffusion and a suspension particle settling velocity in the suspension layer
and another without mass diffusion and a saltation particle settling velocity in the
saltation layer [12]. The implementation is based on ad hoc empirical coefficients
and parameters, and does not improve on the previously mentioned limitations.

An exception to both approaches above is the physically based one by Gauer [13],
which resolves the saltation layer but still uses considerable parameterization and
self-similarity assumptions between the airflow profile and the snow concentration
profile in the saltation layer, which does not necessarily hold true in the vicinity of
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bluff bodies. In particular, the air velocity and snow concentration profiles in the
saltation layer are assumed and related to the air velocity on top of the saltation layer
obtained from the suspension layer computation. The simulations manage to capture
the general trends in comparison to experimental snowdrift rates, wind field velocity,
and new snow depth for an Alpine crest with order of magnitude agreement in qual-
itative comparisons. In all fairness, much of the discrepancies are due to poor terrain
accuracy and large uncertainty in choosing the correct numerical boundary condi-
tions, as pointed out by the author of the simulations, but the results are inconclusive
nonetheless.

The objective of this paper is to present a viable snow phase viscosity model
for high rates of strain and two-way coupled situations such as snow saltation, in
Eulerian–Eulerian simulations of drifting snow. The viscosity model is implemented
in a modified version of twoPhaseEulerFoam [14], the formulation of which is
based on the following conditional ensemble-averaged equations of conservation of
mass and linear momentum used to represent interpenetrating phases in the Gosman
model [15]:

∂αi

∂t
+ ∇ · (αiui

) = 0, (1)

∂

∂t

(
αiui

) + ∇ · (αiuiui
) + ∇ · (

αiRi
) = −αi

ρi
∇ p + αig + Mi

ρi
. (2)

Here, αi , ρi , ui , and Ri are the volume fraction, density, velocity, and stress tensor
of phase i , respectively; p is the static pressure field; and g is the gravitational
acceleration vector; Mi is the momentum exchange term between the phases,

Mi = Fl + Fd + Ft . (3)

Here, Fl , Fd , and Ft are, respectively, the aerodynamic lift, generalized drag, and
turbulent drag forces. Using scale analysis, [13] found the aerodynamic lift and drag
forces to dominate at the onset of drifting, but did not consider the turbulent drag
force. An earlier scale analysis by [15] including the turbulent drag force found the
lift to be negligible for gas/solid particle-laden flows, where the ratio of continuous
gas density to dispersed solid density is proportional to 10−3. The lift force is given
by

Fl = α2α1(α2Clsρ2 + α1Claρ1)Urel × ∇ × U. (4)

Here, the snow phase is represented by index 1 and the air phase by index 2. Urel =
U2 − U1 is the relative velocity between the phases, and U = α2U2 + α1U1 is the
mixture velocity. Numerical tests with the presentmodel confirmed the lift force to be
negligible; therefore, it was not used in the present simulations. The only two forces
found relevant for saltation and suspension are then the generalized aerodynamic and
turbulent drag forces. The latter force was also reported to be the main mechanism
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for transporting smaller particles into suspension [1]. The generalized aerodynamic
drag model used is the Gidaspow–Schiller-Naumann model [16], which is expressed
as follows for the snow phase:

Fd = KUrel , (5)

K = 3

4dp
ρ2CDα−1.65

2 (1 − α2)|Urel |. (6)

Here,CD is the drag coefficient on a single sphere given by the following relationship
[17]:

CD =

⎧
⎪⎨

⎪⎩

24

Rep
(1 + 0.15Re0.687p ) if Rep < 1000,

0.44 if Rep ≥ 1000.
(7)

Rep is the particle Reynolds number based on the particle diameter dp and air kine-
matic viscosity ν2,

Rep = α2|Urel |dp

ν2
. (8)

The Gidaspow–Schiller-Naumann drag model is valid for dilute flows with α2 > 0.8
[18], which is the case in the creep, saltation, and suspension layers. Moreover, the
Gidaspow–Schiller-Naumann drag model applies to spherical particles and is used
here since no practical correlations for irregular particles as depicted in Fig. 4 are
available in the literature. However, as the present irregular particles drift they will
rotate around three axes within a somewhat spheroidal volume of air. Therefore,
their drag function could be similar to that of a spherical particle with differences
that cannot be predicted at the moment. It remains that the spherical particle drag
correlations are the only present recourse.

For the snow phase, the turbulent component of the drag force, arising from
turbulent fluctuations of the volume fractions and velocities in the Gosman two-fluid
model is given by

Ft = −K
ν t

σα

∇α1. (9)

Here, ν t and σα are, respectively, the turbulent kinematic viscosity of the air phase
and the Schmidt number. The standard formulation of twoPhaseEulerFoam does
not include the turbulent drag term. Instead, it uses the continuity equation in the
following form:

∂αi

∂t
+ ∇ · (Uαi ) − ∇ · (Urelαi (1 − αi )) = 0. (10)

Equation 10 provides tighter coupling between the phases since it uses the mixture
and relative velocities, as well as both volume fractions [19]. It does not include
a turbulent diffusion term, but the third term on the left-hand side can be consid-
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ered a volumetric mass flow rate source term, playing the same role as a turbulent
diffusion term, and a similar role to the turbulent drag term in the momentum equa-
tion. For the present simulations, the turbulent drag term of Eq. 9 was added to
twoPhaseEulerFoam, while retaining the treatment of Eq. 10. The standard in-
compressible k–ε turbulence model is used unmodified and applied only to the air
phase, so the interaction between the snow phase and turbulence is not directly taken
into account.

The viscous stresses terms in the momentum equations are modeled according to
the Boussinesq formulation, which requires a viscosity parameter readily available
for air but not for snow. Many snow compactive viscosity models are available for
very low rates of strain typical of settling snow, the latest by Teufelsbauer [20] who
also provides a review of the main models in the literature. However, nothing is
available at the high rates of strain of drifting snow. The next section discusses the
high rate of strain viscosity model and its derivation, while the validation of the for-
mulation is presented in the Validationsection. The relevant details of the controlled
drifting snow experiment are presented in the Validation Experiment subsection. The
numerical setup is presented in the Simulation Setup subsection, followed by the Re-
sults and Discussion subsection. The paper concludes with the Conclusionssection
which includes recommendations for future work.

2 The Drifting Snow Viscosity Model

The snow phase viscosity is derived by matching the momentum of a number of
ideal spherical drifting particles within a control volume, with the momentum of
the same control volume containing an equal amount of the equivalent viscous fluid.
Drifting snow particles move in transient hops and bounce over the snowbed surface.
However, drifting snow can easily be observed in self-sustained steady-state mode
in natural and controlled environments, so the motion of the spherical particles can
be considered steady state in the average sense. This approximation is only used for
the purpose of deriving an expression of the snow phase Newtonian viscosity model.
A scale analysis showed that the rolling friction force is negligible compared to the
drag force, so the former was not retained in the analysis. Neglecting friction forces
is further justified by the fact that their effects and that of snowbed asperities are
already implicitly included in the surface threshold shear–stress parameter.

The derivation starts with the momentum equations of the air and snow phase for
fully developed steady-state flow in a control volume containing a number of rolling
particles on the snowbed and having the same height as a particle. At typical drifting
snow particle height dp � 1mm, typical surface threshold friction velocity u∗ � 0.5
[21] and air temperature below freezing, the nondimensional wall distance to the
snowbed is y+ � 50. Under such conditions the airflow profile is weakly nonlinear
and the divergence of the stress tensor negligible compared to the pressure gradient.
Therefore, we can write the snow and air momentum equations for steady-state fully
developed flow as
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− α1
∂P

∂x
+ Fd + α1μ1

d2u1
dy2

= 0, (11)

− α2
∂P

∂x
− Fd = 0. (12)

Here, ∂P/∂x is the downstream pressure gradient, Fd is the drag force on a particle
andμ1 is the snowphase dynamic viscosity.One can eliminate the drag force between
the equations above and solve for the snow phase velocity on the snowbed using the
following no-slip and threshold shear stress boundary conditions at the snowbed
surface:

u1 = 0, (13)

τt = α2ρ2u
2
∗. (14)

The resulting snow phase velocity on the snowbed is

u1(y) = 1

2α1μ1

∂P

∂x
y2 + τt

α1μ1
y. (15)

The expression for the dynamic viscosity is obtained by matching the linear mo-
mentum of the Lagrangian snow particle phase with that of the equivalent Eulerian
snow fluid phase. The Lagrangian linear momentum per unit volume PL ,v is given by
Eq. 16, where ρi is the ice density and Vp the average particle velocity. The Eulerian
linear momentum per unit volume PE,v is given by Eq. 17.

PL ,v = α1ρi Vp, (16)

PE,v = α1ρi dp

dp∫

0

u1(y)dy. (17)

Integrating and setting PL ,v = PE,v provides the following expression of the drifting
snow dynamic viscosity:

μ1 =
1
6

∂P

∂x
dp + 1

2τt

γ̇1
. (18)

Here, γ̇1 = α1
Vp

dp
is the particle phase rate of strain. Equation 18 can also be refor-

mulated in terms of the drag force,
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μ1 =
− 1

6

Fddp

α2
+ 1

2τt

γ̇1
. (19)

In aeolian transport phenomena particles, the drag force usually points downstream,
in the direction of the decreasing downstream pressure gradient. On the other hand,
the surface shear stresses usually resist the particle motion, and this competition
between the threshold shear stress τt and the pressure gradient (or drag force) is
highlighted in Eqs. 18 and 19. The pressure gradient and the drag force tend to
induce motion, reducing the effective viscosity of the snow phase, whereas surface
shear stresses tend to inhibit motion, increasing the effective viscosity of the snow
phase.Within the snowbed, the snowEulerian continuumshould still be characterized
by the threshold shear stress. Since there is no significant airflow beneath the snow
surface, and we are not interested in an accurate simulation of snowbed packing, the
drag/pressure gradient term can be eliminated from Eqs. 18 and 19 in that region.
The resulting drifting snow viscosity expression implemented and tested here is the
following:

μ1 =

⎧
⎪⎨

⎪⎩

0.5
τt

γ̇1
in snowbed

(
− 1

6

Fddp

α2
+ 1

2τt

)
/γ̇1 in creeping, saltation and suspension.

(20)

3 Validation

This section presents the relevant details of the controlled wind tunnel drifting snow
experiment and the numerical setup. The discussion proceeds around the results of
the numerical simulations as compared to the experimental measurements.

3.1 Validation Experiment

The experimental data used to validate the present viscosity model comes from a
controlled wind tunnel experiment of drifting snow using actual snow particles [22].
The experiment was carried out at the Cryospheric Environment Simulator (CES)
of the Shinjo Branch of the Snow and Ice Research Center (SIRC), at the National
Research Institute for Earth Science and Disaster Prevention (NIED) in Japan, by the
snow research group of Tohoku University. This experiment was selected because
it included detailed measurements of the snow fluxes and airflow velocity profiles
at four measurement stations in the working section of the tunnel, and across the
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Fig. 2 Side view of the wind tunnel experimental layout (adaptation of Fig. 2 from Okaze et al.
[22])

entire saltation layer and lower part of the suspension layer. Turbulent kinetic energy
profiles were also measured at the most downstream measurement station.

The experimental layout is shown in Fig. 2 with the locations of the experimental
measurement stations. The first measurement station is at X = 0 m and is preceded
by a 1 m fetch of hardened snow that cannot drift. This induces a nonequilibrium
boundary layer before the 14 m working section which includes a 0.02 m deep
groove filledwith loose snow that can drift. The turbulence kinetic energy and airflow
velocity profiles were measured at X = 0 m, and they are shown in Fig. 3. They are
nondimensionalized using the reference airflow velocity Ur at a height of 0.2 m
over the snowbed. The airflow velocity and snow flux profiles were also measured
at the downstream stations located at X = 3, 6, 9 and 11.5 m. The turbulent kinetic
energy profile was also measured at the last downstream station at X = 11.5 m.
The experiment was initiated with a start-up phase of 25 s to reach the conditions
shown in Fig. 3, followed by a waiting period of 5 s. The airflow velocity, turbulent
kinetic energy, and snow flux profiles were then measured at all four downstream
stations within a global time window of 30s, consisting of 5 s for each station and
a 2 s transfer period in between stations. The reported results of snow flux, airflow
velocity, and turbulent kinetic energy profiles were obtained by averaging the data
measured during the individual 7-s windows. The reader is referred to Okaze et al.
[22] for the experimental details. Samples of the snowparticles used in the experiment
are shown in Fig. 4 with a 1 mm scale bar. The experimental snow particles are quite
irregular and bulky, exceeding 1 mm in length quite often but rarely smaller than
0.10 mm in either length or width.
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Fig. 3 Experimental airflow velocity and turbulent kinetic energy profiles measured at X = 0
(adapted from Fig. 3 of Okaze et al. [22])

Fig. 4 Samples of the snow particles used in the experiment with a 1 mm scale bar (provided by
Dr. Tsubasa Okaze)

3.2 Simulation Setup

The 2D computational mesh used for the simulations is shown in Fig. 5. A close-up
of the mesh at the inlet of the computational domain at X = 0 m is also shown, with
the loose snow layer in the gutter in white. The volume fraction of the snowbed
was set to 0.394 in order to match the experimentally measured snowbed density
of 361 kg/m3. The mesh is fully structured, composed of hexahedral elements with
a transverse element size of 4 mm in the gutter and at the top of the tunnel. The
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Fig. 5 Simulation mesh with a close-up of the inlet region showing the loose snow layer in the
gutter

longitudinal element size in the flow direction along the X-axis is about 6 cm. Tests
were carried out with a mesh twice finer in both directions and the results varied
by less than 15%, so the results obtained from the present mesh can be reasonably
considered mesh-independent.

The Gauss linear scheme was used for gradients and divergence of viscous
terms, and the Gauss upwind scheme for divergence of nonlinear convection
terms. The Gauss linear orthogonal scheme was used for all Laplacians.
The pressure equationwas solvedwithGAMGandDIC smoother, and all other equa-
tions were solved with PBiCG and DILU preconditioner. All solvers were converged
to ten orders of magnitude. The measured profiles of airflow velocity and turbulent
kinetic energy at X = 0 m from Fig. 3 were imposed as inlet boundary conditions for
the simulations, with a Neumann zero-gradient inlet boundary condition for the pres-
sure. At the inlet, the turbulentMixingLengthDissipationRateInlet
boundary condition was used for ε, which is based on the following equilibrium
relationship:

ε = C0.75
μ k1.5

lm
. (21)

Here, Cμ = 0.09 is the familiar k–ε model constant and lm is the mixing length set
to half the wind tunnel height, or the assumed dimension of the large inertial eddies.
Tests were conducted with a mixing length equal to 10% of the wind tunnel height
with negligible differences in the results, perhaps due to the low sensitivity of the k–ε
model to changes in inlet conditions. At the outlet, Neumann zero-gradient boundary
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conditions were used for all variables except the pressure, with a Dirichlet zero-value
boundary condition. Standard wall functions were used at the walls.

Simulations were carried out at a snow threshold shear stress τt =
0.044Kg/(m s2), which is the minimum experimentally observed value for drifting,
and corresponds to a threshold velocity of u∗ = 0.23m/s. The drifting experiment
analyzed here is transient, given the limited supply of drifting snow in thewind tunnel
gutter, so the simulations were accordingly carried out in transient mode. Moreover,
it is necessary to take into account the particle size distribution when using two-way
coupled simulations [23]. The present formulation can only account for one particle
size at a time. Therefore, the only way to reproduce the results of a particle size distri-
bution was to combine the results of several single particle size simulations, using the
statistical weight of each size class in the distribution. Particle size distributions were
not reported in the experimental paper but mechanical breakage phenomena such as
drifting snow usually obeyed a two-parameter Gamma distribution be it as aggregate
on the ground [24] or drifting above it [25]. The two-parameter Gamma Probability
Distribution Function (PDF) f (x) and the Gamma function 
 are expressed as

f (x) = ba


(a)
xa−1e−bx , (22)


(a) =
∞∫

0

xa−1e−xdx, a ∈ (0,∞). (23)

Here, a and b are, respectively, the distribution shape and scale parameters, and they
define the distribution average size as davg = a/b. The statistical weight wi of a
particle class di is calculated as follows:

wi =
di+1+di

2∫

di+di−1
2

f (x)dx . (24)

Here, di−1 and di+1 are the lower and upper particle size classes. The percentage
contributions of the different particle classes to several distributions with average
particle size of 0.7, 0.8, and 0.9 mm are shown in Fig. 6. In this section, the snow
flux and airflow velocity profiles of a two-parameter Gamma distribution with aver-
age diameters of 0.7, 0.8, and 0.9 mm are reproduced using all seven particle size
simulations, namely, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, and 1.3 mm particle sizes. The par-
ticle size distribution results are then compared to the results of the single diameter
distributions from the previous section and the experimental measurements.
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Fig. 6 Percentage
contributions of different
particle size classes to
distributions with davg = 0.7,
0.8 and 0.9 mm

3.3 Results and Discussion

The average snow flux profiles at X = 11.5 m are shown in Fig. 7, along with the
experimental measurements. The numerical profile for the average diameter of 0.7
mm exceeds the experimental measurements by far, especially high in the saltation
and suspension layers. This is due to the important contributions of the smallest
particles that are most present in that distribution. The smallest and lightest particles
are transported in saltation and suspensionmore easily than the larger particles,which
are heavier and tend to drift closer to the snowbed. Accordingly, the distributionswith
average diameters of 0.8 and 0.9mmhave less contribution from the smallest particles
and less saltation/suspension snow flux. The distribution snow flux profiles appear
quite sensitive to small changes in the average distribution diameter since the PDF
curves in Fig. 6 are pretty narrow and have little spread around the average diameter
value. However, all three profiles show a reasonable qualitative agreement with the
experimental data since the shapes of the experimental and simulation profiles are
similar and the simulation profiles intersect the experimental profile, especially for
the 0.9 mm average diameter case.

The profiles of average nondimensional airflow velocity for the same average
diameters of 0.7, 0.8, and 0.9 mm are shown in Fig. 8. Again, a reasonable qualitative
agreement is found with the experimental measurements since the shapes of all
curves are pretty much the same, but with much smaller differences between the
three distributions. This implies that the distribution velocity is less sensitive than
the distribution snow flux to small changes in the average distribution diameter, for



504 Z. Boutanios and H. Jasak

Fig. 7 Average snow flux
profiles at X = 11.5m, for
distribution average
diameters of 0.7, 0.8, and 0.9
mm

Fig. 8 Average profiles of
nondimensional airflow
velocity at X = 11.5m, for
distribution average
diameters of 0.7, 0.8, and 0.9
mm

the range of average distribution diameters considered. Therefore, the quantitative
differences should not be due to the averaging process.

The average nondimensional turbulent kinetic energy profiles are shown in Fig. 9
and are found to be equally insensitive as the airflow velocity profiles. Moreover, the
numerical results exceed the experimentalmeasurements by twoorders ofmagnitude,
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Fig. 9 Average profiles of nondimensional turbulent kinetic energy at X = 11.5m, for distribution
average diameters of 0.7, 0.8, and 0.9 mm

Fig. 10 Pressure stagnation zone forming at the beginning of the eroding snowbed, with turbulent
kinetic energy contours

a well-known flaw of the k–ε model in stagnation regions [26, 27]. This deficiency
is also known to affect downstream parts of the flow [28]. In the present case, the
stagnation region is located upstream right after the inlet, where the flow trips into the
eroding snowbed as can be seen in Fig. 10. The turbulent kinetic energy contours are
also shown in black, and they extend downstream reaching the 11.5 m measurement
station. The drifting snow particles constitute another contributing factor since they
extract significantmomentum from the airflowbydrag in the saltation layer. This two-
way coupled effect fades away in the suspension layer,where the airflowsubsequently
accelerates, forming another shear layer where turbulence is also generated [1]. The
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standard k–ε model used here is not equipped to handle such dispersed two-phase
flow situations. However, many fixes are available in the literature in the form of
turbulent timescale limiters [28] and particle effect source terms in the k and ε

transport equations [29]. They will be investigated in future work, as well as the
specific k–ε implementation in twoPhaseEulerFoam.

4 Conclusions and Future Work

A new two-way coupled Eulerian–Eulerian formulation to simulating drifting snow
was presented along with validation results against a controlled wind tunnel drifting
snow experiment. The new formulation was implemented in OpenFOAM®, based
on twoPhaseEulerFoam. It includes a novel drifting snow viscosity model de-
veloped to allow computing the viscous stress tensor in the snow phase momentum
equation, which itself made it possible to simulate drifting snow in the saltation layer
without resorting to empirical correlations used by other Eulerian methods.

Comparisons of simulation results with experimental measurements showed that
the new two-way coupled formulation behaves physically with respect to particle
size. The model showed reasonable qualitative agreement with measured snow flux
in the saltation and suspension layers. Comparisons of numerical airflow velocity to
experiment showed reasonable qualitative agreement with the experimental profiles,
with quantitative deficit in the numerical results. These are believed to be due to
well-known deficiencies of the standard k–ε model, which can be addressed with
fixes available in the literature.

The present formulation allows simulating one particle diameter class, andwork is
ongoing to allow simulating several diameter classes simultaneously. Corrections to
the k–εmodel excess turbulent kinetic energyproduction are also being implemented.
This viscous model can be extended quite easily to aeolian transport of sand and even
riverbed sediment transport, to give only a couple of examples.
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