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Abstract In the present research, the well-known test FSI problem of wind res-
onance phenomenon simulation for a circular cylinder is considered. It is well-
investigated, both experimentally and numerically (Chen et al. in Phys Fluids 2011,
[3]), for a wide range of parameters: Reynolds number, airfoil surface roughness,
incident flow turbulence, etc. In this research, the simplest case is considered, in
which the roughness influence is neglected and the incident flow is assumed to be
laminar. Several numerical codes, both commercial and open source, can be used
for simulating airfoil oscillations in the flow. Four numerical methods and the cor-
responding open-source codes are considered: the finite volume method with de-
formable mesh in OpenFOAM®; the particle finite element method with deformable
mesh in the Kratos software; the meshfree Lagrangian vortex element method; and
the LS-STAG immersed boundary method. The last two methods are implemented
as in-house numerical codes. A comparison is carried out for the efficiency analysis
of these methods and their implementations. It is shown that using OpenFOAM® is
preferable for numerical simulations with FSI problems similar to the ones presented
here, in which the investigation of system behavior within a wide range of parameters
is required.
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1 Introduction

In a number of engineering applications, bodies are immersed in a gas or fluid flow
and exposed to aerohydrodynamic loads. Fully coupled 3D fluid–structure interac-
tion (FSI) problems are extremely complicated, both from the mathematical and
computational points of view. In many practical cases, the average density of the
immersed body is higher than the density of the flow, thus it is possible to apply a
well-known “splitting” approach, in which a single time step is divided into at least
two substeps. During the first substep, a semi-implicit scheme, for which body mo-
tion parameters are assumed to be known, is used while simulating the flow around
the body. During the second substep, an explicit scheme is used for body motion
simulation under known hydrodynamic loads.

In practice, we often deal with extruded structures (with high elongation), so as
a rough approximation, we consider this to be a 2D problem of interaction between
the flow and the corresponding airfoil. This approach is particularly applicable when
the airfoil cross section has angle points (points, at which the camber line of the
airfoil loses its smoothness) and sharp edges. This approach is also accurate enough
for FSI problems with bluff bodies that have smooth cross-sectional shapes, for
example, flows around cylindrical rods, or pipes. Such bodies oscillate under von-
Karman vortex shedding, and frequency-lock phenomenon takes place, which leads
to similar flows around different cross sections.

In order to compare different numerical methods and computational codes for
analyzing FSI problems, a simple test case considering the resonance of a circular
cylinder inside the flow is proposed (Fig. 1).

The most interesting case of this phenomenon corresponds to the situation in
which the eigenfrequency of the system is close to the von-Karman vortex shed-
ding frequency. This phenomenon has been well-investigated, both experimentally
and numerically, for a wide range of parameters: Reynolds number, airfoil surface
roughness, incident flow turbulence, etc.

We consider the simplest case, in which we neglect the influence of surface rough-
ness and the incident flow is assumed to be laminar. Four numerical methods and
the corresponding open-source codes have been used: the finite volume method

Fig. 1 Circular airfoil in a flow under viscoelastic constraints with a vortex wake behind it
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(FVM) [9] with deformable mesh in OpenFOAM® [26, 30]; the particle finite ele-
ment method (PFEM) [10, 11] with deformable mesh in the Kratos software [16];
the meshfree Lagrangian vortex element method (VEM) [5, 22]; and the level-set
staggered mesh immersed boundary method (LS-STAG) [4]. The VEM and LS-
STAG methods are implemented as in-house numerical codes.

2 Governing Equations

As mentioned before, the problem is considered to be a 2D unsteady case in which
the flow around a cylindrical airfoil is viscous and incompressible. The continuity
and momentum equations are as follows:

∇ · V = 0, (1)
∂V

∂t
+ (V · ∇)V = −∇ p + 1

Re
�V . (2)

Here, V = V (x, y, t) = u · ex + v · ey is the dimensionless velocity and p = p
(x, y, t) is the dimensionless pressure. The boundary conditions for the velocity
field are defined as

V
∣
∣
inlet = V∞, V

∣
∣
airfoil = V ib,

∂V

∂n

∣
∣
∣
outlet

= 0. (3)

Here, V ib is the immersed boundary velocity. The airfoil is assumed to be rigid.
In order to simulate the wind resonance phenomenon, we consider one degree of

freedom motion of the circular airfoil of diameter D across the stream. Constraint
of the airfoil motion is assumed to be of the Kelvin–Voigt type (linear viscoelastic,
Fig. 1) described by the following ordinary differential equation:

mÿ + bẏ + ky = Fy . (4)

Here, m is the airfoil mass, b is a small damping factor, k is the elasticity coefficient
of the constraint, Fy is the lift force, and y is the deviation from the equilibrium
state. The natural frequency of the system ω ≈ √

k/m can be changed by varying
the elasticity coefficient k. The deviation from the equilibrium state on the n-th step
of computation is yn = Y n

C − Y 0
C , where Y

0
C is the coordinate of the airfoil center at

the initial time and Y n
C is its coordinate at the n-th step of computation. Numerical

integration of the motion equation (4) was performed using the explicit 2nd order
Runge–Kutta method
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y∗ = yn + vny
�t

2
, v∗

y = vny + Fy − bvny − kyn

m

�t

2
.

yn+1 = yn + v∗
y�t, vn+1

y = vny + Fy − bv∗
y − ky∗

m
�t.

Here, vy is the airfoil vertical velocity and “∗” denotes values at the half of the time
step.

3 Numerical Methods

Here,we briefly describe the numericalmethods implemented and used for numerical
simulations of the previously mentioned FSI problems. For more details regarding
the described methods, please see [4, 5, 9–11, 16, 22–24, 26, 30].

3.1 OpenFOAM®: A Fluid–Structure Interaction Analysis
Using the Finite Volume Method

A flow simulation with moving mesh is performed using the pimpleDyMFoam ap-
plication implemented in OpenFOAM® [26]. The application allows for simulations
of laminar and turbulent incompressible flows with prescribed boundary motion. In
order to solve FSI problems, a special function object was implemented. It
provides a weak coupling strategy between the fluid and the structure (Fig. 2), which
includes the following steps:

1. Calculation of hydrodynamic forces exerted on the airfoil from the fluid.
2. Numerical integration of themotion equation of the structure under hydrodynamic

forces.
3. Application of the airfoil camber line motion law to the boundary of the fluid

domain.

Fig. 2 Scheme of
momentum exchange during
the fluid–structure
interaction process
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The current implementation [15] of this function object allows for the
simulation of airfoil motion with one degree of freedom (oscillations across the
stream).

3.2 Kratos: Particle Finite Element Method with Fixed Mesh

This method belongs to the hybrid Lagrangian–Eulerian methods, and its recent
modification PFEM2 allows for the use of a fixed mesh and large time steps. The
convection of thefluid is taken into account via themotion of theLagrangian particles,
which are viewed asmaterial points of the flow that can freelymove in the flow region
through the cells of the fixed mesh. In practice, this means that instead of solving the
Navier–Stokes equation (2), we solve the equation with the material derivative

dV

dt
= −∇ p + 1

Re
�V .

Using this method, it is possible to simulate multidisciplinary and multiphase prob-
lems, in particular, flows with a free surface. In this case, particles can even separate
from the main flow domain, representing, for instance, water drops.

When the convective substep is finished, the particle data are projected to the
background fixed mesh, and the standard Finite Element-based approach is used to
take into account the other terms of theNavier–Stokes equation (2). In order to satisfy
the continuity equation, fractional step solvers [10] or monolithic solvers [1] can be
used.

3.3 Vortex Element Method

Navier–Stokes equations (2) can be written down in Helmholtz form with respect to
the vorticity field �(r, t) = ∇ × V (r, t)

∂�

∂t
+ ∇ × (� ×U ) = 0. (5)

Here, U (r, t) = V (r, t) + W (r, t), W (r, t) is the so-called “diffusive velocity” [7],
which is proportional to the viscosity coefficient

W (r, t) = ν
(∇ × �) × �

|�|2 . (6)

If vorticity distribution is known, the flow velocity can be reconstructed by using the
Biot–Savart law
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V (r) = V∞ + 1

2π

∫

S

�(ξ, t) × (r − ξ )

|r − ξ |2 dS. (7)

In order to compute the pressure distribution and hydrodynamic forces exerted on
the airfoil, the analog of Bernoulli and Cauchy–Lagrange integrals is used [6].

Equation (5) describes vorticity transport in the flow with velocity U . “New”
vorticity is generated only as a vortex sheet on the surface line of the airfoil, and its
intensity γ (ξ) can be found from the boundary condition on the airfoil’s surface.

The vortex element method is a meshless particle-type method, so the vorticity
field in the flow is discretized into separate vortex elements. Each vortex element is
described by its position ri and circulation 
i , i = 1, . . . , N , where N is the number
of vortex elements in the flow. So, the discretized Biot–Savart law has the following
form:

V (r) = V∞ +
N

∑

i=1


i

2π

k × (r − ri )

|r − ri |2 +
∮

K

k × (r − ξ )

2π |r − ξ |2 γ (ξ ) dlξ . (8)

Here, k is the unit vector of the axis, which is orthogonal to the plane of the flow.
The movement of the vortex elements according to (5) is simulated via solution

of the following ordinary differential equations system:

dri
dt

= V (ri ) + W (ri ), i = 1, . . . , N . (9)

The number of vortex elements in the flow N changes at every time step due to the
vorticity flux from the surface line of the airfoil, which, in turn, is simulated by the
vortex element generation near the airfoil. Their circulation is calculated from the
vortex sheet intensity γ (ξ ) on the airfoil surface line. The circulation of all vortex
elements in the flow remains constant and it can change only through a special
numerical procedure of vortex wake restructuring that allows for the merging of
closely spaced vortex elements and lowers their number in the flow.

Vortex sheet intensity γ (ξ ) can be found from the following boundary condition:

V (r ) = V ib(r ), r ∈ K . (10)

This boundary condition can be reduced either to a singular integral equation of
the first kind (in “classical” numerical schemes of a vortex method, see [5, 7, 21]) or
to a Fredholm-type integral equation of the second kind with bounded (for smooth
airfoils) kernel [12]

∮

K

[k × (r − ξ)] · τ(r )

2π |r − ξ |2 γ (ξ)dlξ − γ (r )

2

= −τ(r ) ·
(

V∞ − V ib(r ) +
N

∑

i=1


i

2π

k × (r − ri )

|r − ri |2
)

. (11)
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The solution to Eq. (11) is nonunique, so we need an additional condition for total
vortex sheet circulation ∮

K
γ (r)dlr = G. (12)

There are high-accuracy numerical schemes developed for the numerical solution
of Eqs. (11–12), which allow for the reduction of these equations to a linear algebraic
equations system with well-conditioned matrix [17, 18]. By using these schemes,
accuracy increases significantly [22]: in some cases, the error becomes one or even
two orders of magnitude smaller in comparison with the classical schemes. As a
result, this makes it possible to simulate FSI problems with high resolution.

It should be noted that the computational cost of simulating fixed and movable
rigid airfoils when using the vortex element method remains nearly the same [19], so
they are suitable for coupled FSI problems. However, vortex element movement sim-
ulation is an “N -body”-type problem [8], so special acceleration algorithms should
be implemented. The well-known Barnes–Hut fast algorithm analog [8] can be very
effective, especially when using an accurate analytical estimate of its computational
cost [20], which allows for the choice of optimal parameters. Parallel computation
algorithms are also used in order to reduce the computational time [19, 20].

3.4 LS-STAG Method

The LS-STAG immersed boundary method is a Eulerian method based on the finite
volume approach. The fixed Cartesianmeshwith cells�i, j = (xi−1, xi ) × (y j−1, y j )
and faces 
i, j is introduced in the rectangular computational domain. Pressure pi, j
and normal stresses are computed at centers xci, j = (xci , y

c
j ) of these cells. Unknown

components ui, j and vi, j of velocity vector v are computed at the face center of
the fluid mesh cell. These points are the centers of finite volumes of the stag-
gered x-mesh and y-mesh: �u

i, j = (xci , x
c
i+1) × (y j−1, y j ) and �v

i, j = (xi−1, xi ) ×
(ycj , y

c
j+1), with faces 
u

i, j and 
v
i, j , respectively. Shear stresses are computed at the

corners of the base mesh (Fig. 3).
The fourth xy-mesh with cell centers in the corners of the base mesh is introduced

for the simulation of turbulent flows. It is possible to simulate highReynolds turbulent
flows by using RANS, LES and DES approaches with Spalart–Allmaras, k − ε,
k − ω, and k − ω SST models [29].

The level-set function ϕ = ϕ(x, y) [27] is used for capturing the airfoil immersed
boundary 
ib [4]. The cells that the immersed boundary intersects are the so-called
“cut-cells”. These cells contain both the solid and liquid parts. The boundary 
ib is
represented by a line segment on the cut-cell �i, j . In 2D cases, the cut-cells can be
classified into trapezoidal, triangular and pentagonal cells. Examples of each type
of cut-cell are presented in Fig. 4. The hydrodynamic force exerted on the airfoil
can be computed by integrating the pressure distribution and shear stresses along the
camber line of the airfoil.
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Fig. 3 Staggered arrangement of the variables on the LS-STAG mesh

(a) (b)

(c) (d)

Fig. 4 Location of the variables’ discretization points on the LS-STAG mesh: a—Cartesian Fluid
Cell; b—North Trapezoidal Cell; c—Northwest Pentagonal Cell; d—Northwest Triangle Cell
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According to the concept of the LS-STAGmethod [4], the governing equations (1–
2) should be written in integral form for cells of base mesh, cells of x-mesh, and
cells of y-mesh, respectively.

∫


i, j

v · n dS = 0,

d

dt

∫

�u
i, j

u dV +
∫


u
i, j

(v · n)u dS +
∫


u
i, j

pex · n dS −
∫


u
i, j

ν∇u · n dS = 0,

d

dt

∫

�v
i, j

v dV +
∫


v
i, j

(v · n)v dS +
∫


v
i, j

pey · n dS −
∫


v
i, j

ν∇v · n dS = 0. (13)

Transport equations that correspond to turbulence model equations are being inte-
grated over cells of the xy-mesh.

The time integration of the differential algebraic system that corresponds to a
semi-discrete analog of the governing equations (1–2) is performed with a semi-
implicit Euler scheme. The predictor step leads to discrete analogs of the Helmholtz
equation for velocity prediction, while the corrector step leads to a discrete analog of
the Poisson equation for pressure correction. The resulting linear systems are solved
by using the FGMRES method with the ILU- and multigrid [31] preconditioning.
The optimal parameters of the multigrid preconditioner were chosen by using the
original algorithm for estimation of the solver cost-coefficient [25].

4 Numerical Simulation

Weconsider a viscous incompressible flowwith lowReynolds numberRe = 150, i.e.,
the flow is laminar and a turbulence model is not needed. In dimensionless variables,
the cylinder has unit diameter, the media has unit density, and the velocity of the
incident flow is V∞ = 3. The mass of the cylinder is m = 39.15. The fixed cylinder
generates periodical vortex shedding in a quasi-steady regime with frequency f ,
which corresponds to the Strouhal number Sh = f d/V∞ ≈ 0.185. Therefore, we
choose the rigidity of the elastic constraint, so that the dimensionless construction
frequency

Shω = 1

2π

√

k

m

d

V∞

varies within the range 0.160 . . . 0.220. The viscosity of the constraint has a small
value, b = 0.731, and it practically does not influence the eigenvalue of the system
at all. The rest of the system parameters were chosen in the same way as in [13].
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Table 1 Results of flow simulation around fixed cylinder

Cxa Sh Campl
ya

Experiment 1.15 . . . 1.45 0.175 . . . 0.195 0.50 . . . 0.65

OpenFOAM® 1.44 0.190 0.60

Kratos 1.20 0.190 0.53

Vortex method 1.31 0.177 0.51

LS-STAG 1.32 0.191 0.63

4.1 Flow Simulation Around the Fixed Airfoil

The described numerical methods were first validated by using a classical test prob-
lem of flow around an immovable airfoil. At the beginning of the numerical simula-
tion, the incident flowvelocitywas set to zero, and the flowwas gradually accelerated,
until its value reached V∞ = 3. During the simulation, the dimensionless drag coef-
ficient, the amplitude of the lift coefficient and the vortex shedding frequency was
measured. The results are shown in Table 1.

Calculations show that all the methods give reasonable results compared to the
experimental data. At the same time, it is necessary to notice that the Particle Finite
Element Method (PFEM2) implemented in the Kratos software overpredicts the
pressure values near the critical point compared to the experiment.

Mesh motion in OpenFOAM® is calculated by solving the point displacement
Laplacian equation. This type of numerical implementation is efficient only for sim-
ple airfoil motion trajectory—displacements with a small rotation angle.

The LS-STAG method has potential in flow simulations around arbitrary moving
airfoils with complicated shapes. However, its computational complexity is rather
high. Unfortunately, its parallel implementation is not available at the moment (due
to principal problems with matrix decompositions).

4.2 Wind Resonance Simulation

A number of numerical simulations have been carried out for different values of the
dimensionless frequency in which the unsteady process has been simulated from
t = 0 to t = 200. The obtained dependencies of the dimensionless oscillation ampli-
tude A/d (in quasi-steadymode) of the airfoil on the dimensionless natural frequency
of the system Shω are shown in Fig. 5.

The obtained dependencies are very close, while they differ only in shift of fre-
quency, which corresponds to the results of the Strouhal number (dimensionless
vortex shedding frequency) computation for the fixed cylinder (see Table 1). The
maximum value of the amplitude is close to the experimental value [2, 13].
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Fig. 5 Circular airfoil
oscillations’ amplitude
dependence on the natural
frequency of the system,
obtained with the finite
volume method
(OpenFOAM®) and the
vortex method

Table 2 Computational time (in hours) for OpenFOAM® and for the vortex method

1 CPU 2 CPU 4 CPU 8 CPU 16 CPU

OpenFOAM®

Far from
resonance

58.1 36.0 24.3 15.5 9.8

Close to
resonance

74.4 45.8 30.1 19.6 13.7

Vortex method

Far from
resonance

41.3 22.6 12.0 7.1 4.7

Close to
resonance

63.4 34.7 17.9 10.1 6.6

The computational times spent for numerical simulations of the flow around freely
oscillating airfoils by using OpenFOAM® and the vortex method is given in Table 2.
Parallel computational technologies (MPI) reduce the required computational time
significantly. Measured computational time is given for two regimes: close to wind
resonance and far from it.

When solving the same problem by using the LS-STAG method in sequential
mode, the time of computation was approximately 110 and 150 h for non-resonance
and resonance cases, respectively; the time for non-resonance simulation in Kratos
(PFEM2 method) was approximately 55 h in sequential mode and 16 h in parallel
modewithOpenMP technologyusing 4CPUcores.However,when simulating airfoil
oscillations with rather high amplitude, the amplitude of the lift force coefficient in
Kratos is much higher than in the experiment. Therefore, this method should be
used only for simulations in which the amplitude of airfoil oscillations is not larger
than several percent of the diameter size. The given results for all numerical methods
were obtained on the same computational cluster consisting of 8 personal computers
with Intel Core i7 3.2 GHz processors connected by Cisco Gigabit Ethernet.
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(a) (b)

Fig. 6 Maximum amplitude of the circular airfoil oscillations simulated using the vortex element
method: a airfoil’s initial state in the equilibriumposition,b airfoil’s initial state is close to resonance
oscillations

4.3 Hysteresis Simulation

In order to capture a well-known hysteresis phenomenon [14] during the flow around
an airfoil with elastic constraints, 80 simulations with different dimensionless fre-
quencies were performed. The Reynolds number was set to 1000, while the other
parameters remained the same as in the previously stated resonance simulations. The
dependency of the oscillations’ amplitude on the natural frequency Shω is shown in
Fig. 6a, where a sharp amplitude increase is observed at Shω ≈ 0.198.

In the second series of numerical simulations, Shω was equal to 0.21 from t =
0 to t = 100. During this time interval, the oscillations reached steady state with
amplitude A/D ≈ 0.47. At simulation time t = 100, the elasticity coefficient of
the constraint was changed abruptly to the values that correspond to oscillation
frequencies Shω from 0.178 to 0.198. In each case, after the transitional period,
new steady oscillations were reached. Their amplitudes are shown in Fig. 6b (dots
connected by a solid line).

The obtained results for maximum oscillation amplitude, the resonance frequency
and the hysteresis properties are in good agreement with the results given in [13, 14].

5 Comparison of the Considered Numerical Methods

A comparison of the properties between the considered numerical methods is pre-
sented in Table 3. The sign “+”means that this property is inherent in themethod and
is implemented efficiently; “±”means that themethod yields to others in this feature;
“−” means the absence of the property or its inefficient implementation; the asterisk
“∗” means that this property is not fully implemented or it is in a development stage.

Unfortunately, it is impossible to use vortexmethods and the particle finite element
method when simulations of flows with high Reynolds numbers are required. In
vortexmethods in a purely Lagrangian framework, attempts to implement turbulence
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Table 3 Comparison of the numerical methods

OpenFOAM® Vortex method Kratos LS-STAG

Computational
cost

± + + −

Accuracy + ± ± +
Airfoil motion ± + − +
Parallel
implementation

+ + ∗ ∗

Automatic time
step choice

+ ∗ − ±

Turbulent flows + − − +
3D flows + ∗ + ∗

models are not very efficient [28]. The current implementation of the FEM particle
model inside the Kratos software package does not have the required functionality
for implementing turbulence models.

6 Conclusion

When simulating flowswith relatively small Reynolds numbers (from100 to 10,000),
all the abovementioned numericalmodels give results that are in good agreementwith
the experimental data. The overall efficiencies of all considered methods and codes
are comparable. However, simulating flows in high Reynolds regimes, in which tur-
bulent effects must be taken into account while preserving acceptable computational
costs, can be done only with OpenFOAM®. It should be noted, however, that the
choice of the turbulence model, as well as that of the RANS/LES approach, is a non-
trivial problem.Moreover,OpenFOAM® iswell parallelized, thus computational time
can be reduced significantly. At the same time, parallel algorithms in vortex meth-
ods are efficient only for a small number of computational cores. Current PFEM
implementation in the Kratos software works in parallel mode only when using
OpenMP technology (on shared-memory systems).

As a result, the following conclusion can be made: OpenFOAM® is a good tool
for fast estimation of dynamic processes in fluid–structure interaction problems. It
enables analysis of FSI system behavior within a wide range of parameters.
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