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Abstract Parametrisation of the geometry is one of the essential requirements in
shape optimisation, and is a challenging subject when carrying out a automated
procedure. It is critically important to maintain the consistency of the shape and grid
quality between each evaluation, while providing flexibility for a wide range of shapes
using the same parameterisation of the geometry. The sensitivity of the grid to the
changes to the geometry must be at a minimum during this process. This contribution
presents areview of the grid distortion and regeneration methods available within the
OpenFOAM® framework which can be utilised for shape optimisation. The objective
of this contribution is to compare the effectiveness of these methods in the automated
procedure and to provide suggestions for improvements. Special attention is given to
three major factors involving shape optimisation: automation of model abstraction,
automation of grid deformation or regeneration and robustness.

1 Introduction

Optimisation of designs using Computational Fluid Dynamics (CFD) is frequently
performed across many fields of research, such as the optimisation of an aircraft wing
to reduce drag or an increase in the efficiency of a heat exchanger. General optimisa-
tion strategies involve modification of design variables with a view to improving the
appropriate objective function(s). Often, the objective function(s) is (are) nonlinear
and multi-modal, and hence polynomial time algorithms for solving such problems
may not be available. In such cases, applying Machine Learning methods such as
Evolutionary Algorithms (EAs—a class of stochastic global optimisation technique
inspired by natural evolution) may bring to light good solutions within a practical
time frame. The traditional CFD design optimisation process is often based on a
‘trial-and-error’ type of approach. Starting from an initial geometry, Computation-
ally Aided Design changes are introduced manually based on results from a limited
number of design evaluations and CFD analyses. The process is usually complex,
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Machine Learning
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Fig.1 Framework developed in the present work for combining OpenFOAM® with various Python-
based Machine Learning libraries [1]

time-consuming and relies heavily on engineering experience, hence the overall
design procedure is often inconsistent, i.e. different ‘best’ solutions are obtained
from different designers.

Based on the limitations of optimisation by hand, using EAs and CFD simulations
may be an attractive alternative. There have been other attempts to combine EAs
and CFD simulation to optimise design (see for example, [2]). Although EAs do not
guarantee the determination of the optimal solution, they may achieve good solutions
consistently. In this present work, an automated framework combining Python’s EA
library DEAP with OpenFOAM® 2.3.1 was developed. The communication of the
Python libraries with OpenFOAM® was achieved using PyFoam 0.6.5. PyFoam was
used as an interface to control the OpenFOAM® case set-ups for each proposed
solution from the EA code and to post-process the data generated after each CFD
calculation. A summary of this framework can be seen in Fig. 1.

While the aim of this project is to focus on complex (potentially multi-objective)
cases, for the purpose of this contribution, a single-objective optimisation of the
PitzDaily tutorial in OpenFOAM® was used to demonstrate the performance of the
proposed procedure. The chosen cost function for this case was to minimise the static
pressure drop between the inflow and outflow boundary conditions, i.e.

Ji=min(|pi — pol), (D

where both pressures were obtained by averaging over the boundary condition faces.
Figure 2 (top-to-bottom) shows the procedure in which the shape is altered after each
evaluation. To change the geometry, subdivision curves [3] were generated to form
a new lower wall. The grey squares indicate the coordinates for the search space
(or bounding box), with the black lines showing the resulting boundary. The fixed
points of the spline (indicated by orange squares) were placed across the bottom
boundary condition (‘lowerWall’). The squares in pink indicate the control points
that may be altered by the EA, and thus change the curvature of the spline. After
the new positions of the pink squares were proposed by the EA, a Stereolithography
(.stl) file was generated and passed to OpenFOAM®. Using this file, the meshing
utility snappyHexMesh was used to cut the domain away (and, if required, re-mesh
the altered region). Subsequently, the case was run using the steady-state solver
simpleFoam. After this, the cost function was obtained and the EA determined a new
position for the coordinates of the pink squares.
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Fig. 2 Shape optimisation procedure of the PitzDaily tutorial case

A single-objective optimisation run of the PitzDaily tutorial was performed with
a basic real-valued Genetic Algorithm [4]. For the CFD calculation, the residual
tolerances for the SIMPLE algorithm for velocity and pressure were set to 1073
and 1079, respectively. The pressure drop calculated from the original (base) case
was measured as |Ap| = 5.22 Pa. Figure 3 (left) shows the optimised shape of the
PitzDaily geometry. The resulting pressure drop was calculated as |Ap| = 4.7 x
10~°Pa. The schematic diagrams above the contour diagram of velocity magnitude
indicate the position of the control points, and the outer boundary region (in red)
that they must not exceed. The GA maintains a population of solutions: Fig. 3 shows
the maximum (worst), the average and the minimum (best) pressure drop across
the population with each generation. The grey-dashed line indicates the pressure
drops for the original PitzDaily geometry. It can be seen that the reduction of the best
pressure difference between the inflow and outflow was reached after 15 generations,
and an improvement of the pressure difference from the original case was achieved
sooner than this.

For shape optimisation problems, the design variables usually involve parameters
that modify the shape of a given initial geometry. For a certain objective function,
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Fig. 3 Single-objective optimisation of the PitzDaily tutorial case in reducing the pressure drop

the design variables are used to define a deformed geometry at each optimisation
cycle, which is used to compute the new flow field that is required to evaluate the
objective function. In the traditional body-fitted approach, on structured or unstruc-
tured meshes, a change in the shape of the surface mesh requires a smooth transition
in its deformation and the avoidance of large distortions and interpenetration of
neighbouring elements in the CFD mesh. Various mesh deformation methods (e.g.
spring stiffness, elastic analogy [5]) have been proposed to tackle this problem, but
as the geometric complexity of optimisation problems increases, the robustness of
this approach reduces; the resulting computational cost of the mesh deformation is
not negligible. In addition, the linearisation of the mesh distortion scheme (i.e. mesh
sensitivity) must be computed to take into account the effect of shape perturbations
on the flow equations, with additional cost and complexity.

In general, mesh generation is commonly recognised as one of the main challenges
in CFD. Mesh quality issues can significantly impact the accuracy of the eventual
solution, even to the point at which the solver diverges and no solution is generated;
they can also significantly affect the level of computational work (e.g. number of
evaluations) necessary to reach the solution. Modern Finite Volume (FV) CFD codes
tend to use arbitrary unstructured or polyhedral meshes, allowing for a wide variety
of cell shapes to accommodate complex geometries. This also allows for a wide
variety of mesh problems; non-orthogonality, face skewness etc., and whilst modern
solution algorithms can typically correct for mild levels of mesh problems, this is at
the cost of increased numerical error. Pathological levels of mesh problems can lead
to algorithm divergence. The acceptable level of mesh quality also varies according
to the details of the modelling being used; for example, the turbulence modelling in
Large Eddy Simulation (LES) ties in very closely with aspects of the mesh, such as
cell size, thus requiring much higher levels of mesh quality than for cases involving
Reynolds-Averaged Navier—Stokes (RANS) [6]. Note that, our discussion revolves
around issues relating to mesh generation for FV CFD, which is in our area of
familiarity. Similar issues undoubtedly arise for Finite Element (FE) methods and



A Review of Shape Distortion Methods Available ... 393

other applications of these techniques. The remainder of this contribution will review
the basic methods available in OpenFOAM®, and their effect on the reliability of the
solution with respect to the quality of the mesh.

2 Grid Deformation and Regeneration Techniques

During the design optimisation process, the design surfaces are perturbed after each
evaluation. These perturbations must be transferred from the surface points to the grid
in the surrounding flow field. To achieve this, the methods available can be placed into
two categories: grid regeneration and grid deformation; the latter has previously been
demonstrated in OpenFOAM® by [7]. The techniques reviewed below are applicable
to both structured and unstructured grids.

2.1 snappyHexMesh

A typical example of an automated grid regenerator for complex geometries is snap-
pyHexMesh. To use it, the user provides a Stereolithography (STL) file of the geom-
etry and a base mesh (typically a simple hexahedral block mesh). This utility then
operates a three-stage meshing process of castellation, snapping, and boundary layer
refinement. In the first step (castellation), cells are identified that are intersected by
edges of the surface geometry; these cells are then refined by repeated cell splitting,
with maximum and minimum levels of refinement being a definable parameter, and
further surface refinement also being controllable. After this refinement process, all
cells that lie ‘outside’ the desired geometric domain are deleted from the mesh. In
the second, snapping step, vertices on the edge of the domain are ‘snapped’ to the
STL surface, using an iterative process of mesh movement, cell refinement and face
merging, again controlled by user-defined parameters such as number of iterations
and specific mesh quality constraints. In the final and optional step, cell layers can be
added to the surface to move the mesh away from the boundary so as to specifically
refine a boundary layer. The whole process is robust and automated, but is controlled
by a large number of user-specified parameters provided in advance as an input file.
As with any meshing process, the user typically has to experiment with different
settings to optimise the mesh. Mesh quality may ultimately be judged by the success
of the resulting CFD run, but as a proxy, various mesh quality indicators, such as
skewness and non-orthogonality, can more easily be evaluated.

Figure 4 shows the application of the snappyHexMesh utility to regenerate the
geometry and mesh of the PitzDaily case (described in Sect. 1) during one of the
design evaluations. Applying the ‘boundary-layer refinement’ stage of this utility
requires a substantial number of input parameters. Previous experimentation as to
the most influential parameters on the mesh quality (see [8]) has reduced this to a set
of 7, whose definitions are provided below:
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Fig. 4 The figure on the top shows the snappyHexMesh utility applied to the generated STL
geometry after the castelling and snapping operation. The diagrams on the bottom show the grid
distribution with and without the additional layering operation

o resolveFeatureAngle: Maximum level of refinement applied to cells that intersect
with edges at angles exceeding this value.

o nSmoothPatch: Number of patch smoothing operations before a corresponding
pointis searched on the target surface. Smooth patches are more likely to be parallel
to the target surface, making it more probable to find a matching point.

e nRelaxIter: Number of iterations to relax the mesh after moving points. When
points are snapped to the target, the displacement propagates through the under-
lying layers of points that are not on the surface. By relaxing this propagation, a
smoother displacement can be achieved.

o nFeatureSnaplter: The total number of iterations tried to snap points to the target.
If insufficient quality is reached after nFeatureSnaplter iterations, the snapping is
cancelled and the last state is recovered.

¢ maxNonOrtho: Non-orthogonality measures the angle between two faces of the
same cell. In a grid with only rectangular cells, the value would be zero. Any
deviation from this counts as non-orthogonal. High values mean there are very
low angles that usually occur in a prism layer.

e maxSkewness: Skewness is the ratio between the largest and the smallest face
angles in a cell. A value of 0 is the perfect cell and 1 is the worst. Within the
OpenFOAM® dictionary, different quality constraints can be assigned to boundary
cells and internal cells. In a simple geometry, the cells on the boundaries are more
likely to be affected by skewness problems.

e minVolRatio: The ratio in cell volume between adjacent cells should not be too
large—a large ratio leads to unacceptable interpolation errors.

Of course, these input parameters could also be subjected to optimisation with target
measurements for the base geometry (e.g. [8]). It should be noted, however, that in



A Review of Shape Distortion Methods Available ... 395

using the methodology of this contribution, snappyHexMesh can only remove sec-
tions from the base geometry—substantially reducing the exploration of the design
space.

2.2 Grid Distortion Methods

The available techniques for modifying the grid can be separated into two groups:
fixed group methods (such as the immersed boundary) and moving grid methods,
with the Arbitrary Lagrangian—Eulerian (ALE) approach as a representative. In [9],
the advantages of the ALE approach over the fixed-mesh alternatives is described.
This analysis is based on the method’s ability to maintain a high-quality grid near
the moving body, resulting in a better representation of the boundary interface in
this region. In the ALE approach, the grid is moved to allow for the distortion of
the boundary’s shape. This can be achieved through squeezing and stretching the
surrounding cells and their associated vertices. For the FV method, the conservation
equation of property, ¢, over an arbitrary moving control volume, V¢, in integral
form is:

di ¢dvc+/dA-(7—u_Z)¢=/ V- (I'V¢)d Ve, )
t Ve A Ve

where % is the velocity vector, A is the cell surface normal vector and EZ is the
boundary velocity vector of the cell face. To govern the vertex motion, OpenFOAM®
adopts a Laplacian smoothing scheme, described by

V. (yVu,) =0, (3)

where u , is the point velocity, which is imposed at each vertex of the control volume.
The boundary velocity u; is interpolated from u,. The boundary conditions for
Eq. 3 are enforced from the known boundary motion, e.g. a moving wall. The vertex
position at the time level n + 1 is calculated by using u,,

X" = X" 4w, At (4)

The variable y prescribes the distribution of deforming cells around the moving body.
Ideally, for the Laplacian approach, the cell distortion near the moving wall should
be less perturbed by the motion of the body, while with increasing distance away
from the wall, the cells should have greater freedom to deform. Under this concept,
the quadratic diffusion model (y = 1/1%) has been shown to present a suitable dis-
tribution of cells around the body, with / being the distance from the moving wall. A
comparison between the uniform (y = uniform) and quadratic diffusion models on
the grid skewness is demonstrated in [10, 11]. As the grid motion in the whole domain
is governed by Eq. 3, an interface between the static and dynamic mesh regions is not
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Fig. 5 The Laplace diffusion model (y = uniform) applied to the generated STL surface. The
‘lowerwall” boundary was chosen to morph into the STL surface

required. Figure 5 shows the application of the uniform diffusion model applied to
the PitzDaily tutorial case. It can be seen in this figure that by stretching and squeez-
ing the cells to fit the moving boundary, the skewness and orthogonality qualities of
the mesh are compromised. To overcome this, further modifications to the solver can
be achieved by including the mesh refinement utilities available in snappyHexMesh;
this has shown promising results in previous related studies (e.g. [12, 13]).

2.3 Immersed Boundary Method (IBM)

Immersed boundary methods provide a promising alternative to the classical body-
fitted discretisations. In the Immersed Boundary approach, the CFD grid does not
conform to the geometry of the object, eliminating the problem of the mesh defor-
mation. When combined with an efficient flow solver, this approach is particularly
well-suited for the automated analysis of complex geometry problems. An additional
advantage of non-boundary-conforming numerical methods is that there is no need
to compute the internal mesh sensitivity with a substantial reduction in user coding
and computation effort. In summary, the advantages of IBM over Body-Fitted Mesh
methods include:

e a substantially simplified grid distribution around the complex geometry;
o flexibility with the inclusion of a body motion due to the use of stationary, non-
deforming background grids;

while the limitations of the IBM include:
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Fig. 6 The Immersed Boundary method applied to the PitzDaily tutorial with the additional STL
surface as the immersed boundary

e the requirement of special techniques to simulate the boundary conditions for the
immersed boundary;
e problems with grid resolution in the boundary layer region of the geometry;

with topics currently under investigation in the literature:

e IBM mimicking the equivalent body-fitted mesh solutions;
e automated mesh refinement around the Immersed Boundary surface.

Figure 6 demonstrates the application of IBM in the OpenFOAM® framework
[14].! It can be seen in this figure that the Immersed Boundary has obstructed the
cells below the spline from the inflow and outflow, in a similar manner as if that part
of the domain had been removed.

The Immersed Boundary Method is not available in OpenFOAM® 2.3.1, but is available in Foam-
extend-3.2 and 4.
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3 Conclusions

The grid distortion and generation techniques available in the OpenFOAM® frame-
work appropriate for shape optimisation have been reviewed in this contribution.
OpenFOAM® provides a convenient range of libraries for distorting the grid (using
the Laplacian method) or grid regeneration (snappyHexMesh). The grid distortion
technique is somewhat limited by the mesh quality after each design evaluation, but
this can be overcome by including the mesh refinement libraries in snappyHexMesh.
The grid regeneration technique is somewhat limited in regard to altering the geom-
etry. A possible addition to both these techniques would be to apply grid sensitivity
analysis (see [15])—defined as the partial derivative of the grid-point coordinates
with respect to the design variable—within the OpenFOAM® framework. Further-
more, the recent development of the Immersed Boundary Method in OpenFOAM®
provides a rather efficient approach to automated shape optimisation. However, like
the remaining approaches, the generated solution is somewhat sensitive to the grid’s
resolution.
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