
IsoAdvector: Geometric VOF
on General Meshes

Johan Roenby, Henrik Bredmose and Hrvoje Jasak

Abstract In a recent publication, we presented a novel geometric VOF interface
advection algorithm, denoted isoAdvector (Roenby et al. in RSocOpen Sci 3:160405
2016, [1]). The OpenFOAM® implementation of the method was publicly released
to allow for more accurate and efficient two-phase flow simulations in OpenFOAM®

(Roenby in isoAdvector www.github.com/isoadvector, [2]). In the present paper, we
give a brief outline of the isoAdvector method and test it with two pure advection
cases. We show how to modify interFoam so as to use isoAdvector as an alternative
to the currently implemented MULES limited interface compression method. The
properties of the new solver are tested with two simple interfacial flow cases, namely
the damBreak case and a steady stream function wave. We find that the new solver is
superior at keeping the interface sharp, but also that the sharper interface exacerbates
the well-known spurious velocities in the air phase close to an air–water interface.
To fully benefit from the accuracy of isoAdvector, there is a need to modify the
pressure–velocity coupling algorithm of interFoam, so it more consistently takes
into account the jump in fluid density at the interface. In our future research, we aim
to solve this problem by exploiting the subcell information provided by isoAdvector.

J. Roenby (B)
Stromning, Luftmarinegade 62, 1432 København K, Denmark
e-mail: johan@stromning.com

J. Roenby
DHI, Agern Alle 5, 2970 Hørsholmh, Denmark

H. Bredmose
DTU Wind Energy, Nils Koppels Alle, 2800 Kgs. Lyngby, Denmark
e-mail: hbre@dtu.dk

H. Jasak
Faculty of Mechanical Engineering and Naval Architecture,
Hrvoje Jasak University of Zagreb, Ivana Lucica 5, Zagreb, Croatia
e-mail: hrvoje.jasak@fsb.hr

© Springer Nature Switzerland AG 2019
J. M. Nóbrega and H. Jasak (eds.), OpenFOAM®,
https://doi.org/10.1007/978-3-319-60846-4_21

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-60846-4_21&domain=pdf
www.github.com/isoadvector
mailto:johan@stromning.com
mailto:hbre@dtu.dk
mailto:hrvoje.jasak@fsb.hr
https://doi.org/10.1007/978-3-319-60846-4_21

282 J. Roenby et al.

1 The Interfacial Flow Equations

Westart bywriting the equations ofmotion governing the flowof two incompressible,
immiscible fluids. To keep things simple, we will ignore viscous effects and surface
tension. What remains are the passive advection equation,

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

the incompressibility equation,
∇ · u = 0, (2)

and the Euler equations,

∂ρu
∂t

+ ∇ · (ρuu) = −∇ p + ρg. (3)

Here,ρ is the fluid density field taking the constant value,ρ1, in the reference fluid and
the constant value, ρ2, in the other fluid, u is the velocity field, p is the fluid pressure
and g is the constant downward pointing gravity vector. In the interFoam solver
of OpenFOAM®, these equations are discretized in the finite volume framework
and advanced in time in a segregated manner. Within a time step, Eq. 1 is used to
update the density field in time, followed by a procedure for solving Eqs. 2 and 3 to
update the pressure and velocity field in time. The details of the implementation are
well-described in the paper [3], which also gives an overview of the challenge faced
by the interfacial CFD community in keeping the density field sharp and bounded,
with spurious velocities at the interface, and with handling of large density ratios.
The development of the isoAdvector interface advection method is a first step in our
efforts to solve these problems and increase the general performance and accuracy of
interfacial flow simulations. In the following,wewill briefly explain how isoAdvector
works.

2 IsoAdvector for Interface Advection

The basic equation that we will solve is Eq. 1, recast in the volume-of-fluid for-
mulation. For this recasting, we need a number of definitions: First, we divide the
computational domain into cells, C1,C2, . . ., and define the notation for the cell-
averaged value of a field, f (x, t), at time t ,

〈 f 〉i (t) ≡ 1

Vi

∫
C i

f (x, t)dV, (4)

IsoAdvector: Geometric VOF on General Meshes 283

where Vi is the volume of cell i . Defining the indicator field

H(x, t) ≡ ρ(x, t) − ρ2

ρ1 − ρ2
, (5)

the volume fraction (of fluid 1) in cell i is then defined as

αi (t) ≡ 〈H〉i . (6)

We will denote the mesh faces, F1,F2, . . ., and the list of labels of faces on the
boundary of cell i will be denoted Bi . On the time axis, the times, t1 < t2 < · · ·
define the time intervals (or steps), [tn, tn+1], over which the governing equations are
integrated. We will use superscripts to denote a function evaluated at one of these
times, f n = f (tn).

With these definitions in place, we can now rewrite Eq. 1 in terms of H and
integrate it over the volume of cell i and over the time interval

[
tn, tn+1

]
. This converts

the equation into an evolution equation for the volume fraction in cell i .Unfortunately,
space does not allow a full derivation here (the reader is referred to [1] for more
details), but the form of the equation is

αn+1
i = αn

i − 1

Vi

∑
j∈Bi

ΔV n
i j , (7)

where the quantity ΔV n
i j is the total volume of fluid 1 flowing from cell i during

the time interval [tn, tn+1] into the neighbour cell with which it shares face j . This
important quantity is defined by

ΔV n
i j ≡

∫ tn+1

tn

∫
F j

H(x, τ)u(x, τ) · dSi j dτ. (8)

Here, dSi j is the infinitesimal surface element of face j , oriented out of cell i , so if
cell k is the other cell of face j , then dSk j = −dSi j and ΔV n

kj = −ΔV n
i j .

The art of constructing a volume-of-fluid algorithm is all about coming up with
the best possible approximation of ΔV n

i j given the incomplete available data. In
our collocated finite volume framework, the available data consists of the volume
fractions αn

i , the cell- averaged velocities, 〈u〉ni , and the volumetric face fluxes,

φn
i j ≡

∫
F j

u(x, tn) · dSi j . (9)

In the following,we showhow isoAdvector uses these data and a number of geometric
considerations to come up with an approximation for ΔV n

i j .

284 J. Roenby et al.

2.1 Interface Reconstruction

We start by noting that most cells will normally be fully immersed in either fluid
1 or fluid 2 during the time interval, and for such a cell, the advection problem is
trivial, since there is only one fluid fluxed through all its faces. The surface cells
requiring special treatment are those containing both fluid 1 and fluid 2. We will
define a surface cell as one with ε < αn

i < 1 − ε, where we typically set ε = 10−8

in our calculations. The first step in finding αn+1
i for such cells is to reconstruct the

fluid interface inside the cell from the available data, αn
i at time tn . In the isoAdvector

method, this is done by calculating an isosurface inside the cell. For this purpose,
we need to first interpolate the volume fractions from the cell centres to the vertices.
This process is illustrated in Fig. 1. This interpolation can be done in various ways.
For convenience, we have chosen the inverse distance weighting provided by the
volPointInterpolation class.

With volume fractions interpolated to all vertices of cell i , we can choose an
isovalue, α0, and construct the α0-isosurface inside the cell. This we do by going
through all the cell’s edges and determining whether they are cut by the isosurface.
An edge is cut, if the interpolated volume fraction at one end is larger than α0 and the
value at the other end is smaller thanα0. If that is the case,we calculate the intersection
point along the edge by linear interpolation. Connecting these intersection points
across the cell faces, we construct the cell–isosurface intersection, as illustrated in
Fig. 2. The representation of this intersection will be called an isoface, because it is
really just an internal face cutting the cell into two subcells. We can calculate the
face centre, xS , and face unit normal vector, n̂S , for this isoface as for any other mesh
face (black dot and vector in Fig. 2).

Ifwe imagine sweeping the isovalue,α0, from the lowest to thehighest cell vertexα

value, the isoface will pass through the cell.Which isovalue in this interval should we
choose for a particular surface cell? Our answer is the isovalue that makes the isoface

Fig. 1 Interpolation of
volume fraction to a vertex
from all surrounding cells

IsoAdvector: Geometric VOF on General Meshes 285

Fig. 2 Construction of the
isoface inside a surface cell

cut the cell into subcells of subvolumes in accordance with the cell’s volume fraction,
αn
i . To find this isovalue (different in each surface cell), we have implemented an

efficient root-finding algorithm that exploits the fact that the volume fraction is a
piecewise cubic polynomial in α0. The details of this algorithm are further described
in [1]. This concludes our description of the interface reconstruction at time tn .

2.2 Interface Advection

The next step is to exploit our new knowledge about the interface position inside
surface cells at time tn to estimate how much of the total fluid volume transported
across a face during a time step, [tn, tn+1], is fluid 1 and how much is fluid 2. We will
first make the assumption that u(x, τ) in Eq. 8 can be replaced by an appropriately
chosen constant vector ũn

j , which is representative of the velocity on the face during
the whole time interval. We also assume that we can write

dSi j = n̂i j (x)d A ≈ Si j
|Si j |d A, (10)

where n̂i j is the (for a non-planar face spatially varying) unit normal vector and Si j
is the mean normal vector of face j pointing out of cell i . Then, the volumetric face
flux can be defined as φ̃n

i j ≡ ũn
j · Si j , and ΔV n

i j in Eq. 8 can be approximated by

ΔV n
i j ≈ φ̃n

i j

|Si j |
∫ tn+1

tn

∫
F j

H(x, τ)d Adτ. (11)

286 J. Roenby et al.

Fig. 3 Face–interface
intersection line sweeping
the face

In the current implementation, we simply use the volumetric face fluxes, φn
i j , at the

beginning of the time step for φ̃n
i j .

1 The remaining area integral in Eq. 11 is just the
area of face j that is submerged in the reference fluid. This area we will denote by

A j (τ) ≡
∫
F j

H(x, τ)d A. (12)

If we want to be able to take time steps in which the interface moves a substantial
fraction of a cell size, we should come up with an estimate of how A j varies with
time within a time step. The topmost face of the polygonal prism cell in Fig. 2 is
reproduced in Fig. 3 with the initial face–interface intersection line at tn shown in
blue.

To estimate how this line sweeps over the face as the isoface moves in the velocity
field, we first interpolate the velocity field to the initial isoface centre, xs , shown with
a black dot in Fig. 2.We can then take the dot product of the interpolated velocitywith
the isoface unit normal, n̂S , to obtain the speed of the isoface motion perpendicular to
itself,US . For a vertex, xv, in Fig. 3, we can also estimate the perpendicular distance
to the isoface by dv = (xv − xS) · n̂S . With the calculated isoface normal speed and
vertex-to-isoface distance, we can then estimate the time of arrival at vertex xv to
be τv = dv/US . In this way, we obtain the “vertex arrival times”, τ1, τ2, . . ., shown
in Fig. 3. As illustrated, some of these will generally be outside the integration
interval, [tn, tn+1] and some will be inside. The crucial point is now, that between
two such times, say, τ2 and τ3 in Fig. 3, the face–interface intersection line sweeps a
quadrilateral. If we assume the line sweeps this quadrilateral steadily, we can come
up with an analytical expression for the way in which A j depends on τ on this sub-
interval. This expression is a quadratic polynomial in τ and its coefficients depend
only on the shape of the quadrilateral. The resulting time variation of A j (τ) as the
line sweeps the face is illustrated in Fig. 4.

With a piecewise quadratic polynomial for A j (τ) in Eq. 12, its time integral in
Eq. 11 is a piecewise cubic polynomial, and ΔV n

i j is finally obtained as the sum of
the contributions from these sub-intervals. We note that a face of a surface cell may
initially be fully immersed in fluid 1 or 2, and then become intersected during the time

1An idea could be to use φn−1
i j and φn

i j to obtain an estimate, φ
n+1
i j , of φn+1

i j , and then use this to

estimate φ̃n
i j ≈ 0.5(φn

i j + φ
n+1
i j) in Eq. 11. Also, if using more than one outer corrector, the value

from the previous iteration could be used for φ
n+1
i j in a similar manner (for all but the first iteration).

IsoAdvector: Geometric VOF on General Meshes 287

Fig. 4 Submerged face are,
A j (τ), as a piecewise
quadratic polynomial

interval [tn, tn+1]. With the calculated vertex arrival times, this situation corresponds
to τ1 > tn (the tn line in Fig. 4 would then be further to the left), and it is treated by
fluxing pure fluid 1 or 2 through the face in the sub-interval [tn, τ1]. Similarly, if the
interface leaves the face during [tn, tn+1], we will have τ5 < tn+1 for a pentagonal
face (the tn+1 line would then be further to the right in Fig. 4), and we must flux pure
fluid 1 or 2 through the face during the last sub time interval [τ5, tn+1].

There is one final decisionwemustmake before our advection routine is complete:
for a face j , both its owner and neighbour cell may be surface cells with their isofaces
not coinciding exactly on face j due to the different isovalues used in the two cells
and not moving with exactly the same velocity due to the spatial variations in the
velocity field.Which cell should be used to calculateΔV n

i j for this face? In our current
implementation, we have chosen to let ΔV n

i j be determined by the upwind cell, i.e.,
the owner if φn

j > 0 and the neighbour if φn
j < 0.

2.3 Bounding

The test cases provided with the released isoAdvector code [2] show that the method
outlined above generally gives very good estimates of ΔV n

i j and leads to accurate
interface advection, as long as the interface is well resolved by themesh and time step
size is limited toCFL< 1. In some situations, theremay, however, arise small inaccu-
racies, which can build up over time and lead to intolerable levels of unboundedness.
To prevent the gradual build up of unboundedness, we have introduced a bounding
step that detects unboundedness and tries to adjust the ΔV n

i j ’s of unbounded cells
with a procedure that is described in detail in [1]. If this pure redistribution step fails,
the provided code also gives the option of brute-force non-volume preserving chop-
ping αn+1

i after each advection step to guarantee boundedness. Activating this will
ruin the machine precision volume conservation, but our experience so far indicates
that, in many situations, the resulting volume conservation error is very small.

In the current isoAdvector implementation, we assume that there is only a single
isoface inside a cell. There are several occasions when one would expect more iso-

288 J. Roenby et al.

faces inside a cell. One such situation is when a planar interface passes a non-planar
mesh face with which it is close to parallel. During the passage, the face and interface
will intersect at more than two points and the face–interface intersection cannot be
represented by a single straight line. Proper treatment of such an event can be imple-
mented by on-the-fly decomposition of the non-planar face into triangular subfaces
sharing the face centre as their common apex. A face–interface intersection line can
then be calculated for each triangle separately (a triangular face can, at most, have
two intersection points with the interface).

Another situation with more than one isoface inside a cell is when two separate
volumes of fluid approach each other and collide inside a cell. Then, there will be a
time interval just before the collision during which each volume has its own separate
piece of interface within the cell. In this event, the solution could be to decompose the
whole cell into tetrahedra sharing the cell centre as their common apex and separately
reconstruct the interface in each subcell. This solution has not yet been implemented.

We have experienced that, due to these shortcomings of the current implementa-
tion, the bounding errors can be substantial, e.g., on polyhedral meshes with many
highly non-planar faces of the type obtained by generating the dual mesh of a ran-
dom tetrahedral mesh. The method still works on such meshes if switching on the
brute-force chopping described above, but one may then experience substantial loss
of volume conservation. We plan to implement the fixes described above in a future
release of the code.

3 Pure Advection Tests

In this section, we compare the performance of isoAdvector and MULES with two
standard pure advection test cases with a predefined velocity field.

3.1 Notched Disc in Solid Body Rotation

Our first test case is the notched disc in solid body rotation, which has become a
standard test case since its introduction in [4]. The domain is the unit square, the
velocity field is the solid body rotation around the point (0.5, 0.5):

u = −2π(y − 0.5), v = 2π(x − 0.5). (13)

The initial volume fraction field is 1 within the disc of radius 0.15 centred at
(0.5, 0.75), except in a slit of width 0.06 going up to y=0.85. The disc rotates around
(0.5, 0.5) and returns to its original position at time t = 1. The resulting interface
shape after such a rotation with isoAdvector andMULES is shown in Fig. 5 for three
differentmesh typeswith square, triangular and polygonal cells. All simulations have
been performed with CFL = 0.1 and 0.5, but since the isoAdvector simulations with

IsoAdvector: Geometric VOF on General Meshes 289

isoAdvector, CFL = 0.5
sq
ua

re
ce
lls

MULES, CFL = 0.5 MULES, CFL = 0.1
tr
ia
ng

ul
ar

ce
lls

po
ly
go

na
l
ce
lls

Fig. 5 Notched disc advection test. Volume fraction field shown after one full rotation. 0.5-contour
shown with a black curve

Table 1 Error for the notched disc: E1 ≡ ∑
i |αi − αexact

i |Vi/ ∑
i α

exact
i Vi (sums are over all cells)

Mesh type isoAdvector CFL = 0.5 MULES CFL = 0.5 MULES CFL = 0.1

Square 0.014 0.21 0.062

Triangular 0.022 0.17 0.13

Polygonal 0.022 0.14 0.064

CFL = 0.1 and 0.5 are almost indistinguishable, we only show the latter. Tables 1
and 2 show the error compared to the exact solution and the calculation time for the
9 simulations. From the figure and Tables 1 and 2, we remark that:

• IsoAdvector with CFL = 0.5 performs better than MULES with both CFL = 0.5
and 0.1 on square, triangular and polygonal meshes.

• MULES severly distorts the shape on all mesh types with CFL = 0.5.
• On square and polygonal meshes, MULES improves dramatically when going
from CFL = 0.5 to 0.1, but not on the triangular mesh.

• isoAdvector is ∼3 times faster than MULES with CFL = 0.5.

290 J. Roenby et al.

Table 2 Calculation times in seconds for notched disc simulations on a single processor

Mesh type isoAdvector CFL = 0.5 MULES CFL = 0.5 MULES CFL = 0.1

Square 25 175 437

Triangular 232 639 1929

Polygonal 85 278 803

Table 3 E1 error (left) and calculation times (right) for a sphere in a reversed 3D shear flow on a
polyhedral mesh

CFL isoAdvector MULES

0.5 0.1 0.24

0.1 0.11 0.15

0.5 146 s 439 s

0.1 513 s 1622 s

3.2 Sphere in Shear Flow

Our second pure advection case is from [5]. The domain is the unit box and the initial
volume fraction field is 1 within the sphere of radius 0.15 centred at (0.5, 0.75, 0.25)
and 0 elsewhere. The velocity field in which the interface is advected is

u(x, t) = cos

(
2π t

T

) [
sin(2πy) sin2(πx),− sin(2πx) sin2(πy), (1 − 2r)2

]
,

(14)
where T = 6 and r = √

(x − 0.5)2 + (y − 0.5)2. In this flow, the initial spherical
interface is sheared into a thin spiralling sheet until, at t = 1.5, it has reached its
maximum deformation and flows back to its initial shape and position at time t = 3.
We run the case on a polyhedral mesh of the type generated with the pMesh tool of
cfMesh [6]. In Fig. 6, we show the results obtained with isoAdevector and MULES
using CFL = 0.5 and 0.1.

From Fig. 6 and Tables 3, we see that with this test case, isoAdvector is more ac-
curate and approximately three times faster thanMULES, but also note that MULES
does a decent job, even with CFL = 0.5. We also observe that the E1 error with
isoAdvector actually increases slightly with smaller time steps.

4 Using isoAdvector in interFoam

In interFoam, the MULES explicit solver code does not only provide the updated
volume fractions, αn+1

i , but also provides the quantity rhoPhi, which is used in the
convective term, fvm::div(rhoPhi, U), in the momentum matrix equation,

IsoAdvector: Geometric VOF on General Meshes 291

isoAdvector
C
F
L
=

0.
5

MULES
C
F
L
=

0.
1

Fig. 6 Sphere deformed in a 3D shear flow with isoAdvector and MULES for CFL = 0.5 and 0.1.
The initial sphere is shown in red. The interface shape at maximum deformation (t = 1.5) and at
the time of return to the spherical shape (t = 3) is shown in grey

UEqn. To understand the way in which we should construct rhoPhi from ΔV n
i j , let

us start by looking at the convective term in the Euler equations in Eq. 3, formally
integrated over a small time interval and over a cell:

〈ρu〉n+1
i = 〈ρu〉ni − 1

Vi

∫ tn+1

tn

∫
C i

∇ · [ρ(x, τ)u(x, τ)u(x, τ)] dVdτ + · · · (15)

We will denote this integrated convective term by Cn
i and use Gauss’s theorem to

write it as

Cn
i = 1

Vi

∑
j∈Bi

∫ tn+1

tn

∫
F j

ρ(x, τ)u(x, τ)u(x, τ) · dSdτ. (16)

We now approximate u(x, τ) with a constant representative velocity vector, ũn
j and

use u · dS ≈ φ̃n
i j/|S j |d A as described at the beginning of Sect. 2. This allows us to

write

Cn
i ≈ 1

Vi

∑
j∈Bi

ũn
j

φ̃n
i j

|Si j |
∫ tn+1

tn

∫
F j

ρ(x, τ)d Adτ. (17)

292 J. Roenby et al.

Now, using the definition of H(x, t) in terms of ρ(x, t) in Eq. 5 and the definition of
the submerged face area, A j , in terms of H in Eq. 12, we can write Eq. 17 as

Cn
i ≈ 1

Vi

∑
j∈Bi

ũn
j

φ̃n
i j

|Si j |
∫ tn+1

tn

[
ρ2 + (ρ1 − ρ2)A j (τ)

]
dτ. (18)

With the definition of ΔV n
i j in Eq. 8, we can finally write the convective term as

Cn
i ≈ 1

Vi

∑
j∈Bi

ũn
j

[
ρ2φ̃

n
i jΔtn + (ρ1 − ρ2)ΔV n

i j

]
. (19)

Here, the content of the square brackets is exactly the desired expression forrhoPhi.
The specific expression for ũn

j in terms of the cell-averaged velocities is determined
by the settings in fvSchemes for the convective term.

5 The damBreak Case

For an initial investigation of the behaviour of our new interFoam solver using isoAd-
vector instead ofMULES, we run a refined version of the standard dam break tutorial
shipped with OpenFOAM®-4.0. The domain is a box of width and height 0.584 m,
with a small rectangular obstacle on the bottom and the water initially placed in a
rectangular column on the left side of the domain. The case is run with an adaptive
time step using maxAlphaCo = maxCo = 0.5 . In Fig. 7, we show snapshots of
the volume fraction field at two times. In the top panels, just after impact with the
obstacle on the floor, we clearly see how isoAdvector—in contrast to MULES—is
capable of keeping the interface sharp, even for droplets of only a few cells’ width.
In the bottom panels, the water is starting to settle, and we see how the interface
produced with isoAdvector is only one cell wide, whereas the interface produced
with MULES covers many cells. Calculation times are similar for the two runs.

This is to be thought of as a kind of “Hello World!” case for our new solver,
and caution should be taken in drawing quantitative conclusions from this setup.
In future work, we will conduct more quantitative investigations based, e.g. on the
experimental data provided in [7].

We remark that a razor-sharp interface is not always the best representation of the
physical water distribution on the given mesh. If the encounter with the obstacle in
a real physical damBreak experiment causes the interface to explode into a cloud of
subcell-sized droplets, then a smeared representation, together with an appropriate
dispersed flow model, may be a better representation of the physical reality. To
prevent nonphysical sharpening of the interface in regions with clouds of subcell
droplets and bubbles, one could introduce a quantitative criterion for detecting such
regions and replace the isoAdvector interface treatment for surface cells in these
regions with a dispersed treatment.

IsoAdvector: Geometric VOF on General Meshes 293

Fig. 7 Dam break at times t = 0.32 s (top) and 1.1 s (bottom), run with isoAdvector (left) and
MULES (right). Cells with 0.001 < αn

i < 0.999 at t = 1.1 s are coloured yellow in the lower panels

6 Steady Stream Function Wave

The purpose of our final test case is to investigate the effect of replacing MULES
with isoAdvector on the propagation of a steady stream function wave. The initial
surface elevation, velocity and pressure fields are calculated using a Fourier approx-
imation method, which is well described in [8]. The derivation is based on potential
flow theory with vacuum above the wave. This corresponds to ρ2 = 0, which is not
practically possible with the interFoam solver, because it involves division by ρ in
the PISO loop. We, therefore, use ρ2 = 0.1 kg/m3 and ρ1 = 1000 kg/m3. As in [9],
we use a wave with height H = 10 m and period T = 14 s on depth D = 20 m. This
gives rise to a wavelength of L = 193.23 m, which we choose as the length of our
rectangular domain with, cyclic boundary conditions on the sides. The cells in the

294 J. Roenby et al.

Fig. 8 Stream function wave with H = 10 m, D = 20 m and T = 14 s at time t = 10 s. From top:
MULES-Euler, MULES-Crank–Nicolson, isoAdvector-Euler, isoAdvector-Crank–Nicolson

interface region are squares of side length 0.5 m corresponding to 20 cells per wave
height and ∼386 cells per wavelength. Above and below the interface region, the
mesh is coarser, with cell size up to 2 m. For div(rho*phi,U), we use Gauss
limitedLinearV 1, as opposed to the upwind scheme used in [9]. Another
difference is that in our setup, we initialise the wave in a co-moving frame, and so
the surface elevation and velocity field should ideally not change throughout the
transient simulation. Also, we use a fixed time step of 0.002 s, which based on the
theoretical crest particle velocity of 5.95 m/s, gives a CFL number of 0.0238. We run
the setup with MULES and isoAdvector, using both Euler and crankNicolson
0.5 for time integration. The resulting wave shape and velocity magnitudes for the
four combinations a short time after the simulations have been started (t = 10 s) are
shown in Fig. 8. The interface thickness is shown by plotting the 0.5 and 0.0001 con-
tours of the volume fraction data. We see that the interface is sharper and smoother
in the isoAdvector simulations than in the MULES simulations. But we also observe
that the air speed in a narrow band just above the surface takes values almost twice as
high in the isoAdvector simulations (note the different colour scales in the different

IsoAdvector: Geometric VOF on General Meshes 295

Fig. 9 Stream functionwavewith H =10m, D =20mand T =14 s at time105 s. The x-axis has been
compressed by a factor of 4. Black: exact surface elevation (0.5 contour). Orange: MULES-Euler.
Blue: MULES-Crank–Nicolson. Red: isoAdvector-Euler. Green: isoAdvector-Crank–Nicolson

panels). These larger air velocities do not seem to affect the interface significantly,
as illustrated in Fig. 9, where we show the surface elevations from the four runs after
105 s corresponding to 7.5 wave periods.

All simulations have a celerity that is slightly too high, causing all waves to have
drifted almost a quarter of awavelength to the right compared to the theoretical steady
profile crest centred in the middle of the domain. The MULES-Euler wave (orange)
has broken, giving rise to a jerky profile. The MULES-Crank–Nicolson wave crest
(blue) has grownsignificantly and the trough iswrinkled.The isoAdvectorwaveswith
Euler (red) and Crank–Nicolson (green) also have slight overshoots in wave height,
but these aremuch smaller andwithmuch smoother profiles. This is a preliminary test
and since many things can change if the case setup is adjusted, one should not jump
to conclusions before a more thorough study has been conducted. It is, however, safe
to conclude that using isoAdvector instead of MULES in surface wave propagation
simulations does have a clear effect on the solution. It is also safe to conclude, that the
spurious tangential velocities observed at the interface for large density ratios are not
caused by MULES alone. More likely, the problem is also associated with the PISO
loop implementation in interFoam not taking the large density jump properly into
account, e.g., when interpolating density-dependent quantities between cell centres
and face centres. We expect that an improved density jump treatment in this part of
the code can be achieved by using the information provided by isoAdvector about
the interface position inside surface cells.

7 Summary

We have given a brief description of the isoAdvector algorithm for advection of a
sharp interface across general meshes. We added two pure advection cases to the
suite of test cases already presented in [1], demonstrating the superior behaviour
of isoAdvector compared to MULES with respect to accuracy and efficiency. We
derive an expression for the convective term in the momentum equation so that

296 J. Roenby et al.

isoAdvector can be used in interFoam instead of MULES. The resulting solver is
tested using the damBreak case and a steady stream function wave in a periodic
domain. From these tests,we conclude that using isoAdvector in interFoam is feasible
and leads to a sharper interface. Using isoAdvector for the tested wave propagation
case leads to significantly higher spurious tangential velocities in the lighter phase,
but nevertheless, the quality of the solution is improved. In future work, we will
exploit the isoface data to impose consistent physical boundary conditions at the
interface in the PISO loop.

References

1. J. Roenby, H. Bredmose, and H. Jasak, “A computational method for sharp interface advection,”
Royal Society Open Science, vol. 3, p. 160405, 2016.

2. J. Roenby, “isoAdvector.” www.github.com/isoadvector.
3. S. S. Deshpande, L. Anumolu, and M. F. Trujillo, “Evaluating the performance of the two-phase

flow solver interFoam,” Computational Science & Discovery, vol. 5, no. 1, p. 014016, 2012.
4. S. T. Zalesak, “Fully multidimensional flux-corrected transport algorithms for fluids,” Journal

of Computational Physics, vol. 31, no. 3, pp. 335–362, 1979.
5. J. López, C. Zanzi, P. Gómez, F. Faura, and J. Hernández, “A new volume of fluid method

in three dimensions–part II: Piecewise-planar interface reconstruction with cubic-bézier fit,”
International Journal for Numerical Methods in Fluids, vol. 58, no. 8, pp. 923–944, 2008.

6. “cfMesh.” http://cfmesh.com/. Accessed: 2016-12-09.
7. L. Lobovsk, E. Botia-Vera, F. Castellana, J. Mas-Soler, and A. Souto-Iglesias, “Experimental

investigation of dynamic pressure loads during dam break,” Journal of Fluids and Structures,
vol. 48, pp. 407–434, 2014.

8. J. D. Fenton, “Numerical methods for nonlinear waves,” in Advances in Coastal and Ocean
Engineering, vol. 5, pp. 241–324, World Scientific, July 1999.

9. B. T. Paulsen, H. Bredmose, H. Bingham, and N. Jacobsen, “Forcing of a bottom-mounted
circular cylinder by steep regular water waves at finite depth,” Journal of Fluid Mechanics,
vol. 755, pp. 1–34, 2014.

www.github.com/isoadvector
http://cfmesh.com/

	IsoAdvector: Geometric VOF on General Meshes
	1 The Interfacial Flow Equations
	2 IsoAdvector for Interface Advection
	2.1 Interface Reconstruction
	2.2 Interface Advection
	2.3 Bounding

	3 Pure Advection Tests
	3.1 Notched Disc in Solid Body Rotation
	3.2 Sphere in Shear Flow

	4 Using isoAdvector in interFoam
	5 The damBreak Case
	6 Steady Stream Function Wave
	7 Summary
	References

