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Preface

OpenFOAM® (Open source Field Operation And Manipulation) is a free,
open-source computational toolbox that has a large user base across most areas of
engineering and science, from both industrial and academic organizations. As a
technology, OpenFOAM provides an extensive range of features to solve anything
from complex fluid flows involving chemical reactions, turbulence, and heat
transfer to solid dynamics and electromagnetics, among several others.
Additionally, the OpenFOAM technology offers complete freedom to customize
and extend its functionalities, which is one of the major contributions for its current
growth rate.

Group photograph taken at the 11th OpenFOAM Workshop
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The OpenFOAM Workshop provides a forum for researchers, industrial users,
software developers, consultants, and academics working with OpenFOAM tech-
nology. The meeting is held at different locations around the world and is usually
attended by OpenFOAM technology users and developers from all continents. The
central part of the workshop is the 2-day conference, where presentations and
posters on industrial applications and academic research are given.

The 11th OpenFOAM Workshop was held in Guimarães, Portugal, and joined
circa 300 individuals, from more than 30 countries and 180 institutions, from all
regions of the globe. The meeting comprised more than 140 presentations covering
the latest developments and applications related to OpenFOAM technology.

The book OpenFOAM®—Selected Papers of the 11th Workshop—aimed to join
in a document self-contained information about the most prominent contributions
presented at the 11th OpenFOAM Workshop and thus provides useful information
both for experienced and novice users that intend to have a clear idea of the current
trends and capabilities of OpenFOAM technology. This project would not be
possible without the contribution of the authors of the 37 chapters accepted for
publication and the support of more than 50 reviewers, which assured que quality
of the book contents.

Guimarães, Portugal J. Miguel Nóbrega
Zagreb, Croatia/London, UK Hrvoje Jasak
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Added Mass Partitioned Fluid–Structure
Interaction Solver Based on a Robin
Boundary Condition for Pressure

Željko Tuković, Martina Bukač, Philip Cardiff, Hrvoje Jasak
and Alojz Ivanković

Abstract This paper describes a self-contained, partitioned fluid–structure interac-
tion solver based on a finite volume discretisation. The incompressible fluid flow
is described by the Navier–Stokes equations in the arbitrary Lagrangian–Eulerian
form and the solid deformation is described by the St. Venant-Kirchhoff hyperelastic
model in the total Lagrangian form. Both fluid and solid are discretised in space using
the second-order accurate cell-centred finite volume method, and temporal discreti-
sation is performed using the first-order accurate implicit Euler scheme. Coupling
between fluid and solid is performed using a Robin-Neumann partitioned procedure
based on a new Robin boundary condition for pressure. The solver has been tested
on the wave propagation in an elastic tube test case characterised by a low solid-
to-fluid density ratio. The first-order temporal accuracy is shown and the stability
of the method is demonstrated for both the strongly coupled and loosely coupled
versions of the solution procedure. It is also shown that the proposed methodology
can efficiently handle FSI cases in which the fluid domain is entirely enclosed by
Dirichlet boundary conditions, even for the case of geometrically nonlinear elastic
deformation.
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1 Introduction

Fluid–structure interaction (FSI) problems can be solved in a monolithic or parti-
tioned way. Loosely or strongly coupled partitioned solution procedures solve the
fluid problem separately from the structure problem; consequently, this approach is
popular due to its modularity and simplicity of implementation. In classical parti-
tioned approaches, known as Dirichlet-Neumann (DN) schemes, the fluid problem is
solved with a Dirichlet boundary condition (structure velocity) at the fluid–structure
interface, while the structure problem is solved with a Neumann boundary condition
(fluid stress) at the interface. Loosely coupled partitioned DN schemes are stable
only if the structure’s density is much larger than the fluid’s density. This require-
ment is easily achieved in some applications like aerodynamics, but not, for example,
in hemodynamics, in which the density of blood is on the same order of magnitude
as the density of arterial walls. In these cases, the energy of the discrete problem
in the DN partitioned algorithm does not accurately approximate the energy of the
continuous problem, introducing numerical instabilities known as the added mass
effect. A possible solution to this problem is to sub-iterate between the fluid and
structure sub-problems at each time step until the energy at the fluid–structure inter-
face is balanced. Schemes that require sub-iterations, also known as strongly coupled
partitioned schemes, may suffer from slow convergence issues, however, this can be
mitigated using Aitken’s dynamic relaxation method [1] or reduced order models
[2].

Loosely coupled partitioned schemes that can efficiently cope with the added
mass effect are rare. One such scheme is the kinematically coupled β-scheme [3, 4].
The scheme is based on Lie operator splitting, in which the fluid and the structure
sub-problems are fully decoupled and communicate only via the initial conditions.
The fluid and structure equations are split in such a way that the fluid problem is
solved with a Robin-type boundary condition (BC) including the structural inertia;
this is the main ingredient of the scheme to ensure unconditional stability. In the
original implementation of this scheme, the second-order accurate finite element
method (FEM) is used for discretisation of both fluid and solid models in space and
the overall temporal accuracy of the scheme is first order.

Themain goal of this study is to implement the kinematically coupledβ-scheme in
a new computational framework, in which both fluid and structure sub-problems are
discretised using a second-order accurate cell-centred finite volume method (FVM);
the flow sub-problem is solved using a pressure-based solver and a SIMPLE-like
solution procedure. In thiswork, the first step in the fulfilment of the above-mentioned
goal will be presented, namely the implementation of the Robin BC for the fluid sub-
problem. In the context of the pressure-based fluid flow solver, the proposed Robin
BC is applied on the pressure field during the solution of pressure equation. The
derivative of the pressure at the interface in the normal direction is defined by the
simplified momentum equation, and at the same time, the value of the pressure is
limited by the structural inertia. The Robin BC, derived in such a way, is very similar
to the Robin BC proposed by Banks, Henshaw and Schwendeman [5]. Based on the
Robin BC for pressure, a Robin-Neumann (RN) partitioned FSI scheme is proposed
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in which the fluid sub-problem is solved with the Robin BC at the interface, while the
structure sub-problem is still solved with the Neumann BC. Although the proposed
FSI scheme does not contain all of the ingredients of the kinematically coupled
β-scheme, it already shows good performance in terms of stability and accuracy.

The article is organised as follows: Sect. 2 outlines the mathematical model for
the fluid and structure and shows the derivation of the Robin BC for pressure at
the fluid–structure interface. The discretisation of the mathematical model and FSI
solution procedure are given in Sects. 3 and 4 presents the application of the method
to two benchmark test cases, in which the stability and order of accuracy of the
method are demonstrated.

2 Mathematical Model

In the current article, the interaction between an incompressible Newtonian fluid
and a hyperelastic solid is considered, in which an FV discretisation and partitioned
approach are employed. Mathematical models governing mechanical behaviour of
the fluid and solid are solved separately from each other, and coupling is achieved
through enforcement of proper boundary conditions at the interface.

2.1 Fluid Governing Equations

Fluid flow is considered on a spatial domain whose shape is changing in time, due to
deformation of the fluid–solid interface. The isothermal flow of an incompressible
Newtonian fluid, inside an arbitrary volume V bounded by a closed moving surface
S, is governed by the mass and linear momentum conservation laws

∮

S

n · v dS = 0, (1)

d

dt

∫

V

v dV +
∮

S

n · (v − vs)v dS

=
∮

S

n · (νF∇v) dS − 1

ρF

∫

V

∇ p dV,

(2)

where n is the outward pointing unit normal on S, v is the fluid velocity, vs is the
velocity of surface S, νF is the fluid kinematic viscosity, p is the fluid pressure and
ρF is the fluid density. The relationship between the rate of change of the volume V
and the velocity vs is defined by the geometric (space) conservation law (GCL, see
[6, 7])
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d

dt

∫

V

dV −
∮

S

n · vs dS = 0. (3)

The mathematical model presented in the form above is usually referred to as the
arbitrary Lagrangian–Eulerian (ALE) formulation.

2.2 Solid Governing Equations

The deformation of the solid, assumed to be elastic and compressible, can be
described by the linear momentum conservation law in the total Lagrangian form

∫

V0

ρS,0
∂

∂t

(
∂u
∂t

)
dV =

∫

S0

n · (
Σ · FT

)
dS +

∫

V0

ρS,0b dV, (4)

where subscript 0 indicates quantities related to the initial (undeformed) configu-
ration, ρS is the solid density, u is the displacement vector, F = I + (∇u)T is the
deformation gradient tensor, I is the second-order identity tensor and Σ is the second
Piola-Kirchhoff stress tensor, which is related to the Cauchy stress tensor σ by the
following expression:

σ = 1
det F

F · Σ · FT. (5)

The St. Venant-Kirchhoff constitutive material model is assumed, which relates
the second Piola-Kirchhoff stress tensor to the Green-Lagrange strain tensor as
follows:

Σ = 2μSE + λStr(E) I, (6)

where μS and λS are the Lamé’s coefficients. The Green-Lagrange strain tensor is
defined as

E = 1

2

[∇u + (∇u)T + ∇u · (∇u)T
]
. (7)

Substituting the constitutive relation, Eq. (6), into the governing equation, Eq. (4),
one obtains the linear momentum conservation equation for a St. Venant-Kirchhoff
hyperelastic solid in the total Lagrangian form, where the displacement vector u is
the primitive variable

ρS0

∫

V0

∂

∂t

(
∂u
∂t

)
dV −

∮

S0

n · (2μS + λS)∇u dS =
∮

S0

n · q dS + ρS0

∫

V0

b dV, (8)

where
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q = μS(∇u)T + λStr(∇u) I − (μS + λS)∇u

+ μS ∇u · (∇u)T + 1

2
λStr[∇u · (∇u)T]I + Σ · ∇u.

(9)

Tensor q consists of nonlinear and displacement component coupling terms that are
treated explicitly after the discretisation, allowing the resulting linear system to be
solved using a segregated algorithm. The diffusivity (2μS + λS) in the Laplacian on
the left-hand side of Eq. (8) is used to maximise the implicit part of the discretised
equation [8].

2.3 Conditions at the Fluid–Solid Interface

The fluid and solid models are coupled by kinematic and dynamic conditions, which
must be satisfied at the fluid–solid interface. The kinematic condition states that the
velocity and displacement must be continuous across the interface

vF,i = vS,i , (10)

uF,i = uS,i , (11)

where subscripts F and S represent quantities corresponding to the fluid and solid
regions of the model, respectively, and subscript i represents quantities at the fluid–
solid interface. When a DN coupling scheme is used, displacement and velocity
are calculated at the solid side of the interface and applied as a Dirichlet boundary
condition at the fluid side of the interface.

The dynamic condition follows from the linear momentum conservation law,
which, as was discussed by Batchelor [9], reduces to the force equilibrium equation
at the fluid–solid (material) interface

ni · σF,i = ni · σS,i, (12)

where ni is the unit normal vector at the interface.
In the DN partitioned computational approach, force (traction) is calculated on

the fluid side of the interface and applied as a boundary condition on the solid side of
the interface. The traction is calculated by using the fluid stress tensor, consisting of
the isotropic and viscous components. The viscous (deviatoric) component, defined
by Newton’s law of viscosity, is

τF = μF
[∇v + ∇vT

]
, (13)

where μF = ρFνF is the fluid dynamic viscosity. Hence, the stress tensor for an
incompressible Newtonian fluid reads as follows:
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σF,i = −pI + τF = −pI + μF
[∇v + ∇vT

]
, (14)

and the traction at the interface reads as

tF,i = ni · σF,i = −ni p + μFni · ∇vt − 2μF (∇s · v) ni + μF∇svn, (15)

where vt = (I − nn) · v is the tangential velocity component,∇s = ∇ − nn · ∇ is the
surface tangential gradient operator and vn = n · v is the normal velocity component.
The third and fourth terms on the right-hand side of Eq. (15) can usually be omitted;
otherwise, these terms can be calculated directly on the solid side of the interface,
taking that the kinematic condition is valid.

2.4 Robin Boundary Condition for Pressure

In order to solve the fluid sub-problem, one also has to specify the boundary condition
for pressure; this is required to calculate the value of pressure at the spatial domain
boundary and to solve the pressure equation when a pressure-based collocated FV
solver is used (as is the case in thiswork). The value of the pressure at the FSI interface
(moving wall) is usually extrapolated from the interior of the spatial domain using
first- or second-order practice. In this work, an alternative approachwill be presented,
which is required in order to derive a Robin BC for pressure. Namely, the boundary
condition for pressure can also be derived from the momentum Eq. (2), which, in its
differential non-conservative form, reads as

∂v
∂t

+ (v − vs) · ∇v = ∇ · (ν∇v) − 1

ρ
∇ p. (16)

Assuming a linear distribution of the velocity field near the non-permeable moving
walls, one can derive an expression for the derivative of the pressure in the normal
direction from Eq. (16)

n · ∇ p = −ρ
∂vn

∂t
, (17)

where vn is the normal component of the fluid velocity. Equation (17) can be used
as the boundary condition for the pressure at the FSI interface (and other walls), in
which the temporal derivative of the velocity can be assumed as specified when the
DN partitioned scheme is used.

DN partitioned schemes suffer from stability and/or convergence issues when the
densities of the fluid and the structure are comparable, i.e., when strong added mass
effects are present. For example, it has been shown in [10] that in the presence of
a large added mass effect, the DN procedure needs a strong relaxation and displays
slow convergence.
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Partitioned schemes that can efficiently cope with the added mass effect are rare.
One such scheme with good performance is the so-called kinematically coupled
β-scheme [3, 4] based on the Lie operator splitting, in which the fluid and the
structure sub-problems communicate via the initial conditions. Thefluid and structure
equations are split in such a way that the fluid problem is solved with a Robin-type
BC including the structural inertia; this is the main ingredient of the scheme ensuring
its unconditional stability.

Using the idea of the kinematically coupled β-scheme, one can state that fluid
pressure at the interface is limited (or can be approximated) by the solid inertia

p ≈ ρShS
∂vn

∂t
, (18)

where ρS is the structure density and hS is the thickness of the structure (a procedure
to calculate this thickness in the case of a thick structure will be defined later).
Combining Eqs. (17) and (18) through the ∂vn

∂t term, one can derive the Robin-type
boundary condition for pressure:

p + ρShS

ρF

∂p

∂n
= 0, (19)

where ρF is the density of the fluid. The Robin BC (19) is equivalent to the Robin BC
obtainedwhen the kinematically coupledβ-scheme is appliedwithβ = 0 to calculate
the interaction between the inviscid Stokes fluid and the thin elastic structure [11].

The coupling scheme proposed in this work departs from the kinematically cou-
pled β-scheme in such a way that, during the solid sub-problem solution, there is
no communication with the fluid sub-problem through the initial condition, but only
through the Neumann BC (specified traction). In order to preserve the accuracy of the
overall scheme in the new computational framework, the Robin BC (19) is reformu-
lated such that, in the context of the iterative solution procedure (strong coupling),
it reduces to the exact boundary condition defined by Eq. (17) when the converged
solution is reached

pk + ρShS

ρF

(
∂p

∂n

)k

= p(k−1) − ρShS

(
∂vn

∂t

)(k−1)

, (20)

where k is the iteration counter. One can notice that when the converged solution is
reached (pk = p(k−1)), Eq. (20) becomes equivalent to Eq. (17).

In the case when a shell model is used to define the structure deformation, the
thickness parameter hS is a specified value. For a thick structure, the quantity hS

represents the virtual thickness,which is calculated in thiswork using the propagation
speed of waves in an elastic media as follows [5]:

hS = apΔt, (21)
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where Δt is the time step size and ap is the propagation speed of the p-wave defined
by

ap =
√

λS + 2μS

ρS
. (22)

As one can note, the virtual thickness parameter hS depends only on the time step
size and structure material properties.

3 Numerical Model

The discretisation procedure is separated into two distinct parts: discretisation of the
computational domain and discretisation of the governing equations.

3.1 Discretisation of the Computational Domain

The time interval is split into a finite number of time steps Δt and the equations
are solved in a time-marching manner. Both sub-problems are discretised in time
using a first-order accurate implicit Euler scheme [12]. In general, the computational
space is divided into a finite number of convex polyhedral control volumes (CVs) or
cells bounded by convex polygons. Cells do not overlap and fill the spatial domain
completely. Figure1 shows a polyhedral control volume VP with the computational
point P located in its centroid, f is an arbitrary face with area S f and unit normal
vector n f , and it is shared with the neighbouring CV with the centroid N . The
geometry of the CV is fully determined by the position of its vertices.

Fig. 1 Polyhedral control
volume (cell)
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While the fluid flowmesh is changing in time due to deformation of the fluid–solid
interface, the solid mesh is always in its initial (undeformed) configuration due to
the use of the total Lagrangian formulation.

3.2 Discretisation of the Governing Equations

3.2.1 Discretisation of the Fluid Model

The discretised fluid mathematical model with moving polyhedral mesh consists of
the discretised momentum equation and the discretised pressure equation, in which
the pressure equation is derived from the discretised continuity equation using the
Rhie-Chowmomentum interpolation method [13]. The FV discretisation of the fluid
model is described in [14]. However, it should be noted that in [14], emphasis was on
the moving interface between two fluid phases, and boundary conditions on moving
walls were not considered. A comprehensive description of moving wall boundary
conditions for the DN partitioned scheme can be found in [15]. Here, the implemen-
tation of the Robin BC for pressure will be briefly discussed and the influence on the
velocity BC and flux calculation procedure are outlined.

The Robin BC (20) can be written in contracted form as follows:

c0 p + c1
∂p

∂n
= r, (23)

where c0 = 1, c1 = ρShS/ρF and r represents the right-hand side of Eq. (20). Equa-
tion (23), discretized at the interface boundary face bi (Fig. 2), reads as

c0 pbi + c1
pbi − pP

δbn
= rbi , (24)

where pbi is the pressure at the interface boundary face centre, pP is the pressure in
the centre of the corresponding neighbouring cell P and δbn is the normal distance
defined inFig. 2.Equation (24) cannowbeused to define an expression for calculation
of the pressure value at the interface boundary face centre

pbi = δnrbi
δbnc0 + c1

+ c1
δbnc0 + c1

pP . (25)

The derivative of the pressure in the normal direction can now be expressed for the
interface boundary face centre as follows:

(
∂p

∂n

)
bi

= nbi · (∇ p)bi = rbi
δbnc0 + c1

− c0
δbnc0 + c1

pP . (26)
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Fig. 2 Interface boundary
face bi and its neighbouring
cell P

Application of the proposed Robin BC for pressure also requires modification
of the discretized pressure equation. As is shown in [14], the discretized pressure
equation for cell P reads as

∑
f

(
1

ap

)
f

n f · (∇ p) f S f =
∑
f

n f ·
(

HP

aP

)
f

S f , (27)

where the subscript f represents the face-centre values and the summation is per-
formed over all faces enclosing the considered cell P . Taking into account the
first-order accurate Euler implicit temporal discretisation of the fluid model, terms
(1/aP) f and (HP/aP) f are calculated at the boundary faces coinciding with the fluid
side of the interface as follows:

(
1

ap

)
bi

= Δt, (28)

(
HP

aP

)
bi

= v[m−1]
bi , (29)

where v[m−1]
bi is the fluid velocity at the interface in the previous time step. After the

solution of the pressure equation, the volume flow rate at the interface boundary face
is calculated as follows:

V̇bi = nbi ·
(

HP

aP

)
bi

Sbi −
(

1

ap

)
bi

nbi · (∇ p)bi Sbi , (30)

where it is assumed that the derivative of the pressure in the normal direction satisfies
Eq. (17).

The boundary condition for velocity (momentum equation) at the interface is of
the Dirichlet type, in which the tangential component of velocity is set to the value
calculated at the solid side of the interface; the normal component is calculated using
the volume flow rate V̇bi obtained after the solution of the pressure equation
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vbi = (I − nbinbi ) · vS,bi + nbi
V̇bi

Sbi
, (31)

where vS,bi is the velocity at the centre of the interface boundary face transferred
from the solid to the fluid side of the interface.

Fluid mesh deformation is performed using the Laplace mesh motion equation
with variable diffusivity, as described in [14, 16]. Instead of using anFEdiscretisation
for theLaplacemeshmotion equation, thiswork discretises themotion equation using
the cell-centred FVmethod, in which vertex displacements are obtained using a least
squares reconstruction procedure.

3.2.2 Discretization of the Solid Model

In terms of the solid model, the second-order FV discretisation of the integral conser-
vation equation, Eq. (8), transforms the surface integrals into sums of face integrals;
the face integrals and volume integrals are then approximated using the second-order
accuratemid-point rule. The spatially discretised counterpart of themomentum equa-
tion, Eq. (8), for the control volume VP reads as

(ρS,0)P

[
∂

∂t

(
∂u
∂t

)]
P

VP −
∑
f

(2μS, f + λS, f )n f · (∇u) f S f =
∑
f

n f · q f S f + (ρS,0)PbPVP ,

(32)

where the subscript P represents the cell-centre value and subscript f represents a
face-centre value.

The temporal discretisation of Eq. (32) is performed using the first-order accurate
implicit Euler scheme. All terms in Eq. (32) are evaluated at the new time instance
t [m] = t [m−1] + Δt . The acceleration ∂

∂t

(
∂u
∂t

)
and the velocity ∂u

∂t are discretised at
the new time instance, using the two-time-level finite difference formula as follows:

[
∂

∂t

(
∂u
∂t

)][m]

P

=
(

∂u
∂t

)[m]
P

− (
∂u
∂t

)[m−1]
P

Δt
, (33)

(
∂u
∂t

)[m]

P

= u[m]
P − u[m−1]

P

Δt
. (34)

The face normal gradient of displacement n f · (∇u) f is discretised using the
central scheme with non-orthogonal and skewness correction (see Fig. 1)

n f · (∇u) f = uN − uP

d f n
+ kN · (∇u)N − kP · (∇u)P

d f n
, (35)
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where d f n is the normal distance between points N and P ,

d f n = n f · d f = n f · (rN − rP), (36)

and kP and kN are the correction vectors calculated as follows:

kP = (I − n f n f ) · (r f − rP), (37)

kN = (I − n f n f ) · (rN − r f ). (38)

The first term on the right-hand side of Eq. (35) is treated implicitly, while the correc-
tion term is explicit. The cell-centre displacement gradient used for the calculation
of the correction term in Eq. (35) is calculated using the vertex-based Gauss-Green
method, which gives a gradient of second-order accuracy irrespective of the mesh
quality. Here, the face-centre displacement is calculated by averaging corresponding
vertex displacements.

The face-centre gradient needed for the evaluation of tensor q f in the first term on
the right-hand side of Eq. (32) is calculated separately in the normal and tangential
directions. The face-centre displacement gradient in the normal direction is calculated
using Eq. (35), while the face-centre gradient in the tangential direction is calculated
by applying the vertex-based Gauss-Green method on a flat polygonal face. The
vertex displacements are reconstructed from the cell-centre displacements of the
cells surrounding the vertex using the weighted least-squares method and linear
fitting function.

When Eqs. (33), (34) and (35) are substituted into Eq. (32), the fully discretised
form of the linear momentum conservation law, Eq. (8), can be written in the form
of a linear algebraic equation, which, for cell P , reads as

aP u[m]
P +

∑
N

aN u[m]
N = RP , (39)

where the diagonal coefficient aP , the neighbour coefficient aN and the source term
RP are defined by the following expressions:

aP = (ρS,0)PVP

Δt2
+

∑
f

(2μS, f + λS, f )
S f

d f n
, (40)

aN = −(2μS, f + λS, f )
S f

d f n
, (41)
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RP =(ρS,0)PVP

[
u[m−1]
P

Δt2
+ 1

Δt

(
∂u
∂t

)[m−1]

P

]

+
∑
f

(2μS, f + λS, f )
kN · (∇u)

[m]
N − kP · (∇u)

[m]
P

d f n
S f

+
∑
f

n f · q[m]
f S f +

∑
f

(ρS,0)Pb[m]
P VP .

(42)

3.3 Solution Procedure for Fluid and Solid Models

The incompressible fluid flowmodel, which is discretised on a moving finite volume
mesh, is solved for velocity and pressure using the PISO algorithm [17]. A detailed
description of the fluid model solution procedure is given in [14].

For solution of the discretised solidmodel, Eq. (39) is assembled for all CVs in the
computational mesh, resulting in the following system of linear algebraic equations:

[A] · {u} = {R}, (43)

where [A] is a sparse matrix, with coefficients aP on the diagonal and aN off the
diagonal, {u} is the solution vector consisting of displacements uP for all CVs and
{R} is the right-hand side vector consisting of source terms RP for all CVs.

The system of Eq. (43) is solved using a segregated algorithm, in which the three
components of the displacement vector are temporarily decoupled and solved sepa-
rately. Since nonlinear and coupling terms depending on the unknown displacement
vector are placed in the right-hand side vector, the system is solved in an iterative
manner, in which the right-hand side vector {R} is updated at the beginning of each
outer iteration through use of the displacement vector from the previous iteration.
When the solution changes less than some predefined tolerance, the system is consid-
ered to be solved. This is performed for every time step of the transient simulation.

The sparse matrix [A] from Eq. (43) is symmetric and weakly diagonally domi-
nant, and the corresponding system of equations is solved using the preconditioned
conjugate gradient iterative solver [18, 19]. There is no need to solve the system to
a fine tolerance, since the right-hand side vector is only an approximation based on
the displacement vector from the previous iteration; reduction of the residuals by an
order of magnitude normally suffices.

3.4 Solution Procedure for Fluid–Structure Interaction

As mentioned earlier, a partitioned approach is adopted for the fluid–structure inter-
action solution procedure, in which the flow model and the structural model are
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solved separately using different solvers in the FV framework. The coupled fluid–
structure interaction problem is decomposed using the Robin-Neumann procedure,
in which the structural model is solved for a given force on the interface, while the
fluid model is solved using the Robin BC for pressure and corresponding BC for
velocity. The equilibrium of the force and velocity (or displacement) on the fluid–
structure interface is enforced at each time step using a strongly coupled procedure
by performing iterations between the fluid and solid solvers.

The fluid–structure interaction solution procedure is summarised in Algorithm 1.
The procedure is mostly self-explanatory, except perhaps for the interface residual
calculation, defined as the difference between the solid side interface displacement,
obtained by solving the structural model, and the fluid side interface displacement,
used to move the fluid mesh before solving the fluid model

{r}ki = {u}kS,i − {u}kF,i , (44)

where the superscript k represents the iteration number, {u}F,i is the vector consisting
of vertex displacements on the fluid side of the interface and {u}S,i is the vector
consisting of displacements of the solid side of the interface mapped to the vertices
on the fluid side of the interface.

The vertex displacements on thefluid side of the interface, used in the next iteration
to move the fluid mesh, are calculated as follows:

{u}k+1
F,i = {u}kF,i + {r}ki , (45)

where the full residual is applied without under-relaxation.
At the endof eachfluid–structure interaction iteration, the L2-normof the interface

residual vector is calculated and it is checked whether a converged solution has been
reached.

Algorithm 1 Fluid–structure interaction iterative solution procedure
1: Switch to the next time step.
2: Predict the interface displacement: solve the solid model using the fluid force from the previous

time step, transpose the displacement and acceleration from the solid to the fluid side of the
interface, solve the mesh motion equation and move the fluid mesh.

3: Start the FSI strongly coupled iterative procedure.
4: Switch to the next iteration.
5: Solve the fluid model using the proposed Robin BC for pressure at the interface.
6: Transpose the force from the fluid to the solid side of the interface and solve the solid model.
7: Transpose the displacement and acceleration from the solid to the fluid side of the interface,

solve the mesh motion equation and move the fluid mesh.
8: Calculate the interface residual at the fluid side of the interface.
9: if converged then
10: Go to next time step (line 1)
11: else
12: Go to next iteration (line 4)
13: end if
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Fig. 3 Discretised spatial domain for elastic tube test case

4 Numerical Results

4.1 Wave Propagation in an Elastic Tube

This is a standard FSI test case intended to demonstrate the capability of the numerical
model to predict blood flow in large arteries [2].1 The spatial computational domain
consists of a straight flexible tube with radius r = 0.005 m, length L = 0.05 m
and wall thickness δ = 0.001 m. The tube’s wall is a St. Venant-Kirchhoff material
with density ρS = 1200 kg/m3, Young’s modulus E = 3 × 105 N/m2 and Poisson’s
ratio ν = 0.3. The tube is clamped in all directions at the inlet and outlet. The fluid
is incompressible with a density of ρF = 1000 kg/m3 and a dynamic viscosity of
μ = 0.003 pas. Both the fluid and the structure are initially at rest. During the first
0.003 s, a uniform overpressure of 1333.2 N/m2 is applied at the inlet.

Figure3 shows the spatial domain discretised by a hexahedral finite volumemesh.
The fluid part of the mesh consists of 449, 600 finite volumes, while the solid part
consists of 288, 000finite volumes. The numerical solution presented here is obtained
using the time step size Δt = 2.5 × 10−5 s, which corresponds to the virtual solid
thickness hS = 0.00046 m, and the maximum Courant number based on p-wave
propagation speed Co = 4.6. The strongly coupled solution procedure was applied,
in which four sub-iterations (on average) were required to reduce the L2-norm of the
interface residual by six orders of magnitude.

1It is assumed that for the considered test case (large artery and small pressure change), the blood
can be considered as an incompressible Newtonian fluid.
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Figure4 shows the velocity field in both the fluid and solid parts of the spatial
domain at the time instance 0.005s, while Fig. 5 shows the pressure field in the fluid
part and equivalent stress in the solid part of the spatial domain at the same time
instance.

Pressure and axial velocity along the pipe axis for a few time instances are shown
in Figs. 6 and 7. Using the procedure described in [20], one can obtain the simulated
pressure wave speed of 4.54 m/s. The analytical solution of the pressure wave speed,
cF , can be found in [21] and, for incompressible fluid, reads as

Fig. 4 Velocity field in the fluid and solid parts of the spatial computation domain at the time
instance 0.005s for the elastic tube test case

Fig. 5 Pressure field in the fluid and equivalent stress in the solid part of the spatial computational
domain at the time instance 0.005s for the elastic tube test case
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Fig. 6 Pressure variation
along the tube axis as a
function of time for the
elastic tube test case
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Fig. 7 Axial velocity
variation along the tube axis
as a function of time for the
elastic tube test case
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cF =
√

Eδ

2ρFr

[
δ

r
(1 + ν) + 2r

2r + δ

]−1

. (46)

Taking into account the axial stress waves in the tube wall, the final expression for
analytical wave speed can be written as [20]:

c̃F = cF

√√√√√1 − ν2

1 − δ

2r

ρF

ρS

. (47)

Using the current case data, a value of 4.81 m/s can be obtained, which is in good
agreement with the simulation results.

In order to evaluate the temporal accuracy of the method, the calculation is carried
out for four different time step sizes 5 × 10−5 s, 2.5 × 10−5 s, 1.25 × 10−5 s and
6.25 × 10−6 s, and the radial displacement is monitored at the inner side of the
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tube’s midsection. The results are shown in Fig. 8. Temporal accuracy is evaluated
for the time instance when the radial displacement reaches its maximum. The order
of temporal accuracy is calculated as [22]

p =
ln

[
φ3−φ2

φ2−φ1

]

ln(r)
, (48)

where φ1, φ2 and φ3 are the numerical solutions obtained using the three consecutive
time step sizes, refined using constant refinement ratio r = Δt1/Δt2 = Δt2/Δt3 = 2.
The resulting calculated order of temporal accuracy is 1.099, i.e., above the theoret-
ical order of accuracy for the implicit Euler temporal discretisation scheme.

In order to show that the proposed partitioned FSI coupling scheme is stable
even if it is used as a loosely coupled scheme, the calculation is performed with
only one and two FSI iterations and the calculated solution is compared with the
corresponding fully converged solution. Results of this analysis are shown in Fig. 9.
Although the solution obtained after one FSI iteration substantially departs from
the fully converged solution, it can be concluded that the applied loosely coupled
solution procedure is stable for the considered test case. The solution obtained by
performing only one additional FSI iteration (two in total) agrees well with the fully
converged solution.

Fig. 8 Calculating temporal
accuracy – radial
displacement at the inner
wall at the midsection of the
tube
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Fig. 9 Pressure variation
along the tube axis as a
function of time for the
elastic tube test case.
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4.2 Enclosed Domain: A Balloon-Type Problem

The purpose of this example is to demonstrate the capabilities of the proposed fluid–
solid coupling procedure to handle FSI cases with geometrically nonlinear solid
deformation and in which the fluid domain is entirely enclosed byDirichlet boundary
conditions, i.e., prescribed velocities. The test case represents a three-dimensional
variant of a similar test case used in [23], in which fluid and solid properties and
spatial domain dimensions are modified in such a way as to be within the range of
hemodynamics applications. A similar approach is used in [24] to test a balloon-type
problem. The fluid domain is a cube of size [−0.025, 0.025] × [−0.025, 0.025] ×
[−0.025, 0.025] m, enclosed by a solid wall of thickness 0.005 mm. The fluid and
solid properties are the same as in the previous example. The fluid enters into the
cavity through a channel of square cross section (0.016 × 0.016 m) positioned in the
middle of the cube side at the plane x = −0.025 m. At the inlet of the channel, a
uniform velocity changing in time is specified according to the following expression:
v(t) = [sin 2π t

0.2 , 0, 0] m/s. Due to the symmetry of the geometry, only one quarter of
the spatial domain is simulated. The initial shape of the discretized spatial domain is
shown in Fig. 10. The spatial domain is discretised using a uniform structured mesh
(element size 0.005 m) and the calculation is performed using a constant time step
size Δt = 10−4 s. The strongly coupled solution procedure was applied, in which

Fig. 10 Initial shape of the spatial domain for the balloon-type problem. Due to symmetry, only
one quarter of the whole domain is used
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Fig. 11 Deformed shape of the spatial domain for the balloon-type problem at the time instance
t = 0.1 s. The solid domain is coloured by the displacement field (u), while the fluid domain is
coloured by the kinematic pressure field (p)

only three sub-iterations (on average) were required to reduce the L2-norm of the
interface residual by six orders of magnitude.

According to the specified inlet boundary condition, at the time instance t = 0.2 s,
the initial volume of the fluid domain must be recovered, and at the time instance t =
0.1 s (end of the filling phase), the maximal fluid domain volume should be reached.
Figure11 shows the shape of the spatial domain at the time instance t = 0.1 s, in
which the colours represent kinematic pressure (p/ρ) and displacement. The relative
change of the fluid domain volume as a function of time is shown in Fig. 12. One can
notice that the volume of fluid entering/leaving the cavity closely follows the change
in the fluid domain volume, proving that the applied numerical method conserves
fluid mass in the case of a pure Dirichlet domain. At the end of the calculated time
interval (t = 0.2 s), the volume of the fluid domain is close to the initial volume.
The same figure also shows temporal variation of the average pressure in the fluid
domain.

5 Conclusions

A self-contained fluid–structure interaction solver based on an FV discretisation
method and partitioned solution procedure is presented. Both fluid and solid models
are discretised in space using the second-order accurate cell-centred finite volume
method, while numerical integration of the models in time is performed using a first-
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Fig. 12 Change of the fluid
domain volume (ΔVF/VF,0) and
fluid volume entering/leaving
the fluid domain (VF,in/VF,0) as
a function of time, where
VF,0 is the initial volume of
the fluid domain. On the
secondary axis, the temporal
variation of the volume
average pressure over the
fluid domain is shown 0
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order accurate implicit Euler scheme. Coupling between the fluid and structure is
performed using a Robin-Neumann partitioned procedure based on a new Robin BC
for pressure derived from the coupled β-scheme. The main ingredient of the scheme,
ensuring its stability, is the inclusion of the structural inertia in the Robin BC for
pressure. In such a way, there is no need for any under-relaxation during information
transfer between fluid and solid, which ensures good convergence of the solution
procedure.

The solver has been tested on the wave propagation in an elastic tube test case
characterised by a low solid-to-fluid density ratio. The temporal consistency of the
numerical model is shown by proving the first-order accuracy in time, which is in
agreementwith the theoretical order of accuracy of the applied implicit Euler scheme.
The stability of the method is demonstrated for both strongly coupled and the loosely
coupled versions of the solution procedure. It is shown that the proposedmethodology
can efficiently handle FSI cases in which the fluid domain is entirely enclosed by
Dirichlet boundary conditions, even for the case of geometrically nonlinear elastic
deformation.

In future work, temporal accuracy will be increased to second-order and the com-
plete kinematically coupled β-scheme will be implemented.
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CAD-Based Parameterization
for Adjoint Optimization

Marios Damigos and Eugene De Villiers

Abstract Manipulating CAD geometry using primitive components rather than the
originating software is typically a challenging prospect. The parameterisation used
to define the geometry of a model is often integral to the efficiency of the design.
Even more crucial are the relations (constraints) between those parameters that do
not allow the model to be under-defined. However, access to these parameters is lost
when making the CAD model portable. Importing a standard CAD file gives access
to the Boundary Representation (BRep) of the model and consequently its boundary
surfaces which are usually trimmed patches. Therefore, in order to connect Adjoint
optimization and Computational Fluid Dynamics to the industrial design framework
(CAD) in a generic manner, the BRep must be used as a starting point to produce
volume meshes and as a means of changing a model’s shape. In this study, emphasis
is given firstly, to meshing (triangulation) of a BRep model as a precursor to volume
meshing and secondly, to the use of techniques similar to Free Form Deformation
for changing the model’s shape.

1 Introduction

One of the biggest challenges in modern-day CFD and optimization is to establish
the missing link to industrial design. Initially, CFD software acts upon a discrete
geometry, whereas a designer provides that geometry in CAD format. For example,
in OpenFOAM®, the native hex dominant mesher requires a triangulated surface as
input (usually in STL format) to create a volumemesh. A tool for the reliable creation
of surface meshes from CAD input is thus a necessity.
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Secondly, each CAD software has its own formatted parameterization tools about
which its vendors are sensitive. Due to the closed source nature of the most popular
CAD packages, the above-mentioned formats cannot be accessed. The two most
popular options employed thus far are

1. Request access to a specific CAD package and make its format available. This is
obviously a very limiting option. Furthermore, if one wants CAD to be included
in an optimization routine, then, obviously (for the adjoint technique), the CAD
package has to be differentiated, which is seldom possible.

2. Employ feature recognition algorithms and extract a feature tree from the Bound-
ary Representation (BRep) [1–3]. This type of algorithm, is not commonly suc-
cessful, and thus, this option lacks automation capabilities.

Due to the setbacks of these two options, one must use an alternative way to access
a model’s information. A common choice is to use standard CAD formats such as
STEP or IGES [4], which contain the BRep of a model (see Sect. 1.1). BRep model
is most commonly described by NURBS (see Sect. 1.2), and therefore this leads to
the use of free–form surfaces as a means to change a CAD model’s shape.

Both of these challenges are tackled by introducing the open source CAD pack-
age OpenCascade Technology (OCCT) [5] into the OpenFOAM® framework. The
following application has been developed by using the OpenFOAM® and OCCT
libraries in concert.

1.1 Boundary Representation

BoundaryRepresentation [6, 7] is amethod for representing shapes in solidmodeling.
A solid is described by the BRep format using surface elements defining the interface
between solid and non-solid volumes (Fig. 1).

Fig. 1 Boundary representation model of the DrivAER car model [8]
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The BRep format is composed of two parts: Topological data and Geometry. The
topology of a BRep is created using vertices, edges, faces, shells and ultimately
solids. Regarding their underlying geometry

1. Vertices: The underlying geometry of vertices is simply 3D points.
2. Edges: Edges are curves bounded by the points describing their boundary vertices.

In the general case, the geometry of the edge is only a segment of its underlying
curve, since the topological bounds of an edge and the geometrical bounds of a
curve are not strictly identical.

3. Faces: Similarly to edges, faces are described by surfaces bounded by a closed
loop of edges. Moreover, the geometry of the face is, in general, a part of its
underlying surface, since its boundary loop of edges does not coincide with the
natural bounds of the surface.

4. Shells: A shell is composed of multiple faces connected to each other and has no
particular underlying geometry

5. Solids: A solid, similarly to a shell, does not have an underlying geometry and is
practically the volume bounded by a collection of shells.

1.2 NURBS Curves and Surfaces

The geometry of a BRep is most commonly described by Non-Uniform Rational
B-Splines or simply NURBS [9]. NURBS geometry can be defined using three
things: a segmented parameter space for each parametric direction, a degree for each
parametric direction, and a set of weighted control points.

1.2.1 Uni-variate NURBS – Curves

The formula that gives ys points on a NURBS curve is as follows:

C(u) =
∑nCp

i=1 N p
i (u) · wiPi

∑nCp
i=1 N p

i (u) · wi

, (1)

where nCp is the number of control points in the control polygon, Pi is the vector
containing the coordinates of control point i , wi is the corresponding weight and
N p

i (u) is the i–th basis function of degree p, evaluated at parameter u. In order to
evaluate a basis function, a non-decreasing vector of real values is required, also
called a knot vector. The knot vector will be of the form

U = [U1, U2, . . . Um]. (2)
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The parameter u spans between the values U1 and Um (U1 < Um) and every internal
value of the vector defines a break point that segments the parameter span. The i-th
basis function is then calculated as:

N 0
i (u) =

{
1 if Ui ≤ u < Ui+1

0 otherwise

N p
i (u) = u − Ui

Ui+p − Ui
N p−1

i (u) + Ui+p+1 − u

Ui+p+1 − Ui+1
N p−1

i+1 (u). (3)

1.2.2 Bi-variate NURBS – Surfaces

The formula giving the points of a NURBS surface is the following:

S(u, v) =
∑nCp

i=1

∑mCp
j=1 N p

i (u)N q
j (v) · wi, jPi, j

∑nCp
i=1

∑mCp
j=1 N p

i (u)N q
j (v) · wi, j

. (4)

Similarly to NURBS Curves, Pi, j is the (i, j)-th control point of a nCp × mCp
control grid and wi, j is the corresponding weight. Parameters u and v come with
knot vectors U , V defined as in Eq.2. Then, the basis functions N p

i (u) and N q
j (v)

are calculated using Eq.3 .

1.3 Connecting CAD to CFD

In order to start a CFD simulation or to proceed with an adjoint-based optimization
[10, 11], a CAD model has to be imported (in our case, from a STEP or IGES
file) in the form of a BRep. In Fig. 2 the flow of an optimization cycle is shown.
This study deals with the surface meshing and the CAD-based shape optimization

Fig. 2 The work flow of an adjoint optimization cycle



CAD-Based Parameterization for Adjoint Optimization 27

step. After the meshing of the surface, an STL file can be exported, on which the
OpenFOAM® native hex dominant mesher can build the volumemesh. Afterwards, a
method for changing the shape of the CADmodel is shown, suitable for optimization
applications.

2 Meshing of the CAD Surfaces

The need to develop a triangulation tool arises from the fact that most open source
surface meshers, require a high number of parameters as input. Netgen [12], for
instance, requires 15 parameters as input. Furthermore, these parameters depend on
the dimensions of eachmodel, and thus the surfacemeshing sequence cannot become
automated. Another challenge that arises when meshing a CAD model comes from
various defects resulting from the model’s possibly poor design or information loss
during export. When reading a CAD file, for example, the topology inside it is not
always consistent. This problem makes it difficult to produce a unified background
mesh across the whole model.

The proposed surface mesher will require two parameters (both dimensionless)
as input and will depend on a global 3D background mesh based on an octree.

2.1 Using Dimensionless Parameters

At each point on the CAD model’s surfaces, a required mesh size should be defined.
That size should be approximately equal to the size of the surface mesh edges at that
location. Any triangle created during the meshing process should fulfill two criteria

1. The distance of the center of the triangle should be smaller than a prescribed
distance, which will depend on a dimensionless parameter.

2. The allowed size difference between two neighboring triangles should be smaller
than a value, which will also be dimensionless.

First, regarding the size, a parameter α, calculated in degrees or radians, is chosen
to be used.

If a point on a curve is taken, a curvature radius Kr can be defined locally. A
mesh size can then be calculated to be equal to the distance between the starting and
ending points of a circular arc of radius Kr and angle α. Therefore, the higher the
curvature, the smaller the size. This idea can easily be used for surfaces as well, if,
instead of circles, spheres are used as a measure.

Second, regarding the difference between two neighboring triangles, a growth
ratio is defined as

G R = T he maximum allowed change in the si ze of two triangles

T he distance between them
· m

m
. (5)
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Examples of the effects of the deflection and growth ratio parameters can be seen
in Figs. 4 and 5, respectively.

2.2 Using an Octree Mesh as a Background Mesh

The BRep format, as stated above, can have certain discontinuities due to portability.
If that is the case, the mesh size of a face will not be propagated to its neighbors,
which can cause discontinuities in the surface mesh. To overcome this challenge, a
global background mesh is generated in the form of an Octree mesh [13]. The mesh
size is stored at the center of each leaf. The sizes of the leaves have to be roughly
equal to the mesh size they store and the sizes of neighbor leaves have to respect the
prescribed growth ratio. The algorithm goes as follows:

1. Define the axis-aligned bounding box of the model to be meshed.
2. Sample the points on the edges and faces of the model.
3. Take a point and calculate the mesh size.
4. Find the leaf that the point belongs to, and if its size is bigger than the mesh size,

divide it and find the new leaf it belongs to.
5. Repeat 4 until the leaf’s size is smaller or equal to the mesh size.
6. Store the mesh size at its leaf. If the growth ratio condition is not satisfied, update

the mesh sizes of its neighbors, so that the smaller size is always respected.
7. Repeat 3 until all points have been used.
8. Balance the Octree mesh [14].

An example octree mesh for a cylinder is shown in Fig. 3, and the resulting trian-
gular mesh is shown in Fig. 6.

2.3 Using the Advancing Front Method for Meshing
the Surfaces

Once a proper and consistent background mesh is created and the mesh size is
calculated and stored, the algorithm can proceed with the actual surface meshing.
TheAdvancingFront algorithm [15–17] is chosen, because of the highqualitymeshes
it can produce.

The algorithmstarts bymeshing themodel face by face. For each face, its bounding
edges are first meshed to create the initial front. Then, the triangulation of the face is
done in its 2D parametric space, to ensure convergence and to enable easier quality
checks.

In order to improve quality evenmore, Laplacian smoothing [18] and edge flipping
[19] are performed.

The algorithmwas tested in the Drivaer model, and the results are shown in Figs. 7
and 8.
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Fig. 3 The Octree background mesh around a cylinder with α = 10◦, G R = 0.1m/m

3 Changing the Shape of BRep Models

In order to insert CAD inside the optimization loop, there has to be access to its
parameterization. This must be done through the BRep format and its differentiated
version. The alternative would be to have access to differentiated versions of various
(commercial) CAD packages.

The independent differentiation with respect to the geometric parameters (i.e.,
control points, weights) of each face and edge, is not an option, as, after an optimiza-
tion cycle, the continuity of the model would not be respected. Thus, a more general
way to change the shape of the BRep model has to be found.

Geometric Morphing is a method that combines the morphing of surface meshes
and Reverse Engineering [20, 21]. It starts by morphing a surface using discrete
points on it, and then it attempts to fit these displaced points using the same surface
that described them initially.

Therefore, a surface mesh is generated on the faces and edges of the BRep model.
While it is generated, the mapping between each point and its surface parameters
(u, v) is kept. Then, the mesh is displaced using a Free FormDeformation Technique
[22] and a new surface mesh is acquired. Finally, that newly acquired mesh is fitted
by changing the initial BRep geometry.
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Fig. 4 Meshing of a single-face BRep model, under different angular distances. Top Left:
α = 20◦, G R = 0.1m/m. Top Right: α = 10◦, G R = 0.1m/m. Bottom Left: α = 5◦, G R =
0.1 m/m. Bottom Right: α = 1◦, G R = 0.1 m/m

Fig. 5 Meshing of a single-face BRep model, under different growth ratios. Left: α = 5◦,
G R = 0.25m/m. Middle: α = 5◦, G R = 0.4m/m. Right: α = 5◦, G R = 0.5m/m
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Fig. 6 The resulting surface mesh for the cylinder and its background mesh shown in Fig. 3

Fig. 7 Meshing of the DrivAER model shown in Fig. 1
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Fig. 8 Meshed areas of the DrivAER model of Fig. 7. Top Left: Back right window. Top Right:
Roof. Bottom: Left back door handle

3.1 Adjoint-Based Optimization and the Continuous Adjoint
Technique

During recent years, in CFD gradient-based optimization, the Adjoint Technique
[23–25] has received much attention, due to the fact that the cost of computing sen-
sitivity derivatives of an objective function J is independent of the number of design
variables. Therefore, the Adjoint technique, in its discrete [26, 27] or continuous
[23, 28–32] form, is excellent for large-scale optimization problems. In this article,
the continuous Adjoint formulation is used to calculate the sensitivity derivatives.

3.1.1 Primal Equations

The primal problem governed by the incompressible Reynolds-averaged Navier–
Stokes equations can be written as

R p = −∂ui

∂xi
= 0, (6)

Ru
i = u j

∂ui

∂x j
+ ∂p

∂xi
− ∂

∂x j

[
(ν + νt )

( ∂ui

∂x j
+ ∂u j

∂xi

)]
= 0. (7)

In Eqs. 6 and 7, u denotes the components of the primal velocity and p is the
primal pressure.
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3.1.2 Adjoint Equations

Let J be a function to be minimized by the computation of an optimal set of design
variables bn , n ∈ [1, N ]. The starting point of the continuous Adjoint formulation is
the formulation of the augmented objective function Jaug . Assuming a computational
domain Ω and its boundary S,

Jaug = J +
∫

Ω

vi Ru
i dΩ +

∫

Ω

q R pdΩ. (8)

In Eq.8 vi is the i-th component of the adjoint velocity and q is the adjoint pressure.
It is obvious, since the primal state equations must hold, that Jaug = J . Minimization
of J , therefore becomes minimization of Jaug .

δ Jaug

δbn
= δ J

δbn
+

∫

Ω

vi
∂ Ru

i

∂bn
dΩ +

∫

Ω

q
∂ R p

∂bn
dΩ +

∫

S
(vi Ru

i + q R p)nk
δxk

δbn
d S. (9)

InEq.9, two differential operators can be seen δ()/δbn and ∂()/∂bn . The first operator
denotes the total derivative and the second denotes the partial derivative. For a given
quantity �, these operators are connected through

δ�

δbn
= ∂�

∂bn
+ ∂�

∂xk

δxk

δbn
. (10)

The field Adjoint equations are then formulated so as to make Eq.9 independent of
variations in the primal state variables. These are written as

Rq = −∂v j

∂x j
= 0, (11)

Rv
i = v j

∂u j

∂xi
+ ∂q

∂xi
− ∂(u jvi )

∂x j
− ∂

∂x j

[
(ν + νt )

( ∂vi

∂x j
+ ∂v j

∂xi

)]
= 0. (12)

The time required to solve the Adjoint equations is equivalent to the time required
to solve the primal problem. This makes apparent the strength of the Adjoint tech-
nique: the time required for the sensitivity calculation is always two equivalent flow
solutions. The formula for the calculation of the sensitivity derivatives is omitted for
the sake of space. The presentation of the adjoint formulation of turbulence models
is omitted as well, for the sake of simplicity.
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3.2 Volumetric NURBS Free Form Deformation

In Sect. 1.2, the basics of Uni-variate and Bi-variate NURBS were shown. Here,
Tri-variate NURBS will be used in a similar way. The formula that gives us a point
inside a NURBS volume is

V(u, v, w) =
∑nCp

i=1

∑mCp
j=1

∑lcp
k=1 N p

i (u)N q
j (v)Nr

k (w) · wi, j,kPi, j,k
∑nCp

i=1

∑mCp
j=1

∑lcp
k=1 N p

i (u)N q
j (v)Nr

k (w) · wi, j,k

, (13)

which is the formula of surface NURBS, extended to three parametric directions.
The bounds of the control box are usually set to the bounding box. Then, any

point inside the bounding box can be mapped from x, y, z coordinates to u, v, w
coordinates using a point-inversion technique. The method proposed in [33] is sug-
gested because of its robustness. The point-inversion ensures that any point inside the
control box can be mapped and reproduced by the Volumetric NURBSwith machine
accuracy.

Assuming that an optimization is performed, after solving the primal and ad-
joint CFD equations, a sensitivity vector is acquired. Let us denote as J an ob-
jective function to be minimized that depends on the shape of an aerodynamic
object. Furthermore, let Xpi with pi ∈ [1, n] be the boundary mesh point coordi-
nates. Each Xpi can be mapped to parametric coordinates (u pi , vpi , wpi ) such that
V(u pi , vpi , wpi ) = Xpi . The n sensitivity vectors are going to be of the form d J

dXpi
.

Finally, the derivatives with respect to the control box points, at a specific set of
parameters, are

dV(u pi , vpi , wpi )

dPi, j,k
= N p

i (u pi )N q
j (vpi )Nr

k (wpi ) · wi, j,kPi, j,k
∑nCp

i=1

∑mCp
j=1

∑lcp
k=1 N p

i (u pi )N q
j (vpi )Nr

k (wpi ) · wi, j,k

. (14)

By the chain rule, this leads to the following:

d J

dPi, j,k
=

n∑

pi=1

d J

dXpi
· N p

i (u pi )N q
j (vpi )Nr

k (wpi ) · wi, j,k
∑nCp

i=1

∑mCp
j=1

∑lcp
k=1 N p

i (u pi )N q
j (vpi )Nr

k (wpi ) · wi, j,k

. (15)

Equation15 is used to transform the sensitivity vectors to control box sensitivities.
An optimizer can then be employed, which will relocate the control box.

3.3 Fitting the Displaced Surface Mesh

After relocating the control box by moving its control points, every surface mesh
point previously mapped inside the box will now be relocated as well. Therefore, the
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final task is to change the control point positions of the surface and curve NURBS
that make the BRep model best fit the relocated points. This is done using linear
regression [34]. For NURBS curves, Eq.1 can be written as

C(u) =
nCp∑

i=1

Ri (u) · Pi

with (16)

Ri (u) = N p
i (u) · wi

∑nCp
i=1 N p

i (u) · wi

.

For multiple grid pointsXpi , pi ∈ [1, n], Eq. 16 can be written multiple times and
set equal to the grid points

C(u1) =
nCp∑

i=1

Ri (u1) · Pi = X1

C(u2) =
nCp∑

i=1

Ri (u2) · Pi = X2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
C(un) =

nCp∑

i=1

Ri (un) · Pi = Xn,

or in matrix form

⎡

⎢
⎣

R1(u1) R2(u1) . . . RnCp(u1)

R1(u2) R2(u2) . . . RnCp(u2)
. . . . . . . . . . . . . . . . . . . . . . . . . .

R1(un) R2(un) . . . RnCp(un)

⎤

⎥
⎦ ·

⎡

⎢
⎢
⎢
⎣

P1

P2
...

PnCp

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

X1

X2
...

Xn

⎤

⎥
⎥
⎥
⎦

(17)

If we set the right-hand side of Eq.17 as equal to the displaced surface points and
then solve the over-determined system, for each edge, the control points acquired
will give the best fit to the displaced grid points in the least square sense. The
above methodology is applied to all edges and surfaces for which it can be easily
generalized. The CADmodel will follow the change of a control box as accurately as
possible, while still being described by the same NURBS geometry. An application
is shown in Fig. 9.
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Fig. 9 Morphing of a side mirror, courtesy of Trabant NT. Top: The initial geometry of the mirror,
along with the initial control box. Bottom: The mirror deformations, after its control box has been
subjected to two different twists

4 Conclusions

In this study, methods for connecting CFD and the Adjoint framework to the CAD
framework were shown.

Initially, a surface triangulator was built on BRep models. The triangulator can
overcome BRep discontinuities, as it depends on a global background mesh (Octree)
and is controlled by parameters that are dimensionless. Defaults can be easily located
for these parameters, andultimately, a scale-invariantmeshwill be created, depending
only on curvature. Thanks to the use of the Advancing Front method, the resulting
mesh will be of high quality and suitable for use as a basis for volume meshing.

Second, the Geometric Morphing Technique was shown, combining the aspects
of Free Form Deformation and Reverse Engineering. By performing an optimization
using this technique, the resulting model keeps its initial geometric properties (basis
degree, number of control points). Furthermore, because the model is described by
NURBS, it can be subjected to fine tuning and be manufacturable. Moreover, no
post-processing tool is required to reexport it to a CAD software.

Bothmethods were designed and programmed using a hybrid framework between
OCCT and OpenFOAM®, ensuring the open source nature and the portability of the
final applications.
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Cavitating Flow in a 3D Globe Valve

Daniel Rodriguez Calvete and Anne Gosset

Abstract The efficiency of control valves operating with liquids is highly condi-
tioned by the occurrence of cavitation when they undergo large pressure drops. For
severe service control valves, the subsequent modification of their performance can
be crucial for the safety of an installation. In this work, the solver interPhaseChange-
Foam, implemented in OF v2.3, is used to characterize the flow in a globe valve,
with the objective to evaluate its capability in solving cavitating flows in complex 3D
geometries. An Homogeneous Equilibrium approach is adopted, and phase change
is modeled using the Schnerr and Sauer cavitation model. Confrontation with exper-
imental data is carried out in order to validate the numerical results. It is found that
the solver predicts correctly the location of vapor cavities, but tends to underestimate
their extension. The flow rate is correctly calculated, but in strong cavitating regimes,
it is affected by the underprediction of vapor cavities. The force acting on the stem
is found to be more sensitive to the computation parameters.

1 Introduction

In nuclear power plants and petrochemical installations, certain specific control
valves play a critical role in the functioning of the plants. Therefore, these severe
service valves have to be responsive, precise and perfectly reliable. The efficiency
of control valves operating with liquids is highly conditioned by the occurrence of
cavitation when they undergo large pressure drops. In the vena contracta that devel-
ops in the restriction region, the fluid is accelerated such that the local pressure may
decrease below the vapor pressure and generate cavitation. When cavitation is fully
developed, it can modify the performance of the valve and even limit the flow rate
close to chocked flow conditions. In practice, the occurrence of cavitation is difficult
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to detect, because of the harsh and noisy conditions under which the valves operate.
This is why CFD has become an important tool for the design and characterization of
severe service control valves. However, it has scarcely been used up to now for cav-
itating flows, due to the important computational times involved and the sensitivity
of the solvers to empirical parameters. Chen and Stoffel [4] investigate the transient
effects of cavitation in a poppet valve during closure, but their computational domain
is axisymmetric and limited to the vicinity of the restriction region. Bernad et al. [1]
extend the analysis of cavitation to a 3D poppet valve. Beune et al. [2] were the first
to publish a validated CFD study with a safety relief valve. They show that taking
into account phase change in CFX allows for reducing the overestimation of themass
flow rate in the valve and the force exerted by the fluid on the stem in a spectacular
way. Couzinet et al. [5] also use a mixture model in CFX to predict the flow capacity
of a safety relief valve in cavitating regimes, and they propose a correction of the
liquid vapor pressure to take into account the effect of turbulence. The topology of
the flow field is very well validated with experimental data obtained through Particle
Image Velocimetry. Ferrari and Leutwyler [6] also propose a single phase numerical
study of the flow in a globe valve with Fluent. But more importantly, they perform
an extensive experimental study, gathering unsteady measurements of flow forces on
the stem and flow visualizations on a transparent mock-up.

Up to now, all the numerical studies were conducted with commercial codes.
In this paper, we propose evaluating the capabilities of the open source CFD code
OpenFoam® (OF) in predicting the unsteady cavitating flow in a 3D globe valve ge-
ometry. For that, we validate the performances of the solver interPhaseChangeFoam
using the experimental data of Ferrari and Leutwyler [6] to validate the results.

2 Numerical Approach

2.1 Governing Equations

To simulate cavitating flows, the two phases, liquid (l) and vapor (v), have to be taken
into account in the governing equations, and the phase transition mechanism due to
evaporation-condensation has to be modeled. In the interPhaseChangeFoam solver,
implemented in OpenFoam® v2.3, the two phases are assumed to be homogeneously
mixed and in mechanical equilibrium, following the Homogeneous Equilibrium ap-
proach. Hence, only one set of momentum and continuity equations is solved for the
mixture. It is assumed that there is no interaction and no slip between vapor bubbles.
The VOF (Volume of Fluid) technique is used to track the interface between liquid
and vapor.

Since liquid and vapor are assumed to be perfectly mixed within each cell of the
mesh, the density and viscosity of the mixture are expressed as a function of the
liquid and vapor volume fractions, αl and αv, respectively
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ρ = αlρl + αvρv (1)

μ = αlμl + αvμv (2)

The subscripts l and v stand for the properties of pure liquid and pure vapor,
respectively. The constraint condition to fullfill is

αl + αv = 1. (3)

To close the system, a transport equation for αl is needed. Using Eq. (1) in the con-
tinuity equation, and considering the mass transfer between phases due to cavitation,
the transport equation for αl can be derived as [11]

∂αl

∂t
+ ∇ · (αlU) + ∇ · (αl(1 − αl)Ur ) = ṁ− − ṁ+

ρl
(4)

where U is the velocity vector, Ur is the relative velocity vector at the interface
between the two phases, ṁ+ is the mass transfer rate by vaporization and ṁ− the one
by condensation.

2.2 Cavitation Model

The source term of mass transfer (RHS of Eq. 4) requires an appropriate cavitation
model. Different cavitation models can be found in the literature. In this work, the
cavitation model of Sauer and Schnerr [11] is chosen. This model considers an initial
amount of micro-spherical vapor bubbles with a radius R, which constitute nucle-
ation sites for cavitation. They grow and collapse according to the bubble pressure
dynamics governed by the first-order Rayleigh Plesset equation.

In the model of Sauer and Schneer [11], the vapor fraction is calculated based on
the volume of the spherical nuclei with radius R, and their number per cubic meter
of liquid, n0, as

αv = αl · n0 4
3
πR3 (5)

The combination of Reyleigh Plesset equation and Eqs. (4) and (5) gives the final
expression for the mass transfer source terms

ṁ+ = Cv(1 − αv)
3αv

R

ρvρl

ρ

√
2

3

|max(0, pv − p)|
ρl

(6)

ṁ− = Cc(1 − αv)
3αv

R

ρvρl

ρ

√
2

3

|max(0, p − pv)|
ρl

(7)

where R is derived from Eq. (5).
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As inputs, the model therefore requires the volumetric concentration of nuclei n0,
their initial radius R, and the empirical coefficients Cv and Cc. The latter depend
on the state of deaeration of the liquid and the mean flow. To quantify the influence
of those parameters in the OpenFoam® solver, a sensitivity study was conducted
for a sharp orifice by Gosset et al. [7], who concluded that there was no significant
difference between results for n0 ≤ 1010 m−3 and 10−7 ≤ R ≤ 10−5 m. In this work,
the value of the parameters are set at R = 5 × 10−6 m, n0 = 1014 m−3, Cv = 1 and
Cc = 2 (Cc = 2 because condensation is considered faster than vaporization). Note
that Cv and Cc are set empirically, and the latter values are known as being valid for
a wide range of flows.

Originally, in themodel bySauer andSchneer, the phase change threshold pressure
(pv) is assumed to be equal to the saturation pressure (pvap) in the absence of dissolved
gases. In this study, the value of pvap is set at 3540 Pa, which is estimated with
the Rankine formula for water at 26 ◦C. Nevertheless, several investigations have
shown significant effects of turbulence on cavitating flows e.g., [9]. Several authors,
including Singhal et al. [12] and Bouziad [3], have suggested taking it into account
by integrating in time the contributions of ṁ+

v and ṁ−
c assuming a probability density

function of the pressure fluctuations due to turbulence. Bouziad [3] proposes a simple
approach based on a correction of pv using the shear strain to modify the bubble
pressure. The corrected value of pv becomes

pv = pvap + (μ + μt )S (8)

where S is the shear strain and μt is the turbulent viscosity.
Couzinet et al. [5] and Rodriguez Calvete et al. [10] evaluate the effect of using

this approach in a safety relief valve and globe valve flows, respectively. They show
that turbulence effects contribute to an increase of up to 500% of the vapor threshold
pressure (pv), which directly influences the location and extension of cavitation.
It must be noted that this kind of approach is highly dependent on the quality of
turbulence prediction, therefore an appropriate turbulence model should be chosen.

2.3 Turbulence Model

For this 3D pressure-driven flow, a URANS model for turbulence is adopted instead
of Large Eddy Simulation, disregarded in this study due to its time cost. In this study,
the k − ω − SST has been chosen for all the computations. Default parameters of
the turbulence model were used. The Reynolds number varies between 1.81 and
3.3 × 105 for all of the cases in this study.

On the other hand, the strong pressure gradients expected in the flow make it
necessary to solve the boundary layer accurately up to the viscous sublayer, especially
close to the stagnation zone. This means that a high resolution mesh at the wall is
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needed, so that the use of standard wall functions is avoided. k − ω − SST adapts to
the local mesh density in the boundary layer region using the Spalding wall function
(nutSpaldingWallFunction). The y+ values range from 0.1 to 15 on the piston, with
an average of 5.

2.4 Computational Domain

The computational domain is defined from the geometrical model sketched in Fig. 1
whichmatches the geometry of a 2′′ commercial globe valve. It corresponds exactly to
the mock-up built by Ferrari and Leutwyler [6] to visualize the flow inside the valve.
Under cavitating conditions, Couzinet et al. [5] find that the flow is substantially
asymmetric in a safety relief valve, which is why the whole domain is simulated
here.

The mesh is designed with the meshing software Ansys-ICEM, using a fully
structured topology and only hexahedral cells. In order to preserve low y+ at the
wall, a special refinement in the restriction is made, as shown in Fig. 2. A focus on
the 6 mm lift of the stem is proposed in this study. A mesh independence study is
performed using three different grid sizes. Since cavitation develops not only in the
restriction region, but also downstream of the valve body, in the outlet duct, special
attention is given to the refinement of this region (Fig. 2). The results in terms of
volumetric flow rate (Q), transversal and axial force acting on the stem (Ftrans and
Faxial) are presented in Table 1 for the different meshes. Slight differences are found
between the coarse and the medium mesh, which become negligible between the
medium and the fine mesh. In addition, the extension of vapor cavities is very similar
for the two finest grids. Therefore, the medium mesh of 1.65 million cells is chosen
as the base mesh.

For the boundary conditions, a total absolute pressure is fixed at the inlet (pt,in)
and a static pressure is fixed at the outlet (pout ) (Fig. 1). For velocity, correspond-
ing Neuman conditions are set (i.e., pressureVelocityInlet at the inlet and
zeroGradient at the outlet).

Fig. 1 Valve model and
computational domain
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Fig. 2 Mesh restriction detail

Table 1 Results of the mesh sensitivity study

Cells × 106 Δp (bar) Q (m3/h) Faxial (N) Ftrans (N)

1.55 1.810 32.28 108.8 69.39

1.65 1.810 32.53 103.6 71.33

1.96 1.803 32.32 103.2 71.27

2.5 Numerical Methodology

The algorithm PIMPLE, which combines both SIMPLE and PISO for unsteady
simulations, is used in order to keep the computational time within reasonable limits.
It should be underlined that even if the time step can be set to guarantee the stability
of the solution, the phase change process due to cavitation is very fast, and the time
step must be sufficiently small so as to capture the relevant phenomena and control
the non linearities generated by the mass transfer term.

Regarding time schemes, the second-order backward and Crank Nicholson
schemes both result in numerical instabilities and divergence of the solution, even
with Co,max < 1. Therefore, a first order Euler implicit scheme is adopted. An adap-
tive time step based on a maximum Courant number, Co,max = 3, is set. For the
spatial discretization, second-order bounded schemes (limitedLinear 1.0)
are used for the divergence terms related to U, k and ω . For divergence of al-
pha div(phi,alpha) and for the compression of the interface div(phirb,
alpha), the vanLeer and interfaceCompression schemes are respectively chosen.
Regarding gradient schemes, cellMDLimited Gauss linear 0.777 is set
as default. To avoid unboundedness issues in k and ω, the edgeCellsLeast
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Squares 1.0 scheme is set. For Laplacian schemes, Gauss linear
limited 0.333 is used to overcome non-orthogonal features, which are diffi-
cult to avoid in such a complex 3D geometry.

3 Results

3.1 Operating Conditions

The numerical study is based on the experimental conditions described in [6]. The
authors run experiments for a set of cavitating conditions, varying the pressure drop
across the valve Δp and the valve opening (lift). To relate the pressure drop with the
intensity of cavitation, the cavitation number σ is defined as

σ = pin − pout
pin − pvap

(9)

The simulations are performed for valve openings of 6 and 4 mm. Table 2 reports
the conditions corresponding to the different computations.

The outlet pressure pout is set at values of 0.4 and 0.8bar , in order to induce
earlier cavitation. Cases Dp07 and Dp08, with pout = 0.8 bar, correspond to non-
cavitating conditions, in agreement with the experimental observations. In contrast,
cases Dp15-18-23, with pout = 0.4 bar, correspond to fully developed cavitating
conditions, as shown in Fig. 3.

Table 2 Experimental and numerical conditions

Cases Δp (bar) pt,in (bar) pin (bar) pout Q (m3/h) σ (−)

Dp07 Exp 0.67 1.62 1.47 0.8 20.98 0.47

OF 0.71 1.62 1.51 0.8 19.95 0.48

Dp08 Exp 0.83 1.74 1.63 0.8 22.90 0.52

OF 0.83 1.74 1.63 0.8 21.90 0.52

Dp15 Exp 1.49 2.10 1.89 0.4 28.61 0.80

OF 1.46 2.10 1.86 0.4 29.25 0.80

Dp18 Exp 1.74 2.50 2.13 0.4 30.78 0.83

OF 1.81 2.50 2.21 0.4 32.53 0.83

Dp23 Exp 2.33 3.00 2.72 0.4 34.71 0.86

OF 2.22 3.00 2.62 0.4 36.24 0.86
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Fig. 3 Isosurface αv = 0.5 at cases Δp = 1.5 bar (σ = 0.80) , Δp = 1.8 bar (σ = 0.83) and
Δp = 2.3 bar (σ = 0.86)

3.2 Influence of Turbulence on pv

Asmentioned above, the correction of pv (8) accounts for the influence of turbulence
on cavitation. Figure 4 shows the ratio of the corrected pressure threshold (Pv) and
the saturation pressure (Pvap), which confirms how the correction affects the areas
where cavitation is developed. Therefore, this correction is implemented into the
interPhaseChangeFoam solver to account for turbulence effects on the prediction of
cavitation.

3.3 Flow Topology

Figure 3 shows the extension of vapor cavities at 3 different pressure drops. It can
be seen how an increase of σ from 0.80 (Δp = 0.71 bar) to 0.86 (Δp = 2.22 bar)
leads to an increase of the vapor extension towards the valve outlet.

Finally, Fig. 5 illustrates the unsteady behavior of cavitation by comparing the
experimental observations with the predictions of OpenFoam®, both at Δp = 1.54
bar (lift 4 mm). Two isosurfaces, at αv = 0.5 and αv = 0.1, are superimposed to

Fig. 4 Vapor phase
iso-surface (αv = 0.5) with
and without pv correction in
OpenFoam®
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Time: 0.000 ms Time: 0.521 ms

Time: 0.976 ms Time: 1.513 ms

Time: 0.000 ms Time: 0.500 ms

Time: 1.000 ms Time: 1.500 ms

Fig. 5 Left: Experimental high-speed camera visualization (Lift 4 mm, Δp = 1.54 bar, Q = 23
m3/h); Right: Numerical cavitation sequences of isosurfaces αv = 0.5 (Blue), αv = 0.1 (Yellow),
with OpenFoam® (Lift 4 mm, Δp = 1.54 bar, Q = 26.4 m3/h)

illustrate the extent of vapor–liquid mixing. Experimentally, the sequence of images
is captured by a high-speed camera at a frequency of 13KHz, while the vapor fraction
fields are sampled at 2KHz. The sequences are synchronized in time to compare the
behavior of vapor cavities qualitatively. In this close-up, it can be clearly seen how the
vapor cavities grow in the restriction region around the stem, and extend downstream
the valve body in both cases. The location of vapor cavities is well predicted, and a
certain synchronization of the bubble growth and collapse can be seen as well.

3.4 Flow Curve

For single phase turbulent flows through control valves, the flow rate Q in m3/h is a
linear function of the square root of the pressure drop Δp in bar across the valve [8].
This relation is expressed as

Q = Kv

√
Δp (10)

where Kv is the flow coefficient, and the slope of the characteristic curve of the
valve. In fact, Kv represents the volumetric flow rate of water circulating in a valve
under a 1 bar pressure drop, at a given valve aperture. Under cavitating conditions,
the characteristic flow curve deviates from this linear behavior, until it reaches the
chocked flow condition. The latter occurs when Q no longer varies with Δp due to
a vapor blockage at the valve outlet.

The volumetric flow rates obtained numerically are compared to the experimental
data [6] in Fig. 6. The prediction by OpenFoam® presents a good agreement with
the experiments, with an error of 1.5% on the prediction of Kv. However, it can
be noticed that at the highest pressure drops, the flow rates predicted numerically
remain on a linear curve, while the experimental values deviate slightly from their
linear evolution. This indicates that the solver tends to underestimate the influence
of vapor cavities on the head loss across the valve.
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Fig. 6 Characteristic flow
curve for a valve opening of
6 mm

 10

 15

 20

 25

 30

 35

 40

 0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5  1.6

Q
 (

m
3 /h

)
p ( bar)

Exper. pout = 0.4bar
Exper. pout = 0.8bar

OpenFoam

3.5 Forces on the Stem

The experimental study [6] focuses on the components of the force acting on the
stem. Figure 7a, b compare the axial and transversal force components found experi-
mentally and numerically, at 4 and 6mm lift, respectively. It can be seen that the code
strongly underestimates the transversal forces and overestimates the axial forces at
6 mm lift (error up to 350%), while at 4 mm lift the error on the axial forces is less
than 20%. Unfortunately, the experimental data of transversal forces at 4 mm are not
available. This behavior, where the axial force is dominant, normally corresponds
to small valve apertures [6]. It is at larger apertures that the force ratio is inversed,
possibly due to the acceleration of the fluid under the disk, which generates lower
pressures. According to experimental results [6], transversal forces are already dom-
inant at a valve opening of 6 mm. Probably, the transition between the two behaviors
(axial/transversal dominant force) is located within this range of lift (4–6 mm). Axial
force measurements are also known to be affected by the friction of the stem in its
seating, which may cause a bias in the measurement of the hydrodynamic force.
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Fig. 7 Forces on the stem
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4 Conclusions

In this work, the interPhaseChangeFoam solver is assessed for the simulation of
a 3D cavitating flow in a globe valve that was characterized experimentally. The
code succeeds reasonably well in predicting the flow rate through the valve, but
it tends to underestimate the mass transfer by cavitation, which explains why the
quality of the predictions decreases slightly under conditions of fully developed
cavitation. Qualitatively, OpenFoam® correctly calculates the location of cavitation,
and the highly unsteady behavior of cavities is well reproduced. Regarding the force
exerted by the fluid on the stem, at 6 mm lift, it predicts an axial force larger than
the transversal one, in contrast with the experiments, possibly due to measurement
errors. A similar behavior was found with a coupled solver in Ansys-CFX [10].
The simulations at 4mm lift are in much better agreement with the experiments in
terms of axial force prediction. Probably, the transition between the two behaviors
(axial/transversal dominant force) is located within this range of lift (4–6 mm). The
influence of the treatment of the vapor phase is also under investigation, to try to
improve the prediction of vapor extension.
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CFD Analysis and Optimisation of Tidal
Turbine Arrays Using OpenFOAM®

G. R. Tabor

Abstract Tidal estuaries represent a significant and accessible source of renewable
energy for modern society. The regular nature of the tides makes this a valuable
resource to exploit. Tidal turbines that extract energy from tidal currents would be
one way to do this. The shallow nature of estuaries suggests that these would need to
be low power units linked together in large farms, and themodelling and optimisation
of such farms of turbines is a significant challenge. In this chapter, I report on a major
research effort to model a possible turbine, the AquaScientific Lift/Drag turbine, and
the development from this of a simplified CFD model, the Immersed Body Force
method, to allow for simulation of small arrays. Following from this, I report on the
development of surrogate modelling techniques to allow the prediction of outputs
from larger arrays and optimisation using Genetic Algorithm techniques.

1 Introduction

Several factors combine to drive forward the search for renewable and decarbonised
forms of energy, in particular, the finite availability of non-renewable sources such
as oil (with the imminent arrival of ‘peak oil’) and the global warming effects of our
current carbon-intensive fuels such as coal. Several renewable energy sources are
now competitive in the market place with minimal subsidy, such as wind and solar
energy. However, these do suffer from inherent deficiencies as they are, by nature,
intermittent—nowind turbine will generate power if the wind is not blowing, and the
output from a solar panel is seriously reduced when the day is cloudy. Tidal energy
has significant advantages over these other sources in that the tides, driven by the
motion of the moon, are entirely regular and predictable, with two high and two low
tides over the course of (slightly over) 1 day, and thus significant tidal currents occur
4 times in this period. Although the flow speeds are lower than for wind, the much
higher density of water means that significant energy is contained in these flows.
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1.1 Esturine Tidal Energy

Marine tidal energy has been extensively researched in recent years, with numerous
generating devices being proposed, including several of an ‘underwater windmill’
type.Themarine environment, however, is a very challenging environment towork in,
with other forces such as wave impact to contend with, as well as the corrosive nature
of seawater; and there is also the challenge of transporting any generated electrical
power to shore. In many ways, esturine tidal energy may represent a better route to
harnessing the power of the tides. River estuaries are, of course, tidal, with significant
head changes and flow speeds associated with, for example, the Severn estuary—an
estimate of the UK tidal resource suggests that the top 10 sites around the UK could
contribute up to 36TWh/year, about 10% of UK energy needs [1]. River estuaries
are more benign environments than deep marine ones, being sheltered from the most
powerful wave surges. They are also more accessible, both in terms of cabling to
deliver the electrical power to shore, and also for installation and maintenance of any
devices.

Numerous approaches have been proposed to harness tidal power in estuaries.
The best known are barrages which block the estuary, holding back the tide on one
side until sufficient difference in head has been created to drive a low-head turbine.
The La Rance installation in France is the only current commercial installation [2]
although various variants of this idea have been and continue to be considered for
the Severn Estuary in the UK. A variant of the barrage idea is a tidal pool or lagoon,
in which a portion of the estuary is isolated by a closed loop of barrage, once again
allowing the exploitation of head differences generated by the tides. All barrage
schemes, however, suffer from the problem of high initial capital outlay; the whole
scheme has to be completed before any electricity can be generated. In the case of
the Severn barrage, this could be an investment of tens of billions of £ up front. Full
barrages also block the estuary, leading to environmental changes such as silting,
and challenges to accommodate other users of the estuary such as shipping.

An alternative approach is to capture energy not from head differences, but from
tidal currents through some form of turbine. These could be similar in design to
proposed marine current turbines (so standard horizontal axis turbines would be
possible) or they could be more innovative. The shallow nature of estuaries suggests
that cross-flow turbines that intercept the flow through a cylindrical region imme-
diately below the surface may have advantages. Examples include the Transverse
Horizontal AxisWater Turbine (THAWT, see Fig. 1), vertical axis Darrieus turbines,
as well as AquaScientific’s Lift/Drag turbine studied in this work (also illustrated in
Fig. 1). Most significantly, such turbines could be built and installed singly, and a site
could begin generating power as soon as a single turbine was in place, providing a
less steep path to commercialisation. However, the shallow nature of the estuary also
implies that individual turbines are likely to be low power (10’s of MW each), and
so a commercial scale installation is likely to involve hundreds of turbines working
together. The interaction of such turbines must be studied and techniques developed
to predict and optimise power generation for such farm arrays.
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Fig. 1 Some illustrative tidal cross-flow turbines. Top: Transverse Horizontal Axis Water Turbine
(THAWT). Image credit: Kepler Energy Ltd. Bottom: AquaScientific Lift/Drag turbine

1.2 Lift/Drag Turbine

The Lift/Drag turbine was proposed a few years ago by the startup company Aqua-
Scientific as an esturine tidal turbine. It is a cross-flow turbine similar in action to
a Voigt-Schneider impeller, consisting of individual rectangular turbine blades that
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can rotate around their long axis, mounted on an armature rotating on a parallel axis
at 1/2 the rotational speed. The blades act in drag mode on one side of the turbine;
as the armature rotates, the blades reorientate to develop lift on the other side of the
turbine, with the net effect that the blades generate a consistent torque throughout
much of their rotation. The unit is bidirectional, i.e. it will generate power from tidal
flow in either direction and is also self-starting. It operates as a cross-flow turbine,
with a relatively high blockage factor; it could be installed to operate just below the
water surface and intercept a large fraction of the upper (high-energy) flow. More-
over, energy is extracted through the swept volume (a cylindrical volume) as against
a swept disk for a standard HAWT arrangement, resulting in a high efficiency of
extraction.

1.3 Project Aims

The objective of the project1 was to develop techniques for modelling and opti-
mising arrays of tidal turbines, concentrating on the Lift/Drag design proposed by
AquaScientific, but capable of being extended to other specific designs. A multilevel
approach was adopted to accomplish this. Detailed CFD (and experimental) work
was undertaken to understand the complex behaviour of flow around the turbine,
using RANS modelling and sliding mesh in OpenFOAM® [3–6]. Although highly
accurate, this was computationally extremely expensive, even in 2D, and so a larger
scale model was developed and implemented in OpenFOAM®. This was an empiri-
cal model of the turbine behaviour using body forces to represent the effects of the
blades, referred to as the Immersed Body Force (IBF) model, similar to the Actuator
Disk/Actuator Line models commonly used for HAWT turbines, and this allowed
the LES simulation of single and small groups of turbines. Whilst computationally
less costly than the detailed CFD, the model was still too expensive to run a full
installation of hundreds of individual turbines, or to run multiple cases to optimise
the farm layout or operation. For the largest scale, therefore, a surrogate modelling
approach was adopted; a limited number of farm simulations were run using the IBF
model and appropriate symmetry boundary conditions to represent larger (techni-
cally infinite) farms, and various approaches were used to create surrogate models.
Surrogate models are computationally inexpensive models which are fit to the CFD
results to cheaply model the inputs/outputs relation for the system; this could then be
used in a genetic algorithm optimisation system to explore the optimal configuration.

The rest of the chapter divides into three main sections. In Sect. 2, I present the
results from the detailed CFDmodel using RANS and slidingmesh (GGI). In Sect. 3,
results are shown from the development of the IBF method. Finally, in Sect. 4, the
surrogate model derivation and array optimisation work is presented.

1Optimal Design of Very Large Tidal Stream Farms; for Shallow Esturine Applications, EPSRC
project EP/J010138/1.
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2 Detailed CFD

In parallelwith the computational programme, a series of tank-scale testswere carried
out with a turbine of radius R = 0.055m and blade chord lengths between 0.05 and
0.095m. This was adopted as a standard turbine, and all CFD simulations in this
paper refer to turbines of this radius, with blade chord length 0.05m. The blade
profiles were arcs of circles of radius 0.2m.

For the detailedCFDcalculations, transient simulationwithpisoFoamwas used,
with an adapted k–ω-SST model wall resolved to y+ ∼1 to 2. The mesh was 2D,
constructed using the commercial meshing code Pointwise. Because of the complex
nature of the blade motion, five independent mesh regions were established; one
circular domain for each blade rotating within a larger circular domain representing
the armature, itself rotating within an extended rectangular domain representing the
exterior flow. The mesh structure is shown in Fig. 2. The cell count was 100,000 cells
with gradual mesh inflation. The turbulence model adaption was required as initial
simulations demonstrated a significant dependence of the results on the turbulence
level at the inlet (a result observed independently elsewhere, see [7]). As a result, the
standardOpenFOAM® k–ω implementationwas adapted to include the sustain terms
developed by Spalart and Rumsey [8] to keep the turbulence level at an appropriate
level.

The results are shown in Figs. 3, 4 and 5. The wake region behind the turbine
is captured well, and indeed the details of the vortex shedding from the blades and
blade/vortex interactions are all resolved. The physical processes being modelled

Fig. 2 Computational mesh for the rotor for GGI sliding mesh calculations. The 5 independent
mesh regions are shown in different colours; each blade requires its own rotatingmesh region within
the armature region, which itself rotates within the outside mesh
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Fig. 3 Instantaneous vortex shedding behind the turbine

Fig. 4 Time-resolved forces/torques on the Lift/Drag turbine blades

here are extremely complex, with aspects of transient stall being resolved as the
blades pass through a full 360◦ rotation. Individual blade forces and torques were
calculated (Figs. 4 and 5), enabling time series data on these as shown in the graphs
(phase angle is equivalent to time in the computation). In addition, wake recovery
was also plotted. This was compared with the limited amount of experimental data
available at the time and discrepancies noted; the rate ofwake recoverywas somewhat
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Fig. 5 Time-resolved power for the Lift/Drag turbine

reduced compared to the experimental data, probably due to the lack of 3D effects
in the simulation. Further details can be found in [9]. However, the detailed CFD
simulations were already computationally expensive (around 5 days on 16 cores of
a parallel machine, see Table 1) and the costs of moving this to full 3d simulation
were thought to be prohibitive. Accordingly, a new method had to be developed to
represent the turbine in a less costly fashion, as discussed in the next section.

3 Immersed Body Force Method

The slidingmesh approachdetailed inSect. 2 gives detailed results on themotionof an
individual turbine but is extremely expensive; given limited computational resources,
it was only possible to run simulations in 2D. Thus, a newmodel for the turbines was
developed, referred to as the Immersed Body Force technique [10]. This is similar
to the actuator disk/actuator line models used for HAWT turbines (wind and water)
in that it represents the turbine in terms of spatially constrained body forces within
the domain, as shown in Fig. 6. The development of this model not only alleviated
the requirement to resolve the rotational motion of the blades but it also massively
reduced the meshing requirement close to the blades, enabling the problem to be
calculated on a coarser, more uniform mesh. This enabled computational resources
to be redirected into other physical modelling issues; the calculations were run in
3D, with LES modelling using the oneEqEddy SGS model, and VOF to represent
the presence of the free surface.
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Fig. 6 Body forces for the IBF method. There are two sets of forces involved; one set representing
the blades and the other the rotational motion of the system

In the IBF approach, two sets of body forces were introduced to represent the
turbine; one set representing the blades themselves and a second set as a ‘vortex
ring’ in an attempt to mimic the effect of the rotation of the overall system on the
armature.

F = FD + FL (1)

Since the motion of the individual blades in this case is not explicitly simulated,
we cannot evaluate the mechanical power directly; however, a standard technique in
actuator disk theory is to relate this to the momentum change across a control volume
around the turbine.

3.1 Validation

Results from this are shown in Figs. 7 and 8. Laboratory testing was carried out for
a single turbine in a flow channel, with flow rate and turbine rotational speed being
measured under a range of imposedmechanical torque conditions. The rotational rate
was recorded optically using a light gate; the flow rate was measured with a rotorme-
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Fig. 7 Calibration of the IBF model against experimental results for the power curve

Fig. 8 Results for a single IBF turbine. A vertical section through the midline of the turbine is
shown, featuring vortex shedding very similar to that seen in the GGI simulations

ter, and the imposed torque varied mechanically. The resulting data was compared
with functionally equivalent CFD simulations (Fig. 7) to calibrate the coefficients in
the model (for further details see [10]). Simulations of individual turbines (Fig. 8)
show vortex shedding consistent with the resolved CFD shown above (Sect. 2) and a
wake recovery consistent with more detailed experimental results [10, 11]. Compu-
tational costs were considerably reduced, with a calculation for an individual turbine
taking 17h on 12 cores with a mesh resolution of 148,000 cells, as shown in Table 1.
Further details of the calibration and results from comparison with measured wake
profiles are provided in [12].
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Fig. 9 Results for a farm array of 7 turbines, plan view through the turbine centre. Turbine-wake
interaction can be studied with these arrangements

3.2 Farm Modelling

The lowered costs of the IBF model made it conceivable to undertake simulation of
multiple turbines in farm arrays. Farms of 7 and 15 turbines were investigated with
both inline and staggered configurations [13, 14], and the effects of turbine–turbine
interaction investigated . Some typical results are shown in Fig. 9 for a 7-turbine
array demonstrating the wake interaction with downstream turbines [14, 15]. The
mesh size for this calculation was O(106) cells and typical calculations took 44h for
this, as listed in Table 1.

4 Optimisation

The overall objective of the project was to investigate optimisation of the tidal arrays.
A tidal array is likely to consist of several rows of turbines, creating an optimisa-
tion problem of determining the streamwise and spanwise distances between the
individual turbines, with the additional possibility of separations being different be-
tween rows. This optimisation problem would be faced at installation, requiring the
designers to find the best possible siting for the different turbines. Additionally,
it may be desirable to vary the loadings so that the first row of turbines does not
necessarily extract the maximum power; the optimum power for the farm may be
achieved by optimising power takeup in rows further downstream. This part of the
optimisation might change according to the current flow conditions, and so might be
variable throughout the tidal cycle, throughout the year (spring and neep tides) or
even possibly throughout the turbine’s lifespan. However, a straightforward power
maximisation from the farm is not the whole issue either, since the cost of the in-
stallation must also be considered. With any renewable energy source, the efficiency
of the system is of lesser importance (since the energy is ultimately free) than the
cost per unit of power generated, and so we are also interested in minimising the
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cost of the farm. For a fixed number of turbines, the costs will scale with the cost of
the cabling, and so the area of the farm was thought to be quite a good metric of the
cost of construction. Hence we have a multi-parameter, multi-objective optimisation
problem to investigate.

Genetic Algorithms are a known approach for multi-parameter optimisation. In
a GA, a genome representing the values for all the input parameters is defined,
and an initial population representing a spread of parameter values is created. The
fitness of each individual in the population is evaluated through calculating some
form of cost function (here, calculating the power generated from the farm and
its total area). Then, less-fit individuals are eliminated from the population, and a
new generation of individuals created from the survivors through a combination
of genetic recombination and mutation. The process then repeats through several
generations (typically 30–50). The process is advantageous as it thoroughly explores
the parameter space, thus reducing the likelihood of getting trapped in a local optima,
and at the same time it reliably identifies the global optima for the system. For a
multi-objective problem, as this one, the result is a set of non-dominated solutions
known as the pareto front, which represents the best possible tradeoff between the
different objectives. In this case, these will be the best possible solutions for any
given combination of power output and area; for any given non-dominated solution
there is no solution possible which is better in both power and area; any increase in
power will be at the expense of a larger farm area (and vice versa). Such information
would be enormously valuable for a tidal farm designer.

However, there is still a problem. As shown in Table 1, the cost of simulating
a modest array of 7 turbines was 44h on 12 cores. Scaling this to represent the
cost of simulating, say, 30 individuals in 30 generations gives 39,600 h, or around
4.5 years’ calculation. Thus, it was decided that an intermediate stage would be
needed in the form of a surrogate model, a simplified mathematical model that can
be fit to a limited subset of core data and then used to extrapolate the results for
any set of input parameters. Various approaches for the surrogate model have been
investigated. Kriging, in which the value of the surrogate function at any given point
is predicted from aweighted average of the known values in the neighbourhood of the
point, is a statistical technique closely related to regression analysis, which provides
an explicit functional evaluation of the input–output relationship. Other techniques
used in the literature include Artificial Neural Networks, which can be trained to
provide a learned relation between inputs and outputs, although this is only an implied
relationship from the ANN, not an explicit mathematical formula. Whichever form
of surrogate model is used, the number of CFD evaluations necessary to derive it is
considerably smaller, in our case a few 10’s of evaluations suffice, against the 900
necessary for the direct optimisation (Fig. 10).

To simplify the problem, a three-row tidal farm was investigated, using three indi-
vidual turbines and symmetry boundary conditions as shown in Fig. 11 to represent
infinite arrays of turbines in the spanwise directions. The longitudinal and lateral
distances between the turbines and their loadings were varied in discrete steps, rep-
resenting six different parameters to explore, or 592,704 different discrete layouts.
Both staggered (as in Fig. 11) and inline arrangements were investigated. The stan-
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Table 1 Table showing typical computational times for the different simulations run on ‘Callisto’,
a CFD computer cluster at Exeter. Nodes on the cluster comprise 4xIntel Xeon E5-4620 CPU’s with
8 cores each running at 2.20GHz, and 132GB RAM per node

Case Details Spec Time

GGI 160k cells, 30 revolutions 16 cores 5 days

IBF 1 turbine, 148k cells 12 cores 17 h

IBF 7 turbines, 1M cells 12 cores 44 h

Fig. 10 Results for the farm optimisation, showing both inline (tandem) and staggered configura-
tions. The Pareto front (non-dominated solutions) is marked with square boxes

dard practice was adopted of using a Latin hypercube technique to sample the initial
parameter space, with 30 evaluations of the CFD model to generate the surrogate
model, together with further evaluations to refine the model as the optimisation pro-
cess proceeded. Various surrogate models were investigated [16]; the results shown
here use Kriging. Figure 4 plots the initial and final population sets for both staggered
and tandem (inline) arrangements, plotting power generation against farm area. The
non-dominated solutions are shown in square boxes and from a Pareto set in the top
left-hand part of the figure. This seems to saturate at a power extracted of around
37W and area of about 4m2, suggesting that above this area, the turbine wakes do
not interfere, and thus there is no benefit to an increased turbine spacing beyond this.
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Fig. 11 Unit cell layout for the staggered configuration

5 Conclusions

In this chapter, I report on a significant research programme in tidal renewable en-
ergy. This has involvedCFD simulationwithOpenFOAM® at all levels, fromdetailed
simulation of a novel cross-flow turbine (the AquaScientific Lift/Drag turbine) us-
ing GGI methods, to the development of a cheaper Immersed Body Force (IBF)
representation which has allowed the simulation of these turbines in 3D (including
detailed resolution of the wake and free surface) and of small groups of turbines.
From this, the project was able to develop a methodology for multi-objective opti-
misation of turbine farms using a combination of surrogate modelling and Genetic
Algorithms. Whilst this was demonstrated on a small idealised array, with sufficient
(and not unachievable) additional computational resources, the methodology could
be expanded to cover realistically sized farms.

Acknowledgements This work has involved a significant number of collaborators, too many to list
as co-authors on the paper. On the CFD side, this has involved Dr. Mulualem Gebreslassie, Dr. Matt
Berry and Mr. Ben Ashby; the optimisation involved Prof. Dragan Savic, Dr. Michele Guidolin,
Dr. Helena Mala Jetmarova and Mr. Ogaday Willers Moore, and the project led by P.I. Prof. Mike
Belmont. Experimental work was overseen by Prof. Ian Bryden and Dr. Tom Bruce at the FloWave
facility at Edinburgh University. The work was funded by the EPSRC (Optimal Design of Very
Large Tidal Stream Farms; for Shallow Esturine Applications) and the Laing Foundation.

References

1. House of Commons Select Committee on Science and Technology. Wave and tidal energy –
seventh report 2000/01 (HC291), 2001.

2. R. H. Charlier. Forty candles for the Rance River TPP tides provide renewable and sustainable
power generation. Renewable and Sustainable Energy Reviews, 11:2032–2057, 2007.



64 G. R. Tabor

3. M. Beaudoin and Jasak. H. Development of an arbitrary mesh interface for turbomachinery
simulations with OpenFOAM®. In Open Source CFD International Conference, Berlin, De-
cember 2008.

4. M. Beaudoin, H. Nilsson,M. Page, R.Magnan, andH. Jasak. Evaluation of an improvedmixing
plane interface for OpenFOAM®. 26th Symposion on Hydraulic Machinery and Systems,
August 2014.

5. H. Jasak. Dynamic mesh handling in OpenFOAM®. 48th AIAA Aerospace Sciences Meeting,
AIAA Paper, January 2009. Orlando, FL.

6. H. Jasak and M. Beaudoin. OpenFOAM® turbo tools: From general purpose CFD to tur-
bomachinery simulations. In Proceedings of ASME-JSME-KSME Joint Fluids Engineering
Conference. ASME-JSME-KSME, July 2011. Paper No. AJK2011-05015.

7. T. Blackmore,W. Batten, and A. Bahaj. Influence of turbulence on the wake of a marine current
turbine simulator. Proc. Roy. Soc. A, 470(2170):20140331, 2014.

8. P. R. Spalart and C.L. Rumsey. Effective inflow conditions for turbulence models in aerody-
namic calculations. AIAA.J., 45(10):2544–2553, 2007.

9. M. J. Berry. Hydrodynamic Analysis of the Momentum-Reversal and Lift Tidal Turbine. PhD
thesis, CEMPS, University of Exeter, 2017.

10. M. G. Gebreslassie, G. R. Tabor, and M. R. Belmont. Numerical simulation of a new type of
cross flow tidal turbine usingOpenFOAM® - part i: Calibration of energy extraction.Renewable
Energy, 50:994–1004, 2013.

11. M.G.Gebreslassie, G.R.Tabor, and M.R.Belmont. CFD simulations for sensitivity analysis
of different parameters to the wake characteristics of a tidal turbine. Open Journal of Fluid
Dynamics, 2:56–64, 2012.

12. M. G. Gebreslassie, S. O. Sanchez, G. R Tabor, M. R. Belmont, T. Bruce, G. S. Payne, and
I Moon. Experimental and cfd analysis of the wake characteristics of tidal turbines. Int. J.
Marine Energy, 16:209–219, 2016.

13. M. G. Gebreslassie, G. R. Tabor, and M. R. Belmont. Investigation of the performance of a
staggered configuration of tidal turbines using CFD. Renewable Energy, 80:690–698, 2015.

14. M. G. Gebreslassie, G. T. Tabor, and M. R. Belmont. Numerical simulation of a new type
of cross flow tidal turbine using OpenFOAM® - part ii: Investigation of turbine-to-turbine
interaction. Renewable Energy, 50:1005–1013, 2013.

15. M.G. Gebreslassie, M.R. Blemont, and G.R. Tabor. Comparison of analytical and CFD mod-
elling of the wake interactions of tidal turbines. In IWTEC2013, Aalborg, Denmark, 2–5th Sept
2013, 2013.

16. W.O.Willers Moore, H. Mala-Jetmarova, M.G. Gebreslassie, G. R. Tabor, M. R. Belmont, and
D. Savic. Comparison of multiple surrogates for 3d CFD model in tidal farm optimisation. In
Procedia Engineering. 12th International Conference on Hydroinformatics, HIC 2016, 2016.



Combining an OpenFOAM®-Based
Adjoint Solver with RBF Morphing
for Shape Optimization Problems
on the RBF4AERO Platform

E. M. Papoutsis-Kiachagias, K. C. Giannakoglou, S. Porziani,
C. Groth, M. E. Biancolini, E. Costa and M. Andrejašič

Abstract This chapter presents a combination of an OpenFOAM®-based contin-
uous adjoint solver and a Radial Basis Function (RBF)-based morpher forming a
software suite able to tackle shape optimization problems. The adjoint method pro-
vides a fast and accurateway for computing the sensitivity derivatives of the objective
functions (here, drag and lift forces) with respect to the design variables. The latter
control a group of RBF control points used to deform both the surface and volume
mesh of the CFD domain. The use of the RBF-based morpher provides a fast and
robust way of handling mesh and geometry deformations with the same tool. The
coupling of the above-mentioned tools is used to tackle shape optimization problems
in automotive and aerospace engineering. This work was funded by the RBF4AERO
“Innovative benchmark technology for aircraft engineering design and efficient de-
sign phase optimisation” project funded by the EU 7th Framework Programme (FP7-
AAT, 2007-2013) under Grant Agreement No. 605396 and the presented methods
are available for use through the RBF4AERO platform (www.rbf4aero.eu).

E. M. Papoutsis-Kiachagias (B) · K. C. Giannakoglou
Parallel CFD & Optimization Unit,
National Technical University of Athens (NTUA), Athens, Greece
e-mail: vaggelisp@gmail.com

K. C. Giannakoglou
e-mail: kgianna@central.ntua.gr

S. Porziani · E. Costa
D’Appolonia S.p.A., Rome, Italy
e-mail: stefano.porziani@dappolonia.it

E. Costa
e-mail: emiliano.costa@dappolonia.it

C. Groth · M. E. Biancolini
University of Rome Tor Vergata (UTV), Rome, Italy
e-mail: corrado.groth@uniroma2.it

M. E. Biancolini
e-mail: biancolini@ing.uniroma2.it

M. Andrejašič
PIPISTREL d.o.o. Ajdovščina, R&D, Department of Aerodynamics, Ajdovščina, Slovenia
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Nomenclature

RBF Radial basis functions
SD Sensitivity derivatives
FD Finite differences

PDE Partial differential equation
SI Surface integrals
FI Field integrals

E-SI Enhanced surface integrals

1 Introduction

During recent years, CFD-based aerodynamic shape optimization has been attracting
the interest of both academia and industry. The constituents needed for executing an
automated shape optimization loop include the flow solver, the geometry parameter-
ization (the parameters of which act as the design variables), an optimization method
capable of computing the optimal values of the design variables and a way to adapt
(or regenerate) the computational mesh to each candidate solution.

In the studies presented herein, the steady-state flow solver of the open-source
CFD toolbox OpenFOAM® is used to numerically solve the Navier-Stokes equations
for incompressible, turbulent flows.

Shape parameterization techniques can be divided into two categories, i.e., those
parameterizing only the surface to be optimized and those that simultaneously also
deform the surrounding nodes of the interior mesh. The great advantage of the latter
is that the interior of the mesh is also deformed, thus avoiding costly re-meshing
and allowing for the initialization of the flow field from the solution of the previous
optimization cycle, since the mesh topology is preserved. Here, a number of param-
eters controlling the positions of groups of RBF control points are used as the design
variables, using technology and methods of the RBF Morph software [2].

Gradient-based optimization methods require a high degree of effort to develop
but can have a cost per optimization cycle that does not scale with the number of
design variables, if the adjoint method is used to compute the sensitivity deriva-
tives (SD). In this work, a continuous adjoint method that takes into consideration
the differentiation of the turbulence model PDE is used to compute the SD of the
force objective function w.r.t. the design variables [7]. The adjoint solver has been
implemented in-house, based on the OpenFOAM®software.

The above-mentioned tools are combined in order to form an automated opti-
mization loop. Two applications are presented, namely the drag minimization of the
DrivAer car model [3], and the lift-to-drag ratio maximization of a glider plane,
developed by Pipistrel, a partner of the RBF4AERO project.
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2 Continuous Adjoint Formulation

The derivation of the adjoint equations, their boundary conditions and the SD ex-
pression, concerning flows governed by the Navier–Stokes equations coupled with
the Spalart–Allmaras model, starts with the definition of the augmented objective
function L,

L = J +
∫

Ω

uiR
v
i dΩ +

∫
Ω

qRpdΩ +
∫

Ω

ν̃aR
ν̃dΩ, (1)

where J is the objective function.We assume that J is defined only along the boundary
S of the flow domain Ω , so J = ∫

S JS,inidS = ∫
SW

JSW ,inidS + ∫
SO
JSO,inidS, where

S = SW ∪ SO, SW is the controlled solid wall, SO any other boundary of Ω and ni
the outward unit normal vector to S. Apart from J , L also includes the integrals
of the residuals of the momentum (Rv

i = 0), continuity (Rp = 0) and turbulence
model (Rν̃ = 0) equations, multiplied by the fields of the adjoint velocities ui, adjoint
pressure q and adjoint turbulence model variable ν̃a, [8]. Dropping the last integral
on the r.h.s. of Eq. 1 results in the so-called “frozen turbulence” assumption, which
neglects variations in the eddy viscosity field and leads to reduced SD accuracy,
possibly even to wrong sensitivity signs [8]. A review of continuous adjoint methods
for turbulent flows can be found in [7].

A literature survey shows that continuous adjoint can be formulated in two differ-
ent ways, which both give the same adjoint field equations and boundary conditions,
yet different expressions for the gradient of J with respect to (w.r.t.) bn, where bn,
n = 1, . . . ,N are the design variables.

The first formulation leads to SD expressions with Field Integrals (FI), including
the variations in the spatial coordinates x w.r.t. b, a.k.a. grid sensitivities. A typical
way to compute δx/δb is through finite differences (FD) at a cost that scales linearly
with N . The FIapproach starts by formulating

δL

δbn
= δJ

δbn
+

∫
Ω

(
ui

δRv
i

δbn
+ q

δRp

δbn
+ ν̃a

δRν̃

δbn

)
dΩ

+
∫

Ω

(
uiR

v
i + qRp + ν̃aR

ν̃
)δ(dΩ)

δbn
, (2)

where the last integral vanishes, since Rv
i = Rp = Rν̃ = 0 inΩ . By developing Eq. 2,

[4], integrals of expressions multiplied by δvi/δbn, δp/δbn and δ̃ν/δbn arise. By
zeroing those expressions in Ω , the field adjoint equations are formulated [7, 8]:
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Rq = −∂u j
∂x j

= 0 (3a)
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∂x j
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)
+ (−P(̃ν) + D(̃ν)) ν̃a = 0, (3c)

where P(̃ν) and D(̃ν) are the production and dissipation terms of the Spalart–
Allmaras RANS turbulencemodel, τ a

i j are the components of the adjoint stress tensor
and functionsCY ,Cν̃ can be found in [8]. Adjoint boundary conditions are derived by
zeroing the expressions multiplying δp/δbn, δvi/δbn, δ̃ν/δbn and δτi j/δbn in the sur-
face integrals of δL/δbn [7]. The remaining terms in δL/δbn yield the SD expression
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and tIi , t
II
i are the components of the tangential-to-the-surface unit vectors (in 3D

shapes). In Eq. 4, one should notice the presence of the field integral containing the
spatial gradient of the grid sensitivities.

The alternative SI formulation, with an SD expression comprised of Surface In-
tegrals, is based on the Leibniz theorem for integral variations, namely
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The last integral in Eq. 6 is usually ignored [6], by making the debatable assumption
that the flow PDEs are satisfied along the boundary. The SI formulation (by excluding
the last integral in Eq. 6) in shape optimization, leads to the SD expression

δJ
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]
δxk
δbn

dS + W (1). (7)

The SI formulation is, by far, less expensive than the FI formulation in problems
with many design variables. However, because of the elimination of the last surface
integral in Eq. 6, the accuracy of the SI formulation is not guaranteed. In contrast,
the FI formulation provides accurate SD.

A new, third formulation, referred to as the E-SI (Enhanced-SI) adjoint formula-
tion, was recently proposed in [4] by the NTUA group and is intended to alleviate
the accuracy issue of the SI formulation, while having almost the same computation-
al cost. Since the E-SI formulation was developed after the commencement of the
RBF4AERO project, it is not included in this software suite. In Fig. 1, the sensitivity
derivatives computed by the three different adjoint formulations are compared in
an indicative turbulent flow problem, in which the loss of accuracy caused by the
utilization of the SI approach is showcased.
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Fig. 1 Turbulent flow around the NACA0012 airfoil (Re = 106, ainf = 3◦, average y+ = 0.2):
Comparison of the lift SD computed by the FI, SI, E-SI and FD methods. The SD are computed
w.r.t. the x (first half points in the abscissa) and y (second half) coordinates of 24 NURBS control
points parameterizing the pressure and suction sides. For scaling reasons, the SI results have been
divided by 10
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3 RBF-Based Morphing

In this section, the mesh morphing algorithm based on RBFs is described. RBFs are
mathematical functions able to interpolate data defined at discrete (source) points in
an n-dimensional space. The interpolation quality depends on the chosen RBF.

In general, solving the RBF problem requires the solution of a linear system of
sizeM , whereM is the source points number. The RBF system solution is computed
after defining a set of source points and their displacement. Once the solution has
been computed, the displacement of an arbitrary node of the mesh can be expressed
as the sum of contributions from all source points. Hence, a desired modification
of the mesh nodes position can be rapidly applied preserving mesh topology. RBFs
can be classified by the type of support (global or compact) they have, meaning
the domain where the chosen RBF is non zero-valued. The interpolation function
s(x) = ∑M

i=1 γiϕ
(∥∥x − xki

∥∥) + h(x) composed of an RBF ϕ and a polynomial h of
order m − 1, where m is the order of ϕ, guarantees the compatibility with rigid
motions. The degree of the polynomial has to be chosen depending on the kind of
the RBF adopted. A radial basis fit exists if the coefficients γi and the weights of
the polynomial can be found such that the desired function values are obtained at
source points and the polynomial terms gives no contributions at source points, i.e.,
s(xki ) = gi, 1 ≤ i ≤ M ,

∑M
i=1 γiq(xki ) = 0 for all polynomials q with a degree less

than or equal to that of polynomial h. The minimal degree of h depends on the choice
of the RBF. A unique interpolant exists if the basis function is a conditionally positive
definite function [5]. If the RBFs are conditionally positive definite of order m ≤ 2
[1], a linear polynomial can be used h(x) = β1 + β2x + β3y + β4z. The subsequent
development assumes that the aforementioned hypothesis is valid. The γ and β

coefficients are obtained by solving the system for each of the three spatial directions

(
M P
PT 0

) (
γ

β

)
=

(
g
0

)
, P =

⎛
⎜⎜⎜⎝

1 xk1 yk1 zk1
1 xk2 yk2 zk2
...

...
...

...

1 xkM ykM zkM

⎞
⎟⎟⎟⎠ , (8)

where g are the known values at the source points and M is the interpolation
matrix defined by computing all the radial interactions between source points,
Mi j = ϕ

(∥∥xki − xk j
∥∥)

, 1 ≤ i ≤ M , 1 ≤ j ≤ M . P is a constraint matrix that aris-
es to balance the polynomial contribution.

The RBF method has several advantages that make it very attractive for mesh
smoothing. The key point is that, being a meshless method, only grid points are
moved, regardless of which elements are connected to them; this makes the method
suitable for parallel implementation. Though meshless, the method is able to exactly
prescribe known deformations onto the surface mesh: this is achieved by using all
the mesh nodes as RBF centres with prescribed displacements, including the zero
field to guarantee that a surface is left untouched by the morphing action.
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(a) DrivAer rear window (b) wing-fuselage junction

Fig. 2 Example of RBF points arrangement for the definition of two shape parameters: a the height
of the rear window of the DrivAer car model is controlled by a cluster of RBF control points; a
Box Encapsulation is used to limit the effect of the displacement in the vicinity of the windows; b
a similar set-up is used to define the deformation of the wing-fuselage junction close to the leading
edge

The industrial implementation of RBF morphing poses two challenges: the nu-
merical complexity related to the solution of the RBF problem for a large number of
centres and the definition of suitable paradigms to effectively control shapes. RBF
Morph deals with both, as it comes with a fast RBF solver capable of fitting large
datasets (hundreds of thousands of points in a fewminutes) andwith a suite ofmodel-
ing tools allowing the user to set-up shape modifications in an expressive and flexible
way. This performance is due to iterative solutions, the Fast Multipole Method and
Partition of Unity, as well as shared memory parallelism, the efficiency of which
depend on the problem size and has been proven up to 48 cores. RBF Morph allows
to extract control points from surfaces and edges, to put points on primitive shapes
(boxes, spheres, and cylinders) or to specify them directly by individual coordinates.
Two shape modifications used in this study are represented in Fig. 2.

Once the adjoint fields are available, it is possible to compute the SD w.r.t. shape
parameters defined by the morphing tool. To take into account the nonlinear fashion
of the morphing field, the grid sensitivities are generated through second-order FD
of the morphing field around the current design point. It is worth noting that in case
the FI formulation is used, grid sensitivities are required for the entire grid while,
for the SI or E-SI formulations, these are needed only at the deformable boundaries.

4 Optimization Algorithm

The gradient-based algorithm used to minimize the objective function consists of
the following steps: (1) Define the shape modification parameters, and compute the
grid sensitivities through FD. These are kept fixed during the entire optimization
loop. (2) Solve the flow equations. (3) Compute J . (4) Solve the adjoint equations.
(5) Compute the SD. (6) Update the design variables by using a descent method. (7)
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Morph the parameterized surface and displace the interior mesh nodes. (8) Unless
the stopping criterion is met, go to step 2.

Apart from step 1, which runs in serial using the RBFMorph tools, the rest of the
steps are executed within a single OpenFOAM®-based executable, which performs
all tasks in parallel. Steps 2 and 4 are the most costly parts of the algorithm, since
they require the solutions of PDEs, and have approximately the same cost. If the
FI formulation is chosen, SD computation can become expensive as well, in case
of many (of the order of hundreds) design variables. In case the E-SI formulation is
used, the cost of computing SD is negligible, as is the cost of the remaining steps.

5 Applications

In the first application, the drag minimization of the DrivAer car model, developed
by the Institute of Aerodynamics and Fluid Mechanics of TUMunich [3], is studied.
Specifically, the fast-back configuration with a smooth underbody, with mirrors and
wheels (F_S_wm_ww) is used. Following the standard practice of the automotive
industry, wall functions are used to effect closure on a grid of about 3.8 million cells.
Six design variables are defined in total. The part of the car surface parameterized
by each of them and the corresponding grid sensitivities are depicted in Fig. 3. The
convergence of the optimization algorithm using the FI and SI adjoint formulations,
along with a comparison of the pressure fields between the initial and optimized
geometries, is illustrated in Fig. 4. Lowering the rear windshield, creating a spoiler
at the end of the trunk and a boat-tail-shaped rear side led to increased pressure on
the rear part of the car and, thus, lower drag.

(a) Boat tail (b) Car height (c) Underbody front

(d) Underbody back (e) Mirror rotation (f) Rear window

Fig. 3 DrivAer optimization: Six design parameters are used to morph different parts of the car,
by controlling: a the boat tail, b the car height, c the front bumper, d the rear bumper, e the mirror
shape, f the rear window shape. In color, one may see |δx/δbn|. By computing SD on the initial
geometry, the variables depicted in (a), (c), (d) and (f) are identified as the ones with the highest
optimization potential
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Fig. 4 DrivAer optimization: Left: Evolution of the normalized drag in terms of the number of
iterations of the flow solver, following the FI and SI formulations. In each optimization cycle, the
flow solver runs for 1000 iterations. Kinks in the drag value indicate the first iterations after each
shape update. With the FI formulation, a drag reduction of 7% was achieved, whereas the SI gave
no more than 1.5% at approximately the same CPU cost. Right: initial (starboard) and optimized
(port) (with the FI formulation) geometries, colored based on the surface pressure

The second application is concerned with the shape optimization of a glider
plane targeting the maximization of the lift-to-drag ratio. The Reynolds number is
Re = 1.55 × 106 based on the wing chord, the Spalart–Allmaras turbulence model
is used, the mesh consists of about 4.7 million cells and the far-field flow angle is
10◦. The geometry is parameterized using four RBF-based design variables, depicted
in Fig. 5. The FI adjoint formulation is used, the convergence of the optimization

Fig. 5 Glider optimization: the grid sensitivities magnitude for the four design variables. (a) and
(b) parameterize the wing-fuselage junction close to the leading and trailing edges, while (c) and (d)
affect the upper glider surface. All design variables are bounded in order to prevent the generation
of non-manufacturable solutions
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Fig. 6 Glider optimization: a convergence of the lift-to-drag ratio (L/D), alongwith the lift and drag
values, normalized with the ones obtained using the initial geometry. A 15% lift-to-drag increase
is observed in four optimization cycles by mainly reducing the drag value and slightly increasing
lift, b the optimized glider geometry, colored based on the projection of the cumulative surface
displacement to the surface normal vectors of the initial geometry. Positive numbers indicate an
inward displacement while negative ones, an outward movement

Fig. 7 Glider optimization: near-wall velocity isolines, plotted on the glider surface for the a initial
and b optimized geometries. It can be observed that the low velocity area close to the trailing edge
has been considerably reduced

algorithm is shown in Fig. 6a and the optimized geometry is illustrated in Fig. 6b. In
Fig. 7, the near-wall velocity isolines are plotted on the glider surface for the initial
and optimized geometries.

6 Conclusions

An in-house developed OpenFOAM®-based continuous adjoint solver and an RBF-
basedmorpher, combined into an automated optimization software in the context of a
research project funded by the EU, were used as the constituents of a gradient-based
optimization algorithm. Two optimization problems of automotive and aerospace
engineering were studied, giving a more than 7% drag reduction in the DrivAer case
and a 15% lift-to-drag ratio increase in the glider case.
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Development of a Combined Euler-Euler
Euler-Lagrange Slurry Model

Alasdair Mackenzie, M. T. Stickland and W. M. Dempster

Abstract There has been a significant amount of work on modelling erosion caused
by slurries, however, these studies are normally focused on low concentrations. The
reason for this is usually that dense slurries are too computationally expensive to
model in the Euler-Lagrange frame. This presentation suggests a novel solution for
reducing computational effort using OpenFOAM to combine two solvers. The two
phases of the bulk flow are modelled, partially in the Eulerian-Eulerian reference
frame, and partially in the Eulerian-Lagrangian frame. The method aims to increase
computational efficiency, but still keep the necessary particle impact data at the wall
required for erosion modelling. The new model consists of splitting the domain into
two regions and using patch interpolation to couple them together. The particles
are then injected into the second region by using the values of the second Eulerian
phase from the first region. The values of the second Eulerian phase are written at
every time step to a lookupTable, enabling the solver to be used in conjunction with
geometry changes, etc., as in Lopez’s work (Lopez in LPT for erosion modelling in
OpenFOAM 2014, [1]). If the process can be validated, it provides a promising step
towards modelling dense slurry erosion.
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1 Introduction

Erosion caused by dense slurry (liquid/solid) flows is a common problem, and a
significant amount of work has been published by various authors [2–7]. The aim of
this piece of work is to find a more efficient way of modelling the fluid and particles,
so that the erosion modelling times can be improved without sacrificing accuracy.

The modelling of erosion of slurries using computational fluid dynamics (CFD)
can be grouped into two categories: Euler-Euler (EE) and Euler-Lagrange (EL). The
Euler-Euler technique models both the particles and fluid as continuous phases, and
since it is volume-averaged it is not computationally expensive. Euler-Lagrange, on
the other hand, models particles as individual entities (or parcels), having their own
velocity vectors. This means the particles have individual vector values at the wall,
which is substantially better for erosionmodelling than an averaged cell centre value.
The downside of Euler-Lagrange is that it is more computationally demanding, with
varying degrees; depending on one-, two- or four-way coupling. This can lead to
very large modelling times, which are unsuitable for most engineering applications.
A similar method of using a hybrid model for erosion modelling has been proposed
by Messa et. al [8], and by other authors to varied applications [9–11]. However, it
seems that all these papers view the addition of particles as a post-processing step,
rather than a runtime feature. This means that the models are one-way instead of two-
way coupled, as they are in this piece of work. One exception is the very recent paper
by Yu [12], in which the volume of fluid (VOF) method is coupled with Lagrangian
particles in the application of diesel spray modelling.

The method presented here proposes combining the two types of modelling
approaches into a hybrid model, which should enable shorter computational times,
but also, crucially, give the same results required for erosion calculations.

Outline of paper

The following will describe the creation of a new hybrid model. The mesh/domain
used was for development purposes, and therefore had large cells to keep solution
times down. Realistic results were not a major consideration at this development
stage, however, the mesh is good enough to compare the results of the various models
with each other.

Despite there being an abundance of research and work into erosion modelling
with CFD [6, 13–15], OpenFOAM is rarely used in the published literature. This
is not due to OpenFOAM’s results being less reliable; as the paper by Mackenzie
[16] shows, OpenFOAM gives similar results to other commercial CFD packages.
OpenFOAM was used in this study because the authors recognise its potential for
further unrestricted development in the future, a potential that would not be possible
with commercial alternatives.

It should also be mentioned that there is an online tutorial on the Chalmers Uni-
versity website [17] explaining in depth how the solver in this work was created.
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2 Current OpenFOAMModels

OpenFOAM 3.0.x was chosen to develop the hybrid model for its ease of develop-
ment, and for the fact that it already has multiple multiphase CFD models available.
Solvers were chosen according to their suitability for modelling dispersed two-phase
(liquid/solid) flows, with the outlook to model dense slurries. For the EL solver,
Lagrangian particles were used from the DPMFoam solver (governing equations can
be read in the paper by Li et al. [18]), which has been successfully used in other
papers for erosion modelling [19]. The discrete particle method (DPM) has suc-
cessfully been applied in various other applications for dispersed particulate flows
[20–25].

For the EE solver, reactingTwoPhaseEulerFoam was chosen (a detailed
tutorial on this solver by Phanindra can be read in [26] and the governing equations
are in the paper by Bhusare [27]). This is a solver for two fluids with a common
pressure but otherwise separate properties, and it was chosen because the energy
equation can be turned off, making the problem incompressible with no heat trans-
fer, which is as close to a slurry as is possible with a standard model. It should
be noted that this approach could be applied to any other multiphase model, like
twoPhaseEulerFoam, for example. The major drawback of the Eulerian models
in regard to erosion modelling is that there are no particles modelled, and therefore
no impact data at the wall.

3 Solver Development

To begin the second Eulerian phase conversion into particles, an interface or a region
was required, as in Yu’s paper [12]. An interface was chosen for this project, as it
seems to be the simplest option for the design engineer to implement in a practical
application. This interface should not affect the first phase, and not significantly
affect the overall resulting flow field. Therefore, the first step of development was
to create a domain, split it into two parts with the interface connecting the two, and
then make it run as if it was one single domain. This was done with the EE model
running through the two regions first. Once this was complete, the second (solid) EE
phase was turned off in the second region and Lagrangian particles added instead.

There are also some conceptual issues that should be highlighted. The main one
is that there is a transfer from a volume-averaged model to a particulate model, or
in other words, a transfer from less information to more information. The Euler cell
has one velocity vector and a volume fraction, which are both used to calculate the
number of particles to be injected with a certain velocity. For example, in a real-life
problem, two particles could be travelling through theEuler cell parallel to each other,
but at opposite sides of the cell. In the Euler CFDmodel, this would be represented by
one velocity vector pointing in the direction of travel; thus, when the two Lagrangian
particles are added, they will originate from the cell centre with the same speed and
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direction. There is also a potential problem with mass continuity due to rounding
errors, since the solver cannot inject a fraction of a particle.

A new solver was created by using the EE solver as a template. The following
attributes were added to the main .C file to create the hybrid model.

3.1 Mesh/Baffles/Regions

A simple 3D domain was created with blockMesh, and is shown in Fig. 1. A square
pipe bend is simple enough to converge, but complex enough to allow the user to see
if the solver is working as it should. The inlet is at the top, outlet on the bottom right,
and the other external faces are all walls. The bottom wall had a post-processing
patch on it called ‘bottom’ to allow for particle data acquisition.

Baffles are useful because boundary conditions can be set on them, providing a
suitable injection site for the particle injector and region interface. An .stl surface

Fig. 1 Domain showing the mesh and the baffle. The pipe’s dimensions are 10 × 10 mm, with each
piece being 100 mm long. The location of the baffle is shown in red
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was drawn and the createBaffles command was used to create the red baffle,
which can be seen in Fig. 1.

The hybrid model also has the potential to be two-way coupled between EE and
EL, and therefore regions were created with the splitMeshRegions command.
Regions are created above and below the baffle’s location, with the aim of Region 0
having EE and Region 1 having EL.

3.2 Interpolation

patchToPatchInterpolation, anOpenFOAMutility,was used to interpolate
the results fromRegion 0 to Region 1. In this simple test case, the topology above and
below is exactly the same, so the utility is superfluous here, however, the function is
added to facilitate future developments in which topologies might not be identical.
When baffles are created, a ‘master’ and ‘slave’ patch are formed, master on top
(Region 0) and slave on bottom (Region 1). Figure2 shows the iterative loop, and
this process repeats every timestep.

Fig. 2 Iterative loop using
patchToPatchInterpolation
[28]
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Fig. 3 Velocity contours of 1st Eulerian phase: cell centre values

The code for solving one region at a time was taken from chtMultiRegion
Foam, and modified to suit the case. This is a common method for developing in
OpenFOAM: taking an existing code and modifying it to suit. One major benefit is
that the user does not need to be fluent in the programming language to be able to
modify or manipulate solvers.

Before any particles were added, the solver was tested as a pure EE model to find
out if the interpolating routines were working as they should be. Figure3 shows the
velocity of water cell centre values before any particles have been added. The red
writing indicates the location of the interpolating routines and the baffles, and it can
be seen that the contour values of the cells on either side of the baffle are the same:
this is discussed further in Sect. 4.1. This is due to the interpolating code, and steps
should be taken to make the cells as small as possible when located next to the baffles
so as to reduce errors downstream. The contour plot is comparable to the simulation
result when the baffles/regions were not in place, therefore the baffles are not having
a significant negative effect on the results.
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3.3 Addition of Particles to the Solver

Now that there is verification that the regions and interpolating routines are working,
Lagrangian particles can be added to Region 1, and the second EE phase can be
turned off (if the second phase was not turned off, there would be a mass continuity
problem). The second phase is removed fromRegion 1 by setting the volume fraction
equal to zero on the slave patch (the ‘inlet’) in the main .C file, ensuring that the
interpolating routines do not overwrite it. The other boundary conditions should
be set to ‘fixed value’ on the slave patch, so that they can be overwritten by the
interpolating routines.

There aremultiple standard injectionmethods available inOpenFOAM.A slightly
modified version of kinematicLookupTableInjection was used, as it
allows the user to specify particle locations and velocities. The lookupTable does
not allow the user to control how many particles are injected from each site, there-
fore the injection model was edited to allow this. Another column was added to the
lookupTable, which was called numParcels. This is defined in Eq. 1 as

Nump = (αp ∗ Acell ∗ Vnormal)

(Volp ∗ Npp ∗ ΔT−1)
, (1)

where αp is the volume fraction of the particulate phase, Acell is the area of one cell,
Vnormal is the normal velocity component of the particulate phase, Volp is the volume
of one particle, Npp is the number of particles/parcel (user-defined), andΔT−1 is the
number of timesteps per second. Therefore, the number of parcels injected is based
on the volume flowrate from the first region.

The lookupTable is written at every timestep using the OFStream application,
with the values in the table taken from the master patch. Each cell on the master
patch has one row; since there are 100 cells in this case, there are 100 rows.

(x, y, z) coordinates are written from the cell centre locations; (u, v, w) velocity
vectors are written from the Eulerian velocity field; diameter, density and mass flow
rate are constant (mass flow rate is unused); and the number of parcels to inject is
based on the volume flow rate and the phase fraction of each cell. It is here that
rounding to integers could contribute to mass continuity issues. As a way to save
on computational resources, Parcels, which are groups or clusters of particles, are
injected instead of individual particles; the size of these is user-defined.

With the lookupTable defined, the ‘kinematicCloud.evolve();’ com-
mand from DPMFoam is added and the second phase of EE is turned off in Region
1 to preserve mass continuity. Figure4 shows the working model with a 2D slice of
velocity magnitude of the 2nd Eulerian phase, and the Lagrangian particles coloured
according to their velocity magnitude.
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Fig. 4 Hybrid model showing second phase velocity magnitude in the first and second regions as
a Eulerian fluid (z-plane slice) and as Lagrangian particles (particle tracks)

4 Initial Test of Model

To test the performance of the hybrid model, it was compared with both a pure EL
model, and a pure EE model. All three models were set up as a transient case in the
same manner, with the same boundary conditions as far as possible (inlet velocity =
2m/s, diameter of particles = 55microns, 3 particles/parcel). The injection parameters
for the EL case could not be identical to the other twomodels, as there are no particles
in Region 0. Therefore, the particles were injected uniformly over the face of the inlet
plane, using the same number of particles as the hybridmodel and the same cell centre
positions (but on the inlet plane).

Each solver was run from 0 to 0.39 s with the start of injection (SOI) set at 0.29
seconds for themodels with particles.With 1%mass concentration, 540 parcels were
added to each injection, with a total of around three hundred thousand parcels added.
A second test was carried out with 2% mass concentration, this time having 1100
parcels per injection.

Table1 shows the execution time of the three solvers, giving expected results:
the hybrid model is faster than the EL, but slower than the EE. The hybrid model is
almost 50% faster than the pure EL model in both cases.
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Table 1 Execution time from 0 to 0.39 s: % mass concentration (MC)

Model Execution time (s)

1% MC 2% MC

Hybrid model 225 298

Euler-Lagrange 420 585

Euler-Euler 102 105

Although the chief aim of the model is to be more computationally efficient, there
cannot be a large sacrifice of accuracy, therefore other parameters were compared.
The first phase (water) was compared between the three models, and the particle
impacts were compared among the hybrid and the EL model.

4.1 First Phase Velocity Comparison

Thehybridmodelwas used as a standard and compared against theEEandELmodels.
The cell centre value contour plots below represent the difference as a percentage, as
expressed in Eq. 2, where ΔVh−ee is the difference between the velocity magnitude
of the hybrid model and the EE model for the first (fluid) phase

ΔVh−ee = |Uhf −Ueef |
|Uhf | × 100, (2)

whereUhf is the velocity of the hybrid model fluid phase andUeef is the EE model’s
first phase of velocity. The same equation is used for the EL model, but with EL
substituted for EE.

Figures5 and 6 have the percentages clipped to +/− 100%, as there are two cells
that are very high/low, causing the contours to be difficult to read for the rest of
the domain (see captions for max/min values). The contours show that the majority
of the domain is the same among the three models, only varying by around 5%.
The positive values indicate where the hybrid model over-predicts, and the negative
values where it under-predicts relative to the standard models.

Both errors can be explained by the presence of the baffle/interpolating routine.
Figures7 and 8 show the location of the baffle (with red writing and a thin white line)
and the contours of the neighbouring cells. With the EL simulation, which has no
baffle present, the values of the cells over the baffle are different, whereas with the
hybrid model, they are the same. This is due to the way in which the interpolation
works, as the cells that neighbour the baffle always have the same value.
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Fig. 5 Hybrid-EE: Contours of Eq.1. Min = −300%, Max = 70%

Fig. 6 Hybrid-EL: contours of Eq.1. Min = −460%, Max = 80%
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Fig. 7 EL model: no baffle

Fig. 8 Hybrid model: with baffle



88 A. Mackenzie et al.

In a real problem, the error could be reduced by minimising the size of cells close
to the baffle, and also by choosing amore suitable location for the baffle. Considering
that the largest error is due to these two factors and the remainder of the domain is
almost the same as that of the original models, the results are deemed acceptable.

4.2 Particle Comparison

As mentioned, the particle impacts were compared between the pure EL model and
the hybrid model.

Figures9 and 10 show the bottom patch particle impacts; −0.005 m in the Z-
direction is the centre of the pipe, and the X-axis only goes up to 0.02 m, as only
the first impacts are considered. Both models were run with the dispersion model
switched off, and there are 5000 data points in each graph.

The differences in the graphs can be explained by a number of things. Firstly,
the hybrid model scatter looks less random, which could be due to the injection
site taking place only 10 mm above the surface, as opposed to 100 mm for the EL.
Another issue that has been described previously is the attempt to compare similar
injections. The hybrid model forces particles to be injected from the cell centres
each time, whereas by the time the particles get to the baffle in the EL simulation
from the inlet, they could be going through the cells on the baffle at any location.
Another consideration is that these graphs are also comparing OpenFOAM’s EE and
EL models: since the hybrid injection is based on the EE region, if the EE model is
wrong, then the injector will be wrong.

Fig. 9 EL particle impacts



Development of a Combined Euler-Euler … 89

Fig. 10 Hybrid model particle impacts

5 Future Development and Conclusion

Although still in the development stage, this model shows a promising outlook for
the future of slurry modelling, as it was twice as fast as the standard EL solver. As
mentioned earlier, the lookupTable is written t for every timestep, however, it is only
read at the start of the simulation. Although not necessary, there is potential here for
future work, as the injector would then be able to cope with large changes in the flow
field, e.g., mesh deformation caused by erosion.

The model currently only goes from EE to EL, but in a real application, it would
be desirable to go back from EL to EE. Particles remain active in the domain until
they exit; however, transferring them back to a Eulerian phase would save on com-
putational time.

The previous section has also mentioned the difficulty in comparing the hybrid
model to an EL simulation. There is scope within which to improve the injection
model so that it can inject from locations other than the cell centres, eliminating any
dependency on mesh density.

This study has shown the potential for the future of dense slurry flow modelling,
by creating a new hybrid model that reduces computational time without severely
affecting particle impact data, which is required for successful erosion modelling.
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Development of Data-Driven Turbulence
Models in OpenFOAM®: Application
to Liquid Fuel Nuclear Reactors

M. Tano-Retamales, P. Rubiolo and O. Doche

Abstract The following chapter presents a new approach for the development of
turbulent models, with potential application to the design of liquid fuel nuclear re-
actors. To begin the chapter, the work being carried out at LPSC (Grenoble) for
validating the modeling of molten salt coolants is presented, alongside a Backward-
Facing Step (BFS) geometry, which will be studied throughout this work. In the
subsequent section, various turbulence models are evaluated in the BFS and their ad-
vantages and limitations are analyzed, with the conclusion that some improvements
in the turbulence modeling are necessary. Therefore, the next section introduces a
methodology for developing a nonlinear closure for turbulence models by means of
Symbolic Regression via Genetic Evolutionary Programming (GEATFOAM). Then,
this new methodology is implemented for direct numerical simulation data of the
BFS, obtaining a new nonlinear closure for the standard k–ε model. Finally, the new
model is compared against classical turbulence models for the BFS, and, then, the
extrapolability of this model is analyzed for available experimental data of an axial
expansion in a pipe. Encouraging results are obtained in both cases.
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1 Introduction

Molten salt nuclear reactors are an auspicious new concept in the nuclear industry,
because of the innovative design and safety possibilities opened up by the use of
a liquid nuclear fuel [1]. In particular, among these reactors, the Molten Salt Fast
Reactor (MSFR) is a type of fourth-generation liquid fuel nuclear reactor, which is
presently being studied in the framework of the H2020 European project SAMO-
FAR (2015–2019) [2]. Among the undertakings of this project, the SWATH (Salt
at Walls: Thermal excHanges) experiment is being carried out at LPSC in Greno-
ble. This experiment intends to improve the understanding and predictions of the
thermal-hydraulic behavior of high-temperature molten salt internal flows over di-
verse geometries. The foreseen outcomes of the experiment are validated mathemat-
ical models for describing the heat exchange phenomena in such flows.

The experimental layout of SWATH (shown in Fig. 1) includes two tanks filled
with amolten salt (FLiNaK), a test section hosted inside a glovebox and instrumenta-
tion for performing the measurements. A pressure difference between the two tanks
generates a molten salt flow through the test section. No pump is therefore present
in the system, reducing the risks of component failure.

Thehigh complexity ofmolten salt flowsdemands a parsimonious validationof the
proposed mathematical models. Therefore, the substantiation process for the models
is executed in two steps: first, the fluid mechanics models are validated without
thermal exchanges in the SWATH-W facility (using water), and, second, the thermal
exchange models are tested in the SWATH-S facility (using molten FLiNaK). The
SWATH-W experiment is a one-to-one scale mockup operating with water, for the
purpose of validating the fluid mechanics models. The water flow in the mockup can
be generated either by the pressure difference between two tanks or by a centrifugal
pump. Precise Particle Image Velocimetry [3] measurements are performed on the
test sections (SWATH-W), allowing us to validate the proposed fluid mechanics

Fig. 1 The SWATH experiment
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models (without heat transfer). Afterward, the validated models are completed with
themodeling of the thermal exchange phenomena. Finally, by preserving the dynamic
similarity, the complete fluid mechanics and thermal exchange models are compared
against the data obtained in the main molten salt experiment (SWATH-S).

Computational Fluid Dynamics (CFD) is the name given to the simulation of
fluid dynamics phenomena by means of a computer. Different CFD techniques have
been proposed for resolving the mean and fluctuating components of the velocity
in a turbulent flow. The Direct Numerical Simulation (DNS) technique aims for
a complete resolution of both mean and fluctuating components at an expensive
computational cost [4]. For the purpose of reducing the computational cost while
resolving turbulence fields, Reynolds Average Navier Stokes (RANS) and Large
Eddy Simulations (LES) techniques apply integral filters to the velocity and model
the extra term appearing in the Navier–Stokes as a result of this filtering process [5].
In the RANS method, the velocity is time-filtered, whereas in the LES method, the
filters are spatiotemporal, allowing us to control the size of the resolved scales [6].

In order to perform the required multiphysics studies in the MSFR, thermal-
hydraulic models should be coupled to neutronics and thermal-mechanics models.
Given the reactor geometry and the complexity of the phenomena, onlyRANSmodels
present a good compromise between computational cost and accuracy [7].

A Backward-Facing Step (BFS) geometry has been selected as one of the sections
to be studied in the SWATH experiment, since the flow phenomena in this geometry
are representative of the entrance region of the MSFR. This section is interesting,
since standard RANS models cannot fully predict the richness of the turbulent struc-
tures generated past the BFS [8]. The ultimate modeling objective is to produce an
accurate RANS turbulence model, able to predict the bulk velocities in the BFS with
an error of less than 5%. Accurate predictions of the molten salt bulk velocities in the
MSFR are needed for similarly accurate predictions of the coupled phenomena of the
reactor. Currently, Particle Image Velocimetry (PIV) measurements are being carried
out for a BFS in the SWATH-W experiment. As the results are not yet available, the
methodological approach of the current work is developed according to the precise
DNS simulation performed by [9, 10] on aBFS, referred to fromnowon asDNSdata.

2 Application of State-of-the-Art Turbulence Models
for the BFS

The studied BFS section is shown in Fig. 2. It consists of a 2D section, with an
expansion rate of 2. The mean inlet velocity U is fixed so that the Reynolds number
in the inlet throat is Re = Uh

ν
= 9000, where ν = 10−6 m2

s is the kinematic viscosity
(of water at 20 ◦C).

TheBFS geometrywas discretized in two dimensions (assuming plane symmetry)
with a regular structured quadrilateral mesh, having a maximum aspect ratio of 5 and
a maximum skewness ratio of 10−6. The mesh was refined until the predictions in
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Fig. 2 Top: Dimensions of the BFS section in mm; the stream-wise velocity profile is completely
developed before the sudden expansion and in the exit of the domain. Bottom: Three flow zones
in the BFS section are distinguished: a main shear layer, a recirculation zone, and a mainstream
zone. Also, the vertical lines over which the stream-wise component of the velocity will be studied
during the present study are displayed

the bulk velocities were unchanged by further refinements for each turbulence model
tested in the section. This standard mesh convergence procedure [11] allows us to
obtain results that are independent of the mesh employed, depending only on the
applied turbulence model. As expected, the mesh in the region next to the expansion
of the BFS (see Fig. 2) was found to be key for an accurate description of the
turbulence phenomena in the bulk region of the BFS. This is a consequence of the
tripping of the boundary layer arising in this zone. In addition, the predictions in the
tripping of the boundary layer were found to be very sensitive to the adopted wall
functions. Therefore, since the goal is to make the results only dependent on the
turbulence model used, an enhanced wall treatment procedure was imposed in the
simulations, i.e., nowall functionswere implemented. In this regard, the centers of the
mesh cells along the walls of the BFS were adjusted, using a uniform inflation ratio
boundary layer, obtaining a dimensionless wall distance (y+) that varied between 0.5
and 1.5 in these cells. The meshes were generated using the snappyHexMesh utility
in OpenFOAM® [12].

An incompressible and isothermal flow in a backward-facing step can be math-
ematically described by the incompressible Navier–Stokes equations, asserting the
conservation of mass and linear momentum. Assuming a description in an Eulerian
inertial reference frame, without exterior surface or body forces applied to the fluid,
these equations can be read as
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∇ · u = 0, (1)
∂

∂t
u + u · ∇u = −∇ p

ρ
+ ν∇2u, (2)

where u(x, t) is the velocity, p(x, t) is the pressure, ρ is the density, and ν is the
kinematic viscosity. When measuring the velocities at a point in a turbulent flow,
it is found that the velocity field can be decomposed into a mean and fluctuating
component u(x, t) = u(x, t) + u(x, t)′ [13].

By applying these filtering techniques to the Navier–Stokes equations (2), the
following set of filtered equations is obtained:

∇ · u = 0, (3)
∂

∂t
u + ū · ∇ū = −∇ p

ρ
+ ν∇ · (∇u − τ f). (4)

Comparing Eqs. 2 and 4, besides the overbar in the variables indicating its mean
component, the difference arrives in a newly introduced term τ f that results from
the filtering process. For RANS models, τ f = u′u′, and this is called the Reynolds
Shears Stress (RSS) Tensor. For LES models, τ f = τ r, and this is usually called the
residual stress tensor or Sub-Grid Scale (SGS) stress tensor.

For RANS models, the RSS tensor is symmetric and has six independent compo-
nents. The simpler models for the RSS tensor are the linear eddy viscosity models,
wherein it is assumed that u′u′ ≈ νtS, where S = 1

2 (∇u + ∇uT ) is the strain rate ten-
sor and νt is the turbulent viscosity (assumed to be a function of the solved turbulence
variables k and ε). One of the models studied in the present work is the k–ε model
[14] in which νt = Cμ

k2

ε
fμS, where k = 1

2 tr(u′u′) is the turbulent kinetic energy, ε
is the specific dissipation rate of turbulent kinetic energy ε = ν∇u′ · ∇u′, and fμ is
a Van Driest-like damping function that reduces the turbulent viscosity value close
to the walls [15]. Specific transport equations are derived for k and for ε, introducing
closure coefficients when approximations are done (for specific details, see [16]).
The introduction of fμ into the model, as well as the corrections in the modeling of
k and ε close to solid surfaces, is known as standard wall functions. However, when
performing enhanced wall treatment, wall corrections are not introduced, since the
turbulent phenomena next to the walls is considered to be readily resolved by the
fine mesh next to the walls (i.e., fμ = 1). The k–ε model is not unique, since several
other linear eddy viscosity models exist. In particular, the Wilcox k–ω model [17],
available in OpenFOAM®, was also considered during the present analysis.

An important limitation of the linear eddy viscosity models is that the tenso-
rial character of the RSS is solely dependent on the instantaneous strain rate and,
therefore, the history of the development of turbulent stresses in the fluid field is
not resolved. Consequently, the assumption of linear viscosity is misled in the BFS
case, wherein the richness of turbulent structures in the flow is generated by a vortex
rollingmechanism in the shear layer soon after the tripping of the boundary layer [18].
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Therefore, the turbulence field (and hence the RSS tensor) at a given point will be
strongly dependent on the upstream flow or fluid history.

An immediate improvement is proposed by the nonlinear eddy viscosity models.
First, theRSS tensor is divided into its isotropic and non-isotropic componentsu′u′ =
2
3kI + ka, where the tensor describing the non-isotropic component a is known as the
anisotropy tensor. Following the previous definition, the anisotropy tensor is traceless
tr(a) = 0 and symmetrical a = aT . Based on these arguments, and introducing the
vorticity tensor asW = 1

2 (∇u − ∇uT ), the modeling of the anisotropy tensor based
on the k–ε model can be constructed to third orders as follows:

a =
n∑

i1

CiTi, (5)

First-order terms:T1 = C1
νt

k
S, (6)

Second-order terms:T2 = C2
νt

ε
(SW − WS) (7)

T3 = C3
νt

ε
(S · S − 1

3
S : S)IT4 = C4

νt

ε
(W · W − 1

3
W : WI),

Third-order closure:T5 = C5
νt k

ε2
(S · SW − WS · S)

T6 = C6
νt k

ε2
(W · WS + SW · w − 2

3
S : W · W)

T7 = C7
νt k

ε2
(SS : S),T8 = C8

νt k

ε2
(SW : W). (8)

Since the model for the anisotropic tensor includes terms up to the third order, it
is said to be a cubic order closure. During the solution process, the k–ε equations
are solved at each iteration and, subsequently, νt and a are computed. The near wall
treatment in the simulations could be done identically to that of the k–ε model.
However, for the reasons explained earlier in the text, no special wall treatment is
introducedwhen doing enhancedwall treatment. For closing the set of equations, this
model requires the empirical fitting of 13 coefficients. The nonlinear cubic model
proposed by Craft et al. [19] was implemented in OpenFOAM®, along with the
proposed fitting coefficients.

The Reynolds Shear Stress (RSS) modeling technique consists in solving a set
of seven transport equations, derived from the six independent components of the
RSS tensor and the turbulent kinetic energy k. This set of equations is known as
the RSS transport equations. In these equations, the pressure–strain correlation, the
pressure and turbulencediffusion, and the specific turbulent kinetic energydissipation
terms require specific modeling. In the present work, the RSS model of [20], already
implemented in OpenFOAM®, was tested in the BFS.

In the LES technique, for the accurately modeling of the wide range of anisotropic
turbulent structures of the BFS, the multi-gradient model for the Sub-Grid Scale
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(SGS) stress tensor developed by [21] was implemented in OpenFOAM®. Themulti-
gradient equations for the SGS stress tensor are

τ r = 8Δ̄2

C2
ε

(− G
tr(G)

S)2(
G

tr(G)
)H(P),

G = 1

12
[(D · (∇u))(D · (∇u)T )], (9)

whereD = (Δx ,Δy,Δz) is the grid filter vector, Δ̄ = (ΔxΔyΔz)
1/3 is the grid filter

length, andCε is a coefficient that depends on whether the local equilibrium or global
equilibrium hypothesis is used [22]. This last coefficient was taken as equal to 1 in
the present case. Furthermore, H(P) is a Heaviside function that turns off the model
whenever the turbulent production term P = −τ r · S becomes negative. The filter
length was taken as twice the mesh size (Δ̄ = 2Δ) in the simulations.

The results for the steady-state stream-wise component of the velocity, for the
y-lines displayed in Fig. 2, are shown in Fig. 3. Simulations were performed for each
of the above turbulence models (k–ε, k–ω, RSS, cubic nonlinear and multi-gradient
LES). As previously discussed, all simulations were performed in a converged mesh.
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Fig. 3 Top-left: Results for the normalized steady-state stream-wise component of the velocity
for the lines x

H = 0.5. Top-right: x
H = 4.0. Bottom-left: x

H = 8.0. Bottom-right: x
H = 20.0. In the

above results, the LES model corresponds to a multi-gradient SGS model [21] implemented in
OpenFOAM® with no near wall treatment, the k–ε [14], and k–ω [17] models are the standard
models used in OpenFOAM®, the nonlinear cubic model corresponds to the one developed by
Craft [19] and implemented in OpenFOAM® and the RSS model is the SSG model available in
OpenFOAM® developed by Speziale [20]
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The results of these models are compared against the DNS data, which is taken as
the reference. The general performance of the k–ε model for the BFS is judged to be
poor. This is a result of the overestimation of the turbulent dissipation ε, as well as the
turbulent kinetic energy k. Thereupon, the k–ε model predicts an early development
of the velocity profile past theBFS expansion. The results predicted by the k–ωmodel
are, however, in much better agreement with the DNS data. This is because, when
calculatingω = ε

k , both overpredictions compensate remarkably well. The nonlinear
viscosity model has a good agreement with the DNS data close to the middle stream,
but it performs badly next to the walls. Since the closure coefficients of this model
were fitted by Craft [19] for the development of a boundary layer over a flat plate, it is
not surprising that they are misled for the highly anisotropic internal flow of the BFS
(in which the flow velocity perpendicular to the walls may be important). The RSS
transport model shows good results in the region immediately after the detachment of
the boundary layer. However, it underestimates the dissipation of the turbulent kinetic
energy in the stream-wise direction, causing an over diffusion of the shear layer and
significant errors in the predicted velocities downstream. Finally, the multi-gradient
LES model shows an almost perfect agreement with the DNS data.

To quantitatively analyze the error of the turbulence models, the mis-prediction
in the axial velocity on the y-lines displayed in Fig. 2 is weighted by the importance
of this mis-prediction. Therefore, the average weighted quadratic error is computed
for each y-line l ( x

H = 0.5, 4, 8, 20) with nl data points as

Lw = 1

4

4∑

l=1

1

nl

nl∑

i=1

w(yil)(
uDN Sil − uM O DE Lil

uDN Sil

)2,

w(y) = 1 − (1 − y

h
)2, (10)

where uDN Sil is the velocity stream-wise component of the DNS data for the line l at
point yi and uM O DE Lil is the predicted stream-wise velocity for the turbulence model
under consideration. The function w(y) is a Poiseuille-like weighting function that
maximizes the importance of the errors in the middle stream of the section. This
function is introduced regarding the expansion of the MSFR reactor, in which the
middle stream region in the flow has a larger importance than the region close to
the walls, due to neutronic considerations. The errors obtained and the CPU time to
convergence to steady state in the simulations are shown in Table 1. The only model
that allows to obtain an error smaller than 5% is the multi-gradient LES model, but
its computational cost is prohibitively expensive when considering its application to
the scale of the MSFR. In addition, the nonlinear stress model is close to the targeted
error. A good attempt might have been made to improve the closure coefficients for
this model, but due to its complexity, further improvements are difficult to develop.
Therefore, a new nonlinear eddy viscosity model based on the k–ε model, developed
by means of symbolic regression using the GEATFOAM tool, is discussed in the
following section.
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Table 1 Relative errors and computational cost for the different turbulence models

Model Relative error (%) CPU time@16 × 1.2GHz(s)

k–ε 14.32 674

k–ω 8.14 725

Nonlinear cubic 5.64 1243

RSS 7.61 1785

LES 0.73 74,513

3 Optimization of a k–ε Model with GEATFOAM

The Genetic Evolutionary Algorithms for Turbulence modeling tool (GEATFOAM)
is a library developed in C++ that can be compiled with the OpenFOAM® libraries.
The library implements symbolic regression and gradients optimization techniques
for constructing a mathematical expression for the anisotropy tensor.

Symbolic regression techniques are a subset of regression techniques, which al-
low you to search the space of mathematical expressions for a model that best fits
the data [23, 24] , which, in the present case, is the stream-wise velocity over the
y-lines displayed in Fig. 2. In symbolic regression analysis, new expressions are
generated by randomly combining mathematical building blocks (such as constants
or tensor, or some of their more complicated functions). The expressions are then
tested against the data and catalogued according to an error, determined by some
previously defined measure [25]. Subsequently, new expressions are constructed by
recombining (more or less randomly in genetic algorithms) the previously obtained
ones. The core concept beneath the recombination process is to prioritize the re-
combination of the better-fitting expressions, decreasing the mean error of the newly
obtained expressions, and obtaining better-fitting ones for each subsequent iteration.
Several techniques can be applied for performing the recombination process, namely,
genetic programming [26], neural networks [25], and support vector machines [25].
However, genetic programming techniques have been demonstrated to outperform
the others on problems in which simple and interpretable expressions should be ob-
tained [27]. For the recombination process, GEATFOAM implements a symbolic
tensorial version of the NSGA-II evolutionary algorithm proposed in [28].

The flowchart of the library is presented in Appendix. The initial step consists in
the generation of the mathematical blocks (constants and tensors) on which the ex-
pressions for the anisotropy tensor are built on. In mathematical terms, these building
blocks belong to two different sets: a variable set and an operation set.

ϕ = {Ti, Ci , I2(S), I3(S), I4(S), I2(W), I3(W), I4(W)},
ϑ = {∗�2,�0 , ∗�0,�0 , /�0,�0 ,+�2,�2 ,+�0,�0 ,−�2,�2 ,−�0,�0}. (11)

The functional set ϕ contains the variables for describing the nonlinear anisotropy
tensor. In the present case, due to the rank of the anisotropy tensor and the geometric
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considerations explained in Sect. 2, the variables are the Ti tensors in Eqs. 6–8, the
fitting constants and the second, third, and fourth invariants [29] of the shear rate
and the vorticity tensors. The operator set ϑ contains the set of operations allowed
over the set. For the present case, they are scalar-matrixmultiplication (∗�2,�0 ), scalar
multiplication (∗�0,�0 ) and division (/�0,�0 ), matrix addition (+�2,�2 ) and subtraction
(−�2,�2 ), and scalar addition (+�0,�0 ) and subtraction (−�0,�0 ).

Then, an initial number of ten expressions for the anisotropy tensor (referred to as
individuals in genetic programming) are randomly generated, combining the vari-
ables from the allowed operations (e.g., a = C1T1 + C3 I2(S)T2 + C3T3). In GEAT-
FOAM, each individual is represented by an open reading frame (ORF) [30]. Each
expression may contain a set of fitting constants Ci , which are not necessarily opti-
mally fitted to the data. Therefore, the next step is to optimize the fitting constants
in each expression so as to minimize the value of the fitness function defined by
Eq. 10. In proper mathematical terms, this is an unconstrained optimization problem
for a fitness function Lw : Rn → R, where n is the number of Ci coefficients in the
optimization model, a number that may vary between individuals. Defining C as the
vector of coefficients to be optimized for the fitness problem, g = gi = ∂Lw

∂Ci
≈ ΔLw

ΔCi
as

the finite difference approximated gradient of the fitness function at certain values of
Ci , andH = Hi j = ∂2Lw

∂Ci ∂C j
≈ ΔLw/ΔCi

ΔC j
as the finite difference approximated Hessian,

the iterative quasi-Newton optimization problem is implemented as follows:

H(n)p(n) = −g(n),

C(n+1) = C(n) + p(n). (12)

At this point, a limitation is discovered, the optimization problem is not necessarily
convex or, equivalently, the Hessian matrix is not necessarily positive-defined. This
implies that the previous system may not converge to a minimum. To solve this
issue, the method proposed by Forsgren et al. [31] is applied, in which the Hessian
is factorized by a Cholesky algorithm with row pivoting. The Hessian factorization
becomesH = LDLT , replacing the negative values in the matrix diagonal with small
positive values during the factorization process. Therefore, a descendent direction
toward a minimum can be found independently of the convexity of the problem. This
technique is usually referred to as the active set method.

Once the coefficients for each model have been optimized, the obtained expres-
sions are arranged in a stack list that confers its fitting error to the data. Additionally,
an extra error proportional to the size of the individual ORF is added for to prioritize
simple expressions for the anisotropy models. Then, the recombination process takes
place, in which a set of random genetic operations is applied to the ORFs prioritizing
the reproduction of the better-fitting individuals. The genetic operations supported
by GEATFOAM consist in changing terms in the tail of the ORF by introducing
terms of other ORF (recombination), by introducing terms of the head of the same
ORF (transposition) or changing it through random fragments of operators and/or
variables (mutation). Once the genetic operations have taken place, a new set of av-
eragely more fit expressions is introduced back into the loop. When an expression
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arrives to satisfy the error criteria imposed on the fitness function (less than 5% of
error in the stream-wise velocity over the y-lines), the iteration process finishes and
the individual is extracted.

4 A Nonlinear Quadratic Closure for the Anisotropy
Tensor Developed with the GEATFOAM Tool

The model obtained for the anisotropy tensor, resulting from the iteration process of
the GEATFOAM process with a randomly generated initial population, is

a = 0.074T1 + 0.521T2 + 0.071
I2(S)I3(S)

I2(W)I3(W)
T3 − 0.180T4. (13)

The output of GEATFOAM for the anisotropy tensor is a nonlinear quadratic
model, since large extra weights have been assigned to big expressions during the
optimization process. In order to assess the repeatability of the evolutionary process,
different sets of random initial populations have been tested, obtaining a success
ratio [32] for the model proposed in Eq. 13 of 85%, meaning that the model was
obtained in 85% of the evolutionary lines studied. None of the other models resulting
from offsprings in the evolutionary process had a smaller error than Eq. 13, according
to the definition of error by Eq. 10.

The results obtained for the optimized nonlinear quadratic model (Eq. 13) are
compared against the DNS data, the standard k–ε [14] and the nonlinear cubic model
(Eqs. 5–8 [19]) in Fig. 4, for the stream-wise velocity over the y-lines shown in Fig. 2.
Both nonlinear models outperform the standard k–ε model. The model that best
fits the DNS data is the optimized nonlinear quadratic model (13), which presents
a uniform accuracy over all y-lines. The nonlinear cubic model (5–8) performs
well on the first three lines, where the turbulence production is important, but have
important errors downstream, where the turbulent dissipation should compensate the
production.

The values for the fitness function Lw of these models are compared in Table 2; it
is observed that the optimized nonlinear quadratic model (13) satisfies the originally
imposed error criteria. In terms of the turbulent kinetic energy and specific turbulent
dissipation, the nonlinear modeling of the viscosity allows us to account for the
turbulent structures produced by the shear stress history in the flow. This, in turn,
allows to avoid the overprediction of k and ε after the step expansion, accurately
modeling the production and dissipation in the main recirculation bubble (graphical
results are presented in the Appendix).

In order to evaluate the extrapolability of the constructed anisotropic model, the
results are applied to an axisymmetrical pipe expansion with a different Reynolds
number. In principle, since the underlying physics of the axisymmetric expansion
should be similar to that of the BFS, the developed nonlinear quadratic model (13)
should perform well on this new geometry. Measured data for the axial velocities is



104 M. Tano-Retamales et al.

u/
U

m
ea

n

y/H

u/
U

m
ea

n

y/H

u/
U

m
ea

n

z

y/H y/H

u/
U

m
ea

n

x/H = 0.5 x/H = 4.0

x/H = 8.0
x/H = 20.0

Fig. 4 Top-left: Results for the normalized stream-wise steady-state velocity for the lines x
H = 0.5.

Top-right: x
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H = 8.0.Bottom-right: x
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as reference values. The results were obtained using the standard k–ε model [14], the optimized
nonlinear model (13), and Craft’s cubic nonlinear model [19]

Table 2 Assessment of the optimized nonlinear model against the standard k–ε model and Craft’s
nonlinear cubic model

Model Relative error (%) CPU time@16×1.2GHz(s)

Standard k–ε 14.32 674

Optimized Nonlinear Model 2.97 1124

Nonlinear Cubic Model 5.64 1243

provided in the work done by [33] at x = 0.05D and x = 0.25D after the expansion,
and is taken as reference in the present case. The section has an expansion rate of 1.94
and the mean inlet velocity is fixed so that Re = U D

ν
= 2 × 105, taking the value

of the kinematic viscosity as ν = 10−5 m2

s . The standard k–ε model [14] and the
optimized nonlinear quadratic model (13) were tested on this geometry. Steady-state
and 2D axisymmetrical simulations were performed, converging the mesh in each
case. The results are shown in Fig. 5. A good agreement is observed between the
nonlinear quadratic model (13) and the experimental results [33].
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Fig. 5 Results for the normalized axial steady-state velocity for the lines Left: x
D = 0.05 and Right:

x
D = 0.025. The results were obtained using the standard k–ε [14] model and the evolved nonlinear
quadratic model (13) model by means of nonlinear modeling of the anisotropy. The measured
velocities are taken as reference values. For the k–ε turbulent model, Lw = 11.51%, and for the
modified model, Lw = 4.05%

5 Conclusions

In the present work, different turbulence models have been evaluated for a BFS ge-
ometry, with the objective of validating a model to be applied in the design of a
molten salt fast reactor. On the RANS models side, the Wilcox k–ω model [17],
the implemented cubic nonlinear viscosity model [19] and the SSG Reynolds Shear
Stress transport model [20] mispredict the stream-wise components of the bulk ve-
locities by 5–10%. In addition, the standard k–ε model [14] presents an error of
15% in the prediction of these velocities. As a consequence, they all fail to attain the
required error of less than 5% of mis-prediction in the stream-wise velocities. An
LES multi-gradient [21] model was also tested in the BFS, having less than 1% of
error in the prediction of the stream-wise velocities. However, it consumes excessive
computational resources and its convergence is complicated for complex geometries,
making it inadequate to use for design purposes and for its application to the MSFR.
Therefore, the development of an adapted turbulent model was necessary for the
BFS section. A new nonlinear quadratic model for the anisotropy tensor, based on
the k–ε equations, was developed by means of symbolic regression through genetic
evolutionary programming (the GEATFOAM tool).

To the current extent, the tool still presents the limitation that the results found are
sensible to the initial population proposed in the evolutionary process, and different
results for the anisotropy tensor are obtained between successive runs of the tool.
However, by increasing the cost of high-order nonlinearmodels, an efficient quadratic
model for the anisotropy tensor was found, having an error of less than 5% for the
analyzed BFS. Furthermore, the extrapolability of this new model was successfully
evaluated for a pipe expansion case.
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Appendix

See Figs. 6 and 7

Fig. 6 Flowchart of the GEATFOAM tool. First, an initial population is proposed and its chro-
mosomes are expressed in ORFs. A first internal loop optimizes the free scalar coefficients of the
ORF through a conjugate gradient method. Then, a set of genetic operations is introduced, changing
the population for one with a better fit and the iterations are repeated. The process ends when one
individual attains the error criteria
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Original k- Optimized Nonlinear

k*

*

k-

Fig. 7 Results obtained for the normalized turbulent kinetic energy k∗ = k
U2

mean
and the normalized

specific turbulent dissipation ε∗ = εν
U4

mean
. The standard k–ε model overpredicts k and ε after the

expansion, causing an overprediction in the turbulent viscosity nuT and a rapid development of the
velocity profile after the step. The optimized nonlinear k–ε model correctly models the turbulent
viscosity as a function of the history of the stresses in the fluid, allowing us to avoid the initial burst
of the standard k–ε turbulent model and being able to resolve the evolution of k and ε in the main
recirculation bubble of the BFS
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Differential Heating as a Strategy
for Controlling the Flow Distribution
in Profile Extrusion Dies

Ananth Rajkumar, Luís L. Ferrás, Célio Fernandes, Olga S. Carneiro,
Alberto Sacramento and J. Miguel Nóbrega

Abstract This work presents a simple procedure for balancing the flow in extrusion
dies. The method consists in using different temperatures on the different sides of
the extrusion die surface, in this way altering the local viscosity of the polymer melt,
and thus the melt flow distribution. The design methodology follows a numerical
trial-and-error procedure (implemented in OpenFOAM�), which was assessed with
an industrial case study (swimming pool cover profile). The results obtained show
that the support of computational tools is an excellent design aid, and a much better
alternative to the experimental trial-and-error procedure commonly used in industry.

1 Introduction

Extruded thermoplastic profiles find application in different fields, such as automo-
tive, household, civil construction, electrical, and health, among many others. One
of the main concerns in profile extrusion is the flow balance at the die flow channel
outlet. Most of the time, the geometries of the extruded profiles are complex and
induce differential flow restrictions, thus promoting an unbalanced flow distribution.
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In this case, the melt flow average velocity varies along the die outlet cross section.
This happens because fluids flow easily in less restrictive (thicker) regions [1, 2].
Several methodologies have been proposed in the literature to solve this problem,
the experimental trial-and-error procedure being themost popular method among the
profile extrusion companies. The major drawbacks of this method are the fact that
it is time-consuming and expensive, and relies on the designer’s know-how. More
recently, with the huge increase in computational power, the numerical simulation of
these processes became a reality, and some approaches were proposed regarding a
numerical optimization of the extrusion process [1]. These studies either rely on nu-
merical trial-and-error procedures (inexpensive but still dependent on the know-how
of the user) or more autonomous numerical techniques that perform the optimization
automatically [1–6].

Independently of the current situation, there is a huge gap between indus-
try (which, in general, still relies on resource-consuming experimental-based ap-
proaches) and numerical tools, which can provide a very useful support for them.
In this work, we bridge the gap between numerical simulation and industry, by pre-
senting, in detail, the optimization of an existing extrusion die. The optimization
was performed in cooperation with a profile extrusion company, and we show that
numerical simulations can be used to reduce costs and the time to market.

All the computational tools used in this work are open-source, meaning that no
special licensing is needed. The numerical modeling code is developed using the
OpenFOAM� computational library [7], a free open-source and expandable set of
numerical tools, which includes routines for creating the geometry and generating
the computational mesh, and also allows for parallel computing. A new solver was
developed to model the steady non-isothermal flow of incompressible generalized
Newtonian fluids. The optimization of the extrusion die was performed by imposing
different temperatures on the different surfaces of the extrusion die (which adjusts
locally the viscosity of the polymer melt).

The remainder of this work is organized as follows. In Sect. 2, the developed
design methodology is presented and discussed, explaining in detail the main stages
involved. In Sect. 3, we present the governing equations of the new solver developed
in the OpenFOAM� framework. In Sect. 4, we illustrate the usefulness of the devel-
oped numerical tools in an industrial case study, which comprises the improvement
of the flow distribution in an existing die. The work ends with the main conclusions.

2 Die-Design Methodology

The design procedure encompasses a series of stages involving the use of different
software packages, as illustrated in Fig. 1 and detailed in [8]. The procedure starts
with the material rheological characterization, to determine the relevant rheological
parameters for modeling purposes. Then, the die outlet cross section is divided into
Elemental Sections (ESs) and Intersection Sections (ISs). These subsections will be
used to monitor the flow distribution (or flow rate) at the die outlet. The generation
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Fig. 1 Proposed die-design methodology

of the flow channel geometry is done using a CAD software (Free CAD [9]). The
generated geometry is imported to Salome [10], and the geometry boundary is divided
into different groups to allow for setting different boundary conditions. The defined
regions are exported as STL ASCII files from Salome and used as input for the mesh
generation code. The computational mesh is generated using snappyHexMesh [11], a
mesh generation utility included in OpenFOAM�. Finally, the numerical simulation
is performed in the OpenFOAM� framework using the developed solver. A standard
post-processing utility from OpenFOAM�, PatchIntegrate, is used to compute the
flow rate in each subsection of the flow channel outlet (see Fig. 1).

The numerically obtained flow rate is then used to calculate the flow distribution’s
objective function (Fobj,i ) at each ES and IS, using the following equation:

Fobj,i =
Ui
Uav

− 1

max
(

Ui
Uav

; 1
) , (1)

whereUi andUav are the ESi (or ISi) and the global average velocities, respectively.
These velocities are obtained by dividing the computed flow rate by the respective
subsection area. The objective function (Fobj,i ) was defined in such a way so that
the ratio Ui/Uav has the equivalent contribution if it is half or double of the value
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required for flow balancing. In the case of perfect flow balancing, the Fobj,i value
will be zero. The performance of each iteration is quantified using

Fobj =
NES∑
i=1

∥∥Fobj,i

∥∥ +
NI S∑
i=1

∥∥Fobj,i

∥∥ , (2)

where NES and NI S represent the total number of ESs and ISs, respectively. Notice
that, in this way, the die performance increases with the reduction of the Fobj absolute
value.

The iterative process is repeated by adjusting the geometry and/or boundary con-
ditions until a balanced flow distribution is achieved (see [8] for more details). In this
work, only the boundary conditions will be adjusted to improve the flow distribution.

3 Numerical Modeling

The numerical code should be able to model the flow of an incompressible and
inelastic fluid under non-isothermal conditions. This requirement led to the imple-
mentation of a new solver, in the OpenFOAM� computational library, able to solve
the relevant governing equations. This new solver is briefly described later (see [8]
for more details).

3.1 Governing Equations

The equations used to model the flow are, the mass conservation,

∇ · u = 0 (3)

and the linear momentum conservation

∇ · (ρuu) = −∇ p + ∇ · τ . (4)

The energy conservation equation must also be considered to predict the temper-
ature distribution:

∇ · (
ρcpuT

) − ∇ · (k∇T ) = τ : ∇u. (5)

In the above equations, ρ is the density, u is the velocity vector, p is the pressure,
τ is the deviatoric stress tensor, T is the temperature, cp is the specific heat, and k
is the thermal conductivity. The last term on the RHS of Eq. 5, τ : ∇u, accounts for
the viscous dissipation contribution.
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For generalized Newtonian fluids, the deviatoric stress tensor is

τ = 2η(γ̇ , T )D, (6)

where D is the rate of strain tensor, given by

D = 1

2

(∇u + ∇uT
)
, (7)

where ∇u is the velocity gradient tensor, and η(γ̇ , T ) is the shear viscosity that
depends both on temperature (T ) and shear rate (γ̇ ), being a function of the second
invariant of the rate of the deformation tensor,

γ̇ = 2
√
trD2. (8)

To take into account the effect of both temperature and shear rate on the shear
viscosity, the Bird-Carreau model was coupled to an Arrhenius law, leading to

η(γ̇ , T ) = aTη∞ + aT (η0 − η∞)(
1 + (aTλγ̇ )2

)(1−n)/2
, (9)

where η0 and η∞ are the zero and infinite shear rate viscosities, respectively, λ is a
constant with units of time (defining the value of the shear rate at which the shear
thinning effect begins), and n is the power-law exponent. In Eq. 9, the temperature
shift factor, aT , is given by

aT = exp

(
E

R

(
1

T
− 1

T0

))
, (10)

with R the universal gas constant, E the activation energy, and T and T0 the temper-
ature and its reference value (both in Kelvin), respectively.

The implementation of the solver is explained in detail in the Ph.D. thesis by the
first author [12].

4 Case Study

The new numerical code will now be used to improve the flow balance of an existing
extrusion die used for the production of a swimming pool cover profile. In this case,
the extrusion die, already tested in the company, showed an unsatisfactory flow dis-
tribution. This die had four heaters, one on each face of the tool, all controlled by the
same thermocouple. Since the polymer melt shear viscosity is substantially affected
by temperature, the local resistance to flow can be adjusted through controlled varia-
tions of the material temperature at specific locations. Thus, the main purpose of this
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study was to verify if it is worth having the four heaters controlled by independent
thermocouples, in order to improve the flow distribution. If approved, this would
comprise an economic alternative to the redesign and manufacture of a new properly
balanced die. The stages of the design procedure (illustrated in Fig. 1) are followed,
by modifications of the boundary conditions, i.e., the boundary temperatures, in
this case.

4.1 Material Characterization

The material used by the extrusion company to produce the profiles under study is
a polycarbonate extrusion grade (TRIREX 3027U(M1)). The shear viscosity flow
curves were obtained using both parallel plate (ARG2, from TA Instruments) and
capillary (Rosand RH7, from Malvern Instruments) rheometers, at three different
temperatures (230, 250 and 270 ◦C). The intermediate temperature (250 ◦C) was
chosen as the reference one, and the experimental viscosity data obtained for 230
and 270 ◦C were shifted to that temperature using the corresponding shift factor aT
(Eq. 10). Afit to themaster flow curvewasmadewith aBird-Carreaumodel, resulting
in the following parameters values: η0 = 11,731 Pas, η∞ = 0 Pas, n = 0.524, λ =
0.1572 s and E/R = 16,296 K (see [8] for more details).

4.2 Geometry and Mesh

The exact flow channel geometry of the existing die was replicated in the CAD
software, and the flow channel boundary was divided into pre-parallel zone (PPZ),
top, bottom, right, left, and inner walls, as indicated in Fig. 2a. The division in four
outer regions allows for imposing different temperatures in each zone.

The flow channel outlet cross section and its division into ESs and ISs are shown
in Fig. 2b. The Fobj,i will only be shown for the ESs, due to the large number of
subsections involved, and also because the direct control of flow in the ISs is not
possible. For modeling purposes, the boundary conditions employed in this case are
as follows. The inlet velocity was determined from the required extrusion line speed,
1.28m/min, considering a zero gradient boundary condition at the outlet, and no slip
(u = 0) at the walls. Concerning the pressure field, the outlet pressure was assumed
to be zero and a zero gradient was imposed at the inlet and walls. Regarding the
temperature field, different sets of values will be used in the die walls (top, bottom,
right, and left). The inlet and the converging walls were assumed to have a value of
245 ◦C (as prescribed by the company), and we have imposed a zero gradient at the
outlet and inner walls.

A mesh sensitivity analysis was performed to identify the mesh refinement level
required to obtain accurate results. Three different mesh refinements with 432,653,
3,336,519 and 26,254,523 computational cells were used to discretize the flow chan-
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Fig. 2 Swimming pool cover: a flow channel; b division of the die outlet into ESs and ISs subsec-
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Fig. 3 Results of the mesh refinement study, for the swimming pool cover profile flow channel,
normalized with those obtained with the finer mesh: a average velocity for all ESs; b pressure drop;
c maximum temperature in the domain; d selected mesh (Mesh 2)

nel. The results (average velocity, pressure drop, and temperature) were normalized
with the reference field value obtained for the most refined mesh, and are shown in
Fig. 3. As one can see from the average velocity field (Fig. 3a), the predicted values
for all the ESs, using Mesh2, converge to the value of the most refined one (Mesh3).
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The same happens with temperature and pressure drop. Based on these results, and
since Mesh3 is computationally/time expensive, Mesh2 (see Fig. 3d) was chosen for
the numerical studies.

4.3 Numerical Trials and Results

The initial numerical trial (Trial1) was performed setting 245 ◦C for all the heaters, to
mimic the previous extrusion runs performed at the company. The results obtained,
shown in Fig. 4, allow us to conclude that the flow in ES10 and ES11 (located on the
left side of the profile; see Fig. 2b) is substantially higher than that required, whereas
the opposite happens in ES12 to ES14 (the inner profile walls).

In Trial2, and to compensate for the excessive flow obtained on the left side of
the profile, the temperature of this side heater was decreased from 245 to 230 ◦C
(see Fig. 5a). The results show an improvement of the flow distribution, namely a
decrease in the flow in ES10 and ES11, and an increase in ES12 to ES14, supporting
the potential of the strategy employed. However, ES11 is still the most unbalanced
region, with the highest flow rate (with an average velocity 1.8 times higher than the
global average one). Therefore, the temperature of the left sidewas further decreased.
The temperatures on the other sides were also decreased to promote an increase in
the flow rate in sections ES13 and ES14.

Trial3 was performed with 225 ◦C at the top and bottom heaters, 230 ◦C at the
right heater and 227 ◦C at the left one, as indicated in Fig. 5b. The results (see Fig. 4)
show a significant improvement, with a decrease in the flow of ES10 and ES11 and
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F o
bj

,i

Fig. 4 Fobj,i predicted at the die outlet, for four different trials (different combinations of temper-
atures at the boundaries of the extrusion die)
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Fig. 5 Die heaters temperature distribution: a Trial2; b Trial3; c Trial4. d Fobj determined for the
different numerical trials performed

an increase in ES12, ES13, and ES14, as expected. However, this trial negatively
affected the flow in ES9 (which is now 1.5 times lower than the global average) and
in ES12 (which is now slightly higher).

Subsequent numerical trials were performed, following the same procedure, by
adjusting the temperatures of the heaters. Trial4 (the last trial), in which the temper-
atures illustrated in Fig. 5c were used, provided a satisfactory flow distribution. The
Fobj,i results for this last trial are also represented in Fig. 4. Accordingly, the lowest
value for the global objective function Fobj (Eq. 2) is also obtained for this trial, as
illustrated in Fig. 5d.

Based on these results, the company decided to modify the extrusion die con-
trol heating system, enabling the proposed solution to be tested. This modification
allowed them to extrude the profile with all the dimensions within the required tol-
erances. The production line and the extruded profile samples of the swimming pool
cover obtained with the proposed solution (Trial4) are shown in Fig. 6.

Fig. 6 Extrusion of the swimming pool cover profile: a extrusion line in service;b extruded samples
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4.4 Experimental Assessment

For assessment purposes, the cross section of the profile was imprinted and its soft
copy image was used to perform the measurements of each ES and IS, following a
protocol described in a previous work [6], using a digital microscope (Leica DMS
1000) and the proper software (Leica Application Suite), see Fig. 7. Then, these rel-
ative areas were compared with the numerical predictions. The experimental relative
areas and the numerical predictions (shown in Table 1) are in very good agreement,
the largest difference being on the order of 2%, for ES7, the thickest section.

Table 1 Relative area ratios for the numerical predictions and experimental results (average and
standard deviation measured values) for the swimming pool cover

Subsections Relative area (%) Relative area (%)

Numerical Experimental

ES1 6.521 6.987 ± 0.309

ES2 10.502 8.968 ± 0.236

ES3 10.456 10.251 ± 0.230

ES4 8.624 9.074 ± 0.335

ES5 8.644 8.796 ± 0.354

ES6 10.562 10.212 ± 0.165

ES7 10.577 8.310 ± 0.268

ES8 8.282 7.655 ± 0.449

ES9 3.321 2.735 ± 0.084

ES10 2.634 2.703 ± 0.072

ES11 1.923 1.757 ± 0.131

ES12 4.782 5.582 ± 0.119

ES13 4.879 5.717 ± 0.233

ES14 4.258 4.846 ± 0.395

IS1 0.532 0.673 ± 0.046

IS2 0.482 0.875 ± 0.054

IS3 0.482 1.004 ± 0.022

IS4 0.298 0.439 ±0.018

IS5 0.506 0.912 ± 0.134

IS6 0.484 0.843 ± 0.013

IS7 0.530 0.743 ± 0.062

IS8 0.722 0.916 ± 0.069
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Fig. 7 Cross-sectional areas of the ESs and ISs of one of the extruded samples of the swimming
pool cover profile, producedwith the temperatures adopted in Trial4 (all the dimensions are inmm2)

5 Conclusions

In this work, we propose a new numerical approach for balancing extrusion dies,
which consists in using differential temperature boundary conditions to control the
polymermelt flowdistribution.We tested this procedure in a poorly designed existing
die, and, by changing the temperature on its different faces, we successfully balanced
the flow, avoiding the machining of a new tool. By using the same conditions as those
in the numerical simulations, the company was able to produce a profile with all the
dimensions within the required tolerances.

The codes used in the numerical trial-and-error procedure were Free CAD (for
geometry generation), Salome (for dividing the geometry boundary into subregions),
snappyHexMesh (for mesh generation), and OpenFOAM� (for numerical calcula-
tions).

In conclusion, the developed computational framework and the proposed die-
designmethodology proved to be amuch better alternative to the usual experimental-
based trial-and-error procedure, currently employed by many companies, reducing
development costs and the time to market.
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Drag Model for Coupled CFD-DEM
Simulations of Non-spherical Particles

Rolf Lohse and Ulrich Palzer

Abstract The production and handling of non-spherical granular products plays an
important role in many industries. It is often necessary to consider the real particle
shape of the real particles as an essential prerequisite for modeling these processes
reliably. This work presents a new approach for approximating the drag coefficient
of non-spherical particles during simulation. This is based on the representation of
the particle shape as a clump of multiple spheres, as it is often used in the Discrete
Element Method (DEM). The paper describes the calculation of the drag coefficient
based on the arrangement of the spheres within the clump depending on the Reynolds
number and the flow direction. Numerical simulations of the flow around regularly-
and irregularly shaped particles, as well as experiments in a wind tunnel, are used
as the basis of model development. The new drag model is able to describe the drag
coefficient for irregularly shaped particles within a wide range of Reynolds numbers.
It has been implemented in the toolbox CFDEM® coupling. The new drag model is
tested within CFD-DEM simulations of particle behavior in a spouted bed.

1 Introduction

Particle-laden multiphase flows are relevant in various areas of process technology.
Typical examples are fluidized or spouted beds, pneumatic conveying of granular
media and mixing and separation processes. The accurate prediction of the physical
behavior of the particles and the continuous fluid phase is important for the three-
dimensional modeling of these processes. At higher particle volume concentrations,
the interactions among the particles and between the fluid and dispersed phase be-
come more decisive. Also, the shape of the particles has an essential influence on the
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particle behavior. For this reason, the simulation with a coupling of the Discrete Ele-
ment Method (DEM) and CFDmethods is the preferred choice, if the computational
expense is justified.

2 Modeling of Non-spherical Particles

The shape of a non-spherical particle is often characterized by its sphericity, which
is the ratio between the surface of a volume-equivalent sphere and the surface of the
real particle. This method is used in many drag models [1, 2]. Other possibilities are
the Corey shape factor used by Swamee et al. [3] and the lengthwise and crosswise
sphericity used by Leith [4] and Hölzer et al. [5].

In common DEM software (EDEM [6], PFC [7]), a multi-sphere approach is used
to model non-spherical particles for bulk mechanics, wherein an arbitrarily shaped
particle is approximated by a clump of different spheres (Fig. 1). In the presented
work, this multi-sphere arrangement is also used to calculate the drag forces of the
particles resulting from the fluid flow in CFD-DEM simulations. Thus, for every
sphere within the clump, a partial drag force FD,i is calculated based on the position
of the sphere within the clump, the overlap with other particles and the flow direction.
The sum of these values over all spheres within a clump gives the drag force of the
non-spherical particles FD , which depends on the orientation of the particle to the
fluid flow and the Reynolds number.

2.1 Drag Forces on Non-spherical Particles

There are many studies on the drag force coefficient of spheres and non-spherical
particles. These include experimental investigations based on settling experiments
and wind tunnel tests [8–10]. The influence of the alignment of the particle to the
flow is not studied in detail. It is only distinguished in a lengthwise or crosswise
flow. Numerical investigations are available for selected particle shapes. Ellipsoids
and discs are studied in [11–13], which also include the influence of the angle of

Fig. 1 Transition from a real particle over a 3D scan model to a multi-sphere clump in DEM to the
approximation used for the calculation of the drag forces of a non-spherical particle
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attack. There are some reliable correlations for the drag coefficient of shaped particles
[1–3, 14], which contains the Reynolds number and the sphericity as parameters.
Newer formulations by Hölzer and Sommerfeld [5] also capture the influence of the
alignment of the particle to the flow. This is done through the usage of the lengthwise
and crosswise sphericity of the particles. In the present work, the influence of the
particle shape, the Reynolds number and the angle of attack is studied within a
wider range. The data from the literature were supplemented with additional CFD
calculations and experimental investigation. The approach used is explained below.

2.1.1 Numerical Investigations

Computational fluid dynamics (CFD) is used to calculate the drag of non-spherical
particles. The investigations are carried out based on steady state and transient sim-
ulations on a stationary particle, with the exact particle shape in an incompressible,
turbulent air flow. The SST k–ωmodel is used for themodeling of the turbulence. The
CFD toolboxOpenFOAM® 2.3.x [15] is used to solve theReynolds-averagedNavier–
Stokes (RANS) equation for the flow around the investigated particle shapes, which
are shown in Fig. 2. These include both regularly shaped particles, such as cylin-
ders and ellipsoids, and irregularly shaped particles, which were obtained through
a 3D scanner. First, simulations for the flow around a sphere were used to validate
the computational model. It was found that the drag forces were calculated in good

Fig. 2 Overview of the investigated particle shapes
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accordance with the known models from the literature [16, 17] up to a Reynolds
number of about 14,000. For the simulation of the flow around the arbitrarily shaped
particle, the numerical investigations are carried out for Reynolds numbers ranging
from 1 to 5000.

2.1.2 Experimental Investigations

A wind tunnel was used for experimental studies of the drag force on non-spherical
particles. This Göttinger-Type wind tunnel, build by Westenberg Engineering, has
a rectangular-shaped nozzle of 300 × 300 mm and an open test section of 600mm
length (Fig. 3). The possible air velocities are between 0.5 and 40m/s. The alignment
of the particle to the flow can be defined by the mounting device, which is connected
to a six-axis force sensor so as to measure the drag force onto the investigated object.
The validation of themeasurement devicewas performedwith different-sized spheres
at the full velocity range of the wind tunnel. Further trials with ellipsoids showed
that a minimal air velocity of 8 m/s was sufficient for the investigated particle sizes
to ensure a good reproducibility and accuracy of the measurements.

The experiments were performed for selected particle shapes from Fig. 2. This
involved truncated cone A, an ellipsoid and different cylinders. The particles were
producedwith a 3D printer, wherein an adapter for the connectionwith themeasuring
device was integrated. The study with the wind tunnel included 80 measurement
series of five–eight variants of the particle Reynolds number. The drag forces were
measured at flow rates from 5 to 35 m/s. The resulting particle Reynolds numbers
were between 15,000 and 40,000. The angle of attack was changed stepwise with
φ = 0, 30, 45, 75 and 90◦ (ellipsoid, cylinder) and φ = 0, 45, 90, 135 and 180◦
(truncated cone).

Fig. 3 Schematic of the measurement arrangement (left) and closed wind tunnel test facility (right)
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Fig. 4 Results of the numerical simulations and wind tunnel test for the drag coefficient of the
ellipsoid (left) and the truncated cone (right) for different angles of attack and Reynolds numbers

2.1.3 Results

The results of the investigation from the wind tunnel tests and the numerical simu-
lation are shown in Fig. 4. In addition, the data are compared with the drag model
by Hölzer and Sommerfeld [5]. It can be seen that the numerical simulations fit well
with the experimental results for the ellipsoid. Both sets of data are below the model
by Hölzer and Sommerfeld, especially at higher Reynolds numbers. The results of
the simulation and the experiments show a small jump for the truncated cone around
Re =10,000. It has not yet been fully clarified as to whether the reason is to be found
in the measurement or in the simulation approach.

The simulation and the experimental data for the truncated cone show a clear
influence of the angle of attack on the drag coefficient. This behavior cannot be
reproduced by the drag model by Hölzer and Sommerfeld. There is no difference
shown between the alignment to the flow for 0◦ and 180◦. It can be recognized from
thewind tunnel tests that the drag coefficient is nearly independent of theflowvelocity
for the investigated Reynolds numbers above 10,000. The known drag models from
the literature confirm this behavior. Only the particle shape and the angle of attack
influence the drag coefficient value.

3 Drag Model Development

The non-spherical particle shape is represented by a clump of multiple spheres. The
spheres can have different diameters and can overlap each other. The idea of this
model approach is to estimate the drag coefficient in two steps. First, the acting drag
force for each sphere within the clump is approximated in dependence on the flow
direction, position, overlapping and shading of each sphere. With the sum of the drag
forces on each sphere, the drag coefficient cD,S can be determined for the particle.
In the literature, many models exist for the drag of single spheres. Morrison’s model
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[16] covers a very wide range of Reynolds numbers and is used as the basis for the
new drag model.

cD,S = 24

ReS
+ 2.6

( ReS
5.0

)

1 + ( ReS
5.0

)1.52 + 0.411
( ReS
263000

)−7.94

1 + ( ReS
263000

)−8.00 + ReS0.80

461000
. (1)

A sphere Reynolds number is calculated for each sphere within the clump in
dependence on the diameter and the relative velocity between particle and fluid flow.
The drag force of the sphere FD,S is calculated including a weight factor W

FD,S = W
cD,S ρ

2
Urel

2 π

4
dS

2, (2)

whereUrel is the local relative velocity, dS the diameter of the sphere and ρ the fluid
density. With the sum of the drag forces of all spheres, the drag coefficient of the
particle cD can be determined

cD =
∑

FD,S
ρ

2Urel
2 π
4 dV

2 , (3)

where dV is the diameter of the volume-equivalent sphere. The weighting factor W
has to be defined as a function of the position of the sphere within the clump, the
influence of the particle Reynolds number and the alignment of the clump to the flow.
Different combinations of several parameters that describe the position and the size
of the spheres inside the clump are investigated for the definition of the weighting
factor. Some examples of these parameters are listed below and explained in more
detail in Fig. 5.

• Volume of a sphere, which is not overlapped by another sphere
• Relative free surface a f s , which is the ratio of the surface area, having direct
contact with the surrounding fluid A f s and sphere surface AS (a f s = A f s/AS)

• Incident flow surface ratio of the sphere (ash = Ash/AS)
• Incident flow surface ratio of the sphere with reversed flow direction (abs =

Abs/AS)
• Diameter of a sphere dS
• Distance to the leading sphere s (parallel to the flow vector).

Different functional combinations from these parameters were examined for the
weighting factor, including the sphere Reynolds number. The best variant so far is
given by

W = A ReS
B

(
C ash

D + E abs
F
) + G ReS

He(I ash
J+K abs L) + M ReS

N
(
O a f s

P
)
,

(4)

with A to P as model coefficients.
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Fig. 5 Visualization of the parameters for the calculation of the weighting factor W

The values of the coefficients contained in the model functions for the weighting
factor were determined using a fitting algorithm. The definition is based on the results
of CFD simulations for selected particle shapes. These particles were discretized by a
clump of sphereswith various sphere numbers. Theweighting factor is determined by
Eq. 4 for each of these spheres and the appropriate drag coefficient is calculated byEq.
3. The coefficients in Eq. 4 are adjusted to fit best the values from the CFD calculation
for a wide range of Reynolds numbers and angles of attack by an optimization
algorithm. Thereby, a particle swarm approach is used. The problem is implemented
in combination with the python program deap [18], which processes the optimization
on a multi-processor platform in parallel.

The coefficients used in Eq. 4 are listed in Table 1. The resulting drag coefficient
for a truncated cone and an irregularly shaped particle are shown in Fig. 6 in depen-
dence on the Reynolds number and the angle of attack. The new drag model gives
a better agreement with the CFD results in comparison to the model by Hölzer and
Sommerfeld.

Table 1 Shape-independent parameters used for calculation of the weighting factor in Eq. 4
Parameter Value Parameter Value Parameter Value Parameter Value

A 0.272444 E 0.860548 I 2.993242 M 1.689610

B 0.179754 F 0.711180 J 2.077819 N 0.127088

C −0.380534 G 0.034872 K 0.216286 O −0.004679

D 5.650548 H −0.021070 L 0.256386 P −0.097940
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Fig. 6 Drag coefficient for the newmodel depending on the Reynolds number and particle orienta-
tion in comparison to CFD data and the drag model by Hölzer and Sommerfeld [5]; truncated cone
(left) and stone ST1 (right)

4 Application

The new drag model will be tested on a complex flow configuration. Therefore, ex-
perimental investigations on a spouted bed configuration are processed. The toolbox
CFDEM® coupling is used to calculate the behavior of the fluid and the granular
phase. This is done through a coupling of the CFD code OpenFOAM® [15] and the
DEM code LIGGGHTS [19]. The momentum conservation equation for the fluid
phase uses the incompressible formulations according to a pressure gradient force
model (PGF or model A [20, 21]) that is implemented in CFDEM® coupling as
follows:

∂ε f Ui

∂t
+ ∂ε f UiU j

∂xi
= −ε f

∂p

∂xi
+ ∂ε f τ

∂xi
+ ε f g − Fpf , (5)

where ε f is the fluid phase fraction,U the fluid velocity, τ the shear tensor, and Fpf

the sum of the volume forces for the coupling between the fluid and the granular
phase. The simulations are performed with the cfdemSolverPiso solver of CFDEM®

coupling [19] using a four-way coupling approach that considers the particle–particle
and particle–fluid interactions. The new drag model is valid for the flow around a
single particle. In order to take into account effects resulting from locally high particle
volumeconcentrations (swarmeffects), the dragmodel is combinedwith a correlation
by DiFelice [22]. This approach was also used by Hilton et al. [23] and Oschmann et
al. [24]. The drag force FD also depends on the local particle volume concentration
ε f and the model parameters χ

FD = cD ρ

2
U 2 π

4
dV

2ε f
(1−χ), (6)

where

χ = 3.7 − 0.65exp

(
− (1.5 − log(Re))2

2

)
. (7)
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Fig. 7 Mean particle distribution within the spouted bed for the experimental and numerical in-
vestigations with 1000 tori: experiments (left), CFD-DEM calculation with the new drag model
(middle) and the drag model by Hölzer and Sommerfeld [5] (right)

The combination with DiFelice’s approach was implemented and tested, both for
the newly developed drag model and the drag model by Hölzer and Sommerfeld.
The grid resolution for spouted bed geometry was chosen such that the flow field is
still well-discretized and most grid cells are larger than the diameter of the Clump
spheres. In the area of the wall and the inlet region, the cell size is much smaller than
the spheres used. So, the local particle concentration may not be calculated correctly
in these regions. A resolved CFD-DEMmethod presented in [25] could lead to better
results, but requires higher computational costs and was not tested within this work.
The simulation was performed for a real time of 30 s.

The experimental setup uses a camera in combination with a backlight to describe
the particle behavior. A time series of 300 images over 5 min is used to determine
the average bed dimension. The results of the simulations for the motion of tori in
the spouted bed are shown in Fig. 7. All performed CFD-DEM simulations show a
similar fluidization of particles compared to the experiment. The average calculated
bed height is similar to the experiments. The particle velocities close to the walls
are higher, so that particles in this region are transported well above the average bed
height, a phenomenon that has not been observed experimentally. The differences
between experiments and simulations in the inlet region are due to the experimental
setup, whereas this region was not sufficiently well-lit.

There are only minor differences between the results with the new drag model
and those with the model by Hölzer and Sommerfeld. However, the whirling up
of a few particles at the wall is more pronounced with the model by Hölzer and
Sommerfeld. The results with the new drag model show a slightly better agreement
with the experimental results.
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5 Conclusions

A newmodel is presented to approximate the drag coefficient of non-spherical parti-
cles using a clumpofmultiple spheres to represent the shapeof the particle.Numerical
simulation and wind tunnel experiments are performed to determine the drag forces
of regularly and irregularly shaped particles for a wide range of Reynolds numbers
and particle orientations. These data are used to determine the necessary model pa-
rameters. The drag model shows a good fit with the CFD results within a wide range
of particle shapes, Reynolds numbers and particle orientations. It gives, in some
cases, better results than the widely used model by Hölzer and Sommerfeld [5]. The
new drag model is implemented within the CFDEM® coupling environment. It is
used in combination with the correlation by DiFelice [22] to capture the influence of
high particle concentrations on the drag values. The application of the drag model
for the simulation of non-spherical particles in spouted beds by means of CFD-DEM
calculations gives a good agreement with experimental results.
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Effects of Surface Textures
on Gravity-Driven Liquid Flow
on an Inclined Plate

Martin Isoz

Abstract Even though free surface flows are of high importance in a number of
engineering areas, they still pose a challenging problem from the point of view of
Computational fluid dynamics (CFD) modeling. In the present work, a Volume-of-
fluid (VOF) method-based open source CFD solver, interFoam, is used to study the
properties of a gravity-driven liquid flow on an inclined plate with respect to differ-
ent plate textures. At first, the proposed model was validated against the available
experimental data. Then, the effects of three different types of texture on the specific
wetted area of the plate were evaluated.

1 Introduction

The multiphase flow of thin films, rivulets and drops is of key importance throughout
many areas of chemical engineering, including mass transfer [2], trickle bed reac-
tors [8], heat exchangers [14] and various coating processes [7]. However, on an
industrial scale, most of these processes are performed in complex apparatuses, the
hydrodynamics of which still remains rather mysterious.

Examples of such apparatuses are the separation columns that are used in chemical
engineering to perform mass transfer operations on large scales. The fluid flow in
these columns is multiphase and it occurs in a geometrically complex domain (see
Fig. 1).

Due to the geometrical complexity of the column packing and the size of the
columns themselves, a direct simulation of its hydrodynamics has yet to be developed.
However, even models of the liquid flow on simplified geometries may shed some
light on the behavior of the original system.
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Fig. 1 Example of separation column packing – Mellapak 250X. An overall view of the packing is
depicted on the left. On the right, a detail of one element of a dismantled packing is shown. Structured
packing usually consists of corrugated, perforated and textured steel plates. The standard mode of
operation is counter-current: the liquid phase flows down and the gas phase up

For example, for themodeling of separation columns, Raynal andRoyon-Lebeaud
[11] proposed an appproachbasedon a segmentation of the problems into three ranges
of spatial scale: (i) the micro-scale represented by the liquid film flow on a small
subsection of the structured packing, (ii) themeso-scale corresponding to one element
of the packing material, and (iii) the macro-scale, which coincides with the full
column. In terms of Raynal and Royal-Lebeaud’s classification, we are interested in
the micro-scale. Despite the overall geometric complexity of the structured packing,
if we choose a small enough section of it, it is possible to represent such a packing
as an inclined plate.

The properties of various types of liquid flows down inclined plates have been
studied both experimentally and theoretically since, 1960s [13]. However, the recent
developments in experimental techniques, numericalmathematics and available com-
puting power have enabled a truly rapid advances in the area. The gravity-driven flow
of various liquids on an inclined plate was studied by Hoffmann et al. [5, 6], who
performed a series of experiments and numerical simulations in order to establish
the specific wetted area aS = aW/aT ∈ [0, 1] (the ratio of the wetted and total pack-
ing area) of an inclined plate in dependence on the liquid properties and the liquid
volumetric flow rate.

The specificwetted area is a key parameter for themass transfer calculations, as the
full film (aS = 1) has significantly better mass transfer characteristics than rivulets
or sliding drops. Hence, the work of Hoffmann et al. has led to a substantial amount
of subsequent studies aimed at examination and characterization of the effects of
different textures on the gravity-driven liquid flow (see [2, 3, 12, 15] and references
therein).
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Fig. 2 Examples of a liquid flowing down a smooth plate (upper left) and plates equipped with
longitudinal (upper right), transversal (lower left) and pyramidal (lower right) textures. Texture
roughness is 0.2mm (∼10% of the film thickness) and the width of one texture fold is 2mm

In the present study, we aim to provide characteristics for a gravity-driven free
surface flow of a liquid on an inclined plate. We consider four different surface
treatments of the investigated plate; namely, no surface treatment, i.e., a smooth plate,
a plate with either a longitudinal or transversal texture, and a plate with a pyramidal
type of surface texture. Examples of the studied geometries may be found in Fig. 2.
The studied flow parameter is the specific wetted area, aS , of the plate. Because
of the complex nature of the simulated flow, we perform a three-dimensional VOF
simulation of an isothermal liquid film. The solver used was interFoam, an open-
source solver from the OpenFOAM® framework [9, 10].

At first, we compare our simulations for the case of a smooth plate with existing
experimental data published by Hoffman et al. [5, 6] and with the published CFD
results [2, 3, 12, 15]. Then, we proceed to the simulations of a liquid flow on the
plate equipped with either longitudinal, transversal or pyramidal texture. The study
is completed by an evaluation of the influence of the pyramidal texture parameters
on the liquid wetting properties.
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2 Numerical Model

Aswasmentioned above, the interFoamsolver from theOpenFOAM® toolbox [9, 10]
was used for the purpose of the present investigation. OpenFOAM® is a set of open-
source C++ libraries used to solve different problems of computational continuum
mechanics within the finite volume method (FVM) framework. Nonetheless, the
main focus of the toolbox lies within the field of CFD. Bellow, we first describe the
basic principles of the interFoam solver, and then present the computational domain
and the simulation set-up.

2.1 Model Equations

The interFoam solver is an FVM solver for multiphase problems. The solver is based
on the volume-of-fluid (VOF) method [4]. The VOF method can be used to solve the
multiphase flow of incompressible isothermal and immiscible fluids. The method is
based on solving a single set of the Navier-Stokes equations for a hypothetical liquid.
The properties of the given liquid, namely its density, ρ, and dynamic viscosity, μ,
are calculated as a weighed average of the corresponding properties of the individual
fluids. If we consider two immiscible fluids, A and B, the final hypothetical fluid
properties would be calculated as,

ρ = αρA + (1 − α)ρB ,

μ = αμA + (1 − α)μB .
(1)

In the VOF methods, the weight in the above equations, α, corresponds to the
volume fraction of the reference liquid, A, in the individual mesh cells,

α =

⎧
⎪⎨

⎪⎩

1, cell contains only phase A

0, cell contains only phase B

a ∈ (0, 1) cell contains gas-liquid interface .

(2)

As a result of the introduction of theweight function, α, it is necessary to complete
the Navier-Stokes equations by an advection equation for it. Furthermore, if we
assume the velocity field, U, to have the form of

U = αUA + (1 − α)UB , (3)

it is possible to derive a Eulerian two-fluid model, in which the advection equation
for α is,

∂tα + ∇ · (Uα) + ∇ · ((Urα(1 − α)) = 0 , (4)
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where Ur = UA − UB is the interface compression velocity. The corresponding
Navier-Stokes equations are, as implemented in the interFoam solver,

∂t (ρU) + ∇ · (ρU ⊗ U) − ∇ · (μ∇U) = −∇ pd − g · h∇ρ + Fs

∇ · U = 0 ,
(5)

where g is the gravitational acceleration, h = x − hre f |g|/||g|| and pd = p − ρg · h
is the dynamic pressure in the liquid and Fs are the surface forces exerted on the
liquid.

The surface forces,Fs , are evaluated via the continuous surface force (CSF)model
[1],

Fs = γ n · κ(x) , (6)

where γ is the surface tension coefficient, n is the outer unit normal to the gas-liquid
interface and κ is the mean surface curvature. Moreover, it is possible to evaluate the
interface normal vector, n, and the interface curvature, κ , based on the α function as
follows:

n = ∇α
||∇α||

κ(x) = ∇ · n .
(7)

In the cells adjacent to a wall boundary, n has to be adjusted in order to take into
account the liquid dynamic contact angle, θ ,

nwall = nw cos θ + tw sin θ , (8)

where nw and tw are, in order, the unit vectors normal and tangent to the wall.
For the purpose of the present study, a dynamic contact angle model was applied.

This model is available in the core OpenFOAM® installation as dynamicAlphaCon-
tactAngle. In the model, the dynamic contact angle, θ , is defined as,

θ = θ0 + (θA − θR) tanh

(
uw

uθ

)

, (9)

where θ0, θA and θR are the equilibrium, advancing and receding contact angles,
respectively, uw is the speed of the moving contact line relative to the speed of the
adjacent wall and uθ is an appropriate scale for uw.

2.2 Computational Domain and Simulation Set-Up

The computational domain in the present investigation was, in agreement with the
available data [2, 5, 6], a steel plate of length L = 0.06m and width W = 0.05m,
which corresponds to a small section of the packing material. The height of the
computational domain was specified as H = 0.007m. The liquid inlet had height



138 M. Isoz

Fig. 3 The surface texture parameters: texture density, lT , and roughness, hT . For the case of the
pyramidal texture, a square base pyramid, as depicted in the right side of the figure, was used. For
the cases of longitudinal and transversal texture, the texture had the shape of a prism, with one
base dimension specified by 2lT and the other by the corresponding size of the geometry (L for the
longitudinal texture and W for the transversal texture). The height of the prism was hT

HI = 0.4mm and spanned across the width of the plate. The detailed structure of the
computational domain varied depending on the parameters of the texture used. These
parameters were the texture’s overall structure, where we used the above specified
four different types of texture, and the texture’s density, lT , and roughness, hT , as
specified in Fig. 3.

The simulations were performed with the plate inclination angle ϕ fixed at π/3 to
the horizontal.1 The investigated pair of fluids was water and air, which we denote
as A and B, respectively. The densities of the fluids used were ρA = 997 kgm−3

and ρB = 1.18 kgm−3. The dynamic viscosities of the constituent phases were,
μA = 8.899 × 10−3 Pa s and μB = 1.831 × 10−5 Pa s. The surface tension between
the two phases was specified as γ = 0.0728Nm−1. The parameters of the dynamic
contact angle model defined by (9) were fixed at θ0 = 70◦, θA = 75◦, θR = 65◦ and
uθ = 1m s−1.

The changed parameter was the flow rate of the phase A (liquid), which we
quantified via the Reynolds and Weber numbers, defined as

Re = ρA||UI ||HI

μA
, We = ρA||UI ||2HI

γ
, (10)

where HI is the above-introduced liquid inlet height and UI is the uniform velocity
prescribed at the liquid inlet. The coordinate system was chosen in such a way that
UI = (uI , 0, 0), uI > 0, and thus ||UI || = uI . The gas phase, B, was assumed to be
stationary in order to enable the validation of the simulations against the experimental
data available in the literature.

The meshes used for the purpose of the present study were hexahedral and struc-
tured (see Fig. 4). The number of cells in the respective meshes was determined
based on the mesh independence study.

1The selected plate inclination corresponds to the channel inclination of the Mellapak 250X com-
mercial packing.
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Fig. 4 Example of a structured hexahedral mesh used for the study of the flow properties on the
smooth plate. The domain dimensions are 6 × 5 × 0.7 cm (length × width × height)

In order to perform the above-mentioned mesh independence study, we defined
the variables,

δiα =
∥
∥αF (ti ) − α̃C(ti )

∥
∥

nCellsα

and δα = 1

nTimes

∑

(i)

δiα , (11)

whereαF is the solution for the phase volume fraction field,α, obtained on the finer of
the compared meshes, α̃C denotes the solution obtained on the coarser mesh mapped
on the finer mesh, nCellsα is the number of cells in the finer mesh fulfilling the
condition αF ≥ 0.5 and nTimes is the number of the stored solution vectors. For
the case of a mesh-independent solution, the variables δiα, i = 1, . . . ,nTimes, and
hence also the variable δα , should have the order of magnitude of the interpolation
error introduced by the mapping of αC on the finer mesh. An example of the time
evolution of δiα for different mesh sizes and the case of the transversal texture is
shown in Fig. 5.

The evolution of δα with the mesh refinement for the case of transversal texture is
depicted in Fig. 6. In an ideal case, the δα function should converge monotonically
towards zero with the increasing number of cells in the mesh. Any jumps in the func-
tion values indicate a qualitative change in the solution obtained for two consecutive
levels of mesh refinement. Furthermore, the time evolution of δiα helps to indicate the
time at which such a deviation of the two solutions occurs. Finally, the mesh sizes
used in the present study were 1,104,000 cells for the smooth plate and the plate
equipped with the transversal texture, 1,725,000 cells for the plate equipped with the
longitudinal texture, and 2,136,000 cells for the case of the pyramidal texture.
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Fig. 5 Example of the time evolution of δiα for different mesh sizes. A case of the transversal
texture with 2lT = 1mm and hT = 0.2mm is depicted. The numbers of cells in the plot legend
correspond to the number of cells in the finer of the two compared meshes

Fig. 6 Example of the evolution of δα with mesh refinement. The second axis is used to depict
the number of core hours needed to perform the simulation in parallel on 4 cores of the Intel Xeon
E5-4627v2@3.3GHz processor (In case of simulations with number of cells lower than 1 million,
the communication between the cores was responsible for a significant portion of the simulation
time. Thus, the first 4 simulations depicted in Fig. 6 used up roughly the same number of core
hours). The picture shows the same case as in Fig. 5. Furthermore, the same notation is employed

3 Results and Discussion

At first, we validated the proposed model against the experimental data and simula-
tion results available in the literature. The resulting comparison is depicted in Fig. 7.
Based on the available data, it would seem, that the CFD simulations underestimate
the specific wetted area. On the other hand, all the experiments are based on an op-
tical technique; hence, it is necessary to add some tracer to the liquid. Furthermore,
it is almost impossible to maintain the absolute purity of the water during the mea-
surements. The presence of both the impurities and the tracer influence the physical
properties of the liquid. For the specific case of water, both the impurities and the
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Fig. 7 The specific wetted area, aS , in dependence on the Weber number. The data from literature
are depicted in grayscale. The results of the model introduced in Section 2 are depicted with colors.
Examples of each type of the identified flow are depicted in image borders and colored accordingly
to the plot legend

tracer tend to lower its surface tension and contact angles. If we decrease the surface
tension coefficient, γ , as well as the parameters of the dynamic contact angle model,
θ0, θA and θR , by a mere 10% and rerun the simulations, the obtained aS are mostly
overestimated (consult Fig. 7).

During the model validation, we tested different flow rates in the range approx-
imately corresponding to We ∈ (0.01, 1) or Re ∈ (20, 220). For these flow rates,
we identified, in total, four qualitatively different types of flow (see the borders of
Fig. 7). For low flow rates (We < 0.03), the liquid flows down the smooth plate in
the form of isolated droplets. With the increase in flow rate, those droplets merge
and form thin, stable rivulets. For We ≥ 0.2, those rivulets lose the stability and the
flow becomes chaotic. At last, with a further increase of the liquid flow rate beyond
We

.= 0.3, a region with a fully formed thin film emerges on the top of the plate. The
film tends to break and form a stable rivulet further along the plate. However, the
area occupied by the film smoothly increases with the increase in the intensity of the
flow.

After validation of the model for the case of the smooth plate, we performed
a series of numerical experiments with the different types of texture. The specific
wetted area, aS , for the four studied cases is depicted in Fig. 8. The texture density
was fixed at lT = 2mm and the texture roughness at hT = 0.2mm.
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Fig. 8 The specific wetted area, aS , in dependence on the Weber number. The results for different
textures are distinguished by different colors. Furthermore, the different flow regimes are identified
by the symbols used. Examples of the flow on each of the studied textures for Re = 185 and
We = 0.94 are depicted in the image borders and colored according to the plot legend. Another
example of the flow on different textures may be found in Fig. 2

From the comparison of aS for the four tested types of texture, it is possible to
conclude that the transversal texture increased the wetted area for lower and medium
liquid flow rates, i.e., for We ∈ (0.01, 0.2). The used pyramidal texture seems to
increase the wetted area for the medium liquid flow rates, roughly corresponding to
We ∈ (0.08, 0.2). Furthermore, in this region, the pyramidal texture also highly
increased the instability of the flow. The longitudinal texture did not seem to improve
the liquid wetting properties for any of the tested liquid flow rates.

In general, the textures tried did not seem to improve the liquid wetting properties
significantly. During the numerical experiments, it was observed that the liquid was
slowed down by the texture, and thus lost its kinetic energy. This resulted in the
pinning of the contact lines and stopping of the wetting process. On the other hand,
in the literature [2, 12], there are data available on textures that caused a significant
increase of the specific wetted area of the plate. Furthermore, a large number of the
commercially available structured packings is equipped with some kind of a surface
texture.

It is interesting that the industrial textures used in practice do not correspond to
those documented in the literature. For example, the most widely employed type of
texture used for commercial packings is close to the pyramidal texture presented in
this work (see Fig. 1). Yet, besides the present study, all the authors concentrate on
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Fig. 9 The specific wetted area for the case of the pyramidal texture with different 2lT varying
from 0.75 to 3.75mm. The Reynolds number was fixed at Re = 62, which corresponds toWe = 0.1

either longitudinal or transversal types of texture. Use of the pyramid structures in
industrial applications might be promoted by the fact that in the packing, it is not
possible to estimate the angle of attack on the texture. Thus, on the scale of the full
column, the pyramidal texture may perform better than the unidirectional textures.

A dependence of the specific wetted area, aS , on the texture density, lT , is depicted
in Fig. 9. For the purpose of the study, we selected the case from the range of the
liquid flow rates in which the default pyramidal texture was performing the best
(We ∈ (0.08, 0.2), consult Fig. 8). We fixed the liquid flow rate at We = 0.1 and
tested the flow behavior for different texture densities. From the data, it seems that
the best for the given case should be the textures with 2lT roughly between 1 and
1.5mm. Such textures best promote the instabilities in the flow and coincidently
increase the amount of the liquid on the plate.

However, only a larger dataset would enable us to specify if the texture with
2lT

.= 1.25mm would perform best for a wider range of liquid flow rates. Further-
more, a similar study should be provided for the texture roughness, hT .

4 Conclusion

Despite the ever-growing computing capacity ofmodern computers,multiphasemod-
eling of free surface flows in complex geometries of industrial apparatuses is still
beyond the possibilities of the most of the computers available to CFD engineers.
Hence, modeling of such devices has to be split into different scales, with these tasks
then being solved separately, whereby information is shared between them. In the
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present paper, we provided a detailed micro-scale investigation of the gravity-driven
flow of a liquid on four different types of textures.We identified four qualitatively dif-
ferent types of flow and provided estimates for the ranges of theWeber and Reynolds
numbers for which these flows might occur. Finally, we studied effects of the four
different types of textures on the flow behavior. Unfortunately, we were not able to
confirm a significant improvement of the plate wetting properties associated with the
presence of the texture. However, we plan to further evaluate the performance of the
pyramidal texture in dependence on the parameters hT and lT . Furthermore, as water
systems are not the ones most widely used in the industrial separation columns, it
would be useful to complete the analysis by testing other types of liquids as well.
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Enhanced Turbomachinery Capabilities
for Foam-Extend: Development
and Validation

Ilaria De Dominicis, Gregor Cvijetić, Mark Willetts and Hrvoje Jasak

Abstract Turbomachinery simulations represent one of the most challenging fields
in Computational Fluid Dynamics (CFD). In recent years, the general CFD capabil-
ities of foam-extend have been extended by introducing and maintaining additional
features specifically needed for turbomachinery applications, with the aim of offering
a high-quality CFD tool for the study of rotating machinery. This work presents the
implementation and validation of new capabilities for turbomachinery with foam-
extend, a community-driven fork of OpenFOAM®. The formulation of an energy
equationmore convenient for compressible turbomachinery applications has resulted
in the rothalpy equation. Rothalpy is a physical quantity conserved over a blade row,
stator or rotor, but not over a stage, both stator and rotor. It is fundamental to take into
account that the value of rothalpy is not continuous across the rotor–stator interface,
due to the change of rotational speed between zones. The rothalpy equation has been
derived for both relative and absolute frames of reference, showing that additional
terms appear in the absolute frame of reference. Moreover, additional functionality
has been added to the rotor–stator interface boundary conditions’ General Grid In-
terface (GGI), partial Overlap GGI and Mixing Plane Interface, in order to account
for the rothalpy jump. The development of these new capabilities and their validation
are shown, as well as industrial applications of compressible turbomachinery flows.
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Nomenclature

e Energy
h0 Total enthalpy
i Rothalpy
ρ Density
p Static pressure
R Radius

SH Source term of enthalpy
T Temperature
t Time
¯̄τ Viscous stress tensor
U Rotational velocity vector
V Absolute velocity vector
Vθ Component of absolute velocity in the tangential direction
W Relative velocity vector
ω Rotor angular velocity

1 Introduction

The role of turbomachinery studies is fundamental, nowadays, in a large number
of industrial CFD applications. Rotating machinery presents particular challenges,
such as complex geometries, the presence of an adverse pressure gradient and the
relative motion of multiple rotors and stators, which require the modification of
standard CFD tools with turbomachinery-specific capabilities. Jasak and Beaudoin
[1] have described the implementation of turbo-specific features in the open-source
numerical simulation software foam-extend, emphasizing the basic functionalities
of turbo tools, the software layout in foam-extend and the numerical formulation of
interfaces between stages.

The Open-Source platform foam-extend is a community-driven fork of
OpenFOAM®, consisting of C++ libraries for Computational Continuum Mechan-
ics, with extended CFD capabilities. The object-oriented architecture of foam-extend
allows users to efficiently modify specific libraries and take advantage of the existing
parts of the toolbox. The full source code of foam-extend is released under the GPL
license and can be used at no cost.

The main challenges that turbomachinery simulations impose are linked to the
need to study the relative motion of multiple rotors and stators. Depending on the
transient or steady-state approach, the rotation can be handled in two ways: directly,
by moving the mesh, or indirectly, by using a static mesh and modifying the equa-
tions to take into account the rotation. The former is only appropriate for transient
simulations, whereas the latter is suitable for steady flow and may be formulated
either for a single body in rotation, using the Single Rotating Frame of Reference
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method (SRF), or for different rotating regions, using the Multiple Rotating Frame
of Reference method (MRF). SFR andMRF can be implemented choosing either the
absolute or relative velocity formulation. Recently, a new method for studying tur-
bomachinery has also been developed and validated in foam-extend: the Harmonic
Balance method for nonlinear, temporally periodic and incompressible flows [2].

The interface between stationary and rotating parts can be treated in several ways:
for transient simulations with topological changes, the sliding mesh technique is
commonly used, whereas for steady-state simulations, the methods available are the
General Grid Interface (GGI), in which aweighted interpolation is performed to eval-
uate and transmit flow values across a pair of conformal or non-conformal coupled
patches [3]; the partial Overlap GGI for cases in which some of the interface faces are
not physically covered by their counterpart; and the Mixing Plane Interface, which
consists of circumferential averaging of the solution at the rotor–stator interface [4].

The focus of this paper is the implementation of the rothalpy equation in foam-
extend, as well as the implementation of the related boundary conditions and rotor–
stator interfaces in order to properly handle this physical quantity. The validation
is performed on steady simulations, in which the mesh is static and the rotation is
handled by means of the MRF approach.

The paper is organized as follows: Sect. 2 contains a theoretical discussion of the
mathematical model, Sect. 3 reports the validation cases and discussion, ending with
the conclusion in Sect. 4.

2 Mathematical Model

The energy equation recommended for complex turbomachinery applications are
the conservation of rothalpy equation. This is due to the rothalpy’s property of being
conserved over a blade row, stator or rotor, under the conditions investigated by
Lyman [5]: isentropic flow, steadiness in the rotor frame, constant rotor angular
velocity and no work done by the net viscous and body forces on the relative flow.

The rothalpy is a physical quantity, defined as [6]

i = h0 − ωRVθ . (1)

The steady conservation equation for rothalpy is strictly dependent on the MRF
formulation used. When the MRF is formulated in relative velocity, it is

∇•(ρiW) = ∇•(k∇T + ¯̄τ · V) + SH . (2)

When the absolute velocity formulation is used for MRF, the steady conservation
equation for rothalpy is

∇•(ρiW) = −∇•(ρωRVθW) − ∇•(pU) + ∇•(k∇T + ¯̄τ · V) + SH . (3)
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Equations2 and 3 differ because of the two terms −∇•(ρωRVθW) and −∇•(pU),
which are only present in Eq.3. These are, respectively, the convection of the quantity
ωRVθ and the work done by the pressure forces. At the rotor–stator interfaces, the
value of the rothalpy is not equal on both the rotor and stator sides, as the rotational
velocity of the stator is zero. This requires modifications of existing rotor–stator
interface methods: GGI, partial Overlap GGI and Mixing Plane Interface, in order
to take into account the rothalpy jump at the rotor–stator interface. The value of the
jump has been calculated by observing that on the stator, the rothalpy is equal to
total enthalpy, being the angular velocity of rotor null, whereas on the rotor, both
components of the rothalpy are non-null.

{
i = h0 stator

i = h0 − ωRVθ rotor
(4)

Therefore, the value of the rothalpy jump at the rotor–stator interface is −ωRVθ .
Accounting for the possibility of reverse flow, the jump has to be added to each face
where the flux is going from the stator to the rotor and has to be subtracted from each
face where the flux is going from the rotor to the stator.

3 Validation and Discussion

Validation of the new compressible solver specialized for turbomachinery applica-
tions has been carried out comparing the global turbomachinery parameters and the
flow fields achieved with foam-extend and with a CFD commercial solver.

A 1.5-stage axial turbine has been chosen as the validation case. Steady sim-
ulations have been performed, accounting for only one rotor position. In order to
shorten the CPU time, periodic boundary conditions have been adopted and only 1
blade passage has been simulated, with whole geometry having 36 blades in each
rotor and stator. The mesh used is structured and consists of 405,600 hexahedral
cells. The rotational speed is set to 3501 rpm and the inlet velocity is 60 m/s, with
the kinematic viscosity being 1.8 × 10−5 m2/s. The interaction between the rotor
and stator has been resolved by taking advantage of the new implemented boundary
conditions, which handle the rothalpy jump over the rotor–stator interfaces. At the
rotor–stator interfaces, all of the variables are transported continuously, except for
rothalpy.

In this work, two different methodologies of interface treatment have been con-
sidered: the partial Overlap GGI and Mixing Plane approaches.
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3.1 Aachen Test Case: Partial Overlap GGI Approach

First, the partial Overlap GGI approach has been used at the rotor–stator interfaces.
It interpolates the variables from one interface patch to another, allowing the use of
a non-conformal mesh and the implementation of jump conditions over the interface
before the interpolation is effected.

In Fig. 1, a comparison of the Mach number field obtained with a commercial
code and the one obtained with foam-extend is shown. It can be noticed that the
Mach number is continuous over the interface in both cases, and that the stator and
rotor wakes are successfully resolved using the rothalpy jump boundary condition.

Figure2 shows the static pressure fields comparison, whereas the temperature
fields can be seen in Fig. 3. Since the temperature is calculated from the rothalpy, the
effect of the rothalpy jump can be observed, as the temperature is continuous over
the interface, rather than showing a jump.

3.2 Aachen Test Case: Mixing Plane Approach

The Mixing Plane approach is usually employed when rotor–stator interaction is
not of primary importance, but temporally averaged flow fields are considered. The
flow fields calculated using the Mixing Plane Interface are comparable to those
obtained by averaging the solution achieved in the transient simulation over time.

(a) Commercial code

(b) foam-extend

Fig. 1 Mach number field comparison
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(a) Commercial code

(b) foam-extend

Fig. 2 Static pressure field comparison

(a) Commercial code

(b) foam-extend

Fig. 3 Temperature field comparison
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(a) Commercial code

(b) foam-extend

Fig. 4 Mach number field comparison

Figure4 presents a comparison of theMach number field achievedwith a commercial
software and the one achieved with foam-extend by using theMixing Plane approach
at the rotor–stator interfaces.

Compared to the partial Overlap GGI approach, the interfaces are visible in this
case due to the fact that the flow field has been averaged before being passed to the
opposite side of the interface. By doing this, the variables are no longer continuous,
but the result can still be considered physical, as it resembles the temporally averaged
solution. It should be noted that, regardless of rothalpy jump, the mass conservation
over the Mixing Plane Interface is preserved. Mass flow relative differences between
the rotor and stator interfaces are on the order of 10−3%.

Figures5 and 6, respectively, present the static pressure and temperature fields.

3.3 Global Pump Parameters Comparison

The global pump parameters of isentropic efficiency and torque related to the first
stage are presented in Table 1. Two different approaches of interface treatment, partial
Overlap GGI and Mixing Plane Interface, and two CFD softwares, foam-extend and
a commercial code, have been employed in this study. The last column presents
the differences between the two codes, while the third row presents the differences
between the two approaches. The differences comparing the approaches are below
1%, showing that, in the case of steady-state simulations, the Mixing Plane approach
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(a) Commercial code

(b) foam-extend

Fig. 5 Static pressure field comparison

(a) Commercial code

(b) foam-extend

Fig. 6 Temperature field comparison
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Table 1 Global pump parameters comparison

Foam-extend Commercial code Difference (%)

Isentropic
efficiency (–)

Partial Overlap
GGI

0.8405 0.8553 1.78

Mixing plane
interface

0.8435 0.8499 0.76

Difference (%) 0.37 0.63

Torque (N/m) partial Overlap
GGI

5.2343 5.2428 0.16

Mixing plane
interface

5.2176 5.1986 0.36

Difference (%) 0.32 0.84

can be used as an accurate alternative to partialOverlapGGI if rotor–stator interaction
is not needed. This is especially significant for cases with different pitches between
the rotor and stator rows, as partial Overlap GGI is not suitable for this application.
Comparing the results between foam-extend and the commercial code, the highest
error is 1.78%, while other errors are below 1%.

Being an important aspect in turbomachinery simulations and design, efficiency
differences show that foam-extend’s rothalpy approach gives results comparable to
a commercial CFD software.

4 Conclusion

In this work, the implementation and validation of additional turbomachinery func-
tionality in foam-extend have been presented. The energy equation has been solved
for the physical quantity rothalpy, which is convenient for turbomachinery appli-
cations, as it is conserved over a blade row, stator or rotor. The use of rothalpy
has required the implementation of specialized boundary conditions for treating the
rothalpy jump over the rotor–stator interface in order to obtain a continuous tem-
perature field. The jump occurs due to rothalpy taking into account the rotational
velocity, which is null for the stator. Regardless of the interface treatment chosen,
partial Overlap GGI or Mixing Plane Interface, the rothalpy jump is performed in
the interpolation part of interface communication. For validation, a 1.5-stage axial
turbine has been used and the results achieved with foam-extend and with a com-
mercial CFD software have been compared, showing good agreement. Foam-extend
can, therefore, be efficiently used as a part of the development process with full
turbomachinery capabilities.

Acknowledgements Marie Curie Initial Training Network (ITN) AeroTraNet2 of the European
Community’s Seventh Framework Programme (FP7).



154 I. De Dominicis et al.

Appendix

The MRF may be formulated using the relative or the absolute velocity formulation.
In the first case, the conservation of rothalpy in a moving reference frame is derived
directly from the conservation of energy formulated in terms of relative internal
energy. It is

∂(ρi)

∂t
+ ∇•(ρiW) = ∂p

∂t
+ ∇•(k∇T + ¯̄τ · V) + SH . (5)

When the absolute formulation is used for the MRF, the conservation of rothalpy
equations for a steadily moving frame is

∂(ρi)

∂t
+ ∇•(ρiW) = ∂p

∂t
− ∂(ρωRVθ )

∂t
− ∇•(ρωRVθW) − ∇•(pU) + ∇•(k∇T + ¯̄τ · V) + SH . (6)

This equation has been derived starting from the well-known conservation of
energy equation in MRF for absolute velocity formulation [7]:

∂(ρe)

∂t
+ ∇•(ρeW) = −∇•(pV) + ∇•(k∇T + ¯̄τ · V) + SH . (7)

And substituting the energy expression

e = h0 − p

ρ
= i + ωRVθ − p

ρ
(8)

leads to

∂(ρi)

∂t
+ ∂(ρωRVθ )

∂t
− ∂p

∂t
+ ∇•(ρiW) + ∇•(ρωRVθW) − ∇•(pW) =

− ∇•(pV) + ∇•(k∇T + ¯̄τ · V) + SH . (9)

Reorganizing the final terms, Eq. 6 is obtained.
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Evaluation of Energy Maximising
Control Systems for Wave Energy
Converters Using OpenFOAM®

Josh Davidson, Christian Windt, Giuseppe Giorgi,
Romain Genest and John V. Ringwood

Abstract Wave energy conversion is an active field of research, aiming to harness
the vast amounts of energy present in ocean waves. An essential development tra-
jectory towards an economically competitive wave energy converter (WEC) requires
early device experimentation and refinement using numerical tools. OpenFOAM® is
proving to be a useful numerical tool forWECdevelopment, having been increasingly
employed in recent years to simulate and analyse the performance of WECs. This
chapter reviews the latest works employing OpenFOAM® in the field of wave energy
conversion, and then presents the new application, of evaluating energy maximis-
ing control systems (EMCSs) for WECs, in an OpenFOAM® numerical wave tank
(NWT). The advantages of usingOpenFOAM® for this application are discussed, and
implementation details for simulating a controlled WEC in an OpenFOAM® NWT
are outlined. An illustrative example is given, and results are presented, highlighting
the value of evaluating EMCSs for WECs in an OpenFOAM® NWT.

1 Introduction

Ocean waves represent an enormous renewable energy resource, however, econom-
ically harvesting this energy is a challenging problem. Developing a cost-effective
WEC requires early optimisation and refinement of the device’s design and oper-
ation using numerical tools, before considering the expense of physical prototype
construction, deployment and experimentation. An EMCS can greatly improve the
performance of a WEC, without any substantial increase in capital costs. Therefore,
optimising and refining a WEC design and operation, requires evaluating EMCSs
using numerical tools.

Numerically analysing and simulating the fluid–structure interaction (FSI)
between a WEC and its environment, requires solving the Navier–Stokes equations,
a problem computationally infeasible for historic computers. Therefore, the equa-
tions were linearised to obtain results using boundary element methods (BEMs).
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The underlying hydrodynamics are based on linear potential theory, with assump-
tions of small wave and body motion amplitudes, inviscid fluid and an irrotational
flow. However, these linearising assumptions are challenged by realistic WEC oper-
ation under controlled conditions. An EMCS effectively tunes theWEC dynamics to
resonate with the incident waves, resulting in increased amounts of absorbed energy
due to largerWECmotions. The large amplitude motions result in viscous drag, flow
separation, vortex shedding and other nonlinear hydrodynamic effects.

Simulating aWEC under controlled conditions, therefore requires a realistic sim-
ulation environment, such as computational fluid dynamics (CFD). The discrepancy
between the linear hydrodynamic model and CFD simulations, for WEC motions
when the input wave frequencies are in the vicinity of the WEC resonant frequency,
is shown by [48]. The output power estimations from the linear hydrodynamic model
simulations, for frequencies around the WEC resonance, were shown to be consid-
erably larger than the CFD estimations, due to the absence of viscous damping
effects. The rigorous numerical treatment of the Navier–Stokes equations provided
by CFD, enables a realistic, high- fidelity simulation environment for assessingWEC
operation. However, the inclusion of nonlinear terms, neglected by linear hydrody-
namic models, comes at the expense of massively larger computational require-
ments. Yet, the continuous improvement in performance and reduction in the cost
of high-performance computers (HPCs), opens the way for CFD-simulated WEC
experiments with reasonable computation times.

1.1 Outline of Chapter

This chapter focuses on the role OpenFOAM® can play in the evaluation of an
EMCS for a WEC. OpenFOAM® provides open-source CFD solvers, whose appli-
cation towards numerical experimentation on WEC devices has been rapidly grow-
ing in recent years. Section2 reviews the usage of OpenFOAM® in wave energy
research, showing a broad range of different WEC devices, simulated for a wide
variety of research purposes. The new application of EMCS evaluation is then out-
lined in Sect. 3. A case study highlighting the importance of using a fully nonlinear
simulation, such as OpenFOAM®, when evaluating the performance of an EMCS,
is then presented in Sect. 4. The illustrative example in the case study, provides a
comparison between the simulated motions and energy output of a WEC, under both
controlled and uncontrolled conditions, calculated with a traditional linear hydro-
dynamic model and an OpenFOAM® simulation. An EMCS is used to drive a WEC
into resonance with an incident wave field, and a divergence between the calculated
linear model response and the OpenFOAM® simulation is observed.
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2 OpenFOAM® in Wave Energy Applications

An extensive literature review of OpenFOAM®’s application in wave energy-related
studies was presented in [6]. However, in the relatively short time since this review
was composed (2015), numerous further studies have been published, demonstrating
the growing usage ofOpenFOAM® inwave energy research. This section builds upon
[6], to provide an updated reviewdetailing the broad range ofWEC types and analysis
purposes of OpenFOAM® in wave energy applications.

Oscillating water column (OWC)-type WECs operate by converting wave energy
into pneumatic energy, whereby wave oscillations change the water levels inside of
a chamber to force entrapped air through a turbine. OpenFOAM® is a useful tool for
this type of WEC, able to model both the water and the air components of the OWC.
Iturrioz et al. [24] validates an OpenFOAM® model for an OWC against physical
experiments, showing excellent agreement among the free surface elevation (FSE),
air pressure and velocity measurements. Likewise, [44–46] validate OpenFOAM®

models of fixed OWCs against experimentally measured FSE and pressure data. To
investigate the causes of damage to the Mutriku OWC plant, [29] use OpenFOAM®

experiments to calculate flows, pressures and resulting loads at critical positions
within the OWC.

An operating principle similar to that of anOWC is theBlow JetWEC,which uses
a horizontally oriented funnel to reproduce the hydraulic behaviour of a blowhole,
turning relatively small waves into very strong air–water jets to drive an impulse
turbine. Mendoza et al. [30] used OpenFOAM® to analyse different Blow Jet WEC
configurations, validating results againstmeasured pressure data. TheBomboraWEC
is comprised of submerged flexible membranes that use the force of incoming waves
to drive air through a unidirectional air turbine. King et al. [26] uses an OpenFOAM®

framework to model the FSI in the submerged flexible membranes of the Bombora
WEC, coupling a simplified Finite Element model for the membrane and a thermo-
dynamic model of the air ducting and turbine, with a CFD model for the water.

An oscillating wave surge converter (OWSC) is a flap-type WEC that rotates
around a fixed axis in response to forcing from the incident waves. This type of
WEC presents a particular meshing challenge in CFD, due to the large rotational
displacements of the oscillating flap. A method for modelling this type of WEC in
OpenFOAM® is presented in [42], along with a comparison of simulation results
against experiments. The OpenFOAM® model developed in [42] is then used in [41]
to optimise the power take-off (PTO) damping torque for a generic flap-type OWSC.
Loh et al. [28] model a specific OWSC device, theWaveRoller, at a 1:24 scale under
operationalwave conditions to validate the numerical datawith experiments. Ferrer et
al. [16]model theOyster,OWSCdevice, in extreme sea states to investigate slamming
events, using both compressible and incompressible solvers, and compare the results
against experiments.Akimoto et al. [1] proposes a newconcept of rotationalWEC, for
capturing the orbital fluid particle motion of a wave. The preliminary CFD analysis
demonstrates the rotatingWEC and the wave flow field can keep the suitable position
for torque generation in all the phases of orbital motion. Similarly, [13] implements
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a 2D OpenFOAM® model for a quantitative investigation of the conversion perfor-
mance of the Seaspoon WEC, which uses the same rotational operating principles.

Point absorber WECs are wave-activated bodies that are physically small com-
pared to the typical wavelengths. OpenFOAM® was employed in [27, 31] to examine
two-body self-reacting point absorber-type WECs, and in [35] to study the ’damper
plate’ component of self-reacting point absorbers. Devolder et al. [11] validates a
heaving point absorber against free decay, and regular wave, experiments in a wave
flume. Palm et al. [33] analyses a moored point absorber, by coupling a solver for
the mooring system dynamics with OpenFOAM®, presenting the formulation for
the coupled mooring analysis and validation results against physical experiments.
Rafiee and Fiévez [34] uses OpenFOAM®, as well as traditional linear hydrody-
namic models, to simulate the performance of the CETO point absorber WEC, under
moderate and extreme wave conditions. The results in [34] were compared against
physical experiments, showing a good agreement with the OpenFOAM® simulations
but not by the linear models. Eskilsson et al. [14] investigates simulating the wave-
inducedmotions of point absorber-typeWECs, comparing the results of approximate
but computationally efficient hydrodynamic models against the more complete but
time-consuming OpenFOAM® simulations. Similarly, [17] investigate the differ-
ence among the performances of various linear and nonlinear hydrodynamic models
compared with OpenFOAM® results, for the case of a heaving point absorber-type
WEC.

The Ph.D. theses [4, 38], and the resulting papers, focus on the OpenFOAM®

modelling of WECs. In [38], the use of OpenFOAM® to simulate WEC and moor-
ing performance under survival sea conditions is investigated. The thesis presents
several case studies; a fixed truncated cylinder, a moored buoy [36], the Wavestar
[37] and SeabasedWEC prototypes, including validation against physical wave tank
experiments. Chen [4] implements wave generation and absorption by modifying
the interDyMFOAM solver, and validates wave propagation and impact cases. The
modified solver is then used to simulate and analyse the wave-induced roll motion
of a rectangular barge and the hydrodynamic performance of an OWSC [5].

OpenFOAM® has been used for system identification of WEC models. The gen-
eral concept of identifyingmathematical models describing the dynamical behaviour
of WECs from recorded data, using OpenFOAM® simulations as examples, is given
in [40]. The types of identification tests available in an OpenFOAM® NWT are
investigated in [10], and are used in [22] to identify the parameters of nonlinear
hydrodynamic models. Giorgi and Ringwood [20] investigates the identification of
hydrodynamic drag coefficients from OpenFOAM® experiments, the drag coeffi-
cients for the CETO WEC are identified by [34] using prescribed motion tests, and
[2] determine nonlinear damping coefficients for a flap-type OSWC using free decay
tests. Davidson et al. [7] uses system identification techniques to adapt the parameters
of a linear control model online from measured responses of the WEC behaviour, so
as to ensure the best linear model representation of the nonlinear conditions in the
OpenFOAM® simulation.

Devolder et al. [12] review the interDyMFoam solver for the application of simu-
lating a heaving buoy, outlining the importance of the fluid and body solver coupling
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for wave energy applications and describe some pitfalls in the implemented method-
ology. Windt et al. [47] outlines an assessment methodology for the different numer-
ical wavemakers available in an OpenFOAM® NWT for wave energy experiments,
showcasing evaluation tests and metrics for their wave generation and absorption
capabilities.

3 Evaluating Energy Maximisation Control Systems

By increasing the energy capture of a WEC, across changing sea states, EMCSs
can improve the economic viability of the WEC. In addition to maximising energy
output, EMCSs can also enforce constraints on the WECs operation. Maximum
displacements and PTO forces can be constrained below desired values, so as to
decrease device damage and fatigue and ensure efficient PTO sizing. A review of
EMCSs for wave energy conversion is given in [39].

Evaluating the performance of an EMCS classically relied on linear model simu-
lations. However, the increased amplitude of the WECs dynamics under controlled
conditions challenges the validity of the linearising assumptions suchmodels are built
upon. Consistent with the observations in [48], the results in [9] show that increas-
ing the amplitude of the WECs operation away from its zero-amplitude equilibrium
state, leads to a divergence between the linear hydrodynamic model and CFD sim-
ulations. Specifically, the levels of hydrodynamic damping experienced by a WEC
are seen to increase as the amplitude of operation increases. Therefore, evaluating
an EMCS with a linear model will likely result in predictions of unrealistically large
WEC motions and energy capture, due to an underestimation of the hydrodynamic
damping on the WEC. CFD, on the other hand, has a greater range of validity when
simulating large amplitudeWECmotions. The treatment of nonlinear effects, such as
viscosity or a time-varyingwetted body surface area, enables CFD to provide a higher
fidelity simulation, compared to a linear hydrodynamic model, at these operational
amplitudes.

A strong advantage in choosing OpenFOAM® for the CFD simulation platform
is the open-source nature of the software. The cost of commercial licenses can be
prohibitive for university-based researchers, and WEC developers in small compa-
nies, with limited funds, which could be better spent purchasing HPC hardware or
computing time. The open-source nature ofOpenFOAM® often results in useful tool-
boxes being freely shared, a prime example being thewave generation and absorption
toolboxes: waves2FOAM [25] and IHFOAM [23]. Of the papers reviewed in Sect. 2,
waves2FOAM is used by [1, 10, 13, 19, 27, 30, 31, 34, 40, 43] and IHFOAM by
[12, 24].

The complete access to the source code, provided by OpenFOAM®, allows mod-
ifications to be made. For example, mooring forces are applied to a WEC in [33] by
modifying the restraints function in the sixDoFRigidBodyMotion solver, following
the procedure outlined in [32]. The same function is modified in [10] to apply generic
PTO forces to a WEC, and then is coupled with MATLAB in [7] to calculate opti-
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mal control of the PTO force, as well as online system identification for the control
model. Giorgi and Ringwood [19] implements latching control for a heaving sphere
in regular waves where the WEC is ‘latched’ stationary during certain instants of the
wave cycle, and then released at a later time when the phase of the incident wave
is more favourable for increased energy capture. To implement the latching control,
the source code was modified as detailed in [18].

4 Illustrative Example

An illustrative example is given, demonstrating the influence of the chosen simulation
environment on the evaluation of an EMCS. Consider the WEC shown in Fig. 1,
comprising a spherical buoy that acts as a point absorber. The WEC reacts against
the inertia of the seafloor (or stationary damper plate) to extract power through a PTO
force, FPTO. Simulation of the WEC operation in an irregular sea state is performed
by both an OpenFOAM® NWT and a linear hydrodynamic model, to compare the
calculated wave-induced heave motion, x(t), and energy capture

E(t) =
∫ T

0
FPTO(t)ẋ(t)dt. (1)

An uncontrolled case shall be used as a reference, in which the PTO acts as a
simple linear damper, applying a purely resistive force proportional and opposite to
the WEC velocity

FPTO(t) = −dẋ(t), (2)

where d is the PTO damping parameter.

Fig. 1 WEC device
considered in the illustrative
example

Buoy

Inertia (Sea floor/damper plate)

PTO

Heave
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The EMCS to be evaluated is PI control, which also applies a resistive PTO
force proportional and opposite to the WEC velocity to absorb power, however, an
additional reactive PTO force, proportional to the WECs displacement, is applied

FPTO(t) = −dẋ(t)− cx(t), (3)

where c is the PTO spring parameter. PI control uses the reactive force to drive the
WEC into resonance with the input waves, leading to increased WEC motions and
energy capture. The value of c required to align the resonant period of the WEC,
TWEC , with the peak period of the input wave spectrum, Tp, is estimated here using
linear oscillation theory, [15]

c = kT 2
WEC

T 2
p

− k, (4)

where k is the hydrodynamic restoring force coefficient.
The PTO damping parameter, d, is chosen as equal to the value of the WECs

hydrodynamic radiation damping parameter at Tp, representing impedancematching
at the peak wave period Tp [15].

4.1 Implementation

The illustrative example evaluates an EMCS, using both OpenFOAM® NWT and
classical linear hydrodynamic model simulations. Here, implementation details, for
the OpenFOAM® NWT, linear hydrodynamic model and EMCS, are given.

4.1.1 OpenFOAM® NWT

The implementation of theOpenFOAM® NWT is presented in [6]. The present exam-
ple considers a WEC whose buoy has a radius of 0.1m, that floats 50% submerged
at equilibrium, in the middle of a 100 m2 square tank, with a 3m water depth.

A cross-sectional view of the NWT mesh is depicted in Fig. 2a. Wave generation
and absorption is implemented using thewaves2FOAM toolbox and thewave creation
and absorption zones are also depicted in Fig. 2a. In Fig. 2b, the dynamic pressure
fields are seen to be generated in thewave creation zone, propagate through the central
zone, interact with the WEC, and then be absorbed in the leeward side absorption
zone. A unidirectional input wave spectrum, with a peak period of 1 s, is generated.
The input waves are initially simulated without the WEC in the NWT, to allow
the free surface elevation (FSE) to be measured at the centre of the tank. The FSE
measurement is then used by the linear hydrodynamic model so that both simulations
have the same input waves.
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(a)

(b)

(c)

(d)

Fig. 2 Cross-sectional view of a the mesh and fluid volume fractions (water = red, air = blue) at
time = 0 s, b the dynamic pressure at time = 25.3 s, c the dynamic pressure on the WEC at time =
0 s and 25.3 s, and d the fluid volume fractions around the WEC at time = 0 s and 25.3 s

4.1.2 Linear Model

The linear model, uses a fourth-order Runge–Kutta scheme to solve Cumin’s equa-
tion, as described in [15], with the hydrodynamic parameters obtained from the
open-source linear potential theory BEM software Nemoh [3].

4.1.3 Energy Maximising Controller

The PI controller is relatively easy to implement in OpenFOAM®, as it does not
require any modifications to the source code. The linearSpring or linearDamper
functions inside the restraints function of the sixDoFRigidBodySolver can be used
directly. The functions require a stiffness and a damping value, which represent the
PTO spring and damping parameters, c and d, in Eq. 3, respectively.

To determine the value for the PTO spring parameter, c, Eq. 4 can be used, once
the values of TWEC and k are known. To identify TWEC , a free decay experiment
is performed, Fig. 3a, and its spectral content is obtained, Fig. 3b, following the
system identification techniques described in [10]. The peak of the spectrum in
Fig. 3b, indicates a WEC resonant period of 0.61 s. To identify, k, the methods
in [9] can be followed, using measurements of the hydrostatic force from the free
decay experiment, Fig. 3c, to obtain the hydrostatic force versus displacement graph
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Fig. 3 a Simulated heave free decay test for WEC, b the spectral content of the signal indicating a
resonant heave period of 0.61 s, c the hydrodstatic force versus displacement data used to identify
the linear restoring force coefficient, and d system identification for the linear model’s hydrostatic
restoring force coefficient (method detailed in [9])

in Fig. 3d. The slope of the graph at x = 0 m, gives a linearised restoring force
coefficient around the WEC equilibrium. A k value of 314 N/m can be identified
from the results in Fig. 3d. Therefore, a PTO spring parameter, c, with a value of
−197 N/m is obtained from Eq.4. The PTO damping parameter, d, is set as equal
to the linear hydrodynamic radiation damping at Tp, with a value of 6.22 Ns/m
calculated using Nemoh.

4.2 Results

The generated input wave series is shown in Fig. 4a, the WEC heave motion for the
uncontrolled and the PI control simulations are shown in Fig. 4b, c, respectively. The
resulting heave motion for WECs using PI control can be seen to be considerably
larger than for the uncontrolled cases. The absorbed energy is plotted in Fig. 4d,
showing the effect of the reactive power applied by the PI controller, when during
certain periods of time, the absorbed energy decreases, flowing back from the PTO
to the WEC. However, over time, the PI-controlled WECs are seen to absorb consid-
erably more energy than the uncontrolled WECs, highlighting the benefit of using
control.

The results also show that the linear model and OpenFOAM® simulations agree
well with each other in the uncontrolled case. However, in the controlled case, the lin-
ear model significantly overpredicts theWECmotion and absorbed energy compared
to the higher fidelity OpenFOAM® simulation. At these larger amplitudes, nonlinear
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Fig. 4 a The measured FSE; b the heave displacement for the case of a passive damping PTO;
c the heave displacement for the case of PI-controlled PTO; d normalised energy absorbed by the
WEC

hydrodynamic effects begin to influence the device motion, and the predictions made
by the linear model and the OpenFOAM® simulations diverge.

The operational space, in the displacement–velocity plane, spanned by the WEC
motion is pictured in Fig. 5. The maximumWEC displacements and velocities from
the four simulations in Fig. 4b, c are plotted. The operational space for the linear
model and OpenFOAM® simulations of the uncontrolled WEC are very similar,
and are much smaller than for the controlled WEC simulations. The linear model
is seen to perform well compared to the more realistic OpenFOAM® simulation in
the low amplitude operational space of the uncontrolled WEC. However, for the
controlled WEC, the extended amplitude of the operational space diminishes the
validity of the linear model, as nonlinear effects become relevant. Figure5 shows that
the operational space of the WEC motion in the OpenFOAM® simulation is much
less than that predicted by the linear model simulation, likely due to the neglect of
viscous drag effects by the linear model. The background of Fig. 5 displays a contour
plot of the power absorbed by the PTO at each point in the operational space. The
overprediction of absorbed energy made by the linear model for the controlledWEC,
Fig. 4d, results from the WECs trajectory unrealistically spanning regions of large
power absorption.

The amplitude of the relative displacement and relative velocity, between the
WEC and the water, has a large effect on the presence of nonlinear hydrodynamic
effects. For example, if the relative displacement between the WEC and the FSE
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Fig. 5 The operational space in the displacement–velocity plane spanned by the WECs trajectory
(lines), and the power absorbed by the PTO at each point in the operational space (contour)

exceeds the WEC radius, then the WEC will either be fully submerged or airborne.
An example of that occurs at t = 25.3 s of the controlled OpenFOAM® simulation
(shown in the snapshot of theWECand the fluid in Fig. 2d). For aWECgeometrywith
a non-uniform horizontal cross section, such as the sphere, increasing the relative
displacement amplitude increases the nonlinearity of the hydrodynamic restoring and
Froude–Krylov forces, as shown in [8, 21], respectively. Viscous damping forces are
dependent on the relative motion between theWEC and water, whereby viscous drag
is often modelled as proportional to the square of the relative velocity.

The relative displacement between the WEC and the FSE is plotted in Fig. 6a, b,
and the operational space, in the relative displacement–velocity plane, in Fig. 6c. The
increase of different nonlinear hydrodynamic effects, for increasing amplitudes, are
also indicated in Fig. 6c, and are seen to be more prevalent for a controlled WEC.
Therefore, a realistic simulation environment, capable of modelling these nonlinear
hydrodynamic effects, should be used when analysing the wave-induced motions of
a WEC under controlled conditions.

While the illustrative example here utilised CFD, to capture the relevant non-
linear hydrodynamic effects evoked by the resulting large amplitude motions of a
controlledWEC, other nonlinear hydrodynamic modelling techniques may also give
improved results compared to the classical linearmodels, but with less computational
requirements thanCFD.Ahierarchical approach toWEChydrodynamicmodelling is
detailed in [14], examining the trade-off between model fidelity and computational
requirements. Similarly, a comparison of different nonlinear hydrodynamic mod-
elling techniques against the performance of an OpenFOAM® simulation is given
in [17], for both an uncontrolled and a controlled WEC. Like the present illustra-
tive example, the results in [17] also display a similar increase in operational space
spanned by the uncontrolled and controlled WECs, and highlight the need for a
high-fidelity nonlinear simulation environment for evaluating a controlled WEC.

The illustrative example shown, herein demonstrates the discrepancy between
classical linear models and CFD when simulating a controlled WEC. To ensure
confidence in the accuracy of the CFD results, the simulation should be validated
against experimental data. Validating against a full-scale WEC in the open ocean is
problematic, therefore a more common approach is to validate against a scaled-down
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(a)

(c)

(b)

Fig. 6 The relative displacement between the WEC and FSE for a the uncontrolled WECs, and
b the controlled WECs; c the relative displacement–relative velocity operational space spanned by
the WEC trajectory

version of the WEC in an experimental wave tank facility, and then extrapolate that
the validation holds true for full-scale conditions. The results from the illustrative
example suggest that a CFD simulation validated under uncontrolled conditions will
not extrapolate well to a simulation involving a controlled WEC, due the prevalence
of nonlinear effects for the controlled WEC operation absent in the uncontrolled
case.

5 Conclusion

Evaluating EMCSs for WECs requires an environment of realistic numerical sim-
ulation, capable of representing nonlinear hydrodynamic conditions. To maximise
the absorbed energy, an EMCS will drive the WEC motion into resonance with an
incident wave field, and the resulting FSI conditions challenge the validity of linear
models. The example results shown in this chapter revealed that the energy capture
evaluated by a linear model was more than double the energy predicted by the CFD
simulation for a PI-controlled WEC. The increased amplitudes of the WEC dis-
placement and velocity, and the relative WEC-water displacement and velocity, for
a controlled WEC extend the operational space of the WEC dynamics far from the
region where linear hydrodynamic assumptions are valid. The nonlinear FSI simula-
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tions of CFD, on the other hand, are shown to more realistically handle the resonant
conditions experienced when evaluating an EMCS for a WEC. OpenFOAM® is
shown to be a useful simulation tool for the evaluation of an EMCS for a WEC.

Acknowledgements This chapter is based upon work supported by Science Foundation Ireland
under Grant No. 13/IA/1886.

References

1. Akimoto, H., Kim, Y., Tanaka, K.: Configuration of the single-bucket wave turbine for the
direct utilization of orbital fluid motion. In: Grand Renewable Energy (2014)

2. Asmuth, H., Schmitt, P., Elsaesser, B., Henry, A.: Determination of non-linear damping coef-
ficients of bottom-hinged oscillating wave surge converters using numerical free decay tests.
In: Proceedings of the 1st International Conference on Renewable Energies Offshore, Lisbon,
Portugal, pp. 24–26 (2014)

3. Babarit, A., Delhommeau, G.: Theoretical and numerical aspects of the open source BEM
solver NEMOH. In: 11th EuropeanWave and Tidal Energy Conference (EWTEC2015) (2015)

4. Chen, L.: Modelling of marine renewable energy. Ph.D. thesis, University of Bath (2015)
5. Chen, L., Zang, J., Hillis, A.J., Plummer, A.R., et al.: Hydrodynamic performance of a flap-type

wave energy converter in viscous flow. In: The Twenty-fifth International Offshore and Polar
Engineering Conference. International Society of Offshore and Polar Engineers (2015)

6. Davidson, J., Cathelain, M., Guillemet, L., Le Huec, T., Ringwood, J.: Implementation of an
OpenFOAM® numerical wave tank for wave energy experiments. In: Proceedings of the 11th
European Wave and Tidal Energy Conference (EWTEC 2015), Nantes (2015)

7. Davidson, J., Genest, R., Ringwood, J.V.: Adaptive control of a wave energy converter simu-
lated in a numerical wave tank. In: Proceedings of the 12th European Wave and Tidal Energy
Conference (EWTEC 2017), Cork (2017)

8. Davidson, J., Giorgi, S., Ringwood, J.:Numericalwave tank identification of nonlinear discrete-
time hydrodynamic models. In: 1st Int. Conf. on Renewable Energies Offshore (Renew 2014),
Lisbon (2014)

9. Davidson, J., Giorgi, S., Ringwood, J.V.: Linear parametric models for ocean wave energy
converters identified from numerical wave tank experiments. Ocean Engineering 103 (2015)

10. Davidson, J., Giorgi, S., Ringwood, J.V.: Identification of wave energy device models from
numerical wave tank datapart 1: Numerical wave tank identification tests. IEEE Transaction
on Sustainable Energy (2016)

11. Devolder, B., Rauwoens, O., Troch, P.: Numerical simulation of a single floating point absorber
wave energy converter using OpenFOAM®. In: Proceedings of the 2nd International Confer-
ence on Renewable Energies Offshore (2016)

12. Devolder, B., Schmitt, P., Rauwoens, P., Elsaesser, B., Troch, P.: A review of the implicit motion
solver algorithm in OpenFOAM® to simulate a heaving buoy. In: NUTTS conference 2015:
18th Numerical Towing Tank Symposium, pp. 1–6 (2015)

13. Di Fresco, L., Traverso, A., Barberis, S., Guglielmino, E., Garrone, M.: Off-shore wave energy
harvesting: A wec-microturbine system: Harvesting and storing energy for off-shore applica-
tions. In: OCEANS 2015-Genova, pp. 1–6. IEEE (2015)

14. Eskilsson, C., Palm, J., Engsig-Karup, A., Bosi, U., Ricchiuto, M.: Wave induced motions of
point-absorbers: a hierarchical investigation of hydrodynamic models. In: 11th EuropeanWave
and Tidal Energy Conference (EWTEC). Nantes, France (2015)

15. Falnes, J.: Ocean Waves and Oscillating Systems : linear interactions including wave-energy
extraction. Cambridge University Press (2002)



170 J. Davidson et al.

16. Ferrer, P.M., Causon, D.M., Qian, L., Mingham, C.G., Ma, Z.H.: Numerical simulation of wave
slamming on a flap type oscillating wave energy device. In: Proceedings of the Twenty-sixth
(2016) International Ocean and Polar Engineering Conference (2016)

17. Giorgi, G., Retes, M., Ringwood, J.: Nonlinear hydrodynamic models for heaving buoy wave
energy converters. In: 3rd Asian Wave and Tidal Energy Conference (2016)

18. Giorgi, G., Ringwood, J.: NWT Latching Control User Manual. Available at: http://www.eeng.
nuim.ie/coer/doc/NWTLatchingControlUserManual.pdf

19. Giorgi, G., Ringwood, J.V.: Implementation of latching control in a numerical wave tank with
regular waves. Journal of Ocean Engineering and Marine Energy 2(2), 211–226 (2016)

20. Giorgi, G., Ringwood, J.V.: Consistency of viscous drag identification tests for wave energy
applications. In: Proceedings of the 12th European Wave and Tidal Energy Conference
(EWTEC 2017), Cork (2017)

21. Giorgi, S., Davidson, J., Ringwood, J.V.: Identification of nonlinear excitation force kernals
using numerical wave tank experiments. In: EWTEC (2015)

22. Giorgi, S., Davidson, J., Ringwood, J.V.: Identification of wave energy device models from
numerical wave tank data - part 2: Data-based model determination. IEEE Transaction on
Sustainable Energy (2016)

23. Higuera, P., Lara, J.L., Losada, I.J.: Simulating coastal engineering processes with
OpenFOAM®. Coastal Engineering 71, 119–134 (2013)

24. Iturrioz, A., Guanche, R., Lara, J., Vidal, C., Losada, I.: Validation of OpenFOAM® for oscil-
lating water column three-dimensional modeling. Ocean Engineering 107, 222–236 (2015)

25. Jacobsen, N.G., Fuhrman, D.R., Fredsøe, J.: A wave generation toolbox for the open-source
CFD library: OpenFOAM®. International Journal for Numerical Methods in Fluids 70, 1073–
1088 (2012)

26. King, A., Algie, C., Ryan, S., Ong, R.: Modelling of fluid structure interactions in sub-
merged flexible membranes for the bombora wave energy converter. In: 20th Australasian
Fluid Mechanics Conference, Perth, Australia (2016)

27. Li, L., Tan, M., Blake, J., et al.: Numerical simulation of multi-body wave energy converter.
In: The Twenty-fifth International Offshore and Polar Engineering Conference. International
Society of Offshore and Polar Engineers (2015)

28. Loh, T.T., Greaves, D.,Maeki, T., Vuorinen,M., Simmonds, D., Kyte, A.: Numerical modelling
of the WaveRoller device using OpenFOAM®. In: Proceedings of the 3rd Asian Wave & Tidal
Energy Conference (2016)

29. Medina-Lopez, E., Allsop, W., Dimakopoulos, A., Bruce, T.: Conjectures on the failure of the
OWC breakwater at Mutriku. In: Coastal Structures (2015)

30. Mendoza, E., Chávez, X., Alcérreca-Huerta, J.C., Silva, R.: Hydrodynamic behavior of a new
wave energy convertor: The blow-jet. Ocean Engineering 106, 252–260 (2015)

31. Mishra, V., Beatty, S., Buckham, B., Oshkai, P., Crawford, C.: Application of an arbitrary mesh
interface for CFD simulation of an oscillating wave energy converter. In: Proc. 11th Eur. Wave
Tidal Energy Conf, pp. 07B141–07B1410 (2015)

32. Palm, J.: Connecting OpenFOAM® with matlab. Online: http://www.tfd.chalmers.se/hani/
kurser/OSCFD2012/ (2012)

33. Palm, J., Eskilsson, C., Paredes, G.M., Bergdahl, L.: Coupled mooring analysis for floating
wave energy converters usingCFD: Formulation and validation. International Journal ofMarine
Energy 16, 83–99 (2016)

34. Rafiee, A., Fiévez, J.: Numerical prediction of extreme loads on the CETO wave energy con-
verter. 11th European Wave and Tidal Energy Conference (EWTEC). Nantes, France (2015)

35. Rajagopalan, K., Nihous, G.: Study of the force coefficients on plates using an open source
numerical wave tank. Ocean Engineering 118, 187–203 (2016)

36. Ransley, E., Greaves, D., Raby, A., Simmonds, D., Hann,M.: Survivability of wave energy con-
verters using CFD. Renewable Energy 109, 235–247 (2017). https://doi.org/10.1016/j.renene.
2017.03.003

37. Ransley, E., Greaves, D., Raby, A., Simmonds, D., Jakobsen, M., Kramer, M.: RANS-VOF
modelling of the wavestar point absorber. Renewable Energy 109, 49–65 (2017). https://doi.
org/10.1016/j.renene.2017.02.079

http://www.eeng.nuim.ie/coer/doc/NWTLatchingControlUserManual.pdf
http://www.eeng.nuim.ie/coer/doc/NWTLatchingControlUserManual.pdf
http://www.tfd.chalmers.se/hani/kurser/OSCFD2012/
http://www.tfd.chalmers.se/hani/kurser/OSCFD2012/
https://doi.org/10.1016/j.renene.2017.03.003
https://doi.org/10.1016/j.renene.2017.03.003
https://doi.org/10.1016/j.renene.2017.02.079
https://doi.org/10.1016/j.renene.2017.02.079


Evaluation of Energy Maximising Control Systems … 171

38. Ransley, E.J.: Survivability of wave energy converter and mooring coupled system using CFD.
Ph.D. thesis, Plymouth University, UK (2015)

39. Ringwood, J.V., Bacelli, G., Fusco, F.: Energy-maximizing control of wave-energy convert-
ers: the development of control system technology to optimize their operation. IEEE Control
Systems 34(5), 30–55 (2014)

40. Ringwood, J.V., Davidson, J., Giorgi, S.: Numerical Modeling of Wave Energy Converter:
State-of-the-art techniques for single WEC and converter arrays, chap. Identifying models
using recorded data. Elsevier (2016)

41. Schmitt, P., Asmuth, H., Elsäßer, B.: Optimising power take-off of an oscillating wave surge
converter using high fidelity numerical simulations. International Journal of Marine Energy
16, 196–208 (2016)

42. Schmitt, P., Elsaesser, B.: On the use of OpenFOAM® to model oscillating wave surge con-
verters. Ocean Engineering 108, 98–104 (2015)

43. Simonetti, I., Cappietti, L., El Safti, H., Oumeraci, H.: 3d numerical modelling of oscillating
water column wave energy conversion devices: current knowledge and OpenFOAM® imple-
mentation. In: 1st International Conference on Renewable Energies Offshore (2014)

44. Simonetti, I., Cappietti, L., El Safti, H., Oumeraci, H.: Numerical modelling of fixed oscillating
water column wave energy conversion devices: Toward geometry hydraulic optimization. In:
ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, pp.
V009T09A031–V009T09A031. American Society of Mechanical Engineers (2015)

45. Simonetti, I., Crema, I., Cappietti, L., El Safti, H., Oumeraci, H.: Site-specific optimization of
an OWC wave energy converter in a Mediterranean area. In: Progress in Renewable Energies
Offshore, pp. 343–350. CRC Press (2016)

46. Vyzikas, T., Deshoulieres, S., Giroux, O., Barton, M., Greaves, D.: Numerical Study of fixed
Oscillatin Water Column with RANS-type two-phase CFD model. Renewable Energy 102,
294–305 (2017)

47. Windt, C., Davidson, J., Schmitt, P., Ringwood, J.V.: Assessment of numerical wave makers.
In: Proceedings of the 12th European wave and tidal energy conference (EWTEC 2017), Cork
(2017)

48. Yu, Y.H., Li, Y.: Reynolds-averaged navier–stokes simulation of the heave performance of
a two-body floating-point absorber wave energy system. Computers & Fluids 73, 104–114
(2013)



Floating Potential Boundary Condition
in OpenFOAM®

Nils Lavesson and Tor Laneryd

Abstract In OpenFOAM®, the powerful CFD solver can be combined with an
electrostatic solver, allowing multiphysics analysis on the same mesh within the
same numerical framework, which offers advantages for applications in high voltage
power devices. One important piece of missing functionality in OpenFOAM® is a
boundary condition for the electrostatic solver that can apply a floating potential to
conducting parts that are not connected to any fixed potential and should be treated as
an equipotential surface of undefined potential. This chapter describes the theoretical
background and an OpenFOAM® implementation of a numerical algorithm that can
accurately solve the electrostatic problem for a domain that includes several floating
potentials.

1 Introduction

In power transmission and distribution systems, high voltage bushings are essential
components for insulating conductors that carry high voltage and current through
a grounded enclosure, such as the transformer tank shown in Fig. 1. For low volt-
age applications, a homogeneous layer of an insulating material, such as porcelain,
glass, cast resin, or paper, provides sufficient insulation, but for higher voltages, this
solution becomes too bulky to be practical. An alternative solution is to intersperse
the insulation material with metallic conductive layers at appropriate intervals, de-
signed to control the electric field distribution by the partial capacitances so as to
generate a more uniform radial and axial stress distribution within the limits of the
insulation material [2]. This is typically achieved by using tightly wound paper as the
insulating material and applying screens of aluminum foil or ink during the winding
process [5]. The paper is later impregnated with oil or resin to improve the dielectric
strength. A schematic view of the condenser core of a bushing is shown in Fig. 2.
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Fig. 1 600 kV HVDC transformer bushings

Simulating the electric stress in a condenser core requires a solver that can handle
floating potentials. For similar studies based on other solvers, see [1, 3, 6].

As with all high voltage components, the reliability of the bushing is of extreme
importance. The degradation of insulation material is a slow process that depends
both on temperature and electric field strength. A proper description thus requires a
multiphysics approach that includes the numerically challenging natural convection
cooling. By using OpenFOAM®, the powerful CFD solver can be combined with an
electrostatic solver, allowing the problem to be solved on the same mesh within the
same numerical framework. Themissing functionality inOpenFOAM® is a boundary
condition for the electrostatic solver that can apply a floating potential to the metallic
conductors of the bushing condenser core, which the present work aims to address.
Here, a floating potential is defined as a single piece of highly (assumed infinite)
conductive material, which is insulated from potential sources. The electric potential
of the floating potential depends on its charge, as well as the geometry of the problem,
including any fixed potentials that are specified as boundary conditions.

2 Theoretical Background

All conductors, including those placed at floating potentials, are assumed to have an
infinitely high conductivity. Infinite conductivitymeans that all charge is accumulated
on the surface in such a configuration that the electric field inside the conductor is
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Fig. 2 Condenser bushing design principle (from [5])

zero. Hence, the surface of the conductor becomes an equipotential. If transients fast
enough to create a potential difference along the conductor are of interest, then a
more advanced model has to be considered. Analytical models are available for a
few geometries such as when the floating potential is an infinite plane or a sphere. A
mapping of space charge and potential sources can then be applied in order to create
equipotential surfaces. For more general problems, numerical methods provide the
only viable option.

The task is to numerically calculate the electric potential distribution for a ge-
ometry with several floating potentials, which may also include boundaries at fixed
potential and space charge. It is assumed that the total charge of each floating poten-
tial is known and denoted Qk for the k:th floating potential. The electric potential is
calculated using Poisson’s equation

∇ · (εrε0∇Φ) = −ρ

E = −∇Φ,
(1)
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where Φ denotes the electric potential, E the electric field, ρ the charge density, εr
the relative permittivity, and ε0 the permittivitty of vacuum. The floating potentials
are treated as an external boundary with a fixed electric potential.

The proposed method is to calculate Eq. (1) iteratively, modifying the potentials
so that the calculated charge approaches the actual charge. By doing the calculations
in this way, we avoid having to calculate the surface charge of the conducting parts
explicitly. The calculation starts froman initial guess of the electric potential provided
by the user. Assuming at step n, a known electric potential Φn

k for each conductor
at floating potential, Eq. (1) is solved, and then the charge can be evaluated using
Gauss’s law by integrating the electric field along the surface

Qn
k =

∮
Dn · dSk =

∮
εrε0En · dSk, (2)

where D is the electric displacement field. The total charge of each conductor at
floating potential is then compared to the actual charge and the electric potentials
assigned to the floating potentials are adjusted to approach the correct solution.

To implement the proposed method for one floating potential is straightforward.
Any optimization algorithm will quickly find the value of the electric potential that
gives the correct charge. However, when several floating potentials are present, the
problem becomes a lot more complicated. Frequently, one floating potential screens
another, which leads to strong cross-couplings. Optimizing a strongly coupled sys-
tem of floating potentials is possible, but a preferred way is to calculate the cross-
couplings and utilize this information.

By properly calculating all cross-coupling between the floating potentials, the
optimization of the electric potentials can be performed globally. Given a system of
n conductors placed at floating potential, there exists a relation between the electric
potentials and the charges of the conductors

Qn
i = Ci jΦ

n
j , (3)

where C is a matrix describing the capacitances [4]. If conductors placed at fixed
potentials or space charge are included, the charge of the floating potentials would
no longer be zero if the potentials were all set to zero. Hence, an offset is needed,
leading to the equation

Qn
i = Q0i + Ci jΦ

n
j . (4)

By changing the value of one potential and solving the electrostatic problem, it is
possible to calculate the values in one column of the C matrix. If the potential Φn

j is
changed by ΔΦ j and the corresponding change in the charges are denoted by ΔQi ,
then

Ci j = ΔQi

ΔΦ j
. (5)
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The process is then repeated for all the potentials to calculate the full capacitance
matrix. A new value for the floating potentials is calculated by

Φn+1 = Φn + C−1
(
Q − Qn

)
. (6)

This equation is applied iteratively, and typically only a few iterations are required
before the numerical errors due to the finite mesh size in Poisson’s solver start to
dominate and no further improvements are possible.

The entire algorithm is summarized in the following steps:

1. Calculate an initial guess for the electric field and charge of each floating potential
(Q0

k) using Eqs. (1) and (2) and the initial guess for the electric potentials (Φ0
k )

provided by the user.
2. For each floating potential, modify the electric potential and recalculate the elec-

tric field and charge of the floating potentials using Eqs. (1) and (2).
3. Calculate the capacitance matrix according to Eq. (5) using the results from

step 2.
4. Calculate an improved value for the electric potentials for all floating potentials

according to Eq. (6) using the initial value Q0 from step 1 and the capacitance
matrix calculated in step 3. Use the new electric potentials (Φ1) to calculate
improved values for the charge (Q1) using Eqs. (1) and (2).

5. Repeat the procedure in step 4 iteratively until no further improvements are noted
in the difference between the calculated charge Qn and the actual charge Q.

The model can easily be adapted to work with time-dependent problems. A sepa-
rate condition describing how much charge is injected or absorbed from the surface
of the floating potential is then required, typically by integrating the current along
the surface of the floating potential according to

dQi

dt
=

∮
J · dSi . (7)

This is then used to update the values of the charge of each floating potential, and
the new values for the charge are then used the next time the electrostatic problem
is solved.

The procedure for solving an electrostatic problem with floating potentials is
numerically many times more expensive compared to solving a similar problem
without floating potentials. Given k floating potentials, Poisson’s equation has to
be solved k + 1 times to calculate the capacitance matrix and another few times to
achieve a stable solution. In OpenFOAM®, the Poisson solver has to be iterated in
order to remove errors from nonorthogonal contributions. In addition, a system of
linear equations has to be solved, which is typically a problem with the complexity
of order k3.

For a static solution, this increases the computational time substantially, but this
canusually be accommodated. For a typical time-dependent problem,Poisson’s equa-
tion is already computed a large number of times and the additional computational
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work for adding floating potentials is usually small. This can be achieved, since it is
usually enough to calculate the capacitance matrix once, and the matrix (and matrix
factorization) can then be reused for the rest of the simulation. In exceptional cases,
the capacitance matrix may require recalculation, but if this can be done after a sub-
stantial number of time steps, the additional increase in simulation timewill beminor.

3 Implementation in OpenFOAM®

A boundary condition type for OpenFOAM® has been implemented in a library
containing two modules. The first module is a new boundary condition derived from
the fixed value boundary condition. Functions have been added to calculate the total
charge of the floating potential and to update the charge according to the electric
current in time-dependent problems. The attributes of the boundary condition include
the current value of potential and charge and references to the electric current and
displacement field.

The second part of the floating potential implementation is a class that takes
care of calculating the capacitances and adjusting the values of the potentials. This
class is intended to be instantiated and called directly from the main solver. The class
contains functions for updating the capacitancematrix and the floating potentials. The
capacitance matrix is decomposed using LU factorization from the GNU scientific
library, which was chosen because the main solvers in OpenFOAM® are built for
sparse matrices. In this implementation, the GSL has to be linked to the main solver
if floating potential is to be used. We have subsequently discovered that there is an
LU solver available in the code (used, for instance, in the class simpleMatrix), which
may also be used for the factorization.

To utilize the floating potential functionality in a solver, a floating potential object
should be created before the time integration loop. The floating potential constructor
initializes and calculates the capacitance matrix. Finally, a line calling the update
function should be added after the electric displacement field has been calculated
inside the time integration loop.

A set of boundaries describing the conductors at floating potential needs to be
included in the geometry and given unique labels. Two main attributes should be
specified: the initial charge and an initial guess for the potential. If an initial guess
for the potential is not specified, a default value of zero can be used, but this may
lead to convergence problems for a complicated geometry.

4 Examples

For validation, the OpenFOAM® implementation of floating potentials is initially
tested for the problem of electrostatic field distribution between concentric spheres,
which has an analytical solution. The inner sphere has a radius of r1 = 5 cm and is
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given a charge of 1µC, whereas the outer sphere has a radius of r2 = 10 cm and is
connected to ground. The medium between the spheres is considered to be oil with
a relative permittivitty of εr = 2.2. The geometry is implemented using cylindrical
symmetry by constructing a wedge. The analytical solution is given by

Φ = Q(
4πεr1r2
r2−r1

) . (8)

For the parameters given above, this expression yields Φ = 40,853 V. For a sufficient
number of mesh elements, the numerical solution in OpenFOAM® approaches the
analytical solution, as demonstrated in Table 1. The electric potential is plotted in
Fig. 3.

To test a more complicated geometry pertinent to the case of a condenser bushing,
three floating potentials are introduced inside a piece of insulating solidmaterial. The
geometry has cylindrical symmetry and consists of a 10 × 10 cm domain outside a
5 cm radius electrode. The electrode is placed to the left and ground to the right, with
symmetry boundary conditions at the top and bottom. A structured rectangular mesh

Table 1 Electric potential of the inner sphere as a function of the number of mesh elements

Mesh elements between inner
and outer spheres

Electric potential of inner sphere (V)

50 40,860

100 40,854

200 40,853

Electric potential (V)

40860

30645

20430

10215

0

Fig. 3 Electric potential for two concentric spheres
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20 kV

Metal
Insulation
Material Oil

Fig. 4 Test problem with three floating potentials

is applied near the floating potentials and the material boundary and an unstructured
triangular mesh is used for the rest of the geometry. The mesh size is around 1 mm
in the entire geometry. The results are shown in Fig. 4.

5 Conclusions

The proposed algorithm seems stable and not overly expensive, assuming the capaci-
tance matrix can be reused. With the floating potential BC, we can use OpenFOAM®

for multiphysics analysis of high voltage bushings on a single mesh in a single nu-
merical framework. The BC will also be useful for time-dependent simulations.
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Fluid Dynamic and Thermal Modeling
of the Injection Molding Process
in OpenFOAM®

Jozsef Nagy and Georg Steinbichler

Abstract For the description of the filling, packing, and cooling phases of the in-
jection molding process, a simulation framework of a compressible two-phase fluid
model with polymer-specific material models is established and validated with ex-
perimental results.With this approach, it is possible to describe the fluid dynamic, the
rheological, and the thermal behavior of the material during the production process.
The main focus of this work is on the description of the standard injection molding
process of common thermoplastic materials for industrial application, with special
focus on process relevant quantities, e.g., pressure, temperature, as these values are
of utmost importance for understanding the underlying phenomena and comparing
the results to experimentally measured values.

1 Introduction

Computational Fluid Dynamics (CFD) has been successfully utilized in a variety of
fields in chemical and mechanical engineering, e.g., combustion simulation [1–3],
high velocity flows [4–6], and the polymerization of thermoplastic polymermaterials
[7, 8]. For the understanding of the underlying physical phenomena, it is of great
significance for the optimization of geometries and processes governed by local flow
phenomena, as well as global processing conditions.

In the polymer processing industry, especially in injection molding, the reduction
of the development time of tools and machines has been one of the most important
issues in recent decades. A large variety of processed materials are available with
varying properties. Most importantly, the material’s behavior differs from that of
usual Newtonian fluids in the non-Newtonian behavior and the order of magnitude
of the viscosity (≈10–10000Pas). The value can vary, depending on the shear rate, the
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temperature, and the pressure. With the addition of the compressibility of the liquid
polymer, machines have to be able to handle considerable changes in processing
conditions.

Aprogressive trend has been emerging during the recent years, inwhich computer-
aided optimization has been proven to be one of the key steps in the development
of machines and processes in injection molding. In simulations, the process can be
visualized three-dimensionally, as opposed to experiments, in which processing con-
ditions can only be monitored at certain locations [9, 10]. Additionally, all quantities
(e.g., density, viscosity, shear rate, velocity, etc.) needed for the simulation can be
evaluated, as opposed to only the pressure or temperature values in experiments.

For a serious and general optimization methodology of development, the cor-
rectness of the results has to be guaranteed for all possible geometries, processing
conditions, and materials. OpenFOAM® offers an excellent foundation for the de-
velopment of a tool for the description of polymer processing [7, 8], and especially
the injection molding process [9, 10].

Due to the complexity and interdependency of quantities of fluid dynamic and
thermal processes during the discontinuous process, it has to be guaranteed that
a wide variety of phenomena can be modeled correctly. It is important to focus
on dominant phenomena in the process in order to reduce calculation time for the
industrial application.

With the proposed models, experimental validation shows promising agreement
in both pressure and temperature during the entire discontinuous process of in-
jection molding. The good agreement achieved promises the possibility of using
OpenFOAM® as an intrinsic part of the development stage of injection molding tools
and machines, as well as of a certain machine optimization simulation methodology
of an intelligent, self-regulating injection molding machine.

2 Governing Equations

The physics of the injection molding process is governed by the standard com-
pressible equations of Computational Fluid Dynamics (CFD), with the addition of
material-specific models that describe the complex material behavior of polymers.

2.1 Fluid Dynamic Equations

For the description of the fluid movement, a set of coupled nonlinear partial differen-
tial equations is employed. The continuity and the momentum equations are solved
in the compressible form [11].

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)
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∂ρu
∂t

+ ∇ · (ρuu) = −∇ p + ∇ · � +F. (2)

In Eqs. (1) and (2), ρ is the mass density of the fluid, t is the time, u is the vector of
velocity, p is the pressure, τ is the stress tensor, and F is a certain source term (e.g.,
surface tension).

Equations (1) and (2) are not solved directly, but are rather transformed into a
Laplacian equation of the pressure. This approach of velocity–pressure coupling is
commonly used in CFD [12] and is based on the approach taken in the OpenFOAM®

solver compressibleInterFoam [11, 13]. The discretization schemes utilized for all
partial differential equations are of second-order accuracy.

2.2 Thermal Modeling

In order to describe the thermal phenomena of the process, convection, heat diffusion,
and shear heating have to be considered in a certain energy equation.

∂ρT

∂t
+ ∇ · (ρuT ) =

Δ
(
kT

) + τ : ∇u ·
(

α

cvl

)
+ [∇ · (pu)]

(
α

cvl
+ (1 − α)

cvg

)
, (3)

where T is the transported temperature, cv is the constant heat capacity, and k is the
thermal conductivity of the fluid divided by the heat capacity and weighted by the
phase fraction (see details in Sect. 2.3). In addition to heat convection and diffusion,
two terms are included in the balance equation. The first term is a dissipation func-
tion modeling the rate of work irreversibly converted into heat. Here, the dominant
contribution to injection modeling is coming from shear phenomena, and this term
is commonly referred to as “shear heating.” The last term describes the rate of work
for volume change [14].

Owing to the inexact surface of molds in injection molding, during processing,
microscopic air entrapments can appear between the liquid polymer and the wall
of the mold. Due to the heat resistance of the air, the temperature at the wall often
shows a non-negligible jump [15]. Usually, the thickness of the gaseous layer is
unknown. For this reason, the temperature distribution along the wall has to be
modeled explicitly. This is similar to the modeling of turbulent phenomena near
walls in CFD [16, 17]. Therefore, a certain heat transfer is assumed from the polymer
melt into the wall with a certain heat transfer coefficient. This global “heat transfer
coefficient” (HTC) models the unknown temperature distribution close to the wall,
as well as the heat resistance of a possible thin gaseous layer. The coefficient is
determined empirically, similar to the approach often taken in chemical engineering
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[18].With this coefficient, a temperature gradient can be calculatedwith both a spatial
distribution and a temporal evolution.

∇T = −HTC (Tmelt − Twall)

kl
. (4)

Here, Tmelt represents the temperature value in the center of the first cell next to
the wall, Twall the mold temperature, and kl the thermal conductivity of the liquid
polymer.

2.3 Multiphase Modeling

Multiple phases (liquid polymer and gaseous air) are implemented using the Volume-
of-Fluid (VOF) method [19–21], in which a scalar quantity α is used for the liquid
phase fraction that is transported with the velocity u. Here, α =1 will denote the
liquid polymer (index l) and α =0 will represent the gaseous air (index g). Equation
(6) describes the transport of α.

ρ = αρl + (1 − α) ρg, (5)

∂α

∂t
+ ∇ · (αu) + ∇ · [α (1 − α)ur ] = Sp + Su . (6)

Simple discretization schemes might create a region of a diffuse phase interface
betweenα =1 andα =0. The surface compression termwith the compression velocity
ur helps in maintaining a sharp liquid–gas interface (details can be found in [19,
21]). The terms Su and Sp are source terms introduced by the compressibility of the
material [11].

For calculation of the material properties, Eq. (7) is applied.
⎛

⎜⎜
⎝

ρ

ν

cv
k

⎞

⎟⎟
⎠ = α

⎛

⎜⎜
⎝

ρl

νl
cvl

kl/cvl

⎞

⎟⎟
⎠ + (1 − α)

⎛

⎜⎜
⎝

ρg

νg
cvg

kg/cvg

⎞

⎟⎟
⎠ , (7)

where k is the weighted thermal conductivity divided by the respective specific heat
capacity in Eq. (3). The dynamic viscosity of the fluid is calculated out of the density,
as well as the kinematic viscosity, with μ = αρlνl + (1 − α)ρgνg.
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2.4 Material Models

Given the complex behavior of the material, polymer-specific models have to be
employed in order to correctly describe the production process.

2.4.1 Viscosity—Cross WLF Model

The Cross WLF model combines the shear-thinning effect of polymers [22] with the
William-Landel-Ferry (WLF) model [23] for the description of the temperature and
pressure dependence of the viscous behavior of polymers.

νl(γ̇ , T, p) = ν0(T, p)

1 +
(

ν0(T,p)γ̇
D4

)1− n . (8)

Here, D4 defines the transition region from constant viscosity to the shear-thinning
region, where the slope of the viscosity curve is given by the exponent n [22]. These
constants are material-specific and have to be determined in rheological measure-
ments. ν0(T, p) is the projected viscosity at zero shear rate (γ̇ =0) and is defined
as

ν0(T, p) = D1 exp

(
(−A1) · (T − D2 − D3 · p)
A2 + T − D2 − D3 · p

)
. (9)

The constants D1, D2, D3, A1, and A2 are also material-specific and have to be
determined in a manner similar to that of the constants in Eq. (8). The viscosity of
air is considered to be constant.

2.4.2 Compressibility—Tait Model

The specific volume v of amorphous and semi-crystalline polymers behaves differ-
ently under the change of temperature and pressure [24]. In order to describe both
material classes, the Tait model [25] is used, in which the dependence of the specific
volume below a given transition temperature T < Ttrans

Ttrans = b5 + b6 p (10)

is given by

vpolymer(p, T ) =
{
vs(T )

[
1 − C ln

(
1 + p

Bs(T )

)]
+ Ws(T )

}
, (11)
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vs(T ) = b1s + b2s (T − b5) , (12)

Bs(T ) = b3s exp (−b4s (T − b5)) , (13)

Ws(T ) = b7 exp (b8 (T − b5) − b9 p) , (14)

and above the transition temperature, the dependence is defined by
T ≥ Ttrans

vpolymer(p, T ) =
{
vm(T )

[
1 − C ln

(
1 + p

Bs(T )

)]}
, (15)

vs(T ) = b1m + b2m (T − b5) , (16)

Bm(T ) = b3m exp (−b4m (T − b5)) , (17)

where C =0.0894. Here, all the constants are material-specific and have to be deter-
mined in, e.g., high-pressure-capillary experiments. With the specific volume, the
density is calculated ρl =1/vpolymer(p, T ). The air is considered to be an ideal gas.

2.5 Modeling Processing Steps of Injection Molding

Injection molding is a discontinuous process consisting of several steps. Depending
on the definition of the starting point, the following main steps have to be considered
[26, 27]:

1. Plastication: In the plasticating unit, a screw executes a rotational movement, thus
moving solid polymer pellets in the direction of the mold, which has the shape of
the final product. Due to friction and external heating, the polymer is melted.

2. Filling: The plasticating unit injects a preset amount of melt into the mold with
a constant velocity. Simultaneously, the injected melt begins to cool down in the
mold. Typically, a thin solid layer is formed immediately along the walls of the
mold.

3. Packing: A constant holding pressure is applied by the screw of the plasticating
unit to compensate for the volumetric shrinkage of the part during the cooling
phase.

4. Cooling: The residual cooling time begins, the plasticating unit disconnects from
the mold, and the screw prepares the next shot for the new cycle.

5. Part ejection: Once the part is sufficiently solidified and a predefined temperature
is reached, the clamping unit opens and the mold ejects the part.

In this work, the injection process is considered, and thus the filling, packing,
and cooling phases (steps 2–4) are considered as well. The processing conditions are
changed between the filling and the packing phases from constant velocity to constant
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Table 1 Boundary conditions of velocity and pressure during the phases of the process at the inlet

Phase Velocity Pressure

Filling Time-dependent velocity
profile

Zero gradient

Packing Zero gradient Fixed value

Cooling Inlet–outlet Fixed at 1bar

pressure. During the cooling phase, the thermal phenomena are dominant and fluid
dynamic processes can be neglected [26, 27]. In order to model these changes within
one simulation run, the boundary conditions have to be changed during the runtime.

For this, two switches are used in the simulations. The first switch from the filling
phase to the packing phase is given by an integral volumetric value. Once the liquid
phase fraction α reaches this value (typically 0.98–0.995), the simulation changes
the boundary condition required by the packing phase (see Table1). The second
temporal switch gives the time of the end of the packing phase, when the simulation
changes the conditions to those in the cooling phase. These switches mimic common
settings of injection molding machines [26, 27].

3 Experiments

3.1 Processing Conditions

Experiments with a standard hydraulic injectionmoldingmachine (Engel VC 200/50
tech with a screw diameter of 30mm) are used to estimate the magnitude of errors
arising due to assumptionsmade in the presentedmodels (see Sect. 2). For this reason,
typical processing conditions in injection molding are used.

• material: PP HD120MO,
• volume flux: 50cm3/s,
• melt and nozzle temperature: 240 ◦C,
• tool temperature: 30 ◦C,
• packing pressure: 338bar,
• packing time: 26 s, and
• process time: 40 s.

The parts considered in these analyses are two shouldered test bars, for which
the mold, the distribution channel, the sprue, the nozzle, and the first part of the
screw chamber are considered in the simulations (see Fig. 1). In front of the screw
chamber, a sensor (Kistler 4021B) monitors the pressure in order to completely
describe the pressure drop throughout the entire volume. A second pressure sensor
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Fig. 1 Geometry of the
modeled domain with the
locations of the sensors. The
red region is filled with melt
and is also heated to a
constant processing
temperature (here, 240 ◦C)

(Kistler 6157BA) is located in the distribution channel so as to obtain the information
about the pressure drop in the mold of the test bars. A symmetrically placed infrared
temperature sensor (FOS MTS 408-IR-STS) measures the melt temperature.

3.2 Measurement Errors

It is important to know the experimental setup, particularly in order to quantify
systematic errors. Both the pressure sensors and the infrared temperature sensors are
calibrated for liquid polymers. However, a solid layer with a certain thickness arises
during the injection process along the walls of the mold. This solid layer distorts
and reduces both the pressure and the temperature signals. Figure2 shows schematic
sketches of the influence of the solid layer on the measurement signals. The force
applied by the fluid pressure is redistributed by the solid layer in an undefined way,
and similarly, the infrared radiation of the liquid polymer ismodifiedby the solid layer
distorting the temperature signal. In the experiments, a pressure reduction of up to
40bars could be quantified at the end of the filling and the beginning of the packing
phases and a temperature reduction of 15–20 ◦C was observed during the cooling
phase. These values are inaccurate and have to be analysed in more detail; however,
they do give a first estimation during the evaluation of the experimental results.
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Fig. 2 Schematic sketch of
the influence of the solid
layer on the measurement
signals

pressure sensor

fluid

solid layer

pressure

IR temperature sensor

fluid

solid layer

temperature

4 Validation

4.1 Filling Phase

In Fig. 3, the pressure evolution at the two sensor locations in both the experiment and
the simulation is shown. At the first sensor location in front of the screw chamber, the
polymer is heated to a constant processing temperature. At this location, the polymer
is completely in a liquid state, avoidingmeasurement issues given by a solid layer (see
Sect. 3.2). Thus, a good quantitative agreement between simulation and experiment
can be found (see Fig. 3). At the second pressure sensor, the thin solid layer distorts
the experimental pressure signal, thus giving the impression of a bigger deviation
between experiment and simulation. However, the deviation is given mostly by the
described systematic error within the experimental setup. In order to quantify the
deviations of these values, three process quantities are compared here.

The first quantity is the location of the flow front. For that, the time of the first
increase at the second pressure sensor is evaluated and referred to the filling phase.
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Fig. 3 Time evolution of the pressure at two sensor locations in the experiment and simulation
during the filling phase of the process
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Δtfill = ts2,sim − ts2,exp
tswitchover − tstart

= 0.67 s − 0.66 s

1.16 s − 0.5 s
= 1.5%. (18)

The second quantity is the maximum pressure in front of the screw chamber at the
first sensor.

Δpmax = ps1,sim − ps1,exp
pmax − pstart

= 398.7 bar − 396.3 bar

396.3 bar − 1 bar
= 0.6%. (19)

The last quantity in the filling phase is the maximum pressure in the cavity at the
second pressure sensor.

Δpcav = ps2,sim − ps2,exp
pmax − pstart

= 199.8 bar − 147.7 bar

396.3 bar − 1 bar
= 13.2%. (20)

Considering this, the simulation calculates reasonable values for important values of
the process (deviation ≤15%).

4.2 Packing Phase

During the packing phase, the pressure is kept at a constant level in the screwchamber,
but the pressure distribution in the mold changes, due to the cooling of the material
and the change in viscosity (see Fig. 4). Here, the deviation between experiment and
simulation is increasing, due to the fact that the thickness of the solid layer increases
with time. The change of the pressure slope given by the freezing of the material at
this point is seen in both the experiment and the simulation at approximately 20–22s.
Although the quantitative validation of the pressure in this phase cannot be done due
to the previouslymentioned insufficiently quantified inaccuracies in the experiments,
other process parameters, like the freezing of the material, can be derived out of the
change of the slope of pressure.

In order to quantify the deviation between experiment and simulation, the time
of freezing is evaluated. For this, the point of time when the first derivative of the
pressure curves changes abruptly is utilized.

Δtfreeze = tfr,sim − tfr,exp
tfilling+packing − tstart

= 20.6 s − 21.3 s

26 s − 0.5 s
= −2.7%. (21)

4.3 Cooling Phase

During the process, the temperature is reduced from processing temperature to values
at which the part can be ejected (see Fig. 5). Here, the temporal evolution of the
temperature in the simulation and the experiment is very similar. A certain deviation
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can be found during the cooling phase of approximately 20 ◦C, mostly arising from
the fact, that the sensor is calibrated for liquid polymers and the solid thin layer
distorts the signal (see Sect. 3.2).
Here, the temperature after 40 s is evaluated in order to quantify the deviation.

ΔTend = Tend,sim − Tend,exp
Tmax − Ttool

= 61.5 ◦C − 43.7 ◦C
275 ◦C − 30 ◦C

= 7.3%. (22)
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Table 2 Deviations (in %) between experiment and simulation with different volume flux values

Volume flux
cm3/s

Δtfill Δpmax Δpcav Δtfreeze ΔTend

5 1.1 −4.3 9.4 0.33 10.9

30 −0.9 1.5 14.0 −2.3 8.6

50 1.5 0.6 13.1 −2.7 7.3

70 1.9 0.3 10.9 −3.9 6.6

90 2.0 2.5 12.6 −4.3 6.7

4.4 Parameter study

In order to check for consistency of the quality of the results, the volume flux is
changed during the process (5, 30, 50, 70, 90cm3/s).With this, the order ofmagnitude
of the deviation between experiment and simulation should not change.

Table 2 shows the deviations with regard to the location of the flow front Δtfill,
the maximum pressureΔpmax, the mold pressureΔpcav, the time of freezingΔtfreeze,
and the temperature at the end of the process Tend. Independently from the changes
in processing conditions, the same order of error is found supporting the idea that
the dominant deviations are arising systematically in the experiments. Simulation
results seem to correctly describe important quantities for processing.

5 Conclusion

The suggested approach of modeling the injection molding process with the com-
pressible form of the continuity, the Navier–Stokes and the energy equations with
polymer-specific material models, as well as the dynamic change of boundary con-
ditions during runtime, promise a good agreement between simulations and exper-
iments. However, it is of utmost importance to understand which quantities can be
compared and at which points possible systematic errors are occurring.

With this, it is possible to analyze geometries, as well as materials, and use the
implemented collection of utilities for the optimization of the injection molding
process.
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Free-Surface Dynamics in Induction
Processing Applications

Pascal Beckstein, Vladimir Galindo and Gunter Gerbeth

Abstract Induction processing technology iswidely applied in themetallurgical and
crystal growth industry where conducting or semi-conducting material is involved.
In many applications, alternating magnetic fields, which are used to generate heat
and force, occur together with a free-surface flow. The numerical analysis of such
three-dimensional, multi-physical phenomena on the industrial scale is still a big
challenge. We present an overview of a novel multi-mesh model for addressing these
kinds of coupled problems by means of computational simulations. It is based on
the Finite Volume Method (FVM) of the software foam-extend (http://www.foam-
extend.org)—an extended version of OpenFOAM® (Weller et al. in Computational
Physics 12(6):620–631, 1998, [15]). Our development is motivated by the desire to
investigate the so-called Ribbon Growth on Substrate (RGS) process. RGS is a crys-
tallisation technique that allows for the production of silicon wafers and advanced
metal silicide alloys Schönecker et al. (Solid State Phenomena 95-96:149-158 2004,
[12]) with high volume manufacturing and outstanding material yield.

1 Introduction

In our devotion to obtaining a better understanding of the Ribbon Growth on Sub-
strate (RGS) process [12], we were confronted with the question of how to realise
simulations of free-surface flows under the influence of (strong) magnetic fields. Due
to the spatial redistribution of conducting material in the proximity of the excitation
coil, a two-way coupling exists betweenmagnetodynamic and hydrodynamic effects.

Three-dimensional electromagnetic (eddy-current) simulations are computation-
ally very expensive. They are usually formulated on the basis of the Finite Element
Method (FEM). In contrast to that, in Computational Fluid Dynamics (CFD), FVM
is normally the preferred vehicle for discretisation. Bringing together both methods,

P. Beckstein (B) · V. Galindo · G. Gerbeth
Institute of Fluid Dynamics / Magnetohydrodynamics,
Helmholtz-Zentrum Dresden-Rossendorf,
Bautzner Landstraße 400, 01328 Dresden, Germany
e-mail: p.beckstein@hzdr.de

© Springer Nature Switzerland AG 2019
J. M. Nóbrega and H. Jasak (eds.), OpenFOAM®,
https://doi.org/10.1007/978-3-319-60846-4_15

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-60846-4_15&domain=pdf
http://www.foam-extend.org
http://www.foam-extend.org
mailto:p.beckstein@hzdr.de
https://doi.org/10.1007/978-3-319-60846-4_15


198 P. Beckstein et al.

even though it has been done successfully using commercial software (e.g. Spitans
et al. [13]), produces lots of computational overhead due to recurring data exchange,
including extraction, interpolation and re-meshing.

In the process of investigating the RGS process [2, 3], we have developed a new
multi-mesh model. This relies only on FVM and comprises two major milestones.
The first one is that, until recently, to the best of the authors’ knowledge, there are
only a small number of researchers dealing with eddy-current simulations based
on FVM [1, 5]. Moreover, existing publications are either designed specifically for
structured grids or limited with respect to performance and accessibility of code.
We have created a similar, but very efficient, implementation in the freely available
OpenFOAM® toolbox. Our second achievement is the design of a multi-physics
framework for coupling already existing tools for CFDwith our new electromagnetic
solver.

With this paper, we endeavour to give a brief overview of the whole concept
behind our recent development.

2 Magnetodynamics

For the description of the electromagnetic fields, we restrict ourselves to highly con-
ducting materials, in which the local rate of change of electric charges and displace-
ment currents may be neglected. Under the additional assumption of purely non-
magnetic materials, the electromagnetic fields are governed within an unbounded
domain � by the following simplification of Maxwell’s equations, including current
conservation:

�C: ∇ × B = μ0j; ∇ · B = 0; ∇ × E = −∂tB; ∇ · E = ρE/ε0, (1)

�C: ∇ · j = 0. (2)

Given the physical time t , μ0, ε0, B and E denote the constant vacuum permeability
and permittivity, magnetic flux density and the electric field intensity, respectively.
The density of electrical charges is represented by ρE and the total current density
j = j0 + j′ consists of two parts: a purely induced part j′ and a part that arises only
from an externally applied current source j0.

The domain � may be split into a non-conducting �0 and enclosed conducting
domain�C, as sketched inFig. 1. Formediawith an isotropic electrical conductivityσ

and cases with lowMagnetic Reynolds Numbers Rm = μ0σUL � 1 (characteristic
fluid velocityU and length L), the induced current density j′ is proportionally related
to E via Ohm’s law

�C: j′ = σE. (3)

The FVM on unstructured meshes, as it is used inOpenFOAM®, shows some lim-
itations compared to, e.g. FEM regarding implicit discretisation of the curl-operator
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Fig. 1 Typical domain decomposition for an application likeRGS:Conductingmaterial�C, includ-
ing a liquid part�F, is surrounded by a non-conducting region �0. The latter contains an excitation
coil, which is driven by the source current density j0. The far-field boundary �0 represents a numer-
ical truncation. The conductor boundary �C includes the free-surface �F of the fluid region

∇ × (). We therefore use an alternative description for the system of Eqs. (1) and (2),
which relies more on differential operators that are typical for CFD and are known
from the Navier–Stokes equations. Based on the Coulomb-gauged magnetic vector
potential A and the electric scalar potential φ

B = ∇ × A; ∇ · A = 0, (4)

E = − (∂tA + ∇φ) , (5)

the reformulated system, including (3), reads as

�C: ∇2A = μ0σ (∂tA + ∇φ) − μ0j0, (6)

�C: ∇ · (σ∇φ) = −∂tA · ∇σ . (7)

The unbounded domain � is numerically truncated (cf. Fig. 1) such that the
resulting cut boundary �0 is sufficiently far away from any current sources. With
this assumption, a homogeneous Dirichlet-type boundary condition may be used
for A at �0. On the conductor boundary �C, the gradient of φ depends on the time
derivative of A in terms of an inhomogeneous Neumann-type boundary condition to
obtain a zero current density flux. Numerical treatment of Eq. (7) requires adequate
discretisation schemes in case of possible jumps in the distribution of σ in �C.

The induced current j′ in this region causes a Lorentz force according to

�C: FL = j′ × (∇ × A). (8)

This includes a volume force within the fluid region. In most industrial applications,
the source current j0 originates from an excitation coil with a time-harmonic oscil-
lation at frequency f . If this is the case, a complex, quasi-steady formulation of
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Eqs. (6) and (7) is more convenient, where all time derivatives are replaced with a
complex-valued angular frequency (∂t = iω). If the timescale of magnetodynamic
effects is much smaller compared to the coupled physics, it is sufficient to consult
the time-averaged Lorentz force:

�C: 〈FL〉t = f
∫ f −1

0
FL dt. (9)

3 Hydrodynamics

The dynamic behaviour of the liquid part �F of the conductor �C (cf. Fig. 2) is
governed by the incompressible Navier–Stokes equations. For the sake of simplicity,
we make the assumption of an isothermal system and constant material properties
with respect to time. The resulting equation system yields

�F: ρ [∂tu + (u · ∇)u] = ∇ · τ ′ + 〈FL〉t ; ∇ · u = 0, (10)

τ ′ = η
[∇u + {∇u}T ] − p′I, (11)

p′ = p − ρ (g · x) . (12)

The equations contain the fluid velocity u and the physical pressure p. τ ′ is the stress
tensor based on a modified diagonal fluid pressure p′ without the hydrostatic part of
p according to the spatial coordinate x and the gravitational vector g.

This system has been set up in accordance with the model presented by Tukovic
and Jasak [14], in which the free-surface boundary is represented by means of a
surface-tracking method. Boundary conditions for u and p are derived from the
dynamic condition (force balance) at the interface �F. The normal force balance
leads to a Dirichlet-type condition for the pressure, depending on the mean curvature
κ and (constant) surface tension γ . A Neumann-type boundary condition for the

Fig. 2 Hydrodynamics
inside the conducting region:
The domain �F contains
conducting liquid, and is
thus part of �C. As a result
of induced currents in �C, a
Lorentz force is acting on
�F, too. This is symbolised
by small arrows. The fluid is
being held in a solid frame.
This wall boundary is
denoted as �W
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gradient of velocity u in normal direction is the result of a tangential force balance.
For both conditions, we neglect drag forces from the atmosphere at the opposite side
of the free-surface, as its viscosity is several orders of magnitude smaller compared
to, e.g. liquid metals. Further details can be found in the above-mentioned article
by Tukovic and Jasak [14]. The main difference in our description is that we have
an additional Lorentz force term in the momentum balance. Here, the force density
has to be taken into account for wall boundary conditions (at �W), as the pressure
gradient is given by the normal component of 〈FL〉t . At the contact line �F ∩ �W,
we specify an equilibrium wall contact angle of α�F∩�W = 90◦. Furthermore, we
have extended our model with support for the turbulence and sub-grid-scale models
available in OpenFOAM®.

As the free-surface is moving with respect to its kinematic condition, the mesh
points representing �F need to be adjusted. To maintain an acceptable mesh quality
inside the domain, the inner mesh points also need to be updated over time.

We have preferred the interface-tracking method over a more flexible interface-
capturing method because of several advantages. First of all, surface breaking is an
undesirable effect for many industrial applications. Second, a sharp, high-quality
representation of the free-surface is essential. There may be a huge jump in the elec-
trical conductivity at �F that, due to the so-called skin effect, may coincide with
a strong concentration of most of the induced currents and forcing for higher fre-
quencies. Finally, the moving mesh allows us to transport the time-averaged Lorentz
force distribution 〈FL〉t with the mesh for a defined and reasonably small simulation
time of the flow. This reduces the computational effort required to solve the whole
coupled system.

4 Mesh Motion

In accordance with [14], a motion solver is used to calculate the mesh deformation
in �F from the time-varying shape of �F. A Laplacian equation

�F: ∇ · (γM∇uM) = 0, (13)

is solved for the mesh velocity uM to achieve a preferably smooth mesh point distri-
bution. We found that the artificial diffusion coefficient γM needs to be tailored for
each test case (e.g. inversely proportional to the closest distance from �F). Boundary
conditions for Eq. (13) are calculated by interpolating the fluid velocity u at �F to
the corresponding mesh points. On �W, suitable boundary conditions depend on the
topology of the test case (e.g. slip/no-slip).

In order to compensate the boundary movement of �F at the outside of �F, which
is necessary for a re-calculation of the electromagnetic Lorentz force, we have intro-
duced a buffer region �B, which is shown in Fig. 3. The size and shape of the buffer
region are case-dependent and may comprise parts of �C and �0. Its introduction
avoids a mesh movement of the whole domain �. However, �B needs to be large
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Fig. 3 Regions of dynamic mesh movement: The mesh points in�F need to be re-adjusted accord-
ing to the flow- and time-dependent shape of the free-surface �F (and parts of �W). A buffer region
�B is used to compensate the mesh motion in a sufficiently large area around the fluid domain. The
mesh of the buffer region is fixed at its outer boundary �M

enough to allow for a sufficiently smooth mesh deformation without too much degra-
dation of the mesh quality. The same Laplacian equation as given in (13) is solved in
�B to redistribute the inner mesh points. Boundary conditions are calculated from
a direct mapping of uM at the shared part of �W and �F, whereas homogeneous
Dirichlet-type conditions are used at �M.

Equation (10) is strictly valid only for fixed meshes. For a dynamically moving
mesh, a correction needs to be incorporated to address the translation from the Eule-
rian (absolute) to a Lagrangian (relative) frame of reference. This is known as the
Arbitrary Lagrangian–Eulerian (ALE) method. The transformation itself results in a
modified convection term ((u − uM) · ∇)u in Eq. (10), where u − uM represents the
fluid velocity relative to themesh velocity. Formore information about the theory and
implementation of the dynamic mesh motion in OpenFOAM®, the reader is referred
to Jasak and Tukovic [8].

5 Multi-mesh Multi-physics

The backbone of our numerical model for solving a system like (6), (7) and (10) is
a multi-region representation of all involved domains based on superposed meshes.
This is illustrated in Fig. 4. A tailored use of multiple meshes facilitates a flexible
description of different physical effects (multi-physics) in their (possibly overlap-
ping) domains with corresponding boundary conditions, as shown in the last section.
One-to-one mapping of the individual sub-mesh typologies onto a global, shared
base-mesh allows us to propagate adjustments of the mesh geometry and connected
field datawithout bulk (domain-internal) signed-distance interpolation. On this basis,
we have extendedOpenFOAM® by flexible multi-region fields with functionality for
fast, bi-direct mapping and interpolation/extrapolation at shared boundaries.
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Fig. 4 Illustration of the
multi-mesh concept: for each
sub-mesh (left), there exists a
corresponding one-to-one
projection onto the
base-mesh (rightmost)

5.1 Parallelisation

For computer simulations comprising a large number of cells, it is essential to be able
to distribute a given problem over several processors while balancing the associated
workload. Each sub-mesh of our multi-mesh representation (Fig. 4) is related to
one or more governing equations from the last section, and is thus connected to a
substantial part of the total computational effort.

To achieve an acceptable load balance, the most flexible approach to decompose
the problem is to balance each mesh individually. We have realised this by means of
the multi-constraint feature of the graph-partitioning softwareMETIS (http://glaros.
dtc.umn.edu/gkhome/metis/metis/overview), which is explained, e.g. in Karypis [9].

After an extension of OpenFOAM’s® interface for METIS, we are now able to
perform fully parallelised simulations, in which each processor holds overlapping
parts of all corresponding sub-meshes. This is depicted in Fig. 5. An advantageous
side effect of this decomposition is that bulk datamapping does not involve undesired
parallel communication.

5.2 Magnetohydrodynamic Solution

The solution procedure for the coupled system (6), (7) and (10) is split according
to physical effects. The coupling is, in general, addressed by means of iterative data
exchange and mesh topology updates.

A novel, efficient solution algorithm with a solver called eddyCurrentFoam has
been developed to solve electromagnetic (eddy-current) problems in OpenFOAM®.
This currently involves a quasi-static, semi-coupled multi-mesh approach to solve
Maxwell’s equations for non-magneticmaterials, only. Themajor steps of the scheme
are arranged in Fig. 6. For two-dimensional cases, only the magnetic vector potential
A from (4) is necessary. According to Eq. (6), A is solved on the base-mesh, which
represents �. In three dimensions, the electric scalar potential V from (5) serves as a

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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Fig. 5 Multi-mesh
decomposition for parallel
computations: each colour
represents all parts of the
base- and sub-meshes which
belong to one partition
(processor). Overlapping
parts are held by the same
processor. Bulk data
mapping between different
meshes does not involve
parallel communication

Fig. 6 eddyCurrentFoam
algorithm: the round nodes
with captions ‘OK’ and ‘3D’
symbolise a convergence and
dimensional check,
respectively

tool for enforcing charge conservation (7) in the sub-mesh for conducting parts �C.
Both potentials are solved in their dedicated domain, while each solution is iteratively
used to update explicit coupling terms in the respective other domain. The complex
vector components of A in the quasi-static formulation are strongly coupled. This
coupling is numerically handled by means of block matrices, as they are used for
the coupled solution of u and p (cf. [7]). All details about eddyCurrentFoam will be
published in a subsequent paper.

Fluid flow, surface tracking and fluid mesh motion are numerically solved on
the basis of a modified interTrackFoam-solver algorithm, which was derived from
the version originally published and implemented by Tukovic and Jasak [14]. Its
sequence is sketched in Fig. 7. The small, upper right loop corresponds to an extended
PISO-loop including surface tracking and the outer one represents the time loop
including mesh update for �F.

Embedding algorithms from both eddyCurrentFoam and interTrackFoam into an
even broader multi-mesh framework constitutes our concept of coupling magneto-
dynamics and hydrodynamics in the form of another solver called interTrackEddy-
CurrentFoam. Its algorithm is detailed in Fig. 8. On the one hand, the upper left loop
basically shows an extended version of interTrackFoam, where the mesh is addi-
tionally adjusted in the buffer region �B. On the other hand, the lower right loop
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Fig. 7 interTrackFoam
algorithm: the round nodes
containing ‘t+’, ‘tmax’ and
‘OK’ symbolise marching in
time, a maximum-time check
and a convergence check,
respectively

Fig. 8 interTrackEddy-
CurrentFoam algorithm: the
round nodes showing ‘t+’,
‘tmax’ and ‘EM’ symbolise
marching in time, a
maximum-time check and a
check as to whether a
magnetic update is due. For
the meaning of the two nodes
labelled ‘interTrackFoam’
and ‘eddyCurrentFoam’ the
reader is referred to Fig. 7
and Fig. 6

comes into play if an electromagnetic update is due. As we have mentioned before,
a quasi-static form of Maxwell’s equations is being used. The Lorentz force 〈FL〉t ,
once calculated for a certain fluid time, is kept and transported with the dynamic
mesh until its quality is no longer justifiable. Subsequently, a re-calculation of the
electromagnetic problem is triggered. Prior to that, the current sub-mesh topologies
of �F and �B need to be mapped onto the base-mesh (�) and onto the sub-mesh of
the conducting region �C.

5.3 Improved Surface-Tracking Method

As already mentioned in Sect. 3, the core surface-tracking algorithm of our model
corresponds to Tukovic and Jasak [14]. Concerning one particular algorithm, the
adjustment of themesh points based on the current normal velocity at the free-surface
�F, it is therein referred to Muzaferija and Peric [10]. Following these references,
the position of the free-surface points is updated in two steps using additionally
introduced control points: firstly, the control points are shifted according to the current
face-normal velocity (flux). Secondly, the new location of interface mesh points is
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reconstructed by means of least-squares planes [14] or linear interpolation [10]. Due
to the intentionally local design, both cited reconstruction methods are prone to a
numerical instability mechanism, which will be being explained in the following.

For induction processing applications, it is not uncommon that a relatively high
tangential flow velocitymay occur close to the free-surface. In numerical simulations
of such cases, we have repeatedly observed a strong tendency for the results to
produce a creased surface shape in regions of high tangential velocity gradients.

We propose the following mechanism as a possible explanation: Small numerical
errors in approximating the tangential gradient of the velocity may give rise to an
initial evolution of local Kelvin–Helmholtz vortices. Thismay shift the control points
alternatively in opposite directions from face to face along�F. Normally, the resulting
curvature and corresponding surface tension would oppose this effect immediately.
But due to a lack of the above-mentioned (local) reconstruction methods for rep-
resenting the subsequent curvature, this counter-force fails to appear. Figure 9 tries
to visualise this destabilising principle for an idealised straight surface shape. It is
obvious that the depicted part of the interface would remain flat by evenly shifting
the control points further away from the surface in an alternate manner. Regarding
the linear approximation, this checkerboard effect is reminiscent of the checkerboard
pressure addressed by the interpolation of Rhie and Chow [11].

To affirm our assumption, we have successfully improved the surface-tracking
method proposed by Tukovic and Jasak [14], so that a triangulated sub-mesh now
serves to calculate the curvature. The triangulation of free-surface faces is done
using mesh and control points, as displayed in Fig. 10. With this small change, the
creasing disappeared and the overall numerical stability was greatly enhanced. In
some simulated test cases, the number of pressure–velocity iterations could even be
reduced by a factor of two.

Finally, we found that for the solution of the Laplacian (13) in �F, a deformation
in relation to the original mesh geometry (instead of an incremental one) helps in
maintaining the mesh quality in the long term.

Fig. 9 Possible numerical instability mechanism in presence of a tangential velocity: evenly shift-
ing the control points of the free-surface �F further away from the flat interface in an alternate
manner does not change the discretised shape. Piecewise linear reconstruction fails to represent the
corresponding curvature
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Fig. 10 Triangulated
sub-mesh: for the calculation
of the surface curvature, we
use a triangulated mesh
based on the original surface
mesh points in combination
with the control points
(shifted face-centroids)

6 Application Examples

Since a comprehensive presentation of results would go far beyond the scope of this
paper, we provide only two examples as demonstration of the capabilities of our
development.

The first exemplary case is a simplified three-dimensional RGS process (cf. [3])
with a lower external source current density. A typical snapshot of the instantaneous
fluid velocity magnitude (vectors) and time-averaged Lorentz force density (surface
plot) is illustrated in Fig. 11. It represents a view towards one half of a central cut
through the core process assembly.The latter consists of a casting frame, liquid silicon
as fluid, a substrate and a rectangular excitation coil. Only the conducting region �C

and the fluid region �F (as part of the former) are visible from the base-mesh. Based
on these results, we were able to gain insight into global flow structures, quantify the
surface deformation and capture the dynamic behaviour of it. In this case, the entire
mesh has the shape of a box and consists of roughly 1 × 106 cells. With the help of
turbulence modelling, the simulation can be run using only one CPU of a modern
PC. More detailed results regarding RGS can be found in Beckstein et al. [2, 3].

As a second example, we have selected a simulation of an electromagnetically
levitated (EML) drop of silicon. The simulation and its parameters comply with the
experimental setup from [6]. Figure 12 shows the levitated drop centred in a coil
arrangement, which is modelled as five independent, toroidal loops. Due to the more
complex coil geometry and the large relative motion of the drop, this simulation was
realised using a reduced (induced)magnetic vector potential [4], where the impressed
(source)magnetic vector potential is calculated on the basis of a very efficient integral
usage of Biot–Savart’s law. The base-mesh is spherically shaped and also contains
approximately 1 × 106 cells. In this case, we have used sub-grid-scale modelling for
the hydrodynamic part.



208 P. Beckstein et al.

Fig. 11 Simplified 3D-RGS model: liquid silicon is being held between a graphite casting frame
and substrate. A large excitation coil introduces heat and drives a turbulent flow. The instantaneous
amplitude of the flow velocity |u| is shown as vectors in a central cutting plane. The contour plot
demonstrates the skin effect and the dependency of the time-averaged Lorentz force 〈FL〉t on the
current surface shape

Fig. 12 Electromagnetic
levitation (EML): a drop of
liquid silicon, enclosed in a
non-conducting glass
cylinder, is floating in the
centre of a modelled coil
(one loop is cut to provide a
clear view inside). The
electric current in the lower
three windings flows in the
opposite direction of the
upper two. The surface
contour of the drop shows
the (turbulent) instantaneous
amplitude of the flow
velocity |u|
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7 Conclusion

A novel multi-physics method has been implemented in OpenFOAM® for the simu-
lation of free-surface flows under the influence of strong, alternating magnetic fields.
Magnetodynamic and hydrodynamic effects are addressed in one single framework
called interTrackEddyCurrentFoam. The formulation of the underlying multi-mesh
description is versatile, fully parallelised and may be used for other multi-physics
applications, too. Development of all presented elements is, however, not yet com-
pletely finished and optimised. In the whole context, a new solver for eddy-current
problems called eddyCurrentFoam was developed and validated on the basis of the
FVM. The existing implementation of the surface-tracking algorithm of interTrack-
Foam has been improved and extended. Even though an interface-tracking method
is less flexible than interface-capturing methods, it allows us to reduce the amount
of recurring electromagnetic calculations. The downside of this is that topological
changes are not supported. Another limitation, which is visually outlined, e.g. in
Jasak and Tukovic [8, Figs. 5–8], arises from the dynamic mesh. A moving mesh
may suffer from degradation of its quality over time. This is especially true if large
deformations are involved. Using adaptive re-meshing techniques is, however, quite
challenging in combination with our multi-mesh approach. Therefore, our focus cur-
rently lies in finding suitable strategies for mesh-quality preservation of long simu-
lation runs, stability improvements and an extensive validation based on numerical
and experimental data.
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GEN-FOAM: An OpenFOAM®-Based
Multi-physics Solver for Nuclear Reactor
Analysis

Carlo Fiorina

Abstract A multi-physics solver for nuclear reactor analysis, named GeN-Foam
(Generalized Nuclear Foam), has been developed by the Laboratory for Reactor
Physics and System Behavior at the EPFL and at the Paul Scherrer Institut (Switzer-
land). The developed solver couples: a multigroup neutron diffusion or SP3 sub-
solver; a thermal-hydraulics sub-solver based on the standard k-ε turbulence model,
but extended to coarse-mesh applications through the use of a porous medium
approach for user-selected cell zones; a displacement-based thermal-mechanics sub-
solver to evaluate thermal deformations of structures; and a finite-difference subscale
fuel model that can be used in coarse-mesh simulations of the core to evaluate the
local temperature profile in fuel and cladding. A first-order implicit Euler scheme
with an adaptive time step is used for time integration, and the coupling between
equations is semi-implicit, using the Picard iteration. Three different meshes are
used for thermal-hydraulics, thermal-mechanics and neutron diffusion, and fields are
projected between different meshes through a standard volume-averaging technique.
GeN-Foam features a general applicability to pin- or plate-fuel, or homogeneous
nuclear reactors. Its application in several cases of interest has shown stable numeri-
cal behavior, the possibility of obtaining reliable results for traditional reactor types,
as well as the possibility of investigating non-conventional reactors, whose analysis
cannot be easily carried out using nuclear legacy codes.

1 Introduction

Nuclear reactors are highly complex engineering systems normally consisting of a
reactor core, where heat is produced via nuclear fission, and multiple cooling loops
that transfer the heat to a conventional power production unit (typically based on
Rankine or Joule-Bryton power production cycles). The reactor core ismost typically
composed of several thousand tightly packed pins, spheres or plates containing the
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Fig. 1 Schematic representation of a PWR and of a fuel assembly (Photographs by United States
Department of Energy and PD-USGov, distributed as public domain)

nuclear fuel (uranium, thorium and/or transuranic elements). These fuel elements
operate at temperatures ranging from a few hundred to two thousand degrees Celsius
and are typically cooled bywater, heliumor liquidmetals. Figure 1 shows a schematic
representation of a Pressurized Water Reactor (PWR), currently the most widely
deployed nuclear reactor in the world [12].

Thegeometrical complexity of these systems adds to the highdegree of complexity
of the physical phenomena involved, including: the transport of neutrons; the inter-
action of these neutrons with matter and the consequent degradation of the materials
in the core; the fuel burn-up; the highly complex chemical and thermomechanical
behavior of the nuclear fuel; the thermomechanical behavior of the core-supporting
structures; the complex one- or two-phase flow of the core coolant; the heat transfer
from the fuel to the coolant; and the chemistry of the coolant and its interaction with
the core structures.

When investigating a reactor’s steady-state and transient behavior, some of these
phenomena, like the evolution of the fuel and structural materials, can be neglected,
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thanks to the longer time scales they act upon. These analyses can then be restricted to
the neutron transport, the thermal-hydraulics of the fuel and coolant, and, for certain
reactors, the thermal deformations of the core structures. Despite this simplification,
the complexity and specificity of the phenomena involved have led the nuclear indus-
try towards the development of quite unique numerical methodologies and computer
codes. The core’s thermal-hydraulics is generally investigated with 1-D codes or
so-called sub-channel codes based on a very coarse radial discretization [2]. Neutron
transport is most typically investigated using the so-called diffusion theory, which
assimilates the behavior of neutrons to that of a gas and simulates it using a set
of diffusion-reaction partial differential equations. These legacy codes take advan-
tage of the repetitive multi-scale geometry of most nuclear reactors and operate on
selected fixed geometries, which allows for very efficient solution algorithms based
on structured meshes.

In recent years, the need has emerged for simulation tools that are bothmore accu-
rate and more flexible. This follows from (1) the reliability needed for life extension
of operating nuclear reactors; and (2) the design of some innovative nuclear reactors
for which legacy codes cannot (easily) be employed. Several efforts have been under-
taken in recent years for the modernization of the numerical toolset available in the
nuclear engineering community. This can be witnessed in such important initiatives
as the CASL project [3] in the US and the NURESAFE project [13] in Europe. Some
initiatives have also been undertaken to aim at a paradigm shift in the development of
nuclear codes, the main idea being a code development based on modern numerical
libraries and methodologies that disregards legacy codes. Two main examples in this
sense are the MOOSE project in the US [11] and the several initiatives dedicated
to the use of OpenFOAM®. In this framework, the Laboratory for Reactor Physics
and Systems Behaviour at PSI and EPFL has started developing new tools for reac-
tor analysis and has decided to privilege the use of OpenFOAM®, mainly due to
the available CFD solvers and to its open-source philosophy, which is expected to
promote collaborative work and support educational efforts. One main result of this
research work has been the development of a multi-physics tool for steady-state and
transient analysis of nuclear reactors named GeN-Foam [6–8, 10], which represents
the main subject of this chapter.

2 The GeN-Foam Multi-physics Solver

The GeN-Foam multi-physics solver is built upon four main components, namely: a
neutron transport sub-solver; a thermal-mechanics sub-solver; a thermal-hydraulics
sub-solver; and a 1-D sub-solver that evaluates temperatures in the fuel.
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2.1 Neutron Transport

Power generation in a nuclear reactor is based on the energy released by fission of
heavymetals, most typically, uranium and plutonium. The fission process is triggered
by absorption of neutrons in these heavy metals, and is accompanied by the release
of other neutrons, which allows for a self-sustaining fission chain. A prediction of
density and energy distribution of neutrons is thus essential for predicting the spatial
power distribution and its evolution over time.

Neutron behavior is governed by a Boltzmann transport equation [17]. Such an
equation can be solved without major approximations by using stochastic Monte
Carlo methodologies [17]. However, these methodologies have been prohibitive in
the past given their computational requirements, and even nowadays, they can still
hardly be used, e.g., for transient analyses. Many deterministic approximations of
the Boltzmann equation have thus been proposed [17], the most common being the
diffusion approximation. In such an approximation, neutrons are treated as a gas
with isotropic neutron energy. A slightly more complex approximation is the so-
called SP3 model (simplified third-order spherical harmonics), which consists of an
expansion of the angular dependence of the neutron flux in spherical harmonics.
The term “simplified” refers to the fact that the expansion is performed in 1-D, with
extension to three dimensions obtained by simple substitution of derivatives with
the corresponding 3-D operators. Both the diffusion and the SP3 model predict the
neutron behavior in terms of neutron flux and typically rely on the subdivision of
neutrons into energy groups. From an implementation perspective, an interesting
aspect of the SP3 model is that the commonly used diffusion approximation can be
derived as a special case in which only the first moment of the flux expansion is not
zero. For this reason, implementation of the SP3 model was selected for GeN-Foam
[10].

In the SP3 approximation, four equations can be obtained for the four flux
moments ϕ0 to ϕ3, and substitution of odd moment into even moment equations
then allows us to reduce the number of equations to be solved to 2. One additional
approximation is typically includedby considering the scattering of neutrons between
energy groups as isotropic, thus obtaining the so-called within-group form of the SP3
equations. In addition, a new variable is typically defined as

ϕ̂0 � ϕ0 + 2ϕ2, (1)

which allows us to obtain, for each energy group i, two equations in the form
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where Sn,i , Sd,i and Ss,i are the neutron sources from fission, delayed neutron precur-
sors, and scattering from other energy groups, and the standard notations for nuclear
data are used (see, e.g., [10, 17]). The number of energy groups is arbitrary and can
be set by the user depending on the specific application.

Discretization and solution of the equations are achieved based on the standard
finite-volume discretizationmethodology provided byOpenFOAM® (i.e., Gauss dis-
cretization for Laplacians), normally choosing a harmonic interpolation for the diffu-
sion coefficient at the cell faces. The sub-solver is designed both for time-dependent
and eigenvalue (criticality) calculations. In the case of eigenvalue calculations, a tra-
ditional power iteration algorithm [17] is used. In the case of transient calculations,
the equations for the different energy groups are solved sequentially and the explicit
terms are resolved at each time step via the Picard iteration. Control rod movement
is dealt with by the code via a modification of the nuclear data in selected cells.
The possibility is included of deforming the mesh based on a given displacement
field to account for the thermal deformation of a core, which allows for an accurate
prediction of expansion-related reactivity feedbacks [6, 7]. Further details about the
neutron transport sub-solver can be found in Fiorina et al. [7, 8, 10], including cross-
sectional preparation and parametrization, use of discontinuity factors, acceleration
techniques for transient analysis, and boundary conditions.

2.2 Thermal-Mechanics

The thermal-mechanic solver named solidDisplacementFoam available in the
OpenFOAM® 4.1 version has been used as the basis for the solution of the thermal-
mechanics equations. The possibility has been included of using meshes subdivided
into multiple cell zones, and associating a set of properties with each of them through
an input file. The thermomechanic sub-solver can be used to evaluate the temperature-
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induced deformation of the main core structures that support the reactor core. Axial
deformation of the neutronic mesh in the active core (where the actual fuel is) is
calculated independently, based on the fuel expansion coefficient and temperatures.
Specifically, an equation is solved for the displacement D f in the form

v f · ∇ · D f � α(T − Tref), (4)

where v f is the user-selected axial orientation of the fuel and α its linear expansion
coefficient. An equation like Eq. (4) is also used to determine the axial displacement
of the control rod driveline. The three displacement fields are then combined to
deform the neutronic mesh.

2.3 Thermal-Hydraulics

A main objective of GeN-Foam is to analyze the full core or the primary circuit of
nuclear reactors. Standard turbulence modeling [e.g., Reynolds Averaged Navier–S-
tokes (RANS)] is currently too demanding for routine calculations at the core level.
A standard engineering approach to investigating complex structures using a coarse
mesh is to treat these structures as porous media, with dedicated models employed to
simulate the interaction of the fluid with the subscale structures [18]. One advantage
of this treatment is that the equations employed revert back to standard RANS equa-
tions in cases of clear fluid (i.e., fluid regions not treated as porous), so that the same
set of equations can be discretized and solved on the same mesh while de facto treat-
ing different zones of the geometry with two different approaches (detailed RANS
or a coarse-mesh porous medium). Equations for the turbulent single-phase flow of
a fluid in a porous medium can be rigorously derived from standard Navier–Stokes
equations via time and volume averages (see Vafai [18] for details). The resulting
equations of mass, momentum, and energy conservation are [4, 7, 16]

∂γρ

∂t
+ ∇ · (ρuD) � 0, (5)

∂ρuD

∂t
+
1

γ
∇ · (ρuD⊗uD) � ∇ · (μT∇u)

− γ∇ p + γ Fg + γ Fss − (ρuD · uD)∇ 1

γ
, (6)

∂γρe

∂t
+ ∇ · (uD(ρe + p)) � γ∇ · (kT∇T) + Fss · uD + γ Q̇ss, (7)

where the Darcy velocity uD is defined as

uD � γ u. (8)
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It can be observed that Eqs. (5)–(7) closely resemble the traditional RANS equa-
tions. A primary main difference is the appearance of a porosity term γ , which takes
into account the fact that only part of the volume is occupied by the fluid. Moreover,
two additional terms Fss and Q̇ss appear in the equations, representing the effect of
the subscale structures on the fluid flow. In case of a clear fluid, these terms are equal
to zero and the porosity equal to one, so that, as mentioned, Eqs. (5)–(7) revert back
to the traditional RANS equations.

The last term in Eqs. (7) represents the Bernoulli effect. As a matter of fact, in
most applications in nuclear engineering, the porosity does not change inside of a
porous zone, but only at the interface between two different zones. The last term
in Eq. (7) can thus be neglected (at least for low Mach number flows), provided its
effect is properly taken into account at interfaces between different cell zones. This
can be done via the introduction of a pressure baffle [14]. In fact, such a pressure
baffle is necessary to take into account localized pressure drops at the entrance of a
porous zone. An alternative approach is to include a thin buffer region at the interface
between two different porous zones and to define the term Fss there so that it models
both the concentrated pressure drops and the Bernoulli effect.

The terms Fss and Qss can be obtained from experiments or by making use of
standard correlations for pressure drops and heat transfer coefficients. The terms
μT and kT in Eqs. (7) and (8) are modeled in a clear fluid zone using the standard
k-ε model. For porous zones, the problem of predicting k and ε becomes extremely
complex. As a matter of fact, pressure drops and heat transfer in porous zones are
typically dominated by interaction with the subscale structure, so that an accurate
modeling ofμT and kT becomes inessential. On the other hand, it is relatively impor-
tant to predict a correct value of k and ε at the entrance of a clear fluid zone, which
asks for a good prediction of k and ε at the outlet of the porous zone where the fluid
comes from. Following these considerations, GeN-Foam avoids solving the standard
k-εmodel inside the porous zones but instead forces the values of k and ε to converge
to user-selected values [7]. A special treatment is also required for wall treatment in
porous regions. In particular, a zero gradient can generally be assumed for velocity,
but appropriate heat transfer conditions have to be set. This has been achieved via
a modified thermal baffle that employs available heat transfer correlations. Some
details can be found in Radman et al. [15].

2.4 Fuel Temperatures

When performing a coarse-mesh analysis of a reactor core, it is necessary to use a
dedicated model so as to accurately predict the temperature distribution in the fuel,
which, in turn, is essential for the correct prediction of the heat transfer between
the fuel and coolant, as well as the interaction of the neutrons with the fuel. To this
purpose, GeN-Foam solves the exact form of the equations depending on the actual
shape of the fuel (spheres, plates or pins) for a 1-D heat conduction problem. The
solution is achieved via a second-order finite-difference spatial discretization with
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implicit Euler time stepping. The coupling with the solution for coolant tempera-
tures is achieved by calculating the heat flux on the surface of fuel elements and by
transferring it to the coolant in the form of a volumetric heat source via multiplica-
tion with the fuel volumetric area. Conversely, the coolant temperature and the heat
transfer coefficient between coolant and fuel elements are used to set up a convective
boundary condition for the 1-D conduction problem. Details can be found in Fiorina
et al. [7].

2.5 Coupling Strategy

The four sub-solvers described above need to be tightly coupled for an accurate
solution. The fields calculated on one mesh but needed on a second mesh are pro-
jected based on the standard OpenFOAM® cell-volume-weighted algorithm. The
coupling strategy is depicted in Fig. 2. The initial time step is given by the user,
while subsequent time steps are selected based on the most stringent requirement
between Courant number condition and a maximum power variation at each time
step (default 2.5%). After selection of the time step, the solver follows the structure
of a standard PIMPLE loop for solving velocity, pressure, and energy. After achiev-
ing the coolant flow and temperature fields, GeN-Foam solves for the temperatures
in the subscale structures, in the fuel, and again for the energy equation. It then goes
through the thermal-mechanic sub-solver and the neutronic sub-solver, each ofwhich
includes its own Picard iterations to solve for the explicit terms. Iteration between
pressure-velocity-energy solution and the other equations is typically not necessary,
and such a possibility has not been shown in Fig. 2. However, the possibility of a
user-selected number of “outer iteration” steps is included in GeN-Foam.

3 Discussion and Conclusions

In the last few years, GeN-Foam has been applied to the analysis of a number of
different reactor concepts, which allows us to draw some general conclusions on its
performance and capabilities [9]. In view of its unique flexibility, GeN-Foam has
been used most frequently for the analysis of nontraditional reactors, whose features
often challenge the use of nuclear legacy codes.

The use of unstructured meshes and non-problem-specific finite-volume dis-
cretization schemes for neutronics tends to significantly increase the required com-
putational resources compared to legacy codes that employ structured meshes and
purpose-specific methodologies [10]. On the other hand, use of unstructured meshes
makes possible the investigation of experimental or innovative reactors with uncon-
ventional geometries. As an example, Fig. 3 shows the thermal neutron flux distribu-
tion for the experimental Argonaut reactor at the University of Florida. In addition,
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the possibility of parallelizing the computation generally allows for an acceptable
computing time.

The possibility of deforming the mesh based on a detailed displacement field
provides notably improved predictions of a reactivity feedback coefficient in fast-
spectrum reactors. Such a capability has been used in [6] to predict the axial fuel

Fig. 2 GeN-Foam coupling strategy [7]

Fig. 3 Thermal neutron flux
distribution for the Argonaut
reactor at the University of
Florida
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Fig. 4 Fuel volumetric
power in the core region of
the European Sodium Fast
Reactor [6]. Deformation is
magnified by 100 times

Fig. 5 Coarse-mesh
simulation of the Molten Salt
Reactor Experiment [1]

expansion coefficient for the European Sodium Fast Reactor (Fig. 4), showing that a
50% under-prediction is obtained via the frequently employed evaluation based on
a uniform core axial expansion.

Use of a mixed coarse/fine-mesh approach with a porous medium approximation
for thermal-hydraulics is still a field of active research and would require further
testing and development. However, the work performed to date has highlighted the
actual possibility of achieving full core or full primary circuit solutions in a rea-
sonable time frame. Figure 5 shows an example of a coarse-mesh solution for the
Molten Salt Reactor Experiment [1]. Drawbacks are in the preparation of the mesh,
which can be time-consuming (compared to 1-D system codes) and requires good
expertise. In addition, the use of coarse-mesh approaches defies the definition of a
mesh-independent solution and introduces some small degrees of user discretion into
the results.

In general, the use of a single environment for preprocessing, computing and
postprocessing the different “physics” involved in the analysis of nuclear reactors
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proved to be extremely convenient if compared, e.g., to the external coupling of
independent codes. On the other hand, using a code like GeN-Foam requires previous
knowledge aboutOpenFOAM®, andmore generally, aboutCFDcalculations andpre-
and postprocessing techniques involving unstructured meshes. Such complexity has
been shown to be a significant challenge for users.
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Harmonic Balance Method
for Turbomachinery Applications

Gregor Cvijetić and Hrvoje Jasak

Abstract The Harmonic Balance Method for nonlinear periodic flows is presented
in this paper. Assuming a temporally periodic flow, a Fourier transformation is de-
ployed in order to formulate a transient problem as a multiple quasi-steady-state
problem. A solution of the obtained equations yields flow fields at discrete instants
of time throughout a representative harmonic period, while still capturing the tran-
sient effect. The method is implemented in foam-extend, a community-driven fork
of OpenFOAM® and developed for multi-frequential use in turbomachinery applica-
tions. For validation, a 2D turbomachinery test case is used. Pump head, efficiency,
and torque obtained with Harmonic Balance will be compared to a transient and
steady-state simulation. Furthermore, pressure contours on rotor blades will be com-
pared. And finally, in order to present themethod’s efficiency along with its accuracy,
a CPU time comparison will also be presented.

Nomenclature

Q Dimensionless passive scalar in the time domain
R Convection–diffusion transport operator for a passive scalar in the time

domain
t Time, s
u Velocity field, m/s
γ Diffusion coefficient, m2/s

SQ Source terms for a passive scalar, 1/s
ω Base radian frequency, rad/s
A Discrete Fourier expansion matrix
Q Vector of Fourier harmonics forQ
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R Vector of Fourier harmonics forR
Q Vector of discrete time instant values for Q
R Vector of discrete time instant values for R
T Base period, s
E Forward DFT matrix

E−1 Backward (inverse) DFT matrix
Pi− j Coupling coefficient for ti and t j time instants
Pl Coupling coefficient equivalent to Pi− j

ν Kinematic viscosity, m2/s
ρ Density, kg/m3

p Pressure, Pa
f Base frequency, Hz

A, B Wave amplitudes
φ Phase shift, s

Subscripts

S Sine part
C Cosine part
i Harmonic index
t j Discrete time instant

1 Introduction

In order to accurately model unsteady flows while still maintaining a reasonable
computational cost, the Harmonic Balance method is developed. Instead of using an
original, transient mathematical model, one solves a specified number of coupled
steady-state problems, each representing an equation for a unique time instant. The
transformation of the mathematical model is achieved through a Fourier transform
of unknown fields, in which the accuracy of the resulting model is controlled by
a specified number of harmonics. With an increasing number of harmonics, higher
order flow effects are captured. As opposed to conventional steady-state methods, the
benefit of Harmonic Balance is the ability to capture transient flow features, but at a
cost of longer CPU time. However, compared to conventional transient simulations,
Harmonic Balance offers a significant CPU time reduction [1] with comparable
accuracy.

Harmonic Balancewas initially developed as a periodic boundary condition byHe
[2]. He and Ning [3] extended its application to solving the two-dimensional Navier–
Stokes equations and presented the efficiency improvement compared to nonlinear
time-marching methods. Recently, the Harmonic Balance method has been exten-
sively developed in numerous areas of application.Oscillating airfoilswere presented
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by Thomas et al. [4], and Dufour et al. presented the 3D oscillating wings [5]. Limit
cycle oscillations [6] were the topic of Harmonic Balance research by Ekici et al.
Hall et al. [7] used complex geometries such as turbines to extend and demonstrate
the Harmonic Balance capabilities. After the development of Harmonic Balance for
turbomachinery, the need for multiple frequencies was stressed by Gopinath et al.
[8]. In the case of multistage turbines, the rotor frequency changes in each stage due
to a different number of blades. A similar multiple-frequency approach by Guédeney
et al. [9] relies on a uniform time sampling of the longest period of interest, therefore
reconstructing the flow field between stages to match the time instants. Additionally,
Guédeney et al. [10] presented the two algorithms for nonuniform time sampling in
a multiple-frequency approach of Harmonic Balance.

He [11] addressed the stability and convergence issues of the Harmonic Balance
method. Huang and Ekici [12] introduced time spectral viscosity as an additional
stabilization factor. The addition of time spectral viscosity eliminates aliasing errors
and ensures convergence toward the physical solution. In order to avoid stability
issues in more complex geometric configurations, as reported by Hall et al. [13],
strategies for implementation of the implicit Harmonic Balance algorithm have been
investigated [14]. Sicot et al. [15],Woodgate andBadcock [16], and Su andYuan [17]
have proposed different implicit techniques for the Harmonic Balance method that
involves the development of new implicit algorithms. The more favorable approach
that does not require the development of a new algorithmwas presented by Thomas et
al. [14] using a two-step approximate factorization approach. Antheaume and Corre
[18] implemented an implicit Harmonic Balance method using numerical implicit
strategies, block relaxation and matrix-free approaches.

The numerical model is based on a conventional, second-order accurate, polyhe-
dral Finite Volume Method (FVM) in the open-source software foam-extend. The
harmonic balance operator is implemented in generic form, allowing its use within
the foam-extend toolkit on various equation sets without intervention in the nonlinear
flux-source model. The coupling of temporal source terms was initially implemented
in a segregated manner and was then further developed for implicit calculation of
time instants and source terms.

Validation of the Harmonic Balance method will be performed using a 2D tur-
bomachinery test case. The Harmonic Balance method will be compared with con-
ventional transient simulation and steady-state simulation with Multiple Reference
Frames (MRF) accounting for rotor rotation. Global pump parameters will be com-
pared: head, torque, and efficiency. In order to present the local accuracy of the
Harmonic Balance method, pressure contours on rotor blades will be presented for
different number of harmonics. To present the efficiency of the Harmonic Balance
method, CPU time comparison will also be given.
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2 Mathematical Model

An overview of the mathematical model of the Harmonic Balance (HB) method is
presented in this section. HB treatment, transforming the time-derivative term into
a source term, is done on incompressible flow equations. The mathematical model
presented here is general and valid for any number of harmonics. A full derivation
can be found in [1].

2.1 Passive Scalar Transport

The convection–diffusion equation for the passive scalar transport of scalarQ reads
as

∂Q

∂t
+ R = 0 , (1)

where R stands for convection, diffusion, and source/sink terms:

R = ∇ · (uQ) − ∇ · (γ∇Q) − SQ , (2)

u is the transport velocity and γ is diffusivity. Expanding Q into a Fourier series
with n harmonics reads as

Q(t) = Q0 +
n∑

i=1

QSi sin(iωt) + QCi cos(iωt). (3)

Scripture characters,Q, are used to denote time-domain variables, while Q denotes
the frequency domain field. The Fourier expansion forR is analogous to the one in
Eq. (3), with Q replaced with R. Inserting Eq. (3) into the transport equation, Eq. (1),
yields sine, cosine and mean terms. Grouping the terms gives 2n + 1 equations: n
for sine and cosine and 1 for the mean value. Thus, an HB scalar transport equation
becomes a set of 2n + 1 equations, written in matrix form as follows:

ωA Q + R = 0 , (4)

where A is a (2n + 1) × (2n + 1) coefficients matrix, Q and R are column matrices
containing Fourier sine QSi /RSi and cosine QCi /RCi coefficients and ω is a base
radian frequency.

Introducing the matrix representation of a Discrete Fourier Transform (DFT) for
conversion from the time-domain vectorQ to the frequency domain vector Q yields

Q = E Q , (5)
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where E is a DFT matrix andQ is a discrete time-domain vector needed for unique
one-to-one mapping:

QT = [
Qt1 Qt2 Qt3 · · · Qt2n+1

]
, (6)

where ti stands for

ti = iT

2n + 1
, for i = 1 . . . 2n + 1. (7)

Multiplying Eq. (5) with E−1 from the left, one obtains amapping from the frequency
domain to the time domain:

Q = E−1 Q. (8)

Using the DFTmatrices E and E−1, the frequency domain scalar transport equation,
Eq. (4), is formulated using the time-domain vector Q:

ωA E Q + E R = 0 , (9)

where the same transformation has been applied to R and Q. Even though equa-
tions could be solved in this form, evaluating sources and fluxes in the frequency
domain is computationally expensive and inconvenient [13]. Therefore, the equation
is transformed back to the time domain, multiplying Eq. (9) with E−1 from the left:

ωE−1 A E Q + R = 0. (10)

The resulting equation represents a temporally coupled set of 2n + 1 steady-state
problems. It can be noticed that R has been replaced with its discrete counterpart
R, indicating that the solution is sought at a fixed number of discrete time instants
only. The number of discrete time instants is defined with a specified number of
harmonics n, as indicated in Eq. (6). The time-derivative term has been replaced by
terms coupling the solutions at different time steps. This is equivalent to evaluating the
time derivative of a harmonic signal via 2n + 1 uniformly spaced temporal snapshots,
including a mean (steady) solution.

The expanded form of the coupled HB scalar transport equations may be written
in a more convenient form:

∇ · (uQt j ) − ∇ · (
γ∇Qt j

) − SQ t j
= − 2ω

2n + 1

(
2n+1∑

i=1

Pi− jQti

)
, (11)

for j = 1 . . . 2n + 1,

where Pi− j is defined as

Pi− j = Pl =
n∑

k=1

k sin(lkω�t) , for l = −2n . . . 2n (12)
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and

�t = T

2n + 1
. (13)

The coupling of solutions at different time instants t j is achieved through the Pi− j

matrix, modeling the time-derivative term as additional source terms. Hence, a single
transient equation given by Eq. (1) is transformed into a set of 2n + 1 coupled steady-
state problems, Eq. (11). It should be noted that no less then 2n + 1 time instants
should be solved, as that could cause aliasing errors. A set of 2n + 1 equations is the
smallest required number of time instants for a chosen number of harmonics, n, for
which an accurate solution can be obtained.

2.2 Incompressible Fluid Flow

An incompressible, turbulent, single-phase flow is modeled with the continuity and
the momentum equation:

∇ · u = 0 , (14)

∂u
∂t

+ ∇ · (uu) − ∇ · (ν∇u) = −∇ p

ρ
, (15)

where ν denotes kinematic viscosity, ρ fluid density, and p the pressure field.
As previously presented, HB treatment transforms the time derivative term into a

set of temporally coupled source terms, leaving convection, diffusion, and additional
source terms in their original form. The continuity equation remains the same, as it
does not contain a time-derivative term:

∇ · ut j = 0. (16)

Equation (16) suggests that the incompressible continuity equation must hold in
each time instant t j , as expected. The HB form of the momentum equation reads as
follows:

∇ · (ut jut j ) − ∇ · (
ν∇ut j

) = −∇ pt j − 2ω
2n+1

(∑2n
i=1 Pi− juti

)
, (17)

for j = 1 . . . 2n + 1.

Equations (16) and (17) represent 2n + 1 coupled pressure–velocity systems with
enforced periodic behavior defined using the base frequency ω and number of har-
monics n.
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3 Results

The HB method is presented using a 2D ERCOFTAC centrifugal pump test case.
Due to different number of blades in the rotor and the stator, a multiple-frequency
approach is adopted in order to account for their separate frequencies. In this way, the
part of the domain consisting of the rotor is solved using the frequency corresponding
to that at which periodic instabilities occur in the rotor, while the part of the domain
consisting of the stator is solved using the frequency corresponding to that at which
periodic instabilities occur in the stator. For comparison, global pumpparameterswill
be used and compared with a transient simulation and a steady-state simulation with
Multiple Reference Frame (MRF). At the end, a CPU time comparison is presented.

Figure1 shows the pressure contours on one rotor blade in time instants t = T/3,
t = 2T/3, and t = T . The HB solution with 1 and 2 harmonics is compared with the
MRF and transient solutions. The two harmonics solution agrees with the transient
one more closely than the one harmonic solution. Compared to the transient simu-
lation, the MRF contours are mainly between the one and two harmonics contours.
Although theMRF pressure contours agree well with the transient one, in most cases
the MRF cannot predict the local instabilities accurately, as the mesh is not moving.
On the other hand, the transient simulation and HB deploy a moving mesh in order to
account for rotation. In each time instant, HB is calculated using the corresponding
mesh position for that time instant.
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Fig. 1 Pressure contours on the rotor blade at different time instants
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Table 1 Global pump parameters comparison

Transient
solver

HB, 1h Error, % HB, 2h Error, % MRF Error, %

t = T
3 Efficiency 89.72 88.80 1.0 89.76 0.0 89.65 0.1

Head 81.48 81.80 0.4 80.45 1.3 84.12 3.1

Torque 0.0297 0.0302 1.7 0.0294 0.9 0.0308 3.6

t = 2T
3 Efficiency 89.92 88.78 1.3 89.81 0.1 89.65 0.3

Head 81.48 81.85 0.4 80.6 1.1 84.12 3.2

Torque 0.0296 0.0302 2.0 0.0295 0.4 0.0308 4.1

t = T Efficiency 89.83 88.85 1.1 89.71 0.1 89.65 0.2

Head 81.49 81.79 0.4 80.39 1.3 84.12 3.2

Torque 0.0297 0.0302 1.6 0.0294 1.0 0.0308 3.7

To ensure that the global prediction is accurate, in Table1 the comparison of
global pump parameters is presented. The Harmonic Balance solution with 1 and 2
harmonics, as well as the MRF, are compared to the transient simulation using pump
head, efficiency and torque. For Harmonic Balance, the highest error is 1.7% for the
one harmonics case and 1.3% for the two harmonics case, while for the MRF the
highest error is 4.1%. This shows that HBwith 1 harmonic can be used as an accurate
tool for prediction of global pump parameters, while still obtaining transient effects.
In HB simulation with 2 harmonics, most errors are below 1%, demonstrating a
significant level of accuracy.

The ability of each method to capture local transient effects is shown in Fig. 2, and
the presented scale is valid for all four cases. Comparing the HB and MRF velocity
fields with the transient one, wakes in the stator blade passage appear only in HB and
the transient simulation. The MRF is unable to resolve the blade passage transients
due to a static mesh and a steady-state approach. Neither HB simulation resolves
wakes completely, suggesting that a higher number of harmonics should be used in
that case.

A CPU time comparison is presented in Table2, showing the HB speed-up com-
pared to the transient simulation. TheERCOFTACcentrifugal pump test case consists
of 93,886 hexahedral cells and was simulated on an Intel Core I5-3570K, 3.4 GHz
computer. One period of transient simulation lasted nearly 5h, with a maximum
Courant–Friedrichs–Lewy number equal to 0.5 and 600 time steps per period. It was
noticed that 8 periods are needed in order to achieve a fully periodic steady-state
solution. Taking 8 periods into account, the entire transient simulation took nearly
40h of CPU time. On the other hand, the HB simulation with one harmonic took
nearly 52min of CPU time and the HB simulation with 2 harmonics took nearly
78min. Comparing the transient simulation and the HB with two harmonics, the HB
simulation shows CPU time speed-up by a factor of 30. The decrease in the number
of iterations with an increase in the number of harmonics can be noticed, as 3000
iterations were needed to reach convergence in the 1 harmonic case, as opposed to
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(c) Harmonic Balance with 2 harmon-
ics.

(d) MRF simulation.

(a) Transient simulation. (b) Harmonic Balance with 1 harmonic.

Fig. 2 Local transient effects comparison, velocity field

Table 2 CPU time comparison for the transient simulation, MRF and HB

Transient 1 period = ∼ 5h, 8 periods = 40h

MRF 3100 iterations, ∼ 20min

HB, 1h 3000 iterations, ∼ 52min

HB, 2h 2400 iterations, ∼ 78min

2400 in the 2 harmonics case. This is considered to be the result of stronger coupling
between time instants as larger number of time instants are solved.

Although the presented cases were run in serial using a single core, no significant
change in CPU time ratios is expected if it were to be run in parallel.

4 Conclusion

This paper presents a Harmonic Balance method for nonlinear periodic flows. In
order to present the Harmonic Balance capabilities, a comparison with conventional
transient and steady-state solvers is given. The pressure contours of the rotor blades
agree well with the transient simulation. A two harmonics solution agrees with the
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transient contour more closely than for a one harmonic case, demonstrating the in-
crease in accuracy with a higher number of harmonics used. The overall results
presented show that Harmonic Balance is an accurate and efficient tool for tackling
periodic problems, as it demonstrates good flow prediction with significantly lower
CPU time compared to a transient simulation. Average errors of global pump pa-
rameters are 1.1% for the one harmonic case, while a higher number of harmonics
should be used if a more reliable prediction of transient instabilities is wanted. The
validation of the model using a 3D test case shall be done for future work, as well as
further development of the Harmonic Balance method. Twomain aspects of develop-
ment are to be considered: a compressible flow solver and improvement of accuracy
by solving only for the dominant frequencies.
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Implementation of a Flexible
and Modular Multiphase Framework
for the Analysis
of Surface-Tension-Driven Flows Based
on a Hybrid LS-VOF Approach

Paolo Capobianchi, Marcello Lappa and Mónica S. N. Oliveira

Abstract The mathematical modelling and numerical simulation of multiphase
flows are both demanding and highly complex. In typical problems with industrial
relevance, the fluids are often in non-isothermal conditions, and interfacial phenom-
ena are a relevant part of the problem.A number of effects resulting from the presence
of temperature differences must be adequately taken into account to make the results
of numerical simulations consistent and realistic. Moreover, in general, gradients
of surface tension at the interface separating two liquids are a source of numerical
issues that can delay (and in some circumstances even prevent) the convergence of
the solution algorithm. Here, we propose a fundamental and concerted approach for
the simulation of the typical dynamics resulting from the presence of a dispersed
phase in an external matrix under non-isothermal conditions based on the modular
computer-aided design, modelling and simulation capabilities of the OpenFOAM®

environment. The resulting framework is tested against the migration of a droplet
induced by thermocapillary effects in the absence of gravity. The simulations are
fully three-dimensional and based on an adaptive mesh refinement (AMR) strategy.
We describe in detail the countermeasures taken to circumvent the problematic issues
associated with the simulation of this kind of flow.

1 Introduction

The motion of gas bubbles and liquid droplets in fluid media is a widespread phe-
nomenon in nature and a subject of great relevance to many engineering and material
processing applications.

A fluid particle can move under the influence of different driving forces of a dis-
tinct nature. As an example, a falling raindrop or a bubble rising in a denser liquid are
put in motion because of the gravity force exerted on it by Earth. Other body forces
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such as magnetic and ultrasonic fields can also be used to induce or “control” the
motion of droplets in some specific circumstances (see, for instance, [7, 16]). Even
in the absence of body forces, a similar phenomenon can be induced by another fun-
damental mechanism, the so-called thermal Marangoni (or thermocapillary) effect.
This process, which occurs every time a gradient of temperature or concentration is
present at the interface separating two fluid phases, becomes particularly important
in all of those situations in which body forces (such as gravity) do not play a major
role, e.g., in the microgravity environment provided by orbiting platforms, or when
either the densities of the fluid pair are similar and/or the typical size of the dispersed
phase is very small (e.g., atomised droplets).

The first pioneering study on the thermocapillary migration of droplets was con-
ducted in the late 50s by Young et al. [26], who, under some limiting assumptions
(perfectly spherical drop of radius R moving in an infinitely extended fluid domain
under Stokes flow conditions), derived a landmark solution (in analytical form) of the
governing equations. With such an approach, velocity and temperature fields were
considered to be fully established at every moment of time, while neglecting the
inertia and convective effects. Under this approximation, the temperature field can
be inferred independently of the flow field, and this greatly simplifies the derivation
of an analytical solution to the problem, yielding a precise relationship between the
asymptotic (steady) droplet migration velocity and the properties of the considered
fluids and characteristics of the driving force.

Over subsequent years, especially because of the advent of space programs and
the possibility of executing experiments in the field of fluids and materials in space
(sounding rockets, Space Shuttle, and most recently, the International Space Station,
see, e.g., [12]), the subject gained increasing popularity, extending to multidisci-
plinary fields.

Balasubramaniam and Subramanian [2] extended the analytical study of Young
et al. [26] to the case in which the Reynolds number tends to infinity. They analysed
the steady migration of a spherical drop in a continuous phase when subjected to
a temperature gradient under conditions such that inertial terms in the momentum
equation and convective-transport terms in the energy equation dominate over the
correspondingmolecular-transport terms (i.e.,Ma →∞ andRe →∞, forwhich they
were able to derive analytical solutions partially based on the earlier mathematical
model of Harper and Moore [11]). The migration velocity of the drop was obtained
by these authors in the framework of a potential-flow theory by equating the rate at
which work is done by the thermocapillary stress to the rate of viscous dissipation
of energy; the method of matched asymptotic expansions was employed to solve the
conjugate heat-transfer problem in the two phases (characterised by the presence of
thin thermal boundary layers both outside and within the drop). In physical terms,
they found that in the limit of Ma → ∞, the velocity of a drop is proportional to the
square of the temperature gradient and the cube of the radius of the drop, whereas in
the opposite limit (Ma → 0), both dependencies are linear.

In addition to theoretical studies, a number of experimental works have also
appeared over the last two decades (see, e.g., [3, 9, 23] for experiments under
weightless conditions). More recently, attempts have been made to approach the



Implementation of a Flexible and Modular Multiphase Framework … 237

problem directly in the framework of moving boundary methods such as Volume of
Fluid (VOF) or Level Set (LS) techniques, by which the typical simplifications of
past analytical approaches can be removed and the typical difficulties (and cost) of
microgravity-based experimentation avoided.

Despite valuable numerical advances over the years [6, 10, 13, 15, 21, 25, 27],
the numerical simulation of droplets migrating under the influence of surface-tension
gradients at finite values of theReynolds andMarangoni numbers can still be regarded
as an “open task”. In the present chapter, we lay the general foundation of a possible
theoretical and mathematical treatment of the subject based on the modular capabil-
ities of the OpenFOAM® environment. Starting from an already existing algorithm
[24], we undertake all of the steps necessary to expand the range of treatable physical
effects. Furthermore, the code is validated against the analytical solution of Young
et al. [26] and used to study the impact of the geometrical configuration on the drop
migration pattern.

2 Mathematical Formulation

The ingredients of our overall conceptual architecture are provided and discussed in
a step-by-step approach, with the aim of defining each of the sub-models as simply
as possible and building and growing the framework “organically” by progressive
integration of the various components. The class of such sub-parts or sub-models
is highly diverse, including typical moving boundary methods and energy transport
models in synergy with non-dimensional and asymptotic analyses.

2.1 Governing Equations

We consider the Marangoni migration of a liquid drop surrounded by an immiscible
liquid under the effect of a constant temperature gradient ∇∞ T . The most common
way to describe such a flow is based on the consideration of two distinct phases,
each with its own set of governing equations, and appropriate interface stress jump
conditions to guarantee proper phase coupling (see, e.g., [22]). However, the problem
can also be approached in terms of “interface capturing methods”, such as the Level
Set or the Volume of Fluid. These techniques are based on a different strategy known
as the “single-fluid” or “one-fluid” approach (see, e.g., [14], and references therein).
The underlying idea is that the system might be considered as if composed of one
single fluid with variable material properties (undergoing discontinuities across the
fluid–fluid boundaries). In termsofmomentum, the presence of the interfacial stresses
is accounted for by adding “extra” forces to the transport equation.

More precisely, if we assume that the effect of gravity and any other external body
force is negligible, the conservation of momentum can be written as
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ρ

(
∂u
∂t

+ u · ∇u
)

� −∇ p + ∇ · [
μ

(∇u + (∇u)T
)]

+ fσ , (1)

where t represents time, ρ, μ are the fluid density and viscosity, respectively, p is
the pressure and u the velocity vector. The last term fσ is a force accounting for the
capillary (fσ ,n) and thermocapillary (fσ ,τ ) forces at the interface

fσ � fσ,n + fσ,τ � σ(T0)knδS + ∇‖σ(T )δS (2)

Here, k and n are the curvatures and normal unit vector at the interface, respectively,
I is the identity tensor and the operator ∇‖ � (I − nn)∇ accounts for the projection
of the surface-tension gradient along the direction tangent to the interface. The term
δS represents a distribution function that takes values one at the interface and zero
elsewhere [14]. Since the interfacial tension σ depends on the temperature T , we
have explicitly included the related dependence in Eq. 2. Closure of themathematical
model requires consideration of the conservation of mass for incompressible flows
(Eq. 3) and the temperature transport equation (Eq. 4)

∇ · u � 0, (3)

ρcp

(
∂T

∂t
+ u · ∇T

)
� ∇ · (κ∇T ), (4)

where cp is the specific heat and κ the thermal conductivity of the fluid. Following
common practice for this kind of problem (see, e.g., [25]), all material properties
are assumed to be constant in each phase and are evaluated at a suitable reference
temperature. The dependence on temperature, however, is retained for the surface
tension σ via a linear relationship

σ(T ) � σ0 + σT (T − T0), (5)

where σT � −∂σ(T )
/

∂T is negative for most known fluids [18] and T0 is the
reference temperature.

2.2 The Simplified LS-VOF Method

Our solver relies on a simplified coupled LS-VOF code (based on the hybrid for-
mulation originally developed by Albadawi et al. [1], see also Sussman and Puckett
[20]) implemented into the framework of OpenFOAM® [24] as an extension of the
standard VOF solver “interFoam”. The simplified coupled LS-VOF for an isothermal
system is based on the solution of Eqs. 6–10. The equation for the volume fraction
reads as
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∂α

∂t
+ ∇ · (αu) + ∇ · (α(1 − α)uc) � 0, (6)

where α is the volume fraction and uc is an artificial “compressive velocity” [4].
Although there was a consistent improvement in terms of accuracy and reduction of
the so-called “parasite” currents with respect to the original two-phase solver, we
had to take additional countermeasures to fix typical “algorithm stability” issues at
the interface (where Marangoni stresses of thermal nature are produced). This was
accomplished by “proper” smoothing, both of the level set and the volume of fluid
phase functions, as further described in Sect. 2.3.

The resulting time-marching procedure can be outlined as follows: in order to
calculate the level set function ϕ, we first calculate the field ϕ0 � (2α − 1)
, where

 � 0.75�x and�x is the grid resolution (see [1]). Subsequently, a re-initialisation
equation is solved (see, e.g., [19]):

∂ϕ

∂τ
� Sgn(ϕ0)(1 − |∇ϕ|), (7)

with the initial condition ϕ(x, 0) � ϕ0(x) and where Sgn(ϕ0) � ϕ0
/ |ϕ0| and τ is a

fictitious time. Once the scalar field ϕ is known at each point, it is possible to evaluate
the curvature at the interface

k(ϕ) � −∇ · n(ϕ), (8)

with n(ϕ) � ∇ϕ
/ |∇ϕ| being the unit vector perpendicular to the interface. Finally,

the term described by Eq. 2 is evaluated, leading to the momentum equation cast in
compact form as

ρ

(
∂u
∂t

+ u · ∇u
)

� −∇ p + ∇ · [μ(∇u + (∇u)T
)]

+ σk(ϕ)η(ϕ)∇ϕ + σT ∇‖T |∇α|,
(9)

where

η(ϕ) �
{
0 if |ϕ| > ε

1
2ε

(
1 + cos

(
πϕ

ε

))
if |ϕ| ≤ ε

(10)

and 2ε � 3�x .
The reader is referred to Lappa [14] for additional information about the mathe-

matical manipulations required to turn the surface force seen in Eqs. 1 and 2 into a
corresponding volume force spread over a region of finite thickness, which no longer
relies on the use of the delta function. Additional details on the dependences on ϕ

and α present in Eq. 9 are provided in Sect. 2.3.
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2.3 Implementation of the Thermal Marangoni Migration
Method in OpenFOAM®

We used properly mollified variables to increase algorithm stability and avoid non-
physical effects at the interface. More precisely, the smoothing was applied to each
“relevant variable” χ (various variables required by the LS and VOF implementation
in different parts of the solver, as needed) using a “pure diffusive” evolution equation
χn+1
mol � χn

mol +
(∇2χn

mol

)
�τmol, where τmol represents an artificial or fictitious time,

to be solved with the initial condition for a prefixed number of cycles n (the condition
n � 0 corresponding to the recovery of the original non-smoothed function). �τmol

is defined according to the following well-known numerical stability criterion (see,
e.g., [8]):

�τmol � 0.52

(1/�x)2 + (1/�y)2 + (1/�z)2
. (11)

We used mollified quantities to evaluate the new curvature at each time step, i.e.,

kϕmol � −∇ · nϕmol � −∇ · ∇ϕmol

|∇ϕmol| , (12)

where ϕmol is the smoothed version of ϕ.
As discussed in Sect. 2.1, accounting for surface-tension effects requires two

additional source terms in the momentum equation (see Eq. 2). In the framework
of an optimisation strategy based on a trial-and-error approach, we could obtain the
best results using the mollified level set function to determine the unit vector per-
pendicular to the interface (and the corresponding tangent unit vector) and retaining
a non-mollified volume fraction in the gradient appearing in the expression of the
thermal contribution (see Eq. 13). The level set function was also used accordingly
to determine the curvature.

fσ,τ � σT ∇‖T |∇α| � σT
(
I − nϕmolnϕmol

)∇T |∇α|. (13)

The portion of the code in which we have included the thermocapillary force is
shown in Fig. 1.

Following common practice in the literature [5], the smoothing philosophy has
also been applied to the fluid properties (assumed to be constant in each phase)
in order to prevent the algorithm from developing spurious oscillations due to the
discontinuity established at the liquid–liquid interface. In our hybrid implementation,
we decided to rely on a standard VOF approach, expressing each property as

γ � αmolγ1 + (1 − αmol)γ2. (14)

Special care has also been devoted to the solution of the energy equation. Some
mathematical manipulations were indeed necessary to increase algorithm stability
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fvVectorMatrix UEqn 
(
    fvm::ddt(rho, U) 
  + fvm::ddt(rhoPhi, U) 
  + turbulence->divDevRhoReff(rho, U) 
  + ddtSigma*TangentialGradT*mag(fvc::grad(alpha1))
==
    sources(rho, U) 
);

Fig. 1 Snippet of code from theUEqn.Hfile. The line highlighted in boldface represents the stresses
due to the thermocapillary effect, where ddtSigma represents the interfacial tension coefficient σT ,
TangentialGradT is the projection ∇‖T of the temperature gradient (implemented in the code
as gradT – (gradT & nMoll)*nMoll, where gradT is the temperature gradient and nMoll
corresponds to nϕmol) and the last term is the magnitude of the gradient of the volume fraction |∇α|

fvScalarMatrix TEqn 

(

    fvm::ddt(T) 

  + fvm::ddt(phi, T) 

  - fvm::laplacian(D, T) 

  - 1.0/(rho*cp)*(fvc::grad(k) & fvc::grad(T)) 

  + fvc::grad(D) & fvc::grad(T) 

);

Fig. 2 Implementation of the temperature equation. The name of the variables has direct corre-
spondence to the symbolism adopted in Eq. 15

and its related ability to reproduce available test cases in the literature (as discussed
later in this chapter). We rearranged the equation as follows: by introducing the
thermal diffusivity D � κ/ρcp and considering that all the fluid material properties
can, in general, change across the interface, after some algebraic manipulations, we
obtained the following equivalent expression for the energy equation:

∂T

∂t
+ u · ∇T � ∇ · (D∇T ) +

1

ρcp
∇κ · ∇T − ∇D · ∇T . (15)

The snippet of code displayed in Fig. 2 shows the corresponding implementation.
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The different macro-steps in which our algorithm has been articulated can ulti-
mately be sketched as follows:

1. Solve the re-initialization equation (Eq. 7);
2. Solve the volume fraction equation using theMULES algorithm (which is essen-

tially an explicit method, see, e.g., the OpenFOAM® user guide [17] to guarantee
the boundedness of the scalar field α;

3. Solve the temperature equation;
4. Compute the thermal Marangoni force fσ ,τ ;
5. Calculate the velocity and pressure field using a projection method (PISO algo-

rithm);
6. Go back to step 1 or end of calculation.

Before the validation and discussion of the results in the next section, we will
list here the independent non-dimensional parameters governing the physics of the
flow under discussion. These are the fluid property ratios ρ̃ � ρd/ρm, μ̃ � μd/μm,
c̃p � cp,d/cp,m and k̃ � kd/km, the Capillary number Ca � σT (∇∞T )R/σ0, the
Marangoni number Ma � σT (∇∞T )R2/αmμm and either the Reynolds number
Re � ρmσT (∇∞T )R2/μ2

m or the Prandtl number Pr � μm/ρmαm, since Ma �
Re Pr . The subscripts “m” and “d” stand for matrix and drop, respectively.

3 Solver Validation

As indicated at the end of Sect. 2, our overall framework has been built via the
integration of self-contained modules, which could be individually tested. However,
because it is crucial that the entire numerical architecture be tested as a single inte-
grated unit, we considered available solutions in the literature for comparison. In
order to validate our code, in particular, we focused on the thermocapillary motion
of a spherical Newtonian droplet of radius R in a constant temperature gradient∇∞T
embedded in an unconfined Newtonian matrix in the limiting case of (Ma, Re) → 0
and negligible buoyancy effects. As discussed in the introduction, in such a case, an
analytical solution exists for the velocity of the droplet [26] (YGB theory), which,
in dimensional form, reads as

UYGB � 2|σT |(∇∞T )R/μm(
2 + kd

km

)(
2 + 3 μd

μm

) , (16)

where the temperature gradient ∇∞T is defined as ∇∞T � (Thot − Tcold)/H , where
H is the height of the channel along the direction of the motion (between the hot
wall and the cold wall) and Thot and Tcold correspond to the temperature at the hot
wall and cold wall, respectively (cf. Fig. 3a). In our simulations, we assumed condi-
tions corresponding to the following set of (non-dimensional) characteristic numbers:
Pr � 0.1, Re � 1.0×10−4, Ma � 1.0×10−5 and Ca � 2.0×10−1 (with the cap-
illary number being sufficiently small to guarantee negligible deformations, see, e.g.,
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Fig. 3 a Initial conditions used for the simulation. At the initial instant, the droplet is at rest.
The velocity arrow has been included to show the droplet migration direction when a temperature
gradient ∇∞T is imposed. b Particular of the mesh in a plane parallel to the motion of the droplet.
Note the area of refinement in the region of the droplet

[27]). For simplicity, we also considered the fluid material parameters to be the same
for both fluids (i.e., unit fluid property ratios). Assuming the radius of the droplet to
be R � 0.5 cm, we fixed the size of the external container to (6 × 4.5 × 4.5) cm3

(shown in Fig. 3a), corresponding to a confinement ratio C � R/L � 0.22, where
L represents the distance between the centre of the drop and the wall. This size
is intended to mimic the effective geometry of the container used in microgravity
experiments by Hadland et al. [9]. As shown in Fig. 3b, a structured mesh with
85 × 64 × 64 elements adaptively refined in the region of the drop is employed.
For the boundary conditions, we have applied no-slip conditions for the velocity
and “zeroGradient” for the pressure at each wall of the container (a reference
pressure “pRefValue = 0” has been set at the centre of the “cold” wall). For
the temperature, we set constant values at the “cold” and “hot” sides and adiabatic
(“zeroGradient”) conditions in the rest of the boundaries of the domain.

All simulations were executed applying two (n � 2) cycles of smoothing for the
Level Set function ϕ.

Figure 4 shows a snapshot of the flow pattern and the temperature distribution in
a plane parallel to the direction of migration in the case of C � 0.22. As expected, a
toroidal roll is formedas a result of the thermocapillary effect. The intersectionof such
a roll with the considered visualisation plane clearly shows regions of recirculating
fluid surrounding the droplet. As time increases, such vortices move with the droplet.
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Fig. 4 Snapshot of the flow pattern and temperature field in a plane parallel to the direction of
migration at instant t ′ � 10. The droplet is moving from the bottom (cold side) toward the top (hot
side)

Figure 5 shows the dimensionless migration velocity as a function of the dimen-
sionless time t ′ � μm/σT (∇∞T ) for the same case. As evident in this figure, after
a given transient, the droplet reaches a steady state in which its (final) migration
velocity is in excellent agreement with the predictions of the YGB theory.

We also studied the effect of the geometric “confinement”, considering narrower
containers with C � R/L > 0.22. We found that the migration velocity decreases
nontrivially with the degree of confinement.More specifically, when the height of the
geometry is halved (C � 0.44), the resulting steady-state migration velocity is about
12% smaller than the limit predicted by the YGB theory. Such results, summarised
in Fig. 5, clearly indicate that some care should be taken in the choice of geometry
if wall effects are not intended to be a relevant aspect of the analysis.

The last test consideredwas the simulation of a dropletmigrating into a convergent
channel, resorting to the same set-up adopted for the previous simulations. We used
a convergent duct having a “cold side” cross-sectional area equal to the case of
C � 0.44, with the cross-sectional area of the “hot side” being half of the cold one.

It isworth emphasising that in such a case, the droplet could not reach a steady state
(its velocity increases monotonically, until it suddenly decreases when the droplet is
close to the hot wall). Such interesting behaviour, which would require further inves-
tigation, might perhaps be explained by the presence of two different counteracting
contributions: as the droplet migrates along the converging region, the degree of con-
finement increases, and on the basis of the previous findings, one should expect the
velocity to decrease; however, since the temperature field distribution is no longer
linear, and theMarangoni stresses increase accordingly, one should expect the droplet
to accelerate. Further studies are in progress along these lines to assess the role played
in such dynamics by the relative importance of molecular and inertial transport terms
in the governing equations.
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Fig. 5 Velocity history for various geometry and confinements C. The results are normalised using
the YGB theoretical velocity. Notice the difference between the two cases C � 0.296 (still in good
agreement with the YGB theory) and the case C � 0.44

4 Conclusions and Future Directions

In this work, we addressed the question of how a typical numerical framework for
isothermal multiphase flows can be adequately extended to make it suitable for the
simulation of phenomena in which surface-tension gradients act as the main flow or
pattern driver. In particular, starting from existing implementations in OpenFOAM®

of moving boundary methods, some effort has been put into strengthening the used
approach by incorporating the possibility of accounting for thermal effects of dif-
ferent nature in the algorithm. Special care has been devoted to numerical stability
issues that are typical of such problems (in which the phenomena occurring in a
limited neighbourhood of the interface separating the two liquids play a “crucial
role”).

The framework has been successfully tested under restricted conditions, but future
work shall be devoted to the application and testing of the resulting approach to
more complex problems in which inertial terms in the momentum equation and
convective-transport terms in the energy equation dominate over the corresponding
molecular-transport terms.
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Implicitly Coupled Pressure–Velocity
Solver

Tessa Uroić, Hrvoje Jasak and Henrik Rusche

Abstract Formulation of implicitly coupled incompressible and compressible
pressure–velocity solvers is presented in this paper. The formulation is an alter-
native to commonly used segregated solvers, in which inter-equation coupling is
resolved by Picard iterations. In the coupled solver, the momentum and continuity
(pressure) equations are solved simultaneously, in a single block matrix. Turbu-
lence model equations and energy equation in compressible flow are solved in a
segregated manner. The formulation is based on deriving the pressure equation as
a Schur complement, including the Rhie–Chow correction. A new formulation of
the compressible pressure-based solver is proposed by assuming an isentropic com-
pression/expansion, resulting in consistent reduction of the compressible form to
incompressible form.

1 Introduction

The second decade of the twenty-first century has brought a new direction in the use
of numerical methods in industrial product development and optimisation. Over the
last 20 years, the capabilities of numerical modelling tools have proved to be well
established: physics models and numerical solution algorithms have been examined
and validated for a variety of applications. While the aspects of numerical accuracy
and physics model development still remain, the most challenging aspect of modern
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Computational Fluid Dynamics (CFD) is the need for fast and efficient large-scale
computations.

The dominant numerical solution techniques originate from work done in 1970s,
’80s and ’90s, when the balance between computational cost and mere ability to
produce the solution were critical. With the rapid development of modern computers
and access to robust and powerful High-Performance Computing (HPC) clusters
with substantial memory and storage capacities, compromises made in the past can
now be revisited.

Today, CFD tools are used for complex, coupled and nonlinear heat and mass
transfer problems. In many cases, inter-equation coupling terms dominate the system
of equations, and most algorithms still use the segregated, sequential algorithms in
their search for the solution. The most notable class of solution techniques relies on
linearisation of inter-equation coupling terms and the solution in a coupled, implicit
manner. However, the memory efficiency compromise implied by such algorithms is
significantly different than it is in weakly coupled segregated algorithms. The benefit
is the prospect of significantly reduced time-to-solution.

The considered set of equations consists of themomentum equation, with velocity
as the primitive variable, and the continuity equation, with pressure as the primitive
variable. SIMPLE [13] and PISO [8] and the variants of these algorithms are themost
popular methods for dealing with inter-equation coupling in the pressure–velocity
system. The equations are solved in a sequential manner: the momentum equation is
solvedwith the available (old or guessed) values of pressure. The pressure field is then
calculated by inserting the momentum equation with the calculated velocity value
into the continuity equation, i.e. velocity is being solved with the guessed values of
pressure, and vice versa, until convergence. The decoupling of these linearly coupled
variables causes slow convergence. Attempts at implicit coupling have been limited
by the technology of the time, but a brief overview of the efforts will be given.

Raithby and Schneider [14] reported on new methods of solving the pressure–
velocity system, mainly adding improvements to the existing SIMPLE algorithm. It
was concluded that keeping more of the effects of the coupling between the velocity
and pressure significantly increases the convergence rates.

Zedan and Schneider [19] assembled a pressure equation by replacing the velocity
components in the continuity equation with their respective values from the momen-
tum equations and keeping the pressure terms as unknowns. This resulted in a more
implicit formulation, which gave better solver performance but was still solved in a
segregated manner.

Zedan and Schneider [20] continued this effort presenting a Coupled Strongly
Implicit Procedure in which continuity and momentum equations for each point
in the solution domain were written together by keeping their primitive form in a
submatrix. However, the procedure performed poorly, due to the inversion of the
block coefficients. All these algorithms were implemented and validated for 2D
problems using the finite difference method.

Implicit coupling has recently been gaining popularity, and new work has been
published by Mazhar [10, 11] and Darwish [3, 4] in the finite volume framework.
However, segregated methods are still the most widely used.
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In the following section, a block implicit formulation of the continuity and mo-
mentum equations implemented in the finite volume framework will be presented.

2 Mathematical and Numerical Model

In this section, the mathematical and numerical models for incompressible and com-
pressible flow will be presented.

2.1 Incompressible Formulation

The mathematical model of the steady state, incompressible, single-phase and tur-
bulent flow consists of the continuity equation

∇•u = 0 (1)

and the momentum equation

∂u
∂t

+ ∇•(uu) − ∇• (ν∇u) = −∇ p. (2)

In the incompressible flow formulation, p is defined as

p = P

ρ
, (3)

where P is the pressure field and ρ is the density field. The momentum equation is
nonlinear, due to the convective term. In order to eliminate the nonlinearities, the
term is linearised as follows:

∇•(uu) = ∇•(uoun), (4)

where superscript o denotes the values available from the previous iteration and n
the new value to be obtained from the solution of the linear system. The linearised
system can now be written in block form:

[ [Au] [∇(.)]
[∇•(.)] [0]

] [
u
p

]
=

[
0
0

]
. (5)

The problem that arises inEq.5 is the presence of the zero-block on the diagonal of the
system. This limits the choice of linear system solvers to those that are saddle-point
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specific. However, the problem can be remedied by deriving the pressure equation
in the form of the Schur complement.

Consider a general block matrix system M , consisting of four block matrices, A,
B, C and D, which are, respectively, p × p, p × q, q × p and q × q matrices, and
assume A is invertible [

A B
C D

]
. (6)

This structure will arise naturally when trying to solve a block system of equations

Ax + By = a,

Cx + Dy = b.

The Schur complement arises when we try to eliminate x from the system using
partial Gaussian elimination (multiplying the first row with A−1)

A−1Ax + A−1By = A−1a, (7)

then expressing x as
x = A−1a − A−1By. (8)

Substituting x with Eq.8 in the second of the system row yields

(D − CA−1B)y = b − CA−1a. (9)

Identifying the submatrices A, B,C , D and vectors x , y, a, b in the pressure–velocity
system, Eq.5, produces the following form of the pressure equation:

[∇•(.)][A−1
u ][∇(.)][p] = 0. (10)

Inverting a sparse momentum matrix Au will likely produce a dense matrix. Thus,
Eq.10 is impractical and the following modification is introduced: the momentum
matrix Au is decomposed into the diagonal and off-diagonal parts before the Schur
complement, Eq. 11.

[Au] = [Du] + [LUu], (11)

where Du only contains block diagonal entries and LUu the lower and the upper
triangle of the momentum matrix Au. Substituting the decomposition Eq.11 into
Eq.5 and moving the off-diagonal component LUu onto the right-hand side yields

[ [Du] [∇(.)]
[∇•(.)] [0]

] [
u
p

]
=

[−[LUu][u]
0

]
. (12)

Using Eq. 9, the pressure equation is formulated as
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[∇•(.)][D−1
u ][∇(.)][p] = [∇•(.)][D−1

u ][LUu][u]. (13)

In this way, Eq.13 can be used in the block-coupled pressure–velocity system, Eq.
5, removing the need for saddle-point solvers. The final form of the incompressible
block-coupled system reads as

[ [Au] [∇(.)]
[∇•(.)] [∇•(D−1

u ∇(.))]
] [

u
p

]
=

[
0

∇•(D−1
u ∇(po))

]
, (14)

where po is the previously available pressure solution and is only used in the Rhie–
Chow correction, [15]. The overline indicates a face-interpolated cell-centred pres-
sure gradient.

2.2 Compressible Formulation

In this section, the conventional and the novel coupled formulation of the compress-
ible pressure–velocity solver will be introduced, as implemented in foam-extend, a
community-driven fork of OpenFOAM® software.

The starting point is the compressible continuity equation

∂ρ

∂t
+ ∇•(ρu) = 0, (15)

where ρ is the density field.
The compressible form of the momentum equation, assuming a Newtonian fluid

reads as:

∂(ρu)

∂t
+ ∇•(ρuu) − ∇•

[
μ

(∇u + (∇u)T
)] = −∇

(
P + 2

3
μ∇•u

)
, (16)

where μ is the dynamic viscosity.
The internal energy equation reads as

∂(ρe)

∂t
+ ∇•(ρeu) − ∇•(λ∇T ) =

ρg•u − ∇•(P u) − ∇•

(
2

3
μ(∇•u)u

)
+ ∇•

[
μ

(∇u + (∇u)T
)

•u
]
, (17)

where T is the temperature and λ is the thermal conductivity.
The relation between ρ, P and T is defined using the equation of state. For an

ideal gas

ρ = P

RT
= ψP, (18)
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where ψ is compressibility

ψ = 1

R T
. (19)

The first step in the derivation of the compressible pressure equation is the transfor-
mation of the rate-of-change term. Using the chain rule on ρ = ρ(P, T ), it follows
that

∂ρ

∂t
= ∂ρ

∂P

∂P

∂t
+ ∂ρ

∂T

∂T

∂t
. (20)

The second term introduces a source term dependent on the rate of change of temper-
ature, allowing for a general polytrophic state change. However, the formal derivation
relies on the substitution of the equation of state into the rate-of-change term. From
the ideal gas law, it follows that

∂ρ

∂P
= ψ. (21)

The discretised form of themomentum equation can bewritten in the following form:

auPuP = H(u) − ∇ p. (22)

The velocity from Eq. 22 is substituted into the divergence term in Eq. 15 yielding

∇•(ρu) = ∇•
[
ρ(auP)−1H(u)

] − ∇•
[
ρ(auP)−1∇P

]
. (23)

Using ρ = ψP , it follows that

∇•
[
ρ(auP)−1H(u)

] = ∇•
[
ψP(auP)−1H(u)

] = ∇•(Fp P), (24)

where Fp is the convective flux for the pressure

Fp = ψ(auP)−1H(u). (25)

Note that, unlike the divergence of the mass flux, the divergence of Fp is not zero,
as no conservation law applies (∇•Fp �= 0).

Looking at the terms in Eq. 24, the structure of the compressible pressure equa-
tion can be established. The first term, ∇•

[
ψP(auP)−1H(u)

]
, represents the convec-

tive effects and is responsible for the appearance of shocks, while the second term,
∇•

[
ρ(auP)−1∇P

]
, leads to a pressure Laplacian equivalent to the one seen in the

incompressible pressure equation, Eq. 29.
The final form of the compressible pressure equation reads as

∂(ψP)

∂t
+ ∇•

[
ψ(auP)−1H(u) P

] − ∇•
[
ρo (auP)−1∇P

] = 0. (26)
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2.2.1 Segregated Compressible Flow Formulation

The segregated solver operates on the equation set consisting of the discretised mo-
mentum equation, Eq. 22, the discretised compressible pressure equation, Eq. 26
and the appropriate form of the discretised energy equation. Here, only the pressure–
velocity part of the system is presented

auPuP +
∑
N

auNuN = r − ∇ p, (27)

∂(ψP)

∂t
+ ∇•

[
ψ(auP)−1H(u) P

] − ∇•
[
ρo (auP)−1∇P

] = 0. (28)

The coupled block solver was formulated using Eqs. 27 and 28; however, this
form of the discretised equations resulted in instabilities that led to non-physical
temperatures, which could be resolved via multiple outer iterations over the p-U-h
equation set. However, such an outer iteration loop defeats the purpose of the coupled
solver, which is to provide a robust and accurate solver for compressible flows with
high Courant–Friedrich–Levy numbers.

2.2.2 Coupled Compressible Flow Formulation

In this section, an alternative formulation of the compressible pressure equation will
be presented. The advantage of pressure-based compressible flow solvers over their
density-based counterparts are that a pressure-based system correctly reduces to
the incompressible formulation as the compressibility ψ approaches zero [6]. This
is important for the stability and accuracy of the algorithm, especially when there
exists a zone in the flow field where the effective Mach number approaches zero.

The discretized incompressible pressure equation has the following form:

∇•
[
(auP)−1∇ p

] = ∇•((auP)−1H(u)), (29)

and its compressible counterpart is

∂(ψP)

∂t
+ ∇•

[
ψ(auP)−1H(u) P

] − ∇•
[
ρo (auP)−1∇P

] = 0. (30)

It appears that the divergence term on the left-hand side of Eq. 29 has its counterpart
in the last term on the left-hand side of Eq. 30, while the explicit term on the right-
hand side of Eq. 29 is analogous to the implicit convection term on the left-hand side
of Eq. 30, indicating consistency.

However, inserting the incompressibility condition ψ = 0 into Eq. 30 does not
yield the incompressible formulation, as the implicit convection term on the left-hand
side of the equation does not convert into the right-hand side term of Eq. 29.
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The cause of this is the fact that, atψ → 0, the relationship betweenρ and P is lost,
rather than being correctly converted into the incompressible form for ρ = const.
This is a fundamental failure of the compressible pressure equation derivation by
substituting the equation of state ρ = ψP into the continuity equation, Eq. 18, in the
same manner as for density-based solvers.

Based on the previous analysis, a new derivation of the compressible pressure
equation based on an alternative linearisation of the P − ρ relation is proposed.

The linearisation of the density change between the two states, formally associated
with the old-time-level and a new-time-level in the discretisation reads as

∂ρ

∂t
= ∂ρ

∂P

∂P

∂t
+ ∂ρ

∂T

∂T

∂t
= ψ

∂P

∂t
+ ∂ρ

∂T

∂T

∂t
, (31)

where the first term already exists in the compressible pressure equation, Eq. 30 and
the second term accounts for arbitrary polytrophic compression/expansion. Since the
second term in Eq. 31 is implicit in T , it cannot reasonably be made implicit in the
new pressure equation.

The original derivation, Eq. 30, neglects the term containing δT/δt , implying that
the compression or expansion process is isothermal, which may involve a substantial
amount of heat exchange. In most cases, a rapid change in pressure indicates a poor
pressure field guess in the momentum predictor and is mostly numerical in nature.
The actual form of heat exchange is governed by the energy equation, rather than the
pressure (correction)—which is, in turn, associated with numerical instability.

Based on this argument, it can be assumed that the nature of compression/
expansion described in Eq. 31 should be isentropic, i.e. the change in pressure re-
quired to ensure that the velocity field produced by the predictor should not require
substantial heat exchange.

Therefore, isentropic compression/expansion is prescribed between Po and Pn

in the rate-of-change term
∂ρ

∂t
= ψo

s

Pn − Po

ΔT
, (32)

where ψs is the isentropic compression/expansion coefficient

ψs = 1

γ RT
(33)

and γ = Cp

Cv
.

Linearisation of the implicit convection term follows from Eq. 23. Using

ρn = ρo + ψs(P
n − Po), (34)
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the convection term can be rewritten as follows:

∇•
[
ρ(auP)−1H(u)

] = ∇•
[
(ρo − ψs P

o)(auP)−1H(u)
] + ∇•

[
ψs(a

u
P)−1H(u)Pn

]
,

(35)

where the first term on the right-hand side of Eq. 35 is explicit and the second one is
implicit.

The new form of the compressible pressure equation, accounting for the isentropic
compression/expansion and new linearisation of the convection term reads as

∂(ψs P)

∂t
+ ∇•

[
ψs(a

u
P)−1H(u)Pn

]
+ ∇•

[
(ρo − ψs P

o)(auP)−1H(u)
]

− ∇•
[
ρo (auP)−1∇P

]
= 0.

(36)

Unlike Eqs. 30 and 36 correctly reduces to its incompressible form forψs = 0, which
was the objective of rederivation.

Assembly of the pressure-based block-coupled compressible flow solver follows
the procedure already presented in Sect. 2.1, Eq. 14, with two changes:

• The incompressible pressure equation is replaced with its reformulated compress-
ible form, Eq. 36;

• The ∇•u block in Eq. 14 is replaced by ∇•(ρoun) and made implicit in u in the
off-diagonal.

The final form of the steady compressible block-coupled system reads as

[ [Au] [∇(.)]
[∇•(ρo .)] ∇•

[
(ψs(auP)−1H(u))(.)

] − [∇•(ρoD−1
u ∇(.))]

] [
u
P

]
=

[
0

∇•
[
ψs Po(auP)−1H(u)

] − ∇•[D−1
u ∇(Po)]

]
,

(37)

where the overline indicates face interpolation of the cell-centre pressure gradient,
in line with the Rhie–Chow procedure.

3 Validation and Benchmarking

In this section, validation of the incompressible and compressible coupled pressure–
velocity solver is presented. The incompressible solver is benchmarked versus its
segregated counterpart based on the SIMPLE algorithm.
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Fig. 1 Mach number contours from the literature for transonic flow [6]

Fig. 2 Calculated Mach number contours for transonic flow

3.1 Validation of the Compressible Coupled Solver

The compressible coupled formulation was validated for flow over a circular arc
bump, which is described in [6]. The viscosity was set to zero with slip boundary
conditions on the upper and lower wall. For the transonic case, a uniform inlet
Mach number was prescribed (Ma = 0.68). Isentropic boundary conditions of total
temperature and total pressure were set at the inlet and static values at the outlet.
The height-to-chord ratio of the circular arc is 10% for the transonic case. Figures1
and 2, respectively, show theMach number contours from the literature and obtained
from simulation. One shock is visible on the lower wall. A comparison between
Mach number values on the lower and upper walls from simulation and literature
are shown in Fig. 3. Two mesh densities were tested, 80,000 control volumes and a
denser mesh consisting of 100,000 control volumes.

The supersonic case was set with a uniform inlet Mach number, Ma = 1.65. The
height-to-chord ratio of the circular arc is 4%. Figures4 and 5, respectively, show the
Mach number contours from the literature and obtained from the simulation. Two
shocks can be observed on the lower wall: one as the flow reaches the bump and one
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Fig. 3 Comparison of Mach number values on the upper and lower wall for transonic flow

Fig. 4 Mach number contours from the literature for supersonic flow [6]

at the end of the bump. The first shock reflects from the upper wall and crosses the
other shock wave. A comparison between the Mach numbers on the upper and lower
walls with data from the literature is shown in Fig. 6. The results are shown for two
mesh densities: 87,000 control volumes and 200,000 control volumes.

In both the transonic and supersonic cases, the Mach number contours agree well
with data from the literature. However, some improvements can be observed with
mesh refinement in the transonic flow case: the shock becomes more asymmetri-
cal with the increase in mesh density, and it becomes more similar to Fig. 1. This
can also be observed in Fig. 3. It was concluded that further mesh refinement and



260 T. Uroić et al.

Fig. 5 Calculated Mach number contours for supersonic flow

0 0.5 1 1.5 2 2.5 3
Position [m]

1

1.2

1.4

1.6

1.8

2

M
ac

h 
nu

m
be

r

Lower wall - lit
Upper wall - lit
Lower wall - 87k CV
Upper wall - 87k CV
Lower wall - 200k CV
Upper wall - 200k CV

Fig. 6 Comparison of Mach number values on the upper and lower wall for supersonic flow

higher order accurate convection schemes would help in resolving the shock posi-
tion and steepness. This was confirmed with the supersonic flow case Fig. 6. Mach
number oscillations can be observed on the coarser mesh, and the oscillations were
reducedwithmesh refinement in combinationwith second-order accurate convection
schemes, which contributed to the shock being captured more sharply.
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3.2 Validation and Benchmarking of the Incompressible
Coupled Solver

The incompressible coupled formulation has been validated for two test cases from
the automotive industry.New regulations,whichwere recently introduced in Formula
1 [1], limit the testing inwind tunnels, aswell asCPU time spent forCFD simulations.
The coupled formulation can minimise the CPU time while preserving the stability
and robustness of the solver, which makes it attractive to such industries. The cases
selected for validation represent the most important components of a Formula 1
racing car—the diffuser that generates the negative lift (downforce), and a rotating
wheel in contact with the ground that has massive effects on the overall aerodynamic
design of the car.

The first case is a bluff body equipped with an upswept aft section, which operates
in close proximity to the ground, [17]. The upswept surface of the body and the ground
form an expansion/diffuser. This is used to increase the negative lift (downforce).
The distance from the ground (ride height) is equal to 40 mm and the free stream
velocity is 20 m/s. The half-width of the diffuser is d = 157 mm, length l = 1315
mm, height h = 326 mm and the diffuser angle is 17◦.

Two mesh densities were tested, an unstructured mesh with 2.3 million cells and
one with 9.5 million cells. Turbulence was calculated in a segregated manner, using
the k-ω SST model [12] with wall functions. Turbulence intensity at the inlet was set
to 2% and values of the turbulence kinetic energy and dissipation were calculated
with a turbulent viscosity ratio equal to 10.

The lift coefficient obtained from experiments is equal to −1.90, while the drag
coefficient varies depending on the source, from 0.49 [17] to 0.53 [16]. A comparison
of the force coefficients obtained from the simulation is shown in Table 1.

A comparison of the pressure coefficient corresponding to four measurement
planes on the upswept surface is shown in Fig. 7. The locations of the measurement
planes are nondimensional, calculated as x/d, where x is the distance from the tip of
the bluff body in the x-direction (lengthwise) and d the half-width of the diffuser. The
results from the coarsemesh better coincide with experimental data. It was found that
y+ values on the upswept surface influence the values of the pressure coefficient.
The best agreement was obtained for larger y+ values, ranging from 12 to 30.

Table 1 Comparison of the force coefficients for the bluff body case

ID Cd Rel. error (%) Cl Rel. error (%)

Experiment [17] 0.49 – –1.90 –

Simulation
(2.3 m CV)

0.52 +6.1 −1.89 +0.5

Simulation
(9.5 m CV)

0.47 −4.1 −1.88 +1.1
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-1 -0.5 0 0.5 1
y/d

-2.5

-2

-1.5

-1

-0.5

0
C

p

5.44 - exp

5.91 - exp

6.83 - exp

7.76 - exp

5.44 - 2.3m CV
5.91 - 2.3m CV
6.83 - 2.3m CV
7.76 - 2.3m CV
5.41 - 9m CV
5.91 - 9m CV
6.83 - 9m CV
7.76 - 9m CV

Fig. 7 Pressure coefficient distribution on the correspondingmeasurement planes of the bluff body:
x/d = 5.44, x/d = 5.91, x/d = 6.83, x/d = 7.76

The second case is a rotating wheel in contact with the ground. The diameter
of the wheel is d = 314 mm, width w = 173 mm and the camber angle is 2.4◦.
The computational mesh is block-structured with 11.7 million cells. The freestream
velocity is 30 m/s and the rotation of the wheel is modelled using the Multiple
Reference Frames (MRF) approach [9].

The experimental value of the drag coefficient is 0.598 [5], while the calculated
drag coefficient is equal to 0.60 (+0.3% relative error). Flow characteristics were
compared to descriptions found in the literature [5]:

(The near wake of the tire) is dominated by two large counterrotating vortices. Looking from
the back of the wind tunnel, the left vortex is larger and more persistent than the right vortex,
and this is due to the combined effect of the wheel camber angle and strut.
...
(There is) a region of strong downward velocity between the vortex cores in the centerplane
of the tire.

These flow features can be observed in the results of the simulation Figs. 8 and 9.
For all cases, an algebraic multigrid [18] linear solver was used for the coupled

variables. The solver converges in fewer iterations than its segregated counterpart
Fig. 11. The coupled solver allows higher underrelaxation factors for velocity and
no underrelaxation for pressure, as the connection between velocity and pressure is
linear. The coupled solver converges in fewer iterations, but each iteration is more
computationally expensive than the segregated solver, which results in similar CPU
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Fig. 8 Streamlines illustrating the flow around a rotating wheel: two counterrotating vortices and
a strong downward velocity between the vortex cores

Fig. 9 Slice behind the wheel showing the turbulent kinetic energy of the two vortices. Looking
from the back, the left vortex is stronger
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Fig. 10 Centrifugal pump: pressure distribution on the rotor and flow direction

times for larger cases. It was also noticed that the algebraic multigrid solver improves
the convergence of the coupled solver, but is slower per iteration compared to Krylov
subspace solvers (BiCGStab).

The incompressible coupled solver was extended for turbomachinery applications
by adding the Generalised Grid Interface (GGI) boundary condition [2], and MRF
zones [9]. The MRF approach is used to simulate a fixed position of the rotor, which
is computationally less demanding than the transient simulation with the moving
rotor mesh. The model was used for the simulation of a centrifugal pump. In Fig. 10,
components of the pump can be seen: inlet pipe, spiral channel, diagonal rotor (inlet
is axial, outlet is radial with an axial component) with seven blades and outlet pipe.
The outer diameter of the rotor is 300 mm, blade height is 86 mm and the operating
speed is 1300 rpm. GGI interface was used for communication between the rotor
and stator because the meshes for these components were made separately.

The results of the steady-state simulation were compared to results of the tran-
sient simulation [7]: the relative error calculated for the pump head equals 5.6%,
for efficiency η 1.41%, and for power 7.2%. Figure11 shows the comparison of
convergence: the coupled solver converges in 400 iterations, while the segregated
solver solution still oscillates after 1000 iterations. The convergence of the pump
head value is shown in Fig. 12: the behaviour demonstrates the instability of the
pressure equation solution of the segregated solver and the stable convergence of the
coupled solver (Table2).
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Fig. 11 Convergence of the centrifugal pump case. The solid line corresponds to the coupled solver,
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Table 2 Centrifugal pump simulation data

Mesh Cell count

Hybrid: block-structured rotor,
unstructured stator

9,054,517

Coupled solver Segregated solver

Underrelax Iterations Underrelax Iterations

p → 1 400 p → 0.3 >1000

u → 0.8 u → 0.7

4 Conclusion

An implicitly coupled formulation of the pressure–velocity system for incompress-
ible and compressible flow is presented. A new formulation of the compressible
pressure-based solver is proposed by assuming an isentropic compression/expansion,
resulting in consistent reduction of the compressible form to the incompressible form.

The compressible formulation of the implicitly coupled solver was validated for
two test cases and compared to results from the literature. The results of the sim-
ulations coincided well with available data, but mesh refinement and higher order
accurate numerical schemes have a significant impact on the position and steepness
of shock waves.

The incompressible formulation was validated for two industrial test cases and
showed good agreement with experimental data. Furthermore, the solver was bench-
marked against a segregated formulation. The results have shown that the coupled
solver converges in fewer iterations, but at a higher computational cost per iteration.
The most notable improvement can be observed in the convergence and stability of
the pressure equation. It was noticed that multigrid algorithms contribute to faster
convergence and stability of the coupled algorithm.

The bottleneck of the coupled algorithm is the memory requirements for solving
all equations simultaneously and, in some cases, the properties of the matrix, which
require special preconditioning techniques.
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Improving the Numerical Stability
of Steady-State Differential Viscoelastic
Flow Solvers in OpenFOAM®

Célio Fernandes, Manoel S. B. Araujo, Luís L. Ferrás and J. Miguel Nóbrega

Abstract This work reports the developments made in improving the numerical
stability of the viscoelastic solvers available in the open-source finite volume com-
putational library OpenFOAM®. For this purpose, we modify the usual both-side
diffusion (BSD) technique, using a new approach to discretize the explicit diffusion
operator. Calculations performed with the new solver, for two benchmark 2D case
studies of an upper-convected Maxwell (UCM) fluid, are presented and compared
with literature results, namely the 4:1 planar contraction flow and the flow around a
confined cylinder. In the 4:1 planar contraction flow, the corner vortex size predic-
tions agree well with the literature, and a relative error below 5.3% is obtained for
De ≤ 5. In the flow around a confined cylinder, the predictions of the drag coefficient
on the cylinder are similar to reference data, with a relative error below 0.16% for
De ≤ 0.9.

1 Introduction

Viscoelastic fluids are present in many engineering applications, namely in the form
of polymer solutions, gels, surfactants, emulsions, or colloidal solutions. To describe
the rheological behavior of the material as a relation between the stress and defor-
mation history, suitable constitutive equations must be used. These equations are
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usually of differential or integral form, and can be employed in numerical codes to
describe the flow of viscoelastic fluids.

The use of computational fluid dynamics (CFD) has increased significantly over
the recent decades, mainly due to the development of better and faster computers
that allow for the use of more realistic models, and due to the development of more
accurate and efficient numerical methods. One of the more widely used approaches
is the finite volumemethod (FVM), which can be advantageous in terms of computer
memory and time requirements [1], as well as in terms of numerical stability. The
use of simple constitutive equations, such as the upper-convected Maxwell (UCM)
andOldroyd-Bmodels [2] or theWhite–Metzner [3] model, is very challenging from
the numerical point of view. Some characteristic difficulties found when using these
models are associated with stress singularities near sharp corners or at stagnation
points. Hence, these constitutive models are widely employed to test the accuracy
and robustness of new numerical methods for viscoelastic fluid flows. In regard to
that which concerns to the development of viscoelastic solvers in the OpenFOAM®

computational library, [4] implemented several viscoelastic differentialmodels, using
the discrete elastic-viscous stress-splitting formulation. The major drawback of the
numerical algorithm implemented by [4] is that it is prone to developing numerical
instabilities,when there is no solvent viscosity, as it happens in theUCMmodel.More
recently, [5] presented a new formulation for the discretization of the divergence of the
viscoelastic stress that allows for a semi-implicit handling of the constitutive equation
and improves the coupling between the velocity and stress fields. The verification
was done using planar and square–square contraction flows of a simplified Phan–
Thien–Tanner (SPTT) fluid.

In this work, we propose a simple methodology for improving the stability of the
viscoelasticFluidFoam solver available in OpenFOAM®, aiming to increase the
numerical stability when dealing with complex fluid flows, as is the case with the
UCMmodel. In the context of the FVM approach, the newly developedmethodology
uses a special second-order discretization operator for the explicit term added by the
both-side diffusion technique, in contrast to the usual Laplacian operator. To verify
the developed code, the results are compared with the benchmark problems of the
flow in a 4:1 planar sudden contraction and the flow around a confined cylinder.

The remaining sections of this chapter are organized as follows: Sect. 2 presents
the governing equations to be solved and the numerical procedure adopted. In Sect. 3,
the results obtained with the newly developed numerical code for the two benchmark
case studies are presented, discussed, and compared with results from the literature.
The chapter ends with the main conclusions.

2 Governing Equations and Numerical Procedure

This study concerns the incompressible flow of a viscoelastic fluid, following the
UCM model, and hence the governing equations that have to be solved are those of
conservation of mass,
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∇ · u = 0, (1)

and of momentum,

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇ p + ∇ · τP , (2)

together with an appropriate constitutive equation for the polymeric extra stress
tensor τP . In the previous equations, u is the velocity vector, ρ the fluid density, t
the time, and p the pressure. In the current study, the polymeric extra stress tensor
τP is computed using the UCM differential model as

τP + λ

(
∂τP

∂t
+ ∇ · (uτP)

)
= ηP

(∇u + (∇u)T
)

+ λ
(
(∇u)T · τP + τP · ∇u

)
, (3)

where λ is the fluid relaxation time and ηP the polymer viscosity. Notice that, the
UCM model simplifies to the Newtonian fluid model when λ = 0.

In order to increase the stability of the numerical method, namely to avoid the
decoupling between velocity and extra stress tensor fields, an improved both-side
diffusion technique (BSD) was newly implemented in the OpenFOAM® compu-
tational library. Inspired by the work of [6] for the finite element method (FEM),
an additional diffusive term proportional to ηP is introduced on both sides of the
momentum equation, Eq. (2), to obtain

∂(ρu)

∂t
+ ∇ · (ρuu) − ηP∇2u = −∇ p + ∇ · τP − ηP∇ · (∇u) , (4)

in which the terms on the left-hand side are discretized implicitly (incorporated
into the coefficients of the algebraic equations) and those on the right-hand side are
discretized explicitly (incorporated into the source term of the algebraic equations).
The improvement of our BSD technique is the special second-order discretization
applied to the explicit diffusion operator, ∇ · (∇u), added by the BSD technique on
the right-hand side of Eq. (4), instead of the usual Laplacian, ∇2u, discretization.

For illustration purposes, Fig. 1 shows the solution of an UCM fluid in a 4:1
contraction flow, obtained before and after the code modifications. As can be easily
concluded from those results, the new treatment of the explicit diffusion term, assured
the coupling between stress and velocity fields and consequently, the prediction’s
accuracy.

The finite volume method was used to solve the governing equations. Hence, the
governing equations are integrated in space over control volumes (cells) forming
the computational mesh, and in time over a time step �t , so that sets of linearized
algebraic equations are obtained. The linear sets of equations are solved initially for
velocity and pressure fields, and subsequently for the extra stress tensor. The SIMPLE
algorithm [7] is used to obtain a velocity field satisfying the continuity equation. To
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(a) (b)

Fig. 1 Normalized velocity and stress profiles obtained for the 4:1 contraction flow of an UCM
fluid with the a original and b developed formulations. H2 and U2 are the downstream channel
height and average velocity, respectively

discretize the convective fluxes, the method uses the MINMOD and SMART high-
resolution schemes, as in the works of [8, 9]. For the time-step discretization, the
implicit first-order Euler method was used, since only steady-state solutions are of
interest for the case studies addressed in thiswork.Notice that, the transient term used
in themomentumequation is only retained for timemarchingpurposes, but it vanishes
when steady-state conditions are achieved. The Poisson-type equation for pressure
is solved with a conjugate gradient method with a Cholesky preconditioner and the
velocity and stress linear systems are solved using BiCGstab with an incomplete
lower-upper (ILU) preconditioning [10–12]. The absolute tolerance for pressure,
velocity and stress fields was set as 10−20. Under-relaxation is applied with a value
of 0.3 for pressure and stress and 0.7 for velocity.

3 Case Studies

3.1 Flow in a 4:1 Planar Sudden Contraction

Aplanar sudden contraction with contraction ratio H1/H2 of 4:1 (upstream thickness
of 2H1 = 4 cm and downstream thickness of 2H2 = 1 cm) was chosen as the first
test geometry (Fig. 2), because of the availability of benchmark numerical data in the
literature [8]. The flow is assumed to have a plane of symmetry along the centerline
(y = 0), and, thus, only half of the domain is considered for modeling purposes.
The figure shows the five structured blocks used to generate the five consecutively
refined meshes, which will be considered in the mesh refinement study that follows.
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B2

B3

B4 B5

Re-entrant corner

Fig. 2 Schematic representation of the 4:1 planar contraction: geometry and blocks used to generate
the mesh

Table 1 Characteristics of the five meshes used for the mesh convergence analysis in the 4:1 planar
sudden contraction flow

Block Mesh 1 Mesh 5

NX × NY fx fy NX × NY fx fy

Block I 24 × 10 0.8210 0.8475 376 × 160 0.9877 0.9897

Block II 24 × 13 0.8210 1.2091 376 × 200 0.9877 1.0119

Block III 24 × 5 0.8210 0.7384 376 × 68 0.9877 0.9812

Block IV 20 × 10 1.2179 0.8475 320 × 160 1.0124 0.9897

Block V 7 × 10 1.3782 0.8475 100 × 160 1.0202 0.9897

NC 942 228,128

δxmin =
δymin

0.04H2 0.0025H2

NX and NY are the number of cells along the x and y directions, respectively, for each block
fx and fy are the expansion/contraction ratios for each block
NC is the number of cells for each mesh
δxmin and δymin are the minimum cell size in each direction

The characteristics of the coarsest and finest hexahedral meshes used are presented
in Table 1. The expansion or contraction geometrical factors are defined for each
direction as the ratio of the lengths of two consecutive cells ( fx = δxi+1/δxi with δxi
being the length of the cell i in the x-direction). With this procedure, the minimum
normalized cell size at the corner was δxmin/H2 = δymin/H2 = 0.0025 for the finest
mesh, Mesh 5. For each mesh refinement, the number of cells along each direction
(NX and NY) was doubled, and the corresponding expansion/contraction ratios ( fx
and fy) inside each subblock were root-squared.

The Reynolds and Deborah numbers are defined on the basis of downstream
channel quantities

Re = ρU2H2

ηP
, (5)
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De = λU2

H2
, (6)

and Re was fixed at 0.01 (representative of creeping flow) while De was varied. The
downstream velocity U2 was fixed as 50 cm/s, the fluid density ρ as 100 kg/m3, and
the polymer viscosity ηP as 0.25 Pa.s. The Deborah number was varied by changing
the parameter λ.

The boundary conditions employed in this case study are as follows. At the inlet
boundary, the streamwise velocity and stress components were set as equal to fully
developed profiles, and a zero gradient was imposed for pressure. At the outlet
boundary, zero gradients are assumed for the velocity and stress components and
the pressure value was set to zero. Across the symmetry plane, the convective and
diffusive fluxes are forced to vanish for all variables. At the walls’ boundary, the
usual zero no-slip condition was applied to the velocity field, the zero gradient for
the pressure and the extra-stress tensor components were linearly extrapolated to the
wall face.

The quantitative comparison of the size of the corner vortex is made bymeasuring
its dimensionless length XR = xR/H2 (see Fig. 2). The mesh refinement technique
allowed us to applyRichardson’s extrapolation for the XR value, using the three finest
meshes. Table 2 compares the results obtained with the developed code and the ones
provided by [8]. The XR results in the most refined mesh (Mesh 5), obtained with the
developed code, have a difference below 5.3% when compared to the extrapolated

Table 2 Dimensionless length of primary vortex (XR) as a function of the Deborah number and
the mesh for UCM fluid. Comparison between the developed code and the results from [8]
Developed code

De Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Extrapolated Difference
(%)a

0 1.436 1.475 1.477 1.479 1.479 1.479 0.0003

1 1.374 1.378 1.349 1.330 1.321 1.314 0.6

2 1.301 1.285 1.176 1.113 1.083 1.056 2.5

3 1.305 1.290 1.054 0.928 0.881 0.854 3.2

4 1.402 1.396 1.014 0.803 0.735 0.702 4.7

5 1.530 1.524 1.037 0.709 0.622 0.591 5.3

[8]

De Mesh 1 Mesh 2 Mesh 3 Mesh 4 Extrapolated Difference (%)b

0 1.472 1.488 1.494 1.495 1.496 0.1

1 1.349 1.371 1.349 1.339 1.335 0.3

2 1.631 1.259 1.154 1.118 1.105 1.2

3 1.517 1.266 1.014 0.946 0.923 2.5

4 1.644 1.337 0.987 c 0.87 13.4

5 1.687 1.517 1.127 c 0.997 13
aCalculated between Mesh 5 and the extrapolated values
bCalculated between Mesh 4 (or 3) and the extrapolated values
cConvergence criterion not attained (solution oscillates)
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value for all De numbers tested. In general, the developed code predictions are
aligned with the literature results, but it is worth noting that, for larger De, we were
able to clearly improve the accuracy of the results available in the literature.

Figure 3 shows the detailed first normal stress difference behavior and pressure
profiles at normalized y/H2 locations progressively closer to the wall (normalized
distances of 0.9875, 0.9925, and 0.9975), obtained in Mesh 5 for De = 0, De = 3,
and De = 5. In accordance with [8], the peaks in stress and pressure increase and
become narrower as we approach the singular point.

3.2 Flow Around a Confined Cylinder

The second case study refers to the plane flow past a circular cylinder placed at the
centerline of a channel (see Fig. 4). The blockage ratio in this study, defined as the
ratio of cylinder radius R to channel half height h, is β = 0.5.

The computational domain extends from x = −20R, where a streamwise uniform
velocityU is imposed for the Newtonian computations (λ = 0) and a fully developed
profile is imposed for theUCMcase, and leaves at x = 60R. In this study, the cylinder
radius is fixed as R = 1 m and the uniform velocityU = 1 m/s. Similarly to the first
case study, here, the flow is assumed to have a plane of symmetry at y = 0, and thus
only half of the domain is considered in the numerical studies. Three meshes, with
different degrees of refinement, were used for mesh convergence analysis, and are
presented in Table 3. The numbers in the mesh names indicate the number of radial
cells between the cylinder surface and the channel wall.

In this case study, the Reynolds and Deborah numbers are defined on the basis of
the inlet bulk velocity, U , and the cylinder radius, R:

Re = ρUR

ηP
, (7)

De = λU

R
, (8)

and Re was fixed at 0.01 (representative of creeping flow) while De was varied.
The inlet bulk velocity was kept constant and equal to 1 m/s, the fluid density ρ

as 100 kg/m3, and the polymer viscosity ηP as 10000 Pa.s. The Deborah number
was varied by changing the value of the relaxation time, λ. The boundary conditions
employed for this case study are of the same type as those used in the 4:1 planar
sudden contraction case study.

The results that are shown in this section are based on the dimensionless drag
coefficient CD , resulting from surface integration of the stress and pressure fields
around the cylinder
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(a) (b)

Fig. 3 Longitudinal distributions of a pressure and b first normal stress difference in the vicinity of
the downstreamwall and corner, obtained inMesh 5 for De = 0 (top), De = 3 (middle) and De = 5
(bottom). The first normal stress difference is normalized with τw = 3ηPU2/H2 (for Newtonian
fluid flows, ηP is substituted by the Newtonian dynamic viscosity μ)

h=
2RB1 B2

B3 B4 B5 B6

B7
y

x

B8

x/R = -20

Fig. 4 Schematic representation of the flow past a circular cylinder: geometry and blocks used to
generate the mesh
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Table 3 Characteristics of the three meshes used for mesh convergence analysis in the flow around
a confined cylinder case study

Block M30 M60 M120

NS × NR fr NS × NR fr NS × NR fr

Block I 25 × 24 1.1029 50 × 48 1.0502 100 × 96 1.0248

Block II 25 × 30 1.1075 50 × 60 1.0524 100 × 120 1.0259

Block III 13 × 30 1.1075 25 × 60 1.0524 50 × 120 1.0259

Block IV 13 × 30 1.1075 25 × 60 1.0524 50 × 120 1.0259

Block V 13 × 30 1.1075 25 × 60 1.0524 50 × 120 1.0259

Block VI 13 × 30 1.1075 25 × 60 1.0524 50 × 120 1.0259

Block VII 25 × 30 1.1075 50 × 60 1.0524 100 × 120 1.0259

Block VIII 25 × 30 1.1323 50 × 60 1.0641 100 × 120 1.0316

NCV 4, 410 17,400 69, 600

(NS)tot 102 200 400

(�r/R)min 0.00963 0.00481 0.00238

(�s/R)min 0.0302 0.0157 0.00785

NS, NR: number of cells in the tangential and radial directions
NCV: total number of control volumes
(NS)tot: number of tangential cells around the half cylinder
fr is the expansion/contraction ratio inside each block in the radial direction. For the tangential
direction, the mesh is uniform
�r and �s are the minimum cell size around the cylinder surface in the radial and tangential
directions, respectively

CD = 1

ηPU L

∫
S
(τP − pI) · n · idS, (9)

where I is the unitary tensor, n the unit normal vector to the cylinder surface S, i is
the unit vector in the x−direction, and L is the depth of the cylinder in the neutral
direction. A unitary depth was used in the neutral direction.

The CD values predicted by the developed solver are listed in Table 4, and some
data from the literature are given for comparison purposes. Accurate results were
obtained with the developed code, as the most refined mesh (M120) produced a CD

value with a difference less than or equal to 0.16% from the extrapolated values for
all De numbers.

Normal stress profiles around the cylinder and along the centerline are shown in
Fig. 5. It can be seen that twomaximums occur, the first one within the thin boundary
layer over the cylinder surface and the second in the wake, after the rear stagnation
point.

Finally, Fig. 6 shows the pressure variation around the cylinder wall and centerline
for different De numbers. As shown, the pressure on the cylinder’s rear surface
increases smoothly with De, due to the shifted flow pattern. In the rear stagnation
point region, for low De numbers, the pressure level increases steadily with De. For
a De number between 0.3 and 0.6, the behavior of the pressure distribution reverses,
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Table 4 Drag coefficient (CD) as a function of the Deborah number and the mesh for the UCM
fluid. Comparison between the developed code and the results from [9]

Developed code

De M30 M60 M120 Extrapolated Difference
(%)a

0 131.998 132.397 132.484 132.508 0.02

0.3 109.519 109.005 108.900 108.873 0.03

0.6 94.027 92.962 92.703 92.620 0.09

0.9 89.206 88.128 87.802 87.661 0.16

[9]

De M30 M60 M120 Extrapolated Difference
(%)a

0 132.23 132.342 132.369 132.378 0.01

0.3 – 108.515 108.614 108.647 0.03

0.6 – 92.277 92.298 92.305 0.01

0.9 – 87.395 87.218 87.16 0.07
aCalculated between M120 and extrapolated values

Fig. 5 Profiles of longitudinal normal stress τxx along the cylinder wall and wake centerline for
the UCM fluid at increasing De (mesh M120)

and ultimately, a highly negative peak occurs for De equal to 0.9. As can be seen in
Figs. 5 and 6, some oscillations in the profiles are present, but they can be removed
if finer meshes are used.



Improving the Numerical Stability of Steady-State Differential … 279

Fig. 6 Profiles of pressure around the cylinder surface and along the wake centerline for UCM
fluid at increasing De

4 Conclusions

This work presents a general finite volume methodology (FVM) for the computation
of the flow of viscoelastic fluids described by differential-type constitutive equations.
The approach was implemented with the open-source computational fluid dynamics
library OpenFOAM®. The proposed methodology consists of an improvement of
the both-side diffusion (BSD) techniquewidely used in FVM,which comprisesmod-
ification of the discretization of the explicit diffusion term. The developed approach
can be applied to orthogonal or non-orthogonal meshes and was found to accurately
predict steady-state solutions of the upper-convected Maxwell (UCM) fluid, which
is known to be challenging from a numerical point of view.

The code was verified with two widely used benchmark case studies: the 4:1
planar sudden contraction flow and flow around a confined cylinder. In both cases,
the simulationswere performed at Re = 0.01, representing creeping flow conditions.
For the former case, the Deborah number varied from 0 to 5, and for the latter, it
was varied from 0 to 0.9. The results obtained in both test cases were accurately
predicted, in the sense that the vortex length size and drag coefficient have less than
5.3% and 0.12% of differences, respectively, when compared with the finest mesh
result and the extrapolated value.

In summary, the results obtained show that the newly improved viscoelastic solver
using an open-source code can accurately predict the flow patterns of the UCM fluid
in the two benchmark problems tested.
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IsoAdvector: Geometric VOF
on General Meshes

Johan Roenby, Henrik Bredmose and Hrvoje Jasak

Abstract In a recent publication, we presented a novel geometric VOF interface
advection algorithm, denoted isoAdvector (Roenby et al. in RSocOpen Sci 3:160405
2016, [1]). The OpenFOAM® implementation of the method was publicly released
to allow for more accurate and efficient two-phase flow simulations in OpenFOAM®

(Roenby in isoAdvector www.github.com/isoadvector, [2]). In the present paper, we
give a brief outline of the isoAdvector method and test it with two pure advection
cases. We show how to modify interFoam so as to use isoAdvector as an alternative
to the currently implemented MULES limited interface compression method. The
properties of the new solver are tested with two simple interfacial flow cases, namely
the damBreak case and a steady stream function wave. We find that the new solver is
superior at keeping the interface sharp, but also that the sharper interface exacerbates
the well-known spurious velocities in the air phase close to an air–water interface.
To fully benefit from the accuracy of isoAdvector, there is a need to modify the
pressure–velocity coupling algorithm of interFoam, so it more consistently takes
into account the jump in fluid density at the interface. In our future research, we aim
to solve this problem by exploiting the subcell information provided by isoAdvector.
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1 The Interfacial Flow Equations

Westart bywriting the equations ofmotion governing the flowof two incompressible,
immiscible fluids. To keep things simple, we will ignore viscous effects and surface
tension. What remains are the passive advection equation,

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

the incompressibility equation,
∇ · u = 0, (2)

and the Euler equations,

∂ρu
∂t

+ ∇ · (ρuu) = −∇ p + ρg. (3)

Here,ρ is the fluid density field taking the constant value,ρ1, in the reference fluid and
the constant value, ρ2, in the other fluid, u is the velocity field, p is the fluid pressure
and g is the constant downward pointing gravity vector. In the interFoam solver
of OpenFOAM®, these equations are discretized in the finite volume framework
and advanced in time in a segregated manner. Within a time step, Eq. 1 is used to
update the density field in time, followed by a procedure for solving Eqs. 2 and 3 to
update the pressure and velocity field in time. The details of the implementation are
well-described in the paper [3], which also gives an overview of the challenge faced
by the interfacial CFD community in keeping the density field sharp and bounded,
with spurious velocities at the interface, and with handling of large density ratios.
The development of the isoAdvector interface advection method is a first step in our
efforts to solve these problems and increase the general performance and accuracy of
interfacial flow simulations. In the following,wewill briefly explain how isoAdvector
works.

2 IsoAdvector for Interface Advection

The basic equation that we will solve is Eq. 1, recast in the volume-of-fluid for-
mulation. For this recasting, we need a number of definitions: First, we divide the
computational domain into cells, C1,C2, . . ., and define the notation for the cell-
averaged value of a field, f (x, t), at time t ,

〈 f 〉i (t) ≡ 1

Vi

∫
C i

f (x, t)dV, (4)
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where Vi is the volume of cell i . Defining the indicator field

H(x, t) ≡ ρ(x, t) − ρ2

ρ1 − ρ2
, (5)

the volume fraction (of fluid 1) in cell i is then defined as

αi (t) ≡ 〈H〉i . (6)

We will denote the mesh faces, F1,F2, . . ., and the list of labels of faces on the
boundary of cell i will be denoted Bi . On the time axis, the times, t1 < t2 < · · ·
define the time intervals (or steps), [tn, tn+1], over which the governing equations are
integrated. We will use superscripts to denote a function evaluated at one of these
times, f n = f (tn).

With these definitions in place, we can now rewrite Eq. 1 in terms of H and
integrate it over the volume of cell i and over the time interval

[
tn, tn+1

]
. This converts

the equation into an evolution equation for the volume fraction in cell i .Unfortunately,
space does not allow a full derivation here (the reader is referred to [1] for more
details), but the form of the equation is

αn+1
i = αn

i − 1

Vi

∑
j∈Bi

ΔV n
i j , (7)

where the quantity ΔV n
i j is the total volume of fluid 1 flowing from cell i during

the time interval [tn, tn+1] into the neighbour cell with which it shares face j . This
important quantity is defined by

ΔV n
i j ≡

∫ tn+1

tn

∫
F j

H(x, τ )u(x, τ ) · dSi j dτ. (8)

Here, dSi j is the infinitesimal surface element of face j , oriented out of cell i , so if
cell k is the other cell of face j , then dSk j = −dSi j and ΔV n

kj = −ΔV n
i j .

The art of constructing a volume-of-fluid algorithm is all about coming up with
the best possible approximation of ΔV n

i j given the incomplete available data. In
our collocated finite volume framework, the available data consists of the volume
fractions αn

i , the cell- averaged velocities, 〈u〉ni , and the volumetric face fluxes,

φn
i j ≡

∫
F j

u(x, tn) · dSi j . (9)

In the following,we showhow isoAdvector uses these data and a number of geometric
considerations to come up with an approximation for ΔV n

i j .
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2.1 Interface Reconstruction

We start by noting that most cells will normally be fully immersed in either fluid
1 or fluid 2 during the time interval, and for such a cell, the advection problem is
trivial, since there is only one fluid fluxed through all its faces. The surface cells
requiring special treatment are those containing both fluid 1 and fluid 2. We will
define a surface cell as one with ε < αn

i < 1 − ε, where we typically set ε = 10−8

in our calculations. The first step in finding αn+1
i for such cells is to reconstruct the

fluid interface inside the cell from the available data, αn
i at time tn . In the isoAdvector

method, this is done by calculating an isosurface inside the cell. For this purpose,
we need to first interpolate the volume fractions from the cell centres to the vertices.
This process is illustrated in Fig. 1. This interpolation can be done in various ways.
For convenience, we have chosen the inverse distance weighting provided by the
volPointInterpolation class.

With volume fractions interpolated to all vertices of cell i , we can choose an
isovalue, α0, and construct the α0-isosurface inside the cell. This we do by going
through all the cell’s edges and determining whether they are cut by the isosurface.
An edge is cut, if the interpolated volume fraction at one end is larger than α0 and the
value at the other end is smaller thanα0. If that is the case,we calculate the intersection
point along the edge by linear interpolation. Connecting these intersection points
across the cell faces, we construct the cell–isosurface intersection, as illustrated in
Fig. 2. The representation of this intersection will be called an isoface, because it is
really just an internal face cutting the cell into two subcells. We can calculate the
face centre, xS , and face unit normal vector, n̂S , for this isoface as for any other mesh
face (black dot and vector in Fig. 2).

Ifwe imagine sweeping the isovalue,α0, from the lowest to thehighest cell vertexα

value, the isoface will pass through the cell.Which isovalue in this interval should we
choose for a particular surface cell? Our answer is the isovalue that makes the isoface

Fig. 1 Interpolation of
volume fraction to a vertex
from all surrounding cells
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Fig. 2 Construction of the
isoface inside a surface cell

cut the cell into subcells of subvolumes in accordance with the cell’s volume fraction,
αn
i . To find this isovalue (different in each surface cell), we have implemented an

efficient root-finding algorithm that exploits the fact that the volume fraction is a
piecewise cubic polynomial in α0. The details of this algorithm are further described
in [1]. This concludes our description of the interface reconstruction at time tn .

2.2 Interface Advection

The next step is to exploit our new knowledge about the interface position inside
surface cells at time tn to estimate how much of the total fluid volume transported
across a face during a time step, [tn, tn+1], is fluid 1 and how much is fluid 2. We will
first make the assumption that u(x, τ ) in Eq. 8 can be replaced by an appropriately
chosen constant vector ũn

j , which is representative of the velocity on the face during
the whole time interval. We also assume that we can write

dSi j = n̂i j (x)d A ≈ Si j
|Si j |d A, (10)

where n̂i j is the (for a non-planar face spatially varying) unit normal vector and Si j
is the mean normal vector of face j pointing out of cell i . Then, the volumetric face
flux can be defined as φ̃n

i j ≡ ũn
j · Si j , and ΔV n

i j in Eq. 8 can be approximated by

ΔV n
i j ≈ φ̃n

i j

|Si j |
∫ tn+1

tn

∫
F j

H(x, τ )d Adτ. (11)
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Fig. 3 Face–interface
intersection line sweeping
the face

In the current implementation, we simply use the volumetric face fluxes, φn
i j , at the

beginning of the time step for φ̃n
i j .

1 The remaining area integral in Eq. 11 is just the
area of face j that is submerged in the reference fluid. This area we will denote by

A j (τ ) ≡
∫
F j

H(x, τ )d A. (12)

If we want to be able to take time steps in which the interface moves a substantial
fraction of a cell size, we should come up with an estimate of how A j varies with
time within a time step. The topmost face of the polygonal prism cell in Fig. 2 is
reproduced in Fig. 3 with the initial face–interface intersection line at tn shown in
blue.

To estimate how this line sweeps over the face as the isoface moves in the velocity
field, we first interpolate the velocity field to the initial isoface centre, xs , shown with
a black dot in Fig. 2.We can then take the dot product of the interpolated velocitywith
the isoface unit normal, n̂S , to obtain the speed of the isoface motion perpendicular to
itself,US . For a vertex, xv, in Fig. 3, we can also estimate the perpendicular distance
to the isoface by dv = (xv − xS) · n̂S . With the calculated isoface normal speed and
vertex-to-isoface distance, we can then estimate the time of arrival at vertex xv to
be τv = dv/US . In this way, we obtain the “vertex arrival times”, τ1, τ2, . . ., shown
in Fig. 3. As illustrated, some of these will generally be outside the integration
interval, [tn, tn+1] and some will be inside. The crucial point is now, that between
two such times, say, τ2 and τ3 in Fig. 3, the face–interface intersection line sweeps a
quadrilateral. If we assume the line sweeps this quadrilateral steadily, we can come
up with an analytical expression for the way in which A j depends on τ on this sub-
interval. This expression is a quadratic polynomial in τ and its coefficients depend
only on the shape of the quadrilateral. The resulting time variation of A j (τ ) as the
line sweeps the face is illustrated in Fig. 4.

With a piecewise quadratic polynomial for A j (τ ) in Eq. 12, its time integral in
Eq. 11 is a piecewise cubic polynomial, and ΔV n

i j is finally obtained as the sum of
the contributions from these sub-intervals. We note that a face of a surface cell may
initially be fully immersed in fluid 1 or 2, and then become intersected during the time

1An idea could be to use φn−1
i j and φn

i j to obtain an estimate, φ
n+1
i j , of φn+1

i j , and then use this to

estimate φ̃n
i j ≈ 0.5(φn

i j + φ
n+1
i j ) in Eq. 11. Also, if using more than one outer corrector, the value

from the previous iteration could be used for φ
n+1
i j in a similar manner (for all but the first iteration).
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Fig. 4 Submerged face are,
A j (τ ), as a piecewise
quadratic polynomial

interval [tn, tn+1]. With the calculated vertex arrival times, this situation corresponds
to τ1 > tn (the tn line in Fig. 4 would then be further to the left), and it is treated by
fluxing pure fluid 1 or 2 through the face in the sub-interval [tn, τ1]. Similarly, if the
interface leaves the face during [tn, tn+1], we will have τ5 < tn+1 for a pentagonal
face (the tn+1 line would then be further to the right in Fig. 4), and we must flux pure
fluid 1 or 2 through the face during the last sub time interval [τ5, tn+1].

There is one final decisionwemustmake before our advection routine is complete:
for a face j , both its owner and neighbour cell may be surface cells with their isofaces
not coinciding exactly on face j due to the different isovalues used in the two cells
and not moving with exactly the same velocity due to the spatial variations in the
velocity field.Which cell should be used to calculateΔV n

i j for this face? In our current
implementation, we have chosen to let ΔV n

i j be determined by the upwind cell, i.e.,
the owner if φn

j > 0 and the neighbour if φn
j < 0.

2.3 Bounding

The test cases provided with the released isoAdvector code [2] show that the method
outlined above generally gives very good estimates of ΔV n

i j and leads to accurate
interface advection, as long as the interface is well resolved by themesh and time step
size is limited toCFL< 1. In some situations, theremay, however, arise small inaccu-
racies, which can build up over time and lead to intolerable levels of unboundedness.
To prevent the gradual build up of unboundedness, we have introduced a bounding
step that detects unboundedness and tries to adjust the ΔV n

i j ’s of unbounded cells
with a procedure that is described in detail in [1]. If this pure redistribution step fails,
the provided code also gives the option of brute-force non-volume preserving chop-
ping αn+1

i after each advection step to guarantee boundedness. Activating this will
ruin the machine precision volume conservation, but our experience so far indicates
that, in many situations, the resulting volume conservation error is very small.

In the current isoAdvector implementation, we assume that there is only a single
isoface inside a cell. There are several occasions when one would expect more iso-
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faces inside a cell. One such situation is when a planar interface passes a non-planar
mesh face with which it is close to parallel. During the passage, the face and interface
will intersect at more than two points and the face–interface intersection cannot be
represented by a single straight line. Proper treatment of such an event can be imple-
mented by on-the-fly decomposition of the non-planar face into triangular subfaces
sharing the face centre as their common apex. A face–interface intersection line can
then be calculated for each triangle separately (a triangular face can, at most, have
two intersection points with the interface).

Another situation with more than one isoface inside a cell is when two separate
volumes of fluid approach each other and collide inside a cell. Then, there will be a
time interval just before the collision during which each volume has its own separate
piece of interface within the cell. In this event, the solution could be to decompose the
whole cell into tetrahedra sharing the cell centre as their common apex and separately
reconstruct the interface in each subcell. This solution has not yet been implemented.

We have experienced that, due to these shortcomings of the current implementa-
tion, the bounding errors can be substantial, e.g., on polyhedral meshes with many
highly non-planar faces of the type obtained by generating the dual mesh of a ran-
dom tetrahedral mesh. The method still works on such meshes if switching on the
brute-force chopping described above, but one may then experience substantial loss
of volume conservation. We plan to implement the fixes described above in a future
release of the code.

3 Pure Advection Tests

In this section, we compare the performance of isoAdvector and MULES with two
standard pure advection test cases with a predefined velocity field.

3.1 Notched Disc in Solid Body Rotation

Our first test case is the notched disc in solid body rotation, which has become a
standard test case since its introduction in [4]. The domain is the unit square, the
velocity field is the solid body rotation around the point (0.5, 0.5):

u = −2π(y − 0.5), v = 2π(x − 0.5). (13)

The initial volume fraction field is 1 within the disc of radius 0.15 centred at
(0.5, 0.75), except in a slit of width 0.06 going up to y=0.85. The disc rotates around
(0.5, 0.5) and returns to its original position at time t = 1. The resulting interface
shape after such a rotation with isoAdvector andMULES is shown in Fig. 5 for three
differentmesh typeswith square, triangular and polygonal cells. All simulations have
been performed with CFL = 0.1 and 0.5, but since the isoAdvector simulations with
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Fig. 5 Notched disc advection test. Volume fraction field shown after one full rotation. 0.5-contour
shown with a black curve

Table 1 Error for the notched disc: E1 ≡ ∑
i |αi − αexact

i |Vi/ ∑
i α

exact
i Vi (sums are over all cells)

Mesh type isoAdvector CFL = 0.5 MULES CFL = 0.5 MULES CFL = 0.1

Square 0.014 0.21 0.062

Triangular 0.022 0.17 0.13

Polygonal 0.022 0.14 0.064

CFL = 0.1 and 0.5 are almost indistinguishable, we only show the latter. Tables 1
and 2 show the error compared to the exact solution and the calculation time for the
9 simulations. From the figure and Tables 1 and 2, we remark that:

• IsoAdvector with CFL = 0.5 performs better than MULES with both CFL = 0.5
and 0.1 on square, triangular and polygonal meshes.

• MULES severly distorts the shape on all mesh types with CFL = 0.5.
• On square and polygonal meshes, MULES improves dramatically when going
from CFL = 0.5 to 0.1, but not on the triangular mesh.

• isoAdvector is ∼3 times faster than MULES with CFL = 0.5.



290 J. Roenby et al.

Table 2 Calculation times in seconds for notched disc simulations on a single processor

Mesh type isoAdvector CFL = 0.5 MULES CFL = 0.5 MULES CFL = 0.1

Square 25 175 437

Triangular 232 639 1929

Polygonal 85 278 803

Table 3 E1 error (left) and calculation times (right) for a sphere in a reversed 3D shear flow on a
polyhedral mesh

CFL isoAdvector MULES

0.5 0.1 0.24

0.1 0.11 0.15

0.5 146 s 439 s

0.1 513 s 1622 s

3.2 Sphere in Shear Flow

Our second pure advection case is from [5]. The domain is the unit box and the initial
volume fraction field is 1 within the sphere of radius 0.15 centred at (0.5, 0.75, 0.25)
and 0 elsewhere. The velocity field in which the interface is advected is

u(x, t) = cos

(
2π t

T

) [
sin(2πy) sin2(πx),− sin(2πx) sin2(πy), (1 − 2r)2

]
,

(14)
where T = 6 and r = √

(x − 0.5)2 + (y − 0.5)2. In this flow, the initial spherical
interface is sheared into a thin spiralling sheet until, at t = 1.5, it has reached its
maximum deformation and flows back to its initial shape and position at time t = 3.
We run the case on a polyhedral mesh of the type generated with the pMesh tool of
cfMesh [6]. In Fig. 6, we show the results obtained with isoAdevector and MULES
using CFL = 0.5 and 0.1.

From Fig. 6 and Tables 3, we see that with this test case, isoAdvector is more ac-
curate and approximately three times faster thanMULES, but also note that MULES
does a decent job, even with CFL = 0.5. We also observe that the E1 error with
isoAdvector actually increases slightly with smaller time steps.

4 Using isoAdvector in interFoam

In interFoam, the MULES explicit solver code does not only provide the updated
volume fractions, αn+1

i , but also provides the quantity rhoPhi, which is used in the
convective term, fvm::div(rhoPhi, U), in the momentum matrix equation,
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Fig. 6 Sphere deformed in a 3D shear flow with isoAdvector and MULES for CFL = 0.5 and 0.1.
The initial sphere is shown in red. The interface shape at maximum deformation (t = 1.5) and at
the time of return to the spherical shape (t = 3) is shown in grey

UEqn. To understand the way in which we should construct rhoPhi from ΔV n
i j , let

us start by looking at the convective term in the Euler equations in Eq. 3, formally
integrated over a small time interval and over a cell:

〈ρu〉n+1
i = 〈ρu〉ni − 1

Vi

∫ tn+1

tn

∫
C i

∇ · [ρ(x, τ )u(x, τ )u(x, τ )] dVdτ + · · · (15)

We will denote this integrated convective term by Cn
i and use Gauss’s theorem to

write it as

Cn
i = 1

Vi

∑
j∈Bi

∫ tn+1

tn

∫
F j

ρ(x, τ )u(x, τ )u(x, τ ) · dSdτ. (16)

We now approximate u(x, τ ) with a constant representative velocity vector, ũn
j and

use u · dS ≈ φ̃n
i j/|S j |d A as described at the beginning of Sect. 2. This allows us to

write

Cn
i ≈ 1

Vi

∑
j∈Bi

ũn
j

φ̃n
i j

|Si j |
∫ tn+1

tn

∫
F j

ρ(x, τ )d Adτ. (17)
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Now, using the definition of H(x, t) in terms of ρ(x, t) in Eq. 5 and the definition of
the submerged face area, A j , in terms of H in Eq. 12, we can write Eq. 17 as

Cn
i ≈ 1

Vi

∑
j∈Bi

ũn
j

φ̃n
i j

|Si j |
∫ tn+1

tn

[
ρ2 + (ρ1 − ρ2)A j (τ )

]
dτ. (18)

With the definition of ΔV n
i j in Eq. 8, we can finally write the convective term as

Cn
i ≈ 1

Vi

∑
j∈Bi

ũn
j

[
ρ2φ̃

n
i jΔtn + (ρ1 − ρ2)ΔV n

i j

]
. (19)

Here, the content of the square brackets is exactly the desired expression forrhoPhi.
The specific expression for ũn

j in terms of the cell-averaged velocities is determined
by the settings in fvSchemes for the convective term.

5 The damBreak Case

For an initial investigation of the behaviour of our new interFoam solver using isoAd-
vector instead ofMULES, we run a refined version of the standard dam break tutorial
shipped with OpenFOAM®-4.0. The domain is a box of width and height 0.584 m,
with a small rectangular obstacle on the bottom and the water initially placed in a
rectangular column on the left side of the domain. The case is run with an adaptive
time step using maxAlphaCo = maxCo = 0.5 . In Fig. 7, we show snapshots of
the volume fraction field at two times. In the top panels, just after impact with the
obstacle on the floor, we clearly see how isoAdvector—in contrast to MULES—is
capable of keeping the interface sharp, even for droplets of only a few cells’ width.
In the bottom panels, the water is starting to settle, and we see how the interface
produced with isoAdvector is only one cell wide, whereas the interface produced
with MULES covers many cells. Calculation times are similar for the two runs.

This is to be thought of as a kind of “Hello World!” case for our new solver,
and caution should be taken in drawing quantitative conclusions from this setup.
In future work, we will conduct more quantitative investigations based, e.g. on the
experimental data provided in [7].

We remark that a razor-sharp interface is not always the best representation of the
physical water distribution on the given mesh. If the encounter with the obstacle in
a real physical damBreak experiment causes the interface to explode into a cloud of
subcell-sized droplets, then a smeared representation, together with an appropriate
dispersed flow model, may be a better representation of the physical reality. To
prevent nonphysical sharpening of the interface in regions with clouds of subcell
droplets and bubbles, one could introduce a quantitative criterion for detecting such
regions and replace the isoAdvector interface treatment for surface cells in these
regions with a dispersed treatment.
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Fig. 7 Dam break at times t = 0.32 s (top) and 1.1 s (bottom), run with isoAdvector (left) and
MULES (right). Cells with 0.001 < αn

i < 0.999 at t = 1.1 s are coloured yellow in the lower panels

6 Steady Stream Function Wave

The purpose of our final test case is to investigate the effect of replacing MULES
with isoAdvector on the propagation of a steady stream function wave. The initial
surface elevation, velocity and pressure fields are calculated using a Fourier approx-
imation method, which is well described in [8]. The derivation is based on potential
flow theory with vacuum above the wave. This corresponds to ρ2 = 0, which is not
practically possible with the interFoam solver, because it involves division by ρ in
the PISO loop. We, therefore, use ρ2 = 0.1 kg/m3 and ρ1 = 1000 kg/m3. As in [9],
we use a wave with height H = 10 m and period T = 14 s on depth D = 20 m. This
gives rise to a wavelength of L = 193.23 m, which we choose as the length of our
rectangular domain with, cyclic boundary conditions on the sides. The cells in the
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Fig. 8 Stream function wave with H = 10 m, D = 20 m and T = 14 s at time t = 10 s. From top:
MULES-Euler, MULES-Crank–Nicolson, isoAdvector-Euler, isoAdvector-Crank–Nicolson

interface region are squares of side length 0.5 m corresponding to 20 cells per wave
height and ∼386 cells per wavelength. Above and below the interface region, the
mesh is coarser, with cell size up to 2 m. For div(rho*phi,U), we use Gauss
limitedLinearV 1, as opposed to the upwind scheme used in [9]. Another
difference is that in our setup, we initialise the wave in a co-moving frame, and so
the surface elevation and velocity field should ideally not change throughout the
transient simulation. Also, we use a fixed time step of 0.002 s, which based on the
theoretical crest particle velocity of 5.95 m/s, gives a CFL number of 0.0238. We run
the setup with MULES and isoAdvector, using both Euler and crankNicolson
0.5 for time integration. The resulting wave shape and velocity magnitudes for the
four combinations a short time after the simulations have been started (t = 10 s) are
shown in Fig. 8. The interface thickness is shown by plotting the 0.5 and 0.0001 con-
tours of the volume fraction data. We see that the interface is sharper and smoother
in the isoAdvector simulations than in the MULES simulations. But we also observe
that the air speed in a narrow band just above the surface takes values almost twice as
high in the isoAdvector simulations (note the different colour scales in the different
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Fig. 9 Stream functionwavewith H =10m, D =20mand T =14 s at time105 s. The x-axis has been
compressed by a factor of 4. Black: exact surface elevation (0.5 contour). Orange: MULES-Euler.
Blue: MULES-Crank–Nicolson. Red: isoAdvector-Euler. Green: isoAdvector-Crank–Nicolson

panels). These larger air velocities do not seem to affect the interface significantly,
as illustrated in Fig. 9, where we show the surface elevations from the four runs after
105 s corresponding to 7.5 wave periods.

All simulations have a celerity that is slightly too high, causing all waves to have
drifted almost a quarter of awavelength to the right compared to the theoretical steady
profile crest centred in the middle of the domain. The MULES-Euler wave (orange)
has broken, giving rise to a jerky profile. The MULES-Crank–Nicolson wave crest
(blue) has grownsignificantly and the trough iswrinkled.The isoAdvectorwaveswith
Euler (red) and Crank–Nicolson (green) also have slight overshoots in wave height,
but these aremuch smaller andwithmuch smoother profiles. This is a preliminary test
and since many things can change if the case setup is adjusted, one should not jump
to conclusions before a more thorough study has been conducted. It is, however, safe
to conclude that using isoAdvector instead of MULES in surface wave propagation
simulations does have a clear effect on the solution. It is also safe to conclude, that the
spurious tangential velocities observed at the interface for large density ratios are not
caused by MULES alone. More likely, the problem is also associated with the PISO
loop implementation in interFoam not taking the large density jump properly into
account, e.g., when interpolating density-dependent quantities between cell centres
and face centres. We expect that an improved density jump treatment in this part of
the code can be achieved by using the information provided by isoAdvector about
the interface position inside surface cells.

7 Summary

We have given a brief description of the isoAdvector algorithm for advection of a
sharp interface across general meshes. We added two pure advection cases to the
suite of test cases already presented in [1], demonstrating the superior behaviour
of isoAdvector compared to MULES with respect to accuracy and efficiency. We
derive an expression for the convective term in the momentum equation so that



296 J. Roenby et al.

isoAdvector can be used in interFoam instead of MULES. The resulting solver is
tested using the damBreak case and a steady stream function wave in a periodic
domain. From these tests,we conclude that using isoAdvector in interFoam is feasible
and leads to a sharper interface. Using isoAdvector for the tested wave propagation
case leads to significantly higher spurious tangential velocities in the lighter phase,
but nevertheless, the quality of the solution is improved. In future work, we will
exploit the isoface data to impose consistent physical boundary conditions at the
interface in the PISO loop.
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Liquid Atomization Modeling
in OpenFOAM®
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and F. X. Demoulin

Abstract Several approaches have been developed to simulate liquid-jet atomiza-
tion phenomena. Despite recent developments in numerical methods and computer
performance, direct numerical simulation of the atomization process remains inac-
cessible for practical applications. Therefore, to carry out numerical simulations of
the injected liquid from the internal flow within flow as far as the final dispersed
spray, a modeling strategy has been developed. It is composed of a set of model-
s implemented within the open-source software OpenFOAM®. First, the so-called
Euler–Lagrange Spray Atomization (ELSA) approach is introduced. This is Euleri-
an formulation dedicated to jet atomization that is based on the analogy of turbulent
mixing in aflowwith variable density in the limit of infiniteReynolds andWeber num-
bers. Second, ELSA’s extension to a Quasi-Multiphase Eulerian (QME) approach is
proposed. This method solves the problem of a second-order closure in modeling
the turbulent liquid flux, hence solving the slip velocity between the phases. Third,
an enhanced version of ELSA coupling with an Interface Capturing Method (ICM)
and a Lagrangian approach for the final spray are introduced.
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1 Introduction

Several strategies can be found in the literature formodeling fuel injection and coping
with the multiphase/multi-scale nature of the flow. A full resolution of the interface
is possible thanks to Direct Numerical Simulation (DNS), with interface capturing
and/or reconstruction methods [1–4]. However, it is not applicable as far as industrial
applications are concerned, mostly because of an unfeasible computational cost.
Moreover, the notion of DNS when an interface is considered, must be approached
with special care.

Therefore, atomization modeling is required. Many approaches are based on ki-
netic theory, in which the spray is described through a number density function that
verifies the Williams–Boltzmann Equation (WBE) [5] containing terms for spatial
transport, evaporation and fluid drag. A widely used approach to solving the WBE
is the Lagrangian Monte Carlo method [6], in which the liquid is tracked with a
Lagrangian description and the gas is solved in a Eulerian framework. Its advantage
lies in a straightforward implementation of physical processes such as evaporation
and secondary breakup, even if its computational cost is generally challenging, es-
pecially in unsteady configurations. Indeed, a high number of parcels is required in
each cell of the numerical domain in order to reach statistical convergence.

Another approach to solve the WBE is based on a Euler–Euler (EE) formulation,
in which both phases are treated as a continuum. This solution is very attractive
for describing the evolution of the spray’s characteristics. Moreover, reduced com-
putational costs in terms of parallel computing are among the advantages of this
formulation. Nonetheless, despite the efficiency of EE methods on actual supercom-
puters, the direct resolution of WBE is generally unfeasible since the dimension of
the problem is multiplied by the number of spray characteristics (position, velocity,
size, temperature, etc) retained to describe the physics. This constrains EE methods
to addressing a limited description of these properties. Numerous possible hypothe-
ses have led to an abundant research in this framework. For instance, in Multi-Fluids
models [7, 8], the droplet geometry information is discretized in sections to represent
the spray distribution. Another solution [9] is a smooth reconstruction based on a
sum of the kernel of the density functions, with a quadrature method of moments
being employed for this purpose. Other approaches, such as entropy maximization
[10] or moments with interpolative closure [11], can also be found in literature, but
their description goes beyond the scope of the present work.

All these methods based onWBE generally assume that the spray is composed of
numerous individual spherical droplets with such well-defined features as position or
diameter. However, this is far from the case with the atomizers generally employed in
an industrial framework. Indeed, the liquid phase is initially a continuum (i.e., liquid
jet or film), and it is not possible to define such well-defined characteristics until the
end of primary breakup. Therefore, multi-scale models have been developed in this
work. In these models, the interface is considered, depending of the resolution of
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the interface, as a mixing zone, so that both the liquid and gas phases coexist at the
same macroscopic position with an occupied portion of the volume defined by the
liquid volume fraction (αl ). In this context, two families of equilibrium models have
been developed. The first possibility [12] is to use the liquid volume fraction as the
unique variable allowing the description of the interface. Another set of approaches is
based on a transport equation for the liquid/gas interface density [1, 13]. In this second
group of models, the Eulerian–Lagrangian Spray Atomization (ELSA)models are of
major importance [1, 13]. The purpose of the present work is, therefore, to formulate
models based on the ELSA concept and to describe their implementation in the
open-source software OpenFOAM®.

The following section is devoted to the description of a Eulerian–Eulerian solver,
directly derived from the ELSA formulation. Then, the Quasi-Multiphase Eulerian
(QME) approach, which introduces the effects of a relative velocity between phases,
is presented, with an application that considers a jet in a cross-flow test case. Finally,
an innovative coupling between an InterfaceCapturingMethod (ICM) and a complete
ELSA approach is applied.

2 ELSA-Base

In the ELSA-base model, a two-phase flow is considered as a single phase composed
of two species with highly variable density. Several features are summarized such as
large-scale properties (penetration length and angle of dispersion of the liquid core)
and small-scale characteristics (mean droplet diameter and their size distribution).
These features are modeled based on the analogy between atomization and turbulent
mixing of a liquid jet with a high-density ratio within the surroundings [13]. In this
section, starting from this complete approach, governing equations of the Eulerian–
Eulerian solver are presented, together with its implementation in OpenFOAM®.

A balance equation for the liquid volume fraction αl , which represents the propor-
tion of liquid in a considered volume, is considered with an additional term, namely
the turbulent diffusion liquid flux, similar to the turbulent diffusion flux defined for
a turbulent single-phase flow. Additionally, the small-scale characteristics such as
droplet size distribution and mean droplet diameter, can be represented by means of
the liquid gas interface density, namelyΣ (greek letter on the text), which represents
the liquid/gas surface interface per unit of volume. The concept of interface density, is
more general than droplet diameter or Sauter Mean Diameter (SMD). Indeed, liquid
shapes are not always spherical, thus Σ (greek letter on text) is a more generalized
quantity able to quantify any type of interface. The mean mixture velocity U fol-
lows a classical transport equation with the deviatoric stress tensor T related to the
viscous stress, plus any additional term coming from turbulent fluctuations. ρ is the
density and f b is the body forces per unit of mass. The treatment of T may require
a dedicated modeling to account for density fluctuations, and previous studies have
shown that the usual single-phase flowmodels are not satisfactory [14]. The resulting
system of equations, assuming the two phases have constant density, gives us
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ

∂t
+ ∇ · (ρU) = 0

∂ρU
∂t + ∇ · (ρU ⊗ U) = −∇ p + ∇ · T + ρ f b + ∇ · RU

∂αl

∂t
+ ∇ · (Uαl ) = ∇ · (Rαl )

∂Σ

∂t
+ ∇ · (UΣ) = ∇ · (RΣ) + SΣ.

(1)

The source term included in theΣ equation is SΣ , which comes from the complete
modeling approach [1, 13]. Vaporization has not been considered in this work so
far. Weber and Reynolds numbers, characterizing the flow, are supposed to be high
enough to consider that the main source term is the production/destruction of surface
density due to the turbulence. In this case, from the work of Duret [15], the remaining
source term is

SΣ = CΣ

τt
Σ

(

1 − Σ

Σ∗
)

, (2)

with CΣ = 0.2.
The first term on the RHS of the Σ-equation accounts instead for dispersion of

the interface by turbulence (RΣ). Additionally, Rαl is the turbulent liquid flux that
represents the transport of the liquid volume fraction induced by velocity fluctuations.
These terms must be correctly modeled. A widely exploited approach is based on a
gradient closure approximation, which, as explained in Sect. 3, is only valid in the
absence of slip velocity between the phases. Then, the following modeling strategy
is used: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

RU ≈ νt

Sct
∇U + ∇Ut

Rαl ≈ νt

Sct
∇αl

RΣ ≈ νt

Sct
∇Σ,

(3)

where νt is the turbulent viscosity (or sub-grid stress in LES framework) and Sct is
the turbulent Schmidt number.

Implementation of ElsaBase within the OpenFOAM® framework is based on
the twoLiquidMixingFoam solver, which solves the mixing of two incompress-
ible isothermal fluids by introducing the turbulent diffusion liquid flux within the
liquid volume fraction equation. The implementation of the balance equation de-
scribing Σ with source terms for coalescence and breakup is as follows:

fvScalarMatrix elsaSigmaEqn
(

fvm::ddt(elsaSigma)
+ fvm::div(phi ,elsaSigma)
- fvm:: laplacian

(
dab + alphaTab*turbulence ->nut(), elsaSigma ,

"laplacian(dab ,elsaSigma)"
)
==

(cTurbElsaSigma* (turbulence ->k()/( turbulence ->nut ()))*
(elsaSigmaRatio ))*( elsaSigmaEquil)
+fvm::Sp(-cTurbElsaSigma* (turbulence ->k()/( turbulence ->nut ()))*

(elsaSigmaRatio),elsaSigma)
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Fig. 1 Distributions of projected mass density (left) and interface density and SMD (right) for 2D
axisymmetric test case

Moreover, by integrating the interface density, it is possible to calculate the mean
size of the liquid-gas parcels that corresponds, for a dilute spray, to the Sauter Mean
Diameter (SMD) D32 = 6αl/Σ . Nevertheless, to have a definition of D32 valid in
both limits of the liquid and gas volume fraction tending to zero, the following
modification is introduced:

D32 = 6αl(1 − αl)/Σ. (4)

To demonstrate the potential of the ELSA approach, a 2D axisymmetric injector
coming from the Engine Combustion Network website (https://ecn.sandia.gov/) has
been considered using a simple computational domain (a 5 degrees wedge, 2.2 mm
length, and 0.8mm radius). Boundary conditions are shown in Fig. 1. On the left of
the figure is shown the liquid volume fraction field. It should be pointed out that
the penetration of liquid is immediately subjected to a strong diffusion imposed
by turbulent diffusion liquid flux closure. On the right of the figure is reported the
interface density and the SMD on a vertical plane A. Σ is zero in the gaseous phase
(above 200µ) and has some higher values where the phases are being mixed, which
it is mainly in the centerline of the liquid jet due to diffusivity effects. Therefore,
SMD also experiences low values in the centerline, which is mathematically correct,
and higher values when Σ decreases. This is representative of the presence of an
intact liquid core, which then generates a cloud of droplets. From the contour plots,
it is also possible to point out that such evolution is in line with experiments in terms
of projected mass density.

3 Quasi-Multiphase Eulerian Approach

In the previous section, one of the modeling strategies behind ELSA is the use of the
gradient closure for the turbulent liquid flux (Rαl ); this approach is correct only if
the mean slip velocity between the liquid and the gas is zero. Indeed, if both phases
are strictly nonmiscible, it is possible to consider the following definition for the
turbulent liquid flux:

https://ecn.sandia.gov/
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Rαl = u′αl
′ = −αl (U − U l) = αl (1 − αl) V rlg. (5)

This shows the strong link between Rαl and the local relative velocity V rlg[14] that
can be rearranged as

V rlg = (
U l − U g − V D

) = (
U slg − V Dlg

)
, (6)

following the analysis reported in [16, 17]. It leads to the following decomposition
of the turbulent liquid flux:

Rαl = αl (1 − αl)
(
U slg − V Dlg

) = Υ slg + ΦDlg. (7)

This expression shows the two main constituents of the turbulent liquid flux, Rαl .
They may be detailed as follows:

U slg is the average relative velocity between the particle and the surrounding flow
in the vicinity of the interface that is directly related to the drag force acting on
the liquid. The transport of liquid associated with this velocity is denoted Υ slg .
V Dlg is the drift velocity. It is the conditional average of the fluid turbulent velocity
fluctuationswith respect to the particle distribution. The liquid transport associated
with this velocity is denoted ΦDlg [17].

For the sake of clarity, the slip velocity U slg is now denoted U s and the drift
becomes UD . Similar notations apply in terms of fluxes. The drift velocity compo-
nents account for the dispersion mechanism due to the particle transport by the fluid
turbulent motion. It is related to a turbulent agitation that promotes homogenization
of phase concentration, leading to the generation of a mean average velocity. Hence,
the usual gradient models developed in the framework of single-phase flows can be
adapted, such as

V D = Dgl,t

αl (1 − αl)
∇αl , (8)

where Dgl,t represents the gas/liquid turbulent dispersion coefficient.
Therefore, using Eqs. 5 and 6, if the spray dynamic relaxation time τp and the

mean effective slip velocity U s are negligible ( i.e., in the case of droplets with small
Stokes numbers) the turbulent liquid flux is only due to the drift velocity, and the
approach detailed in Sect. 1 can be correctly employed. However, considering the
engineering applications of interest, in the near injection region, the shear stresses
between the two phases are usually very high. They have a strong impact on the
liquid distribution and on the development of the atomization process.

Hence, the Quasi-Multiphase Eulerian approach, which introduces into ELSA
the effects of the most important physical interactions between liquid and gas phases
in terms of drag, pressure gradient and body forces, has been developed. For the
sake of brevity, the mathematical modeling behind QME is not detailed here, but



Liquid Atomization Modeling in OpenFOAM® 303

the reader interested in its derivation is addressed to reference [18], in which the
model is thoroughly presented. Starting from the ELSA-base system, in the QME
framework, the liquid volume fraction equation is formulated in order to highlight
the flux contribution related to the slip (Υ s) and the drift (Φd ) fluxes, as reported
below

∂αl

∂t
+ ∇ · (Uαl) = −∇ · Rαl = −∇ · (Υ s + Φd) = −∇ ·

(

Υ s − νt

Sct
∇αl

)

.

(9)
The drift flux is modeled using a gradient closure (Eq.8), while forΥ s , an innovative
conservation equation is proposed that considers the physical interactions between
the two phase flows under investigation [18]

∂ρΥ s

∂t
+ ∇ · (ρU ⊗ Υ s) = ∇ ·

(
μt

Sct
Υ s

)

︸ ︷︷ ︸
SturbDi f f

+SΥ s , (10)

where SΥs represents additional source terms such as drag, pressure gradient, and
body forces. For the sake of brevity, the mathematical modeling behind these terms
is not detailed here (see [18]). From a numerical point of view, the solution algorithm
is the same as that presented in the previous section, with the addition of Eq.10 just
before the resolution of the liquid volume fraction equation. The resulting equation
for Υ s (i.e., reliqflux) is reported below

fvVectorMatrix turbulentRelativeFluxEqn
(

fvm::ddt(rho , reliqFlux)
+ fvm::div(rhoPhi , reliqFlux)
- fvm:: laplacian

(
(rho*dab + rho*alphaTab*turbulence ->nut()), reliqFlux ,
"laplacian(dab ,reliqflux)"

)
==
// Source term due to drag
- fvm::Sp((rho*dragSource), reliqFlux)
- rho*alpha1*fvc::ddt(U)
- fvm::Sp((rho*dragSourceAlpha*fvc::ddt(alpha1)), reliqFlux)
// Source term due to pressure gradient
+ alpha1 *(1.0- alpha1 )*gradP*rho/rho1
// Source term due to body forces
+ (rho1 -rho2)* alpha1*g*liqMassFrac *(1.0- liqMassFrac)
);

Hence, onceΥ s is calculated, it is introduced inside the αl equation using the MULES
structure

MULES :: explicitSolve(alpha1 , (phi+phiSlip), phiAlpha , 1, 0);

where phiSlip is the flux related to Υ s , whereas phiAlpha is now defined as
follows:
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Fig. 2 Effect of Υ s on liquid distribution (left) and vectorial comparison between liquid and gas
velocity (right)

surfaceScalarField phiAlpha
(

fvc::flux
(

phi ,
alpha1 ,
alphaScheme

)+fvc::flux
(

phiSlip ,
alpha1 ,
alphaSchemeSlip

)
);

The solver is now able to predict the generated slip velocity and the liquid and gas
velocities, as well as their impact on the atomization process. In Fig. 2, an example
of the effect of Υ s on LES simulations of a liquid jet in an air cross-flow is shown
in order to highlight that the difference in velocity between both phases tends to lift
up the jet. Such an effect is mainly generated in the region where the two jets collide
due to the inertia of the liquid phase.

4 ELSA-ICM Approach

Considering the known shortcomings of diffusive interface approaches in the dense
spray region, and for the purpose of developing a model that is also suitable in
the dilute spray region, a coupling technique between ELSA-base and an Interface
Capturing Method (ICM) is proposed. Based on the interFoam solver, the ICM
consists in defining a supplementary velocity field Ur in the vicinity of the interface,
in such away that the local flow steepens the gradient of the volume fraction, and thus
the interface resolution is improved [19]. Hence, starting from the system reported
(Eq.1), the liquid volume fraction equation has been modified considering Cα as a
pondering coefficient between ELSA-base and an ICM approach.
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∂αl

∂t
+ ∇ · (Uαl) + ∇ · (CαUrαl(1 − αl)︸ ︷︷ ︸

I C M

= (1 − Cα)∇ · (Rαl ). (11)

The advantages of the proposed solver is to determine a resolution of the interface
with ICM within a limited region, whereas it is disabled when Rαl prevails (i.e.,
when the interface fluctuations become significant at sub-grid-scale, for instance, in
LES framework). Clearly, Rαl can bemodeled using first or second order closures, as
explained in previous sections (Eq. 3 or Eq. 7). The switching strategy is introduced
through Cα and two different criteria, based on the interface resolution and the cur-
vature of the interface, have been proposed to determine its value. Such a parameter
is set to zero when the interface is poorly resolved (secondary atomization) and set to
one otherwise (primary region). For the sake of brevity, such criteria are not detailed
here, but the reader interested in this topic is addressed to reference [20]. This model
is thus able to take advantage of a full interface resolution to recover a DNS formu-
lation with ICM and to switch to a sub-grid approach when necessary. Furthermore,
when the spray is formed and diluted, it is more accurate to use a regular method
dedicated to WBE resolution, and therefore a Lagrangian formulation is initiated.
The Lagrangian coupling has already been implemented in OpenFOAM®. However,
the description of its theoretical and numerical details goes beyond the scope of the
present paper. Further details on this point can be found in [21].

The implementation of this approach into OpenFOAM® is based on the well-
established ICM solver for two isothermal, immiscible, incompressible phases (i.e.,
interFoam). Inside the solver, the proposed variable Cα is multiplied by the com-
pressive term, which is implemented in the solver as follows:

phic = min(cAlphaField*phic , max(phic ));

Then, its complementary value is multiplied by the Laplacian term inside the αl

equation:

fvScalarMatrix alpha1Eqn
(

- fvm:: laplacian
(
(dTurb )*(1- cAlphaField )*(1- coeffAlphaField),
alpha1 ,
"laplacian(dab ,alpha1)"
)

);

leading to the following complete formulation of the fluxes for the αl equation that
is solved through MULES:

fvc::flux
(

phiAlphaGaz ,
alpha1 ,
alphaScheme

)
+ fvc::flux

(
-fvc::flux(-phir , alpha2 , alpharScheme),
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alpha1 ,
alpharScheme

)

The capabilities of the whole approach (ICM, ELSA-base for sub-grid scales, and
Lagrangian tracking) have been tested on the commercial injector available on theEn-
gine Combustion Network website (https://ecn.sandia.gov/). In Fig. 3, an iso-surface
of 0.5 of liquid volume fraction showing aCα field is displayed. It shows thedifference
between the resolved scale (red color) and the poorly resolved scales downstream
of the flow where the sub-grid fluctuations become important (blue color). At the
inlet, there is a clear definition of the interface, thanks to the interface capturing
method. On the other hand, downstream of the flow, the turbulent diffusion liquid

Fig. 3 3Dmesh of the injection chamber (left) and iso-surface of 0.5 liquid volume fraction showing
a Cα field (right)

Table 1 Nomenclature

Symbol OpenFOAM® Definition

αl alpha1 Liquid volume fraction

ρ rho Mixture density

Dgl,t – Liquid/gas turbulent dispersion coefficient

νt nut Kinematic turbulent viscosity

P p Pressure

Sct alphaTab Inverse Schmidt number

SΥ s - Source terms for the Υ s equation

Rαl – Turbulent liquid flux

U U Mixture velocity

U l Uliquid Liquid phase velocity

Ug Ugas Gas phase velocity

V D – Drift velocity

V rlg – Local relative velocity between phases

U slg – Local relative velocity between phases due to slip

V Dlg – Local relative velocity between phases due to drift

Υ slg reliqflux Turbulent flux due to slip between phases

ΦDlg – Turbulent flux due to drift between phases

Ur phic Local velocity used for the Compressive term

Cαl cAlphaField Switching parameter between the ICM and sub-grid scales

https://ecn.sandia.gov/
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flux dominates, and it is perceived as the beginning of the mixing of the phases, along
with a cone-shaped cloud of particles around the liquid jet due to the generation of
Lagrangian particles as the liquid volume fraction decreases.

In Table1, the most important variables shown in the present work, together with
their definitions in OpenFOAM® are reported.
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Lubricated Contact Model for Cold
Metal Rolling Processes

Vanja Škurić, Peter De Jaeger and Hrvoje Jasak

Abstract A numerical method for calculating lubricated contact pressures and
friction in cold metal rolling is presented in this study. In order to have a good
representation of the contact phenomena in lubricated metal rolling processes, the
interaction between the surface roughness and lubricant flow has to be taken into
account. Due to the changes in lubricant thickness during the rolling process, the
lubricant flows in four local regimes: hydrodynamic thick film, hydrodynamic thin
film, mixed and boundary lubrication regimes. The ability to treat all four lubrication
regimes is required. Surface roughness effects, lubrication regimes treatment and lu-
bricant property variations are all implemented within the present model. In order to
calculate contact pressures and frictional forces, the Greenwood-Williamson model
with the modified Reynolds lubrication equation is used. The Finite Area Method is
used to discretize the Reynolds lubrication equation over a curved surface mesh. The
implemented model is used as a solid contact boundary condition for a large strain
hyperelastoplastic deformation solver developed in the foam-extend framework.
Themodel is tested onwire and sheet rolling cases, and the results are presented here.

1 Introduction

Lubrication and friction are important factors in metal forming processes, since
unoptimized frictional parameters can result in lower productivity of the rolling
machinery and deteriorate the surface quality of the product [3]. Lubrication is a
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complexproblem inwire rolling anddrawingprocesses, due to the necessary coupling
between the surface asperity contact and lubricant flow [13].

The Finite Element Method (FEM) has been widely used for solving wire and
sheet rolling problems. Liu et al. [14] use an elastoplastic finite element technique
in the arbitrary Lagrangian–Eulerian form for simulating the cold rolling of a strip.
The friction layer technique is employed to model the frictional effects. Boman and
Ponthot [3] use an extended hydrodynamic lubrication procedure and the arbitrary
Lagrangian–Eulerian formulation for strip rolling simulations. Khan et al. [13] use
the Finite ElementMethodwith the equivalent interfacial layer in order to capture the
contact pressure and traction during a lubricated sheet rolling simulation by using
a statistical Hertz-based asperity contact model and modified Reynolds equation.
Wu et al. [19] use a similar approach as in [13] and perform a three-dimensional
sheet rolling simulation. A comparison of contact and hydrodynamic pressures for
different lubricant viscosities and rolling speeds is given, as well as a comparison
with the experimental results.

In the past 20 years, the Finite Volume Method (FVM) has become a noteworthy
alternative to the Finite Element Method in the field of solid mechanics. Examples
of FVM applications to problems of solid mechanics are linear elasticity [11], crack
propagation [8], fluid–structure interaction [18], finite strain elastoplasticity [2], etc.
Recently, a finite volume large strain hyperelastoplastic deformation solver was de-
veloped by Cardiff et al. [4]. The solver was tested on several cases and showed very
good agreement with the FEM results. Implementation and application of a lubri-
cated rough surface contact model using the Finite Volume Method are not reported
in the literature to the authors’ knowledge.

In this study, a finite volume model for lubricated rough surface contact is pre-
sented. The model is implemented as a solid contact boundary condition inside the
foam-extend, a community-driven fork of OpenFOAM® [12]. Sheet and wire
rolling simulations are performed and the results are presented.

2 Mathematical Model

The thin-film lubricant flow between two rough surfaces in contact can be divided
into four local regimes [3]: hydrodynamic thick film, hydrodynamic thin film, mixed
and boundary lubrication regimes (Fig. 1). In the hydrodynamic regime, two surfaces
are completely separated by the lubricant and the total contact pressure is equal to
the hydrodynamic pressure of the lubricant. The difference between the thick and
thin hydrodynamic regimes are that in the thick film regime, surface roughness does
not influence the film’s flow, while in the thin film regime, the roughness has a
significant influence on the flow characteristics. In the mixed lubrication regime,
contact pressure is shared between the asperities in contact and the lubricant. In the
boundary regime, almost, the whole contact pressure is carried by the asperities,
while the lubricant is found in traces in asperity valleys. In order to take into account
all four lubrication regimes, the total contact pressure is divided into the asperity
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Fig. 1 The four lubrication regimes

contact pressure and the lubricant hydrodynamic pressure [19]

Pn = Ar Pa + (1 − Ar )Pf , (1)

where Pn is the total contact pressure, Pa is the asperity contact pressure, Pf is the
lubricant hydrodynamic pressure and Ar represents the ratio of asperity contact area
to the nominal area. Correspondingly, the shear traction can be described by [13, 19]

Pt = Arτa + (1 − Ar )τ f , (2)

where Pt is the total shear traction, τa is the asperity shear traction and τ f is the
lubricant shear stress.

In order to calculate the asperity contact pressure and the lubricant hydrodynamic
pressure, appropriate models should be utilized. Since surface roughness properties
are important factors during the metal rolling and drawing processes [3], both the
asperity and lubricant models have to take them into account.

2.1 Asperity Contact Model

The real surfaces are rough on the microscopic scale [13], having a large number of
different-sized asperities. In order to represent the interaction between asperities of
two surfaces in contact during a wire rolling simulation, an asperity contact model
is required. If the deformation of asperities is considered to be elastic, a widely used
Greenwood-Williamson (GW) [6] model can be utilized as a contact model for rough
surfaces [9]. The Greenwood-Williamson model is a statistical contact model based
on the Hertzian theory [6], in which the surface roughness is modelled as a cluster
of hemispherical asperities. The GW model has the following assumptions [5]:

• The rough surface is considered isotropic.
• Asperities have a spherical shape near their summits.
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Fig. 2 Greenwood-Williamson rough surface contact geometry

• All asperity summits have the same radius R, but their heights vary based on the
asperity heights distribution function.

• There is no interaction between asperities.
• Bulk deformation is not considered in the model, only asperity deformation.
• Deformation of the asperities is purely elastic.

Figure 2 depicts the geometry of a GW rough surface contact. The two rough
surfaces in contact are modelled as one smooth surface and one equivalent rough
surface with the Root Mean Squared (RMS) roughness is defined by

σ =
√

σ 2
1 + σ 2

2 , (3)

where σ1 and σ2 are the roughnesses of surface 1 and 2, respectively.
Two reference planes are defined: the mean asperity height plane and the mean

surface height plane. The former is usually used in the asperity-based contact models
and the latter is more practically obtained experimentally [5]. Asperity height z and
separation d are measured from the mean asperity height plane, while distance h is
measured from the plane defined by surface heights. The distance between the two
respective planes is denoted by yS .

In order to simplify a complex surface topography, Greenwood and Williamson
[6] used three surface parameters: the asperity density η (the number of asperities
per unit area), the standard deviation of asperity heights σs and the radius of asperity
summit R. Determining respective parameters from surface roughness profiles was
introduced in [15], in which parameters were expressed by three spectral moments:
m0, m2, m4. The spectral moments are determined from a surface profile as



Lubricated Contact Model for Cold Metal Rolling Processes 313

m0 = 1

n

n∑
i=1

y2(x), (4a)

m2 = 1

n

n∑
i=1

(
dy(x)

dx

)2

, (4b)

m4 = 1

n

n∑
i=1

(
d2y(x)

dx2

)2

, (4c)

where y(x) is a height deviation from the mean surface plane at location x on the ex-
amined surface and n is the total number of measured points. The surface parameters
are defined by [15]

σ = √
m0, (5a)

R = 0.375

√
π

m4
, (5b)

η = m4

6π
√
3m2

. (5c)

Using the surface parameters, the standard deviation of asperity heights is defined
by [5]

σs =
√

σ 2 − 3.717 × 10−4

(ηR)2
, (6)

and the distance ys between the two mean planes is defined by

ys = 0.25

π
√
3Rη

. (7)

Contact area and force between a single hemispherical asperity and a flat surface
is defined by the Hertz elastic solution [10]

A = πR(z − d), (8a)

F = 4

3
E ′√R(z − d)1.5, (8b)

where the equivalent Young’s modulus is defined as

E ′ = 1 − ν2
1

E1
+ 1 − ν2

2

E2
. (9)
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E1, E2 and ν1, ν2 are Young’s modulus and Poisson’s ratio of surfaces 1 and 2,
respectively.

Following the GW model, the total contact area and force between two surfaces
is found by integrating a single asperity contact area and force over the entire range
of asperities’ heights

A = ηAn

∫ ∞

d
Aφ(z)dz, (10a)

F = ηAn

∫ ∞

d
Pφ(z)dz, (10b)

where An is the nominal contact area and φ(z) is the asperity height distribution
function. If the asperity height distribution is Gaussian, the distribution function is
defined by [10]

φ(z) = 1

σs

√
2π

exp

(
−0.5

(
z

σs

)2
)

. (11)

By inserting Eqs. 8a and 8b into Eqs. 10a and 10b, respectively, the final expressions
for a Greenwood-Williamson rough surface contact area and force are given by

A = ηAnπR
∫ ∞

d
(z − d)φ(z)dz, (12a)

F = 4

3
ηAnE

′√R
∫ ∞

d
(z − d)1.5φ(z)dz. (12b)

Up until recently, the contact area and force integrals (Eqs. 12a and 12b) need to be
numerically integrated, however, analytical solutions to the corresponding integrals
were found in [9], which eliminated the need for numerical integration. Finally,
the ratio of asperity contact area and unit nominal area Ar and the asperity contact
pressure Pa (Eq. 1) are defined by

Ar = A

An
, (13a)

Pa = F

An
. (13b)

If the Coulomb friction law is used, the asperity shear traction is defined by [19]

τa = μa Pa, (14)

where μa is the Coulomb friction coefficient.
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2.2 Lubricant Flow Model

In order to calculate the lubricant hydrodynamic pressure and the shear stress between
two rough surfaces in contact and in relative motion to each other, an appropriate
thin-film flow model has to be utilized. Patir and Cheng [16] developed the modified
Reynolds equation, which takes into account the surface roughness during the thin-
film flow. The main assumptions of the Reynolds equation are [7]:

• Fluid is considered to be Newtonian.
• Fluid viscous forces are dominant, while the fluid body, inertia and surface tension
forces can be neglected.

• Fluid film curvature can be neglected, since the thickness of the fluid is much
smaller than the width and length of the film.

• The variation of pressure across the fluid film is negligibly small.

Themodified Reynolds equation is a 2D partial differential pressure equation defined
by [3, 16]

∇s •

(
φxy

ρh3

12μ
∇s p

)
= ∇s •

[
ρhT

U1 + U2

2

]

+ ∇s •

[
ρσφs

U1 − U2

2

]
+ ∂ (ρh)

∂t
,

(15)

where ∇s , ∇s • are the surface gradient and divergence operators, respectively, p is
the hydrodynamic pressure, h is the surface separation (Fig. 3), hT is the film flow
thickness, U1, U2 are the tangential velocity vectors of surface 1 and 2, respectively,
σ is the equivalent RMS surface roughness of the two surfaces in contact, φxy and
φs are the pressure and shear flow factors, respectively, ρ is the density and μ is the
viscosity of the fluid.

Fig. 3 Rough surface film flow geometry
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There are two layers of fluid film between the surfaces [13]: the entrapped fluid
layer and the flowing fluid layer (Fig. 3). Since only the fluid between asperity tips
and the opposite surface can flow (the flowing fluid layer), the film flow thickness
(Fig. 3) is defined by [19]

hT =
∫ h

−∞
(h − zs)φ(zs)dzs, (16)

where φ(zs) is the surface height distribution defined by

φ(zs) = 1

σ
√
2π

exp

(
−0.5

( zs
σ

)2
)

. (17)

The pressure flow factor φxy represents the influence of surface roughness on the
hydrodynamic pressure [16]. If the surface is isotropic, the pressure flow factor is
defined by

φxy = 1 − 0.9 exp

(
−0.56

h

σ

)
. (18)

The shear flow factor φs represents the influence of rough surface sliding effects on
the film fluid flow, and is defined in [17].

Following [17], the fluid film shear stress vector acting on surfaces contact is
defined by

τ f = ±μ(U2 − U1)

h

[
φ f − φ f s

(
1 − 2

σ1

σ

)]
, (19)

where φ f is a factor resulting from the averaging of the sliding velocity component
of the shear stress, φ f s is the shear stress factor and σ1 is the RMS roughness of
surface 1. The plus sign is relative to the shear stress vector acting on surface 1,
while the minus sign refers to surface 2.

2.3 Implementation of Numerical Models

The asperity contact model and lubricant film flowmodel, described in Sects. 2.1 and
2.2, are implemented as a solid contact boundary condition for a large strain hyper-
elastoplastic deformation solver developed by Cardiff et al. [4] in foam-extend,
a community-driven fork of OpenFOAM® [12].

Calculation of the contact pressures (Eq. 13b) and contact areas (Eq. 13a) is per-
formed by a written utility for a selected number (2000 in this study) of surface
separations in a range from 0 to 6σ before the start of the simulation. The calcu-
lated values, with their respective separations, are written into a table. During the
simulation runtime, the contact pressure and area values are interpolated from the
table data based on the current surface separation values. This procedure reduces the



Lubricated Contact Model for Cold Metal Rolling Processes 317

required CPU time compared to the run-time calculations of contact pressures and
areas, especially in the case of contact models in which analytical solutions are not
available, thus requiring numerical integration of the pressure and area equations.
In this study, the Greenwood-Williamson contact model (Sect. 2.1) is implemented
using the analytical solutions from Jackson andGreen [9]. The requiredmodel inputs
are surface roughness σ , asperity radius R and asperity density η.

The modified Reynolds equation (Sect. 2.1) is discretized over a curved surface
mesh using the Finite Area Method, and is solved for the hydrodynamic pressure.
The model inputs are surface roughness σ , lubricant density ρ and viscosityμ. Local
separation between the surfaces and the film flow thickness is calculated during the
runtime.

The distance between two surfaces in contact, i.e. two contact patches of the
computational mesh, is calculated using the GGI interface (General Grid Interface
[1]) for every patch point. The point values are then interpolated to the face centres
of the contact patch.

During the runtime, at the end of every inner iteration, the total contact pressure
(Eq. 1) and the total shear traction (Eq. 2) are calculated for every face of the con-
tacting patches, and are used as boundary conditions for the deformation solver. The
number of inner iterations, i.e. iterations inside a single time-step, is limited by a
deformation convergence criteria (10−7 in this study).

3 Results and Discussion

The implemented models were tested in a three-dimensional sheet and wire rolling
cases. The mechanical and lubricant properties are specified in Table 1. The rollers
are considered rigid in both cases. The simulations were performed for several dif-
ferent roller speeds, reduction ratios and lubricant viscosities. Cases are set up as
axisymmetric, in which quarter of a sheet (or wire) and one half of a single roller are
simulated.

3.1 Sheet Rolling

A 3D case of metal sheet rolling is presented in this section. Sheet dimensions are
length 100 mm, width 16 mm and height 8 mm. Roller diameter is 158 mm and
thickness 19.2 mm. The computational mesh of the sheet (Fig. 4) consists of 25600
hexahedral cells, while the roller is considered rigid. Simulations were run with three
different lubricant viscosities (0.5, 2 and 5 Pas), three sheet thickness reductions (10,
20 and 30%) and three roller speeds (60, 120 and 240 RPM). The pressure variations
in Figs. 5, 6 and 7 are measured along the axisymmetric plane.

Figure 5 shows the significant increase of maximum hydrodynamic pressure at
the inlet of the rolling bite when using higher viscosity lubricant. By increasing the
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Table 1 Mechanical and lubricant properties

Name Symbol Value Units

Initial material density ρm 7800 kg/m3

Young’s modulus E 177 GPa

Poisson’s ratio ν 0.3 –

Initial yield stress [4] σY 1.3 GPa

Surface roughness [19] σ 8.0 µm

Asperity radius [19] R 6.0 µm

Asperity density [19] η 1.6 × 1010 m−2

Coulomb friction
coeff.

μa 0.3 –

Lubricant viscosity μL 0.5, 2.0, 5.0 Pas

Lubricant density ρL 878 kg/m3

Hardening [4] Plastic strain Yield stress (GPa)

0.00 1.30

0.01 1.50

0.10 1.69

0.50 1.64

0.88 2.11

Fig. 4 Sheet and wire rolling meshes

viscosity from 0.5 to 2 Pas, the maximum value of hydrodynamic pressure increases
from 1 to 5MPa (400%). By increasing the lubricant viscosity to 5 Pas, themaximum
hydrodynamic pressure further increases by 140%. Increasing the viscosity, and
subsequently, the hydrodynamic pressure, has almost no effect on the asperity contact
pressure (Fig. 5), due to the fact that the asperity contact pressure is three orders of
magnitude larger than the lubricant hydrodynamic pressure.
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Fig. 5 Sheet case: variations of hydrodynamic and asperity contact pressures due to viscosity
changes (roller speed 120 RPM, 20% reduction)
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Fig. 6 Sheet case: variations of hydrodynamic and asperity contact pressures due to sheet thickness
reduction changes (viscosity 0.5 Pas, roller speed 120 RPM)
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Fig. 7 Sheet case: variations of hydrodynamic and asperity contact pressures due to roller speed
changes (viscosity 0.5 Pas, thickness reduction 20%)
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Figure 6 shows the influence of the thickness reduction parameter on the hydro-
dynamic and asperity contact pressure. By increasing reduction from 10 to 20%, the
hydrodynamic pressure increases from 1.18 to 1.22 MPa (3.5%). A further increase
of reduction to 30% similarly increases hydrodynamic pressure to 1.6 MPa (31%).
By increasing the reduction, the high-pressure area expands, with the location of
maximum hydrodynamic pressure moving into the rolling bite. By increasing the
reduction, the area of the high asperity contact pressure expands (Fig. 6), with the
maximum value of pressure increasing by 17%with 30% reduction, compared to the
10% reduction.

The maximum value of hydrodynamic pressure increases from 0.4 to 1.25 MPa
(310%)with an increase in the roller speed from 60 to 120 RPM (Fig. 7). The asperity
contact pressure also increases from 5 to 8% along the whole area of asperity contact.
By further increasing the roller speed to 240 RPM, the maximum hydrodynamic
pressure increases by 280%, and the asperity contact pressure by 12–15% on the
whole contact area.

3.2 Wire Rolling

A 3D case of metal wire rolling is presented in this section. The wire is 100 mm long
and 8 mm in diameter. The roller’s diameter is 158 mm and its thickness 12 mm.
The computational mesh of the wire (Fig. 4) consists of 6400 hexahedral cells, while
the roller is considered rigid. Simulations were run with three different lubricant
viscosities (0.5, 2 and 5 Pas), two sheet thickness reductions (20 and 30%) and two
roller speeds (120 and 240 RPM).

Figure 8 shows a significant increase in themaximumhydrodynamic pressurewith
the higher viscosity lubricant. The maximum hydrodynamic pressure with lubricant
viscosity of 5 Pas is 4.7 MPa, which is an increase of 147% compared to the 2 Pas
viscosity case. Similar to the sheet rolling case, viscosity changes have negligible
influence on the asperity contact pressure (Fig. 8). The high asperity contact area has
a well-known shape of a horseshoe [4].

The influence of the wire thickness reduction is presented in Fig. 9. Themaximum
hydrodynamic pressure decreases from0.468 to 0.371MPa (21%)when the thickness
reduction increases from 20 to 30%. The maximum asperity contact pressure has the
same trend as the hydrodynamic pressure, decreasing from 5.68 to 5.48 GPa (3.5%).
These pressure decreases can be explained by the fact that, with the higher thickness
reduction, the asperity contact area becomes longer and wider (Fig. 9), so contact
forces act over a larger area, resulting in lower maximum pressure values.

By increasing the rolling speed (Fig. 10) from 120 to 240 RPM, the maximum
value of hydrodynamic pressure increases from 0.477 to 0.952 MPa (100%). Two
areas of high hydrodynamic pressure can be observed at the rolling speed of 240
RPM: the first one at the inlet of the rolling bite and the second one in the middle
of the bite. The maximum value of the asperity contact pressure also increases from
5.73 to 6.73 GPa (17%).



Lubricated Contact Model for Cold Metal Rolling Processes 321

Fig. 8 Wire case: variations of hydrodynamic and asperity contact pressures due to viscosity
changes (roller speed 120 RPM, thickness reduction 20%)

Fig. 9 Wire case: variations of hydrodynamic and asperity contact pressures due to thickness
reduction changes (viscosity 0.5 Pas, roller speed 120 RPM)

4 Conclusion

A rough surface contact model with lubricant flow was presented in this study. The
model was implemented as a solid contact boundary condition for a large strain
hyperelastoplastic deformation solver [4] in the foam-extend framework. The
Greenwood-Williamson model was used as an asperity contact model, and the mod-
ified Reynolds equation for the lubricant flow.
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Fig. 10 Wire case: variations of hydrodynamic and asperity contact pressures due to roller speed
changes (viscosity 0.5 Pas, thickness reduction 20%)

The model was tested in two cases: sheet rolling and wire rolling. The influence
of viscosity, roller speed and thickness reduction changes on the hydrodynamic and
asperity contact pressures was presented. By increasing the lubricant viscosity and
roller speed, the hydrodynamic pressure increases significantly. Changes in the hy-
drodynamic pressure have negligible influence on the asperity contact pressure, due
to a significant difference in their maximum values. With the thickness reduction in-
crease in the wire rolling case, the contact area also increases, resulting in a decrease
in the maximum pressure value. The shape of asperity contact pressure in the sheet
rolling simulations shows a similar trend to that of the finite element simulations and
experimental data [19], while the contact pressure in the wire rolling simulations
has a well-known shape of a horseshoe [4]. The area of the highest hydrodynamic
pressure, both in the wire and sheet rolling simulations, is at the inlet of the rolling
bite, which is expected, due to the sudden reduction of film thickness in that area
(converging part of the contact). In order to determine the accuracy of the model, a
detailed validation will be performed in future work, in which the important char-
acteristics of wire rolling and drawing processes (roller forces and torques, wire
thickness, film temperatures, etc.) will be compared to the experimental data.

In order to possibly improve the contact physics of the model, an appropriate
elastoplastic contactmethod should be implemented, alongwith a heat transfermodel
taking into account the lubricant flow.

Acknowledgements Financial support via Ph.D. funding is gratefully acknowledged from Peter
De Jaeger and Bekaert.
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Modeling of Turbulent Flows
in Rectangular Ducts Using
OpenFOAM®

Raquel Faria, Almerindo D. Ferreira, A. M. G. Lopes
and Antonio C. M. Sousa

Abstract The present work aims to verify the applicability of Irwin probes and
Preston tubes to turbulent incompressible flow in smooth rectangular ducts. For the
experimental apparatus, an aspect ratio of 1:2 is considered and tests are conducted for
Reynolds number valueswithin the range of 104 to 9× 104. Local friction coefficients
are determined based on the pressure measurements obtained using pressure taps and
aPreston tube.A linear relation is established between the localwall shear stress (τwx )
and the pressure difference (�pI ) measured with the Irwin probes. The numerical
simulations implemented in the open source OpenFOAM® 2.4.0 CFD toolbox are
benchmarked against ANSYS CFX results, and the two sets are compared against
the experimental results. A viscous sub-layer formulation was used, with y+ ≈ 1 for
the mesh. Although the focus of the present study is to investigate constant section
ducts, some preliminary results for variable section ducts are also presented. Two
representative cases—convergent with 1° slope (C1) and divergent with 1° slope
(D1)—were selected. The Preston tube measurements are in good agreement with
the numerical results and within the expected accuracy of the experimental results
obtained under adverse pressure gradient conditions.
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1 Introduction

The increasing interest in turbulent flows in noncircular ducts of current use in many
technical applications such as heat exchangers, air conditioning systems, and rotary
machinery has led to a considerable research effort aimed at the understanding and
characterization of these flows. The most common configurations are the triangular
and rectangular cross-section shapes [5, 8, 16, 17].

In engineering applications, it is quite common to consider the fully developed
flow characteristics in noncircular ducts to be similar to those flowing in pipes of
circular cross section [1, 3, 5, 6, 8]. Under these conditions, the characteristic length
for noncircular ducts is formulated in terms of the hydraulic (or equivalent) diameter
(Dh); therefore, the Reynolds number (Re) is determined as follows:

Re � UDh

v
, (1)

where U is the axial mean velocity (m/s) and ν the kinematic viscosity of the fluid
(m2/s).

It is well-established that, in a fully developed flow, the pressure drops linearly in
the stream-wise direction. Pressure is commonly expressed in terms of the dimen-
sionless pressure coefficient (Cp), namely

Cp � p − pref
1
2ρU

2
, (2)

where p (Pa) is the static pressure at the section of interest, pref (Pa) is the reference
static pressure, ρ (kg/m3) is the density of the fluid, and U (m/s) is the axial mean
velocity.

Assuming a fully developed flow in ducts of constant cross section, the pressure
drop between two sections can be used to evaluate the mean friction coefficient (Cf)
[5]. Moreover, the Cf value is constant along the section and can be evaluated by
using, e.g., Preston tubes. The friction factor is defined as

Cf � τw

1
2ρU

2
. (3)

The numerical simulations performed within this work were done in the open
sourceOpenFOAM® 2.4.0 (2015) CFD toolbox (CFD: Computational FluidDynam-
ics) (henceforth designated as OF), which is attracting increasing interest from prac-
titioners in industrial engineering, as well as in the scientific community. Several
reasons led to the choice of this code, such as no limitations for parallel computing
and openness for adaptation and development, bringing great flexibility and suitabil-
ity for the users, which is not the case with commercial CFD codes.

Verification of the model is performed through a mesh dependency study with
several grids of increasing resolution, i.e., decreasing of y+ values, defined as follows:
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y+ � u∗y
v

, (4)

where y (m) is the distance to the nearest wall and u∗ is the friction velocity (m/s),
which is related to the wall shear stress (τw), as follows:

u∗ �
√

τw

ρ
. (5)

This work is conducted so as to evaluate the applicability of Irwin [7] probes and
Preston [14] tubes to the study of turbulent incompressible flow through rectangular
ducts and, in particular, the determination of the wall shear stress under pressure
gradient conditions. In the present work, the numerical results obtained with OF are
benchmarked against ANSYS CFX results and the two sets are compared against the
experimental results.

2 Experimental Setup

For the present study, a rectangular duct with a constant width of 0.12 m was built;
although the experimental setup allows for four different aspect ratios (AR) [4], for
the present work, only the 1:2 case (H � 0.06 m) was considered.

Figure 1 schematically depicts the experimental apparatus. A centrifugal fan was
used to blow the air into the 5-m-long plywood rectangular duct, and between the
blower and the duct entrance, a Venturi flow meter was placed to measure the mean
flow velocity. The turbulence intensity was obtained with a hot film probe placed
at the duct’s exit. The duct has an initial flow-developing section, followed by the
so-called test section; both sections have the same length (2.5 m). Fifteen pressure
taps were initially considered in the test section, aiming for the identification of
four averaging sections. At each averaging location (indicated by the dashed lines
in Fig. 1), the mean pressure was obtained by using four pressure taps, one on each
side of the duct.

Motor

Centrifugal 
Fan

Venturi

Round-to-square 
transition

Outlet

Air
admission

Honeycomb
+ Net

Developement sectionTest section

2.5

2.5

x 0

0.375
0.125

0.5
Pressure taps

Fig. 1 Schematic of the experimental apparatus—top view (Dimensions in meters)



328 R. Faria et al.

Fig. 2 Placement of the
Preston tube

  

flow

x = 3.9 m

2.1 Preston Tube

The pressure difference between thePreston tube reading and the local static pressure
(pressure tap) (�p) is used to quantify the localwall shear stress (τwx ). The calibration
of Patel [12], simplified byBechert [2] later on, is used in the presentwork to compute
τwx as follows:

τ + �
[
28.44�p+

2
+

(
6.61 × 10−6

)
�p+

3.5
] 1

4
. (6)

Normalization of the quantities presented in Eq. [5] leads to

�p+ � �pd2/ρν2 τ + � τwx d
2/ρv2, (7)

where d is the outside diameter of the Preston tube.
Figure 2 presents the Preston tube used to perform the measurements and the

respective placement.

2.2 Irwin Probes

Several equal Irwin-type [7] pressure probes, projected and built as described in Faria
et al. [4], were used in the present work. The dimensions of the probes are presented
in Fig. 3.

The pressure difference (�pI ) between the two pressure taps of an Irwin probe can
be related to the local wall shear stress (τwx ) by calibration, which will be discussed
in the Results and Discussion section. After calibration, the wall’s shear stress can
be used in conjunction with Eq. (3) to determine the friction coefficient (Cf).
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Fig. 3 Geometry of the Irwin probes used (dimensions in millimeters)

The Irwin probes are surface-mounted on the rectangular duct, with one of the
taps placed level with the surface and the other one 2 mm away from the same; the
probes are located along the bottom centerline on positions of the test section that
satisfy the fully developed flow requirement.

3 Numerical Setup

The numerical simulations were implemented in the open source OpenFOAM® CFD
toolbox [11], as already stated. Figure 4 depicts the three-dimensional computational
domain employed. Due to the symmetry of the geometry under consideration, only
a quarter of the physical domain was simulated.

The OF blockMesh utility was used to generate several structured grids with
increasing resolution so as to analyze the mesh dependency. A simple grid expan-
sion (simpleGrading) away from the walls was employed (as shown in Fig. 5) with
expansion factors between 1 (no expansion) and 1.15 (Table 1).

The standard solver simpleFOAM was employed to solve the incompressible,
steady-state RANS equations based on the finite-volume discretization method
(FVM). A parallelized computation with six processors was employed, and numer-
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Fig. 4 Computational domain (dimensions in meters)

Fig. 5 Typical mesh with
simpleGrading for
one-quarter of the cross
section

ical convergence was assumed satisfied when all the normalized residuals have a
value lower than 1 × 10−5.

The k-ω SST (Shear Stress Transport) [9] turbulence model was used with the
automatic near-wall treatment [10]. Symmetry conditions were imposed on two
boundaries, as shown in Fig. 4. The boundary conditions at the inlet were as follows:
zero pressure gradient for pressure and fixed values for the other flow properties;
the turbulence intensity took a value of 5% to match the experimental conditions. At
the outlet, the zero-gradient condition was taken for all variables, except pressure,
which was set as equal to the experimental value. Walls were treated as smooth,
no-slip surfaces. Similar conditions and identical mesh sizes were adopted for the
ANSYS CFX simulations.

4 Results and Discussion

In this section, the measurements taken in the experimental setup and their compar-
ison with the values predicted by OF are presented. The results discussed here are
for the duct aspect ratio 1:2, which is representative of all other cases tested.

In addition, preliminary results for rectangular ducts with variable cross section
are also presented.
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4.1 Experimental Results

To determine the entrance length required to obtain a fully developed flow, the
static pressure was measured along the test section of the duct. Independently of
the Reynolds number (Re), the results reported in Fig. 6 clearly indicate that the
pressure decreases linearly towards the exit, with a mean r-square coefficient of
0.9969 (within the range of 0.9940–0.9985). In Fig. 6, x/Lmax refers to the distance
(x) normalized by Lmax (Lmax being the length of the test section, Lmax � 2.5 m).

It can be observed in Fig. 6 that the higher pressure values occur for the lower Re
numbers, which is in accordance with the findings of several authors, e.g., Rochlitz
et al. [15].

The local friction was calculated using Eq. (6) for several flow velocities; its
dependence on Re is depicted in Fig. 7.
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Fig. 6 Pressure coefficient along the duct for several Reynolds numbers
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Fig. 7 Local friction coefficient for different Reynolds numbers at x/Lmax � 0.56
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Fig. 8 Calibration curve for the Irwin probes located at x/Lmax � 0.56

The wall friction tends towards a constant value as Re increases (Fig. 7); there is
clear evidence that, with increasing values of Re, the Reynolds independence condi-
tion occurs inwhat concerns the local friction coefficient. To support this observation,
a square root fit, Cf α Re−0.5, which is represented by the solid line, was added to
Fig. 7. Several authors, such as Peysson et al. [13], reported similar findings.

4.2 Calibration of the Irwin Probes

For each selected velocity, the calibration of the Irwin probes is established by relating
the values of the local wall shear stress (τwx ) determined using Eq. (6) with the
pressure difference measured with the Irwin probes (�pI ), as depicted in Fig. 8. The
empirical relation for the calibration of the Irwin probes can be found by fitting a
curve through the measured data points.

For the data presented in Fig. 8, the local wall shear stress (τwx ) can be correlated
to the pressure difference (�pI ) by the following linear approximation, with an
r-square coefficient of 0.9915:

τwx � 0.0162�pI . (8)

4.3 Numerical Results

Mesh independency tests were performed prior to validation of the OFmodel against
the experimental results.

The first step was to verify the behavior and sensitivity of the numerical code and
turbulence model to the increasing mesh resolution. Two test cases of of tutorials
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(a)cavity case (b)pitzDaily case
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Fig. 9 Mesh independency test—cross-section mean velocity. a Cavity case; b pitzDaily case

were chosen for this purpose, one case with laminar flow (cavity case) and the other
one with the turbulence model k-ω SST (pitzDaily case). It can be observed in
Fig. 9 that, in both cases, beyond a certain degree of refinement, the results were
not affected, yielding differences among the meshes lower than 1%; therefore, mesh
independency is satisfied. Furthermore, the turbulence model k-ω SST is shown to
be practically insensitive to the value of y+, since differences smaller than 4% were
obtained within the entire range, 0.23 < y+ < 65, in line with the findings reported by
Menter and Esch [10].

However, those results were only achieved for the properties far from thewall, like
the cross-section mean velocity. When considering wall-bounded quantities, like the
local wall shear stress, some discrepancies among the meshes were found. Similar
behavior occurred in the test performed for the meshes presented in Table 1.

As alreadymentioned, the k-ω SST turbulencemodel was usedwith the automatic
near-wall treatment, which implies that the boundary layer is resolved in the fine
grids (viscous sub-layer formulation: y+ < 5) and modeled in the coarse grids (wall
functions: 30< y+ < 100–300). Therefore,when performingmesh independency tests,
besides the spatial discretization inaccuracy, the different wall treatment approaches
also contribute to the errors; this can be observed when comparing the near-wall
velocity profile for the various meshes tested (Table 1), as depicted in Fig. 10.

To avoid this problem, themesh independency study should typically be conducted
within the y+ validity range of a particular procedure. Considering that it is intended
to evaluate wall-bounded flow characteristics, namely the wall pressure distribution
and the local wall shear stress, a viscous sub-layer formulation approach was used,
i.e., a mesh with a value of y+ < 5. The value of y+ ≈ 1, as indicated by the CFD
community, is the best one for predicting the wall-bounded quantities, especially
when employing the k-ω SST turbulence model. Under the circumstances, the mesh
201× 82× 40 (M7 in Table 1) is used in the present work to conduct the validation of
the model against the experimental results and, in the process, add further credibility
to these experimental results.

Furthermore, according to the selected near-wall treatment, the applied boundary
conditions must be chosen in accordance. A study on this subject was conducted,
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Fig. 11 Comparison of the experimental wall pressure distribution along the rectangular duct with
OF and CFX predicted values

leading to the use of the boundary conditions presented in the Numerical Setup
section.

The results shown in this section were obtained for the maximum velocity flow
in the duct (Re � 9.6 × 104).

Figure 11 depicts the comparison of the wall pressure distribution along the rect-
angular duct (only for the four averaging locations ofmean pressure defined in Fig. 1)
with the values predicted by OF and the CFX code.

It canbeobserved inFig. 11 that good agreementwasobserved in the predictions of
both OF and CFX, with a deviation lower than 5%. However, it should be mentioned
that, although the same conditionswere adopted for both theCFXandOF simulations
(in particular, computational domain, boundary conditions, and y+), the calculation
time and required number of iterations showed marked differences. To reach the
converged solution, the OF solution required 1038 iterations (Table 1), while CFX
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needed only 83. Regarding the calculation time, OF took about six hours, while CFX
required only 30 min. In spite of the fact that the mesh arrangement is different for
these software packages, as well as the procedure for calculation of the residuals, the
main factor for the calculation speeddifferencemaybe related to the solver algorithm:
CFXuses a coupled solver,whileOF adopts a segregated approach.Nevertheless, due
to its great flexibility and the ease of use associated with its open source nature, OF
has been generating considerable interest among CFD practitioners in the scientific
community.

The local wall friction was compared against the experimental measurements of
the Preston tube, with a maximum deviation of less than 2%.

A comparison between numerically and experimentally derived pressure and fric-
tion coefficients was made in order to validate the numerical model. The differences
obtained were less than 5%; therefore, it can be concluded that the OF predictions
match well with the experimental measurements.

5 Velocity Influence

As alreadymentioned, the previous numerical resultswere obtained for themaximum
flow velocity (Umax). However, the velocity influence (Fig. 12) was also analyzed and
two other velocities were simulated, namely 60 and 30% of the maximum velocity.
The M7 mesh was again used in the numerical simulations to determine the wall
pressure distribution and the local wall shear stress reported in Fig. 12 and Table 2,
respectively.

(a)0.6 Umax (b)0.3 Umax
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Fig. 12 Wall pressure distribution. a Velocity of 0.6 Umax, b velocity of 0.3 Umax

Table 2 Local friction coefficient (x/Lmax � 0.56) predicted by OF and deviations from Preston
measurements for two different velocities (0.6 Umax and 0.3 Umax)

Case Preston measurements OF Deviation (%)

0.6 Umax 21.51 21.95 10.97

0.3 Umax 27.17 27.67 10.80



Modeling of Turbulent Flows in Rectangular Ducts … 337

In regard to that which concerns thewall pressure distribution, the results obtained
with the velocity of 0.6Umax are in better agreement with the experimental data than
those for velocity of 0.3 Umax, as presented in Fig. 12. This can happen because
the measured pressure values in the velocity of 0.3 Umax are very low and close to
the limit of the sensitivity range of the measuring equipment. Table 2 presents the
local friction coefficient, and in both cases, deviations between the numerical and
experimental results are below 2%.

5.1 Preliminary Results of the Rectangular Duct
with Variable Section

A few changes in the experimental setup (Fig. 1) allowed for the study of the rect-
angular duct with variable section, which is obtained by the variation of the angle of
the top wall of the duct. Both convergent and divergent longitudinal sections were
tested, as can be seen in Fig. 13.

The results presented in this section were obtained for two representative cases,
namely convergent with 1° slope (C1) and divergent with 1° slope (D1).

The measurements of the pressure distribution along the test section of the duct
and its comparison against the predicted values by OF are depicted in Fig. 14.

The location of the hinge is at x/Lmax � 0.375 and it is indicated in both graphs
of Fig. 14 by the dotted lines.

The experimental and numerical results are in good agreement for the convergent
case (C1), with a deviation around 2%. The deviation for the divergent case is around

Fig. 13 Schematic of the new experimental apparatus—Side View (dimensions in meters)

(a)Convergent (C1) (b)Divergent (D1)
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Fig. 14 Pressure coefficient results. a Convergent geometry, b divergent geometry
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Table 3 Local friction coefficient (x/Lmax � 0.56) predicted by OF and deviations from Preston
measurements for three representative cases: constant section (H), convergent with 1° slope (C1)
and divergent with 1° slope (D1)

Case Preston measurements OF Deviation (%)

H 18.68 19.04 1.93

C1 31.61 26.53 16.07

D1 15.45 14.72 4.73

20%; however, if only the divergent longitudinal section is considered, the deviation
for this case (D1) drops to 8%. It should be noted that the mesh adopted for these
simulations is identical to that of the constant section tests.

In regard to that which concerns the friction coefficient, the comparison of the
Preston tube measurements with the numerical results is reported in Table 3.

For C1 geometry, the deviation is approximately 16%, while for the D1 geometry,
the mean deviation is below 5%.

Some caution is required in these comparisons, considering that the use ofPreston
tubes under adverse pressure gradient conditions has severe limitations. Patel [12]
reports that, under both favorable and adverse pressure gradients, the Preston tube
tends to overestimate the skin friction, as observed in Table 3. Using the interval
of the parameter � (severity of the pressure gradient) proposed by Patel [12], the
prescribed error range leads to a decrease in the indicated deviations, to 10 and 2%
for the convergent and divergent cases, respectively.

6 Conclusions

The applicability of Irwin probes and Preston tubes to the measurement of the local
wall shear stress in incompressible flow through rectangular ducts of constant and
variable longitudinal section is the scope of the present work.

The tests for the rectangular duct experimental setup were conducted for a cross
section with aspect ratio 1:2 and Reynolds number values ranging from 104 to 9.6 ×
104; measurements were obtained for the fully developed flow condition for all
velocities tested.

The occurrence of Reynolds independence conditions is observed for the local
friction coefficient, which is derived using data obtained with a Preston tube and
local static pressure.

The Irwin probes’ calibration was obtained through the fitting of a power function
to the experimental data. The local wall shear stress (τwx ) is related to the pressure
difference in the Irwin probes (�pI ) by a linear approximation, with an r-square
coefficient of 0.9915.
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In the present work, simulations performed using OF and ANSYS CFX are com-
pared against experimental results. A range of y+ from 0.5 to around 140 was used
to perform the mesh dependency study in OF.

A viscous sub-layer formulation was the approach selected with y+ ≈ 1 for the
mesh based on CFD best practice, which indicates that, with the k-ω SST turbulence
model, it is the appropriate value for predicting the wall-bounded quantities.

A comparison between numerically and experimentally derived pressure and fric-
tion coefficients was conducted to validate the numerical model and, in the process
add credibility to the experimental data; deviations below 5% were obtained.

Therefore, considering the good agreement with the numerical results, it was con-
cluded that Irwin probes and Preston tubes are applicable to the measurement of the
local wall shear stress in turbulent incompressible flows through smooth rectangular
ducts.

The influence of the velocity was also measured, and two other velocities were
considered (0.6Umax and 0.3Umax). The difference between predictions and experi-
mental data for the wall pressure distribution increases for the lower velocity. How-
ever, for both cases, the difference between predicted and experimental local wall
shear stress is lower than 2%.

Some preliminary results were also reported for the rectangular duct with vari-
able cross section. For both configurations (C1 and D1), good agreement between
experimental and numerical results was obtained for the pressure coefficient, namely
2% for the convergent geometry and 8% if only the divergent section is considered
for the D1 geometry. In regard to that which concerns the local friction coefficient,
comparison between predicted and experimental results indicates better agreement
for the D1 geometry, with a mean deviation of 5% against 16% for the C1 geometry.
However, this comparison should be made with considerable caution, taking into
consideration the limitations of a Preston tube under pressure gradient conditions.
By introducing the prescribed error range proposed by Patel [12], the deviations will
drop to 10 and 2% for the convergent and divergent cases, respectively.
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Numerical Approach for Possible
Identification of the Noisiest Zones
on the Surface of a Centrifugal Fan Blade

Tenon Charly Kone, Yann Marchesse and Raymond Panneton

Abstract This paper examines the capability of both the Proper Orthogonal Decom-
position (POD) and the SingularValueDecomposition (SVD) to identify the zones on
the surface blades of a centrifugal fan that contribute the most to the sound power ra-
diated by moving blades. The Computational Fluid Dynamics (CFD) OpenFOAM®

source code is used as a first step to evaluate the pressure field at the surface of the
blade moving in a subsonic regime. The fluctuating component of this pressure field
makes it possible to directly estimate both the loading noise and the sound power
that is radiated by the blade based on an acoustic analogy of Ffowcs Williams and
Hawkings (FW&H). In the second step, the estimated loading noise is then employed
to evaluate the radiated sound power using the POD and SVD approaches. It may be
noted that the sound power reconstructed by the two latter approaches, when relying
solely on the most important acoustic modes, is similar to the one predicted by the
FW&H analogy. It is also noted that the contribution of the modes in the radiated
sound power does not necessarily appear in ascending order in the decomposition
(i.e., in descending order of energy). Moreover, the highest radiating SVDmodes are
mapped onto the blade surface so as to highlight the zones that contribute the most
to the noise. It is then expected that this identification will be used as a guide in the
design of the blade surface to reduce the radiated noise.
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1 Introduction

When considering centrifugal fans, the acoustic noise due to the interaction between
the turbulent flow and themoving surfaces cannot be ignored, since the radiated noise
level is generally a quality criterion. Furthermore, reducing production costs, while
maintaining good performance and low noise, is a major challenge for the engineers.
Unfortunately, there is no general solution to this compromise, and each fan con-
figuration needs an in-depth design analysis. Therefore, experimental or numerical
analyses are usually employed to reduce the sound radiated by fans and compressors
[1, 2]. In this context, it is difficult to identify and characterize the zones on the blade
surface that contribute the most to the radiated sound power. The present investiga-
tion aims to study the ability of one particular method to overcome this difficulty.
The latter is based on the combination of the acoustic analogy of Ffowcs Williams
and Hawkings (FW&H) [3] and the use of the Proper Orthogonal Decomposition
(POD) [4] or the Singular Value Decomposition (SVD) [5].

The POD method is a particularly efficient data analysis method for studying
complex physical systems. It was introduced in fluid mechanics by Lumley in 1967
to identify and extract coherent turbulent flow structures [4]. Its use in acoustics
began in 1974, with Arnt and George [6], with a view toward linking the radiated
noise to the fluctuating velocity modes in the Lighthill tensor [6]. Since then, only
a few studies have been conducted [7–11], and most of them dealt with flow noise
based on fluctuating velocity decomposition (e.g., jet noise). Few of these studies
addressed the noise generated by the interaction between turbulent flow and solid
walls. As for SVD, it is generally used to search for propagation operators, such as
the Green function [5, 12], or to solve inverse problems in acoustics [13–16]. To the
author’s knowledge, SVD has not yet been used to locate radiating areas on a moving
surface due to its interaction with the flow.

In light of the previous works, this research applies the POD and SVD methods
to the problem of aeroacoustic noise generated by the interaction of a moving blade
and turbulent flow in a centrifugal fan. The objective is to establish a link between
the decomposition modes (of POD or SVD) and the noisiest areas of the blade. The
methodology consists of three steps: (i) Modeling, using foam-extend-3.2 [19–21]
software, the internal flows of the centrifugal fan by the Large Eddy Simulation
(LES) [17, 18] method. The objective is to estimate the wall pressure fluctuation
over the blade. (ii) Using the previous wall pressure fluctuation over the blade to
estimate the loading noise from an FW&H analogy [3, 22] adapted to a moving
source. (iii) Finally, using the POD and SVD to extract the most important acoustic
modes and visualize them, so as to identify the highest radiating zones on the blade
surface.

The paper is organized as follows. First, the estimation of the acoustic field based
on the FW&H analogy is introduced. Both the POD and SVD methods are then
described. Finally, a simulation of a flow passing through centrifugal blades is made
as an application of this approach.
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2 Theory

2.1 Geometry of the Problem

The problem under consideration is schematically depicted in Fig. 1. It consists of a
centrifugal fan composed with a rotor holding 22 identical blades, an inlet stator, and
an outlet stator. When the fan rotates, the interaction between the flow and the blades
generates noise. Since the geometry of the fan is periodic, a periodic model with
only one blade will be studied in the forthcoming developments and calculations.
Moreover, it will be assumed that the radiated sound power is calculated only for the
blade placed in a free field (i.e., without any wall in the vicinity). This will simplify
the analysis since acoustic reflections with the stator’s walls will not be taken into
account in the calculated sound power.

2.2 Estimation of the Acoustic Field (FW&H Analogy)

As discussed previously, the configuration studied here is a rotating blade radiating
noise in free space. The tip tangential velocity is such that the flow is subsonic.
The thickness of the blades is considered null, and only the loading noise (pL )
generated by the pressure fluctuation over the blade surface is therefore investigated.
To alleviate the computation time problem, formulation 1A proposed by Farassat
[22] can be used. In this approach, the receiver time derivative in formulation 1 [22]
is transformed into a retarded time derivative. This also has the great advantage of
permuting the time derivative and the space integration. For the case in which both
the source and the receiver are not moving, and the propagation medium is at rest,
the Farassat formulation 1A [22] in a far field (i.e., when r � λ � Dext , where λ is
the wavelength and Dext the characteristic size of the fan) becomes

pL(x, t) � 1

4π

∫
f (y,τ )=0

[
�̇r

cr(1 − Mr )2
+ �r Ṁr

r(1 − Mr )3

]
τ

dS, (1)

where S is the source surface (i.e., blade surface), r = ‖r‖ = ‖y − x‖ is the distance
between the source position y on the blade surface and the receiver position x, c
is the speed of sound of the acoustic medium at rest, �r = −pn.r/r , where n is
the unit normal vector to the blade surface, p is the pressure fluctuation over the
blade surface obtained by CFD calculation, M is the Mach vector number with
Mr = M.r/r , and [•]τ indicates that all the integrands should be evaluated at the
retarded time τ = t − r/c, where t is the reception time.

As mentioned previously, formulation 1, proposed by Farassat, has the main ad-
vantage of avoiding the spatial derivatives. However, the receiver time derivative is
maintained on �r and Mr . The implementation of this operation is complex and the
computation time increases. To evaluate Eq. (1), two computational approaches are
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available in the literature [23, 24], using either retarded time or advanced time. The
latter is usually chosen when the aerodynamic data comes from CFD computations,
as in this study. The received acoustic pressure must then be determined, while an
irregular receiving time discretization appears, despite the regular emission time. An
interpolation is thus necessary to obtain the received sound pressure at a regular time
step.

The advanced time approach and the Lagrange interpolation are used in this paper.
The calculation of the sound pressure at receiver x in the far field and in a freemedium
allows for the calculation of root-mean-square sound pressure, pL .When considering
the loading noise (Eq. 1), this reads as

p2
L
(x) = 〈

pL (x, t)pL (x, t)
〉
T0

, (2)

where 〈 〉T0 is the temporal average over the time period T0. Thus, the radiated sound
power estimated from far-field microphones (i.e., receivers) located on a spherical
surface encompassing the source writes

P =
∫
Sx

p2
L
(x)

ρc
dSx � 1

ρc

∑
x

p2
L
(x)ΔSx, (3)

where Sx is the receiving surface, ΔSx is the elementary surface associated with
receiver x, and ρ is the density of the surrounding fluid medium.

2.3 Proper Orthogonal Decomposition

Generally, POD used in aeroacoustics is not based on acoustic analogies. However,
in this work, the developed approach is a combination of the POD theory and the
FW&H acoustic analogy limited to the dipole term (i.e., loading noise).

If one considers a dipole located at yi , the sound pressure received at point x at
time t according to Eq. (2) can be written as

pL (x, yi , t) = 1

4π

[
�̇r

cr(1 − Mr )2
+ �r Ṁr

r(1 − Mr )3

]
τ

ΔSyi , (4)

where ΔSyi is the i th elementary surface of the source located at yi . Here, this
elementary surface comes from the discretization of the blade surface for the LES
calculation.

Since the sound pressure received at one point corresponds to the contribution of
all the dipoles located on the blade surface, two matrices A andWobs are defined by

Wobs = 1

N
AAT , (5)
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where

A =

⎛
⎜⎜⎜⎝

pL (x, y0, te0) pL (x, y0, te1) · · · pL (x, y0, teN−1)

pL (x, y1, te0) pL (x, y1, te1) · · · pL (x, y1, teN−1)
...

...
. . .

...

pL (x, ym−1, te0) pL (x, ym−1, te1) · · · pL (x, ym−1, teN−1)

⎞
⎟⎟⎟⎠

and where te j represents the emission time for the dipole source located at yi (i =
0, 1, . . . ,m − 1) at time step j ( j = 0, 1, . . . , N − 1). Each column vector of the
matrix A is the sound contribution of all dipoles at a given reception time, while
each row vector represents the sound pressure of a single dipole source during the
receiving time.

Matrix Wobs in Eq. (5) is the correlation matrix of the sources for receiver x. It
is symmetric, real, positive definite, and spatial. Its eigenvalues (modes) are thus
real, positive, and space-dependent. For developing a modal basis for matrix Wobs ,
let λ = diag (λ0, λ1, . . . , λm−1) and φ = [

φ0,φ1, . . . ,φm−1
]
be, respectively, the

diagonal matrix of eigenvalues and the matrix of eigenvectors at receiver x. Each
column φi is the eigenvector associated with the eigenvalue λi at receiver x. Then,
for every receiver x, the problem to be solved is the following eigenvalue problem:

Wobsφ = λφ. (6)

Multiplying each member of Eq. (6) from the right by the transpose of the matrix of
eigenvectors, if normalized modes are considered so that φφT = I, the expression
for the correlation matrix is given by

Wobs =
m−1∑
k=0

(λkφk)φ
T
k . (7)

The correlation matrix Wobs is then written as a sum of independent matrices de-
fined as spatial autocorrelation patterns with proper modes as components. Since
the eigenvectors form an orthonormal basis of the source space, the sound pressure
produced by the i th elementary surface of the source located at yi can be written as

pL (x, yi , t) =
m−1∑
k=0

αk(t)Φk,i , (8)

where αk(t) = αk(x, t) =
m−1∑
i=0

pL (x, yi , t)Φk,i are the temporal modal amplitudes or

the projection coefficients on the modal basis. Φk,i = φk(x, yi ) is the i th component
of the kth eigenvector (φk). Thus, coefficients are the root-mean-square of the acoustic
pressure projected on the Φk(y) axis in the source space (i.e., the blade). According
to the theory of Merces [25], the projection coefficients form an orthogonal basis
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for the temporal space and its root-mean-square 〈αk(t)αk(t)〉T0 corresponds to the
eigenvalue λk . The eigenvalues represent the square of the sound pressure projected
onto the Φk(y) axis in the source space. The total sound pressure from the loading
noise radiated to the receiver x at time t is the contribution of individual sources (Eq.
8), and therefore Eq. (1) reads as

pL (x, t) =
m−1∑
k=0

(
αk(t)

m−1∑
i=0

Φk,i

)
. (9)

Substituting the loading pressure pL of Eq. (2) with Eq. (9), and considering the
orthogonality of the eigenvectors, the mean quadratic sound pressure at receiver x
yields

p2
L
(x) =

m−1∑
k=0

(
m−1∑
i=0

Φk,i

)2

λk . (10)

In this proper orthogonal decomposition, not every mode contributes equally to the
total quadratic pressure. The latter can then be evaluated only by taking into account
the modes that contribute the most. This is reported by the accumulated acoustic
energy of the first q modes, EAcq , divided by the total acoustic energy of all modes

EAcq =

q−1∑
k=0

λk

m−1∑
k=0

λk

. (11)

Once the highest contributing modes are identified, the summations in Eqs. (3) and
(10) are limited up to q − 1 instead of m − 1. Thus, Eqs. (9) and (10) becomes,
respectively,

pL (x, t) �
q−1∑
k=0

(
αk(t)

m−1∑
i=0

Φk,i

)
, (12)

p2
L
(x) �

q−1∑
k=0

(
m−1∑
i=0

Φk,i

)2

λk . (13)

In the previous equations, the spatial eigenvectorsΦk,i give information on the acous-
tic radiation of all dipole sources distributed over the surface S. Thus, considering
Eq. (13), the acoustic power defined by Eq. (3) becomes
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P � 1

ρc

Nobs−1∑
�=0

⎛
⎝ΔS�

q−1∑
k=0

λ�k

(
m−1∑
i=0

Φ�k,i

)2
⎞
⎠ , (14)

whereΔS� = ΔSx is the elementary surface of the �th receiver, Nobs is the number of
receivers, λ�k is the kth eigenvector of the �th receiver, andΦ�k,i is the i th component
of the eigenvector associated with the kth eigenvalue λ�k .

2.4 Singular Value Decomposition (SVD)

The SVD makes the sound generation investigation (i.e., the eigenvalues and the
eigenvectors resulting from the POD) independent of the receiver x. A global (Nobs ×
m) × m matrix WSVD gathering all the correlation matrices Wk (0 ≤ k < Nobs) of
the Nobs receivers is built

WSVD =

⎡
⎢⎢⎢⎣

W0

W1
...

WNobs−1

⎤
⎥⎥⎥⎦ . (15)

Here, the receivers are distributed over a sphere of radius R around the source. The
radius is large enough that the far-field assumption is verified. The position of the
receivers over the sphere is done according to ISO 3745 standard [26].

According to the SVD method, theWSVD matrix is decomposed in the following
form:

WSVD = UσVT , (16)

where σ is the diagonal matrix of singular eigenvalues and U and V are the matri-
ces of the left and right eigenvectors, respectively. U accounts for the difference in
the acoustic radiation of the sources between receivers and V provides the average
information of the acoustic radiation of the sources for all receivers. One can show
that U and V can be obtained by application of the POD on matrices WT

SVDWSVD

and WSVDWT
SVD, respectively. By retaining only the first q energetic modes, the ex-

pression of the sound power (Eq. 3) based on the SVD can finally be expressed
as

P � 1

ρc

q−1∑
k=0

⎛
⎝σk

m−1∑
i=0

Vk,i

Nobs−1∑
�=0

⎛
⎝ΔS�

m(�+1)−1∑
j=m∗�

Uk, j

⎞
⎠

⎞
⎠ , (17)

where σk is the kth eigenvalue of the matrix WSVD, and Vk,i and Uk,i , respectively,
represent the i th component of the right and left eigenvectors associated with to the
eigenvalue σk from the POD method.
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3 Application

3.1 Geometry, Spatial Discretization,
and Boundary Conditions

As introduced earlier, the geometry under consideration consists of a centrifugal fan
made of two stators and one rotor. More specifically, the rotor holds 22 identical
blades with a constant π/11 angular distance placed around the rotor axis (Fig. 1a).
The blades’ profile is derived from a NACA airfoil profile.

The numerical model to be solved by CFD is simplified due to the periodicity
of the fan’s geometry. As a consequence, only 1/11th of the geometry is studied as
shown in Fig. 1c. The rotor domain considers one blade and is delimited on either
side by the wall of the next blade. The centered blade is the principal acoustic source
of the problem; the other sources are supposed to be negligible.

The inner and outer radii of the rotor equal Dint = 0.105 m and Dext = 1.66Dint ,
respectively. The thickness of the profile is 0.0017 m, the length of its chord is
0.056 m, and the skeleton shape follows a logarithmic function. The height of the
rotor at the inlet equals b0 = 0.04m,while the heights of the leading edge and trailing
edge are b1 = 0.034 m and b2 = 0.0177 m, respectively.

A hybrid mesh of the numerical domain is built using the free software Salome. A
structured mesh is used for both stators and near the central blade (acoustic source).
An unstructuredmesh is used elsewhere. The first layer of cells of the structuredmesh
at the wall of the central blade is chosen so that the dimensionless wall parameter
y+ nearly equals 1. The first grid points are thus located in the laminar part of the
boundary layer. The influence of the size of the cells, located in the rotor domain,
on the solution is investigated in the direction of the flow (Δx) and the transverse
direction (Δz). For this, three meshes are built: coarse, medium, and fine meshes,
namely cases 0, 1, and 2. All information about these meshes is shown in Table 1.

For the boundary conditions, the velocity at the inlet stator is fixed at 8.127 m/s,
and a zero pressure is imposed at the exit of the outlet stator (Fig. 1c). The no-slip

Fig. 1 Geometry of the centrifugal fan problem under consideration. The y-axis is the axis of
rotation. a Full geometry. b Rotor. c 1/11th periodic geometry and boundary conditions
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Table 1 Discretization parameters of each mesh of the blade and the rest of the rotor

Discretization parameters Number of cells

Blade (source) Rotor

Case Δx (m) Δz (m) Max size (m) Blade (source) Total

0 0.0010 0.00025 0.00123 22,813 462,910

1 0.0010 0.00025 0.00064 22,813 1,118,233

2 0.0007 0.00002 0.00064 44,972 1,381,229

condition is imposed on both the rotor and stator wall surfaces. Periodic boundary
conditions are imposed at all periodic coupled boundary faces, i.e., (period_e1, pe-
riod_e2), (period_r1, period_r2) and (period_s1, period_s2), using cyclicGgi bound-
ary conditions with nCopies = 11 following foam-extend-3.2 notation. Furthermore,
interface conditions are defined on coupled surfaces (inter_re, inter_er) and (inter_rs,
inter_sr) based on overlapGgi boundary conditions [19, 21] with a periodicity angle
of±π/11, so that the air flow passes through the three domains. The angular velocity
of the rotor equals Ω = 2800 rpm.

3.2 Governing Equations and Time Discretization

The fluid is pure air and its physical properties are estimated at 25 ◦C (ρ = 1.2
kg/m3 and μ = 1.831 × 10−5 Pa s). The Large Eddy Simulation method is used to
simulate the internal flow channel with the free software foam-extend-3.2 [19]. The
one−equation sub-grid model [18] for turbulent kinetic energy is used. For the pres-
sure field, the linear system is solved with the iterative preconditioned conjugate
gradient method with Diagonal-Based Incomplete Cholesky (DIC) preconditioning.
For the velocity field and turbulent kinetic energy, the stabilized biconjugate gradient
method with preconditioning Diagonal Incomplete-LU (DILU) is chosen. The back-
ward second-order scheme is used for the temporal resolution. The time step value
depends on the mesh that is used in the simulation: ΔtCFD = 6.62 × 10−7 s for case
0; 5 × 10−7 s for case 1; and 3.5 × 10−7 s for case 2 (Table 1). These values lead to
a CFL number lower than 0.2 in the three simulations. The Gauss linear scheme is
used to calculate the terms of the spatial derivatives. Twomonths were usually neces-
sary to reach convergence using 48 processors on the Compute Canada-Sherbrooke
(supercomputer) [27]. 3.5 revolutions of the blade are needed for the solution to be
converged here. Once this convergence is reached, the wall pressure fluctuations (i.e.,
p) over the blade surface (source) are saved periodically, so that Δta = 8ΔtCFD dur-
ing a full rotation of the rotor. The number of time samples equals N = 4046, 5357,
and 7653, respectively, for cases 0, 1, and 2. For each case, the pressure fluctuations
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p are filtered by a band-pass filter to reject frequencies outside the 50 Hz–10 kHz
range. The sound that will be estimated from the FW&H acoustic analogy will then
remain within the audible range.

3.3 POD Analysis and Interpretation

As was mentioned earlier the pressure fluctuations over the blade surface are esti-
mated using the CFD approach. An acoustic analogy then leads to a filtered acoustic
pressure (i.e., filtered pressure signal) ultimately employed for both the POD and
SVD methods. Thus, the radiated sound pressure, the correlation matrix, and the
modes are calculated for the receivers placed on a sphere around the source, per ISO
3745 standard [26], as discussed in Sect. 2.4. For this investigation, Nobs = 20 re-
ceivers are placed on a sphere of radius R = 6 m. Figure 2 represents the projection
of the receivers in the plane passing through the origin and normal to the rotor axis.
In order to investigate the influence of the number of modes in the estimation of the
loading noise, Eq. (9) is first used with all the m POD modes to evaluate pL . Second
Eq. (12) is used to evaluate pL with only the first 10 dominant modes. The compari-
son is shown in Fig. 3 for four different receivers. It is noticed, as expected, that both
the amplitude and the time at which maxima occur depend on the receiver location,
whatever the value of q. Furthermore, using q = 10 seems sufficient to reconstruct
the signal obtained when q = m (Fig. 3), since the relative error between both calcu-
lations remains less than 12.5%.Moreover, what is not shown here is the fact that the
mesh refinement does not significantly influence the loading noise evaluation. From
these results, calculations show that 60% of the acoustic energy is reconstructed with
the first 10 POD modes. When the radiated sound power is evaluated from Eqs. (3)
or (14), the comparison is even better, since the relative error drops below 1.1% for
the three cases.

Fig. 2 Position of the
receivers in the plane passing
through the origin and
normal to the rotor axis y
with ω = 2πΩ/60, as per
ISO 3745 standard [26]
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(a)

(b)

(c)

(d)

Fig. 3 Load noise pressure with all POD modes (Eq. 9) and with the first 10 dominant modes
(Eq. 12) at receivers a: 0, b: 9, c: 14, and d: 16

To conclude on POD, it has been shown that both the radiated sound pressure
and the sound power using only the first few POD modes may be satisfactorily
reconstructed. As a consequence, instead of using all the sources x on the blade
surface (i.e., allm PODmodes), only thefirst 10 dominant PODmodeswere sufficient
(for information, here, m = 22813 for cases 0 and 1, and m = 44972 for case 2).

3.4 SVD Analysis and Interpretation

Figure 4 shows the contribution of each SVD mode in the evaluation of the acoustic
power from Eq. (17). It appears that SVD modes 0 and 1 for cases 0 and 1, and 0
and 2 for case 2, make a significant contribution to the acoustic power. While the
mode number associated with the second most significant mode differs for case 2 in
comparison with the two others, the shapes of the modes are similar for all of them,
as will be shown later in the mapping of the modes on the blade surface. In contrast
with the results obtained from POD, the major part of the acoustic energy is now
captured by only two modes. As a consequence, when estimating the radiated sound
power using Eqs. (3) and (17), based on all SVDmodes and only the above 2 modes,
respectively, relative error equals 0.62% for cases 0 and 2, and 1.1% for case 1.

From the singular value decomposition of the aeroacoustic problem under con-
sideration, it is possible to map the right eigenvectors Vk on the blade surface, as
shown in Fig. 5. Here, this is done in order to visualize the zones that are mostly
responsible for the radiated sound pressure independently of the receiver location.
Depending on the mode number and the side of the blade, the highest values appear
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Fig. 4 Radiated sound power of each SVD mode (Eq. 17) for different mesh cases (0, 1, and 2)

Fig. 5 Mapping of the highest radiating SVD eigenvector for each side of the blade: a suction side,
eigenvector 1 for cases 0 and 1, and eigenvector 2 for case 2; b pressure side, eigenvector 0 for the
three cases

mainly at 50% of the chord and near the edge (see Fig. 5). These regions are located
near the borders, where the fluctuations of the velocity and pressure in the boundary
layer are strong. As a consequence, a proper modification of the blade geometry,
or surface treatment, in these regions would reduce the radiated sound power. This
conclusion has yet to be validated, but maybe in the future work.

The same mapping and identification of the highest radiating region could also be
done using the POD approach. However, since POD is done per receiver, themapping
would only indicate the potentially noisiest zone for a given receiver. It would not
lead to a global reduction of the radiated sound power. However, if the reduction is
to be obtained at a particular location, the POD approach would be most preferable.
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3.5 Conclusion

Two decomposition methods based on CFD calculations and acoustic analogies were
applied to identify the zones on centrifugal fan blades that contribute the most to
the sound power radiated in the subsonic regime. Here, the CFD calculations were
performed using foam-extend-3.2 to obtain the pressure fluctuations on the blade
surface. These pressure signals were filtered to retain frequency components between
50 Hz and 10 kHz. Based on these filtered pressure signals, the loading noise was
evaluated based on the FW&H acoustic analogy and decomposed using POD and
SVD. From POD and SVD, the radiated sound power and pressure can be estimated
using only the first few modes. For the geometry studied, 10 POD modes or 2 SVD
modeswere sufficient to recover the radiated soundpressure. Thehighest contributing
eigenvectors found by POD or SVD can be mapped onto the surface of the blade to
visualize the zone that contributes themost to sound radiation. Since the eigenvectors
are dependent on the receiver location, the POD approach is preferred when dealing
with unidirectional acoustic treatments (e.g., the acoustics of pipes). As for the SVD
approach, it is more general and enables acoustic treatment in all directions in space.
It is mostly appropriate when dealing with the reduction of radiated sound power
of a source. For the centrifugal fan studied, the mapping of the most radiating SVD
eigenvectors showed that the noisiest area of the blade is located at 50% of the chord
near the edge. This is an interesting insight in regard to modifying the blade properly
for possible reduction of sound power.

This iteration has yet to be validated (although it may be in future work) to prove
the efficiency of the redesign method. This study also demonstrated the usefulness
of foam-extend in assisting in the realization of complex aeroacoustic projects. The
next step is to implement the FW&H acoustic analogy in foam-extend.
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Numerical Modeling of Flame
Acceleration and Transition
from Deflagration to Detonation Using
OpenFOAM®

Reza Khodadadi Azadboni, Jennifer X. Wen and Ali Heidari

Abstract The present numerical investigation aims to study the dynamics of
deflagration-to-detonation transition (DDT) in inhomogeneous and homogeneous
mixtures. Modeling discontinuities, such as shocks and contact surfaces, in high-
speed compressible flows require numerical schemes that can capture these features
while avoiding spurious oscillations. For the numerical model, two different solution
approaches, i.e., the pressure-based and density-based methods, have been adopted
using the OpenFOAM® CFD toolbox. A reactive density-based solver using the
Harten–Lax–van Leer-contact (HLLC) scheme has been developed within the frame
of OpenFOAM®. The predictions are in reasonably good qualitative and quantita-
tive agreement with the experiments (Boeck et al. in The GraVent DDT Database,
2015 [3]). The DDT phenomena have two major stages; flame acceleration (FA),
during which the flow is in the subsonic regime, and the transition-to-detonation
stage, in which the combustion wave undergoes a transition to the supersonic state.
The present study indicates that it is viable to use the pressure-based algorithm for
studying FA, but a density-based method is required for modeling DDT.
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1 Introduction

Fire and explosion in combustible mixtures have been widely studied, both exper-
imentally and numerically. Gas explosions inside tubes have been investigated for
a long time. Most of these studies were carried out for industrial safety and with a
desire to describe generalmechanisms of flame propagation. Therefore,most of these
works concern understanding the flame acceleration (FA) phenomena and transition
from deflagration to detonation (DDT) in tubes [1].

One of the main hazards in hydrogen energy applications is the formation of
flammable vapor clouds, which can propagate kilometers away from the source,
with the possibility of igniting and resulting in fire and explosions [1]. Explosions in
homogenous reactive mixtures have been widely studied, both experimentally and
numerically. However, in practice, combustible mixtures are usually inhomogeneous
and subject to both vertical and horizontal concentration gradients.

Thomas [2] has given a comprehensive overview of various forms of DDT and
differentiates the terminology between the macroscopic DDT and the microscopic
DDT. The large-scale macroscopic DDT includes the process from accelerating
deflagration-to-detonation propagation. The small-scale microscopic DDT governs
the actual onset of detonation at the point where the combustion process changes
from diffusion controlled to shock heating controlled [2]. In this work, the term
“DDT” is used in the larger definition and includes both acceleration and the onset
of detonation. Thomas also features a discussion on understanding of the weak DDT,
in which it is not onset by a strong reflected shock wave, but rather non-isotropic
and nonequilibrium turbulence accelerates a deflagration and creates small hot spots,
which, in turn, generate transverse waves and add up to strong pressure waves capa-
ble of forming the required shock/reaction complex known as the detonation [2], the
importance of which is emphasized. Gas explosions inside tubes have been studied
for a relatively long time.

The combustible mixtures pose a risk, especially when an ignition source is avail-
able or when the pressure and/or temperature exceed the self-ignition limits [1]. In
the past, very few studies considered the effect of mixture inhomogeneity on the
behavior of DDT.

Recently, Boeck et al. [3] investigated flame acceleration and DDT in a channel
with vertically variable hydrogen concentrations. They showed that the flame accel-
erated faster when the mixture has concentration gradients. DDT was also observed
as reflected shock waves interacting with the deflagration front.

The present study aims to provide an appropriate numerical method for model-
ing DDT phenomena in horizontal obstructed channels with two different blockage
ratios, i.e., 60 and 30%. The tube is filledwith a hydrogen/air mixture with an average
of 30 percent hydrogen by volume.

Two different solvers developed in OpenFOAM® have been used. A pressure-
based solver using the flame-wrinkling combustion model [4] has been developed
and named RMXiFoam. The solver is used for uniform hydrogen/air mixture DDT
modeling, as well as a prediction of baroclinic torque and Richtmyer–Meshkov insta-
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bilities. According to Eq. (1), baroclinic torque is generated as a result of strong
misalignment of the density and pressure gradients. In high-velocity reacting flows,
such as deflagration and detonation waves, hydrodynamic instabilities are one of
the key factors in enhancing turbulence through shock–flame interaction. Therefore,
baroclinic vorticities have been predicted using this solver to examine the Richtmy-
er–Meshkov (RM) instability.

Baroclinic torque � (∇ρ × ∇ p)/ρ2. (1)

For mixtures with concentration gradients, the FA, a stage that occurs at rela-
tively low Mach numbers, has been modeled using a pressure-based algorithm, and
the transition stage, which is supersonic and includes strong shock waves, has been
modeled with a density-based solver. To evaluate the contribution of the convective
fluxes, and accurate shock capturing, the Harten–Lax–van Leer-contact (HLLC) [5]
scheme is used. The compressible Navier–Stokes equations with a single step Arrhe-
nius reaction are solved. For turbulence modeling, the large eddy simulation (LES)
technique has been used. The solver and numerical schemes were initially tested by
solving the Sod’s shock tube problem [6]. For numerical validation, an experimental
inhomogeneous DDT test case [3] has been selected.

2 Governing Equations

The standard governing equations for solving the flow field in a Eulerian framework
can be listed as below:

Mass conservation:

∂ρ

∂t
+ ∇ · (ρU ) � 0. (2)

Conservation of momentum (neglecting body forces):

∂(ρu)

∂t
+ ∇ · [u(ρu)] + ∇ p + ∇ · τ � 0. (3)

Conservation of total energy:

∂(ρE)

∂t
+ ∇ · [u(ρE)] + ∇ · [up] + ∇ · (τ · u) + ∇ · j � 0, (4)

where, in Eq. (2), ρ is the density, U the velocity vector, and p the pressure, and in
Eq. (3), τ is the viscous stress tensor, which can be defined using Eq. (5) [7].

τ � −2μ dev(D), (5)
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where, in Eq. (5),μ is the dynamic viscosity andD is the deformation gradient tensor,
which is defined as Eq. (6),

D ≡ 1

2

[∇u + (∇u)τ
]
. (6)

In Eq. (4), j is the diffusive flux of heat and E is the total energy density, which
can be defined as

E � e + |u|2/2, (7)

where e is the specific internal energy.

2.1 Solution Algorithms

Simulating discontinuities, such as shocks and contact surfaces, in high-speed com-
pressible flows require numerical schemes that can capture these featureswhile avoid-
ing spurious oscillations. There are two main major solution algorithms for solving
the flow fields: the pressure-based approach and the density-based approach. Both
approaches are examined in the present study.

In the pressure-based approach of OpenFOAM® solvers (such as sonicFoam [8]),
a non-iterative method for handling the coupling of implicitly discretized time-
dependent fluid flow equations is utilized. Themethod is known as PISO (for pressure
implicit with the splitting of operators). It is based on applying the pressure and veloc-
ity as dependent variables and applies to both the incompressible and compressible
forms of the transport equations. The main feature of the technique is the splitting of
the solution process into a series of steps in which operations on pressure are decou-
pled from those on velocity. With the split, sets of equations amenable to solution by
standard techniques are intended to be produced [9].

The fields obtained after each PISO step are closer predictions of the analytical
solution of the equations with a proper order of accuracy, depending on the number
of operation-splittings used. The errors’ rapid decay, together with the fact that the
stability of the overall scheme is little impaired by the splitting procedure, should
allow for getting rid of iterations while retaining the advantage of implicit differ-
encing, namely, the ability to cope with large time steps [9]. In this work, the PISO
methodology is outlined.

In somemethods that are effective in producing accurate non-oscillatory solutions,
for capturing shock and discontinuities, the generation of numerical fluxes typically
involves Riemann solvers, characteristic decomposition, and Jacobian evaluation,
making them complex and difficult to implement on a mesh of polyhedral cells
that have an arbitrary number of faces [7]. However, an alternative approach exists
that does not involve Riemann solvers and can also provide accurate non-oscillatory
solutions using the so-called central schemes. The central schemes that are developed
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Table 1 Initial condition of Sod’s problem

Compartment X > 0.5 Left (driven) X < 0.5 Right (driven)

Pressure PL � 1 PR � 0.1

Density ρL � 1 ρR � 0.125

Velocity UL � 0 UR � 0

by Kurganov and Tadmor [10], Kurganov et al. [11] and Greenshields et al. [7]
are available in OpenFOAM®. Khodadadi et al. [12] carried out a shock-capturing
study using different OpenFOAM® solvers to solve Sod’s problem [6] and concluded
that the available central scheme density-based solver in OpenFOAM® can provide
the most accurate shock capturing. They also mentioned that the proposed density-
based solution could generate some oscillations on the shock contact surface. These
oscillations may be linked to the numerical schemes. Hence, to provide the most
appropriate numerical scheme, for shock capturing, a similar shock tube modeling
using Sod’s condition has been conducted in this study.

The shock tube problem that was used by Sod [6] to test a number of methods
for solving the equations of compressible flow has become a standard test problem.
The initial conditions for this problem consist of two semi-infinite states separated
by a diaphragm at time t �0 [12]. The left and right states are set to the following
conditions (Table 1). For the numerical modeling of Sod’s problem, 100 cells have
been considered for comparison with the analytical solution.

The existing central scheme density-based solver in OpenFOAM® is called “rho-
CentralFoam,” and the pressure-based solver adopted is called sonicFoam in the
OpenFOAM® package [8, 10].

Sod’s problem was modeled using the rhoCentralFoam solver by applying three
different interpolation schemes as follows:

1. Using Upwind schemes for density, temperature, and velocity.
2. Using the VanLeer TVD method for density and temperature, and Upwind for

the velocity.
3. Using VanLeer for all of the parameters.

For the solution of the pressure-based solver, sonicFoam has also been provided
for better comparison between the numerical methods and analytical solution.

The results in Fig. 1 show a shock wavemoving to the right and a rarefaction wave
(expansion fan) moving to the left; the contact surface discontinuity separating the
shock and rarefaction waves is moving to the right [6]. These results demonstrate that
density-based solutions can provide better shock capturing than the pressure-based
solver (dashed blue line) when compared with the analytical solution. Moreover, it
is seen that using the Upwind method in the solution of the density-based solver can
provide an adequate estimation of the shock front, but it will not produce an accurate
shock contact surface and expansion fan modeling. In order to improve discontinuity
modeling, TVD-type schemes [13] are used. Figure 1 also shows that the VanLeer
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Fig. 1 Density distribution in the shock tube using 100 cells

scheme [13] can produce an accurate shock contact surface modeling, but there are
some oscillations on the leading shock contact surface.

Additionally, Fig. 1 shows that by changing the interpolation scheme of the veloc-
ity fromVanLeer to Upwind, and using VanLeer for interpolation of density and tem-
perature in the rhoCentralFoam solver, the shock front, contact surface, and expan-
sion fan predictions will closely match the analytical solution without having any
oscillation on the shock contact surface.

Borm et al. [14] implemented a Godunov-type scheme to the density-based
solver in OpenFOAM®, which is called dbnsTurbFoam [14]. This method uses
the Harten–Lax–van Leer-contact (HLLC) [5] scheme, and for the time discrete
schemes, which include the dual time scheme and the physical time step, it uses
the Runge–Kutta scheme [14]. This is used as the basis for the presently assembled
density-based solver, VCEFoam (vapor cloud explosion Foam) [15]. In addition,
a reaction, as well as an adaptive refinement mesh (AMR), has been implemented.
VCEFoam can simulate highMach number reactive flows, by solving chemical reac-
tions and HLLC schemes.

In order to include the chemical reaction and species transport terms from
OpenFOAM®’s combustion library, the energy equation needs to be changed from
using the total energy to using the sensible enthalpy, as in Eq. (8) as given below:

∂(ρhs)

∂t
+ ∇ · (ρUhs) − Dp

Dt
� ∇ ·

[

α∇hs +
n∑

i�1

hi Ji

]

+ ∇ · (τ ·U ) + Sh, (8)
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where U, p, hs, T , Sh are the density, velocity, pressure, sensible enthalpy, temper-
ature and enthalpy source, respectively, α is the ratio between k and the thermal
conductivity, and cp the specific heat at constant pressure. The viscous stress tensor
is defined in Eq. (5).

Species transport and the diffusion coefficient are added, so that the species con-
servation equation is

∂(ρYi )

∂t
+ ∇ · (ρuYi ) � ∇ · Ji + Ri , (9)

where Yi is the mass fraction and Ji is the diffusion flux of species i, defined as
Eq. (10) given below:

Ji � −ρDi,m∇Yi , (10)

where the binary diffusion coefficient,Di,m, for species i in themixture can be derived
according to Wilke’s equation [16].

2.2 Transition from Low Mach Number to High Mach
Number Flows

The transition mechanism in this work is due to the interaction of reflected shock
from the obstacles to the flame front. Therefore, the shock-capturing capability of
the model has a substantial effect on the accuracy of the predictions. Moreover,
the DDT phenomena can be divided into two main stages; first, flame acceleration
(deflagration)with the subsonicflow, and then the transition-to-detonation supersonic
flow. Since the density-based solver is not suitable for modeling low Mach number
problems, it is better to use a pressure-based approach for the flame acceleration
stage, and then subsequently switch to the density-based solution for the supersonic
flow.

3 Case Study

The experiments of Boeck et al. [3] involving inhomogeneous and homogeneous
DDT in a hydrogen–air mixture are simulated. The experiments were conducted in
a horizontal obstructed channel with 30 and 60% blockage ratios. It was initially
filled with an inhomogeneous hydrogen–air mixture, which was, on average, 30%
hydrogen by volume (Fig. 2).
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Fig. 2 Schematic of the computational domain (Reproduced from Boeck et al. [3])

4 Results and Discussion

The DDT experiments [3] are modeled using both the assembled pressure-based and
density-based solvers. The pressure-based RMXiFoam solver (which is based on the
XiFoam solver) uses the flame-wrinkling model [4] for combustion. Several numer-
ical test cases revealed that although the present model can reproduce reasonable
results for low speed and to some extent, fairly high-speed deflagration waves, the
models suffer from considerable deviations when applied to highly turbulent and
fast deflagrations that are about to undergo a transition to detonation. This is mainly
because many of the underlying assumptions are not valid in near-DDT combustion
regimes. For example, due to flame thickening, the standard flamelet assumption is
not valid near a wall when a highly turbulent deflagration wave is interacting with
an obstacle. This could significantly alter the prediction of hot spot formation when
the deflagration waves are hitting an obstacle [17]. Therefore, it is decided from this
point onwards, in the developed density-based solver (VCEFoam) that the efforts
toward simulating DDT will be carried out without using the traditional flamelet-
based combustion model, but rather through use of Arrhenius-type reactions and full
instantaneous Navier–Stokes equations involving monotone-integrated large eddy
simulation, a.k.a. the MILES approach [18]. The solver and numerical schemes are
initially tested by solving Sod’s shock tube problem [6].

4.1 Predictions Using the Pressure-Based Solver

The pressure-based RMXiFoam solver provides a reasonably good prediction of
flameacceleration in the obstructed channel, but the acceleratedflamedidnot undergo
a transition to detonation.

Figure 3 shows the density counter of the flame while it propagates through
obstacles 6 and 7. In the first frame, it can be seen that a weak shock wave has been
generated in the flame front, subsequently interacting with the obstacle and leading
to a reflected shock moving upstream of the flow. At 8.83 ms, the reflected shocks
interact in the middle of the tube, and shock-focusing phenomena occur, generating
a stronger shock wave. Then, at 8.9 ms, the reflected shock interacts with the flame
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Fig. 3 Density distribution contours of deflagration of a homogenous hydrogen/air mixture of 30%
Vol and BR60, with a pressure-based solution

front and the first local explosion appears, increasing the pressure up to 20 bar.
However, within a period of 9 ms, the detonation fails and the leading shock wave
and flame front are decoupled. The predicted baroclinic torque in the tube is not
strong enough to trigger Richtmyer–Meshkov instability.

Figure 4 shows the baroclinic torques during the flame acceleration stage. It con-
tains different directions of the baroclinic vorticities (red: out of the plane, and blue:
into the plane). Xiao et al. [19] presented the baroclinic torque field at different times
during the initiation of the tulip flame and predicted the magnitude of baroclinic
torque to be within the range of (−2e + 8 to +2e + 8(1/s2)). The present predictions
are consistent with their findings, as shown in Fig. 4a. They also predicted that the
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Fig. 4 Baroclinic torque contour in the Z-direction of the flame acceleration of a hydrogen flame
simulation with an RMXiFoam solver, for BR � 60% at a time � 1.86 ms, b time�2.16 ms, and
c time�2.409 ms. The unit of baroclinic torque is 1/s2

baroclinic torque would increase with time (around −1e + 9 to +1e + 9(1/s2)). The
present predictions are, however, smaller, and as a result, no DDT or RM instability
occurred.

4.2 Predictions Using the Density-Based Solver

For better shock and detonation capturing, the newly assembled density-based solver
is used.

Figure 5 shows that the predicted flame position and flame tip speed are in rea-
sonably good quantitative agreement between the measurement [3] and the present
predictions of the VCEFoam solver. It can be seen (Fig. 5) that the flame velocity
rises continuously in the obstructed part of the channel (around the seventh obstacle,
x ≤ 2.05 m) due to flame interaction with the obstacles, resulting in combustion-
induced expansion and turbulence generation.

Figure 6 shows a good qualitative agreement between the experimental observa-
tions and the predicted OH distribution of homogeneous hydrogen flame DDT with
the density-based solver. In Fig. 6a, it can be seen that the flame front is planer and
moving toward the obstacle (the seventh obstacle in the tube), and that two strong
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Fig. 5 Comparison between the predicted and measured flame positions [18] for BR60% and an
inhomogeneous mixture of 30% Vol. hydrogen on average

Fig. 6 Comparison of experimental results [3] of DDT of a homogenous 30% Vol. hydrogen in
BR 60%, and x � 2 m, (obstacle 7), with numerical results of the OH distribution from VCEFoam
in; a time � 9.42 ms, b time � 9.44 ms, c time � 9.48 ms

shock waves are generated behind the top and bottom obstacles. Figure 6b shows
that these two reflected shock waves are interacting in the middle of the tube and, as
the result of shock-focusing phenomena, a refraction shock wave will be generated
in the downstream of flow. Then, the generated shock wave interacts with the flame
front and triggers a transition to detonation (Fig. 6c). Following DDT, the shock-
detonation structure can be seen, including a strong reflected shock wave, as well as
a leading shock ahead of the flame front. Moreover, pressure gradient frames show
the mechanism of shock and explosion generation (Fig. 7).
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Fig. 7 Themagnitude of pressure gradient contours of deflagration to detonation for a homogenous
hydrogen/air mixture of 30% Vol and BR60. The unit of the pressure gradient is Pa/m

Figure 7 shows the distribution of pressure gradient magnitude in the tube around
obstacle 7. These results illustrate the evolution of the shock waves. At time 9.43 ms,
a planer flame is moving toward the obstacle with a strong shock wave ahead of
the flame front, as well as some weaker shock waves in the upstream of the flow
field. Moreover, it can be seen that the reflected shock waves from the upper and
lower walls are interacting in the middle of the tube. By marching in time, it can be
seen that the leading shock is interacting with the obstacle, and as a result, a strong
reflected shock is generated in the flow. The reflected shocks from the upper and
lower obstacles interact in the middle of the tube, which causes a shock focusing
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Fig. 8 Baroclinic torque contour in the Z-direction of DDT of a homogenous hydrogen flame
simulation with the density-based solver, for BR � 60, 30% H2 at a time � 9.0 ms, b time �
9.14 ms, and c time � 9.18 ms. The unit of baroclinic torque is 1/s2

(Fig. 7, time�9.455 ms). The reflected shock will generate a triple point in the
detonation structure. Some part of the leading shock passes through the obstacle,
slowly growing with the flame until it reaches the upper and lower walls of the tube
(Fig. 7, time�9.46 ms). At 9.475 ms, it can be seen that the reflected shock from
the wall causes a secondary triple point in the shock–flame structure. At 9.495 ms,
the reflected shock waves from the upper and lower walls meet in the middle of the
tube, and it results in shock-focusing phenomena in the downstream of the flow field.
These results also illustrate that the obstacles and wall in the tube have a significant
effect on shock generation ahead of the flame front.

Figure 8 shows the predicted baroclinic torque distribution in the Z-direction
with the density-based solution. It can be found that baroclinic torque is increasing
with time (Fig. 8a–c), so that the pressure gradient has been, respectively, increased.
Moreover, as shown in Fig. 8c, the magnitude of the baroclinic torque (−5e + 10 to
+5e + 10 (1/s2)) is considerably higher than in the predictions of the pressure-based
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Fig. 9 Inhomogeneous hydrogen–air with 30% Vol. in the average mixture in the case with BR
30% and time � 4.7 ms; Top: temperature contour, Bottom: the predicted baroclinic torque in the
Z-direction

model for the uniform mixture (as shown in Fig. 4). The developed density-based
solver has improved the capability to model shock-detonation phenomena.

Figure 9 shows that DDT has occurred in the accelerated nonuniform hydrogen
flame.The temperature contour indicates the formation ofmushroom-shaped forward
jets on the flame surface, which are known as Richtmyer–Meshkov (RM) instabilities
[15, 20]. Furthermore, the predictions demonstrate that the overpressure at the DDT
stage is higher in the nonuniform mixtures compared to the homogeneous mixtures
under similar conditions. The results also provide evidence that the baroclinic torque
and resulting RM instability have a substantial effect on flame acceleration and DDT.
The results further suggest that higher baroclinic torque in the flowfieldwould induce
more RM instability, and hence increase the possibility of DDT.

5 Conclusion

The dynamics of deflagration-to-detonation transition (DDT), in both inhomoge-
neous and homogeneous mixtures, has been studied using the newly assembled
pressure-based and density-based solvers within the frame of the OpenFOAM® CFD
toolbox. The first stage of DDT involving flame acceleration at a subsonic level has
been modeled using the pressure-based algorithm while the DDT is modeled by
the density-based solver. To evaluate the contribution of the convective fluxes, the
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Harten–Lax–van Leer-contact scheme is used for accurate shock capturing. For val-
idation, the experimental data of Boeck et al. [3] is used. The predictions are in
reasonably good qualitative and quantitative agreement with the experimental obser-
vations and measurements [3]. In addition, the baroclinic torque and the resulting
Richtmyer–Meshkov instability are studied. These studies show that the overpressure
at the transition stage is higher in the mixture with concentration gradients in com-
parison with the homogeneous mixtures under similar test conditions. The results of
the present study recommend that, for DDT, the pressure-based solver, which is also
computationally faster, can be used for the subsonic flame acceleration stage, while
the density-based solver, through use of the MILES approach, should be used for
the transition process. The results of the present work can be used in the context of
safety to assess the potential risks of explosions in the energy industry.

Acknowledgements This work is a part of the SafeLNG project funded by the Marie Curie Action
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Open-Source 3D CFD of a Quadrotor
Cyclogyro Aircraft

Louis Gagnon, Giuseppe Quaranta and Meinhard Schwaiger

Abstract This chapter provides a detailed method for building an unsteady 3D
CFD model with multiple embedded and adjacent rotating geometries. This is done
relying solely on open-source software from theOpenFOAM® package.An emphasis
is placed on interface meshing and domain decomposition for parallel solutions. The
purpose of the model is the aerodynamic analysis of a quadrotor cyclogyro. The
challenging features of this aircraft consist of a series of pairwise counterrotating
rotors, each consisting of blades that oscillate by roughly 90◦ about their own pivot
point. The task is complicated by the presence of solid features in the vicinity of the
rotating parts. Adequate mesh tuning is required to properly decompose the domain,
which has two levels of sliding interfaces. The favored decomposition methods are
either to simply divide the domain along the vertical and longitudinal axes or to
manually create sets of cell faces that are designated to be held in a single processor
domain. The model is validated with wind tunnel data from a past and finished
project for a series of flight velocities. It agrees with the experiment in regard to the
magnitude of vertical forces, but only in regard to the trend for longitudinal forces.
Comparison of past wind tunnel video footage and CFD field snapshots validates the
features of the flow. The model uses the laminar Euler equations and gives a nearly
linear speedup on up to four processors, requiring 1 day to attain periodic stability.
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1 Background

The cyclogyro is an aircraft that uses cycloidal rotors to generate propulsion. Cy-
cloidal rotors are still largely unexplored by the aeronautic world. As opposed to con-
ventional propellers, they produce forces that can change direction almost instantly
on a 360◦ plane. Various studies have relied on these rotors to propel aircraft [23, 26,
29], micro-aircraft [2–4, 24] and airships [16, 17, 20, 30]. They are also used com-
mercially to propel boats such as water tractors [1] and drillships [22]. Furthermore,
they have been studied for wind [7, 8, 19, 25] and water [19, 25] turbines.

A cycloidal rotor, as illustrated in Fig. 1a, is an arrangement of symmetric blades
of constant cross section that rotate about a central drum. That drum transmits the
spinning motion to the blades through a series of pivot rods. Each blade pitches
individually about its intersection point with its pivot rod. The blade pitching mo-
tion is transmitted through the pitch rods, which are themselves offset by a central
mechanism within the drum. Consequently, the total thrust generated by the rotor is
the sum of individual blade lift and drag forces. The D-Dalus, shown in Fig. 1b, is a
four-rotor cyclogyro aircraft prototype developed by IAT21 [27, 28]. It relies solely
on cycloidal rotors for thrust generation and is the object of this study. The actual
aircraft prototype is shown in Fig. 1c. The rotor blades have 6 cm chords, while their
span and the rotor diameter are both 24 cm. The pivot rods are attached to the blades
slightly in front of the chord midpoint and allow pitching from −37◦ to 35◦. The
endplates have a 1 cm thickness and a 29 cm diameter.

The main purpose of the developed 3D CFDmodel is to observe the aerodynamic
rotor–aircraft–rotor interaction. A better understanding of flow interaction arises [13]
from the use of this model and a more informed aircraft design process can be
conducted. CFD models for this type of aircraft have not been published before.

(a) Cycloidal rotor sketch. (b) Aicraft concept render. (c) Actual aircraft.

Fig. 1 Rotor and aircraft for which the CFD model is created
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2 CFD Model

The CFD model is tridimensional and uses the finite volume method to solve the
PIMPLE algorithm, which consists of amerger of the PISO and SIMPLE algorithms.
In OpenFOAM® 2.4.x, which is the version used for this project, this is achieved
by using the pimpleDyMFoam solver. One pressure correction step is used and the
pressure–momentum coupling is calculated twice. A bounded first-order implicit
discretization scheme is used on the time derivative. A Gaussian integration with
linear interpolation is used for the derivative terms of pressure and velocity, with
bounding on velocity. A second-order upwind interpolation scheme is used for the
advection of velocity. Linear interpolation is used for the Laplacian terms, with an
underrelaxed face gradient corrected for mesh non-orthogonality. The convergence
tolerance on the residual is 10−6 for both pressure and velocity. Prior to the end of
the iteration loop, fields are also considered converged if the pressure and velocity
residuals become 1 and 10% of their initial residuals, respectively. Although the
solver is designed for Navier–Stokes equations, the Euler laminar equations are in-
stead solved by setting the viscosity to zero. Air density is 1.204 kg/m3. The main
motivator for ignoring the effects of viscosity is to reduce the required computer
time. The omission of viscosity is justified because the dynamics of rotors are dom-
inated by pressure contributions and dynamic effects. This is also demonstrated by
a study [21] that showed marginally small differences between experimental, Euler,
and Navier–Stokes results for a helicopter rotor. A total of 14 moving meshes use
sliding interfaces of interpolation. They are solved by the Arbitrary Mesh Interface
(AMI) algorithm [9] and are shown in Fig. 2. Each rotor blade is inserted into a
double AMI. The outer AMIs rotate and the inner ones strongly oscillate. The model
relies on an embedded moving mesh algorithm [14] and an accompanying moving
wall slip boundary condition [15] that were previously created [10] and publicly re-
leased. The embedded moving mesh is based on a regular oscillating mesh method,
called the oscillatingRotatingMotion class in OpenFOAM®. It incorporates a new
origin vector oc,

Fig. 2 The 14 AMI cylinders used for the cyclogyro aircraft, of which 12 are embedded
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oc = oo + ro{sign(ωo) cos(|ωo|t + φoπ), sin(|ωot | + φoπ), 0}, (1)

where oo, ro, ωo, and φo are the outer AMIs origin, radius, angular velocity, and
initial offset, respectively, and t is the time. The oc vector is applied as the new
origin of the transformation septernion.1 The moving wall slip is based on a moving
wall boundary condition, called the movingWallVelocityFvPatchVectorField class in
OpenFOAM®, and imposes the normal velocity vectors of the field as

n
(
n · (

up + n(un − (n · up))
))

, (2)

where up is the wall velocity, n is the unit normal to the wall and un is the wall mesh
flux per area. The tangent velocity is taken as the planar vector component of the
velocity adjacent to the wall.

The single rotor meshes with and without endplates have roughly 1 million and
300,000 cells, respectively. The endplates make the flow more two-dimensional,
both in experiment and simulation. A first harmonic sinusoidal pitching schedule
is imposed on the blades of the rotor. The blade angle, θ , with respect to a line
perpendicular to the pivot rod, is

θ = θo + θs sin(ωt + φ), (3)

where θo is the fixed pitch angle offset, θs is the magnitude of the pitch angle oscilla-
tions, φ is the imposed phase angle, and ω is the constant rotor angular velocity. The
purpose of θo is to increase the pitch angle on the bottom part of the rotation cycle to
counter the stronger inflow. The position of the maximum pitch is anticipated by φ

with respect to the bottommost angular position in order to counter the aerodynamic
delay.

The aircraft is fixed in space, and thus the model disregards the inertial effects of
gravity and aerodynamic forces. Careful tuning of the mesh interfaces allows us to
keep the actual geometry of the aircraft. The only change is that the spanwise distance
between the endplates and the rotor blades is slightly increased, to roughly one-tenth
of the chord length. A gap of this size has the same effect as if the endplate were
attached to the foil [5], and is thus negligible. The space available in the physical
aircraft between the rotor blades’ pivot points and the airframe allows us to have an
AMI cylinder radius at least equal to the maximum distance between the pivot point
and any edge of the blade. The blades can thus pitch at any angle.

1The septernion is a seven component array used in OpenFOAM® composed of a translation vector
and a rotation quaternion.



Open-Source 3D CFD of a Quadrotor Cyclogyro Aircraft 377

2.1 Mesh Generation

The snappyHexMesh hexahedral meshing tool is used to generate the mesh. A de-
scription of this mesher is given to introduce concepts that clarify the generation of
embedded AMI interfaces in a very narrow space. The mesher inserts imported CAD
geometries into a structured volume mesh. It then refines the volume mesh near and
on surfaces; in portions of surfaces that are close to other surfaces; and inside user-
defined regions. Refinement is applied as a user-specified number of subdivisions to
the original structured mesh. Cells are refined either inside or within a specified dis-
tance of a given region or when intersecting a given surface. Once themesh is refined,
the cell faces are moved so as to smoothly adhere to the boundaries, which can be
wall boundaries or simple reference geometries. This last option allows us to create
the sliding interfaces of the blade oscillating zones and the rotor spinning zones.
The size of the mesh and the time it takes to generate are controlled by quality and
iteration options. While this chapter focuses on the aspects critical for the cycloidal
rotor aircraft application, a detailed guide to the mesher is available online [18].

2.2 Isolated Airframe Mesh

Before initiating the actual modeling of the cyclogyro, a separate mesh quality eval-
uation campaign is conducted for the airframe taken alone without the rotors. The
impact of mesh refinement on the airframe alone is studied in order to obtain the
smallest possible grid while having a mostly mesh-independent solution with low
discretization error. Eight different meshes are generated and evaluated. The tests are
all done at a 15◦ airframe angle of attack and a 30 m/s flow velocity. Different mesh-
ing techniques are also studied and the influence of different mesh parameters on the
force results is examined. These parameters are the value of the surface feature an-
gles that trigger mesh refinement, the refinement level of the mesh in the wake zone,
and the increase of the overall mesh density. Table 1 shows the mesh attempts, along
with the parameters of interest and the number of cells, which go from 293,000 to
1.7million. The first three cases, baseline, halfSize, and thirdSize, are meshes created
with identical parameters. Their only difference is that the initial structured volume
mesh cells of halfSize and thirdSize are 1/2 and 1/3 the sizes of those of baseline,
respectively. The table also shows the normalized mean longitudinal, vertical, thrust,
and moment forces obtained for each mesh over a period equivalent to one rotation at
3750 rpm. One period takes 1300–7800 timesteps, depending on the refinement level
of the mesh. The numbers in the surface column of Table 1 are the minimum and
maximum number of divisions to apply to the structured mesh cells that encounter
the airframe surface. The numbers in the Distance column are the respective number
of divisions to apply to the cells that are located at 1, 20, and 50 cm from the airframe.

The forces obtained using any of these meshes reach a fairly constant value after
10 periods. At this point, the longitudinal and vertical forces oscillate by less than



378 L. Gagnon et al.

Table 1 Airframe mesh refinement tests

Test Surface Distance Wake
zone

kCells 100Fx Fy T M

baseline 5 8 6 3 1 No 293 −3.93 3.31 3.31 −1.47

halfSize 5 8 6 3 1 No 747 −6.22 3.15 3.15 −1.36

thirdSize 5 8 6 3 1 No 1729 5.50 2.75 2.75 −1.20

anglesa 5 9 5 3 1 No 507 −4.53 3.22 3.22 −1.39

surf 6 9 6 3 1 No 524 −4.80 3.26 3.26 −1.40

surf2 7 8 6 3 1 No 423 −1.98 3.19 3.19 −1.41

wake 4 8 5b Yesc 507 −5.61 3.12 3.12 −1.40

noWake 4 8 5b No 492 −4.56 3.14 3.14 −1.41
aAttempt at changing the featureAngle value (surface feature angles that trigger refinement)
bAt a 25 cm distance
c3 levels of refinement inside and 2 levels within 1 m of the wake zone

2 and 9% of the thrust, respectively. These oscillations are caused by the vortex
shedding that occurs on the airframe at a 15◦ angle of attack. Themagnitudes of these
oscillations are not linked to the refinement level of the mesh, but the most refined
mesh does take longer to stabilize. Table 1 also indicates that for the case studied,
the level of refinement on the airframe influences the thrust by 8% of its maximum
value. That value drops to 6%when the average thrust ismeasured overmore periods.
Finally, the coarsest case is run for 3 s, which is equivalent to 200 periods, in order
to see the long-term tendency of the flow. It is shown that the average forces remain
almost constant over time, with an oscillation in the mean lift generated of roughly
1%.

2.3 Rotor Model

The rotor model is initiated by enhancing a simulation from a previous project [11,
12], which had been validated against experimental data [30] for a larger rotor with-
out endplates. That prior CFD simulation had been shown to yield more accurate
quantitative results than its analogous 2D version. It had also shown that the size
and velocity of the inlet and outlet boundary conditions have little influence on the
rotor flow features and forces. The difference between simulation and experiment
was below 20% for the power, with a much better agreement at a low pitch angle and
at low angular velocities. For thrust, the errors were contained at low angular veloc-
ities but reached problematic magnitudes at higher angular velocities. That existing
simulation had been used for proof of concept simulations and had not been tested
for stability. It is thus reconfigured to match the new geometry, which is roughly pro-
portional, 3 times smaller, and has different pivot points for the blades. The mesh is
tweaked to allow for locating an oscillating sliding interface between the rotor and its
blades. Mesh tweaking also ensures validity over a range of rotor angular velocities,
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Fig. 3 Visualization of the surface pressure and velocity on the preliminary rotor simulation

which reach roughly 7 times the maximum angular velocity of the previous model.
The presence of endplates considerably increases the model’s complexity. This is
due to the very small space between the oscillating blades, the rotating endplates,
and, eventually, the airframe. The spacing between the blades and the endplates is
only 3% of the blade span. Thus, the mesher is forced to move faces from cells lying
in a very narrow zone and make them adhere to the airframe, to the rotor and blade
interfaces, and to the blades. This zone, therefore, requires a carefully refined mesh.
The mesh is completely parametrized to allow automatic generation for different
geometries and to have a stable and repeatable meshing procedure.

The thrusts obtained for the rotor alone match up in order of magnitude with the
experimental data from the same rotor installed on a fixed apparatus in calm air. This
confirms that the model is properly set up and the preliminary model development
is deemed complete. Figure 3 shows qualitative results from that preliminary single
rotor model. The simulation is set up with a rotational velocity of 3970 RPM, a null
incoming wind velocity, and a mesh size of 1.3 million cells.

2.4 Entire Aircraft Mesh

The rotor model is combined with a second rotor and the half D-Dalus L1 airframe
to create the full aircraft model, using a symmetry about the central plane. The mesh
separating the various AMIs, the endplates, and the airframe is very delicate, and thus
several iterations of the parametrized mesh generation is undertaken. The important
parameters for generating a cyclogyro mesh are described in Table 2.

A proof of concept model is then created with a preliminary mesh. Its purpose is
to develop into a working model that converges for the most unstable flow condition
before refining the mesh until satisfactory validation results are reached. It represents
the most unstable case that can be expected to be encountered during the simulations
and its purpose is to verify the robustness of the model. The airframe angle of attack
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Table 2 Mesh parameters for snappyHexMesh and brief explanations

Parameter Value Explanation

addLayers False Layers are not needed in a nonviscous
simulation

maxGlobalCells 8 × 106 This number limits the mesh size when
the level refinement required would
otherwise surpass maxGlobalCells

faceType Baffle This creates duplicate patches at the AMIs

implicitFeatureSnap True Uses the implicit method for finding
refinement surfaces

detectNearSurfacesSnap True Prevents cell faces from adhering to a
nearby surface by mistake

Fig. 4 Mesh of the proof of
concept simulation shown
along with its symmetry
plane

is 15◦ and the horizontal incoming wind velocity is 30 m/s. The mesh has 2.7 million
cells and is shown in Fig. 4. The boundary conditions are null normal gradient for
pressure and fixed velocity at the inlet. At the outlet, they are ambient pressure and
null normal velocity gradient, which becomes a null velocity when the flow attempts
to reenter the domain. The latter velocity condition is referred to as inletOutlet in
OpenFOAM® jargon.On the outsidewalls and on the aircraft body, a slip velocity and
null normal pressure gradient are used. Finally, on the rotor blades and endplates, the
conditions are null normal pressure gradient and the developed moving slip velocity
condition. The modeled flow domain is 5.3, 20.5, and 4.3 times the half-aircraft’s
corresponding lengths in the longitudinal, vertical, and span directions, respectively.

2.5 Final Mesh Tuning

Once the full aircraftmodel is ready, a finalmesh refinement is performed. The simply
refined and themore refined meshes are createdwith 3.7million and 5.7million cells,
respectively.

The more refined mesh has a greater refinement zone around the rotors and a finer
grid within each inner AMI cylinder, as shown in Fig. 5. It also has a wider wake zone
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(a) Simply refined. (b) More refined.

Fig. 5 Comparison between the simply and more refined meshes

(a) Drag. (b) Lift.

Fig. 6 Comparison of drag and lift on one foil of the rear rotor for both refinement levels over the
first simulation cycle

that extends up to the front of the aircraft to fit with both hover and forward flight
conditions. Nonetheless, both meshes yield very similar force results right from the
start of the simulation. That match between both cases is shown for a foil of the rear
rotor, being the most perturbed rotor, in Fig. 6. There are still small differences in
values which indicates that a completely mesh-independent solution has not been
fully reached. Nevertheless, the smaller, less refined mesh is kept, because both
solutions are very close. This avoids doubling the solution time, as required by the
more refined case, and allows us to run the number of required analyses within the
fixed project timeframe. This constraint is further reinforced by the limitations of
the sliding interface domain decomposition, which is covered in Sect. 3. However,
widening the wake zone has very little time cost and only adds a small number of
cells. Thus, a final mesh relying on refinement far from the wall and consisting of a
slight improvement of the simply refined case is used for the definitive model. It has
4.5 million cells, and the solution is periodically stable after six rotations, because
the rotors have a dominant effect on the flow and cause stability to be reached faster
than for the airframe alone.
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2.6 Validation

The main challenge of the validation is that no wind tunnel data had been gathered
while both the front and rear rotors were in use. The experimental operation having
been completed and resigned to the past, no more data can be obtained. It follows
that the experimental data available is for the quadrotor cyclogyro propelled by the
two front rotors alone. No velocity information is available for the rear rotor.

The values of drag and lift obtained by CFD are nevertheless compared to the
experimental data from the wind tunnel. The highest wind tunnel velocity is chosen
as a basis for validation and to approximate the angular velocity for the unpowered
rear rotors during the wind tunnel tests. Attempts with various rear rotor angular
velocities lead to the conclusion that the fixed rear rotor most adequately reproduces
the experiment. Rotor flow visualization from past experiments matches the CFD
streamlines of the powered rotor, as shown in Fig. 7. The trend of thrust matches that
of the wind tunnel at 10, 15, 20, and 25 m/s, as shown in Fig. 8. The agreement in
vertical forces is the main objective of the project, and this justifies neglecting the
contribution of the viscous forces on the airframe. The remainder of the validation
process is reported in the article that focuses on the aerodynamics of the aircraft [13].

(a) Snapshot from wind tun-
nel.

(b) Wind tunnel streamlines. (c) Powered rotor.

Fig. 7 Streamlines of the rotor in wind tunnel compared to the powered aircraft rotor

Fig. 8 Trend match between CFD (red) and wind tunnel (black)
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3 Domain Decomposition Parallelization

This section presents the method developed in order to fully solve the aircraft in
parallel. This starts with parallel meshing, which is followed by a parallel CFD
solution, and finally by a parallel visualization. This last one does not require any
tuning and is done using a recent version of ParaView. The whole process is achieved
locally on a 12-coremachine. For the solution phase, themost efficient parallelization
strategy is to divide the domain along the vertical and longitudinal axes, leaving
an equal number of cells on each side. This decomposition method is called the
simple method in snappyHexMesh jargon. That method reduces the communication
across processors for sliding AMI interface pairs to a minimum. Figure 9a shows the
four processor submeshes obtainedwith the simpledecomposition algorithm.Solving
this case in parallel takes roughly 1 day, instead of 4 days, to reach a periodically
stable solution.

The part of the process that benefits the most from default parallelization is the
meshing process of snappyHexMesh, for which the method can be found in the
OpenFOAM® tutorials. Diversely, using the default options for AMI interface de-
composition with the Scotch [6] algorithm, the solving phase of the simulation has
an increase in speed that ranges between 45 and 95% on 2 processors and 100% on
10 processors. An equivalent simulation without the AMIs yields a 350% speedup on
10 processors. The cause is that the AMIs are distributed over different processors,
and thus communication is slowed down. This decomposition of the AMIs can be
seen for a 10 processor mesh in Fig. 9b, where each color represents 1 processor
domain. Coincident sliding interface boundaries, referred to as the master and slave
AMI patches in OpenFOAM®, maintain their matching cell faces on the same pro-
cessor, but the patches themselves are split into two or more portions. This is visible
in Fig. 10a and in the close-up in Fig. 10b. The interface irregularities force the AMI
cells of one processor to communicate with those of another processor as soon as
they start rotating. The extra communication step between processors at the AMI
slows down the simulation.

Thus, the goal is to maintain the whole AMI, with its master and slave patches, on
a single processor. A summary of the available methods and their observed behaviors

(a) 4 processors simple decompo-
sition.

(b) Part of a 10 processor
mesh.

Fig. 9 Decomposition methods with distinct processor colors
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(a) Rotor view. (b) Close-up on AMI.

Fig. 10 AMI cells distribution over different processors

Table 3 Available options to preserve mesh zones on a specific processor

Method Description Result

preserveFaceZones Preserves face zones on a
single processor

Is not effective in doing so

preservePatches Ensures the patchesa given are
meshed on a single processor

The coincident sliding
interface boundaries are,
however, not always meshed
on the same processor

singleProcessorFaceSets Ensures that the given face set
is meshed on a single processor

Using a trick, it is possible to
define a whole volume as a
face set, and thus obtain that
the meshing algorithm
maintains that volume on a
single processor

aA patch in OpenFOAM® consists of a wall, an interface, or any continuous set of cell faces that
represents a surface

is given in Table 3. The Scotch method that uses these options does not automat-
ically yield an efficient AMI decomposition. Also, if not carefully controlled, the
decomposition creates more than one cell block for a single processor in an attempt
to respect the given interface constraints. The resulting mesh thus has an increased
computation time, due to each processor zone being split over parts of the domain
that are not physically connected. An example of such a decomposition is shown
in Fig. 11, where the blue surface is the AMI and the pale gray zones represent the
submesh of a single processor. In that case, although the AMIs are preserved on
a single processor, the number of different blocks for one processor cause latency.
The simple decomposition method, with a domain division in two boxes, remains
the most effective one in preserving the whole AMIs of the front and rear rotors on
two different processors. Using the simple method with four processors, 12 of the
14 sliding interfaces are preserved on a single processor, the yields of which are a
nearly linear speedup.

When the simple algorithm is no longer efficient due to a large number of pro-
cessors, the manual creation of sets of cell faces that are designated to be held in



Open-Source 3D CFD of a Quadrotor Cyclogyro Aircraft 385

Fig. 11 Decomposed mesh showing a processor divided into multiple zones; the processor zone is
in pale gray and the outer AMI interface in blue

a single processor domain can be done. This is called the singleProcessorFaceSets
method in snappyHexMesh jargon. It can be explicitly defined for each processor
and for each set. This Scotch method option allows for preserving all the faces of
a rotor’s AMIs on a single processor. The singleProcessorFaceSets method may be
applied using the topoSet tool to create a set of cell faces, faceSet, from a set of cells,
cellSet, using the cellToFace option. After running topoSet with these indications,
decomposition must be run with the singleProcessorFaceSets option. Including the
AMIs in the faceSets to be assigned to a single processor can, however, confuse the
algorithm and create an unbalancedmesh. By considering zones as small as one inner
AMI cylinder as single processor zones, meshes with more than 13 processors and
a reasonable speedup can be obtained. In that case, an annulus processor zone may
be created to ensure that the outer rotor AMIs are also meshed on a single processor.
However, the effects of divided outer AMIs on the parallel speedup are less harmful
than those of a multitude of divided inner embedded AMIs.

A considerable amount of time is required to implement the singleProcessorFace-
Sets method, thus the favored method remains the use the simple division with two
or four processors. The retained procedure for running the case is to first run the
mesher on any desired number of processors, then reconstruct the case as a single
processor mesh, and finally redivide it into four processors using the simple method.

4 Closing Remarks

This chapter presented a methodology for modeling rotating and strongly oscillating
components of a rotor using open-source CFD software. These rotor components
can be embedded one inside another, and parallelization is fairly straightforward up
to four processors through the simple division of the domain along the vertical and
longitudinal axes. This is called the simple method. A more efficient and refined
parallelization could be obtained by manually creating sets of cell faces that are
designated to be held in a single processor. This is called the singleProcessorFaceSets
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decomposition method and can eventually be parametrized to allow for large-scale
parallel solutions. However, such a process requires a significant set up time that
may be rewarding only if a large number of analyses is foreseen. Special care is
necessary when generating the mesh near the rotating interfaces and when choosing
the decomposition methods. A study of the impact of refinement on the airframe
was conducted to grasp the impacts of surface- and region-based refinement levels.
The final mesh is small enough to allow the CFD to be solved in one day on four
processors, yet refined enough to grasp the important flow features and forces. The
bestmesheswere generated by allowing large cells on nearly flat surfaces and refining
near the sliding interfaces. The CFD was done using the laminar Euler equations of
the pimpleDyMFoam solver. A brief validation section, based on prior experiments
both on the rotor alone and on the full aircraft inside awind tunnel,was presented. The
methods from this article, in combination with the available OpenFOAM® tutorials,
can be used as a starting point for modeling similar rotating machines.
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A Review of Shape Distortion Methods
Available in the OpenFOAM®

Framework for Automated Design
Optimisation

Steven Daniels, Alma Rahat, Gavin Tabor, Jonathan Fieldsend
and Richard Everson

Abstract Parametrisation of the geometry is one of the essential requirements in
shape optimisation, and is a challenging subject when carrying out a automated
procedure. It is critically important to maintain the consistency of the shape and grid
quality between each evaluation,while providingflexibility for awide rangeof shapes
using the same parameterisation of the geometry. The sensitivity of the grid to the
changes to the geometry must be at a minimum during this process. This contribution
presents a review of the grid distortion and regeneration methods available within the
OpenFOAM® frameworkwhich can be utilised for shape optimisation. The objective
of this contribution is to compare the effectiveness of these methods in the automated
procedure and to provide suggestions for improvements. Special attention is given to
three major factors involving shape optimisation: automation of model abstraction,
automation of grid deformation or regeneration and robustness.

1 Introduction

Optimisation of designs using Computational Fluid Dynamics (CFD) is frequently
performed acrossmany fields of research, such as the optimisation of an aircraft wing
to reduce drag or an increase in the efficiency of a heat exchanger. General optimisa-
tion strategies involve modification of design variables with a view to improving the
appropriate objective function(s). Often, the objective function(s) is (are) nonlinear
and multi-modal, and hence polynomial time algorithms for solving such problems
may not be available. In such cases, applying Machine Learning methods such as
Evolutionary Algorithms (EAs—a class of stochastic global optimisation technique
inspired by natural evolution) may bring to light good solutions within a practical
time frame. The traditional CFD design optimisation process is often based on a
‘trial-and-error’ type of approach. Starting from an initial geometry, Computation-
ally Aided Design changes are introduced manually based on results from a limited
number of design evaluations and CFD analyses. The process is usually complex,
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Fig. 1 Framework developed in the presentwork for combiningOpenFOAM® with various Python-
based Machine Learning libraries [1]

time-consuming and relies heavily on engineering experience, hence the overall
design procedure is often inconsistent, i.e. different ‘best’ solutions are obtained
from different designers.

Based on the limitations of optimisation by hand, using EAs and CFD simulations
may be an attractive alternative. There have been other attempts to combine EAs
and CFD simulation to optimise design (see for example, [2]). Although EAs do not
guarantee the determination of the optimal solution, theymay achieve good solutions
consistently. In this present work, an automated framework combining Python’s EA
library DEAP with OpenFOAM® 2.3.1 was developed. The communication of the
Python libraries with OpenFOAM® was achieved using PyFoam 0.6.5. PyFoam was
used as an interface to control the OpenFOAM® case set-ups for each proposed
solution from the EA code and to post-process the data generated after each CFD
calculation. A summary of this framework can be seen in Fig. 1.

While the aim of this project is to focus on complex (potentially multi-objective)
cases, for the purpose of this contribution, a single-objective optimisation of the
PitzDaily tutorial in OpenFOAM® was used to demonstrate the performance of the
proposed procedure. The chosen cost function for this case was to minimise the static
pressure drop between the inflow and outflow boundary conditions, i.e.

f1 = min(|pi − po|), (1)

where both pressures were obtained by averaging over the boundary condition faces.
Figure 2 (top-to-bottom) shows the procedure in which the shape is altered after each
evaluation. To change the geometry, subdivision curves [3] were generated to form
a new lower wall. The grey squares indicate the coordinates for the search space
(or bounding box), with the black lines showing the resulting boundary. The fixed
points of the spline (indicated by orange squares) were placed across the bottom
boundary condition (‘lowerWall’). The squares in pink indicate the control points
that may be altered by the EA, and thus change the curvature of the spline. After
the new positions of the pink squares were proposed by the EA, a Stereolithography
(.stl) file was generated and passed to OpenFOAM®. Using this file, the meshing
utility snappyHexMesh was used to cut the domain away (and, if required, re-mesh
the altered region). Subsequently, the case was run using the steady-state solver
simpleFoam. After this, the cost function was obtained and the EA determined a new
position for the coordinates of the pink squares.
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Fig. 2 Shape optimisation procedure of the PitzDaily tutorial case

A single-objective optimisation run of the PitzDaily tutorial was performed with
a basic real-valued Genetic Algorithm [4]. For the CFD calculation, the residual
tolerances for the SIMPLE algorithm for velocity and pressure were set to 10−5

and 10−6, respectively. The pressure drop calculated from the original (base) case
was measured as |Δp| = 5.22Pa. Figure 3 (left) shows the optimised shape of the
PitzDaily geometry. The resulting pressure drop was calculated as |Δp| = 4.7 ×
10−6 Pa. The schematic diagrams above the contour diagram of velocity magnitude
indicate the position of the control points, and the outer boundary region (in red)
that they must not exceed. The GAmaintains a population of solutions: Fig. 3 shows
the maximum (worst), the average and the minimum (best) pressure drop across
the population with each generation. The grey-dashed line indicates the pressure
drops for the original PitzDaily geometry. It can be seen that the reduction of the best
pressure difference between the inflow and outflowwas reached after 15 generations,
and an improvement of the pressure difference from the original case was achieved
sooner than this.

For shape optimisation problems, the design variables usually involve parameters
that modify the shape of a given initial geometry. For a certain objective function,
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Fig. 3 Single-objective optimisation of the PitzDaily tutorial case in reducing the pressure drop

the design variables are used to define a deformed geometry at each optimisation
cycle, which is used to compute the new flow field that is required to evaluate the
objective function. In the traditional body-fitted approach, on structured or unstruc-
tured meshes, a change in the shape of the surface mesh requires a smooth transition
in its deformation and the avoidance of large distortions and interpenetration of
neighbouring elements in the CFD mesh. Various mesh deformation methods (e.g.
spring stiffness, elastic analogy [5]) have been proposed to tackle this problem, but
as the geometric complexity of optimisation problems increases, the robustness of
this approach reduces; the resulting computational cost of the mesh deformation is
not negligible. In addition, the linearisation of the mesh distortion scheme (i.e. mesh
sensitivity) must be computed to take into account the effect of shape perturbations
on the flow equations, with additional cost and complexity.

In general,mesh generation is commonly recognised as one of themain challenges
in CFD. Mesh quality issues can significantly impact the accuracy of the eventual
solution, even to the point at which the solver diverges and no solution is generated;
they can also significantly affect the level of computational work (e.g. number of
evaluations) necessary to reach the solution. Modern Finite Volume (FV) CFD codes
tend to use arbitrary unstructured or polyhedral meshes, allowing for a wide variety
of cell shapes to accommodate complex geometries. This also allows for a wide
variety of mesh problems; non-orthogonality, face skewness etc., and whilst modern
solution algorithms can typically correct for mild levels of mesh problems, this is at
the cost of increased numerical error. Pathological levels of mesh problems can lead
to algorithm divergence. The acceptable level of mesh quality also varies according
to the details of the modelling being used; for example, the turbulence modelling in
Large Eddy Simulation (LES) ties in very closely with aspects of the mesh, such as
cell size, thus requiring much higher levels of mesh quality than for cases involving
Reynolds-Averaged Navier–Stokes (RANS) [6]. Note that, our discussion revolves
around issues relating to mesh generation for FV CFD, which is in our area of
familiarity. Similar issues undoubtedly arise for Finite Element (FE) methods and
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other applications of these techniques. The remainder of this contribution will review
the basic methods available in OpenFOAM®, and their effect on the reliability of the
solution with respect to the quality of the mesh.

2 Grid Deformation and Regeneration Techniques

During the design optimisation process, the design surfaces are perturbed after each
evaluation. These perturbationsmust be transferred from the surface points to the grid
in the surrounding flowfield. To achieve this, themethods available can be placed into
two categories: grid regeneration and grid deformation; the latter has previously been
demonstrated in OpenFOAM® by [7]. The techniques reviewed below are applicable
to both structured and unstructured grids.

2.1 snappyHexMesh

A typical example of an automated grid regenerator for complex geometries is snap-
pyHexMesh. To use it, the user provides a Stereolithography (STL) file of the geom-
etry and a base mesh (typically a simple hexahedral block mesh). This utility then
operates a three-stage meshing process of castellation, snapping, and boundary layer
refinement. In the first step (castellation), cells are identified that are intersected by
edges of the surface geometry; these cells are then refined by repeated cell splitting,
with maximum and minimum levels of refinement being a definable parameter, and
further surface refinement also being controllable. After this refinement process, all
cells that lie ‘outside’ the desired geometric domain are deleted from the mesh. In
the second, snapping step, vertices on the edge of the domain are ‘snapped’ to the
STL surface, using an iterative process of mesh movement, cell refinement and face
merging, again controlled by user-defined parameters such as number of iterations
and specific mesh quality constraints. In the final and optional step, cell layers can be
added to the surface to move the mesh away from the boundary so as to specifically
refine a boundary layer. The whole process is robust and automated, but is controlled
by a large number of user-specified parameters provided in advance as an input file.
As with any meshing process, the user typically has to experiment with different
settings to optimise the mesh. Mesh quality may ultimately be judged by the success
of the resulting CFD run, but as a proxy, various mesh quality indicators, such as
skewness and non-orthogonality, can more easily be evaluated.

Figure 4 shows the application of the snappyHexMesh utility to regenerate the
geometry and mesh of the PitzDaily case (described in Sect. 1) during one of the
design evaluations. Applying the ‘boundary-layer refinement’ stage of this utility
requires a substantial number of input parameters. Previous experimentation as to
the most influential parameters on the mesh quality (see [8]) has reduced this to a set
of 7, whose definitions are provided below:
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Fig. 4 The figure on the top shows the snappyHexMesh utility applied to the generated STL
geometry after the castelling and snapping operation. The diagrams on the bottom show the grid
distribution with and without the additional layering operation

• resolveFeatureAngle: Maximum level of refinement applied to cells that intersect
with edges at angles exceeding this value.

• nSmoothPatch: Number of patch smoothing operations before a corresponding
point is searched on the target surface. Smooth patches aremore likely to be parallel
to the target surface, making it more probable to find a matching point.

• nRelaxIter: Number of iterations to relax the mesh after moving points. When
points are snapped to the target, the displacement propagates through the under-
lying layers of points that are not on the surface. By relaxing this propagation, a
smoother displacement can be achieved.

• nFeatureSnapIter: The total number of iterations tried to snap points to the target.
If insufficient quality is reached after nFeatureSnapIter iterations, the snapping is
cancelled and the last state is recovered.

• maxNonOrtho: Non-orthogonality measures the angle between two faces of the
same cell. In a grid with only rectangular cells, the value would be zero. Any
deviation from this counts as non-orthogonal. High values mean there are very
low angles that usually occur in a prism layer.

• maxSkewness: Skewness is the ratio between the largest and the smallest face
angles in a cell. A value of 0 is the perfect cell and 1 is the worst. Within the
OpenFOAM® dictionary, different quality constraints can be assigned to boundary
cells and internal cells. In a simple geometry, the cells on the boundaries are more
likely to be affected by skewness problems.

• minVolRatio: The ratio in cell volume between adjacent cells should not be too
large—a large ratio leads to unacceptable interpolation errors.

Of course, these input parameters could also be subjected to optimisation with target
measurements for the base geometry (e.g. [8]). It should be noted, however, that in
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using the methodology of this contribution, snappyHexMesh can only remove sec-
tions from the base geometry—substantially reducing the exploration of the design
space.

2.2 Grid Distortion Methods

The available techniques for modifying the grid can be separated into two groups:
fixed group methods (such as the immersed boundary) and moving grid methods,
with the Arbitrary Lagrangian–Eulerian (ALE) approach as a representative. In [9],
the advantages of the ALE approach over the fixed-mesh alternatives is described.
This analysis is based on the method’s ability to maintain a high-quality grid near
the moving body, resulting in a better representation of the boundary interface in
this region. In the ALE approach, the grid is moved to allow for the distortion of
the boundary’s shape. This can be achieved through squeezing and stretching the
surrounding cells and their associated vertices. For the FV method, the conservation
equation of property, φ, over an arbitrary moving control volume, VC , in integral
form is:

d

dt

∫
VC

φdVC +
∫
A
d A · (

−→u − −→ub )φ =
∫
VC

∇ · (Γ ∇φ)dVC , (2)

where −→u is the velocity vector, A is the cell surface normal vector and −→ub is the
boundary velocity vector of the cell face. To govern the vertex motion, OpenFOAM®

adopts a Laplacian smoothing scheme, described by

∇ · (γ∇u p) = 0, (3)

where u p is the point velocity, which is imposed at each vertex of the control volume.
The boundary velocity ub is interpolated from u p. The boundary conditions for
Eq. 3 are enforced from the known boundary motion, e.g. a moving wall. The vertex
position at the time level n + 1 is calculated by using u p

xn+1 = xn + u pΔt. (4)

The variable γ prescribes the distribution of deforming cells around themoving body.
Ideally, for the Laplacian approach, the cell distortion near the moving wall should
be less perturbed by the motion of the body, while with increasing distance away
from the wall, the cells should have greater freedom to deform. Under this concept,
the quadratic diffusion model (γ = 1/ l2) has been shown to present a suitable dis-
tribution of cells around the body, with l being the distance from the moving wall. A
comparison between the uniform (γ = uniform) and quadratic diffusion models on
the grid skewness is demonstrated in [10, 11]. As the gridmotion in thewhole domain
is governed by Eq. 3, an interface between the static and dynamic mesh regions is not
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Fig. 5 The Laplace diffusion model (γ = uniform) applied to the generated STL surface. The
‘lowerwall’ boundary was chosen to morph into the STL surface

required. Figure 5 shows the application of the uniform diffusion model applied to
the PitzDaily tutorial case. It can be seen in this figure that by stretching and squeez-
ing the cells to fit the moving boundary, the skewness and orthogonality qualities of
the mesh are compromised. To overcome this, further modifications to the solver can
be achieved by including the mesh refinement utilities available in snappyHexMesh;
this has shown promising results in previous related studies (e.g. [12, 13]).

2.3 Immersed Boundary Method (IBM)

Immersed boundary methods provide a promising alternative to the classical body-
fitted discretisations. In the Immersed Boundary approach, the CFD grid does not
conform to the geometry of the object, eliminating the problem of the mesh defor-
mation. When combined with an efficient flow solver, this approach is particularly
well-suited for the automated analysis of complex geometry problems. An additional
advantage of non-boundary-conforming numerical methods is that there is no need
to compute the internal mesh sensitivity with a substantial reduction in user coding
and computation effort. In summary, the advantages of IBM over Body-Fitted Mesh
methods include:

• a substantially simplified grid distribution around the complex geometry;
• flexibility with the inclusion of a body motion due to the use of stationary, non-
deforming background grids;

while the limitations of the IBM include:
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Fig. 6 The Immersed Boundary method applied to the PitzDaily tutorial with the additional STL
surface as the immersed boundary

• the requirement of special techniques to simulate the boundary conditions for the
immersed boundary;

• problems with grid resolution in the boundary layer region of the geometry;

with topics currently under investigation in the literature:

• IBM mimicking the equivalent body-fitted mesh solutions;
• automated mesh refinement around the Immersed Boundary surface.

Figure 6 demonstrates the application of IBM in the OpenFOAM® framework
[14].1 It can be seen in this figure that the Immersed Boundary has obstructed the
cells below the spline from the inflow and outflow, in a similar manner as if that part
of the domain had been removed.

1The Immersed Boundary Method is not available in OpenFOAM® 2.3.1, but is available in Foam-
extend-3.2 and 4.
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3 Conclusions

The grid distortion and generation techniques available in the OpenFOAM® frame-
work appropriate for shape optimisation have been reviewed in this contribution.
OpenFOAM® provides a convenient range of libraries for distorting the grid (using
the Laplacian method) or grid regeneration (snappyHexMesh). The grid distortion
technique is somewhat limited by the mesh quality after each design evaluation, but
this can be overcome by including the mesh refinement libraries in snappyHexMesh.
The grid regeneration technique is somewhat limited in regard to altering the geom-
etry. A possible addition to both these techniques would be to apply grid sensitivity
analysis (see [15])—defined as the partial derivative of the grid-point coordinates
with respect to the design variable—within the OpenFOAM® framework. Further-
more, the recent development of the Immersed Boundary Method in OpenFOAM®

provides a rather efficient approach to automated shape optimisation. However, like
the remaining approaches, the generated solution is somewhat sensitive to the grid’s
resolution.
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Simulating Polyurethane Foams Using
the MoDeNa Multi-scale Simulation
Framework

Henrik Rusche, Mohsen Karimi, Pavel Ferkl and Sigve Karolius

Abstract TheMoDeNa project [20] aims at developing, demonstrating, and assess-
ing an easy-to-use multi-scale software framework application under an open-source
licensing scheme that delivers models with feasible computational loads for pro-
cess and product design of complex materials. The concept of MoDeNa is an inter-
connected multi-scale software framework. As an application case, we consider
polyurethane (PU) foams, which are excellent examples of a large turnover product
produced in a variety of qualities of which the properties are the result of design-
ing and controlling the material structure on different scales, from the molecule to
the final product. Hence, various models working at individual scales will be linked
together by this framework such as meso- and macro-scale models. OpenFOAM®

is deployed on the macro-scale level. A new solver (MODENAFoam) is formulated
and validated to demonstrate the interconnectivity of the scales using the MoDeNa
framework. The efficiency of the multi-scale model is evaluated by comparing the
numerical predictions of foam density and temperature evolutions with experimental
measurements. Validation results showed the capability of the framework when it is
assessed for simulation of a complex system such as polyurethane foam.
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1 Introduction

Polyurethane foam is used to demonstrate and evaluate the predictive capability of
a multi-scale framework, namely MoDeNa. MoDeNa enables coupling of modeling
tools that works on different scales. Modeling and simulation of PU provide apriori
information about the final product, and how it can be modified by chemical recipes
and operational conditions [17, 23, 30]. Thus, it is necessary to develop a com-
prehensive, yet feasible modeling platform in which different physical phenomena
described on multiple scales, from molecular to macro-scale, can be integrated.

Reviewing the literature reveals that currently there is no multi-scale platform
for modeling PU foams. The available models concentrate on one aspect of PU
simulation. For example, Baser and Khakhar focused on the macro-scale behavior
of PU foams, and solved a set of ordinary differential equations (ODEs) to describe
foam density and temperature [1, 2]. Computational fluid dynamics (CFD) has also
been an attractive alternative because it allows the spatial and temporal variations
of different foam properties to be locally investigated. The typical method is to add
extra partial differential equations (PDEs) for macroscopic phenomena, e.g., the
progress of the polymerization is modeled by adding two PDEs [3, 10, 25–27, 29].
Considering the lower scale tools, the growth of a single bubble has been studied
by different groups. Harikrishnan et al. [11] used a simple mass transfer model for
the bubble growth in PU foam. A similar approach (bubble-shell model) was also
adopted inwhich themass andmomentumbalancewere solved for a spherical bubble
in a liquid foam to evaluate the radius of the bubble [6, 16].

Recently,Karimi et al. [14] presented amacro-scalemodel based on couplingVOF
with a population balance equation (PBE). This enables the modeling approach to
go one step further and predict the cell or bubble size distribution (BSD). However,
they applied simplified models for the bubble growth based on diffusion. This has
been addressed by Ferkl et al. [7] using a multi-scale modeling prototype coupling
the macro- and bubble-scale models. The objective of this work is to follow up the
previous attempt and develop a three-dimensional multi-scale platform for simula-
tion of PU foams. This includes a macro-scale OpenFOAM® solver in which the
interconnectivity of scales is realized throughMoDeNa. The solver is coupled with a
detailed bubble-scalemodel providing the growth rate due to the presence of different
gases. As the CFD code is supplemented by the solution of a PBE, the growth rate
is needed to simulate the growth of bubbles via PBE. The growth rate itself depends
on the dynamic characteristics of the foam during the foaming process and is too
expensive to calculate on a cell-by-cell basis. Therefore, the MoDeNa is used to en-
capsulate the growth rate in a surrogate model with parameters that are dynamically
fitted to detailed simulations. The information is then applied in the MODENAFoam
solver to realistically simulate the state of gas bubbles within the foam at a much
lower computational cost.
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2 Governing Equations

2.1 Reaction Kinetics

PU foams are produced using a process called reaction foaming, during which poly-
merization occurs simultaneously with the expansion. The complex polymerization
scheme can be simplified as two global reactions [1, 2]. The reaction source terms
can be written in terms of polyol and water conversions as shown below.

SOH = AOH exp

(
− EOH

RgT

)
(1 − XOH)(cNCO,0 − 2cW,0XW − cOH,0XOH), (1)

SW = AW exp

(
− EW

RgT

)
(1 − XW), (2)

where AOH and AW are the pre-exponential factors, EOH and EW are the activation
energies, Rg is the gas constant, T is the temperature and cNCO,0, cOH,0, and cW,0 are
the initial concentrations of isocyanate, polyol, and water, respectively.

The temperature source terms associated with these reactions can be written as

ST = (−�HOH) cOH,0

ρPUcp,f

DXOH

Dt
+ (−�HW) cW,0

ρPUcp,f

DXW

Dt
+

N∑
i

(−�Hv,i
)

cp,f

Dwi

Dt
, (3)

where t is the time, �HOH and �HW are the reaction enthalpies of the gelling and
blowing reactions,ρPU is the density of the liquidmixture undergoingpolymerization,
cp,f is the thermal capacity of the foam, N is the number of blowing agents, �Hv,i is
the heat of evaporation for the i th blowing agent, and wi is the mass fraction for the
i-th blowing agent in the gas phase with respect to the foam.

2.2 Bubble-Scale Model

In PU foaming, a large number of air bubbles is entrained into the reaction mix-
ture during the mixing of reactants. Thus, the system never reaches sufficient su-
persaturation, which would lead to nucleation. Instead, when the blowing agent is
supersaturated in the reaction mixture, it diffuses into the bubbles.

The mathematical description of this process is based on idealized geometry.
The bubbles are assumed to be spherical and surrounded by an effective shell of the
reactionmixture, which accounts for the fact that there is a limited amount of blowing
agent available for each bubble. In this case, the growth of a bubble will result in
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a purely radial velocity field, and thus the momentum balance can be simplified
as in [6]:

N∑
i=1

pi + pair − pPU = ρPU

[
R
d2R

dt2
+ 3

2

(
dR

dt

)2
]

+ 2γ

R
+ 4μPU

R

dR

dt
, (4)

where pi is the partial pressure of the i th blowing agent in the bubble, pPU is the
pressure in the reactionmixture, R is the actual bubble radius, γ is the surface tension
and μPU is the viscosity of the reaction mixture. The terms on the right-hand side
represent inertial, surface tension and viscous forces, respectively.

The mass balance for the i th blowing agent in the bubble can be written as

d

dt

(
pi R3

RgT

)
= 3Di R

2 ∂ci
∂r

∣∣∣∣
r=R

, (5)

where Di is the diffusion coefficient of the blowing agent in the reaction mixture, ci
is the molar concentration of the blowing agent in the reaction mixture and r is the
spatial coordinate. It is assumed that the resistance to mass transfer is entirely on the
side of the reaction mixture.

Finally, the mass balance for the i th blowing agent in the reaction mixture can be
written as

∂ci
∂t

+ R2

r2
dR

dt

∂ci
∂r

= Di

r2
∂

∂r

(
r2

∂ci
∂r

)
+ ri , (6)

where ri is the reaction source term, which can be expressed as

ri =
{
cW,0SW if i = CO2

0 if i �= CO2,
(7)

We assume that the concentration at the bubble–shell interface is given by theHenry’s
law and that the blowing agent is not transported across the outer shell boundary.
Thus, the boundary conditions for Eq. (6) are set according to

ci |r=R = Hi pi , (8)

∂ci
∂r

∣∣∣∣
r=S

= 0, (9)

where Hi is the Henry constant and S is the outer radius of the shell. The size of the
shell S is a function of time, but it can be directly calculated from the bubble radius
and initial bubble and shell sizes assuming that the density of the reaction mixture
is constant [7].

The system of differential Eqs. (4–6) is solved together with the reaction kinetics
(see Sect. 2.1) under the assumption that the system is adiabatic. We are most inter-
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ested in the continuous bubble growth rate as the quantity, which can be used in the
macro-scale model. In this work, we quantify the contributions to the bubble growth
rate due to each blowing agent as the molar flow rate of the blowing agent into the
bubble:

ṅi = 4πDi R
2 ∂ci

∂r

∣∣∣∣
r=R

. (10)

2.3 Modeling the Macroscopic Scale

The macro-scale MODENAFoam is based on a VOF solver for two immiscible fluids,
which is modified to address modeling concerns for polyurethane foam. One of the
main features of the code is the implementation of a PBE. The general form of this
equation considers that bubbles can grow and coalesce during foam expansion:

∂n(v)

∂t
+∇ · (U f n(v)) + ∂

∂v
[G(v)n(v)] =

1

2

v∫
0

β(v′, v-v′)n(v′)n(v-v′) dv′ −
∞∫
0

β(v, v′)n(v)n(v′) dv′. (11)

WhereU f is the foam velocity and the internal coordinate is the volume of bubble, v.
The term n(v) is the bubble size distribution indicating the number of bubbles per unit
volume of the liquid mixture. Furthermore, the frequency of coalescence between
two bubbles of volume v and v′ is defined with the coalescence kernel β(v, v′)
and G(v) = dv/dt is the overall growth rate. The population balance equation [i.e.,
Eq. (11)] is solved by transforming it into a set of partial differential equations for
the moments of BSD using the generic definition of moments:

mk(t) =
∞∫
0

n(v)vk dv . (12)

This definition assigns physical meaning to each moment. For example, m1(t) is the
total volume of bubbles per unit volume of the liquid mixture. Another benefit of
using the definition of generic moments is the efficiency of the computation, as it
allows to follow themoments of theBSDusing only 4–6moments [19]. The evolution
of the mean bubble diameter can be monitored knowing the first two moments as
follows:

db(t) =
(
m1(t)

m0(t)

6

π

)1/3

. (13)

The transport of moments within the PU foam phase is evaluated as follows:
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∂mk

∂t
+ (

U f − αaUr
) · ∇mk = k

N∑
i=1

G
i
k + Sk . (14)

In this work, k ∈ [0, 3], and N represents the number of blowing agents. The volume
fraction of surrounding air is represented as αa. The source term due to different

blowing agents is indicated by G
i
k , whereas Sk is the source term for the coalescence

of bubbles. More details on how to treat the source terms are reported elsewhere [14,
18].

As the solution of the PBE provides the total bubble volume per unit volume of
the liquid of mixture, i.e., m1(t), the evolution of the foam density can be expressed
as

ρf = ρb
m1(t)

1 + m1(t)
+ ρPU

1

1 + m1(t)
. (15)

In Eq. (15), ρb and ρPU are the densities of the gas within the bubbles and of the
liquid mixture, respectively.

The evolution of the temperature of the foam phase is calculated as follows:

∂T

∂t
+ ∇ · (UT ) + (U − Ur ) · ∇T − ∇2 (ᾱT ) = αfST , (16)

where ᾱ is the thermal diffusivity of the PU foam, and ST is defined in Eq. (3). The
conversions of water (XW) and polyol (XOH) are accounted for by adding two extra
PDEs:

∂XW

∂t
+ (U − αaUr) · ∇XW = SW, (17)

∂XOH

∂t
+ (U − αaUr) · ∇XOH = SOH, (18)

Additionally, accounting for the blowing agentswithin the liquidmixture themass
balance for the i th blowing agent in the mixture is written as

∂wi

∂t
+ (U − αaUr ) · ∇wi = ri

Mi

ρPU
+ G

i
1

P

RT

Mi

ρPU
, (19)

where wi is the mass fraction of the i th blowing agent and ri is defined as

ri =
{
C0

W
DXW
Dt , if i = CO2,

0, if i �= CO2.
(20)

The molecular mass of the i th blowing agent is Mi, and the symbol G
i
1 represents

the moment of order one of the growth rate due to the i th blowing agent.
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3 The MoDeNa Software Framework

Several strategies have been developed for building bridges across the scale-
separation, thus coupling the scale-specific models, such as the heterogeneous multi-
scalemethod (HMM) described in [28] and the equation-free approach byKevrekidis
et al. [15]. These approaches are opposite techniques for scale-bridging because
HMM is a top-down approach and the equation-free method is bottom-up. The
design of the MoDeNa software framework is a top-down and it aims at eliminating
approximations, typically represented as constants or constitutive relationships, with
surrogate models approximating the detailed models.

3.1 Design Philosophy

The philosophy underpinning the MoDeNa software framework is to ensure loose
coupling between applications representing detailed models. The coupling and com-
munication across scales is handled through recipes and adapters. Recipes perform
simulations by executing applications (in-house codes or external software packages
such as OpenFOAM®, Materials Studio, PC-Saft or in-house software) for a given
set of inputs. Adapters handle the communication with theMoDeNa software frame-
work. Both recipes and adapters are application-specific. Adapters exist as outgoing
and incoming adapters. Outgoing adapters are relatively straightforward in that they
perform a mapping operation (such as averaging) and communicate the results. The
averaging process may have to be started and performed within the application (e.g.,
for time averaging). However, the results can usually be submitted in a separate
process after the simulation is finished. Incoming adapters usually require that the
surrogatemodel us embeddedwithin the application and is, therefore, more complex.

3.2 Scale Coupling

When considering multi-scale modeling from the top-down perspective the scale
coupling happens in the set of parameters (D) of the individual scale-specific models
(M). Traditionally, it is assumed that the parameters are valid for the entire range of
model inputs, u ∈ Umax , resulting in the generic representation in Eq. (21).

yi = M (ui ; D) ; ui ∈ Umax . (21)

The accuracy of models such as the Navier–Stokes equations has proven to be suf-
ficient for an astonishing diversity of engineering applications. However, when the
assumption no longer holds it may be necessary to replace the parameters with a set

of models,
{
Mi−1

j

}
, which provides the quantity using a model that describes the
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physics from first principles, as represented in Eq. (22).

M := M
(
ui ;

{
Mi−1

j

})
;ui ∈ Umax (22)

When coupling a large number of models using this strategy the practical issue of
computational cost becomes important. The approach taken in the MoDeNa project
was to employ surrogatemodels, a simplifiedmodel whose purpose is to approximate
the input–output behavior of a more detailed model, in-place of scale-specific first-
principlemodels. The parameters (θ ) of the surrogatemodel are validated in a domain
(U) using simulation results of the detailed model it approximates.

ŷi = M̂ (ui ; θ) ≈ yi ;ui ⊂ U ∈ Umax . (23)

Using the surrogate model in Eq. (22) the multi-scale detailed model becomes

M := M
(
ui ;

{
M̂i−1

j

})
;ui ⊂ U ∈ Umax . (24)

The parameter fitting and validation of the individual surrogate models used in a
scale-specificmodel in the form shown in Eq. (24) is done automatically byMoDeNa
using the model-based design of experiments framework illustrated in Fig. 1 and
outlined in [8]. The execution time of the surrogate is usually negligible compared
to that of the detailed model.

3.3 Software Components

The role of the software framework in the multi-scale application is to orchestrate
the overall simulation and facilitate scale coupling. It consists of an orchestrator, a
database and interface library. The orchestrator is based on FireWorks [12, 13] and
constitutes the backbone of the software in that it schedules simulations as well as
design of experiments as well as parameter estimation operations which make up
the workflow of the overall simulation. It is very much like a dynamic workflow
engine, in which the different applications are “orchestrated” to obtain information,
analyse and pass it to the other operations. The NoSQL database MongoDB [21] is
used to store the state of the workflow as well as the surrogate models together with
associated data such as model parameters, data used for parameter estimation, and
meta-data.

The interface library consists of two parts. A high-level Python module providing
database access and capabilities for performing design of experiments and regression
analysis by building on MongoEngine [22] and R [9, 24], respectively. The second
part is a low-level library providing unified access to the surrogate models. This
component is written in C to ensure interoperability across platforms and target
applications while providing the computationally efficient model execution required
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Fig. 1 Workflow of the model-based design of experiments procedure. The design of experiments
(DoE) procedure generates a set of inputs {ui }ni=1, and a detailed simulation is performed using
the detailed model M, producing a set of outputs {yi }ni=1. Because the inputs are generated based
on the input space of the surrogate model, the framework includes scale interface models for
homogenization I and its inverse, lifting I−1, respectively, transforming between the inputs and
outputs of the detailed model and the surrogate model. The parameters of the surrogate model θ are
obtained and validated using a metric (g) against a criteria (ε)

by the applications. The library is loaded as a shared library by the macroscopic-
scale applications or as a native Python extension by the high-level Python module
ensuring that all components instantiate identical model implementations. Complex
operations such as database access are referred back to the high-level Python module
using call-back mechanisms.

3.4 Coupling of Macro- and Bubble-Scale Models

The MoDeNa framework handles the communication between the MODENAFoam
solver and embedded models. As an example, the design, implementation and em-
bedding of the bubble growthmodel through the use of a surrogatemodel is explained
in detail. Other models follow the same principles. A suitable surrogate model for
bubble growth is based on the concentration difference of blowing agent between
liquid and gas phase:

ṅi = 4πR2αRβ

(
wiρPU

Mi
− Hi (T )pi ,

)
, (25)
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whereα andβ are the fitting parameters. The surrogatemodel provides bubble growth
rate in terms of state variables R, wi , pi and T (solubility is generally a function of
temperature).

Since the bubble growthmodel itself is a transient simulation, it cannot be directly
used to determine bubble growth rate for desired state conditions. Instead, the detailed
model is used to simulate the foaming from the same initial conditions as the macro-
scale tool and both the state variables and the growth rate are saved at fixed intervals.
These values are then used to determine the fitting parameters α and β. Afterward,
the surrogate model can be called from the macro-scale tool.

4 MoDeNa as a Functional Piece in Applications

In order to understand the interaction between theMoDeNa software framework and
the OpenFOAM® application it is necessary to consider the definition of surrogate
models and how they are embedded into applications, as well as the role of the
MoDeNa framework in the overall simulation.

4.1 Defining Surrogate Models

A core design-principle in the MoDeNa software framework is that the surrogate
models are self-contained. Consequently, the definition must provide sufficient in-
formation to represent the generic function representation shown in Eq. (23), as well
as identifying the model it approximates. However, theMoDeNa framework also de-
mands that the author of the surrogate model provides recipes for how to read/write
input files for the detailed model application as well as specifying the strategies that
MoDeNa should invoke in order to resolve run-time exceptions related to the model.
The figure below illustrates the information that is provided in order to define the
model interface and properties of the surrogate model. The definition of the models
are implemented in the Python programming language using predefined templates
and software infrastructure provided by the high-level application program interface.
Consequently, every scale-specific detailed model in the multi-scale application be-
comes a Python module; thus aiding in providing structure to the overall project
which may involve a large number of models.

The purpose of the model-definition is to facilitate the development of models in
relative isolation, such that authors of scale-specificmodels only need to be concerned
with the information that should be passed between the models when MoDeNa cou-
ples them together. The benefit of this approach becomes apparent when considering
how to embed the MoDeNa models inside an OpenFOAM® application.
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4.2 Embedding Surrogate Models into OpenFOAM®

The footprint of the MoDeNa framework inside the OpenFOAM® applications is
low, and the self-sufficiency of the surrogate models eliminates the need to link the
OpenFOAM® application with libraries other than MoDeNa. However, in order to
use surrogate models defined as modules in the MoDeNa software framework it is
necessary to implement adaptors, i.e., code fragments calling theMoDeNa low-level
library, inside the OpenFOAM® application.

The major difference between the MoDeNa coupling and a traditional “exhaus-
tive” approach, where OpenFOAM® writes input files, executes the external appli-
cation and reads the output is illustrates in Fig. 2. The low-level MoDeNa library is
developed in C, but the surrogate models are still implemented as abstract data types
that hide unnecessary implementation details from the user. However, since Fig. 2
clearly illustrates that the workflow for using the surrogate models is an excellent
candidate for object-orientation the MoDeNa framework also provides a C++ class
for easy integration into OpenFOAM® (Fig. 3).

Fig. 2 Illustration of the data that is provided in the definition of a MoDeNa surrogate model. All
information is provided as Python dictionaries and the model properties are implemented using
templates provided by the framework. This means that objects can be de-serialized directly from a
database of a flat file

Fig. 3 Illustration of a “exhaustive” (left) and MoDeNa-style (right) coupling between two appli-
cations, or detailed models. The MoDeNa approach can be thought of as a combination between a
library API and the “exhaustive” input/output file approach. The benefit is that the API will look
the same for all models, and there is no intrusion of code specific to other applications
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Fig. 4 Illustration of the workflow of an OpenFOAM® application (blue) in which calls to the
MoDeNa software framework have been embedded (solid black lines). The workflow is ideal in the
sense that error checks and exceptions related to the MoDeNa surrogate model have been omitted.
The low-level C-layer of the MoDeNa framework (white) encapsulates the surrogate model, which
is instantiated from the database by the high-level Python interface (gray)

4.3 Overall Simulation Workflow

The role of the MoDeNa software framework in the OpenFOAM® application is to
ensure that the surrogate models are ready to be used. This is largely handled by
the Python layer of the software, which is where the computational workflow and
database management take place.

The software framework does not communicate with the database during the
OpenFOAM® simulation assuming the execution of the surrogatemodel produces no
exceptions. In this case, the database will only be used to instantiate the models at the
beginning of the simulation. The ideal illustration is not accurate when the workflow
is changed dynamically to accommodate the parameter-estimation procedure from
Fig. 1.However, the software frameworkupdates the state of themodel in the database
after each parameter-estimation run, which means that subsequent OpenFOAM®

simulations will not be interrupted (Fig. 4).

5 Physical Properties and Operating Conditions

The viscosity of the liquid reaction mixture is modeled by Castro–Macosko model:

μPU = A exp

(
E

RgT

) (
XOH,g

XOH,g − XOH

)B+CXOH

, (26)

where A = 4.1 × 10−8 Pas, E = 38.3 × 103 Jmol−1, B = 4.0, C = −2.0 are con-
stants determined from experiments [5]. XOH,g = 0.5 is the conversion of polyols at
the gel point.
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Table 1 Kinetic parameters, operating conditions and material properties

Property Value

pamb (Pa) 1.0 ×105

ρrm (kgm−3) 1100

cp,pol (J kg−1K−1) 1800

cp,CO2 (J kg
−1K−1) 870

MCO2 (kg mol−1) 0.044

DCO2 (m
2s−1) 4.4 ×10−10

HCO2 (mol m−3Pa−1) 1.1 ×10−4

γ (Nm−1) 0.025

Property Value

AOH (m3 mol−1s−1) 1.735

EOH (J mol−1) 4.04 ×104

−�HOH (J mol−1) 7.07 ×104

AW (m3 mol−1 s−1) 1.39 ×103

EW (J mol−1) 3.27 ×104

−�HW (J mol−1) 8.60 ×104

cOH,0 (mol m−3) 3765

cNCO,0 (mol m−3) 3765

cW,0 (mol m−3) 0

T0 (K) 300

nb,0 (m−3) 1 ×1012

R0 (m) 1 ×10−5

A non-Newtonian model is instead applied for the calculation of foam apparent
viscocity based on the Bird–Carreau theory [4]:

μ f (T, XOH, γ̇ ) = AOH exp

(
EOH

RgT

)
×

(
μ∞ + (μ0 − μ∞)

(
1 + (γ̇ 
̄)ζ

) n−1
ζ

)

(27)

In Eq. 27, μ0 and μ∞ are the values of foam viscosity under the minimum and max-
imum shear rates. The constants utilized in this work are: 
̄ = 11.35, ζ = 2.0, and
n = 0.2. The rest of the physical properties and operating conditions are summarized
in Table 1.

6 Results and Discussion

In this section, two cases are used to illustrate the efficiency of the coupling strategy
in the MoDeNa framework. We first present the comparison between the detailed
and surrogate model for the bubble growth (see Fig. 5). This is important in the
coupling, as the purpose of the surrogate model is to provide a fast and viable mean
value for estimating the growth rate of the bubbles. It can be seen that the growth
rates computed by the surrogate model are reasonably accurate when compared
to the detailed model. Second, the numerical predictions of the foam properties
are validated with experimental measurements. This is to confirm how close the
framework outputs are to the reality. Additional validation studies were reported in
[7]. The foam properties predicted by MODENAFoam are shown in Fig. 6. The recipe,
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Fig. 5 The bubble growth rate as calculated by the detailed model (see Sect. 2.2) and the surrogate
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and by extension the simulation case, uses a chemical blowing agent, water, without
any physical blowing agent. The measurements are done for a classical “beaker
test”, which was simulated as a two-dimensional geometry with 10% liquid mixture
filling at the beginning. Generally, the agreement between the experimental data and
the numerical predictions of the foam density and temperature is reasonably good.
However, the density predictions showbetter agreement compared to the temperature.
The inconsistency between the predicted and measured temperatures can mainly be
attributed to two factors: (1) that the heat capacity for the liquidmixture was assumed
to be constant and (2) the lack of data for the enthalpies of the chemical reactions.

The conversion of reactants as well as the evolution of the bubble radius is also
shown in order to demonstrate that detailed information can be extracted from the
results. It is interesting to notice that the concentration of blowing agent within the
liquid mixture requires a few seconds at the commence of foaming to reach to the
equilibrium value. This physical phenomenon can be seen as the flat lines on the
plots. This implies that during the first 20 s of the foaming process the concentration
of CO2 in the liquid mixture increases to the equilibrium value before diffusing into
the bubbles; thereby growing the bubbles and decreasing the density of the foam.
The evolution of bubble size also confirms this phenomenon.

7 Conclusions

The MoDeNa software framework is introduced in this work as an open-source
library for multi-scale modeling. The benefit of utilizing MoDeNa is demonstrated
when it is applied for the simulation of PU foams. As an example, a bubble-scale
model for the growth of gas bubbles is linked to a macro-scale CFD tool. The lower
scale model provides growth rates due to the presence of different blowing agents
for the macro-scale tool. The CFD code is augmented with a population balance
equation that uses the results from the bubble growth model. Furthermore, the multi-
scale model is validated for the prediction of PU foam properties and the numerical
results are compared with experimental data. The observed agreement assures that
the framework handles the transfer of information between different models and that
each scale-specific model is accurate in their predictions of meso- and macro-scale
properties of the PU foam. This work will continue to incorporate more modeling
tools (e.g., a detailed kinetic model) for the simulation of PU foams.
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Simulation of a Moving-Bed Reactor
and a Fluidized-Bed Reactor by DPM
and MPPIC in OpenFOAM®

Kwonwoo Jang, Woojoo Han and Kang Y. Huh

Abstract Simulations are performed for a moving-bed reactor in a rotary kiln and
a fluidized-bed reactor in a FINEX plant. The DEM (Discrete Element Method) and
the MPPIC (Multiphase Particle-In-Cell) methods are combined with a compress-
ible reacting flow in OpenFOAM® 2.3.x. The computational load is reduced by the
DPM (Discrete Particle Method), in which a computational parcel represents a fixed
number of identical particles in the DEM. The slumping and rolling modes are repro-
duced by adjusting particle–particle and particle–wall friction coefficients to match
the regime map in Henein et al. [1]. Validation is performed in a pilot-scale rotary
kiln for reduction of iron ore with heat input from LPG (Liquefied Petroleum Gas).
Simulation results in a lab-scale reactor are validated against those by commercial
software and experimental data for the fluidized-bed reactor. Simulation results show
good agreement with actual operating data for an industrial-scale fluidized-bed reac-
tor in the FINEX process. Reasonable trends are reproduced for the bed burners and
the collective motion of particles of different diameters in the FINEX plant.

1 Introduction

Moving-bed reactors and fluidized-bed reactors are widely used in the industries
of petroleum processing, coal gasification, nuclear plants, steel manufacturing and
water andwaste treatment [2]. Both bed systems usually involve high particle concen-
trations, intense chemical reaction, and strong convective and radiative heat transfer.
Many experiments have been carried out in laboratories and pilot-scale reactors to
propose and validate the analytical models for gas flow and particle behavior in the
reactor. Computational fluid dynamics (CFD) is a promising tool for understanding
complicated multiphase phenomena with rapidly increasing low-cost computational
power. There are two modeling approaches for multiphase flow, Eulerian–Eulerian
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and Eulerian–Lagrangian, for continuous and discrete particle phases [3–5]. Two
Eulerian–Lagrangian approaches of interest are theDiscrete ElementMethod (DEM)
and the Multiphase Particle-in-Cell (MPPIC) method. The DEM solves the transport
and collision of all particles going through transitional and rotational motion. The
computational load for DEM tends to increase exponentially with the total number of
particles for a large-scale industrial system [6]. There have been two approaches to
reducing the computation time of DEM; one is the DPM employing computational
parcels with each representing a fixed number of particles sharing the same charac-
teristics and the other is the MPPIC model [7], which considers the stress gradient
of the solid phase through an interaction force in the Eulerian field. The MPPIC is
more efficient than the DEM for a large-scale problem, although a sufficient number
of parcels are required to guarantee stability in the corresponding Eulerian grid and
flow field [8]. In this work, we applied the open source code, OpenFOAM®, to sim-
ulate particles and gas flow in a moving-bed and a fluidized-bed, coupled with 3D
turbulent flow, combustion, and heat transfer.

2 Physical Models

2.1 Discrete Particle Method (DPM)

The solid phase is represented by individual Lagrangian parcels, whereas the gas
phase is described by the following Eulerian mass, momentum, and energy conser-
vation equations:

Mass:

∂
(
θ f ρ f

)

∂t
+ ∇ · (

θ f ρ f u f
) � δṁpf; (2.1)

Momentum:

∂
(
θ f ρ f u f

)

∂t
+ ∇ · (

θ f ρ f u f u f
) � −θ f ∇ p + θ f ρ f g + ∇ · (

θ f τ f
)
+ F; (2.2)

Species:

∂
(
θ f ρ f Y f,i

)

∂t
+ ∇ · (

θ f ρ f Y f u f
) � ∇ · (ρ f Dθ f ∇Y f,i

)
+ δṁi,chem; (2.3)

Energy:

∂

∂t

(
θ f ρ f h f

)
+ ∇ · (

θ f ρ f h f u f
) � θ f

Dp

Dt
− ∇q + Q̇ + Sh . (2.4)
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Each particle is tracked for its translational and rotational motion by the following
equations of motion [9]:

mi
d2ri
dt2

� fi + mig, (2.5)

Ii
d2ωi

dt2
� ti , (2.6)

for the mass of the ith particle, mi , its position, ri , and the total force, fi , due to
drag and contact with wall and other particles, except the gravitational force. Ii and
ti are the moment of inertia and the total torque of the ith particle. fi is given as a
sum of the drag force, fD , the contact force, fC , and the net pressure force by the
surrounding gas flow. fD is given by the Ergun-Wen and Yu model [10] to consider
the effect of gas volume fraction in a dense particle bed. fC is the sum of the normal
and tangential contact forces, fnorm and ftang, estimated as

fnorm � kδ + λ0vn (2.7)

ftang � −ktξ − λtvt (2.8)

where fnorm is given by the linear contact model, whereas ftang is given by the slid-
ing/sticking friction model. k, λ0, δ and vn are, respectively, the spring stiffness,
damping coefficient, overlap in the soft sphere model and relative velocity in the
normal direction. kt and λt are the tangential spring stiffness and tangential dissipa-
tion parameter. ξ and vt are the tangential overlap and tangential relative velocity.
The friction force is modeled as ffriction � μ fnorm for the friction coefficient, μ. The
tangential friction force, ftang, is limited as

ftang � min
(
fC ,

∣∣ ftan g
∣∣). (2.9)

In the DPM, each computational parcel represents n identical particles to reduce
excessive computational load of the DEM to a manageable level. The force, fin ,
excluding the contact force on a parcel, is modeled as [11]

fin � n fi1, (2.10)

where fi1 is the force on each single particle according to an experimental correlation.
Heat and mass transfer for a parcel are similarly modeled as

den � n de1, (2.11)

dmn � n dm1, (2.12)

where de1 and dm1 are the estimations for each single particle by experimental
correlations. The normal and tangential contact forces are represented by the com-
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putational parcels contacting each other in the same way as the individual particles
in Eqs. (2.7) and (2.8).

2.2 Multiphase Particle-In-Cell (MPPIC)

The gas phase equations in the MPPIC are the same as those in the DEM. The proba-
bility distribution function, φ

(
x,up,mp, t

)
, is defined to describe particle dynamics

in terms of particle position, x, particle velocity, up, and particle mass, mp. The
particle phase is governed by the Liouville equation [12],

∂φ

∂t
+ ∇ · (φup) + ∇u p · (φA) � 0, (2.13)

where the particle acceleration is given by

A � Dp(u f − u p) − 1

ρp
∇ p + g − 1

θsρp
∇τ. (2.14)

The four terms on the right represent, respectively, drag force, pressure gradient,
gravity, and gradient in the interparticle stress, τ [7]. The drag coefficient, Dp, is given
by the Ergun-Wen and Yu model [10]. u f and u p are the fluid and particle velocities.
ρp is the density of particles and θs is the particle volume fraction. Equation (2.14)
corresponds to Eq. (2.5) with a different expression for the particle contact force, fC ,
given in terms of the interparticle stress by the Harris and Crighton model [13] as

∇τ � Psθ
β
s

max[(θCP − θs), ε(1 − θs)]
, (2.15)

where θCP is the maximum volume fraction for the packed particle bed and Ps is the
corresponding particle pressure. Aureais et al. [14] recommended a constant value
between 2 and 5 for β. ε is a small number on the order of 10−7 [15].

3 Implementation Strategy in OpenFOAM®

The basic libraries, CollidingCloud and MPPICCloud, for DEM and MPPIC were
included in OpenFOAM® version 2.3.x. The multiphase flow solver with these
libraries was provided for a single species in an incompressible form. We developed
a new solver and the associated libraries in a compressible form in three sequen-
tial stages for gas–solid reaction and heat transfer in a moving-bed reactor and a
fluidized-bed reactor. First, the basic CollidingCloud and MPPICCloud are com-
bined together with the physical models for heat transfer and gas–solid reaction. The
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Fig. 1 Implementation strategy in OpenFOAM®

developed cloud libraries are respectively called ReactingMultiphaseCollidingCloud
and ReactingMultiphaseMPPICCloud. Second, we modified the basic incompress-
ible solver as a new compressible solver. The developed libraries are implemented
into the new solver for heat transfer, reaction, and particle motion, as depicted in
Fig. 1. In the final stage, we added the sub-models for chemical reaction and heat
transfer. The eddy dissipation model was implemented for diffusion-controlled com-
bustion in a compressible turbulent flow with multiple species transport in the gas
flow solver [16]. The randomporemodel is implemented to consider the surface reac-
tion on DPM particles [17]. The WSGGM (Weighted Sum of Gray Gases Model)
was implemented for radiation in the gas phase [18].

4 Results for the Moving-Bed Reactor

4.1 Case Setup

Henein et al. [1] developed a regime map for particle motion in a rotary kiln in terms
of bed depth versus rotational speed or percent fill versus Froude number. It includes
particle motion in the slipping, slumping, rolling, cascading, and cataracting modes.
The experimental conditions are listed in Table 1 [19]. The kiln is a cylinder with a
diameter of 0.4 m and an axial length of 0.46 m. Particles are composed of limestone
with a mean diameter of 4.3 mm. The friction coefficients are specified arbitrarily
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Table 1 Experimental
conditions in Henein et al.
[19]

Property Range

Material Limestone

Kiln axial length (m) 0.46

Kiln diameter (m) 0.4

RPM range (rpm) 0.5–10

Bed depth range (m) 0.03–0.07

Particle diameter (mm) 4.3

Fig. 2 Computational mesh
for the pilot-scale rotary kiln
in Tsuji [20]

as 0.1 between particles and 0.2 between particles and wall, with no reliable models
available in the given conditions.

Tsuji [20] investigated experimentally the reduction behavior of iron ore in a pilot-
scale rotary kiln. Simulation is performed for particles and gas flow in the 3D domain
in Fig. 2 in this work. Table 2 lists the operation condition and ore compositions.
The kiln rotates at 0.33 rpm with a diameter of 1.8 m and an axial length of 1.0 m.
The bed is composed of briguettes of a homogeneous mixture at a uniform size of
30 mm × 25 mm × 15 mm. They are represented as spherical particles of the mean
diameter of 27.8 mm of the homogeneous mixture treated as a single component in
simulation. The initial particle temperature is 1273 K [20]. The reduction ratio is
set initially at 5%, as in experiment. The friction coefficients are the same as those
employed for the regime map in Henein et al. The adiabatic condition is specified on
all wall boundaries.
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Table 2 Experimental conditions and ore chemical compositions in Tsuji [20]

Property Value Chemical Mass%

RPM 0.33 SiO2 44.36

Ore (kg) 560 Fe 9.05

Coal (Anthracite) (kg) 101 Al2O3 0.41

Limestone (kg) 44.0 Ni 2.45

Particle size (mm) 30 × 25 × 15 CaO 0.08

Fuel LPG MgO 26.68

Fuel mass flow rate
(m3/h)

30

Air mass flow rate
(m3/h)

709.5

Table 3 Simulation cases
and modes of particle motion

Case # rpm h (m) θ (°) Mode

1 10 0.035 23.2 Rolling

2 10 0.045 23.0 Rolling

3 10 0.053 23.3 Rolling

4 10 0.07 23.1 Rolling

5 0.5 0.035 21.3–27.2 Slumping

6 0.5 0.045 19.4–24.4 Slumping

7 0.5 0.053 21.3–25.8 Slumping

8 0.5 0.07 30.3 Rolling

4.2 Results and Discussion

4.2.1 Transverse Particle Motion

The cases in Table 3 involve bed depths between 0.035 and 0.07 m at 10 and 0.5 rpm.
Simulation was performed with 4000 DPM parcels to represent about 105 particles
for 14.8 kg of limestone [19]. Figure 3 shows simulation results for transverse particle
motion in Henein’s regime map. The particles were in the rolling mode for all bed
depths at 10 rpm with an inclination angle, θ , of about 23°. The inclination angle
did not show any explicit dependence on the bed depth. The particles showed the
slumping mode at 0.5 rpm with particle movement of θ between about 20° and 25°,
except for Case 8. The particle bed repeated the sequence of moving up with the wall
and then sliding down against the wall periodically in the slumping mode. In the
rolling mode, the external bed shape remains stationary as the particles slide down,
forming an active layer on the top surface and an inactive region in the interior region
[19].
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Fig. 3 Transverse particle
motion in the regime map

4.2.2 Reduction of Iron Ore

Figure 4a shows themean temperature distribution on the cross-sectional plane in the
quasi-equilibrium state. Note the lower temperature in the bed due to the heat sink as
a result of endothermic coal gasification reaction. There is a significant temperature
gradient in the axial direction in the bed, as well as in the freeboard, as reduction
proceeds with combustion gas flowing toward the outlet. The peak temperature is
about 1800 K at the entrance of the kiln, while the minimum temperature of about
1000 K occurs at the lower right corner in the bed in Fig. 4a.

Figure 4b, c shows the temperature and the degree of reduction of the particles at
57min since the initial state. Particles show higher temperatures and higher reduction
ratios near the burner as a result of enhanced heat transfer from the freeboard gas at
its maximum temperature. The reduction ratio is relatively uniform due to efficient
mixing in the radial direction in Fig. 4c, while particles show higher temperatures
on the bed surface as a result of heat transfer from the freeboard gas. This results
from a heat transfer faster than particle mixing and reduction chemistry to maintain
a non-negligible temperature gradient in the bed. Results show inefficient mixing
of particles in the axial direction as compared with mixing in the radial direction.
All computations were performed on a cluster with 60 cores of the 2nd Intel Xeon
Processor E5-2650 at 2.3GHz. It took about seven days for the simulation of one hour
of real time with one thousand DPM parcels and about 55,000 fluid meshes. This
could be evidence of the current DPM implementation not being fully optimized
for parallel processing, since CFDEM [21] showed much faster performance for
comparable simple problems in an incompressible flow.
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Fig. 4 Temperature distribution in the pilot-scale rotary kiln (a) and temperature (b) and reduction
ratio (c) of the particles at 57 min in the pilot-scale rotary kiln

5 Results for the Fluidized-Bed Reactor

5.1 Lab-Scale Fluidized-Bed Reactor

5.1.1 Comparison with the Commercial Software

We compared the results with those by the commercial software, ANSYS-FLUENT
[22], for validation of the newly developed solver and libraries. We selected the
case of a simple uniformly fluidized-bed reactor in Goldschmidt et al. [23]. The
computational domain is rectangular with the width of 0.15 m, the depth of 0.015 m
and the height of 0.45 m as shown in Fig. 5. Glass beads of a uniform diameter of
2.5mmare filled at the initial bed height of 0.15m.Details of the operation conditions
and the numerical models are summarized in Table 4. Figure 5 shows instantaneous
contours of the gas volume fraction byANSYS-FLUENT andOpenFOAM®.A large
bubble at the bed surface shows similar shapes with no significant difference in the
other aspects of the results by the two programs.

Wealso compared the results byOpenFOAM®with thosebyBarracuda [15]which
is another commercial software widely used in fluidized-bed reactors. We performed
simulation of Lin et al. [24] involving a cylinder filled with glass beads with the
diameters ranging between 0.42 and 0.6 mm. The initial bed height is 11 cm and the
mean fluidization velocity is 0.648 m/s. A 2D axisymmetric computational domain
is shown in Fig. 6. Details of the operation conditions and the numerical models are
summarized in Table 5. Figure 6 shows comparison of the measured particle volume
fractions with the calculation results by OpenFOAM® and Barracuda. There is no
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Fig. 5 Schematic configuration and instantaneous contours of the gas volume fraction a by
ANSYS-FLUENT and b by OpenFOAM®

Table 4 Simulation conditions for the reactor in Goldschmidt et al. [23]

Operating conditions Value Numerical model Value

Inlet gas Air Number of grid 675/2D

Fluidization velocity
(m/s)

1.875 Time step size (s) 2 × 10−4

Gas density (kg/m3) 1.2 Drag model Ergun-Wen and Yu

Particle density
(kg/m3)

2526

Number of particle 24,750 Particle–particle
interaction model

Harris-Crighton

Gas temperature (K) 293

significant difference between the two programs with the predicted results showing a
similar trend with experimental data but with significant deviation at some locations.
Simulations show the particle volume fractions larger than measurements at the
bottom, as the voidage due to high gas jet velocities could not be reproduced by the
MPPIC model. Deviations in the peak volume fraction are caused by the particle
behaviors with strong collision and circulation not properly taken into account in the
MPPIC model and might be improved by modification of the model constants, Ps

and β, in Table 5.
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Fig. 6 Schematic configuration and comparison of average particle volume fractions

Table 5 Simulation conditions for the reactor in Lin et al. [24]

Operating conditions Value Numerical model Value

Fluid density (kg/m3) 1.093 Number of grid 360/2D axisymmetric

Fluid viscosity (Pa s) 1.95 × 10−5

Particle density
(kg/m3)

2500 Time step size (s) 1 × 10−4

Number of particle 20,736 Ps (Pa)/β 75/5

5.1.2 Comparison with DEM Results

We compared the results by OpenFOAM® with experimental data and the results by
DEM for another lab-scale reactor in Muller et al. [25]. It has a rectangular shape of
the width of 44 mm, the depth of 10 mm and the height of 1200 mm, similar with
the shape in Fig. 5. Poppy seeds were used as fluidizing particles at the initial bed
height of 30 mm. Details of the operation conditions and the numerical models are
summarized in Table 6.

Figure 7 shows comparison of themeasured gas volume fractions with the simula-
tion results at two different heights. Note good agreement of the gas volume fractions
calculated by DEM and MP-PIC approaches with experimental data in Fig. 7. The
MP-PIC considers only linear collision of particles, whereas the DEM takes into
account both linear and rotational collisions. Better agreement is observed in the
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Table 6 Simulation conditions for the reactor in Muller et al. [25]

Operating conditions Value Numerical model Value

Air temperature (K) 298.15 Number of grid 3000/3D

Fluid viscosity (Pa s) 1.8 × 10−5 Time step size (s) 1 × 10−4

Particle density
(kg/m3)

1000 Operating time (s) 23

Number of particle 9240 Ps (Pa)/β 10/2

Fig. 7 Comparison of the mean gas volume fractions by experiment, DEM and MP-PIC at the
heights of a 16.4 mm and b 31.2 mm

central region at the mid-axial location of y � 31.2 mm, whereas there is larger
deviation near the walls on both sides. No significant difference was confirmed in
the characteristics of the fluidized bed with constant gas density between the original
MPPICFoam and the newly developed ThermoMPPICFoam.

5.2 Industrial-Scale Fluidized-Bed Reactor

5.2.1 Case Setup

Figure 8 shows the FINEX process, a new iron-making technology under develop-
ment by POSCO. It produces less pollutants and ismore economical than the conven-
tional blast furnace since it uses lower quality ore and coal without any pretreatment
processes such as cokes and sinter plants [26]. The major role of fluidized-bed reac-
tors is in reducing the ore fine and increasing the particle temperature to produce
hot compacted iron (HCI). The R2 reactor is about 17 m high and the radius of the
distributor is about 4.5 m. A mixture of carbon monoxide, methane, and hydrogen
gas is injected through 960 holes in the distributor on the bottom. The iron ore has
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Fig. 8 A schematic diagram of the FINEX process [26]

Fig. 9 Simplified geometry of the fluidized-bed R2 reactor; a full reactor, b 1/10 sector

diameters between 0.063 and 8 mm and ten burners are installed as heat sources
around the bottom of the bed in the R2 reactor. The oxygen burner has two small
nozzle holes, with the two injections meeting at an angle of 45°. A 1/10 sector of
the reactor is modeled to reduce the computational cost in this work. The 1/10 sector
consists of approximately 0.8 million hexahedral cells and 2 million computational
parcels in MPPIC. The simplified reactor geometry is shown in Fig. 9.
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Fig. 10 Instantaneous images of a gas volume fraction and b particles motion

5.2.2 Simulation Under Actual Operating Conditions

The standard k−ε model is employed with the EDM (Eddy Dissipation Model) as
the turbulent combustion model [16]. TheWSGGM [18] is employed to estimate the
gas phase absorption and emission coefficients for radiative heat transfer. Figure 10
shows instantaneous images of the gas volume fraction and the particle motion of
different particle diameters. It shows a reasonable trend of the internal field, including
the gas volume fractions. It is confirmed that bubbles form near the bottom by the
jet flow through the distributor. Most small particles tend to move and accumulate
along the reactor wall in the upper reactor region.

The axial pressure difference is important for confirming the validity of the predic-
tions of particle motion. It largely depends on the total mass of particles and remains
approximately constant beyond the minimum fluidization velocity [27]. Figure 11
shows good agreement with the measured pressure differences, with minor deviation
due to inaccurate locations of the pressure transducers away from the distributor.
Particles are recirculated continuously by the gas flow through the distributor, while
the gas temperature remains relatively uniform due to violent gas phase mixing and
heat transfer with particles by turbulence.

6 Conclusion

(1) Simulations are performed for a coupled solution of particle bed, turbulent
flow, combustion and heat transfer in a pilot-scale rotary kiln and a full-scale
fluidized-bed reactor in the FINEX plant. New libraries are developed for DPM
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Fig. 11 Measurements and predictions of a pressure and b mean temperature

and MPPIC to reduce the computational load and to be combined with the
compressible reacting flow solver in OpenFOAM® version 2.3.x.

(2) Particle motions are reproduced for the rolling and slumpingmodes of a moving
bed in Henein’s regimemap. Particles flow continuously forming an active layer
on the top surface of the bed, while particles move at a slower rate in the inactive
core region in the bed in the rolling mode. More work is required for proper
specification of the friction coefficients in different regimes.

(3) Validation is performed in a pilot-scale rotary kiln for reduction of iron ore with
heat input from LPG fuel. Results show non-negligible variation of particle
temperature and reduction ratio in the radial direction as well as in the axial
direction in the bed. This is due to heat transfer with freeboard gas occurring
faster than the coal gasification reaction and radial mixing of particles under the
given experimental conditions.

(4) The simulation results were validated against those by ANSYS-FLUENT, Bar-
racuda and experimental data in the lab-scale fluidized-bed reactors in literature.
Therewas no significant difference between the results byOpenFOAM® and the
commercial software, with good agreement with available experimental data.

(5) Particle motions including recirculation, bubble formation and destruction are
successfully reproduced in the fluidized-bed R2 reactor of the FINEX plant. The
gas temperature is relatively uniform due to efficient mixing and heat transfer
with particles in the bed. Good agreement is shown for the axial pressure dif-
ference, although with minor deviation due to inaccurate pressure measurement
locations.
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Simulation of Particulate Fouling and its
Influence on Friction Loss and Heat
Transfer on Structured Surfaces using
Phase-Changing Mechanism

Robert Kasper, Johann Turnow and Nikolai Kornev

Abstract Numerical simulations of particulate fouling using highly resolved Large-
Eddy Simulations (LES) are carried out for a turbulent flow through a smooth channel
with a single spherical dimple or square cavity (dimple depth/cavity depth to dimple
diameter/cavity side length ratio of t/D = 0.261) atReD = 42,000. Therefore, a new
multiphasemethod for the prediction of particulate fouling on structured heat transfer
surfaces is introduced intoOpenFOAM® and further described. Theproposedmethod
is based on a combination of the Lagrangian Particle Tracking (LPT) and Eulerian
approaches. Suspended particles are simulated according to their natural behavior
by means of LPT as solid particles, whereas the carrier phase is simulated using
the Eulerian approach. The first numerical results obtained from LES approve the
capabilities of the proposed method and reveal a superior fouling performance of the
spherical dimple due to asymmetric vortex structures, compared to the square cavity.

1 Introduction

The common way to evaluate the performance of heat transfer enhancement meth-
ods like ribs, fins, or dimples is the determination of the thermo-hydraulic efficiency,
which is the relationship of the increased heat exchange to pressure loss [1]. Despite
the fact that particulate fouling, the accumulation of particles on the heat transfer
surfaces, reduces thermo-hydraulic performance significantly, an universal method
for the prediction of particulate fouling still does not exist. With respect to the large
time instants and variety of fouling, its influence is mainly determined using exper-
imental investigations. Due to improved numerical algorithms and access to high
computational resources, numerical simulations of fouling have become more and
more advantageous. However, commonly used fouling models are derived for a
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definite set of boundary conditions and are calibrated for specific cases [2]. Hence,
the existing fouling approaches are unsuitable for a general prediction and analysis
of particulate fouling for industrial applications. Within the present work, a new
approach has been introduced to determine the local fouling layer growth and its
influence on heat transfer and pressure loss. Numerical simulations using different
existing fouling algorithms have shown that the efficiency of the numerical simula-
tions depend enormously on the fouling model used and its empirical parameters,
in combination with the complexity of the heat transfer surface. To reduce compu-
tational time and increase the universality of the model, the proposed method was
developed based on Lagrangian Particle Tracking (LPT) and the Euler approach, in
which the deposited particles are transferred into an extra fouling layer phase with
predefined material properties, causing additional friction losses and heat transfer
resistance. The vortex formations and their direct impact on fouling probability, and
thus on the heat transfer for a single spherical dimple and rectangular cavity, are
analyzed and compared to results obtained for a clean surface.

2 Multiphase Approach for the Simulation
of Particulate Fouling

The numerical simulation of particulate fouling on heat transfer surfaces is complex,
consisting mainly of the deposition of small particles due to adhesion and sedimen-
tation of larger particles resulting from gravitational forces. Therefore, the proposed
multiphase method for the simulation of particulate fouling is composed of two dif-
ferent branches that are closely related to each other. The first one is the Lagrangian
branch and describes the physics of the suspended particles or, respectively, the dis-
persed phase using the LPT. This branch is mainly responsible for the transport of
the particles to the heat transfer surfaces, the deposition of the particles due to adhe-
sion and sedimentation, and also the resuspension of deposited particles due to local
shear stresses. The second one is the Eulerian branch and determines the flow fields
of the carrier flow (i.e., the continuous phase) with respect to the settled fouling layer,
which are then again required within the Lagrangian branch.

2.1 Lagrangian Branch

The description of particle motions within a fluid using the Lagrangian Particle
Tracking (LPT) requires the solution of the following set of ordinary differential
equations along the particle trajectory, which enables the calculation of the particle
location and the linear, as well as the angular, particle velocity at anytime:
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dxp

dt
= up, (1)

m p
dup

dt
=

∑
Fi , (2)

Ip
dωp

dt
=

∑
T, (3)

where m p = π/6ρp D3
p is the particle mass, Ip = 0.1m p D2

p is the moment of inertia
(for a sphere), Fi includes all the relevant forces acting on the particle, and T is the
torque acting on a rotating particle due to viscous interaction with the carrier fluid
[3]. Equation (2) represents Newton’s second law of motion and presupposes the
consideration of all relevant forces acting (drag, gravity and pressure forces) on the
particle

m p
dup

dt
=

∑
Fi = FD + FG + FP + · · · (4)

However, analytical solutions for different forces exists only for small particle
Reynolds numbers, respectively, for the Stokes regime [4]. Due to the fact that the
consideration of intermediate and high particle Reynolds numbers is also desirable,
the LPT used in this work is extended to a wide range of particle Reynolds numbers.
The implemented drag model is based on the particle Reynolds number, which is
defined as

Rep = ρ f Dp

∣∣u f − up

∣∣
μ f

, (5)

with the density ρ f and the dynamic viscosityμ f of the fluid or continuous phase, the
particle diameter Dp and the difference between flow and particle velocity

∣∣u f − up

∣∣.
The drag coefficient is now determined, based on the particle Reynolds number,
through the following empirical relation proposed by Putnam [5]:

CDRep =
{
24

(
1 + 1

6Re
2/3
p

)
if Rep ≤ 1000

0.424Rep if Rep > 1000.
(6)

After determination of the drag coefficient, the basic equation of motion for a spher-
ical particle is used to evaluate the drag force

FD = CD

π D2
p

8
ρ f

(
u f − up

) ∣∣u f − up

∣∣ . (7)

In addition to the drag force, the gravitational and buoyancy force and the pressure
gradient force have to be taken into account as well. Within the LPT used, gravitation
and buoyancy are computed as one total force as follows:

FG = m pg
(
1 − ρ f

ρp

)
, (8)
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where g is the gravitational acceleration vector. The resultant force due to a local
fluid pressure gradient acting on a spherical particle can be found from Eq. (9) using
the differential form of the momentum equation to express the pressure gradient:

FP = ρ f

π D3
p

6

(
Du f

Dt
− ∇ · ν f

(∇u f + ∇uT
f

))
. (9)

From Newton’s third law of motion, it follows that if a particle is either accelerated
or decelerated in a fluid, an accelerating or decelerating of a certain amount of the
fluid surrounding the particle is required. This additional force is known as added
mass force, sometimes referred to as virtual mass force, and can be expressed as

FA = CAρ f

π D3
p

6

(
Du f

Dt
− dup

dt

)
, (10)

where CA is the so-called added mass coefficient. This coefficient can be exactly
derived for spherical particles from potential theory and is CA = 1/2.

The last considered force arises due to local shear flows, and therefore from a
nonuniform velocity distribution over the particle surface. This lift force is called the
Saffman force and is modeled using the Saffman-Mei model, derived by Saffman [6,
7] and advanced by Mei [8]. In order to determine the lift force due to local shear
flows, the shear Reynolds number has to be calculated

Res = ρ f D2
p |∇ × uf |
μ f

, (11)

which is used to evaluate the coefficients of the Saffman-Mei model

β = 1

2

Res

Rep
, α = 0.3314

√
β, f = (1 − α) exp(−0.1Rep) + α. (12)

Afterward, the lift coefficient CL S is calculated using the following approximation:

CL S =
{
6.46 f if Rep < 40
6.46 · 0.0524√βRep if Rep ≥ 40.

(13)

The lift coefficientCL S is now expressed in terms of a nondimensional lift coefficient

CL = 3

2π
√
Res

CL S. (14)

This conversion allows for a more universal way of determining the lift force using
any conceivable force model. Finally, the lift force is calculated as
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FL = CLρ f

π D3
p

6

(
u f − up

) × (∇ × u f
)
. (15)

In summary, it can be stated that the proposed LPT is capable of considering the most
important forces acting on a particle. Because numerical simulations of Sommerfeld
have shown that the consideration of the Basset force increases the computational
time by a factor of about 10 [3], this force is neglected. This strategy is valid for small
density ratios ρ f /ρp << 1 [4], which is probably not the case for liquid-solid flows,
as investigated below. Thus, the influence of the Basset force has to be analyzed in
the future.

However, another important concept in the analysis of dispersed multiphase flows
is phase coupling. One-way coupling exists if the carrier flow effects the particles
while there is no reverse effect. If there is a mutual effect between carrier flow and
particles, then the flow is two-way coupled [4]. In the case of dense flows, there will
be an additional interaction among the particles themselves, which is what is meant
by four-way coupling. The proposed method is capable of considering all different
types of coupling.

2.1.1 Deposition of Particles

As already mentioned, the proposed method has to include an algorithm for the
physical modeling of the deposition of suspended particles on solid walls or, more
precisely, on heat transfer surfaces. Due to the fact that particle deposition is mainly
caused by particle–wall adhesion within this work, the implemented model is based
on the suggestions of Löffler and Muhr [9] and, furthermore, Heinl and Bohnet [10].
This model consists of an energy balance around the particle–wall and particle-
fouling collision. Thus, a critical particle velocity can be derived from a local energy
balance, which contains the kinetic energy before and after the collision, the energy
ratio describing the adhesion due to van der Waals forces and a specific amount
considering the energy loss of a particle resulting from particle–wall and particle-
fouling collision. From the condition of adhesion (i.e., a particle is not able release
itself from the wall after the collision), the critical particle velocity yields

u p,crit =
√(

��

eDp4π2z20

)2 3

4Hρp
, (16)

where �� is the Liffschitz–van der Waals energy, z0 is the distance at contact, H is
the strength of the contact wall, and e is the coefficient of restitution. It should be
mentioned at this point that the determination of the critical particle velocity (16) can
be easily extended for the consideration of electrostatic forces [9, 10]. However, the
condition of adhesion is achieved, if the particle velocity before the wall collision
(impact velocity) is smaller then the critical particle velocity

∣∣up

∣∣ ≤ u p,crit. (17)
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To increase the computational efficiency of our proposedmethod, particles that fulfill
the adhesion condition, Eq. (17), are converted into an additional continuous/solid
phase (fouling layer) and will be deactivated within the LPT. Thus, the amount of
particles is kept nearly constant during the calculations, which reduces the compu-
tational time enormously. The initiated volume or phase fraction α is evaluated by
the particle volume with respect to the cell volume

αnew,i = αold,i + Vp

Vi
, (18)

where αold,i is the phase fraction from the previous time step and Vp and Vi are
the particle and cell volume, respectively. Figure 1 shows the basic concept of the
implemented phase conversion algorithm. According to this, it can be distinguished
between two different cases if a deposited particle has to be converted into the fouling
phase. If the residual local cell volume is greater than the particle volume, the new
phase fraction α can be simply determined using Eq. (18). If the remaining local
cell volume is smaller than the particle volume, the phase fraction is allocated to
the neighbor cell with the maximum cell-based phase fraction gradient max(∇α).
Hence, the neighbor cell with the lowest phase fraction is filled with the fouling
phase. To consider the influence of the fouling phase, an additional porosity source
term (based on Darcy’s law)

Sp = α
μ f

K
u f , (19)

has been introduced into the momentum balance equation, where K is the perme-
ability of the fouling phase. Thus, the blocking effect or flow section contraction due
to deposited particles is not explicitly considered within the calculations, but rather
is modeled implicitly in terms of a porous fouling layer. Furthermore, any physical
property xi (e.g., density, dynamic/kinematic viscosity, or thermal diffusivity) for
partially filled cells is interpolated as follows:

xi = α · x f ouling + (1 − α) · x f luid , (20)

whereas, the physical properties of the carrier fluid are fully applied at cells without
the fouling phase (α = 0) and cells that are completely occupied by the fouling phase
(α = 1) take the physical properties of the fouling material. This procedure likewise

(a) (b)

Fig. 1 Basic mechanism of the phase conversion algorithm: a Vc > Vp and b Vc < Vp
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allows for evaluation of the heat transfer under consideration of particulate fouling
and prevents the solving of an additional advection/transport equation for the fouling
phase, as well as the application of costly remeshing procedures.

2.1.2 Resuspension of Deposited Particles

The resuspension of deposited particles (i.e., the release of particles from the fouling
layer and re-entrainment into the carrier fluid due to high local shear stresses) is
an important mechanism, which has to be considered in the proposed approach
to simulate the particulate fouling as accurately as possible. Therefore, a simple
resuspension model is derived based on the Kern and Seaton model [2]

αremoved = min

(
Vp

τrel

|τc|
Vc

,
Vp

Vc

)
, (21)

where τrel is a relative shear stress and τc is the cell-based local shear stress. The
relative shear stress has to be measured in experiments and can be interpreted as a
threshold value for the release of fouling volume due to high local shear stresses. The
number of resuspended (spherical) particles can be determined using the definition
of the sphere volume

n = αremoved Vc

π D3
p/6

. (22)

The resuspended particles will be re-activated and become part of the LPT again,
whereby the initialmomentumand forces are calculated according to the forcemodels
described above.

2.2 Eulerian Branch

The governing equations are the incompressible Navier–Stokes equations (extended
by the porosity source term Sp, which takes the influence of the fouling layer into
account), the continuity equation and a passive scalar transport equation for the tem-
perature. This system of partial differential equations is solved numerically using
OpenFOAM®. Although the turbulence modeling is generic, Large-Eddy Simula-
tions (LES) are carried out to investigate the interaction between local vortex struc-
tures and particulate fouling. LES is a widely used technique for simulating turbulent
flows and allows one to explicitly solve for the large eddies and implicitly account
for the small eddies by using a Subgrid-Scale model (SGS model).
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2.2.1 Large-Eddy Simulation

The LES equations are derived by filtering the continuity equation, the Navier–
Stokes equations and the passive scalar transport equation for the temperature using
an implicit box filter with a filter width 	 (depending on the computational grid):

∇ · u = 0, (23)
∂u
∂t

+ ∇ · (u u) = − 1

ρ
∇ p + ∇ · ν

(∇u + ∇uT ) + ∇ · τ SGS − Sp, (24)

∂T

∂t
+ ∇ · (

u T
) = ∇ ·

(
ν(α)

Pr(α)
∇T

)
+ ∇ · JSGS. (25)

The unclosed subgrid-scale stress tensor τ SGS = uu − u u is modeled using a dy-
namic one-equation eddy viscosity model proposed by Yoshizawa and Horiuti [11]
and Kim and Menon [12]. This SGS model uses a modeled balance equation to sim-
ulate the behavior of the subgrid-scale kinetic energy kSGS in which the dynamic
procedure of Germano et al. [13] is applied to evaluate all required coefficients dy-
namically in space and time. The subgrid-scale scalar flux JSGS [see Eq. (25)] can
be considered using a gradient diffusion approach.

2.3 Computational Grid and Boundary Conditions

For the simulation of particulate fouling on structured surfaces, two academical test-
cases, a smooth channel with a single square cavity and one with a spherical dimple,
have been investigated. The computational domain for both testcases is shown in
Fig. 2. The origin of the coordinate system is located in the center of the dimple,
respectively, the cavity, and is projected onto the lower wall plane, therefore the

Fig. 2 Computational domain for a smooth channel with a single spherical dimple (left) and a
square cavity (right)
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lower wall is located at y/H = 0.0. The length of the channel is L = 230mm, while
channel height H and channel width B are set to H = 15mm and B = 80mm. For
the spherical dimple with a sharp edge, a diameter of D = 46mm and a dimple depth
t = 12mm are chosen, while the side length of the square cavity equals the dimple
diameter D and the cavity depth is likewise set to t = 12mm. Periodic boundary
conditions were applied in the spanwise direction, whereas no slip boundary con-
ditions were set at the lower and upper channel walls. Turbulent inlet conditions
were produced using a precursor method, which copies the turbulent velocity and
temperature field from a plane downstream the channel entrance back onto the inlet.
The nondimensionalized form of the temperature

T + = T − T∞
Tw − T∞

(26)

is used, where a constant T + = 1 is assumed at the lower wall. Themolecular Prandtl
number was set to be Pr = 0.71, whereas the turbulent Prandtl number Prt was 0.9
in all simulations. The Reynolds number based on the averaged bulk velocity Ub

and the dimple diameter, respectively the cavity side length D, was equal to ReD =
42,000. To assure grid independence of the obtained results, a series of calculations
on different grid resolutions was carried out. Therefore, block-structured curvilinear
grids consisting of around 7.8 × 105, 1.6 × 106 and 3.3 × 106 cells were used. In the
spanwise and streamwise direction, an equidistant grid spacing is applied, whereas
in the wall-normal direction, a homogeneous grid stretching is used to place the
first grid node inside of the laminar sublayer at y+ ≈ 1. Spherical monodisperse
quartz particles (SiO2)with a diameter of Dp = 20μm are randomly injected within
the flow inlet for the fouling simulations. Based on an earlier experimental fouling
investigation [14], a total particle mass up to m p ≈ 5.5g/s is chosen to ensure an
asymptotic fouling layer growth against a limit valuewithin a fewminutes of physical
realtime. The estimated volume fraction of the dispersed phase is αd < 0.001, which
corresponds to a dilute flow and allows for the negligence of particle collisions [4].
Hence, only two-way coupling is considered during the simulations.

3 Results

3.1 Validation

The functionality and accuracy of our proposed method, as well the Lagrangian
Particle Tracking, as the simulation of a fully turbulent flow in a smooth channel
with a single spherical dimple at ReD = 42,000 is validated within this section.
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3.1.1 Lagrangian Particle Tracking

The Taylor–Green vortex flow is chosen to investigate the performance of the im-
plemented Lagrangian Particle Tracking (LPT). This flow is selected due to the
existence of its exact solution of the corresponding instantaneous velocity field and
streamfunction as a special case of a two-dimensional time-dependent solution to
the Navier–Stokes equations. The two-dimensional Taylor–Green vortex is assumed
to be in the x-y-plane, and the flow is uniform in the z-direction. Therefore, the
instantaneous local streamfunction can be written as [15]

Ψ (x, y, t) = ω0

k2
cos (kx x) cos

(
ky y

)
exp

(−Re−1
0 k2t

)
, (27)

where the corresponding instantaneous fluid velocity components can be directly
derived from Eq. (27)

ux = ∂Ψ

∂y
= −ω0

ky

k2
cos (kx x) sin

(
ky y

)
exp

(−Re−1
0 k2t

)
, (28)

uy = −∂Ψ

∂x
= ω0

kx

k2
sin (kx x) cos

(
ky y

)
exp

(−Re−1
0 k2t

)
, (29)

where ω0 is the initial vorticity maximum, kx and ky are the wave numbers in the x-
and y-directions and k2 = k2

x + k2
y . It is assumed that the gravitational acceleration

is normal to the flow plane (x − y), so that it does not affect the particle dynamics.
The simulations are performed with the following parameters: Re−1

0 = 0.004, kx =
ky = 1, ω0 = 2, x and y are in the range of 0 and 2π . Spherical particles with a
constant diameter of Dp = 0.001m were randomly seeded within the flow field.
The primary objective of this testcase is to examine the effects of the so-called
momentum (velocity) response time

τV = ρp D2
p

18μ f
(30)

with respect to the particle trajectories, which exemplifies the functionality of the
implemented Lagrangian Particle Tracking in a qualitative manner. The momentum
response time relates to the time required for a particle to respond to a change in
velocity [4]. For the case of nearly massless particles (τV ≈ 0), the particle trajec-
tories should follow the flow streamlines exactly. For the case of heavier particles
(τV > 0), their trajectories are expected to deviate from the flow streamlines due to
inertial effects. Therefore, only the drag force is considered within the simulations.
Fig. 3 compares the particle trajectories after simulating 3.4 s of physical real time
for different momentum response times to the streamlines of the two-dimensional
Taylor–Green vortex computed from the stream function Eq. (27).
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Fig. 3 Two-dimensional Taylor–Green vortex: streamlines (contour lines) and particle trajectories
(thick dotted lines) for τV ≈ 0 (left) and τV ≈ 10 (right); thick dots represents the initial positions
of the randomly seeded particles

It is obvious that the motion of the particles seems to be correctly described by
the LPT, because the fluid particles in the case of τV follows the streamlines very
well. With increasing particle response time τV , the particles get their own inertia
and they lose the ability to follow the carrier flow. As expected, other numerical
results shows that a step-wise increase of the particle response times τV leads to a
step-wise increased deviation of the particle trajectories from the flow streamlines.
The obtained results confirms that the implemented LPT routines are capable of
describing the motion of the particles correctly.

3.1.2 Flow in a Smooth Channel with a Single Spherical Dimple

Numerical results for a smooth channel with a single spherical dimple are validated
using experimental data published by Terekhov et al. [16] and Turnow et al. [17]. Fig-
ure 4 shows the profile of the normalized mean velocity 〈U 〉/U0 and Reynolds stress
〈Urms〉/U0 in the flow direction received from URANS (k-ω-SST model with a fine
grid; for comparative purposes only) and LES for three different grid resolutions and
from LDA measurements along the y-axis at x/D = 0.0 and z/H = 0.0 (center of
the dimple). The numerical results are obtained for Reynolds number ReD = 42,000
and are normalized by the maximum velocity U0 in the center of the channel at
y = H/2. A satisfactory overall agreement of calculated and measured mean ve-
locity profiles has been obtained for all three grid resolutions. The mean velocity
profiles from LES and URANS matches well with the measurements in the center
of the channel where the maximum flow velocity occurs, and even in the upper near
wall region. However, slight deviations from the measured profiles can be registered
for both methods and all grid resolutions inside of the spherical dimple within the
distinct recirculation zone. Nevertheless, since URANS and LES results are in good
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Fig. 4 Mean velocity and Reynolds stress profiles obtained from URANS and LES in comparison
with experiments by Terekhov et al. and Turnow et al.

agreement in this region, the likeliest reason for the discrepancy between measure-
ments and calculations might be LDA measurement problems in close proximity to
the wall [17]. From the mean velocity profiles, one can observe, that the strongest
velocity gradients arises at the level of the lower channel wall y/H = 0.0. The insta-
bilities of the shear layer within this region result in strong vortices, and therefore in
high Reynolds stresses, which can be observed in all Reynolds stress profiles. Unlike
the mean velocity profiles, the level of the Reynolds stresses and, furthermore, the
location of the maximum turbulent fluctuations measured in experiments can only be
gained using LES. A deviation between the measured and calculated locations of the
maximum Reynolds stresses are notable within the center of the dimple at position
x/D = 0.0. The weakness of URANS is clearly visible in the near wall region and
the level of the lower wall, where the magnitude of the turbulent fluctuations can
not be captured. Due to the significant importance of the resolved Reynolds stresses
for calculating the resuspension rate of deposited particles (see Sect. 2.1.2), URANS
seems to be inappropriate for further investigations.

Probably the most important feature of the investigated spherical dimple with a
dimple depth to dimple diameter ratio of t/D = 0.261 can be observed from the
phase averaged streamline pattern given in Fig. 5. The streamlines shows unsteady
asymmetrical monocore vortex structures inside the dimple, which switches their
orientation arbitrarily from α = −45◦ to α = +45◦ with respect to the main flow
direction. The existence of long period self-sustained oscillations [17] within the
dimple flow could be investigated and approved experimentally (see, for example,
[16]), as numerically using highly resolved LES [17] for dimple depth to dimple
diameter ratios of t/D = 0.261 and larger. In contrast to experimental observations
and LES results, the asymmetric vortex structures obtained from URANS are steady
and predict only one of the two extreme vortex positions (α = ±45) in the time-
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Fig. 5 Different orientations (α = ±45◦) of the oscillating vortex structures inside the spherical
dimple for ReD = 42,000

averaged flow pattern, which switch in reality almost periodically in reality. It is
assumed that the self-sustained oscillations and periodic outbursts due to unsteady
asymmetric vortex structures could endorse a possible self-cleaning process inside
the spherical dimple and at the lower channel wall downstream of the trailing edge.
Thus, LES is chosen to simulate the particulate fouling and to investigate its influence
on heat transfer and friction loss for a smooth channel with a spherical dimple or
square cavity.

3.2 Particulate Fouling on Structured Heat Transfer Surfaces

To investigate the influence of particulate fouling on the friction/pressure loss and
heat transfer, a series of LES using injected particle masses up to m p ≈ 5.5 g/s are
carried out for a smooth channel with a single spherical dimple or square cavity
(t/D = 0.261, ReD = 42,000). Due to the results given in Fig. 4, a medium grid
resolutions with around 1.6 × 106 cells seems to be sufficient to capture the mean
velocity profiles, as well as the Reynolds stresses accurate enough and is chosen for
the simulation of particulate fouling. The pressure loss due to friction is expressed
in terms of the skin friction factor

C f = τw

1
2ρ f U 2

b

, (31)

with the shear stress τw, the density of the fluid ρ f and the bulk velocity Ub of the
fluid. It should be noted that Eq. (31) has to be extended for further investigations to
allow for consideration of the form drag due to structured surfaces. The heat transfer
is evaluated using the Nusselt number

Nu = hL

λ
, (32)
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where h is the convective heat transfer coefficient of the flow, L is the character-
istic length (L is set to 2H due to periodic boundary conditions in the streamwise
direction) and λ is the thermal conductivity of the fluid. The Nusselt number re-
lates the total heat transfer to the conductive heat transfer. The friction coefficient
and Nusselt number received from the fouling simulations are divided by the ones
obtained from a turbulent channel flow without particulate fouling, which directly
expresses the increase or decrease of pressure loss and heat transfer. Therefore, the
friction coefficient C f 0 and the Nusselt number Nu0 of the smooth channel are deter-
mined using the correlations of Petukhov and Gnielinski for turbulent channel flows(
1500 < ReH < 2.5 × 106

)
:

C f 0 = (1.58 ln (ReH ) − 2.185)−2 , (33)

Nu0 =
(
C f 0/2

)
(ReH − 500) Pr

1 + 12.7
(
C f 0/2

)1/2 (
Pr2/3 − 1

) . (34)

The original correlations (see [18]) are in terms of the Reynolds number ReDh

based on the hydraulic diameter, but they are used in a rewritten form assuming
Dh = 2H for a smooth, infinitely wide channel. Figure 6 shows the space- and time-

averaged friction coefficient C f /C f 0 and Nusselt number Nu/Nu0 for a spherical
dimple and square cavity after 30 s of physical real time, whereby no particles are
considered (I) or a particle mass of m p ≈ 2.2 g/s (II) or m p ≈ 5.5 g/s (III) is injected.
It can be seen, that the pressure loss is increased by around 29% in the case of the
clean spherical dimple and approximately 61% for the clean square cavity compared
to the turbulent channel flow, whereas the heat transfer is enhanced by circa 32%
for the spherical dimple and 27% in the case of the square cavity. The thermo-
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Fig. 6 Comparison of the space- and time-averaged friction coefficient C f /C f 0 and Nusselt num-

ber Nu/Nu0 for a spherical dimple and square cavity after 30 s of physical real time: (I) clean surface
(no particle injection), (II) particle mass injection: m p ≈ 2.2 g/s, and (III) particle mass injection:
m p ≈ 5.5 g/s
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hydraulic efficiency Nu/Nu0/(C f /C f 0)
1/3 achieved for the dimple is 1.22, and 1.08

for the cavity. Thus, the clean spherical dimple shows great advantages compared
to the clean square cavity. In contrast, the change of pressure loss and heat transfer
due to particulate fouling after 30 s of physical real time is less unambiguous. The

increase of the pressure loss C f /C f 0 ranges between 0.4% (II) and 6% (III) for
the spherical dimple and between 1.1% (II) and 0.1% (III) in the case of the square
cavity. The decrease in the heat transfer is even smaller, varying between 0.3 and
0.6%, whereas the spherical dimple shows a slightly better fouling performance.
Finally, Fig. 7 presents the total fouling layer height h f and the total height hr of
the removed fouling layer for the spherical dimple and square cavity after 30 s of
simulated physical real time for an injected particlemass ofm p ≈ 2.2 g/s.A relatively
high particle deposition can be observedwithin the recirculation zone of the spherical
dimple, whereas no particulate fouling is detected in the lee side of the dimple where
the reattachment point lies. Due to the switching of asymmetric vortex structures and
vortex outbursts (see Sect. 3.1.2), a high fouling removal rate is obtained within the
lee side, and additionally downstream of the dimple’s trailing edge. Moreover, due
to the flow acceleration in front of the dimple, no fouling can be observed in the area

Fig. 7 Height of the settled h f and removed hr fouling layer after 30 s of physical real time for an
injected particle mass m p ≈ 2.2 g/s: spherical dimple (left), square cavity (right)
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of the dimple’s front edge. The highest removal rates are obtained at both extreme
positions of the asymmetric vortex structures (α = ±45). In the case of the square
cavity, the highest particle deposition rates are gained at the vertical front side and
side faces of the cavity due to adhesion, whereas the clean area downstream of the
cavity’s trailing edge is significantly smaller compared to the spherical dimple. More
detailed investigations of the fouling mechanisms (deposition and removal) under
consideration of local vortex structures using vortex identification methods will be
a primary part of the next work.

4 Conclusion

A new multiphase method for the numerical simulation of particulate fouling pro-
cesses on structured heat transfer surfaces is introduced and described in detail.
A verification and validation of the LPT is carried out using the two-dimensional
Taylor–Green vortex. The investigation of the flow inside a smooth channel with
a spherical dimple (t/D = 0.261, ReD = 42,000) confirms unsteady asymmetric
vortex structures inside the dimple in the case of LES, which are primarily respon-
sible for a self-cleaning process, respectively for the better fouling performance, in
comparison to the square cavity. One of the main advantages of our new multiphase
approach is the fairly low computational effort due to phase conversion and parti-
cle deletion. In addition to that, solution of an advection/transport equation for the
fouling phase and costly remeshing procedures are not required, which allows for
the usage of the proposed method for a general prediction of particulate fouling on
structured heat transfer surfaces.
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solidificationMeltingSource:
A Built-in fvOption in OpenFOAM®

for Simulating Isothermal Solidification

Mahdi Torabi Rad

Abstract In this chapter, I introduce, document, and verify solidificationMelting-
Source: a built-in fvOption in OpenFOAM® for simulating isothermal solidification.
The main challenge in simulating isothermal solidification is the incorporation of
movements of the solidification front. To overcome this challenge, solidification-
MeltingSource adds source terms to the momentum and energy equations. First, I
rigorously derive the equations for these source terms and outline their implemen-
tation in the source code. Then, I verify solidificationMeltingSource by simulating
a well-known numerical benchmark for isothermal solidification. Finally, I end the
chapter by suggesting possible future extensions for solidificationMeltingSource.

Keywords Phase change · fvOption · Isothermal solidification
solidificationMeltingSource

1 Introduction

1.1 fvOptions

fvOptions is a flexible framework in OpenFOAM® that allows users to add source
terms to equations at run time [1]. fvOptions is easy to use since users do not have to
modify source code. Some of the implemented fvOptions are: (1) explicit porosity
source; to simulate flow in a domain with porous subzones; (2) MRF source: to
simulate flowon both stationary and rotating frames; (3) fixed temperature constraint:
to fix temperature at given locations to constant or time-varying values. The reader
is referred to reference [1] for a complete list of available fvOptions and example
syntaxes on how to use them.

solidificationMeltingSource [2] is a fvOption that can be used to simulate isother-
mal phase-change (solidification and melting) problems such as windshield defrost-
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ing or solidification of phase-change materials (PCM). solidificationMeltingSource
adds source terms to: (1) the momentum equation, to account for the drag force due
to the presence of a solid in a liquid, and (2) the energy equation to account for latent
heat release during the phase change.

1.2 Background on Isothermal Solidification

Pure materials solidify at a single temperature, whereas alloys solidify within a
range of temperatures. This chapter focuses only on solidification of pure materials:
isothermal solidification. Figure 1 shows a schematic of a system under isothermal
solidification. Cooling is from the left. The domain consists of a solid region on the
left,withT <Tf , whereTf is themelting temperature, and a liquid region,withT >Tf ,
on the right. The two regions are separated by the sharp and moving solidification
front located at x � x*. For solidification to continue, latent heat released at the
solidification front has to be dissipated by net conduction away from the solidification
front. Heat balance at the solidification front implies

−ρL f
dx∗

dt
�

(
−ks

∂T

∂x

)∗
−

(
−kl

∂T

∂x

)∗
. (1)

In solidification literature, Eq. (1) is typically referred to as the classical Stefan
condition [3]. The term on the left-hand side represents the latent heat released at x
� x* (due to solidification). On the right-hand side, the first and second terms are
the heat fluxes through the solid and liquid, respectively. The superscript * indicates
that the fluxes are evaluated at x � x*.

Themain challenge in simulating isothermal solidification problems is to incorpo-
rate movements of the solidification front. Numerical methods for overcoming this
challenge can be categorized as: (1) moving boundary methods, and (2) enthalpy
methods. In the moving boundary methods, the location of the solidification front is
tracked explicitly, and two different energy equations are solved, the first one for the
solid side and the second one for the liquid side. In the enthalpy methods, there is
no need for explicit tracking of the solidification front. Instead, the energy equation
is written in a form that is valid on both (solid and liquid) sides of the solidification
front. The latter methods are numerically easier to implement. However, one needs
to modify the local single-phase equations so that they are valid on both sides of the
solidification front. solidificationMeltingSource uses an enthalpy method, which is
discussed in this chapter.

The objective of the present chapter is to introduce, document, and verify solid-
ificationMeltingSource. Equations implemented in solidificationMeltingSource are
rigorously derived and their implementation in the source code is outlined. solidi-
ficationMeltingSource is verified through the simulation of a numerical benchmark
for isothermal solidification and the results are compared with data available in the
literature.
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Fig. 1 Schematic of a
system under isothermal
solidification. The red, solid
blue, and dashed blue lines
show solid fraction,
temperature, and enthalpy,
respectively. The solid region
on the left, with T < Tf and
gl � 0, is separated from the
liquid region on the right,
with T > Tf and gl � 1, by
the solidification front
(dashed line). Heat fluxes are
represented by arrows

2 Governing Equations

Equations governing isothermal solidification are listed below. These equations are
taken from Voller and Prakesh [4].

2.1 Conservation Equations

2.1.1 Continuity

∇ · v � 0, (2)

where v is the flow velocity.
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2.1.2 Momentum

ρ0
∂v
∂t

+ ρ0∇ · (vv) � −∇ p + μ0∇2v + Sb + Sd , (3)

where ρ0 andμ0 are the density and the dynamic viscosity (both taken to be constant
here), Sb is the buoyancy source term, and Sd is a source term added to force the
velocities in the solid region to zero. These source terms will be derived in the next
subsection.

2.1.3 Energy

ρcp
∂T

∂t
+ ρcp∇ · (vT ) � ∇ · (k∇T ) − Sh, (4)

where cp is the specific heat and k is the thermal conductivity, and Sh is a source term
that accounts for the latent heat release during solidification. The equation for this
source term will be also derived in the next section.

2.2 Derivation of the Equations for Source Terms

The momentum and energy equations, listed in the previous subsection, have source
terms Sb, Sd , and Sh. The equations for these source terms are derived below.

2.2.1 Momentum Source Terms: Sb and Sd

Equation (3) has two source terms: Sb and Sd . The first one is the buoyancy source
term, which is given by the Boussinesq approximation:

Sb � ρ0gβT (T − Tref), (5)

where g � −9.8ĵ is the acceleration due to gravity, βT is the thermal expansion
coefficient, and T ref is the reference temperature.

The second source term in Eq. (3) is added to make sure that the velocities in
the solid region will become zero. An acceptable relation for Sd should satisfy two
conditions: (1) in the liquid region, Sd should be zero so that Eq. (3) reduces to the
normal single-phase Navier–Stokes equations, and (2) in the solid region, Sd should
dominate all other terms in the momentum equation and should result in v � 0.
Motivated by the Darcy law for flow through porous media, Voller and Prakesh [4]
have suggested
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Sd � Av, (6)

where A is inversely proportional to permeability K :

A ∼ 1

K
. (7)

Permeability K is related to liquid fraction gl through the well-known Car-
man–Koseny equation [5]:

K ∼ g3l
(1 − gl)

2 . (8)

The reader should note that, for isothermal solidification, permeability has no
physical significance; it is introduced here only as a numerical technique to force
the velocities in the solid region to zero. In fact, Voller and Prakesh [4] stated that
A ~ 1/K , in Eq. (7), is not the only correct relation. Any relation that gives A � 0 in
the liquid region and a relatively high value for A in the solid region will be equally
correct.

Now, after substituting Eqs. (7) and (8) into Eq. (5), we get the final equation for
Sd as

Sd � −C
(1 − gl)

2

g3l
v. (9)

It is apparent from this equation that in the liquid region (where gl � 1), Sd will
be zero; in the solid region, where gl is a sufficiently small number (on the order of
10−6), Sd will be high enough to dominate all other terms in themomentum equation.
Therefore, the momentum equation will reduce to Sd � 0, and, consequently, v � 0.

2.2.2 Energy Source Term: Sh

The source term in the energy equation, Sh, represents the latent heat released during
solidification. The equation for Sh is derived below.

For a system with phase change, the energy equation reads as

∂

∂t
(ρhtot) + ∇ · (ρvhtot) � ∇ · (k∇T ), (10)

where htot is the total enthalpy. In the solid region, htot � cpT ; in the liquid region,
htot � cpT + Lf . To have a single relation valid in both solid and liquid sides, we
write

htot � cpT + gl L f , (11)
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where gl is the liquid fraction equal to zero in the solid region and equal to one in
the liquid region.

Now, if we substitute Eq. (11) into (10) and subtract Eq. (4), we get

Sh � ρ0L f

[
∂gl
∂t

+ ∇ · (vgl)
]
, (12)

which is the final equation for the energy source term Sh.
Finally, we need a relation that will transform gl � 1 into gl � 0 as temperatures

become lower than the melting temperature, i.e., T < Tf . Discretizing the energy
equation explicitly, and taking the temperature derivative of both sides (i.e.,∂/∂T ),
will give us

∂gl
∂T

� − cp
L f

. (13)

From Eq. (13), we can write

gn+1l � gnl +
γ cp
L f

(
T − T f

)

gn+1l � max
[
0,min

(
1, gn+1l

)]
, (14)

where the superscripts n + 1 and n refer to the present and last iteration levels,
respectively, and γ is an under-relaxation factor (of order 1). Equation (14) updates
the liquid fractions as follows: initially, we have gnl � 1 and T > Tf ; therefore, the
first line in Eq. (14) will give us gn+1l > 1, which, in the second line, will be reset
back to gn+1l � 1. For temperatures slightly lower than Tf , γ cp

(
T − T f

)
/L f will be

negative, and therefore Eq. (14) will result in gn+1l < 1: the liquid fraction will start
to decrease. The liquid fraction will keep decreasing until it reaches zero, and after
that, it will no longer change.

3 Implementation in solidificationMeltingSource

Listings (1, 2, and 3) are code pieces from the solidificationMeltingSource source
code, in which implementation of the source terms outlined in the previous section
is shown. In listing (1), lines 337 and 338 are the implementations of Eq. (9) and
Eq. (5), respectively. In listing (2), line 54 is the implementation of Eq. (12). In listing
(3), line 216 is the implementation of Eq. (14).

Listing (1): Code piece showing how momentum source terms are added.
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Listing (2): Code piece showing how an energy source term is added.

Listing (3): Code piece showing how a liquid fraction, represented by alpha in
the code, is updated.

4 Problem Statement and Simulation Setup

The isothermal solidification problem studied here is the benchmark introduced in
Voller and Prakesh [4] and is sketched in Fig. (2). It consists of a square cavity
initially filled with liquid above its freezing temperature. The cavity cools from the
left wall, while the top and bottom walls are thermally isolated. Solidification starts
from the left, with the solidification front moving to the right as time proceeds.

The OpenFOAM® solver that is used is buoyantBoussinesqPimpleFoam. The
mesh size and time step are 2.5 cm and 1 s, respectively. In the fvOptions file, we
have Tmelt � 0, L � 5, thermoMode � lookup, beta � 0, and rhoRef � 1. Note that
the value of beta in the fvOptions file is set to zero since buoyant Boussinesq Pimple
Foam already accounts for the buoyancy source term. The properties and boundary
conditions are taken from Voller and Prakesh [4] and, due to space limitations, are
not listed here.

Fig. 2 Schematic of the
benchmark problem
introduced in Voller and
Prakesh [4] and simulated
here
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Fig. 3 Temperature
distributions at t � 500 s
calculated in the present
study (solid line) and
reported in Voller et al. [6].
The dashed line is the
solidification front and the
red dotted line shows the
melting temperature (Tf � 0)
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5 Results

In the absence of flow, the results are comparedwith data inVoller et al. [6]. Figure (3)
shows a comparison of temperature profiles reported in Voller et al. [6] (markers),
with the temperatures calculated in the present study (solid line at t � 500 s). The
dashed line is the solidification front and the dotted line shows the melting tem-
perature (Tf � 0). The two temperatures are in good agreement, which verifies
solidificationMeltingSource.

In the presence of flow, results are shown in Fig. (4). This figure shows the evo-
lution of the solidification over time. Columns represent different times. In the top
row, color represents the solid fraction gs(= 1 − gl) and the vectors represent the
liquid velocity. In the bottom row, color represents temperature, and the white line,
which is the solidification front (isoline gs � 0.5), is superimposed from the solid
fraction contours at the top. One can easily notice that this line lies on the freezing
temperature, i.e., T � 0. Furthermore, regions with T > 0 in the bottom row have
gs � 0 in the top row; these regions are fully liquid. Similarly, regions with T < 0
in the bottom row have gs � 1 in the top row; these regions are fully solid. These
agreements verify solidificationMeltingSource in the presence of flow.

6 Conclusions

In this chapter, I introduced, documented and verified solidificationMeltingSource,
which is a built-in fvOption in OpenFOAM® for simulating isothermal solidifica-
tion problems. The main challenge in simulating these problems is the incorporation
of movements of the solidification front. To account for these movements, solidifi-
cationMeltingSource adds source terms to the momentum and energy equations. I
rigorously derived the equations for these source terms and outlined their implemen-
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Fig. 4 Time evolution of the solid fraction (top row) and temperature (bottom row) during solidi-
fication. Left, middle, and right columns show different times. The vectors in the top row and the
white line in the bottom row represent liquid velocity and the solidification front (isoline gs � 0.5),
respectively

tation in the source code. I simulated a benchmark for isothermal solidification and
compared the results with the data in the literature. The agreement was found to be
good, and therefore solidificationMeltingSource is verified.

Clearly, the solidification problem investigated here was a highly simplified one.
This problem was chosen because realistic and more interesting solidification prob-
lems, such as the solidification of alloys, can only be represented bymultiphase/-scale
mathematical models [7], which need to be handled through complex numerical tech-
niques [7–10] and cannot be numerically solved solely by adding source terms to
the equations. The material presented in this chapter should be viewed as a start-
ing guide for FOAMers interested in solidification problems and, more importantly,
as an attempt to help with future efforts to extend OpenFOAM®’s built-in capa-
bilities in simulating solidification problems. As an example of these extensions,
implementation of algebraic lever and Scheil solidification models [3] in solidifica-
tionMeltingSource is suggested.
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investigated, both experimentally and numerically (Chen et al. in Phys Fluids 2011,
[3]), for a wide range of parameters: Reynolds number, airfoil surface roughness,
incident flow turbulence, etc. In this research, the simplest case is considered, in
which the roughness influence is neglected and the incident flow is assumed to be
laminar. Several numerical codes, both commercial and open source, can be used
for simulating airfoil oscillations in the flow. Four numerical methods and the cor-
responding open-source codes are considered: the finite volume method with de-
formable mesh in OpenFOAM®; the particle finite element method with deformable
mesh in the Kratos software; the meshfree Lagrangian vortex element method; and
the LS-STAG immersed boundary method. The last two methods are implemented
as in-house numerical codes. A comparison is carried out for the efficiency analysis
of these methods and their implementations. It is shown that using OpenFOAM® is
preferable for numerical simulations with FSI problems similar to the ones presented
here, in which the investigation of system behavior within a wide range of parameters
is required.

M. Kraposhin
Institute for System Programming of the Russian Academy of Sciences,
Alexander Solzhenitsyn st., 25., 109004 Moscow, Russia
e-mail: m.kraposhin@ispras.ru

K. Kuzmina · I. Marchevsky (B) · V. Puzikova
Bauman Moscow State Technical University,
2-nd Baumanskaya st., 5., 105005 Moscow, Russia
e-mail: iliamarchevsky@mail.ru

K. Kuzmina
e-mail: kuz-ksen-serg@yandex.ru

V. Puzikova
e-mail: valeria.puzikova@gmail.com

© Springer Nature Switzerland AG 2019
J. M. Nóbrega and H. Jasak (eds.), OpenFOAM®,
https://doi.org/10.1007/978-3-319-60846-4_33

465

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-60846-4_33&domain=pdf
mailto:m.kraposhin@ispras.ru
mailto:iliamarchevsky@mail.ru
mailto:kuz-ksen-serg@yandex.ru
mailto:valeria.puzikova@gmail.com
https://doi.org/10.1007/978-3-319-60846-4_33


466 M. Kraposhin et al.

1 Introduction

In a number of engineering applications, bodies are immersed in a gas or fluid flow
and exposed to aerohydrodynamic loads. Fully coupled 3D fluid–structure interac-
tion (FSI) problems are extremely complicated, both from the mathematical and
computational points of view. In many practical cases, the average density of the
immersed body is higher than the density of the flow, thus it is possible to apply a
well-known “splitting” approach, in which a single time step is divided into at least
two substeps. During the first substep, a semi-implicit scheme, for which body mo-
tion parameters are assumed to be known, is used while simulating the flow around
the body. During the second substep, an explicit scheme is used for body motion
simulation under known hydrodynamic loads.

In practice, we often deal with extruded structures (with high elongation), so as
a rough approximation, we consider this to be a 2D problem of interaction between
the flow and the corresponding airfoil. This approach is particularly applicable when
the airfoil cross section has angle points (points, at which the camber line of the
airfoil loses its smoothness) and sharp edges. This approach is also accurate enough
for FSI problems with bluff bodies that have smooth cross-sectional shapes, for
example, flows around cylindrical rods, or pipes. Such bodies oscillate under von-
Karman vortex shedding, and frequency-lock phenomenon takes place, which leads
to similar flows around different cross sections.

In order to compare different numerical methods and computational codes for
analyzing FSI problems, a simple test case considering the resonance of a circular
cylinder inside the flow is proposed (Fig. 1).

The most interesting case of this phenomenon corresponds to the situation in
which the eigenfrequency of the system is close to the von-Karman vortex shed-
ding frequency. This phenomenon has been well-investigated, both experimentally
and numerically, for a wide range of parameters: Reynolds number, airfoil surface
roughness, incident flow turbulence, etc.

We consider the simplest case, in which we neglect the influence of surface rough-
ness and the incident flow is assumed to be laminar. Four numerical methods and
the corresponding open-source codes have been used: the finite volume method

Fig. 1 Circular airfoil in a flow under viscoelastic constraints with a vortex wake behind it
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(FVM) [9] with deformable mesh in OpenFOAM® [26, 30]; the particle finite ele-
ment method (PFEM) [10, 11] with deformable mesh in the Kratos software [16];
the meshfree Lagrangian vortex element method (VEM) [5, 22]; and the level-set
staggered mesh immersed boundary method (LS-STAG) [4]. The VEM and LS-
STAG methods are implemented as in-house numerical codes.

2 Governing Equations

As mentioned before, the problem is considered to be a 2D unsteady case in which
the flow around a cylindrical airfoil is viscous and incompressible. The continuity
and momentum equations are as follows:

∇ · V = 0, (1)
∂V

∂t
+ (V · ∇)V = −∇ p + 1

Re
�V . (2)

Here, V = V (x, y, t) = u · ex + v · ey is the dimensionless velocity and p = p
(x, y, t) is the dimensionless pressure. The boundary conditions for the velocity
field are defined as

V
∣
∣
inlet = V∞, V

∣
∣
airfoil = V ib,

∂V

∂n

∣
∣
∣
outlet

= 0. (3)

Here, V ib is the immersed boundary velocity. The airfoil is assumed to be rigid.
In order to simulate the wind resonance phenomenon, we consider one degree of

freedom motion of the circular airfoil of diameter D across the stream. Constraint
of the airfoil motion is assumed to be of the Kelvin–Voigt type (linear viscoelastic,
Fig. 1) described by the following ordinary differential equation:

mÿ + bẏ + ky = Fy . (4)

Here, m is the airfoil mass, b is a small damping factor, k is the elasticity coefficient
of the constraint, Fy is the lift force, and y is the deviation from the equilibrium
state. The natural frequency of the system ω ≈ √

k/m can be changed by varying
the elasticity coefficient k. The deviation from the equilibrium state on the n-th step
of computation is yn = Y n

C − Y 0
C , where Y

0
C is the coordinate of the airfoil center at

the initial time and Y n
C is its coordinate at the n-th step of computation. Numerical

integration of the motion equation (4) was performed using the explicit 2nd order
Runge–Kutta method
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y∗ = yn + vny
�t

2
, v∗

y = vny + Fy − bvny − kyn

m

�t

2
.

yn+1 = yn + v∗
y�t, vn+1

y = vny + Fy − bv∗
y − ky∗

m
�t.

Here, vy is the airfoil vertical velocity and “∗” denotes values at the half of the time
step.

3 Numerical Methods

Here,we briefly describe the numericalmethods implemented and used for numerical
simulations of the previously mentioned FSI problems. For more details regarding
the described methods, please see [4, 5, 9–11, 16, 22–24, 26, 30].

3.1 OpenFOAM®: A Fluid–Structure Interaction Analysis
Using the Finite Volume Method

A flow simulation with moving mesh is performed using the pimpleDyMFoam ap-
plication implemented in OpenFOAM® [26]. The application allows for simulations
of laminar and turbulent incompressible flows with prescribed boundary motion. In
order to solve FSI problems, a special function object was implemented. It
provides a weak coupling strategy between the fluid and the structure (Fig. 2), which
includes the following steps:

1. Calculation of hydrodynamic forces exerted on the airfoil from the fluid.
2. Numerical integration of themotion equation of the structure under hydrodynamic

forces.
3. Application of the airfoil camber line motion law to the boundary of the fluid

domain.

Fig. 2 Scheme of
momentum exchange during
the fluid–structure
interaction process
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The current implementation [15] of this function object allows for the
simulation of airfoil motion with one degree of freedom (oscillations across the
stream).

3.2 Kratos: Particle Finite Element Method with Fixed Mesh

This method belongs to the hybrid Lagrangian–Eulerian methods, and its recent
modification PFEM2 allows for the use of a fixed mesh and large time steps. The
convection of thefluid is taken into account via themotion of theLagrangian particles,
which are viewed asmaterial points of the flow that can freelymove in the flow region
through the cells of the fixed mesh. In practice, this means that instead of solving the
Navier–Stokes equation (2), we solve the equation with the material derivative

dV

dt
= −∇ p + 1

Re
�V .

Using this method, it is possible to simulate multidisciplinary and multiphase prob-
lems, in particular, flows with a free surface. In this case, particles can even separate
from the main flow domain, representing, for instance, water drops.

When the convective substep is finished, the particle data are projected to the
background fixed mesh, and the standard Finite Element-based approach is used to
take into account the other terms of theNavier–Stokes equation (2). In order to satisfy
the continuity equation, fractional step solvers [10] or monolithic solvers [1] can be
used.

3.3 Vortex Element Method

Navier–Stokes equations (2) can be written down in Helmholtz form with respect to
the vorticity field �(r, t) = ∇ × V (r, t)

∂�

∂t
+ ∇ × (� ×U ) = 0. (5)

Here, U (r, t) = V (r, t) + W (r, t), W (r, t) is the so-called “diffusive velocity” [7],
which is proportional to the viscosity coefficient

W (r, t) = ν
(∇ × �) × �

|�|2 . (6)

If vorticity distribution is known, the flow velocity can be reconstructed by using the
Biot–Savart law
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V (r) = V∞ + 1

2π

∫

S

�(ξ, t) × (r − ξ )

|r − ξ |2 dS. (7)

In order to compute the pressure distribution and hydrodynamic forces exerted on
the airfoil, the analog of Bernoulli and Cauchy–Lagrange integrals is used [6].

Equation (5) describes vorticity transport in the flow with velocity U . “New”
vorticity is generated only as a vortex sheet on the surface line of the airfoil, and its
intensity γ (ξ) can be found from the boundary condition on the airfoil’s surface.

The vortex element method is a meshless particle-type method, so the vorticity
field in the flow is discretized into separate vortex elements. Each vortex element is
described by its position ri and circulation 
i , i = 1, . . . , N , where N is the number
of vortex elements in the flow. So, the discretized Biot–Savart law has the following
form:

V (r) = V∞ +
N

∑

i=1


i

2π

k × (r − ri )

|r − ri |2 +
∮

K

k × (r − ξ )

2π |r − ξ |2 γ (ξ ) dlξ . (8)

Here, k is the unit vector of the axis, which is orthogonal to the plane of the flow.
The movement of the vortex elements according to (5) is simulated via solution

of the following ordinary differential equations system:

dri
dt

= V (ri ) + W (ri ), i = 1, . . . , N . (9)

The number of vortex elements in the flow N changes at every time step due to the
vorticity flux from the surface line of the airfoil, which, in turn, is simulated by the
vortex element generation near the airfoil. Their circulation is calculated from the
vortex sheet intensity γ (ξ ) on the airfoil surface line. The circulation of all vortex
elements in the flow remains constant and it can change only through a special
numerical procedure of vortex wake restructuring that allows for the merging of
closely spaced vortex elements and lowers their number in the flow.

Vortex sheet intensity γ (ξ ) can be found from the following boundary condition:

V (r ) = V ib(r ), r ∈ K . (10)

This boundary condition can be reduced either to a singular integral equation of
the first kind (in “classical” numerical schemes of a vortex method, see [5, 7, 21]) or
to a Fredholm-type integral equation of the second kind with bounded (for smooth
airfoils) kernel [12]

∮

K

[k × (r − ξ)] · τ(r )

2π |r − ξ |2 γ (ξ)dlξ − γ (r )

2

= −τ(r ) ·
(

V∞ − V ib(r ) +
N

∑

i=1


i

2π

k × (r − ri )

|r − ri |2
)

. (11)
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The solution to Eq. (11) is nonunique, so we need an additional condition for total
vortex sheet circulation ∮

K
γ (r)dlr = G. (12)

There are high-accuracy numerical schemes developed for the numerical solution
of Eqs. (11–12), which allow for the reduction of these equations to a linear algebraic
equations system with well-conditioned matrix [17, 18]. By using these schemes,
accuracy increases significantly [22]: in some cases, the error becomes one or even
two orders of magnitude smaller in comparison with the classical schemes. As a
result, this makes it possible to simulate FSI problems with high resolution.

It should be noted that the computational cost of simulating fixed and movable
rigid airfoils when using the vortex element method remains nearly the same [19], so
they are suitable for coupled FSI problems. However, vortex element movement sim-
ulation is an “N -body”-type problem [8], so special acceleration algorithms should
be implemented. The well-known Barnes–Hut fast algorithm analog [8] can be very
effective, especially when using an accurate analytical estimate of its computational
cost [20], which allows for the choice of optimal parameters. Parallel computation
algorithms are also used in order to reduce the computational time [19, 20].

3.4 LS-STAG Method

The LS-STAG immersed boundary method is a Eulerian method based on the finite
volume approach. The fixed Cartesianmeshwith cells�i, j = (xi−1, xi ) × (y j−1, y j )
and faces 
i, j is introduced in the rectangular computational domain. Pressure pi, j
and normal stresses are computed at centers xci, j = (xci , y

c
j ) of these cells. Unknown

components ui, j and vi, j of velocity vector v are computed at the face center of
the fluid mesh cell. These points are the centers of finite volumes of the stag-
gered x-mesh and y-mesh: �u

i, j = (xci , x
c
i+1) × (y j−1, y j ) and �v

i, j = (xi−1, xi ) ×
(ycj , y

c
j+1), with faces 
u

i, j and 
v
i, j , respectively. Shear stresses are computed at the

corners of the base mesh (Fig. 3).
The fourth xy-mesh with cell centers in the corners of the base mesh is introduced

for the simulation of turbulent flows. It is possible to simulate highReynolds turbulent
flows by using RANS, LES and DES approaches with Spalart–Allmaras, k − ε,
k − ω, and k − ω SST models [29].

The level-set function ϕ = ϕ(x, y) [27] is used for capturing the airfoil immersed
boundary 
ib [4]. The cells that the immersed boundary intersects are the so-called
“cut-cells”. These cells contain both the solid and liquid parts. The boundary 
ib is
represented by a line segment on the cut-cell �i, j . In 2D cases, the cut-cells can be
classified into trapezoidal, triangular and pentagonal cells. Examples of each type
of cut-cell are presented in Fig. 4. The hydrodynamic force exerted on the airfoil
can be computed by integrating the pressure distribution and shear stresses along the
camber line of the airfoil.
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Fig. 3 Staggered arrangement of the variables on the LS-STAG mesh

(a) (b)

(c) (d)

Fig. 4 Location of the variables’ discretization points on the LS-STAG mesh: a—Cartesian Fluid
Cell; b—North Trapezoidal Cell; c—Northwest Pentagonal Cell; d—Northwest Triangle Cell
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According to the concept of the LS-STAGmethod [4], the governing equations (1–
2) should be written in integral form for cells of base mesh, cells of x-mesh, and
cells of y-mesh, respectively.

∫


i, j

v · n dS = 0,

d

dt

∫

�u
i, j

u dV +
∫


u
i, j

(v · n)u dS +
∫


u
i, j

pex · n dS −
∫


u
i, j

ν∇u · n dS = 0,

d

dt

∫

�v
i, j

v dV +
∫


v
i, j

(v · n)v dS +
∫


v
i, j

pey · n dS −
∫


v
i, j

ν∇v · n dS = 0. (13)

Transport equations that correspond to turbulence model equations are being inte-
grated over cells of the xy-mesh.

The time integration of the differential algebraic system that corresponds to a
semi-discrete analog of the governing equations (1–2) is performed with a semi-
implicit Euler scheme. The predictor step leads to discrete analogs of the Helmholtz
equation for velocity prediction, while the corrector step leads to a discrete analog of
the Poisson equation for pressure correction. The resulting linear systems are solved
by using the FGMRES method with the ILU- and multigrid [31] preconditioning.
The optimal parameters of the multigrid preconditioner were chosen by using the
original algorithm for estimation of the solver cost-coefficient [25].

4 Numerical Simulation

Weconsider a viscous incompressible flowwith lowReynolds numberRe = 150, i.e.,
the flow is laminar and a turbulence model is not needed. In dimensionless variables,
the cylinder has unit diameter, the media has unit density, and the velocity of the
incident flow is V∞ = 3. The mass of the cylinder is m = 39.15. The fixed cylinder
generates periodical vortex shedding in a quasi-steady regime with frequency f ,
which corresponds to the Strouhal number Sh = f d/V∞ ≈ 0.185. Therefore, we
choose the rigidity of the elastic constraint, so that the dimensionless construction
frequency

Shω = 1

2π

√

k

m

d

V∞

varies within the range 0.160 . . . 0.220. The viscosity of the constraint has a small
value, b = 0.731, and it practically does not influence the eigenvalue of the system
at all. The rest of the system parameters were chosen in the same way as in [13].
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Table 1 Results of flow simulation around fixed cylinder

Cxa Sh Campl
ya

Experiment 1.15 . . . 1.45 0.175 . . . 0.195 0.50 . . . 0.65

OpenFOAM® 1.44 0.190 0.60

Kratos 1.20 0.190 0.53

Vortex method 1.31 0.177 0.51

LS-STAG 1.32 0.191 0.63

4.1 Flow Simulation Around the Fixed Airfoil

The described numerical methods were first validated by using a classical test prob-
lem of flow around an immovable airfoil. At the beginning of the numerical simula-
tion, the incident flowvelocitywas set to zero, and the flowwas gradually accelerated,
until its value reached V∞ = 3. During the simulation, the dimensionless drag coef-
ficient, the amplitude of the lift coefficient and the vortex shedding frequency was
measured. The results are shown in Table 1.

Calculations show that all the methods give reasonable results compared to the
experimental data. At the same time, it is necessary to notice that the Particle Finite
Element Method (PFEM2) implemented in the Kratos software overpredicts the
pressure values near the critical point compared to the experiment.

Mesh motion in OpenFOAM® is calculated by solving the point displacement
Laplacian equation. This type of numerical implementation is efficient only for sim-
ple airfoil motion trajectory—displacements with a small rotation angle.

The LS-STAG method has potential in flow simulations around arbitrary moving
airfoils with complicated shapes. However, its computational complexity is rather
high. Unfortunately, its parallel implementation is not available at the moment (due
to principal problems with matrix decompositions).

4.2 Wind Resonance Simulation

A number of numerical simulations have been carried out for different values of the
dimensionless frequency in which the unsteady process has been simulated from
t = 0 to t = 200. The obtained dependencies of the dimensionless oscillation ampli-
tude A/d (in quasi-steadymode) of the airfoil on the dimensionless natural frequency
of the system Shω are shown in Fig. 5.

The obtained dependencies are very close, while they differ only in shift of fre-
quency, which corresponds to the results of the Strouhal number (dimensionless
vortex shedding frequency) computation for the fixed cylinder (see Table 1). The
maximum value of the amplitude is close to the experimental value [2, 13].
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Fig. 5 Circular airfoil
oscillations’ amplitude
dependence on the natural
frequency of the system,
obtained with the finite
volume method
(OpenFOAM®) and the
vortex method

Table 2 Computational time (in hours) for OpenFOAM® and for the vortex method

1 CPU 2 CPU 4 CPU 8 CPU 16 CPU

OpenFOAM®

Far from
resonance

58.1 36.0 24.3 15.5 9.8

Close to
resonance

74.4 45.8 30.1 19.6 13.7

Vortex method

Far from
resonance

41.3 22.6 12.0 7.1 4.7

Close to
resonance

63.4 34.7 17.9 10.1 6.6

The computational times spent for numerical simulations of the flow around freely
oscillating airfoils by using OpenFOAM® and the vortex method is given in Table 2.
Parallel computational technologies (MPI) reduce the required computational time
significantly. Measured computational time is given for two regimes: close to wind
resonance and far from it.

When solving the same problem by using the LS-STAG method in sequential
mode, the time of computation was approximately 110 and 150 h for non-resonance
and resonance cases, respectively; the time for non-resonance simulation in Kratos
(PFEM2 method) was approximately 55 h in sequential mode and 16 h in parallel
modewithOpenMP technologyusing 4CPUcores.However,when simulating airfoil
oscillations with rather high amplitude, the amplitude of the lift force coefficient in
Kratos is much higher than in the experiment. Therefore, this method should be
used only for simulations in which the amplitude of airfoil oscillations is not larger
than several percent of the diameter size. The given results for all numerical methods
were obtained on the same computational cluster consisting of 8 personal computers
with Intel Core i7 3.2 GHz processors connected by Cisco Gigabit Ethernet.
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Fig. 6 Maximum amplitude of the circular airfoil oscillations simulated using the vortex element
method: a airfoil’s initial state in the equilibriumposition,b airfoil’s initial state is close to resonance
oscillations

4.3 Hysteresis Simulation

In order to capture a well-known hysteresis phenomenon [14] during the flow around
an airfoil with elastic constraints, 80 simulations with different dimensionless fre-
quencies were performed. The Reynolds number was set to 1000, while the other
parameters remained the same as in the previously stated resonance simulations. The
dependency of the oscillations’ amplitude on the natural frequency Shω is shown in
Fig. 6a, where a sharp amplitude increase is observed at Shω ≈ 0.198.

In the second series of numerical simulations, Shω was equal to 0.21 from t =
0 to t = 100. During this time interval, the oscillations reached steady state with
amplitude A/D ≈ 0.47. At simulation time t = 100, the elasticity coefficient of
the constraint was changed abruptly to the values that correspond to oscillation
frequencies Shω from 0.178 to 0.198. In each case, after the transitional period,
new steady oscillations were reached. Their amplitudes are shown in Fig. 6b (dots
connected by a solid line).

The obtained results for maximum oscillation amplitude, the resonance frequency
and the hysteresis properties are in good agreement with the results given in [13, 14].

5 Comparison of the Considered Numerical Methods

A comparison of the properties between the considered numerical methods is pre-
sented in Table 3. The sign “+”means that this property is inherent in themethod and
is implemented efficiently; “±”means that themethod yields to others in this feature;
“−” means the absence of the property or its inefficient implementation; the asterisk
“∗” means that this property is not fully implemented or it is in a development stage.

Unfortunately, it is impossible to use vortexmethods and the particle finite element
method when simulations of flows with high Reynolds numbers are required. In
vortexmethods in a purely Lagrangian framework, attempts to implement turbulence
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Table 3 Comparison of the numerical methods

OpenFOAM® Vortex method Kratos LS-STAG

Computational
cost

± + + −

Accuracy + ± ± +
Airfoil motion ± + − +
Parallel
implementation

+ + ∗ ∗

Automatic time
step choice

+ ∗ − ±

Turbulent flows + − − +
3D flows + ∗ + ∗

models are not very efficient [28]. The current implementation of the FEM particle
model inside the Kratos software package does not have the required functionality
for implementing turbulence models.

6 Conclusion

When simulating flowswith relatively small Reynolds numbers (from100 to 10,000),
all the abovementioned numericalmodels give results that are in good agreementwith
the experimental data. The overall efficiencies of all considered methods and codes
are comparable. However, simulating flows in high Reynolds regimes, in which tur-
bulent effects must be taken into account while preserving acceptable computational
costs, can be done only with OpenFOAM®. It should be noted, however, that the
choice of the turbulence model, as well as that of the RANS/LES approach, is a non-
trivial problem.Moreover,OpenFOAM® iswell parallelized, thus computational time
can be reduced significantly. At the same time, parallel algorithms in vortex meth-
ods are efficient only for a small number of computational cores. Current PFEM
implementation in the Kratos software works in parallel mode only when using
OpenMP technology (on shared-memory systems).

As a result, the following conclusion can be made: OpenFOAM® is a good tool
for fast estimation of dynamic processes in fluid–structure interaction problems. It
enables analysis of FSI system behavior within a wide range of parameters.
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The Harmonic Balance Method for
Temporally Periodic Free Surface Flows

Inno Gatin, Gregor Cvijetić, Vuko Vukčević and Hrvoje Jasak

Abstract The Harmonic Balance Method for temporally periodic, non-linear,
turbulent, free surface flows is presented in this work. The method transforms a
periodic transient problem into a set of coupled steady-state problems, increasing
the efficiency of calculation. The methodology is primarily targeted to efficient sim-
ulations related to wave–structure interaction in naval and offshore hydrodynamics.
The method is validated on a 2D periodic free surface flow over a ramp test case and
a 3D ship wave diffraction test case.

1 Introduction

Transient flows in marine hydrodynamics are often periodic, e.g. due to ocean waves
(wave propagation and diffraction, seakeeping of a ship) and rotating propellers.
Such flows often have a well-defined base frequency: the wave frequency or rota-
tional frequency of the propeller. In fully non-linear, two-phase state-of-the-art CFD
algorithms, such flows are almost exclusively resolved in the time domain [7, 8].
Transient simulations usually require a large number of periods in order to achieve a
harmonically steady (purely oscillatory) solution. Due to its spectral decomposition,
the Harmonic Balance Method (HBM) allows us to efficiently model flow effects up
to a specified order, without performing a fully transient simulation. Hence, a sub-
stantial performance improvement is expected, with an almost negligible decrease
in accuracy for flows with a well-defined base frequency. Due to the steady-state
mathematical formulation of the HBM, the authors believe that the method is highly
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University of Zagreb, Zagreb, Croatia
e-mail: innogatin@gmail.com

G. Cvijetić
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suitable for adjoint optimisation regarding seakeeping of ships in the ship-building
industry. This suitability has been recently confirmed by Huang and Ekici [6], who
developed an adjoint shape optimisation tool based on the HBM for turbomachinery
applications.

The HBM [5] was originally developed to tackle periodic single-phase turboma-
chinery flows in an efficient way. This paper presents an extension of the single-phase
HBM [2, 4] to two-phase free surface flows, comparing the results and computational
efficiency with a transient simulation. The implementation is carried out in a second-
order accurate, polyhedral Finite Volume framework developed within foam-extend,
a community-driven fork of the OpenFOAM® software.

2 Harmonic Balance Method

In the HBM, a transient governing equation set is replaced with a specified number of
coupled steady-state problems, each represented by an equation for a unique time in-
stant. The method simulates a periodic flow by evaluating the temporal derivative via
spectral decomposition, yielding a flow solution at discrete instants in time simulta-
neously. Multi-mode transformation from a transient to a set of coupled steady-state
problems is achieved through a Fourier transform, assuming temporally periodic
flow. The accuracy of the model is controlled by a specified number of harmonics to
allow for the efficient capturing of higher order flow effects. Generally, the specified
number of harmonics n, yields solutions at 2n + 1 discrete time instants.

2.1 Mathematical Model

A general field variable φ is expanded in a truncated Fourier series with a known
base frequency ω:

φ(t) = Φ0 +
N∑

i=1

(
ΦSi sin(iωt) + ΦCi cos(iωt)

)
, (1)

where Φ is the general field variable in the frequency domain, while indices Si and
Ci indicate the sine and cosine coefficients, respectively. Equation 1 can be presented
using a Fourier transformation matrix E : φ = E Φ, where φ denotes the vector of φ

at discrete time instants. The general transport equation reads as

∂φ

∂t
+ R = 0, (2)
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where R stands for convection, diffusion and sink/source terms. The field trans-
formed using Eq. 1 is then inserted into Eq. 2, and corresponding terms are equated,
yielding 2n + 1 equations:

ωAΦ + R = 0, (3)

where A represents the 2n + 1 by 2n + 1 couplingmatrix stemming from the Fourier
transformation, while Φ and R are the vectors of field variables and convection,
diffusion and sink/source terms in the frequency domain, respectively. The time-
spectral approach is based on the equations obtained by transforming Eq. 3 into the
time domain using Discrete Fourier Transform (DFT) matrix E :

ωE−1 A E φ + R = 0. (4)

Equation 4 presents a set of 2n + 1 equations coupled with the analytically trans-
formed temporal term via spectral decomposition. Each equation represents one
discrete time instant in one period of oscillation corresponding to ω.

In the present study, HBM is applied to Navier–Stokes equations and the Level
Set interface capturing Eq. [9], yielding a coupled set of two-phase flow equations
for discrete instants of time within one period. In addition, SWENSE decomposition
[9] is used to facilitate incident wave propagation. The reader is directed to [3, 4] for
further details.

2.2 Coupling of Steady-State Equations

The termωE−1 A E φ presents a source term that couples the steady-state equations.
The coupling can either be resolved in an explicit or implicit manner. In this work, the
coupling is resolved implicitly by solving the equations simultaneously in one block
system. The block system contains the block matrix and block vectors, where each
entry presents a vector of size 2n + 1. The implicit approach enhances the stability
of the calculation and enables low mean velocities with respect to the magnitude of
oscillation. This is important for the naval hydrodynamic application, since wave-
related flows often have low or zero mean velocities. The explicit approach is also
used for purposes of comparison.

3 Test Cases

In this section, two test cases are shown: a 2D simulation of a periodic flow over a
ramp and a 3Dwave diffraction of aDTMBship simulation. The results are compared
with transient simulations to validate the method.
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3.1 2D Ramp Test Case

Asimple 2D test case is devised to validate themethod for periodic free surface flows.
A periodically changing inlet velocity is prescribed that enforces a periodic variation
of the free surface throughout the domain. The simulation geometry can be seen in
Fig. 1. The inlet velocity is determined as Uinlet = [6, 0, 0] + [1, 0, 0] sin (2π t/T ),
where T = 0.5 s stands for the prescribed period of oscillation. Figure 2 shows the
initial condition with the calm free surface. The free surface elevation is measured
0.5 m from the outlet boundary. 13,000 cells are used in both the transient and HBM
simulations, while 200 time steps per period are used in the transient simulation.
Simulations using 1–8 harmonics are performed to asses the sensitivity of the solution
on spectral resolution. In this case, the oscillation of velocity is small compared to
the mean velocity, hence the explicit approach for resolving the source coupling can
be used. For comparison, both the explicit and implicit methodologies are used.

Figure 3 shows the dynamic pressure and velocity field in the discrete time instants
for the simulation with 2 harmonics. The comparison of the free surface elevation
from the HBM simulations using different numbers of harmonics with the transient
simulation is shown in Table 1, where ηa stands for the free surface elevation am-
plitudes, with indices 0 and 1 indicating zero- and first-order harmonic amplitudes,
respectively. ε is the relative difference of the transient result and the HBM method,
ε = (

ηa,t − ηa,hb
)
/ηa,t ; here indices t and hb present the transient and HBM results,

respectively. The difference decreases with the increase in the number of harmonics,
reducing to −0.2 % for the mean and −2.1 % for the first order.

Table 2 shows the comparison of required computational time for the explicit and
implicit HBM simulation and the transient simulation. The explicit HBM simulation
is more than ten times faster than the transient simulation. The implicit simulation
is more than three times slower than the explicit HBM simulation, however, it is
still 2.7 times faster than the transient simulation. The decrease in performance
between the explicit and implicit approaches is caused by the high cost of solving
the block system of equations. It should be noted that two harmonics were resolved
in these simulations, and that using more than two harmonics would deteriorate the
increase in speed. However, the motivation behind applying HBM to the field of
naval hydrodynamics is to provide a trade-off between accuracy and performance by
choosing the number of harmonics accordingly, rather than increasing the accuracy
of the existing methods.

3.2 DTMB Wave Diffraction Test Case

Wave diffraction against a static DTMB shipmodel [1] is simulated using the implicit
HBM and transient approaches. Regular waves are imposed, while induced longitu-
dinal and vertical forces acting on the hull are measured and compared. The model
is L = 3.05 m long with a velocity of U = 1.52 m/s corresponding to the Froude
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Fig. 1 2D ramp test case geometry

Fig. 2 Initial free surface and velocity in the ramp test case

(a) t = T/5, (b) t = 2T/5,

(c) t = 3T/5, (d) t = 4T/5,

(e) t = T .

Fig. 3 Dynamic pressure and velocity distribution in the HBM simulation in discrete time instants
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Table 1 Comparison of HBM and transient simulation results for the ramp test case

No. Harmonics ηa,0 (m) ηa,1 (m) ε0 (%) ε1 (%)

1 1.29035 0.179472 −1.6 −15.0

2 1.28485 0.186762 −1.2 −19.6

3 1.26487 0.175538 0.4 −12.5

4 1.27065 0.163556 −0.1 −4.8

5 1.27084 0.164377 −0.1 −5.3

6 1.27240 0.161346 −0.2 −3.4

7 1.27210 0.159447 −0.2 −2.1

8 1.27218 0.159308 −0.2 −2.1

Table 2 Comparison of computational time between the HBM and transient simulation for the
ramp test case

Simulation type CPU time (s) Acceleration

Transient (10 periods) 5067 1

Explicit HB (2 harmonics) 488 10.4

Implicit HB (2 harmonics) 1851 2.7

number Fr = 0.28. The waves are H = 0.036 m high with a period of T = 1.09 s
and wavelength λ = 4.57 m. Two harmonics are used for the HBM simulations,
while 200 time steps per period are used in the transient simulation. 521,000 cells
mesh is used in both the simulations. The wave-induced velocity is significant with
respect to the ship model’s velocity, therefore, implicit treatment of the HBM source
terms must be used [4] in order to ensure numerical stability.

Figure 4 shows the convergence of the mean (zero) and first-order longitudinal
forces and the first order of the vertical force, where NIter denotes the number of
iterations. It can be seen that the forces converge smoothly. The mean of the vertical
force is excluded, since it has a very large absolute value.

Figure 5 shows the comparison of the free surface elevation in the transient with
the HBM simulation, where good correspondence can be observed. The colour scale
represents the elevation of the free surface. The forces calculated on the hull of
the model in the HBM and transient simulations are compared in Table 3, where
ε = (Ft − Fhb) /Ft is given in percentages. Indices x and z denote the axis of force
direction, while 0 and 1 denote zero- and first-order harmonic amplitudes. The differ-
ence is smaller than ≈10% for all items, the smallest difference being for the mean
of vertical force Fz,0 (−0.11%), and the largest for the mean of the longitudinal force
Fx,0 (−10.2%).

The comparison of the required computational time in the two simulations is
shown in Table 4. The increase in speed is similar to that in the ramp test case with
implicit coupling.
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Fig. 4 Convergence of longitudinal and vertical forces acting on the DTMB hull in the HBM
simulation

(a) HBM simulation, (b) Transient simulation.

Fig. 5 Free surface elevation in the HBM and transient wave diffraction simulations

Table 3 Comparison of diffraction forces in the HBM and transient simulations

Item Transient Harmonic balance ε (%)

Fx,0, N 9.20 10.14 −10.2

Fx,1, N 10.70 10.34 3.36

Fz,0, N 784.88 785.72 −0.11

Fz,1, N 62.63 58.14 7.17

Table 4 Comparison of computational time between the HBM and transient simulations for the
wave diffraction test case

Simulation type CPU time (h) Acceleration

Transient (20 periods) 18.86 1

Implicit HB (2 harmonics) 8.6 2.2
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4 Conclusion

A Harmonic Balance Method applied to two-phase flows is presented in this paper
with the application in the field of marine hydrodynamics. The method transforms
transient periodic flows into a set of coupled steady-state problems, accelerating the
calculations.

Two test cases are presented to validate the method: a 2D periodic two-phase flow
over a ramp, and a ship model wave diffraction case in 3D. Both cases showed good
agreement with the transient simulations with lower necessary computational time.
The transient ramp test case simulation took ten times more computational time than
the explicit HBM simulation, and 2.7 times more than the implicit HBM. The wave
diffraction test case was simulated using an implicit HBM for reasons of numerical
stability, with an acceleration by a factor of 2.2.

The implicit HBM is applicable for wave-related problems in naval hydrody-
namic, however, larger computational savings were anticipated by the authors. The
implicit treatment of coupling source terms exerts higher computational demands,
reducing the efficiency of themethod. Future efforts will be directed towards enhanc-
ing the efficiency of the implicit approach to achieve larger savings in computational
resources.

Nonetheless, the method presents an attractive alternative for transient periodic
flows with a free surface. Moreover, the steady-state formulation enables automatic
optimisation techniques such as adjoint shape optimisation, presenting a new oppor-
tunity to optimise ships for added wave resistance in the future.
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Two-Way Coupled Eulerian–Eulerian
Simulations of a Viscous Snow Phase
with Turbulent Drag

Ziad Boutanios and Hrvoje Jasak

Abstract Anovel two-way coupled Eulerian–Eulerian CFD formulation was devel-
oped to simulate drifting snow based on turbulent drag and a new viscous treatment
of the drifting snow phase, derived from first principles. This approach allowed ex-
plicit resolution of the saltation layer without resorting to empiricism, unlike other
Eulerian–Eulerian models based on mixture formulations and one-way coupling.
Initial validations were carried out against detailed snow flux, airflow velocity, and
turbulent kinetic energy measurements in a controlled experimental simulation of
drifting snow in a wind tunnel using actual snow particles. The two-way coupled
approach was found capable of simulating drifting snow fluxes in both saltation and
suspension layers with reasonable accuracy. Recommendations were made to im-
prove the accuracy of the method for air velocity and turbulent kinetic energy, and
to allow simulating a drifting snow phase with a particle size distribution.

Keywords Drifting snow · Eulerian–Eulerian · Viscosity · Turbulent drag · Snow
flux

1 Introduction

Drifting snow results from the aeolian motion of snow particles deposited on the
ground. Such motion is possible when the drag force induced by the airflow exceeds
the opposing actions of interparticle cohesive bonding, particle weight, and surface
friction. This aerodynamic entrainment threshold is called the fluid threshold. If a
large enough amount of particles is displaced by the airflow it can extract enough
momentum from it that the airflow velocity is noticeably reduced; a two-way cou-
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pling phenomenon. Particle collisions also help sustain drifting by putting snowbed
particles in motion and making it easier for the slower airflow to carry them at a
lower threshold shear stress referred to as the impact threshold. Both definitions
were first coined by Bagnold [1] in his investigations of desert sand transport by
the wind. Bagnold also classified the aeolian motion of particles under three modes:
creeping, saltation, and suspension. These modes are shown in Fig. 1 as they per-
tain to drifting snow. Of particular interest to this research is the two-way coupled
saltation mode. Several aeolian snow transport models are available in the litera-
ture. Most are based on Reynolds-Averaged Navier–Stokes (RANS) formulations in
the Eulerian–Eulerian and Eulerian–Lagrangian frames regarding the air and snow
phases, respectively. Both approaches can yield reasonable results for particle-laden
flows, but the Eulerian–Eulerian approach requires a lower computational effort since
a lot of particles are required for Lagrangian particle tracking to yield statistically
meaningful results [2]. Presently, Eulerian–Eulerian modeling of drifting snow is
based on two main approaches: the transport of snowdrift density approach and the
Volume of Fluid (VOF) approach.

The snowdrift density approach solves a one-way coupled Partial Differential
Equation (PDE) for the drifting snow density in the suspension layer (where the
snow phase motion does not affect the airflow, a valid assumption in the suspension
layer thanks to the very low snow phase concentration) in addition to the airflow
continuity and momentum equations with a Prandtl mixing layer model [3]. Another
variation of the transport of snow density approach uses the mixture continuity and
momentum equations with a standard k–ε turbulence model corrected for turbulence
damping by particles [4]. Note that themixture formulation ofNaaim et al. [4] is in re-
ality two-way coupled. However, the snow phase momentum equation is not solved.
Instead, the snow velocity is set equal to a terminal velocity derived from empirical
and experimental considerations. This effectively fixes the two-way coupling effects
and the results are indeed quite comparable to other one-way coupled approaches

Fig. 1 The different modes of drifting snow
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discussed in this section. Another application of the snowdrift density approach uses
the airflow continuity and momentum equations with a modified Launder–Kato k–ε
turbulence model [5]. The drifting snow density is transported by the airflow, the
snowfall velocity is set constant, and the saltation layer, which is not resolved, is rep-
resented by a steady-state empirical formulation of the transport rate of drifting snow
in the saltation layer for equilibrium conditions over natural flat terrain [6]. However,
this empirical representation of the saltation layer has been experimentally shown to
overestimate the transport rate of drifting snow in accelerating and decelerating flows
[7]. This makes such a representation of the empirical layer at best conservative for
flows around bluff bodies where important regions of accelerating and decelerating
flows are present. The snowdrift density approach with the Launder–Kato turbulence
model has been lately modified to account for snow particle damping of turbulence
and with saltation computed with the snowdrift density one-way coupled transport
equation, without the empirical saltation flux relationships [8]. These modifications
resulted in some improvement, but substantial deviations remain from experimental
measurements of the snow surface in the lateral vicinity of a cube structure, where
accelerating and decelerating effects of bluff body aerodynamics dominate. The com-
putation overestimates the snow accumulation in the stagnation zone ahead of the
cube where the flow is reasonably steady state, and is quite good behind it but the
simulation authors wonder whether accumulation behind the cube is due to snowfall
or snowdrift.

The VOF approach is a one-way coupling interface capturing method that treats
the snow phase as a fluid and relies on the assumption that the fluids are not in-
terpenetrating. Capturing of the interface between the phases is done by solving a
continuity equation of one or more of the phases, in addition to the mixture con-
tinuity and momentum equations. The relative velocity of both phases is based on
drift-flux theory, which assumes low drift [9], a reasonable assumption for smaller
particles. The VOF approach relies on the same steady-state empirical equilibrium
saltation flux treatment as the transport of snowdrift density approach and both meth-
ods are equivalent. Different attempts at improving the VOF approach by accounting
for particle impingement in saltation as well as modifications of the turbulent wall
function roughness parameter based on experiment-specific measurements did not
show much improvement compared to experiment, especially close to bluff bodies
where accelerating and decelerating flows dominate [10]. No decisive improvement
was seen either by using mesh adaptation based on the balance of the convected
horizontal snow flux and flow divergence at the ground [11]. Yet another application
of the VOF approach uses two different snow phase continuity equations, one with
mass diffusion and a suspension particle settling velocity in the suspension layer
and another without mass diffusion and a saltation particle settling velocity in the
saltation layer [12]. The implementation is based on ad hoc empirical coefficients
and parameters, and does not improve on the previously mentioned limitations.

An exception to both approaches above is the physically based one by Gauer [13],
which resolves the saltation layer but still uses considerable parameterization and
self-similarity assumptions between the airflow profile and the snow concentration
profile in the saltation layer, which does not necessarily hold true in the vicinity of
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bluff bodies. In particular, the air velocity and snow concentration profiles in the
saltation layer are assumed and related to the air velocity on top of the saltation layer
obtained from the suspension layer computation. The simulations manage to capture
the general trends in comparison to experimental snowdrift rates, wind field velocity,
and new snow depth for an Alpine crest with order of magnitude agreement in qual-
itative comparisons. In all fairness, much of the discrepancies are due to poor terrain
accuracy and large uncertainty in choosing the correct numerical boundary condi-
tions, as pointed out by the author of the simulations, but the results are inconclusive
nonetheless.

The objective of this paper is to present a viable snow phase viscosity model
for high rates of strain and two-way coupled situations such as snow saltation, in
Eulerian–Eulerian simulations of drifting snow. The viscosity model is implemented
in a modified version of twoPhaseEulerFoam [14], the formulation of which is
based on the following conditional ensemble-averaged equations of conservation of
mass and linear momentum used to represent interpenetrating phases in the Gosman
model [15]:

∂αi

∂t
+ ∇ · (αiui

) = 0, (1)

∂

∂t

(
αiui

) + ∇ · (αiuiui
) + ∇ · (

αiRi
) = −αi

ρi
∇ p + αig + Mi

ρi
. (2)

Here, αi , ρi , ui , and Ri are the volume fraction, density, velocity, and stress tensor
of phase i , respectively; p is the static pressure field; and g is the gravitational
acceleration vector; Mi is the momentum exchange term between the phases,

Mi = Fl + Fd + Ft . (3)

Here, Fl , Fd , and Ft are, respectively, the aerodynamic lift, generalized drag, and
turbulent drag forces. Using scale analysis, [13] found the aerodynamic lift and drag
forces to dominate at the onset of drifting, but did not consider the turbulent drag
force. An earlier scale analysis by [15] including the turbulent drag force found the
lift to be negligible for gas/solid particle-laden flows, where the ratio of continuous
gas density to dispersed solid density is proportional to 10−3. The lift force is given
by

Fl = α2α1(α2Clsρ2 + α1Claρ1)Urel × ∇ × U. (4)

Here, the snow phase is represented by index 1 and the air phase by index 2. Urel =
U2 − U1 is the relative velocity between the phases, and U = α2U2 + α1U1 is the
mixture velocity. Numerical tests with the presentmodel confirmed the lift force to be
negligible; therefore, it was not used in the present simulations. The only two forces
found relevant for saltation and suspension are then the generalized aerodynamic and
turbulent drag forces. The latter force was also reported to be the main mechanism
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for transporting smaller particles into suspension [1]. The generalized aerodynamic
drag model used is the Gidaspow–Schiller-Naumann model [16], which is expressed
as follows for the snow phase:

Fd = KUrel , (5)

K = 3

4dp
ρ2CDα−1.65

2 (1 − α2)|Urel |. (6)

Here,CD is the drag coefficient on a single sphere given by the following relationship
[17]:

CD =

⎧
⎪⎨

⎪⎩

24

Rep
(1 + 0.15Re0.687p ) if Rep < 1000,

0.44 if Rep ≥ 1000.
(7)

Rep is the particle Reynolds number based on the particle diameter dp and air kine-
matic viscosity ν2,

Rep = α2|Urel |dp

ν2
. (8)

The Gidaspow–Schiller-Naumann drag model is valid for dilute flows with α2 > 0.8
[18], which is the case in the creep, saltation, and suspension layers. Moreover, the
Gidaspow–Schiller-Naumann drag model applies to spherical particles and is used
here since no practical correlations for irregular particles as depicted in Fig. 4 are
available in the literature. However, as the present irregular particles drift they will
rotate around three axes within a somewhat spheroidal volume of air. Therefore,
their drag function could be similar to that of a spherical particle with differences
that cannot be predicted at the moment. It remains that the spherical particle drag
correlations are the only present recourse.

For the snow phase, the turbulent component of the drag force, arising from
turbulent fluctuations of the volume fractions and velocities in the Gosman two-fluid
model is given by

Ft = −K
ν t

σα

∇α1. (9)

Here, ν t and σα are, respectively, the turbulent kinematic viscosity of the air phase
and the Schmidt number. The standard formulation of twoPhaseEulerFoam does
not include the turbulent drag term. Instead, it uses the continuity equation in the
following form:

∂αi

∂t
+ ∇ · (Uαi ) − ∇ · (Urelαi (1 − αi )) = 0. (10)

Equation 10 provides tighter coupling between the phases since it uses the mixture
and relative velocities, as well as both volume fractions [19]. It does not include
a turbulent diffusion term, but the third term on the left-hand side can be consid-
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ered a volumetric mass flow rate source term, playing the same role as a turbulent
diffusion term, and a similar role to the turbulent drag term in the momentum equa-
tion. For the present simulations, the turbulent drag term of Eq. 9 was added to
twoPhaseEulerFoam, while retaining the treatment of Eq. 10. The standard in-
compressible k–ε turbulence model is used unmodified and applied only to the air
phase, so the interaction between the snow phase and turbulence is not directly taken
into account.

The viscous stresses terms in the momentum equations are modeled according to
the Boussinesq formulation, which requires a viscosity parameter readily available
for air but not for snow. Many snow compactive viscosity models are available for
very low rates of strain typical of settling snow, the latest by Teufelsbauer [20] who
also provides a review of the main models in the literature. However, nothing is
available at the high rates of strain of drifting snow. The next section discusses the
high rate of strain viscosity model and its derivation, while the validation of the for-
mulation is presented in the Validationsection. The relevant details of the controlled
drifting snow experiment are presented in the Validation Experiment subsection. The
numerical setup is presented in the Simulation Setup subsection, followed by the Re-
sults and Discussion subsection. The paper concludes with the Conclusionssection
which includes recommendations for future work.

2 The Drifting Snow Viscosity Model

The snow phase viscosity is derived by matching the momentum of a number of
ideal spherical drifting particles within a control volume, with the momentum of
the same control volume containing an equal amount of the equivalent viscous fluid.
Drifting snow particles move in transient hops and bounce over the snowbed surface.
However, drifting snow can easily be observed in self-sustained steady-state mode
in natural and controlled environments, so the motion of the spherical particles can
be considered steady state in the average sense. This approximation is only used for
the purpose of deriving an expression of the snow phase Newtonian viscosity model.
A scale analysis showed that the rolling friction force is negligible compared to the
drag force, so the former was not retained in the analysis. Neglecting friction forces
is further justified by the fact that their effects and that of snowbed asperities are
already implicitly included in the surface threshold shear–stress parameter.

The derivation starts with the momentum equations of the air and snow phase for
fully developed steady-state flow in a control volume containing a number of rolling
particles on the snowbed and having the same height as a particle. At typical drifting
snow particle height dp � 1mm, typical surface threshold friction velocity u∗ � 0.5
[21] and air temperature below freezing, the nondimensional wall distance to the
snowbed is y+ � 50. Under such conditions the airflow profile is weakly nonlinear
and the divergence of the stress tensor negligible compared to the pressure gradient.
Therefore, we can write the snow and air momentum equations for steady-state fully
developed flow as
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− α1
∂P

∂x
+ Fd + α1μ1

d2u1
dy2

= 0, (11)

− α2
∂P

∂x
− Fd = 0. (12)

Here, ∂P/∂x is the downstream pressure gradient, Fd is the drag force on a particle
andμ1 is the snowphase dynamic viscosity.One can eliminate the drag force between
the equations above and solve for the snow phase velocity on the snowbed using the
following no-slip and threshold shear stress boundary conditions at the snowbed
surface:

u1 = 0, (13)

τt = α2ρ2u
2
∗. (14)

The resulting snow phase velocity on the snowbed is

u1(y) = 1

2α1μ1

∂P

∂x
y2 + τt

α1μ1
y. (15)

The expression for the dynamic viscosity is obtained by matching the linear mo-
mentum of the Lagrangian snow particle phase with that of the equivalent Eulerian
snow fluid phase. The Lagrangian linear momentum per unit volume PL ,v is given by
Eq. 16, where ρi is the ice density and Vp the average particle velocity. The Eulerian
linear momentum per unit volume PE,v is given by Eq. 17.

PL ,v = α1ρi Vp, (16)

PE,v = α1ρi dp

dp∫

0

u1(y)dy. (17)

Integrating and setting PL ,v = PE,v provides the following expression of the drifting
snow dynamic viscosity:

μ1 =
1
6

∂P

∂x
dp + 1

2τt

γ̇1
. (18)

Here, γ̇1 = α1
Vp

dp
is the particle phase rate of strain. Equation 18 can also be refor-

mulated in terms of the drag force,
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μ1 =
− 1

6

Fddp

α2
+ 1

2τt

γ̇1
. (19)

In aeolian transport phenomena particles, the drag force usually points downstream,
in the direction of the decreasing downstream pressure gradient. On the other hand,
the surface shear stresses usually resist the particle motion, and this competition
between the threshold shear stress τt and the pressure gradient (or drag force) is
highlighted in Eqs. 18 and 19. The pressure gradient and the drag force tend to
induce motion, reducing the effective viscosity of the snow phase, whereas surface
shear stresses tend to inhibit motion, increasing the effective viscosity of the snow
phase.Within the snowbed, the snowEulerian continuumshould still be characterized
by the threshold shear stress. Since there is no significant airflow beneath the snow
surface, and we are not interested in an accurate simulation of snowbed packing, the
drag/pressure gradient term can be eliminated from Eqs. 18 and 19 in that region.
The resulting drifting snow viscosity expression implemented and tested here is the
following:

μ1 =

⎧
⎪⎨

⎪⎩

0.5
τt

γ̇1
in snowbed

(
− 1

6

Fddp

α2
+ 1

2τt

)
/γ̇1 in creeping, saltation and suspension.

(20)

3 Validation

This section presents the relevant details of the controlled wind tunnel drifting snow
experiment and the numerical setup. The discussion proceeds around the results of
the numerical simulations as compared to the experimental measurements.

3.1 Validation Experiment

The experimental data used to validate the present viscosity model comes from a
controlled wind tunnel experiment of drifting snow using actual snow particles [22].
The experiment was carried out at the Cryospheric Environment Simulator (CES)
of the Shinjo Branch of the Snow and Ice Research Center (SIRC), at the National
Research Institute for Earth Science and Disaster Prevention (NIED) in Japan, by the
snow research group of Tohoku University. This experiment was selected because
it included detailed measurements of the snow fluxes and airflow velocity profiles
at four measurement stations in the working section of the tunnel, and across the
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Fig. 2 Side view of the wind tunnel experimental layout (adaptation of Fig. 2 from Okaze et al.
[22])

entire saltation layer and lower part of the suspension layer. Turbulent kinetic energy
profiles were also measured at the most downstream measurement station.

The experimental layout is shown in Fig. 2 with the locations of the experimental
measurement stations. The first measurement station is at X = 0 m and is preceded
by a 1 m fetch of hardened snow that cannot drift. This induces a nonequilibrium
boundary layer before the 14 m working section which includes a 0.02 m deep
groove filledwith loose snow that can drift. The turbulence kinetic energy and airflow
velocity profiles were measured at X = 0 m, and they are shown in Fig. 3. They are
nondimensionalized using the reference airflow velocity Ur at a height of 0.2 m
over the snowbed. The airflow velocity and snow flux profiles were also measured
at the downstream stations located at X = 3, 6, 9 and 11.5 m. The turbulent kinetic
energy profile was also measured at the last downstream station at X = 11.5 m.
The experiment was initiated with a start-up phase of 25 s to reach the conditions
shown in Fig. 3, followed by a waiting period of 5 s. The airflow velocity, turbulent
kinetic energy, and snow flux profiles were then measured at all four downstream
stations within a global time window of 30s, consisting of 5 s for each station and
a 2 s transfer period in between stations. The reported results of snow flux, airflow
velocity, and turbulent kinetic energy profiles were obtained by averaging the data
measured during the individual 7-s windows. The reader is referred to Okaze et al.
[22] for the experimental details. Samples of the snowparticles used in the experiment
are shown in Fig. 4 with a 1 mm scale bar. The experimental snow particles are quite
irregular and bulky, exceeding 1 mm in length quite often but rarely smaller than
0.10 mm in either length or width.
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Fig. 3 Experimental airflow velocity and turbulent kinetic energy profiles measured at X = 0
(adapted from Fig. 3 of Okaze et al. [22])

Fig. 4 Samples of the snow particles used in the experiment with a 1 mm scale bar (provided by
Dr. Tsubasa Okaze)

3.2 Simulation Setup

The 2D computational mesh used for the simulations is shown in Fig. 5. A close-up
of the mesh at the inlet of the computational domain at X = 0 m is also shown, with
the loose snow layer in the gutter in white. The volume fraction of the snowbed
was set to 0.394 in order to match the experimentally measured snowbed density
of 361 kg/m3. The mesh is fully structured, composed of hexahedral elements with
a transverse element size of 4 mm in the gutter and at the top of the tunnel. The
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Fig. 5 Simulation mesh with a close-up of the inlet region showing the loose snow layer in the
gutter

longitudinal element size in the flow direction along the X-axis is about 6 cm. Tests
were carried out with a mesh twice finer in both directions and the results varied
by less than 15%, so the results obtained from the present mesh can be reasonably
considered mesh-independent.

The Gauss linear scheme was used for gradients and divergence of viscous
terms, and the Gauss upwind scheme for divergence of nonlinear convection
terms. The Gauss linear orthogonal scheme was used for all Laplacians.
The pressure equationwas solvedwithGAMGandDIC smoother, and all other equa-
tions were solved with PBiCG and DILU preconditioner. All solvers were converged
to ten orders of magnitude. The measured profiles of airflow velocity and turbulent
kinetic energy at X = 0 m from Fig. 3 were imposed as inlet boundary conditions for
the simulations, with a Neumann zero-gradient inlet boundary condition for the pres-
sure. At the inlet, the turbulentMixingLengthDissipationRateInlet
boundary condition was used for ε, which is based on the following equilibrium
relationship:

ε = C0.75
μ k1.5

lm
. (21)

Here, Cμ = 0.09 is the familiar k–ε model constant and lm is the mixing length set
to half the wind tunnel height, or the assumed dimension of the large inertial eddies.
Tests were conducted with a mixing length equal to 10% of the wind tunnel height
with negligible differences in the results, perhaps due to the low sensitivity of the k–ε
model to changes in inlet conditions. At the outlet, Neumann zero-gradient boundary
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conditions were used for all variables except the pressure, with a Dirichlet zero-value
boundary condition. Standard wall functions were used at the walls.

Simulations were carried out at a snow threshold shear stress τt =
0.044Kg/(m s2), which is the minimum experimentally observed value for drifting,
and corresponds to a threshold velocity of u∗ = 0.23m/s. The drifting experiment
analyzed here is transient, given the limited supply of drifting snow in thewind tunnel
gutter, so the simulations were accordingly carried out in transient mode. Moreover,
it is necessary to take into account the particle size distribution when using two-way
coupled simulations [23]. The present formulation can only account for one particle
size at a time. Therefore, the only way to reproduce the results of a particle size distri-
bution was to combine the results of several single particle size simulations, using the
statistical weight of each size class in the distribution. Particle size distributions were
not reported in the experimental paper but mechanical breakage phenomena such as
drifting snow usually obeyed a two-parameter Gamma distribution be it as aggregate
on the ground [24] or drifting above it [25]. The two-parameter Gamma Probability
Distribution Function (PDF) f (x) and the Gamma function 
 are expressed as

f (x) = ba


(a)
xa−1e−bx , (22)


(a) =
∞∫

0

xa−1e−xdx, a ∈ (0,∞). (23)

Here, a and b are, respectively, the distribution shape and scale parameters, and they
define the distribution average size as davg = a/b. The statistical weight wi of a
particle class di is calculated as follows:

wi =
di+1+di

2∫

di+di−1
2

f (x)dx . (24)

Here, di−1 and di+1 are the lower and upper particle size classes. The percentage
contributions of the different particle classes to several distributions with average
particle size of 0.7, 0.8, and 0.9 mm are shown in Fig. 6. In this section, the snow
flux and airflow velocity profiles of a two-parameter Gamma distribution with aver-
age diameters of 0.7, 0.8, and 0.9 mm are reproduced using all seven particle size
simulations, namely, 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, and 1.3 mm particle sizes. The par-
ticle size distribution results are then compared to the results of the single diameter
distributions from the previous section and the experimental measurements.
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Fig. 6 Percentage
contributions of different
particle size classes to
distributions with davg = 0.7,
0.8 and 0.9 mm

3.3 Results and Discussion

The average snow flux profiles at X = 11.5 m are shown in Fig. 7, along with the
experimental measurements. The numerical profile for the average diameter of 0.7
mm exceeds the experimental measurements by far, especially high in the saltation
and suspension layers. This is due to the important contributions of the smallest
particles that are most present in that distribution. The smallest and lightest particles
are transported in saltation and suspensionmore easily than the larger particles,which
are heavier and tend to drift closer to the snowbed. Accordingly, the distributionswith
average diameters of 0.8 and 0.9mmhave less contribution from the smallest particles
and less saltation/suspension snow flux. The distribution snow flux profiles appear
quite sensitive to small changes in the average distribution diameter since the PDF
curves in Fig. 6 are pretty narrow and have little spread around the average diameter
value. However, all three profiles show a reasonable qualitative agreement with the
experimental data since the shapes of the experimental and simulation profiles are
similar and the simulation profiles intersect the experimental profile, especially for
the 0.9 mm average diameter case.

The profiles of average nondimensional airflow velocity for the same average
diameters of 0.7, 0.8, and 0.9 mm are shown in Fig. 8. Again, a reasonable qualitative
agreement is found with the experimental measurements since the shapes of all
curves are pretty much the same, but with much smaller differences between the
three distributions. This implies that the distribution velocity is less sensitive than
the distribution snow flux to small changes in the average distribution diameter, for
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Fig. 7 Average snow flux
profiles at X = 11.5m, for
distribution average
diameters of 0.7, 0.8, and 0.9
mm

Fig. 8 Average profiles of
nondimensional airflow
velocity at X = 11.5m, for
distribution average
diameters of 0.7, 0.8, and 0.9
mm

the range of average distribution diameters considered. Therefore, the quantitative
differences should not be due to the averaging process.

The average nondimensional turbulent kinetic energy profiles are shown in Fig. 9
and are found to be equally insensitive as the airflow velocity profiles. Moreover, the
numerical results exceed the experimentalmeasurements by twoorders ofmagnitude,
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Fig. 9 Average profiles of nondimensional turbulent kinetic energy at X = 11.5m, for distribution
average diameters of 0.7, 0.8, and 0.9 mm

Fig. 10 Pressure stagnation zone forming at the beginning of the eroding snowbed, with turbulent
kinetic energy contours

a well-known flaw of the k–ε model in stagnation regions [26, 27]. This deficiency
is also known to affect downstream parts of the flow [28]. In the present case, the
stagnation region is located upstream right after the inlet, where the flow trips into the
eroding snowbed as can be seen in Fig. 10. The turbulent kinetic energy contours are
also shown in black, and they extend downstream reaching the 11.5 m measurement
station. The drifting snow particles constitute another contributing factor since they
extract significantmomentum from the airflowbydrag in the saltation layer. This two-
way coupled effect fades away in the suspension layer,where the airflowsubsequently
accelerates, forming another shear layer where turbulence is also generated [1]. The
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standard k–ε model used here is not equipped to handle such dispersed two-phase
flow situations. However, many fixes are available in the literature in the form of
turbulent timescale limiters [28] and particle effect source terms in the k and ε

transport equations [29]. They will be investigated in future work, as well as the
specific k–ε implementation in twoPhaseEulerFoam.

4 Conclusions and Future Work

A new two-way coupled Eulerian–Eulerian formulation to simulating drifting snow
was presented along with validation results against a controlled wind tunnel drifting
snow experiment. The new formulation was implemented in OpenFOAM®, based
on twoPhaseEulerFoam. It includes a novel drifting snow viscosity model de-
veloped to allow computing the viscous stress tensor in the snow phase momentum
equation, which itself made it possible to simulate drifting snow in the saltation layer
without resorting to empirical correlations used by other Eulerian methods.

Comparisons of simulation results with experimental measurements showed that
the new two-way coupled formulation behaves physically with respect to particle
size. The model showed reasonable qualitative agreement with measured snow flux
in the saltation and suspension layers. Comparisons of numerical airflow velocity to
experiment showed reasonable qualitative agreement with the experimental profiles,
with quantitative deficit in the numerical results. These are believed to be due to
well-known deficiencies of the standard k–ε model, which can be addressed with
fixes available in the literature.

The present formulation allows simulating one particle diameter class, andwork is
ongoing to allow simulating several diameter classes simultaneously. Corrections to
the k–εmodel excess turbulent kinetic energyproduction are also being implemented.
This viscous model can be extended quite easily to aeolian transport of sand and even
riverbed sediment transport, to give only a couple of examples.
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Use of OpenFOAM® for the Investigation
of Mixing Time in Agitated Vessels
with Immersed Helical Coils

Alexander Stefan and Heyko Juergen Schultz

Abstract This chapter deals with the investigation of potentials in energy efficiency
optimization for widespread agitated vessels. A lab-scale model is derived from
an industrially used reactor vessel with immersed helical coils, which is utilized
for several chemical basis operations. The model is analyzed with particle image
velocimetry (PIV) and laser-induced fluorescence (LIF) concerning velocity and
concentration fields, which gives a good validation basis for CFD analysis. However,
it is challenging to validate simulations of industrial reactors. In this work, the idea
is pursued of comparing the flow fields of simulations and measurements in order
to validate the computational results. The simulation task implies the generation of
complex geometrymeshes, solving for steady-state, as well as for transient solutions,
and seeking fast and effective methods. An approach to the validation of technical,
large-scale simulation results is proposed through comparison of mixing times in
simulations and industrial trial runs.

1 Computational Fluid Dynamics in the Chemical Industry

Fluid dynamics is omnipresent in the chemical industry. Processes of arbitrary com-
plexity involve handling material and energy fluxes. Several works serve as a basis
for practical planning and the designing of instruments and apparatuses for produc-
tion plants. In compliance with given requirements, dimensioning and designing are
performed according to pertinent specifications given in standards, monographs, or
guidelines. Process simulations are very common in the chemical industry, too. Due
to high complexity, simplified and semiempirical models were developed for com-
monly used apparatuses. Those models are the basis for underlying algorithms in
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process simulation software. A multitude of software applications serve as an aid for
the design and operation of chemical plants.

Computational fluid dynamics simulation tools, however, still occupy a niche in
the chemical industry. The big success of CFD in, e.g., aviation or the racing industry
is explainable by the fact that it optimizes the final product. In the chemical industry,
on the other hand, the optimized object is a tool itself. Due to high implementation
effort, as well as the computational and financial costs of commercial CFD, chemical
engineers still mostly prefer well-established process simulation tools. As an open
and free-to-use CFD tool, OpenFOAM® [1, 2] poses an economic solution and rep-
resents huge, previously hidden potential for the optimization of chemical industry
utilities, which is demonstrated in this contribution with the example of a stirred
process.

1.1 Agitated Vessels in the Chemical Industry

In process engineering, and especially in the chemical industry, agitated vessels are
commonly used for amultitude of applications. They have therefore been investigated
in numerous papers and monographs [3–14]. Typical basic operations are heating,
homogenizing, suspending, blending and chemical reactions. For an appropriate
design and the effective operation of agitated vessels, it is necessary to understand
the hydrodynamics and the transfer phenomena under the given circumstances. In
previous works, good models for different aspects of stirred processes have been
given for vessels with and without baffles. It is, however, not possible to formulate
a universal model for different design scales of vessels; foremost, not for different
equipment and internals. It is therefore necessary to look at each case individually.
Experimental investigation quickly reaches its limits concerning applicability and
costs. At this point, numerical simulation appears to be of large value. However, the
results of numerical calculations have to be validated and verified.

This work follows the idea of developing valid CFD methods and simulation
procedures for lab-scale mock-ups, which can be validated using measurement tech-
nology. These procedures can then be transferred to the industrial scale for the final
optimization task.

2 Heat Exchange in Stirred Vessels

To achieve or maintain a certain temperature in the reactor, it is often necessary to
install a heat exchanger inside or on the wall of the vessel. The standard types are
diverse types of jacket heating, meander and register pipe, heating plug and helical
coil in single or double variant [3]. Thanks to their low complexity and cost, huge
exchange area and possibility for simple fixation (onmost current baffles at any rate),
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Fig. 1 Typical industrial
reactor with two immersed
helical coils

the latter option is very popular in the chemical and biotechnical industries. Figure 1
shows a typical industrial-stirred reactor with double helical coils and four baffles.

The disadvantage of immersed helical coils is the obstacle they pose for fluid
dynamics. The works of Bliem and Schultz [15, 16] detail the problems that are
caused by coils in regard to velocity fields and heat transfer. Anyhow, a CFD study
showed that heat transfer could be improved by up to 24% for the investigated object
through optimization of the stirrer position [17].

3 Investigated Object

The simulation study is conducted following the design of the experimental model,
which serves as basis for validation. Up to now, little research has been published
about vessels with internals, due to the very elaborate measurement approach. For
noninvasive optical methods, complex geometries pose a challenging obstacle con-
cerning measurement accuracy. Those problems are caused by image distortion and
ray diffraction. This can be circumvented by building the model out of a translu-
cent material. The refractive index of the fluid can then be adapted to it, so that
geometries inside the observed domain become invisible and do not disturb the
measurement. This method is described in detail in [12]. Bliem investigated the
velocity fields via particle image velocimetry (PIV) [16]. The mixing time investi-
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Table 1 Surface refinement levels for the snappyHexMesh process

Geometry
surface

Reactor
wall

Interphase Stirrer Baffles Heater coil Rigid
cylinder

Minimal
level

1 1 2 1 2 3

Maximum
level

1 1 2 1 2 3

For regions where the surface feature angle is less than 30°, the maximum refinement level is used,
otherwise the minimum level

gations were performed by Hirtsiefer via laser-induced fluorescence (LIF) and can
be reviewed in [18]. The mixing time was determined by using rhodamine B as the
tracer substance. A 10 L beaker glass was used as the vessel, the coil was made out of
polymethylmethacrylate (PMMA), and ammonium thiocyanate solution was utilized
as the refractive indexmatched (RIM) liquid. In the scope of thiswork, highReynolds
numbers between 16,000 and 32,000 were used.

On the simulative side, the described geometry is modeled with the free CAD
software Blender® and exported in stl-format. A hexahedral mesh with cells of 5 mm
edge length is created with the OpenFOAM® utility blockMesh. It is used for refining
and geometry-snapping with the snappyHexMesh utility. A rigid cylinder body is
implemented around the stirrer geometry to account for the rotational movement.
The local surface refinement levels used in the snappyHexMesh process are listed in
Table 1.

Three orthogonal cell layers were added around the heater geometry to suppress
numerical diffusion. The samemesh quality controls as in the default implementation
of openfoam4 were used for this study. The resulting mesh is presented in Fig. 2.

For simplification, the interphase between gas and liquid is assumed to satisfy
slip conditions. This allows for monophasic simulation and is justified by relatively
low vortex formation due to the baffles and coil, as, in the scope of the rotating
frequencies used, can be demonstrated in experiments and two-phase simulations.
Depending on the stirrer used, the final mesh has a size of 1.0–1.4 million cells.

Due to the high Reynolds numbers, a RAS-model (k-epsilon) was used for the
simulations.

4 Measurement Approach

4.1 Velocity Field via Particle Image Velocimetry (PIV)

PIV is a rather modern noninvasive optical measurement method for velocity fields.
In general, a slice of the flow domain is illuminated via a fanned-out laser beam. Two
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Fig. 2 Details of a snappyHexMesh-generated mesh of a lab-scale reactor with immersed helical
coils and a Rushton turbine impeller

images are taken consecutively and the movement of tracer particles is determined
by cross-correlation.

The comparison of simulation and measurement data shows good correlation
concerning the main flow pattern, as well as transient structures like moving vortices
and the fluctuation of the jet stream that is ejected from the stirrer.

The undeniable disadvantage is the limited image area. In standard PIV, only
the velocity components inside the plane, but not the so-called out-of-plane compo-
nent, are detected. This is to be considered when comparing two-dimensional PIV
velocity magnitudes with three-dimensional CFD data. The CFD data therefore has
to be projected onto the observed plane first. Better results can be achieved with
stereo-PIV, in which images are created simultaneously from different perspectives.
The out-of-plane component can then be calculated from the angle of the cameras
and the differences between the respective images. For more information, see [12].

4.2 Concentration Field via Laser-Induced Fluorescence
(LIF)

LIF uses the same experimental setup as PIV. The principle, however, is quite dif-
ferent. A fluorescent substance is used as a tracer. For mixing time investigations,
rhodamine B is a good choice, since it is soluble in water and does not noticeably
change the viscosity. Thus, its concentration may be considered to be governed by
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Fig. 3 Probe locations in a
vertical slice of a stirred
vessel geometry for
determination of mixing time
via LIF technology

scalar transport. The local intensity of fluorescence can be correlated to the local
concentration, which is the basis for determination of mixing time.

Hirtsiefer [18] picked six points in the image for observation of concentration
progress. Those points are pictured in Fig. 3.

5 Mixing Time

Mixing time is one of the central feature sizes in a stirred process. It has fundamental
influence on both material and thermal transport phenomena. Its value is the basis
for process design and the key to determination of the operating parameters and
estimation of the energy requirement. However, experimental determination is highly
individual for each problem, and even each experimental setup. Nonetheless, it is
very important to ensure accurate projection of the experiment to the numerical
calculation.

5.1 Definition of Mixing Time

The local concentration c(x) of a tracer substance, where x is the spatial variable,
converges to its final concentration c∞ during the mixing process. The latter can be
calculated from the tracer quantity and vessel volume. The current local concentra-
tion, however, fluctuates even after reaching a homogenous mixture. It is therefore
necessary to specify the relative variance v of the concentration that it is supposed to
satisfy the goodness of mixingMv � [Mv − v,Mv + v]. It is common to use a value
of v � 5% [7]. The current local goodness of mixing M(x, t) is defined as the ratio
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between c(x, t) and c∞. The mixing time tm is defined as the point when M(x, t) is
inside the interval Mv for all t > tm and all x in the domain.

In practice, c(x, t), or any correlated signal, is plotted against time, where t � 0
marks the tracer injection time. The final concentration is calculated as a mean value
of the signal within a time range in which the mixing time is obviously exceeded. A
typical plot is shown in Fig. 5. In this case, numerical data was used. However, the
local concentration curves in experiments have similar characteristics. Horizontal
margins mark Mv. The signal curve leaves the box for the first time at the mixing
time, when viewed from the right side.

5.2 Simulation of Mixing Processes

For investigation of the mixing time, it is necessary to bring the agitated system to
a quasi-steady state, in which the main flow field is already developed. In order to
augment the efficiency and minimize the calculation cost, a combination of several
OpenFOAM® tools is used during the mixing time investigation.

6 Velocity Field

In multiple works, steady-state simulation is used for stirred vessels. It is very fast,
and hence a good choice for preliminary studies. A comparison with time-averaged
velocity measurement data shows good agreement with this kind of simulation con-
cerning the mean flow pattern [16]. The temporally resolved observation of velocity
fields, however, produces evidence of vortex structures that have a comparably long
lifetime and move slowly through the flow domain. Those vortices play a crucial
role in mixing and must not be ignored. In a steady-state simulation and temporally
averaged fields, however, those structures cannot be detected, as they vanish in the
mean field. For transient simulations, the OpenFOAM® solver pimpleDyMFoam is
used, since it is an adequate solver for large time step, turbulent flows and accounts
for the stirrer rotation by dynamic mesh motion.

A steady-state solution is obtained with the simpleFoam solver, including the use
of amulti-reference-frame simulation. This is used as an initial condition for transient
simulation. After 25 turns of the stirrer, the afore-mentioned vortex structures are
developed and the velocity field is assumed to be quasi-stationary. Mixing time
investigations can start from these conditions. Snapshots of the resulting vertical
velocity fields from CFD and PIV are compared in Fig. 4.
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Fig. 4 Comparison of the vertical PIV-measurement (left) and transient CFD (right) results for a
pitched blade impeller in a fully turbulent state

7 Tracing via Passive Scalar Transport on Existing Velocity
Fields

A passive scalar transport equation is easy to implement on an existing solver in
OpenFOAM®, as has been described in numerous tutorials on the web [19] or in
[20].

If the mixing time is to be investigated under novel geometry or operating con-
ditions, it is sensible to use the afore-mentioned quasi-stationary field as an initial
condition and use the pimpleDyMFoam, extended by the scalar transport equation

∂

∂t
ψ � ∇ · (�∇ψ) − ∇ · (uψ),

whereψ is the scalar of interest, u the velocity, and � the scalar diffusion coefficient.
If, however, velocity fields are present from other work, they can be reused for

calculationof themixing time.Thismethod spares one the extremely time-consuming
transient calculation of the velocity and pressure fields. The present velocity data
indeed have to be adequately temporally resolved and have to reach over a time
range that safely exceeds the mixing time. This approach is also especially useful
when mixing times with different tracer injection spots, but the same velocity fields,
have to be compared. In this case, only the scalar transport has to be calculated twice.

Mimicking the experimental trial, in the simulation, the tracer injection is imple-
mented by setting ψ to the value 1 (setFields utility) on a domain that corresponds
to the tracer volume and injection spot, while the residual ψ field remains at 0. Since
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the tracer is injected quickly in experiments, the domain has the shape of a column.
Two injection spots, centric and eccentric, are selected and compared.

8 Determination of Mixing Time at Probe Locations

The measurements of local concentrations during the mixing process were taken at
six different points in the vessel (see Fig. 5). The OpenFOAM® utility “probeLoca-
tions” allows for analogous tracking of local tracer concentrations. For each of these
locations, the local mixing time is determined in the manner described above. Of
course, the local mixing times can differ due to dead zones. The total mixing time
is assumed to be reached with the latest local mixing time. The exactness of such a
method is questionable since local mixture goodness cannot be ensured throughout
the entire domain. Possible dead zones, which extend the mixing time, may not be
detected. Due to limitations in measurements, the available data are very sparse, and
hence the described method is usually practiced.

9 Determination of Global Mixing Time

In CFD simulations, field data for the total volume of the domain are available.
Local mixture goodness can be tracked at each computational cell. Following the
95% criterion, all cells that have a concentration higher than the lower margin of
M0.05 are extracted. The point that marks themixing time is when the integral of these
extracted cells reaches the total domain volume.Thismethod is comparable to thefirst

Fig. 5 Mixing time determination in a baffled vessel with a coil and Rushton stirrer at 200 rpm
and a central tracing spot. Local and global determination strategies lead to different mixing time
values
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presented procedure if the probe locations cover the whole domain representatively.
With a rising number of probes, the mixing time determined by the first method
converges to the global mixing time. Both described methods are compared in Fig. 5.
In the present case, the mixing time determined at six probe locations (see Fig. 3) is
8.3 s, but it is 9.8 s when determined globally.

10 Time Resolution for Scalar Transport

For the transient solution of velocity data, the Courant number Co [21] plays an
essential role in regarding the time step size. It gives a good control mechanism
for adaptive time discretization and is often indispensable for numerical stability. In
the case of passive scalar transport, the time step has no influence on the stability,
since only the actual velocity field is used in the equation. Rather, it is far more
important that the temporal consistency, as it is defined in [21], be ensured, i.e.,
with decreasing step size, the results must converge to the analytical solution of the
equation. An exemplary case would be a time resolution of T /6, where T denotes the
stirrer revolution time, according to the finest resolution of Co � 2 to the stage of
95%. This is an acceptable compromise between accuracy and the additional amount
of velocity and mesh data needed for further time resolution.

11 Validation of CFD Results

The CFD results for mixing time are validated with measurement data from [18]. For
this study, different stirrer types, rotational frequencies and injection spots were cho-
sen. The simulation and measurement results are plotted in Fig. 6. The results have
linear dependency, although the measured mixing times are proportionally higher
by a factor of 3. The reason for this discrepancy may be based on the simplicity of
the simulation. The tracer concentration is simulated by a scalar transport equation,
which does not account for possible interaction with or influence on the transport
properties of the fluid. Further reasons can be based on certainty issues of the exper-
imental work. The referenced work of Hirtsiefer [18] points out these problems.
However, a correlation between CFD and LIF results is obvious.

12 Conclusions and Outlook

Themeaning of CFD is still being underestimated in the chemical industry. The work
contributed in this chapter is a demonstration of industrial application possibilities of
the example ofmixing timedetermination in an agitated vessel. SeveralOpenFOAM®

and other free software utilities are used in the workflow. Transient quasi-stationary
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Fig. 6 Comparison of CFD
and LIF results. Three
different stirrer types are
used: PBI—pitched blade
impeller; PS—paddle stirrer;
RT—Rushton turbine. Two
rotational frequencies and
two injection spots are
chosen: centric and eccentric

velocity fields are used as initial conditions for a concentration-based mixing time
determination method. The concentration is mimicked by the implementation of a
positive scalar field, which is bounded to 1 at the highest concentration. A memory
and computational time-savingmethod is used for this investigation. TheCFD results
coincide with LIF data proportionally, although the mixing time is predicted as three
times lower than measured. This endorses the principals of the presented procedure
and is valid for optimization research, since it reflects the tendencies very well, even
under variation of independent parameters.

These results encourage application of the presented methods to industrial scale
apparatuses for energy and product optimization, even beyond mixing time inves-
tigations. Recently, optimization of energy efficiency has attracted huge interest in
industry. In the search for suitable instruments for its realization,CFDhas the capacity
to play a central role. In this context, OpenFOAM® poses a powerful and economical
solution.
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Wind Turbine Diffuser Aerodynamic
Study with OpenFOAM®

Félix Sorribes-Palmer, Antonio Figueroa-González,
Ángel Sanz-Andrés and Santiago Pindado

Abstract The aim of this work is to analyze the influence of the pressure losses of a
Diffuser-AugmentedWind Turbine (DAWT) on the extractable power. Multielement
diffuser geometries, generated with Salome and meshed with snappyHexMesh, are
studied numerically with OpenFOAM® to find a configuration of maximum area
expansion (reducing flow detachment), for different pressure losses at the actuator
disk. Different geometries are studied with a k−ε turbulence model. The influence
of the vanes inside the diffuser has also been analyzed. The results of the present
work show the importance of a careful design of the diffuser entrance.

1 Introduction

The extractable energy of a horizontal axis turbine rotor of fixed size can be increased
by installing it at the entrance of a diffuser. The flow around flange diffusers has
been studied experimentally and numerically by many researchers [6, 10, 12]. By
recovering exhaust kinetic energy, the diffuser produces a greatly reduced pressure
behind the turbine compared to the one behind a bare turbine. This effect increases
themass flow rate through theDAWT,with at least asmuch pressure change as across
a conventional turbine [4]. The overall effect is to increase the generated power for a
given rotor diameter. The increase of the mass flow rate in the diffuser is influenced
by four main factors [11]:

• The diffuser area ratio Aex/Ac.
• The flow separation downstream in the diffuser.
• The base pressure reduction at the diffuser exit caused by the obstruction flow.
• Viscous losses.

According toBlevins’Handboook [9], the flow separation in a diffuser, also called
the diffuser stall, depends on diffuser inlet and outlet conditions, Reynolds number,
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Fig. 1 Sketch of a general DAWT duct. The areas and flow velocities at the characteristic section
of the duct are indicated

Mach number, and diffuser geometry. In the aforementioned handbook, diffuser stall
is studied for different configurations: two-dimensional, conical, annular, straight-
walled, and curved wall diffusers. It also includes an analysis of the influence of
different diffuser geometry parameters on different stall regimes: first appreciable,
large transitory, fully developed, hysteresis zone, and jet flow.

A general sketch of a DAWT duct is shown in Fig. 1. In this work, a two-slot
diffuser configuration is analyzed as an improvement (see Figs. 2 and 3), bearing in
mind that the tangential injection of air available from the external wind supplied
to the boundary layer helps the main flow overcome the adverse pressure gradient
and frictional losses in the wall region. Additionally, the effect of a vane installed in
the duct was analyzed too (see Fig. 3). Vanes subdivide the diffuser into a series of
diffusing passages, each of which will have divergence angles and area ratios much
smaller than those of the vaneless diffuser [9].

The sampled sections are far field upstream A∞, the inlet A1, the section imme-
diately upstream of the turbine Ab, the turbine section Ac, the section immediately
downstream of the turbine Aa and the diffuser exit Aex .

The presentwork is organized as follows: in Sect. 2, themain parameters ofDAWT
performance are presented. In Sect. 3, the CFD (Computational Fluid Dynamics)
numerical set up of different configurations for finding the maximum extractable
power are summarized, whereas the main results of the simulations are described in
Sect. 4. Finally, in Sect. 5, the main conclusions of the numerical study are drawn.

2 Analytical Framework

The different cases are compared by analyzing the variation of pressure through the
duct; from the energy conservation equation, for a steady and incompressible flow
[2], the relation between the exit and freestream condition is given by

p∞ + 1

2
ρU 2

∞ = pex + 1

2
ρU 2

ex + �pc + �pd , (1)
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where ρ is the density of the fluid, p∞ is the pressure far upstream, pex is the pressure
at the diffuser exit, �pc and �pd are the total pressure losses in the turbine and in
the duct, respectively, andU∞ andUex are the flow speed upstream and at the exit of
the duct (see Fig. 1). The total pressure losses (�p = �pc + �pd ) can be modeled
as

�pc = kpc
1

2
ρU 2

c , �pd = kpd
1

2
ρU 2

c . (2)

Besides, the pressure loss coefficient in the turbine can be referred to the flow speed
upstream U∞, with the cross section area ratio, λ = Aex/Ac = Uc/Uex :

Kpc = �pc
1

2
ρU 2

c

λ2 = kpcλ
2 . (3)

From Betz’s limit, it can be deduced that the pressure loss at a turbine in relation to
the extractable maximum energy is Kpc ∼ 2 [8].

The pressure coefficient at the diffuser exit is

cpex = pex − p∞
1

2
ρU 2∞

, (4)

where p∞ and pex are, respectively, the static pressure of the flow upstream and at
the exit.

Finally, the extracted power by the turbine can be estimated as

cWc = �pcUc Ac

1

2
ρAcU 3∞

= Kpcλ

(
Uex

U∞

)3

. (5)

This parameter is used in the present work to compare the different DAWT
configurations.

3 Numerical Setup

The open-source CFD software OpenFOAM® has been used to carry out the sim-
ulations. The performance analysis of several DAWT duct configurations has been
conducted by employing a 2Dmodel, placing a porous region in the throat to simulate
an actuator disk.

The length of the studied DAWT duct configurations is about 6 m, with a cross
section area ratio λ = 3.7. The computational domain dimensions are 60 m length
and 24 m high. The geometries were developed with Salome, through use of a
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Fig. 2 Mesh details. The porous region is colored in red

python script, which allowed for the creation of parametric geometries, while the
meshes were generated with snappyHexMesh. The procedure followed was to gen-
erate the .stl files first, with the mesh subsequently being generated employing
surfaceFeatureExtract, snappyHexMesh and extrudeMesh to create the final mesh.

In Fig. 2, one diffuser geometry, together with the detail of themesh in the porouse
region, is shown. The final mesh is obtained from the castellation of the .stl geome-
tries, as indicated in the aforementioned figure. Then, the porosity region was as-
signed with topoSet using the Darcy–Forchheimer formulation. Only inertial terms,
F , were considered to take into account the effect of the porosity in this region. This
term was included in the momentum equation as follows [5]:

∂

∂t
(ρui ) + u j

∂

∂x j
(ρui ) = − ∂p

∂xi
+ μ

∂τi j

∂x j
−

(
μD + 1

2
ρu j j F

)
ui . (6)

Each configuration has been simulated for several values of F . The turbine has
been modeled applying the widely known actuator disk theory, placing a thin porous
region of 0.2 m in length, in the throat of the turbine. Some examples of the use of
porous disks for simulating turbines can be found in [1, 7]. The aforementioned
porous region simulates the behavior of the turbine blades: the pressure drops in it,
with the obvious advantage of speeding up the numerical simulations. In return, the
rotational flow component is lost.

The numerical simulation was performed on the steady RANS equations with a
k − ε turbulence model for computational time reasons, as the main goal of the work
is to study the different configurations within a reasonable time. Further work has
already been done in [3], in which other turbulence models with and without wall
functions have been applied to analyze their influence on the overall performance
of DAWT. As it was expected, more complete turbulence models for the analysis of
detached flows agree better with the empirical and theoretical relations that describe
the evolution of the pressure in DAWTs.
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The generated meshes provide y+ close to 12 in all studied cases. Although y+
was smaller than 30, wall functions were used to model turbulence at the walls. The
Reynolds number based on the length of the first diffuser segment reached up to
Re ∼550,000, taking a freestream velocity ofU∞ = 4 m/s. The turbulence intensity
introduced at the inlet was Iu = 0.03, the turbulent kinetic energy being calculated

as k = 3

2
(IuU∞)3/2, and the dissipation rate as ε = ρCμk/μt , where Cμ = 0.09

and μt = 1000Iμ. The selection of the turbulence intensity was made based on a
previous study in which the diffuser was located in the ground in a fully developed
flow using equation Iu = 0.16 · Re−1/8

d .
The equations are numerically solved by means of the SIMPLE algorithm, the

cell-based solver with the least squares being used. A bounded Gauss linear upwind
difference scheme was used for spatial discretization. The solver used was porous-
SimpleFoam with moderate underrelaxation factors.

A velocity boundary was used at the inlet and a static pressure boundary was used
at the outlet. The top wall was defined as a no-slip boundary, and the back and front
as empty so as to simulate a 2D domain. In addition, a symmetry plane boundary

1(a) 1(b)

2(a) 2(b)

Fig. 3 Diffuser-augmented wind turbine configurations



526 F. Sorribes-Palmer

condition simulating the other half of the turbine is used in the plane y = 0. The
residuals were monitored using PyFoamPlotRunner, being the convergence criteria
to keep the residual values under 10−4. The DAWT duct configurations analyzed are
shown in Fig. 3. The red zone represents the porous region simulating the turbine.
Fromconfiguration (1a) to (1b), an interior vanewas introduced to reduce detachment
on the diffuser; from (1a) to (2a), the inlet was modified to avoid detachment at the
leading edge of the diffuser; finally, between (2a) and (2b), the aforementioned vane
has was introduced again.

4 Results

Flow and pressure fields distribution are shown in Figs. 4 and 5 for the different
configurations analyzed. In Fig. 5, it can be observed how the vanes help to generate
a more uniform and negative pressure profile at the exit, this result being even better
observed in Fig. 6. The suction at the exit induces higher speed and more mass flow
rate through the turbine section.

1(a) 1(b)

2(a) 2(b)

Fig. 4 Velocity fields at the different DAWT configurations for the optimum Kpc for each
configuration
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1(a) 1(b)

2(a) 2(b)

Fig. 5 Pressure fields at the different DAWT configurations for the optimum Kpc for each
configuration

The profiles of velocity and pressure at the different sections of the DAWT duct
configurations are shown in Fig. 6. These graphs indicate that the velocity profile at
the first section of the duct is smoother in the configurations with the modified en-
trance. The flow acceleration in the gap between the porosity region and the diffuser,
which helps to maintain the attached boundary layer, can also be observed. At the
exit of the ducts, the velocity profile highlights the detached region. While adding a
vane barely affects the pressure coefficient at the exit of the DAWT, it is significant
that this coefficient decreases when the entrance of the diffuser is modified.

Comparing configurations (1a) and (1b), the effect of the vane implies a reduction
of the energy extracted. However, once the entrance was improved [configurations
(2a) and (2b)], the vane generated a more negative pressure at the exit, which induces
higher speeds. Looking at Eq. 5, for the same pressure drop at the turbine Kpc, these
higher speeds at the exit increase the energy extracted.
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1(a) 1(b)

2(a) 2(b)

Fig. 6 Velocity and pressure coefficient profiles in the sections A1, Acb, Aca and Aex for the
optimum Kpc for each configuration

The curves of the extracted power coefficient and pressure coefficient are shown
in Fig. 7. The pressure coefficient has been estimated as an average of the pressure
coefficient profile at the exit of the diffuser.

In Table 1, the values of the maximum efficiency in relation to the different
DAWT analyzed are summarized. Although the splitter vane helps to reattach the
boundary layer at the diffuser, as the flow detaches from the vane, the pressure losses
does not compensate, because the configurations with the vane do not improve the
performance within the entire simulated range of Kpc. A possible solution to this
effect could be to split the vane or make it shorter to avoid flow detachment.



Wind Turbine Diffuser Aerodynamic Study with OpenFOAM® 529

Fig. 7 Pressure coefficient at the turbine exit and specific power extracted

Table 1 Pressure loss coefficient Kpc at the for maximum extracted power coefficient CWcmax for
the diffuser configurations

Configuration N airfoils Kpcmax CWcmax

1a 3 2.6 1.6

1b 4 1.3 1.5

2a 3 1.1 1.6

2b 4 0.6 1.8
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5 Conclusions

Four different configurations of DAWT ducts have been compared by obtaining
the point of maximum extracted energy. The simulations show the importance of a
well-designed entrance to the duct, in order to reduce pressure losses due to flow
detachment. In addition, when the efficiency entrance increases, the optimum value
of the extractable power is obtained for lower values of the coefficient Kpc, a result
that result agreeswith thework of [8]. In comparisonwith configuration (1a), the flow
is detached in (1b) in a part of the vane, causing a reduction of the extractable power.
However, when the entrance of the duct is enhanced, installation of a vane increases
the extractable energy. Accordingly, the configuration (2b) has the best performance.
The obtained value of cWc exceeds the Betz limit for all configurations.
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