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Abstract. Pawlak’s indiscernibility relation (which is an equivalence
relation) represents a limit of our knowledge embedded in an information
system. In many cases covering approximation spaces rely on tolerance
relations instead of equivalence relations. In real practice (for example
in data mining) tolerance relations may be generated from the proper-
ties of objects. A given tolerance relation represents similarity between
objects, but the usage of similarity is very special: it emphasizes the
similarity to a given object and not the similarity of objects ‘in general’.
The authors show that this usage has some problematic consequences.
The main goal of the paper is to show that if one uses the method of
correlation clustering then there is a way to construct a general (partial)
approximation space with disjoint base sets relying on the similarity of
objects generated by their properties. At the end a software describing
a real life problem is presented.

Keywords: Rough set theory · Correlation clustering · Set approxima-
tion

1 Introduction

From the theoretical point of view a Pawlakian approximation space (see in [12–
14]) can be characterized by an ordered pair 〈U,R〉 where U is a nonempty set
of objects and R is an equivalence relation on U . In order to approximate an
arbitrary subset S of U the following tools have to be introduced:

– the set of base sets: B = {B | B ⊆ U, and x, y ∈ B if xRy}, the partition of
U generated by the equivalence relation R;

– the set of definable sets: DB is an extension of B, and it is given by the
following inductive definition:
1. B ⊆ DB;
2. ∅ ∈ DB;
3. if D1,D2 ∈ DB, then D1 ∪ D2 ∈ DB.

– the functions l, u form a Pawlakian approximation pair 〈l, u〉, i.e.
1. Dom(l) = Dom(u) = 2U

2. l(S) =
⋃{B | B ∈ B and B ⊆ S};

3. u(S) =
⋃{B | B ∈ B and B ∩ S 	= ∅}.
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R is called an indiscernibility relation. It represents a sort of limit of our
knowledge embedded in an information system (or background knowledge).
Indiscernibility has an affect on the membership relation. In some situation it
makes our judgment of the membership relation uncertain – making the set
vague – because a decision about a given object affects the decision about all
other objects which are indiscernible from the given object. Indiscernibility plays
a crucial role in approximation process: if we are interested in whether x ∈ S
(where S is the set to be approximated), then

1. the answer ‘yes’ (i.e. x ∈ l(S)) means that not only x ∈ S but all y, such that
xRy are members of S;

2. the answer ‘no’ (i.e. x ∈ l(S), where S is the complement of S) means that
not only x /∈ S but all y, such that xRy are not members of S;

3. the answer ‘maybe’ (i.e. x ∈ u(S)\ l(S)) means that there are y1, y2 such that
xRy1 and xRy2 for which y1 ∈ S and y2 /∈ S.

In practical applications indiscernibility relation is too strong: we have to
handle indiscernible objects in the same way but in real practice we have to
consider them as similar objects. Pawlakian approximation spaces have been
generalized using tolerance relations (instead of equivalence ones), which are
similarity relations and so they are symmetric and reflexive. Covering-based
approximation spaces (see for instance [16]) generalize Pawlakian approximation
spaces in two points:

1. R is (only) a tolerance relation;
2. B = {[x] | [x] ⊆ U, x ∈ U and y ∈ [x] if xRy}, where [x] = {y | y ∈ U, xRy}.

These spaces use the definitions of definable sets and approximation pairs of
Pawlakian approximation spaces.

Covering approximation spaces use similarity relations instead of equivalence
relations, but the usage of similarity relations (which are tolerance relations from
the mathematical point of view) is very special. It emphasizes the similarity to a
given object and not the similarity of objects ‘in general’. We can recognize this
feature when we try to understand the precise meaning of the answer coming
from an approximation relying on a covering approximation space. If we are inter-
ested in whether x ∈ S (where S is the set to be approximated), then (see Fig. 1)

1. the answer ‘yes’ (i.e. x ∈ l(S)) means that there is an object x′ such that
x′Rx, x′ ∈ S and all y for which x′Ry are members of S;

2. the answer ‘no’ (i.e. x ∈ l(S)) means that there is an object x′ such that
x′Rx, x′ /∈ S and all y for which x′Ry are not members of S;

3. otherwise the answer is ‘maybe’ (informally x is a member of the border of
S) means that there is no x′ for which x′Rx, [x′] ⊆ U , and there is no x′′ for
which x′′Rx, [x′′] ∩ U 	= ∅.

Some practical problems of covering approximation spaces:

1. The former answers show, that generally the lower and upper approximations
are not close in the following sense (see Fig. 2):
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Fig. 1. Some base sets in covering cases

Fig. 2. In covering the lower and upper approximations are not closed

(a) If x ∈ l(S), then we cannot say that [x] ⊆ S.
(b) If x ∈ u(S), then we cannot say, that [y] ∩ S 	= ∅ for all y ∈ [x].

2. The number of base sets is not more than the number of members of U , so
we have too many base sets for practical applications.
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If we want to avoid these problems we can generate a Pawlakian approxima-
tion space by constructing a system of disjoint base sets (see in [7]) (see Fig. 3).
If we have two base sets B1, B2, such that B1 ∩B2 	= ∅, then we substitute them
with the following three sets: B1 \B2, B2 \B1, B1 ∩B2. Applying this iteratively
we can get the reduction. Although it is not a real solution from the practical
point of view. The base sets can become too small for practical applications.
The smaller base sets we have, the closer we are to the classical set theory. (If
all base sets are singleton, then there is no difference between the approximation
space and classical set theory.)

(a) Covering (b) Partition

Fig. 3. Covering and its reduction to a partition

In rough set theory the members of a given base set share some common
properties.

– In Pawlak’s original system all members of a given base set have the same
attributes (i.e. they have the same properties with respect to the represented
knowledge).

– In covering approximation spaces all members of a given base set are similar
to a distinguished object (which is used to generate the given base set).

Further generalization is possible (see): General (partial) Pawlakian approx-
imation spaces can be obtained by generalization of the set of base sets:

– let B be an arbitrary nonempty set of nonempty subsets of U .

These spaces are Pawlakian in the sense that they use Pawlakian definition
of definable sets and approximation pairs. This generalization is very useful
because a base set can be taken as a collection of objects with a given property,
and we can use very different properties in order to define different base sets.
The members of the base set can be handled in the same way relying on their
common property. In this case there is no way to give a corresponding relation
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which is able to generate base sets (similarly to covering approximation spaces),
so a general (partial) Pawlakian approximation space can be characterized only
by the pair 〈U,B〉, since the lower and upper approximations of a subset of U
are determined by the members of B. However, any system of base sets induces
a tolerance relation R on U : xRy if there is a base set B ∈ B such that x, y ∈ B.
If we use this relation in order to get the system of base sets, the result can be
totally different from our original base system (see Fig. 4).

In Fig. 4 x is in the intersection of B1 and B2 (B1 and B2 are defined by
some properties). It means that it has common properties with all yi and zi,
where i = 1, 2, 3. So if some x ∈ B1 ∩ B2 it means that:

– xRy for all y ∈ B1

– xRz for all z ∈ B2

Therefore the base set generated by x is the following: [x] = B1 ∪ B2. (In this
example we used only two base sets, but it is the same when we have more.)

Fig. 4. Base sets by properties of objects

The main goal of the present paper is the following: the authors want to
show that there is a way to construct a general (partial) approximation space
with disjoint base sets relying on the properties of our objects. These spaces are
very useful in data mining. At the very beginning we have a general (partial)
approximation space 〈U,B〉. A base set is a collection of objects with the same
(practically useful) property. Common properties represent similarity between
objects, and the generated tolerance relation can be used to define the system
of disjoint base sets with the help of correlation clustering. The final general
(partial) Pawlakian approximation space is the core notion of similarity based
on rough set theory. This space has the following features:

– the similarity of objects relying on their properties (and not the similarity to
a distinguished object) plays a crucial role in the definition of base sets;

– the system of base sets consists of disjoint sets, so the lower and upper approx-
imation are closed;

– only the necessary number of base sets appears (in applications we have to
use an acceptable number of base sets);

– the size of base sets is not too small, or too big.
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At first the authors overview the most important points of correlation clus-
tering, and then they deal with how to apply correlation clustering in rough set
theory. At the end an implementation of similarity based rough set theory is
showed.

2 Correlation Clustering

Cluster analysis is a widely used technique in data mining. Our goal is to create
groups in which objects are more similar to each other than to those in other
groups. Usually the similarity and dissimilarity are based on the attribute values
describing the objects. Although there are some cases, when the objects cannot
be described by numbers, but we can still say something about their similarity
or dissimilarity. Think of the humans for example. It is hard to detail someone’s
looks by a number, but we still make statements whether two persons are similar
to each other or not. Of course these opinions are dependent on the persons. Some
can treat two random persons as similar, while others treat them dissimilar. If
we want to formulate the similarity and dissimilarity by using mathematics, we
need a tolerance relation. If this relation holds for two objects, we can say that
they are similar. If this relation does not hold, we say that they are dissimilar.
Of course each object is similar to itself, so the relation needs to be reflexive,
and it is easy to show, that it also needs to be symmetric. But we cannot go any
further, e.g. the transitivity does not hold necessarily.

If we take a human and a mouse, then due to their inner structure they are
similar. This is the reason why mice are used in drug experiments. Moreover a
human and a Paris doll are similar due to their shape. This is the reason why
these dolls are used in show-windows. But there is no similarity between a mouse
and a doll except that both are similar to the same object. Correlation clustering
is a clustering technique based on a tolerance relation (see in [5,6,17]).

Our task is to find an R ⊆ V ×V equivalence relation closest to the tolerance
relation. A (partial) tolerance relation R (see in [10,15]) can be represented by
a matrix M . Let matrix M = (mij) be the matrix of the partial relation R of
similarity: mij = 1 whenever objects i and j are similar, mij = −1 whenever
objects i and j are dissimilar, and mij = 0 otherwise.

A relation is partial if there exist two elements (i, j) such that mij = 0. It
means that if we have an arbitrary relation R ⊆ V ×V we have two sets of pairs.
Let Rtrue be the set of those pairs of elements for which the R holds, and Rfalse

be the one for which R does not hold. If R is partial then Rtrue∪Rfalse ⊆ V ×V .
If R is total then Rtrue ∪ Rfalse = V × V .

A partition of a set S is a function p : S → N. Objects x, y ∈ S are in the
same cluster at partitioning p, if p(x) = p(y).

The cost function counts the negative cases i.e. it gives the number of cases
whenever two dissimilar objects are in the same cluster, or two similar objects
are in different clusters. The cost function of a partition p and a relation RM

with matrix M is
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f(p,M) =
1
2

∑

i<j

(mij + abs(mij)) −
∑

i<j

δp(i)p(j)mij ,

where δ is the Knockecker delta symbol (see [11]). For a fixed relation the parti-
tion with the minimal cost function value is called optimal. Solving a correlation
clustering problem is equivalent to minimizing its cost function, for the fixed
relation. If the value of this optimal cost function is 0, the partition is called
perfect. Given the R and R we call the value f the distance of the two relations.
The partition given this way, generates an equivalence relation. This relation can
be considered as the closest to the tolerance relation.

It is easy to check that the solution cannot be generally perfect for a simi-
larity relation. Take the relation on the left of Fig. 5. The dashed line denotes
dissimilarity and the normal line similarity. On the right, Fig. 5 shows all the
partition of these objects, where rectangles indicate the clusters. The thick lines
denote the pairs which are counted in the cost function. In the upper row the
value of the cost function is 1 (in each case), while in the two other cases it is 2
and 3, respectively.

Fig. 5. Minimal frustrated similarity graph and its partitions

The number of partition can be given by the Bell number (see [1]), which
grows exponentially. Hence, in general — even in the case of some dozens of
objects — the optimal partition cannot be determined in reasonable time, thus
a search algorithm which produces a quasi optimal partition would be more
useful in practical cases. However in practical examples it gives us the right to
handle objects, which are in the same class, the same way.

3 Correlation Clustering in Rough Set Theory

When we would like to define the base sets we use the background knowledge
embedded in a given information system. If we have a Pawlakian system then
we call two objects indiscernible if all of their known attribute values are the
same. In many cases covering systems rely on a similarity (tolerance) relation.
As we mentioned earlier some problems can come up using these covering sys-
tems. A base set contains members which are similar to a distinguished member.
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This means that covering does not consider the similarity relation itself but the
similarity with respect to a distinguished object. As a result of the correlation
clustering based on the tolerance relation we obtain a partition of the universe
[2–4]. The clusters contain elements which are usually similar to each other (not
just to a distinguished member). So the partition can be understood as a system
of base sets. Singleton base sets represent very little information (its member
is only similar to itself). Without increasing the number of conflicts we cannot
consider its member similar to any objects. By deleting singleton base sets we
get a partial system of base sets.

4 Program

The authors of this article wrote a software, which represents the theory in real
life problems. The software can be downloaded from:
https://arato.inf.unideb.hu/aszalos.laszlo/covering/.

Fig. 6. Graphical user interface

Figure 6 illustrates the graphical user interface of the program. For giving
the input datasets we have two options.

1. Generating random points
2. Reading a predetermined formatted dataset

1. Random points
At first the user gives the number of points, and then the points are generated
in a 2 dimensional interval which is also given by the user (These options can
be given on the left panel of the user interface). The base of the tolerance
relation is the Euclidean distance of the objects (d). We defined a similarity
(S) and a dissimilarity threshold (D). The tolerance relation R can be given
this way for any objects A,B:

ARB =

⎧
⎪⎨

⎪⎩

+1 d(A,B) ≤ S

−1 d(A,B) > D

0 otherwise

https://arato.inf.unideb.hu/aszalos.laszlo/covering/
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2. Predetermined formatted dataset
The so called ProgCont system (see in [9]), which was developed at the Faculty
of Informatics at the University of Debrecen evaluates the programming com-
petitions and midterms. Our software can read and handle data, generated
by the ProgCont system. Each record consists of the following attributes:
competitor id, problem id, solution id and the id of the programming lan-
guage. Let A,B be two arbitrary competitors. Let SA and SB the sets of the
solutions of the problems made by the competitors A and B. So the tolerance
relation R for any competitors A,B is the following:

ARB =

⎧
⎪⎨

⎪⎩

+1 |SAΔSB | ≤ S

−1 |SAΔSB | ≥ D

0 otherwise

The similarity and difference are defined by the cardinality of the symmetric
difference (Δ) of the given sets.

Algorithm 1. Run method
1: procedure Run(N)
2: best partition ← FindBestPartition(N)
3: covering base sets ← GetCovering()
4: disjoint covering base sets ← MakeDisjointSets(covering base sets)
5: print best partition
6: print covering base sets
7: print disjoint covering base sets
8: end procedure

So in our program two competitors are similar to each other, if among the
same solutions there is a difference less than or equal to S, and they are treated
as different if this difference is greater than D. They are neutral otherwise. In
our algorithm we used 1 as S. We thought that if two persons have only one
different solution, then it does not imply that they have different knowledge.
The D threshold was set to 3.

After reading/generating the data, the software finds the quasi optimal parti-
tion (see Algorithm 1). Whereas numerous algorithms can be used for finding the
optimal clustering, we used a genetic search algorithm (see Algorithm 2 in [8]).
This algorithm is simple, it can be easily implemented, and it gives a relatively
optimal solution for the correlation clustering’s problem.

The set to be approximated can also be defined in two ways. The user can
select the points of this set manually, or if we have a ProgCont dataset, then we
can give IDs of the problems. The algorithm managing the approximation checks
which competitors solved the given problems, and adds the points representing
them to the set.
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Algorithm 2. Genetic algorithm
1: function Find best partition(N)
2: population ← random population
3: while exit condition false do
4: sort(population)
5: for i ← 1, N do
6: new population.add(population.get(i))
7: end for
8: p1 ← select parents()
9: p2 ← select parents()
10: children ← crossover(p1, p2)
11: if small probability then
12: mutation(children)
13: end if
14: new population.add(children)
15: population ← new population
16: max ← find max(population)
17: end while
18: return max
19: end function

As mentioned in the previous sections the singleton base sets hold little infor-
mation about the similarity. In our software there is an option to throw the sin-
gleton base sets away. The base sets, we got this way, are partial because their
union does not cover the universe.

5 Results

The execution time of the algorithm managing the set-approximation can be seen
in Fig. 7. The axis x represents the number of points, and the axis y represents
the execution time in milliseconds.
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Fig. 7. Execution time
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Fig. 9. The set to be approximated

If we take a look at the figure we can see that the approximation by cov-
ering is the slowest. This was expected, because there are a lot of base sets to
work with. Between the disjoint covering and the correlation clustering there
is no significant difference. Nevertheless, as the number of points increases, the
correlation clustering gives the fastest way to approximate. It is an interesting
fact that there is such a great difference between the covering and its disjoint
variant. Despite the fact that a disjoint covering has the largest number of base
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A. The lower (left) and upper (right) approximation by correlation clustering

B. The lower (left) and upper (right) approximation by covering

C. The lower (left) and upper (right) approximation by disjoint covering

Fig. 10. The outputs of the approximations by the software

sets, their cardinality is much less (most of them are singleton) than in the case
of a regular covering.

The following figures show the output of our software for 100 random points.
The similarity threshold S was set to 50, and D was set to 90. Figure 8 repre-
sents the clusters (base sets) created by the correlation clustering. The set to be
approximated is shown in Fig. 9. The members of this set are denoted by the
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× symbols, and the other members are denoted by the cross symbol. The mem-
bers were chosen randomly.

The approximation generated by the correlation clustering is displayed in
Fig. 10A. The cardinality of the base sets is relatively great so the lower approx-
imation consists of only a few members. (Only the members denoted by the
empty circle and filled diamond are in the set.)

The approximation generated by the covering is shown in Fig. 10B. Like in
correlation clustering the lower approximation consists of only a few members.
The two lower approximations have some difference, but they only differ in a set
which has two members.

Between the upper approximations we can see a significant difference. The
upper approximation defined by covering contains much more objects, almost
twice as much as the one defined by correlation clustering.

The approximation generated by the disjoint covering is shown in Fig. 10C.
We can see that among the methods this generated the finest approximation
(lower and upper approximation coincide). The reason is that almost all base
sets are singleton. As mentioned before if we have only singleton base sets we
get the common set theory back.

6 Conclusion and Future Work

The authors introduced a new method to define base sets in a general approxi-
mation space. The most important novelty of the introduced method is the usage
of similarity relation of objects. It emphasizes and so relies on the similarity of
objects ‘in general’ (and not on the similarity to a given object). Correlation
clustering is a possible way to define a system of disjoint base sets corresponding
to a given similarity ‘in general’. There are many different algorithms of corre-
lation clustering. In the application presented in the paper the authors used a
genetic algorithm. It worked well, but in the near future other algorithms have
to be checked, and a comparative (empirical and theoretical) study seems to
be very important in order to determine the properties of different algorithms.
Relying on the results the whole method can be useful in data mining and deep
learning.
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9. Kádek, T., Kósa, M., Pánovics, J.: Experiences of programming competitions sup-
ported by the ProgCont system (in Hungarian). In: New Technologies in Science,
Research and Education, pp. 152–157 (2012)

10. Mani, A.: Choice inclusive general rough semantics. Inf. Sci. 181(6), 1097–1115
(2011)

11. Néda, Z., Sumi, R., Ercsey-Ravasz, M., Varga, M., Molnár, B., Cseh, G.: Corre-
lation clustering on networks. J. Phys. A: Math. Theor. 42(34), 345003 (2009).
http://www.journalogy.net/Publication/18892707/correlation-clustering-on-networks

12. Pawlak, Z.: Rough sets. Int. J. Parallel Prog. 11(5), 341–356 (1982)
13. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)
14. Pawlak, Z., et al.: Rough Sets: Theoretical Aspects of Reasoning About Data. Sys-

tem Theory Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic
Publishers, Dordrecht (1991)

15. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Infor-
maticae 27(2), 245–253 (1996)

16. Yao, Y., Yao, B.: Covering based rough set approximations. Inf. Sci. 200, 91–107
(2012). http://www.sciencedirect.com/science/article/pii/S0020025512001934

17. Zimek, A.: Correlation clustering. ACM SIGKDD Explor. Newsl. 11(1), 53–54
(2009)

http://dx.doi.org/10.1007/978-3-319-11740-9_2
http://dx.doi.org/10.1023/A:1022602019183
http://www.journalogy.net/Publication/18892707/correlation-clustering-on-networks
http://www.sciencedirect.com/science/article/pii/S0020025512001934

	Similarity Based Rough Sets
	1 Introduction
	2 Correlation Clustering
	3 Correlation Clustering in Rough Set Theory
	4 Program
	5 Results
	6 Conclusion and Future Work
	References


