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Abstract. In this paper it is proposed to improve performance of the
automatic speech recognition by using sequential three-way decisions.
At first, the largest piecewise quasi-stationary segments are detected in
the speech signal. Every segment is classified using the maximum a-
posteriori (MAP) method implemented with the Kullback-Leibler mini-
mum information discrimination principle. The three-way decisions are
taken for each segment using the multiple comparisons and asymptotical
properties of the Kullback-Leibler divergence. If the non-commitment
option is chosen for any segment, it is divided into small subparts, and
the decision-making is sequentially repeated by fusing the classification
results for each subpart until accept or reject options are chosen or the
size of each subpart becomes relatively low. Thus, each segment is asso-
ciated with a hierarchy of variable-scale subparts (granules in rough set
theory). In the experimental study the proposed procedure is used in
speech recognition with Russian language. It was shown that our app-
roach makes it possible to achieve high efficiency even in the presence of
high level of noise in the observed utterance.

Keywords: Signal processing · Speech recognition · Three-way deci-
sions · Sequential analysis · Granular computing · Kullback-Leibler
divergence

1 Introduction

The mathematical model of the piecewise stationary stochastic (random) process
[1,2] is widely used in many practical pattern recognition tasks including sig-
nal classification [3,4], computer vision [5] and speech processing [6]. One of
the most popular approach to classify its realization (sample function) is based
on the hidden Markov model (HMM), specially developed for recognition of
the piecewise stationary signals [6]. In these methods an observed realization of
stochastic process [7] is divided into stationary parts using a fixed scale time
window (typically 20–30 ms) [1]. Next, the corresponding parts (segments) of
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the observation and all instances in the database are matched using such models
of these segments, as the GMM (Gaussian Mixture Model), and the total sim-
ilarity is estimated. The recent research has moved focus from GMMs to more
complex classifiers based on the deep neural networks (DNN), which have estab-
lished the state-of-the-art results for several multimedia recognition tasks [8,9].
The most impressive modern results are achieved with acoustic models based on
long-short term memory (LSTM) recurrent neural networks trained with con-
nectionist temporal classification [10]. Unfortunately, the run-time complexity of
all these approaches is rather high, especially for large utterances, which contain
many phones [6,11]. In practice the situation is even worse, because the seg-
ments are usually aligned using dynamic programming to deal with inaccurate
segmentation.

It is known [1], that the speech signals are multi-scale in nature (vowel phones
last for 40–400 ms while stops last for 3–250 ms). Hence, to improve classification
performance, this paper explores the potential of sequential three-way decisions
(TWD) [12], which has been recently used to speed-up the face recognition algo-
rithms [13,14]. The TWD theory [15,16] have grown from the ideas of the rough
set theory [17] to divide the universal set into positive, negative and bound-
ary regions. Unlike the traditional two-way decision, the TWD incorporates the
delay decision as an optional one. It is selected, if the cost of such delay is mini-
mal [15]. It is of great importance in practice, besides taking a hard decision, to
allow such “I do not know” option. There are several industrial applications of
TWD in such data mining tasks, as visual feature extractions using deep neural
networks [18], frequent item sets mining [19], attribute reduction [20], medical
decision support systems [21], recommender systems [22] and software defect
prediction [23]. However, the research of TWD in the classification problems for
complex data has just begun [13]. Thus, in this paper we propose to examine
the hierarchical representation of each segment using the methodology of gran-
ular computing [24,25]. The more detailed representation is explored only if the
non-commitment option of TWD was chosen for the current representation.

The rest of the paper is organized as follows. In Sect. 2 we describe statis-
tical speech recognition using an autoregression (AR) model [6,26]. In Sect. 3
we introduce the proposed classification algorithm based on sequential TWD.
Section 4 contains experimental study of our approach in speech recognition for
Russian language. Concluding comments are given in Sect. 5.

2 Conventional Classification of Piecewise-Stationary
Speech Signals Using Statistical Approach

In this section we explore the task of isolated word recognition, which typically
appears in, e.g., the voice control intelligent systems [27]. Let a vocabulary of
D > 1 words/phrases be given. The dth word is usually specified by a sequence of
phones {cd,1, . . . , cd,Sd

}. Here cd,j ∈ {1, . . . , C} are the the class (phone) labels,
and Sd ≥ 1 is the transcription length of the dth word. It is required to assign the
new utterance X to the closest word/phrase from the vocabulary. We focus on
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the speaker-dependent mode [6], i.e. the phonetic database of R ≥ C reference
signals {xr}, r ∈ {1, . . . , R} with labels c(r) ∈ {1, . . . , C} of all phones of the
current speaker should be available.

We use the typical assumption that the speech signal X can be represented as
a piecewise stationary time-varying AR ergodic Gaussian process with zero mean
[1,7,26]. To apply this model, the input utterance is divided into T fixed-size
(20–30 ms) partially overlapped quasi-stationary frames {x(t)}, t ∈ {1, . . . , T},
where {x(t)} is a feature vector with the fixed dimension size. Next, each frame
is assigned to one of C reference phones. It is known [28,29] that the maximal
likelihood (ML) solution for testing hypothesis Wc, c ∈ {1, . . . , C} about covari-
ance matrix of the Gaussian signal x(t) is achieved with the Kullback-Leibler
(KL) minimum information discrimination principle [30]

c∗(x(t)) = argmin
c(r),r∈{1,...,R}

ρKL(x(t),xr), (1)

where the KL divergence between the zero-mean Gaussian distributions is com-
puted as follows

ρKL(x(t),xr) =
1
2

ln
det(Σr)

det(Σ(t))
+

1
2
tr(Σ(t)(Σr)−1) − p

2
.

HereΣ(t) andΣr are the estimates of the covariancematrices of signalsx(t) and
xr, respectively, det(Σ) and tr(Σ) stand for the determinant and trace of thematrix
Σ. This KL discrimination for the Gaussian model of the quasi-stationary speech
signals can be computed as the Itakura-Saito distance [26,28] between power spec-
tral densities (PSD) Gx(t)(f) and Gr(f) of the input frame x(t) and xr:

ρKL(x(t),xr) =
2
F

F/2∑

f=1

(
Gx(t)(f)
Gr(f)

− ln
Gx(t)(f)
Gr(f)

− 1
)

. (2)

Here f ∈ {1, . . . , F}, is the discrete frequency, and F is the sample rate (Hz).
The PSDs in (2) can be estimated using the Levinson-Durbin algorithm and the
Burg method [31]. The Itakura-Saito divergence between PSDs (2) is well known
in speech processing due to its strong correlation with the subjective MOS (mean
opinion score) estimate of speech closeness [6].

Finally, the obtained transcription {c∗(x(1)), c∗(x(2)), . . . , c∗(x(T ))} of the
utterance X is dynamically aligned with the transcription of each word from
the vocabulary to establish the temporary compliance between the sounds.
Such alignment is implemented with the dynamic programming techniques, e.g.,
Dynamic Time Warping or the Viterbi algorithm in the HMM [6]. The decision
can be made in favor to the closest word from the vocabulary in terms of the
total conditional probability or, equivalently, the sum of distances (2).

The typical implementation of the described procedure includes the esti-
mation of AR coefficients and the PSDs for each frame, matching with all
phones (1), (2) and dynamic alignment with transcriptions of all words in
the vocabulary. Thus, the runtime complexity of this algorithm is equal to
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O(F ·p ·T +R ·F ·T +T ·∑D
d=1 Sd), where p is the order of AR model. The more

is the count of frames T , the less is the recognition performance. Unfortunately,
as it is written in introduction, the duration of every phone varies significantly
even for the same speaker. Hence, the frame is usually chosen to be very small
in order to contain only one quasi-stationary part of the speech signal. In the
next section we propose to apply the TWD theory to speed-up the recognition
procedure by using multi-scale representation of the speech segments.

3 Sequential Three-Way Decisions in Speech Recognition

3.1 Three-Way Decisions

Though speech recognition on the phonetic level at the present time is com-
parable in quality with the phoneme recognition by human [6], the variability
sources (the noisy environment, children speech, foreign accents, speech rate,
voice disease, etc.) usually lead to the misclassification errors [32]. Hence, in this
paper we apply the TWD to represent each cth phone with three pair-wise dis-
joint regions (positive POS, negative NEG and boundary BND). These regions
can be defined using the known asymptotic chi-squared distribution of the KL
divergence between feature vectors of the same class [29,30]:

POS(α,β)(c) = {x ∈ X|2(n(x) − p)ρ(x, c) < χ2
1−α,p(p+1)/2}, (3)

NEG(α,β)(c) = {x ∈ X|2(n(x) − p)ρ(x, c) ≥ χ2
1−β,p(p+1)/2}, (4)

BND(α,β)(c) = X − (POS(α,β)(c) ∪ NEG(α,β)(c)), (5)

where
ρ(x, c) = min

r∈{1,...,R},c(r)=c
ρKL(x,xr). (6)

Here X is the universal set of the stationary speech signals, n(x) is the
count of samples in the signal x, χ2

α,p(p+1)/2 is the α-quantile of the chi-squared
distribution with p(p + 1)/2 degrees of freedom, 0 < β < α < 1 is the pair
of thresholds, which define the type II and type I errors of the given utterance
representing the cth phone. In this case the type I error is detected if the cth
phoneme is not assigned to the positive region (3). The type II error takes place
when the utterance from any other phoneme is not rejected (4).

3.2 Multi-class Three-Way Decisions

Though the described approach (3)-(5) can provide an additional robust-
ness of speech recognition, it does not deal with the multi-scale nature of
the speech signals [1]. To solve the issues with performance of traditional
approach, we will use the multi-granulation approach [24,35] and describe
the stationary utterance as a hierarchy of fragments. Namely, we obtain
the largest piecewise quasi-stationary speech segments X(s), s ∈ {1, . . . , S}
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with the borders (t1(s), t2(s)), 1 ≤ t1(s) < t2(s) ≤ T in observed utter-
ance using an appropriate speech segmentation technique [1,11]. Here S is
the count of extracted segments. Then, l speech parts of the same size
are extracted at the lth granularity level, where the kth part x(l)

k (s) =[
x

(
t1(s) +

⌊
(k−1)·(t2(s)−t1(s)+1)

l

⌋)
, . . . ,x

(
t1(s) +

⌈
k·(t2(s)−t1(s)+1)

l

⌉)]
. Hence,

only one part x(1)
1 (s) = X(s) of the sth segment is examined at the coarsest

granularity level l = 1, and all L = (t2(s) − t1(s) + 1) frames are processed at
the finest granularity level.

According to the idea of sequential TWD [12], it is necessary to assign three
decision regions at each granularity level. Though the concept of a phoneme
is naturally mapped into TWD theory (3)-(5), speech recognition involves the
choice of only one phoneme for each segment (1). Three basic options of accep-
tance, rejection and non-commitment are best interpreted in the binary classifi-
cation task (C = 2) [15]. It includes three decision types: positive (accept the first
class), negative (reject the first class and accept the second class), and boundary
(delay the final decision and do not accept either first or second class). It cannot
directly deal with multi-class problems (C > 2). This problem has been studied
earlier in the context of multiple-category classification using decision-theoretic
rough sets [34]. Lingras et al. [33] discussed the Bayesian decision procedure with
C classes and specially constructed 2C −1 cost functions. Liu et al. [37] proposed
a two stages algorithm, in which, at first, the positive region is defined to make
a decision of acceptance of any class, and the best candidate classification is
chosen at the second stage using Bayesian discriminant analysis. Deng and Jia
[36] derived positive, negative and boundary regions of each class from the cost
matrix in classical cost-sensitive learning task.

However, in this paper we examine another enhancement of the idea of TWD
for multi-class recognition, namely, (C +1)-way decisions, i.e., acceptance of any
of C classes or delaying the decision process, in case of an unreliable recognition
result [13]. In this case, it is necessary to define C positive regions POS

(l)
(α,β)(c)

for each cth phone and one boundary region BND
(l)
(α,β) for delay option.

3.3 Proposed Approach

Let us aggregate the three regions of each phoneme (3)–(5) into such (C+1)-way
decisions. The most obvious way is to assign an utterance x to the cth phone if
this utterance is included into the positive region (3) of only this class:

POS
(l)
(α,β)(c) = POS(α,β)(c) −

⋃

i∈{1,...,c−1,c+1,...,C}
POS(α,β)(i), (7)

BND
(l)
(α,β) = X −

C⋃

c=1

POS
(l)
(α,β)(c). (8)
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It is not difficult to show, that the signal x is included into the positive region
(7) of the nearest class c∗(x) (1), only if

{
2(n(x) − p)ρ(x, c∗(x)) < χ2

1−α,p(p+1)/2

2(n(x) − p)ρ(x, c∗
2(x)) ≥ χ2

1−α,p(p+1)/2

. (9)

Here the second nearest neighbor class for the utterance x is denoted as

c∗
2(x) = argmin

c∈{1,...,C},c �=c∗(x)
ρ(x, c). (10)

However, in such definition of the positive regions the parameter α does not
stand for the type I error anymore. As a matter of fact, the multiple-testing
problem occurs in the multi-class classification, so appropriate correction should
be used in the thresholds (9) [38]. If we would like to control the false dis-
covery rate and accept the cth phone if only one hypothesis is accepted, the
Benjamini-Hochberg test [39] with (C − 1)/C correction of type I error of the
second hypothesis can be applied:

{
2(n(x) − p)ρ(x, c∗(x)) < ρ1(α)
2(n(x) − p)ρ(x, c∗

2(x)) ≥ ρ2(α)
, (11)

where the thresholds are defined as follows: ρ1(α) = χ2
1−α,p(p+1)/2, ρ2(α) =

χ2
1−α(C−1)/C,p(p+1)/2. If condition (11) holds for all l parts at the lth granularity

level, then the closest phones c∗(x(l)
k (s)) (1) are accepted as the final decisions.

Otherwise, the delayed decision is chosen and the phoneme recognition problem
is examined at a finer granulation level l+1 with more detailed information [12].

Unfortunately, the proposed procedure (11) can be hardly used in practice,
because the distance between real utterances of the same phoneme is rather
large and does not satisfy the theoretical chi-squared distribution with p(p+1)/2
degrees of freedom [29]. Hence, the first condition in (11) does not hold anymore.
Thus, it is necessary to tune the thresholds ρ1, ρ2. However, in this paper we
explore an alternative solution. Namely, the search termination condition (10)
is modified by using the known probability distribution of the KL divergence
between different hypothesis [30]. If the utterance x corresponds to the nearest
neighbor phoneme c∗(x), then the 2(n(x) − p)-times distance ρ(x, c∗

2(x)) is dis-
tributed as the non-central chi-squared distribution with p(p + 1)/2 degrees of
freedom and the non-centrality parameter proportional to the distance between
phonemes ρ(c∗(x), c∗

2(x)) [27,40]. Thus, the ratio of the distances between the
input signal and its second and first nearest neighbor has the non-central F-
distribution F (p(p + 1)/2, p(p + 1)/2; 2(n(x) − p))ρ(c∗(x), c∗

2(x)). Hence, in this
paper we will use the following positive region for acceptance of class c:

POS
(l)
(α,β)(c) = {x ∈ X|c = c∗(x)&

ρ(x, c∗
2(x))

ρ(x, c∗(x))
> ρ2/1(α)}, (12)

where a threshold ρ2/1(α) is chosen from the α-quantile of the non-central
F-distribution described above.
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Fig. 1. Complete data flow of speech recognition using sequential three-way decisions
and granular computing.

The complete data flow of the proposed recognition procedure using sequen-
tial TWD is shown in Fig. 1. At first, the input signal is preprocessed in
order to decrease its variability, detect voice activity regions, etc. [6]. Next, the
largest piecewise quasi-stationary speech segments are detected, and the coars-
est approximation of the observed signal is analyzed. After that, each extracted
segment is processed alternately. As we assume, that the scale of each part of
the large segment X(s) is identical, so the sequential analysis is terminated only
when decisions are accepted for any speech part x(l)

k (s). This procedure can be
also implemented with the Benjamini-Hochberg correction of the type I error in
(12). If it is possible to obtain a reliable solution x(s) ∈ POS

(l)
(α,β)(c)(12), the

phoneme matching process (1), (2) is terminated and, as a result, the c∗(x(s))
class label is assigned to this segment. Otherwise, its scale is refined, and the
process is repeated for each part, until any of these parts are accepted (12). If the
absence of acceptance decisions at all L levels for individual frames x(t), we can
obtain the least unreliable level [13]. Finally, the estimated transcription of the
refined segments can be processed using the dynamic programming techniques
[6] in order to obtain the final decision of the speech recognition problem.

Let us demonstrate how the proposed procedure works in practice. In this
example we consider rather simple task of Russian vowel recognition in a syllable
“tro”(/t/ /r/ /oo/). Table 1 contains the KL distances (2) between R = 6 vowel
phonemes and all segments in L = 2 hierarchical levels. The closest distance
in each row is marked by bold. Here the vowel /aa/ is the nearest neighbor
(1) of the signal x(1)

1 (see the first row in Table 1). Hence, the whole syllable
(l = 1) is incorrectly classified. However, this decision cannot be accepted (12),
because the distance to the second nearest neighbor /oo/ is quite close to the
distance between x(1)

1 and the first nearest neighbor (45.38/38.4 = 1.18). Thus,
according to sequential TWD scheme (Fig. 1) the granularity level should be
refined, and the whole syllable is divided into l = 2 parts. Though the first part
is still misclassified (second row in Table 1), this decision is still unacceptable
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as the distance ration in (12) is rather low (57.94/38.40 = 1.6). At the same
time, the second part of the utterance is correctly recognized as the phone /oo/.
This decision can be accepted (12), because the distance to the second nearest
neighbor is rather large (46.02/5.83 = 7.89). As we know, that a syllable contains
only one vowel, we can accept /oo/ phone as the final decision for the whole
syllable. Thus, the proposed approach can be use to increase the recognition
accuracy. In the next section we experimentally demonstrate that an additional
refinement of the granularity level makes it possible to significantly decrease the
decision making time.

Table 1. Computed distances (2) in the vowel recognition in the syllable /t/ /r/ /oo/

Level /aa/ /ee/ /ii/ /oo/ /uu/ /y/

l = 1 38.40 85.38 270.80 45.38 113.33 99.28

l = 2 36.17 77.26 277.83 57.94 129.84 93.16

333.39 303.94 198.47 5.83 46.02 460.33

4 Experimental Results

In this section the proposed approach (Fig. 1) in used in the isolated words
recognition for Russian language. All tests are performed at a 4 core i7 laptop
with 6 Gb RAM. Two vocabularies are used, namely, (1) the list of 1832 Russian
cities with corresponding regions; and (2) the list of 1913 drugs. All speakers
pronounced every word from all vocabularies twice in isolated syllable mode
to simplify the recognition procedure [27,40]. In such mode every vowel in the
syllable is made stressed, thus, it is recognized quite stably. The part of speech
data suitable to reproduce our experiments is available for free download1. In
the configuration mode, each speaker clearly spoke ten vowels of the Russian
language (/aa/, /ja/, /ee/, /je/, /oo/, /jo/, /ii/, /y/, /uu/, /ju/) in isolated
mode [41]. The following parameters are chosen: sampling frequency F = 8
kHz, AR-model order p = 20. The sampling rate was set on telephone level,
because we carried out this experiment with our special software [27,42], which
was mainly developed for application in remote voice control systems.

The closed sounds /aa/, /ja/, /ee/, /je/, /oo/, /jo/, /ii/, /y/, /uu/, /ju/
are united into C = 5 clusters [6]. Observed utterances are divided into 30 ms
frames with 10 ms overlap. The syllables in the test signals are extracted with
the amplitude detector and the vowels are recognized in each syllable by the
simple voting [40] based on the results obtained using vowel recognition. The
latter is implemented using either proposed sequential TWD procedure with
termination condition (12), or traditional techniques: (1) recognition (1), (2) of
low-scale frames with identical size; (2) distance thresholding (11); and (2) the

1 https://sites.google.com/site/andreyvsavchenko/SpeechDataIsolatedSyllables.zip.

https://sites.google.com/site/andreyvsavchenko/SpeechDataIsolatedSyllables.zip
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state-of-the-art recognition of vowels in each syllable using the DNN from the
Kaldi framework [43] trained with the Voxforge corpus. We added an artificially
generated white noise to each test utterance using the following procedure. At
first, the signal-to-noise ratio (SNR) is fixed. Next, the pauses are detected in
each utterance using simple energy thresholding, and the standard deviation of
the remaining part with high energy is estimated. Finally, these standard devia-
tion was corrected using given SNR, and uncorrelated normal random numbers
with zero mean and the resulted standard deviation was added to each value of
the speech signal.

Except the KL divergence (2), its symmetric version (COSH distance [2,28])
is implemented:

ρCOSH(x(t),xr) =
1
F

F/2∑

f=1

(Gx(t)(f) − Gr(f))2

Gx(t)(f)Gr(f)
. (13)

The thresholds in (11), (12) for each discrimination type are tuned exper-
imentally using the small validation set of 5 vowels per phone class2. Namely,
we compute the pairwise distances between all utterances from this validation
set Xval. If type I error rate is fixed α = const, then ρ2/1(α) is evaluated as a
(1 − α)-quantile of the ratio of these distances

⎧
⎨

⎩

min
xr∈Xval,c(xr) �=c(x)

ρ(x,xr)

min
xr∈Xval,xr �=x

ρ(x,xr)

∣∣∣∣∣∣
x ∈ Xval

⎫
⎬

⎭ .

Similar procedure is applied to estimate thresholds in (11) [5]. The depen-
dence of the words recognition accuracy on the SNR is shown in Tables 2 and 3
for cities and drugs vocabularies, respectively. The average time to recognize one
testing phrase is shown in Figs. 2 and 3.

Table 2. Dependence of error rate (%) on SNR (dB), cities vocabulary

Distance Method 25 dB 20 dB 15 dB 10 dB 5 dB 0 dB

DNN 6.3 7.9 10.2 18.9 30.6 34.1

Conventional approach (1) 7 7.9 8.8 14.5 31.6 38.2

KL divergence Distance thresholding (11) 7.5 8.8 10.5 18.9 30.1 36.1

Proposed approach (12) 6.3 7.3 9.6 17.3 31.1 37.1

Conventional approach (1) 3.9 4.2 4.1 9.8 23.7 28.1

COSH distance Distance thresholding (11) 3.1 3.9 4.7 10.8 26 32.7

Proposed approach (12) 3.9 4.7 5.3 11.8 26.9 33.9

Though the state-of-the-art DNN does not use speaker adaptation, its accu-
racy of vowel recognition is comparable to the nearest neighbor search (1), which
2 https://sites.google.com/site/andreyvsavchenko/ValidationDataVowels.zip.

https://sites.google.com/site/andreyvsavchenko/ValidationDataVowels.zip
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Table 3. Dependence of error rate (%) on SNR (dB), drugs vocabulary

Distance Method 25 dB 20 dB 15 dB 10 dB 5dB 0dB

DNN 9.9 10.6 11.4 13.9 18.4 23.2

Conventional approach (1) 3.1 5.4 8.1 8.3 15.9 20.4

KL divergence Distance thresholding (11) 4.1 6.6 8.7 8.7 17 20.3

Proposed approach (12) 3.9 6.6 8.3 8.6 15.9 19.9

Conventional approach (1) 5.6 6.6 6.8 6.8 14.3 17.4

COSH distance Distance thresholding (11) 3.5 4.3 7.5 7.9 14.1 18.6

Proposed approach (12) 2.9 3.7 7.5 8.1 14.1 17.4

Fig. 2. Experimental results, cities vocabulary.

is implemented in other examined techniques. However, the DNN’s performance
is inappropriate: it is 2–10 times slower than all other methods. McNemar’s test
[44] with 0.95 confidence verified that the COSH distance is more accurate in
most cases, than the KL divergence. This result supports our statement about
superiority of the distances based on the homogeneity testing in audio and visual
recognition tasks [2]. The obvious implementation of sequential TWD (11) is
inefficient in the case of high noise levels, because the thresholds in (11) cannot
be reliably estimated for huge variations in speech signals. Finally, the proposed
approach (Fig. 1) allows to increasing the recognition performance. Our imple-
mentation of sequential TWD is 12–14 times faster that the DNN and 4–5 times
faster than the conventional approach with matching of the fine-grained frames
(1). McNemar’s test verified that this improvement of performance is significant
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Fig. 3. Experimental results, drugs vocabulary.

in all cases except the experiment with drugs vocabulary (Fig. 3), in which clas-
sification speed of both (11) and (12) is similar for low level of noise (SNR > 5).
Moreover, our approach leads to the most accurate decisions (for a fixed dissim-
ilarity measure) in all cases except the recognition of drugs (Table 3) with the
KL-divergence (2) and low noise level. However, these differences in error rates
are mostly not statistically significant.

5 Conclusion

To sum it up, this article introduced an efficient implementation (1), (6), (10),
(12) of sequential three-way decisions in multi-class recognition of piecewise sta-
tionary signals. It was demonstrated how to define the granularity levels in quasi-
stationary parts of the signal, so that the count of the coarse-grained granules
is usually rather low. As a result, the new observation can be classified very
fast. The acceptance region (12) was defined using the theory of multiple com-
parisons and contains only computing the KL divergence. Hence, our method
can be applied with an arbitrary distance by tuning the threshold ρ2/1. The
experimental study demonstrated the potential of our procedure (Fig. 1) to sig-
nificantly speed-up speech recognition when compared with conventional algo-
rithms (Figs. 2 and 3). Thus, it is possible to conclude that the proposed tech-
nique makes it possible to build a reliable speech recognition module, which
is suitable for implementing, e.g., a voice control intelligent system with fast
speaker adaptation [27].
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As a matter of fact, our experiments are reported on own speech data with
requirement of isolated syllable pronunciation. Thus, our results are not directly
comparable with other ASR methods. Hence, the further research of the proposed
method can be continued in the following directions. First, it should be applied
in continuous speech recognition, in which only the last granularity level is ana-
lyzed with the computationally expensive state-of-the-art procedures (HMMs
with GMMs/DNNs or LSTMs) [6,9,10]. Second possible direction is the appli-
cation of our method with non-stationary signal classification tasks [4].
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