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Abstract. Not all approximations arise from information systems. The
problem of fitting approximations, subjected to some rules (and related
data), to information systems in a rough scheme of things is known
as the inverse problem. The inverse problem is more general than the
duality (or abstract representation) problems and was introduced by the
present author in her earlier papers. From the practical perspective, a few
(as opposed to one) theoretical frameworks may be suitable for formu-
lating the problem itself. Granular operator spaces have been recently
introduced and investigated by the present author in her recent work
in the context of antichain based and dialectical semantics for general
rough sets. The nature of the inverse problem is examined from number-
theoretic and combinatorial perspectives in a higher order variant of
granular operator spaces and some necessary conditions are proved. The
results and the novel approach would be useful in a number of unsuper-
vised and semi supervised learning contexts and algorithms.

Keywords: Inverse problem · Duality · Rough objects · Granular oper-
ator spaces · High operator spaces · Anti chains · Combinatorics · Hybrid
methods

1 Introduction

General rough set theory specifically targets information systems as the object
of study in the sense that starting from information systems, approximations
are defined and rough objects of various kinds are studied [1–6]. But the focus
need not always be so. In duality problems, the problem is to generate the infor-
mation system (to the extent possible) from semantic structures like algebras
or topological algebras associated (see for example [3,7–11]). Logico-algebraic
and other semantic structures typically capture reasoning and processes in the
earlier mentioned approach.

The concept of inverse problem was introduced by the present author in [9]
and was subsequently refined in [3]. In simple terms, the problem is a general-
ization of the duality problem which may be obtained by replacing the semantic
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structures with parts thereof. Thus the goal of the problem is to fit a given set of
approximations and some semantics to a suitable rough process originating from
an information system. Examples of approximations that are not rough in any
sense are common in misjudgments and irrational reasoning guided by prejudice.

The above simplification is obviously dense because it has not been formu-
lated in a concrete setup. It also needs many clarifications at the theoretical
level. At the theoretical level again a number of frameworks appear to be justi-
fied. These can be restricted further by practical considerations. All this will not
be discussed in full detail in this paper (for reasons of space). Instead a specific
minimalist framework called Higher Granular Operator Space is proposed first
and the problem is developed over it by the present author. All of the results
proved are from a combinatorial perspective and on the basis of these results
the central question can be answered in the negative in many cases.

2 Background

A relational system is a tuple of the form S = 〈S,R1, R2, . . . , Rn〉 with S being
a set and Ri being predicates of arity νi. The type of S is (ν1, ν2, . . . , νn).
If H = 〈H,Q1, Q2, . . . , Qn〉 is another relational system of the same type and
ϕ : S �−→ H a map satisfying for each i,

(Ria1a2 . . . aνi
−→ Riϕ(a1)ϕ(a2) . . . ϕ(aνi

)),

is a relational morphism [12]. If ϕ is also bijective, then it is referred to as a
relational isomorphism.

By an Information System I, is meant a structure of the form

I = 〈O, At, {Va : a ∈ At}, {fa : a ∈ At}〉
with O, At and Va being respectively sets of Objects, Attributes and Values
respectively. It is deterministic (or complete) if for each a ∈ At, fa : O �−→ Va

is a map. It is said to be indeterministic (or incomplete) if the valuation has
the form fa : O �−→ ℘(V ), where V =

⋃
Va. These two classes of information

systems can be used to generate various types of relational, covering or relator
spaces which in turn relate to approximations of different types and form a
substantial part of the problems encountered in general rough set theories. One
way of defining an indiscernibility relation σ is as below:

For x, y ∈ O and B ⊆ At, (x, y) ∈ σ if and only if (∀a ∈ B) ν(a, x) =
ν(a, y). In this case σ is an equivalence relation (see [1,7,8,13]). Lower and
upper approximations, rough equalities are defined over it and topological alge-
braic semantics can be formulated over roughly equivalent objects (or subsets
of attributes) through extra operations. Duality theorems, proved for pre-rough
algebras defined in [7], are specifically for structures relation isomorphic to the
approximation space (O, σ). This is also true of the representation results in
[8,9,14]. But these are not for information systems - optimal concepts of isomor-
phic information systems are considered by the present author in a forthcoming
paper.
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In fact in [9], it has been proved by the present author that

Theorem 1. For every super rough algebra S, there exists an approximation
space X such that the super rough set algebra generated by X is isomorphic
to S.

In simple terms, granules are the subsets (or objects) that generate approxi-
mations and granulations are the collections of all such granules in the context.
For more on what they might be the reader may refer to [3,15]. In this paper
a variation of generalized granular operator spaces, introduced and studied by
the present author in [16–18], will serve as the primary framework for most
considerations. For reference, related definitions are mentioned below.

Definition 1. A Granular Operator Space [16] S is a structure of the form
S = 〈S,G, l, u〉 with S being a set, G an admissible granulation(defined below)
over S and l, u being operators : ℘(S) �−→ ℘(S) (℘(S) denotes the power set
of S) satisfying the following (S is replaced with S if clear from the context.
Lower and upper case alphabets may denote subsets):

al ⊆ a & all = al & au ⊆ auu

(a ⊆ b −→ al ⊆ bl & au ⊆ bu)

∅l = ∅ & ∅u = ∅ & Sl ⊆ S & Su ⊆ S.

In the context of this definition, Admissible Granulations are granulations G
that satisfy the following three conditions (t being a term operation formed from
the set operations ∪,∩,c , 1, ∅):

(∀a∃b1, . . . br ∈ G) t(b1, b2, . . . br) = al

and (∀a) (∃b1, . . . br ∈ G) t(b1, b2, . . . br) = au, (Weak RA,WRA)

(∀b ∈ G)(∀a ∈ ℘(S)) (b ⊆ a −→ b ⊆ al), (Lower Stability,LS)

(∀a, b ∈ G)(∃z ∈ ℘(S)) a ⊂ z, b ⊂ z & zl = zu = z, (Full Underlap,FU)

Remarks:

• The concept of admissible granulation was defined for RYS in [3] using part-
hoods instead of set inclusion and relative to RYS, P =⊆, P =⊂. It should
be noted that the minimal assumptions make this concept more general than
the idea of granulation in the precision based granular computing paradigm
(and complex granules) [19,20].

• The conditions defining admissible granulations mean that every approxima-
tion is somehow representable by granules in a set theoretic way, that granules
are lower definite, and that all pairs of distinct granules are contained in def-
inite objects.

• The term operation t is intended to be defined over the power set Boolean
algebra in standard algebraic sense (see [21] for a detailed example).
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The concept of generalized granular operator spaces has been introduced in
[17,22] as a proper generalization of that of granular operator spaces. The main
difference is in the replacement of ⊂ by arbitrary part of (P) relations in the
axioms of admissible granules and inclusion of P in the signature of the structure.

Definition 2. A General Granular Operator Space (GSP) S is a structure of the
form S = 〈S,G, l, u,P〉 with S being a set, G an admissible granulation(defined
below) over S, l, u being operators : ℘(S) �−→ ℘(S) and P being a definable binary
generalized transitive predicate (for parthood) on ℘(S) satisfying the same condi-
tions as in Definition 1 except for those on admissible granulations (Generalized
transitivity can be any proper nontrivial generalization of parthood (see [20]).
P is proper parthood (defined via Pab iff Pab & ¬Pba) and t is a term operation
formed from set operations):

(∀x∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xl

and (∀x) (∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xu, (Weak RA,WRA)

(∀y ∈ G)(∀x ∈ ℘(S)) (Pyx −→ Pyxl), (Lower Stability,LS)

(∀x, y ∈ G)(∃z ∈ ℘(S))Pxz, &Pyz & zl = zu = z, (Full Underlap,FU)

2.1 Finite Posets

Let S be a finite poset with #(S) = n < ∞. The following concepts and notations
will be used in this paper:

• If F is a collection of subsets {Xi}i∈J of a set X, then a system of distinct
representatives SDR for F is a set {xi; i ∈ J} of distinct elements satisfying
(∀i ∈ J)xi ∈ Xi. Chains are subsets of a poset in which any two elements are
comparable. Singletons are both chains and antichains.

• For a, b ∈ S, a ≺ b shall be an abbreviation for b covering a from above (that
is a < b and (a ≤ c ≤ b −→ c = a or c = b)). c(S) shall be the number of
covering pairs in S.

• A chain cover of a finite poset S is a collection C of chains in S satisfying
∪C = S. It is disjoint if the chains in the cover are pairwise disjoint.

• S has finite width w if and only if it can be partitioned into w number of
chains, but not less.

The following results are well known:

Theorem 2. 1. A collection of subsets F of a finite set S with #(F) = r has
an SDR if and only if for any 1 ≤ k ≤ r, the union of any k members of F
has size at least k, that is

(∀X1, . . . , Xk ∈ F) k ≤ #(∪Xi).

2. Every finite poset S has a disjoint chain cover of width w = width(S).
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3. If X is a partially ordered set with longest chains of length r and if it can be
partitioned into k number of antichains then r ≤ k.

4. If X is a finite poset with k elements in its largest antichain, then a chain
decomposition of X must contain at least k chains.

Proofs of the assertions can be found in [23,24] for example. To prove the
third, start from a chain decomposition and recursively extract the minimal
elements from it to form r number of antichains. The fourth assertion is proved
by induction on the size of X across many possibilities.

3 Semantic Framework

It is more convenient to use only sets and subsets in the formalism as these are
the kinds of objects that may be observed by agents and such a formalism would
be more suited for reformulation in formal languages. This justifies the severe
variation defined below in stages:

Definition 3. A Higher Rough Operator Space S shall be a structure of the
form S = 〈S, l, u,≤,⊥,�〉 with S being a set, and l, u being operators : S �−→ S

satisfying the following (S is replaced with S if clear from the context.):

(∀a ∈ S) al ≤ a & all = al & au ≤ auu

(∀a, b ∈ S)(a ≤ b −→ al ≤ bl & au ≤ bu)

⊥l = ⊥ & ⊥u = ⊥ & �l ≤ � & �u ≤ �
(∀a ∈ S)⊥ ≤ a ≤ �
S is a bounded poset.

Definition 4. A Higher Granular Operator Space (SHG) S shall be a structure
of the form S = 〈S,G, l, u,≤,∨,∧,⊥,�〉 with S being a set, G an admissible
granulation(defined below) for S and l, u being operators : S �−→ S satisfying the
following (S is replaced with S if clear from the context.):

(S,∨,∧,⊥,�) is a bounded lattice

≤ is the lattice order

(∀a ∈ S) al ≤ a & all = al & au ≤ auu

(∀a, b ∈ S)(a ≤ b −→ al ≤ bl & au ≤ bu)

⊥l = ⊥ & ⊥u = ⊥ & �l ≤ � & �u ≤ �
(∀a ∈ S)⊥ ≤ a ≤ �

Pab if and only if a ≤ b in the following three conditions. Further P is proper
parthood (defined via Pab iff Pab & ¬Pba) and t is a term operation formed
from the lattice operations):
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(∀x∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xl

and (∀x) (∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xu, (Weak RA,WRA)

(∀y ∈ G)(∀x ∈ S) (Pyx −→ Pyxl), (Lower Stability,LS)

(∀x, y ∈ G)(∃z ∈ S)Pxz, &Pyz & zl = zu = z (Full Underlap,FU)

Definition 5. An element x ∈ S will be said to be lower definite (resp. upper
definite) if and only if xl = x (resp. xu = x) and definite, when it is both lower
and upper definite. x ∈ S will also be said to be weakly upper definite (resp
weakly definite) if and only if xu = xuu (resp xu = xuu & xl = x). Any one of
these five concepts may be chosen as a concept of crispness.

The following concepts of rough objects have been either considered in the
literature (see [3]) or are reasonable concepts:

• x ∈ S is a lower rough object if and only if ¬(xl = x).
• x ∈ S is a upper rough object if and only if ¬(x = xu).
• x ∈ S is a weakly upper rough object if and only if ¬(xu = xuu).
• x ∈ S is a rough object if and only if ¬(xl = xu).
• Any pair of definite elements of the form (a, b) satisfying a < b.
• Any distinct pair of elements of the form (xl, xu).
• Elements in an interval of the form (xl, xu).
• Elements in an interval of the form (a, b) satisfying a ≤ b with a, b being

definite elements.
• A non-definite element in a RYS (see [3]), that is an x satisfying ¬Pxuxl.

All of the above concepts of a rough object except for the last are directly
usable in a higher granular operator space. Importantly, most of the results
proved in this paper can hold for many choices of concepts of roughness and crisp-
ness. The reader is free to choose suitable combinations from the 40 possibilities.

Example 1 (No Information Tables). It should be easy to see that most examples
of general rough sets derived from information tables (and involving granules
and granulations) can be read as higher granular operator space. So a nontrivial
example of a higher granular operator space that has not been derived from an
information system is presented below:

Suppose agent X wants to complete a task and this task is likely to involve
the use of a number of tools. X thinks tool-1 suffices for the task that a tool-2 is
not suited for the purpose and that tool-3 is better suited than tool-1 for the same
task. X also believes that tool-4 is as suitable as tool-1 for the task and that tool-5
provides more than what is necessary for the task. X thinks similarly about other
tools but not much is known about the consistency of the information. X has a
large repository of tools and limited knowledge about tools and their suitability
for different purposes, and at the same time X might be knowing more about
difficulty of tasks that in turn require better tools of different kinds.

Suppose also that similar heuristics are available about other similar tasks.
The reasoning of the agent in the situation can be recast in terms of lower, upper
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approximations and generalized equality and questions of interest include those
relating to the agent’s understanding of the features of tools, their appropriate
usage contexts and whether the person thinks rationally.

To see this it should be noted that the key predicates in the context are as
below:

• suffices for can be read as includes potential lower approximation of a right
tool for the task.

• is not suited for can be read as is neither a lower or upper approximation of
any of the right tools for the task.

• better suited than can be read as potential rough inclusion,
• is as suitable as can be read as potential rough equality and
• provides more than what is necessary for is for upper approximation of a right

tool for the task.

Example 2 (Number of Objects). Often in the design, implementation and analy-
sis of surveys (in the social sciences in particular), a number of intrusive assump-
tions on the sample are done and preconceived ideas about the population may
influence survey design. Some assumptions that ensure that the sample is rep-
resentative are obviously good, but as statistical methods are often abused [25]
a minimal approach can help in preventing errors. The idea of samples being
representative translates into number of non crisp objects being at least above a
certain number and below a certain number. There are also situations (as when
prior information is not available or ideas of representative samples are unclear)
when such bounds may not be definable or of limited interest.

Example 3 (Non-rough Approximations). Suppose X1, . . . X24 are 24 colors
defined by distinct frequencies and suppose the weak sensors at disposal can
identify 3 of them as crisp colors. If it is required that the other 21 colors be
approximated as 9 rough objects, then such a classification would not be possi-
ble in a rough scheme of things as at most three distinct pairs of crisp objects
are possible. Note that using intervals of frequencies, tolerances can be defined
on the set. But under the numeric restriction, 9 rough objects would not be
possible.

3.1 Minimal Assumptions

For the considerations of the following sections on distribution of rough objects
and on counting to be valid, a minimal set of assumptions are necessary. These
will be followed unless indicated otherwise:

F1 S is a higher granular operator space.
F2 #(S) = n < ∞.
C1 C ⊆ S is the set of crisp objects.
C2 #(C) = k.
R1 R ⊂ S is the set of rough objects not necessarily defined as in the above.
R2 R ∪ C = S.
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R3 there exists a map ϕ : R �−→ C2.
RC1 R ∩ C = ∅.
RC2 (∀x ∈ R)(∃a, b ∈ C)ϕ(x) = (a, b) & a ⊂ b.

Note that no further assumptions are made about the nature of ϕ(x). It is
not required that ϕ(x) = (a, b) & xl = a & xu = b, though this happens often.

The set of crisp objects is necessarily partially ordered. In specific cases,
this order may be a lattice, distributive, relatively complemented or Boolean
order. Naturally the combinatorial features associated with higher granular oper-
ator space depend on the nature of the partial order. This results in situations
that are way more involved than the situation encoded by the following simple
proposition.

Proposition 1. Under all of the above assumptions, for a fixed value of
#(S) = n and #(C) = k, R must be representable by a finite subset K ⊆
C2 \ ΔC , ΔC being the diagonal in C2.

The two most extreme cases of the ordering of the set C of crisp objects
correspond to C forming a chain and C \{⊥,�} forming an anti-chain. Numeric
measures for these distributions have been defined for these in [17] by the present
author. The measure gives an idea of the extent of distribution of non crisp
objects over the distribution of the crisp objects and it has also been shown that
such measures do not provide reasonable comparisons across diverse contexts.

4 Pre-well Distribution of Objects over Chains: PWC

Definition 6. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a Pre-Well Distribution of Objects over Chains if the minimal
assumptions (Subsect. 3.1) (without the condition RC1) and the following three
conditions hold:

1. C forms a chain under inclusion order.
2. ϕ is a surjection.
3. Pairs of the form (x, x), with x being a crisp object, also correspond to rough

objects.

Though the variant is intended as an abstract reference case where the idea
of crispness is expressed subliminally, there are very relevant practical contexts
for it (see Example 4). It should also be noted that this interpretation is not com-
patible with the interval way of representing rough objects without additional
tweaking.

Theorem 3. Under the above assumptions, the number of crisp objects is related
to the total number of objects by the formula:

k
i=

(1 + 4n)
1
2 − 1

2
.

In the formula i= is to be read as if the right hand side (RHS) is an integer then
the left hand side is the same as RHS.
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Proof. • Clearly the number of rough objects is n − k.
• By the nature of the surjection n − k maps to k2 pairs of crisp objects.
• So n − k = k2.

• So integral values of
(1 + 4n)

1
2 − 1

2
will work.

��
This result is associated with the distribution of odd square integers of the

form 4n + 1 which in turn should necessarily be of the form 4(p2 + p) + 1
(p being any integer). The requirement that these be perfect squares causes
the distribution of crisp objects to be very sparse with increasing values of n.
The number of rough objects between two successive crisp objects increases in
a linear way, but this is a misleading aspect. These are illustrated in the graphs
Figs. 1 and 2.

Fig. 1. Rough objects between crisp objects: special chain case
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Fig. 2. Values of n and k: special chain case

Example 4. This example has the form of a narrative that gets progressively
complex.

Suppose Alice wants to purchase a laptop from an on line store for electronics.
Then she is likely to be confronted by a large number of models and offers
from different manufacturers and sellers. Suppose also that the she is willing
to spend less than ex and is pretty open to considering a number of models.
This can happen, for example, when she is just looking for a laptop with enough
computing power for her programming tasks.

This situation may appear to have originated from information tables with
complex rules in columns for decisions and preferences. Such tables are not
information systems in the proper sense. Computing power for one thing is a
context dependent function of CPU cache memories, number of cores, CPU
frequency, RAM, architecture of chipset, and other factors like type of hard disk
storage.
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Proposition 2. The set of laptops S that are priced less than ex can be totally
quasi ordered.

Proof. Suppose ≺ is the relation defined according to a ≺ b if and only if price
of laptop a is less than or equal to that of laptop b. Then it is easy to see that
≺ is a reflexive and transitive relation. If two different laptops a and b have the
same price, then a ≺ b and b ≺ a would hold. So ≺ may not be antisymmetric.

��
Suppose that under an additional constraint like CPU brand preference, the

set of laptops becomes totally ordered. That is under a revised definition of ≺
of the form: a ≺ b if and only if price of laptop a is less than that of laptop b
and if the prices are equal then CPU brand of b must be preferred over a’s.

Suppose now that Alice has more knowledge about a subset C of models
in the set of laptops S. Let these be labeled as crisp and let the order on C be
≺|C . Using additional criteria, rough objects can be indicated. Though lower and
upper approximations can be defined in the scenario, the granulations actually
used are harder to arrive at without all the gory details.

This example once again shows that granulation and construction of approxi-
mations from granules may not be related to the construction of approximations
from properties in a cumulative way.

5 Well Distribution of Objects over Chains: WDC

Definition 7. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a Well Distribution of Objects over Chains if the minimal
assumptions (Subsect. 3.1) and the following two conditions hold:

1. C forms a chain under ≺ order.
2. ϕ is an surjection onto C2 \ ΔC (ΔC being the diagonal of C).

In this case pairs of the form (a, a) (with a being crisp) are not permitted to
be regarded as rough objects. This amounts to requiring clearer conditions on
the idea of what rough objects ought to be.

Example 5. In the example for pre-well distributions, if Alice never let a crisp
object be a rough object, then the resulting example would fall under well distrib-
ution of objects over chains. In other words, the laptops would be well distributed
over the crisp objects (crisp models of laptops).

Theorem 4. When the objects are well distributed over the crisp objects, then
the number of crisp objects would be related to the total number of objects by the
formula:

n − k = k2 − k

So, it is necessary that n be a perfect square.
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Proof. • Under the assumptions, an object is either rough or is crisp.
• The number of rough objects is n − k.
• By the nature of the surjection n − k maps to k2 − k pairs of crisp objects

(as the diagonal cannot represent rough objects).
• So n − k = k2 − k.
• So n = k2 is necessary.

��
Theorem 5. Under the assumptions of this section, if the higher granular oper-
ator space is a Boolean algebra then the cardinality of the Boolean algebra 2x is
determined by integral solutions for x in

2x = k2.

Proof. As the number of elements in a finite power set must be of the form 2x for
some positive integer x, the correspondence follows. If 2x = k2, then x = 2 log2 k.

��
Remark 1. The previous theorem translates to a very sparse distribution of such
models. In fact for n ≤ 108, the total number of models is 27. Fig. 3 gives an idea
of the numbers that work.

6 Relaxed Distribution of Objects over Chains: RDC

Definition 8. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a α-Relaxed Distribution of Objects over Chains if the
minimal assumptions (Subsect. 3.1) and the following three conditions hold.

• C forms a chain under ≺ order.
• ϕ is not necessarily a surjection and

#(ϕ(R)) ≤ α(k2 − k),

for some rational α ∈ (0, 1] (the interpretation of α being that of a loose upper
bound rather than an exact one).

Any value of α that is consistent with the inequality will be referred to as an
admissible value of α.

Example 6. The following modifications, in the context of Example 5, are more
common in practice:

• No non crisp laptops may be represented by some pairs of crisp laptops and
consequently ϕ would not be a surjection onto C2 \ ΔC and

• an estimate of the number of rough laptops may be known (this applies when
too many models are available).

These can lead to some estimate of α. It should be noted that a natural subproblem
is that of finding good values of α.
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Fig. 3. Existence of power rough sets on chain

Theorem 6. In the context of relaxed distribution of objects over chains it is
provable that, for fixed n the possible values of k correspond to integral solutions
of the formula:

k =
(π − 1) +

√
(1 − π)2 + 4nπ

2π
,

subject to k ≤ �√n�, #(ϕ(R)) = π(k2 − k) and 0 < π ≤ α.

Proof. • When n − k = π(k2 − k) then π =
(n − k)
(k2 − k)

• So positive integral solutions of k =
(π − 1) +

√
(1 − π)2 + 4nπ

2π
may be

admissible.
• The expression for α means that it can only take a finite set of values given

n as possible values of k must be in the set {2, 3, . . . , �√n
α�}.

��
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Fig. 4. Trimmed number of possible values of k

Remark 2. The bounds for k are not necessarily the best ones.

Theorem 7. In the proof of the above theorem (Theorem6), fixed values of n
and π do not in general correspond to unique values of k and unique models.

If the mentioned bounds on k are not imposed then it might appear that for
π = 0.5 and n = 1000000, the number of values of k that work seem to be 1413.
If the bounds on k are imposed then Fig. 4 gives a description of the resulting
pattern of values:

Algorithms: RDC

A purely arbitrary method of supplying values of α based on some heuristics
cannot be a tractable idea. To improve on this some algorithms for computing
admissible values of alpha are proposed in this subsection.

RDC Algorithm-1

1. Fix the value of n.



Approximations from Anywhere and General Rough Sets 17

2. Start from possible values of k less than
√

n − 1.
3. Compute α for all of these values.
4. Suppose the computed values are α1, . . . αr.
5. Check the admissibility of solutions.

RDC Algorithm-2

Another algorithm for converging to solutions is the following:

1. Start from a sequence {αi} of possible values in the interval (0, 1).
2. Check the admissibility and closeness to solutions.
3. If a solution appears to be between αi and αi+1, add an equally spaced

subsequence between the two.
4. Check the admissibility and closeness to solutions.
5. Continue.
6. Stop when solution is found.

Theorem 8. Both of the above algorithms converge in a finite number of steps.

Proof. Convergence of the first algorithm is obvious.
Convergence of the second follows from the following construction:

• Suppose the goal is to converge to an α ∈ (0, 1).
• Let αo = 0, α1 = 1 and for a fixed positive integer n and i = 1, . . . , n, let

α1i = i
n and α ∈ (α1j , α1j+1).

• Form n number of equally spaced partitions {α2i} of (α1j , α1j+1) and let
α ∈ (α2j , α2j+1).

• Clearly (∀ε > 0∃N ∀r > N) |α − αrj | < ε.
• So the algorithm will succeed in finding the required α.

��

7 Relaxed Bounded Distribution on Chains: RBC

Definition 9. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a α-Relaxed Bounded Distribution of Objects over Chains
(RBC) if the minimal assumptions (Subsect. 3.1) and the following three condi-
tions hold.

• C forms a chain under ≺ order and ϕ is not necessarily a surjection,

#(ϕ(R)) ≤ α(k2 − k),

for some rational α ∈ (0, 1] (the interpretation of α being that of a loose upper
bound rather than an exact one) and

• R is partitioned into disjoint subsets of size {ri}g
i=1 with g = k2 − k subject

to the condition

a ≤ ri ≤ b ≤ n − k, with a, b being constants. (β)
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Any value of α that is consistent with the inequality will be referred to as an
admissible value of α.

RBC differs from RDC in the explicit specification of bounds on number of
objects that may be represented by a pair of crisp objects.

Proposition 3. For a = 0 and b = n − k, every RDC is a RBC.

Theorem 9. If the crisp objects form a chain, then the total number of possible
models B is

B =
∑

α∈π(r)|β

k2−k∏

i=1

αi andnoa
k2−k ≤ B ≤ nob

k2−k,

with the summation being over partitions α = {αi} of r subject to the condition
β and no being the number of admissible partitions under the conditions.

Proof. • On a chain of length k, k2 − k spaces can be filled.
• The next step is to determine the partitions π(r) of r into k2 − k distinct

parts.
• The condition β eliminates many of these partitions resulting in the admissible

set of partitions π(r)|β.
• Each of the partitions α ∈ π(r)|β corresponds to

∏
i αi number of possibilities.

• So the result follows.
��

8 Distribution of Objects: General Context

Definition 10. A distribution of rough objects relative to a poset of crisp objects
C will be said to be a α-Relaxed Bounded Distribution of Objects (RBO) if the
minimal assumptions (Subsect. 3.1) without the restriction R2 and the following
three conditions hold:

• #(ϕ(R)) = t ≤ n − k,
• t = β(k2 − k) and,
• n − k = α(k2 − k), for some constants t, β, α.

Example 7. In the context of Example 5, if Alice is not able to indicate a single
criteria for the chain order, then the whole context would naturally fall under
the context of this section.

This perspective can also be used in more general contexts that fall outside
the scope of SHG. It is possible, in practice, that objects are neither crisp or
rough. This can happen, for example, when:

• a consistent method of identifying crisp objects is not used or
• some objects are merely labeled on the basis of poorly defined partials of

features or
• a sufficiently rich set of features that can provide for consistent identification

is not used
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For RBO, in the absence of additional information about the order structure,
it is possible to rely on chain decompositions or use generalized ideals and choice
functions for developing computational considerations based on the material of
the earlier sections. The latter is specified first in what follows.

Definition 11. The lower definable scope SL(x) of an element x ∈ R will be
the set of maximal elements in ↓ (x) ∩ C, that is

SL(x) = max(↓ (x) ∩ C).

The upper definable scope SU(x) of an element x ∈ R will be the set of
minimal elements in ↑ (x) ∩ C, that is

SU(x) = min(↑ (x) ∩ C).

All representations of rough objects can be seen as the result of choice oper-
ations

ψx : SL(x) × SU(x) �−→ C2 \ ΔC .

Letting #(SL(x)) = c(x) and #(SU(x)) = v(x) formulas for possible values may
be obtainable. Finding a simplification without additional assumptions remains
an open problem though.

Chain Covers

Let C∗ be the set of crisp objects C with the induced partial order, then by the
theorem in Sect. 2.1, the order structure of the poset of crisp objects C∗ permits
a disjoint chain cover. This permits an incomplete strategy for estimating the
structure of possible models and counting the number of models.

• Let {Ci : i = 1, . . . h} be a disjoint chain cover of C∗. Chains starting from
a and ending at b will be denoted by [[a, b]].

• Let C1 be the chain [[0, 1]] from the the smallest(empty) to the largest object.
• If C1 has no branching points, then without loss of generality, it can be

assumed that C2 = [[c2l, c2g]] is another chain with least element c2l and
greatest element c2g such that 0 ≺ c21, possibly c2g ≺ 1 and certainly c2g < 1.

• If c2g < 1, then the least element of at least two other chains ([[c3l, c3g]] and
[[c4l, c4g]]) must cover c2g, that is c2g ≺ c3l and c2g ≺ c4l.

• This process can be extended till the whole poset is covered.
• The first step for distributing the rough objects amongst these crisp objects

consists in identifying the spaces distributed over maximal chains on the dis-
joint cover subject to avoiding over counting of parts of chains below branch-
ing points.

The above motivates the following combinatorial problem for solving the
general problem:
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Let H = [[cl, cg]] be a chain of crisp objects with #(H) = α and let co be a
branching point on the chain with #([[cl, co]]) = αo. Let

SC = {(a, b) ; a, b ∈ [[co, cg]] or cl < a, b < co}.

In how many ways can a subset Rf ⊆ R of rough objects be distributed over SC

under #(Rf ) = π?

Theorem 10. If the number of possible ways of distributing r rough objects over
a chain of h crisp elements is n(r, h), then the number of models in the above
problem is

n(r, h) − n(r, ho).

Proof. This is because the places between crisp objects in [[cl, co]] must be omit-
ted. The exact expression of n(r, h) has already been described earlier. ��

Using the above theorem it is possible to evaluate the models starting with
splitting of n − k into atmost w partitions. Because of this it is not necessary to
use principal order filters generated by crisp objects to arrive at direct counts of
the number of possible cases and a representation schematics.

8.1 Applications: Hybrid Swarm Optimization

Many unsupervised and semi-supervised algorithms do not converge properly
and steps involved may have dense and unclear meaning. The justification for
using such algorithms often involve analogies that may appear to be reasonable
at one level and definitely suspect in broader perspectives - typically this can be
expected to happen when the independent intelligence of computational agents
or potential sources of intelligence in the context are disregarded. For example,
the class of ant colony algorithms (see [26]) uses probabilist assumptions and
restricted scope for control at the cost of simplifying assumptions.

For example, for a set of robots to navigate unfamiliar terrain with obsta-
cles, a swarm optimization method like the polymorphic ant colony optimization
method may be used [27]. The method involves scouts, workers and other types
of robots (ants). Additional information about the terrain can be used to assess
the quality of paths being found through the methods developed in this paper
- the guiding principle for this can be that if the approximations of obstacles
or better paths do not fit in a rough scheme of things, then the polymorphic
optimization method is warranted.

The other kind of situation where the same heuristics can apply is when
the robots are not fully autonomous and under partial control as in a hacking
context. More details of these applications will appear in a separate paper.

9 Interpretation and Directions

The results proved in this research are relevant from multiple perspectives. In the
perspective that does not bother with issues of contamination, the results mean
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that the number of rough models relative to the number of other possible models
of computational intelligence is low. This can be disputed as the signature of the
model is restricted and categoricity does not hold.

In the perspective of the contamination problem, the axiomatic approach
to granules, the results help in handling inverse problems in particular. From a
minimum of information, it may be possible to deduce

• whether a rough model is possible or
• whether a rough model is not possible or
• whether the given data is part of some minimal rough extensions

The last possibility can be solved by keeping fixed the number of rough objects
or otherwise. These problems apply for the contaminated approach too. It should
be noted that extensions need to make sense in the first place. The results can
also be expected to have many applications in hybrid, probabilist approaches
and variants.

An important problem that has not been explored in this paper is the concept
of isomorphism between higher granular operator spaces. This is considered in
a forthcoming paper by the present author.
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