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Preface

The two-volume set of proceedings of IJCRS 2017, the 2017 International Joint
Conference on Rough Sets, contains the results of the meeting of the International
Rough Set Society held at the University of Warmia and Mazury in Olsztyn, Poland,
during July 3-7, 2017.

Conferences in the IJCRS series are held annually and comprise four main tracks
relating the topic rough sets to other topical paradigms: rough sets and data analysis
covered by the RSCTC conference series from 1998, rough sets and granular com-
puting covered by the RSFDGrC conference series since 1999, rough sets and
knowledge technology covered by the RSKT conference series since 2006, and rough
sets and intelligent systems covered by the RSEISP conference series since 2007.
Owing to the gradual emergence of hybrid paradigms involving rough sets, it was
deemed necessary to organize Joint Rough Set Symposiums, first in Toronto, Canada,
in 2007, followed by Symposiums in Chengdu, China in 2012, Halifax, Canada, 2013,
Granada and Madrid, Spain, 2014, Tianjin, China, 2015, where the acronym IJCRS
was proposed, continuing with the IJCRS 2016 conference in Santiago de Chile.

The TJCRS conferences aim at gathering together experts from academia and
industry representing fields of research in which theoretical and applicational aspects of
rough set theory already find or may potentially find usage. They also provide a venue
for researchers wanting to present their ideas before the rough set community, or for
those who would like to learn about rough sets and find out whether they could be
useful for their problems.

This year’s conference, IICRS 2017, celebrated the 35th anniversary of the seminal
work by Prof. Zdzistaw Pawlak published in 1982, in which the notion of a rough set
emerged.

Professor Zdzistaw Pawlak (1926-2006) contributed to computer science with many
achievements such as addressless Pawlak machines, a random number generator, a
participant in the design and production of the Polish computing machine UMC-2, and
a proposition of the first genomic grammar (1965).

The emergence of the rough set idea owes much to Prof. Pawlak’s deep interest in
the foundations of logics and mathematics — in the 1960s he conducted seminars with
the eminent logician and mathematician Prof. Andrzej Ehrenfeucht at the Mathematical
Institute of the Polish Academy of Sciences. At the root of the idea of a rough set lie the
mathematical notions of the lower and the upper approximation known in geometry
and analysis, and the idea of an inexact concept as possessing a boundary that consists
of things belonging neither in the concept nor in its complement, going back to Gottlob
Frege.

The second motive for celebration was the 50th anniversary of the dissemination in
the scientific world by Prof. Solomon Marcus (1924-2015) of the Pawlak model of the
DNA grammar, published in 1965 in Polish, in a small popular monograph on grammar
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theory, intended for high schoolers. This grammar, constructed also visually by means
of chains of triangles, was the precursor of visual and mosaic grammars.

The conference commemorated Prof. Pawlak with a special session on ‘“Zdzistaw
Pawlak — Life and Heritage” with Prof. Grzegorz Rozenberg as the honorary chair and
Professor Andrzej Skowron as the chair; there were also commemorative talks by Prof.
Grzegorz Rozenberg, Sankar Kumar Pal, Lech Polkowski, Roman Stowiski, Shusaku
Tsumoto, Guoyin Wang, Zbigniew Ras, and Urszula Wybraniec-Skardowska. The
essay by Prof. Wybraniec-Skardowska opens the proceedings.

The conference included six keynote lectures by Prof. Rakesh Agrawal, Jan
Komorowski, Eric Matson, Sankar Kumar Pal, Grzegorz Rozenberg, and Guoyin
Wang as well as four plenary lectures by Profs. Tianrui Li, Son Hung Nguyen, Pradipta
Maji, Amedeo Napoli, and Zbigniew Ras.

For the process of submission, review, acceptance, updating, and compilation of the
proceedings, the EasyChair Pro system was used that allowed for subdivision of
submissions into tracks: Rough Sets (68 submissions), Special Session on Vagueness,
Rough Sets and Mereology (11 submissions), Special Session on Trends in
Multi-Agent Systems (five submissions), Special Session on Formal Concept Analysis,
Rough Set Theory and Their Applications (five submissions), Special Session: Soft-
ware and Systems for Rough Sets (four submissions), Workshop Three-Way Decisions,
Uncertainty, Granular Computing (The 5th International Workshop on Three-way
Decisions, Uncertainty, and Granular Computing, TWDUG 2017; 17 submissions),
Workshop: Recent Advances in Biomedical Data Analysis (three submissions), and
one invited submission to the Special Session “Zdzistaw Pawlak — Life and Heritage.”
In all, 114 (130 with invited talks) submissions were received. Submissions were
allowed to be regular at 10-20 long length and short at 6-8 pages. They were reviewed
by members of Program Committee (PC) and invited reviewers, each submission
reviewed by at least three reviewers in certainly positive cases and by four or five
reviewers in cases of conflicting reviews by the first three reviewers. Finally, the most
complex cases were decided by the conference and PC chairs.

Of 114 (130) submissions, after positive reviews and decisions, 74 papers were
selected to be included as regular papers and 16 as short papers in the proceedings,
which comprise two volumes. Section 1, Invite Talks, contains the essay by Urszula
Wybraniec Skardowska in remembrance of Prof. Pawlak, abstracts of the keynote,
plenary, IRSS fellow talks and tutorials, as submitted by respective speakers, making up
16 chapters. Section 2 on “General Rough Sets” contains papers devoted to the rough set
theory in its foundational and decision-theoretic aspects, collected in 44 chapters.
Section 3 on “Software and Systems for Rough Sets” contains papers submitted and
accepted to the special session with this title. These sections constitute the first volume
of proceedings.

The second volume of proceedings opens with Section 4, which collects papers
submitted and accepted to the special session on “Vagueness, Rough Sets, Mereology”
is devoted to foundational concept-theoretical and logical analysis of the rough set idea,
as well as papers on applications of mereology in intelligent methods of computer
science, containing ten chapters. Section 5, “Workshop on Three-Way Decisions,
Uncertainty, Granular Computing,” comprises 17 chapters. In these papers, the classic
trichotomy introduced by Prof. Pawlak into data objects with respect to a given concept
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as belonging certainly in the concept, certainly not belonging in the concept, and
belonging into the boundary of the concept is extended to soft computing with these
regions; the topic of granular computing fits naturally in this section since rough sets,
from their very inception, are computed with elementary granules defined by
attribute-value descriptors. In Section 6 on “Recent Advances in Biomedical Data
Analysis, Trends in Multi-Agent Systems, Formal Concept Analysis, Rough Set
Theory and Their Applications,” we find submitted and accepted regular papers on
these topics that are strongly tied to the rough set domain. Section 6 contains
13 chapters; 24 papers were rejected, i.e., 21% of submissions. In the “General Rough
Sets” track, 22 papers were rejected, i.e., 32% of submissions to this track.

In addition to the proceedings, participants of the conference found in the confer-
ence sets a booklet, “The Polish Trace,” consisting of four chapters dedicated to the
little known yet spectacular achievements of Polish scientists in the area of computer
science: on the work by Jan Czochralski, “the forefather of the silicon era”; on
achievements of cryptologists Jan Kowalewski and professors of Warsaw University
Stanist aw Les$niewski, Stefan Mazurkiewicz, and Waclaw Sierpinski in deciphering
codes of the Red Army during the Polish—Russian war of 1918—-1920; on cryptologists
Marian Rejewski, Jerzy Rozycki, and Henryk Zygalski, who broke the German Enigma
code in the 1930s; and on the contributions of Stanistaw Le$niewski, Jan Lukasiewicz,
and Alfred Tarski to the theory of concepts, computing, and soft computing.

An additional booklet contained texts of talks in the Special Session devoted to the
memory of Prof. Zdzistaw Pawlak.

We acknowledge the acceptance of our proposal of organizing IJCRS 2017 in
Poland at the University of Warmia and Mazury by authorities of the International
Rough Set Society, the owner of rights to the series.

Honorary patronage of the conference was accepted by Gustaw Marek Brzezin,
Marshal of the Province of Warmia and Mazury, Prof. Ryszard Gérecki, Rector of the
University of Warmia and Mazury, and by Dr. Piotr Grzymowicz, President of the City
of Olsztyn.

Scientific patronage was given by the International Rough Set Society and by the
Committee on Informatics of the Polish Academy of Science.

Many eminent scientists offered us their kind help by accepting our invitations.
Thanks go to the honorary chairs of the conference, Profs. Ryszard Goérecki, Sankar
Kumar Pal, Roman Stowinski, Andrzej Skowron, and Jerzy Nowacki as well as
Wojciech Samulowski, Director of the Olsztyn Park of Science and Technology, to
Guoyin Wang, to the keynote speakers Profs. Rakesh Agrawal, Jan Komorowski, Eric
Matson, Sankar Kumar Pal, Grzegorz Rozenberg, and Guoyin Wang, and to the ple-
nary speakers, Profs. Tianrui Li, Nguyen Hung Son, Pradipta Maji, Amedeo Napoli,
and Zbigniew Ras. The Steering Committee members are gratefully acknowledged for
their support.

We express our gratitude to the organizers and chairs of special sessions and
workshops: Profs. Mani A-, Andrzej Pietruszczak, Rafat Gruszczynski, Duogian Miao,
Georg Peters, Chien Chung Chan, Hong Yu, Bing Zhou, Nouman Azam, Nan Zhang,
Sushmita Paul, Jan G. Bazan, Andrzej Skowron, Pradipta Maji, Dominik Sle;zak, Julio
Vera, Grzegorz Rozenberg, Sankar Kumar Pal, Roman Stowinski, Shusaku Tsumoto,
Guoyin Wang, Zbigniew Ras, Urszula Wybraniec-Skardowska, Andrzej Zbrzezny,



VIII Preface

Agnieszka M. Zbrzezny, Magdalena Kacprzak, Jakub Michaliszyn, Franco Raimondi,
Wojciech Penczek, Bozena Wozna-Szczgéniak, Mahdi Zargayouna, Jaume Baixeries,
Dmitry Ignatov, Mehdi Kaytoue, Sergei Kuznetsov, Tianrui Li, Jarostaw Stepaniuk,
and Hung Son Nguyen.

We thank the following for the tutorials: Jan Komorowski, Piero Pagliani, Andrzej
Zbrzezny, Ivo Duentsch, and Dimiter Vakarelov. Our special thanks go to Program
Committee members and Program Committee chairs: Profs. Piotr Artiemjew, Davide
Ciucci, Dun Liu, Dominik Slg‘:zak, and Beata Zielosko, for their dedicated work in
reviewing and selecting papers to be accepted, and to the members of the Organizing
Committee: Dr. Przemystaw Gorecki, Dr. Pawet Drozda, Dr. Krzysztof Sopyta, Dr. Piotr
Artiemjew, Dr. Stanistaw Drozda, Dr. Bartosz Nowak, Ftukasz Zmudzinski,
Dr. Agnieszka Niemczynowicz, Hanna Pikus, Dr. Marek Adamowicz, and Beata
Ostrowska. Special thanks for their dedicated and timely work to Mr Lukasz Zmudzinski,
for his work on the conference website, Dr. Pawet Drozda, for taking care of the
administration of conference finances, and to Dr. Przemystaw Gorecki, for liaising with
the hosting university’s administrative offices. Student volunteers should be mentioned
for their help in running the conference. Thanks go to our material sponsors: the Olsztyn
Park of Science and Technology, the Marshal of the Province of Warmia and Mazury,
Billennium. For moral support we would like to mention the co-organizers, the
Polish-Japanese Academy of Information Technology and the Polish Information Pro-
cessing Society. Our host, the University of Warmia and Mazury in Olsztyn, provided
ample space for the conference sessions, secured the participation of the Kortowo
ensemble, and the professional help of the university services: the financial and inter-
national exchange offices and the Foundation “ZAK” that provided the catering. Thanks
go to Park Hotel in Olsztyn for hosting the participants.

Special thanks go to Alfred Hofmann of Springer, for accepting to publish the
proceedings of IJCRS 2017 in the LNCS/LNALI series, and to Anna Kramer and Elke
Werner for their help with the proceedings. We are grateful to Springer for the grant of
1,000 euro for the best conference papers.

April 2017 Lech Polkowski
Yiyu Yao

Piotr Artiemjew

Davide Ciucci

Dun Liu

Dominik Slgzak

Beata Zielosko
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Abstract. Not all approximations arise from information systems. The
problem of fitting approximations, subjected to some rules (and related
data), to information systems in a rough scheme of things is known
as the inverse problem. The inverse problem is more general than the
duality (or abstract representation) problems and was introduced by the
present author in her earlier papers. From the practical perspective, a few
(as opposed to one) theoretical frameworks may be suitable for formu-
lating the problem itself. Granular operator spaces have been recently
introduced and investigated by the present author in her recent work
in the context of antichain based and dialectical semantics for general
rough sets. The nature of the inverse problem is examined from number-
theoretic and combinatorial perspectives in a higher order variant of
granular operator spaces and some necessary conditions are proved. The
results and the novel approach would be useful in a number of unsuper-
vised and semi supervised learning contexts and algorithms.

Keywords: Inverse problem - Duality - Rough objects - Granular oper-
ator spaces + High operator spaces * Anti chains - Combinatorics - Hybrid
methods

1 Introduction

General rough set theory specifically targets information systems as the object
of study in the sense that starting from information systems, approximations
are defined and rough objects of various kinds are studied [1-6]. But the focus
need not always be so. In duality problems, the problem is to generate the infor-
mation system (to the extent possible) from semantic structures like algebras
or topological algebras associated (see for example [3,7-11]). Logico-algebraic
and other semantic structures typically capture reasoning and processes in the
earlier mentioned approach.

The concept of inverse problem was introduced by the present author in [9]
and was subsequently refined in [3]. In simple terms, the problem is a general-
ization of the duality problem which may be obtained by replacing the semantic

© Springer International Publishing AG 2017
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structures with parts thereof. Thus the goal of the problem is to fit a given set of
approximations and some semantics to a suitable rough process originating from
an information system. Examples of approximations that are not rough in any
sense are common in misjudgments and irrational reasoning guided by prejudice.

The above simplification is obviously dense because it has not been formu-
lated in a concrete setup. It also needs many clarifications at the theoretical
level. At the theoretical level again a number of frameworks appear to be justi-
fied. These can be restricted further by practical considerations. All this will not
be discussed in full detail in this paper (for reasons of space). Instead a specific
minimalist framework called Higher Granular Operator Space is proposed first
and the problem is developed over it by the present author. All of the results
proved are from a combinatorial perspective and on the basis of these results
the central question can be answered in the negative in many cases.

2 Background

A relational system is a tuple of the form & = (S, Ry, R, ..., R,) with S being
a set and R; being predicates of arity v;. The type of & is (vq,va,...,Vs).
IfH = (HQ,Q2,...,Q,) is another relational system of the same type and
@ : S +—— H a map satisfying for each 1,

(Rsaras . ..a,, — Rip(ar)p(az) ... o(ay,)),

is a relational morphism [12]. If ¢ is also bijective, then it is referred to as a
relational isomorphism.
By an Information System I, is meant a structure of the form

T = (0, At, {V, : a € At}, {f.: a € At})

with @, At and V, being respectively sets of Objects, Attributes and Values
respectively. It is deterministic (or complete) if for each a € At, f, : O — V,
is a map. It is said to be indeterministic (or incomplete) if the valuation has
the form f, : O — p(V), where V' = (JV,. These two classes of information
systems can be used to generate various types of relational, covering or relator
spaces which in turn relate to approximations of different types and form a
substantial part of the problems encountered in general rough set theories. One
way of defining an indiscernibility relation o is as below:

For z,y € O and B C At, (z,y) € o if and only if (Va € B)v(a, ) =
v(a, y). In this case o is an equivalence relation (see [1,7,8,13]). Lower and
upper approximations, rough equalities are defined over it and topological alge-
braic semantics can be formulated over roughly equivalent objects (or subsets
of attributes) through extra operations. Duality theorems, proved for pre-rough
algebras defined in [7], are specifically for structures relation isomorphic to the
approximation space (O, o). This is also true of the representation results in
[8,9,14]. But these are not for information systems - optimal concepts of isomor-
phic information systems are considered by the present author in a forthcoming

paper.
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In fact in [9], it has been proved by the present author that

Theorem 1. For every super rough algebra S, there exists an approximation
space X such that the super rough set algebra generated by X is isomorphic

to S.

In simple terms, granules are the subsets (or objects) that generate approxi-
mations and granulations are the collections of all such granules in the context.
For more on what they might be the reader may refer to [3,15]. In this paper
a variation of generalized granular operator spaces, introduced and studied by
the present author in [16-18], will serve as the primary framework for most
considerations. For reference, related definitions are mentioned below.

Definition 1. A Granular Operator Space [16] S is a structure of the form
S = (9,G,l,u) with S being a set, G an admissible granulation (defined below)
over S and l,u being operators : p(S) — p(S) (p(S) denotes the power set
of S) satisfying the following (S is replaced with S if clear from the context.
Lower and upper case alphabets may denote subsets):

ad Ca & d* =a & a* C o™
(agb—>al§bl&a“§b“)
=0 & 0" =0& S'CS&S“CS.

In the context of this definition, Admissible Granulations are granulations G
that satisfy the following three conditions (t being a term operation formed from
the set operations U,N,*,1,0):

(Va3by,...b, € G)t(by, ba,... b)) = a
and (Va) (3by, ... by € G) t(by, ba,... by) =a" (Weak RA, WRA)
(Vb€ G)(Ya € p(8))(bCa — bCa ) (Lower Stability, LS)
(Va, b€ G) 3Bz € p(S)aCz bCz & 2" =2" =2, (Full Underlap, FU)

Remarks:

e The concept of admissible granulation was defined for RYS in [3] using part-
hoods instead of set inclusion and relative to RYS, P =C, P =C. It should
be noted that the minimal assumptions make this concept more general than
the idea of granulation in the precision based granular computing paradigm
(and complex granules) [19,20].

e The conditions defining admissible granulations mean that every approxima-
tion is somehow representable by granules in a set theoretic way, that granules
are lower definite, and that all pairs of distinct granules are contained in def-
inite objects.

e The term operation t is intended to be defined over the power set Boolean
algebra in standard algebraic sense (see [21] for a detailed example).
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The concept of generalized granular operator spaces has been introduced in
[17,22] as a proper generalization of that of granular operator spaces. The main
difference is in the replacement of C by arbitrary part of (P) relations in the
axioms of admissible granules and inclusion of P in the signature of the structure.

Definition 2. A General Granular Operator Space (GSP) S is a structure of the
form S = (S,G,l,u,P) with S being a set, G an admissible granulation (defined
below) over S, I, u being operators : p(S) — p(S) and P being a definable binary
generalized transitive predicate (for parthood) on ©(S) satisfying the same condi-
tions as in Definition 1 except for those on admissible granulations (Generalized
transitivity can be any proper nontrivial generalization of parthood (see [20]).
P is proper parthood (defined via Pab iff Pab & —Pba) and t is a term operation
formed from set operations):
(Vz3y1,...yr € G) t(y1, Yo,... yp) = @'
and (Vz) (Jy1, ... yr € G)t(y1, y2,.-- Yr) = 2, (Weak RA, WRA)

(Vy € G)(Vz € p(S)) (Pyz — Pyat), (Lower Stability, LS)
(Vz, y € G)(3z € p(S)) Pz, &Pyz & 2 = 2% = 2, (Full Underlap, FU)

2.1 Finite Posets

Let S be a finite poset with #(.5) = n < oo. The following concepts and notations
will be used in this paper:

e If § is a collection of subsets {X;};cs of a set X, then a system of distinct
representatives SDR for § is a set {z;;4 € J} of distinct elements satisfying
(Vi € J)x; € X;. Chains are subsets of a poset in which any two elements are
comparable. Singletons are both chains and antichains.

e For a,b € S, a < b shall be an abbreviation for b covering a from above (that
isa<band (a <c<b-— c=aorc=>"»)). c¢S) shall be the number of
covering pairs in S.

e A chain cover of a finite poset S is a collection C of chains in S satisfying
UC = S. It is disjoint if the chains in the cover are pairwise disjoint.

e S has finite width w if and only if it can be partitioned into w number of
chains, but not less.

The following results are well known:

Theorem 2. 1. A collection of subsets § of a finite set S with #(F) = r has
an SDR if and only if for any 1 < k < r, the union of any k members of §
has size at least k, that is

2. Ewvery finite poset S has a disjoint chain cover of width w = width(S).
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8. If X is a partially ordered set with longest chains of length r and if it can be
partitioned into k number of antichains then r < k.

4. If X is a finite poset with k elements in its largest antichain, then a chain
decomposition of X must contain at least k chains.

Proofs of the assertions can be found in [23,24] for example. To prove the
third, start from a chain decomposition and recursively extract the minimal
elements from it to form r number of antichains. The fourth assertion is proved
by induction on the size of X across many possibilities.

3 Semantic Framework

It is more convenient to use only sets and subsets in the formalism as these are
the kinds of objects that may be observed by agents and such a formalism would
be more suited for reformulation in formal languages. This justifies the severe
variation defined below in stages:

Definition 3. A Higher Rough Operator Space S shall be a structure of the
form'S = (S,l,u, <, L, T) with S being a set, and l,u being operators : S —— S

y—

satisfying the following (S is replaced with S if clear from the context.):

(Va€S)d' <a & a' =d' & a* < a™
(Va,b € S)(a <b— a' <b & a* < bY)
W=l & 1"=1 & T'<T&T“<T
MaeS)L<a<T
Sis abounded poset.
Definition 4. A Higher Granular Operator Space (SHG) S shall be a structure
of the form' S = (S,G,l,u, <,V,A, L, T) with S being a set, G an admissible
granulation (defined below) for S and I, u being operators : S —— S satisfying the
following (S is replaced with S if clear from the context.):
(S,V, A, L, T)isaboundedlattice
< isthelattice order
(VaES)alga&a”:al & a* < g"™
(Va,b € S)(a <b—a' <b & a™ < bY)
V=1l &1"=1 &T'<T&T*<ST
MaeS)L<a<T
Pab if and only if a < b in the following three conditions. Further P is proper

parthood (defined via Pab iff Pab & —Pba) and t is a term operation formed
from the lattice operations):
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—

(Vz3Iyr, .- yr €G) (Y1, Yoo Yr) =T
and (Vz) y1, ... yr € G)t(Y1, Y2, .- Yr) = 2, (Weak RA, WRA)

(Vy € G)(Vz € S) (Pyz — Pyal), (Lower Stability, LS)
Vo, y € G)(3z € S)Paz, &Pyz & 2l =2 =2 (Full Underlap, FU)

Definition 5. An element x € S will be said to be lower definite (resp. upper
definite) if and only if ' = x (resp. z* = ) and definite, when it is both lower
and upper definite. x € S will also be said to be weakly upper definite (resp
weakly definite) if and only if 2% = 2% (resp 2% = z** & x' = x). Any one of
these five concepts may be chosen as a concept of crispness.

The following concepts of rough objects have been either considered in the
literature (see [3]) or are reasonable concepts:

x € S is a lower rough object if and only if ~(2! = ).

x € S is a upper rough object if and only if —(z = z¥).

x € S is a weakly upper rough object if and only if —(a* = z%*).

x € S is a rough object if and only if —(z! = 2%).

Any pair of definite elements of the form (a, b) satisfying a < b.

Any distinct pair of elements of the form (z!, z%).

Elements in an interval of the form (z!,z%).

Elements in an interval of the form (a,b) satisfying a < b with a,b being
definite elements.

o A non-definite element in a RYS (see [3]), that is an x satisfying ~Paxx!.

All of the above concepts of a rough object except for the last are directly
usable in a higher granular operator space. Importantly, most of the results
proved in this paper can hold for many choices of concepts of roughness and crisp-
ness. The reader is free to choose suitable combinations from the 40 possibilities.

Ezample 1 (No Information Tables). It should be easy to see that most examples
of general rough sets derived from information tables (and involving granules
and granulations) can be read as higher granular operator space. So a nontrivial
example of a higher granular operator space that has not been derived from an
information system is presented below:

Suppose agent X wants to complete a task and this task is likely to involve
the use of a number of tools. X thinks tool-1 suffices for the task that a tool-2 is
not suited for the purpose and that tool-3 is better suited than tool-1 for the same
task. X also believes that tool-4 is as suitable as tool-1 for the task and that tool-5
provides more than what is necessary for the task. X thinks similarly about other
tools but not much is known about the consistency of the information. X has a
large repository of tools and limited knowledge about tools and their suitability
for different purposes, and at the same time X might be knowing more about
difficulty of tasks that in turn require better tools of different kinds.

Suppose also that similar heuristics are available about other similar tasks.
The reasoning of the agent in the situation can be recast in terms of lower, upper
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approximations and generalized equality and questions of interest include those
relating to the agent’s understanding of the features of tools, their appropriate
usage contexts and whether the person thinks rationally.

To see this it should be noted that the key predicates in the context are as
below:

e suffices for can be read as includes potential lower approrimation of a right
tool for the task.

e is not suited for can be read as is neither a lower or upper approzimation of
any of the right tools for the task.

e better suited than can be read as potential rough inclusion,

e is as suitable as can be read as potential rough equality and

e provides more than what is necessary for is for upper approximation of a right
tool for the task.

Ezample 2 (Number of Objects). Often in the design, implementation and analy-
sis of surveys (in the social sciences in particular), a number of intrusive assump-
tions on the sample are done and preconceived ideas about the population may
influence survey design. Some assumptions that ensure that the sample is rep-
resentative are obviously good, but as statistical methods are often abused [25]
a minimal approach can help in preventing errors. The idea of samples being
representative translates into number of non crisp objects being at least above a
certain number and below a certain number. There are also situations (as when
prior information is not available or ideas of representative samples are unclear)
when such bounds may not be definable or of limited interest.

Ezample 8 (Non-rough Approzimations). Suppose Xi,...Xo4 are 24 colors
defined by distinct frequencies and suppose the weak sensors at disposal can
identify 3 of them as crisp colors. If it is required that the other 21 colors be
approximated as 9 rough objects, then such a classification would not be possi-
ble in a rough scheme of things as at most three distinct pairs of crisp objects
are possible. Note that using intervals of frequencies, tolerances can be defined
on the set. But under the numeric restriction, 9 rough objects would not be
possible.

3.1 Minimal Assumptions

For the considerations of the following sections on distribution of rough objects
and on counting to be valid, a minimal set of assumptions are necessary. These
will be followed unless indicated otherwise:

F1 S is a higher granular operator space.

F2 #(S) =n < o0.

C1 C C S is the set of crisp objects.

C2 #(C) =k.

R1 R C S is the set of rough objects not necessarily defined as in the above.
R2 RUC =S.
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R3 there exists a map ¢ : R +—— C2.
RC1 RNC =0.
RC2 (Vz € R)(Ja,b € C)p(z) = (a,b) & a Cb.

Note that no further assumptions are made about the nature of ¢(x). It is
not required that ¢(x) = (a,b) & z! = a & " = b, though this happens often.

The set of crisp objects is necessarily partially ordered. In specific cases,
this order may be a lattice, distributive, relatively complemented or Boolean
order. Naturally the combinatorial features associated with higher granular oper-
ator space depend on the nature of the partial order. This results in situations
that are way more involved than the situation encoded by the following simple
proposition.

Proposition 1. Under all of the above assumptions, for a fized value of
#(S) = n and #(C) = k, R must be representable by a finite subset K C
C?\ Ac, Ac being the diagonal in C?.

The two most extreme cases of the ordering of the set C' of crisp objects
correspond to C forming a chain and C'\ {_L, T} forming an anti-chain. Numeric
measures for these distributions have been defined for these in [17] by the present
author. The measure gives an idea of the extent of distribution of non crisp
objects over the distribution of the crisp objects and it has also been shown that
such measures do not provide reasonable comparisons across diverse contexts.

4 Pre-well Distribution of Objects over Chains: PWC

Definition 6. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a Pre-Well Distribution of Objects over Chains if the minimal
assumptions (Subsect. 3.1) (without the condition RC1) and the following three
conditions hold:

1. C forms a chain under inclusion order.

2. @ s a surjection.

3. Pairs of the form (x,x), with x being a crisp object, also correspond to rough
objects.

Though the variant is intended as an abstract reference case where the idea
of crispness is expressed subliminally, there are very relevant practical contexts
for it (see Example4). It should also be noted that this interpretation is not com-
patible with the interval way of representing rough objects without additional
tweaking.

Theorem 3. Under the above assumptions, the number of crisp objects is related
to the total number of objects by the formula:

L i (1+4’f2l)%1.

In the formula = is to be read as if the right hand side (RHS) is an integer then
the left hand side is the same as RHS.
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Proof. e Clearly the number of rough objects is n — k.
e By the nature of the surjection n — k maps to k? pairs of crisp objects.
e Son—k=FK.

(1+4n)z —1

e So integral values of will work.

O

This result is associated with the distribution of odd square integers of the
form 4n + 1 which in turn should necessarily be of the form 4(p? + p) + 1
(p being any integer). The requirement that these be perfect squares causes
the distribution of crisp objects to be very sparse with increasing values of n.
The number of rough objects between two successive crisp objects increases in
a linear way, but this is a misleading aspect. These are illustrated in the graphs
Figs. 1 and 2.

Rough and Crisp Objects: Chain Case

Number
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Fig. 1. Rough objects between crisp objects: special chain case
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Crisp vs Total: Special Chain Case
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Fig. 2. Values of n and k: special chain case

Example 4. This example has the form of a narrative that gets progressively
complex.

Suppose Alice wants to purchase a laptop from an on line store for electronics.
Then she is likely to be confronted by a large number of models and offers
from different manufacturers and sellers. Suppose also that the she is willing
to spend less than €x and is pretty open to considering a number of models.
This can happen, for example, when she is just looking for a laptop with enough
computing power for her programming tasks.

This situation may appear to have originated from information tables with
complex rules in columns for decisions and preferences. Such tables are not
information systems in the proper sense. Computing power for one thing is a
context dependent function of CPU cache memories, number of cores, CPU
frequency, RAM, architecture of chipset, and other factors like type of hard disk
storage.
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Proposition 2. The set of laptops S that are priced less than €x can be totally
quasi ordered.

Proof. Suppose < is the relation defined according to a < b if and only if price
of laptop a is less than or equal to that of laptop b. Then it is easy to see that
< is a reflexive and transitive relation. If two different laptops a and b have the
same price, then a < b and b < a would hold. So < may not be antisymmetric.

O

Suppose that under an additional constraint like CPU brand preference, the
set of laptops becomes totally ordered. That is under a revised definition of <
of the form: a < b if and only if price of laptop a is less than that of laptop b
and if the prices are equal then CPU brand of b must be preferred over a’s.

Suppose now that Alice has more knowledge about a subset C' of models
in the set of laptops S. Let these be labeled as crisp and let the order on C be
<|c- Using additional criteria, rough objects can be indicated. Though lower and
upper approximations can be defined in the scenario, the granulations actually
used are harder to arrive at without all the gory details.

This example once again shows that granulation and construction of approxi-
mations from granules may not be related to the construction of approximations
from properties in a cumulative way.

5 Well Distribution of Objects over Chains: WDC

Definition 7. A distribution of rough objects relative to a chain of crisp objects
C' will be said to be a Well Distribution of Objects over Chains if the minimal
assumptions (Subsect. 3.1) and the following two conditions hold:

1. C forms a chain under < order.
2. ¢ is an surjection onto C?\ Ac (Ac being the diagonal of C).

In this case pairs of the form (a,a) (with a being crisp) are not permitted to
be regarded as rough objects. This amounts to requiring clearer conditions on
the idea of what rough objects ought to be.

Example 5. In the example for pre-well distributions, if Alice never let a crisp
object be a rough object, then the resulting example would fall under well distrib-
ution of objects over chains. In other words, the laptops would be well distributed
over the crisp objects (crisp models of laptops).

Theorem 4. When the objects are well distributed over the crisp objects, then
the number of crisp objects would be related to the total number of objects by the
formula:

n—k=k—k

So, it is necessary that n be a perfect square.
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Proof. e Under the assumptions, an object is either rough or is crisp.
e The number of rough objects is n — k.
e By the nature of the surjection n — k maps to k% — k pairs of crisp objects
(as the diagonal cannot represent rough objects).
e Son—k=k —k.
e So n = k? is necessary.
O

Theorem 5. Under the assumptions of this section, if the higher granular oper-
ator space is a Boolean algebra then the cardinality of the Boolean algebra 2% is
determined by integral solutions for x in

2% = k2.

Proof. As the number of elements in a finite power set must be of the form 2% for
some positive integer x, the correspondence follows. If 2% = k2, then z = 2log, k.
O

Remark 1. The previous theorem translates to a very sparse distribution of such
models. In fact for n < 108, the total number of models is 27. Fig. 3 gives an idea
of the numbers that work.

6 Relaxed Distribution of Objects over Chains: RDC

Definition 8. A distribution of rough objects relative to a chain of crisp objects
C' will be said to be a a-Relaxed Distribution of Objects over Chains if the
minimal assumptions (Subsect. 3.1) and the following three conditions hold.

e C forms a chain under < order.
e © is not necessarily a surjection and

#(p(R)) < a(k® — k),

for some rational o € (0,1] (the interpretation of a being that of a loose upper
bound rather than an exact one).

Any value of « that is consistent with the inequality will be referred to as an
admissible value of a.

Ezample 6. The following modifications, in the context of Example 5, are more
common in practice:

e No non crisp laptops may be represented by some pairs of crisp laptops and
consequently ¢ would not be a surjection onto C? \ A¢ and

e an estimate of the number of rough laptops may be known (this applies when
too many models are available).

These can lead to some estimate of «.. It should be noted that a natural subproblem
is that of finding good values of «.
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Existence of Power Rough Sets on Chain

o
o
S _
o
Yol
[aV}
@ _
O
Q
9
o 38 |
5 B
3 b el
@]
o
- _
3
a8
o -
o
Te}
O — - ! B J 1 S
| I | | I |
0 200 400 600 800 1000
Crisp Objects

Fig. 3. Existence of power rough sets on chain

Theorem 6. In the context of relaxed distribution of objects over chains it is
provable that, for fized n the possible values of k correspond to integral solutions
of the formula:

f— (r—1)+ /(1 —m)?2+4dnrw

)

2m
subject to k < [v/n], #(p(R)) =n(k* — k) and 0 < 7 < .
(2 _(n=k)
Proof. e When n — k =n(k* — k) then 7 = )
(r=1)++/(1A—m)?2+4nr

e So positive integral solutions of k = 5 may be
T

admissible.
e The expression for a means that it can only take a finite set of values given

n as possible values of £ must be in the set {2,3,...,[/2]}.

O
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Trimmed Distn at n=10726: Chain Case
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Fig. 4. Trimmed number of possible values of k

Remark 2. The bounds for k are not necessarily the best ones.

Theorem 7. In the proof of the above theorem (Theorem (), fized values of n
and ™ do not in general correspond to unique values of k and unique models.

If the mentioned bounds on k are not imposed then it might appear that for
m = 0.5 and n = 1000000, the number of values of k that work seem to be 1413.
If the bounds on k are imposed then Fig.4 gives a description of the resulting
pattern of values:

Algorithms: RDC

A purely arbitrary method of supplying values of a based on some heuristics
cannot be a tractable idea. To improve on this some algorithms for computing
admissible values of alpha are proposed in this subsection.

RDC Algorithm-1

1. Fix the value of n.
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. Start from possible values of k less than /n — 1.
. Compute « for all of these values.

. Suppose the computed values are aq, ... a,.

. Check the admissibility of solutions.

T W N

RDC Algorithm-2

Another algorithm for converging to solutions is the following:

1. Start from a sequence {«a;} of possible values in the interval (0, 1).

Check the admissibility and closeness to solutions.

3. If a solution appears to be between a; and a;y1, add an equally spaced
subsequence between the two.

4. Check the admissibility and closeness to solutions.

5. Continue.

6. Stop when solution is found.

N

Theorem 8. Both of the above algorithms converge in a finite number of steps.

Proof. Convergence of the first algorithm is obvious.
Convergence of the second follows from the following construction:

e Suppose the goal is to converge to an a € (0, 1).

e Let a, = 0, a; = 1 and for a fixed positive integer n and ¢ = 1,...,n, let
o = % and o € (Oélj,Oélj_H).

e Form n number of equally spaced partitions {ap;} of (a1, a1j41) and let
a € (ag;, azjy)-

e Clearly (Ve > 03NVr > N)|a — a,j| <e.

e So the algorithm will succeed in finding the required «.

7 Relaxed Bounded Distribution on Chains: RBC

Definition 9. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a a-Relaxed Bounded Distribution of Objects over Chains
(RBC) if the minimal assumptions (Subsect. 3.1) and the following three condi-
tions hold.

e C forms a chain under < order and ¢ is not necessarily a surjection,

#(p(R)) < a(k? — k),

for some rational o € (0,1] (the interpretation of a being that of a loose upper
bound rather than an exact one) and

e R is partitioned into disjoint subsets of size {r;}I_, with g = k* — k subject
to the condition

a<r; <b<n-—k, witha, bbeing constants. (8)
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Any value of « that is consistent with the inequality will be referred to as an
admissible value of «.

RBC differs from RDC in the explicit specification of bounds on number of
objects that may be represented by a pair of crisp objects.

Proposition 3. Fora =0 and b=n — k, every RDC is a RBC.

Theorem 9. If the crisp objects form a chain, then the total number of possible
models B is

k% —k
2 2
B = Z H aiandnoak k< B < nyb* *k,
aen(r)|f =1

with the summation being over partitions o = {a;} of v subject to the condition
B and n, being the number of admissible partitions under the conditions.

Proof. e On a chain of length k, k? — k spaces can be filled.
e The next step is to determine the partitions 7(r) of r into k? — k distinct
parts.
e The condition (3 eliminates many of these partitions resulting in the admissible
set of partitions (r)|S.
e Each of the partitions o € 7 ()| corresponds to [ [, a; number of possibilities.
e So the result follows.
O

8 Distribution of Objects: General Context

Definition 10. A distribution of rough objects relative to a poset of crisp objects
C will be said to be a a-Relaxed Bounded Distribution of Objects (RBO) if the
minimal assumptions (Subsect. 3.1) without the restriction R2 and the following
three conditions hold:

o #(p(R)) =t <n-—k,
o t =f3(k*—k) and,
o n—k=a(k?—k), for some constants t, 3, c.

Ezxample 7. In the context of Example 5, if Alice is not able to indicate a single
criteria for the chain order, then the whole context would naturally fall under
the context of this section.

This perspective can also be used in more general contexts that fall outside
the scope of SHG. It is possible, in practice, that objects are neither crisp or
rough. This can happen, for example, when:

e a consistent method of identifying crisp objects is not used or

e some objects are merely labeled on the basis of poorly defined partials of
features or

e a sufficiently rich set of features that can provide for consistent identification
is not used
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For RBO, in the absence of additional information about the order structure,
it is possible to rely on chain decompositions or use generalized ideals and choice
functions for developing computational considerations based on the material of
the earlier sections. The latter is specified first in what follows.

Definition 11. The lower definable scope SL(z) of an element x € R will be
the set of mazimal elements in | (x) N C, that is

SL(z) = max(| (z)NC).

The upper definable scope SU(z) of an element © € R will be the set of
minimal elements in 1 (x) N C, that is

SU(z) = min(T () N C).

All representations of rough objects can be seen as the result of choice oper-
ations

¥, : SL(z) x SU(z) — C?\ Ac.

Letting #(SL(z)) = ¢(z) and #(SU(z)) = v(«x) formulas for possible values may
be obtainable. Finding a simplification without additional assumptions remains
an open problem though.

Chain Covers

Let C* be the set of crisp objects C' with the induced partial order, then by the
theorem in Sect. 2.1, the order structure of the poset of crisp objects C'* permits
a disjoint chain cover. This permits an incomplete strategy for estimating the
structure of possible models and counting the number of models.

e Let {C; : i =1,...h} be a disjoint chain cover of C*. Chains starting from
a and ending at b will be denoted by [[a, b]].

e Let C4 be the chain [[0, 1]] from the the smallest(empty) to the largest object.

e If C; has no branching points, then without loss of generality, it can be
assumed that Co = [[cy, co4]] is another chain with least element c¢o; and
greatest element cp4 such that 0 < cg1, possibly caq < 1 and certainly cpq < 1.

o If ¢z, < 1, then the least element of at least two other chains ({[cs;, ¢34]] and
[[car, cag]]) must cover caq, that is cag < c3; and cag < c4;.

e This process can be extended till the whole poset is covered.

e The first step for distributing the rough objects amongst these crisp objects
consists in identifying the spaces distributed over maximal chains on the dis-
joint cover subject to avoiding over counting of parts of chains below branch-
ing points.

The above motivates the following combinatorial problem for solving the
general problem:
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Let H = [[c;, ¢q]] be a chain of crisp objects with #(H) = « and let ¢, be a
branching point on the chain with #([[c;, ¢o]]) = . Let

Sc ={(a,b); a,b € [[co,cq]] Or ¢ < a,b < co}.

In how many ways can a subset Ry C R of rough objects be distributed over Sc
under #(Ry) = 7?

Theorem 10. If the number of possible ways of distributing r rough objects over
a chain of h crisp elements is n(r,h), then the number of models in the above
problem is

n(r,h) —n(r, hy).

Proof. This is because the places between crisp objects in [[¢;, ¢,]] must be omit-
ted. The exact expression of n(r, h) has already been described earlier. O

Using the above theorem it is possible to evaluate the models starting with
splitting of n — k into atmost w partitions. Because of this it is not necessary to
use principal order filters generated by crisp objects to arrive at direct counts of
the number of possible cases and a representation schematics.

8.1 Applications: Hybrid Swarm Optimization

Many unsupervised and semi-supervised algorithms do not converge properly
and steps involved may have dense and unclear meaning. The justification for
using such algorithms often involve analogies that may appear to be reasonable
at one level and definitely suspect in broader perspectives - typically this can be
expected to happen when the independent intelligence of computational agents
or potential sources of intelligence in the context are disregarded. For example,
the class of ant colony algorithms (see [26]) uses probabilist assumptions and
restricted scope for control at the cost of simplifying assumptions.

For example, for a set of robots to navigate unfamiliar terrain with obsta-
cles, a swarm optimization method like the polymorphic ant colony optimization
method may be used [27]. The method involves scouts, workers and other types
of robots (ants). Additional information about the terrain can be used to assess
the quality of paths being found through the methods developed in this paper
- the guiding principle for this can be that if the approximations of obstacles
or better paths do not fit in a rough scheme of things, then the polymorphic
optimization method is warranted.

The other kind of situation where the same heuristics can apply is when
the robots are not fully autonomous and under partial control as in a hacking
context. More details of these applications will appear in a separate paper.

9 Interpretation and Directions

The results proved in this research are relevant from multiple perspectives. In the
perspective that does not bother with issues of contamination, the results mean
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that the number of rough models relative to the number of other possible models
of computational intelligence is low. This can be disputed as the signature of the
model is restricted and categoricity does not hold.

In the perspective of the contamination problem, the axiomatic approach
to granules, the results help in handling inverse problems in particular. From a
minimum of information, it may be possible to deduce

e whether a rough model is possible or
e whether a rough model is not possible or
e whether the given data is part of some minimal rough extensions

The last possibility can be solved by keeping fixed the number of rough objects
or otherwise. These problems apply for the contaminated approach too. It should
be noted that extensions need to make sense in the first place. The results can
also be expected to have many applications in hybrid, probabilist approaches
and variants.

An important problem that has not been explored in this paper is the concept
of isomorphism between higher granular operator spaces. This is considered in
a forthcoming paper by the present author.
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Abstract. Lattice-theoretic ideals have been used to define and gen-
erate non granular rough approximations over general approximation
spaces over the last few years by few authors. The goal of these studies,
in relation based rough sets, have been to obtain nice properties compa-
rable to those of classical rough approximations. In this research paper,
these ideas are generalized in a severe way by the present author and
associated semantic features are investigated by her. Granules are used
in the construction of approximations in implicit ways and so a concept
of co-granularity is introduced. Knowledge interpretation associable with
the approaches is also investigated. This research will be of relevance for
a number of logico-algebraic approaches to rough sets that proceed from
point-wise definitions of approximations and also for using alternative
approximations in spatial mereological contexts involving actual contact
relations. The antichain based semantics invented in earlier papers by
the present author also applies to the contexts considered.

Keywords: Co-granular approximations by ideals - High operator
spaces - Generalized ideals - Rough objects - Granular operator spaces -
Algebraic semantics - Knowledge - Mereotopology + Rough spatial
mereology - GOSIH

1 Introduction

In general rough set theory that specifically targets information systems as the
object of study, approximations are defined relative to information systems and
rough objects of various kinds are studied [1-3]. These approximations may be
defined relative to some concept of granules or they may be defined without
direct reference to any concept of granules or granulations. The corresponding
approximations are in general not equivalent. Among the latter class, few new
approximations have been studied in [4-6] over general approximation spaces of
the form (X, R) with X being a set and R being at least a reflexive relation. In
these approximations, a point is in an approzimation of a subset of X if it sat-
isfies a condition that involves lattice ideals of the Boolean power set lattice. The
formalism in the overview paper [6] makes use of a more laborious formalism -
but is essentially equivalent to what has been stated in the last sentence.
© Springer International Publishing AG 2017
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The significance of the obtained results and potential application contexts are
not explored in the three papers mentioned [4-6] in sufficient detail and many
open problems remain hidden.

In this research paper, a definition of co-granularity of approximations is
introduced, the methodology is generalized to specific modifications of granu-
lar operator spaces [7,8] (called co-granular operator spaces) and in particular
to lattices generated by collections of sets and lattice ideals, connections with
general approximation spaces (or adjacency spaces) are dropped, connections
with granular operator spaces are established, issues in possible semantics of the
generalized approach are computed, knowledge interpretation in the contexts
are proposed, meaningful examples are constructed, ideal based rough approx-
imations are shown to be natural in spatial mereological contexts and related
problems are posed. One meaning that stands out in all this is that if a prop-
erty has little to do with what something is not, then that something has the
property in an approrimate sense. This idea might work in some contexts - the
developed/invented formalisms suggest some restrictions on possible contexts.

Ideals and filters have been used by the present author in algebraic semantics
of general rough sets in some of her earlier papers like [1,9-11]. Concepts of
rough ideals have also been studied by different authors in specific algebras
(see for example [12,13])- these studies involve the use of rough concepts within
algebras. The methodology of the present paper does not correspond to those
used in the mentioned papers in a direct way.

In the next section, some of the essential background is mentioned. In Sect. 3,
generalized set theoretic frameworks are introduced and properties of approx-
imations are proved. In the following section, co-granular operator spaces are
defined and studied. In Sect. 5, the meaning of the approximations and general-
izations are explained for the first time and both abstract and concrete examples
are constructed. Mereotopological approximations are invented/developed over
very recent work on actual contact algebras in Sect. 6.

2 Background

By an Information System I, is meant a tuple of the form
T =(0,At,{V,:a € At},{fos : a € At})

with O, At and V, being respectively sets of Objects, Attributes and Values
respectively. In general the valuation has the form f, : O —— @(V), where
V =V, (as in indeterminate information systems). These can be used to gen-
erate various types of relational, covering or relator spaces which in turn relate
to approximations of different types and form a substantial part of the problems
encountered in general rough set theories. One way of defining an indiscernibility
relation o is as below:

For z,y € O and B C At,(z,y) € o if and only if (Va € B)v(a, z) =
v(a, y). In this case o is an equivalence relation. Lower and upper approxima-
tions, rough equalities are defined over it and topological algebraic semantics can
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be formulated over roughly equivalent objects (or subsets of attributes) through
extra operations. Duality theorems, proved for pre-rough algebras defined in [14],
are specifically for structures relation isomorphic to the approximation space
(0,0). This is also true of the representation results in [15-17]. But these are
not for information systems - optimal concepts of isomorphic information sys-
tems are considered by the present author in a forthcoming paper.

In fact in [15], it has been proved by the present author that

Theorem 1. For every super rough algebra S, there exists an approximation
space X such that the super rough set algebra generated by X is isomorphic
to S.

The concept of inverse problem was introduced by the present author in [15]
and was subsequently refined in [1]. In simple terms, the problem is a general-
ization of the duality problem which may be obtained by replacing the semantic
structures with parts thereof. Thus the goal of the problem is to fit a given set of
approximations and some semantics to a suitable rough process originating from
an information system. From the practical perspective, a few (as opposed to one)
theoretical frameworks may be suitable for formulating the problem itself. The
theorem mentioned above is an example of a solution of the inverse problem in
the associated context.

The definition of approximations maybe granular, point wise, abstract or
otherwise. In simple terms, granules are the subsets (or objects) that generate
approximations and granulations are the collections of all such granules in the
context. For more details see [1,18]. In this paper a variation of generalized
granular operator spaces, introduced and studied by the present author in [7,8],
will serve as the main framework for most considerations. For reference, related
definitions are mentioned below.

Definition 1. A Granular Operator Space [7] GOS S is a structure of the form
S = (S,G,l,u) with S being a set, G an admissible granulation (defined below)
over S and l,u being operators : p(S) — p(S) (p(S) denotes the power set of
S) satisfying the following (S is replaced with S if clear from the context. Lower
and upper case alphabets may denote subsets):

ad Ca & d =a' & a* C o™
(agb—>al§bl & o C )
"=0&0"=0&S'CS&S“CS.

In the context of this definition, Admissible Granulations are granulations G

that satisfy the following three conditions (t is a term operation formed from the
set operations U,N,¢,1,0):

(Va3by,...b, € G)t(by, ba,... b)) = a
and (Va) (3b1, ... b, € G) t(by, bo,... b,) = a", (Weak RA, WRA)
(VbeG)(Va € p(S)) (bCa — bCa'), (Lower Stability, LS)
(Va, b€ G)(Fzcp(S)acCzbCz & 2t =2 =2, (Full Underlap, FU)
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The concept of admissible granulation was defined for rough Y-systems RYS
(a more general framework due to the present author in [1]) using parthoods
instead of set inclusion and relative to RYS, P =C,P =C in granular operator
spaces [7]. The concept of generalized granular operator spaces has been intro-
duced in [8] by the present author as a proper generalization of that of granular
operator spaces. The main difference is in the replacement of C by arbitrary part
of (P) relations in the axioms of admissible granules and inclusion of P in the
signature of the structure.

Definition 2. A General Granular Operator Space (GSP) S is a structure of the
form S = (S,G,l,u,P) with S being a set, G an admissible granulation (defined
below) over S, 1, u being operators : p(S) — p(S) and P being a definable binary
generalized transitive predicate (for parthood) on ©(S) satisfying the same condi-
tions as in Definition 1 except for those on admissible granulations (Generalized
transitivity can be any proper nontrivial generalization of parthood (see [11]). P
is proper parthood (defined via Pab iff Pab & —Pba) and t is a term operation
formed from set operations on the powerset p(S)):

(VxIy1,...yr € G)t(y1, Y2, Yr) = a!

and (Vx) Jy1, --- yr € G) t(y1, Y2, ... yr) = 2%, (Weak RA, WRA)
(Vy € G)(Vz € p(9)) (Pyz — Pyz'),  (Lower Stability, LS)
(Vz, y € G)(3z € p(8)) Prz, &Pyz & 2\ = 2% = 2, (Full Underlap, FU)

There are ways of defining rough approximations that do not fit into the
above frameworks and the present paper is mainly about specific such cases.

2.1 Ideals on Posets

A lattice ideal K of a lattice L = (L,V,A) is a subset of L that satisfies the
following (< is assumed to the definable lattice order on L):

VMae L)(Vbe K)(a<b—a€K) (o-Ideal)
(Va,be K)avbe K (Join Closure)

An ideal P in a lattice L is prime if and only if (Va,b)(a Ab € P — a €
P orb e P). Spec(L) shall denote the set of all prime ideals. Maximal lattice
filters are the same as ultrafilters. In Boolean algebras, any filter F' that satisfies
(Va)a € F or a® € F is an ultra filter. Chains are subsets of a poset in which any
two elements are comparable, while antichains are subsets of a poset in which no
two distinct elements are comparable. Singletons are both chains and antichains.

2.2 Ideal Based Framework

The approximations in [6] are more general than the ones introduced and studied
n [4,5]. A complete reformulation of the main definition and approximation
is presented in this subsection. These approximations are not granular in any
obvious way and need not fit into generalized granular operator spaces.
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Definition 3

e Let (X, R) be a general approximation space with X being a set and R being
a reflexive binary relation on X,

o (p(X),U,n,0,X) be the Boolean lattice on the power set of X. Any lattice
ideal in the Boolean lattice would be referred to as an ideal and the collection
of all ideals would be denoted by T(X) (this is algebraic distributive lattice
ordered and the implicit o used is the Boolean order C) and I a fized ideal in
it.

o Let [#]f={a:a€ X & Rza} and <z >=N{b]¥: be X & x € [b]I}.

(VA€ p(X)Al" ={a:a€ A&k <a>NA° eI}

(VAep(X) A" ={a:ae X& <a>NA¢T}UA.

The approximations have properties similar to those of approximations in
classical rough set theory using the point wise definition of approximations.
This is mainly due to the nature of the sets of the form < a >.

Theorem 2. All of the following hold for any subset A, B C X in the context
of the above definition:

Als CAC A% and s =0, X' = X
AC B — Alx C Bl & Avs C B¥s

Alsle = Als | Austn = Aus; (VA €T) A% = A

(AN B)» = A= N Bl and (AU B)!» D Al= U Bl»
(AU B)%s = AU U B% and (AN B)" C A% N BUx
Avn = (Af)le, Alx = (A°)“x¢ and (VA® € T) Alx = A,

75 ={A: Al* = A} is a topology.

3 Set-Theoretic Generalization of Ideal-Based Framework

Set theoretic generalizations of the approach in [4-6] are proposed in this section
by the present author.

If R is a binary relation on a set S, then for any = € S, the successor
neighborhood [x]r generated by x is the set [z]gr = {a : a € S & Rax}, while
the predecessor neighborhood [z]® is the set [z]® = {a: a € S & Rzal.

Definition 4

e Let (X, R) be a general approximation space with X being a set and R being
a reflexive binary relation on X,

X be a distributive lattice (a ring of subsets of X ). Let I(X) be the lattice of
lattice ideals of X and 1 € Z(X)

Let [z]® ={a:a € X & Rza} and <z >={[b]": be X & z € [b]%}.
(VAe p(X))Al* ={a:a€ A& <a>nNA°el}

(VA€ p(X) A" ={a:ae X& <a>NA¢I}UA

If Z(X) is replaced by Spec(X) in the last two statements, then the resulting
lower and upper approzimations will be denoted respectively by l, and .
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The approzimations will be referred to as Distributive set approximations by
ideals (IAD approximations). If in the second condition if X is an algebra of
subsets of X instead, then the definitions of the approximations can be improved
as below:

e VAecX)A+ ={a:ac A& <a>\Acl}
o (VAeX)A" ={a:aceX& <a>NA¢I}UA

These approzimations will be referred to as Set difference approximations by
ideals (TASD approximations).

When the ideals refer to a ring of subsets, the operations used in the definition
of IAD approximations refer to an algebra of sets over X. IASD approximations
are better behaved.

Proposition 1. In the above, all of the following hold:

o Fora,be X, ifae<b> then <a>C<b>.
o If Tab if and only a €< b > then T is a reflexive, transitive and weakly
antisymmetric relation in the sense, if Tab & Tba then < a >=<b >.

Theorem 3. The IAD approximations are well defined and satisfy all of the
following for any subsets A and B:

Ak CAC A (1)

0 =0; X =X (2)

AC B — A C B'* & A" C B" (3)

Al = Ay g = A (4)

(AnB)* = A 0 B'*; (AuB)* 2 A'* U B™* (5)
(AUB)* = A" U B"; (AN B)“ C A" N B (6)

Proof

o Alx C A C A" follows from definition
e (J** = () because it contains no elements. X* = X because < x > N = 0 is
a trivial ideal.

* Let AC B
If x € A% then <z >NA¢I

So <x>NB¢1land z € B

If z € A then <z >nNA°cl

<z >NB°C<z>NA“€el

and so <z >NB°€(X) and = € B'.

e If a € A then < a > NA¢ €T and < a > NA® C < a > NA'*C. The converse
also holds because of the definition of < a >. So Al = Alk,
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e It is obvious that A% C A“Uk If x € A“*“* then x € Aor z €< x >
NA" ¢ 1. As <z >NA C< x> NA%, so AW¥E = AYk,

e € (ANB)*, if and only if < 2 > N(ANB)° € T and # € AN B if and only if
(<z>nA°c€land <z >NB°€landz € ANB So (AN B)!x = Alx N Blx,

e 7€ (AUB)! if and only if < 2 > N(AUB)¢ € [ and x € AU B if and only if
(<z>nNA°)N(<x>nNB°) €land z € AUB. This implies (< z > NA°) €1
andz € Aor <x>NB°€land z € B. So (AU B)'* D Al» U B*.

ezc(AUB) ifandonlyifr€e AUBor<z>NAUB) ¢ Ifze€ AUB,
then x € A UB". <2z >N(AUB) ¢ 1if and only if < 2z > NA ¢ I and
<x>NB ¢1. So it follows that x € A"* U B** and conversely.

ezec(AnB)* ifandonlyifr€e ANBor<z>NANB)¢LIfze AN B,
then z € A NBY". <z >NANB) ¢Tif and only if <z >NA ¢ 1 or
<x>NB ¢1. So it follows that (AN B)* C A% N BYx. O

Actually full complementation can be omitted and replaced with set differ-
ence. This way the approximations can be defined on subsets of the powerset.

Theorem 4. The IASD approximations are well defined and satisfy all of the
following for any subsets A and B in X':

A CAC A, ur =0 X+ =X (7)

AC B — A% C B% & AU+ C BY+ (8)

Al+l+ :Al+; Aut+u+ — AU+ (9)

(AnB)+ = A+ nB; (AuB)™+ D A+ U B+ (10)
(AUB)"+ = A" UB"+; (AN B)"+ C A"+ N B"+ (11)

Proof. The proof is similar to that of the previous theorem. Relative comple-
mentation suffices. O

Remark 1. The main advantages of the generalization are that knowledge of
complementation is not required in construction of the IASD approximations, a
potentially restricted collection of ideals is usable in the definition of approxi-
mations and this in turn improves computational efficiency.

4 Co-granular Operator Spaces by Ideals

Given a binary relation on a set it is possible to regard specific subsets of the set
as generalized ideals relative to the relation in question. The original motivations
for the approach relate to the strategies for generalizing the concept of lattice
ideal to partially ordered sets (see [19-21]). It is also possible to use a binary
relation on the power set to form generalized ideals consisting of some subsets
of the set. Both approaches are apparently compatible with the methods used
for defining approximations by ideals.

In this section the two possibilities are examined and generalizations called
co-granular operator spaces by ideals and higher co-granular operator spaces are
proposed.
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Definition 5. Let H be a set and o a binary relation on H (that is o C HQ)
then

The Principal Up-set generated by a,b € H shall be the set
U(a,b) = {z : cax & obz}.

The Principal Down-set generated by a,b € H shall be the set
L(a,b) = {z : oxa & oxb}.

B C H is U-directed if and only if (Va,b € B)U(a,b) N B # 0.

B C H is L-directed if and only if (Ya,b € B) L(a,b) N B # 0. If B 1is both
U- and L-directed, then it is o-directed.

K C H is a o-ideal if and only if

(Vx € H)(Va € K)(oza — z € K) (12)
(Va,be K)U(a,b)N K # 0 (13)

F C H is a o-ilter if and only if

(Vz € H)(Va € F)(oax — z € F) (14)
(Va,b € F) L(a,b)NF #£ 0 (15)

The set of o-ideals and o-filters will respectively be denoted by Z(H) and F(H)
respectively. These are all partially ordered by the set inclusion order. If the
intersection of all o-ideals containing a subset B C H is an o-ideal, then it
will be called the o-ideal generated by B and denoted by (B). The collection of
all principal o-ideals will be denoted by T,(H). If (x) exists for every x € H,
then H is said to be o-principal (principal for short).

A o-ideal K will be said to be prime if and only if

(Va,b € H)(L(a,)) NK #0 — a€ Korbe K).

The dual concept for filters can also be defined.
A subset B C H will be said to be o-convex if and only if

(Va,b € B)(Vz € H)(oax & oxb — z € B)

Proposition 2. All of the following hold in the context of the above definition:

All o-ideals are o-conver and U-directed.

If H is o-directed, then all o-ideals are o-directed subsets.

Every o-ideal is contained in a maximal o-ideal.

If H is L-directed, K is a prime ideal and for K1, Ko € T if K1 N Ky C K,
then Kl - K2 or KQ - Kl-

If (a), (b) € I,(H) and 7(c)ab (T(0) being the transitive completion of o),
then {a) C (b).
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Proof. The proofs are not too complex and may be found in [19]. O

Proposition 3. Neighborhoods generated by points relate to bound operators
according to (Vz)[z], = Ly(z,x) & [2]7 = Uy (x,x).

Remark 2. The connection between the two is relevant when o is used for gener-
ating ideals and also for the neighborhoods. There are no instances of such usage
in the literature as of this writing and is an open area for further investigation.

Definition 6. In the context of Definition5, o will be said to be supremal if
and only if

(Va,b € H)(3" s(a,b) € U(a,b))(x € U(a,b) — s(a,b) = zoros(a,b)z)(16)
Elements of the form s(a,b) are o-supremums of a and b.

Theorem 5. All of the following hold:

o Anti symmetrical relations are uniquely supremal.

e o-ideals are closed under supremal relations.

o If o is supremal then (K) exists for all nonempty subsets K C H in (H,0)
and is principal.

o If o is supremal and (Z(H),C) has a least element, then it is an algebraic
lattice and the finitely generated o-ideals are its compact elements.

o If o is supremal, let £, \m, X : p(H) \ {0} — @p(H) be maps such that for
any 0 # X C H,

LX)={zr e H;Ja€ Xozxaltand \(X) = L(X)UX (17)
m(X)={a€ H;(Fb,ce X)a=s(b,c)}and ¥(X) =7(X)U X, (18)
then (X) = U (EN)™(X). If o is also reflexive, then (X) = J*(7£)™(X).
e If (Ya,b)oabor oba, then (H,o) is principal, (Va € H){a) = {z : 7(0)za}
and (Z(H), Q) is a chain.

e S is principal and for each a € S, (a) = {b; ocba} if and only if o is a quasi
order.

The above results mean that very few assumptions on o suffice for reasonable
properties on Z(H).

Definition 7. By a neighborhood granulation G on a set S will be meant a subset
of the power set ©(S) for which there exists a map vy : S — G such that

(VBeG)(Fxe S)y(x) =B (Surjectivity)
U y(x) =5 (Cover)
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Definition 8. By a Co-Granular Operator Space By Ideals GOSI will be meant
a structure of the form S = (S,0,G,l.,u.) with S being a set, o being a binary
relation on S, G a neighborhood granulation over S and I, us being *-lower and
*_upper approximation operators : p(S) — ©(S) (p(S) denotes the power set
of S) defined as below (S is replaced with S if clear from the context. Lower and
upper case alphabets may denote subsets):

(VX € p(S) X" ={a:aec X & vy(a)N X € Z,(9)} (*-Lower)
VX ep(9N X ={a:aeS &y a)NX¢I,(S}UX (*-Upper)

In general, if rough approximations are defined by expressions of the form
X% ={a:y(a) © X* € T} with & € {L,u},G C p(S),7: § — § being a map,
x € {c,1} and ® € {N, U}, then the approximation will be said to be co-granular.

The definition of co-granularity can be improved/generalized in a first order
language with quantifiers.

Definition 9. By a Higher Co-Granular Operator Space By Ideals GOSIH will
be meant a structure of the form S = (S,0,G,l,,u,) with S being a set, o being
a binary relation on the powerset ©(S5),G a neighborhood granulation over S
and l,,u, o-lower and o-upper approximation operators : p(S) — p(S) (p(S)
denotes the power set of S) defined by the following conditions (S is replaced with
S if clear from the context. Lower and upper case alphabets may denote subsets):

Fora fizedl € Z,(p(S)) (Ideal)
(VX ep(S) Xl ={a:aec X &~v(a)NX° e} (o-Lower)
VX ep(9) X ={a:aeS &ya)NX ¢I}UX (o-Upper)

Theorem 6. All of the following hold in a GOSI S:

(VA € p(S)) Al C A C A™) (Inclusion)
(VA € p(9)) At C Al (I-Weak Idempotency)

(VA € p(9)) A% C A~ (u-Weak Idempotency)
ol =0 = g (Bottom)

Sl =85 =9 (Top)

Remark 3. The proof of the above theorem is direct. Monotonicity of the approx-
imations need not hold in general. This is because the choice of parthood is not
sufficiently coherent with o in general. A sufficient condition can be that o-ideals
be generated by ¢ that are at least quasi orders.

Proposition 4. In a GOSI S all of the following hold:

e The granulation is not admissible
e The approximations l.,u, are not granular
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Proof. 1t is clear that both the lower and upper co-granular approximations are
not representable in terms of granules using set operations alone on @(S). So
weak representability (WRA) fails. O

The properties of approximations in a GOSIH depend on those of the ideal
and the granulation operator «. This is reflected in the next theorem:

Theorem 7. In a GOSIH S satisfying

e o is supremal,
e 0 is a quasi order and
* (Va)a € y(a)

then all of the following hold:

AP CAC A% o =0; X =X (
AC B — Ao C Bl & Av C B"° (
Alolo — Alo, Atto C Auoto (21
(VA €T) A% = A; (VA°cT)Al> = A (

Proof. Some parts are proved below:

e Monotonicity happens because the o-ideals behave reasonably well. If A C
B, then for any z € Ao it is necessary that v(z) N B¢ C v(z) N A°. This
ensures that Ale C Ble. Again for the upper approximation, If A C B and
z € A% ~(z) N A ¢ T holds. As then v(2) N A C v(z) N B, it follows that
~v(z) N B ¢ Z. This ensures A% C BUo.

e For proving (VA € I) A% = A, note that if z € A% then it is necessary that
v(z)NA¢Torze A It is not possible that v(2) N A ¢ I as A isin I. So
Ate = A.

e Again, if 2 € A and v(2) N A° € T and A° € I, then 2z € A and z € Ale. This
yields A = Abe.

All this shows that the ideal based approach works due to the properties of
the ideals.

Definition 10. For all of the above cases, a natural concept of A being roughly
included in B (A C B) if and only if A' C B! and A* C B for relevant choices
of Lu. A is roughly equal to B (A =, B) if and only if AC B & B C A.
Quotients of the equivalence =, will be referred to as rough objects.

Theorem 8. The antichain based semantics of [7,8] applies to all of GOSI and
GOSIH contexts with corresponding concepts of rough equalities.

The proof consists in adapting the entire process of the semantics in the
papers to the context. Granularity of approximations is not essential for this.
More details will appear in a separate paper.
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5 Meanings of Generalization and Parallel Rough
Universes

The generalizations of the classical definition of approximations derived from
approximation spaces and general approximation spaces using ideals differ sub-
stantially from those that have been introduced in this research paper. Both
possible meanings and properties differ substantially in a perspective that is
formulated below. An extended example is also used to illustrate some of the
concepts introduced in this paper.

In all algebras of arbitrary finite type, ideals can be viewed in second order
perspectives as subsets satisfying closure and absorption conditions. Ideals can
be described through first order conditions [22] in some universal algebras with
distinguished element 0 (that are ideal determined). In the latter case every
ideal is always the 0O-class of a congruence. In both cases, ideals behave like
higher order zeros.

The following implication holds always in a GOSI for a point z € S, A C S
and K being an ideal:

Y CA—yzNA=0—yzNA°CK (23)

The same idea essentially extends to GOSIH where it is also possible to regard
subsets of ideals as essential zeros.

But a subset of an ideal need not behave like a generalized zero in general.
This statement is opposed to the subset is part of a generalized zero. But if
every subset is contained in a minimal ideal, the restriction becomes redundant.
In the absence of any contamination avoidance related impositions, the latter
statement is justified only under additional conditions like the subset is part of
a specific generalized zero. All this is behind the motivation for the definition of
GOSIH. In the relational approximation contexts of [4—6], subsets of generalized
zeros are generalized zeros. Apart from wide differences in properties, major
differences exist on the nature of ideals. Therefore if a property has little to do
(in a structured way) with what something is not, then that something has the
property in an approximate sense. The idea of little to do with or set no value of
relative operations is intended to be captured by concepts of ideals.

If o-ideals are seen as essentially empty sets, then they have a hierarchy
of their own and function like definite entities. The o-ideals under some weak
conditions permit the following association. If A is a subset then it is included
in the smallest o-ideal containing it and a set of maximal o-ideals contained in
it. These may be seen as a representation of rough objects of a parallel universe.

This motivates the following definition:

Definition 11. In a GOSI S = (S,0,G,l,u) in which o is supremal every sub-
set A C S can be associated with a set of maximal o-ideals (u(A)) contained
in S and least o-ideal T(A) containing it. These will be termed parallel rough
approxzimations and pairs of the form (a,b) (with a € p(A) and b =T (A)) will
be referred to as parallel rough objects. Elements of u(A) will be referred to as
lower parallel approximation and T'(A) as the upper parallel approximation.
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The lower parallel approximations can be useful for improving the concept of
GOSI with additional approximations because they refer to inclusion of worthless
things. This is done next.

Definition 12. In a GOSI S with supremal o, for any subset A C S, the strong
lower and strong upper approximations will be as follows:

Als ={z : 2 € A & {0} C ply(z) N A%} (s-lower)
A ={a:aeS & va)NACT(y(a)NA)}UA (s-upper)

Proposition 5. In a GOSI S, for any A C S, the following hold:

Al c AlsC A
Au* — AUS

Proof. It {0} C p(y(x)NA®), then there is at least one nonempty o-ideal included
in y(z) N A¢. This does not imply that vy(z) N A€ is a o-ideal, but the converse
holds. So Al* C Als C A follows.

For the second part, as o is supremal, y(a) N A C T(y(a) N A) ensures that
~v(a) N A is not a o-ideal. The converse is also true. A** = A% follows from
this. O

Often it can happen that objects/entities possessing some set of properties
are not favored by objects/entities having some other set of properties. This
meta phenomena suggests that anti chains on the collection of o-ideals can help
in associated exclusions and inclusions.

Definition 13. In a GOSI S, let O be an antichain in Z,(S) and Ot = {B :

BeZ,(5) & (3C € O)C C B}, 0~ =ZI,(S)\ O". For any subset X C S, the
a-lower and a-upper approximations will be as follows:

Xle={a:aeX &ya)NX €O} (a-Lower)

X ={a:aeS &y a)NX O }UX (a-Upper)

The resulting GOSIS of this form will be referred to as a GOSIS induced by the
antichain O.

Proposition 6. In a GOSI S, for any X C S and nontrivial antichain A, the
following hold:

Xla C Xl* C X
Xt C XUa
5.1 Abstract Examples

Let S = {a,b,ce f,g}, and 0 = {(a,c), (a,e), (b,c), (b,e), (c,c), (¢,b),
(e,a), (f,f)} be a binary relation on it. It is a not symmetric, transitive or
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Table 1. Upper and lower bounds

Pair (z,2) | U(z, z) | L(z, 2)
(a,b) {e,c} |0

(a,c) {c} 0

(a,e) 0 0

(b,c) {c} {c}

(b, e) 0 0

(c,€) 0 {a,b}
(*, f) 0 0
(*.9) 0 0

reflexive. In Table 1, the computed values of the set of upper bounds, lower

bounds, and neighborhoods are presented. * in the last two rows refers to any

element from the subset {a,b, ¢, e}. Values of the form U(z,z) and L(z,z) have

been kept in Table 2 because they correspond to values of neighborhoods of o.
In Table 2, U(x,x) = [x]? and L(x,x) = [X],.

Table 2. Neighborhoods

x | Ux,x) | L(x,x) | <x>
a [{c,e}  |{e} {a}

b |{c,e} {c} {b.c}

c [{b,c} {a,b,c} |{c}

e |{c} {a, b}  [{c,e}
Re); {} {f}

g |0 0 0

Given the above information, it can be deduced that

Proposition 7. In the context, the nontrivial o- ideals are I = {a,b,e,c} and
I, ={a,b,e,c, f}.

If a co-granulation is defined as per v(a) = {b},v(b) = {g}, v(¢) = {¢,a},
~v(e) = {e}, v(f) = {f}, v(9) = {g,b, c}, then the GOSI approximations of the
set A = {a,b} can be computed to be AL = {b} and A* = {a, b, c, g}. For distinct
lattice ideals many approximations of A by I and u; can be computed.

GOSIH related computations of approximations are bound to be cumbersome
even for four element sets and so have been omitted.
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5.2 Example: On Dating

Dating contexts can involve a huge number of variables and features. Expression
of these depend substantially on the level of inclusion of diverse genders and
sexualities in the actual context. A person’s choice of pool of potential dates
depends on factors including the person’s sexuality.

People may decide on their potential dating pool by excluding parts of the
whole pool and focusing on specific subsets. The operation of ezcluding parts of
the pool often happens as a multi stage process involving progressive additions
to desired features or confirmation of undesired features. This means that a
person’s construction of relative dating pools must be happening through rough
approximations based on ideals. An ideal can include a number of features, but
in general it can be impossible to collect all undesired features in a single ideal
as then it would not correspond to anything remotely actualizable.

Typically actualizability depends on the reasoning strategies adopted by the
person in question. It is not that everybody thinks in terms of concrete people
with undesirable features and people with analogous features - abstraction can be
in terms of feature sets. For example, some lesbian women prefer femme women.
But concepts of femme and variants are very subjective in nature. Instances of
such classification (or actualization) may depend on exclusion of many features
like muscular build, but some features like tattoos may be desirable/optional.
These kind of features may be in the general ideal in question.

6 Mereotopology and Approximations

In spatial mereology, spatial regions are associated with elements of a distrib-
utive lattice or a Boolean algebra and which in turn are intended to represent
collections of regions with operations of aggregation and commonality. Over
these binary contact relations C' can be defined over them to represent instances
of two regions sharing at least one point. Various constructions in the subfield
are suited for the ideal based approach to rough approximations. In this section,
some of the basic aspects and recent results are stated and connections with
approximations are established. All this can be viewed as a new example for the
theories invented/developed.

Some concepts and recent results of spatial mereology are mentioned first
(see [23]).

Definition 14. A contact relation C' over a bounded distributive lattice L is a
binary relation that satisfies

Cab—0<a & 0<b (C1)

Cab — Cba (C2)

Cab & b<e — Cae (C3)

Ca(bVe) — Cabor Cae (C4)

0<aANb— Cab (C5)



38 A. Mani

If L is a Boolean algebra, then (L, C) is said to be a contact algebra. If C' satisfies
C1 — C4 alone, then it is said to be a precontact relation and then (L,C) would
be a precontact algebra.

C1 is also written as Cab — Ea & Eb (for contact implies existence). C5 is
basically the statement that overlap implies contact Oab — Cab. The axioms
yield C(a V b)e «—— Cae or Cbe and Cab & a < u & b < v — Cuv.

When temporal aspects of variation of C are permitted, the predicate for
ontological existence E that is defined via Fa if and only if 0 < a is too strong as
non existence is equated with emptiness. In [24], to handle variation of existence
over time, concepts of actual existence, actual part of, actual overlap and actual
contact have been proposed and developed. The actual existence predicate AFE
is one that satisfies

AE(1) & —AE(0) (AE1)
AE(a) & a <b— AE(b) (AE2)
AE(aV b) — AE(a) or AE(D) (AE3)

Subsets of a Boolean algebra that satisfy AE1, AE2 and AE3 are called Grills.
Every grill is a union of ultrafilters or an ultra filter.

A discrete space with actual points is a pair Z = (X, X?) with X being a
nonempty set and ) C X* C X. For H C X, let AEz(H) if and only if HNX® #£
(. If B(Z) is the Boolean algebra of all subsets over X, then (B(Z), AEz) would
be a Boolean algebra with a predicate of actual existence. It is proved in [24]
that

Theorem 9. In Boolean algebras with predicate of actual existence (B, AE),
there exist a discrete space Z = (X,X%) and an isomorphic embedding h :

(B(Z),AEz) — (B, AE).

On a Boolean algebra with an extra predicate for actual existence, it is pos-
sible to define the actual contact predicate or define the latter as a predicate C'®
that satisfies the following axioms:

C*11 & C*00 (Cal)

C%zb — C%x (Ca2)

Czb — Cxx (Ca3)

C%b & b< z— Cz (Cad)
Cz(bVe) — C%b or Cze (Cab)

It is also possible to define a unary predicate AC via AC(x) if and only if C*zzx.

A subset H of a contact algebra B is a clan if it is a grill that satisfies CL:
(Va,b € H)Cab, while a subset H of a precontact algebra B is an actual clan if
it is a grill that satisfies ACL: (Va,b € H) C%ab.
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Associated collections of all clans and actual clans will respectively be
denoted by CL(B) and CL%(B) respectively. It can be shown that CL*(B) C
CL(B) in general. If Z is the set of all ultrafilters F,(B) and R* is the canonical
relation for C'* defined by

R*UV if and only if (Vo € U)(Vb € V) C%xb

The canonical relation R for C is defined in the same way. An ultra filter U is
reflexive if R*UU and all reflexive ultrafilters are actual clans. R® is a nonempty,
symmetric and quasi-reflexive relation while R is a reflexive and symmetric rela-
tion (Quasi reflexivity is R*be — R*bb). All of the following are proved in [24]:

Proposition 8

o RUV if and only if R°UV orU =V.

e Every clan (resp. actual clan) is a union of nonempty sets of mutually R-
related (resp. R*-related) ultrafilters.

o All ultrafilters contained in an actual clan are reflexive ultrafilters while any

ultra filter contained in a clan is an actual clan or a non-reflexive ultra filter.
e C%e if and only if (3G € CL,(B))b,e € G.

6.1 New Approximations

All of the definitions and results in this subsection are new and differ fundamen-
tally from the approach in [25]. If (X, X*) is the discrete space associated with
a Boolean algebra with actual contact (B,C%) and v : X +— p(X?) is a map
then approximations in B can be defined in at least two different ways (for a
fixed actual clan K € CL,(B)):

Ale ={z: 0 € A& y(x)NA° ¢ K} (CG-Lower)
A”a:{x'xeX&'y()ﬂAEK}UA (CG-Upper)
Als = U{7 JNA¢KtNA (G-Lower)
At = U{7 JNAeK}UA (G-Upper)

fe — U{H cHNA¢ KinA (Clan-Lower)

Alte = U{H cHeK & HNA#DUA (Clan-Upper)

The properties of these approximations depend to a substantial extent on
the definition of v used. One possibility is to use the actual-contact relation or a
derived mereotopological relation. In the present author’s view some meaningful
phrases are the things in actual contact with, the things in contact with, the
most common things that become in actual contact by, the things that become in
actual contact by, and the relative wholes determined by. The first of these can
be attempted with the neighborhoods generated by C¢ itself in the absence of
additional information about the context.
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One practical context where approximations of the kind can be relevant is in
the study of handwriting of people. Many kinds of variations in the handwriting
of people (especially of morphological subunits and their relative placement) can
be found over time, location and media used.

So if v is defined as per (Vz)y(z) = [z]ce = {b: C®bx}, then the context
becomes a specific instance of a GOSI in which the ideals are also regulated by
C. If instead y(z) =< x > holds, then it is provable that:

Theorem 10. All of the following hold (in the context of this subsection) for
any two elements of the Boolean algebra with actual contact when y(x) =< x >
Ale CAC At e = = Plo; Xlo = X = X (24)

AC B — Ale C Bla & A% C BYe (25)

Alele = pla; guatie = Ata (26)

(AN B)la = Al 0 Ble; (AU B)!« D Ale U Bl (27)

(AU B)% = A% U B%; (AN B)% C A% N BY (28)

Proof. Note that actual clans determine specific subclasses of ideals. So all of
the above properties follow from results of Sect. 3

Theorem 11. All of the following hold (in the context of this subsection) for
any two elements of the Boolean algebra with actual contact when y(x) = [x]ca =
[x] (for short)

Ale C AC Ate (29)
Pue = = @la; Xla = X = XU (30)
ACB— Al C Bla & A% C BY (31)

Proof

o Ala C A C A% follows from definition.

o Xla={b:be XhND¢gK}=X

e If AC B, then (Vb € Ala)[b] N A° € K¢ and [b] N B¢ C [b] N A°. Since K€ is
an ideal, it follows that Ala C Bla,
If b € A%, then [N A € K. Also [b)N A C [b] N B. But K is a union of
ultrafilters, so [b)] N B € K and consequently b € B, O

Since the basic duality theorems for actual contact algebras (and contact
algebras in particular) are in place [24], the duality/inverse problem of such
algebras enhanced with approximation operators may be solvable with ease. In
the present author’s opinion, the following formalism would be optimal:

Problem 1 (Inverse Problem). Given an algebraic system of the form A =
(B,C%l4,uq) with B, C, being an actual contact algebra and [,,u, are unary
operations satisfying:
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(Vz) 2l C 2 C 2% (32)

Ot =0 =0"; 1l =1=1% (33)

(Vz,v) (2 Cv —> al* Cole & 2" C e (34)
(Vz) Zlele = plo (35)

(Vz) 2t C ztatta (36)

under what additional conditions does there exist a neighborhood operator v and
an actual clan K that permit a definition of the operators [, u, according to

do={r:xcz& ()N ¢ K} (CG-Lower)
o ={r:zeB&vy(z)Nze K}Uz (CG-Upper)

Further Directions and Remarks

In this research, a relatively less explored area in the construction of point wise
approximations by ideals has been investigated from new perspectives by the
present author. The previously available theory has been streamlined and the
meaning of approximations in the approach has been explained. A concept of
co-granular approximations has been introduced to explain the generation of
related approximations including the popular point wise rough approximations.
Further

e the methodology is generalized to specific modifications of granular operator
spaces [7,8] (called co-granular operator spaces) and in particular to lattices
generated by collections of sets and lattice ideals,

the restrictions to general approximation spaces are relaxed,

knowledge interpretation in the contexts are proposed,

few meaningful examples and application areas have been proposed,

ideal based rough approximations are shown to be natural in spatial mereo-
logical contexts and

e related inverse problems are posed.

In a forthcoming paper, the fine details of the mentioned antichain based seman-
tics and other algebraic semantics will be considered by the present author.

References

1. Mani, A.: Dialectics of counting and the mathematics of vagueness. In: Peters, J.F.,
Skowron, A. (eds.) Transactions on Rough Sets XV. LNCS, vol. 7255, pp. 122-180.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31903-7_4

2. Pagliani, P., Chakraborty, M.: A Geometry of Approximation: Rough Set Theory:
Logic, Algebra and Topology of Conceptual Patterns. Springer, Berlin (2008)

3. Yao, Y., Lin, T.Y.: Generalizing rough sets using modal logics. Intell. Autom. Soft
Comput. 2(2), 103-120 (1996)


http://dx.doi.org/10.1007/978-3-642-31903-7_4

42

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

A. Mani

Abo-Tabl, A.: A comparison of two kinds of definitions of rough approximations
based on a similarity relation. Inf. Sci. 181(12), 2587-2596 (2011)

Allam, A., Bakeir, M., Abo-Tabl, A.: Some methods for generating topologies by
relations. J. Malays. Math. Sci. Soc. 31, 35-45 (2008)

Kandil, A., Yakout, M., Zakaria, A.: New approaches of rough sets via ideals. In:
John, S.J. (ed.) Handbook of Research on Generalized and Hybrid Set Structures
and Applications for Soft Computing, pp. 247-264. IGI Global, Hershey (2016)
Mani, A.: Antichain based semantics for rough sets. In: Ciucci, D., Wang, G.,
Mitra, S., Wu, W.-Z. (eds.) RSKT 2015. LNCS, vol. 9436, pp. 335-346. Springer,
Cham (2015). doi:10.1007/978-3-319-25754-9_30

Mani, A.: Knowledge and consequence in AC semantics for general rough sets.
In: Wang, G., Skowron, A., Yao, Y., Slezak, D., Polkowski, L. (eds.) Thriving
Rough Sets. SCI, vol. 708, pp. 237-268. Springer, Cham (2017). doi:10.1007/
978-3-319-54966-8_12

Mani, A.: Algebraic semantics of similarity-based bitten rough set theory. Funda-
menta Informaticae 97(1-2), 177-197 (2009)

Mani, A.: Contamination-free measures and algebraic operations. In: 2013 IEEE
International Conference on Fuzzy Systems (FUZZ), pp. 1-8. IEEE (2013)

Mani, A.: Algebraic semantics of proto-transitive rough sets. In: Peters, J.F.,
Skowron, A. (eds.) Transactions on Rough Sets XX. LNCS, vol. 10020, pp. 51—
108. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53611-7_3

Xiao, Q., Li, Q., Guo, L.: Rough sets induced by lattices. Inf. Sci. 271, 82-92
(2014)

Estaji, A., Hooshmandasl, M., Davvaz, B.: Rough set theory applied to lattice
theory. Inf. Sci. 200, 108-122 (2012)

Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fundamenta
Informaticae 28, 211-221 (1996)

Mani, A.: Super rough semantics. Fundamenta Informaticae 65(3), 249-261 (2005)
Duntsch, I.: Rough sets and algebras of relations. In: Orlowska, E. (ed.) Incom-
plete Information and Rough Set Analysis, pp. 95-108. Physica, Heidelberg (1998).
doi:10.1007/978-3-7908-1888-8_5

Duntsch, I., Orlowska, E.: Discrete duality for rough relation algebras. Fundamenta
Informaticae 127, 35-47 (2013)

Mani, A.: Ontology, rough Y-systems and dependence. Int. J. Comput. Sci. Appl.
11(2), 114-136 (2014). Special Issue of IJCSA on Computational Intelligence
Duda, J., Chajda, I.: Ideals of binary relational systems. Casopis pro pestovani
matematiki 102(3), 280-291 (1977)

Rudeanu, S.: On ideals and filters in posets. Rev. Roum. Math. Pures. Appl. 60(2),
155-175 (2015)

Venkataranasimhan, P.: Pseudo-complements in posets. Proc. Am. Math. Soc. 28,
9-17 (1971)

Gumm, H., Ursini, A.: Ideals in universal algebras. Algebra Universalis 19, 45-54
(1984)

Dimov, G., Vakarelov, D.: Contact algebras and region-based theory of space: a
proximity approach I. Fundamenta Informaticae 74(2-3), 209-249 (2006)
Vakarelov, D.: Mereotopologies with predicates of actual existence and actual con-
tact. Fundamenta Informaticae, 1-20 (2017, forthcoming)

Polkowski, L.: Approximate Reasoning by Parts. Springer, Heidelberg (2011)


http://dx.doi.org/10.1007/978-3-319-25754-9_30
http://dx.doi.org/10.1007/978-3-319-54966-8_12
http://dx.doi.org/10.1007/978-3-319-54966-8_12
http://dx.doi.org/10.1007/978-3-662-53611-7_3
http://dx.doi.org/10.1007/978-3-7908-1888-8_5

Certainty-Based Rough Sets

Davide Ciucci®) and Ivan Forcati

Department of Informatics, Systems and Communication (DISCo),
University of Milano—Bicocca, Milano, Italy
ciucci@disco.unimib.it, i.forcati@campus.unimib.it

Abstract. The departing point of this study is a data table with cer-
tainty values associated to attribute values. These values are deeply
rooted in possibility theory, they can be obtained with standard pro-
cedures and they are efficiently manageable in databases. Our aim is
to study rough set approximations and reducts in this framework. We
define three categories of approximations that make use of the certainty
value and generalize different aspects of the approximations: their equa-
tion, the binary relation used and the granulation. Further, new kinds
of reducts aimed to make use or reduce the information provided by the
certainty values are given.

Keywords: Possibility theory - Rough sets - Approximations * Reducts

1 Introduction

Since the inception of rough set theory, it was clear that data can be incomplete
or uncertain. Thus, several models were proposed to tackle different forms of
uncertainty. We had the pioneering work about non-deterministic information
tables [8] where for a given object and attribute we do not know precisely the
value but a set of possible values (with equal probability). Then, Ziarko intro-
duced the variable precision rough set model [17], which was later generalized
to the probabilistic rough set model [14], where probabilities are introduced in
rough sets by means of the rough membership function.

Motivated by the recent results on possibilistic conditional tables [9,10], we
suppose here that data come with a possibility distribution in the simplified
form of certainty-based qualification [9] — hence the name given to the model of
“certainty-based” rough set. That is, we suppose that the value assigned to a
pair (object, attribute) can come with a degree of certainty. These values express
an epistemic uncertainty on data, such as we are undecided if James prefers
Raffaello or Tiziano paintings but we are sure that he does not like Tintoretto;
or we tend to believe that Julia’s car is red, but we are not sure.

For a detailed comparison and the advantages of using in this context pos-
sibility theory with respect to other approaches to uncertainty, we refer to [10].
Here, let us stress that
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1. adding certainty values to attributes does not increase the computational
complexity of database queries [9];
2. it is practically feasible to compute possibility distributions on data [4].

So, given a data table with associated certainty degrees for the attribute
values, we want to study how rough approximations and reducts can be defined.
We suppose the reader familiar with the basic notions of rough set theory, such
as information table, approximations and reducts [12]. As far as notation is
concerned we will denote an information table! as I = (U, Att, Val, F) with the
standard meaning, that is, U is the set of objects, Att the set of attributes,
Val = UgeatVal, the union of all possible values for attributes and F' the
mapping object-attribute onto values.

We also notice that our approach is different from Nakata and Sakai one
[6,7] for two reasons. First of all, they study data with “full” possibility distri-
butions attached, whereas we suppose to only have necessity measures (for the
advantages of this approach see Sect.2). Secondly, they adopt a possible world
interpretation and convert a possibilistic table into a set of classical tables to be
studied separately and then aggregate the results. Here, we do not need to split
the table but we directly use the necessity measures in defining the approxima-
tions and reducts.

The paper is organized as follows: in Sect.2 we give the basis of Possibility
Theory and give an extended definition of information table. In Sect. 3 we define
the lower and upper approximations taking into account the necessity measure
associated to data; we will see three different approaches to give generalized
approximations. In Sect.4, new kinds of reducts based on necessity measures
will be given. Finally, conclusions and future works are outlined.

2 Possibility Theory

Possibility theory is an uncertainty theory, complementary to probability, and
aimed to manage incomplete information [5]. Firstly meant to provide a graded
semantics to natural language statements [16], then it showed also useful in other
contexts, such as preference representation or to express imprecise probabilities
[5]. It relies on the notion of possibility distribution: let S = {s1,...,s,} be a
set of states referred to a world of interest and L be a totally ordered scale with
top element 1 and bottom element 0. A possibility distribution is a function
m : S — L that associates a value of possibility to each state of S. We notice
that it is not additive, contrary to probability distributions. It represents the
state of knowledge of an agent about the state set S and its values express the
possibility that a state shall occur. That is, if w(s) = 0 then the state s is believed
as impossible; if 7(s) = 1 the state s is instead believed as totally possible. The
intermediate values between 0 and 1 are used to express a graded possibility:

! Let us remark that we are not using the term information system on purpose, since
outside the rough-set community it has a different and broader meaning, as discussed
in [2].
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the larger the value of 7(s) is, the more possible it is believed. Moreover, a
normalization condition is assumed: there exists a state s totally possible, i.e.,
such that 7(s) = 1. In the following, we assume, for the sake of simplicity and
without loss of generality, that L is the unit interval [0, 1]. However, also finite set
of values, for instance representing linguistic labels, are a possible and simpler
choice for L. Using possibility distributions, we can associate to any event two
measures: the necessity and the possibility.

Definition 1. Given a possibility distribution on a set of states S and a sub-
set A C S, which represents an event, we can define possibility and necessity
measures, respectively, as

IIA) = ilelgﬂ(s) N(A) = Slélg 1—7(s) (1)

These two measures are dual, that is N(A) = 1 —IT(A€) where A€ is the comple-
ment of A. This is another main difference with probability measures P which
are self-dual, that is P(A) =1 — P(A°). Furthermore, due to the normalization
condition on 7

if N(A) >0 then Vse A, 7n(s)=1 (2)

Now, given an information table I = (U, Att,Val, F), we want to associate
a possibilistic information to the data, representing their degree of confidence.
In this case, for each attribute a € A, the states of the world are described by
the different values that can be assumed by a. So, for each object x € U, we can
associate a possibility distribution to the pair (z,a), pointing out which values
are the most expected and which ones are unlikely to be seen.

Ezample 1. Let Temperature be an attribute with values {Low, Medium, High}.
Given an object x, a possibility distribution = on x for Temperature could be
% (Low) = 1, nf(Medium) = 0.7, n§.(High) = 0.2.

This is the general case but we are not interested in having a complete possi-
bility distribution for each attribute. Instead, we would simply like to have one
measure for each pair (z,a) associated to the value F(z,a). Thus, we need to
define a confidence function C' : U x Att — [0, 1] using one of the two measures
above. An information table on which a function C' is defined can be denoted
as I = (U, Att,Val, F,C). Our choice is to use the necessity measure N as the
confidence function in order to represent a degree of certainty about the data.
Formally, if 77 is a possibility distribution for attribute a and object x and NF
is the associated necessity measure, then C(z,a) = NZ({F(z,a)}).

This restriction simplifies the framework but does not lead to a trivial situ-
ation. Firstly, the information conveyed by the many possibility distributions of
the general case could be hardly usable in a meaningful manner, thus we gain in
intelligibility. Then, it is easy to extend the operations of relational algebra to
the case where values of graded certainty are associated to the table, keeping at
the same time the data complexity of a classical database [9,10].
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Ezample 2. We give an example of an information table, with a confidence func-
tion expressed by a necessity measure, that is referred to natural language state-
ments made by several people regarding weather conditions in a sea location.

Table 1. Example of an information table

Person | Weather Temperature | Wind Humidity | Sea

T Partly cloudy | Medium Moderate | Low Very rough
T2 Partly cloudy | Medium Gentle Low Rough

T3 Overcast Medium Moderate | Medium | Very rough
T4 Rainy Low Moderate | Low Rough

5 Partly cloudy | Medium Gentle Low Rough

Te Overcast Medium Strong Medium | Very rough
x7 Overcast Low Moderate | Low Storm

T8 Overcast Low Gentle Low Very rough
Tg Partly cloudy | Medium Moderate | Low Very rough
10 Overcast Medium Strong Medium | Very rough

The confidence function C' associated with the table is shown in a tabular
form in Table2. Let us stress that, in general, we do not need to set all values
with infinite precision. The unspecified confidence values can be assumed to have
value 1 and the set of possible values L can be limited to a finite and small one.

Table 2. Necessity measure associated with the data of Table 1.

Person | Weather | Temperature | Wind | Humidity | Sea
x1 0.8 0.9 0.7 0.9 0.8
T2 0.9 0.9 0.5 1.0 0.5
T3 1.0 0.9 0.8 0.7 1.0
T4 0.7 0.8 0.9 0.6 0.6
Ts5 0.8 1.0 0.6 0.8 0.4
Z6 1.0 0.9 0.4 0.8 0.8
T7 1.0 0.8 0.9 0.9 0.3
T3 0.9 0.7 0.8 0.8 0.9
Z9 0.8 0.9 1.0 1.0 0.8
T10 0.8 1.0 0.7 0.7 0.9

We notice that several possibility distributions can generate the same neces-
sity measure. Indeed, let us consider a pair (z,a) such that F(z,a) = val and
C(z,a) = a > 0. Then, we know that 7% (val) = 1 since the degree of necessity
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is « and it is greater than 0 (see Eq.(2)). On the other hand, the possibility
distribution for all other values val’ € Val,, val’ # val is not known: we can
only say that 7¥(val’) < 1 — «, according to the definition of necessity measure
given in Eq. (1). The largest of these possibility measures is of course the one
assigning the greatest possible value to all alternatives, i.e. 7%(val’) = 1 — .
Indeed, this is a common choice to define a possibility distribution once given a
certainty measure, see [9,10].

Ezample 3. With reference to the previous example, we have for the possibility
distribution 7jj; relative to the attribute Weather that njj (Partly Cloudy) = 1,
Ty (Overcast) = 0.2, ) (Rainy) = 0.2.

3 Approximations

In this section, we discuss how to exploit the confidence C' in the definition of
the approximations. Let us recall the standard definitions of lower and upper
approximations generated by a (at least serial) relation R. They are mappings
Lg,Ur : P(U) — P(U) such that for a set of objects S C U: Lr(S) = {z €
U|R(z) C S} and Ug(S) = {z € U|R(x)N S # 0} with R(x) the neighbourhood
of x with respect to R [13].

Remark 1. Seriality of the relation R is the condition that ensures that for all
sets S we have Lr(S) C Ug(S). It is debatable if this property is enough or not
to characterize the two mappings as lower and upper approximations or if the
stronger property Lr(S) C S C Ur(S) is needed [1,3]. We decided to adopt the
more general case, this choice will have an influence only in Sect. 3.3.

There are different elements playing a role in these definitions, for our scope
we take into account: the formula for the approximations, the relation R and
the granulation of the universe. By generalizing one of these three elements we
classify different possible generalized approximations that use the confidence
values.

3.1 Changing the Granulation

The standard definitions of lower and upper approximations are used, whereas
the granulation of the universe generated by the relation R is changed using the
confidence values.

Granulation Refinement. The granulation (partition in case of an equivalence
relation) is made finer by taking into account the confidence. There are several
ways that we can use to make the granulation finer: here, we will show two of
them, giving reasons for their relevance.

First, we illustrate a way to bipartite the granules considering a threshold for
each relevant attribute. Given a subset of attributes A = {a1,...a,} C Att, let
S1,..+,8n € [0,1] be the chosen thresholds. In each granule, we check if all the
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confidence values for the elements are higher than the relative thresholds: based
on the positive or negative results of these checks, we split the elements into two
subsets. That is, for each granule G (that is R(x) in case of neighbourhoods of
a binary relation), we create the subsets Gy and G; and we divide the elements
x € G as follows:

3)

r € Gy if C(x,a;) >s;fori=1,....n
r € Gy otherwise

This refinement can be useful when we want to assign a different relevance,
based on the confidence, to each attribute and, consequently, point out those
elements whose confidence values are satisfactory.

The second kind of granulation refinement considers a distance of confidence
between elements: each granule is split into two subsets according to the similar-
ity of the confidence values. Let € € [0, 1] be a threshold: given an element y € U
and the granule G = R(y), each element x € G is classified in the set G if the
distance between its confidence value C(z) and the confidence value of y, that
is C'(y), is less than €; otherwise it is put into the subset G3. So, this refinement
is expressed by

(4)

e Gy if |C(y) —C(x)| <e
z € Gy otherwise
This type of granulation refinement can be useful when we would like each
granule to contain only those elements whose confidence values are more or less
similar to the one of the element that generated the granule.

More Importance to Higher Confidence Values. It could be useful to consider
from the very beginning only those elements whose confidence values are high
enough. So, instead of taking into account the confidence after having established
an indiscernibility relation R, we could at first bipartite the space of objects U
separating the ones that have good confidence values Uy g, i.e. above a partic-
ular threshold, from the ones that have lower confidence values Uj,,,. After this
step, we can proceed applying the relation R to obtain a finer granulation only
for the objects in Up;gn. The objects in Uiy, will form a standalone granule.

3.2 Changing the Formula for the Approximations

There can be several ways in which the formula of the approximations can be
generalized. The one we present here is based on relaxing the constraints of the
set inclusion. Similarly as what is done with probabilistic rough set [14] and vari-
able precision rough set [15,17], for the lower approximation we require a partial
inclusion of R(z) in X and for the upper approximation that the intersection
between R(x) and X shall contain a certain number of elements. In our case
however, the thresholds that appear in the formulas of the approximations also
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depend on a single object z. As such they can be seen as a particular case of
approximations obtained by granulation in rough mereology [11, Chap. 2].

Let s(z) € (0,1] and 5(z) € [0, 1) be two real numbers. We define the approx-
imations as

800 = o e U] EHEE > s(a))
)

. R@)NX|

R(x) = (e e v | T EE S 50y

under the constraint that s(z) > §(z). These two thresholds can be defined
according to the confidence values of x. The reason is the following: given two
elements x1 and x5, with C4(z1) > Ca(22), it could be reasonable to request that
s(x2) > s(x1) (and $(z2) > 3(x1)) so that xo should have more neighbours in X
than x1 to have the right of being in the approximations of X since the values
that guarantee x5 membership in X are not as certain as the ones from ;2.

It is straightforward to prove that these approximations satisfy some standard

properties.

Proposition 1. Let R and R be defined as in Eq. (5). Then, the following are
satisfied:

- R(0) =R(0) =0; RU) = R(U) =U

-~ R(XUY)2R(X)UR(®Y)

- R(XNY)C R(X)NR(Y)

- R(XNY)CRX)NR(Y)

- R(XUY) 2 R(X)UR(Y)

- X CY = R(X)CR(Y) and R(X) C R(Y)

3.3 Generalizing the Relation Using the Confidence

The confidence function C expresses a graded certainty about the data. The idea
is to bring this further information inside the relation R. This new kind of relation
connects the elements in a graded way, so that we can associate a certainty value
to each pair (z,y) € R. We denote this value as Ngr(z,y). Furthermore, let us
suppose to be able to define a possibility grade for the relation R and denote
it as [g(x,y) (we will explain how to define these two values in the following).
Obviously, both Ng(z,y) and IIg(x,y) shall be included in the interval [0, 1].

Now, given an element « € U and a real number a € [0,1], we denote as
R, (z) the set of all elements y related to x for which the certainty value of
R(z,y) is greater than a:

Ro(z) ={y €U | (z,y) € RA Ng(z,y) > a} (6)

2 By Ca(z) we mean an overall confidence of « based on attributes A C Att, it is not
specified here how to compute this value.
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Similarly, given an element x € U and a real number 3 € [0, 1], we denote R®(x)
as the set of all elements y € U for which the general maximum possibility grade
of being in relation with x is at least (3, that is

RP(z) ={y € U | Ig(z,y) > B} (7)

In order to obtain meaningful approximations, II and N must be defined such
that R, (z) C RP(z).

Given these definitions and constraints, we can now define the approxi-
mations. The lower approximation highlights the necessity of the relation R,
expressed by R,, while the upper approximation uses the possibility of R,
expressed by R”. The definitions read as follows:

R(X)={z €U | Ra(z) C X A Ro # 0}

R(X)={zecU|R*xz)nX #0} (®)
These approximations do satisfy the property R(X) C R(X): this fact sim-
ply follows from R, (z) C R?(x). We notice that in the definition of the lower
approximation it is necessary to specify that R, (x) must not be empty since the
empty set is always a subset of X: in fact there could exist an element y € U for
which R, (y) = 0 and this element would be part of the lower approximation, if
there wasn’t this specified restriction for R,,. This constraint is somehow similar
to requesting the seriality of R in the standard case.

How to Obtain Ny and IIr. Now, we give a possible solution to the problem of
defining the necessity and possibility of the relation R given the confidence on
the attributes. For the sake of simplicity, we define Ng(z,y) as the minimum of
all the confidence values relative to the elements x and y such that (x,y) € R:

Nr(z,y) = min{{C(z,a)} U{C(y, a)}} (9)

So, we have established a certainty grade Ng(z,y) for every pair (z,y) € R.
This is enough in order to define the lower approximation according to Eq. (6).
Moreover, this value of certainty represents also a value of uncertainty: indeed,
it gives constraints on the possibility IIr(z,y) that any two elements (x,y) are
in relation. It is easy to calculate this value for each pair (z,y) € R since the
necessity grades Ng(z,y) are available and, by Egs. (1) and (2), if Nr(z,y) >
0 then ITg(z,y) = 1. So we need only to compute ITr(z,y) for all the pairs
(z,y) ¢ R. At first, let us consider the following example.

Ezample 4. We have an information table where U = {z1, 22}, Att = {a1,a2},
Val,, = {b,c,d}, Val,, = {e, f,g} and each cell of the Table 3 shows firstly the
value of F(z;,a;) and then the value of C(x;,a;), for 4,5 =1,2.

Let R be the indiscernibility relation defined over A = {ay, a2} in the stan-
dard way, so (x1,22) ¢ R.

Let us consider the attribute a;: the value of C' is higher for x; than xo, so
the value F'(x1,a1) is more certain than F(z2, a1). If there is a chance for one of
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Table 3. An example to show the procedure to compute I1g.

z1 | (b, 0.9) | (g, 0.6)
z2 | (¢, 0.5) | (f, 0.8)

the elements to change its value, because of its uncertainty, this chance is surely
higher for xo: in particular, it is clear that IT(F'(z2,a1) # ¢) = 1-C(22,a1) = 1—
0.5 = 0.5, which is higher than IT(F(z1,a1) #b) =1-C(x1,a1) =1-0.9 =0.1.
The same reasoning can be made for the attribute as, where IT(F(z1,a2) # g) =
0.4 > H(F(LL'Q, ag) # f) =0.2.

We cannot know exactly what is the possibility either that F(z2,a;) = b
or F(z1,az) = f. But we know for sure that these possibilities are bounded by
the values of C(z2,a1) and C(z1,as) respectively. That is, we can state that
II(F(z2,a1) =b) <1-C(z2,a1) = 0.5 and II(F(z1,a2) = ) <1-C(z1,0a2) =
0.4. So the exact values of II (F(z2,a1) =b) and II(F(z1,az2) = f) are unknown
to us (unless, of course, we know the underlying possibility distribution that
have generated the values of C'). However, similarly to what has been explained
at the end of Sect.2, we assume the scenario with major uncertainty and set
Iox (F(z2,a1) = b) = 0.5 and Hyax(F(x1,a0) = f) = 0.4.

Now, by generalizing what we have just shown in the example, we obtain for
(z,y) & R:

HmaX(F(mv CL) = F(y’ a‘)) =1- min{C(x, a)7 C(yva)} (10)

for each attribute a € A. Supposing the independence of all these possibility
values for each attribute a € A, we can calculate the general maximum grade of
possibility that two elements are related, using an independence product law as
follows:

Op(z,y) = [[ Mwax(F(x,0) = F(y,a)) (11)
acA

for any two elements z,y € U for which (z,y) ¢ R.

Of course, the definitions and thus the calculus of these possibility grades
(both ITjnax and ITr) depend on the definition of R: in the previous paragraphs
we have shown how to calculate them only for an equivalence relation. The
final step is to show that these two measures are well defined, in the sense that
Ro(z) C RP(2).

Proposition 2. Given the definitions Nr and IIg as in Egs.(6), (7) and the
ones of Ry and RP as in Egs. (9), (11), then R, (z) C R®(x) for each o, 3 € [0,1]
and for each x € U.

Proof. The proof is simple, as it follows directly from the definitions of R, ()
and R®(x). In fact from the definition of R, (x) we can state that R, (z) C R(x)
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and from the definition of R”(z) we can state that R(z) C RP(x): these two
facts together, that are valid for each «, 8 € [0,1] and for each x € U, lead to
the initial statement.

4 Reducts

In the classical case, a reduct represents a reduction of the attributes that keeps
the relation R unchanged. When considering a table with a confidence function,
this classical definition holds, as the confidence is, at most, included in the defini-
tion of R. So taking as R¢ one of the relations based on the confidence C' defined
in the previous section, we can define an attribute reduct in the standard way.

Definition 2 (Attribute reduct). Let (U, Att,Val, F,C) be an information
table with confidence, A C Att a subset of attributes and Rac C U x U the
indiscernibility relation defined over A and C. A subset of attributes B C A is
an attribute reduct when

RA,C = RB,C andRB/C 7§ RA,C Y B’ CcB (12)

However, we can also reduce the information conveyed by the confidence
function: despite the fact that the confidence values have, in general, a qualitative
meaning, we can ask which are the minimal confidence values that keep the
relation R unchanged. This is what we call a reduct on confidence. At first, let
us define an order relation among confidence measures C, C’

C'=<C iff VxeUVac Att,C'(x,a) < C(x,a) (13)

As usual, the strict order relation is: C' < C' iff C’ < C and C’ # C. A reduct
on confidence is then defined as follows.

Definition 3 (Reduct on Confidence). Let (U, Att,Val, F,C) be an infor-
mation table, A C Att a subset of attributes and Rac C U x U the indiscerni-
bility relation defined over A and C. A function D : U x Att — [0,1] is a reduct
on confidence when

RA7C=RA}DandRA,D/ #RA)CVD/-<D (14)

This type of reduct is useful since it allows to maintain only the confidence
values that are essential for the relation R. In fact, all the values that don’t
influence R can be set to 0.

Example 5. Given the information table about weather conditions, let A C Att
be a subset of attributes such that A = {Temperature, Humidity}. Let R be the
equivalence relation defined over A and R4 the (equivalence) relation obtained
after applying the granulation refinement specified in Eq. (3), with the thresholds
s; = 0.8 for both attributes in A. Thus, the granulation space is as follows:

U/Ra = {{z1,22, 25,29}, {x3, 210}, {74, 78}, {w6}, {27} }
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A reduct on confidence for this case is represented by the following function
D, represented in a tabular form:

Person | Weather | Temperature | Wind | Humidity | Sea
1 0.0 0.8 0.0 0.8 0.0
) 0.0 0.8 0.0 0.8 0.0
T3 0.0 0.8 0.0 0.8 0.0
T4 0.0 0.0 0.0 0.0 0.0
s 0.0 0.8 0.0 0.8 0.0
T6 0.0 0.0 0.0 0.0 0.0
7 0.0 0.8 0.0 0.8 0.0
s 0.0 0.0 0.0 0.0 0.0
T9 0.0 0.8 0.0 0.8 0.0
Z10 0.0 0.8 0.0 0.8 0.0

We can observe that the confidence values of all attributes of Att that are
not included in A are set to 0, because they are not relevant to the relation R 4.
Some of the confidence values of the attributes in A are set to 0 too, and this
happens when one or both these values are less than the threshold. Furthermore,
this is the only reduct on confidence for this case.

While the standard case keeps the relation R unchanged, we can define a reduct
which preserves another property, that is the average confidence of the informa-
tion table. We define this average confidence simply as an average over all the
confidence values of the table. In the example we give at the end of this section,
we use an arithmetic mean to calculate it, but other types of mean could also
be used.

Definition 4 (Average confidence reduct). Let B C Att be a subset of
attributes and C(B) the average confidence of B. Then B is a reduct for average
confidence when

C(B) > C(Att)and C(B') < C(B)Y B' C B (15)

This reduct keeps the average confidence of data at least at the level of the initial
average confidence, but it does not preserve at all the relation R.

Ezxample 6. Let us consider again the weather example and calculate the average
confidence of the whole table. As stated before, we use a simple arithmetic mean,
so the average confidence is C(Att) = 0.802. Now, the average confidence of each
attribute is:

— C(Weather) = 0.87
— C(Temperature) = 0.88
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— C(Wind) =0.74

— C(Humidity) = 0.82

— C(Sea) =0.70
It is obvious that the only reducts for average confidence are:

— B; = {Weather}
— By = {Temperature}
— B3 = {Humidity}

As already noted, these reducts do not preserve at all the indiscernibility
relation among the elements of the table.

To make this kind of reduct more significant, we can use it as a selection criterion
among several already known reducts. That is, given the reducts By,..., By,
which preserve the relation R, we could keep only those whose average confidence
is not lower than the initial one.

We can enunciate this confidence criterion as follows:

Definition 5. Given an information table (U, Att,Val, F,C) and some reducts
By,...,B, for it, it is preferable to consider only the reducts B; such that
C(B;) > C(Att). If none of them satisfies this criterion, then we just keep the
best reduct, that is the reduct Buyax such that Byax = argmax,_; C(By).

Of course, this criterion can be used also with reducts obtained by decision tables
in order to define more confident rules.

5 Conclusions

In the present work, we have introduced the notion of information table with
certainty values with the aim to take advantage of some possible information
on the uncertain knowledge on data. Indeed, the consequences and usefulness of
this new information in rough set theory have been explored and in particular,
several kinds of approximations and reducts have been defined that use in a
different manner the confidence values.

Of course this is only a preliminary step. As a future work, these new approx-
imations and reducts should be tested and compared on real cases. In particular,
when dealing with decision tables, the role of the confidence to define the rules
has to be exploited. One possible solution is to use the criterion defined at the
end of Sect. 4.
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Abstract. In this paper, we use an example in evidence-based medi-
cine to illustrate the practical application backgrounds of Pawlak’s rough
membership function in real life. By this example, we also point out the
limitations of Pawlak’s rough membership function in real life appli-
cations and the necessity for constructing rough membership functions
for covering-based rough sets. Then, we construct covering-based rough
membership function for one type of covering-based rough sets which
was examined by Bonikowski et al. (Inf Sci 107:149-167, 1998), and use
it to characterize the covering-based rough set approximations numeri-
cally. We not only present theoretical backgrounds for this covering-based
rough membership function, but also show that this covering-based rough
membership function is more realistic than Pawlak’s rough membership
function in applications of real life.

Keywords: Rough membership function - Covering-based rough set -
Probabilistic rough set - Fuzzy set - Numerical characterization -
Evidence-based medicine

1 Introduction

The concept of rough sets was originally proposed by Pawlak [8]. It is a
new mathematical tool to handle uncertain knowledge, and has been success-
fully applied in pattern recognition, data mining, machine learning, and so on
[7,11,21]. A problem with Pawlak’s rough set theory is that partition or equiva-
lence relation is explicitly used in the definition of the lower and upper approx-
imations. However, such a partition or equivalence relation is still restrictive for
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many applications because it can only deal with complete information systems
[7,11,20]. To address this issue, generalizations of rough set theory were consid-
ered by scholars in order to deal with complex practical problems. One important
approach was to relax the partition to a covering and obtained covering-based
rough sets. Based on the mutual correspondence of the concepts of extension
and intension, Bonikowski et al. proposed a type of covering-based rough sets
[1]. Pomykala explored this covering-based rough set [12]. His main method
included interior and closure operators from topology [12]. Zhang et al. studied
axiomatic characterizations of this covering-based upper approximation operator
and examined the independence of axiom sets [22]. Furthermore, the minimiza-
tion of axiomatic characterizations of this covering-based upper approximation
operator was investigated and more refined axiom sets were presented in [23].
The concept of rough membership functions played an important role in
rough set theory for measuring the uncertainty of a set in an information sys-
tem [10]. For a finite universe, a rough membership function was typically com-
puted by Pawlak et al., and was used to present numerical characterizations of
Pawlak’s rough set approximations [9]. Based on the rough membership function,
Yao revisited probabilistic rough set approximation operators. He also made a
survey on existing studies, and gave some new results on the decision-theoretic
rough set model [18]. Pawlak and Skowron interpreted rough sets by constructing
membership function, weak membership function or strong membership function
[10]. Greco et al. used the concept of absolute and relative rough membership
functions to present a parameterized rough set model, which is a generalization
of the original definition of rough sets and variable precision rough sets [3]. In
addition, the relative rough membership function was an instance of a class of
measures known as the Bayesian confirmation measures [2]. However, as pointed
out by the authors of [5], a partition induced by equivalence relation may not
provide a realistic view of relationships between elements in the real-word appli-
cation although it is easy to analyze. Instead, a covering of the universe might
be considered as an alternative to provide a more realistic model of rough sets
[1,5,12,16]. Based on coverings of the universe, Yao and Zhang defined min-
imum, maximum and average rough membership functions, and studied their
properties [19]. Furthermore, Intan and Mukaidono constructed minimum, max-
imum and average rough membership functions which are based on a-coverings
of the universe, and examined their properties [4]. Xu and Zhang proposed new
lower and upper approximations and constructed a covering-based rough mem-
bership function for them [16]. They also defined a measure of roughness based
on the covering-based rough membership function and discussed some signifi-
cant applications of this measure [16]. Based on the covering-based rough mem-
bership function defined in [16], Shi and Gong constructed similarity measure
for covering rough sets, and established relationships between covering-based
probabilistic rough sets and Pawlak rough sets or covering-based rough sets or
Pawlak probabilistic rough sets [14]. In view that the rough membership func-
tions studied in the above papers are described only by a single binary relation or
a single covering on a given universe, which can not be applied in some practical
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multigranulation backgrounds, Lin et al. proposed the maximal and minimal
degree of rough membership to characterize the uncertainty of covering-based
multigranulation rough sets [5].

However, to the best of our knowledge, no researcher pays attention to rough
membership function of covering-based rough set mentioned in the first para-
graph of this section, or to the practical applications of Pawlak’s rough mem-
bership function in real life. In this paper, we use an example in evidence-based
medicine to illustrate the practical application backgrounds of Pawlak’s rough
membership function in real life. By this example, we also point out the limi-
tations of Pawlak’s rough membership function in applications of real life and
the necessity of constructing rough membership functions for covering-based
rough sets. Then, we construct covering-based rough membership function for
the covering-based rough set. We not only present theoretical backgrounds for
the covering-based rough membership function, but also show that this covering-
based rough membership function is more realistic than Pawlak’s rough mem-
bership function in applications of real life.

The remainder of this paper is arranged as follows: In Sect. 2, after reviewing
the concept of Pawlak’s rough membership function and numerical characteriza-
tions of Pawlak’s rough set approximations, we present theoretical backgrounds
of Pawlak’s rough membership function. Then, we give an example in medical
diagnosis to illustrate practical backgrounds of Pawlak’s rough membership func-
tion in real life. By this example, we also point out the limitations of Pawlak’s
rough membership function in applications of real life. In Sect. 3, we present sev-
eral fundamental concepts and basic facts needed in this paper. Section4 is the
focus of this paper. In Sect. 4, we construct covering-based rough membership
function for the covering-based rough set, and present its numerical characteri-
zations. In Sect. 5, after presenting theoretic backgrounds for the covering-based
rough membership function, we use the example presented in Sect. 2 to illustrate
the covering-based rough membership function is more realistic than Pawlak’s
rough membership function when considering practical applications. This paper
concluded in Sect. 6 with remarks for future works.

2 Pawlak’s Rough Sets

In this section, we first review the concept of Pawlak’s rough membership func-
tion and numerical characterizations of Pawlak’s rough set approximations. Then
we present theoretical backgrounds of Pawlak’s rough membership function.
Finally, we employ an example in medical diagnosis to illustrate the practical
backgrounds and limitations of Pawlak’s rough membership function.

Pawlak’s rough sets are defined as follows [9]:

Let U be a finite set and R be an equivalence relation on U. R will generate
a partition U/R on U, and a block of the partition U/R containing the element
2 will be denoted as [z]g. VX C U, the lower, upper approximations and the
boundary region of X are defined in the following way respectively:
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R(X)={zxeU:[z]g C X},
RX)={z€U:[z]rN X # o},
BNp(X) = R(X) - R(X).

2.1 Definition of Rough Membership Function

Pawlak’s rough membership function is a function pf : U — [0,1], defined by

nx
pl(z) = M, where x € U, X C U and |X]| denotes the cardinality of

|[z]&]
X [15].
The rough membership function expresses conditional probability that z
belongs to X given by R and can be interpreted as the degree that = belongs to
X in view of information about x expressed by R [9)].

2.2 Numerical Characterizations

Pawlak’s rough sets can be also defined by the rough membership function
instead of approximation. That is, if u% be a rough membership function on
U, then VX C U, the approximations and the boundary region of X can be
defined as follows [9]:

R(X)={z e U: uR(z) =1},
R(X)={x e U: uR(z) > 0},
BNgr(X)={z cU: puf(z) € (0,1)}.

x
x

2.3 Backgrounds of Rough Membership Function

Theoretical Backgrounds. The rough membership function may be inter-
preted as a special kind of fuzzy membership function. Under this interpretation,
it is possible to establish the connection between Pawlak rough sets and fuzzy
sets as follows [17]: VX C U,

R(X) = {z € U: pf(z) =1} = core(uf),
R(X)={z €U : pf(z) >0} = support(u%).
Besides, the rough membership function, in contrast to fuzzy membership
function, has a probabilistic flavor. The relationship between probabilistic rough
sets and Pawlak rough sets was established as follows in [20]: If the parameters

a = 1land 8 = 0, then the probabilistic lower approximation PI +(X) and upper
approximation PIg(X) are degenerated into the lower approximation R(X) and

upper approximation R(X) in the Pawlak rough sets respectively. That is, for
any X C U,

Pl (X)=PL;(X)={z€U: P(X|z]r) 21} ={z € U : [z]r C X} = R(X),
Plg(X) =Plo(X) ={z € U: P(X|[z]r) >0} ={z € U : [z]r N X # @} = R(X),

where P(X|[z]r) = Hﬂj{;f{l is the conditional probability that x belongs to X
given by R.
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Practical Backgrounds. As we mentioned in Introduction Section, rough
membership functions play an important role in Pawlak’s rough sets. In the
following, by means of the analysis of an example about evidence-based med-
ical diagnosis data, we explain how we can use the Pawlak’s rough membership
function to determine the initial treatment of patients, in order to help doc-
tors to make subjective diagnose. At the same time, by this example, we point
out the limitations of Pawlak’s rough membership function in applications of
real life, and show the necessity to establish the covering-based rough member-
ship functions. An evidence-based medical diagnosis database of a hospital is
a database based on information of patients who visited the hospital and the
diseases of them were diagnosed. The database consists of symptom reaction
of patients and finally diagnosed illness. An evidence-based medicine database
cannot be simply regarded as an ‘if... then’ system, since it is possible that two
patients with identical symptoms were finally diagnosed with different diseases.
The example consists of data of 20 patients, including 16 patients (p1 — p1g)
with diseases were identified according to their symptoms, for 2 patients (p17
and pig) although symptoms clear, but the disease has not been identified, for
the last two patients (p19 and pog) part of the symptom reaction still not clear.
The detailed information of the example is in Table 1.

Table 1. Clinical features of different types of lung cancer

Patient | Chest | Short | Local Distant Lung
pain | breath |diffusion | metastasis | cancer
D1 1 1 1 1 C.L.C
D2 1 1 1 1 C.L.C
D3 1 1 1 1 C.L.C
P4 1 1 1 1 C.L.C
s 1 1 0 1 C.L.C
Dé 0 1 0 1 P.L.C
7 1 1 0 1 P.L.C
Ds 1 1 0 1 P.L.C
Do 1 1 0 1 P.L.C
Pp1o 1 1 0 1 P.L.C
P11 1 1 0 0 PL.C
P12 1 0 1 0 T.B.L.B.C
P13 1 1 1 0 T.B.L.B.C
D14 1 1 1 0 T.B.L.B.C
D1s 1 1 1 0 T.B.L.B.C
P16 1 1 1 0 T.B.L.B.C
piv7 1 1 0 1
p1s 1 1 1 0
P19 1 1
D20 1 0
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Example 1. In  Tablel, {chest pain, short breath, local diffusion, distant
metastasis} is a set of condition attributes, {lung cancer} is a set of decision
attribute, and C.L.C, P.L.C, T.B.L.B.C denote central lung cancer, peripheral
lung cancer, thin bronchuses lung bubble cancer respectively. Moreover, each row
can be seen as information about a specific patient, and 1 denotes yes, 0 denotes
no. The patient p;(i = 17,18,19 and 20) is waiting for the hospital diagnosis,
whereas the information of patient p;(1 < ¢ < 16), which is from diagnostic data-
base of lung cancer cases in hospital, can determine the following seven decision
rules:

(1) if (chest pain, 1) and (short breath, 1) and (local diffusion, 1) and (distant
metastasis, 1), then (lung cancer, central lung cancer);

(2) if (chest pain, 1) and (short breath, 1) and (local diffusion, 0) and (distant
metastasis, 1), then (lung cancer, central lung cancer);

(3) if (chest pain, 0) and (short breath, 1) and (local diffusion, 0) and (distant
metastasis, 1), then (lung cancer, peripheral lung cancer);

(4) if (chest pain, 1) and (short breath, 1) and (local diffusion, 0) and (distant
metastasis, 1), then (lung cancer, peripheral lung cancer);

(5) if (chest pain, 1) and (short breath, 1) and (local diffusion, 0) and (distant
metastasis, 0), then (lung cancer, peripheral lung cancer);

(6) if (chest pain, 1) and (short breath, 0) and (local diffusion, 1) and (distant
metastasis, 0), then (lung cancer, thin bronchuses lung bubble cancer);

(7) if (chest pain, 1) and (short breath, 1) and (local diffusion, 1) and (distant
metastasis, 0), then (lung cancer, thin bronchuses lung bubble cancer).

Further analysis of decision rules induced from Table1, we can note that
some rules are inconsistent, such as rule 1 and 2. This leads to patients 17 and
18 could not be easily diagnosed by these rules. One approach to overcoming this
problem is using the following method based on the Pawlak’s rough membership
function to take the most frequent decision in the decision table.

An equivalence relation I(C) can be defined on U = {p; : 1 < i < 18} by set
of condition attributes C' as follows:

I(C)={(z,y) e U x U : fo(x) = fo(y),Ya € C}, where f,(z) is the value of
aonzel.

For C' = {chest pain, short breath, local diffusion, distant metastasis}, den-
ote C(z) ={y e U : (z,y) € I(C)}.

By Table 1, it is easy to verify that

C(p1) = C(p2) = C(p3) = C(p1) = {p1,p2, p3, pa};
C(ps) = C(pr) = C(ps) = C(p9) = C(p10) = C(p17) = {ps, 7, Ps, P9 P10, P17};
C(ps) = {pe};
C(p11) = {pn}
C(p12) = {p12}
(

C(p13) = C(p1a) = C(p15) = C(p16) = C(p1s) = {p13, P14, P15, P16, P18 }-

Thus, U/1(C) = {C(p1),C(ps), C(pes), C(p11), C(p12), C(p13)} is a partition
of U. Let (U,U/I) be the Pawlak approximation space and let X; = {p; : 1 <
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i <5hXo={p;:6<i<11} and X3 = {p; : 12 < i < 16}. We can easily
calculate values of the Pawlak’s rough membership function of p;(i = 17,18)
belonging to X;(i = 1,2, 3) with respect to R = U/I(C) as follows:

1

1, (p17) = & 1. (p1s) = 0;
2

1, (p17) = 3 1, (p1s) =

0;
R R 4
1x, (p17) = 05 px, (p1s) = 5
We can make a preliminary judgement that p;; and pi;g probably suffers
peripheral lung cancer and thin bronchuses lung bubble cancer, respectively.

2.4 Limitations of Rough Membership Function

In Example 1, we demonstrate that how we can make frequent decisions in diag-
nosis of lung cancer by using the Pawlak’s rough membership function when
all the symptoms of illness are clear. However, in some cases, since patients
are unable to describe all the symptoms of illness expressly and the clinical
treatment levels of doctors are not high enough to make them clear either,
the descriptions of clinical data about symptoms of patients are incomplete,
such as those of patients of p;g and pyy presented in Tablel. In such cases,
different of what we did in Example 1, we cannot take the most frequent deci-
sion by means of the Pawlak’s rough membership function. For example, on
U={p; :1<i<16o0ri = 19,20}, the set of condition attributes C is a
covering rather than a partition, because the blocks which are formulated by
condition attributes C' have overlaps. Taking pi9 for example, since the values
of condition attributes chest pain and local diffusion are unknown, they can be
0 or 1. If the values are 1, then by I(C), p1,pa,ps,p4 and pig are indiscernible.
So, {p1,p2,P3,P4,P19} is a block determined by condition attributes C. If the
values are 0, then by I(C), pg and p1g are indiscernible. So, {ps, p19} is a block
determined by condition attributes C'. So, the above two blocks have a common
element p1g, and it follows that condition attributes C' is a covering instead of a
partition. The condition of poq is similar. Thus, the Pawlak’s rough membership
function based on equivalence relation can not be used to make the frequent
decisions for patients p19 and pyg in Table 1. To solve this problem, the approach
in presented Sect. 2.3 should be improved by using rough membership function
based on covering instead of the Pawlak’s rough membership function based on
equivalence relation.

3 Basic Concepts

In this section, we present the basic concepts we need in this paper. To begin
with, we list some definitions in probabilistic approaches to rough sets.
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Definition 1 (Probabilistic approximation space [15]). Let U be the universe
of discourse, R an equivalence relation and P a probability measure on U. We
call the triplet (U, R, P) a probabilistic approximation space. For every X C U,
0 < 8 < a <1 and the probabilistic approzimation space (U, R, P), the lower
approximation and the upper approximation of X with respect to parameters «
and B are defined as follows:

Pl (X)={x€U: P(X|[z]r) > a},

PIs(X) ={z € U: P(X|[z]r) > B},
where P(X|[x]Rr) is the conditional probability that x belongs to X given by R.
Then, we present some concepts about coverings to be used in this paper.

Definition 2 (Covering [26]). Let U be the universe of discourse and C' a family
of nonempty subsets of U. If | JC = U, C s called a covering of U.

In the following discussion, unless stated to the contrary, the universe are
considered to be finite, and it follows that coverings consist of a finite number
of sets.

Definition 3 (Covering approximation space [26]). Let U be the universe of
discourse and C a covering of U. We call the ordered pair (U,C) a covering
approximation space.

Definition 4 (Minimal description [26]). Let (U,C) be a covering approrima-
tion space, z € U. Md(z) ={K € C: (z e K)AWNSe€CANz e SANSCK =
K = 8)} is called the minimal description of x.

Definition 5 (Indiscernible neighborhood [26]). Let (U, C) be a covering approz-
imation space. Yo € U,|J{K € C : xz € K} is called the indiscernible neighbor-
hood of x and denoted as Friends(z).

Definition 6. For a given covering C' of U, the rough membership function in
general are defined as follows: Vo € U and X C U, u$(x) = max{llfgfq ‘T €
K e C}.

The following facts about u$ () are obvious:
Fact 1. 0 < u§(z) < 1;
Fact 2. u$(x) =1 if and only if there exists K € C such that v € K C X;
Fact 3. u$(x) = 0 if and only if for any K € C withr € K, KN X = @.

4 Main Results

In this section, we study rough membership function on the covering-based rough
set. We will address the following issues. First, we construct a rough membership
function which is based on topological structures of the covering approximation
operators. Then, we present numerical characterizations of the covering rough
set approximations by means of the covering-based rough membership function.
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4.1 Definition of the Covering-Based Rough Set and Its Rough
Membership Function

Definition 7. (CL, FH and BN [1]). Let C be a covering of U. The operations
CL and FH: P(U) — P(U) are defined as follows: VX C U,

CL(X U{Kec K C X},

FH(X ) = YU ((U(Md(2) - 2 € X — CL(X)}}),
BNp(X) = FH(X) — CL(X).

We call CL the covering lower approximation operation and F'H the covering
upper approxrimation operation.

Definition 7 only presents the topological characterizations of CL and FH.
As it is well known, numerical characterizations are just as important to the-
oretical research of covering-based rough sets as topological characterizations.
Meanwhile, we also found that Pawlak’s rough membership function does not
work with missing data. Based on the topological structures of CL and FH
simultaneously, we construct a covering-based rough membership function for
CL and FH, and use it not only to present numerical characterizations about
CL and FH, but also to work suitably with missing data.

Definition 8. For a given covering C of U, the rough membership function of
CL and FH are defined as follows: Vo € U and X C U, u$(2)p = [u$(2)] +

p§i(z) - \_max{maw{% : Ky € Md(y),x € Ko € C}-[1—pS(y)] 1y €

Friends(z) N X} - [1 — u$(2)].

4.2 Numerical Characterizations

Lemma 1. max{m‘l}?j{z‘ K1, K, eC}=1.

Lemma 2. Vo € U and X C Mmaw{maw{% Ky € Md(y),z € Ko €
C}-1—pS(y)] :y € Friends(z) N X} € [0,1].

Proof. We choose any y € Friends(z)NX. By Fact 1 and Lemma 1, [1—u$(y)]
€ {0,1} and maz{ 0%l . K| ¢ Md(y),z € Ky € C} € [0,1]. Thus, max

[Kal
{IKlllrgIl(z K, € Md(y),z € Ky € C}-[1 - p&(y)] € [0,1]. So, max{maz
{lKllfgll(g 1 Ky € Md(y),z € Ko € C}-[1—u$(y)] : y € Friends(z)NX} € [0,1].

Lemma 3. Vz € U and X C U, u§(z)r € [0, 1].

Proof. By Fact 1 and Lemma?2, [1— u§(z)] € {0,1}, and Lmax{maz{% :
K, € Md(y),r € Ky € C}- [1—u$(y)] : y € Friends(z) N X}] € {0,1}. Thus,
u§ () - Lmax{maw{% : Ky € Md(y),z € K2 € C}-[1—pu$(y)] :y €
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Friends(z)NX}|-[1—pu$%(2)] €[0,1]. If 2 € U — CL(X), by Fact 1 and 2, then
11§ ()] = 0. Thus, pS (2)r = uS (2) - [maz{maz{ K2l Ky € Md(y),z €
Ky € CY-[1—p&(y)] : y € Friends(x)NX}]-[1—pu$(2)] € 0,1]. If 2 € CL(X),
by Fact 2, then [u§(z)] =1, and [1 — u§(x)] = 0. So, u§(2)r = |p(z)] = 1.
Hence, u$ (x)r € [0,1].

Theorem 1. VX CU,CL(X) ={z € U : u$(x)r = 1}.

Proof. We choose any * € CL(X). By the proof in Lemma3, u§(x)r = 1.

Thus, z € {x € U : p§(z)r = 1}. So, by arbitrariness of 2, CL(X) C {z € U :
c _

px(@)p =1}

We choose any = € {x € U : u$(x)p = 1}. Since u§(2)r = 1, [p5 (z)] +
p§(z) - \_max{max{% : Ky € Md(y),z € Ko € C}- [1—pu$(y)] :y €
Friends(z)N X} -[1—p$(2)] = 1. By Fact 1, [u$(2)] =0or 1. If [u§(x)] =
0, by Fact1, then p§(z) € [0,1) and [1 — u§(z)] = 1. Thus, by Lemma?2,
WS (@) = p§ (o) maz{maz {5252 . I, € Md(y), o € Ks € Ch-[1-p§ (v)] :
y € Friends(z)NX}| € [0,1). This contradicts the assumption that u§ (z)F = 1.
So, |u& (z)| = 1. By Fact 1, u§ (x) = 1. Thus, by Fact 2, € CL(X). Hence, by
arbitrariness of z,{z € U : u§(v)F = 1} C CL(X).

Theorem 2. VX C U, FH(X) ={z € U : u$(x)r € (0,1]}.
(X

Proof. We choose any x € FH(X). If v € CL(X), by Theorem 1, then u§ (z)p =
1.So,x € {weU: u§(z)r € (0,1]}. Ifx € FH(X) — CL(X), then z € FH(X)
and z ¢ CL(X). Since ¢ CL(X), by Fact1 and 2, u§(x) € [0,1). Thus,
|p$(z)] = 0 and [1 — u§(z)] = 1. Since 2 € FH(X), by the definition of
FH(X), there exists y € X — CL(X) such that x € |JMd(y). Thus, there

exists K1 € Md(y) such that K1 ¢ X and = € K;. So, u§(z) > |ITmT<| > 0.

Since y € X — CL(X), by Fact1 and 2, u$(y) € [0,1). Thus, [1 — u$(y)] = 1.

Since max{mam{m : Ky € Md(y),r € Ko € C}-[1—uS(y)] vy €

Friends(z) N X} > \K‘}?I‘ﬁ = 1, by Lemma?2, Lmax{mam{% Ky o€

Md(y),z € Ky € C}-[1—pu$(y)] : y € Friends(x) N X}| = 1. Thus, u§(z)r =
u$(z) € (0,1). Hence, » € {x € U : pu§(z)r € (0,1]}. So, by arbitrariness of
v, FH(X) C{z e U: u$(x)r € (0,1]}.

We choose any = € {x € U : u§(z)r € (0,1]}. By Fact 1, |p§(z)] =0 or 1.
If |pu$(x)] =1, by Fact 1 and 2, then x € CL(X) C FH(X). If [u$(2)] = 0, by
Fact 1, then u§(x) € [0,1). Thus, [1 — u$(x)] = 1. Hence, pu§(z)r = p§(z) -

[maz{max{ ‘K‘llgfl : K1 € Md(y),z € Ky € C}-[1—p$(y)] : y € Friends(z)N

X}] € (0,1]. By Fact1 and Lemma?2, u$(x) € (0,1] and max{max{% :

K, € Md(y),r € Ko € C}-[1 — u$(y)] : y € Friends(z) N X} = 1. So, there
exists y € Friends(z) N X such that mam{% : Ky € Md(y),z € Kq €
C} - [1—u%(y)] = 1. Hence, by Fact1 and Lemmal, [1 — u$(y)] = 1 and

max{lKl}?j(z‘ : Ky € Md(y),z € Ky € C} = 1. Since [1 — u$(y)] = 1, by
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Fact 1, u$(y) € [0,1). Since max{% : K1 € Md(y),z € Ky € C} =1,

there exist Ky € Md(y) and Ko € C,z € Ky such that |K‘1[?2}‘(2‘ = 1. Since

1S (y) € [0,1), by Fact2, y € X — CL(X). Since Sl = 1 |Ky 0 K| = |K|.
Thus, owing to the fact that K1 N Ky C Ko can imply | K7 N Ks| < |Ks|, Ky C
K. So, x € K;. Since K; € Md(y), by the fact that y € X — CL(X) and
the definition of FH(X),z € |JMd(y) C FH(X). Hence, by arbitrariness of

v, {x €U : p§(z)r € (0,1]} C FH(X).
Theorem 3. VX C U, BNp(X) ={z c U : u$(2)r € (0,1)}.

Proof. Since BNp(X) = FH(X) — CL(X), by Theorem1 and 2, BNp(X) =
[wcU:uS(o)r € (0,1)).

5 Theoretical Backgrounds and Practical Applications
of Rough Membership Function on the Covering-Based
Rough Set

In this section, we discuss relationship between covering-based probabilistic
rough sets and the covering-based rough set first, and which gives the theoretical
backgrounds of covering-based rough membership function studied in this paper.
Then we employ the example in Sect. 2.4 to illustrate practical applications of
this function.

5.1 Theoretical Backgrounds

Definition 9 (Covering probabilistic approzimation space [14]). Let U be the
universe of discourse, C a covering of U and P a probability measure on U. We
call (U, C, P) a covering probabilistic approximation space. For every X C U and
0 < B < a <1, about the covering probabilistic approximation space (U,C, P),
the lower approximation and the upper approzimation of X with respect to para-
meters o and B are defined as follows:

C,(X)={z€U:P(xeX|C)>al,
Cs(X)={zeU:P(xeX|C)>p}
where P(x € X|C) is the conditional probability that x belongs to X given by C'.

The covering-based probabilistic rough sets proposed in this paper can be
degenerated into covering-based rough sets as follows.

If the parameters a = 1,3 = 0 and P(x € X|C) = p&(z)F, then the lower
approximation C,(X) and the upper approximation Cg(X) are degenerated into
the lower approximation CL(X) and the upper approximation FH(X) respec-

tively in the covering approximation space. That is, for any X C U,
C.(X)={zcU:PxecX|C)>a}={zcU:pu$(zx)r =1} = CL(X),
Cs(X)={2cU:PlzecX|C)>p8}={zcU:uS(x)r >0} = FH(X).
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5.2 Practical Applications

In Sect. 2.4, we point out that we cannot use the Pawlak’s rough membership
function based on equivalence relation to make the frequent decisions for patients
p19 and pog in Table 1, because the data of their symptoms of illness is incomplete.
In the following, we show that we can solve this problem by using the membership
function on covering-based rough set which is proposed in Sect. 4.

Example 2. Denote U = {p; : 1 < i < 20,7 # 17,18} the set of patients. Let
C' = {chest pain, short breath, local diffusion, distant metastasis} be the set of
condition attributes and let D = {lung cancer} be the set of decision attribute.
Just like what in Example 1, each row can be seen as information on one specific
patient, and 1 denotes yes, 0 denotes no. The patient p;(i = 19, 20) is waiting for
the diagnosis in the hospital, whereas the information of patient p;(1 < i < 16)
is from diagnostic database of lung cancer cases in hospital.

For set of condition attributes C, a similarity relation Rz can be defined
on U:

Rg = {(z,y) € U x U : Va € C, fula) = fuly) or fu(z) = *or x= fu(y)},
where f,(x) is the value of a on = € U, and *indicates unknown values.

Moreover, for C = {chest pain, short breath, local diffusion, distant
metastasis}, we write [z]5 = {y € U : (z,y) € Rz}

By Tablel, it is easy to verify that

C1 = [p1lg = [p2]lg = pslg = [palg = [p1olg = {p1, 02, P3, P4, P10}

Cy = @5}5 [277]5 = [Ps]@ = [Pg]a = [Plo]g = [Plg]a = {ps,P7, P8, P9, P10, P19 };
Cs = [pelz = [P1ola = {ps, P19};

Cy = [pu1lg = [p20lg = {P11,P20};

Cs = [p12]g = [p20lg = {P12,P20};

Ce = @13]5 [P14]5 [2?15]5 = [P16]5 = [P20]5 = {p13, P14, P15, P16, P20 };

and C; # @, JC; = U(1 < i <6). Thus, c = {C; : 1 <i < 6} is a covering of
U. (U, C/> is a covering approximation space.

Let X1 ={p;: 1 <i<5}Xo={p;:6<i<1l}and X3 ={p;:12<i <
16}. By Definition 8, we can obtain:

’ 4 ’
1%, (p1o) = 5 1%, (p20) = 0;
' 2 / 1
M?@ (p19) = g; M)C(2 (p20) = 5;
’ ’ 4
15 (P19) = 0; 15, (p20) = -

It is found that the degrees of p19 belonging to X5 and X3 are only %, which
means that it may not be peripheral lung cancer and thin bronchuses lung cancer
with respect to conditional attributes set C, although there are two conditional

attributes unknown for p;9. The membership degree of p19 belonging to X; is %,
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and it means that p;g may well be central lung cancer. Although the accuracy
of this decision should be further validated by means of clinical analysis unless
central lung cancer has been confirmed, we can make a preliminary judgement
which will help the doctors in making their finial decisions. Similarly, according
to the membership degrees of pag belonging to X;(1 < i < 3), we can make a
preliminary decision that pag may well be thin bronchuses lung bubble cancer.

6 Conclusion

The main contribution of this paper is to construct covering-based rough mem-
bership function and to discuss its properties and applications in depth. First, by
using a practical example in evidence-based medicine, we illustrate applications
of the Pawlak’s rough membership function in real life and the limitations of it.
Then, based on topological structures of the covering-based rough set which is
examined by Bonikowski et al. [1], we construct corresponding covering-based
rough membership function and present numerical characterizations of the rough
sets by this function. Furthermore, the theoretical backgrounds of it are dis-
cussed. At the end, we illustrate practical applications of this covering-based
rough membership function in medical diagnosis.

There are several issues about covering-based rough membership functions
deserving further investigation. For example, for models of covering-based rough
set appeared in literature [6,13,24,25,27], how to construct corresponding
covering-based rough membership functions on them? Moreover, to find more
applications of covering-based rough membership functions in the field of data
mining is an exciting area deserved to be explored. We will study these issues in
our future research.
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Abstract. In this paper we will attempt to create simple behavioral
agent with reasoning based in mereogeometry. Main purpose of this
research is to check if mereogeometry is viable approach for writing low
level behavioral system.

Keywords: Mereology + Mereogeometry + Rough mereology - Behav-
ioral robotics - Flocking

1 Behavioral Robotics

When designing artificial minds we can take one of two approaches. In delib-
erative approach we would try to write monolithic algorithm that uses sensory
fusion to create complex responses from robot. Problem with this approach is
that it requires comprehensive knowledge about robot task because we need to
create virtual model of it that covers all edge cases. Difficulty of creating such
model increases quickly with introduction of new variables into robot environ-
ment. So while it is relatively easy to create complete model of manipulator
working in especially designed environment the same task for a robot that will
work in open, like self driving cars [12], environment may be incredibly com-
plex. And those are just examples of robots that are designed to do one specific
task. Creating holistic Al for general purpose robot is literally impossible as sets
of rules that describe it tasks and environment are potentially infinite. To deal
with this issue we must turn to behavioral robotics that instead of using one
monolithic algorithm relay on set of behaviors and arbiters (Figs. 1 and 2).
Following Arkin [1], we require that behaviors display following properties:

1. Parsimony - first level behaviors must be as simple as possible, we consider
a behavior to be of the first level if it cannot be redefined as set of smaller
behaviors and arbiters.

2. Exploration/speculation - With exception of recharging robot is never sta-
tionary, in other words system is never in stable state.

3. Attraction - system will attempt to move towards positive signals.

4. Aversion - system will attempt to move away from negative signals.
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Fig. 1. Monolithic A.L. structure Fig. 2. Behavioral A.lL. structure

It should be mentioned that properties of attraction and aversion while very
common in behavior design are not universal. behaviors that rely on them are
called taxa while those that simply translate set of inputs into predefined set of
outputs are called reflexes. Another difference between taxa and reflexes is that
reflexes have very short activity time and usually will omit arbiters and directly
affect outputs. This distinction between behaviors is based on biology where
there are reflexes that very often can be executed without any interaction with
central nervous system. In behavioral robotics, complex behaviors do not arise
from equally complex algorithm but from interactions between large number of
behaviors and arbiters. This allows emergent generation of very complex reac-
tions for previously unknown stimuli and according to some research it is even
mechanism lying at the base of conciousness [5]. Very first example of behavioral
based robot was W. Grey Walters tortoise created in 1951 and described in his
book called The Living Brain [3] (Fig. 3).

<145

Fig. 3. Circuit of Machina Speculatrix from The Living Brain by W. Grey Walter

All logic of this robot is realized by two vacuum tubes, with third one as a
sensor, despite that it displayed rather complex behavioral patterns with follow-
ing rules as base:

— Sensor will turn around until it detects light source (reflex).
— Robot will head towards dim light (taxa).
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— Robot will move away from bright light (taxa).
— If obstacle is hit robot will push on it while turning (reflex).

In case of simple behavioral systems we can analyse them like a dynamic systems.
It is especially obvious in case of behavioral engines like Machina Speculatrix
because those are realized by electronic circuits whose nature as a dynamic
systems is well known [2].

2 Spatial Reasoning with Rough Mereology

Mereology is field of mathematics that focuses on extensional objects [8]. Basics
of mereology were developed in early XX century by Lesniewski [4] He used con-
cept of “being part of” as his primitive notion. Another approach to mereology
was developed by Whitehead [13] where instead of focusing on “being part of”
relation of interconnection was chosen as a primitive notion. choose intercon-
nection relation. In Le$niewski theory being part of is represented as a binary
relation 7(z,y) with means that x is part of y. Such relation fulfils following
requirements:

1. Irreflexivility: Vo : -7 (z, z)
2. Transitivity: V(x,y, 2) : m(x,y) Aw(y, 2) = w(x, 2)

Another important relation in mereology is called ingredient and can be defined
as ingr(z,y) < 7(x,y) vV = y. In this paper we will use concept of rough
inclusion that was first introduced by Polkowski and Skowron [10]. They intro-
duced concept of rough inclusion that provided relation p(z,y,r) with means
that y is part of x to r degree. This relation can be defined by following
postulates:

L. ,U/((E7y77’> — mgr(%y)
2. p(w,y,r) = Vz[u(z,z,7) = p(z,y,7)]
3. wlx,y,m) As <r = p(z,y,s)

As our main focus is on description of robot physical environment, that is why we
will turn to mereogeometry. This approach provides means to transform euclid-
ean space into mereologic one. For example, if we have two geometric shapes
identified as A and B then degree of inclusion of B in A will be area of common
part of both figures divided by area of A. Another important relation is mereo-
geometric distance that can be described as (A, B) = max(u(A4, B), u(B, A)).
Based on that definition we can tell that mereogeometric distance displays fol-
lowing properties:

1. V(A,B) : k(A,B) > 0AKk(A,B) < 1.

2. In contrast to euclidean notion of distance higher value imply that objects
are closer.

3. If objects are disjoint their mereogeometric distance is always 0 even if their
euclidean distance changes.
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4. If one objects encompasses another their mereogeometric distance is 1 regard-
less of euclidean distance between their centroids.

Another concept that must be mentioned before we start describing previous
work on use of mereology in behavioral robotics is extens. Exntens refers to
smallest possible rectangle that will encompass both elements given (Fig. 4).

ext (A,B)

Fig. 4. Extens

3 Previous Works on Application of Mereology in Field
of Robotics

Use of mereogeometry in mobile robot control is rather young field of research.
Previous approach at tackling this problem was done by Polkowski and
O$miatowski [7]. Their work was focused on path finding and robot formation.
For path finding modified version of potential field algorithm was used [6]. In
traditional approach value of potential field in given point is calculated as sum of
attraction forces created by robot goals and repulsion originating from obstacles.
Algorithm deployed by them instead is based on the concept of rough mereo-
logic inclusion. Potential field is constructed by a discreet construction. Free
workspace of a robot is filled with virtual squares in such a way that the density
of square field, measured as number of squares intersection the disc of a given
radius r centred at the target, increases towards target (Fig.5).

Fig. 5. Obstacles layer together with potential field layer.



74 P. Gnys

After this field is prepared robot will move towards goal by means of following
algorithm:

1. If robot is at goal position finish algorithm execution otherwise go to step 2.

2. From the set of square areas that have any common part with previously
selected area choose one that have smallest mereological distance to it. Then
move robot to centroid of this area and return to step 1.

That algorithm will allow robot to reach the goal, of course as it is a variant
of potential field path planning there are configurations that will cause it to fail.
Another topic researched by Polkowski and O$mialowski was use of mereology in
description of robot formations [9]. In their work they focused on use of notion
of betweenness and distance to maintain formation of robots. Do define robot
formation we define knowledge base that informs robot about their expected
relations to each other (Fig. 6).

(cross

(set
(max—dist 0.25 roombaO (between roombal roombal roomba2))
(max—dist 0.25 roombaO (between roombaO roomba3 roomba4))
(not—between roombal roomba3 roomba4)
(not—between roomba2 roomba3 roomba4)
(not—between roomba3 roombal roomba2)
(not—between roomba4 roombal roomba2)

Fig. 6. Cross formation definition for four Roomba robots

Basing on this requirements and robots starting position planner will set
target positions for all robots. Each robot (except a selected leader) will move
towards this generated position. Whenever collision is detected (on the robot
bumper device), robot goes back for a while then turns left or right for a while
and from this new situation, it tries again to go (Fig7).

4 Mboids as Simple Mereology Based Behavior Engine

To test concept of behaviors based on mereogeometric description we have to
first create simulation environment that will provide us with mereologic sensors.
Second requirement of simulation is to provide basic mechanics of motion that
will allow for multiple robot to interact an generate patterns based on behaviors.
To create such environment we will turn to previous work on simulating move-
ment of flocking birds. Behavior based solution for that problem was proposed in
1987 by Craig Reynolds in form of Boids [11]. Term Boid refers to a single agent
in flock that in case of Reynolds work behaves according to following rules.
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Fig. 7. Roombas in formation, with trials from original positions

move away from obstacles

move away from local flock mates

move towards average position of local flock mates
steer towards average heading of local flock mates

= L=

From this four basic rules it was possible to create complex flock behaviors
(Fig. 8).

Fig. 8. Example of flock obstacle avoidance [11]

While our approach called Mboids (mereogeometric boids) is directly inspired
by Reynolds work there are major differences between two models. Reynold
boids used virtual sensor that told them distance towards all other boids within
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given range and their velocity vector. In our case Mboid will be equipped with
four sensors that can only tell mereogeometric distance between area covered by
sensor and measured object (Fig.9).

Fig. 9. Mboid with visualised attractor and sensors

Mboid consists of following parts:

— body (repellent) - black filled square on visualisation, this is element that
represents physical body of Mboid

— attractor - small grey square, virtual area visible to sensors of other Mboids

— sensors - represented by four large grey squares, each square represents area
covered by single sensor.

Using this elements Mboid displays following behaviors:

1. Mboid will accelerate towards attractors that are within range of its sensors.
Acceleration value is reverse proportional to average mereological distance of
those attractors.

2. Mboid will accelerate away from repulsors within its sensors range. Acceler-
ation value is proportional to mereological distance of closest repulsor.

So Mboid is controlled by two behaviors of taxa type that means it also must
have one arbiter. This arbiter is the weighted average of acceleration forces of
both behavior.

5 Experiment

In our first experiment we will see if Mboids will display formation building
patterns. We will also analyse how sensor size and changes in arbiter weights
influence those patterns. We are able to change following parameters of simula-
tion (Figs. 10 and 11):

— repulsor width,

— repulsor height,
— attractor width,
— attractor height,
— sensor width,

— sensor height,
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— mass,

— friction,

— maximum thrust,
— force,

— repulsion force.

Repulsion and attraction forces are respective weights of the arbiter while the
maximum thrust, mass and friction refer to physical properties of Mboid. We
will only attempt to modify arbiter weights and maximum thrust (Table1).

Table 1. Experiment parameters

Experiment no. |1 |2 |3 |4
Repulsion 10110120 20
Thrust 11 5/ 1| 5

Other parameters remain constants during all experiments and have following
values:

— repulsor width = 10,

— repulsor height = 10,
— attractor width = 40,
— attractor height = 40,
— sensor width = 15,

— sensor height = 15,

— mass = 10,

— friction = 0.02,

— attraction force = 10.

We got positive results when running first experiment. Starting from random
positions Mboids that are located in vicinity of each other will try to form regular
grid. It is worth noting that behaviors do not require four neighbours as evident
by empty spaces within the grid. Mboids are not stable as explorative nature of
behavioral engines prohibits static states, they are however oscillating around
fixed positions with results with pulsating but generally stable formation. This
result is fully compatible with our prediction and on it is own proves that it
is possible to create simple behavioral agents with use of mereogeometry based
spatial reasoning. Another interesting behavior can be observed when a obstacle,
represented by grey square, is introduced into formation. It is worth mentioning
that while unlike in original boids in our example the obstacle is moving trough
stationary flock this do not change avoidance or formation restoration behaviors.
As we already know that our algorithm guarantees formation emergence we can
check what behaviors of flock will be generated with other settings. If we use
settings from experiment number two thrust will be stronger while mass and
friction remains same. This should result in more chaotic movement of Mboids
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Fig. 10. Mboids initial position Fig. 11. Mboids after minute of behav-
ior based movement

and make flock formation more difficult. Experiment confirms this expectation
as while flock is able to form is much less stable than in experiment one and
Mboids must constantly adjust their positions by large margins (Figs. 12, 13
and 14).

Fig.12. Flock is appro- Fig. 13. Obstacle moves Fig. 14. Flock after pass-
ached by a obstacle trough flock ing of obstacle

To test if this behavior disappears or only slows down in case of smaller
thrust forces we ran simulation with settings from experiment 1 for over 20 min
with different starting formations. After running those experiments it became
evident that it is not acceleration force that caused formation movement. Instead
this behavior appears when asymmetric formation shapes are present (Figs. 15
and 16).

Finally changing repulsion value have no significant effect with current con-
figuration of other parameters.
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Fig. 15. Formation that starts as black squares moves to position of grey ones without
any external motivation in about 5 min.

Fig. 16. Example of moving formation with low thrust value

6 Conclusions and Plans for Future Research

After running our experiments we can conclude that mereogeometrical approach
is valid for creating simple behavioral systems. We also know from previous work
on this topic that it is possible to implement control on higher level of abstrac-
tion, like path planning or formation building, with use of rough meregeometry.
With that knowledge we can continue our research in design of holistic robot
behavioral system based on rough mereogeometric description of environment.
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Abstract. In this paper, we present a new algebraic model for
Dominance-based Rough Set Approach. Extending the Pawlak-Brouwer-
Zadeh lattice introduced for indiscernibility-based rough set approach,
the new model permits to distinguish between two kinds of imperfect
information in case of ordered data: vagueness due to imprecision, and
ambiguity due to coarseness typical to rough sets. To build the model
we use the bipolar Brouwer-Zadeh lattice to represent a basic vagueness,
and to introduce dominance-based rough approximations we define a new
operator, called bipolar Pawlak operator. The new model we obtain in
this way is called bipolar Pawlak-Brouwer-Zadeh lattice.

Keywords: Dominance-based rough set approach - Algebraic model -
Bipolar Pawlak-Brouwer-Zadeh lattice + Vagueness + Ambiguity

1 Introduction

After being introduced as an algebraic structure permitting representation of
possibility and necessity in an environment characterized by some form of vague-
ness, the Brouwer-Zadeh lattice [5] has been considered also as an abstract model
for rough set theory [1,2] (for rough set theory see [15,16]; for two extensive sur-
veys on algebraic structures for rough set theory see Chapt. 12 in [17] or [2]). In
this case, the elements of the lattice represent the pairs (A, B) where A and B
are the lower approximation (interior) and the complement of the upper approx-
imation (exterior) of a given set X, respectively. The bipolar complemented
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de Morgan Brouwer-Zadeh lattice [13] has been recently introduced as an exten-
sion of a Brouwer-Zadeh lattice to give an algebraic model for the dominance-
based rough set approach (DRSA) [8-12]. [14] proposed another extension of
the Brouwer-Zadeh lattice for indiscernibility-based rough set approach, called
Pawlak-Brouwer-Zadeh lattice, where the basic vagueness is represented by a
pair (A, B), with A being the necessity kernel and B being the non-possibility
kernel, and ambiguity due to the coarseness of information is introduced through
a new operator, called Pawlak operator. Pawlak operator assigns a pair (C, D)
to the pair (A, B), with AN B = (), such that C and D represent the lower
approximations of A and B, respectively. In this paper, we make a non-trivial
synthesis of the ideas that stand behind the bipolar complemented de Morgan
Brouwer-Zadeh lattice and the Pawlak-Brouwer-Zadeh lattice in order to get an
algebraic model permitting to distinguish vagueness from ambiguity in DRSA.
Let us use an example to explain the intuition that stands behind the bipolar
Pawlak-Brouwer-Zadeh lattice. Suppose a financial institution wants to assess
the bankruptcy risk of some companies, taking into account the information car-
ried by some financial ratios. With this aim, a committee of experts is asked to
consider a certain universe U of companies described by some financial ratios. It
will not be surprising, if due to vagueness related to experts’ imprecise knowl-
edge, the committee will assign the companies from U to three classes: class A,
composed of companies for which for sure there is no risk of bankruptcy; class B,
AN B = (), composed of companies for which there is a clear risk of bankruptcy,
and class C' = U—A— B, composed of companies for which there is a doubt about
their risk of bankruptcy. On the other hand, information about financial ratios
permits to define a dominance relation in set U of companies. More precisely, we
say that company a (weakly) dominates company b if a is at least as good as b
on all the considered financial ratios. Dominance relation is a preorder, that is,
a reflexive and transitive binary relation. Using dominance, one can define lower
approximation of classes A and B. More precisely, any company dominated only
by companies belonging to class A is included in the lower approximation of A,
denoted by R= A, as well as any company dominating only companies belong-
ing to class B is included in the lower approximation of B, denoted by R<B.
Intuitively, this means that, based on the available data, the financial ratios
of companies from RZA permit to exclude univocally the risk of bankruptcy.
Analogously, based on the available data, the financial ratios of companies from
R= B permit to identify univocally the risk of bankruptcy. Using the same data
describing the companies in terms of the considered financial ratios, one can also

define the upper approximation of classes A and B, denoted by R Aand BB ,
respectively. More precisely, EZA contains the companies dominating at least
one company for which there is no risk of bankruptcy, and R=B contains the
companies dominated by at least one company for which there is the risk of bank-
ruptcy. The difference RA— RZ A contains all the companies whose financial
ratios do not permit to state with certainty that there is no risk of bankruptcy;
analogously, the difference ESB — R=B contains the companies whose financial
ratios do not permit to state with certainty that there is the risk of bankruptcy.
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In this example, we distinguished between two kinds of imperfections of infor-
mation: on one hand, the vagueness due to imprecise knowledge related to the
experts’ classification of the companies from U into classes of safe (A), risky (B),
and doubtful (C') companies, and, on the other hand, the ambiguity due to
coarseness related to granularity of information available in terms of the finan-
cial ratios of the companies from U. It is thus meaningful to consider rough
(lower and upper) approximations of class A, and class B, in terms of attributes
describing the companies (for an interesting real world application of rough set
theory to bankruptcy evaluation see [7]).

The paper is organized as follows. In the next section, we recall the Pawlak-
Brouwer-Zadeh lattice and its abstract representation of indiscernibility-based
rough set theory. In the third section, we introduce the bipolar Pawlak-Brouwer-
Zadeh lattice and we show that it is an abstract algebra for dominance-based
rough set approach. In the fourth section we present a didactic example illustrat-
ing the concepts of Pawlak-Brouwer-Zadeh lattice and bipolar Pawlak-Brouwer-
Zadeh lattice. This example suggests a possible application of these concepts in
aggregation of multi-expert classifications under vagueness and ambiguity. The
last section contains conclusions.

2 The Pawlak-Brouwer-Zadeh Distributive de Morgan
Lattice and Indiscernibility-Based Rough Set Theory

In this section, we recall the Pawlak-Brouwer-Zadeh distributive de Morgan lat-
tice introduced in [14], and show how it is an abstract model of the classical
rough set approach based on indiscernibility.

A system (X, A, V)~ ,0,1) is a quasi-Brouwer-Zadeh distributive lattice [5]
if the following properties (1)—(4) hold:

(1) X is a distributive lattice with respect to the join and the meet operations
V, A whose induced partial order relation is

a <biff a=aAb (equivalently b =a V b)

Moreover, it is required that X' is bounded by the least element 0 and the
greatest element 1:
Vae X, 0<a<l

(2) The unary operation ' : X — X is a Kleene (also Zadeh or fuzzy) comple-
mentation. In other words, for arbitrary a,b € X,
(K1) o = a,
(K2) (aVvb) =d AV,
(K3) ana <bV.
(3) The unary operation ~ : X' — X' is a Brouwer (or intuitionistic) complemen-
tation. In other words, for arbitrary a,b € X,
(Bl) aAa™ =aq,
(B2) (aVb)™ =a~ Ab™,
(B3) ana™ =0.
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(4) The two complementations are linked by the interconnection rule which must
hold for arbitrary a € X

(in) a™ < d'.

A structure (X, A, V,” ™0, 1) is a Brouwer-Zadeh distributive lattice if it is a
quasi-Brouwer-Zadeh distributive lattice satisfying the stronger interconnection
rule:

(s-in) ™~ = a™’

A Brouwer-Zadeh distributive lattice satisfying also the V de Morgan
property

(B2a) (a Ab)™ =a™ Vb~
is called a de Morgan Brouwer-Zadeh distributive lattice.

An approximation operator, called Pawlak operator [14], on a de Morgan
Brouwer-Zadeh distributive lattice is an unary operation 4 : ¥ — X for which
the following properties hold: for a,b € X

( ) a? = a/A;

(A2) a < bimplies b2~ < a

(A3) a?*™ <a™;

(A4) 04 = 0;

(A5) a™~ = b~ implies a* A b? = (a A b)4;
(A6) a” v b2 < (a Vb4

(A7) a4 = a;

(A8) a~4 = ot

(A9) (e AbN)A =aA A DA

2.1 The Pawlak-Brouwer-Zadeh Lattice as an Algebraic Model
of Indiscernibility-Based Rough Set Theory

A knowledge base K = (U, R) is a relational system where U # () is a finite set
called the universe and R is an equivalence relation on U. For any = € U, [z]g
is its equivalence class. The quotient set U/R is composed of all the equivalence
classes of R on U. Given the knowledge base K = (U, R), one can associate the
two subsets RX and RX to each subset X C U:

RX ={ze€U:[z]g C X},
RX ={ze€U:z]gNX #0}.

RX and RX are called the lower and the upper approximation of X, respectively.
Let us consider the set of all pairs (A, B) such that A, B C U and ANB = {).
We denote by 3V the set of these pairs, i.e.

Y={(A,B): A,BCU and AN B = 0}.

Given a knowledge base K = (U, R), we can define an unary operator ©
3V — 3V, as follows: for any (A, B) € 3V

(A, B = (RA,RB).
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Let us consider the following operations on 3V:
(A,Byn(C,D)y=(ANC,BUD),

(A,ByU(C,D)y=(AUuC,BnNnD),
(4,B)" = (B, 4),
(A,BYY = (B,U - B).
Observe that M and LI induce the following partial order relation on 3Y: for all
(A,B),(C,D) € 3V
(A,BYyC (C,D) iff (A,B)nN(C,D) = (A, B)
(or, equivalently, (A, B) U (C, D) = (C, D))

The following results hold [14].

Proposition 1. The structure (3Y,M,u,~ .5 (0,U),(U,0)) is a Pawlak-
Brouwer-Zadeh lattice. O

Proposition 2. For every Pawlak-Brouwer-Zadeh lattice Lppz = (X, A,V
~ 400, 1>, satisfying the condition

(P) there exists ¢ € X for which ¢ = ¢/,

there is a knowledge base K = (U, R) such that the structure
RSPBZ(Ua R) = <3Ua mn,u, ’z 7L ) <®a U> ) <Ua ®>>

is isomorphic to Lppz. a

3 The Bipolar Pawlak-Brouwer-Zadeh Distributive
de Morgan Lattice and Dominance-Based Rough Set
Theory

After giving a formulation of the bipolar de Morgan Brouwer-Zadeh distributive
lattice, being a bit simpler and a bit more general than the one given in [13],
we propose the bipolar Pawlak-Brouwer-Zadeh distributive de Morgan lattice.
It results from a definitely non-trivial synthesis of the basic ideas of [13] and
[14]. We show that it constitutes a formal model for dominance-based rough set
theory.

A system (X, Xt A, V)~ ,0,1) is a bipolar de Morgan Brouwer-Zadeh dis-
tributive lattice if

(B1) (X, A,V ,~,0,1) is a de Morgan Brouwer-Zadeh distributive lattice,

(B2) Xt C X is a distributive lattice with respect to the join and the meet
operations V and A,

(B3) a € X7 implies that a’~,a™ € X+.
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Observe that by (B3), (K1) and (s-in), we have that a € X%t implies that
a”,a~~ € X7, Let us consider the set

Y ={aeX:a=Vora=0b" withbe X}

2’7 is a distributive lattice with respect to the join and the meet operations V
and A, and a € X~ implies that a'~,a™,a~~,a" € X~.

A bipolar approximation operator, called bipolar Pawlak operator, on a
bipolar de Morgan Brouwer-Zadeh distributive lattice is a unary operation
M. x+ — ¥+ satisfying the following properties (A28)—(A9%) (the numbering
underlines the correspondence of the properties of bipolar Pawlak operator M
with the analogous properties of Pawlak operator 4):

A8B1 aMrv/M — aMNI.

)
aMI~M — g1~ M.

aM A BMYM = oM A pM
My pMYM — oM\ M,

—~

We define the bipolar Pawlak-Brouwer-Zadeh lattice as system (X, X A,
v, ~ M, 1>, where (X, X7 A V) >, 0,1) is a bipolar Brouwer-Zadeh distrib-
utive de Morgan lattice, and operator M is a bipolar Pawlak operator.

3.1 The Bipolar Pawlak-Brouwer-Zadeh Lattice as an Algebraic
Model of Dominance-Based Rough Set Theory

An ordered knowledge base K = (U, R) is a relational system where the universe
U # () is a finite set, and R is a preorder on U, that is R is a reflexive and
transitive binary relation on U. For any = € U, let us consider its dominating
set [x]l%L = {y € U : yRa} and its dominated set [:c]l,% = {y € U : zRy}. Given
the ordered knowledge base K = (U, R), to each subset X C U one can associate

the four subsets RZX, E2X7 RSX, RSX:
R*X ={zcU:[z]f C X},

RZX:{er:[x]}%ﬂX#ﬁ},
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REX ={zcU:[z]; C X},
REX={zeU:[2]3nX £0}

RZX and EZX are called the upward lower and upper approximations of X,

while RZ X and EZX are called the downward lower and upper approximations
of X.

The preorder R can be identified with the dominance relation which relates
two objects a and b (for example companies for which the bankruptcy risk is
assessed) evaluated with respect to a set of points of view, technically called
criteria (for example, financial ratios), when on all criteria, object a is at least
as good as object b.

Given an ordered knowledge base K = (U, R), let us consider U+ C 2V such
that
- 0,UecUt,

—forall A,BCU,if A,BclUT thenalso ANB,AUB cUT,
~forall ACU, if A €U then also RZA, R-A € U™

The sets A C U, such that A € U™, are called positive sets. Let us observe
that, possibly, 4T = 2V in which case all subsets of U are positive. Having a
family U™ of positive sets, it is possible to define a family i/~ of negative sets
as follows:

U ={ACU:U-AclUT}.
On the basis of U+ (and, consequently, of /) we can define the set W(U™T) of
all pairs (A, B), such that A € Ut, B €U~ and AN B = (). Let us observe that
if Y+ =2Y, then W(UT) = 3V.

Given an ordered knowledge base K = (U, R) and a family of positive sets U™
(and, therefore, W(U™)), we can define an unary operator N : W(UT) — W(U™),
as follows: for any (A4, B) € W(U™)

(A,B)" = (RZA,R=B).
The following result holds.

Proposition 3. The structure (3V, W(U™),m,u,~ N (0,U),(U,0)) is a
bipolar Pawlak-Brouwer-Zadeh lattice.

Sketch of the proof. This can be proved by a relatively straightforward ver-
ification. (3Y,M,1,7,% ,(0,U),(U,0)) is clearly a de Morgan Brouwer-Zadeh
distributive lattice. W(U™) is a distributive lattice with respect to M and L
because, by definition, U € U™ and for all A,B C U, if A, B € U™ then also
AN B,AUB € U*t. Moreover, IV is a binary operation on W(U™"), because,
again by definition, for all A C U, if A € UT then also EZA,EZA e ut.
Finally, one can prove that  satisfies all properties (A25)-(A97). For example,
for all A,C € Ut, B,D € U~ with ANB = CND =0, if (A, BY C (C, D), that
is AC C and B D D, we have

(0,D)N* = (R*D,U — RSD) C (RSB,U — R*B) = (A, B)""~
so that property (A271) holds. O
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4 Didactic Example

A financial institution wants to assess the bankruptcy risk of a set of six compa-
nies. To this end, two experts were contacted. The six companies are evaluated
on three criteria: Debt ratio (Total debt / Total assets), ROA (return on assets,
i.e., Net income / Total assets) an ROS (return on sales, i.e., Net income / Sales
revenue). Using some thresholds on criteria scales, agreed between the experts,
the evaluations were transformed to qualitative ones, as shown in Table 1. Then,
the experts were asked to make their first assessment of the bankruptcy risk,
by assigning the companies to the classes of “safe” and “risky” companies. In
case the experts had doubts with respect to the risk of bankruptcy of some com-
panies, they abstained from the assignment. The financial evaluations and the
classifications of the six companies made by the experts are shown in Table1,
where the abstentions are marked with “?”.

Table 1. Financial data of companies and bankrutcy risk assessment by the two experts

Company | Debt ratio | ROA ROS Expert 1| Expert 2
Al Good Medium | Medium | Safe Safe

A2 Medium | Bad Medium | ? Risky
A3 Medium | Bad Medium | Risky ?

A4 Medium | Good Bad Risky Safe

A5 Medium | Medium | Bad ? Risky
A6 Medium | Bad Good Safe ?

In this case, the set 3V is the family of all the pairs of sets (A4, B) with A
interpreted as the set of safe companies, B as the set of risky companies, and
U — A — B the set of companies for which there is some doubt. The assessment
of each conceivable expert E is therefore represented by one pair F = (A, B)
from 3V. For example, the assessment of Expert 1 is represented by the pair
Ey = ({Al, A6}, {A3, A4}), and the assessment of Expert 2 is represented by
the pair Ey = ({Al, A4}, {A2, A5}). The operators of the Brouwer-Zadeh lattice
permit to obtain different aggregations of the assessments of the experts.

In particular, the join operator U gives an optimistic synthesis of the assess-
ments of the two experts, i.e., a company is safe if it is safe for at least one of
the two experts, and a company is risky if it is risky for both the experts. In
case of Expert 1 and Expert 2, we get Ey U Ey = ({Al, A6, A4}, () (Table 2).

On the other hand, the meet operator I gives a pessimistic synthesis of the
assessments of the two experts, i.e., a company is safe if it is safe for both experts,
and a company is risky if it is risky for at least one of the two experts. In case
of Expert 1 and Expert 2, we get E1 M Ey = ({Al}, {A2, A3, A4, A5}).

The Kleene negation ~ represents the assessments of an expert giving inverse
assignments comparing to F, that is an expert E~ for which the companies eval-
uated safe by expert E are risky, and the companies evaluated risky by expert F
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Table 2. Explanation of the meaning of knowledge base K = (U, R) and elements of
the Pawlak-Brouwer-Zadeh lattice and bipolar Pawlak-Brouwer-Zadeh lattice in terms
of the example.

Element

Meaning

Set of companies assessed by the experts wrt risk

Indiscernibility relation or dominance relation
in the set of companies wrt financial ratios

Pair of sets of safe companies (A) and risky companies (B) from U

Set of doubtful companies wrt risk

Family of all the pairs of sets (A, B)

All possible subsets of companies

Join operator on assessment of the experts: gives (A, B),
where A contains companies safe for at least one expert,
and B contains companies risky for all the experts

Meet operator on assessment of the experts: gives (A, B),
where A contains companies safe for all the experts,
and B contains companies risky for at least one expert

Kleen negation: transforms (A, B) to (B, A),
i.e., makes of safe companies risky ones and vice versa

Brouwer negation: transforms (A, B) to (B,U — B),
i.e., makes of risky companies safe ones, and of all the others risky ones

Conjunction of Brouwer and Kleene negations:
transforms (A, B) to (U — B, B),
i.e., adds all doubtful companies to the safe ones

Conjunction of Kleene and Brouwer negations:
transforms (A, B) to (A, U — A),
i.e., adds all doubtful companies to the risky ones

Pawlak operator exploiting knowledge about indiscernibility relation
in U:

transforms (A, B) to pair of lower approximations (RA, RB),

i.e., eliminates from A and B all companies indiscernible with doubtful
ones

Pawlak operator exploiting knowledge about dominance relation in U:
transforms (A, B) to pair of lower approximations <E2A7 RSB >,

i.e., eliminates from A all companies dominated by risky or doubtful
ones, and from B all companies dominating risky or doubtful ones

are safe. For example, for experts E7 and Es we get E] = ({43, A4}, {Al, A6})
and Ey = ({A2, A5}, {Al, A4}).

The Brouwer negation = gives back the assessments of an expert FE~
for which the companies evaluated risky by expert E are safe, while all the
remaining companies are evaluated risky, so that there is no more space for
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the doubtful companies. For example, for experts E; and Ey we get ET =
({A3, A4}, {A1, A2, A5, A6}) and E5 = ({Al, A6}, {A2, A3, A4, A5}).

Of course, one can use multiple operators in conjunction. For example, it
is interesting to combine the two negations. Obviously, applying two times the
Kleene negation the original pair is obtained, that is E~~ = E. If one applies
first the Brouwer negation and after the Kleene negation, one obtains a new
pair that can be seen as an optimistic revision of the initial assessment, that is
all the companies that were not considered originally as risky are considered as
safe. For the two experts F; and Fy we get BT~ = ({Al, A2, A5, A6}, {A3, Ad})
and ES~ = ({Al, A3, A4, A6}, {A2, A5}). Instead, if one applies first the Kleene
negation and after the Brouwer negation, then one obtains a new pair that
can be seen as a pessimistic revision of the initial assessment, that is all the
companies that were not considered originally as safe are considered as risky.
For the two experts Ey and Ey we get BT~ = ({43, A4}, {A1, A2, A5, A6}) and
E;™ = ({Al, A4}, {A2, A3, A5, AG}).

On the logical basis of the Brouwer-Zadeh lattice, taking into account knowl-
edge about the indiscernibility relation in U with respect to financial ratios, one
can define the Pawlak rough approximation operator © which assigns to each
pair E = (A, B) of safe and risky companies, the pair E* = (RA, RB) of the
rough lower approximations of safe and risky companies. Let us remember that
the indiscernibility relation R holds if two companies have equal evaluation with
respect to all the considered financial ratios, so that

R = {(A2, A3), (A3, A2)} U {(A4, Ai) :i =1,...,6}.
Thus, for the two experts F; and Fs, we get

Ef = (R{A1, A6}, R{A3, A4}) = ({A1, A6}, {A4}),

EY = (R{A1, A4}, R{A2, A5}) = ({Al, A4}, {A5}).

The pairs E¥ and EX can be interpreted as the assignments to safe and risky
companies by experts F7 and F5, for which there is no doubt on the basis of
the available knowledge. In result of this operation, one can see that accord-
ing to available knowledge and assessment made by F;, among the companies
considered as certainly risky A3 is not present, although it was classified as
risky by expert F7, because it is indiscernible with A2 that was not classified as
risky. Thus, A3 is not present in the lower approximation of the class of risky
companies. This fact can also be interpreted such that on the basis of avail-
able knowledge, i.e., indiscernibility of A3 and A2 classified by this expert to
different classes, there is some doubt about classifying A3 as risky. An analo-
gous argument explains why among the companies considered as certainly risky,
according to the available knowledge and assessment made by Es, company A2
is not present.

Of course, the logic structure of the Brouwer-Zadeh lattice can be applied
also on the pairs E¥ obtained in result of rough approximation using
the Pawlak operator. For example, one can consider the optimistic assess-
ment resulting from the application of the Brouwer negation first and then
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the Kleene negation, that for the two experts F; and FE, gives E{‘z_ =
({A1, A2, A3, A5, A6}, {A4}) and EQLz_ = ({Al, A2, A3, A4, A6}, {A5}). On
can also consider the pessimistic assessment resulting from the application of
the Kleene negation first and then the Brouwer negation on the rough approx-
imations Ef and E¥; then, we get EX~™~ = ({Al, A6},{A2, A3, A4, A5}) and
EL=% = ({A1, A4}, {A2, A3, A5, AG}).

Observe now, that the evaluations of the companies on the financial ratios, as
well as the assessments given by the two experts Fy and Fs are, in fact, ordered.
Indeed, with respect to the qualitative evaluations on the financial ratios “Good”
is better than “Medium” which, in turn, is better than “Bad”, while, with respect
to the assessment of the experts, class “Safe” is better than “?” that, in turn,
is better than “Risky”. Therefore, it seems more appropriate to consider DRSA
and its algebraic counterpart, that is the bipolar Brouwer-Zadeh lattice with
the bipolar Pawlak operator V. In this case, any pair £ = (A, B) has to be
approximated using dominance relation R that for two companies is true when
the first one is at least as good as the second one with respect to evaluations on
all the considered financial ratios. For the six companies Ay, ..., Ag evaluated
on the three considered financial ratios, shown in Table 1, we have

R = {(A1, A2), (A1, A3), (A1, A5), (A2, A3), (A3, A2), (A4, A5), (A6, A2), (A6, A3)}
U
{(Ai,Ai):i=1,...,6}.

For the assessments of experts F; and FEs, the approximated pairs of safe and
risky companies obtained by applying the bipolar Pawlak operator ¥ are the
following:

EN = ({A1, A6}, 0),
EY = ({41, A4}, {A5)}) .

On these pairs, the operators of the Brouwer-Zadeh lattice can be used again,
and based on them, a financial institution can formulate various procedures to
aggregate the assessments of the experts taking into account the knowledge sup-
plied by financial ratios. Let us exemplify some of these aggregation procedures:

— aggregation with an optimistic attitude: the join of the rough approximated
assessments obtained using the bipolar Pawlak operator, i.e.,

EN U EY = ({A1, A4, A6}, 0);

— aggregation with a pessimistic attitude: as in the previous point, replacing
the join by the meet, i.e.,

EY NEy = ({A1},{A5});

— aggregation with an extremely optimistic attitude: the join of the optimistic
assessments obtained by applying first the Brouwer negation and then the
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Kleene negation to the rough approximated assessments obtained using the
bipolar Pawlak operator, i.e.,

B~ UEYST = (U0);

— aggregation with a mildly optimistic attitude: as in the previous point, replac-
ing the join by the meet, i.e.,

ENST N EY~T = ({Al, A2, A3, A4, A6}, {A5})

— aggregation with an extremely pessimistic attitude: the meet of the pes-
simistic assessment obtained by applying first the Kleene negation and then
the Brouwer negation to the rough approximated assessments obtained using
the bipolar Pawlak operator, i.e.,

BY TS MEYTY = ({Ar), {42, 43, A4, 45, A6})

— aggregation with a mildly pessimistic attitude: as in the previous point,
replacing the meet by the join, i.e.,

EY S UEY ™ = ({AL, A4, A6}, {42, A3, 45})

5 Conclusions

We extended the Pawlak-Brouwer-Zadeh lattice to the bipolar Pawlak-Brouwer-
Zadeh lattice, obtaining a new algebraic model which permits a joint consid-
eration of vagueness due to imprecision typical of fuzzy sets, and ambiguity
due to coarseness typical of rough set theory, when reasoning about ordered
data using the dominance-based rough set approach (DRSA). In the context of
DRSA applied to ordinal classification with monotonicity constraints, vagueness
is due to imprecision in object classification - it appears when an expert is hes-
itant when classifying the objects because her knowledge of the objects is not
perfectly precise; ambiguity is due to coarseness or granularity of the description
of the objects by the attributes - it appears when some attribute is missing in the
description, or when the considered attributes do not have sufficiently fine scales
to avoid violation of indiscernibility or dominance principle. Joint consideration
of vagueness and ambiguity within DRSA shows once again [6] a complementary
character of fuzzy sets and rough sets in dealing with distinct facets of imperfect
knowledge.

Using a didactic example, we have shown how the logic structure of the
Pawlak-Brouwer-Zadeh lattice can be used to aggregate evaluations of multiple
experts taking into account the available information. In the future research, we
envisage similar extensions of other algebraic structures for rough set theory,
different from Brouwer-Zadeh lattice, such as Nelson algebra, Heyting algebra,
Lukasiewicz algebra, Stone algebra, and so on (see, e.g., Chap. 12 in [17] or [2]).
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Abstract. Pawlak’s indiscernibility relation (which is an equivalence
relation) represents a limit of our knowledge embedded in an information
system. In many cases covering approximation spaces rely on tolerance
relations instead of equivalence relations. In real practice (for example
in data mining) tolerance relations may be generated from the proper-
ties of objects. A given tolerance relation represents similarity between
objects, but the usage of similarity is very special: it emphasizes the
similarity to a given object and not the similarity of objects ‘in general’.
The authors show that this usage has some problematic consequences.
The main goal of the paper is to show that if one uses the method of
correlation clustering then there is a way to construct a general (partial)
approximation space with disjoint base sets relying on the similarity of
objects generated by their properties. At the end a software describing
a real life problem is presented.

Keywords: Rough set theory + Correlation clustering - Set approxima-
tion

1 Introduction

From the theoretical point of view a Pawlakian approximation space (see in [12—
14]) can be characterized by an ordered pair (U, R) where U is a nonempty set
of objects and R is an equivalence relation on U. In order to approximate an
arbitrary subset S of U the following tools have to be introduced:

— the set of base sets: B ={B | B CU, and z,y € B if xRy}, the partition of
U generated by the equivalence relation R;
— the set of definable sets: D is an extension of B, and it is given by the
following inductive definition:
1. B C Dy;
2. 0e Doy
3. if D1, D5 € D, then D1 U Dy € Dg.
— the functions |,u form a Pawlakian approximation pair (I, u), i.e.
1. Dom(l) = Dom(u) = 2Y
2. 1(S)=U{B| B €% and BC S},
3. u(S)=U{B|B€®Band BNS #0}.
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R is called an indiscernibility relation. It represents a sort of limit of our
knowledge embedded in an information system (or background knowledge).
Indiscernibility has an affect on the membership relation. In some situation it
makes our judgment of the membership relation uncertain — making the set
vague — because a decision about a given object affects the decision about all
other objects which are indiscernible from the given object. Indiscernibility plays
a crucial role in approximation process: if we are interested in whether x € S
(where S is the set to be approximated), then

1. the answer ‘yes’ (i.e. x € I(S)) means that not only = € S but all y, such that
2Ry are members of S

2. the answer ‘no’ (i.e. x € I(S), where S is the complement of S) means that
not only = ¢ S but all y, such that 2Ry are not members of S;

3. the answer ‘maybe’ (i.e. x € u(S)\1(S)) means that there are y;,y2 such that
2Ry and xRys for which y; € S and ys ¢ S.

In practical applications indiscernibility relation is too strong: we have to
handle indiscernible objects in the same way but in real practice we have to
consider them as similar objects. Pawlakian approximation spaces have been
generalized using tolerance relations (instead of equivalence ones), which are
similarity relations and so they are symmetric and reflexive. Covering-based
approximation spaces (see for instance [16]) generalize Pawlakian approximation
spaces in two points:

1. R is (only) a tolerance relation;
2. B =A{[z]|[z] CU,x €U and y € [z] if 2Ry}, where [z] = {y | y € U,2Ry}.

These spaces use the definitions of definable sets and approximation pairs of
Pawlakian approximation spaces.

Covering approximation spaces use similarity relations instead of equivalence
relations, but the usage of similarity relations (which are tolerance relations from
the mathematical point of view) is very special. It emphasizes the similarity to a
given object and not the similarity of objects ‘in general’. We can recognize this
feature when we try to understand the precise meaning of the answer coming
from an approximation relying on a covering approximation space. If we are inter-
ested in whether z € S (where S is the set to be approximated), then (see Fig. 1)

1. the answer ‘yes’ (i.e. € I(S)) means that there is an object z’ such that
'Rz, r’ € S and all y for which 'Ry are members of S;

2. the answer ‘no’ (i.e. € I(S)) means that there is an object 2’ such that
2'Ra,x’ ¢ S and all y for which 'Ry are not members of S;

3. otherwise the answer is ‘maybe’ (informally x is a member of the border of
S) means that there is no #’ for which 'R, [2'] C U, and there is no =’ for
which "Rz, [2"] N U # 0.

Some practical problems of covering approximation spaces:

1. The former answers show, that generally the lower and upper approximations
are not close in the following sense (see Fig. 2):
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Fig. 1. Some base sets in covering cases
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Fig. 2. In covering the lower and upper approximations are not closed

(a) If z € 1(S), then we cannot say that [x] C S.
(b) If z € u(S), then we cannot say, that [y] NS # 0 for all y € [z].

2. The number of base sets is not more than the number of members of U, so
we have too many base sets for practical applications.
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If we want to avoid these problems we can generate a Pawlakian approxima-
tion space by constructing a system of disjoint base sets (see in [7]) (see Fig. 3).
If we have two base sets By, Bs, such that By N By # (), then we substitute them
with the following three sets: By \ Bz, Ba \ B1, By N Bs. Applying this iteratively
we can get the reduction. Although it is not a real solution from the practical
point of view. The base sets can become too small for practical applications.
The smaller base sets we have, the closer we are to the classical set theory. (If
all base sets are singleton, then there is no difference between the approximation
space and classical set theory.)

P
o .P1
Ps
. Ps
.Pm P .Pm Py .
L] L]
P11y Pg P P11 Ps
. . .P7 Py ° ) . .P7 P )
L] L]
.Ps .P 1 .Pz .Pq
P P
L] L]
P13 Pi3
L] L]
(a) Covering (b) Partition

Fig. 3. Covering and its reduction to a partition

In rough set theory the members of a given base set share some common
properties.

— In Pawlak’s original system all members of a given base set have the same
attributes (i.e. they have the same properties with respect to the represented
knowledge).

— In covering approximation spaces all members of a given base set are similar
to a distinguished object (which is used to generate the given base set).

Further generalization is possible (see): General (partial) Pawlakian approx-
imation spaces can be obtained by generalization of the set of base sets:

— let B be an arbitrary nonempty set of nonempty subsets of U.

These spaces are Pawlakian in the sense that they use Pawlakian definition
of definable sets and approximation pairs. This generalization is very useful
because a base set can be taken as a collection of objects with a given property,
and we can use very different properties in order to define different base sets.
The members of the base set can be handled in the same way relying on their
common property. In this case there is no way to give a corresponding relation
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which is able to generate base sets (similarly to covering approximation spaces),
so a general (partial) Pawlakian approximation space can be characterized only
by the pair (U, ), since the lower and upper approximations of a subset of U
are determined by the members of 8. However, any system of base sets induces
a tolerance relation R on U: xRy if there is a base set B € 8 such that z,y € B.
If we use this relation in order to get the system of base sets, the result can be
totally different from our original base system (see Fig. 4).

In Fig.4 x is in the intersection of B; and By (B; and Bs are defined by
some properties). It means that it has common properties with all y; and z;,
where 7 = 1,2, 3. So if some z € By N By it means that:

— 2Ry for all y € By
— xRz for all z € By

Therefore the base set generated by z is the following: [¢] = B; U By. (In this
example we used only two base sets, but it is the same when we have more.)

Fig. 4. Base sets by properties of objects

The main goal of the present paper is the following: the authors want to
show that there is a way to construct a general (partial) approximation space
with disjoint base sets relying on the properties of our objects. These spaces are
very useful in data mining. At the very beginning we have a general (partial)
approximation space (U, 2B). A base set is a collection of objects with the same
(practically useful) property. Common properties represent similarity between
objects, and the generated tolerance relation can be used to define the system
of disjoint base sets with the help of correlation clustering. The final general
(partial) Pawlakian approximation space is the core notion of similarity based
on rough set theory. This space has the following features:

— the similarity of objects relying on their properties (and not the similarity to
a distinguished object) plays a crucial role in the definition of base sets;

— the system of base sets consists of disjoint sets, so the lower and upper approx-
imation are closed;

— only the necessary number of base sets appears (in applications we have to
use an acceptable number of base sets);

— the size of base sets is not too small, or too big.
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At first the authors overview the most important points of correlation clus-
tering, and then they deal with how to apply correlation clustering in rough set
theory. At the end an implementation of similarity based rough set theory is
showed.

2 Correlation Clustering

Cluster analysis is a widely used technique in data mining. Our goal is to create
groups in which objects are more similar to each other than to those in other
groups. Usually the similarity and dissimilarity are based on the attribute values
describing the objects. Although there are some cases, when the objects cannot
be described by numbers, but we can still say something about their similarity
or dissimilarity. Think of the humans for example. It is hard to detail someone’s
looks by a number, but we still make statements whether two persons are similar
to each other or not. Of course these opinions are dependent on the persons. Some
can treat two random persons as similar, while others treat them dissimilar. If
we want to formulate the similarity and dissimilarity by using mathematics, we
need a tolerance relation. If this relation holds for two objects, we can say that
they are similar. If this relation does not hold, we say that they are dissimilar.
Of course each object is similar to itself, so the relation needs to be reflexive,
and it is easy to show, that it also needs to be symmetric. But we cannot go any
further, e.g. the transitivity does not hold necessarily.

If we take a human and a mouse, then due to their inner structure they are
similar. This is the reason why mice are used in drug experiments. Moreover a
human and a Paris doll are similar due to their shape. This is the reason why
these dolls are used in show-windows. But there is no similarity between a mouse
and a doll except that both are similar to the same object. Correlation clustering
is a clustering technique based on a tolerance relation (see in [5,6,17]).

Our task is to find an R C V' x V equivalence relation closest to the tolerance
relation. A (partial) tolerance relation R (see in [10,15]) can be represented by
a matrix M. Let matrix M = (m;;) be the matrix of the partial relation R of
similarity: m;; = 1 whenever objects ¢ and j are similar, m;; = —1 whenever
objects ¢ and j are dissimilar, and m;; = 0 otherwise.

A relation is partial if there exist two elements (7, 5) such that m;; = 0. It
means that if we have an arbitrary relation R C V x V we have two sets of pairs.
Let Rirye be the set of those pairs of elements for which the R holds, and Ryqse
be the one for which R does not hold. If R is partial then Reye URfarse €V X V.
If R is total then Ripye U Rpgrse =V x V.

A partition of a set S is a function p : S — N. Objects x,y € S are in the
same cluster at partitioning p, if p(z) = p(y).

The cost function counts the negative cases i.e. it gives the number of cases
whenever two dissimilar objects are in the same cluster, or two similar objects
are in different clusters. The cost function of a partition p and a relation Ry,
with matrix M is
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1
Flo, M) =3 D (mij + abs(miz)) =Y Su(iyp()miss

1<j i<j

where 0 is the Knockecker delta symbol (see [11]). For a fixed relation the parti-
tion with the minimal cost function value is called optimal. Solving a correlation
clustering problem is equivalent to minimizing its cost function, for the fixed
relation. If the value of this optimal cost function is 0, the partition is called
perfect. Given the R and R we call the value f the distance of the two relations.
The partition given this way, generates an equivalence relation. This relation can
be considered as the closest to the tolerance relation.

It is easy to check that the solution cannot be generally perfect for a simi-
larity relation. Take the relation on the left of Fig.5. The dashed line denotes
dissimilarity and the normal line similarity. On the right, Fig.5 shows all the
partition of these objects, where rectangles indicate the clusters. The thick lines
denote the pairs which are counted in the cost function. In the upper row the
value of the cost function is 1 (in each case), while in the two other cases it is 2
and 3, respectively.

Fig. 5. Minimal frustrated similarity graph and its partitions

The number of partition can be given by the Bell number (see [1]), which
grows exponentially. Hence, in general — even in the case of some dozens of
objects — the optimal partition cannot be determined in reasonable time, thus
a search algorithm which produces a quasi optimal partition would be more
useful in practical cases. However in practical examples it gives us the right to
handle objects, which are in the same class, the same way.

3 Correlation Clustering in Rough Set Theory

When we would like to define the base sets we use the background knowledge
embedded in a given information system. If we have a Pawlakian system then
we call two objects indiscernible if all of their known attribute values are the
same. In many cases covering systems rely on a similarity (tolerance) relation.
As we mentioned earlier some problems can come up using these covering sys-
tems. A base set contains members which are similar to a distinguished member.
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This means that covering does not consider the similarity relation itself but the
similarity with respect to a distinguished object. As a result of the correlation
clustering based on the tolerance relation we obtain a partition of the universe
[2-4]. The clusters contain elements which are usually similar to each other (not
just to a distinguished member). So the partition can be understood as a system
of base sets. Singleton base sets represent very little information (its member
is only similar to itself). Without increasing the number of conflicts we cannot
consider its member similar to any objects. By deleting singleton base sets we
get a partial system of base sets.

4 Program

The authors of this article wrote a software, which represents the theory in real
life problems. The software can be downloaded from:
https://arato.inf.unideb.hu/aszalos.laszlo/covering/.

2] Similarity based Rough Set o = “
File Help

RANDOM POINTS OPTIONS R R e PROGCONT DATASET OPTIONS

X: |400 Similarity: 50 Add Element:

e 0 : 90
200 Difference: Add Delete

013 Points Generate D) Select

= Number of problems
() Delete singleton base sets LA

Fig. 6. Graphical user interface

Figure 6 illustrates the graphical user interface of the program. For giving
the input datasets we have two options.

1. Generating random points
2. Reading a predetermined formatted dataset

1. Random points
At first the user gives the number of points, and then the points are generated
in a 2 dimensional interval which is also given by the user (These options can
be given on the left panel of the user interface). The base of the tolerance
relation is the Euclidean distance of the objects (d). We defined a similarity
(S) and a dissimilarity threshold (D). The tolerance relation R can be given
this way for any objects A, B:

+1 d(A,B)<S
ARB={ -1 d(A,B)>D

0 otherwise


https://arato.inf.unideb.hu/aszalos.laszlo/covering/

102 D. Nagy et al.

2. Predetermined formatted dataset

The so called ProgCont system (see in [9]), which was developed at the Faculty
of Informatics at the University of Debrecen evaluates the programming com-
petitions and midterms. Our software can read and handle data, generated
by the ProgCont system. Each record consists of the following attributes:
competitor id, problem id, solution id and the id of the programming lan-
guage. Let A, B be two arbitrary competitors. Let S4 and Sp the sets of the
solutions of the problems made by the competitors A and B. So the tolerance
relation R for any competitors A, B is the following:

+1 |SAASB[ < S
ARB={—1 |S4ASp|>D

0 otherwise

The similarity and difference are defined by the cardinality of the symmetric
difference (A) of the given sets.

Algorithm 1. Run method
1: procedure RUN(N)
2: best_partition « FindBestPartition(N)
covering_base_sets «— GetCovering()
disjoint_covering_base_sets «— MakeDisjointSets(covering_base_sets)
print best_partition
print covering_base_sets
print disjoint_covering_base_sets
end procedure

So in our program two competitors are similar to each other, if among the
same solutions there is a difference less than or equal to S, and they are treated
as different if this difference is greater than D. They are neutral otherwise. In
our algorithm we used 1 as S. We thought that if two persons have only one
different solution, then it does not imply that they have different knowledge.
The D threshold was set to 3.

After reading/generating the data, the software finds the quasi optimal parti-
tion (see Algorithm 1). Whereas numerous algorithms can be used for finding the
optimal clustering, we used a genetic search algorithm (see Algorithm 2 in [8]).
This algorithm is simple, it can be easily implemented, and it gives a relatively
optimal solution for the correlation clustering’s problem.

The set to be approximated can also be defined in two ways. The user can
select the points of this set manually, or if we have a ProgCont dataset, then we
can give IDs of the problems. The algorithm managing the approximation checks
which competitors solved the given problems, and adds the points representing
them to the set.
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Algorithm 2. Genetic algorithm

1: function FIND BEST PARTITION(N)

2:

3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

population «— random_population
while exit condition false do

sort(population)

for i — 1, N do
new_population.add(population.get(i))

end for

p1 < select_parents()

p2 — select_parents()

children « crossover(p1, p2)

if small probability then
mutation(children)

end if

new_population.add(children)

population «— new_population

maz «— find-maz(population)

end while
return max

19: end function

As mentioned in the previous sections the singleton base sets hold little infor-

mation about the similarity. In our software there is an option to throw the sin-
gleton base sets away. The base sets, we got this way, are partial because their
union does not cover the universe.

5 Results

The execution time of the algorithm managing the set-approximation can be seen
in Fig. 7. The axis x represents the number of points, and the axis y represents
the execution time in milliseconds.

4

T T
Correlation clustering - - - -
Disjoint covering — - —
Covering

35

3

2.5

2

1.5

1

20 40 60 80 100 120 140 160

Fig. 7. Execution time
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Fig. 9. The set to be approximated

If we take a look at the figure we can see that the approximation by cov-
ering is the slowest. This was expected, because there are a lot of base sets to
work with. Between the disjoint covering and the correlation clustering there
is no significant difference. Nevertheless, as the number of points increases, the
correlation clustering gives the fastest way to approximate. It is an interesting
fact that there is such a great difference between the covering and its disjoint
variant. Despite the fact that a disjoint covering has the largest number of base
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Fig. 10. The outputs of the approximations by the software

sets, their cardinality is much less (most of them are singleton) than in the case
of a regular covering.

The following figures show the output of our software for 100 random points.
The similarity threshold S was set to 50, and D was set to 90. Figure 8 repre-
sents the clusters (base sets) created by the correlation clustering. The set to be
approximated is shown in Fig.9. The members of this set are denoted by the
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X symbols, and the other members are denoted by the cross symbol. The mem-
bers were chosen randomly.

The approximation generated by the correlation clustering is displayed in
Fig. 10A. The cardinality of the base sets is relatively great so the lower approx-
imation consists of only a few members. (Only the members denoted by the
empty circle and filled diamond are in the set.)

The approximation generated by the covering is shown in Fig. 10B. Like in
correlation clustering the lower approximation consists of only a few members.
The two lower approximations have some difference, but they only differ in a set
which has two members.

Between the upper approximations we can see a significant difference. The
upper approximation defined by covering contains much more objects, almost
twice as much as the one defined by correlation clustering.

The approximation generated by the disjoint covering is shown in Fig. 10C.
We can see that among the methods this generated the finest approximation
(lower and upper approximation coincide). The reason is that almost all base
sets are singleton. As mentioned before if we have only singleton base sets we
get the common set theory back.

6 Conclusion and Future Work

The authors introduced a new method to define base sets in a general approxi-
mation space. The most important novelty of the introduced method is the usage
of similarity relation of objects. It emphasizes and so relies on the similarity of
objects ‘in general’ (and not on the similarity to a given object). Correlation
clustering is a possible way to define a system of disjoint base sets corresponding
to a given similarity ‘in general’. There are many different algorithms of corre-
lation clustering. In the application presented in the paper the authors used a
genetic algorithm. It worked well, but in the near future other algorithms have
to be checked, and a comparative (empirical and theoretical) study seems to
be very important in order to determine the properties of different algorithms.
Relying on the results the whole method can be useful in data mining and deep
learning.
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1

In this introductory section, we present the two main stems of the mereology
tree: the classical mereology due to Lesniewski [8] and the contact mereology
whose development ends with Clarke [4]. The primitive notion of mereology due
to Ledniewski is that of a part. Given a set U of objects, a relation of a part is
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Abstract. Mereology is a theory of concepts using the notion of a part
as its primitive notion. This notion is well suited for analysis and reason-
ing about mass concepts like solids, figures, swarms of things. We aim
here at highlighting foundations of mereology and its extension, rough
mereology in which the notion of a part undergoes a ‘fuzzification’ to the
notion of a part to a degree, along with applications to problems of intel-
ligent control of teams of intelligent agents, granular computing, spatial
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Mereology: First Steps

a binary relation 7 which should satisfy the followng conditions:

(1) m(u,v) = u #wv.

(2)

m(u,v) A (v, w) — 7(u, w).

The relation of partinduces the relation of an ingredient, ing, defined as follows:

(3) ing(u,v) < w(u,v) Vu=o.

The relation of being an ingredient plays some crucial roles in mereology and
it is the faithful counterpart of the notion of an element in set theory. First, it

is used in definitions of notions parallel to notions of set theory:
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— The Overlap relation: Ov(u,v) < z.ing(z,u) Aing(z,v).
— The Disconnectedness relation: Dis(u, v) < =Ov(u,v).
— The Subset relation: Sub(u,v) < Vz.[ing(z,u) — ing(z,v)].

We introduce the Rule of Inference (RI) proved in Les$niewski [8]:
(RI) For each pair u, v of objects, the truth of the formula (4) below for each
object t:

(4) ing(t,u) — F2.00(t, z) Aing(z,v)

implies that

(5) ing(u,v).

The notion of a mereological class follows; for a non—vacuous property @ of
objects, the class of @, denoted Cls® is defined by the conditions:

(6) P(u) — ing(u, Clsd).
(7) ing(u, Cls®) — Jz.[P(z) A Ov(u, 2)].

The class axiom (CL) guarantees the existence of Cls® for each plausible .
(CL) For each non—vacuous property @ there exists a class Cls®.

In [8], the uniqueness of the class is secured by an axiom and then (RI) is
proved.

The relation el(u,v) of being an element is defined as follows:

(8) el(u,v) < IPw=Cls® N P(u).
Proposition 1. The relations of ing, Sub and el are identical.

For the proof, see [8]. For the property Ind(u), defined by the equivalence

(9) Ind(u) < ing(u,u),
the class ClsInd is called the the universe, in symbols V. It follows that
(10) Vu.ing(u, V).

The notion of the complement to an object, with respect to another object,
is rendered as a ternary relation comp(u,v,w), to be read:‘u is the complement
to v with respect to w’, and it is defined by means of the following requirements:

(11) ing(v,w).
(12) ing(u,w).
(13) w = Cls{t: Dis(t,v) Aing(t,w)}.
The notion of the complement to w, —u is then rendered as
(14) —u = Cls{t: Dis(t,u)},

ie.,

(15) comp(—u,u, V).
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The complement relation — can be a candidate for the boolean complement
in a structure of a quasi-Boolean algebra within mereology, constructed in Tarski
[44], and anticipated in Tarski [45]. This algebra will be obviously rid of the null
element, as the empty object is not allowed in mereology by (9) and the meet of
two objects will be possible only when these objects overlap. Under this caveat,
the construction of Boolean operators of join and meet proceeds on the following
lines:

(16) ing(u,v + w) < ing(u,v) V ing(u, w).
(17) ing(u,v - w) < ing(u,v) Aing(v, w).

The universe V' with operators —, +, - is a complete Boolean algebra with no
null element.

1.1 Contact Mereology

The alternate approach to parts, begins with a relation C'(u,v) interpreted as ‘u
and v are connected, in contact, etc.’” The relation C has to satisfy the following
conditions:

(18) C(u,u).
(19) C(u,v) — C(v,u).
(20) Vz.[C(z,z) < C(z,y)] — u=.

The relation C' induces the relation of C-ingredient C' — ing(u,v):
(21) C —ing(u,v) < Vz.[C(z,u) — C(z,v)].

The notion of a C—part C — 7 is introduced as follows:
(22) C — w(u,v) < C —ing(u,v) Au # v.

With C — ing and C — m, one does introduce C-counterparts of notions of
overlap, disconnectedness, complement, meet and join in already standard way.
Due to the geometric appeal of the relation C, new relations are introduced:

(23) EC(u,v) < C(u,v) A C — Dis(u,v).

EC is the external connectedness relation, below we define the tangential
ingredient relation TC — ing and non—tangential ingredient NTC — —ing

(24) TC —ing(u,v) < C —ing(u,v) A 3z.EC(z,u) A EC(z,v),
(25) NTC —ing(u,v) < =-TC — ing(u,v) A C — ing(u,v).

1.2 A Model for Mereology

A standard playground for contact mereology, motivated also by practical appli-
cations in spatial imagery is the space RO(E?) of regular open sets in the Euclid-
ean plane. We recall that a set X is regular open if and only if the condition is
satisfied:

(26) X = IntCIX,
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where Int, Cl are, respectively, the interior and the closure operators in the plane
topology. Given two sets A, B in RO(E?), one lets

(27) C(A,B) < CIANCIB # 0.

A straightforward topological computations reveal the meaning of relations
C —ingr,C — Ov, EC,TP,NTP:

) C —ing(A,B) <~ A C B.

) C—Ov(A,B) < AN B #10.

) BEC(A,B) < CIANCIB £0AANB = 0.
) TP(A,B) —~ AC BACIAN(CIB\ B) # 0.
)

Accounts of mereology and contact mereology can be found in Casati and
Varzi [3], Calosi and Graziani [2], Simons [40]. An account of applications of
mereology is given in Polkowski [18].

2 Rough Mereology

Rough mereology replaces the notion of a part with the notion of a part to a
degree called the rough inclusion which is a ternary relation p(u,v,r) where u, v
are objects and r € [0, 1], read ‘the object u is a part to degree at least of r to the
object v'. Any rough inclusion is associated with a mereological scheme based
on the notion of a part by postulating that p(u,v, 1) is equivalent to ing(u,v),
where the ingredient relation is defined by the adopted mereological scheme.
Our postulates about rough inclusions stem from intuitions about the nature
of partial containment; these intuitions can be manifold, a fortiori,postulates
about rough inclusions may vary. In our scheme for rough mereology, we begin
with some basic postulates which would provide a most general framework.
When needed,other postulates, narrowing the variety of possible models, can be
introduced.

2.1 Rough Inclusions: General Facts

For a set U of objects, and a given on U part relation m with the associated
ingredient relation ing, we have the inference scheme (IR) of mereology at our
disposal. The relation p(u, v, ), see Polkowski and Skowron [38], [39], is supposed
to satisfy the conditions:

(33) 1, 0,1) > ing(u,v).
(34) p(u,v,1) — Vz.[u(z,u,r) = p(z,v,7))].
(35) p(u,v,r)As <r— p(u,v,s).
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Proposition 2. The immediate consequences of postulates (33)—(35) are

w(u,u, 1).

w(u,v,1) A p(v, 2,1) — p(u, 2,1).
w(u,v, 1) A p(v,u, 1) « u=nw.
TFY=> ﬁ:’“L(m7ya 1) v ﬁp,<y’q;7 1)'
VzNru(z,u,r) < p(z,v,7)] — u=wv.

Guds o do =

We now describe some models for rough mereology which at the same time
give us methods by which we can define rough inclusions, see Polkowski [17],
Chap. 7. An important property of rough inclusions is the transitivity. For a
function f : [0,1]% — [0,1] such that (i) f(1,7) =r (ii) f(r,s) = f(s,r), we say
that a rough inclusion p is f-transitive when the condition

w(u, v, ) A p(v,w, s) — p(u,w, f(r,s)

is satisfied.

2.2 Rough Inclusions: Residual Models

We begin with continuous t—norms on the unit interval [0,1]. We recall that it
follows from results in Mostert and Shields [10] and Faucett [5], cf., Hajek [7], that
the structure of a continuous t—norm 7" depends on the set F(T') of idempotents
of T, i.e., values = such that T'(z,z) = z; we denote with Or the countable
family of open intervals A; C [0,1] with the property that J; A; = [0,1] \ F(T).
Then we have

Proposition 3. T(z,y) is an isomorph to either L(x,y) or P(x,y) when z,y €
A; for some i, and T(x,y) = min{xz,y}, otherwise.

We recall, that, for a continuous t—norm T'(z,y), the residual implication,
residuum, x =7 y is defined by the condition:

(36) c=>ry >z T(x,2) <y.

It follows that x =7 y = 1 if and only if z < y, as T(x,z) < z for each
continuous t—norm 7. For a continuous t—norm 7', we define a relation up C
[0,1]® by means of

(37) MT(.I?,y,T) ST =Ty >

Proposition 4. The quadruple M(T) = ([0,1], <, <, ur) is a model for rough
mereology induced by the residuum of the t—-norm T.

Proof. First, let us make positive that pp satisfies (33)—(35). For (33), pr(z,y, 1)
means that © =7 y = 1, hence, z < y, i.e.ingry(x,y). For (34), assume that
pr(z,y,1) and pr(z,x,r), hence (i) z < y (ii) 2 =7 x > r, i.e, by (1), (iii)
T(z,r) < z. By (i), (iii), T(z,7) < y, hence, by (1), z =1 y > r. (35) follows
by (37).
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Clearly, the underlying part relation in the above proposition is the strict
ordering < and the ingredient relation is <. In particular important cases, of
t—norms L, P, M, one obtains the specific models My, Mp, Mjy;. In each model
M(T), p(z,y,1) & = < y, hence, we recall below only the case when z > y. In
the most important case of the Lukasiewicz t—norm L, the residual implication
=, is the classical Lukasiewicz implication:

(38) pr(z,y,r) o min{l,1 —x+y} >r.

From (38), we can extract a transitivity rule.
Proposition 5. From ur(x,y,r), pr(y, 2z, s) it follows that py(x, z, L(r, s)).
Proof. Tt suffices to consider the case when x > y and y > z, by (38), we have
z—y<l—-randy—z<1-s, hence,z—2 <1—(r+s—1),ie., ur(z,y, L(r,s)).
2.3 Rough Inclusions: Information Models

For an information system IS = (U, A, V) where U is a universe of objects, A
is a set of attributes and V is a set of admissible values of attributes, i.e., each
attribute a € A maps the universe U into the set V', we define sets

(39) DIS(u,v) ={a € A;a(u) # a(v)}
and
(40) IND(u,v) ={a € A : a(u) = a(v)}.

Following the idea in (38), we replace the distance |z — y| with the difference
set DIS(u,v) and let
car S(u,v
(41) gl (u,v,7) o CrdBIFw) <1y,

In virtue of (39) and (40), (41) is equivalent to

card U
(42) pt(u,v,r) < % >r.

The idea of (38) which goes back to Lukasiewicz’s idea of partial truth values
[9] can be adapted to geometric and set—theoretic contexts.

2.4 Rough Inclusions: Geometric and Set—Theoretic Contexts

Consider a collection of solids in a Euclidean space. For two solids A, B, we let

(43) pC(4, B,r) > 2eaiid) > .

Similarly, for a collection of finite non—empty sets, we let

d(XNY
(44) pS(X,Y,r) < % >
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Finally, we propose a 3—valued rough inclusion on finite sets.

(45) p3(X,Y,1) - X CY.
(46) p3(X,Y,1/2) < XAY # 0

and
(47) 3 (X,Y,0) = X NY =0,
where XAY = (X \Y)U (Y \ X).

3 Intelligent Control: An Application of Mereogeometry

We demonstrate in this section usage of rough inclusions in constructing a system
for intelligent control of formations of intelligent agents. The system rests on
mereogeometry constructed from rough inclusions. Consider a rough inclusion
u@ for the sake of attention, along with a collection of intelligent agents exploring
a bounded compact region R of an Euclidean space E. Each agent is perceived
as the centre of a regular closed region around it, be it a closed disc, a square or
a rectangle, which may be termed the influence region of an agent. This region
may be determined by the extent of agent’s sensors, or a safety region around
the agent which is ususal in case of mobile robots. For agents a,b, and their
regions of influence r(a), r(b), the value

(48) argmaz,pu(r(a), r(b),r)
defines the maximal degree of closeness of the agent a to the agent b whereas

(49) p(r(a),r(b).7)

when true states that the agent a is close to the degree of at least r to the agent
b. We define the mereological quasi-distance d(a,b) by letting

(50) d0(a,b) = min{r, s},

where p%(r(a),r(b),r) and u®(r(b),r(a),s) hold true.

We observe that d(a,b) = 1 means a = b whereas 6(a,b) = 0 means that
influence regions of a and b do not overlap. We borrow from elementary geometry
defined by Alfred Tarski in His Warsaw University lectures in the years 1926-27
as the part of Euclidean geometry which can be described by means of the 1st
order logic, the notion of betweenness, see Tarski and Givant [43]. The relation
of betweenness in axiomatization of elementary geometry is responsible for affine
properties. We will consider the Euclid Axiom relating two principal relations B
of betweenness and Fq of equidistance:

(51) B(z,y,2) vV B(z,2,y) V B(z,2,y) V Ja.Eq(x, a;y,a) A Eq(z,a; 2, a).

A paraphrase of (51) was proposed in van Benthem [1] in terms of two rela-
tions: of nearness N(x,y,z) and of betweenness Btw(z,y,z).

The relation N(x,y, z) read 'z is nearer to y than 2> becomes formalized in
terms of the quasi—distance § as:



On Mereology as a Tool in Problems of Intelligent Control 115

(52) N(z,y,2) < d(z,y) > 0(y, 2).

The relation of betweenness Btw(x,y, z) read ‘z is between y and 2’ is then
introduced as follows:

(53) Btw(zx,y,z) < Yw.Jw =2V N(z,y,w)V N(z, z,w)].

Given two robots a, b as discs of same radii, and their safety regions as cir-
cumscribed on them regularly positioned rectangles A, B, we search for a proper
choice of a region X containing A, and B with the property that a robot C
contained in X can be said to be between A and B. For two (possibly but not
necessarily) disjoint rectangles A, B, we define the extent, ext(A, B) of A and B
as the smallest rectangle containing the union A U B. We can prove.

Proposition 6. For any two rectangles A, B positioned regularly in the Fuclid-
ean plane, the only rectangle between A and B is the extent ext(A, B).

For details of the exposition which we give now, please consult Osmialowski
[11-13], Polkowski and Os$mialowski [31-33], Osmiatowski and Polkowski [14].
The notion of betweenness along with Proposition 6 permits to define the notion
of betweenness for robots. Recall that we represent the disc-shaped Roomba
robots by means of safety squares around them, regularly placed, i.e., with sides
parallel to coordinate axes. For robots a, b, c, we say that a robot b is between
robots a and c, in symbols

(54) (between b a c)

in case the rectangle ext(b) is contained in the extent of rectangles ext(a), ext(c),
ie.

(55) p(ext(b), ext(ext(a), ext(c)),1).

This allows as well for a generalization of the notion of betweenness to the
notion of partial betweenness which models in a more realistic manner spatial
relations among a, b, ¢; we say in this case that robot b is between robots a and
c to a degree of at least r, in symbols,

(56) (between—deg r ba c)
if and only if
(57) w(ext(b), extlext(a), ext(c)],r).

For a team of robots, T(r1,r2,...,7n) = {r1,7r2,...,7n}, an ideal forma-
tion IF on T(r,re,..,r,) is a betweenness relation (between...) on the set
T(r1,72,...,7y) of robots. In implementations, ideal formations are represented
as lists of expressions of the form

(57) (between a b c)



116 L. Polkowski

indicating that the object a is between b, ¢, for all such triples, along with a list
of expressions of the form

(58) (not—between a b c)

indicating triples which are not in the given betweenness relation. To account
for dynamic nature of the real world, in which due to sensory perception inad-
equacies, dynamic nature of the environment etc., we allow for some deviations
from ideal formations by allowing that the robot which is between two neighbors
can be between them to a degree. This leads to the notion of a real formation.
For a team of robots, T'(r1,72,...,7n) = {r1,r2, ..., n}, & real formation RF on
T(r1,72,...,7) is a betweenness to degree relation (between—deg . ..) on the set
T(ry,7r2,...,7y) of robots.

In practice, real formations will be given as a list of expressions of the form:

(59) (between—deg n a b c),

indicating that the object a is to degree of 7 in the extent of b, ¢, for all triples
in the relation (between—deg ...), along with a list of expressions of the form:

(60) (between 0 a b c),

indicating triples which are not in the given betweenness relation. Description
of formations, as proposed above, can be a list of relation instances of large
cardinality, effectively exponential in size of the formation. The problem can
be posed of finding a minimal set of instances sufficient for describing a given
formation, i.e., implying the full list of instances of the relation (between...).
This problem turns out to be NP-hard, see Osmiatowski and Polkowski [14].

Proposition 7. The problem of finding a minimal description of a formation
is NP-hard.

Proof. We construct an information system Formations as a triple (U, A, V),
where U is a set of objects, A is a set of attributes and V is the set of val-
ues of attributes. It will be convenient to add to this description the value
assignment, i.e., a mapping f : A x U — V. For a formation F, with
robots r1,...,r, we let U = T(ry,...,7,), a team of robots; A = {[rg,r,7m] :
Tk, T, Tm Dairwise distinct robots}. For a given formation F' of robots 71, ..., 7y,
the value assignment f is defined as follows,

1 in case r; = r; and (between r; ry 1)
f(resrisrml,ri) = % in case r; =1 or r; = 1, and (between v T ) (1)

0in case 1; Z 1Tk Tm

The system Formations describes the formation F. Clearly, reducts of the
system Formations provide a complete description of the formation F' and cor-
respond to minimal descriptions of the formation. As shown by Skowron and
Rauszer [41] the problem of finding a minimum size reduct of a given informa-
tion system is NP—hard.
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4 Granular Computing: Mereological Granulation
of Knowledge

Assume that a rough inclusion p is given along with the associated ingredient
relation ing, on a universe U of objects. The granule g, (u,r) of the radius r
about the center u is defined as the class of property &4, ,:

(62) @} ,.(v) & p(v,u,7).
The granule g, (u, ) is defined by means of
(63) gu(u,r) = Clsdl ..

Properties of granules depend, obviously, on the type of rough inclusion used
in their definitions. We consider separate cases, as some features revealed by
granules differ from a rough inclusion to a rough inclusion. Consult Polkowski
[19-28] for details of granule calculi and applications. In case of Archimedean
t—norm—induced rough inclusions, or metric-induced rough inclusions, by their
transitivity, and symmetry, the important property holds.

Proposition 8. In case of a symmetric and transitive rough inclusion p, for
each pair u,v of objects, and r € [0,1], ingr(v, g.(u,)) if and only if p(v,u,r)
holds. In effect, the granule g,,(u,r) can be represented as the set {v : p(v,u,r)}.

Proof. Assume that ingr(v,g.(u,r)) holds. Thus, there exists z such that
Ov(z,v) and p(z,u,r). There is x with ingr(z,v), ingr(z, z), hence, by tran-
sitivity of u, also p(x,u,r) holds. By symmetry of u, ingr(v, z), hence, u(v,z,r)
holds also.

Granules as collective concepts can be objects for rough mereological calculi.

5 Rough Inclusions on Granules

Due to the feature of mereology that it operates (due to the class operator) only
on level of individuals, one can extend rough inclusions from objects to granules;
the formula for extending a rough inclusion p to a rough inclusion & on granules
is a modification of the mereological axiom (IR):

(64) @(g, h,r) < Vz.[ing(z, g) = Jw.ing(w, h) A p(z, w,r)].
Proposition 9. The predicate fi(g, h,r) is a rough inclusion on granules.

Proof. u(g,h,1) means that for each object z with ing(z,g), there exists an
object w with ing(w, h) such that u(z,w, 1), i.e., ing(z,w), which, by the infer-
ence rule (IR) implies that ing(g,h). This proves (33). For (34), assume that
w(g, h,1) and u(k, g,r) so for each ing(x, k) there is ing(y, g) with u(x,y,r). For
y there is z such that ing(z,h) and wu(y, 2z, 1), hence, p(z, z,7) by property (34)
of p. Thus, p(k, h,r). (35) is obviously satisfied.

We now examine rough mereological granules with respect to their properties.
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6 General Properties of Rough Mereological Granules

They are collected below in the following proposition:

Proposition 10. The following constitute a set of basic properties of rough
mereological granules

1. If ing(y, x) then ing(y, g.(z,r)).
2. If ing(y, gu(z,r)) and ing(z,y) then ing(z, gu(z,7)).
3. If u(y, x,r) then ing(y, gu(x,r)).
4. If s <r then ing(g.(x,r), gu(x, s)).

which follow straightforwardly from properties (33)—(35) of rough inclusions
and the fact that ing is a partial order, in particular it is transitive, regardless
of the type of the rough inclusion u. For transitive rough inclusions, we can be
more specific, and prove.

Proposition 11. For each transitive rough inclusion u,

1. If ing(y, g, (z, ) then ing(9.(y, s), gu(z, T(r,s)).

2. If u(y,x,s) with 1 > s > r, then there exists « < 1 with the property that
an(.gﬂ(y7 Ot), g;;,(x, T)'

Proof. Property 1 follows by transitivity of p with the t—norm 7. Property 2

results from the fact that the inequality T'(s, «) > r has a solution in «, e.g., for
T=P,a>% and, for T=L, a>1-s+r.

It is natural to regard granule system {g/t(z) : z € U,r € (0,1)} as a neigh-
borhood system for a topology on U that may be called the granular topology.
In order to make this idea explicit, we define classes of the form

(65) N*(z,r) = Cls(¥}1),
where
(66) YrL(y) < Is > r.ur(y, v, s).

We declare the system {N7T(z,7) : x € U;r € (0,1)} to be a neighborhood
basis for a topology 6,,. This is justified by the following

Proposition 12. Properties of the system {NT(x,r): 2z € U;r € (0,1)} are as
follows:

1. ing(y, NT(x,r)) — 36 > 0.ing(NT (y,0), NT (x,1)).
2. s>r —ing(NT(z,s), NT(x,r)).
3. ing(z, NT(x,r) - NT(y,s)) — 3§ > 0.ing(NT(2,8), N (z,7) - NT(y, s)).

Proof. For Property 1, ing(y, N*(x,7)) implies that there exists an s > r such
that p(y,z,s). Let 6 < 1 be such that t(u,s) > r whenever u > J; 0 exists
by continuity of ¢+ and the identity t(1,s) = s. Thus, if ing(z, Nt(y,d)), then
we(z,y,m) with n > § and p(z,z,t(n, s)), hence, ing(z, N*(z,r)). Property 2
follows by (35) and Property 3 is a corollary to properties 1 and 2. This concludes
the argument.
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Granule systems defined above form a basis for applications, where approx-
imate reasoning is a crucial ingredient. We begin with a basic application in
which approximate reasoning itself is codified as a many—world (intensional)
logic, where granules serve as possible worlds.

7 Reasoning in Information and Decision Systems:
Granular Intensional Logics

We assume that a decision system (U, A, V, d) is given, see Pawlak [15,16], where
(U,A,V) is an information system, and d is a decision attribute, i.e., d ¢ A,
d: U — V, along with a rough inclusion v, representing either p° of (44) or
wS3 of (45)—(47), on the subsets of the universe U; for a collection of unary
predicates Pr, interpreted in the universe U (meaning that for each predicate
¢ € Pr the meaning [[¢]] is a subset of U), we define the intensional logic GRM,,
by assigning to each predicate ¢ in Pr its intension I, (¢) defined by the set of
extensions I/ (g) at granules g, as

(66) 1) (9)(¢) =1 < v(g.[[0]],7).

With respect to the rough inclusion 1, the formula (61) becomes

(67) IVs(g)(¢) > r < Looll2ll >
The counterpart for 3 is specified by definitions (45)—(47) and it comes
down to the following

Cl[¢]] and r =1
(68) 1)s5(9)(0) > 7 = gN[[g]] #0 and r > 3 (2)
N[¢]] =0 andr =0
We say that a formula ¢ interpreted in the universe U of an information system
(U, A) is true at a granule g with respect to a rough inclusion v if and only if

(69) 1/(9)(¢) = 1.

We recall that a decision rule in a decision system is a formula A . 5 (a,v) —
(d,w) where the expression (a,v) is a descriptor formula with the meaning
defined as {u € U : a(u) = v}. Hence, for each of rough inclusions v, a for-
mula ¢ interpreted in the universe U, with the meaning [[¢]] = {u € U : u = ¢},
is true at a granule g with respect to v if and only if

(70) g < [l¢])-

In particular, for a decision rule r : p — ¢ in the descriptor logic, the rule r
is true at a granule g with respect to a rough inclusion v if and only if

(71) g0 [lpl] < [la]]-
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We state these facts in the following proposition:

Proposition 13. For either of rough inclusions v, a formula ¢ interpreted in
the universe U, with the meaning [[¢]], is true at a granule g with respect to v if
and only if g C [[#]]. In particular, for a decision rule r : p = q in the descriptor
logic, the rule r is true at a granule g with respect to either of rough inclusions

v if and only if g\ [[p]] C [lg])

Proof. Indeed, truth of ¢ at g means that v(g, [[¢]], 1) which in turn, by regularity
of v is equivalent to the inclusion g C [[¢]].

We will say that a formula ¢ is a tautology of our intensional logic if and only
if ¢ is true at every world g. The preceding proposition implies that:

Proposition 14. For either of rough inclusions v, a formula ¢ is a tautology if
and only if Cls(G) C [[¢]], where G is the property of being a granule; in the
case when granules considered cover the universe U this condition simplifies to
[[¢]] = U. This means for a decision rule p = q that it is a tautology if and only

if [[p)] < [lql]-

Hence, the condition for truth of decision rules in the logic GRM, is the
same as the truth of an implication in descriptor logic, under caveat that gran-
ules considered cover the universe U of objects. Let us observe that results in
this section remain true for each regular rough inclusion v, i.e., satisfying the
condition that ¥(X,Y) =11if and only if X C Y.

8 Dependencies and Decision Rules

It is an important feature of rough set theory that it allows for an elegant
formulation of the problem of dependency between two sets of attributes, see
Pawlak [15,16], in terms of indiscernibility relations. We recall that in an
information system (U, A,V'), the indiscernibility relation IND is defined as
{(u,v) : Va € A: a(u) = a(v)}. A relative version IND(B) for B C A takes into
account only attributes in B. We recall that for two sets C;, D C A of attributes,
one says that D depends functionally on C when IND(C) C IND(D), sym-
bolically denoted C' — D. Functional dependence can be represented locally by
means of functional dependency rules of the form:

(72) ¢c({ve : a € C}) = ¢p({w, : a € D}),

where ¢c({v, : a € C}) is the formula A\, -(a = v4), and [[¢c]] C [[¢p]]. We
assume a regular rough inclusion v on subsets of the universe U. The proposition
holds

Proposition 15. If a : ¢c = ¢p is a functional dependency rule, then « is a
tautology of logic induced by v.

Proof. For each granule g, we have g N [[¢c]] C [[¢p]]-
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Let us observe that the converse statement is also true, i.e., if a formula
a oo = ¢p is a tautology of logic induced by vs, then this formula is a
functional dependency rule in the sense of (72). Indeed, assume that a is not
any functional dependency rule, i.e., [[¢c]] \ [[¢p]] # 0. Taking [[¢c]] as the
witness granule g, we have that g is not any subset of [[o]], i.e., I (¢)(a) < 3,
so « is not true at g, a fortiori it is not any tautology. A more general and also
important notion is that of a local proper dependency: a formula ¢c = ¢p is a
local proper dependency when [[¢c]]cap|[¢p]] # 0. We will say that a formula «
is acceptable with respect to a collection M of worlds when

(73) I (9)(a) 2

N[

for each world g € M, i.e., when « is false at no world g € M. A world ¢ is
C-ezact if g C [[¢¢]]. Then,

Proposition 16. If a formula « : ¢c = ¢p is a local proper dependency rule,
then it is acceptable with respect to all C—exact worlds.

Proof. Indeed, for a C-exact granule g, the case that I}, (g)(a) = 0 means that
9 C [[¢c]] and g N [[¢p]] = 0. As g is C-exact and [[¢¢]] is a C-indiscernibility
class, either [[¢c]] C g or [[¢c]] Ng = 0. When [[¢c]] C g, then [[¢¢]] = g which
makes g N [[¢p]] = @ impossible. When [[¢¢c]] Ng = @, then g N [[¢p]] = 0 is
impossible. In either case, I/ (g)(«) = 0 cannot be satisfied with any C-exact
granule g.

Again, the converse is true: when « is not local proper, i.e., [[¢c]]N[[¢p]] = 0,
then g = [[¢c]] does satisfy I)(g)(a) = 0. For a detailed discussion of this
topic, the reader may consult Polkowski [20] and Polkowski and Semeniuk—
Polkowska [34].

9 Granular Preprocessing in Data Analysis

We assume that we are given a decision system (U, A, V, d) from which a classifier
is to be constructed; on the universe U, a rough inclusion p is given, and a radius
r € [0,1] is chosen, see Polkowski [21-28]. The detailed study of granular classi-
fiers is conducted in Polkowski and Artiemjew [30]. The granular pre—processing
of the system consists in the following steps.

(74) We find granules g,,(u,r) for all © € U, and make them into the set G(u, ).
(75) From this set, a covering Cov(u,r) of the universe U can be selected by
means of a chosen strategy G, i.e.,

(76) Cov(u,r) = G(G(u,7)).

We intend that Couv(u,r) becomes a new universe of the decision system
whose name will be the granular reflection of the original decision system. It
remains to define new attributes for this decision system.
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r tst trn rulex aex cex MI

nil 345 345 5597 0.872 0.994 0.907

0.0 345 1 0 00 0.0 00
0.0714286 345 0 00 0.0 0.0
0.142857 345 0 00 0.0 0.0
0.214286 345 7 0.641 1.0 0.762
0.285714 345 10 0.812 1.0 0.867
0.357143 345 23 0.786 1.0 0.849
0.428571 345 20 96 0.791 1.0 0.850

0.5 345 51 293 0.838 1.0 0.915
0.571429 345105 933 0.855 1.0 0.896
0.642857 345 205 3157 0.867 1.0 0.904
0.714286 345 309 5271 0.875 1.0 0.891
0.785714 345 340 5563 0.870 1.0 0.890
0.857143 345 340 5574 0.864 1.0 0.902
0.928571 345 342 5595 0.867 1.0 0.904

O =~ W N =

Fig. 1. Train—and-test; Australian credit; granulation for radii r; RSES exhaustive
classifier; r = granule radius, tst = test set size, trn = train set size, rulex = rule number,
aex = accuracy, cex = coverage

(77) Each granule g in Cov(p,r) is a collection of objects; attributes in the set
AU{d} can be factored through the granule g by means of a chosen strategy
S, i.e., for each attribute ¢ € AU{d}, the new factored attribute g is defined
by means of the formula:

(78) 4(9) = S({a(v) : ingr(v, gu(u,r))})-

In effect, a new decision system (Cov(u,7),{@ : a € A},d) is defined. The
object v with

(79) Inf(v) ={(@=al(g)) : a € A}

is called the granular reflection of g. Granular reflections of granules need not
be objects found in data set; yet, the results show that they mediate very well
between the training and test sets. We begin with a classifier in which granules
computed by means of the rough inclusion pj form a granular reflection of
the data set and then to this new data set the exhaustive classifier, see [37], is
applied. In the table of Fig. 1, the results are collected of results obtained after the
procedure described above is applied. The classifier applied was exhaustive one;
the method was train—and—test. The rough inclusion applied was the Lukasiewicz
t-norm induced p! and Majority Voting was applied as the averaging strategy.
We can compare results expressed in terms of the Michalski index MI as a
measure of the trade—off between accuracy and coverage; for template based
methods, the best M1 is 0.891, for covering or LEM algorithms the best value
of M1I is 0.804, for exhaustive classifier (r=nil) M is equal to 0.907 and for
granular reflections, the best M value is 0.915 with few other values exceeding
0.900. What seems worthy of a moment’s reflection is the number of rules in the
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classifier. Whereas for the exhaustive classifier (r =nil) in non—granular case, the
number of rules is equal to 5597, in granular case the number of rules can be
surprisingly small with a good M1 value, e.g., at r = 0.5, the number of rules is
293, i.e., 5% of the exhaustive classifier size, with the best M1I at all of 0.915.
This compression of classifier seems to be the most impressive feature of granular
classifiers.

10 Spatial Reasoning: The Boundary Problem

The problem of boundary definition is one of the longest-standing in philosophy,
ontology and mereology. It is of the utmost importance for rough set theory as the
separator of exact sets from the rough ones. For a mereo—topological analysis
of the notion of a boundary see Polkowski and Semeniuk—Polkowska [35,36],
Varzi [46], Smith [42]. We prefer here the language of predicates and for a rough
inclusion g assumed to be symmetric and transitive, and u € U, r € [0,1], we
define a new predicate N(u,r)(v) if there exists an s > r such that u(v,u,s).
N (u,r) is the neighborhood granular predicate about w of radius r. Consider a
predicate ¥ on U having a non—empty meaning [[?]]. The complement to ¥ is
the predicate —¥ such that —¥(u) if and only if not ¥(u). We define the upper
extension of ¥ of radius r, denoted ¥," by letting ¥, (u) if there exists v such
that ¥ (v) and N (u, r)(v). Similarly, we define the lower restriction of ¥ of radius
r, denoted ¥, by letting ¥~ (u) if and only if not (—¥)F (u).

T

Proposition 17. 1. Predicates W,F and W, are disjoint in the sense that there
is no v € U such that ¥," (v) and ¥,” (v) hold true. 2. If ¥," (u) holds true then
W,F(v) holds true for each v such that p(v,u,1). 3. If W, (u) holds true then
U~ (v) holds true for each v such that p(v,u,1).

Proof. Claim 1 follows by definitions of the two predicates. For Claim 2, consider
u,v such that ¥F(u) and p(v,u,1). There exists w such that ¥(w), N(u,s)(w)
hold true with some s > r so p(w,u, s) holds true. By symmetry of u, we have
wu(u,v,1) true and transitivity of u for an adequate prenorm f implies that
p(w, v, f(1,s)) holds true, i.e., u(w, v, s) holds true which means that N (v, r)(w)
holds true and finally ¥,"(v) holds true. For Claim 3, assume that ¥, (u) and
(v, u, 1) hold true, i.e.,

(80) —3w, s > r.u(w,u, s) A =¥ (w),
which is equivalent to
(81) w(w,u,s) — ¥(w).
As p(v,u, 1) is equivalent to p(u,v, 1), we have by f—transitivity of p that
(82) p(w,v,s) = ¥(w),
which is equivalent to the thesis ¥, (v).
We will say that a predicate ¥ is el-saturated if and only if true formulas

¥ (u) and el(v,u) imply that ¥(v). A corollary to Claim 3 in Proposition 17 says
that for each r € [0,1], predicates ¥, and ¥,~ are el-saturated.
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A Global and Local Definition of the Boundary. For a predicate ¥, we
define the predicate boundary of ¥ with respect to a rough inclusion p, denoted
Bd, V¥ as follows:

(84) Bd,W « (—=0F) A (—0]).
Arguing like in proof of Proposition 17, we prove the following proposition:

Proposition 18. 1. Bd,¥ is el-saturated 2. For no w € U, Bd,¥(w) A¥;" (w)
is true and for no v € U, Bd,W(v) AWy (v) is true.

Proposition 19. For each uw € U, Bd,¥(u) holds true if and only if there exist
w,v € U such that ¥(w), =¥ (v), p(w,u,1), u(v,u,1).

A predicate Open is defined on predicates on U and a predicate @ on U is
open, Open(P) in symbols if and only if it is el-saturated.

Corollary 1. Open(¥,}) and Open(¥,”) hold true for each r € [0,1]. Open
(Bd, W) holds true.

Proposition 20. For a finite collection of predicates {¥y,Wa,..., W} if
Open(¥;) holds true for each i < k, then Open(\/; ¥;) holds true.

A predicate Closed holds true for a predicate ¥ if and only if Open(—¥)
holds true.

Corollary 2. Closed(¥,") and Closed(¥,”) hold true for each r € [0,1].
Closed(Bd,¥) holds true.

10.1 The Pawlak Notion of a Boundary Is a Special Case of the
Rough Mereological Notion of a Boundary

We return to an information system (U, A, V). When applying the rough inclu-
sion pu! we have that the predicate of element el(v,u) holds true if and only if
u!(v,u,1) holds true if and only if Ind(v,u), i.e., v,u are indiscernible. Hence,
a predicate is el-saturated if and only if its meaning is the union of a family of
indiscernibility classes and rough mereological notions of !Pfr and Y| become,
respectively, the notions of the upper and the lower approximations of the mean-
ing of ¥ and the meaning of the boundary predicate Bd,:¥ is the boundary of
the meaning of ¥.

11 Approximate Assembling

We address the problem of assemblage, important for applications of mereology.
The first step in assemblage is design. It proceeds with categories of parts in a
set Cat. Categories form an exact ontology and assembling works first on them
in a design process. Categories appear as a result of the equivalence relation sim
on objects, related to a relation of a part m on the universe U of objects:
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(85) u~ v« Vt[r(u,t) < 7(v,t)].
Categories enter as equivalence classes of sim:
(86) Cat(u) = Cat(v) < u ~v.

Things in the same category Cat are ‘universally replaceable’. It is manifest
that the part relation 7 can be factored through categories, to the relation IT of
part on categories:

(86) II(Cat(u),Cat(v)) < m(u,v).

In our formalism, design will imitate assembling with things replaced with
categories of things and the part relation 7 replaced with the factorization I1.
We need for our treatment of design: the designer set D, the functionality set
F', and the time set T. The act of design is expressed by means of a predicate,

Des(d, < Caty,--- ,Caty, >, Cat, f(Cat),t(Cat), T(Cat))

which reads: a designer d designs at time ¢ a category of things Cat with func-
tionality f(Cat) according to the design scheme T'(Cat) organized by d which is
a dag with the out-node Cat, from categories Caty, - - - ,Caty, which are in-nodes
of T'(Cat). The category Cat; enters in the position i the design process for Cat.
The predicate Des is subject to the following requirements.

DES1. If Des(d,< Cat(vi(w)),---,Cat(vi(u)) >,Cat(uw), f(u),t(u),T(u))
and for any ¢ in {1,--- , k}, it holds that

Des(p(Cat(vi(w))), < Cat(vi, (vi(w))), - -+ , Cat(vi, (vi(u)))) >,

Cat(vi(u)), f(vi(uw)), t(vi(w)), T (vi(u))),
then t(v;(u)) < t(u), f(u) C f(vi(u)), p(vi(w)) C p(u), and T(v;(uw)) attached
to T'(u) at the leaf Cat(v;(u)) yields a dag, called the unfolding of T(u) via the
design dag for Cat(v;(u)).
DES2.
Des(d, < Cat(v1(u)),--- ,Cat(vi(u)) >, Cat(u), f(u), t(u), T'(u)) =
I (Cat(vi(u)), Cat(u))
for each v;(u).
Meaning that each object can be designed only from its parts.
We introduce an auxiliary predicate App(v,i(v),u,t(u)) meaning: Cat(v)
enters in the position ¢ the design process for Cat(u) at time t(u).
DES3. II(Cat(v), Cat(u)) = ICat(wi(v,u)),- -, Cat(wg(v,w)), and,
t(UIQ(’U, U)), e 7t(’LUk(’U, u)>7 Z(U]l (’U7 u))7 e 7i(wk(7j,u)fl>>
such that v = wi (v, u), t(w(v,u)) < --- < t{wg (v, uw), wr(v,u)) = u,
App(wj v, ’LL)), i(wj (’U, u))7 Wj+1 (’U, u)v t(ijrl ('U, u))

(
forj=1,2,---  k(v,u) — 1.
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This means that for each object which is a part of the other object, the
category of the former will enter the design dag for the category of the latter.
DES4. Values t(u) belong in the set T'= {0,1,2,---} of time moments.

Corollary 3. The universe of categories is well-founded.

We define a design artifact as a category Cat(u) at an out-node such that
II(Cat(u), Cat(v)) is true for no v.

11.1 Approximate Assembling Along the Design Scheme

Assembling proceeds along the dag employed in design. The difference is that
assembling operates on objects idealistically ordered by the part relation 7. In
reality, one must take into account the usage of objects which formally regarded
as identical to design object factually have a different characteristic, e.g., spare
parts for an auto may be not original by manufacturer but substitutes: we are
told they will work but for a shorter time etc. To characterize this aspect, we
introduce an endurance factor en. Let us observe that in a wider ontological sense
this may be related to the endurantism problem, see Gilmore [6]. Using the factor
en, each node node works in the following way: it establishes a function Prop,.qe
which acts on the node incoming objects factors en(oby), en(obz), ..., en(oby) and
issues the factor for the node produced object 0by,oqe:

(87) Propnode(en(oby),en(obs), ...,en(obg)) = en(obpode)-

By means of (87), node, having a demand en*(0b,4.) can issue demands to
supplying nodes on en*(0b;), en*(obs), ..., en*(oby) as to satisfy

(88) Propnode(en*(obr),en*(obs), ...,en*(oby)) > en*(0bnode)-

The requirements for en* are back—propagated through the design dag from
the out-nodes to the in-nodes by means of Prop functions of the nodes. We
include the description of the assembling process in analogy to our description
of the design process. It does require a category of operators P, a category
of functionalities F, a linear time T with the time origin 0. The domain of
objects is a category Things(P, F, w) of objects endowed with a part relation .
The assignment operator S acts as a partial mapping on the Cartesian product
P x F x Things(P, F,7) with values in the category dag of dags. The act of
assembling is expressed by means of a predicate

Art(p(u), < vi(u), - ,vp(u) >, u,en*(u), f(u), t(u), T(u)),

which reads: an operator p(u) assembles at time t(u) an object u with endurance
factor en*(u), functionality f(u) according to the assembling scheme T (u) orga-
nized by p(u) which is a dag, from things vi(u),- - ,vg(u) which are in-nodes
of dag. The thing v;(u) enters in the position i the assembling process for wu.
The predicate ART is subject to the requirements analogous to Desl-Des4 for
design. The details of the assembling scheme without the requirements for en*
are to be found in Polkowski [29].
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Abstract. In this paper we consider information granules based on cov-
erings. We also present a topological approximation space, where lower
and upper approximations are open sets. We show a way of forming
neighbourhoods for ‘new’ (testing) objects. A topological rough fuzzy
membership function is defined and then generalized to an extended
rough fuzzy membership function of the ‘new’ objects. Basing on this
extended membership function and the least neighbourhood of any ‘new’
object, we propose a new topological approach to classification problem.

Keywords: Rough sets - Approximation space + Information granules -
Topology * Rough fuzzy membership function - Classification

1 Introduction

We consider a topological approach to rough approximation space. Approxima-
tion spaces for information systems (see [1,2]) were defined by partitions, whereas
these were defined by attributes of a pattern space. Skowron and co-authors
[3-5] proposed a more universal approach based on various attribute-dependent
coverings, in particular by tolerance and similarity relations defined by attribute
values. It also turned out that the problem of existing of missing values (see
[6-10]) can be solved by coverings. Some researchers used a topological point of
view (see [11-15]) to describe approximation spaces.

An important generalization of an approximation space via the information
granulation approach has been proposed by Skowron and Polkowski (see papers
like [16-21]). The theoretical results are eventually implemented in machine
learning methods for solving practical problems like classification, pattern recog-
nition ete. (see e.g. [22,23]).

In this paper we assume that a covering of the finite set is given. The origin
of the covering sets is of two kinds, so the covering set is divided into two parts.
The first one is attribute-dependent part where the covering subsets are sets
of objects indiscernible under attribute-dependent properties. This part of the
© Springer International Publishing AG 2017
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covering is crucial for recognizing a neighbourhood of any ‘new’ object via the
attribute values of this object (missing values are allowed). The second kind is
an expert-dependent part based on available data, domain knowledge as well as
subjective decisions of experts.

In Sect.2 we describe a topology generated by a covering of the set U and
we take minimal neighbourhoods of objects of U as the information granules.
Such an approach were presented in [14]. Theorem 1 states that the granules are
join irreducible elements in the distributive lattice of the topology. This lattice-
theoretic fact yields that every open set is a join of granules. Moreover, every
open set is a join of maximal granules included in this set, what could be used
for minimization of description.

In Sect. 3 we assume that the lower approximation of a set X is given by the
topological interior of X and its upper approximation coincides with the least
open set that includes X . This latter assumption differs from the usual definition
in approximation spaces defined by topological spaces, in which, on the contrary,
the upper approximation of a set X is its closure. Our assumption leads to the
very natural fact that X is definable if and only if it is open. This extends
to arbitrary topological spaces occurring in Pawlak’s approximation spaces (in
which lower and upper approximations are clopen, that is, closed and open). We
also define a rough fuzzy membership function, which could be generalized to a
rough inclusion function of open sets into subsets of U.

In Sect. 4 we present an application of our topological approach to the clas-
sification problem. The most important issue is to recognize a ‘new’ object via
its attribute values and describe the neighbourhood of this ‘new’ object i.e. an
open set of objects ‘indiscernible’ (under available information) with the given
‘new’ object. The value of a rough inclusion function of this neighbourhood to
the given decision class is used as an extended rough fuzzy membership function
of the ‘new’ objects to the decision class.

2 Covering Based Granulation

In this paper U is a finite non-empty set of objects. A non-empty family C of
subsets of U is a covering on U (or covers U) if and only if | JC=U.

Recall that a family T of subsets of a finite set U is a topology on U if and
only if 0,U € T and for any X, Y € T, XNY € T and X UY € T. Given any
family A of subsets of U there exists the least topology T'(A) containing .A.

Let C be a covering of U. For any object u € U let Ne(u)={C € C: u e C}
denote the family of all its neighbourhoods in T'(C). Let ge(u) =\ Nc(u). Then
gc(u) is the least neighbourhood of w in T'(C). Hence gc(u) can be treated as the
smallest portion of information (an information granule) about u in the context
of the covering C. The set of all granules Granc(U) = {gc(u): v € U} will be
called a granulation set of U determined by C.

It is worth mentioning here that if C is not a covering of U then there is a
u € U such that N¢(u)=0. Then taking ((0=U, we get the following equality
Granc(U) = Graneyquy(U) \ {U}. From this moment C denotes a covering on
U such that U € C.
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If there is no confusion, we omit the subscript C writing N'(u), g(u), Gran(U).

Ezample 1. 1. Let U={uy,ua,us, uq, us} and let
{{u1, ug, us}, {uz,us,us}, {u1,us2,us}, U} be the given covering of U.

Then g(u1) = {u1,u2}, g(uz) = {uz}, g(us) = {uz,us, us}, g(ua) = {uz,us},
g(us)={u1,uz,us}.

2. Consider the granulation: g(u;) = {ui},g(us) = {ua},gluz) =
{uy, uz,us}, g(usg) = g(us) = {u1, uz, uq,us}, g(ug) = U. This shows that the
intersection of two different granules does not necessarily be a granule, two
different objects can have equal granules, U is a granule.

Proposition 1. For any u,v € U

if u € g(v) then g(u) € g(v),

g9(u) € g(v) if and only if N'(u) 2 N(v),

if g(u) C g(v) then v & g(u),

g(u) C g(v) if and only if N'(u) D N (v),

(Gran(U), Q) is a partial ordered set dual to ({Ny: uwe U}, Q).

SARRENCI

We set uTIndv if and only if g(u) =g(v) and call TInd a topological indis-
cernibility relation. Then [u]rrnqg=g(u) \ U{g(v): v € g(u), g(v) C g(u)}.

Notice that every topology 7 on a finite set U forms a finite distributive
lattice (7,U,N). Figure 1 presents the diagrams of the two lattices for topologies
obtained by the coverings from Example 1. The granules are labeled.

Fig. 1. Lattices of the topologies from Example 1

It is known in lattice theory (see [24]) that join irreducible elements play a
crucial role in description of finite distributive lattices. An object X € 7 is join
irreducible if for any YV, Z € T, X =Y U Z implies X =Y or X =Z. Let J(T)
be the set of all join irreducible elements in (7,U,N) and for any X € 7T let
JX)={Y C X :Y € J(T)} and let Jpu(X) denote all maximal elements
in J(X).

For any finite distributive lattice (7,U,N) and every X,Y € T, the following
properties of join irreducible elements (see [24]) will be useful in our paper:
X=UJJX)=U Jmas (X), J(XUY)=J(X)UJ(Y) and J(XNY)=J(X)NJ(Y).

The next theorem describes all join irreducible elements in (T'(C), U, N).
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Theorem 1. Let C be any covering of U. Then

1. g(u) is join irreducible in (T(C),U,N) for any u € U,

2. X={g(x): x € X} for any non-empty X € T(C),

3. J(T(C)) \ {0} =Granc(U),

4. T(C)=T(Granc(U)) and Grangran.w)(U)=Granc(U).

Proof. 1. Let g(u) =g(v) U g(w) for some u,v,w € U. Then g(v), g(w) C g(u)
and u € g(v) or u € g(w). Hence g(u) C g(v) or g(u) C g(w) and thus
g(u)=g(v) or g(u)=g(w).

2. Let X € T(C)\{0} and z € X. Then there is a neighbourhood of z included in
X. Hence g(x) C X as the least neighborhood of z and X =|J{g(z): z € X}.

3. Using 1 Grane(U) C J(T'(C)). By 2, any nonempty X € T(C) \ Granc(U)is
not join irreducible. Hence J(T'(C)) \ {0} =Granc(U).

4. Tt is an immediate consequence of 1-3.

The properties of join irreducible elements allow us to choose the unique
optimal (in the sense of number of components) granular covering of X consisting
of all maximal granules included in X . Also notice that any maximal granule g(u)
is obtained by intersection of minimal set A/ (), thus the optimal coverings can
be obtained by minimization of sets N(.). Notice, that all the above properties
are true for any topology 7 on U, because T is a covering of U and T(7)=7.

3 Topological Approximation Spaces and Rough Fuzzy
Membership Function

Let U be a finite non-empty set of objects and let 7 be a topology on U. We
define a topological approximation space TAS=(U,7) as a topology on U with
topological operators of lower and upper approximation of subsets of U as follows
(see also [14]):

1. LOW(X) is the greatest open set Y such that Y C X
2. UPP(X) is the least open set Y such that X C Y.

A subset X C U is definable it LOW (X)=UPP(X). It can be easily observed
that X C U is a definable set in TAS if and only if X € 7. Moreover,
LoW (X)=J{g(x) : g(z) C X}, UPP(X)={g(x) : * € X}, where g(x) denotes
a granule of z € U, in the granulation set Grans(U).

Let TAS = (U,7T) be any topological approximation space. For any v € U,
X CU and X'=U\ X we introduce a rough fuzzy membership function p(u, X)
based on TAS as follows:

0 for u € U\ UPP(X)

p(u, X) = rdoold) for u € UPP(X) N UPP(X')

1, for w e U\ UPP(X’)
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Ezample 2. Let us take the granulation from Example 1.2 and X ={us, ug, uq}.
Then UPP(X) = g(u2) U g(ug) U g(us) = {u1,us, us, us,us} and UPP(X’) =
g(u1) U g(us) U g(us)=U. All elements, but ug, belong to UPP(X) N UPP(X').
g(u1)={u1} and X Ng(u1)=0 and thus p(uz, X)=0

g(ug)={us} and X N g(uz)={us} and thus p(ug, X)=1

g(us)={u1,us,usz} and X N g(us)={uz,us} and thus u(ug,X)=§
g(ug)=g(us)={u1,us, us,us} and X N g(ug)={uz,us} and thus

p(ug, X)=p(us, X)=1. ug € UPP(X') \ UPP(X) and thus p(ug, X)=0.

Notice that UPP(X) N UPP(X') would represent an ‘uncertainty’ region.
However, this region cannot be described as {v € U: 0 < p(u,X) < 1}. In
Example 2, u1,us € UPP(X)NUPP(X') and p(u1, X)=0, p(ug, X)=1.

The next proposition shows that the rough fuzzy membership function
determines a two-point probability distribution and preserves topological
indiscernibility.

Proposition 2. For any u,v € U and X CU

1. p(u, X)=1 for every u € LOW(X),
2. pw(u, X)=0 for every u € LOWV(X'),
8o plu, X')=1— p(u, X),

4. if glu)=g(v) then p(u, X)=p(v, X).

Proof. We prove only 3. Notice that U = (U \ UPP(X)U(U \
UPP(X"))U(UPP(X) N UPP(X")), where U denotes the disjoint union of sets.
Let v € LOW (X').

1. If u € U\ UPP(X) then p(u, X)=0=1— p(u, X').

2. If wu € U\ UPP(X') then p(u, X)=1=1— p(u, X’).

3. If u € UPP(X) N UPP(X') then g(u) C UPP(X) N UPP(X").
And g(u)=g(u) N (XUX")=(g(u) N X)U((g(u) N X").

Hence 1:%:9(;()5)( + g(Zzs)X =p(u, X) + p(u, X').

If X CU and V € 7 is any open set, we can propose different kinds of
rough inclusion measure based on values of the rough fuzzy membership function
for objects from V and then we can use this measure to classify new objects.
Dependent on the specific application, statistical measures of central tendency
can be used as well as some other ‘aggregation’ methods. Let u(V,X) denote
any such aggregated measure.

4 Classification Based on TAS

In this section we discuss the application of topological approximation space in
building classifiers of new objects to decision classes. We are going to present
here the steps to obtain tools for classification. Let U be a finite non-empty set of
objects (sample, training set of objects) and let o ¢ U be a ‘new’ object (testing
object) that we want to classify into one of the decision classes (categories of
objects) Dy,..., Dy CU.
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STEP I - Information Table
Start with Pawlak’s information system, where missing values are also admit-
ted. Systems with missing values can be obtained, when for example, someone
needs to aggregate information from many sources. An information system is
a pair 1S = (U, A), where A is a set of attributes such that for every a € A,
a partial function a : U — Val, is determined. An information table is a
table represented by a partial function IT : U x A — |J{Vd, : a € A} such
that IT (u, a) is defined if and only if a(u) is defined and then IT(u, a)=a(u).
If we don’t want to use partial functions for some reason, we can add some
artificial symbols (like %) for indicating missing values.
We assume that the new object o is described as {a(0) : a € A}.

STEP II - Attribute-Dependent Subsets
Let IS5 =(U, A) be the information system from STEP I. We say that C C U
is attribute-dependent if there is a logical condition [ based on attribute values
(like boolean expression on descriptors), such that C' = Cj, where Cj is the
set of all objects from U satisfying [. For example, if [ is a descriptor a = s
then C; ={u € U : a(u) = s} is an attribute dependent set. Let L be the
set of logical conditions based on attribute values. Recall that we assumed in
Sect. 2 that the covering set contains the set U, so we can add to L a logical
formula [y which describes a condition like ‘an object is of the same category
as other objects in U’ and then Cj, = U. Hence assume that [, € L. Then
CL={C; : 1l € L} denotes the set of attribute-dependent subsets determined
by L. We will say that Cp, is an attribute-dependent part of the given covering
system (U,C) it C, C C.

STEP III - Covering and Granulation
We form a covering system (U, C) with C=CpUC, , where C7, is an attribute-
dependent part for some set of logical conditions L and C, is a family of
subsets which represent the additional information. We will say that C, is
the expert-dependent part. The subsets from the expert-dependent part can
be obtained in many ways like expert’s indication of similar objects, object
properties that cannot be described by attributes, decisions based on hidden
premises, hypotheses about the similarity of objects, etc.

Having the covering, we calculate the granulation set Gran(U). This is the
moment when reduction of number of covering sets should be done, so we
can use some minimal covering sets (like reducts for Pawlak’s information
systems) with the aim to get the granulation. A reduction of the attribute-
dependent part is particularly important, because this part will be used in
describing neighbourhoods of new objects (to be classified).

STEP IV - Neighbourhoods of New Objects
In this step we are going to obtain a description of o by the attribute-
dependent part C,. For every [ € L if o ‘satisfies’ [, then C; is a neighbour-
hood of 0. Thus N (0) ={C; : o satisfies [,I € L}. Notice that this definition
depends on the chosen way of ‘satisfaction’, especially, when missing values
are involved. Different types of satisfaction, were considered in partial alge-
bras theory (see e.g. our papers [25,26]), and also in partial structures (see
[27-30]). In a wider perspective, A (0) can also contain sets from the expert-
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dependent part i.e. N'(o) ={C; : o satisfies [,] € L} UCp, where Cy C C..
The latter holds when at least one of the methods of gaining the additional
information is still active during the classification process.

The least neighbourhood of o is the open set G(0) =N (0). Hence G(0) can
be interpreted as a reflection of the object o in TAS.

STEP V - Topological Measure of Membership of New Objects and Classification

Having G(0), we can calculate a value of an extended membership function
of the object o to any decision class D; as u(o, D;)=pu(G(0), D;). Finally, we
use the calculated value of the extended membership function in the chosen
classification method. Certainly, the method of calculating p(G(0), D;) can
depend on the method of classification, and vice versa.
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Abstract. This paper is devoted to an axiomatic characterization of an
ontological predicate called “actual existence”. We analyze this predicate
in the context of some mereological and mereotopological systems. The
resulting mereological system is a Boolean algebra with a predicate of
actual existence and the resulting system in mereotopology is a Boolean
algebra with predicate of actual existence and a binary relation called
“actual contact”. For both systems we present standard models and prove
the corresponding representation theorems.

Keywords: Mereotopology - Contact algebra - Actual existence -
Actual contact -+ Topological representation

1 Introduction

This paper is to be considered as an extended abstract of [16] which was devoted
to a formal treatment of the predicate of ontological existence in the context of
mereology and mereotopology. We omit in the present text all formal proofs
and consider more intuitive explanations and some new motivating examples.
We consider [5,9,10] as standard reference books correspondingly for mereology,
topology and Boolean algebra.

1.1 Mereology and Mereotopology

“Mereology is a formal theory of part-whole and associated concepts” - Simons
[10]. Mereotopology is a combination of mereology with some topological rela-
tions between objects. The idea of this combination arose in the first part of 20th
century when a number of philosophers, including mainly Whitehead [17-19] and
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de Laguna [7], decided to build a new, point-free theory of space based on mere-
ology. This was inspired by some criticism to the classical Euclidean approach,
based on the primitive notions of point, straight line and plane, which are in a
sense some fictions having no separate existence in reality. The aim was to put
on the base of the new approach more realistic primitive notions like regions (in
Whitehead’s terminology) as abstractions of physical bodies and some simple
mereological and topological relations between regions, like one region to be a
part of another (part-of relation), or two regions to have as a common part a
third one (overlap relation), or two regions to be in a contact, which intuitively
means to have at least one common point. This idea does not disregard points at
all, but requires they to be introduced in the theory later on by appropriate def-
initions. Let us note that part-of and overlap relations are typical for mereology,
while its language is too weak to express the contact relation, which has some
topological nature. That is why the two disciplines - mereology and topology,
had to be integrated in “mereotopology”. Probably the name “mereotopology”
for the new discipline was used for the first time by Simons [10]. Another name,
related to the new approach to geometry, is “Region Based Theory of Space”
(RBTS). Survey papers on mereotopology and RBTS are, for instance [1,12].
Let us note that due to its simple language for representing spatial knowledge,
mereotopology found applications in some applied areas - see, for instance, the
survey papers [2,6].

One of the founders of mereology is Lesnewski. In [10] Lesnewski’s system
is referred to as the system of Classical Extensional Mereology (CEM). Due
to Tarski (see [10], p. 25) the algebraic structure of Lesnewski’s mereology is
that of complete Boolean algebra with zero deleted. However, deleting the zero
element from Boolean algebra complicates the existing Boolean theory making
the operation of product x - y a partial operation. Probably mereologists do not
like the zero 0 because it is in a sense a “nonexisting individual” while ontology is
the science of the existent entities. If one wants to use only first-order language for
mereology, the first-order theory of Boolean algebras with zero included can be
used. So, Boolean algebras in their mereological interpretation can be considered
as a first-order version of CEM. We adopt the following signature for Boolean
algebra B = (B, <,0,1,+,+,*). The elements of B in the intended mereological
meaning can be considered as formal analogs of physical (or spatial) bodies and
following Whitehead’s terminology they will be called regions. The relation <
is the Boolean ordering which can be considered as representing the part-of
relation. The constant 0 (zero) is now interpreted as the only “non-existing”
region, and the constant 1 (unit) is the only region “universe”, having as its
parts all other regions. The Boolean operations 4+ (sum), - (product), and *
(complement) can be considered as operations for obtaining new regions from
given ones. Let us note that the overlap relation xOy in the language of Boolean
algebras has the following equivalent definitions: Oy iff (3z # 0)(z < = and
z < vy) iff -y # 0. Note also that the interpretation of 0 as a “non-existing”
region makes possible to define a predicate of ontological existence E(z) “x
(ontologically) exists” as follows: E(x) <>4ef © # 0. The negation of E(x) will
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be denoted by E(z) and will be considered as a non-existence predicate. We
will always consider that 1 # 0, which means that the universal region 1 always
ontologically exists. Since this paper will deal with some predicates of ontological
existence, the above definition of F(z) in Boolean algebras will be discussed later
on with more details.

Let us note that part-of and overlap relations can be expressed by the pred-
icate F(z) as follows.

Part-of relation: » < y iff x - y* = 0 iff E(x - y*).

Overlap: zOy iff (32)(z # 0 and z < x and =z < y) iff (32)(E(z) and z < x
and z < y) iff E(z-y).

The representation theory for Boolean algebras as Boolean algebras of subsets
gives standard examples for the first-order version of CEM. This representation
theory shows the weakness of this language to represent regions as spatial bodies:
each set of points is a spatial body which geometrically and ontologically is not
satisfactory and it shows that mereology is not capable to distinguish in regions
their boundary and internal points. This also shows that some kinds of contact,
as for instance, external contact (of having common only boundary points) is
not expressible. CEM is criticized in [10] also for his static nature and that it is
not capable to express change in time. Let us mention, however, that Boolean
algebra considered as a first-order CEM has one good formal property - it is a
decidable first-order theory, which is important for some applications.

1.2 Mereotopology and Contact Algebras

Having in mind the fact that mereology can be identified in a certain sense
with Boolean algebra, one suitable algebraic formulation of mereotopology is
the notion of contact algebra, which is a Boolean algebra B extended with the
relation C' of contact, satisfying a number of simple first-order axioms. Different
versions of contact algebras (with different names) were introduced by several
authors (see [1,6,12] for their history), but the simplest one was introduced in
[3] just with the name “contact algebra” by the following set of axioms for the
contact relation:

(C1) If 2Cy, then = # 0 and y # 0,

(C2) If 2Cy, then yCl,

(C3) If 2Cy,x < w and y < v, then uCuv,
(C4) If xC(y + 2), then xCy or zC?z,
(C5) If z.y # 0, then zCy.

The intended meaning of zCy is “the regions x and y share at least one com-
mon point” and because the notion of point is not a primitive notion in contact
algebras, the contact relation is introduced axiomatically. The point-based defi-
nition of contact as sharing a common point is given in the topological models
presented below.

Let us note that axioms (C1), (C3) and (C5) can be rephrased as follows:



Actual Existence Predicate in Mereology and Mereotopology 141

(C1) If 2Cy, then E(z) and E(y),
(C3) If zCy, E(z - u*) and E(y - v*), then uCwv,
(C5) If E(z - y), then xCy.

Topological Model of Contact Algebra. The following topological model of
contact algebra is given in [3]. Let X be a topological space and let Int(a) and
Cl(a) be the interior and the closure of a subset a of X. Namely Int(a) is the
union of all open sets included in a and Cl(a) is the intersection of all closed
sets containing a. A subset a C X is called a regular closed set (a region) if
a = Cl(Int(a)) and let RC(X) be the set of all regular closed sets of X. It is a
well known fact that RC(X) is a Boolean algebra under the following definitions:
a<biffaCbh,0=0,1=X,a+b=aUb,a-b=Cl(Int(and)),a* = Cl(X\a) =
Cl(—a). If we define the contact as follows: aCb iff aNb # @, then RC(X) is a
contact algebra, called a topological contact algebra over X. It is proved in [3]
that each contact algebra can be represented as a topological contact algebra
over a certain topological space X (satisfying some additional properties like
compactness etc.). On the base of this representation theory topological models
can be considered as the main “standard” topological point-based models of
contact algebras.

All relations which can be defined by means of C in the signature of contact
algebra will be called mereotopological relations. Relations definable by using
only the Boolean signature will be called mereological relations. For instance
part-of © < y, overlap 2Oy and existence predicate F(z) are mereological rela-
tions. Thus, the Boolean part of the signature of contact algebra can be consid-
ered as its mereological part, while the contact C represents the topological part.
By means of the contact C one can define other interesting mereotopological
relations:

e external contact: aC®*b iff aCb and aOb,
e non-tangential part-of: a < b iff aCb*,
e tangential part-of: a < biff a < b and a £ b.

The names of these predicates comes from their topological equivalents.

1.3 The Existence Predicate and Time

As we have seen in the above section, the language of contact algebras as an
algebraic version of mereotopology considerably extends the expressive power
of mereology. Still contact algebras can be considered as a static theory, not
incorporating time and change in time, hence mereotopology in this form can be
considered as a static mereotopology. However, it was shown in [13-15] how
to generalize contact algebras in order to obtain their dynamic versions incor-
porating both space and time in a point-free abstract definition and obtaining
in this way the notion of dynamic contact algebra considered as a version of
dynamic mereotopology. Point-free here means that neither space points,
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nor time moments are considered as primitives, fulfilling in this way the White-
heads program of building an integrated point-free theory of space and time,
mentioned for instance in [17], p. 195.

The idea realized in [13-15] can be roughly described as follows. First we
define a concrete space-time structure describing an area of changing regions,
called the “snapshot model”. Second, we define in this structure several spatio-
temporal relations between changing regions and study some of their concrete
properties, which will be used further as axioms in the abstract definition. Third,
we consider the concrete signature of operations and relations as abstract ones
satisfying axioms which are facts in the model. Finally, to show that the abstract
definition contains the concrete information of the model, we prove a represen-
tation theorem, stating that each abstract system is isomorphic to a concrete
one. This representation theorem is based on a special canonical construction
extracting from the abstract dynamic algebra the time structure, coordinate
contact algebras and reconstructing by them the snapshot model.

For the realization of this strategy we start with a notion of time structure,
T = (T, <), where T is a nonempty set of time points (moments of time) and
=< is the standard before-after time relation. Then, to each moment of time
i € T we associate a contact algebra (B;,C;) (called the coordinate contact
algebra corresponding to the moment ¢) considered as a snapshot of the static
configuration of the changing regions at the moment i. Changing regions in this
model (called now dynamic regions) are identified with their series of snapshots
a =< a; >;cT, where the coordinate a; € B; is considered as the region a at the
moment 4.

Dynamic regions form a Boolean algebra defining Boolean operations, con-
stants and relations in a coordinate-wise way. This Boolean algebra is then aug-
mented with the following important spatio-temporal relations:

e Space contact aC?®b iff (Im € T)(amCmbm).

Intuitively space contact between a and b means that there is a time point
in which @ and b are in a contact.

e Time contact aC®b iff (Im € T)(E,,(am) and E,, (by,)).

Intuitively time contact between a and b means that there exists a time point
in which a and b exist simultaneously.

e Precedence aBb iff (Im,n € T)(m < n and E,,(an,) and E, (b))

Intuitively a is in a precedence relation with b means that there is a time
point in which a exists which is before a time point in which b exists.

Remark 1. (i) The relations time contact C* and precedence relation B have a
very high expressive power, namely they can define almost all interesting first-
order properties of the before-after time relation, studied in temporal logic. For
instance consider the density property of <:

Densi < j — (3k)(i < EAE < j) and the formula dens aBb — aBp or p*Bb.
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We have the following definability condition:

Dens is true in the time structure iff dens is true in the snapshot model.

(ii) The theory of dynamic algebras developed in [15] introduces special con-
structs expressing Past, Present and Future making possible to express dif-
ferent time situations like, for instance:

(1) “The region a will always be in a contact with the region b and sometimes
it will be a part of ¢”.
(2) “The region a does not exist, but it will exist sometimes in the future”.

All this shows that dynamic mereotopology is a rich ontological formalism.

(iii) Let us note that the definitions of C* and B in the snapshot model
are given by using the existence predicate E from the corresponding coordinate
contact algebras. In the abstract model the predicates C* and B are responsible
in the representation theory of dynamic contact algebras for the construction of
canonical time structure and the properties of time. This shows the importance
of the predicate of ontological existence and its hidden relations to time.

1.4 Actual Existence, Actual Contact and the Aim of the Paper

In Sect. 1.1 we introduced the predicate of ontological existence E(x) <g4ef x # 0
and in Sect. 1.3 we discussed its importance in the theory of dynamic contact
algebras. However this predicate has some drawbacks which we want to discuss.
First its negation E(z) «» x = 0, the non-existence predicate, is too strong -
it shows in fact that all ontologically non-existing regions are equal to the zero
region 0. Hence the predicate E(z) is too weak - there are too many existing
regions. However, one can consider in reality different modes of existence and
nonexistence. One for, instance, is just the predicate E(z) - when x ceases to
exist, = disappeares (annihilates) and becomes 0, so E(x) — = = 0 (the converse
implication * = 0 — FE(z) is obvious). Example: burning candle - when the
candle burns out it nothing remains, the candle ceases to exist and becomes 0.
But there are other examples. Consider, for instance, a small lake, which during
the summer has no water. So, during the summer the lake actually does not exist
and exists only during the other seasons. During the summer time the lake is not
equal to 0, because it still is not totally annihilated. So, it is possible for some
region a to be different from 0 and at the same time not to exist, but in some
other sense. In the natural language this mode of existence and non-existence is
captured quite well by the terms “actual existence” and “actual non-existence”.
Let us denote the new predicate by AE(z) and its negation by AE(z). The
notation AE comes from “actual existence” but it can also be associated with
the “average mode of existence”, because average mode of existence is any of
the acting modes of existence in reality. Obviously the predicate AE(x) is not
definable in Boolean algebra, so it has to be characterized by a set of reasonable
postulates. The aim of this paper is just to find these postulates and to study
the related notions. First we will do this in the context of Boolean algebra
considered as a kind of first-order CEM. By means of AE(z) we define “actual”
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analogs of the base mereological relations: x <% y - actual part-of, xO% -
actual overlap. We will give set theoretical models of Boolean algebras with
the predicate AF(x) and prove the corresponding representation theorem. Then
we consider the predicate AF(z) together with the contact relation and propose
minimal changes in the axioms of contact replacing accordingly the relations
part-of, overlap and existence E(z) from the definition of contact algebra by
their “actual” versions: <% 0% and AE. As a result we obtain a generalization
of contact relation which is called actual contact - notation xC%y. We prove
that AF is definable by C*, which shows that actual existence has a certain
spatial meaning. We present relational and topological models for the obtained
system and prove related representation theorems. The last section contains
some concluding remarks.

2 Boolean Algebras with a Predicate of Actual Existence

Let B be a Boolean algebra considered in its mereological interpretation. In
Subsect. 1.4 we discussed some properties of the predicate E(x) <gef o # 0
interpreted as a predicate of ontological existence and concluded that it is too
weak and some natural examples show that there are more strong modes of
existence for which we adopt the notation AE(z). The problem is what kind of
axioms to take for AE(x) preserving the inclusion AE C E and having E as
a natural special case. One way is to find an abstract characterization of the
predicate E and then to take a reasonable relaxation.

Proposition 1. Let B be a Boolean algebra and let E(x) <>qef x # 0. Then:

(i) E(zx) satisfies the following firs-order conditions:

(AE1) E(1) and E(0),
(AE2) If E(x) and x <y, then E(y),
(AE3) If E(x +y), then E(z) or E(y).

(ii) E(x) is the mazimal (under inclusion) predicate satisfying the azioms
(AE1), (AE2) and (AE3).

Proposition 1 suggests to take the first-order conditions (AE1), (AE2), (AE3)
as axioms for the predicate of actual existence AF(z). Since it is a one place
predicate it can be identified as usual with a subset of B which allows to write
both AE(x) or € AE. Thus we have the following definition.

Definition 1. Let B = (B, AE) be a Boolean algebra with an unary predicate
AE(x), called a predicate of actual existence, which satisfies the axioms (AE1),
(AE2), (AE3). The first-order theory of this system is considered as a First-order
CEM (Classical Extensional Mereology) with the predicate of actual (ontological)
existence. We denote by AE the negation of the predicate AE.
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Remark 2. Axiom (AE1L) is obvious: 0 is non-existing in any sense and we may
consider 0 as a “totally non-existing” region. Axioms (AE2) and (AE3) together
can be replaced by one axiom: AE(x + y) iff AE(x) or AE(y). The implication
from left to right is obvious and the implication from right to left implies that
it is possible for a region to be actually existing and to have parts which are
not actually existing which is acceptable. Example: let’s assume that John is
actually existing. Obviously his appendicitis is a part of John and assume that
John is after a surgery of appendicitis. So, after the surgery the appendicitis is
not actually existing part of John. Let us note also that the complement of the
predicate AFE is a proper ideal in B (see [9] for the definition of ideal).

Proposition 2. The first-order CEM with the predicate of actual existence
AE(x) is decidable.

This proposition follows directly from Rabin’s Theorem 2.11 from [8] and the
fact that AFE is an ideal.

2.1 Several Predicates of Existence

A given Boolean algebra may have several non-equivalent existence predicates
satisfying the axioms (AE1), (AE2), (AE3). Example: let (B, AF) be a Boolean
algebra with a predicate AFE of actual existence and assume that there is a zg # 0
such that zg ¢ AE. Define NAE =45 {x € B:x # 0and « ¢ AE}. It is easy to
see that this new predicate satisfies all axioms (AE1), (AE2), (AE3), so it is an
existence predicate such that NAFE(xg). How to interpret it? We may consider
it as a predicate of existence but not as the predicate of actual existence. If we
have several predicates of existence, considering one of them as the predicate
of actual existence we claim that it corresponds to existence statements for the
actual state of affairs. Actual existence is a predicate stated only for the actual
state of reality, which may have also other, not actual states. Actual state is the
state at the moment, now. We may formulate existence statements for things in
the past (before “now”) or for the things in the future (after “now”) and these
will be predicates for “past existence” or “future existence”, but not for “actual
existence”. It is possible also a non-temporal but situational meaning for the
case of several predicates of existence. Models for Boolean algebras with two
predicates of existence with motivation of their names are given in Sect. 2.4.

2.2 Actual Part-of, Actual Overlap

Having in mind that the standard mereological relations part-of and overlap are
expressible by the existence predicate E(z) < x # 0 (see Sect. 1.1), analogical
definitions with the predicate AE(z) can be considered as their “actual” versions.

Actual part-of: z <%y <45 AE(z - y*).

Actual overlap: 2O0% g5 (32)(AE(z) and z <% z and z <% y).
It is easy to see that for actual overlap the following is true.

Lemma 1. zO% iff AE(x - y).
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2.3 Set Models of Boolean Algebras with a Predicate of Actual
Existence

Definition 2. By a discrete space with actual points we will understand
any pair X = (X, X*), where X is a nonempty set and X is a nonempty subset
of X, called the set of actual points of X. Let B(X) be a Boolean algebra of
subsets of X and for o C X define AEx(a) <>ger N X* # 0. Then it is easy
to verify that AE satisfies the axioms (EA1), (EA2) and (EAS3). If B(X) be
the Boolean algebra of all subsets of X, then (B(X), AEx) is called full Boolean
algebra with the predicate of actual existence over the space X.

By this definition of actual existence, a region « actually exists iff it contains
at least one actual point. Having in mind the definitions of actual part-of and
actual overlap we can easily obtain:

a <% 3 iff all actual points of « are actual points of 3,

a0°p iff @ and [ share at least one actual point.

Now we shall show that set models of Boolean algebras with the predicate of
actual existence are typical in the sense of the following representation theorem.

Theorem 1. Representation theorem for Boolean algebra with a predi-
cate of actual existence. Let (B, AE) be a Boolean algebra with the predicate
of actual existence. Then there exists a discrete space X = (X, X*) and an
isomorphic embedding h into the full Boolean algebra with predicate of actual
ezistence (B(X), AEx) over the space X.

Let (B, AFE) be a Boolean algebra with the predicate of actual existence.
Remind that U is an ultrafilter in B if it is a subset of B satisfying the following
conditions:

(Ut 1)0¢ U and 1 €U,

(Ult 2) If x € U and z < y, then y € U,
(Ult 3) If z,y € U, then -y € U,

(Ult4) fx+yeU,thenxz e UoryeU.

We define a canonical discrete space (X, X?%) associated with (B, AE) and
an isomorphic embedding h over the Boolean algebra with actual contact over
(X, X*) as follows: define X to be the set ULT(B) of all ultrafilters of B and put
X® to be the set of all ultrafilters contained in AE. Let us call such ultrafilters
actual ultrafilters. Define h to be the Stone embedding: for x € B put h(z) =
{U € X : x € U}. It is clear from the representation theory of Boolean algebras
that h is an embedding from B into B(X). It can be shown also that h preserves
the predicate AE which proves the representation theorem.

Remark 3. Points as properties of regions. In the representation theorem for
Boolean algebras with actual existence ultrafilters play the role of the (definable)
points of B. We say that a point U belongs to a region z iff U € h(x). Since
ultrafilters are certain sets of regions, the question arises why these sets have to
be considered as spatial points. And a more general question: if spatial points do
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not have a separate existence in reality, then what is the real ontological nature
of spatial points definable as ultrafilters?

To answer the first question, let us start with the algebra of all subsets of the
given set X. Let the points of X be called “real points” and for every real point
x € X define the set Po(z) = {a C X : z € a}. The set Po(x) will be called
“abstract point associated to the real point x”. The first observation is that the
collections of subsets of X in the form Po(x) are ultrafilters in the algebra of all
subsets of X. Also we have: for all z € X and o C X,z € a iff @ € Po(z). Let us
call the subsets of X “real sets” and for each real set « define its abstract analog
H(a) = {Po(z) : « € Po(x)} = {Po(z) : © € a} by an analogy with the Stone
mapping h and let X = {Po(x) : x € X}. Tt is easy to see that the following
holds: H(@) = @, H(X) = X,a C Biff H(o) € H(B),H(X \ a) = X \ H(w),
H(anpg) = Ha)NH(B) and H(a U B) = H(a) U H(B). All this shows that
abstract analogs of real points and real sets can replace the real points and the
real sets. In the case of the abstract definition of Boolean algebra we imitate
the same procedure, which shows that ultrafilters are good for the definition of
points and the Stone mapping is a good way to assign points to the members of
the algebra.

As for the second question, “what is the real nature of spatial points in
Boolean algebra definable as ultrafilters”, the answer is more difficult. Many
people have an intuition about points which contradicts the fact to treat them
as certain sets of regions. One explanation why points are certain sets of regions
is to consider these sets as special properties of regions. Since very often we
identify a given property of an object by a subset of the universe to which this
object belongs, then ultrafilters (as sets of regions) can be treated as certain
spatial properties of regions of mereological kind, related to our intuition of a
“region to possess a given point” - “point possession”, which is formally presented
by region x to belong to an ultrafilter U: = € U. Just by the property “point
possession” we can obtain an easy description of the basic mereological constants,
relations, and operations from the signature of Boolean algebra. For instance,
x is a part of y if all points of = are points of y - this corresponds to the
following axiom of ultrafilter: if x € U and = < y, then y € U (and similarly
for the Boolean operations and constants). The fact that in a Boolean algebra
we may define such “properties” of regions as ultrafilters is quite non-trivial
and depends of some versions of the axiom of choice. Let us say that “point
possession” is not one property - different ultrafilters define different properties
of this kind. This is quite similar with properties of the form “color possession”-
each different color defines different property. It can be said that the properties of
the type “point possession” can be treated as the basic mereological properties
of regions. One motivation for this is the following observation. The function
h from the representation theorem assigns to a region x the set h(x) of all
ultrafilters containing x, namely all “point possesion” properties of x. Having in
mind the Leibniz’s definition of equality - “two things are equal if they have the
same properties”, we see that this can be applied also to regions: two regions
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are “mereologically equal” if they have the same basic mereological properties,
formally - z = y iff h(z) = h(y).

The above reasoning shows the real ontological nature of points treating them
as certain spatial properties of regions. Then the statement that points have no
separate existence in reality, they exists just as properties of regions, stands quite
natural. This treatment is just the same for the case of colors: colors do not have
separate existence in reality - they just exists as properties of things.

In a similar way actual points considered as actual ultrafilters can be
explained as certain actual properties, namely actual properties of the type
of “point possession”. Because actual ultrafilters are, by definition, all ultrafil-
ters contained in the predicate AF, then a region x actually exists - x € AFE,
iff there exists at least one actual ultrafilter U such that x € U. So z actually
exists if it has at least one actual property of the kind “point possession”. This
interpretation of the predicate of actual existence gives another intuition of this
property, reducing them to the property of the kind of “point possession”.

2.4 Cartesian Models for Boolean Algebra with a Predicate
of Actual Existence

We will give an algebraic construction which also gives models for Boolean alge-
bras with predicate of actual existence.

Let By and Bs be two non-degenerate Boolean algebras and let B = By x By
be their Cartesian product. Define AE = {(z1,22) : €2 # 0}. Then it is easy to
verify that AF satisfies the axioms (AE1), (AE2) and (AE3) for actual existence.
It can be proved that every Boolean algebra with predicate of actual existence
AF such that AFE is not the maximal predicate of existence is representable as a
subalgebra of such a Cartesian kind, but we will not do this in this paper. This
example gives the following intuition. Assume that each element z = (z1,z2)
represents x at two situations: x; is x at situation 1 and x5 is x at situation 2,
and the situation 2 is considered as the actual situation. Then (x1,x9) € AFE just
states that “z exists in the actual situation”, using for “x exists” the definable
in By predicate E(x) <>4cf ¢ # 0. The predicate By = {(z1,22) : 1 # 0} is
just the existence predicate for the situation 1. It is definable by AE as follows:
Ey((z1,22)) iff (z1,22) # (0,0) and (z1,22) € AE. So B has two predicates of
existence but we consider only one of them as the predicate of actual existence
- the one which corresponds to the actual situation.

3 Boolean Algebras with Predicates of Actual Existence
and Actual Contact

3.1 Abstract Definitions

Let B = (B, AE) be Boolean algebra with actual existence. We extend its lan-
guage with a new relation C'* called actual contact by “actualizing” the axioms
of contact algebra. Namely we obtain the following definition.
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Definition 3. First definition of BA with actual contact. Axioms of
actual contact:

(AC1) If xCy, then AE(xz) and AE(y),
(AC2) If xC%y, then yC°x,

(AC3) If xC% and y <% z, then xC°z,
(ACY) If xC*(y + 2), then xC% or xC°z,
(AC5) If zO%y, then xC%y.

The triple B = (B,AE,C?%), where B = (B, AE) is Boolean algebra with
actual existence and C® is the relation of actual contact in B, is called Boolean
algebra (BA) with actual contact.

Note that y < z <sgep y - 2* € AE and 20% <405 x -y € AE in the above
definition are the relations of actual part-of and actual overlap introduced in
Sect. 2. The intended meaning of xC®y in the point topological models (to be
introduced later on) is “x and y share an actual point”.

Lemma 2. In BA with actual contact the predicate of actual existence is defin-
able by the following equivalence: AE(x) iff xC%x.

This fact says, first, that actual existance AE has certain spatial meaning,
and second, that the definition of Boolean algebra with actual contact can be
simplified without taking the predicate AF as a primitive notion.

Definition 4. Second definition of Boolean algebra with actual contact.
The pair B = (B,C%) is called a Boolean algebra with actual contact if it satisfies
the following list of axioms:

(C*1) 1C*1, 0C*0,

(C*2) xC®y, then yC®x,

(C*3) If xC%, then xC%x,

(C4) If zC% and y < z, then zC%z,
(C*5) If xC%(y + z), then xC% or xC*z.
AC(z) —gef xC.

Lemma 3. The two definitions of BA with actual contact are equivalent.

Lemma 4. Let B = (B,C®) be a Boolean algebra with actual contact according
to the second definition and for x,y € B define xCy gy xC or x -y # 0.
Then (B, C) is a contact algebra.

Remark 4. Lemma4 shows that Boolean algebra with actual contact is a rich
system containing also the standard contact relation. This relation can be used
in the representation theory of Boolean algebras with actual contact for defining
the topological structure in the set of the definable points.
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3.2 Actualized Versions of Some Mereotopological Relations

By means of the relation of actual contact we may define “actualized” versions
of some important mereotopological relations.

e Actual external contact xC*"'y < 4.5 xC% and x@ay,
o Actual non-tangential part-of * € y <qef xCay*,
o Actual tangential part-of x <%y <4y v <* y and x L y.

3.3 Topological Models of Boolean Algebras with Actual Contact

Topological model of BA with actual contact is a slight modification of topolog-
ical models of contact algebra.

Definition 5. By a topological space with actual points we mean any pair X =
(X, X*) such that X is a nonempty topological space and X® is a nonempty
subset of X. Let RC(X) be the Boolean algebra of regular-closed subsets of X.
For o, € RC(X) define actual contact aC% [ < aer aNBNX* # 0. It is easy to
see that azioms for C® from the second definition of BA with actual contact are
fulfilled and that B(X) = (RC(X),C%) is a Boolean algebra with actual contact.

We shall show later on that the above model is typical in a sense that each
BA with actual contact is representable as a subalgebra of this topological kind.

3.4 Discrete (Relational) Models of BA with Actual Contact

Definition 6. Let X = (X, R%) be a relational system with a non-empty set X
and a binary relation R* in X . X is called adjacency space with actual adjacency
relation if R® satisfies the following conditions:

(R1) R® is a nonempty relation,
(R2) R® is a symmetric relation: (Vx,y € X)(xRy implies yRx ), and
(R3) R* is a quasi-reflexive relation: (Va,y € X)(xRy implies zRx).

Let B(X) be a Boolean algebra of some (or all) subsets of X and for o, f € B(X)
define aC%B —qep (Jr € a)(Jy € B)(zR%y). It is a routine matter to verify that
axioms for actual contact from the second definition are fulfilled.

We shall show in the next section that the above kind of models of actual
contact are also typical.

If we want to construct from X = (X, R*) the Boolean algebra with actual
contact according to the first definition, we need the set X% of actual points
which now is definable: X* = {z € X : xR%z} - the set of all reflexive points
of X.

Let us note that adjacency spaces for contact algebras are based on reflexive
and symmetric R. Note also that the reflexivity of R is equivalent to the axiom
(C5) for contact (see [4]). Since quasi-reflexivity does not imply reflexivity (there
are easy examples) the above spaces are more general which implies that C* does
not satisfy the axiom (C5).
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3.5 Cartesian Models of Boolean Algebras with Actual Contact

The cartesian models of Boolean algebras with actual existence can be easily
modified for Boolean algebras with actual contact. Let B; be a Boolean alge-
bra and (B, Cs) be a contact algebra and let B = B; x By be the Cartesian
product of the two Boolean algebras. Define actual contact C* in B as fol-
lows: (21, 22)C%(y1,y2) iff 22C2ys. There is no problem to verify that axioms for
actual contact (from the second definition) are fulfilled. It can be proved that
each Boolean algebra with actual contact C* (with some additional assump-
tions) can be represented as a subalgebra of such Cartesian model. The intuition
of this model comes from the suggested intuition for Cartesian model for actual
existence: each object © = (x1,x2) is presented at two situations 1 and 2 in
which 2 is the actual one. Actual contact is just the (standard) contact of x and
y at the actual situation 2.

4 Representation Theory of Boolean Algebras
with Actual Contact

4.1 Discrete Representation

We assume in this section that B = (B,C%) is a BA with actual contact
according to the second definition (Definition 4). Following [4] we will construct
a canonical relational system (X, R%) related to B as follows: we put X to
be the set ULT(B) of all ultrafilters of B and for two ultrafilters U,V define
UR"V <qep (Va € U)(Vb € V)(aC?b).

Lemma 5. The canonical relational system (X, R*) of B is an adjacency space
with actual adjacency relation.

Consider the Boolean algebra with actual contact associated to X = (X, R*)
and let h be the Stone mapping - for v € B : h(z) = {U € X : x € U}. It is
known that h is an isomorphic embedding of B into B(X). It can be proved that
h also preserves the actual contact C®.

This proves the following representation theorem.

Theorem 2. Let B = (B,C%) be a BA with actual contact. Then there is an
adjacency space X = (X, R*) with actual relation R® and there exists an embed-
ding h from B into the BA with actual contact B(X,C%) over X.

4.2 Topological Representation

We assume in this section that B = (B, C®) is a BA with actual contact accord-
ing to Definition 4. First we have to extract from B a canonical topological space
with actual points X = (X, X?) and an embedding h from B into the Boolean
algebra with actual contact B(X) = (RC(X),C%) over X (see Sect. 3.3). To this
end we will use the fact that B has a definable contact relation C' which makes
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possible the adaptation of the topological representation theory for contact alge-
bras developed in [3] to the case of Boolean algebra with actual contact. The
abstract points in the representation theory of contact algebras are called clans
which will be the elements of X. The new thing now is a modification of clan,
called actual clan, and actual clans will be just the actual points of the set X .

Grills, Clans and Actual Clans

Definition 7. A subset I' of B is called a grill if the following conditions are
fulfilled:

(Grill 1) 0 ¢ I,
(Grill 2) Ifa € I" and a < b, thenbe I,
(Grill 8) Ifa+be I, thenae I orbel.

Grills were introduced by Choquet (see Thron [11]). It follows from this
definition that actual existence is a grill containing 1. Note that the complement
of a grill is an ideal and all properties for grills can be deduced from this fact.
More information about grills can be found, for instance, in [3]. We mention the
following lemma.

Lemma 6

(i) Grill Lemma. Let F' be a filter in B and G be a grill in B such that
F C G. Then there is an ultrafilter U in B such that F CU C G.
(i) Ewery grill coincides with the union of all ultrafilters contained in it.
(iii) Let G be a grill and x € B. Then z* € G iff Yy € B)(z+y=1—y € G).

Remind also the definable contact C' in B: £Cy «<4ey xC% or x -y # 0 (see
Lemmad4).

Definition 8. Clan and actual clan. A subset I' of B is a clan if it is a
non-empty grill and satisfies the condition

(Clan) If x,y € I, then xCy, where C is the defined contact relation in B.

A subset I' of B is an actual clan, if it is a non-empty grill and satisfies
the condition

(Clan®) If x,y € I', then zC%.

Denote by CLANS(B) the set of all clans of B and by CLANS®(B) - the
set of all actual clans of B.

Clans are introduced for the first time by Thron [11] and were used exten-
sively in the theory of contact algebras in [3], actual clans are new.

In order to study clans and actual clans let us remind some facts about ultra-
filters in B. For the discrete representation of BA with actual contact (see Sect. 2)
we introduced the canonical structure (X, R*) where X is the set ULT(B) of
all ultrafilters of B with R®, called a canonical relation for C® is defined in
ULT(B) as follows: URV iff (Vx € U)(Vy € V)(xC®y). It follows by Lemma b
that (X, R%) is an adjacency space with actual adjacency relation. Define an
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ultrafilter U to be a reflexive ultrafilter if UR®U. Let us define now the
canonical relation R in the set ULT(B) for the definable contact C:

URV iff (Vz € U)(Vy € V)(xCy).

The following lemma is true for R.

Lemma 7

(i) URV if UR®V or U = V.
(i) R is a reflexive and symmetric relation.

The next lemma describes clans and actual clans.

Lemma 8

(i) Every ultrafilter is a clan.

(i) Every reflexive ultrafilter is an actual clan.

(i4i) Every actual clan is a clan.

(iv) Let X be a non-empty set of ultrafilters such that for any U,V € X we
have URV and let I' = Jy;cx, U. Then I' is a clan and every clan can be
obtained in this way.

(v) Let X be a non-empty set of ultrafilters such that for any U,V € X we have
UR*V and let I' = Uycx, U. Then I' is an actual clan and every actual
clan can be obtained in this way.

(vi) All ultrafilters contained in an actual clan are reflexive ultrafilters.

(vii) Let I' be a clan which is not actual clan. Then I is an ultrafilter which is
not reflexive.

Corollary 1. CLANS(B) = CLANS*(B) U{U € ULT(B) : UR'U}.

Lemma 9

(i) [3] xCy iff there exists a clan I" such that x,y € I'.
(i) xC% iff there exists an actual clan I' such that x,y € T'.
(i) [S]x <y iff V[ € CLANSB)(zx el —yel).

The Canonical Topological Space. We construct the canonical topological
space with actual points X (B) = (X, X?%) corresponding to B as follows: put X
to be the set of all clans of B and put X* to be the set of all actual clans of B.
Note that X is a subset of X. To define a topology in X define the mapping h
from B into the set of subsets of X as follows: h(z) = {I" € CLANS(B) : z € I'}
and consider the set B(X) = {h(z) : * € B} as a closed sub-basis for a topology
in X. Denote by Int and Cl the operations of interior and closure corresponding
to the obtained topology.

Lemma 10

(1) h(1) = X, h(0) = 0.
(i) Wz +y) = h(z) U h(y).
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fiii) = < y iff h(z) C hy).
(v) z =y iff h(x) = h(y), especially x = 1 iff h(z) = X.
(0) h(z*) = ClU(~h()), where —h(z) = X \ h(z).

(vi) aCy iff h(z) O h(y) £ 9.

(vii) xC% iff h(x) N h(y)ﬁX“ # 0.

Lemma 11. h(x) is a regular-closed subset of X .

Before formulating the next statement let us remind some topological notions.
A topological space X is semi-regular if it has a closed base of regular-closed
sets. X has the separation property T0, if for every two different points there
exists an open set containing one of them and not containing the other. X is
compact if it satisfies the following condition: let {A; : ¢ € I} be a non-empty
family of closed sets of X such that for every finite subset J C I the intersection
{A;:i€ J}#£0, then N{A;:i €I} #£0.

Lemma 12 [3,13]. Let X = (X, X%) be the canonical space of B. Then the
space X 1is semi-regular, TO and compact.

Theorem 3. Topological representation theorem for Boolean algebras
with actual contact. Let B = (B,C%) be a BA with actual contact. Then
there exists a topological space with actual points X = (X, X%) such that X is a
compact and TO semireqular space and there exists an embedding h of B into the

Boolean algebra with actual contact B(X) = (RC(X,C%) over X = (X, X?).

Remark 5. Atomic and molecular points. In the representation theory of BA
with actual existence we used as abstract points ultrafilters (and actual ultrafil-
ters). Now, in the representation theory for BA with actual contact ultrafilters
are not enough and we introduce some additional kind of points - clans (and
actual clans). By Lemma8 (iv) and (v) we see that clans and actual clans are
unions of ultrafilters connected by the canonical relations R and R* correspond-
ingly. So in this case we have two sorts of abstract points - of ultrafilter sort
and of clan sort and the later are composed in some way by ultrafilters. This
gives an intuition to consider ultrafilters as “atomic points” and clans as
“molecular points”. It is interesting to note that in the boundary of a given
region h(x) there are no atomic points, so the two kinds of points have different
distributions in a given region. Note also that in the classical Euclidean approach
to the theory of space, we have only one sort of points and they have no any
internal structure.

Remark 6. In Remark 3 we discussed an interpretation of ultrafilters in BA with
actual existence as properties of regions of certain kind - “point possession”. In
BA with actual contact we have other kinds of spatial points - clans and actual
clans and the same questions arise: why clans are good for the new spatial points
and what is their real ontological meaning. An additional question is why the
topology is definable in just the way as proposed in the canonical construction
of the associated space of the corresponding BA with actual contact.
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Let us start with a given topological space with actual points X = (X, X?)
and let RC(X) be the set of regular-closed subsets of X. In general the space
X may not be semi-regular, but we may define a new semi-regular topology
in X taking the closed base of the new topology to be the set RC(X). Let
us note that the new topology defines the same set of regular-closed subsets
of X (see [3]), which shows that changing the topology to semi-regular one is
inessential, because we will have the same regions. As from Remark 3 we consider
points and subsets of X as “real points” and “real sets”. For x € X define the
“abstract point” associated to x by Po(z) = {a& € RC(X) : z € a} and for
a € RC(X) define H(a)) = {Po(x) : x € a} and let X = {Po(z) : x € X}
and X = {Po(z) : x € X°}. Define a semi-regulat topology in the set )?,
considering the set {H(a) : a € RC(X)} as a closed base for the topology. The
first observation is that Po(z) is a clan, which shows that the definition of a clan
is good for the new kind of spatial point for BA with actual contact. More over
the following facts are true: R

H(@) = 2,H(X) = X, C fiff H(a) € H(B), H(Clx(X \ @) = Clg(X'\
H(a)), H(Clx(Intx(anB)) = Clg(Int ¢(H(a)NH(B)) and H(aUB) = H(a)U
H(3),and a N BN X"+ @ iff Ha)NH(B)NX* # 2.

All this shows that abstract analogs of real points and real sets can replace
the real points and the real sets. In the case of the abstract definition of Boolean
algebra with actual contact we imitate the same procedure, which shows that
clans and actual clans are good for the definition of points and actual points
and the Stone mapping is a good way to assign points to the members of the
algebra. As for the question of the real ontological meaning of clans and actual
clans we can consider them as a kind of mereotopological properties of regions
of the type of “point possession”, repeating the motivations from Remark 3. The
new thing is that these properties are now of mereotopological kind and they
are similar, but at the same way different from the corresponding mereological
properties of the form “point possession”, just because clans are different from
ultrafilters and have some topological nature on the base of contact relation.

5 Concluding Remarks

We discussed in this paper possible formal explications of the predicate of onto-
logical existence and its importance in dynamic mereotopology. We introduced
an extension of Boolean algebra with a one-place predicate AE with intended
meaning of “actual (ontological) existence”, considering a mereological mean-
ing of the Boolean signature. Then we extend the Boolean algebra with actual
existence with a two place relation C* with the intended meaning of “actual
contact”, obtaining in this way a generalization of the notion of contact alge-
bra introduced in [3]. We present natural models for actual existence and actual
contact and proved the intended representation theorems showing that the for-
mal systems correspond to the given models. We plan to develop the theory of
dynamic contact algebras based on the notion of actual existence and actual
contact. Another thing which remains to be done is the following. There are
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extensions of contact algebras with several additional axioms which require spe-
cial, more good topological models and representation theorems. These are the
following axioms:

(Con) If x # 0, 1, then xCx™* - connectedness axiom.

(Ext) (Vz2)(zCz « yCz) — x = y, extensionality axiom.

Iz <y — (F2)(xr € z < y) - interpolation axiom. Here x < y is the
definable predicate of non-tangential part-of 2Cy*. This axiom is known also as
Efremovic¢ axiom in the following equivalent form

xCy implies (3z)(xCz and 2*Cy).

For instance axiom (Con) is true in contact algebras over connected spaces
and contact algebras with (Con) are representable in connected spaces. All
results concerning the representation theory of contact algebras extended with
some or all of these axioms can be found in [3]. Adding these axioms to BA
with actual contact for the definable contact C' we may repeat the results from
[3] and obtain representation theorems in some T1 and T2 topological spaces
(with actual points). In the corresponding representation theorems for T1 and
T2 spaces other abstract points are used. In such cases Remarks 3 and 6 have to
be stated and rephrased again for the new kinds of abstract points, which shows
that mereotopological properties of the form “point possession” depend on the
corresponding mereotopology which requires different notion of abstract spatial
point.

The above axioms can be formulated also for the actual contact and it will
be interesting to see the effect of these axioms for the required models and for
the expected representation theory.
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Abstract. This paper focuses on path planning for a remote robotic
agent using rough mereology potential field method. We test the pro-
posed path-creation and path-finding algorithms and propose working
alternative versions. Furthermore we apply path smoothing with custom
collision detection to further optimize the route from the robot initial
position to the goal.

Keywords: Robotics + Rough mereology * Path planning - Robot nav-
igation + Mereogeometry

1 Introduction

Rough mereology [1] as a paradigm is successfully used in various fields of com-
puter science: robotics [2-4], medical analysis [5,6], etc. In this work we have
tested the path planning algorithm based on mereological potential field, where
the path is smoothed and obstacle avoidance procedure is applied. We have
performed the real time experiment with exemplary mobile robot, which is con-
trolled via P-controller based on the compass reads and the camera based local-
ization. In the next section, we will describe the process of creating the potential
force field using rough mereology.

2 Rough Mereology in Intelligent Agent Control

Rough mereology based reasoning employs the notion of a rough inclusion
wu(x,y,r), which relation needs z is a part of y to a degree of at least r. As
our reasoning is concerned with spatial objects, the rough inclusion involved in
our reasoning is the one defined as p(X,Y,r) if and only if |XXLY‘ >=r, where
X,Y are n-dimensional solids and | X]| is the n-volume of X. We consider in this
work a planar case of an autonomous mobile robot moving in a 3-dimensional
environment, hence, our spatial objects X, Y are figures assumed concept regions
and | X]| is the area of X. The rough inclusion p(X,Y,r) is applied in the con-
struction of the mereological potential field. Elements of this field are square and
the distance between them is defined as

K(X,Y) = min{maz,nu(X,Y,r)}, maxsu(Y, X, s)}.
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The construction of the field is described in Sect. 3. The robot movement through
the field to the goal is driven by waypoints defined inductively: the next waypoint
is the centroid of the union of set of field squares closest to the square containing
the current waypoint with respect to the distance K(X,Y).

3

Square Fill Algorithm

In this paper we are using variations of the Square Fill Algorithm as proposed
by [2]. The result of the algorithm can be seen on Fig. 1.

1.

Define initial values:
— Set current distance to the goal: d = 0,
— Set algorithm direction to clockwise,

. Create an empty queue Q:

Q=0 (1)

Add to queue @ the first potential field p(x,y, d), where x,y describe the
location of the field and d represents the current distance to the goal:

QU {p(z,y,d)} (2)

Enumerate through @,

If {pr(z,y,d)} N F)V {pr(z,y,d)} N C) where pg(z,y,d) is the current
potential field, F is a set of already created potential fields and C' is a set
of collision objects, then remove the current field py(z,y,d) from @ and go
back to point 4,

Add the current potential field pg(z,y,d) to the created potential fields
set F"

FU{pk(z,y,d)} 3)
Increase the current distance to the goal:
d = d(px) +0.01 (4)

Define neighbours depending on the current direction:
— clockwise as N:

Po :p(x—d,y,d),
b1 :p(x—d,y—i—d,d),
D2 :p(m,y—i—d,d),
_ ) D3 :p(x+d,y—|—d,d),
N= Y2 :p($+dayvd)a (5)
ps =p(r+d,y —d,d),
p6 = p(
p(

s
o5
Il
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— anticlockwise as N':

po=p(r —d,y —d,d),
P1 :p(xvy_dvd)a
P2 =p5w+d,y—)d, d),

/ p3:px+d7y7d7

N = ps=plx+d,y+d,d), (6)

ps = p(z,y +d,d),
pe = p(z —d,y +d,d),
p8:p(x d7y7d)

9. Add neighbours to queue @) depending on current direction:
— If direction is clockwise then: Q U N,
— If direction is anticlockwise then: Q U N’,
10. Change the current direction to the opposite,
11. Remove the current potential field pg(z,y,d) from the queue @,
12. if Q(p) = 0 then finish, else go to 4.
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Fig. 1. The potential field created by the Square Fill Algorithm. The white squares
represent individual potential cells, hatched squares represent obstacles. The robot

initial position and target goal are represented by dots - the left one is the robot initial
position
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3.1 Path Finding

We are using the Path Search Algorithm proposed by [2].

IF robot position is equal to goal position
END
SET the current field to closest to robot
WHILE goal is not found
ADD field with the smallest mereological
distance from the current point
SET the current field to field
END

The algorithm can be divided into three steps:

— Checking, if the robot initial position is equal to the goal position,

— Finding the closest field to the robot,

— Moving through potential fields with the smallest mereological distance from
the current point until we reach the goal.

4 Extending the Algorithm

After going through tests with the Square Fill Algorithm and the generated
path, we created a set of changes to the original ideology: neighbouring potential
fields creation and path smoothing.

4.1 Type Variation

The default Square Fill Algorithm alternates between clockwise and anti-
clockwise methods while creating its potential field neighbours. We experimented
with possible outcomes:

— Clockwise variation, always using the N set,
— Anticlockwise variation, always using the N’ set (Fig. 2).

0.2 0.2

0.0 0.0
0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Fig. 2. Potential field on the left was created by the Clockwise variation, the one
on the right by the Anticlockwise variation.
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Depending on the complexity of the map and placement of the robot, goal
and obstacles different results were produced. For a simple map containing two
obstacles (as seen on Fig.3) the following algorithm time and path length (in
pixels) was returned:

— Alternating
e Path creation time: 2234.52 ms
e Total distance: 557.21 px

— Clockwise
e Path creation time: 2370.07 ms
e Total distance: 540.86 px

— Anticlockwise
e Path creation time: 2178.11 ms
e Total distance: 546.27 px

300} 1

400 |

500 |

600 |

700 - 1

800 | R

200 300 400 500 600 700 800 900 1000

Fig. 3. Comparison of created paths for a real environment using variants: Alternat-
ing (solid), Clockwise (dashed) and Anticlockwise (dotted).

The Clockwise and Anticlockwise variants were working better (and
faster) in environments without many obstacles. When the amount of obsta-
cles was increased (10+), we experienced performance drop as well as issues
with path-finding. The default Square fill algorithm (alternating variant) was
working much better in such situations. In order to improve our results, we tried
to smooth the created paths, as seen in Sect. 4.2.
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4.2 Path Smoothing

After the path from the robot initial position to the goal is created, we are
applying a smoothing algorithm, to make the route optimal. We then run the
presented algorithm n times, until we get a satisfying result:

1. We apply a chosen data weight o and move the position of the point xy
depending on the position of the previous zp_; and next xpy; point on the
given path:

Tk =k + a(Tp—1 + Tpr1 — 22k) (7)

2. Next we are counter balancing the updated position x + k with a chosen
smooth weight (3, so that a straight line isn’t created.

Ye = Yk + Bk — yr) (8)

The problem we encountered after going through the smoothing algorithm, is
that collisions were ignored, thus creating a path that wasn’t usable for the
robotic agent as seen on Fig. 4.
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Fig. 4. The figure shows output smoothed path as compared to the original route.

We modified the standard smoothing algorithm, by adding custom condi-
tions, to keep a safe distance from the robot to possible collision fields, as it can
be seen on Fig.5. The final algorithm can be represented as:

ITERATE n times
COMPUTE position applying data weight
UPDATE position applying smoothing weight
IF position distance < collision distance
CONTINUE
ELSE
WRITE position
END
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Fig. 5. Custom smoothing algorithm output.

5 Testing

Testing was performed using a top observer (camera, QR marker recognition)
and a LEGO Mindstorms NXT robot. The test code was written in python and
is available on Github [7].

5.1 Map Creation

To test the algorithm and its variations we needed an environment for the robotic
agent (Fig.6). Our idea was to create map elements using QR code markers, in
order to make it easily configurable, while having precise control over key element
positions:

— Robot position (1 marker),
— Planned goal (1 marker),
— Obstacles (2 markers),
Map bounds (4 markers).

To recognize markers, marker ids and their x,y positions through camera
output we used OpenCV (8] and Python AR Markers [9]. Once we got infor-
mation about all map markers, we used the values as input for our path finding
algorithm. All positions were based on the camera image pixel positions (mean-
ing the start point (0,0) was on the top-left side of the created map).

5.2 Robot Control

We used the LEGO Mindstorms NXT 2.0 robot for our tests. In order to
be able to run the agent through the desired path we used the NXT Python
library [10].
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° Path planning based on rough mereology potential felds.

Fig. 6. Test environment based on Augmented Reality - see the video [11].

Each Robot object, had the following properties:

— Motor access (Port B and C),

— Compass sensor access (Port 4),

— NXT Brick reference,

— Current position (relative to map),

— Desired goal (next point on path to goal),
— Robot North (relative to map top).

The first step after connecting to the robot, was setting the Robot North
property, in order to set a relative point to the map (to allow easier path-
following). Each time the Robot marker was found, the robot was establishing
movement based on the P-Controller.

5.3 P-Controller

The robot we used in experimental part is equipped with the compass sensor,
which allows tracking the fixed direction. After the path is created and smoothed
with obstacle avoidance mode, we obtain the set of coordinates, which we can
use to reach the goal. The robot is localised in real time based on the camera
view with use of robot’s marker detection. The goal position can vary, but in
each run of experimentations is chosen as a static point.

With assumption that (z,y) is the current robot position and (z,3’) is the
next point on the route to the goal. And that the (0, 0) position is on the left top
side of map. To obtain the proper direction in range [0, ...,359], where 0 is the
North, 90 is the East, 180 is South, and 270 is West, for path tracking we use the
estimation of direction based on these points considering the following options.
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IF x == x’ and y < y’:
direction = 180

IF x == x’ and y > y’
direction = 0

IF y == y’ and x < x’
direction = 90

IF y = y’ and x > x’

direction = 270

Assuming that ¢ = v/a? + b2, alpha = arccos(2) x (122,

T
IF x < x’ and y < y’

a=x"—x, b=y’ —y, direction = 90 + alpha
IF x > x’ and y < y’

a=y —y, b=x— x", direction = 180 + alpha
IF x > x’ and y > y’

a=y —y , b=x—x", direction = 360 — alpha
IF x < x’ and y > y’

a=y —y , b=x"— x, direction = alpha

Considering the new north direction of the map, we have to convert direction
as follows,

direction = (direction + (360 — north_direction_of_map))%360 (9)

After goal direction estimation, we use P-controller to drive to the next
points. Our version of controller use the conversion of compass readings accord-
ing to the current goal direction. Conversion consists of the following mapping:

values [direction ,direction+1,...,direction+180]
are converted into [0,1,...,180]

values [direction ,direction —1,...,direction —179]
are converted into [—1,—2,...,—179]

The conversion can be obtain based on the following steps,

current_compass_reading —= direction ,
orient=current_compass_reading;
IF orient > 180:
orient —= 360
IF orient < —180
orient 4+= 360

and the P controller works as follows,

speed_wheel_1
speed_wheel_2

cte = orient
IF cte <= 0:
IF |cte| > precision:

speed
speed

speed_wheel_.1 = —speed_wheel_2
ELSE:
speed_wheel_.1 = speed_wheel_2 4+ (ksi * cte)
IF cte > 0:
IF cte > precision:
speed_wheel_2 = —speed_wheel_1
ELSE:
speed_wheel_2 = speed_wheel_1 — (ksi * cte)

self.motor_b.run(speed_wheel_1, False)
self.motor_c.run(speed_-wheel_2 , False)

where cte is the cross track error, and ksi is the steering scalar, orient is the
current compass reading.
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6 Conclusion

In this work we have developed three variants of an algorithm for the problem of
path planning based on the mereological potential field. An additional problem
was to smooth the path and use the obstacle avoidance mode during smoothing.
The path algorithm was tested in the robotic laboratory - see [11]. To achieve our
goal we have used a mobile robot equipped with electronic compass sensor and
a camera used for robot localisation. Our tests demonstrate the effectiveness of
path planning, the optimal path is generated in a fast way, robot can effectively
reach the goal position tracking the points of path. We have tested variants where
the potential field is generated clockwise, anticlockwise and alternately. The
experiments show that the two first variants are more effective for simple maps,
with small number of obstacles, but in case of complex maps the alternating
variant wins in most cases. In our future work, we plan to apply the various
types of potential field generation algorithms and to apply it to the other robots
including Nao humanoidal robot. The other direction of further research is to
apply the idea of path planning to three dimensions with applications to drones
in mind.
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Abstract. In network, nodes are joined together in tightly knit groups.
Local group information is used to search the natural community. It
can be crucial to help us to understand the functional properties of
the networks and detect the true community structure. In this paper,
we propose an algorithm called Three-way Decision Community Detec-
tion Algorithm based on Local Group Information(LGI-TWD) to detect
community structure by using local group information. Firstly, we define
sub-communities of each node v. Node v and v’s neighbors which are
reachable to each other construct one sub-communities of node v. Then,
each sub-communities is regarded as a granular, and then hierarchical
structure is constructed based on granulation coefficient. Finally, a fur-
ther classification for boundary region’s nodes can be done according to
belonging degree. Compared with other community detection algorithms
(N-TWD, CACDA, GN, NFA, LPA), the experimental results on six real
world social networks show that LGI-TWD gets higher modularity value
@ and more accurate communities.

Keywords: Communities + Three-way decision - Local group informa-
tion - Sub-community

1 Introduction

Many complex networks in society, nature, and technology display a common
feature, called community structure [1]. Communities are groups of vertices,
many links connect vertices of the same group and comparatively few links
join vertices of different groups [1,2].Various complex network examples include
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social networks in the Internet, interpersonal networks in social systems, neu-
ronal networks and protein interaction networks in ecosystems. Therefore, many
algorithms have been proposed to detect communities. With a further study,
overlapping problem of community has attracted much research attention. Over-
lapping nodes play a special role in complex network system. How to divide the
overlapping nodes into a single community to achieve non-overlapping commu-
nity is crucial to reveal abundant hidden information and help us to understand
the functional properties of the networks [3,4].

In recent years, a great number of algorithms have been proposed to detect
nonoverlapping community. Two of most classical algorithms are GN algorithm
and Newman Fast Algorithm (NFA). GN algorithm [5]measures the importance
of each edge by betweenness. Newman Fast Algorithm (NFA)[6] obtains the
optimization depending on modularity. Zhao et al. [7] proposed Tolerance Gran-
ulation based Community Detection Algorithm (TGCDA), which uses tolerance
relation (namely tolerance granulation) to granulate a network hierarchically.
Generally, these methods are suitable for various networks and most of them
can perform well. However, these algorithms only use the traditional two-way
decisions which takes the decision simply according to present information for
acceptance and rejection, regardless of whether information is lacking. This app-
roach may result in wrong decisions when the information is insufficient. So the
three-way decision theory is introduced into non-overlapping community detec-
tion to deal with overlapping problem.

Three-way decision theory has been proposed by Professor Yao [8], which can
solve the uncertainty problem effectively. The main idea of three way decision
theory [9,10] is to divide the whole region of discourse into three parts: positive
region (POS), negative region (NEG) and boundary region (BND). Different
parts were adopted different ways to solve respectively. The positive decision
rules generated by positive region make decision of acceptance. The negative
decision rules generated by negative region make decision of rejection. With
the difference between the two-way decisions of acceptance or rejection, the
boundary region leads to a third way of decision, namely noncommitment or
defrement [11], and the problem in the boundary region will be further handled to
make the right judgement to achieve final two-way decision. Three-way decision
has been widely used in many applications of uncertain information [12-17].

In our previous work, three-way decision was introduced into non-overlapping
community division and an algorithm of three-Way Decisions Based on Nonover-
lapping Community Division was proposed, shorted by N-TWD. N-TWD can get
communities by initial granulation operation. And then hierarchical granulation
is used to acquire final communities. The granules are regarded as communities
so that the granulation for a network is actually the community partition of the
network. N-TWD algorithm is based on hierarchical granulation. An original
granular contains n nodes and its all neighborhood nodes. However, it get com-
munities which consist of nodes loosely connected. How to get the small, tightly
connected overlapping communities are valuable to further study.

As we all know, the property of community structure, in which network
nodes are joined together in tightly knit groups, between which there are only
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looser connections [1]. Therefore, local group nodes information can be used to
search for the natural community of each node. For example, in a social network,
separate sub-communities may represent the groups of the individual’s friends
from college, friends from senior, acquaintances from work, and so on. When we
consider the subgraph immediately around node v, those of v’s neighbors that
know one another from the same community are likely to be better connected to
one another than to those of v’s neighbors that v knows from a different group
(e.g., v’s friends from college likely know each other, but are less likely to know
v’s co-workers).

Therefore, we further improve the initial granulation method of N-TWD’s
and propose Three-way Decision Community Detection Algorithm based on
Local Group Information (LGI-TWD)in this paper. Firstly, sub-communities are
constructed by the node v and v’s neighbors which are reachable to each other.
Secondly, these sub-communities which satisfy granulation coefficient are hierar-
chically merged to construct hierarchical structure. Finally, a further partition
for boundary region’s nodes can be done according to the belonging degree.

The rest of the paper is organized as follows: The related work was briefly
reviewed in Sect. 2; In Sect. 3, local group information algorithm which can iden-
tify sub-communities in network G, and we combine a community partition algo-
rithm which based on three way decision theory to form the final non-overlapping
community. In Sect. 4, we display and analyze the experimental results; Finally,
the paper presents the summary in Sect. 5.

2 Related Basic Concepts

In this section, hierarchical granulation process and three region of community
detection representation were reviewed. And index of community evaluation also
was given.

2.1 Hierarchical Granulation

In our previous work, N-TWD got overlapping communities by initial granula-
tion operation. Each node in the network was regarded as an original granule
Gr; = Granule (v;) which formed by the neighbor nodes of v;. And then the
granule set Gr = {Gr; |V v; € V,Gr, = Granule (v;)} was obtained by initial
granulation operation Gran (G,Gr). To get hierarchical overlapping communi-
ties structure GT:»"‘H, two granules Gr;" and Gr7" from m-th layer comply gran-
ulation operations. The process was finished until the granulation coefficient was
not satisfied granulation coefficient condition and hierarchical granulation struc-
ture of Grt, Gr?, ... Gr™ were formed, a granule set Gr! with maximum @ which
existed overlapping community was selected to achieve the final non-overlapping
community.

Definition 1. Granulation Coefficient [18]: f(Gr",GrT"):

HGrm Grm) = | Gri* 0 Gri ||

LGy = L L Gy G e G 1
G = TG OO € O W)
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Definition 2. Granulation Operations: GO(Gr}", Gr}"):

Gri"™ — Grimu Gr? 2)
Grmtl — Grm + Gri"tt — Gr — Gri*

2.2 Three Region of Community Detection

Based on the three-way decision theory, the result of overlapping communities
structure can be defined as positive region, negative region and boundary region.

1. Boundary region (BND(Gr;,Gr;)): the overlapping nodes between Gr; and
GT‘j,BND = GTZ' N GT’j

2. Positive region (POS(Gr;,Gr;)): the non-overlapping nodes of left community
G’l‘i7POS = GTi — BND

3. Negative region (NEG(Gr;,Gr;)): the non-overlapping nodes of right commu-
nity Gr;, NEG = Gr; — BND.

So, three regions of overlapping communities are given as:

BND = J(BND(Gr;,Grj));
POS = U(POS(Gri, Gry); 3)
NEG = J(NEG(Gr;, Gry));

Therefore, granulation coefficient can be represented as follows:
Granulation Coefficient Based on Three Way Decision Theory:

IBND||
frng . 4
“C=[POS+ NEG + BND| @

2.3 Modularity Q

The most widely used and accepted metric designed specifically for the purpose of
measuring quality of a network division into communities is modularity (Q)[19],
calculated as follows.

Q=53 (A~ )50, 0y) )

]

Where i, j are two arbitrary vertices, m are the total number of the net-
works, (A ; ) is the element of adjacency matrix. The value ranges from @ =0,
when the within-community edges are no better than random, to @ = 1. Gen-
erally speaking, the value of @ typically range from about 0.3 to 0.7 real-world
networks.



Three-Way Dicision Community Detection Algorithm 175

3 Three-Way Decision Community Detection Algorithm
Based on Local Group Information

In this section, we firstly define sub-communities of each node v (shorted by
SubC (v)) as a original granular based on Local Group Information which truly
produce overlapping community’s structure. Then final non-overlapping commu-
nity structure is obtained by using the three-way decision community detection
algorithm.

3.1 Sub-communities of Each Node v Based on Local Group
Information

Local Group Information can predict the change rule of network and grasp poten-
tial function better, thus it can help us to understand the common preference
and group behaviors of the networks.

To get communities which consist of nodes tightly connected, each node v
in network is iterated, and one or more sub-communities SubC' (v) which con-
tain node v and node v’s partial neighbors can be created. Nodes in one sub-
community are reachable to each other. The same sub-community may be cre-
ated multiple times, and we allow multiple copies of the same sub-community,
but one may consider only one copy.

Given an undirected network G (V, E), where V is the set of vertices and F is
the set of edges. For Vv € V, Let L (v) notes the neighbor notes set of node v. For
each v € V, we can get sub-communities SubC (v) = {C* (v) = (V' (v), E* (v)) }.

Where SubC' (v) means the node v and sub communltles around v. An exam-
ple of sub-community is shown in Fig. 1. Assume node A is regarded as the center
L(A)={B,C,D, E, F}. Therefore, sub-community SubC(A) = {SubC1 = {A,
B,C,D},SubC2={A,F,E}}.

O\
N

Fig. 1. The network with 6 vertices and 8 edges.

O

Along with different node as center, same sub-community may be created
repeatedly. For example, SubC(E) = SubC(F) = {A, E, F}. The detail of sub-
communities detection algorithm is described as follows.
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Algorithm 1. SubC (v) Detection Algorithm
Input: G = (V, E).
Output: SubC (V).
Initialize ¢ = 0,V (v) = {v}, E(v) =

for each v, EL( ) and L(v) # 0 do

V(v ) V(v )+Um
E'(v) = E' (v) + (vm,v)
L(V) L(V) —{vm}

while an € L(v) Y Um € V' (v), (Ui, V) € E do
V ) ('U) + Um
E' (v

E'(v) = )+ (Um,s vn)
L(V)=L(V)—{vn}
end while
i=1+1
end for

Output SubC (v) = {Ci (v) = (Vi (v), E’ (”))}

SubC' are the original granule sets acquired by Algorithm 1, which can be
merged to form hierarchical structure after granulation operations. Assume that
SubCi, SubCj € SubC. The redefinition of three region are given as:

POS = SubC; —BND;
NEG = SubC; —BND,; (6)
BND = SubC; N SubC;

Therefore, sub-communities are hierarchically merged as follows according to
Granulation Operations SGO (Subj", Sub}") :

SubC" — SubC™ U SubC!™ )
SubC™ 1t — SubC™ + SubCy"+' — SubC™ — SubCT"

3.2 Three-Way Decision Community Detection Algorithm Based
on Local Group Information

In Sect. 3.1, we can acquire small, tightly connected overlapping sub-communities.
To achieve final two-way decisions, the nodes in the boundary can be further
divided through further observations.

Here, in order to calculate the similarity between the nodes in boundary
region and positive region (negative region), the index of LHN-I [20] is used to
define the similarity of neighbor nodes svv.

I'(vi )NI" (v
svv (v4,v5) = %k((vj))l ®

In addition, the belonging degree Bp, By is defined in formula (9) of. It is
denotes as:
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for Vo € BND (SubCl),

Np
> svv(vi,v;)
i

Bp = —Fx— *Nrp
Ny e (9)
> svo(vi,v;)

By = 1N7N * NLN

Where v; € BND,v; € POS(NEG), Nip denotes number of neighbors between
BND (v) and POS (SubCl). Nrn denotes number of neighbors between

BND (v) and NEG (SubC’l). Np is the number of nodes in positive region,

Ny is the number of nodes in negative region.
The differences of belonging degree |dpn| can be calculated as follows:

ldpn| = rEpEr (10)
where | X| denotes the absolute value of X.

Based on Algorithm 1 and the index of further division in definition(10), the
detail of Three-way Decision Community Detection Algorithm based on Local
Group Information (LGI — TW D) is described as follows.

According to the definition of |dpy|, the nodes in boundary regions are
divided into positive region or negative region when |dpy| > ~. However,
there may be a few nodes which are still in the boundary regions that satis-
fied |dpn| < 7. Therefore, these nodes in the boundary region will finally be
determined by voting according to link number.

4 Experiment and Analysis

In order to verify the performance of LGI-TWD, we have carried out a num-
ber of experiments on five data sets with six compared algorithms, such as
N-TWD,CACDA [18], GN [1], NFA [6] and LPA [21]. Our experiments were per-
formed on six data sets from http://www-personal.umich.edu/~mejn/netdata/
and http://arnetminer.org/lab-datasets/soinf/. The detail of data sets is shown
in Table 1.

In LGI-TWD algorithm, two parameters are granulation parameter A and
boundary parameter . The parameter of A € (0,1) is regarded as a granula-
tion criterion which can determine the process of granulation operation and
control the granularity of the initial sub-communities. The merger process-
ing of sub-communities is stop when the value of granulation coefficient
GC (SubC;, SubCj) < A

The parameter of v € (0,1) is defined as boundary parameter, its value have
great influence on the boundary region division. If v = 1 , the nodes in the
boundary domain are all divided by neighbor voting; If v+ = 0 , the nodes in
the boundary domain are all divided according to belonging degree. Besides, the
nodes in the boundary domain are divided by both methods.
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Algorithm 2. LGI-TWD Algorithm
Input: G = (V, E)
Output: Non-overlapping community structure POS (SubC’l) ,NEG (SubCl).
1. Generate Sub-Communities of POS (SubC), NEG (SubC),BND (SubC) by
Algorithm 1;
2. Build hierarchical structure POS (SubC™), NEG (SubC™), BN D (SubC™)
for V SubC;, SubC; € SubC
m = 17 Qmax = 0
Calculate GC (SubC;, SubC')
end for
if 3GC (SubClm, SubC}”) is maximum
SGO (SubCy", SubC)
Calculate value of Q, Q = Q™!
if Qerl > Qmax
then Q.. =Q™™, I=m+1
m—m-+1
until SubC™ include one granule
end if
3. Select a granule set SubC' with maximum Q. | is the layer of maximum. And
three regions POS (S’ubCZ), NEG (SubC’l), BND (SubCl) are formed.
For v € BND (Sub(C') do
4. According to the formula (8),calculate the belonging degree (Bp, By )
While 3v € BND,|dpn| > v do
if dpy > v then
POS =POSUv,BND = BND — v;
else
NEG =NEGUv,BND = BND — v;
End while
While Jv € BND, |dpn| < v do
if edges between v and POS is maximum;
POS = POSUw

else
NEG =NEGUwv
End while
end for
Return POS (SubCl) ,NEG (Subcl)
end
Table 1. The information of data sets
Data set Number of vertices | Number of edges
Karate 34 78
Football 115 613
Dolphin 62 159
Les misrables 77 254
Book US politics | 105 441
Topicl6 679 1687
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Fig. 2. The connection between A and Q in different value of

In Fig. 2, nineteen groups of experimental thresholds were listed. According
to Fig. 2 (a,c,d,e), we can find that with the increasing of granulation parameter
A, the value of @ is clear better than v = 0 or v = 1. In Fig. 2(b), the division
result is not obvious because the dolphin data set is particularly sparse and have
less overlapping nodes.
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Fig. 3. Comparison of Q-value by different algorithms on real world networks.

In the experiments, LGI-TWD was compared with N-TWD, CACDA, GN,
NFA and LPA on the Karate, Football, Dolphin, Lesmis and Polbooks data sets.
The experimental results are shown in Fig.3. The z-axis represents the data
sets of real world, and the y-axis represents the value of Q). Figure 3 shows that
LGI-TWD is superior to others community division algorithms in most cases.
Our algorithm is not effective on the dolphin network because this network is
particularly sparse and exists less overlapping parts.

After all, LGI-TWD algorithm not only deals with overlapping nodes in the
boundary regions, but also makes the division of the community more reasonable.

5 Conclusion

In this paper, we propose LGI-TWD algorithm to detect non-overlapping com-
munities. Sub-communities of each node v based on local group information can
be defined firstly. Then, these sub-communities which satisfy granulation coef-
ficient are hierarchically merged to construct hierarchical structure. Finally, a
further division for boundary region’s nodes can be done according to belonging
degree. Compared with others community division algorithm (N-TWD, CACDA,
GN, NFA, LPA), the experimental results on five real world social networks show
that LGI-TWD algorithm get a higher modularity value @ and can get a quite
reasonable division results.
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Actionable Strategies in Three-Way Decisions
with Rough Sets
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Abstract. Rough set theory uses three pair-wise disjoint regions to
approximate a concept. This paper adopts actionable strategies in three-
way decision with rough sets. We suggest actionable rules for transfer-
ring objects from one region to another and propose a model of opti-
mal actions based on cost-benefit analysis. Actionable strategies allow
us to transfer objects from less favourable regions to a favourable region,
so that we can reduce the boundary region and the negative region.
We design and analyze an algorithm for searching for an optimal solu-
tion. The experimental results on a real dataset show that the algorithm
has promising outcomes and objects can be effectively moved between
regions.

Keywords: Rough sets + Three-way decisions  Actionable strategies -
Actionable rules + Actions

1 Introduction

The theory of rough sets may be interpreted in terms of three-way decisions [26—
28]. Given a set of objects X representing the instances of a concept, based
on their descriptions, we divide a universal set of objects OB into three pair-
wise disjoint regions. The positive region POS(X) consists of objects, based on
their descriptions, belonging to X and the negative region NEG(X) consists of
objects not belonging to X. For an object in the boundary region BND (X)), based
on its description we cannot determine if it is in X or not. Probabilistic rough
sets [27] use a pair of thresholds to divide OB into three regions according to the
conditional probability of an object belonging to X given its description. Many
approaches have been proposed to find an optimal pair of thresholds according
to certain criteria in different applications. Examples of criteria include cost [31],
information entropy [5], Gini index [33], chi-square statistic [8], variance [2], and
other statistical measures [30].

There are two steps in the trisecting-and-acting model of three-way decisions.
The first step trisects the universal set into three pair-wise disjoint regions and
the second step adopts actions to process objects in these regions. In this paper,
we introduce the notion of actionable strategies based on actionable rules [23] and

© Springer International Publishing AG 2017
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action rules [19] in data mining into the second step of three-way decisions with
rough sets. Specifically, by analyzing descriptions of objects in the three prob-
abilistic regions, we propose to design actionable rules for transferring objects
from one region to another. For example, if a suspected patient is determined
having a disease, that is, he or she is classified into the positive region, we will
take an action of treatment, in order to transfer the patient into the negative
region NEG(X).

Silberschatz and Tuzhilin [21] introduced the concept of actionability that
a user can react to realize his or her advantage. Ras and Wieczorkowska [19]
adopted action rules to mine profitable pattern for banks. Yang et al. [25]
introduced a postprocessing decision tree method to find actions for benefit.
Su et al. [22] searched actionable behavioral rules with a high utility. Many stud-
ies on actionable rules and action rules cover topics in data mining and machine
learning, such as association rule mining [14,20], classfication [4,6,18,19,23-25],
clustering [1,12,15,32], and outlier detecting [3,11,13]. These studies on action-
able rules and action rules provide a basis of actionable strategies in three-way
decisions.

The rest of the paper is organized as follows. Section2 reviews the basic
concept of probabilistic rough sets and actionable rules. Section 3 proposes a
model to improve the quality of three regions. Section 4 designs and analyzes an
algorithm. Section 5 presents experimental results.

2 Three-Way Decisions with Rough Sets

This section reviews the basic idea of probabilistic rough sets in the context of
three-way decisions.

The trisecting-and-acting three-way decision model [29] suggests two steps,
i.e., trisecting and acting. The trisecting step divides a universal set into three
pair-wise disjoint regions and the acting step takes actions to process objects
in the three regions. The ideas of trisecting and acting are often used in our
daily works. Let us consider the example of election. Based on an opinion poll,
one typically divides a set of voters into three groups: voters who support the
candidate, voters who oppose the candidate, and voters who are undecided or
not willing to tell their decisions. According to the poll result, the candidate
may take actions to sustain the group of supporters, to persuade the undecided
voters, and to change the non-supporters.

2.1 Trisecting

In probabilistic rough sets, we assume that we can divide a universal set of
objects into equivalence classes based on their descriptions [10,27,31]. Let [z]
denote the equivalence class of objects that have the same description as x. Let
Pr(X|[z]) denote the conditional probability that an object is in X given that
the object is in [z], which may be computed by

|[] N X

Pr(X|[z]) = W,

(1)
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where |- | is the cardinality of a set. Let us consider a class X C OB representing
a concept. Given a pair of thresholds (o, ) with 0 < 8 < o < 1, we divide
a universal set of objects OB into positive, boundary, and negative regions,
denoted by POS(, 5)(X), BND(, 3)(X), and NEG, g)(X), respectively:

POS(a,5)(X) = {z € OB | Pr(X][]) > a},
BND(, 5 (X) = {z € OB | 8 < Pr(X|z]) < a},
NEG (a.5)(X) = {x € OB | Pr(X|[a]) < 8}. (2)

The pair of thresholds can be computed by using different criteria. In the Pawlak
rough sets [16], we have o = 1 and 8 = 0.

To get an optimal trisection 7 = (POS (4 5)(X), BND (4 3)(X), NEG (4,5 (X)),
we construct an objective function to measure the quality or effectiveness of three
regions as follows [8,26]:

Q(m) = wpQ(POS (4,5 (X)) + wpQ(BND (4 45) (X)) + wnQ(NEG(q4,5)(X)), (3)

where Q(POS(,,5)(X)), Q(BND(, 5)(X)), and Q(NEG, g (X)) are goodness
(quality, cost, or other measure) of the positive, boundary, and negative regions,
respectively, and wp, wg, and wy represent the relative importances of three
regions. The overall measure of the trisection is determined by the weighted sum
of the corresponding measure of each region. An optimal trisection is the one
that maximizes or minimizes Eq. (3). Depending on particular applications, we
may have different meaningful objective functions. The objective functions based
on cost [31], information entropy [5], and Gini index [33] should be minimized
and those based on chi-square statistic [8] and variance [2] should be maximized.
Without loss of generality, we minimize the objective function in Eq. (3) in the
rest of this paper.

2.2 Acting

In the acting step, strategies and actions for processing each region take a deci-
sion maker’s advantage. Different strategies and actions may be used in dif-
ferent applications, such as description of concept, prediction of the classes of
objects, and transferring objects between different regions. In rough set theory,
the actions for three regions are accepting objects to be in X, rejecting objects
to be in X, and making non-commitment decisions, respectively.

In this paper, we consider actionable strategies that lead to movement of
objects between different regions. Given the original trisection = (POS 4,5 (X),
BND(4,5)(X), NEG(4,4)(X)), we can design strategies to promote movement
of objects from less preferred regions to preferred regions. Specifically, strate-
gies enable us to obtain a new trisection, denoted by ' = (POS, g (X’),
BND(4,5)(X’), NEG(4,3)(X’)), where X’ is a new set of objects obtained by
movement of objects on X and represents the same concept as X. According to
the objective function, we can search for optimal strategies by minimizing Q(7'):

min Q(n’).
Fundamental question in such a framework is to define the class of possible strate-
gies and to construct an algorithm to minimize the objective function Q(x’).
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3 Actionable Strategies for Transferring Objects

In this section, we introduce the concept of actionable rules for transferring
objects, analyze benefit and cost of actions, and provide an example to illustrate
the main idea.

3.1 Actionable Rules
We formulate actionable strategies based on the notion of a decision table.

Definition 1. A decision table is the following tuple:
S=(0B, AT=A;UA;U{d}, {Vu |a€ AT}, {I, | a € AT})

where OB is a nonempty finite set of objects, AT is a finite nonempty set con-
sisting of attributes composed by three subsets, in which A stands for stable
attributes, A; flexible attributes and d a decision attribute, V, is a non-
empty set of values for every attribute a € AT, and I, : OB — V, is a mapping.
For every x € OB, an attribute a € AT, and a value v € Vg, I,(x) = v means
that the object x has the value v on attribute a.

In Definition 1, the set of stable attributes A, consists of attributes that
their values cannot be modified, such as age, flexible attributes are attributes
that their values can be modified by actions, such as cholesterol level and blood
pressure.

Given an object x € OB, [z] is the equivalence class of x based on values on
attributes A; U Ay:

2] = {y € OB | I(y) = I(z),Ya € A, U A;}.

Classification rules in rough set theory have X = Y form that indicates if X
then Y. Given two objects with equivalence classes [z] and [y], we can get two
classification rules:

| A s =n@|n| A F=1)] = =)

SEA, fEAf

Tly - [ N s :Is(y)} /\{ A f:If(y)} = d = I4(y).

SEA, fEAf

The left hand side of the rule, X, is a conjunction of all stable and flexible
attribute-value pairs and the right hand side of the rule, Y, is the decision
attribute-value pair. Let ST'(r(;)) be the stable attributes part in the left hand
side of the rule 7, F'L(r[;)) be the flexible attributes part in the left hand side
of the rule r(,), i.e.,

ST = | A\ 5= LG

SEA,

FL(r() :{ N f:If(x)} (4)

fEAf



Actionable Strategies in Three-Way Decisions with Rough Sets 187

We use ST'(ry) = ST(r[y)) to denote that [x] and [y] have the same values on
each stable attribute. If ST'(r[,)) = ST(r(4)), then [z] and [y] can be changed to
each other by changing the flexible attributes values via actions. If a user wants
to change [z] into [y], the action is to execute the following actionable rule:

Tla] ~ Ty /\ If(x) ~ If(y), subject to /\ I, (z) = I;(y) (5)
feAy SEA,

where I¢(z) ~» I¢(y) means that the value of attribute f is changed from I¢(z)

to Iy(y) and the symbol A means all the flexible attributes’ values have to be
changed.
We define some concepts of actionable rule as follows.

Definition 2. An equivalence class [x] C OB is called actionable if I[y] C
OB, [y] # [x], such that ST (r(y)) = ST(ry,)). The notation riy) ~~ 1y given in
Eq. (5) is called an actionable rule that changes [x] into [y] and each clause
If(x) ~ If(y) for f € Ay is called a sub-actionable rule. [x] is called non-
actionable if Aly] C OB satisfying ST (rj,)) = ST (ry))

In Definition 2, equivalence classes may be from different regions or the same
region. If [x] is non-actionable, then we cannot find any actionable rule for trans-
ferring [z] to a different region.

The actionable rules can be used to design actions to transfer objects between
regions. The action process does not change the classification rules generated in
trisecting step. In this paper, we analyze benefit and cost from actionable rules.
We also call actionable rule as action and sub-actionable rule as sub-action.

3.2 Cost-Benefit Analysis of Actions

Each action incurs cost and brings benefit. The motivation of taking actions is
to minimize the objective function by least cost. Therefore, we can define the
benefit as follows:

B =Q(m) - Q(«'), (6)

where 7’ is a new trisection after taking some actions on .

We use misclassification cost matrix in Table 1, in which App, Agp, Ay p indi-
cate the costs of classifying an object in X to the positive, boundary, and negative
regions, respectively. Others are explained similarly. Therefore, the qualities of
three regions can be computed by:

Q(POS(4.5)(X)) =X NPOS(5)(X)[App + [ X NPOS (44 (X)Apw,
Q(BND(4,4)(X)) = [X NBND(q, 5 (X)[Azp + X N BND(4 4)(X)[Ann,
Q(NEG(q,5)(X)) = |X NNEG (0,5 (X)Anp + X NNEG(q ) (X)[Ann- (7)
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Table 1. Misclassification cost matrix.

POS | BND | NEG
X | App | ABP | ANP

X | Xpn [ ABN | ANw

We now analyze the benefit of one actionable rule r(, ~ r[,;. Let a denote
the number of objects in [z] belonging to class X and b the number of objects
in changed [z] belonging to class X'

a = [X Nl
b =[X"n [z, (8)

where X’ is a new set of objects obtained by changing [z] into [y], representing
the same concept as X. We use Eq. (1) to compute a and use an assumption to
compute b:

(A1) After taking an action 7, ~ 7, the changed equivalence class [z] will
have the same probability with [y]’s, i.e., Pr(X'|[z]) = Pr(X]|[y]).

The idea of this assumption can be explained by an example. Some people in
Canada will change all season tires to winter tires for their cars in winter due to
safety. This assumption suggests that replacing to winter tires will improve the
safety level to the level of those cars using winter tires. Therefore, after taking
action 7y ~ 7[y], b can be computed by:

b= |X"N[z]| = [[«][Pr(X'|[z]) = |[2]| Pr(X|[y]) = |[=]|| X O [9)l/1ly]l- (9)
Further, we have the following proposition:
Proposition 1. Taking any action riy ~ 11y to transfer objects from region V
to W, the benefit is computed by:

By(yrpy = WwW [—bAwp — ([z]] — D)Awn] + wv [adve + (|[z]] — a)Avn], (10)

where VW € {P,B, N}, in which P, B, and N represent positive, boundary,
and negative regions, respectively.

The notation By, .., indicates the benefit of action ri, ~ 7.

There are many types of cost involved with changing attribute values, such as
money, time, and other resources. We suppose that all kinds of cost associated
with a sub-action If(z) ~ I(y) can be synthesized as one cost defined by a
function Cj:

Cf:VfXVf—>§R, VfEAf.

For each f € Ay, C¢(v1,v2) denotes the cost of changing the value of attribute f
from v; to vy and Cy(v1,v2) does not have to be equal to C'¢(va,v1). Generally,
the cost functions {Cy | f € As} are given by domain experts and they have no
impact on the misclassification cost.
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Further, we use two assumptions:

(A2) Value changings among different attributes are independent, which means
the value changing of one attribute will not affect others.

(A3) All actions are independent, which means any action will only affect two
equivalence classes, all other equivalence classes will not be affected.

Assumption (A2) allows us to calculate the cost of transferring one object by
simply summing all sub-action costs up. For example, the cost of transferring an
object from [z] to [y] is:

> Crlp(@), I1(y). (11)

Iy

Let Cr[m]wr[y] denote the cost of action 7, ~» [, and it can be computed by:

Cr[x]wr[y] = |[$” Z Cf(If(I)vjf(y)) (12)
feAy

Assumption (A3) allows us to calculate and analyze the benefit and cost
of any action independently. Based on this assumption, given any two actions
T[z) ~ Tfy) and 7] ~» 7], whether or not we take action 7, ~ (g, the By or
and CTMWTM will not be changed.

[y]

3.3 An Illustrative Example

Table2 is an example decision table describing the relation between a heart
disease and some symptoms. The table consists of 9 people (rows), 3 symptoms
or attributes (columns), and a diagnosis. Chol and Bp stand for cholesterol level
and blood pressure, respectively. The first three attributes are symptoms and
the last column is the diagnosis result of the heart disease. Symbols + and —
denote that a suspected patient does not have heart disease and has the heart
disease, respectively.

Table 2. A decision table for medicine.

# | Gender | Chol Bp Result

01 | Female | Medium | Normal | +

02 | Female | Medium | Normal | —

o3 | Female | Low Normal | +
04 | Female | Low Normal | —
o5 | Female | Low Normal | —
og | Female | Medium | Low +

o7 | Female | High High -
og | Male High Low -
09 | Male Low Normal | +
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Table 3. Cost matrix.

POS | BND | NEG
X | 2 |4 8
xX%l11 |9 8

According to this table, A, = {Gender}, Ay = {Chol, Bp}, and d = Result,
Va = {+,—}, and OB = {01,029, ,09}. We can get following equivalence
classes: [01] = {01, 02}, [03] = {03,04,05}, [06] = {06}, [07] = {07}, [0s] = {0s},
and [og] = {0g9}. Their conditional probabilities are 0.5, 0.3, 1.0, 0.0, 0.0, and
1.0, respectively with regard to X = {0, € OB | I (0;) = +} = {01,03, 06,09}
Given cost matrix in Table 3, we can compute (a, 3) = (0.5,0.2) that minimizes
the objective function and three regions are constructed:

POS(0.5,0.2)(X) = {z € OB | Pr(X|[z]) = 0.5} = {01, 02, 06,00},
BND(0.5,0.2)(X) = {x € OB | 0.2 < Pr(X|[z]) <0.5} = {03, 04,05},
NEG(9.5,0.2)(X) = {2z € OB | Pr(X|[z]) <0.2} = {07, 08}.

Now, we consider to transfer [o7] C NEG(X) to POS(X). There are two

actions that can transfer it: rj,,| ~ 7[o,) and r[,,) ~ T[4, The cost functions
Cchot and Cp), are given in Table4 and Table 5, respectively.

Table 4. Cost function Copor. Table 5. Cost function Cpyp.

Low | Medium | High Low | Normal | High
Low 0 1 3 Low 0 1 2
Medium | 2 0 1 Normal | 1 0 1
High 4 1 0 High 2 1 0

Then the costs of these two actions can be computed as follows according to
Eq. (12):

CT[O7] ~T

o1]

= |[o7]|(Cchoi(high, medium) + Cpg,(high, normal)) = 2,
= |[07]|(Cchot (high, medium) + Cgp(high, low)) = 3.

Now, we compute the benefits of two actions. According to Eq. (10) and using
wp = wp = wy = 1, we can get:

[
CT[O7]“’“’T[

o6l

B = ’LUP[— b\pp — (|[07]| — b))\PN} + wn [a)\Np + (|[07H — a)/\NN]
2—0.5*2—(1—0.5)*11+0*8+(1—0)*8=1.57
=wp[ —bApp — (|[o7]] = b)Apn] + wy [aAnp + ([o7]] — a)Ann]

=—-1%2—(1-1)%x114+0%8+ (1 —0)*x8=6.

Tlo7]*Toy]
Tlo7]1~T[og]

Obviously, action r(,,) ~ 7[s,] has less cost but less benefit and r(,,} ~ 7, has
both larger cost and benefit.
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4 An Optimization-Based Solution

There are different criteria in different applications. For example, one may want
to enlarge positive region, one may want to reduce boundary region, and one may
want to simultaneously enlarge one region and reduce another. In this paper, we
consider to enlarge positive region.

4.1 The Optimal Solution

Given any actionable equivalence class [z;] € OB, ¢ = 1,--- ,n, there may
exist many equivalence classes [y1],- -, [yn,] satisfying ST (r(,,)) = ST(ry,),
j =1,---,n;. Therefore, we may have many action options to transfer [x;] and
they have different benefits and costs. We use c;; and b;; to denote the cost and
benefit of action 7 ~ 71,5 = 1, ,n;, respectively and use a;; € {0,1}
to indicate taking or not taking the [x;]’s j* action. For example, co3 denotes
the cost of [x3]’s 3" action, bss denotes the benefit of [z3]’s 5! action, agy = 1
indicates that [zo]’s 4*" action is taken, and ag; = 0 indicates that [zq]’s 1%
action is not taken. For all actions transferring [z;], we may take none or one of
them. In other words, given [z;], all a;; satisfy 71 a;; <1, a;; € {0,1}.

We want to find a solution that maximizes the benefit when we have limited
cost. Based on these notations, we define the optimal solution as follows:

Definition 3. Given a trisection m, actionable equivalence class [x;] has n;
actions, and the cost and benefit of [x;]’s j*" action are denoted as cij and by,
respectively, j = 1,--- ,n;. The optimal solution with maximum benefit under
limited action cost cq s to find a set of a;; that

ma}(iiaijbij’ subject to iiaijczj < o,

i=1 j=1 i=1 j=1

n;
where Y a;; <1, a;; € {0,1}, i=1,--- ,n.
j=1
Definition 3 formulates a wide range of constrained optimization problems in
real applications. For example, a company may have limited budget to make
maximum profit from a product and a government may have limited resources
to improve a social problem.

The problem defined in Definition 3 is similar to the multiple-choice knap-
sack problem (MCKP) [17], where the constraint of a;; in our problem is looser
(MCKP requires Z;L;l ai; =1, aj; € {0,1}, i = 1,--- ,n). Suppose there are
n actionable equivalence classes and each has m actions, then the exhaustive
search for the solution has to check m™ combinations. Due to the similarity to
the MCKP, it is also NP-hard to find the optimal solution of the problem in
Definition 3.
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4.2 Algorithm

To efficiently search for an approximate optimal solution of Definition3, a
dynamic programming based strategy can be adopted. Suppose we have n action-
able equivalence classes given in an order, denoted as [z1], - -, [x,]. Any order
can be used and will not affect the result of algorithm. Let f(i,k) denote the
maximum benefit for the first ¢ actionable equivalence classes (i.e., [z1], - - , [24],
i < n) and k is the limited action cost (k < ¢,). Therefore, f(n,c,) is the
maximum benefit under limited cost c,. Suppose we know all the values of
f—1,K), K =0,--- k (ie., the maximum benefit when we have the first
i — 1 equivalence classes under different limited action costs from 0 to k). To
calculate the maximum benefit when we take the i** equivalence class [x;] into
account, we have to consider all [z;]’s actions and the f(i, k) will be computed
as the maximum one from the following n; + 1 cases:

(0) f(i, k)
(1) f(i, k)
(2) f(, k)

(ni) fli,k) = f(i— 1,k — cin,) + bin,, if [z;]’s last action is taken.

f(i—1,k), if none of [z;]’s action is taken;
fli =1,k — ¢;1) + bix, if [z;]’s first action is taken;
fi =1,k — ¢i2) + bia, if [z;]’s second action is taken;

We define ¢;o = 0 and b;p =0, i = 0,--- ,n, i.e., there are no benefit and cost
if we do not take any [z;]’s action. Thus, the first case (0) can be rewritten in
the same form as others, i.e., f(i,k) = f(i — 1,k — ¢i0) + bip. By synthesising all
cases, f(i,k) is computed by:

f(Z,k) = max{f(i — 1,k — Cij) +bij | Cij S k},] - 0,' s, Ny

The number j that maximizes f(i,k) is chosen, which means [x;]’s j!* action is

taken:

{1, j:argl Ionax {fi—1,k—cy)+by|cyu <k}
A5 = =0,

(13)
0 otherwise.

This is an iterative strategy gradually reducing the size of problem (i.e., the
number of equivalence classes). That is, to compute f(i,k), we have to know
f(@—1,0),---, and f(i — 1,k), and to compute f(i — 1,k), we have to know
f(i—2,0),---, and f(i — 2,k). Finally, the base conditions f(0,0),---, f(0,k)
will be reached. We define f(0,k) =0,k =0, -- ,c,, because there is no benefit
when no equivalence class can be transferred. Thus, a complete iterative formula
for computing f(i, k) can be formulated as follows:

f(ik):{o if i = 0;

’ max{f(i—1,k—c¢;;) +bi; | ¢ij <k},j=0,---,n; otherwise.
(14)

We continue to use previous example to show how the strategy works.
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Table 6. A list of all actionable equivalence classes with costs and benefits from Table 2.

[03] ij  Cij [07] ij  Cij [08] bi, ci
Tlos] ~* Tlo]| 25 3 Tlor] ~ Tor| 15 Tos] > Tlool| 65
Tlog] ™ Tlog)| 16 6 Tlor] ™ Tlog)| 6 3 : >

Example 1. We consider enlarging positive region by transferring objects from
NEG(X) and BND(X) to POS(X). Based on Table2, we list all benefits and
costs with regard to actionable equivalence classes in Table 6.

Suppose the limited cost ¢, = 10, therefore the task is to find f(3,10).
We compute all values of f(i,k) in a table by considering equivalence classes
one by one. Without losing generality, we use order: [os], [07], [0s] and notations
[z1] = [os], [z2] = [o7], and [x3] = [0s]. In the beginning, i = 0. According to
Eq. (14), we have Table 7, in which column [z;] shows equivalence classes, column
ci; and b;; are action costs and benefits, respectively, and columns from k£ = 1 to
10 stand for different action cost k from 1 to ¢,. The [z(] does not exist, we use
it as a symbol to compute f(i, k). The first row is the base condition computed
by f(0,k) =0,k =1,---,10 according to Eq. (14).

Table 7. A maximum benefit computing table when i = 0.

[ac,] Cij bij kzl 2 3 4 5 6 7 8 9 10
2] | O |0 |0 00 0 0 0 0 0 0 0

Next, we take [z1] into account and get Table8 according to Eq. (14). We
provide the computations of cell f(1,1) and f(1,10) here, other cells are similar.
To compute f(1,1), the current limited action cost is k = 1, there is no [z1]’s
action has cost less than 1. Therefore, 0(0) is written into the cell (1,1), the
row of [zg] is not counted here, which means the first row is the row of [z1].
The first number 0 denotes benefit, the second number 0 in the parenthesis
denotes the sequence number of action that is taken to get such benefit, i.e., j, 0
means that no action is taken. Similarly, when k = 10, we have three options for
fli—1,k—cij) +bij, wherei=1and j =0,---,2. The values are 0(0), 2.5(1),
and 16(2), respectively. Therefore, f(1,10) = max{0,2.5,16} = 16 and 16(2) is
written into the cell (1, 10).

Table 8. A maximum benefit computing table when ¢ = 1.

[zi] |cij | bij k=12 3 4 5 6 7 8 9 10
[zo] |10 |0 0 0 0 0 0 0 0 0 0 0
[z1] |3, 625,16 |0(0) 0(0) 2.5(1) 2.5(1) 2.5(1) 16(2) 16(2) 16(2) 16(2) 16(2)
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By repeating the procedure for [x5] and [z3], we get Table 9. The maximum
benefit is in the bottom right cell of the table, i.e., f(3,10) = 22. It is worth
mentioning that the optimal solution may be not unique.

Table 9. The complete maximum benefit computing table.

[zo]| O] © 0 0 0 0 0 0 0 0 0 0

[21](3,6]2.5,16| 0(0) 0(0) 2.5(1) 2.5(1) 2.5(1) 16(2) 16(2),_16(2) 16(2) 16(2)
[z2]]2,3] 1.5,6 | 0(0) 1.5(1) 6(2) 6(2) 6(2) 16(0) 16(0)%22(2)7
[zs]| 5| 6 |0(0) 1.5(0) 6(0) 6(0) 6(0) 16(0) 16(0) 17.5(0) 22(0) 22(0)

Once the maximum benefit is found, the associated set of actions to obtain
this benefit, i.e., the set of a;;, can be inferred reversely. According to Table 9, the
maximum benefit 22 is reached by taking none of [x3]’s action. Thus, we consider
f(3—1,10) = £(2,10). We get 22(2) in cell (2,10) and it indicates [z]’s 2"¢
action is taken. Then we get rest cost 7 by subtracting cost 3 (the taken action’s
cost co2 = 3) from 10. Next, we check the cell of f(2 — 1,10 — 3) = f(1,7)
and we get 16(2), it shows that [z1]’s 27¢ action is taken. Finally, by checking
f(1—-1,7—6) = f(0,1) = 0, we reach the top row, inferring procedure completes.
We get a2 =1 and a;2 = 1 and all other a;; are 0. In other words, the optimal
solution with maximum benefit 22 under limited cost 10 is realized by taking
following actions:

Tlor] ™ Tlos] @14l T{og] ~ T(og]-

The inferring procedure is indicated by arrows in Table9.

According to the strategies analyzed above, an algorithm is designed and
shown in Algorithm 1. The algorithm consists of three parts. Part one is from
line 1 to line 4, it computes all action costs and benefits for each actionable
equivalence class. The second part is from line 6 to line 22, it is the main part of
the algorithm computing the complete maximum benefit table (i.e., f(i,k)). The
last part is from line 24 to line 33, it infers actions (i.e., a;;) which are taken to
obtain the maximum benefit. h(i, k) is an action table associated with f(i, k) by
simply collecting all numbers in parentheses of Table 9. For example, h(2,4) = 3
means that [z2]’s 3" action maximizes the benefit when action cost is limited
at 4. Thus, the last part of the algorithm is accomplished by h(i, k) table.

The function floor(a) offers the largest integer less than a. It is used to
ensure that the column index floor(k — ¢;;) is always an integer. Because the
action cost c;; may be a decimal number in real applications. Thus, k& — ¢;; as
a column index might be a decimal number, this makes an incorrect reference
to acell (i — 1,k —c¢;;). By using floor(-), each reference to a cell gets an equal
or less benefit than the maximum benefit that can be obtained. Therefore, the
computed maximum benefit from the algorithm is an approximate value that is
equal to or less than the real maximum benefit. Suppose B’ is the real maximum
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Algorithm 1. Compute maximum benefit under limited action cost.

input : Trisection 7, cost matrix, cost functions, and limited action cost c,.
output: B, a;;. //B is the approximate maximum benefit.

1 foreach [z;] C BND(X) UNEG(X) do

2 Find all [y1],-- -, [yn;] € POS(X), where ST (r(,,]) = S'T(r[y7.])7 j=1,--,ng

8 let c;j = C"[%]W"'[yj]’ bij = B"'[w]“"[yj];

4 end

5 let f(0,k) =0, h(0,k) =0, where k =0,--- ,cq; //f and h are benefit table and action

table, respectively.

6 fori=1ton do
7 for Kk =1 to ¢, do
8 let b=0,t= f(i—1,k), p=0; //temporary variables;
9 for j =1 to n; do
10 if ¢;; < k then
11 | b= f(i—1, floor(k — cij)) + bij;
12 else
13 | b=0;
14 endif
15 if b > t then
16 t=b;
17 P =7J;
18 endif
19 end
20 let f(i, k) =t, h(i, k) = p;
21 end
22 end

23 let B = f(n,cq), k = cq, all a;; = 0;
24 for i =n to 0 do

25 if £ <0 then

26 | break;

27 endif

28 let t = h(i, k);

29 if t > 0 then

30 let a;+ = 1;

31 let k = floor(k — cit); //cit is the i*" equivalence class’ t'* action’s action cost.
32 endif

33 end

34 Output B and a;j;.

benefit, B is the benefit obtained by Algorithm 1, they satisfy (B'—c,) < B < B'.
Specifically, we have B = B’ when all ¢;; are integers.

The time complexity analysis of Algorithm 1 is straightforward. In the first
part of the this algorithm, each equivalence class in BND(X) U NEG(X) has
to check all equivalence classes in POS(X) by comparing all attributes’ val-
ues. Therefore, the maximum computation of this part is [POS(X)||BND(X) U
NEG(X)||As U A¢|, or simply denoted as |OB|?|AT|. The second part has three
nested loops, the computation is nc,m, where m is the average of all n;, i.e.,
m = 1/n>"" | n;. The last part has one loop and its computation is n. Over-
all, the algorithm reduces the time complexity from NP-hard to polynomial by
searching for an approximate optimal solution.

5 Experimental Results

We use heart disease Cleveland data set [9], which has 303 people, 13 symptoms,
and one diagnosis. Three attributes, age, sex, and ca (i.e., number of major
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vessels) are recognized as stable attributes, others are flexible. The values of some
attributes are grouped and reassigned as follows. Age is categorized into 5 groups,
i.e., 0-20, 21-39, 40-59, 60-79, and 80+, they are reassigned to values 1 to 5
respectively. Cholesterol is categorized into 3 groups: 0-199, 200-239, and 240+,
they are reassigned to values 1 to 3 respectively. Blood pressure is categorized
into 3 groups: 0-89, 90-139, and 140+, they are reassigned to 1 to 3 as well.
Maximum heart rate is categorized into 3 groups: 0-149, 150-209, and 210+,
they are reassigned to 1, 3, and 5, respectively. All missing values are filled with
most often appeared values. The decision attribute has 5 categories, valued from
0 to 4, in which only the value 0 means healthy. Therefore, we construct three
regions to approximate the concept of healthy people X = {x € OB | I4(x) = 0}.
Table 10 is used to compute the quality of three regions. We use cost functions
Cy(v1,v2) = |v1 — vo| for all flexible attributes.

Table 10. Cost matrix for experiments.

POS | BND | NEG
X 1 /10 |25
X¢ 1100 |60 |40

Two experiments are studied based on this setting, one is to compare the
performances of our algorithm and random-action-select method, the other is
to show the relation between cost and the number of transferred objects. The
experimental results are shown in Fig. 1. All lines in Fig. 1(a) and (b) are drawn
by connecting the points that have step of 10 on x-axis, i.e., limited cost.

Algorithm 1 V.S. Random Numbers of Objects in Three Regions

Number of Objects

200 200

500 7000 1200 700 200

300 0
Limited Cost

500
Limited Cost

(a) The performance of Algorithm 1. (b) Numbers of objects in regions.

Fig. 1. Results of two experiments. (Color figure online)

In Fig.1(a), the solid line shows the result of Algorithm 1 and every dot
shows the obtained benefit by randomly choosing actions under a limited cost.
Obviously, our algorithm has overwhelming outcomes. The algorithm reaches
the maximum benefit when cost is about 630, the random method needs almost
twice cost to obtain it. In Fig. 1(b), the black solid line, red dashed line, and blue
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solid line indicate the numbers of objects in POS(X’), NEG(X'), and BND(X"),
respectively. By increasing the cost, objects are gradually transferred from nega-
tive region and boundary region to positive region. When the cost reaches about
630, three regions get to a stable status, no object will be transferred. This
is because the rest equivalence classes of objects in negative region are non-
actionable. In this status, the POS(X’), BND(X’), and NEG(X’) regions have
about 280, 0, and 20 objects, respectively. Most objects in less favourable regions
are transferred into favourable region.

6 Conclusion

The transitional probabilistic rough sets focus on searching for an optimal tri-
section of the universal set of objects based on an objective function. In this
paper, we adopt actions to facilitate movement of objects between regions. The
movement of objects reflects a change of the original set of objects representing
a concept to a new set of objects. Such movement leads to a new trisection and
can improve the qualities of three regions.

By cost-benefit analysis of actions, a dynamic programming based algorithm
is designed to search for optimal actions. Such optimal actions can produce max-
imum benefit under limited cost. The algorithm has polynomial time complexity.
The experimental results on a real dataset show that the algorithm has promising
outcomes and objects can be effectively moved between regions.

In the future, we will study more constrained optimization problems and
movement patterns in real applications. The action cost is strongly related to
attributes and we prefer to find a reduct with low cost attributes. Therefore, an
addition strategy based reduct construction method [7] may be used to minimize
action costs.
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Abstract. We present a new method for constructing and interpreting
rough set approximations in an incomplete information table in four
steps. Step 1: we introduce the notion of conjunctively definable concepts
in a complete table. Step 2: we suggest a slightly different version of
Pawlak rough set approximations in a complete table by using the family
of conjunctively definable concepts. Step 3: we adapt a possible-world
semantics that interprets an incomplete table as a family of complete
tables. Correspondingly to conjunctively definable concepts in a complete
table, we introduce the notion of conjunctively definable interval concepts
in an incomplete table. Step 4: we study rough set approximations in an
incomplete table by using the family of conjunctively definable interval
concepts. Our method focuses on a conceptual understanding of rough
set approximations for the purpose of rule induction. It avoids difficulties
with existing approaches with respect to semantical interpretations.

1 Introduction

Analyzing an incomplete information table for rule induction is an important
topic in rough set theory. Following Pawlak’s formulations of rough set approx-
imations using equivalence relations in a complete table [18,19], the majority of
commonly used approaches is to construct a similarity or tolerance relation on a
set of objects and to define generalized rough set approximations by using simi-
larity classes. A fundamental difficulty with this type of approaches is that a par-
tially defined similarity relation does not truthfully and fully reflect the available
partial knowledge given in an incomplete table. For this reason, many authors
have proposed and studied different definitions of similarity relations [3,7,9-
12,17,21,22]. However, those solutions are not entirely satisfactory. It is nec-
essary to study the family of all possible similarity relations in an incomplete
table [13].

Yao [24] argued that there are two sides of rough set theory. The conceptual
formulation focuses on the meanings of various concepts and notions of rough
set theory. The computational formulation focuses on methods for constructing
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these concepts and notions. Pawlak’s formulation based on an equivalence
relation in a complete table is an example of computational formulations.
A conceptual formulation of rough sets uses a description language and explains
rough set approximations in terms of the definability of sets under the descrip-
tion language [3,4,15,24]. To obtain a semantically sound and superior inter-
pretation of rough set approximations in an incomplete table, we adopt the
notion of a possible-world semantics of an incomplete table, that is, we truth-
fully represent an incomplete table by using a family of all its possible complete
tables. The possible-world semantics of an incomplete table was used in inter-
preting incomplete databases by Lipski [14]. Several authors, for example, Li and
Yao [13], Sakai et al. [16,20] and Hu and Yao [8], have adopted this semantics to
study rough sets. By representing an incomplete table as a family of complete
tables, we have an advantage of simply using any existing approaches to analyze
an incomplete table, without the need to introduce new approaches. With the
possible-world semantics of an incomplete table, we have shown earlier that, cor-
respondingly to definable sets, one has the notion of definable interval sets [8].
Continuing with our study, in this paper we investigate rough set approximations
by using definable interval concepts.

There are two formulations of rough sets. One uses a pair of lower and upper
approximations. The other uses three pair-wise disjoint positive, boundary and
negative regions. The latter has led to the introduction of three-way decisions
with rough sets [25,26]. The positive and negative regions can be used to learn
acceptance and rejection (i.e., rule-out) rules, respectively. However, we cannot
learn such acceptance or rejection rules from the boundary region. Therefore, it
is sufficient and meaningful to investigate, in this paper, only the positive and
negative regions.

For simplicity, we only consider conjunctive rules in which the left-hand-side
of a rule contains only logic conjunctions. We only study conjunctively definable
concepts in a complete table and conjunctively definable interval concepts in an
incomplete table. This enables us to arrive at the main results of this paper:
rough set approximations are families of conjunctively definable concepts in a
complete table and are families of conjunctively definable interval concepts in
an incomplete table.

2 Conjunctively Definable Concepts and Rule Induction

An important task in rough set theory is to construct decision rules to classify
objects. The left-hand-side of a conjunctive decision rule is a conjunction of con-
ditions. For such a purpose, we introduced the notion of structured rough set
approximations in a complete information table by using conjunctively defin-
able concepts [28]. Compared with Pawlak rough set approximations [18,19],
the structured approximations not only give the same definable part of a given
set but also reveal their internal structure in terms of conjunctively definable
concepts. This facilities the learning process of decision rules.
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2.1 Conjunctively Definable Concepts in a Complete Information
Table

An information table provides the context for concept analysis with rough
sets [23]. According to whether the information is complete or not, there are
two types of information tables, namely, complete and incomplete information
tables. Formally, a complete information table T is represented by a tuple:

T = (OB, AT, {V, | a € AT},{I, : OB — V, | a € AT}), (1)

where OB is a finite nonempty set of objects as rows, AT is a finite nonempty
set of attributes as columns, V, is the domain of an attribute a € AT and I, is
an information function mapping each object to a unique value in the domain
of the attribute a.

A description language is commonly used to describe the objects in an infor-
mation table. In this paper, we consider a description language DL that contains
only logic conjunctions and is a sublanguage of the commonly used one in rough
set analysis [3,4,14,15,18,24]:

(1) Atomic formulas: Ya € AT,v € Vg, (a =v) € DLg;
(2) If p,q € DLy, and p and ¢ do not share any attribute, then p A ¢ € DLy.

By demanding that p and ¢ do not share any attribute, we actually consider a
subset of conjunctive formulas in which each attribute appears at most once.

Given a formula in DLg, an object satisfies the formula if it takes values on
the corresponding attributes as specified by the formula. Formally, for an object
x € OB, an attribute a € AT, a value v € V, and two formulas p,q € DLg, the
satisfiability |= is defined as:

(1) z E (a=w)iff I,(z) =v;
(2) sEpAqiff z Epand x| q. (2)

The set of objects satisfying a formula describes the semantics or meaning of the
formula.

Definition 1. Given a formula p € DLy, the following set of objects:

m(p) ={z € OB |z |= p}, 3)
18 called the meaning set of p.

Finding the meaning set of a formula is an easy task. However, given an
arbitrary set of objects, there might not be a formula in the description language
whose meaning set contains exactly these given objects. In other words, such a
set cannot be described or defined with respect to the description language.
In this sense, we may divide all sets of objects into two categories by their
definability, that is, definable and undefinable sets. According to the school of
Port-Royal Logic [1,2], a concept is represented by a pair of its intension and
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extension, where the intension describes the properties of the concept and the
extension is the set of instances of the concept. Based on the ideas from formal
concept analysis, Yao [23] represented a conjunctively definable concept as a
pair of a conjunctive formula and the corresponding conjunctively definable set,
which makes the meaning of the set explicit for the purpose of rule induction.
D’eer et al. [3,4] adopted the conjunctively definable concepts and presented a
semantically sound approach to Pawlak rough set and covering-based rough set
models, which focuses on the conceptual understanding of those models.

Definition 2. A pair of a formula and a set of objects (p, X) is a conjunctively
definable concept if p € DLy and X = m(p). The set m(p) is called a conjunc-
tively definable set.

The family of all conjunctively definable concepts is denoted by
CDEF(OB) = {(p,m(p)) | p € DLg}. It should be noted that a conjunctively
definable set may be defined by more than one formula.

2.2 Approximating a Set by Structured Positive and Negative
Regions

Suppose that a subset of objects X C OB consists of instances of a concept, that
is, X is the extension of the concept. A fundamental issue of rough set theory is
to describe the concept or its extension X by using definable concepts or sets.
With respect to the family of conjunctively definable concepts CDEF(OB), we
use a pair of positive and negative regions to approximate X . Instead of using the
standard definition, we adopt the definition of structured approximations [28].

Definition 3. Given a set of objects X C OB, the following families of con-
junctively definable concepts:

SPOS(X) = {(p,m(p)) € CDEF(OB) | m(p) € X, m(p) # 0},
SNEG(X) = {(p,m(p)) € CDEF(OB) | m(p) € X, m(p) # 0},  (4)

are called the structured positive and negative regions of X, respectively.

Figure 1 demonstrates the relationships between a conjunctively definable
set m(p) in the structured positive and negative regions and the set of objects
X, respectively. To construct the structured positive region, we collect all con-
junctively definable concepts whose extensions are included in the given set of
objects. In this way, we explicitly indicate the composition of the family of con-
junctively definable concepts used to approximate the given set. Similarly, to
construct the structured negative region, we collect all conjunctively definable
concepts whose extensions are included in the complement set of the given set
of objects. There might be two conjunctively definable concepts with the same
conjunctively definable set but different formulas. We include all the possible
formulas for a conjunctively definable set in defining a region. There might be
redundant conjunctively definable concepts in each of the two regions.
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OB OB

(a) SPOS(X) (b) SNEG (X)

Fig. 1. Relationships between X and m(p) in the two regions

The structured positive and negative regions cover the same sets of objects
as defined by the lower approximation of X and X°¢, respectively, in Pawlak’s
framework [18,19], that is:

apr(X U{m p,m(p)) € SPOS(X)},
apr(X°) U{m m(p)) € SNEG(X)}. (5)

They also cover the same sets of objects in the standard unstructured positive
and negative regions of X, that is, POS(X) and NEG(X), respectively [25]:

POS(X) = | J{m(p) | (p.m(p)) € SPOS(X)},
NEG(X) = J{m(p) | (p.m(p)) € SNEG(X)}. (6)
The two sets of objects POS(X) and NEG(X) may not contain all objects in

OB. The set
BND(X) = (POS(X) UNEG(X))® (7)

is the boundary region of X . We define the structured boundary region as follows:
SBND(X) = {(p,m(p)) € CDEF(U) | m(p) € BND(X), m(p) # 0}.  (8)

If we want to define the structured boundary region of X by using X directly, we
need to consider conjunctively definable concepts with specific properties. The
details are omitted in this paper.

2.3 Acceptance and Rejection Rules

According to the three regions, we can construct a three-way decision model
for rough set theory [25]. From the positive region, we build rules of acceptance
for accepting an object to be an instance of the concept represented by X by
examining the descriptions of the object. In the same way, we can build rules of
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rejection for rejecting an object to be an instance of the concept represented by
X. For the boundary region, we cannot make such a definite decision. For this
reason, in this paper, we are not interested in building rules from the boundary
region.

Given a set of objects X C OB, we can build two sets of acceptance and
rejection rules from the structured positive and negative regions, respectively.
The explicit representation of the intension of a conjunctively definable concept
in the structured regions makes this task much simpler. From a conjunctively
definable concept (p, m(p)) in the structured positive region SPOS(X), one may
immediately get an acceptance rule by taking the formula p as the left-hand-side,
that is:

If an object z satisfies p, then accept € X, denoted by p — X. (9)

Similarly, from a conjunctively definable concept (¢, m(g)) in the structured
negative region SNEG(X), one may immediately get a rejection rule by taking
the formula ¢ as the left-hand-side, that is:

If an object x satisfies ¢, then reject € X, denoted by g — —X. (10)

Since there might be redundancy in the two regions, redundant rules may exist
in the derived sets of acceptance and rejection rules. Removing redundant rules,
that is, finding a rule redundant, is a future research topic.

3 Approximations in an Incomplete Information Table

The notion of definable interval sets was presented to investigate the defin-
ability in an incomplete information table [8]. By considering the conjunctive
formulas, we present the notion of conjunctively definable interval concepts
and use it to define two types of structured positive and negative regions to
approximate a set of objects in an incomplete information table. Our approach
focuses on a conceptual understanding of the approximations with incomplete
information.

3.1 Conjunctively Definable Interval Concepts

An interval set is typically defined by a lower bound and an upper bound [27].
The interval set contains the family of all sets between the two bounds.

Definition 4. Suppose OB is a universe of objects. An interval set is defined by:
A=[A,A,)={ACOB| A CACA,} (11)

A; and A, are the lower and upper bounds, respectively, and they satisfy the
condition A; C A,.
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The value of an object on an attribute is unique. However, due to incomplete
information, we may not know this unique value. Instead, a set of values is known
to be possible. Let 2= denote the power set of a set of values V,, that is, the
family of all subsets of V,. An incomplete information table is represented by
the following tuple:

T = (OB, AT, {V, | a € AT}, {I, : OB — 2" — {0} | a € AT}), (12)

where OB is a finite nonempty set of objects as rows, AT is a finite nonempty
set of attributes as columns, V, is the domain of an attribute a and I, is the
information function mapping one object to a nonempty subset of values in the
domain of a. We assume that all attributes are applicable to all objects, and
demand a nonempty subset of values for every object on every attribute.

Lipski [14] presented a possible-world semantics that interprets an incom-
plete table as a collection of complete tables. It provides a method to study an
incomplete table through a family of complete tables.

Definition 5. For an incomplete table T:(OB,AT, {Va | a€ AT}, {I; :0OB —
2Ve — {0} | a € AT}), a complete table T = (OB, AT,{V, | a € AT},{I, : OB —
Va | a € AT?Y) is called a completion of T if and only if it satisfies the following

condition: B
Vo € OB,a € AT, I,(x) € I,(x). (13)

That is, a completion takes exactly one value from the incomplete table for
every object on every attribute. The family of all completions of T is denoted
by COMP(T) = {T | T is a completion of T'}. Since in the incomplete table
T , I:(a:) represents all possibilities of the actual value of z on a, the family
COMP(T) is the collection of all possibilities of the actual table. In other words,
once the information becomes complete, we will get a completion in COMP(T ).

For a formula p € DLy, we can get a meaning set m(p|T’) in each completion
T € COMP(T). By collecting all the meaning sets of p in the family COMP(T),

we get a family of sets that interprets p in the incomplete table T.

Definition 6. For a formula p € DLg in an incomplete table f, its meaning set
is defined as:

m(p) = {m(p|T) | T'€ COMP(T)}, (14)
where m(p|T) is the meaning set of p in a completion T

Our definition of the meaning set of a formula is related to the formulation
proposed by Grzymala-Busse et al. [5,6]. In particular, they called an atomic
formula an attribute-value pair, and a conjunctive formula a complex. However,
they defined the meaning set as a set of objects; we define it as a family of sets
of objects.

The meaning set of a formula in an incomplete table is actually an interval
set, which is formally stated in the following theorem whose proof is given in
Appendix A.
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Theorem 1. For a formula p € DLy in an incomplete table f, its meaning set
m(p) is an interval set with Nm(p) as the lower bound and Um(p) as the upper
bound:

m(p) = [Nm(p), Um(p)]. (15)

By Definition 6, the interval set m(p) is actually the family of all possibilities
of the actual meaning set of p. In this sense, the sets Nm(p) and Um(p) are the
lower and upper bounds of the actual meaning set of p. Thus, we denote the
sets Nm(p) and Um(p) as m.(p) and m™*(p), respectively. Accordingly, Eq. (15)
can be written as m(p) = [m.(p), m*(p)]. The two bounds can be interpreted in
terms of the family COMP(T) as follows:

m.(p) = ﬂ m(p|T) = {z € OB | VT € COMP(T),z € m(p|T)},
TeCOMP(T)

m*(p)=|J m@IT)={xeOB|3TcCOMP(T),zcm(p|T)}. (16)
TeCOMP(T)

By Theorem 1, the meaning set of a conjunctive formula in DLg in an incom-
plete table is an interval set. Such an interval set is considered to be conjunctively
definable. By explicitly giving the conjunctive formulas, we define a conjunc-
tively definable interval concept as a pair of a formula and its meaning set in an
incomplete table.

Definition 7. A pair of a formula and an interval set (p, A) is a conjunctively
definable interval concept if p € DLg and A = m(p). The interval set m(p) is
called a conjunctively definable interval set.

The family of all conjunctively definable interval concepts is denoted as
CDEFI(OB) = {(p,m(p)) | p € DLo} = {(p, [m.(p), m*(p)]) | p € DLo}.

3.2 Two Types of Structured Positive and Negative Regions
in an Incomplete Table

By using the family CDEFI(OB) instead of the family CDEF(OB), we generalize
the structured positive and negative regions in a complete table into two types
of structured positive and negative regions in an incomplete table.

Given a set of objects X in a complete table, its structured positive and neg-
ative regions are defined by considering the set-theoretic inclusion relationships
between a conjunctively definable set, that is, the meaning set of a conjunc-
tive formula, and X and X¢, respectively. With respect to an incomplete table,
the meaning set of a formula becomes a conjunctively definable interval set.
The family CDEFI(OB) is consequently used to define the structured positive
and negative regions. We consider the component-wise inclusion relationships
between a conjunctively definable interval set and X and X°€, that is, the set-
theoretic inclusion between a set in the interval set and X and X¢. This leads
to two types of structured positive and negative regions.
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Definition 8. For a set of objects X in an incomplete table T, we define two
types of structured positive and negative regions of X as follows:

(1) SPOS.(X) = {(p.m(p)) € CDEFI(OB) | m(p) # [0,0],vS € m(p),S C X},
SNEG.(X) = {(p,m(p)) € CDEFI(OB) | m(p) # [0,0],¥S € m(p), S C X°};

(2) SPOS*(X) = {(p,(p)) € CDEFI(OB) | 35 € m(p),S # 0,5 C X},
SNEG*(X) = {(p,f(p)) € CDEFI(OB) | 35 € m(p),S #0,5 C X°}.  (17)

It should be noted that the intersection of the two regions SPOS*(X) and
SNEG*(X) may not be empty since we use the existence of the set S to define
these two regions. Suppose (p, [}, m*(p)]) is a conjunctively definable interval
concept where m*(p) N X = S; # 0 and m*(p) N X¢ = Sy # 0. Since S1, 52 C
m*(p), we have S1,S2 € [, m*(p)]. By Definition8 and the fact that S; C X
and Sy C X ¢ the concept (p, [#, m*(p)]) will be included in both SPOS*(X) and
SNEG*(X).

By Definition 6, the meaning set m(p) is actually the collection of the meaning
sets of p in all the completions. Thus, we can re-write Definition 8 as given in
the following theorem.

Theorem 2. For a set of objects X in an incomplete table T, its two types of
structured positive and negative regions can be equivalently expressed as:

(1) SPOS.(X) = {(p,m(p)) € CDEFL(OB) | m(p) # [0,0],VvT € COMP(T),
m(p|T) € X},
SNEG.(X) = {(p, m(p)) € CDEFI(OB) | m(p) # [0,0],vT € COMP(T)
m(p|T) € X};
(2) SPOS*(X) = {(p,m(p)) € CDEFI(OB) | 3T € COMP(T), m(p|T) # 0,
m(p|T) € X},
SNEG*(X) = {(p,m(p)) € CDEFI(OB) | 3T € COMP(T), m(p|T) # 0
m(p|T) € X} (18)
By the fact that m.(p) C m*(p), the two types of structured regions could

be computed in terms of the two bounds of the interval sets, which is given in
the following theorem.

Theorem 3. For a set of objects X in an incomplete table f, its two types of
structured positive and negative regions can be computed as:

(1) SPOS.(X) = {(p, [m.(p),m" (p)]) € CDEFI(OB) | m"(p) # 0,m ( ) C X},

SNEG..(X) = {(p, [m.(p),m" (p)]) € CDEFI(OB) | m"(p) # 0,m" (p) C X°};

(2) SPOS"(X) = {(p, [m.(p),m" (p))) € CDEFI(OB) | (m.(p) # 0 Am.(p) C X)
V(m.(p) = 0 Am" () N X # 0)},

SNEG" (X) = {(p, [m.(p), m" (p)}) € CDEFL(OB) | (m.(p) # 0 Am.(p) C X°)
V(m.(p) = 0 Am” (p) 1 X° £ 0)}. (19)
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By Theorem 3, we call SPOS,(X) and SNEG.(X) the upper-bound struc-
tured positive and negative regions, respectively; and SPOS*(X) and SNEG*(X)
the lower-bound structured positive and negative regions, respectively. The rela-
tionships between the set of objects X and a conjunctively definable interval set
m(p) in the four regions can be depicted by Fig. 2. We use two concentric circles
to represent m(p), one with solid line to represent the lower bound and the other
with dashed line to represent the upper bound. There are other possibilities of
the relationships in Fig. 2. We only focus on the upper bound for SPOS, (X) and
SNEG.(X), and the lower bound for SPOS*(X) and SNEG*(X).

OB

\\
\
l (() !
\ o /
m(p)

(c) SPOS*(X) (d) SNEG*(X)

Fig. 2. Relationships between X and m(p) in the four regions

We have discussed three equivalent forms for the four regions. Definition 8
provides a direct generalization of the structured positive and negative regions
in a complete table. Theorem 2 clarifies the semantical meanings of the four
regions in terms of the family of completions. Theorem 3 offers a computa-
tional formalization by using the bounds of the interval sets. Theorem 2 could be
viewed as a conceptual model of the regions and Theorem 3 as a computational
model [24].

One may easily verify the properties of the four regions stated in the following
theorem by using any of the three forms.
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Theorem 4. For two sets of objects X,Y C OB, the following properties are
satisfied:
(1) SPOS.(X)NSNEG.(X) = 0;
(2) SPOS.(X) C SPOS*(X),
SNEG.(X) C SNEG*(X);
(3) X CY = SPOS.(X) C SPOS.(Y),
X CY = SNEG.(X) 2 SNEG.(Y),
X CY = SPOS*(X) C SPOS*(Y),
X CY = SNEG*(X) 2 SNEG*(Y);
(4) SPOS.(X NY) =SPOS.(X)NSPOS.(Y),
SNEG.(X NY) D SNEG,(X) N SNEG,(Y),
SPOS*(X NY) = SPOS*(X) N SPOS*(Y),
SNEG*(X NY) 2 SNEG*(X) N SNEG*(Y);
(5) SPOS.(XUY) D SPOS.(X)USPOS.(Y),
SNEG.(X UY) = SNEG,(X) N SNEG,(Y),
SPOS*(X UY) D SPOS*(X) USPOS*(Y),
SNEG*(X UY) = SNEG*"(X) N SNEG*(Y);
(6) SPOS.(XNY) CSPOS,.(XUY),
SNEG.(X NY) D SNEG.(X UY),
SPOS*(X NY) C SPOS*"(X UY),
SNEG*(X NY) D SNEG*"(X UY). (20)

The properties in Theorem 4 correspond to the properties of positive and nega-
tive regions of rough sets in a complete table.

3.3 An Example

We give an example to illustrate the ideas of constructing the two types of
structured positive and negative regions in an incomplete table. Suppose we
have an incomplete table given in Table 1.

Table 1. An incomplete table T

a b c
on| {1} | {3} {6}
o2 {1} | {4} {6}
o3 {1,2} {5} {6}
oa {1} {4, 5} {6}
o5 {2} | {5} {7}
os| {2} | {5} {7}
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The table T could be equivalently represented by the family of its completions
given in Table 2.

Table 2. The family of completions COMP(T)

a b c a b c
oo | {1} | {3} | {6} oo | {1} | {3} | {6}
oo | {1} | {4} | {6} oo | {1} | {4} | {6}
os | {1} | {5} | {6} os | {1} | {5} | {6}
oo | {1} | {4} | {6} oo | {1} | {8} | {6}
os | {2} | {33 | {7} os | {2} | {53} | {D}
o | {2} | {5} | {7} o | {23 | {5} | {7}
(a) A completion T} (b) A completion T5

a b c a b c
oo | {1} | {3} | {6} o | {1} | {3} | {6}
o | {1} | {4} | {6} o | {1} | {4} | {6}
os | {2} | {3} | {6} os | {2} | {5} | {6}
o | {1} | (& | (o) o | {1} | 5} | (6}
os | {2} | {3} | {7} os | {2} | {3} | {D
oo | {20 | BB} | (7} oo | (2 | 5} | (7}
(¢) A completion T3 (d) A completion Ty

The formulas in DL and the family CDEFI(OB) are given by Tables3 and 4,
respectively. We take p; = (a = 1) as an example. The meaning sets of p; in the
four completions are:

m(p1|T1) = {o1,02, 03,04},

m(p1|T2) = {01, 02,03, 04},

m(p1|T3) = {01,02704}7

m(p1|Ty) = {o01,02,04}. (21)

By Definition 6, the meaning set of p; in T is:

m(p1) = {m(p1|T), m(p2|T), m(ps|T"), m(pa|T)}
= {{01,02,04},{01,02,03,04}}. (22)
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By Theorem 1, m(p;) is an interval set:

m(p1) = [{01,02,04},{01,02,03,04}], (23)

which is a conjunctively definable interval set. The corresponding conjunctively
definable interval concept is:

Ci = (p1, [{o1,02,04},{01,02,03,04}])
= (a=1,[{o1,02,04},{01,02,03,04}]). (24)

Table 3. The formulas in DL in the example

Label Formula Label Formula

D1 a=1 D19 b=3)A(c=T7)
D2 a=2 D20 (b=4)AN(c=06)
D3 b=3 P21 b=4HA(c=T7)
2 b=4 D22 (b=5)A(c=6)
D5 b=5 D23 b=5)A(c=T7)
D6 c=6 p2a | (a=1)A(b=3)A(c=6)
7 c="7 ps |[(a=1)A(b=3)A(c=7)
ps |(a=1)ADb=3)| ps [(a=1)A(b=4)A(c=06)
po (a=1D)AB=4) prr (a=1)A(b=4)A(c=7)
po |[(a=1)A(b=5) pws (a=1)A(b=5)A(c=6)
pii [(@a=2)Ab=3)| po |[(a=1)Ab=5)A(c=T)
pi2 [(a=2)A(b=4) psao (a=2)A(b=3)A(c=6)
piz [(a=2)Ab=5) ps1 (a=2)Ab=3)A(c=7)
pia [ (a=1)A(c=6)| ps2 |(a=2)A(b=4)A(c=6)
pis [(a=1)A(c=7) psz (a=2)A(b=4)A(c=7)
pie [(a=2)A(c=6) psa (a=2)A(b=5)A(c=6)
pir [(@a=2)A(c=T)| pss |(a=2)Ab=5)A(c=7)
pis | (b=3)A(c=6)

Given a set of objects X ={o1, 03, 05 } and its complement set X = {09, 04, 04},
the four regions of X are as follows:
(1) SPOS.(X) = {Cs,Cs,C16,C18,C24,C34},
SNEG.(X) = {C4,Co,C20,Ca6 };
(2) SPOS*™(X) = {C3,Cs,C10,C16,C18,C22,Co4,Cag,C34},
SNEG™(X) = {C4,Co, C10,C20,C26,Cas }- (25)
There is redundancy in these four regions. For example, the two concepts C4 and
Co6 have the same extension but different intensions. Accordingly, the regions

including both C4 and Cag, that is, SNEG, (X) and SNEG™(X), have redundancy
in them.
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Table 4. The family CDEFI(OB) in the example

Label | Intension Extension Label | Intension Extension
C1 p1 [{o1,02,04},{01,02,03,04}] C19 P19 [0, 0]
C2 P2 [{05,06}, {03, 05, 06}] C20 P20 [{02},{02,04}]
Cs p3 [{o1}, {o1}] Ca1 P21 9,0]
Cq P4 [{02}, {02, 04}] C22 P22 [{os}, {03, 04}]
Cs P5 [{03,05,06}, {03, 04,05, 06}] Ca3 D23 [{05,06},{05,06}]
Ce D6 [{01,02,03,04},{01,02,03,04}] | C24 P24 [{o1}, {o1}]
Cr p7 [{05,06},{05,06}] C25 pas [0,0]
Cs s [{o1}, {o1}] Ca6 P26 [{o2}, {02, 04}]
Co 2 [{o2}, {02, 04}] Car P27 2,0]
Cio P10 [0, {03, 04}] Cas D2g [0, {o3,04}]
C11 P11 [0,0] Cag P29 [0, 9]
Ci2 P12 [, 0] C30 P30 @, 0]
Ci3 p13 [{o5, 06}, {03, 05,06}] Cs1 P31 0,0]
Cia P14 [{01,02,04},{01,02,03,04}] Cs2 P32 [0, 0]
Cis D15 [0, 0] Cs3 P33 [0, 0]
Cie6 P16 [0, {o3}] C3a D34 [0, {o3}]
Ci7 P17 [{05,06},{05,06}] Css P35 [{05,06},{05,06}]
Cis D18 [{o1}, {o1}]

4 Conclusions

We have proposed a new semantically sound framework to study rough set
approximations in an incomplete table. In a complete table, we use the fam-
ily of conjunctively definable concepts to define a pair of structured positive
and negative regions in order to approximate a set of objects. These two struc-
tured regions correspond to Pawlak rough set approximations and the standard
positive and negative regions. Following the same argument, in an incomplete
table we introduced the notion of conjunctively definable interval concepts. By
using the family of conjunctively definable interval concepts, we construct two
types of structured positive and negative regions. These regions are semantically
meaningful in the sense that the possible-world semantics fully and truthfully
reflects all partial information of an incomplete table. By adopting possible-world
semantics of an incomplete table, we transform the study of an incomplete table
into a study of a family of complete tables. By using concepts instead of sets to
construct the regions, we explicitly include the intensions, that is, the formulas,
which makes the rule induction much simpler. As future work, we will investigate
rule induction in an incomplete table based on the structured regions introduced
in this paper.
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A Appendix: Proof of Theorem 1

We prove Theorem 1 by verifying m(p) C [Nnm(p), Um(p)] and [Nm(p), Um(p)]
< m(p).

(1) (p) € Ni(p), Un(p)].
For any set S € m(p), it is evident that Nm(p) C S C Um(p), which means
S € [nm(p), Um(p)]. Thus, m(p) € [Nm(p), Um(p)].

(2) [nm(p),Um(p)] € m(p).
By Definition 6, for any set S € [N"m(p), Um(p)], we prove that S € m(p) by
constructing a completion 7 € COMP(T) in which S = m(p|T). Suppose
p= (a1 =v1)A(ag =v2) A+ A (am = vp) and A, = {a1,02...,am}.
The completion T is constructed as given in Table5. One can easily verify
that in Table 5, the objects in .S satisfy p and the objects in OB — S do not
satisfy p. That is, S = m(p|T"). Thus, ["m(p), Um(p)] C m(p).

Table 5. A completion 7" in which S = m(p|T)

Objects Attributes
A, AT — A,
S Va; € Ap, I, (x) = v; Va € AT — A, I(z) € I ()
OB —S | 3a; € Ap, I, (z) € I, (x) — {v:}
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Abstract. Knowledge acquisition, one of essential issues for data min-
ing, has always been a hot topic due to the explosive growth of informa-
tion. However, when handling large-scale data, many current knowledge
acquisition algorithms based on rough set theory are inefficient. In this
paper, novel decomposition approaches for knowledge acquisition are put
forward. The principal of decomposition is to split a complex problem
in several problems. Those problems are composed of a master-problem
and several sub-problems which are simpler, more manageable and more
solvable by using existing induction methods, then joining them together
in order to solve the original problem. Compared with some traditional
algorithms, the efficiency of the proposed approaches can be illustrated
by experiments with standard datasets from UCI database.

Keywords: Knowledge acquisition - Decomposition - Master-problem -
Sub-problem - Rough sets

1 Introduction

Knowledge acquisition can be viewed as one of the most fundamental problems
in the field of data mining. It is defined as a process of eliminating superflu-
ous attributes and selecting relevant attributes out of the larger set of candi-
date attributes. Rough sets is a powerful mathematical tool proposed by Pawlak
[1-4,10-13], for dealing with imprecise, uncertain, and vague information. One
limitation of rough set theory is the lack of effective algorithms for processing a
relative large number of attributes. We may gain worse performance even get no
result when dealing with large-scale data with traditional knowledge acquisition
algorithms based on rough set theory.

The main motivation of this study is to design a approach that can deal
with massive and complicated real-world problems. We apply a decomposi-
tion idea to solve complex problems. The principal of decomposition [5,6] is
to split a large and complex task in several simpler and more manageable sub-
tasks that can be solved by using existing induction algorithms. Their results
will be jointed together in the sequel in order to solve the original problem.
© Springer International Publishing AG 2017
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The decomposition method can make the original task easier and less time con-
suming. However, some decomposition approaches may result in the loss of infor-
mation or distortion of original data and knowledge, and can even lead to the
original data mining system unusable.

We should choose the appropriate decomposition approach in order to avoid
these disadvantages of decomposition in data mining. Jiawei Han introduces
multirelational data mining [7] using keys to link multiple tables, furthermore,
there is the same expression in database. When we convert a single table into
multirelational tables, there is no any loss of information or distortion of original
data and knowledge. Therefore, we split a large-scale information system in a
master-information system and several sub-information systems. This approach
may greatly improve computational efficiency.

2 Preliminaries

In this section, we briefly introduce the basic concepts of rough sets and describe
two reduct construction algorithms and computing core algorithm.

2.1 Rough Set Theory

We assume that knowledge discussed in this paper is represented by information
system (also called information table).

Definition 1. Information system: An information system is defined as S =
(U, A, V, ), where U is a non-empty finite set of objects; A is a non-empty finite
set of featutes; V' = (J,c4 Va, Va is a set of attribute values of attribute a; and
f:Ux A—V is an information function.

For any B C A, an equivalence(indiscernibility) relation induced B by on U
is defined as Definition 2.

Definition 2. Equivalence relation:
IND (B) ={(z,y) e U x U|Vb € B,b(x) = b(y)}. (1)

The family of all equivalence classes of IND (B), i.e., the partition induced
by B, is given in Definition 3.

Definition 3. Partition:
U/IND (B) = {[z]z |z € U}, (2)

where [z] 5 is the equivalence class containing x. All the elements in [z], are
equivalent (indiscernible) with respect to B. Equivalence classes are elementary
sets in rough set theory.

For any B C A, B is called a reduct of A, if B satisfies the two conditions.
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Definition 4. Reduct:

~ UJIND(B) = U/IND (A);
— for any a € B, U/IND (B —{a}) # U/IND (A).

Core is defined as Definition 5.

Definition 5. Core:
Core = mjngj~ (3)

{W;|j < r} is the set of reducts.

Finding all reducts is NP-hard. However, it is usually enough for most prac-
tical applications to find one of the reducts. The knowledge reduction methods
of this paper are to find a reduct.

2.2 Knowledge Reduction Algorithms and Computing Core
Algorithm

General knowledge reduction algorithm (GKR) starts with the entire attribute
set and consecutively deletes one attribure at a time until we obtain a reduct.
The algorithm can check every attribute and eliminate the attributes that are
superfluous.

Computing core algorithm (CC) can check all attributes in information sys-
tem. If the attribute is indispensable, it is a core attribute, or else continues the
next loop. At last, we get all the core attributes.

According to CC algorithm, core is computed. Core knowledge reduction
algorithm (CKR) starts with core, checks the remainder and deletes one attribute
at a time until we obtain a reduct.

GKR and CKR algorithms are very brief and comprehensible. And they are
efficient when the number of attributes is small. However, a large number of
attributes in information system will decrease the performance greatly because
GKR and CKR algorithms have to check every attribute.

In order to solve the problem we employ a decomposition method for knowl-
edge reduction. The idea of decomposition is to break a large and complex table
down into several simpler and more manageable sub-tables that can be solved
by using existing induction methods. Their results will be jointed together in
the sequel in order to solve the original table. The decomposition approach can
make the original task easier and less time consuming. In this paper, we propose
a decomposition based method to perform knowledge reduction. The proposed
knowledge reduction algorithms based on decomposition can be described as
detailed below.

3 Proposed Algorithms

In this section, we introduce some definitions and properties at first. Then the
knowledge reduction and computing core algorithms based on decomposition are
proposed.
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3.1 Basic Definitions

We break an information table down into a master-table and several sub-tables.
The master-table consists of several joint attributes which are the keywords in
sub-tables. The sub-table is composed of a subset of attributes.

Definition 6. Sub-table, master-table and mid-table. Given an information sys-
tem S =< U, AV, [ >.

— A sub-table is defined as SP =< UB: B, u{b;},VBi fBi > i=12-.. m,
where U is a non-empty finite set of objects, called universe; B; C A,i =
1,2,---,m, A = U™, B; and B, N B; = 0,i # j. b; is a joint attribute
which join the sub-table to the master-table and it is a keyword in S5:;
VB = Uaes, VBi VBiis a set of attribute values of attribute a; and f% :
UBi x B; — V5B is an information function.

— A master-table is defined as S? =< U,Q,V¥?, f? >, where U is a non-
empty finite set of objects, called universe; Q@ = U™, {b;} is a set of all joint
attributes; V& = Uaeo V& V@ is a set of attribute values of attribute a;
and fQ:U x Q — V? is an information function.

— A mid-table is defined as SM: =< U, M;, VM fMi > §=1,2 ... m, where
U is a non-empty finite set of objects, called universe; M; = (Q — {b;}) U B;;
VM = Uenr, Valt, VM is a set of attribute values of attribute a; and
fMi U x M; — VM is an information function.

Example 1. Table1 is a information table, we decompose it into one master-
table (Table2) and two sub-tables (Tables3 and 4). Combine Tables2 and 3 to
compose a mid-table Table 5. Similarly, Table 6 comes from Tables2 and 4.

Table 1. An information Table 2. A master-table Table 3. The first sub-

table table
U|b1|b2
Ulai|az|as|aa 1 b} b% bi|a1|az
111t ]o 2262 BT 1
2]1j01 11 3 (65|63 HIR
30001 40208 5510 [0
41110 |1 |0

Table 4. The second sub- Table 5. The first mid- Table 6. The second mid-

table table table
bolas|aa Ulai|az|b2 U\bi|as|aa
bi[1 [0 1(1 |1 |63 16l Jo
p2l1 1 211 1o [b3 221 1
b3l0 1 310 [0 |63 3b3lo |1
411 |0 b2 D)
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3.2 Basic Properties

The following are some properties according to the above definition. Assume
an information system S =< U, A,V,f >, sub-tables S% =< UPB B; U
{b;},VBi fBi > i = 1,2,--- ,m, a master-table S¢ =< U,Q,V?, f9 >,
mid-tables SMi =< U, M;, VM fMi > j = 1,2 ... m. Some properties are
described as follows.

Property 1. The attribute a in the original information table S is indispens-
able, that is U/IND (A — {a}) # U/IND (A), iff the attribute a in S belongs
to Core, that is a € Core.

Property 2. The partition induced by @ in the master-table S? is equiva-
lent to the partition induced by A in the original information table S, that is
U/IND(Q)=U/IND (A).

Corollary 1. The partition induced by M; in the mid-table S is equiva-
lent to the partition induced by A in the original information table S, that is
U/IND (M;) =U/IND (A).

Property 3. The joint attribute b; in the master-table S€ is dispensable, that
is U/IND (Q —{b;}) = U/IND (Q), iff the attribute set B; in the original
information table S corresponding to the joint attribute b; is dispensable, that
isU/IND(A—-B;)=U/IND (A).

Corollary 2. The attribute a in the mid-table S is dispensable, that is
a € B;,U/IND (M; — {a}) = U/IND (M;), iff the attribute a in the original
information table S is dispensable, that is U/IND (A — {a}) = U/IND (A).

Corollary 3. If the joint attribute b; in the master-table S is indispensable,
that is U/IND(Q — {b;}) # U/IND (Q), then a subset E included in the
attribute set B; corresponding to the joint attribute b; is indispensable in the
original information table S, that is E C B;, U/IND (A — E) £ U/IND (A).

Corollary 4. If the attribute @ in the mid-table S™i is indispensable (a core
attribute), that is U/IND (M; — {a}) # U/IND (M;), then the attribute a
in the original information table S is indispensable (a core attribute), that is
U/IND (A —{a}) # U/IND (A).

These properties will be applied in following methods.

3.3 General Knowledge Reduction Based on Decomposition

According to the above definitions and properties, we employ decomposition
principle and modify GKR algorithm. Suppose that the number of sub-tables is
k. First, we break the original information table down into one master-table and
k sub-tables. The attributes of the original information table are divided equally
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among k sub-tables. The joint attribute and a subset of attributes compose a
sub-table. The master-table is made up of k joint attributes that are the key
words in sub-tables.

Then if the joint attribute in master-table is dispensable, we can delete the
joint attribute in master-table and combine the same objects (Properties 2, 3).
Judge the next joint attribute. Otherwise, we combine a sub-table with the
master-table to compose a mid-table, if the attribute in the mid-table is dis-
pensable, we can delete the attribute in the mid-table and combine the same
objects (Corollaries 1, 2), or else continue the next loop. Finally, a reduction can
be found.

Algorithm 1. General knowledge reduction method based on decomposition
(GKRD)
Input: An information system S = (U, A, V, f). The number of sub-tables
is k.
Output: A reduct P.
(1) Break S down into one master-table S =< U, Q,V?, f¢ > and sub-
tables SP =< UPi B; U {b;}, VP, fPi > i=1,... k. Set P = A.

2) While every joint attribute b; € Q do
3) IfU/IND(Q - {b:}) = U/IND(Q), then
4 b; is dispensable and delete it from S, ie., Q = Q — {b;}.

)

)

)

) P=P- B

) Combine the same objects.

) Else

) Compose a mid-tableS™iwith a sub-tableS?and the master-tableS<.
) ‘While every attribute a € B; do

0) IfU/IND (M; —{a}) =U/IND (M;), then

1) a is dispensable and delete it from S, i.e., B; = B; — {a}.
2) P=P—{a}.

3) Combine the same objects.

4) Output P.

The attributes of an information table are divided into several parts. We
process every part instead of every attribute. Every part is substituted by a joint
attribute. In other words, |A| attributes are compressed to k joint attributes. If
the joint attribute is dispensable, the attribute set corresponding to the joint
attribute is dispensable and can be deleted all at once. Each attribute in this
attribute set needn’t to be checked again. Even though the joint attribute is
indispensable, the scale of the mid-table is compressed a lot.

3.4 Computing Core Based on Decomposition

Core knowledge reduction method is to construct a reduct from the core, and
consequently delete one attribute from the remainder until a reduct is obtained.
Hence we firstly modify computing core algorithm according to the proposed
decomposition principle.

We assume that the number of sub-tables is k. We decompose the original
information table into one master-table and k& sub-tables.
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Algorithm 2. The method of computing core based on decomposition (CCD)
Input: An information system S = (U, A, V, f). The number of sub-tables is
k.
Output: Core denoted by CORE.
(1) Break S down into one master-table S? =< U, Q, V%, f¢ > and sub-
tables S5 =< U B; U {b;}, VP fB > i=1,--- k. Set CORE = {).
(2) While every joint attribute b; € Q do
(3) IfU/IND(Q—{b;}) #U/IND(Q), then
(4) Compose a mid-tableS™iwith a sub-tableS?iand the master-tableS<.
(5) ‘While every attribute a € B; do
(6) IfU/IND (M; —{a}) # U/IND (M;), then
(7) a is indispensable, i.e., CORE = CORE U {a}.
(8) Output CORE.

3.5 Core Knowledge Reduction Based on Decomposition

According to the above computing core method, core is put into the first sub-
table and others are decomposed equally into k — 1 sub-tables. Initial condition
starts at the second joint attribute. Repeating the same procedure as GKRD
algorithm, all selected attributes consist of a reduct.

Algorithm 3. Core knowledge reduction method based on decomposition
(CKRD)
Input: An information system S = (U, A,V, f). The number of sub-tables
is k.
Output: A reduct P.
1) According to CCD algorithm, calculate the core CORE in S.
2) If U/IND (CORE) = U/IND (A) , then P = CORE , stop
3) Set P = A.
4) Break S down into one master-table S¢ =< U,Q,V?, f© > and sub-
tables SPi =< UB1 B U {b;},VPi fPi > i=1,--- k. ( core CORE

(
(
(
(

is put
into the first sub-table and others are decomposed equally into k — 1
sub-tables)

5) While every joint attribute b; € Q (¢ =2,--- ,k ) do

6) IfU/IND(Q—{b;}) =U/IND(Q), then

7) b; is dispensable and delete it from S?, ie., Q = Q — {b;}.

8) P=P-B,.

9) Combine the same objects.

10) Else

11) Compose a mid-tableS™iwith a sub-tableSZiand the

) While every attribute a € B; do

) IfU/IND (M; — {a}) = U/IND (M;), then

) a is dispensable and delete it from S i.e., B; = B; — {a}.
) P=P-{a}.

) Combine the same objects.

) Output P.
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Clearly, the chance of deleting joint attributes of CKRD algorithm all at once
is higher than GKRD algorithm, the procedure of computing core will increase
the computation time. The time complexity of CKRD involves two parts which
are the time complexity of CCD and time complexity of rest procedures.

4 Experiments

In this section, we show that our knowledge reduction methods based on decom-
position can reduce the computation complexity significantly.

4.1 A Comparative Experiment on Six Datasets

In order to test the validity of the algorithm, we compare the proposed methods
with general knowledge reduction algorithm (GKR), computing core algorithm
(CC) and core knowledge reduction algorithm (CKR). According to GKRD,
CCD and CKRD algorithms of this paper, we suppose the number of sub-tables
is four. We perform the experiments on publicly available datasets from UCI
database (These datasets can be downloaded at http://www.ics.uci.edu). The
experiment results are shown in Table 7. The results is average of repeating 10
times experiments.

When there are missing values in datasets, these values are filled with mean
values for continuous attributes and majority values for nominal attributes [8]. If
the datasets are numerical, all continuous attributes are discretized using Equal
Frequency per Interval [9].

Table 7. Comparison of efficiencies of different knowledge reduction algorithms

Dataset Objects | Attributes | GKR | GKRD | CKR | CKRD
Breast 699 10 1S | 1S 2S| 18
Chess 3196 37 52S | 18S 102S | 328
Insurance | 9822 86 190S | 44S 1706S | 64S
Mushroom | 8124 23 1125 | 318 596S | 57S
Optical 1796 65 155 | 48 44S | 108
SPECT 267 45 6S | 1S 15S | 3S

As listed in Table 7, the performance of GKRD algorithm outperforms that
of GKR algorithm. CKRD method is less time consuming than CKR method.
GKRD and CKRD have been shown to be superior to GKR and CKR.

4.2 An Experiment on Optical Dataset with Different Attributes

The second experiment is performed on Optical dataset which has 65 attributes
and 1796 objects. We select bottom 10, 20, 30, 40, 50, 60 and 65 attributes from
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this dataset respectively. According to our proposed two methods we break the
datasets down into one master-table and four sub-tables.

From Fig. 1, we can see the comparison of efficiencies of various methods as
attributes increasing gradually. As depicted in Fig. 1, the running time of our
methods increases slightly as attributes increasing gradually. However, other
methods consume much more time. GKRD and CKRD outperform other two
methods.

4.3 An Experiment on Mushroom Dataset with Different Objects

We do another experiment on Mushroom dataset which has 23 attributes and
8124 objects. We select top 2000, 4000, 6000 and 8124 objects from this dataset.
The number of sub-tables is the same as the above experiments.

Figure 2 shows the comparison of efficiencies of various algorithms based on
different size of objects. As depicted in Fig.2, GKRD and CKRD can achieve
better performance than GKR and CKR.

50 700
45 o 1 -
o GKRD [ 600 o GKR 4
w0 - +- CKRD -4 CKR P
-~ GKR @ GKRD R4
35 0 CKR ° J 500 —+— CKRD A
D : @ v
- ’
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The Number of Attributes

The comparison of performances of differ-
ent attributes on Optical dataset

Fig. 1. The comparison of performances
of different attributes on optical dataset

The Number of Objects

The comparison of performances of differ-
ent objects on Mushroom dataset

Fig. 2. The comparison of performances
of different objects on Mushroom dataset

5 Conclusions

Knowledge reduction is a key task in the research on rough set theory. Existing
traditional methods do not perform very well on large datasets. In this paper,
we introduce some efficient decomposition methods for rough set knowledge
reduction and core calculation. We decompose a complex information table into
a master-table and several sub-tables, which can be dealt with simply, more
manageable and solvable with existing induction methods. Then after joining
the results of decomposition together, the original table can be easily handed.
Extensive experiments conducted on UCI database are to test validity of the
proposed algorithms. Experimental results demonstrate that our methods are
efficient for various datasets.
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Abstract. In this paper, we set up a data envelopment analysis (DEA)
based three-way decision approach to solve the “multi-input and multi-
output” problem when the decision attributes are “more than one” in
rough sets. The estimation of production frontiers of DEA, is used to
generate the three regions by three-way decisions: DEA efficiency region,
weak DEA efficiency region and DEA inefficiency region, respectively. An
empirical study of company efficiency evaluation is employed to validate
the reasonability and effectiveness of the proposed method.

Keywords: Three-way decisions - Data envelopment analysis - Rough
sets - Multiple decision-making

1 Introduction

Three-way decisions (3WD), a “trisecting-and-acting” cognitive model proposed
by Yao [19], have drawn more and more attentions in nearly seven years. The
basic idea of three-way decisions is to divide a universal set into three pair-
wise disjoint regions, and then the decision makers utilize appropriate strategies
to generate decision rules from the different regions. Yao presented some basic
models of three-way decisions in [18], e.g., interval sets and three-valued logic,
three-valued approximations and fuzzy sets, shadowed sets, Pawlak approxima-
tions and rough sets, etc. These perspectives provided some new ideas to help
people to easily understand the intension and extension of three-way decisions.

As a fundamental uncertainty mathematical theory on soft computing, rough
set theory (RST) uses lower and upper approximations to describe the uncer-
tainties on decision problems. Three regions (positive region, boundary region
and negative region), form a trisection or a tri-partition of an universal set. If
we further consider the linearly ordered relation of three regions, e.g., positive
region > boundary region > negative region in rough sets, three different types
of decision rules are created after decision procedure. The rules generated by the

© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part II, LNAI 10314, pp. 226-237, 2017.
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positive region are used for making a decision of acceptance, the rules gener-
ated by the negative region are used for making a decision of rejection, the rules
generated by the boundary region are used for making a decision of noncommit-
ment [16,17]. In general, rough sets can be seemed as a special cognitive model
of three-way decisions.

In many decision problems, we usually consider a decision table has “multi-
ple conditional attributes but one decision attribute”, which is called a “single
decision systems” in rough sets. However, decision tables with many-valued deci-
sions arise often in various applications. Pawlak gave a decision table with two
decision attributions in [15]. Chikalov and Zielosko [3] investigated decision rules
for decision tables with many-valued decisions. Moshkov and Zielosko [13] con-
structed an a-decision trees for tables with many-valued decisions. Azad et. al [1]
proposed a greedy algorithm for the construction of approximate decision rules
with many-valued decisions. Yu et. al [20] presented a rough sets based knowl-
edge acquisition methods for multi-label decision system. Liu et. al [8] gave their
ideas for a DEA evaluation model of transportation manufacturing based on
rough sets. In summary, there are two routes to solve the “many-valued decision”
problems. One is simply converting this “many-valued system” to several “single
decision systems”, then utilize classical rough set method to deal with these sin-
gle systems, respectively [12]. The other is extending the definitions of classical
rough sets, and redefine the rough approximations to achieve the goal [20]. In
this paper, we introduce the model of “data envelopment analysis (DEA)” into
rough sets with economics perspective. The multiple conditional attributes are
treated as the “input features”, and the multiple decision attributes are labeled
as “output features”. As well, we treat the objects in decision table as the deci-
sion making units (DMUs) in DEA, and the productive efficiency of DEA are
used to determine the DEA efficiency for DMUs. At last, a three-way decision
model with DEA is constructed.

The remainder of this paper is organized as follows: Sect. 2 provides the basic
concepts of three-way decisions, DEA model and their extensions. A DEA based
three-way decision model with “multi-input, multi-output” production functions
is proposed in Sect. 3. Then, a case study of company efficiency evaluation is used
to elucidate our model in Sect. 4. Section 5 concludes the paper and outlines the
future work.

2 Preliminaries

Basic concepts, notations and results of three-way decisions and DEA model are
briefly reviewed in this section [5-7,9-11,14,21,22]. In [18,19], Yao gave some
generalized descriptions of three-way decisions.

Definition 1. Suppose U denotes a universal set. The triplet {R1, Re, R3} is
called a tri-partition of U and satisfies the following two properties:

(1) U= R1 URQ @] Rg,'

(2) Rl ﬂRQ :0, R1 ng :@, R2 N R3 :0,



228 D. Liu and D. Liang

For three regions R;, one can develop three different strategies, e.g., Strat-
egy 1, Strategy 2 and Strategy 3, respectively. Specially, if there exists one region
R; =0 (I=1, 2, or 3), the three-way decision problem converts to two-way deci-
sion problem. Intuitively, the basic ideas of the three-way decision model can be
simply outlined in Fig. 1.

Strategy 2
A

Region 3

Trisecting

Acting

Fig. 1. The basic ideas of three-way decision model

In [19], Yao named the cognitive process in Fig.1 as “trisecting-and-acting”
model. As Yao stated in [18], many generalizations of sets have been proposed
and studied with three-way decisions, including interval sets and three-valued
logic, Pawlak rough sets, decision-theoretic rough sets (DTRS), three-valued
approximations in many-valued logic, fuzzy sets and shadowed sets, etc. Obvi-
ously, rough set theory is one kind of typical model of three-way decisions when
we treat Ry, Ry and R3 as positive region, boundary region and negative region,
respectively.

Data envelopment analysis (DEA) is a nonparametric method in operations
research and decision making for the estimation of production frontiers. It is used
to empirically measure productive efficiency of decision making units (DMUs).
The basic DEA model (called CCR model), which was proposed by Charnes,
Cooper and Rhodes [4], is defined as Definition 2.

Definition 2. Supposed there are p decision units with the same varieties, and
we denote the kth unit as DMUy, k = 1,2,--- ,p. To each decision unit, there
are m kinds of input indicators and n kinds of output indicators, and we denote
the ith input indicator as X;, 1 = 1,2,--- ,;m; and the jth output indicator as
Y;, 5=1,2,--- ,n. The total efficiency respected with the koth decision unit is:

0* = min 0
Done1 WX < 0Xp,

st.{ P NY > Y, (1)
>\k207 k:1,2,~~~,p.
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where DMUy, represents one of the kK DMUs, X, and Yy, are the input and
output for DMUy,, respectively. Ay is the weight given to DMUy in its efforts
to dominate DM Uy, and 6 is the efficiency of DMUy,. Since DM Uy, appears
on the left hand side of the equations as well, the optimal 6 cannot possibly be
more than 1. In [5], Cooper et al. gave the definitions of “DEA efficiency” and
“DEA relative efficiency”, respectively.

Definition 3 (Efficiency). Full efficiency is attained by any DMU iff none of
it’s inputs or outputs can be improved without worsening some of its other inputs
or outputs.

Definition 4 (Relative Efficiency). A DMU is to be rated as fully efficient
on the basis of available evidence iff the performances of other DMUs does not
show that some of its inputs or outputs can be improved without worsening some
of its other inputs or outputs.

Based on the CCR model, Banker, Charnes and Cooper [2] further adjoined
the constrain of Y 7_; Ay = 1 to CCR model, and propose the BCC model. If
we further consider the input slacks sf_ and output slacks s?"’ for BCC model,
we can build the linear programming model to determine the possible non-zero
slacks as follows.

maz Y7, s + 300 s

60— * .
Eizl)\k:cik—&—si =0 Tikg i=1,2,---.m

s.t. ZZ:l Aky]'k - S?+ = Yjko i=12-,n (2)
)\k207 k:1727"'7p
Yo Ak =1

where, 6* is calculated by the minimizing 6 in (1), it’s a two stages process to
compute the 8* and the 5?7, s?+ represent input and output slacks, respectively.

In fact, the models (1) and (2) represent a two-stage DEA process involved
in the following DEA model.

min [0 — (X0, 807 + 30 s7h)]

P 0— _ I
Zk:l AkTik + S, = 91'7;1@[) 1= 172, e ,Mm

s.t ZZ:l Aky]k 78?+ = Yjko ]: 1727'” v (3)
o Akzo: k:]-??v“'?p
D=1 Ak =1

where, the non-Archimedean ¢ of the objective function of (3) effectively allows
the minimization over 6 to preempt the optimization involving the slacks, 5?7
and S?Jr. Note that the frontier determined by model (3) exhibits variable returns
to scale (VRS). Model (3) is called input-oriented DEA model. DM Uy, is efficient
to DEA if and only if §* = 1 and s{~ = s = 0 for all i and j. DMUy, is weak
efficient if * = 1 and 5?7 # 0 and (or) S?Jr # 0 for some i and j.
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Analogously, we can define the output-oriented DEA model, which can be

expressed as:
maz [¢+e(C7L, 577 + 35, 57

o 1)\k$zk+57—1‘2k0 i=1,2,---,m
AkYik — d)yk j=1,2,---,n
.t. Zk 1 J JFr0 94 9 4
") >0, k712 (4)
22:1)"@:1

DMUy, is efficient to DEA if and only if ¢* =1 and s? = sj = 0 for all 7 and

j. DMUy, is weak efficient if ¢* =1 and 5?7 #0 and (or) s;H 2 ( for some 7 and j.

Ozcan [14] gave some semantic interpretations for (3) and (4). He pointed
out the efficiency and effectiveness evaluations are two important measures in
DEA. The efficiency in input-oriented DEA model generally refers to using the
minimum number of inputs for a given number of outputs. As well, the effective-
ness in output-oriented DEA model encourages us to ask if the necessary inputs
are being used in order to produce the vest possible outcomes.

3 A DEA Based Three-Way Decision Model

In rough set theory, an information system is utilized to store the related infor-
mation of decision units. An information system is a quadruple S = (U, A,V f).
U is a finite set of reference actions, called the domain; A is a finite set of
attributes, A = CUD and CND =@, where C denotes the condition attributes

and D denotes the decision attributes. V = U V., V4 is a domain of the
acA

attribute a. f: U x A — V is an information function such that f(z,a) € V, for
every x € U, a € A. Specially, if D = {d} and the system have only one decision
attribute, we call the information system as a decision table.

In our following discussions, we assume there are p decision units U =
{DMU,,DMUs,,--- ,DMU,} in a DEA decision system. X = {x1, 22, - ,Zpn}
denotes m input indicators, which can be treated as C in S. Similarly, ¥ =
{y1,92, -+ ,yn} denotes m output indicators, which can be dealt with D in
S. Obviously, the DEA model is a “multiple conditional attributes and mul-
tiple decision attributes” model. In our proposed model, we combine the input
and output indicators together to generate the new condition attribute set C,
and further integrate the parameters 0, ¢, as well as the slack variables vector

= {s/~ 9~+, ?_, s; *1} to construct the new decision attribute set D, then
utlhze D to evaluate the efficiency of the decision unit DMUy (k =1,2,--- ,p)
in U. An integrated matrix can clearly illuminate the key ideas of this method.

Objects New conditional attributes C New decision attributes D
DMU, 11 T12 0 Tims Y11 Y12 0 Yin b1 ¢1 S
DMU, To1 T2 -+ Tomi Y21 Y22 *° Y2n b2 P2 Sa
DMUp Tpl Tp2 *** Tpm; Ypl Yp2 " Ypn 91) ¢p Sp

Decision units Input and output indicators Efficiency
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On basis of the above matrix and the definitions (3) and (4), we generate the
DEA based three-way decisions. The three-way decision rules for DEA, namely,
efficiency, weak efficiency and inefficiency can be described as follows:

o Efficiency decision region: If §; = ¢; = 1 and s?i = sg+ = 0; s‘f— =
s?+ = (0 for all 4 and j, the decision union DMUy}, is DEA efficiency;

e Weak efficiency decision region: If 0] = ¢; = 1, and at least one slack
parameter sff, s§+, s?_, S;H' not equal to zero for ¢ and j, the decision union
DMUy is DEA weak efficiency;

o Inefficiency decision region: If §; # 1 and ¢;, # 1, the decision union
DMUj is DEA inefficiency.

With the above discussions, we summarize four key steps to construct the
DEA based three-way decision approach, and the framework of our study is
displayed in Fig. 2.

Step I: Selecting the decision unions and determining the input and output
indicators in a decision problem.

Step II: Using BCC model to calculate the efficiency of each decision unit with
input-oriented and output-oriented viewpoints, respectively.

Step III: Generating three-way decision regions/rules followed by the three
criteria with DEA based three-way decisions.

Step IV: Providing some improvement strategies for the no efficient decision
units after three-way decisions in DEA.

Goal: DEA based three-way decision model ‘
A4
Decision Table: Multiple condition attributions
and multiple decision attributions
The selection of input and output indicators
Rebuild the decision table with DEA

Compute the & and @ for each DMUs by using
formula (3) and (4)

Inefficiency
Decision Region

Are 6=1 and @=1

MUs ?
for each D S (Region 3, Strategy 3)

Are all the slacks
equal to 1 for each
DMUs ?

Efficiency
Decision Region

Weak Efficiency
Decision Region

(Region 1, Strategy 1) (Region 2, Strategy 2)

Fig. 2. The framework of DEA based three-way decisions
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4 An Illustration

In this section, we utilize a didactic example of company efficiency evaluation
to illustrate the proposed model. Table1 presents 15 companies from the top
Fortune Global 500 list in 1995 (Data can available from [22]). We denote the
15 companies U = {uq,ug, - ,u15} as 15 decision unions in our following dis-
cussions, where uy: Mitsubishi; ug: Mitsui; us: Itochu; us: General Motors; us:
Sumitomo; ug: Marubeni; u7: Ford Motor; ug: Toyota Motor; ug: Exxon; uig:
Royal Dutch/Shell Group; u11: WalMart; ui2: Hitachi; u13: Nippon Life Insur-
ance; u14: Nippon Telegraph & Telephone; u15: AT&T. In addition, there are
three input indicators: 21 assets ($ millions), x5 equity ($ millions), 25 number
of employees; and two output indicators: y; revenue ($ millions), yo profit ($
millions).

Followed by Table 1, we firstly compute the efficiency of each decision union
with the input-oriented and output-oriented DEA model, respectively. The scores
on z-axis stand for the DEA efficiency evaluations; the companies on y-axis stand
for the 15 DMUs in Table 1. The calculating results are outlined in Figs. 3 and 4.

According to the above two figures, {ur,us,ui2,u14,u15} are DEA ineffi-
ciency. Although the scores of {u1,us, us, ug, us, ug, ug, u10, 11, u13} are equal
to 1 on both input-oriented and output-oriented models, we need to do fur-
ther investigations to distinguish the DEA efficiency DMUs and weak efficiency
DMUs.

Then, we check the slack variables by solving the programming (3) and (4),
the calculating results are outlined in Table 2. Here, the 6* in the second column

Table 1. 15 companies from fortune global 500 list

Company (DMUs) | 21 (Assets) | z2 (Equity) | 23 (Employees) | y1 (Revenue) | y2 (Profit)
Ul 91920.6 10950 36000 184365.2 346.2
U2 68770.9 5553.9 80000 181518.7 314.8
us 65708.9 4271.1 7182 169164.6 121.2
U4 217123.4 23345.5 709000 168828.6 6880.7
us 50268.9 6681 6193 167530.7 210.5
ug 71439.3 5239.1 6702 161057.4 156.6
ur 243283 24547 346990 137137 4139
ug 106004.2 49691.6 146855 111052 2662.4
ug 91296 40436 82000 110009 6470
u10 118011.6 58986.4 104000 109833.7 6904.6
u11 37871 14762 675000 93627 2740
u12 91620.9 29907.2 331852 84167.1 1468.8
u13 364762.5 2241.9 89690 83206.7 2426.6
U14 127077.3 42240.1 231400 81937.2 2209.1
u15 88884 17274 299300 79609 139
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Input-oriented VRS
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Fig. 3. The efficiency of companies with input-oriented DEA model
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Fig. 4. The efficiency of companies with output-oriented DEA model

are equivalent to the score in Fig. 3; and the ¢* in the eighth column are equiv-
alent to the 1/score in Fig. 4.

In Table 2, we can easily generate three decision regions for the 15 companies
followed by the decision criteria in Sect. 3.

Region 1: (DEA Efficiency): {u1, us,us, u4, us, Ug, U11, U13 }-

Region 2: (Weak DEA Efficiency): {ug,u10}.

Region 3: (DEA Inefficiency): {u7,us, u12, u14, u15}-
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Table 2. The calculating results based on input-oriented and output-oriented DEA
models

DMU | 6* s?_ sg_ sg_ s?+ sg+ * s‘f7 s§7 s%’f sf+ s$+
uy 1 0 0 0 1 0 0 0 0 0
ug 1 0 0 0 0 0 1 0 0 0 0 0
u3 1 0 0 0 0 0 1 0 0 0 0 0
ug 1 0 0 0 0 0 1 0 0 0 0 0
us 1 0 0 0 0 0 1 0 0 0 0 0
ug 1 2.946 | 0 0 0 0 1 8.201 0 0 0 0
uy 0.738 | 0 0 0 457.489 | 0 1.159 | 94925.9 | 0 0 0 0
ug 0.603 | 0 10532.1 |0 29761.7 |0 1.372 |0 25810.6 | O 0 0
ug 1 0 0 0 0 0 1 0 0 0 0 0
u1 1 0.278 | 0.965 0 1.126 0 1 0.083 0.287 0 0.335|0
w1 0 0 o o 0 1 0 0 0 0 0
u12 0.558 | 0 4634.8 |0 58811.5 |0 1.898 | 0 12485.2 | 181494.1 |0 0
wiz |1 0 0 o o 0 1 0 0 0 0 0
w14 0.471 |0 3103.8 |0 60994.2 | 0 1.892 | 0 16476.4 | 0 0 0
uls 0.534 |0 680.77 |0 70958.7 | 652.033 | 2.311 |0 7031.92 | 257526.3 | O 20.824

Obviously, {u1,us, us, u4, us, ug, u11, u13 } are DEA efficiency because of 8; =
¢r =1 for all k and sf7 = s?+ =0; sfF = s;H =0 for all ¢ and j. {ug,u10} are
weak DEA efficiency because of §; = ¢; =1 for all k, but s7~ # 0, s‘f_ # 0 for
{ug); 97 #0, $97 £0, 7T £0, s77 £0, 557 #£0, s77(¢) £0 for {ur0}. {ur, us, 1,
u14, u15} are DEA inefficiency because of 6} # 1 and ¢} # 1.

Finally, we provide some improvement strategies for the inefficiency DMUs
and weak DEA efficiency DMUs after three-way decisions.

e In the input-oriented DEA model, for the DEA inefficiency DMUs, the
targets for input variables (x;;) will comprise proportional reduction in the input
variables by the efficiency score of the DMU minus the slack value as: Z;; =
0* i, — sf_ (1t =1,2,--- ,m). In the same way, the efficient output targets are
calculated as yjr = y;r + s?Jr (j = 1,2,---,n). Specially, for the weak DEA
efficiency DMUs, Zig = @i — 80~ (i = 1,2,--- ,m) and @5 = ;1 + s§+ (j =
1,2,-+- ,n) for 6* = 1. Table 3 outlines the improvement strategies for the Region
2 and Region 3 based on input-oriented DEA model.

Table 3. Improvement strategies of input-oriented DEA model

up_ | Bfficiency | 21y 1k z2k 22k z3k Z3k Yik Jik Y2k 92k

ug | Weak 71439.3 | 71435.9] |5239.1 | 5239.1 6702 | 6702 |161057.4 | 161057.4 | 156.6 | 156.6
w7 | Non 243283 | 179434.4] | 24547 | 18104.7] | 346990 | 255924 | 137137 | 137594.57 | 4139 | 4139
ug | Non 106004.2 | 63946.1| | 49691.6 | 19443.9] | 146855 | 88589) | 111052 | 140813.71 | 2662.4 | 2662.4
u1g | Wealk 118011.6 | 118008.5] | 58986.4 | 58984.1] | 104000 | 104000 | 109833.7 | 109834.81 | 6904.6 | 6904.6
w1 | Non 91620.9 | 51087 29907.2 | 12041.2] | 331852 | 185038 | 84167.1 | 142978.67 | 1468.8 | 1468.8
w14 | Non 127077.3 | 59803.5] | 42240.1 | 16774.7] | 231400 | 108899 | 81937.2 | 142931.47 | 2209.1 | 2209.1
w15 | Non 88884 | 47423 17274 8535.6] | 299300 | 159688 | 79609 150567.71 | 139 7911




Three-Way Decisions with DEA Approach 235

From Table3, ug and ujg are weak DEA efficiency DMUs, these com-
panies are closer to an efficiency frontier and only need a little change for
their inputs and outputs. Take u1g for an example, we just reduce a little bit
resources (Assets: 118011.6 to 118008.5; Equity: 104000 to 103998) and increase
a little bit achievements (Profit: 58986.4 to 58986.1). Furthermore, companies
{u7,us, u12,u14,u15} are identified as inefficient in the input-oriented model.
These companies can improve their efficiency, or reduce their inefficiencies pro-
portionately, by reducing their inputs. For example, ug can improve its efficiency
by reducing inputs (Assets: 106004.2 to 63946.1; Equity: 49691.6 to 19443.9;
Employees: 146855 to 88589), and increasing it’s outputs (Revenue: 111052 to
140813.7).

e In the outnput-oriented DEA model, for the DEA inefficiency DMUs, the
targets for output variables (y;x) will comprise proportional increment in the
output variables by the efficiency score of the DMU add the slack value as:
Uik = O yjn + S;F (j =1,2,--- ,n). In the same way, the efficient input targets

are calculated as: T;p = T4, — sf_ (i =1,2,--- ,m). Specially, for the weak DEA
efficiency DMUs, 9,5 = yjk + sj-”r (j=1,2,---,n) and T; = T — 5?7 (1 =
1,2,---,m) for ¢* = 1. Table4 outlines the improvement strategies for the

Region 2 and Region 3 based on output-oriented DEA model.

Table 4. Improvement strategies of output-oriented DEA model

uj | Efficiency |2y ik Tak T2k z3k T3k Yik Uik Y2k 92k

ug | Weak 71439.3 |71431.1] |5239.1 |5239.1 6702 6702 |161057.4|161057.4 |156.6 | 156.6
wy | Non 243283 |148357.2] | 24547 | 24547 346990 | 346990 | 137137 |158862.81 | 4139 |4794.71
ug | Non 106004.2 | 106004.2 | 49691.6 | 23881] | 146855 | 146855 | 111052 |152318.97 | 2662.4 | 3651.71
u1g | Weak 118011.6 | 118011.5] | 58986.4 | 58986.1] | 104000 | 104000 | 109833.7 | 109834.81 | 6904.6 | 6904.6
w1o | Non 91620.9 |91620.9 |29907.2|17422| | 331852150358 |84167.1 |159829.47 | 1468.8 | 2789.27
w1y | Non 127077.3 | 127077.3 | 42240.1 | 25763.7] | 231400 | 231400] | 81937.2 | 155101.61 | 2209.1 | 4181.71
uig | Non 88884 | 88884 17274 | 10242.1] | 299300 | 41773.7] | 79609 183993.51 | 139 342.17

From Table4, we also do some small changes for the weak DEA efficiency
DMUs ug and uyg. Take u1g for an example, we just reduce a little bit resources
(Assets: 118011.6 to 118008.5; Equity: 58986.4 to 58986.1) and increase a lit-
tle bit achievements (Profit: 109833.7 to 109834.8). In addition, companies
{ur, us, u12, u14, w15} have scores greater than 1; thus they are identified as ineffi-
cient in the output-oriented model. These companies can improve their efficiency,
or reduce their inefficiencies proportionately, by augmenting their outputs. For
example, ug can improve its efficiency by increasing outputs (Revenue: 111052
to 152318.9; Profit: 2662.4 to 3651.7), and reducing it’s inputs (Equity: 49691.6
to 23881).

Overall, with the insightful gains from Tables 3 and 4, we can use the above
two methods to improve the DEA efficiency for these weak DEA efficiency DMUs
(in Region 2) and DEA inefficiency DMUs (in Region 3) with input-oriented
and output-oriented viewpoints. Compared with the existing rough set methods,
DEA based three-way decisions provides a useful way to improve the DMUSs in
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boundary region (Region 2) and negative region (Region 3), to positive region
(Region 1). In a short, we can provide three different strategies for their corre-
sponding regions as follows.

Strategy 1: Keep unchanged for the DMUs {uy, us, us, u4, s, g, u11,u13} in
Region 1.

Strategy 2: Do small changes for the DMUs {ug,u10} in Region 2 to improve
their efficiencies.

Strategy 3: Do some significant changes for the DMUs {u7, ug, 412, u14, 415} in
Region 3 to improve their efficiencies.

5 Conclusions

Decision tables with multiple conditional attributes and multiple decision
attributes are frequently used in real decision procedure. In order to solve this
problem, an DEA based three-way decision method is proposed in this paper.
The conditional and decision attributes (also viewed as the input and output
indicators in DEA) are treated as the new conditional attributes on DEA based
three-way decisions. The two parameters 6 and ¢, as well as the slacks are utilized
to construct new decision attributions. Three decision regions: efficiency decision
region, weak efficiency decision region and inefficiency decision region, can be
automatically generated by the decision criteria of DEA. We also use an empirical
study to validate our model, and give some improvement strategies for these weak
DEA efficiency and DEA inefficiency DMUs. Our method provides an interesting
semantic interpretations and a new perspective to better understand three-way
decisions. In the future, we will focus on the attribute reduction on DEA based
three-way decisions, and the rule generation of DEA based three-way decision.
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Abstract. This paper investigates decision-theoretic rough set app-
roach in the frameworks of multi-covering approximation space. We
mainly discuss optimistic multigranulation decision-theoretic rough sets
by employing maximal descriptors of elements. First, we present the def-
initions of covering-based optimistic multigranulation decision-theoretic
rough sets on the basis of Bayesian decision procedure. Then, we dis-
close some important and interesting properties of the model. Finally,
we investigate the relationships between the proposed model and other
related rough set models.

Keywords: Multigranulation - Decision-theoretic rough sets
Optimistic + Maximal descriptor

1 Introduction

A three-way decision model is an extension of the commonly used two-way,
binary-decision model with an added third option. With respect to the proba-
bilistic positive, negative and boundary regions, one can build rules for making
a decision of acceptance,rejection and non-commitment, respectively. This inter-
pretation provides insights in to a deeper understanding of rough set theory
and its applicability in granular computing. Since Yao and Wong [1] proposed
the notion of decision-theoretic rough sets (DTRS), many researchers have been
working on the theory. For example, Herbert and Yao [2] explored the game-
theoretic rough set by combining game theory with DTRS. Liu et al. [3] dis-
cussed a multiple-category classification approach with decision-theoretic rough
sets, which can effectively reduce misclassification rate. Yu et al. [4] studied an
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automatic method of clustering analysis with the decision-theoretic rough set
theory. Li et al. [5] studied an axiomatic characterization of decision-theoretic
rough sets. Jia et al. [6] proposed an optimization representation of decision-
theoretic rough set model and developed a heuristic approach and a particle
swarm optimization approach for searching an attribute reduction with a min-
imum cost. Based on the DTRS, Yao [7,8] presented a new decision-making
method known as three-way decisions, where a universe is divided into three
pairwise disjoint regions, positive, negative and boundary regions by using an
evaluation function and a pair of thresholds. Three-way decisions have been
applied to many domains, such as email filtering [9], cost-sensitive face recogni-
tion [10], recommender system design [11], and so on.

The study on decision-theoretic rough set in a multigranulation environment
is a new and interesting topic. Qian et al. [12] developed the multigranulation
decision-theoretic rough set and proved that it is a general framework of many
existing multigranulation rough set models. To tackle the problem of computa-
tional cost in calculating the approximation of a target set with larger scale data,
Qian et al. [13] proposed the combination of local rough sets with multigran-
ulation decision-theoretic rough sets to obtain local multigranulation decision-
theoretic rough sets (LMG-DTRSs) as a semi-unsupervised learning method. It
is proved to be an excellent solution for dealing with data that have limited
labels. However, those two models have their own limitations: (1) All granular
structures in those models are based on equivalence relations, hence they are
not suitable for coverings or neighborhoods based environments. (2) The models
evaluate the multigranulation approximations in a quantitative way, so they are
not suitable for the situations where general binary relations are considered. To
tackle the above problems, Liu et al. [14] have proposed optimistic multigranu-
lation decision-theoretic rough set model by employing the minimal descriptors
of elements in a multi-covering space. The model may help to build a more rea-
sonable and suitable decision environment for solving real world problems. The
maximal descriptor of x contains all objects in the approximation space that are
related to x, and the maximal descriptor may provide a detailed and compre-
hensive description for  when we discuss the issue of set approximations. As
Yao et al. [15] have pointed out that the utilization of the maximal descriptors of
objects is equally reasonable as the utilization of the minimal ones in a covering
approximation space. Therefore, in this paper, we discuss the optimistic multi-
granulation decision-theoretic rough set model by using the maximal descriptors
of elements.

The remainder of the paper is organized as follows. Section 2 reviews some
basic notions and notations. Section 3 proposes the optimistic multigranulation
decision-theoretic rough set model and discusses the interrelationships with the
other generalized rough sets. Section 4 concludes the paper.

2 Preliminaries

In this section, some basic notions and notations will be reviewed.
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2.1 Covering-Based Rough Sets

In this subsection, we will review some concepts related to the covering-based
rough sets.

Definition 1 [16]. Let U be a universe of discourse and C' a family of nonempty
subsets of U. If UC' = U, then C is called a covering of U. The ordered pair (U, C)
is called a covering approximation space.

Definition 2 [19]. Let (U, C) be a covering approximation space, € U, then
MDe(z) = {K € Cy|VS € Cp(S 2 K = K = S)} is called the maximal
descriptor of x, where C, = {K € C|z € K}.

2.2 Qian’s MGRS

In this subsection, we will briefly outline the definition of optimistic multi-
granulation rough sets.

Definition 3. Let K = (U,R) be a knowledge base, where R is a family of
equivalence relations on the universe U. Let A, Ao, ..., A, € R, where m is a
natural number. For any X C U, its optimistic lower and upper approximations
with respect to A1, As ..., A,, are defined as follows.

> AiX)={z € Ul[z]la, € X or [x]a, € X or -+ or [2]a, C X}
1=1

where ~ X denotes the complement set of X. (> A;(X), > A;(X)) is called the
i=1 i=1

optimistic multi-granulation rough sets of X. Here, the word “optimistic” means
that only a single granular structure is needed to satisfy the inclusion condition
between an equivalence class and a target concept when multiple independent
granular structures are available in the problem.

2.3 Decision-Theoretic Rough Sets

In [8], Yao proposed the theory of three-way decisions. Compared with two-way
decisions, three-way decisions exhibit a third option, that is, non-commitment
in addition to acceptance and rejection. The theory of three-way decisions can
be described as follows.

Within the frame of three-way decisions, the set of states is given by
2 = {X,—-X} (where =X denotes the complement of X), the set of actions
is given by A = {ap,ap,an}, where ap,ap and ay represent the three actions
in classifying an object x, namely, deciding € POS(X), deciding = should be
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further investigated x € BND(X), and deciding x € NEG(X). App, App and
Anp denote the loss incurred for taking actions of ap,ap and ay, respectively,
when an object belongs to X. Similarly, Apy,Agny and Ayy denote the loss
incurred for taking the correspondence actions when the object belongs to —X.
By Bayesian decision procedure, for an object x, the expected loss R(ae|[z])
associated with taking the individual actions can be expressed as

R(ap|[z]) = AppP(X|[z]) + Apn P(=X][z]),

R(an|[z]) = AnvpP(X|[z]) + AnnP(=X|[2]),
R(apl[z]) = AppP(X|[7]) + ApnP(=X|[z]).

Then the Bayesian decision procedure suggests the following three minimum-
risk decision rules.

(P1) If R(ap|[z]
(N1) If R(an|[x])
(B1) If R(ag|[z])

R(an|[z]), decide x € POS(X),
R(agllz]), decide x € NEG(X),
R(an|[z]), decide x€ BND(X).

R(ap|[z]) and R(ap|x]) <
R(ap|[]) and R(ay|[z]) <
R(ap|[z]) and R(ap|[z]) <

IAIAIN

By COHSideI‘iIlg 0<App<App<Aypand 0 < Ayny < Ay < )\pN,
P1)—(B1) can be expressed concisely as:

P2) If P(X|[z]) > o and P(X|[z]) > 7, decide x € POS(X),

N2) If P(X|[z]) <+ and P(X|[z]) < 3, decide z € NEG(X),

B2) If P(X|[z]) < @ and P(X|[z]) > 0, decide x € BND(X),

S~~~ —~

where:

o = APN—ABN
(ApN—=ABN)+(ABP—APP)’

0= ABN—ANN

o

(ABN—=ANN)+(ANP—ABP)’
APN—=ANN
(ApN—ANN)+(ANP—APP)"

Ifo<pB<vy<a<l, (P2)-(B2) can be rewritten as follows:

(P3) If P(X|[z]) > «, decide z € POS(X),
(N3) If P(X]|[z]) < B, decide x € NEG(X),
(B3) If 5 < P(X]|[z]) < a, decide z € BND(X).

Based on the decision rules above, we obtain lower and upper approximations
of the decision-theoretic rough sets as follows.
PR(X)={x €U | P(X|[z]) > a} and PR(X) ={z € U | P(X|[z]) > B}.

3 Optimistic Multigranulation Decision-Theoretic Rough
Sets Based on Maximal Descriptors

In this paper, we define (U, C) as a multi-covering approximation space, where
U is a universe of discourse and C is a family of coverings on the universe U.
Cy,Cy € C are two granular structures of U. The set £2; = {X,-X} of two
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states for ¢-th granular structure (¢ = 1,2) indicates that an element is in X
or not. A = {ap,ap,an} denotes the set of actions, where ap means deciding
x € POS(X), ap means deciding x € BND(X) and ay deciding z € NEG(X).
A5 b, Ay and A, p denote the loss, or cost, for ap,ap and ay, respectivgly, When
an object = belongs to X under i-th granular structure. Analogously, Ap, A
and A% 5 denote the loss, or cost, for taking the corresponding actions when x
belongs to = X.

For each x € U, UM D¢, (x) is adopted as its description. For the i-th granular
structure, the expected losses of taking different actions for x are as follows.

R(ap|UMDc,(x)) = XppP(X|UMDc,(2)) + XpyP(~X| UMD, (),
R(ap|UMDc,(x)) = XgpP(X|UMDc,()) + Ngy P(—X| U MDc, (@),
R(an|UMDc,(z)) = NypP(X|UMDc,(2)) + Xy n P(=X|UMDc,(x)).

If we suppose Abp = -+ Abp, ALy = - Xon, App = - Agp, Ay =
NGy Ahp = Ay ps Ay = - Ay, then considering the strategy “seeking
commonality while preserving difference”, the expected overall loss of taking
actions ap,ap and ay for z can be computed as follows.

R(ap|(UMDc, (), UM Dg, (x)))

e A\ X UMD () 4 Apw A\ PXTUM DG (0),
Rlas(UMDe, (). UMD, )

— App /2\ P(X|UMDe,(z)) + gy /2\ P(=X| UMD, (z)),
Rlan(UMDe, (). UMDe, )

= Anp /2\ P(X|UMDc,(z)) + Ann /2\ P(=X|UMDc¢,(x)).

i=1 i=1

where “/\” denotes the operation “minimum?”.
Then the Bayesian decision procedure is suggested to use the following three
minimum-risk decision rules.

(OMP1) If R(ap|(UM D¢, (z),UM D¢, (z)))R(ap|(UM D¢, (), UM D¢, (2)))
and R(ap|(UM D¢, (z), UM D¢, (2))) < R(an|(UMDg, (z), UM D¢, (2))), decide
z € POSc,1c,°M(X);

(OMN1) I R(an (UM D, (), UM D, (2))) R(ap| (UM Do, (x), UM D, ()
and R(ax|(UMDe, (x), UM D, () < R(as|(UM D, (), UM D, (2))), decide
x € NEGc, 40, (X);

(OMBI1) If R(ag|(UM D¢, (x),UM D¢, (2)))R(ap|(UM D¢, (2), UM D¢, (x)))
and R(ap|(UM D¢, (z),UM D¢, (x))) < R(an|(UM D¢, (z), UM D¢, (x))), decide
z € BNDg, 0, (X).

Consider a special kind of loss function satisfies 0 < App < Agp < Ayp and
0 < Aynv < ABn < Apn, that is, the loss of classifying an object x in state X
into the positive region X is less than or equal to the loss of classifying x into the
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boundary region X, and both of these losses are less than the of classifying x into
the negative region X. Then use P(X|U MDc¢,(z)) + P(-X|U MDc¢,(x)) =1,
we have:

(1) For rule (OMP1):
R(ap|(UMDc, (x), UM Dc, (z)))< R(ap|(UM Dc, (), UM De, (2)))

Ai_ 1P(X|UMDc (=) ApN—A
< TTAT, P(XI0MDe, (@) -V, P(X[UMDe, @) = Orn—ApnIT(hsr—Arr)

and

R(ap|(UMDc, (z), UM D, (2))) < R(an|[(UM De, (x), UM De, (1))

Ai_, P(X|UM D¢, (x)) ApN—A
= AT P(X|UMDe, (@) -V, P(X|0MDo, (@) = Crn—Ana)TOne—Apr)"

where “\/” denotes the operation “maximum”.

(2) For rule (OMN1):
R(an|(UM De, (), UM Dc, (x))) < R(ap|(UM De, (), UM Dg, (x)))
/\1 1P(X‘UMDC (x)) APN—ANN

= TIAZ, P(X|UMDc, (@) Vo, P(X[OMDe, @) = Orn—Awa)TONs—3rF)
and

R(an|[(UM D¢, (z),UM D¢, (z))) < R(GB\(UMDQ(@ UM Dc,(z)))

— § Ny P(X|UMDg, (x)) ABN—ANN

1+A?_, P(X|UMDc, (z))-V3i_, P(X|[UMDc¢,(z)) — (>\BN ANN)+(ANP—ABP) "

(3) For rule (OMB1):
R(ap|(UMDg, (x), UM D¢, (x))) < R(ap|(UM Dg, (x),UM Dc, (x)))
A%, P(X|UMDc, (z) Apx - Apar

" T¥AZL, P(X|UMDc, (z))—V2_, P(X|UMDg, (x)) S O Vi V) B gy peyey
and

R(ap|(UM Dc, (x), UM D¢, (x))) < R(an|[(UM De, (x), UM D, ()

: . /\?:1 P(X‘UMDCl(w)) ABN_)\NN

TP AL, PXIUMDc, (2)) V2, P(XJUMDe, (@) = van—Awn)+Onr—Aar)"
Therefore, the rules (OMP1)—-(OMBL1) can be rewritten as:
?_, P(X|UMDg, (x))

(OMP2) If 5101 D0, (=) V2, P(XIUMDe, (@)

> o and

7, P(X|uMDg, (z))

i=1

T AT, P(XIUMDe, (2)) V2o, P(X|UMDo, @) = )

decide x € POSCl-‘rCQO(X);
?_ P(X|UM D¢, (x))

(OMNQ) If 1+/\?=1 P(X|UJ§/71DC (@)— ? . (X\UMDC (z)) — ’7 and
2 | P(X|UMDg, (z)) <3
1+A7_, P(X|UMDg, (z))-Vji_, P(X|UMDc¢,(z)) —
decide 2 € NEG¢,+0,°(X);
2
(OMB2) If — = PIX|OM Do, (7)) < a and

1+A7_, P(X|UMDc, (z))-Vi_, P(X|UMDc, (x))

?:1 P(X|UMDC,i (z)) > 6
1+A7_; P(X|UMDg, (2))~Vi_, P(X|UMDc,(z)) =
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decide z € BND¢, 4¢,°(X).

_ APN—ABN _ ABN—ANN
Where a = (ApN—=ABN)+ABP—APP)’ p= (ABN=ANN)+(ANP—ABP)’

= APN—ANN
(APN—=ANN)+(ANP—APP)"

Consider an additional condition on the loss function with (Apy —
)\BN)()\NP — )\BP) > (>\BN — )\NN)()\BP — )\pp). It follows that 0 < ﬁ <<
a < 1. Thus the following simplified rules are obtained.

?_, P(X|UMDc, (x))
(OMP3) It +A7_, P(XIUM}Dci(w))— 7—1 P(X]UMDc, (z)) Z a,

decide x € POSCl+c2O(X)§
2

2 p(X|UMDe, (2))
(OMN3) I 1 rr—px10N Do, )~V P(XT0M Do, ) = O

decide 2 € NEG¢,+0,°(X);

2 | P(X|UMDc,(z))
(OMB3) If 5 < 1+/\?:1 P(X|U]VIBC,1 (x))—\/?zl P(X|UMDCi (i))

< o,
decide # € BND¢, 1 ¢,° (X).

By rules (OMP3)—(OMB3), we therefore obtain the optimistic multigranula-
tion positive, negative, and boundary regions for X, as follows.

Definition 4. Let (U, C) be a covering approximation space, C1,Cs € C, and
P :2V — [0,1] is a probability function defined on the power set 2V. For any
X C U, the positive, negative, and boundary regions of X of covering-based
optimistic multigranulation decision-theoretic rough set are defined as:

2_ P(X|UMDg, (z))
POScy 40, "M (X)={z €U | 5 =L — >a
L+ Aoy P(X|UMDg, () = Vi_, P(X|UMDc,(z))

2_ P(X|UMDg,(z))
NEG01+CQOM(X):{$€U‘ p) = — 7
1+ AiZy P(X|UMDg, (x)) — Vi_, P(X|UMDc, (

2_ P(X|UMDg¢,(z))
BNDc, 40, "M(X) ={zeU |8 < 5 =1 =t
1+ A, P(X|U MDc, (z)) — Vi, P(X|U MDcg, (x))

}

) < B}

<a}.

The corresponding lower and upper approximations of X of optimistic multi-
granulation decision-theoretic rough sets can be defined as follows.

Definition 5. Let (U, C) be a covering approximation space, C1,Cs € C, and
P :2Y — [0,1] is a probability function defined on the power set 2V. For any
X C U, the lower and upper approximations of X are defined as follows.

oM, _ Ai_, P(X|UMDg, (z))
M a(X) B {a:EU | +A, P(X‘UMchi(w))_ngl P(X|UMDc,(x)) = a}

OM.,B A2, P(X|UM D¢, (z))

(X) = {2 €U | gz pxiorbe, ) —VE. P(XI0NDe @) > P

. —~~OM,
The pair (Cy + C’QOM’Q(X), Ci+Cy M5
granulation decision-theoretic rough set.

Ch+ Cy

(X)) is called an optimistic multi-
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By the definition of optimistic multigranulation decision-theoretic lower and
upper approximations, we have the following properties.

Proposition 1. Let (U, C) be a covering approximation space, Cy,Cy € C, and
P : 2V — [0,1] is a probability function defined on the power set 2V. For any
0<pf<a<l,and X,Y C U, we have

0) =0,

OM,B

(1) C1+ oM@ =T+ G

C + CQOM’Q(U) =C1+ 0y (U = U,

Box.
(3) If X CY, we have C; + Co,OM(X) C Oy 4+ C,oM2(Y) and

OM,( OM,pB

Ci+Cy (X)gCl—f—Cg (Y),
(4) If a > 0.5, we have Cy 4+ CLOM*(X) = =C| + Cs

OM.,B

If 3 < 0.5, we have C; + Cs (X) = ~C) + CoOM1=F(=x).

Proof. We only offer the proofs of (4) here, others can be easily proved according
to Definition 5.
For given a > 0.5,

OM,1—«

—C1 + C2 (-X)

2

=-{zeU| > Aimy PCX] O M[;C,- (@) >1—a}

1+ Aoy P(-X[UMDg, (x)) — Vi—, P(-X|UMDc,(z))

2

:{-’EEUl 5 17Vi:1P(X|UM2DCi(x)) Sl—a}

1= Vio P(X|UMDg, (z)) + Ai=; P(X|UMDg, ()
:{.TEUl /\22=1P(X|UMDCi(m)) a}

|+ N, P(X|UMDe, (2)) — V2, P(X|UMDg, (2)) =
= C1 + CoOM(X).

Other part of (4) can be proved in a similar way.
Theorem 1. Let (U, C) be a covering approximation space, Cy,Cy € C, for
any 0 < < a <1, and X C U, we have

(1) C1+ COM2(Cy + COM (X)) c T+ G

@) 1 PO TG (X)) 2 0+ C.OM(C T G

(CL+ 2™ (X));
oM,

(X))
Theorem 2. Let (U, C) be a covering approximation space, Cy,Cy € C, for
any 0< B <1 <a; <as <1,and X C U, we have

CL+ M2 (X)) C G +GM(X) < i +0
M (x)

OM,pB1 (X) C
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Theorem 3. Let (U, C) be a covering approximation space, Cy,Cy € C, for
any 0 < < a <1, and X C U, we have
(1) Cy + CLOM2(X) C Oy + 0,9 (X);
2 G+ G (x) c o+ MM x).
Where C; 4+ C5,7°*(X) and mO’B(X) are defined by Liu et al. in [14].

Theorem 4. Let (U, C) be a covering approximation space, Cy,Cy € C, for
any 0 < < a <1, and X C U, we have

(1) Ha=1,C+GC%(X) =S¢, 10, (X)
—0,« =
(2) fB=0,C1+Co " (X)=Sc,+c,(X)
Where M(X) and S¢, 1o, (X) are defined by Liu et al. in [17].

Proof. If a = 1, noting that P(X|U M D¢, (x)) = w, then

[UMDc, ()]
2
0,1 _ Ni—1 P(X|U MDc,(z))
QG0 = Ul e BT u MDe, (@) - V2, PXTUMDG, @) —
={weU|\/  P(X|UMDc,(x)) > 1}
={zeU|P(X|UMDc,(z)) =1or P(X|UMDc,(x)) =1}
={z €U |UMDc¢, () C X or UMDg¢,(z) C X}
= Scy 46, (X);
If 8 =0, we have that
2
T +6G%X) ={zeU| Aizy PX] UMD, (2)) > 0}

1+ Ai_, P(X|UMDg, (z)) - Vi_, P(X| N MDc, ()
={zeU| /\j:1 P(X|NMDg,(z)) >0}
={zeU|P(X|UMDc,(z)) >0and P(X|UMDc,(z)) >0}
={zx €U |UMDc,(z)NX # 0 and UMDc,(z) N X # 0}
= S, 405 (X).

Theorem 4 implies that, in this case, the optimistic multigranulation decision-
theoretic rough set model will degenerate to the covering-based multigranulation
rough set model in [17].

Remark 1. If C is a set of partitions of U, the optimistic multigranulation
decision-theoretic rough set model in multi-covering space will degenerate to the
optimistic multigranulation decision-theoretic rough set model in [12].

For the readers’ convenience, the relationships of the lower and upper opera-
tors between the proposed model and the models in [17,18] are shown as Fig. 1.

In Fig. 1, each node denotes an approximation or a concept. Each line con-
nects two approximations, where the lower element is a subset of the upper
element. Each arrow means that when the corresponding condition is given, the
head element in the arrow will degenerate to the rear one.
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oM.p

G+, (X)

Sc,wz (X)

Ogc, (X)

OC1+C2 (X)

S¢ec, (X)

Fig. 1. Relationships of multigranution DTRSs

4 Conclusion

In the present paper, we mainly discussed a kind of multigranulation decision-
theoretic rough set model in the multi-covering space by employing the maximal
descriptions of elements. We gave the properties of the proposed model. And
we also found some interrelationships between the proposed model and other
existing models.
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Abstract. The similarity degree and divergence degree between intu-
itionistic fuzzy objects are defined respectively, and the related prop-
erties are presented in this paper. Then, we define the («, 3)-level cut-
sets based on intuitionistic fuzzy similarity relation under decision objec-
tive circumstances. Moreover, the upper and lower approximation sets
of objective sets are derived by utilizing the defined rough membership
function. Some properties of the derived upper and lower approximations
are discussed, and a ranking method for intuitionistic fuzzy numbers is
proposed. According to Bayesian decisions, an intuitionistic fuzzy three-
way decision-theoretic model and a rule induction algorithm based on
intuitionistic fuzzy decision systems are constructed. Finally, a numerical
example is given to illustrate the effectiveness of the proposed method.

Keywords: Similarity degree + Divergence degree - Intuitionistic fuzzy
decision systems - Three-way decisions

1 Introduction

The model of three-way decisions is usually encountered in handling cost-
sensitive decision issues [1-3], e.g., text classification [4], risk decision [5], clus-
tering analysis [6], etc. Since it was initially proposed by Yao based on rough
set, it has received much attention and has widely applied in many fields, such
as spam filtering [7], face recognition [8], granularity computing [9-11] and fuzzy
information systems [12,13].

As a generalization of rough set, the decision-theoretic rough set (DTRS) was
proposed by Yao and vastly pushed the development of three-way decisions [14].
According to Bayesian decision theory, considering the minimum of overall risk,
Yao [14] proposed the model for deriving three-way decisions with DTRS. So far,
the researches on three-way decisions with DTRS have made many theoretical
and applied achievements. For example, Liu et al. [15] concluded four-level choos-
ing criteria for probabilistic rules. Qian et al. [16] developed a multi-granulation
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decision-theoretic rough set with the help of DTRS and multi-granular struc-
tures. For multiple sets of decision preferences, Yang and Yao [17] studied some
aggregations of loss functions under the multi-agent DTRS model. With respect
to the reduction problem, Zhang and Miao [18] constructed a reduction frame-
work on two-category decision-theoretic rough sets. Besides, Liang et al. [19],
Liu et al. [20,21], Liang and Liu [22] evaluated the loss function by the form
of triangular fuzzy numbers, intervals, hesitant fuzzy set, and linguistic value
effectively. With the previous literature, the determination of loss function is
a key issue [25], and nowadays the uncertain evaluation scenarios are a novel
research direction for three-way decisions with DTRS, which can further extend
the applications of three-way decisions [26].

Intuitionistic fuzzy set (IFS) is served as a new form of the uncertain eval-
uation scenarios. The IFS, proposed by Atanassov [23], can better describe the
uncertainty or vagueness by the membership degree and non-membership degree
than the fuzzy set [24]. By introducing the new evaluation form of loss function
with the IFS, Liang and Liu [25] proposed a method to derive three-way deci-
sions in multi-period decision making under intuitionistic fuzzy environment.
Liang et al. [26] discussed the decision principles of three-way decision rules
based on the variation of loss functions with IFS.

From the existing literature, there are few researches on discussing the inter-
nal relationship between IFS and DTRS in the frame of three-way decisions.
Soothly, the IFS and DTRS are consistent but limited. For one thing, they can
all characterize the fuzziness or uncertainty, the IF'S describes the uncertainty by
the hesitation index between the membership and non-membership degree, while
the DTRS by adding boundary decisions between positive and negative decisions.
Moreover, the elements between them exist one to one corresponding relation-
ship. For another thing, the IFS determines its membership, non-membership
and hesitation degree through mankind’s subjective judgement, but the positive,
negative and boundary decisions in DTRS model are determined by Bayesian
theory, which is objective when the loss function is given by decision makers
as IFS. If both combination, we can integrate the advantages of two theories,
respectively. Hence, there is a need to be intensive research. In this paper, we
propose a novel three-way decision-theoretic model based on both combination.

2 Preliminaries

The basic concepts of an intuitionistic fuzzy set and an intuitionistic fuzzy infor-
mation system are briefly reviewed in this section.

Definition 1 [23]. Let U be a finite non-empty universe set, an intuitionis-
tic fuzzy set(IFS) in U is defined as A = {(z,uz(x),vy(x))|x € U}, which is
described by the membership function uz : U — [0, 1] and non-membership func-
tion vy : U = [0,1] with uz(z) + vz(x) € [0,1] for Vo € U. Furthermore,
mi(x) =1 —uz(x) —vz(w) is called the hesitation degree or hesitation margin
of the element x to the set A. Especially when 7 x(x) = 0, an IFS A s degraded
to the fuzzy set.



A Three-Way Decision Model 251

The complement of an IFS A can be denoted by A¢ = {(z, vi(x),uz(z))|r e
U}. We call (uz(x),vz(x)) an intuitionistic fuzzy number (IFN) [27].

Let (L, > ) be a complete bounded lattice with L = {(x,y) € [0,1]x[0,1]]0 <
x4y < 1}. Suppose a; = (u;,v;)(i = 1,2) are two IFNs, the operations for IFNs
are given as follows [27]:

(1) 61 @EQ = <1 — (]. — Ul)(l — UQ),U1U2>;
(2) kay = (1 — (1 —up)*, o) where k > 0; (1)
(3) The complement seta] = (v1,u1);
(4)

4)ay >pas if and only if uy > us and vy < vs.

In addition, Li [28] and Xu [29] presented the definition of the normal-
ized hamming distance d(ay,as) and the intuitionistic fuzzy divergence e(ay, as)
between a; and as, respectively.

. 1
d(a17a2)=5(\U1—U2\+|U1—Uz\+|771—7T2|)7 o)
2

S 1
e(ay, az) = 5 (lur —ua| + |v1 — val).

Definition 2 [30]. An intuitionistic fuzzy information system(IFIS) is defined
as a 4-tuple S = (U,A = CUD,V, f), where U is a non-empty finite object
set. A represents a non-empty finite set of attributes, including the conditional
attribute set C' and decision attribute set D. V = Uq.ec Ve and V. is a domain
of the attribute ¢, and f : U x A — V is an information function such that
f(z,e) = (u,v) € V. for Vo € U. Especially, if C N D # 0, IFIS is called an
intuitionistic fuzzy decision system(IFDS).

Definition 3 [31]. Let U be a given domain, a binary intuitionistic fuzzy relation
R is defined as follows:

R = {<($’y)vUR(way)7UR(x7y)>|(xay) €U x U}v (3)

where ur : Ux U +— [0,1] and vg : U x U — [0, 1] denote, respectively, the mem-
bership function and mon-membership degree with the relation R between x and
y satisfying the condition: 0 < ug(x,y) + vr(z,y) <1 for every (x,y) € U x U.
Besides, we say that R is a binary intuitionistic fuzzy similarity relation(BIFSR)
in U x U, the following condition is required.

(1) R is reflexive, if ug(z,z) =1 and vg(z,z) =0 for any x € U.
(2) R is symmetric, if ur(z,y) = ug(y,x) and vg(z,y) = vr(y,z) forx,y € U.

3 Intuitionistic Fuzzy Rough Approximation

In order to construct a binary intuitionistic fuzzy similarity relation, which is
used to characterize the similarity degree between two objects with respect to
the attributes in intuitionistic fuzzy information systems. We first propose a new
general definition on the similarity degree between IFNs based on the normalized
hamming distance, as presented in Definition 4.
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Definition 4. Let a; = (u;,v;)(i = 1,2) be two IFNs. The IFN similarity degree
s(ay,aq) between ay and ag is defined as follows:

1
5(01,02):1*§(|U1*U2|+|U1*02|+|7F1*7T2|), (4)

where m; =1 —u; —v; fori=1,2.

It is obviously required that s(ai,a2) < 1. If a3 = ag, then s(aj,a2) = 1.
Especially when a; and ao are taken as two extreme cases respectively, that
is a1 = (1,0) and az = (0,1). s(ay,az) is equal to 0 which is consistent with
practical implication. Here we mainly prove the conclusion of s(aq,as) > 0.

Proof. (1) When 7y = mo, clearly, s(a1,az) > 0; (2) when 7y # 7o, (a) if u1 = ug
and v; = vg, s(a1,az) > 0 holds; (b) if u; = ug and v1 # ve, s(ai,az) > 0
holds; (c) if w1 # ug and v1 = va, s(a1,a2) > 0 also holds; (d) if uy # us and
v1 # vg, i.e., there are four cases as follows: u; < ug and v; > vo; up < ug
and v; < wvo; up > ug and vy < wo; uy > up and vy > vy. we prove that
s(ay,a2) > 0 with the aid of the geometrical representation of IFNs. Without
loss of generality, we only prove that 0 < s(a1,a2) < 1 under the case of u; < ug
and v; > vg, and the same with the others. For convenience, let h = |u; —us|,l; =
|vy — va],le = |m — mo| and S be the area of the right trapezoid CHDG (See
the Fig.1). According to the geometrical representation of IFNs, we require
|GC| = h,|GD| = 11,|CH| = l. Thus, we can get S = %(lz + l1)h by the
formula of trapezoid area, and I; = h+1y with l1,l2, h € [0, 1]. We further require
lo+11 = % Since S = 51+ .55 = %h2 + hls, so we get % = h+2lsy. It is easy to
obtain s(ay,az) = 1= 3(h+1l1+ls) = 1—-3(h+22) = 1-2(2h+2l) = 1-1; > 0.
Hence, 0 < s(ay,a2) < 1.
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£{<0.1)
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o u, +v, =1—r, u, +v, =1—m “

Fig. 1. The geometrical representation of IFNs
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In view of Definition4, we try to introduce the similarity degree and diver-
gence degree of IFNs into IFIS. The similarity degree ug(z,y) and divergence
degree vg(x,y) between two objects on the attributes are defined below.

Definition 5. Let S = (U, A=CUD,V, f) be an IFDS and R be a BIFSR,
B C C is a subset of attributes. Suppose that f(x,c) = (uc(x),ve(x)) is an
intuitionistic fuzzy attribute value of an object x € U under the attribute c € B.
The similarity degree ug(x,y) and divergence degree vr(x,y) with respect to the
attribute set B between x and y are respectively defined as follows:

up(z,y) = rcréig{S(f(% c), f(y,0)}

_ ()
vr(z,y) = max{e(f(z,c), f(y, )},

where s(f(x,c), f(y,c)) and e(f(x,c), f(y,c)) represent the similarity degree and
divergence degree of the IFNs f(x,c) and f(y,c), respectively.

Theorem 1. Let S = (U,CUD,V, f) be an IFDS and R be a BIFSR. x,y € U,
¢ € B C C. The similarity degree ug(x,y) and divergence degree vg(x,y) for the
attribute set B between x and y have the following properties:

(1) 0 <wug(z,y) <1,0 <wvg(z,y) <1 and 0 < ug(z,y) +vr(x,y) < 1;

(2) ’LLR(.’E,y) = uR(y,x) and UR(xvy) = UR(yax);

(3) If ug(x,y) =1, then vr(z,y) = 0 and vice versa;

(4) f(z,¢) = f(y,c) for any c€ B if and only if ug(x,y) = 1 and vg(z,y)=0;
(5) If f(xz,c) = (1,0) and f(y,c) = (0,1) for any ¢ € B, then ug(x,y) =0

(6) If f(z,c) = (1,0) and f(y,c) = (0.5,0.5) for any ¢ € B, then ur(x,y) =
0.5 and vg(z,y) = 0.5;
(7) If f(z,c) = (0.5,0.5) and f(y,c) = (0,1) for any ¢ € B, then ur(x,y) =
0.5 and vg(z,y) = 0.5.

Proof. Tt is straightforward to prove Theorem 1 by use of Definition 5.

Definition 6. Let S = (U,CUD,V, f) be an IFDS and R be a BIFSR. For
any o, 3 € [0,1] with 0 < a+ S < 1. ug(z,y) and vg(z,y) denote the similarity
degree and divergence degree of x,y € U with respect to the attribute set B C C'.
We define («, B)-level cut-sets Rg based on a binary intuitionistic fuzzy similarity
relation as follow:

R} ={(z,y) € U x Ulug(z,y) > a and vr(z,y) < S} i.e.,

6

Rj(x) = {y € Ul(z,y) € RZ}. )
Furthermore, Ry = {(x,y) € UxUlug(x,y) > a} is called a-level cut-sets which
consist of two tuples whose the membership degree between them belonging to R
is no less than o, while RP = {(x,y) € U x Ulvg(x,y) < B} is defined as B-level
cut-sets which consist of two tuples whose non-membership degree between them
belonging to R is less than (.
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Obviously, R? is a classical binary relation where o € [0,1] is regarded as
a given least threshold on membership values and 8 € [0, 1] is considered as a
given largest threshold on non-membership values. For real decision process in
practice, the threshold o and ( is usually given by decision makers according
to actual requirements on “membership levels” and “non-membership levels”
respectively.

Theorem 2. Let R be a BIFSR, then («, 3)-level cut-sets RS is a binary intu-
itionistic fuzzy similarity relation in U x U.

Proof. Ya € [0,1], notice that ug(z,z) =1 > a,vg(z,z) = 0 < §, thus (z,2) €
RP. Namely, R? satisfies reflexivity. Besides, if (z,y) € RZ, then ug(z,y) > «
and vg(z,y) < 3. Considering that R € BIFSR, so ur(y,z) = ur(z,y) > o and
vr(y,x) = vr(z,y) < B. Therefore, (y,z) € R?. Namely, R? satisfies symmetry.
Nevertheless, Rg is not generally transitive. As have discussed above, Rfi is a
binary intuitionistic fuzzy similarity relation.

Definition 7. Let S = (U,CUD,V, f) be an IFDS and (L,>1) be a complete
bounded lattice with L = {{x,y) € [0,1] x [0,1]|0 < z+y < 1}. A given threshold
pair (a, 3) satisfying o, B € [0,1] and a + B < 1. The (a, B)-level cut-sets X2
under intuitionistic fuzzy decision objects is defined as

XL ={y € Ulf(y.c) 2L (o, B),Yc € D}, (7)
where (a, 3) is an constant IFN which consists both of the threshold o and (.

Definition 8. Let X? be a non-empty finite set in U and R2(z) be a similarity
class under intuitionistic fuzzy (o, 3)-level cut-sets. The threshold &, 3 € [0,1]
satisfying: 0 < B < a <1 and &+ < 1. We define the (&, B)-probabilistic lower
and upper approzimations of X2 regarding R as follows, respectively.
apr O (X[) = (o € UIPr(X]|RY(x) = &),

) 8
apr@? (X5) = {x € U|Pr(X?|RE (z)) > B}, Y

where Pr(X?|RE(x)) represents the conditional probability of X/ given the

description RZ(z), i.e., Pr(XP?|RS(x)) = %, and | - | denotes the cardi-

nality or element numbers of a given set. i
We further call the pair (apr(®®(X2),apr®? (X2)) an intuitionistic fuzzy

rough set based on the relation R2. Moreover, the positive region POS}%”B) (X5,

negative region NEG;S;’B)(Xg) and boundary region BNDES;’B) (X52) are given
as follows: ’ ’

POS'G(XZ) = apr®) (X8) = {w € U|Pr(XZ|RE(x)) > &},
BND (x2) = apr P (X) = apr (X)) = {a € U] < Pr(X{|R2(e) < &},

NEGSP(X2) = U — apr™P (X) = {w € U|Pr(X[|Ri(2)) < B}
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Theorem 3. Let S = (U,CUD,V, f) be an IFDS. X5 XﬂQ C U where 0 <

~ o
a1, b1, a2, B2 < 1. Then the (&, §)-probabilistic lower and upper approxzimations
of Xgi and ng have the following properties:
1) € X Capr®(X2): (2) apr @O (U) = apr P (U) =
0) = apr® 5)((2)) 0; (4) IfX5 C Xgi,then@(a’m(Xgl) C

(x8),apr®? (X () Capr®? (X 2);
( :

(1) apr

(x4
(3) apr'®?)(

Ql

(
@

apr B (X

(5) apr®D (XS0 X)) = apr®D(X5) 0 apr®9) (x12),
aprl®?) (X U X ) = apr® P (X ) uapr O (X2);
(6) apr )(XB1 UXBQ) r(a’é (XPyu apr(é"é)(ng)7
apr®@0 (X0 0 xP2) Capr @ (X2 napr @ (X22);

\/ng

(7) apr(a ) (Xﬁl) =~ apr'® 6)( Xﬂl apr(o"ﬁ) (Xﬁl) — ap?“(a ﬁ)( Xffi)-

Proof. The proofs are straightforward from Definition 8.

In order to rank IFNs a; = (u;, vl>( = 1,2), a novel method to rank IFNs
is proposed in [32]. For two IFNs a; = ( ,0.1) and as = (0.7,0.3), we get
T(a1) = }18:; = 0.6923 and 7(az) = 1_T003 = O 7 by the method in [32], that is
a1 < as. However, we have a1 > ao via adopting the ranking method based on
score function and accurate function [27], which is extremely classical rankings
of IFNs and widely applied in practice. Thereby the rankings of two IFNs in [32]
are worthy of further research.

Let @ = (u,v) be an intuitionistic fuzzy number, it is clearly acknowledged
that a™ = (1,0) and a~ = (0, 1) are the positive and negative ideal point of a,
respectively. According to (4), we get

1
s(a,a+):1—§(|u—1|+|v—0|—|—|7r—0|):u, (9)

1
s(a,a_):1—5(\u—0|+|v—1|+\7r—0|):v, (10)

where 7 =1 —u —v.

The longer the similarity degree between a and at while the smaller the
similarity degree between a and a~, the better the a by TOPSIS. Hence, the
closeness degree of the a is defined as follows:

Definition 9. Let a = (u,v) be an intuitionistic fuzzy number. The closeness
degree T(a) of a is calculated as:

7(a) = s(a,a™) _ (1)
s(a,at) +s(a,a”) 1—m7’

where s(a,a™) denotes the degree of similarity between a and a* as (9) and
s(a,a™) stands for the similarity degree between a and o~ as (10).
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In addition, Wan et al. proposed to employ ¢(a) = 1 — %7‘[‘2 to measure
information reliability, which has apparent geomet-ric meaning by geometrical
representation of IFNs [32]. Thus, a more reasonable ranking is developed to
deal with the above problem.

Definition 10. Let a1 = (u1,v1) and as = (ug,ve) be two IFNs. Then the
ranking of them can be given as follows:

(1) If 7(a1) > 7(az), then ay is better than az, denoted as: a1 > ag;

(2) If 7(a1) = 7(az2), then a) if p(a1) > p(az), then ay is better than as,
denoted as: a1 > az; b) if (a1) = p(az), then ay is indifferent to as, denoted
as: a; ~ az; ¢) if pla1) < p(az), then ay is worse than as, denoted as:
a; < as.

For the above IFNs a; = (0.6,0.1) and as = (0.7,0.3), according to
Definition 9, we can recover 7(a;) = 1285 = 0.8571 and 7(a2) = 2% = 0.7.
Then ay > a2, which conforms to the ranking with score function and accurate
function widely applied to rank IFNs.

Suppose a; = {u;,v;)(i = 1,2) are two IFNs. a* = (1,0),a = (0.5,0.5) and
a- = (0,1) are the positive ideal point, intermediate point and negative ideal
point of IFNs respectively. Some practical results on the rankings of IFNs with

the closeness degree are given as follows:

(1) 7(a*) =1,7(a) = 0.5 and 7(a~) = 0.
(2) If a1 >1 a9, that is to say that uq > ug and vi < va,then T(a1) = T(as).
(3) T(a1) + 7(af) =1, especially, if uy > vy, then a; > af.

4 Intuitionistic Fuzzy Three-Way Decision Model

In this section, we introduce an intuitionistic fuzzy three-way decision model
based on three-way decision theory. There are two states 2 = {X? -Xf} £
{P, N} and three actions A = {ap,ap,an} (positive decision, delayed decision
and negative decision). The state set {2 denotes an element in X2 and not in
- X7 respectively; the action ap, ap and ay represent three decision actions that
an object is in positive region, boundary region and negative region respectively.
Suppose that the losts of taking different actions under two states take the form
of the IFN A(\i;) = (uz(Xij),v7(Nij))(¢ = P,B,N;j = P,N). That is, when
an object belongs to X7, AV(APP),AV()\BP> and Z()\Np) represent the costs of
adopting actions PP, B and N respectively while when an object does not belong
to X8, A(\pn), A(Agy) and A(Ayn) represent the costs of adopting the same
three actions, respectively. The loss functions with regard to two states X2 and
—X” can be expressed by a 3 x 2 matrix, as shown in Table 1.

Suppose that S= (U, A, V, f)isan IF DS, we have Pr(X?|RP (z)) = %

and Pr(-X?|R%(z)) = 1 — Pr(XP|R2(z)) by Definition 8. Based on Bayesian



A Three-Way Decision Model 257

Table 1. The cost matrix of intuitionistic fuzzy decision

X5 (P) - XJ(N)
ap %(/\PP) = (uz(\pp),vz(Arp)) | A(Apn) = (uz(Apn),v5(APN))
ap | AQAsr) = (uz(Asp),vz(A5P)) fi( BN) = (uz(ABN), vz (ABN))
an | AQAnp) = (uz(Anp),vz(Anp)) | AANN) = (uz(Ann), vz(ANN))

decision theory, the decision costs f;» = R(a;|R?(z))(i = P, B, N) can be com-
puted as follows:

fre = Rlap|R3(x)) = A(App) Pr(X]|R] (x) ® A\pn) Pr(=X(|Ri(x))
fB2 = R(ap|R(x)) = AQ\pp) Pr(X|RS(z)) ® A\ ) Pr(=X]|R(2))
fne = Rlan|R3(2)) = AQwp) Pr(XE|RE(2) ® A w) Pr(=X| Ro(x))
For simplification, we introduce several symbols, denote n = Pr(X?|RP(x))
and v = Pr(—X?|R%(x)) with n + v = 1, where the conditional probabilities n
and « are the respective possibilities of elements in R (x) divided into X/ and
- X5, Then the f;,(i = P, B, N) above can be further presented with the aid of
(1) as follows:
fre = (1= (1 —uz(Arp))"(1 —uz(ApN))?
fBe = (1= (1 =uz(Agp))"(1 —uz(Aen))", (vi(Asr))" (v4
fre =1 = (1 —uz(Ane)"(1 —uz(Ann))”, (vz(Ane))"

-~
<
b
—
>
)
)
-
=
3
—~
<
bS]
—_
>
!
2
~ =

( )
In light of Definition9, the closeness degree 7(fi;) and ¢(fiz) of fi(i =
P, B,N) can be computed as

unN .
T(me) = 1_n 77—(fo) = 1 _T(B’T(fNZ) = 1 _7TN’
Pfre) = 1= () o) = 1= 5w (fe) = 1= 5 ()P

where m; =1 — u; — v; for any i = P, B, N.
According to Definition 10, we can further rank fp,, fp, and fx.. Therefore,

some prerequisites (C'1) — (C'12) on intuitionistic fuzzy three-way decision are
established as follows:

(C1) : 7(fPz) < T(fB2); (C2) : T(fPz) = 7(fB2) N p(fP2) < ©(fB2);
(C3) : 7(fre) < T(fNe); (C4) : T(fPe) = T(fNe) N @(fPe) < ©(fNe);
(C5) : 7(fBx) < T(fP2); (C6) : T(fBz) = T(fPz) N o(fB2) < @(fP2);
(CT) :7(fBx) < T(fNz); (C8) : T(fBz) = T(fNz) N p(fB2) < 0(fNz);
(C9) : 7(fNe) < T(fP2); (C10) : 7(fna) = 7(fPa) AN p(fne) < o(fra);
(C11) : 7(fNnz) < 7(fB2); (C12) : T(fNz) = T(fB2) N p(fnz) < o(fB2)-
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Hence, a three-way decision rule with intuitionistic fuzzy risk preference can
be constructed based on the above prerequisites as follows:

(P): If (C1V C2) A (C3V C4), then decide : z € POS%’E)(Xg);
(B) : If (C5V C6) A (CTV C8), then decide : @ € BND%’B)(Xg);
(N) : If (C9V C10) A (C11V C12), then decide - x € NEGS%’E) (X5).

Especially when V m; = 1 —u; —v; = 0(¢ = P,B, N), namely, u; + v; =
1(i = P,B, N), then the above three-way decision rules (P) — (N) are reduced
to decision rules (P’) — (N') or (P"”) — (N"') as follows:

(P : If up <up andup < uy,then decide: x € POSI(%’E)(X(@);

(B'): If up <upandup < un,then decide: z € BNDE%’E)(XQ);

(N"): If uy <up and uy < up,then decide : x € NEGfg’E)(Xg).
or

(P"): Ifvp>vpandvp > vy,then decide : x € POSI(%’E)(XS);

(B"):Ifvg >wvpandvp > uy,then decide: x € BND;SE;B)(X(?);

(N"): Ifvn >vpand vy > vp,then decide : z € NEG%ﬁ)(Xg).

5 Rule Induction Algorithm to Derive 3WD from IFDS

This section summarizes four steps to derive three-way decision (3WD) rules
from intuitionistic fuzzy decision systems (IFDS) based on the proposed method.
These steps focus on the combination of IFDS and loss function with IFSs
in DTRS model together, and the rule induction algorithm is outlined in
Algorithm 1 in detail.

Step 1: Given an IFDS = (U, A = CUD,V, f), we use (5) to calculate the
similarity degree ug(z,y) and divergence degree vg(x,y) for the attribute set
B C C between z and y in U.

Step 2: Given a certain a and 3, for any x € U, we can compute the simi-
larity class R?(x) via (6) and («, 3)-level cut-sets X2 by (7) as well as rough
membership degree n = Pr(X?|RE(x)), respectively.

Step 3: We further compute the risk costs f;.(¢ = P,B,N) of x € U under
three decision actions a; respectively and then calculate 7(f;z), ©(fiz)-

Step 4: According to the prerequisites (C1) — (C12) and three-way decision
rules (P) — (N) to acquire the corresponding three-way decision rules.
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Algorithm 1. Rule induction algorithm to derive 3WD from IFDS

Input: IFDS = (U, A=CUD,V, f), two parameters « and (3, a concept B C U.
Output: The three-way decision rules for any = € U.

1: begin: Suppose G = {P, B, N}, given a concept B C U, « and 3.

2: for z € U do

3: for y € U do

4: Compute ur(z,y) and vr(z,y) via (5) respectively.

5: end for

6: Compute R? (z) = {y € U|(z,y) € R?} using (6); we then take (7) to calculate
X5 and n = Pr(XE|R5(z)) respectively.

7 for i € G do

8: Compute the corresponding fiz, 7(fiz) and ¢(fiz).

9: end for

10: Calculate t, = min{7(frz), 7(fBz), 7(fnz)},k = P,B or N and then assume

{91,092} = G — {k}. .
1 if (k==P) A (C1V C2) A (C3V C4) then decide z € POS'%” (XZ).
12:  endif C
13:  if (k== B) A (C5V C6) A (C7V C8) then decide = € BND;’/;‘”(X&B).
14:  endif o
15:  if (k== N) A (C9V C10) A (C11V C12) then decide z € NEG§:53>(X£).
16:  end if :
17: end for
18: end

6 A Numerical Example

This section presents a numerical example [33] to illustrate the effectiveness of
the proposed intuitionistic fuzzy three-way decision method. An intuitionistic
fuzzy decision system on the security audit assessment is given in Table 2 whose
the object set of audit is © = {x1, 2, x3,24}. The set of the conditional attributes
is C = {c1,¢9,c3,c4,c5}, where c1,ca,c3,¢4 and ¢5 stand for eminent system
environment, preferable system control, reliably financial data, credible auditing
software and standard operation, respectively; the decision attribute is ¢g which
denotes acceptable safety audit risk. The value of any conditional attribute is
comprehensively given by many auditing experts based on auditing results and
their professional quality, e.g. f(x4,cq4) = (0.7,0.1) representing the value of
the attribute ¢4 with regard to x4, which means that 70 % of experts on audit
consider the auditing software of the object x4 creditable while 10 % believe it
not creditable. In addition, 20 % failed to make a decision. Similarly, for the
decision attribute cg, f(z2,cs) = (0.6,0.4) can be understood that 60 % of the
experts believe security audit risk acceptable while 40 % believe it not acceptable.
The risk costs of taking different actions under two states(acceptable and not
acceptable for audit risk) take form of IFNs, as shown in Table 3.

Suppose the threshold a = 0.7 and g = 0.3 are given in advance by experts.
In this paper, we adopt the proposed method to acquire the related decision
rules, in which the detailed steps are as follows:
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Table 2. Intuitionistic fuzzy decision systems on the security audit assessment

z1 | (0.8,0.2) | (0.7,0.3) | (0.6,0.3) | (0.5,0.5)  (0.7,0.2) | (0.7,0.3)
x| (0.7,0.2) | (0.6,0.4) | (0.8,0.2) | (0.7,0.3)  (0.5,0.5) | (0.6,0.4)
zs | (0.6,0.4) | (0.9,0.1) | (0.8,0.2) | (0.4,0.6)  (0.7,0.3) | (0.7,0.3)
24| (0.9,0.1) | (0.5,0.4) | (0.6,0.3) | (0.7,0.1) | (0.6,0.4) | (0.8,0.2)

Table 3. Risk cost matrix of intuitionistic fuzzy decision

X8 (accept) | ~ X5 (not accept)

ap  (0.1,0.8) | (0.8,0.2)

as | (0.5,0.5) | (0.6,0.4)
(0.8,02) | (0.1,0.8)

anN

Step 1: Calculate the similarity degree wg(zj,zr) and divergence degree
vg(z;, k) between z; and zx(j,k = 1,2,3,4; 5 # k) below.

ug(z1,22) = 0.7, vp (21, 22) = 0.25; ug(z1, 23) = 0.8,vp(z1,23) = 0.2;
up(r1,24) = 0.6,0p(21, 24) = 0.3;up(22,23) = 0.7, vp (22, 73) = 0.3;
ur(xa,x4) = 0.8, vp(x2,24) = 0.15; ug(xs,24) = 0.5,vg(x3,24) = 0.4.

Step 2: Compute the similarity class RZ(z;)(j = 1,2,3,4) and the (o, 3)-level
cut-sets X2 as well as rough membership degree 7; as follows:

R2(21) = {21, 22,23}, RE(22) = {1, 20, 3,24}, R2 (23) = {1, 20, 23,24},

2 3 1
R§($4):{J}2,.’L‘4},X§ = {$1,$3,1‘4},_\Xg = {x2}7771 = §a772 =Tn3 = 1777425'

Step 3: We can further compute the risk costs fi,; of z;, 7(fiz;) and o( fiz;)(i =
P,B,N:;j=1,2,3,4).

fPa <0.454970.5040>,f311 = <0.5358,0.4642>,f1v11 =
fPas <0.3821,0.5657>,f3z2 = <O-527170-4729>,me2 =
[Pz, = <0.3821,O.5657>,f3w3 = <0.5271,0.4729>,fo3 =

< >’ = < >7

fpPa, = (0.5757,0.4000), fpa, = (0.5528,0.4472), fnao, =

0.6698, 0.3175),
0.7087, 0.2828),
0.7087, 0.2828),
0.5757,0.4000).

o~ o~~~

the corresponding 7(fiz;) of fiz; can be computed as follows:

7(fpe,) = 04744, 7(fpa, ) = 0.5358, 7(fna, ) = 0.6784, 7(fpa,) = 0.4031,
7(FBa,) = 0.5271, 7(fna,) = 0.7148, 7(fpa, ) = 0.4031, 7(f5a,) = 0.5271,
T(fNes) = 0.7148,7(fpg,) = 0.5900, 7( f5a,) = 0.5528, 7(fna,) = 0.5900.
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Step 4: According to the prerequisites (C1) — (C12) and three-way decision
rules (P) — (N) to require rules as follows:

T € POSI(%’B)(XS), x5 € Posféﬁ)(xg),xg € POS;%B)(X£)7:C4 € BNDE%’@(X(‘E)

That is, the auditing risk is deemed to be safe for the object =1, z2 and x3
under a confidence level &« = 0.7 and 8 = 0.3 while the risk of z4 is further
discussed.

As we can see from this example, the proposed model in this paper can well
deal with three-way decision problems whose the loss function is IFNs, and it
is also an extension to the classical three-way decision model. Besides, deriving
three-way decision rules may different for taking different threshold « and 3.
Hence, we focus on the research of the threshold « and g in follow-up work.

7 Conclusion

In this paper, we propose an intuitionistic fuzzy three-way decision-theoretic
model with intuitionistic fuzzy decision systems to obtain three-way decision
rules, and then a novel rule induction algorithm is developed. Whereafter, a
numerical example is presented to illustrate the effectiveness of the proposed
method. In the future, we will further explore the intuitionistic fuzzy three-way
decision theory based on intuitionistic fuzzy decision systems.
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Abstract. In this paper it is proposed to improve performance of the
automatic speech recognition by using sequential three-way decisions.
At first, the largest piecewise quasi-stationary segments are detected in
the speech signal. Every segment is classified using the maximum a-
posteriori (MAP) method implemented with the Kullback-Leibler mini-
mum information discrimination principle. The three-way decisions are
taken for each segment using the multiple comparisons and asymptotical
properties of the Kullback-Leibler divergence. If the non-commitment
option is chosen for any segment, it is divided into small subparts, and
the decision-making is sequentially repeated by fusing the classification
results for each subpart until accept or reject options are chosen or the
size of each subpart becomes relatively low. Thus, each segment is asso-
ciated with a hierarchy of variable-scale subparts (granules in rough set
theory). In the experimental study the proposed procedure is used in
speech recognition with Russian language. It was shown that our app-
roach makes it possible to achieve high efficiency even in the presence of
high level of noise in the observed utterance.

Keywords: Signal processing * Speech recognition - Three-way deci-
sions + Sequential analysis + Granular computing + Kullback-Leibler
divergence

1 Introduction

The mathematical model of the piecewise stationary stochastic (random) process
[1,2] is widely used in many practical pattern recognition tasks including sig-
nal classification [3,4], computer vision [5] and speech processing [6]. One of
the most popular approach to classify its realization (sample function) is based
on the hidden Markov model (HMM), specially developed for recognition of
the piecewise stationary signals [6]. In these methods an observed realization of
stochastic process [7] is divided into stationary parts using a fixed scale time
window (typically 20-30ms) [1]. Next, the corresponding parts (segments) of
© Springer International Publishing AG 2017
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the observation and all instances in the database are matched using such models
of these segments, as the GMM (Gaussian Mixture Model), and the total sim-
ilarity is estimated. The recent research has moved focus from GMMs to more
complex classifiers based on the deep neural networks (DNN), which have estab-
lished the state-of-the-art results for several multimedia recognition tasks [8,9].
The most impressive modern results are achieved with acoustic models based on
long-short term memory (LSTM) recurrent neural networks trained with con-
nectionist temporal classification [10]. Unfortunately, the run-time complexity of
all these approaches is rather high, especially for large utterances, which contain
many phones [6,11]. In practice the situation is even worse, because the seg-
ments are usually aligned using dynamic programming to deal with inaccurate
segmentation.

It is known [1], that the speech signals are multi-scale in nature (vowel phones
last for 40-400 ms while stops last for 3-250 ms). Hence, to improve classification
performance, this paper explores the potential of sequential three-way decisions
(TWD) [12], which has been recently used to speed-up the face recognition algo-
rithms [13,14]. The TWD theory [15,16] have grown from the ideas of the rough
set theory [17] to divide the universal set into positive, negative and bound-
ary regions. Unlike the traditional two-way decision, the TWD incorporates the
delay decision as an optional one. It is selected, if the cost of such delay is mini-
mal [15]. It is of great importance in practice, besides taking a hard decision, to
allow such “I do not know” option. There are several industrial applications of
TWD in such data mining tasks, as visual feature extractions using deep neural
networks [18], frequent item sets mining [19], attribute reduction [20], medical
decision support systems [21], recommender systems [22] and software defect
prediction [23]. However, the research of TWD in the classification problems for
complex data has just begun [13]. Thus, in this paper we propose to examine
the hierarchical representation of each segment using the methodology of gran-
ular computing [24,25]. The more detailed representation is explored only if the
non-commitment option of TWD was chosen for the current representation.

The rest of the paper is organized as follows. In Sect.2 we describe statis-
tical speech recognition using an autoregression (AR) model [6,26]. In Sect.3
we introduce the proposed classification algorithm based on sequential TWD.
Section 4 contains experimental study of our approach in speech recognition for
Russian language. Concluding comments are given in Sect. 5.

2 Conventional Classification of Piecewise-Stationary
Speech Signals Using Statistical Approach

In this section we explore the task of isolated word recognition, which typically
appears in, e.g., the voice control intelligent systems [27]. Let a vocabulary of
D > 1 words/phrases be given. The dth word is usually specified by a sequence of
phones {cq1,...,¢cqs,} Here cq; € {1,...,C} are the the class (phone) labels,
and Sy > 1 is the transcription length of the dth word. It is required to assign the
new utterance X to the closest word/phrase from the vocabulary. We focus on
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the speaker-dependent mode [6], i.e. the phonetic database of R > C reference
signals {x,},r € {1,..., R} with labels c¢(r) € {1,...,C} of all phones of the
current speaker should be available.

We use the typical assumption that the speech signal X can be represented as
a piecewise stationary time-varying AR ergodic Gaussian process with zero mean
[1,7,26]. To apply this model, the input utterance is divided into T fixed-size
(20-30ms) partially overlapped quasi-stationary frames {x(¢)},t € {1,...,T},
where {x(t)} is a feature vector with the fixed dimension size. Next, each frame
is assigned to one of C' reference phones. It is known [28,29] that the maximal
likelihood (ML) solution for testing hypothesis We,c € {1,...,C} about covari-
ance matrix of the Gaussian signal x(t) is achieved with the Kullback-Leibler
(KL) minimum information discrimination principle [30]

(x(t)) = argmin  pgr(x(t),xr), (1)
c(r),re{l,...,.R}

where the KL divergence between the zero-mean Gaussian distributions is com-
puted as follows

%1 det(%,) +1tr(g(t)(zr)—1)—

prL(x(t),x,) = nm 2

SIS

Here X(t) and X, are the estimates of the covariance matrices of signals x(¢) and
x,., respectively, det(2) and tr(X) stand for the determinant and trace of the matrix
3. This KL discrimination for the Gaussian model of the quasi-stationary speech
signals can be computed as the Itakura-Saito distance [26,28] between power spec-
tral densities (PSD) Gy (f) and G..(f) of the input frame x(¢) and x,:

F/2

prer (x(t). ) = 73
f=1

<Gx(t)(f)_1 G"(t)(f)—1>. (2)

G.(f) a0

Here f € {1,..., F}, is the discrete frequency, and F' is the sample rate (Hz).
The PSDs in (2) can be estimated using the Levinson-Durbin algorithm and the
Burg method [31]. The Itakura-Saito divergence between PSDs (2) is well known
in speech processing due to its strong correlation with the subjective MOS (mean
opinion score) estimate of speech closeness [6].

Finally, the obtained transcription {c*(x(1)),c*(x(2)),...,c*(x(T))} of the
utterance X is dynamically aligned with the transcription of each word from
the vocabulary to establish the temporary compliance between the sounds.
Such alignment is implemented with the dynamic programming techniques, e.g.,
Dynamic Time Warping or the Viterbi algorithm in the HMM [6]. The decision
can be made in favor to the closest word from the vocabulary in terms of the
total conditional probability or, equivalently, the sum of distances (2).

The typical implementation of the described procedure includes the esti-
mation of AR coefficients and the PSDs for each frame, matching with all
phones (1), (2) and dynamic alignment with transcriptions of all words in
the vocabulary. Thus, the runtime complexity of this algorithm is equal to
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O(F-p~T—|—R~F-T—i—T-ZZf:1 S4), where p is the order of AR model. The more
is the count of frames 7', the less is the recognition performance. Unfortunately,
as it is written in introduction, the duration of every phone varies significantly
even for the same speaker. Hence, the frame is usually chosen to be very small
in order to contain only one quasi-stationary part of the speech signal. In the
next section we propose to apply the TWD theory to speed-up the recognition
procedure by using multi-scale representation of the speech segments.

3 Sequential Three-Way Decisions in Speech Recognition

3.1 Three-Way Decisions

Though speech recognition on the phonetic level at the present time is com-
parable in quality with the phoneme recognition by human [6], the variability
sources (the noisy environment, children speech, foreign accents, speech rate,
voice disease, etc.) usually lead to the misclassification errors [32]. Hence, in this
paper we apply the TWD to represent each cth phone with three pair-wise dis-
joint regions (positive POS, negative N EG and boundary BN D). These regions
can be defined using the known asymptotic chi-squared distribution of the KL
divergence between feature vectors of the same class [29,30]:

POS (4. p)(c) = {x € X[2(n(x) = p)p(%,¢) < XT_0 ppi1)/2}s (3)
NEG(ap)(c) = {x € X[2(n(x) = p)p(x,¢) = X3 _5 p(ps1)/2} (4)
BND(q,p)(c) = X = (POS(a,5)(c) UNEG a,5)(c)), (5)

where
plx0)= . 1,.,%36(@:0”“("’ Xp). (6)

Here X is the universal set of the stationary speech signals, n(x) is the
count of samples in the signal x, Xi, p(p+1)/2 is the a-quantile of the chi-squared
distribution with p(p + 1)/2 degrees of freedom, 0 < § < a < 1 is the pair
of thresholds, which define the type II and type I errors of the given utterance
representing the cth phone. In this case the type I error is detected if the cth
phoneme is not assigned to the positive region (3). The type IT error takes place
when the utterance from any other phoneme is not rejected (4).

3.2 Multi-class Three-Way Decisions

Though the described approach (3)-(5) can provide an additional robust-
ness of speech recognition, it does not deal with the multi-scale nature of
the speech signals [1]. To solve the issues with performance of traditional
approach, we will use the multi-granulation approach [24,35] and describe
the stationary utterance as a hierarchy of fragments. Namely, we obtain
the largest piecewise quasi-stationary speech segments X(s),s € {1,...,S}
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with the borders (t1(s),t2(s)),1 < t1(s) < t2(s) < T in observed utter-
ance using an appropriate speech segmentation technique [1,11]. Here S is
the count of extracted segments. Then, [ speech parts of the same size

are extracted at the [th granularity level, where the kth part x,(cl)(s) =

[x (tl(s) + {(kfl).(tz(sl)ftl(s)ﬂ)J) X (tl(s) + [MD} Hence,

only one part xgl)(s) = X(s) of the sth segment is examined at the coarsest
granularity level | = 1, and all L = (t2(s) — t1(s) + 1) frames are processed at
the finest granularity level.

According to the idea of sequential TWD [12], it is necessary to assign three
decision regions at each granularity level. Though the concept of a phoneme
is naturally mapped into TWD theory (3)-(5), speech recognition involves the
choice of only one phoneme for each segment (1). Three basic options of accep-
tance, rejection and non-commitment are best interpreted in the binary classifi-
cation task (C' = 2) [15]. It includes three decision types: positive (accept the first
class), negative (reject the first class and accept the second class), and boundary
(delay the final decision and do not accept either first or second class). It cannot
directly deal with multi-class problems (C' > 2). This problem has been studied
earlier in the context of multiple-category classification using decision-theoretic
rough sets [34]. Lingras et al. [33] discussed the Bayesian decision procedure with
C classes and specially constructed 2¢ —1 cost functions. Liu et al. [37] proposed
a two stages algorithm, in which, at first, the positive region is defined to make
a decision of acceptance of any class, and the best candidate classification is
chosen at the second stage using Bayesian discriminant analysis. Deng and Jia
[36] derived positive, negative and boundary regions of each class from the cost
matrix in classical cost-sensitive learning task.

However, in this paper we examine another enhancement of the idea of TWD
for multi-class recognition, namely, (C'+ 1)-way decisions, i.e., acceptance of any
of C' classes or delaying the decision process, in case of an unreliable recognition
result [13]. In this case, it is necessary to define C' positive regions POS(Q 3) (¢)

for each cth phone and one boundary region BN Dga) 8) for delay option.

3.3 Proposed Approach

Let us aggregate the three regions of each phoneme (3)—(5) into such (C'+1)-way
decisions. The most obvious way is to assign an utterance x to the cth phone if
this utterance is included into the positive region (3) of only this class:

POS{) 5, (c) = POS(q.5)(c) - U POS (. 3)(i), (7)

i€{l,...,c—1,c+1,...,C}

BND{) 5 =X - U POS) (o). (8)

(v,
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It is not difficult to show, that the signal x is included into the positive region
(7) of the nearest class ¢*(x) (1), only if

2(77,(X) - p)p(X, c* (X)) < X%—a,p(p+1)/2

* 2 (9)

2n(x) — P)p(% 5 (X)) = X2 0 ppi1yso

Here the second nearest neighbor class for the utterance x is denoted as

cy(x) = argmin p(x,c). (10)
ce{l,...,C},c#c* (x)

However, in such definition of the positive regions the parameter o does not
stand for the type I error anymore. As a matter of fact, the multiple-testing
problem occurs in the multi-class classification, so appropriate correction should
be used in the thresholds (9) [38]. If we would like to control the false dis-
covery rate and accept the cth phone if only one hypothesis is accepted, the
Benjamini-Hochberg test [39] with (C' — 1)/C' correction of type I error of the
second hypothesis can be applied:

{%mw—mea@»<mm>

2(n(x) — p)p(x,cs(x)) > pa(a) (11)

where the thresholds are defined as follows: p;(a) = X%—a,p(p—i—l)/Q’ p2(a) =
X%*Q(C*l)/c,p(p+l)/2' If condition (11) holds for all I parts at the Ith granularity

level, then the closest phones c*(x,(cl)(s)) (1) are accepted as the final decisions.
Otherwise, the delayed decision is chosen and the phoneme recognition problem
is examined at a finer granulation level I+ 1 with more detailed information [12].

Unfortunately, the proposed procedure (11) can be hardly used in practice,
because the distance between real utterances of the same phoneme is rather
large and does not satisfy the theoretical chi-squared distribution with p(p+1)/2
degrees of freedom [29]. Hence, the first condition in (11) does not hold anymore.
Thus, it is necessary to tune the thresholds pi, p2. However, in this paper we
explore an alternative solution. Namely, the search termination condition (10)
is modified by using the known probability distribution of the KL divergence
between different hypothesis [30]. If the utterance x corresponds to the nearest
neighbor phoneme c¢*(x), then the 2(n(x) — p)-times distance p(x, c(x)) is dis-
tributed as the non-central chi-squared distribution with p(p + 1)/2 degrees of
freedom and the non-centrality parameter proportional to the distance between
phonemes p(c*(x),c5(x)) [27,40]. Thus, the ratio of the distances between the
input signal and its second and first nearest neighbor has the non-central F-
distribution F(p(p+1)/2,p(p + 1)/2;2(n(x) — p))p(c*(x), ¢5(x)). Hence, in this
paper we will use the following positive region for acceptance of class c:

pPosSY

O (@ ={xeXle=ce22) S @y a2

p(x; ¢*(x))

where a threshold py/;(c) is chosen from the a-quantile of the non-central
F-distribution described above.
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Fig. 1. Complete data flow of speech recognition using sequential three-way decisions
and granular computing.

The complete data flow of the proposed recognition procedure using sequen-
tial TWD is shown in Fig.1. At first, the input signal is preprocessed in
order to decrease its variability, detect voice activity regions, etc. [6]. Next, the
largest piecewise quasi-stationary speech segments are detected, and the coars-
est approximation of the observed signal is analyzed. After that, each extracted
segment is processed alternately. As we assume, that the scale of each part of
the large segment X (s) is identical, so the sequential analysis is terminated only
when decisions are accepted for any speech part x,(cl)(s). This procedure can be
also implemented with the Benjamini-Hochberg correction of the type I error in
(12). If it is possible to obtain a reliable solution x(s) € POS((Q,B)(C)(H)’ the

phoneme matching process (1), (2) is terminated and, as a result, the ¢*(x(s))
class label is assigned to this segment. Otherwise, its scale is refined, and the
process is repeated for each part, until any of these parts are accepted (12). If the
absence of acceptance decisions at all L levels for individual frames x(t), we can
obtain the least unreliable level [13]. Finally, the estimated transcription of the
refined segments can be processed using the dynamic programming techniques
[6] in order to obtain the final decision of the speech recognition problem.

Let us demonstrate how the proposed procedure works in practice. In this
example we consider rather simple task of Russian vowel recognition in a syllable
“tro” (/t/ /r/ Joo/). Table1 contains the KL distances (2) between R = 6 vowel
phonemes and all segments in L = 2 hierarchical levels. The closest distance
in each row is marked by bold. Here the vowel /aa/ is the nearest neighbor

(1) of the signal xgl) (see the first row in Table1). Hence, the whole syllable
(I =1) is incorrectly classified. However, this decision cannot be accepted (12),
because the distance to the second nearest neighbor /oo/ is quite close to the
distance between xgl) and the first nearest neighbor (45.38/38.4 = 1.18). Thus,
according to sequential TWD scheme (Fig.1) the granularity level should be
refined, and the whole syllable is divided into [ = 2 parts. Though the first part
is still misclassified (second row in Tablel), this decision is still unacceptable
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as the distance ration in (12) is rather low (57.94/38.40 = 1.6). At the same
time, the second part of the utterance is correctly recognized as the phone /oo/.
This decision can be accepted (12), because the distance to the second nearest
neighbor is rather large (46.02/5.83 = 7.89). As we know, that a syllable contains
only one vowel, we can accept /oo/ phone as the final decision for the whole
syllable. Thus, the proposed approach can be use to increase the recognition
accuracy. In the next section we experimentally demonstrate that an additional
refinement of the granularity level makes it possible to significantly decrease the
decision making time.

Table 1. Computed distances (2) in the vowel recognition in the syllable /t/ /r/ oo/

Level | Jaa/ |/ee/ |/ii/ Joo/ | Juu/ |/y/

l=1]38.40 | 85.38|270.80|45.38|113.33| 99.28
1=2136.17 | 77.26|277.83|57.94|129.84| 93.16
333.39303.94 | 198.47 | 5.83 | 46.02 | 460.33

4 Experimental Results

In this section the proposed approach (Fig.1) in used in the isolated words
recognition for Russian language. All tests are performed at a 4 core i7 laptop
with 6 Gb RAM. Two vocabularies are used, namely, (1) the list of 1832 Russian
cities with corresponding regions; and (2) the list of 1913 drugs. All speakers
pronounced every word from all vocabularies twice in isolated syllable mode
to simplify the recognition procedure [27,40]. In such mode every vowel in the
syllable is made stressed, thus, it is recognized quite stably. The part of speech
data suitable to reproduce our experiments is available for free download!. In
the configuration mode, each speaker clearly spoke ten vowels of the Russian
language (/aa/, /ja/, [Jee/, /je/, Joo/, [io/, /ii/, [y/, /uu/, /ju/) in isolated
mode [41]. The following parameters are chosen: sampling frequency F' = 8
kHz, AR-model order p = 20. The sampling rate was set on telephone level,
because we carried out this experiment with our special software [27,42], which
was mainly developed for application in remote voice control systems.

The closed sounds /aa/, /ja/, /ee/, /je/, Joo/, /jo/, /ii/, [y/, /uu/, /ju/
are united into C' = 5 clusters [6]. Observed utterances are divided into 30 ms
frames with 10 ms overlap. The syllables in the test signals are extracted with
the amplitude detector and the vowels are recognized in each syllable by the
simple voting [40] based on the results obtained using vowel recognition. The
latter is implemented using either proposed sequential TWD procedure with
termination condition (12), or traditional techniques: (1) recognition (1), (2) of
low-scale frames with identical size; (2) distance thresholding (11); and (2) the

! https://sites.google.com /site/andreyvsavchenko/SpeechDatalsolatedSyllables.zip.
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state-of-the-art recognition of vowels in each syllable using the DNN from the
Kaldi framework [43] trained with the Voxforge corpus. We added an artificially
generated white noise to each test utterance using the following procedure. At
first, the signal-to-noise ratio (SNR) is fixed. Next, the pauses are detected in
each utterance using simple energy thresholding, and the standard deviation of
the remaining part with high energy is estimated. Finally, these standard devia-
tion was corrected using given SNR, and uncorrelated normal random numbers
with zero mean and the resulted standard deviation was added to each value of
the speech signal.

Except the KL divergence (2), its symmetric version (COSH distance [2,28])
is implemented:

XK Gx t - GT 2
peosxf = ;;( cé,l(j()f)c:r(;];)) ' (13)

The thresholds in (11), (12) for each discrimination type are tuned exper-
imentally using the small validation set of 5 vowels per phone class?. Namely,
we compute the pairwise distances between all utterances from this validation
set Xyq1- If type I error rate is fixed o = const, then py1() is evaluated as a
(1 — a)-quantile of the ratio of these distances

Xt e %)

min  p(x,x;)
X, € Xyl , XrEX

x € Xyal

Similar procedure is applied to estimate thresholds in (11) [5]. The depen-
dence of the words recognition accuracy on the SNR is shown in Tables2 and 3
for cities and drugs vocabularies, respectively. The average time to recognize one
testing phrase is shown in Figs. 2 and 3.

Table 2. Dependence of error rate (%) on SNR (dB), cities vocabulary

Distance Method 25dB|20dB|15dB | 10dB |5dB |0 dB
DNN 6.3 7.9 10.2 18.9 [30.6 |34.1
Conventional approach (1) | 7 7.9 8.8 |14.5 |31.6 |38.2
KL divergence | Distance thresholding (11) | 7.5 8.8 10.5 |[18.9 |30.1 |36.1
Proposed approach (12) 6.3 7.3 9.6 |17.3 |31.1 |37.1
Conventional approach (1) | 3.9 4.2 4.1 9.8 |23.7 |28.1
COSH distance | Distance thresholding (11) | 3.1 3.9 4.7 1108 |26 32.7
Proposed approach (12) 3.9 4.7 53 |11.8 |26.9 |33.9

Though the state-of-the-art DNN does not use speaker adaptation, its accu-
racy of vowel recognition is comparable to the nearest neighbor search (1), which

2 https://sites.google.com/site/andreyvsavchenko/ValidationDataVowels.zip.
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Table 3. Dependence of error rate (%) on SNR (dB), drugs vocabulary
Distance Method 25dB | 20dB | 15dB |10dB | 5dB | 0dB
DNN 9.9 10.6 |11.4 |13.9 |18.4 |23.2
Conventional approach (1) | 3.1 5.4 8.1 8.3 |159 (204
KL divergence | Distance thresholding (11) | 4.1 6.6 8.7 8.7 |17 203
Proposed approach (12) 3.9 6.6 8.3 8.6 |15.9|19.9
Conventional approach (1) | 5.6 6.6 6.8 6.8 |14.3 |17.4
COSH distance | Distance thresholding (11) | 3.5 4.3 7.5 79 |14.1 |18.6
Proposed approach (12) 2.9 3.7 7.5 8.1 |14.1 |174
180 -
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Fig. 2. Experimental results, cities vocabulary.

is implemented in other examined techniques. However, the DNN’s performance
is inappropriate: it is 2-10 times slower than all other methods. McNemar’s test
[44] with 0.95 confidence verified that the COSH distance is more accurate in
most cases, than the KL divergence. This result supports our statement about
superiority of the distances based on the homogeneity testing in audio and visual
recognition tasks [2]. The obvious implementation of sequential TWD (11) is
inefficient in the case of high noise levels, because the thresholds in (11) cannot
be reliably estimated for huge variations in speech signals. Finally, the proposed
approach (Fig.1) allows to increasing the recognition performance. Our imple-
mentation of sequential TWD is 12-14 times faster that the DNN and 4-5 times
faster than the conventional approach with matching of the fine-grained frames
(1). McNemar’s test verified that this improvement of performance is significant
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Fig. 3. Experimental results, drugs vocabulary.

in all cases except the experiment with drugs vocabulary (Fig.3), in which clas-
sification speed of both (11) and (12) is similar for low level of noise (SN R > 5).
Moreover, our approach leads to the most accurate decisions (for a fixed dissim-
ilarity measure) in all cases except the recognition of drugs (Table3) with the
KL-divergence (2) and low noise level. However, these differences in error rates
are mostly not statistically significant.

5 Conclusion

To sum it up, this article introduced an efficient implementation (1), (6), (10),
(12) of sequential three-way decisions in multi-class recognition of piecewise sta-
tionary signals. It was demonstrated how to define the granularity levels in quasi-
stationary parts of the signal, so that the count of the coarse-grained granules
is usually rather low. As a result, the new observation can be classified very
fast. The acceptance region (12) was defined using the theory of multiple com-
parisons and contains only computing the KL divergence. Hence, our method
can be applied with an arbitrary distance by tuning the threshold py,;. The
experimental study demonstrated the potential of our procedure (Fig. 1) to sig-
nificantly speed-up speech recognition when compared with conventional algo-
rithms (Figs. 2 and 3). Thus, it is possible to conclude that the proposed tech-
nique makes it possible to build a reliable speech recognition module, which
is suitable for implementing, e.g., a voice control intelligent system with fast
speaker adaptation [27].
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As a matter of fact, our experiments are reported on own speech data with
requirement of isolated syllable pronunciation. Thus, our results are not directly
comparable with other ASR methods. Hence, the further research of the proposed
method can be continued in the following directions. First, it should be applied
in continuous speech recognition, in which only the last granularity level is ana-
lyzed with the computationally expensive state-of-the-art procedures (HMMs
with GMMs/DNNs or LSTMs) [6,9,10]. Second possible direction is the appli-
cation of our method with non-stationary signal classification tasks [4].
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Abstract. Recommender systems help e-commerce corporations to
make profit among a large amount of customers. Three-way recommender
systems handle this issue through considering misclassification and pro-
motion costs. The setting of costs in existing approaches is the same
for items with different popularity. However, success recommendation of
unpopular items is more profitable. In this paper, we define a new cost-
sensitive recommendation problem. The new problem is more general
than existing ones in that the cost function is variable w.r.t the popular-
ity of the item. First, we adopt a three-way approach with three kinds of
actions: recommending, not recommending and promoting. For any item,
a threshold pair is calculated from its cost matrix. Second, we employ
the M-distance to obtain the probability which measures how much a
user likes an item. Consequently, the action to any item for any user is
determined. Experiments are undertaken on the well-known Movielens
dataset. Compared with the existing three-way recommendation algo-
rithm, our algorithm results in less average cost through recommending
more unpopular items.

Keywords: Cost-sensitive learning - Popularity - Recommender sys-
tem - Three-way decision

1 Introduction

Shopping online has become a part of our daily life, and e-commerce corporations
have gained much success in the last decade. Amazon.com is the first website
attracting more than 30 million customers. At the end of 2014, Taobao.com has
nearly 500 million registered members, including 120 million active users. Its
turnover is around 120 billion yuan on November 11th (double eleven), 2016.
These websites usually provide some hyper-links including “find similar”, “find
relevant”, and “guess you like” to improve user satisfaction and promote the
sale. The software in charge of these issues is called a recommender system (RS).
Naturally, the performance of an RS has an essential impact to the success of
the corporation.

A number of measures have been designed for different scenarios to eval-
uate the quality of an RS. For top-N recommendation, recall [2,18] refers to
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the proportion of successful recommended items. For numeric rating prediction,
MAE [1] refers the mean absolute error across all ratings of users to items. For
“find all good items” task, coverage refers to percentage of items the RS can
form predictions for [7,8]. For classification recommendation [8], accuracy refers
to the proportion of correct behavior (recommend or not). For cost-sensitive
recommendation [14,24], average cost is more general than accuracy through
considering different costs for different behaviors. An appropriate measure helps
attracting customers or maximizing the profit of the corporation.

Three-way recommender systems (3RSs) [24,25] aim at minimizing the aver-
age cost considering both misclassification and promotion costs. Misclassifica-
tion indicates that an item belongs to class X when its real class is Y, while
promotion through coupon distribution is widely adopted by corporations. The
misclassification and promotion costs are expressed as a 3 X 2 cost matrix. The
rows correspond to three actions, namely recommending, not recommending,
and promotion; while the columns are users’ two actual preferences, namely like
or dislike. For simplicity, we let the costs of correct behaviors be 0s. This app-
roach coincides with the three-way theory [9,13,22]. However, the cost matrix of
existing 3RS is fixed for any item. Since success recommendation of unpopular
items is more profitable, this setting is not reasonable.

In this paper, we define a new cost-sensitive recommendation problem. It is
more general than existing ones in that the cost function is variable w.r.t the
popularity of the item. The input includes the rating information and the cost
function. Let the situation of recommending an item that a user dislike be PN,
and not recommending an item that a user like be NP. For items with smaller
popularity, the cost of NP is bigger, while the cost of PN is smaller. The purpose
is to encourage the recommendation of unpopular items. The output is the action
to each user-item pair. Naturally, the optimization objective is to minimize the
average cost.

First, we adopt a three-way approach with three kinds of actions mentioned
above. For each item, the popularity is determined by the number of rating times
without considering the rating values. With the popularity, the cost matrix is
computed from the cost function. Then a threshold pair (a, ) is calculated
from the cost matrix according to the three-way theory [22]. o determines the
probability necessary to recommend an item, and 3 determines that necessary
not to recommend an item. The cost function is designed in the way that for
items with lower popularity, the cost of PN are smaller, and the cost of NP are
bigger. Consequently, both o and 3 values for items with lower popularity are
smaller such that they are more likely to be recommended or promoted.

Second, we employ the M-distance [26] to compute the liking probability P
of a user on an item. Similar to [26], we obtain the neighbors of the predicted
object through setting a certain radius. Different from [26], we count the rating
distribution, rather than compute the prediction. Using the like threshold, we
obtain the probability of a user liking an item.

Finally, we determine the recommender’s behavior based on «, § and P. If P
is greater than «, the item is recommended. If P is less than 3, the item is not
recommended. Otherwise, we pay a promotion cost to learn his/her preference.
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Experiments on the well-known MovieLens dataset show that (1) our algo-
rithm results in less average cost and (2) recommends more unpopular items
than the existing three-way recommendation algorithm [24].

This paper is organized as follows. Section 2 gives the related works, includ-
ing the data model, the cost-sensitive learning and the theory of three-way deci-
sion. 3RS for popularity-based costs (3RSPC) is described in detail in Sect. 3.
Section 4 shows extensive experiments to validate the effectiveness of our algo-
rithm. Section 5 concludes the paper.

2 Related Works

In this section, we review some related works. First, we revisit the data model
for RSs. It includes the demographic, the content, and the rating tables. Second,
we revisit the existing 3RSs. There is only one cost matrix for the problem.

2.1 Data Model

Generally, there are a set of users, a set of items, and a table of ratings from
different users rating to different items.

Definition 1. Let Ua to be the matriz of users and their attributes. U =
{uy,ug,...,un} is the set of users as the column of matric Us, and A =
{ay,as,...,amn} is the set of attributes as the row of matrix Ua.

Definition 2. Let M4 to be the matrix of items and their attributes. Its rows
and columns are a set of identifications of movies M = {my,ma,...,my} and
a set of release years genres of movies respectively. For example, a movie mg is
an action movie and the value of attribute Action is equal to 1.

Definition 3. Let R to be a rating matriz of every movie from different users,
shown in Table 1. R contains the identifications of users and the ratings for some
movies. We set {1,2,3,4,5} as the range of scores, and set 8 as the threshold.
If the score is over 3, the user likes the movie. Conversely, if the score is below
or equal to 3, the user dislikes the movie. The rating function is defined as (1):

Usx Ms— R (1)

We can conclude from Table 1 that the user u; likes ms, dislikes m; and my4 and
does not watch the mg and ms.

Table 1. Users rating for movies

UID \ MID | mq | m2 | ms3 | ma | ms

Ul 3 /4 |0 |1 |0
U2 2 |0 |1 |3 |0
u3 0 2 |1 |0 |5
Uy 1 /4 |5 |4 |3
Uus 4 |1 |2 |0 |1
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2.2 Cost-Sensitive Learning

Cost-sensitive learning has extended machine learning methods [5,10,11], where
classification plays an essential role. Minimizing the cost of misclassification and
avoiding the shortcomings of traditional classifiers have become the aims of cost-
sensitive learning [20]. Min et al. [14,15] aimed to decrease the test cost and
improve the classification accuracy.

Fan [6] proposed a misclassification cost-sensitive boosting method.
Pendharkar [17] designed a two-stage solution approach for solving misclassi-
fication cost minimizing feature selection problem. In our case, misclassification
cost is paid for wrong recommender behaviors. For example, the RS recommends
a movie to a costumer who dislikes, or do not recommend it when the type of
the song is just her favourite [24]. We also consider the promotion cost.

The contribution of promotion cost is to obtain the feedback of customers’
preference. Active learning algorithms can actively query the user for labels and
guide the acquisition of new knowledge suitable to update related information
[19,24]. Promotion cost in this paper is produced by sending coupons and dis-
counts to users.

2.3 Existing 3RS Problem

The existing three-way recommendation problem is stated as follows [24].

Problem 1. Existing three-way recommendation problem.
Input: Ua, My, R, Csxa,

Output: T,

Optimization objective: minimizing the average cost.

Ua, M4 and R have been mentioned in Sect. 2.1. C3y2 is a cost matrix with
fixed values. T is possible actions of a user-item pair according to three-way
decision. The detail is as follows.

Using Pawlak rough-set model [16], we define a subset X C U and obtain a
pair of concept lower and upper approximations:

apr(X) = {z € Ullz] € X}, (2)
apr(X) = {z e Ul[z] N X = 0}. (3)
Yao proposed the rules of three-way decision [22]. It divided the universe into

three disjoint regions: the positive region, the negative region and the boundary
region. They are expressed as POS(X), NEG(X) and BND(X) respectively:

POS(X) = apr(X), (4)
NEG(X) = U - apr(X), (5)
BND(X) = apr(X) — apr(X). (6)
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Yao et al. have been developing the Decision-theoretic rough set models
[4,12,23]. The expected cost associated with different actions is

R(aj|z) = Z/\(aj|wi)P(wz"I)- (7)

a; expresses one kind of n possible actions in the set T' = {a1,as,...,a,}, and
a;|z means we have taken action a; to object z. Let A(a;|w;) denote the loss of
taking action a; under the state w;. Let the set 2 = {wq,ws,...,wn} be the set
of all kinds of states. Let P(w;|x) be the conditional probability of classification.
For the Bayesian decision procedure, we define the set 2 = {X, X} to indicate
that the customers like or dislike the item recommended. Explicitly, we define the
set of actions T' = {ap,ap, an}. ap denotes that we classify an item into POS(X)
(recommend), ap denotes that we classify an item into BND(X) (promote) and
an denotes that we classify an item into NEG(X) (not recommend). So the cost
matrix Csxo is given by Table 2.

Table 2. Cost matrix

Action\Preference | X | X

ap App | APN
aB ABP | ABN
an ANP | ANN

The expected cost R(aj|z) associated with taking the individual actions can
be expressed as:

Rp = AppP(X|[z]) + Apn P(X[z]), (8)
Rp = AppP(X|[z]) + Apn P(X][z]), 9)
Ry = AvpP(X|[z]) + Ann P(X|[2]). (10)

X|[z
X

The Bayesian decision procedure suggests the following minimum-risk decision
rules [21,23]:

(P) If Rp < Ry and Rp < Rp, then decide z € POS(X);
(B) If Rg < Rp and Rp < Ry, then decide z € BND(X);
(N) If Ry < Rp and Rp < Rpg, then decide x € NEG(X).

There should be some constraints added. Let us first set the rule that each
item can be classified into only one region:

P(X|[2]) + P(X|[z]) = 1. (11)

Second, we limit the vales of different kinds of loss:
App < App < Anp, (12)
AnN <Ay < Apn. (13)



A Three-Way Recommender System for Popularity-Based Costs 283

The inequality (12) describes that if RS recommends an item that user likes, the
cost is less than or equal to the cost produced by the situation that RS promotes
an item that user likes. Both of the two kinds of loss must be less than the cost
of not recommending an item that user likes. According to (11) and (12), we can
derive and simplify our decision rules from(P)to(N) as follows:

(P1) If P(X|[z]) > « and P(X|[z]) > , then decide x € POS(X);
(B1) If P(X|[x]) < o and P(X|[z]) > B, then decide z € BND(X);
(N1) If P(X|[z]) < 8 and P(X|[z]) <, then decide x € NEG(X).

Here, o, 8 and +y are expressed as:

o ApPN — ABN (14)
(Apn — ABn)+ (AP — App)’

ABN — ANN
_ , 15
b (AN — AnN) + (Anp — ABP) (15)

APN — ANN

= . 16
K (ApN — ANN) + (ANp — APP) (16)
Additionally, the condition of rule (B1) should be o > . So we have
ANP — A App — A
NP — ABP BP — App (17)

)\BN_ANN APN_)\BN.

We also have 0 < § < a < 1. After tie-breaking, we can rewrite and simplify
our decision rules again:

(P2) If P(X]|[z]) > «, then decide x € POS(X);
(B2) If 8 < P(X]|[x]) < «, then decide € BND(X);
(N2) If P(X|[z]) < S, then decide z € NEG(X).

Then the existing recommendation approach employ the random tree to pre-
dict the probability P of a user-item pair. P determines the three possibilities of
T. It has proven that the three-way decision model has lowest average cost not
only on the training set but also on the testing set. So the threshold pair (o, 3)
is optimal.

3 The Proposed Approach

In this section, we first introduce a new problem with a cost function. We propose
three kinds of cost functions for different scenarios. We also discuss the parameter
settings for cost functions to satisfy our requirements, namely, unpopular items
are more desired. For items with different popularity, the cost matrix is different.
Third, we propose an algorithm to the new problem.
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3.1 Problem Statement
Our new problem is stated as follows.

Problem 2. Three-way recommendation with a cost function.
Input: Us, M4, R, cpPrM, CNP; CPN,

Output: T,

Optimization objective: Minimizing the average cost.

As discussed in Sect.3.1, U, is the demographic information, M4 is the
content information, and R is the rating information. For simplicity, the promo-
tion cost cpras is set to be fixed rather than variable. cyp,cpy are the mis-
classification functions where the argument of functions is the item popularity.
cyp and cpy are the misclassification cost for false positive and false negative,
respectively.

3.2 The Cost Function Design and Threshold Pairs

Our 3RSPC aims at promoting more unpopular items. Not every cost function
is fit for our 3RSPC, some of which would suitable for promoting the popular
ones. So some constraints should be added. In Sect. 1, we have mentioned that
the penalty of NP are more than that of PN at lower popularity. Based on the
three-way decision rules, it is conductive for promoting the unpopular that a
threshold pair (a, 3) should keep a certain interval.

We sample the popularity to express the popularity as a vector conveniently.
We choose eleven points on the popularity, and averagely divide this range [0, 1]
into ten intervals. So the popularity is expressed as 0 through 10. 0 and 10
indicate the lowest and highest popularity respectively. We have a linear cost of
PN between 60 and 80, and the common difference is equal to (80 —60)/10 = 2.
The cost of NP are from 100 down to 60, and the common difference is equal to
(60 — 100)/10 = —4. The cpn and cyp are shown in Fig. 1.
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Naturally, the optimal setting of thresholds a and ( are dependent on the
misclassification costs. Therefore there are essentially two threshold functions
fas f3:(0,1) — R. Let us assume initially that cpras is equal to 20. Equations
(14) and (15) are re-expressed as

20

fa=1-— , (18)
CPN
and
20
fo=—. (19)
CNP

Figure 2 shows that both a and § are increasing with the popularity.

0.8+
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PUPSR S *
1} - *- Alpha and Beta
®-9-9rma
0.6 S—0—O8e
(%2
[
=
©
>
0.4
0.2 T — |

Popularity

Fig. 2. a and 8 in 3RSPC

3.3 Favorite Probability Prediction

We employ the M-distance [26] to solve the problem of the favorite probability.
The detail is stated as follows.

Problem 3. Favorite probability prediction.
Input: R, Radius,
Output: P.

R is the rating information of dataset, and Radius is a parameter to determine
a range of neighbours. P describes a probability that a user likes a movie. We
employ leave-one-out approach to predict the favorite probability. The content
of the approach is as follows [3,26]. Suppose n is the rating times of users for
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the same item. We remove one of the n training samples, and test the resulting
hypothesis on the training example that was left out.

Then we compute the average score of the n — 1 samples, and set a radius
to obtain a range. For example, we predict the probability of the user-item pair
(u1,my). First, we compute the average score 3.2 except the score 4 at (uy,mq).
Second, we set a radius 0.3 to obtain a range [2.9,3.5]. In this range, there are
23 ratings but only 10 records above the threshold. So the favourite probability
is 10/23 = 0.435.

There is a special case that only one user rates for a movie before computa-
tion. In leave-one-out algorithm, the denominator will be 0. So we consider the
average score is equal to 3.

4 Experiments

Table 3 has shown us the classification results of our algorithm.

Table 3. The result of classification

Action\Preference | Like | Dislike
Recommend 27284 | 6556
Promote 26219 | 27212
Not recommend 1872 | 10857

We compute the success rate of recommendation R,... and success rate of not
recommendation R, ec:

PP 27284
rec — = =81 ’ 2
R PP+ PN 27284 + 6556 81% (20)
NN 10857
Rnrec = = 85%. (21)

NP+ NN 1872 + 10857

Figure 3 demonstrates the distributions of instances in each class. It shows
the classified instances change when the popularity changes with a interval of 1.
The items with lower popularity (less than 4) in Fig. 3(a) and (c¢) have account for
71% and 78% (19498/27284 = 0.71, 20563/26219 = 0.78). So, we can conclude
that the unpopular items are recommended well in our 3RSPC.

Compared with [24], even if our costs of PN and NP are more than that of
[24], we still obtain the lower average cost than that of [24] (Table4).
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Table 4. Comparing the results of [24] and 3RSPC

[24] 3RSPC
Cost of PN |50 60-80
Cost of NP |40 100-60
Average cost | 17.25(testing set) | 16.75
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5 Conclusion

We have proposed a new three-way recommender system considering the variable
cost. The new cost is a function w.r.t the popularity of the item. Compared with
the existing 3RSs, our approach obtains the lower average cost. The future work
will combine the theory of sequential three-way decision to classify the instance
in boundary.

Acknowledgements. This work was supported in part by the National Natural Sci-
ence Foundation of China (Grants 61379089, 41604114), the Innovation and Entrepre-
neurship Foundation of Southwest Petroleum University (Grant SWPUSC16-003), and
the Natural Science Foundation of the Department of Education of Sichuan Province
(Grant 16ZA0060).

References

1. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algo-
rithms for collaborative filtering. In: Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, pp. 43-52. Morgan Kaufmann Publishers
Inc. (1998)

2. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: Proceedings of the Fourth ACM Conference on
Recommender systems, pp. 39-46. ACM (2010)

3. Dong, M.G., Wang, N.: Adaptive network-based fuzzy inference system with leave-
one-out-cross validation approach for prediction of surface roughness. Appl. Math.
Model. 35(3), 1024-1035 (2011)

4. El-Monsef, M.A., Kilany, N.M.: Decision analysis via granulation based on general
binary relation. Int. J. Math. Math. Sci. 2007, 1-13 (2007). doi:10.1155/2007/
12714. Article ID 12714. Hindawi Publishing Corporation

5. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the Sev-
enteenth International Joint Conference on Artificial Intelligence, pp. 973-978.
Lawrence Erlbaum Associates Ltd. (2001)

6. Fan, W., Stolfo, S.J., Zhang, J.X., Chan, P.K.: Adacost: misclassification cost-
sensitive boosting. In: ICML, pp. 97-105 (1999)

7. Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B., Herlocker, J.L.,
Riedl, J.T., et al.: Combining collaborative filtering with personal agents for better
recommendations. In: AAAT/TAAI pp. 439-446 (1999)

8. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst. (TOIS) 22(1), 5-53 (2004)

9. Jia, X., Zheng, K., Li, W., Liu, T., Shang, L.: Three-way decisions solution to filter
spam email: an empirical study. In: Yao, J.T., Yang, Y., Stowinski, R., Greco, S.,
Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 287-296.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32115-3_34

10. Kukar, M., Kononenko, I.: Cost-sensitive learning with neural networks. In: ECAI,
pp. 445-449 (1998)

11. Li, X.J., Zhao, H., Zhu, W.: A cost sensitive decision tree algorithm with two
adaptive mechanisms. Knowl.-Based Syst. 88, 24-33 (2015)


http://dx.doi.org/10.1155/2007/12714
http://dx.doi.org/10.1155/2007/12714
http://dx.doi.org/10.1007/978-3-642-32115-3_34

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A Three-Way Recommender System for Popularity-Based Costs 289

Liu, D., Li, T., Hu, P., Li, H.: Multiple-category classification with decision-
theoretic rough sets. In: Yu, J., Greco, S., Lingras, P., Wang, G., Skowron, A.
(eds.) RSKT 2010. LNCS, vol. 6401, pp. 703-710. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16248-0_95

Liu, D., Li, T.R., Ruan, D.: Probabilistic model criteria with decision-theoretic
rough sets. Inf. Sci. 181(17), 3709-3722 (2011)

Min, F., He, H.P., Qian, Y.H., Zhu, W.: Test-cost-sensitive attribute reduction.
Inf. Sci. 181(22), 4928-4942 (2011)

Min, F., Hu, Q.H., Zhu, W.: Feature selection with test cost constraint. Int. J.
Approx. Reas. 55(1), 167-179 (2014)

Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Theory
and Decision Library D. Springer Science & Business Media, Heidelberg (2012)
Pendharkar, P.C.: A misclassification cost risk bound based on hybrid particle
swarm optimization heuristic. Expert Syst. Appl. 41(4), 1483-1491 (2014)
Powers, D.M.: Evaluation: from precision, recall and f-measure to ROC, informed-
ness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37-63 (2011)
Settles, B.: Active learning literature survey. Computer Sciences Technical report
1648. University of Wisconsin-Madison (2009)

Tapkan, P., Ozbakir, L., Kulluk, S., Baykasoglu, A.: A cost-sensitive classification
algorithm: BEE-miner. Knowl.-Based Syst. 95, 99-113 (2016)

Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Syst. 20(5), 287297
(2003)

Yao, Y.Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180(3), 341—
353 (2010)

Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating con-
cepts. Int. J. Man Mach. Stud. 37(6), 793-809 (1992)

Zhang, H.R., Min, F.: Three-way recommender systems based on random forests.
Knowl.-Based Syst. 91, 275-286 (2016)

Zhang, H.R., Min, F., Shi, B.: Regression-based three-way recommendation. Inf.
Sci. 378, 444-461 (2017)

Zheng, M., Min, F., Zhang, H.R., Chen, W.B.: Fast recommendations with the
m-distance. IEEE Access 4, 1464-1468 (2016)


http://dx.doi.org/10.1007/978-3-642-16248-0_95

Three-Way Decisions Based on Intuitionistic
Fuzzy Sets

Xiaoping Yang!?®) and Anhui Tan'?

1 School of Mathematics, Physics and Information Science,
Zhejiang Ocean University, Zhoushan 316022, Zhejiang, People’s Republic of China
yxpzyp@sina.com, tananhui86@163.com
2 Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang
Province, Zhoushan 316022, Zhejiang, People’s Republic of China

Abstract. The intuitionistic fuzzy set is introduced to incomplete infor-
mation systems, in which the membership and non-membership degrees
that an object belongs to a concept are constructed by the rough set
approximations based on similarity relation. Then, by combining the
intuitionistic fuzzy set and three-way decisions, we proposed two evalu-
ation functions to generate decision rules and make three-way decisions
in incomplete information systems.

Keywords: Intuitionistic fuzzy sets + Incomplete information systems -
Three-way decisions + Rough sets

1 Introduction

In 1982, Pawlak [14] originally proposed rough set theory to deal with uncer-
tain knowledge in information systems. In this theory, the notions of lower and
upper approximations are introduced, by which a universe is divided into three
nonempty and disjoint regions: positive, negative and boundary regions. By
this means, knowledge hidden in information systems may be unravelled and
expressed in the form of decision rules. Concretely, an object is contained in
the positive region of a set if and only if its equivalence class is fully contained
in the set. This results in the rigidness of partition and makes positive region
small. To resolve this problem, decision-theoretic rough sets have been proposed
and studied as generalizations of Pawlak rough sets [16,17,20-23,31,32]. Many
methods were used to research decision-theoretic rough sets. To get the theory
frame, three-way decisions are further used in the interpretation of the rough
set by three regions [24-26]. Many studies further investigated extensions and
applications of three-way decisions [2,4,5,7,10-13,18,19,28].

In 1965, Zadeh [29] proposed the concept of fuzzy set in which the member-
ship degree specified as a real number in the unit interval was used to describe
the clingingness of objects to a set. Fuzzy set theory is widely used in many
fields nowadays. Nevertheless, it is difficult for a fuzzy set to express both the
positive and negative information of knowledge. For this reason, Atanassov [1]
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proposed the concept of intuitionistic fuzzy set, in which both membership and
non-membership degrees are used to deal with uncertain information, and their
sum does not exceed 1. Thus, an intuitionistic fuzzy set expresses the positive
and the negative information more flexibly than a fuzzy set.

There have been many studies in combining fuzzy sets or intuitionistic fuzzy
sets with rough sets [3,6,15,30]. As we know, the membership, non-membership
and hesitancy degrees in intuitionistic fuzzy sets correspond to the positive, neg-
ative and boundary regions in three-way decisions, respectively. This means, the
intuitionistic fuzzy sets and three-way decisions may be combined for improv-
ing their individual performance in decision making. In decision-theoretic rough
set, the evaluation functions are usually related to condition probabilities and a
pair of thresholds («, 3) need to be chosen. In this paper, we use membership
degrees in evaluation functions instead of condition probabilities. Further more,
we try to omit the pair of thresholds by comparing the membership degrees in
some cases. We apply intuitionistic fuzzy sets to deal with the data in incom-
plete information systems and propose three-way decisions for the incomplete
information systems.

2 Incomplete Information Systems and Intuitionistic
Fuzzy Sets

We will briefly introduce the basic notions of incomplete information systems
and intuitionistic fuzzy sets which will be used throughout the paper.

2.1 Incomplete Information Systems

A pair S = (U, AT) is referred to as an information system, where U is a non-
empty finite set of objects called the universe of discourse, AT is a non-empty
finite set of attributes such that a : U — V, for any a € AT, where V, is
called the value set of a. It may happen that some attribute values of objects are
missing. We will denote the missing value by “«”. A system S = (U, AT) with
missing values is called an incomplete information system [8,9].

Let S = (U, AT) be an incomplete information system, and A C AT, a
similarity relation on U is defined as follows [8]:

SIM(A) ={(z,y) € U x UlVa € A,a(z) = a(y) or a(x) = * or a(y) = *}.

Sa(x) ={y € Ul(xz,y) € SIM(A)} denotes the set of all objects similar to x
with respective to A.

Example 2.1. Table1l [8] depicts an incomplete information system S =
(U, AT), where U = {21, x2, 3,24, 5,26}, AT = {P,M,S,X}, and P,M,S, X
stand for Price, Mileage, Size, Max-Speed, respectively.

Let A = {P,S, X}, we have Sa(z1) = {21}, Sa(z2) = {22, 26}, Sa(zs) =
{x3}, Sa(za) = {za,25}, Salws) = {w4, 25,26}, Sa(xs) = {x2,75,76}. These
similarity sets constitute a cover of U.
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Table 1. An incomplete information system

Car | Price | Mileage | Size Max-Speed
z1 | High | High Full Low

zo | Low |* Full Low

x3 | * * Compact | High

x4 | High * Full High

x5 | ¥ * Full High

x¢ | Low | High Full *

A decision table (DT) is an information system S = (U, AT U {d}), where
d ¢ AT and * ¢ Vy, d is a distinguished attribute called the decision, and the
elements of AT are called conditions. If S = (U, AT U {d}) is an incomplete
information system, then the DT is called an incomplete decision table.

Example 2.2. Table 2 [8] depicts an incomplete decision table S'= (U, ATU{d}).

Table 2. An incomplete decision table

Car | Price | Mileage | Size Max-Speed | d

z1 | High | High Full Low Good
zo |Low |* Full Low Good
x3 | * * Compact | High Poor
z4 | High | * Full High Good
x5 | ¥ * Full High Excel
z¢ | Low | High Full * Good

For X C U and A C AT, the lower and upper approximations of X are
defined by similarity relation as follows [8]:

AX ={z e U|Sa(z) C X} ={z € X|Sa(x) C X},
AX ={zeU|Sa(z)NX #0} = U{SA(m)|x € X}.
Obviously, AX is the set of objects that belong to X with certainty, AX is the
set of objects that possibly belong to X, ~ AX is a set of objects that impossibly

belong to X. Denote BN4X = AX — AX, which is called the boundary set, and
objects in BN 4 X may or may not belong to X.

2.2 Intuitionistic Fuzzy Sets

Let U be a non-empty finite set of objects called the universe of discourse, an
intuitionistic fuzzy set X on U is defined as follows [1]:

X = {{z, px (@), 7x () |z € U},
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where px(z) € [0,1] is called the degree of membership of z in X and yx(z) €
[0,1] is the degree of non-membership of z in X, and 0 < ux(z) + yx(z) < 1.
Denote x (x) = 1 — pux (z) — vx (z), which is called the hesitancy degree of the
element z in X.

2.3 Intuitionistic Fuzzy Sets in Incomplete Information Systems

Now we try to introduce the intuitionistic fuzzy sets to incomplete informa-
tion system. We present the definition of intuitionistic fuzzy sets in incomplete
information system.

Let S = (U, AT') be an incomplete information system, X C U and A C AT
Denote |X| as the cardinality of set X. Define

X" = {<m7ANX($)7 A’YX(x)Hl' € U}a
Sa(z)NA Sa(z)N~A
where Aux(x) = [Sa(@)nAX]| “*éA)&ﬂX‘, Ayx(z) = [Sa(@o~AX] A|(Sir2r)\ X|
According to the definition, Aux : U — [0,1], Ayx : U — [0,1], and for all
x €U, Aux(z) + Ayx(z) < 1. So X* is an intuitionistic fuzzy set on U. We
denote

[Sa(z) NAX| |Sa(z)N ~AX| |Sa(z)NBNaAX]|

Amx(w) = 1= Apx(@) = Ayx (o) = 1= =05 5a (@] 154 @)]

Obviously, Apx (), Ayx (x) and Amx (x) indicate the degrees of membership,
non-membership and hesitancy, respectively.

3 Three-Way Decisions Based on Intuitionistic Fuzzy
Sets

In this section, we study the three-way decisions. A basic idea of three-way
decisions is to classify a universe into three regions, called the positive, negative
and boundary regions, respectively, by using an evaluation function and a pair
of thresholds [27].

3.1 Evaluation Functions for Three-Way Decisions

There are three degrees in intuitionistic fuzzy sets. If the membership degree of
x belonging to X is large and the non-membership degree of x belonging to X
is small, we decide x belongs to the positive region. If the membership degree
of x belonging to X is small and the non-membership degree of x belong to X
is large, we decide z belongs to the negative region. If both of the membership
and non-membership degrees of x belonging to X are small, the hesitancy degree
must be large, we decide x belongs to the boundary region. Thus, we give out
evaluation function and decision Rule I as follows:



294 X. Yang and A. Tan

Rule T

(P) If Apx(x) — Ayx(x) > a, decide z € POS(X);

(N) If Apx(x) — Avx(z) < 3, decide z € NEG(X);

(B) If 8 < Apx(z) — Avyx(x) < «, decide x € BND(X)

The pair of thresholds (o, ) (0 < @ < 1,—1 < 8 < 0) need to be chosen
according to the practical background. We usually suggest that « = 0.5, § =
—0.5 for convenience.

Since the three degrees in intuitionistic fuzzy sets describe the extent of x
belonging to the three regions, it is reasonable to make decision by comparing
the three degrees. We give out Rule II as follows:

Rule IT

(P) If Aux(x) > Ayx(x), Aux(z) > Arnx(x), decide z € POS(X);

(N) If Ayx(x) > Apx(z), Ayx(z) > Anx(x), decide z € NEG(X);

(B) Otherwise, decide + € BND(X).

In Rule II, @ and 3 are unnecessary.

3.2 Application of the Intuitionistic Fuzzy Sets in Incomplete
Information Systems

Obviously, Apx(z) describes the membership degree of z € AX. Avyx(x)
describes the non-membership degree of # ¢ AX. Anx(x) describes the mem-
bership degree of x € BN4X which implies that z may or may not be in X.
Thus, given an object z, we can figure out all its degrees of membership, non-
membership and hesitancy, and get the intuitionistic fuzzy sets. By these three
degrees we decide which class it might belong to.

Example 3.1. Let us consider Table2 which depicts an incomplete decision
table S = (U, AT U {d}), where U = {x1, 22, x3, x4, 25,26}, AT = {P,M,S, X},
{d} = {Good, Poor, Excel}. The decision classes classified by decision attribute
are Dy, Dy and Dj, namely, Dy = {x;|d(x;) = Good} = {z1,x2,24,26}, Dy =
{z;]d(x;) = Poor} = {x3}, D3 = {x;|d(z;) = Excel} = {x5} which mean good,
poor and excellent car sets, respectively. They constitute a partition of U. From
the incomplete decision table, we decide which class a car might belong to by its
condition attribute values.

First, we classify U with similarity relation according to the chosen sub-
set of attributes. Let A = AT, U/SIM(A) = {Sa(x1),Sa(x2),Sa(x3),Sa(x4),
Sa(ws), Sa(we)}, where Sa(z1) = {a1}, Sa(x2) = {2, w6}, Salws) = {as},
Sa(re) = {za, 25}, Sa(zrs) = {z4, 5,26}, Sa(we) = {22, x5, z6}. These similar
sets constitute a cover of U. We calculate the lower and upper approximations,
the negative and boundary of D; and list these results in Table 3.

All kinds of the degrees of membership and non-membership belonging to
each D; are listed in Table 4.

For x1, from Table 4 we see the degree of membership of 1 € D; is 1 and that
of non-membership is 0; Let a = 0.5, 6 = —0.5, Aux(z1) — Ayx(z1) =1 > a,
according to Rule I, decide 21 € POS(D;).

For za, Apx(x2) — Ayx(x2) = 0.5, decide zo € BN D(Dy).
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Table 3. The approximations, the negative and boundary sets

D; AD; AD; ~ AD; BNAsD;
{z1, 29,4, w6} | {z1, 22} | {21, 22, 4, w5, 26} | {23} {z4,25, 76}
{z3} {z3} {z3} {21, 22,24, 25,26} | 0

{z5} 0 {4, 5,76} {z1, 2,23} {4, 5,6}

Table 4. The degrees of membership and non-membership

x; | App, (2:) | Ayp, (i) | App, (2:) | Ayp, (i) | App, () | Avps ()
x| 1 0 0 1 0 1

2| 1/2 0 0 1 0 1/2

T3 1 1 0 0 1

T4 0 0 1 0 0

5 0 0 1 0 0

w6 | 1/3 0 0 1 0 1/3

For x5, Aux(zs) — Ayx(z3) =0—1= —1, decide 3 € NEG(D»).
For x4, —0.5 < Apx(z4) — Ayx(24) < 0.5, decide x4 € BND(D»).
For x5, —0.5 < Apx(z5) — Ayx(x5) < 0.5, decide x5 € BN D(D»).
For zg, —0.5 < Aux(z¢) — Avyx(x6) < 0.5, decide x4 € BN D(Dy).
SO, POS(Dl) = {Ltl},NEG(Dl) = {IL’g},BND(Dl) = {ZL'Q,IE4,CC5,’I’6}.

In the same way, we have

POS(DQ) = {ZC3}; NEG(DQ) = {xl,xg,x4,x5,m6}; BND(DQ) = @

POS(D3) = @; NEG(D3) = {Il,l‘g}; BND(D3) = {mg,x47$571‘6}
The regions above are listed as Table 5.

Table 5. The regions got by Rule I

D; POS(D:) | NEG(D;) BND(D;)
{z1,®2, 24,26} | {@1} {z3} {z2, 4, 5,26}
{zs} {zs} {z1, 22, w4, 25,26} | 0

{z5} 0 {z1,23} {®2, %4, 75,26}

We also make three-way decisions with Rule II.

For z1, App, (x1)> Ayp, (z1), App, (1) > Amp, (z1), decide 21 € POS(Dy).
In the same way, we decide 3 € NEG(D), x2, 24, 5,26 € BND(Dy).
We list all three regions in Table 6

The three regions in Table5 and 6 happened to be the same.

We make decisions according to Table 5.
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Table 6. The regions got by Rule II

D; POS(D:) | NEG(D;) BND(D;)
{@1, 22, T4, 26} | {21} {zs} {x2, 4,75, T6}
{z3} {z3} {z1, 2, 4, w5, 26} | 0

{5} 0 {z1,23} {z2,24, 5,26}

For x1, we see the 1 € POS(D;); z1 € NEG(D2); vr1 € NEG(Ds3). So we
decide x7 is a good car, not a poor car, not an excellent car.

For x5, we see o € BND(D1), v € NEG(D3) and 2o € BND(D3); It is
not certain s is a good car; It is not certain x5 is an excellent car, but it is
certain x, is not a poor car.

For xg, we see 3 € NEG(Dy), x5 € POS(D3) and z3 € NEG(Ds3). So it is
certain x3 is not a good car; it is certain x3 is a poor car, it is certain x3 is not
an excellent car.

For x4, x5 and xg, similar to za, we see they are in BND(D;), NEG(D-)
and BN D(Ds); So it is not certain they are good cars or excellent cars, but it
is certain they are not poor cars.

4 Making Three-Way Decision in Incomplete Information
Systems

The main purpose of three-way decision is to make decisions by knowledge dis-
covered in training sample database. There is no equivalence relation in incom-
plete information systems, so we use similarity relation instead of equivalence
relation to make decision with uncertainty. We take the incomplete decision table
as a training sample table and make decision according to the acquired knowl-
edge. For an object y with same attribute values in training sample table, we
make decision as in above section. For the object y with different attribute values
from the training sample table, if y is compatible with objects in training sample
table, we also use similarity relation to deal with y. In incomplete information
system, some attribute values are unknown, these unknown values mean all pos-
sible values. Given an object y outside the incomplete decision table, similarity
set of the object S(y) might be found, objects in similarity set from the table
may be used for making decision. The more missing data there are in incomplete
decision table, the more objects outside the table will be compatible with the
objects in the training table and may be made decision but with less accuracy.
The more missing attribute values are in an object y, the larger its similarity set
S(y) is. This results in larger boundary region and uncertainty.

Now we make decisions. For a car which has the same attribute values as one
of the cars in U, we can use the way as in above section to discuss the car. For
a car y which has the different attribute values from anyone in U, we first find
the similar set of y in training sample table. Then, we find intuitionistic fuzzy
set {{y, App, (y), Ayp, (y))}. At last, we make three way decisions. We discuss it
by illustration in Example 4.1.
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Example 4.1. Take Table2 as a training sample table. Given cars y;, y» and
ys with attribute values listed in Table 7. We discuss which class each car might
belong to.

Table 7. The attribute values of the cars

Car | Price | Mileage | Size | Max-Speed
vy | * High Full | Low

y2 | ¥ * Full | Low

ys | * * * High

We first calculate the similar set of y; according to Table 1, that is, Sar(y1) =

{z1, 22,26}, Sar(y2) = {71, 22,26}, Sar(ys) = {23, 24,75, 76}. Then we get all
the degrees of membership and non-membership listed in Table 8.

Table 8. The degrees of membership and non-membership of the car y;

Yi | App, (i) | Avpy (yi) | App, (yi) | Avps (yi) | Apps (yi) | Avps (yi)
v 2/3 0 0 1 0 2/3
y2 | 2/3 0 0 1 0 2/3
ys |0 1/4 1/4 3/4 0 1/4

For y;, from Table 8, we see the degree of membership of y; € D; is 2/3, and
that of non-membership is 0; Let a = 0.5, § = —0.5, according to Rule I,

App, (1) — Ayp, (y1) =2/3,  decide  y, € POS(D1);

App,(y1) — Ayp. (1) = -1, decide y1 € NEG(D>);

Apps(y1) — Avp,(y1) = —=2/3, decide  y; € NEG(Ds).

Thus, we decide y; is a good car, y; is not a poor car, y; is not an excellent
car.

For ys has the same degrees of membership and non-membership as y; in
Table 8, we decide y2 is good car, not a poor car and not an excellent car.

For ys,

App, (y3) — Avp, (y3) = —1/4, decide y3 € BND(Dy);

A/,LDZ (y3) — 14’}/[)2 (y3) = —2/47 decide Y3 € BND(DQ),

AP“D3 (y3) - ArYD3 (y3) = _1/47 decide Y3 € BND(D?))

So, we can not decide whether y3 is a good car or not, y3 is a poor car or
not, ys3 is an excellent car or not.

We also use Rule II to make decisions.

App, (y1) =2/3 > Avp, (y1), App, (y1) > Amp, (y1), decide y1 € POS(D1);

Ayp,(y1) = 1> App,(y1), Avp, (1) > Amp,(y1), decide y1 € NEG(Ds);

Avp,(y1) =2/3 > App, (Y1), Avps (y1) > Amp, (y1), decide y1 € NEG(Dy).

According to Rule II, y; is a good car, y; is not a poor car, y; is not an
excellent car.

For ys, we decide y» is a good car, not a poor car and not an excellent car
for the same reason.
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For ys,

Aﬂ-Dl (y3) = 3/4 > A/LD1 (y3)’ Aﬂ-Dl (y3) > A7D1 (y3)7 decide Yys€ BND(D1)7
A’YDz (y3) = 3/4 > AN“DZ (y3)7 A7D2 (y3) > A7TD2 (y3)7 decide ys € NEG(DQ)a
Amp,(ys) = 3/4 > Aup,(ys), Amp,(ys) > Avp,(ys), decide y3 € BND(Ds).
So, it is not certain y3 is a good car. It is certain y3 is not a poor car.

It is not certain y3 is an excellent car.

5 Conclusion

Three-way decision has been applied to many fields. It is a useful method to deal
with uncertainty. Owing to the rampant existence of incomplete information sys-
tems in real life, it is significant to find a suitable way to make a reasonable deci-
sion from incomplete information systems. In this paper, intuitionistic fuzzy sets
have been introduced in incomplete information systems, in which membership,
non-membership and hesitancy degrees of an object belonging to a concept have
been defined. Using the three degrees in the intuitionistic fuzzy sets, we have
proposed evaluation functions to make three-way decisions. The study in this
paper has put forward three-way decisions in incomplete information systems
based on intuitionistic fuzzy sets.
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Science Foundation of China (No. 61602415).
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Abstract. A new framework of clustering is proposed inspired by the
theory of three-way decisions, which is an alternative formulation dif-
ferent from the ones used in the existing studies. The novel three-way
representation intuitively shows which objects are fringe to the cluster
and it is proposed for dealing with uncertainty clustering. Instead of
using two regions to represent a cluster by a single set, a cluster is rep-
resented using three regions through a pair of sets, and there are three
regions such as the core region, fringe region and trivial region. A cluster
is therefore more realistically characterized by a set of core objects and a
set of boundary objects. In this paper, we also illustrate an algorithm for
incomplete data by using the proposed evaluation-based three-way clus-
ter model. The preliminary experimental results show that the proposed
method is effective for clustering incomplete data which is one kind of
uncertainty data. Furthermore, this paper reviews some three-way clus-
tering approaches and discusses some future perspectives and potential
research topics based on the three-way cluster analysis.

Keywords: Clustering + Three-way decision theory - Uncertainty -
Three-way clustering

1 Introduction

Clustering is a method that uses unsupervised learning and it has been widely
applied to many areas such as information retrieval, image analysis, bioinformat-
ics, networks structure analysis and a number of other applications [16]. Often,
there is uncertainty in the real world. To take the social networks services as
an example, the user’s interests are changing and the interest community is also
varied. The study of artificial intelligence and cognitive science had observed
a well recognized feature of human intelligence, that is, in the cognition and
treatment of real world problems, human often observe and analyze the same
problem from different levels or different granularity. The process of clustering
just reflects the process of making decision in different levels. That is, clustering
is a process of deciding whether an object belongs to a cluster or not on a certain
granularity level.

© Springer International Publishing AG 2017
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Let us take the objects in Fig.1 as a universe. For the finest granularity
clustering result, each object is taken as a single cluster. For a coarser granularity
clustering result, the objects may be clustered in two classes. For the coarsest
granularity clustering result, all objects are included in a large cluster. In the
process of clustering, if the known information is enough, a certain clustering
result corresponding to a granularity will be obtained; if the known information
is not sufficient to judge whether an object belongs to a cluster, it needs further
information to make decision.

XS. @

Fig. 1. Schematic diagram of a data set Fig. 2. Schematic diagram of cluster-
ing (Color figure online)

Let us observe Fig. 1 again. When we observe the universe in view of a gran-
ularity level, we see that there are two distinct clusters, the red one and the
yellow one shown in Fig. 2. Then, let us observe x; and x5, they might belong to
the red cluster, but it is also possible that they belong to the yellow cluster. One
of the solving strategies is that an object “determinately” belongs to different
clusters. In view of this strategy, it is often referred to some terminologies such
as soft clustering, fuzzy clustering, or an overlapping clustering; in other words,
an object can belong to different clusters. We continue to observe x3 and x4. It
is absolutely reasonable that we assign them into the red cluster. It is the same
to x5 and xg. The results are shown in Fig. 3 and it is a typical two-way result
of overlapping (soft) clustering. Actually, this kind of clustering strategy is a
two-way decision result, namely, it decides that an object belongs to a certain
cluster or not belongs to this certain cluster. At present, researches are basically
based on the two-way decisions. However, the two-way result can not intuitively
reveal the fact that x3 and x4 are the fringe objects of the red cluster, the same
to x5 and xg. By contrast, Fig. 4 depicts a three-way clustering result, where x1,
Xg, X3 and x4 are assigned into the fringe regions of the red cluster.

Fig. 3. The two-way clustering result Fig. 4. The three-way clustering result
(Color figure online)
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One usually makes a decision based on available information and evidence.
However, the information acquisition is usually a dynamic process. Since the
current information is not sufficient, we can produce another solution to the
uncertain clustering problem. For those objects which are difficult to make deci-
sion at present, we can put forward a two-way decisions result after game playing
under the existing knowledge system; we can also produce a three-way decisions
result, which makes decisions exactly for these objects which have enough infor-
mation and waits for new information to make further decisions for those objects
whose information is not sufficient. This is a typical idea of three-way decisions.

The three-way decision method represents a concept using three regions
instead of two. This three-way decisions scheme has not been considered explic-
itly in theories of machine learning and rule induction, although it has been
studied in other fields. There are three relationships between an object and a
cluster: (1) the object certainly belongs to the cluster, (2) the object certainly
does not belong to the cluster, and (3) the object might or might not belong to
the cluster. It is a typical three-way decision processing to decide the relationship
between an object and a cluster. Such relationships will inspire us to introduce
the three-way decisions into the cluster analysis problem in this paper.

2 Related Work

A common assumption underlying many cluster analysis methods is that a clus-
ter can be represented by a single set, where the boundary of the cluster is crisp.
The crisp boundary leads to easy analytical results but may be too restrictive for
some practical applications. Several proposals have been made to reduce such a
stringent assumption.

In the fuzzy cluster analysis, it is assumed that a cluster is represented by
a fuzzy set that models a gradually changing boundary [6]. However, a fuzzy
clustering provides a quantitative characterization of the unclear cluster bound-
ary at the expense of losing the qualitative characterization that better shows
the structures provided by a clustering. To resolve this problem, Lingras and
his associates [12,13] studied rough clustering and interval set clustering. Yao
et al. [20] represented each cluster by an interval set instead of a single set as
the representation of a cluster. Chen and Miao [3] described a clustering method
by incorporating interval sets in the rough k-means. The basic idea of these
work is to derive and describe a cluster by a pair of lower and upper bounds.
By describing a cluster in terms of a pair of crisp sets, one recovers the qual-
itative characterization of a cluster. Most of these algorithms are explained in
rough set terminology and an equivalence relation that is needed for defining
approximations is not explicitly referred to.

The main objective of this paper is to extend cluster analysis by represent-
ing a cluster with two sets. This leads to the introduction of three-way cluster
analysis. Furthermore, the strategy of three-way cluster analysis does not require
an equivalence relation. Objects in the core region are typical elements of the
cluster and objects in the fringe region are fringe elements of the cluster. That
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is, a cluster is more realistically characterized by a set of core objects and a set
of fringe objects.

The essential ideas of three-way decisions are commonly used in everyday
life and widely applied in many fields and disciplines including medical decision-
making, social judgement theory, hypothesis testing in statistics, management
sciences and peer review process. Therefore, Yao [17,18] introduced and studied
the notion of three-way decisions, consisting of the positive, boundary and nega-
tive rules. Three-way decisions construct from three regions which are associated
with different actions and decisions.

Recently, the three-way decisions approach has been achieved in some areas
such as decision making [1,8-11], email spam filtering [31], clustering analysis [21,
22], and so on [2,7,19,26-28,30]. We also proposed some clustering approaches
based on the three-way decisions [23-25]. In this paper, we first formalize the
representation of a cluster with two sets, then we illustrate a clustering approach
for incomplete data based on the proposed framework.

3 Framework of Three-Way Clustering

3.1 Representation of Three-Way Clustering

Let U = {x1, -+ ,Xp, - ,Xn} be a finite set, called the universe or the reference
set. X,, is an object which has D attributes, namely, x,, = (z}, -,z ... zD).
x¢ denotes the value of the d-th attribute of the object x,,, where n € {1,--- , N},

and d € {1,---, D}. The result of clustering scheme C = {C!,--- ,C¥ ... CK}
is a family of clusters of the universe, in which K means this universe is composed
of K clusters.

According to Vladimir Estivill-Castro, the notion of a “cluster” cannot be
precisely defined, which is one of the reasons why there are so many clustering
algorithms [4]. There is a common denominator: a group of data objects. Cluster
analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some sense or
another) to each other than to those in other groups (clusters).

In the existing works, a cluster is usually represented by a single set, namely,
Ch = {xk ... xk ... ’Xfck\}v abbreviated as C' without ambiguous. From the
view of making decisions, the representation of a single set means that, the
objects in the set belong to this cluster definitely, the objects not in the set do
not belong to this cluster definitely. This is a typical result of two-way decisions.
For hard clustering, one object just belong to one cluster; for soft clustering,
one object might belong to more than one cluster. However, this representation
cannot show which objects might belong to this cluster, and it cannot show the
degree of the object influence on the form of the cluster intuitively. As discussed
before, the use of three regions to represent a cluster is more appropriate than
the use of a crisp set, which also directly leads to three-way decisions based
interpretation of clustering.
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In contrast to the general crisp representation of a cluster, we represent a
three-way cluster C' as a pair of sets:

C = {Co(C), Fr(C)}. (1)

Here, Co(C) C U and Fr(C) CU. Let Tr(C) =U — Co(C) — Fr(C). Then,
Co(C), Fr(C) and Tr(C) naturally form the three regions of a cluster as Core
Region, Fringe Region and Trivial Region respectively. That is:

CoreRegion(C) = Co(C),
FringeRegion(C) = Fr(C), (2)
Trivial Region(C) =U — Co(C) — Fr(C).

If x € CoreRegion(C), the object x belongs to the cluster C' definitely; if x €
FringeRegion(C'), the object x might belong to C; if x € Trivial Region(C),
the object x does not belong to C' definitely.

These subsets have the following properties.

U=Co(C)UFr(C)uTr(C),

Co(C)NFr(C) =10, 3)
Fr(C)nTr(C) =10,

Tr(C)NnCo(C) = 0.

If Fr(C) = 0, the representation of C in Eq. (1) turns into C' = Co(C); it
is a single set and Tr(C) = U — Co(C). This is a representation of two-way
decisions. In other words, the representation of a single set is a special case of
the representation of three-way cluster.

Furthermore, according to Formula (3), we know that it is enough to represent
expediently a cluster by the core region and the fringe region.

In another way, we can define a cluster scheme by the following properties:

(i) Co(C*) #£0,1 <k < K; 4
(ii) UCo(CHYUFr(C*)=U,1<k<K. (4)

Property (7) implies that a cluster cannot be empty. This makes sure that a
cluster is physically meaningful. Property (ii) states that any object of U must
definitely belong to or might belong to a cluster, which ensures that every object
is properly clustered.

With respect to the family of clusters, C, we have the following family of
clusters formulated by three-way representation as:

C = {{Co(CY), Fr(CH},--- ,{Co(CF), Fr(C*)}, - ,{Co(CK), Fr(C¥)}}.
()
Obviously, we have the following family of clusters formulated by two-way
decisions as:

C = {Co(C"), -+ ,Co(C*),- - ,Co(CK)}. (6)
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3.2 An Evaluation-Based Three-Way Cluster Model

In this subsection, we will introduce an evaluation-based three-way cluster
model, which produces three regions by using an evaluation function and a
pair of thresholds on the values of the evaluation function. The model partially
addresses the issue of trisecting a universal set into three regions.

Suppose there are a pair of thresholds («, §) and « > 3. Although evaluations
based on a total order are restrictive, they have a computational advantage. One
can obtain the three regions by simply comparing the evaluation value with a
pair of thresholds. Based on the evaluation function v(x), we get the following
three-way decision rules:

Co(C*) = {z € Uv(x) > a},
Fr(C*) ={z e U|B <v(x) < a}, (7)
Tr(C*) = {z € Ulv(x) < B}

In fact, the evaluation function v(x) can be a risk decision function, a similar-
ity function and so on. In other words, the evaluation function will be specified
accordingly when an algorithm is devised. We will give an algorithm as an exam-
ple in Sect. 4 for clustering incomplete data, since incomplete data is a typical
kind of uncertain data.

Objects in Co(C*) definitely belong to the cluster C*, objects in Tr(CF)
definitely do not belong to the cluster C¥, and objects in the region Fr(C*)
might or might not belong to the cluster. For the objects in Fr(C*) # 0, we
need more information to make decisions.

Under the representation, we can formulate the soft clustering and hard clus-
tering as follows. For a clustering, if there exists k # ¢, such that

(1) Co(C*) N Co(Ct) # B, or

(2) Fr(C*) N Fr(CY) #0, or 3
(3) Co(C*) N Fr(Ct) # 0. or (8)
(4) Fr(C*)n Co(C?) # 0,

we call it is a soft clustering; otherwise, it is a hard clustering.
As long as one condition from Eq. (8) is satisfied, there must exist at least
one object belonging to more than one cluster.

4 An Algorithm for Incomplete Data Using
the Three-Way Cluster Model

4.1 To Measure Distance Between Incomplete Objects

In this paper, we suppose we have the attribute significance degrees in advance.
Of course, it is another interesting research issue, which is not discussed here
for sake of space. Thus, we set the descending order of attribute importance
degree to be A = {ay,---,ap}, D is the number of attributes. Set W
{w1,wa, - ,wq, - ,wp} be the set of attribute weights, and wy > wy > ---
W 2 -+ 2 Wp.

AVAN
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Cluster analysis or clustering is the task of grouping a set of objects in such a
way that objects in the same group are more similar to each other than to those
in other groups. So how to measure the distance or similarity between objects is a
key problem in cluster analysis. However, some common methods for computing
similarity could not be used to calculate the similarity between incomplete data
directly because of the missing values. The partial Euclidean distance formula
[5,14,29] is used to measure the distance between the two incomplete data. But
the formula only considers non-missing attributes and ignores the impact of
missing values on similarity. Besides, Euclidean distance is not conducive to find
the spherical structure.

Therefore, we proposed a new similarity measurement between incomplete
data by improving the existing partial Euclidean distance formula. The proposed
method considers the influence on similarity from the attribute importance as
well as the missing rate. Let us consider the following situation, there are two
incomplete data in far away distance in fact. The attribute values are similar
on non-important attributes but different on important attributes. When the
two objects miss a great deal of important attributes, the distance computed by
the previous formula will be much less than the actually distance because the
result might come from some non-important attributes. The inaccurate distance
could seriously affect the effect of the clustering algorithm. In order to avoid this
situation, the missing rate and the sum of missing attribute weight are added to
the weighted partial Euclidean distance formula. Thus, the improved formula will
drastically enlarge the distance when missing lots of important values. Similarly,
the improved formula just increases the distance slightly when missing a small
account of non-important values. Then, the improved partial Euclidean distance
formula is given as follows:

1/2
D’ist(x x ) = 1 (Zgzl(x;i - x;l)2[dw§)
i Rj) — D 72 — .
R lwts (520 @ttawa?) "+ (Sha@itwg?) O
+Wmiss X MR,

1, xq #* A x‘j # *
0, else
sum of attribute weights which are missing on x; or x;, the formula is as follows:

Wmiss = Z Wq- (10)

d_ d_
Tj _*\/zj =z

where I = { , * means the value is missing, and W,,;ss is the

MR is the joint miss rate of object x; and x;. It is the proportion of the
number of missing attributes on the total number of attributes as follows: M R =
d d
>P M1, . 17$i=*\/l‘j=*
=d=——=, where M1; = 0, else .
If there is no missing value on the two objects, the proposed formula is the
tradition Euclidean distance formula.
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4.2 The Algorithm Based on Three-Way Cluster Framework

So far, Formula 9 can be used as the evaluation function in applications. However,
we find that the property of clustering is not good enough as required. Thus, we
proposed to divide the incomplete data into four types such as sufficient data,
valuable data, inadequate data and invalid data according to the concept of
complete degree in [23]. In this paper, we continue the sort thought except further
working on the measurement of similarity as described in the last subsection.

The proposed three-way clustering algorithm for incomplete data is depicted
in Algorithm 1: the three-way clustering algorithm for incomplete data, shorted
by TWD-ID. We first divide the data set to four subset, i.e., sufficient data, valu-
able data, inadequate data and invalid data. Generally speaking, sufficient data
have more information. Thus, we find the center of K clusters in the sufficient
data set. In fact, there are a bunch of clustering approaches to determine the
center. In our experiments, we adopt the outstanding density peaks clustering
method in the reference [15]. So, the left work is to decide the left objects where
to go. Step 4 describes how to decide the left objects in sufficient data, and Step
5 describes how to decide the other types data.

Algorithm 1. the three-way clustering algorithm for incomplete data

Input: U, W ={wi, w2, - ,wp}, K, o, B, Rina;

Output: C = {{Co(CY), Fr(CY)}, -, {Co(CK), Fr(C¥)}}.

Step 1: divide the incomplete data set into four subsets according to the concept
of complete degree in [25];

Step 2: compute the distance matrix between objects using Eq. (9);

Step 3: obtain the K center of clusters using the method [17] in the sufficient
data subset;

Step 4: compute the local density for each remaining sufficient data point and
sort the local densities in descending order; and assign the remaining sufficient
data to the core region of the cluster which is its nearest neighbor of highest
density;

Step 5: decide the rest of objects to the core region or fringe region of the
corresponding cluster according to the three-way decision rules [112].

There could be many missing values in important attributes in the valuable
data, inadequate data and invalid data, it is often that the common strategy
of filling values may cause new uncertainty. Thus, it is more reasonable that
we assign the incomplete data to the fringe regions of clusters waiting more
information to help further decision than assign them arbitrarily to the core
region or trivial region, when decision information is insufficient or the object
just meet the divided condition to the fringe region.

In order to make decisions on these data, we find the neighbors X;_ neighbor
within the neighbor radius Ry, of the object x; first, where X;_wneighbor =
{x;|Dist(x;,x;) < R }. Then, the object x; is assigned to the core region or
fringe region of the corresponding clusters according to the proportion of each
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cluster in the neighbor objects set X;_ ncighbor- That is, the proportion is defined
as follows:
{Xj|Xj € Xi—Neighbor A X € Ck}|

|Xi—Neighbor|

(11)

P(XifNeighbor‘Ck) = |

According to the above formula, the three-way decision rules are given as
follows:

if P(Xi_NeighbmJCk) > a, the object is decided to Co(C*);
if B < P(X;_Neighbor|CF) < a, the object is decided to Fr(C*); (12)
if P(Xi—Neighbor|C*) < B, the objecis decided to Tr(C*).

How to decide the threshold o and [ automatically is still an unsolved prob-
lem. We can decide the thresholds by experience or through active learning
method.

4.3 Experimental Results

In this subsection, we validate the proposed method TWD-ID on three UCI
repository [32] data sets with some classical clustering strategies for incomplete
data such as WDS-FCM, PDS-FCM, OCS-FCM, NPS-FCM [5] and NNI-FCM
[29]. All the experiments are performed on a 3.2 GHz computer with 4 GB mem-
ory, and all algorithms are programmed in C++. The quality of the final cluster-
ing is evaluated by the traditional indices such as the Accuracy and F-measure,
where the objects in fringe regions are deemed to be core regions to fit these
common formulae.

In order to reflect the effect of the missing rate on the performance of algo-
rithms, the incomplete data set is constructed randomly according to the 10%,
15% and 20% missing rate. To avoid the effect by the distribution of missing
data, we test 10 times by generating different incomplete data sets randomly for
each UCI data set. The mean and standard deviation of the results for 10 times
under each missing rate are recorded in the following tables, where v = 0.7 and
B =0.45 (Tables 1, 2 and 3).

Table 1. Experimental results on the iris data set

Algorithm | Miss rate

10% 15% 20%

Accuracy F-measure Accuracy F-measure Accuracy F-measure
TWD-ID 0.914 + 0.031|0.913 + 0.035 |0.917 + 0.038 | 0.915 + 0.041 | 0.893 + 0.019 | 0.888 + 0.020
WDS-FCM |0.583 + 0.020 | 0.586 + 0.022 |0.468 4+ 0.036 |0.476 4+ 0.036 |0.464 + 0.069 |0.447 £+ 0.092
PDS-FCM |0.898 4+ 0.006 |0.897 + 0.006 |0.892 4+ 0.012 |0.891 4+ 0.012 |0.889 4+ 0.008 |0.888 + 0.007
OCS-FCM |0.883 £+ 0.015 |0.882 £ 0.014 |0.858 £ 0.073 |0.846 £ 0.108 |0.867 £ 0.026 |0.866 £ 0.027
NPS-FCM |0.869 4+ 0.020 |0.868 + 0.021 |0.845 £ 0.024 |0.844 4+ 0.024 | 0.807 &+ 0.067 |0.800 £ 0.076
NNI-FCM |0.900 £ 0.014 |0.899 + 0.014 |0.889 £ 0.020 |0.889 4+ 0.019 |0.811 + 0.073 |0.802 £ 0.083
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Table 2. Experimental results on the page blocks data set
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Algorithm

Miss rate

10%

15%

20%

Accuracy

F-measure

Accuracy

F-measure

Accuracy

F-measure

TWD-ID

0.825 + 0.064

0.827 + 0.033

0.802 + 0.063

0.811 + 0.037

0.810 + 0.069

0.810 + 0.069

WDS-FCM

0.607 £ 0.006

0.688 £+ 0.004

0.710 £ 0.051

0.755 4+ 0.032

0.772 £ 0.061

0.790 £+ 0.036

PDS-FCM

0.690 £ 0.013

0.743 £ 0.007

0.689 £ 0.006

0.743 £ 0.004

0.691 £ 0.014

0.744 £ 0.008

OCS-FCM

0.652 £ 0.020

0.720 £ 0.013

0.613 £ 0.017

0.693 £+ 0.012

0.583 £ 0.023

0.671 £ 0.018

NPS-FCM

0.668 £ 0.028

0.729 £ 0.017

0.656 £ 0.045

0.721 £+ 0.029

0.648 £ 0.048

0.716 £+ 0.031

NNI-FCM

0.717 £ 0.005

0.758 £+ 0.003

0.697 £+ 0.033

0.746 £+ 0.021

0.692 + 0.024

0.743 £ 0.014

Table 3. Experimental results on the pendigits data set

Algorithm

Miss rate

10%

15%

20%

Accuracy

F-measure

Accuracy

F-measure

Accuracy

F-measure

TWD-ID

0.753 + 0.035

0.731 + 0.043

0.746 + 0.033

0.727 £ 0.041

0.737 +0.037

0.717 + 0.048

WDS-FCM

0.331 £+ 0.023

0.280 £ 0.024

0.323 £+ 0.021

0.242 £+ 0.023

0.319 £ 0.030

0.242 4+ 0.026

PDS-FCM

0.663 £+ 0.031

0.623 £+ 0.033

0.689 £+ 0.025

0.660 £ 0.036

0.676 £+ 0.028

0.641 4+ 0.041

OCS-FCM

0.539 £ 0.081

0.465 £ 0.099

0.464 £ 0.050

0.385 £ 0.061

0.369 £ 0.050

0.268 £+ 0.055

NPS-FCM

0.630 £ 0.024

0.575 £+ 0.028

0.581 £ 0.034

0.518 £ 0.044

0.530 £ 0.056

0.465 £ 0.066

NNI-FCM

0.489 + 0.046

0.412 £ 0.051

0.481 £ 0.043

0.408 £+ 0.051

0.421 £ 0.050

0.324 £ 0.064

The experiment results show that the proposed method is appropriate for
clustering uncertainty data such as incomplete data. Besides, the accuracy and
F-measure of the proposed algorithm are higher than the compared algorithms
in the experiments.

5 Discussions

This paper aims at presenting an interpretation of three-way clustering for uncer-
tainty clustering. The existing work usually represents a cluster with a single set
and it is a typical result of two-way decisions. That is, objects in the set belong to
the cluster definitely and objects not in the set do not belong to the cluster def-
initely. There are two regions to describe a cluster. In the proposed framework,
we use three regions to represent a cluster inspired by the theory of three-way
decisions. Objects in the core region belong to the cluster definitely, objects in
the trivial region do not belong to the cluster definitely and objects in fringe
region are the boundary elements of the cluster. The representation not only
shows which objects just belong to this cluster but also shows which objects
might belong to the cluster intuitively.

Through the further work on the fringe region, we can know the degree of an
object influences on the form of the cluster intuitively, which is very helpful in
some practical applications. Furthermore, an evaluation-based three-way cluster
model and an algorithm for clustering incomplete data based on the proposed
model are introduced.
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In the following paper, I will summarize and conclude the paper with listing

some important issues and research trends about the three-way clustering.

Representation of three-way clustering. There are some work had been pro-
posed in view of interval sets, decision-theoretic rough sets [22]. We can also
represent the model of three-way clustering by using fuzzy set, shadow set
and other models. Different interpretations of three-way clustering could give
different solutions to different kinds of clustering problems.

How to get the three-way clustering. It is a good way to extend from the
classical two-way decision clustering approaches. The following properties are
important to the efficiency and effectiveness of a novel algorithm: how to
decide the thresholds, how to know the truth number of clusters.
Developing new clustering approaches for more uncertainty situations such
as dynamic, incomplete data or multi-source data. For example, we had done
some preliminary work [23,25].

Application of three regions. We can put forward the three-way clustering
strategy to the application fields such as social network services, cyber mar-
keting, E-commerce, recommendation service and other fields.
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Abstract. A new semi-supervised clustering framework for uncertain
multi-view data is proposed inspired by the theory of three-way decisions,
which is an alternative formulation different from the ones used in the
existing studies. A cluster is represented by three regions such as the
core region, fringe region and trivial region. The three-way representation
intuitively shows which objects are fringe to the cluster. The proposed
method is an iterative processing which includes two parts: (1) the three-
way spectral clustering algorithm which is devised to obtain the three-
way representation result; and (2) the active learning strategy which
is designed to obtain the prior supervision information from the fringe
regions, and the pairwise constraints information is used to adjust the
similarity matrix between objects. Experimental results show that the
proposed method can cluster multi-view data effectively and is better in
performances than the compared single-view clusterings and other semi-
supervised clustering approaches.

Keywords: Multi-view data + Three-way decisions * Semi-supervised
clustering - Spectral clustering - Active learning

1 Introduction

In some applications such as computer video, social computing, and multimedia
area, objects are usually represented in several different ways. This kind of data
is termed as the multi-view data. Multi-view clustering, which is also one kind of
multi-view learning, has attracted more and more attentions [1-3,12,19]. In the
existing methods, spectral clustering [4,13] is a popular one for multi-view data
because it represents multi-view data via graph structure and makes it possible
to handle complex data such as high-dimensional and heterogeneous as well as it
can easily use the pairwise constraint information provided by users. Therefore,
some scholars research on spectral clustering for multi-view data [5,8,17].
Generally speaking, there are two types of typical prior supervised infor-
mation, namely, class labels and pairwise constraints [5,6,16]. In practice, it is
difficult to obtain the independent class labels, yet it could be relatively easy
to ensure correlated or uncorrelated information among data objects. Therefore,
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pairwise constraints describe two objects whether they should be assigned to the
same class or the different classes. However, choosing the supervised information
is random in most of existing methods, and it does not produce positive effect on
improving the clustering result when the algorithm itself can find the prior infor-
mation or there are amounts of noises in the prior information. Therefore, the
active learning method is introduced to optimize the selection of the constraints
for semi-supervised clustering [15,18,28].

Most of the existing researches on the topic has focused on selecting an initial
set of pairwise constraints before performing semi-supervised clustering. This is
not suitable if we wish to iteratively improve the clustering model by actively
querying users. In fact, many clustering approaches are based on iterative frame-
work. Obviously, it is much better in each iteration that we determine objects
with the most important information toward improving the current clustering
result and form queries accordingly than just choosing the information randomly.
The responses to the queries (i.e., constraints) are then used to update the clus-
tering. This process repeats until we reach the stop conditions. Such an iterative
framework is widely used in active learning for semi-supervised clustering.

In this paper, we focus on how to improve the quality of clustering for multi-
view data with the aid of pairwise constraints. Therefore, we propose a semi-
supervised clustering framework based on active learning by using three-way
decisions. In order to further choosing the supervision information during the
iterative processing, we introduce the idea of three-way decisions into this work,
inspired by the three-way decisions theory as suggested by Yao [21,22]. Three-
way decisions extend binary-decisions in order to overcome some drawbacks of
binary-decisions. The basic ideas of three-way decisions have been widely used in
real-world decision-making problems, such as decision making [23], email spam
filtering [29], three-way investment decisions [9] and many others [25]. Interval
sets provide an ideal mechanism to represent soft clustering. Lingras and Yan [10]
introduced interval sets to represent clusters. Lingras and West [11] proposed an
interval set clustering method with rough k-means for mining clusters of web
visitors. Yao et al. [20] represented each cluster by an interval set instead of a
single set as the representation of a cluster. Inspired by these results, we have
introduced a framework of three-way cluster analysis [26,27].

In our work, a three-way representation for a cluster is presented, where a
cluster is represented by three regions, i.e., the core region, fringe region and
trivial region, instead of two regions as the other existing methods. Objects in
the core region are typical elements of the cluster, objects in the fringe region are
fringe elements of the cluster, and objects in the trivial region do not belong to
the cluster definitely. A cluster is therefore more realistically characterized by a
set of core objects and a set of boundary objects. The three-way representation
intuitively shows which objects are fringe to the cluster. Thus, we can reduce the
search space to the fringe regions when selecting the pairwise constraints. The
basic idea of the work is to propose an iterative processing, in which a three-way
clustering algorithm is devised to obtain the three-way clustering result and an
active learning strategy is designed to obtain the prior supervision information
from the fringe regions.
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The remainder of this paper is organized as follows. Section?2 introduces
some basic concepts. Section 3 describes the proposed framework, the three-way
spectral clustering algorithm and the active learning strategy. Section 4 reports
the results of comparative experiments and conclusions are provided in Sect. 5.

2 Preliminaries

In this section, some basic concepts of multi-view and semi-supervised clustering
are introduced.

2.1 Multi-view Data

In the multi-view setting, an object (data point) x is described with several
different disjoint sets of features. Let X = {xy,---,%;, -+ ,Xn} be a universe
with N objects. There are H numbers of views to describe the objects, and
X0 x@ ... x() .. XUH) be the data matrix of each view respectively.
For h-th view, X" ¢ ]RNXd(h), and d™ is the feature dimension of the h-th
view. X = {x(lh),xgh), e ,xz(-h),-~~ ,xg\};)}, where xgh) = (x;mxzh, e mih,
. ,xf’(,:)) is its i-th object, and th is the j-th feature of i-th object in the h-th
view.

2.2 Pairwise Constraints

Pairwise constraints is one kind of typical prior information for semi-supervised
clustering. Wagstaff and Cardie [14] introduce must-link (positive association)
and cannot-link (negative association) to reflect the constraint relations between
the data points.

For the universe X = {xy, - ,X;," -+ ,Xn}, let Y ={y1,- - ,9i, -+ ,yn} be
the class labels of objects respectively. Must-link constraint requires that the two
points must belong to the same cluster, and this relation is denoted by ML =
{(xi,x5) | i = y;, for i # j,x;,x; € X,y;,y; € Y}. Cannot-link constraint
requires that the two points must belong to different clusters, and this relation
is denoted by CL = {(xp,Xq) | Yp # Yq. fOor p # q, Xp,Xq € X, yp,yq € Y}
Klein et al. [7] found that must-link constraint has the transitivity properties on
objects, namely, for x;,x;,x; € X,

(xi,%x;) € ML & (xj,x) € ML = (x;,%x3) € ML, (1)
(x4,%5) € ML & (xj,x) € CL = (x;,x3) € CL.

In fact, simply using the constraint information in the algorithm may cause
a deflection problem of the singular points during the clustering process. The
so-called deflection of singular points is that the points belonging to ML are
assigned to C'L or the points belonging to C'L are assigned to M L. Therefore, it is
not always true that there are more pairwise constraints the better the clustering
result is. We hope to obtain the best possible result with fewer constraints which
is just the purpose of active learning.
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2.3 Representation of Three-Way Clustering

The purpose of clustering is to divide the N objects of a universe X into some
clusters. If there are K clusters, the family of clusters, C, is represented as
C={C, - ,Ck,-,Cx}. A cluster is usually represented by a single set in
the existing works, namely, Cj, = {X1," -+ ,X;, "+ ,X|¢,|}, and it is abbreviated
as C' by removing the subscript when there is no ambiguity. From the view
of making decisions, the representation of a single set means that, the objects
in the set belong to this cluster definitely, the objects not in the set do not
belong to this cluster definitely. This is a typical result of two-way decisions.
For hard clustering, one object just belong to one cluster; for soft clustering,
one object might belong to more than one cluster. However, this representation
cannot show which objects might belong to this cluster, and it cannot show the
degree of the object influence on the form of the cluster intuitively. Thus, the
use of three regions to represent a cluster is more appropriate than the use of
a crisp set, which also directly leads to three-way decisions based interpretation
of clustering.

In contrast to the general crisp representation of a cluster, we represent a
three-way cluster C' as a pair of sets:

C = (Co(C),Fr(C)). (2)

Here, Co(C) C X and Fr(C) C X. Let Tr(C) = X —Co(C) — Fr(C). Then,
Co(C), Fr(C) and Tr(C) naturally form the three regions of a cluster as Core
Region, Fringe Region and Trivial Region respectively. That is:

CoreRegion(C) = Co(C),
FringeRegion(C) = Fr(C), (3)
Trivial Region(C) = X — Co(C) — Fr(C).

If x € CoreRegion(C), the object x belongs to the cluster C definitely; if x €
FringeRegion(C), the object x might belong to C; if x € Trivial Region(C),
the object x does not belong to C' definitely.

These subsets have the following properties.

X =Co(C)UFr(C)UTr(C),

Co(C)N Fr(C) =1, (4)
Fr(C)nTr(C) =10,

Tr(C)NCo(C) = 0.

If Fr(C) = 0, the representation of C in Eq.(2) turns into C' = Co(C); it
is a single set and Tr(C) = X — Co(C). This is a representation of two-way
decisions. In other words, the representation of a single set is a special case of
the representation of three-way cluster.

Furthermore, according to Eq. (4), we know that it is enough to represent a
cluster expediently by the core region and the fringe region.

In another way, we can define a cluster by the following properties:

(i) Co(Ck) # 0,1 <k < K; 5
(i1) UCo(Cy) JFr(Cr) = X, 1<k < K. (5)
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Property (7) implies that a cluster cannot be empty. This makes sure that a
cluster is physically meaningful. Property (ii) states that any object of X must
definitely belong to or might belong to a cluster, which ensures that every object
is properly clustered.

With respect to the family of clusters, C, we have the following family of
clusters formulated by three-way decisions as:

C = {(Co(CY), Fr(Ch)),- -, (Co(Cy), Fr(Cy)), - -+, (Co(Ck), Fr(Ck))}. (6)

Obviously, we have the following family of clusters formulated by two-way
decisions as:

C = {Co(Cy),-- ,Co(Cy), - ,Co(Cr)}. (7)

3 The Proposed Semi-supervised Clustering Method

In this section, a semi-supervised three-way clustering framework for multi-view
data is proposed. The three-way spectral clustering algorithm and the active
learning strategy are described.

3.1 The Framework

The proposed semi-supervised three-way clustering framework for multi-view
data (or SS-TWC, for short) is shown in Fig. 1, which is an iterative processing.
In short, the framework consists of two parts, i.e., the three-way clustering and
the active learning. The main goal of Part 1 is to produce the clustering result
in three-way representation. In other words, the other clustering algorithm also
works as long as we alter it to adopt to the three-way representation. The task
of Part 2 is to choose some objects (points) to query experts. The responses to
the queries (i.e., constraints) are then used to update the clustering in Part 1.

Part 1: the three-way spectral clustering

Similarity Diagonal Laplacian
Matri atri i
atrix Matrix Matrix C = {(Co(C,),Fr(C)),...,

[ we }—»’ p® }—»’ (& (Co(C).Fr(C)),.ees
(Co(C)Fr(C))}

0
[ wo }_,’ o® }_>’ @ }7 , ﬂ
ViewH( X‘;' O»*-T-{ V\./‘”’ H :;W H |:(H»

i" R \ Part 2: the active learning
\ ! Generating Selecting Measuring
constraint information " advisory objects uncertainty
X* |« H ’-

Fig.1. SS-TWC: semi-supervised three-way clustering framework for multi-view data

View 1 ( s

View 2 ( x?




318 H. Yu et al.

In this paper, the spectral clustering approach is used to produce the three-
way clustering in Part 1. The framework of three-way spectral clustering algo-
rithm is described in Algorithm 1 in Subsect. 3.2. The algorithm computes on
the multiple views XM, X2 ... XU to find a low-dimensional feature space
E of original data points by calculating eigenvectors of fused Laplacian matrix
L. In order to obtain more accurate partitions, uncertain objects are assigned to
the fringe region of corresponding cluster. For these uncertain objects, they can
get further decision when information is sufficient.

In Part 2, the SS-TWC uses the active learning method to learn dynam-
ically objects with most important information toward improving the current
clustering result. The framework of active learning algorithm is described in
Algorithm 2 in Subsect. 3.3. In each iteration, the active learning measures uncer-
tain objects in fringe regions with a certain strategy. The produced pairwise
constraints information is applied to adjust the similarity matrix between data
points in Algorithm 1, which makes objects being more compact in one cluster
and more discrete in different clusters.

We need to note that the final result of clustering can be expressed by two-way
or three-way representation according to the user demands. In the framework,
the result of the first iteration is in three-way representation, and the fringe
regions reduce after processing iterations. In each iteration, we query experts to
acquire the prior information by choosing the objects from fringe regions. The
algorithm obtains the two-way clustering result finally when the iteration is going
on until the fringe regions are empty, which is the results in our experiments.
The algorithm also can obtain the three-way clustering result finally, if it stops
when the clustering result is stable or the iterative times q reaches the maximum
number Q.

3.2 The Three-Way Spectral Clustering

First, we need to map the data set X = {x1,--- ,x;,--+ ,xn} to a similarity
matrix W. We refer to the concept of k-nearest neighbors in consideration of the
nearer neighbors contribute more to the classified information than the more
distant ones.

In spectral clustering, the Gaussian kernel function is widely used as the
similarity measure. However, it is difficult to determine the optimal value of
the kernel parameter, which reflects the neighborhood of the data points. In
addition, with a fixed kernel parameter, the similarity between two objects is
only determined by their Euclidean distance. Inspired by the idea of local scaling
parameter can be determined by shared nearest neighbors [24], we proposed
an adaptive parameter based on shared neighbors instead of traditional kernel
parameter.

Let N(x) = {x4|dist(x,xs) < r,xs € kNN(x)} contains objects that are
members of neighborhood of x with the neighbor radius r, where dist(x,x)
describes the Euclidean distance between x and x5, kNN (x) denotes k neigh-

bor points of x. The neighbor radius r of object x is defined as r = %Zle
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dist(x,xs), such that x; € kNN (x). Neighbor radius of each object can be con-
firmed by its k£ neighbor points. In addition, the number of points in the join
neighborhood of two objects indicates their closeness. Therefore, a similarity
function that considers global distribution and local consistency is given by:

2
I

exp(— l[xi —x;)
wij = rirs [N (%) VN (x)| +1

0, others.

),x; € kNN (x;) or x; € kENN(x;),

where 7; and r; are the neighbor radius of x; and x; respectively, | N (x;) (| N (x;)
is the number of objects in the join neighborhood of x; and x;.

We adopt graphs GV, - .. | GU) to describe the multiple views X (1, ... X (H)
respectively. G = (V") ") W) where W) represents the similarity
relationship among data points of h-th view. L") denotes the normalized graph
Laplacian matrix of G") and is defined as:

L — 71— (D(h))*l/Qw(h)(D(h))*l/Q’ (9)

where D) € RVN*N denotes the degree matrix of graph G whose i-th diagonal
o 4B _ N (h)
element is d; " = 5w,
The objective function of the normalized spectral clustering is defined as:

H
min tr(GT(LMG), st.GTG=1 (10)

GERN XK
€ h=1

Due to G is the identical matrix of all views, Eq. 10 can be converted to:

H
. T h T
Ge%%tr(c (};L )G), st.GTG=1 (11)
In fact, the three-way spectral clustering algorithm (see Algorithm 1) imple-
ments the initial clustering and the iterative clustering. In the initial processing,
i.e. the iteration times be 1, the constraint set R = (. That means there is
no prior information and the spectral clustering is a unsupervised learning for
multi-view data. In the iterative clustering processing, i.e. the iteration times
more than 1, pairwise constraints information produced by the active learning
algorithm (see Algorithm 2) are added to the constraint set R. The similarity
matrixes of spectral clustering are adjusted by the following formula:
if (x4,%x;) € ML, then w = ' =1

©j i ’

(12)
Zf (Xi7xj) S CL, then wl(;l) = wj(il) =0.

Based on the idea of three-way decisions, the proposed framework assigns the
current uncertain objects to the corresponding fringe region. First, for the objects
need to be divided, the proposed algorithm finds the neighborhood N(x;) with
neighbor radius r;. Then, it calculates the proportion of the objects in N(x;)
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Algorithm 1. The three-way spectral clustering algorithm

Input: the multi-view data {X), X® ... X} the number of clusters K,
the constraint set R, the threshold values o and 3.
Output: C = {(Co(C4), Fr(C1)), -+ ,(Co(Ck), Fr(Ck))}.
for each view X do
if R# () then
L to adjust similarity matrix W™ according to Eq. 12;

else
| to compute similarity w;; according to Eq. 8;

to construct the normalized graph Laplacian matrix L") according to Eq. 9;
to compute the fused normalized Laplacian matrix L according to Eq. 11; to
compute the K smallest eigenvectors of L and construct eigenvector matrix F;
to normalize the rows of E to have unit norm; to cluster E' by using k-means
algorithms, to assign objects to core regions, fringe regions and trivial regions,
by using the three-way rules Eq. 14.

belong to each cluster; and it assigns x; to the corresponding core region or
fringe region. The proportion that objects in N(x;) belong to Cj, is given by:
_ Ixjlx; € N(xi) Ax; € Ci

Naturally, we have the three-way decision rules as follows.

if P(N(x;)|Ck) > «, then x; is assigned to Co(Ch);
if B<P(N(x;)|Ck) < a, then x; is assigned to Fr(Cy); (14)
if P(N(x;)|Cr) < 8, then x; is assigned to Tr(Cy);

where a and [ are the three-way decision thresholds.

3.3 The Active Learning to Acquire Pairwise Constraints

In this work, we consider active learning of constraints in the iterative framework.
The search space is reduced to the fringe regions in the proposed method. In the
current iteration, we need to decide which objects have the most important
information toward improving the current clustering result and form queries
accordingly. The responses to the queries (i.e., constraints) are then used to
update the similarity matrix by using Eq. 12.

Specifically, we define the uncertainty in terms of the concept of entropy,
which is a classic measure of uncertainty. In the h-th view, wl(jh) denotes similarity

between points XE’L) and xgh), the probability of x(" belongs to different core
regions Co(Cy)(1 < k < K) is defined as:

1 (h)
TCo(C] ijeCO(ck) w

K (h)
Zp:l( ICO(le)I ij €Co(Cy) W5 )

where |Co(Cy)| is the cardinality of Co(Cy).

P (x| Co(Cr)) = ; (15)
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Then, the maximum entropy of x among H views is calculated by the fol-
lowing formula.

N

Hpjoz(x) = arginax Z (h) (x| Co(Cy)) loggp(h)(x | Co(Ck)))). (16)
h=1 k:

An object with the bigger entropy will have more classification information
to help decision-making. Thus, the object with most important information is
selected by the following formula.

x* = argmaxHprq0(%), (17)
xeU
where U denotes the set of unlabeled data.
In order to reduce the cost of queries, we first sort the K probabilities,
p"M (x* | Co(Cy)) for 1 < k < K, in descending order. Then, we begin query the
core of the cluster from the higher one until a must-link constraint satisfied.

Algorithm 2. The strategy of active learning

Input: the clustering result C
Output: the constraint set R
for each view X do
for k=1 to K do
L | for x € Fr(Cy), to compute p (x | Co(Cy)) according to Eq. 15;

to compute Harqz(x) according to Eq. 16;
to select the most information object x* according to Eq. 17;
to sort probabilities p(x* | Co(Ck)) in descending order;
for k=1 to K do
to query whether x* belongs to Co(Ck));
if the response is True then
to select a point x from Co(C}) randomly, set (x*,x) € ML, and
L Col(Cr) = Co(C) UL ;
to update the constraint set R according to Eq. 12; break;
else
| to construct pairwise constraint information (x*,x;) € CL;

4 Experimental Results

In this section, we validate the proposed method on some real-world datasets.
Table 1 gives the summary information about the datasets. SensIT! uses two
sensors to classify three types of vehicle. We randomly sample 100 data for
each class, and then conduct experiments on 2 views and 3 classes. Reuters?

! https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html.
2 https:/ /archive.ics.uci.edu/ml/datasets.html.
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contains feature characteristics of documents originally written in five different
languages, and their translations over a common set of 6 categories. We use
documents originally in English as the first view and their French and German
translations as the second and the third view respectively. We randomly sample
1200 documents from this text collection, with each of the 6 clusters having 200
documents. Cora® and CiteSeer* collect kinds of scientific publications, with the
first view being the textual content of documents and the second view being
citation links between documents.

Table 1. Information about the datasets

Datasets | Size | #View | #Cluster
SensIT 300 |2 3
Reuters | 1200 |3 6
Cora 2708 | 2 7
CiteSeer | 3312 |2 6

We compare the proposed SS-TWC method with some representative multi-
view clustering strategies.

— Best Single View(BSV): running the proposed semi-supervised spectral clus-
tering on each input view, and then reporting the results of the view that
achieves the best performance.

— Feature Concatenation(FeatCon): concatenating the features of all views to
form a single representation, and then applying the proposed semi-supervised
spectral clustering on the concatenated view.

— AMVNMEF: the adaptive multi-view semi-supervised nonnegative matrix fac-
torization, it is an iterative multi-view semi-supervised clustering algorithm
from the reference [16].

— SS-TWC(R): the method is similar with the SS-TWC except it obtains equiv-
alent constraint information by using the random strategy instead of the
active learning strategy in Algorithm 2.

The quality of the final clustering is evaluated by the traditional indices such
as the accuracy (AC) and normalized mutual information (NMI). To ensure the
objectivity of the experimental results, the results of AMVNMEF are from the
reference [16] and the other methods are programmed in C++. Each test runs
10 times, the average values of AC and the NMI are recorded in Table2. The k,
the number of neighbors, is set to be the 5% of the universe in the tests.

Obviously, the SS-TWC outperforms the other compared methods on the
four datasets. Unlike the BSV and FeatCon, the SS-TWC profits from the cor-
relative and complementary information among multiple views. Compared to the

3 http://lings.umiacs.umd.edu/projects//projects/Ibc/index.html.
4 http://lings.umiacs.umd.edu/projects/ /projects/lIbc/index.html.
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Table 2. Comparison of experimental results

Indices | Datasets | BSV | FeatCon | AMVNMF | SS-TWC(R) | SS-TWC

AC SensIT | 68.73 | 76.39 71.33 67.71 77.67
Reuters | 54.67 | 58.43 59.88 57.20 66.22
Cora 42.70 | 46.27 48.71 40.67 51.88
Citeseer |46.16 | 53.36 53.14 45.39 56.04

NMI SensIT | 34.58 | 38.02 31.73 24.87 41.16
Reuters |44.35|45.62 42.75 32.13 47.88
Cora 30.71 | 34.41 34.59 20.19 36.72
Citeseer |21.49 |23.38 26.13 18.27 30.26

AMVNMEF, the proposed SS-TWC has the benefit of processing the uncertainty
in multi-view data by using the three-way decisions. In addition, the compared
results between the SS-TWC and the SS-TWC(R) show that the proposed strat-
egy of selecting pairwise constraints dynamically is much effective. In short, the
proposed method work well in dealing with multi-view data.

5 Conclusions

In many scenarios, more than one view can be provided to describe the data due
to the fact that data may be collected from different sources or be represented by
different kind of feature sets for different tasks. Clustering multi-view data is an
important problem. In this paper, we proposed a semi-supervised three-way clus-
tering framework for multi-view data. The framework is an iterative processing,
which consists of two parts, i.e., the three-way clustering and the active learn-
ing. The main goal of three-way clustering is to produce the clustering result in
three-way representation, in which the objects in fringe regions intuitively gives
the clue to query. Thus, the task of the active learning is to choose some objects
(points) from fringe regions to query experts, and the responses to the queries
(i.e., constraints) are then used to update the clustering result in iterations. The
spectral clustering and the active learning strategies are used to implement the
framework. The experimental results show that the proposed method achieves
better performance in both the accuracy and the NMI than the compared meth-
ods. However, we need further work to improve the time complexity though
the cost for computing has reduced little by constructing kNN graph. To con-
sider the different contribution of different view is another direction for future
research.
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Abstract. Determination of thresholds is recognized as a fundamen-
tal problem in decision-theoretic rough sets. Traditionally, thresholds
are determined by observing Bayesian decision theory. Although the
semantic seems to be enriched as compared to probabilistic rough sets,
the functionality of risk is not comprehensively explored. In allusion
to this situation, we develop a multi-object optimization view based
model on determining thresholds. By generalizing the expected loss func-
tion to target function, this model claims that thresholds in three-way
are radically constructed by pair-wise region-based target functions. By
transferring the principle of pair-wise region-based target functions on
multi-quantitative scenario, we present a finer-grained formulation for
thresholds solving. Furthermore, we investigate the multi-layer of pre-
sented model. Finally, the optimistic and pessimistic multi-quantitative
decision-theoretic rough set is defined to illustrate the value of presented
model.

Keywords: Three-way decisions - Decision-theoretic rough sets - Multi-
object optimization - Multi-quantitative

1 Introduction

Three-way decisions (TWD) [1], originated from rough set theory [2], has demon-
strated the superiority in performing decision-making with uncertainty. Roughly
speaking, three-way decisions managed to divide the universe into three non-
overlapped regions and take actions of acceptance, rejection or non-commitment
respectively. A rational explanation for taking different strategies is that the com-
mitted decision, whether acceptance or rejection, corresponds to the information
with satisfied discernibility, whereas the non-commitment decision implies the
information with flawed discrimination. By incorporating with three-way deci-
sions, an increasing number of successful cases have been reported in different
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applications, including e-mail spam filtering [3], text semantic analysis [4,5]
image recognition [6], and cognitive computing [7].

Thresholds play a pivot role in determining the region boundary, and the
selections reflect the degree that concepts can be approximately defined by cer-
tain granular structure. In decision-theoretic rough sets (DTRS) [8], different
combinations of thresholds correspond to different risk, and the minimization of
risk is the decision principle. Studies on threshold solving can be categorized into
two groups. In the first case, all loss coefficients are given but may uncertain.
As suggested by [9], an analytical solution is invariantly expected. In the second
case, however, only part of them are roughly known, while no specific expres-
sions of the remaining are given. In this case, only numerical solutions can be
expected [10,11]. Although both solutions can be interpreted from optimization
view, it is not explicitly declared in terms of region construction. Consequently,
the semantics of «, 3, and v are merely enriched by introducing more loss coef-
ficients Aee. The problem thus becomes more obvious in the discussion of gen-
eralized double-quantitative rough sets [12], where the approximation operators
are merely generated on the basis of parameters.

In this paper, we take a multi-object optimization (MOP) view for thresholds
solving. By generalizing expected loss coefficients of DTRS to target functions,
this paper provides a revisit to decision-theoretic rough sets. The confrontation
within regions are thoroughly embodied in threshold solving. Accordingly, the
semantics of thresholds in DTRS are more intuitive, and the construction of
three-way structure is enriched simultaneously. By investigating the combina-
tions of pair-wise region-based target functions, we present a finer-grained view
for construction of thresholds. We further declare that under multi-quantitative
scenario, more combinations of thresholds can be generated by considering diver-
sity fusions of homogeneous region-based target function meanwhile. The formal-
ized representation is constructive in flourishing approximate knowledge repre-
sentation of multi-quantitative based rough sets.

The rest of the paper is organized as follows. Section 2 briefly reviews the
basic concepts with regard to decision-theoretic rough sets. In Sect. 3, a multi-
object optimization based model is investigated to solve the thresholds. By
extending the syntax of optimizing principal presented in Sect. 3, proposed model
is competent for thresholds solving for multi-quantitative scenario, as illustrated
in Sect. 4. Finally, it is concluded in Sect. 5.

2 Preliminary

In this section, we present a review of some basic concepts with regard to
decision-theoretic rough sets.

Definition 1 [2]. IS = {U,A,V, f} is an information system with quadruple,
where U denotes a non-empty finite universe, A = C U D be a set of attributes,
V' be the values of all attributes and is determined by the mapping function

f:UxA—=V.

Under the equivalence relation R, a corresponding partition of U (U/R) can be
generated.
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Elements in the identical equivalence class constitute a basic information
granule [z]. The affiliation of information granular [z] to certain decision class
X can be measured by conditional probability P(X|[z]). Although this measure
can reflect the decision quality, the semantic of thresholds that support the
three-way structure is vagueness. To address this issue, Yao [13] introduced loss
coefficients \qe to evaluate the effects of three-way decisions. Taking two classes
classification problem as an example, there are totally six loss coefficients, as
illustrated in Table 1.

Table 1. Loss coefficient matrix for two class classification problem

X |-X

acceptance (a) ap | Aan

A
non-commitment (n) | Anp | Ann
A

rejection (1) rp | Arn

Consequently, the risk of all equivalence class [z] in the process of decision
making can be calculated as:

R =Y R(al[z]) + R(nl[z]) + R(r|[«]) (1)
[=]
where R(al|[z]), R(r|[z]) and R(n|[z]) are defined as:
R(a|[z]) = Aap x P(X|[z]) + Aan x P(=X|[2]);
R(n[z]) = Anp X P(X|[z]) + Ann X P(=X][2]);
R(r[[z]) = Arp X P(X|[z]) + Apn x P(=X|[z]).

The risk minimization principle indicates that the affiliation of information
granular [x] with regard to class X is reasonable if the following three inequality
are satisfied simultaneously.

R(a|[z]) < R(n|[z]) AR (al[z]) < R(r|[z]) = decide [z] C POS (X);
R(nl|lz]) < R(a|[z]) AR (n|[z]) < R(r|[z]) = decide [x] C BND (X);
R(rl|z]) < R(a|[z]) AR (r]|[z]) < R(n|[z]) = decide [r] C NEG (X).

Hence, we can make three-way decisions on the risk level. The DTRS model is
thus defined as follows:

Definition 2 [13]. Given relationship of loss coefficients Aap < Anp < App and
Arn, < Ann, < Agn and condition (Arp —Anp) (Aan —Ann) = (Anp = Aap) Ann — Arn),
three-way region with regard to X is defined as

POS(X) = {[z]| P(X|[z]) > a};

BND(X) = {[z]| < P(X|[z]) < a};

NEG(X) = {[z]| P(X[[z]) < B}

where parameters a and 3 are defined as:

o= Xan—Ann = Aun=Arn .
Ban—Ann)FOnp—Aap)’ Con=Arn )+ Orp—Anp)
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3 Multi-object Optimization View for Threshold Solving
with Single Quantification

For a given information system, decision risks of positive region, negative region
and defer region fluctuate as the selection of thresholds changes. It is reasonable
to assume that each threshold is determined by pair-wise region-based target
function, thus a multi-object optimization problem is formulated. To elaborate
the solving mechanism, this section will limit the scope of target function on
single granular structure.

3.1 Problem Formulation

Suppose the conditional probability P(X|[z]) is considered as evaluation crite-
rion, we term target functions as:

Definition 3. Target function T is an assemble of functions with Tp,Tp and
TN which describes the decision cost of positive region, boundary region and
negative region induced by P(X|[z]) respectively.

Tp = ()‘ap = Aan) P (X [[2]) + Aan;
T = </\np - )‘nn)P(X Hx]) + Anns
Tn = (Ap = Arn) P (X |[2]) + A

All target functions suggest that region-based decision cost is linearly related
to the conditional probability. Since three-way can be described by at most two
parameters, we can formulate the thresholds solving problem as follows:

azrng?TK 57’7):{TP|(a’ﬁv7)7TB|(a7ﬂ77)aTN|(a757’7)} (2)
a*,3

where o* > %, a*, * € {«, 8,7} and T'|(«, §,7) denotes the target value given
a, B,7. a, 3, and vy are three conditional probabilities that are to be optimized.
The selection of « implies the relative boundary between positive region and
boundary region, while 3 and 7y suggest the relative boundary of negative region
and boundary region, positive region and negative region respectively. To solve
the problem formulated in Eq. (2), we define the following optimization model.

Definition 4. Let T,,T3,T, be the decision cost induced merely by o,
and v respectively, parameters o, 3,7y can be solved by three pair-wise object
optimization.

. [ Tp = (Aap — Aan) X+ Aan
aI‘g((gllnTa = {TB _ ( )\nn) X o 4 Ann7
; _ Ip = ( >\nn) X B+ /\nn.
arg(ﬁr;unTg—{TN( ) X B4 Ay

Tp = (/\ap - /\an) XY+ Aan

argminT, = .
g(,y) v {TN == (>\7’p - )\rn) Xy + >\rn

st. 0<a<l,0<pB<l,0<y<1
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3.2 Problem Solving

It can be deduced from Definition4 that solving for any parameter is similar.
Without losing generality, we investigate the solving process for parameter a.
_ _ Aan—Ann
Let Tp = Tp, we have P(X|[z]) = E P W E ) v Then we have the
following Theorem.

Man—Ann
(Aan—Ann)+Anp—Aap) *
Proof. Given Agp — Aan > Anp — Ann, the slope of T'p is larger than that of T’s. If
« is smaller than intersection of two target functions (see oy and « in Fig. 1(a)),
then the equivalence class with conditional probability in interval (aq,aq) will
be determined to boundary region, which will have larger cost. If « is bigger than
intersection of two target functions (see ay and g in Fig. 1(a)), then the equiv-
alence class with conditional probability in interval (ag, ae) will be determined
to positive region, which will also have larger cost. Analogously, intersection
o corresponds to minimum cost given Ayp — Agn < App — App, as illustrated in
Fig. 1(b).

Theorem 1. T, achieves the minimum value if o =

risk

“© 1' 0 oy op i

oy o]
(a) P(X|[x]) (b) P(X][x])

Fig. 1. Determination of parameter « given target function Tp and T

Based on Theorem 1, we have the following corollary holds.

Corollary 1. Let a = o= )\fi?)jr/(\j\ﬁp7 o) We have:
((Aap —Aan) > Anp = An)) A(1 > P (X |[z]) > a>0) = Tp > Tp;
((Aap = Aan) > Mnp = A )N (0 < P (X |[z]) < a < 1) = Tp < Tp;
((Aap = Aan) < Anp = A )A (1> P (X |[z]) >a>0)=Tp < Tp;
((Aap = Aan) < Anp = A )AN O < P (X |[z]) <a<1)=Tp >Tg.

Proof. 1t is straightforward as Theorem 1 implies.

Analogously, we have the property with regard to § and ~ according to

Definition 4. For 3, let Ty = Ty, we have P(X|[z]) = 337752 =5y Then

we have Theorem 2 and Corollary 2 as follows:
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)\nn _>\rn
n—=Arn)+(Arp—Anp)

Theorem 2. Tj achieves the minimum value if 3 = 75~

Proof. Tt is similar to that of Theorem 1.

Corollary 2. Let 8 = ()\m_;‘;’s;f‘;\';_)\w), we have:
(Arp = Arn) > Anp = A ) A (1> P (X |[z]) > 5>0)=Tn > Tg;
(Arp = Arn) > Anp = A )N (O < P (X |[z]) < B< 1) = TN < T;
(Arp = Arn) < Anp = A ) A (1> P(X|[z]) > F>0) = TN < Tg;
(Arp = Arn) < Anp = A )N (O < P (X |[z]) < B<1)=Tn > Tpg.

Proof. 1t is straightforward as Theorem 2 implies.

For ~, let Tp = T, we have P(X]|[z]) = (/\an—A/\ﬁ:l)—_k/(\K:p—/\ap)’ then we have

Theorem 3 and Corollary 3.

Aan—=Arpn
an—Arn)+(Arp—Aap) ’

Theorem 3. T, achieves the minimum value if v = 8

Proof. Tt is similar to that of Theorem 1.

Aan—=Arn

S e N o e w SR have:

Corollary 3. Let v = oo

((Map = Aan) > Arp = An)) A (1> P (X |[z]) > v > 0) = Tp > Ty;
(Aap = Aan) > Ap = A DA (0< P (X |[z]) <y <1)=Tp < Th;
(Aap = Aan) < Aep = Am)) A (1> P (X |[z]) >7>0)=Tp < Th;
((Aap = Aan) < (Arp = Arn)) A (0 < P (X |[2]) <y <1) = Tp > T.

Proof. 1t is straightforward as Theorem 3 implies.

By simultaneously considering the relations of relative parameters and slope of
target functions, we can determine the three-way structure as following theorems:

Theorem 4. [f ()‘Tp - )‘rn) > ()\np - )\nn) > ()\ap - )\an) and 6 S Y S «,
then the following decision rules hold: (P) P(X|[z]) > «, decide x € POS(X);
(B) p < P(X|[z]) < a, decide x € BND(X); (N) P(X|[z]) < 3, decide z €
NEG(X).

Proof. Since the condition (Arp — Arn) > (Anp — Ann) > (Aap — Aan) 1s satisfied,
we have (Arp —Arn) > (Anp — Ann)y (Anp —Ann) > (Aap — Aan), and (Arp — Ap) >
(Aap — Agn). Similarly, o < v < g is equivalent to a < 7,7 < f and a < (.
According to Corollaries 1 and 3, if additional condition P(X|[z]) > « holds,
decide © € POS(X). According to Corollaries1 and 2, if additional condition
B < P(X]|[z]) < « holds, decide z € BND(X). According to Corollaries2 and
3, if additional condition P(X|[x]) < 8 holds, decide z € NEG(X).

Theorem 5. If (Arp — Arn) > (Anp — Ann) > (Aap — Aan) and o <y < 3, then
the following decision rules hold: (P) P(X|[x]) < v, decide x € NEG(X); (N)
P(X|[z]) > v, decide x € POS(X).
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Proof. Tt is similar to that of Theorem 4.

risk

B o
(a) POXIDC) (b) PXIIx)

Fig. 2. Three-way structure for X given conditional probability P(X|[x])

Theorems4 and 5 illustrate that three-way structure can be different given the
relative relation of slope, as shown in Fig. 2. It reflects that the introduction of
target function T do not necessarily give rise to three non-empty regions.

The three-way structure with regard to =X is derivable from the conditional
probability P(X|[z]). Since X and —X is complementary with regard to 1, the
slope of T'p, T and T is opposite. Consequently, the condition (Arp — Arpn) <

(Anp — Ann) < (Agp — Agn) is satisfied. Based on it, we investigate the relative
relation of parameter «, 0 and ~.

Theorem 6. [f ()‘Tp - )\TTL) < ()\np - )\nn) < ()\ap - )\an) and « S Y S ﬁ
then the following decision rules hold: (P) P(X|[z]) < «, decide x € POS(X
(B) a < P(X|[z]) < B, decide x € BND(X); (N) P(X|[z]) > B, decide x
NEG(X).

)

);
€

Proof. It is similar to that of Theorem 4, as illustrated in Fig. 3(a).

risk
risk

Y a 1'

o Y B
(@) P(X|[x]) (b) P(X|[x])

Fig. 3. Three-way structure for - X given conditional probability P(X|[x])
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Theorem 7. If (A\rp — Arn) < (Anp — Ann) < (Aap — Aan) and 8 <y < a, then
the following decision rules hold: (P) P(X|[x]) < v, decide x € POS(X); (N)
P(X]|[x]) > =, decide x € NEG(X).

Proof. Tt is similar to that of Theorem 4, as illustrated in Fig. 3(b).

4 Multi-object Optimization View for Threshold Solving
with Multiple Quantification

The multi-view of target function is quite ubiquitous in complicated applica-
tions such as group decision-making and double-quantification. It signifies that
for a specific object x, we may observe from different views, resulting in the
appearance of z in at least two different granular structures. Although double-
quantitative can define concepts with multi-view to some degree, some com-
plicated concepts still cannot be defined. For example, consider the following
requirements:

e To accept concept X, precision weighs more than grade, and precision should
be at least 80%;

e The relative differences between precision and grade are limited to 10%, and
percentages for cardinality of equivalent class in information system should
be at least 5%;

e Both precision and grade contribute to the three-way decisions, but the eval-
uation metrics for different regions are different.

The aforementioned requirements cannot be resolved in existing double-
quantitative rough set model since thresholds are not determined by target func-
tions from homogeneous quantification. Regarding every target function as an
atomic quantitative metric, this section intends to further examine the thresholds
construction on multiple granulation.

4.1 Problem Formulation

Compared to single quantification, major difference is that the three regions with
regard to concept X are implicitly determined by granular structures. We intro-
duce three region integration functions fp, fg and fy to induce the integrated
region-based target function Tp, T, and T . Therefore, Eq. 2 is rewritten as:

E?rg*rélj?T|(a7ﬂ77) = {fP‘(a7ﬂ77)7fB|(avﬂ7’Y)afN|(O[757FY)} (3)

Suppose there are two groups of target functions (7%, 77, with T% =
{Th,Th, Tx}, T9 = {T}, T}, TS }), then parameters o, 5 and « can be solved by
transferring the principle of region confrontation, defined as:
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Definition 5. Let (Th, Tk, T4) and (Tjjg, Té, TJJV) represent two different groups
of target functions that are determined by Definition j respectively, then («, 3,7)
can be computed as:

5 Th)
(@) fB(Th,Th)
. i, T4
argmin T = {ffBET? T?));
(8) N\INs LN
. Th, T
argmin T}, = {J{P((Tf le))
(v NN 4N

stl0<a<l,0<pf<1,0<y<1

where

Th= (A, —AL) xa+ AL, Th=(,-X,)xa+M,
T = (Mp = M) X7+ Xy Tho = (M), = M) x v+ M,

To elaborate the structure of integrated region, we consider the trivial case,

namely, the output of region integration function is one of the integrated target
functions:

It can be inferred from Definition5 that for each parameter «,(3,~, there
are four candidate combinations. Figure4 illustrates the candidate o and ( in
multi-quantification space for trivial cases, and combinations of the three-way
structure in this scenario can be at most sixteen cases.

j
T
T‘E,
i —
TP P -L'ijf" —
I
P
" —
0 P 1 0 1
0 e, e, o, 4 1 0 B, B, B B, 1
P(X|[x]) P(XI[x])

Fig. 4. Thresholds solving in multi-quantification: a (left) and 8 (right)
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By allowing integrations on two different region integration functions, the
multi-objective optimization based model can be further generalized as:

Definition 6. Let (fb, fi, fi) and (fb, f4, fi) represent two different groups
of integrated target functions, then («, 3,7) can be computed as:

e
argminTa:{ Ip f;’),
(@) f5: I5)
va %})
j b
I
i
P

)]

fP7

vafN

st. 0<a<l,0<pB<1l,0<y<1

P
f5(
argminTg = { E
p(
In(

)
argmin, = { 7070

4.2 Problem Solving

Definitions 5 and 6 are applicable in explaining thresholds construction of double-
quantitative rough sets [14]. Although the incorporation of decision-theoretic has
been discussed, it still deserves to be improved. For example, in GMDg-DTRS
[12], thresholds are approximated by performing operations on pair-wise three-
way thresholds. The results can be regarded as adding additional requirements
on Definition 5 that ¢ = j holds for both « and g but with heterogeneous trivial
selections, whereas the remaining cases are not covered. Indeed, the trivial cases
correspond to the semantic that certain thresholds are completely determined by
certain target functions, whereas the non-trivial cases reflect the relevant degree
to target functions for certain thresholds. For example, one may define that
an equivalent class with 90% precision but with 10 objects should be deferred,
whereas an equivalent class with 80% precision but with 50 objects should be
accepted. The reason is that the acceptance of the latter may yield to a more
robust decision than acceptance of the former.

Figure 5 systematically illustrates the multi-object optimization perspective
for solving thresholds (a*, *) of three-way decisions in granulation space. From
finest to coarsest, there are three levels. In the first level (Sq-TWD), only pair-
wise region confrontation is required to generate region boundary. The three-
way structure is totally determined by the very group of target function, which
means the three-way can not be further optimized given the target function 7T'.
Thresholds solving for single-quantitative three-way decisions is completed in
this level. However, given another group of target function, the level is upgraded
to the second (Dg-TWD), where the three-way is determined by both target
functions (7%, T7) and integrated target functions (fp, fg, fn). The result of
integrated target functions can be either trivial or non-trivial, and how to define
the integrated target function is an open issue. Take « for example, the fp can
generate trivial or non-trivial results, and similarly for fp and fy. Consequently,
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the number of solution structure for each parameter is four. As an example, we
enumerate the cases for « as follows:

(trivial p, trivialg), (trivial p, non — trivialp),

(non — trivialp, trivialg), (non — trivial p,non — trivialg).

where trivialp € {Th, T}, trivialp € {Th, Th}.

fr€@. f5)

Level 3
i arg min 7((@. £.7) ={ /s (@.B.7). (. B.7). Sy B.7)}
. {fp(f;i,f}) e Fargm{f,,(ﬂ, #)
I5(£5.53) 5(%:5) S (fin 14
fre @ 1) Fe@inf) Re@f)

fre @513

e @ /)

aml-b

r

Level 2

ag min 7\« .7)={ fs[(@.8.7). S5 (@ B.7). Fsl( e .7 )]

| (%T2)
« = arg min o
13 (13.73)
[fp € (trivial, ,non — trivial,,)
[ € (trivialy ,non — trivialy)

£ (T.1)
fB (T);: Taj )

[y € (trivial ,non—trivial ;)

B= argmin{

5 € (trivialy ,non - trivialy)

2 (1.14)
1y (TeTd)
Jp € (trivial ,, non— trivial )
[y € (trivial ,non - trivial)

7= argmin{

aml-ba

r

i arg min 7|(a £.7)={T, (. £.7). T (@ £.7) Ty (@ 5.7)]
. Te )Ty .| T,
o = arg min =arg min —are min
g {TB p=arg {TB y =arg {TN

aml1-os

Fig. 5. Levels for threshold solving of three-way decisions from multi-objective opti-

mization view

Thresholds of double-quantitative rough set with decision-theoretic rough set
are solved in this level. In the third level (Mq-TWD), there are more than two
groups of target functions, which indicates that integrated target functions may
be iteratively used. The trivial output is defined as the result which is identical
to either input. In terms of input type, there are also four cases for f§ as follows:

(Tp,Tp). (Tp, fb), (f5. Tp), (f5, f)-
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It corresponds the general case for multi-granulation rough sets. For thresh-
olds with uncertainty like [16,17], we argue that they are the extensions of the
exact solution, and thus are not particularly treated as a level.

4.3 Examples

Three-way structure of multi-quantitative rough set is not as intuitive as single-
quantitative because of uncertainty in the selection of integrated target functions
fp, fB, and fx. Suppose the solutions for all integrated target functions are triv-
ial, by introducing the idea of optimistic and pessimistic defined in [15], we can
define optimistic multi-quantitative decision-theoretic rough set and pessimistic
multi-quantitative decision-theoretic rough set respectively as:

Definition 7. Given information system IS = (U, A, V, f), if (Arp — Arn) <
Anp — Ann) < (Agp — Aan) and a > v > (3, then optimistic multi-quantitative
rough set with regard to concept X are defined as:

X = {z|P(X]|[z]) 2 o}
X = {z|P(X|[z]) = B}

where o = argmin(fp(Th, T3) = (T, T%)), Vi, j
(@)
B = argmax(fn(Tx, T%) = f5(Th, Th)), Vi, j.
)
The boundary region of optimistic multi-quantification rough set is the smallest.
Specifically, a = a1, 8 = B4 if target functions 7; and T} are as shown in Fig. 4.

Definition 8. Given information system IS = (U, AV, f), if (Arp — Arn) <
(Mp — Ann) < (Aap — Aan) and a > v > B, then pessimistic multi-quantitative
rough sets with regard to concept X are defined as:

X = {z|P(X]|[z]) 2 o}
X = {z|P(X[[z]) = B}

where o = arg max(fp(Th, Th) = f5(Th, T%)), Vi, j
(@)
B = arg(;lin(fN(Tz@szjv) = f5(Th,Th)), Vi, j.
The boundary region of pessimistic multi-quantitative rough set is the smallest.
Specifically, a = ay, 8 = B if target functions T; and T; are as shown in Fig. 4.
For other concept descriptions, there are varying methods to develop three-
way structure. One feasible solution is to interpret the problem as learning the
weights among pair-wise target functions, and for this part we intend to elaborate
the details in our future work. Hence, we argue that our work present a finer-
grained threshold construction, since we can not only enrich the meaning of
three-way in single quantification but also applicable in describing complicated
concept.
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5 Conclusion

This paper presents a novel threshold solving model from the perspective of
multi-object optimization for three-way decisions. From the view of region-based
target function, theories on determining three-way thresholds are significantly
enriched. Multi-object optimization on target function is demonstrated to gen-
erate finer-grained thresholds as compared to discussions on double-quantitative
decision-theoretic rough set. In the next step, we will not only theoretically exam-
ine the properties of multi-quantitative rough set, but also practically investigate
efficient algorithms for knowledge reduction.
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Abstract. Three-way decisions theory is an intelligent strategy to deal with the
uncertain information. The cost of three-way decisions could be reduced by
selecting a pair of appropriate thresholds. The complexity of obtaining a pair of
optimal thresholds will increase when processing the large datasets. In this
paper, firstly, a new concept on number of equal probability object is defined in
continuous domain. Secondly, the three-way decisions cost model based on
continuous domain is established. Finally, an efficient algorithm for searching
optimal thresholds of three-way decisions model is proposed for continuous
domain. The experimental results demonstrate that the proposed model is better
in the efficiency, robustness and generalization ability than that of the model
based on discrete domain for large datasets. These results further enrich the
theory of three-way decisions model.

Keywords: Three-way decisions + Optimal thresholds + Continuous domain -
Cost - Number of equal probability object

1 Introduction

More and more imprecise, inconsistent or uncertain information has been flooded into
people’s life from the middle of the 20™ century [1], and many researchers make great
efforts to find some workable methods for dealing with the uncertain information.
Fuzzy set theory, which describes imprecise features by a membership function, is
proposed by Zadeh in 1965 [2]. D-S evidence theory is proposed by Dempster and
Shafer [8] in 1976. However, D-S evidence theory needs to depend on prior knowledge
and it also has very high computational complexity. Hence, rough set theory is pro-
posed by Pawlak to solve the defect of D-S evidence theory in 1982 [4]. Nowadays,
rough set model has successfully been applied to many fields, such as data mining,
machine learning, cloud computing, network security and so on [5-9, 30-34]. Some
scholars propose other practicable extended models [10—12]. Probabilistic rough set is
proposed by Yao and it could describe the uncertain information [13]. In 1993, variable
precision rough set model is put forward by Ziarko [14]. Then, Yao brings a pair of
thresholds o and f(0<f<o<1) into Pawlak’s rough set theory and establishes
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probabilistic rough set model in 90’s [15]. Probabilistic rough set model has been
widely used in many fields and disciplines now, including decision-theoretic rough set
model [16], Bayesian rough set model [17], information-theoretic analysis [18, 19],
attribute reduction [20], three-way decisions rough set model [21-23] and game-
theoretic rough set model [24]. Yao proposes three-way decisions rough set model
[21-23], and provides reasonable semantic interpretations for three regions of rough
set. Nowadays, the three-way decisions rough set model is widely used in daily life,
such as management sciences [25], peering review process [26], medical decision-
making [27, 28] and e-mail filtering [29].

To some extent, the three-way decisions rough set model can satisfy the demands in
real life. But some aspects should be further studied and improved. Firstly, there are
only four types of decision errors: Rejecting an object x which belongs to X (where X is
a target set), accepting an object x which does not belong to X, making a deferred
decisions for an object x which can’t be determined whether belongs or not belongs
to X. Secondly, in the case of large datasets, the problem how to calculate decisions
cost in the continuous domain could be solved, and continuous domain means the
values of conditional probability of classification is continuous. Finally, the question
how to obtain the optimal thresholds o and (0 < ff<a <1) from the perspective of
global optimal is also worth considering.

Hence, according to the three-way decisions cost model containing four types of
decision errors, the new concept on the number of equal probability object is defined at
first. Secondly, the three-way decisions cost model based on continuous domain is put
forward consequently. Finally, an efficient algorithm for searching optimal thresholds
of three-way decisions model is proposed for the continuous domain. The experimental
results show that the efficiency, robustness and generalization ability of the proposed
model are better than those based on discrete domain for large datasets. In specific
situations, the thresholds o and f can be calculated without prior knowledge, and it is
convenient to make decisions. Therefore, the proposed three-way decisions cost model
based on continuous domain may further develop three-way decisions theory.

The rest of this paper is organized as follows. First, some preliminary concepts
about rough set and three-way decisions theory are reviewed in Sect. 2. Then, the
number of equal probability object, three-way decisions cost model based on contin-
uous domain, and an efficient algorithm for searching optimal thresholds are proposed
in Sect. 3. Next, the experimental analysis is discussed in Sect. 4. Finally, the paper is
concluded in Sect. 5.

2 Preliminaries

The Pawlak’s rough set model is a mathematical tool to analyze uncertain information
[4]. Many scholars constantly extend this model to some new extensions, such as,
probabilistic rough set model and decision-theoretic rough set model, variable precision
rough set model. What’s more, according to granular computing, multi-granulation
rough set model was presented by Qian [36]. Yao [21-23] put forward the concept of
three-way decisions. In order to improve readability, many basic concepts on rough set
and three-way decisions are reviewed briefly in this section.
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Definition 1 (Indiscernible relation [3]). Given an information system S = (U, R), U
is a nonempty finite set and A is an attribute set. For any subset of attributes RCA, an
indiscernible relation (or equivalence relation) IND(R) is defined as follows,

IND(R) = {(x,)|(x,y) € U, Yper(b(x) = b(y)) }.

Definition 2 (Rough sets [3]). Given an information system S = (U,R), attribute
subset RCA. For any target subset XCU, its lower and upper approximation sets are
defined, respectively, as follows,

R(X) ={xe€ U|[x] € X}andR(X) = {x € U|[x]NX # &}.

Where [x] denotes the equivalence class of x. If and only if R(X) # R(X), X is
called a rough set with respect to R.

Definition 3 (Probabilistic rough set model [15]). Given an information system S =
(U, R) with a pair of thresholds o and (0 < f <o <1), where RCA is a subset of the
attributes. For any XCU, the lower and upper approximation sets of X on universe U
are defined as follows,

ROP(X) = {x € UPX|X) > o} and R*P(X) = {x € UIP(X|[]) > B}.

Where P(X|[x]) = |[x] N X]|/|[x]| denotes conditional probability of classification.
|e| is the cardinality of a set. And the domain is divided into three disjoint regions as
follows,

POSEY (X) = {x € UIP(X| ] > 2} = RV (X),
NEGYP (X) = {x € UIP(X|X] < B} = U — R*P(x),
BNDYP (X) = {x € U|p<P(X|]x] <o} = R*P (X) — R*P(X).

Definition 4 (Three-way decisions rough set model [21-23]). Let Q = {C,C} be
the set of states. A = {op, oy, otp } be the set of actions, where op, oy and o represent the
three actions in classifying an object x, Namely, deciding x € POS(X), deciding
x € NEG(X), and deciding x € BND(X), respectively. The positive region POS(X) and
the negative region NEG(X), still correspond to the decisions of acceptance and rejection,
respectively. The third region BND(X) corresponds to the decision of deferment.

If P(C|[x]) > o and P(C|[x]) >y, decide x € POS(X);
If P(C|[x]) <p and P(C|[x]) <y, decide x € NEG(X);
If P(C|[x]) <o and P(C|[x]) > B, decide x € BND(X).

When an object belongs to X, App, Ayp and /gp denote the cost for taking actions
ap, oy and o, respectively, while Apy, Ayy and gy denote the cost of taking the same
actions when the object does not belong to X. Where the three thresholds o, f and y are
calculated from the cost function as follows:
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y— (Apn — ZBN) = (ABn — Awn) and 7
(Apn — 2gn) + (Agp — App)’ (AsN — Ann) + (Anp — Z8p)
(ApN — ZnN)

(Apn — 2gn) + (Anp — Zpp)

With the introduction of the third action, the cost function is now given by the
3 X 2 matrix:

C : positive C¢ : negative
ap : accept App PN
oy : reject Anp ANN
og : defer AP BN

In Yao’s three-way decisions model [21-23], the values of o and f§ are obtained
with minimum decisions cost based on discrete domain. However, when facing to big
datasets in the continuous domain this model need to be improved. In this paper, the
three-way decisions cost model based on continuous domain is presented, and an
efficient algorithm for searching optimal thresholds of three-way decisions model is
established from thought of global optimum. Accordingly, in this paper, some tentative
researches on three-way decisions based on continuous domain have been studied.

3 Three-Way Decisions Cost Model

At present many scholars usually discuss three-way decisions theory in the nonempty
finite set, which greatly limits the development of three-way decisions theory based on
continuous domain. In this section, firstly, according to three-way decisions cost model
based on discrete domain, a new concept on number of equal probability object is
defined for indicating three-way decisions in the continuous domain. Secondly,
three-way decisions cost model based on continuous domain is proposed. Finally, an
efficient algorithm is proposed to obtain the optimal thresholds o and £ of this model.

3.1 Three-Way Decisions Cost Model Based on Discrete Domain

The domain U will be divided into positive region POSg(X), negative region NEG(X)
and boundary region BNDg(X) by an equivalence relation R and a target set XCU.
However, in this process, it is inevitable to make wrong decisions. So, four types of
decision errors are defined to calculate the cost of three-way decisions model.

Definition 5 (Four types of decisions errors). Given an information system
S=(U,R), X(XCU) is a target set, R is an equivalence relation on U.

The first type of decision error (Error-1): If x € X, but x is classified into NEGg(X),
and the cost coefficient is denoted as 1;(4; > 0).
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The second type of decision error (Error-2): If x ¢ X, but x is classified into
POSR(X), and the cost coefficient is denoted as 4>(4; > 0).

The third type of decision error (Error-3): If x € X, but x is classified into
BNDg(X), and the cost coefficient is denoted as u;(u#; > 0).

The fourth type of decision error (Error-4): If x & X, but x is classified into
BNDg(X), and the cost coefficient is denoted as u;(u; > 0).

In the probabilistic rough set model, an equivalence class [x] may be classified into
different regions based on its conditional probability P(X|[x]) = |[x] N X|/|[x]|, and the
decision rules are shown as follows (0 < f<a<1),

W CPOSK(X), 2 < PX|[x]) < 1,
[X]ENEGR(X),0 < P(X|[x]) <,
[X|]SBNDg(X), f<P(X|[x]) <o

Figure 1 shows the relationship between probabilistic rough set model and
three-way decisions model.

T~
° Target set
- Positive region (Accept)
Boundary region (Defer)
O Negative region (Reject)
e[ —Te | e

Fig. 1. Relationship between probabilistic rough set model and three-way decisions model.

Let C([x]) denote the decisions cost function of the equivalence class [x] as follows,

72 % (1 - PX|Ix)) % |1l 2 < PX|I) < 1,

C(lx]) = ¢ 41 x P(X|[x]) x |[x]], 0 < P(X|[x]) <B,
ur X PX|[x]) x [[x][ +u> x (1 = P(X|[x])) x [[x]], B<P(X][x]) <o

72 x ([l = | X)), 2 < PX|) < 1,

Namely, C([x]) = ¢ 41 x |[x]NX], 0<P(X|[x]) <P,

]
w X | X[+ ug < ([ = [ N X)), B<P(X|}x]) <o

For convenience, let C(P)= Y, C(jx]), C(N)= > C([x]) and C(B) =
x]cpPOs [X|SNEG
> C([x]). The calculation methods of decisions cost for different equivalent classes
[|CBND
are explained respectively.
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(1) When P(X|[x]) >a, C([x]) indicates that the cost of the equivalence class [x]
which is classified into positive region, and it can be calculated as following
formula,

C([) = 22 x (1 = P(X|[x])) x [[x]] = 42 x (I¥]] = [ N X]);

(2) When P(X|[x]) <, C(]x]) indicates that cost of the equivalence class [x] which is
classified into negative region, and it can be calculated as following formula,

C([) = 4 x P(X|[e]) x |[H] = 41 < ([ N XT);

(3) When f<P(X|[x]) <o, namely equivalent class [x] is divided into boundary
region), C([x]) indicates that cost of the equivalence [x] which is classified into
boundary region, and it can be calculated as following formula,

C([) = wr x PX|[x]) > [[x]] 4 w2 x (1 = P(X][x])) x [[]]
= X | N X[+ x (| = [ N X).
Obviously, in Pawlak’s rough set, [x]CPOSg(X) only when P(X|[x]) =1, so
C(P) =0, similarly, [x]CNEGg(X) only when P(X|[x]) =0, so C(N) = 0. From the
above analysis, we can know that the decisions cost of Pawlak’s rough set only comes
from the boundary domain, namely, C(U) = C(B).
Three-way decisions cost model based on discrete domain can be established by the
four types of decisions errors and the decisions cost function.

Definition 6 (Three-way decisions cost model based on discrete domain). The
three-way decisions cost model based on discrete domain can be established as follows:

C(U)=C(P)+C(N)+C(B)

a<P(X|}x]) <1 0<PX|x])<p B<P(X|[x]) <u
> x|pnX|
2< P(X|X) <1 0<P(X|[) <

+ Z up X | NX|+uz x (|[x]] — |[F] N X])-
B<P(X|[x]) <o

I
~
[\S)
X
=
I
=,
D)
>
+

The cost coefficient of four types of decisions errors are 1;, 4>, u; and u, (see
Definition 5). The decision rules are shown as follows:

x € POSg(X (X|

), <P
x € NEGg(X),0< P(X
x € BNDg(X), B<P(

) <1,
)< B,
<a.

)

x|

>
=

Next, an example of the proposed model is presented in the following Example 1.
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Example 1. An information system is constructed by using the Adult [35] dataset in
UCT (see Table 1), for convenience, we only select 27 samples in the Adults data set
-, X7} in S;). The four condition attributes are
“Workclass”, “Education”, “Sex” and “Race” respectively, and the decision attribute is
“Salary”. The cost coefficient of four types of decision errors are denoted as 11, 4o, u;

(namely, the domain U = {x,xa, -

T. Zhang et al.

and u, respectively.

Table 1. Information system S;.

id | Workclass Education Sex Race Salary
X; | Federal-gov | 10th Female | Amer-Indian-Eskimo | < 50K
X, | Federal-gov | 10th Female | White <50K
X; | Local-gov 10th Female | Black < 50K
X, | Never-worked | 10th Male White < 50K
X5 | Private 10th Female | Amer-Indian-Eskimo | < 50K
X | Private Assoc-acdm | Female | Amer-Indian-Eskimo | < 50K
X | Local-gov Bachelors Male Asian-Pac-Islander < 50K
Xg | Local-gov Bachelors Male | Black <50K
Xo | Federal-gov | Some-college | Male | White <50K
X0 | Local-gov Some-college | Male | White <50K
X;; | Never-worked | Some-college | Male | White < 50K
X, | Private Some-college | Female | White <50K
X3 | Local-gov Assoc-acdm | Female | White >50K
X4 | Private Assoc-acdm | Male | Asian-Pac-Islander | >50K
X5 | Federal-gov | Bachelors Male | White >50K
X6 | Federal-gov | Doctorate Female | Amer-Indian-Eskimo | >50K
X;7 | Local-gov Doctorate Male | White >50K
X,s | Federal-gov | Doctorate Female | Black >50K
X9 | Federal-gov | Doctorate Female | White >50K
X0 | Federal-gov | Doctorate Male | Asian-Pac-Islander |>50K
X5 | Federal-gov | Doctorate Male | White >50K
X5, | Federal-gov Masters Female | White >50K
X553 | Private Masters Male | Asian-Pac-Islander |>50K
X5, | Private Prof-school | Female | Asian-Pac-Islander | >50K
X5 | Private Prof-school | Female | White >50K
X, | Private Prof-school | Male | White >50K
X,7 | Federal-gov | Some-college | Male | Asian-Pac-Islander |>50K
Supposing the target set is X = {x13,x14, -+, X27} in Sy, then all objects in S; will

be divided into 7 equivalent classes by attribute “Education”, namely R = {10",
ASSoc-acdm, Bachelors, Some-college, Doctorate, Prof-school, Masters}, they are

shown as follows,
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U/R - {{Xl,X27X3,X4,X5}, {X6,X13,XI4}, {X7,X8},
{x9,x10,x11,x12,x15}, {x247x257)€26}7 {xzz,xzs}}
= {X1,X2,X3,X4,X5, X6, X7}

Therefore, the conditional probabilities of each equivalent class will be calculated
as follows,

PX[X)) = [XinX|/|Xi| =0, P(X[X2) = [X2NX|/|Xa2| =

)

P(X|X3) = [X; N X|/|X3] =0, P(X[Xy) = [Xa N X]|/|Xs| =

)

2
3
1
5
1

P(X|Xs) = [Xs N X|/|Xs| =1, P(X|Xs) = [X6 N X|/|Xe| =
P(XIXs) = X2 N X]/|X)] = 1.

and

(1) In Pawlak’s rough set, the decisions cost for information system S; can be
computed as follows,

C(U) = C(B)
= Y A{m x|MnX] +uy x (|| - [ NX])}

B<P(X|}x]) <u
=2uy +upy +u; +4uy
= 3u; + Su,.

(2) In the probabilistic rough set, the decisions cost for information system S; will
change with the thresholds o and (0 < f<a < 1), and they are shown in Table 2.

Table 2. Decisions cost in the probabilistic rough set.

Thresholds o, B Decisions cost
0§|3<oc§é 5/
t<p<a<i A+
2<p<a<ti 34
0<Bp<i<a<? Jo+py + 41,
t<p<i<a<l 20+ 1y
0<P<i<?<a<l 3 +5m

In real life, the optimal thresholds o and f can be obtained by solving the cost
minimization problem in Pawlak’s rough set model or probabilistic rough set model.
Table 3 shows the relationship among the cost coefficients of four types of decisions
errors, optimal thresholds (x and f) and decisions cost in Example 1.

The above analysis is the process of obtaining the minimum decisions cost and the
optimal thresholds in the discrete domain. But there are two difficulties. One is very
high time complexity. That is to say, the more values the conditional probability is, the
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Table 3. Relationship among the cost coefficients, the optimal thresholds and decisions cost.

Cost coefficients Minimum decisions | Optimal thresholds Cost coefficients Minimum decisions | Optimal
cost cost thresholds
>+ 3 3 + 51 0<Bp<i<i<a<l <3 34 2<p<a<l
Jo >3+ <py+5m
< %Az + %Ml + %
Ja<th 572 0<p<a<t {/l]>;41+4,uz Do 4y + 4, 0<p<i<u<i
l2 <yt THIy <22 <21
o<t im+im
Ja <ty + 4, M+l t<p<a<i Jo > 2 + s 2 + 1 1<p<i<a<l
Jo <2y + 1y >+

higher the time complexity of solving the optimal thresholds. The other is that the
optimal thresholds is an interval value in the discrete domain, so the accuracy,
robustness and generalization ability of this model are relatively low.

In order to solve above two problems, in this paper, the equal number of objects is
defined, and a three-way decisions cost model based on continuous domain is proposed
from a new viewpoint.

3.2 Three-Way Decisions Cost Model Based on Continuous Domain

In this section, the number of equal probability object is defined, then, the way of
obtaining the optimal thresholds is presented in the three-way decisions cost model
based on continuous domain.

Definition 7 (The number of equal probability object). Given an information system
S=(U,R), ¥x,y(x,y € U), IP(X|[x])=P(X|[y])=p(p € [0, 1]), x and y be called equal
probability. f(p) = |{x|x € U A P(X|[x]) = p}| is called the number of equal proba-
bility object.

In the Example 1, the number of equal probability object for each equivalent class
are calculated as follows.

P(X|X;) = P(X|X3) = 0, sof(0) = [Xi| + |[X3] = 7;
P(X|Xs) = P(X|Xs) = P(X|X7) = 1, so f(1) = |Xs5]| +|Xe| + [X7] = 11;

P(X|X>) , sof(

|
W
W

1 1
) =1Xe| = 3; PX[Xs) =5, sof(5) = [Xa| = 5.

Therefore, there is a new method to calculate the three-way decisions cost by the
number of equal probability object. Then, the process of the decision cost in the
information system S; is shown as follows.

(1) The total decisions cost can be calculated as following formula when
0<f<a<i
C(U)=C(P)+C(N)+C(B)
=/ Z (1-p)f(p) +0+0=>54.

a<g<l
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(2) The total decision cost can be calculated as following formula when é <f<a< %
C(U)=C(P)+C(N)+C(B)
= Y (L=pfp)+i Y, pf(p)+0=Ii+/a,

a<p<l 0<p<p
(3) The total decision cost can be calculated as following formula when % <f<a<l.

C(U) = C(P) + C(N) + C(B)
=0+ Y. pf(p)+0=3A.

0<p<p

(4) The total decision cost can be calculated as following formula when
0<f<i<a<i

C(U)=C(P)+C(N)+C(B)
=i > (L=p)f(p)+0+u > pfp)+uw > (1—p)f(p)
a<p<l p<p<o pf<p<o

= /12—|—M1 —|—4M2

(5) The total decision cost can be calculated as following formula when
L<p<i<a<l.

C(U) = C(P) + C(N) +C(B)
=0+ Y pf)+uw Y pfp)+uw S (1-p)f(p)

0<p<p f<p<a p<p<a
= A1 +2u; +us.

(6) The total decision cost can be calculated as following formula when
0<p<i<i<u<l.

C(U) =C(P)+C(N)+C(B)
=0+0+u > pf(p)+uw Y. (1-p)f(p)

p<p<o p<p<o

= 3u; + Su,.

It is easy to calculate the three-way decisions cost based on discrete domain by the
number of equal probability object. In this paper, the discrete domain is extended to the
continuous domain for solving mass and high-dimensional data. At the same time, the
optimal thresholds can be obtained by new method, and it can improve the precision
and generalization ability of three-way decisions cost model.

It is difficult to accurately calculate each number of equal probability object when
the domain is too large. So, in this paper, the number of equal probability object with
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different conditions probability p(p € [0, 1]) will be obtained by sampling fitting, and
supposing that f(p) € (0, +o0). The three-way decisions cost model based on con-
tinuous domain is defined as follows.

Definition 8 (The three-way decisions cost model based on continuous domain).
Given an information system S=(U,R), Let p(p € [0, 1]) be the conditional proba-
bility, and the number of equal probability object f(p) is continuous differential. Then
the function of three-way decisions cost model based on continuous domain is Cy («, f3)
can be defined as follows:

Cul, B) = C(P) + C(N) + C(B)
1 B
— 4 / (1= p)f (p)dp+ /0 pf (p)dp
o /ﬁ P (p)dp + /ﬂ (1 P ()dp.

Where o and (0 < f<a<1) is the thresholds of this model, and the cost coeffi-
cient of four types of decisions errors are 1y, Ao, y; and py (41 >0, 2, >0, u; >0 and
The meaning of three parts of this model can be explained as follows.

(1) All the equivalent classes whose conditional probability is p(a <p <1) will be
classified into positive region, and (1 — p)f(p) indicates the number of objects
that are classified into positive region but they do not belong to the target set, and
Ay is the cost coefficient of Error-1. So the first part 1, f; (1 —p)f(p)dp is the
decision cost of positive region.

(2) All the equivalent classes whose conditional probability is p(0 <p < f8) will be
classified into negative region, and pf(p) indicates the number of objects that are
classified into negative region but they belong to the target set, and A, is the cost

coefficient of Error-2. So the second part 4, f(f pf(p)dp is the decision cost of
negative region.

(3) All the equivalent classes whose conditional probability is p(a<p<f) will be
classified into boundary region, and pf(p) indicates the number of objects that are
divided into boundary region but they belong to the target set, and (1 — p)f(p)
indicates the number of objects that are classified into boundary region but they do
not belong to the target set. u; and u, are the cost coefficients of Error-3 and
Error-4 respectively. So the third part u; f/:‘pf(p)dp +up f; (1 = p)f(p)dp is the
decision cost of boundary region.

In conclusion, Cy(a, ) can represent the three-way decisions cost in the whole
domain.

Theorem 1. In the three-way decisions cost model based on continuous domain, let
A1, A2, u; and up be the cost coefficient of four types of decisions errors respectively
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(4120, 72>0, uy >0 and up >0). If Ay > u; —up and A, > u; +up, the optimal
thresholds oy and (0 <, <ap < 1) will be easily calculated as follows:

Jo — U up
= »Po = .
Jo+up —up Al — Uy +up

0o

Proof. The first derivatives of Cy (o, ff) are 00(({;;(,/)’ ) and 6%(;"/; )

O] o1 — (o) + o () + (1 — 2 (o)
=F@[(2 +u — w2)a — o+ w;
‘W = LB (B) — mBF(B) — w(1 = B)F(B)

=SB = uz = 1)+ ua].
Because f(o) and f(f§) are constants, (o, ) is the stationary point as follows.

Jo — Uy Uy
== yPo — .
Jo+up —up Al — Uy 1y

0o

P Cy(x.p) and PCy(a,p)

The second derivatives of Cy/(a, f§) are

(92)° @
2
8%‘(‘;;@ =f()[(2+uw —u2)o — Jo+u] +f(0) (22 + 11 — up)
=A1+A =A
2
aigiﬁ()az’ﬁ) = —f"(B)[(ur — uz — 2) B+ uz] — f(B)(ur — uz — A1)
=Ci+CG =¢
O Cy(e,p)
Taﬂ—o =B.

The function of three-way decisions cost model based on continuous domain
Cy(a, f) can be minimized when the stationary point (o, f§,) satisfies A > 0 and
AC — B> > 0. Namely, the three-way decisions cost will reach minimum when
Al >uy —uy, A2 >u;+uy and the thresholds is oo and f, (where oy =1 —
uy/ 2o +uy —uy and By = up /A1 — uy +uy).

In summary, the proof is completed.

According to Theorem 1, the optimal thresholds are oy = A, — us /2> + 1y — u, and
Po =uz/A —uy +uy when 4y > uy —up and 2, > u; +u, (namely, the cost coeffi-
cient of Error-2 more than the sum of Error-3 and Error-4, and the cost coefficient of
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Error-1 more than the difference of Error-3 and Error-4). But in practice, the conditions
A1 > uy; —up and Ay > u; + up are hard to satisfy. So it is not easy to find the optimal
thresholds, and the minimum value of cost function is in the endpoint.

In the process of dealing with mass data, it is difficult to obtain the optimal
thresholds in the time and space by the three-way decisions cost model based on
discrete domain. So, the total cost of three-way decisions cost on the whole domain will
be fitted by the randomly sampling data. Then, Algorithm 1 is proposed to obtain the
optimal thresholds and the minimal decision cost based on continuous domain.

Algorithm 1. An efficient algorithm for searching optimal thresholds of three-way
decisions model based on continuous (EASOT).

Input:
Output:
Step 1.

Step 2.

Step 3.

Step 4.

Step 5.
Step 6.

An information system (S) and the cost coefficients of four types of
decisions errors (4; >0, 1, >0, u; >0 and u, > 0).

The thresholds of three-way decisions o and (0 < i, <o <1) and the
minimal decision cost.

The cost coefficients of the four types of decisions errors will be judged
whether satisfies the conditions A1 > u; — uy and Ay > uy + us.

If the cost coefficients satisfy the above conditions, the optimal thresholds
will be oo = )yz — Mz//b +up — u and ﬁO = Mz/;\.l —uy + us, then g0 to
step 6.

If the cost coefficients do not satisfy the above conditions, the number of
equal probability object function f(p) will be fitted by randomly sampling
some objects in the domain.

According to the three-way decisions cost model based on continuous
domain, Cy(a, ) will be established by the number of equal probability
object function in Step 3.

The optimal thresholds (o, ;) will be calculated by Cy(a, f8).

Return (o, fy) and Cy (o, ).

The algorithm flowchart is shown in Fig. 2.

Random sampling
and fitting /(p)

Fig. 2. Flowchart of EASOT.
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4 Experiments and Analysis

In the first experiment, the correctness of the proposed model is verified with artificial
datasets. In the second experiment, the performance of the three-way decisions cost
model based on continuous domain will be compared with the model based on discrete
domain with actual data. Experimental environment is 8 G RAM, 3.0 GHz CPU, and
WIN 8.1 operating system, and the programming languages are MATLAB and Python.

4.1 Experiment Analysis with Artificial Datasets

In this experiment, the cost coefficient of four types of decisions errors (4; >0, 4; >0,
uy >0 and u, > 0) meet the conditions A; > u; — up and Ay > u; + up. And then there
are four functions of equal probabilistic object f;(p)(i = 1,2, 3,4;p € [0, 1]), which are
fi =100+ (p —0.5)>, o =100+ (p —0.5)>, f; = 100+ loghs and fy = 100+ eP.
The function images are shown in Figs. 3, 4, 5, 6, and the datasets are 5 X 10°
(namely, every domain collects 5 x 10° points from f(p)).

100.30

100.05
100.25 100.00
100.20 99.95
100.15 =100+(p—03)" )
Ay =1t 99.90 fi(»)=100-(p-03)
100.10 99.85
100.05 99.80
100.00 99.75
99.95 99.70
0.00 020 040 0.60 0.80 1.00 0.00 020 040 0.60 0.80 1.00
Fig. 3. The function picture of f;(p). Fig. 4. The function picture of f>(p).
105.00 103.00
104.00 £:(») =100 +10gZ; 102.50 i) =1004¢7
103.00
102.00
102.00
101.00 101.50
99.00 100.50
000 020 040 060 0.80 1.00 0.00 020 0.40 0.60 0.80 1.00

Fig. 5. The function picture of f3(p). Fig. 6. The function picture of f4(p).
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Table 4. The results of experimental 1.

(A1, o, u1,u2) | fi(p) £(p) £(p) fa(p)

(3,5, 1,2) | (0.75, 0.5, 87.59) | (0.75, 0.5, 87.46) | (0.75, 0.5, 86.25) | (0.75, 0.5, 89.03)
4,6,2,3) |(0.6,0.6, 120.05) | (0.6, 0.6, 119.95) | (0.6, 0.6, 122.77) | (0.6, 0.6, 122.09)
(5.4,2,1) | (0.6,0.25,97.55) | (0.6, 0.25, 97.45) | (0.6, 0.25, 95.99) | (0.6, 0.25, 99.13)

Experimental results shown in Table 4 indicate the relationship among the cost
coefficients of four types of decisions errors, the four functions fi(p)(i =
1,2,3,4;p € [0,1]), the minimum cost value and the optimal thresholds o and f8. The
partial images of decision cost are shown in Figs. 7, 8, 9, 10.

Fig. 7. The decision cost with fi(p) and Fig. 8. The decision cost with f;(p) and (4,
(5,4,2, 1) 6, 2, 3).

]

¥
1

sEpeuy

Fig. 9. The decision cost with f;(p) and Fig. 10. The decision cost with f3(p) and (4,
3,5, 1,2). 6,2, 3).

In Table 4, item “(A1, A2, u1,u)” stands for the cost coefficients of four types of
decisions errors. Item “f;(p)” (i = 1,2, 3,4) stands for the optimal thresholds «, § and
minimum decision cost in f;(p)(i = 1,2, 3, 4) respectively. For example, in the case of
fi(p), (0.6,0.25,97.55) shows that the minimum decision cost is 97.55, when o= 0.6
and f= 0.25. From the results of experimental 1, it is known that the optimal
thresholds are o = A, —uy/Ap+u; —up and f=uy/2 —uy +uy, when the cost
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coefficient of four types of decisions errors meet A, > u; —up and Z; > u; +up
(41>0, 42>0, u; >0 and u, >0). Namely, in the case of the three-way decisions
domain described by the number of equal probability object, the optimal thresholds and
minimum cost have no relevance with the cost coefficients of four types of decision
errors. This result presents a new perspective to calculate the optimal thresholds and
total cost of three-way decisions model.

4.2 Comparative Analysis Experiment

In UCI datasets, there is a large dataset Hepmass [35], which has 3.5 x 10° objects and
28 attributes, and it can be divided into 984497 equivalent classes. The above two
models are established by randomly sampling 1% objects of this big dataset. In the
three-way decisions cost model based on continuous domain, the minimum decision
cost and the optimal thresholds can be calculated by EASOT. In the three-way deci-
sions cost model based on discrete domain, the minimum decision cost and the optimal
thresholds can be calculated by traversing model. And the experimental results are
shown in Table 5.

Table 5. Comparative analysis

(A1, 22,u1,uz) | Thresholds | Thresholds Run time(s) Decision cost
(continuous) | (discrete) Continuous | Discrete | Continuous | Discrete
1,2,3,4) 1, 1) (0.654, 0.673) 0.0008 0.0869 | 1749125 3245843
2,4,3,1) 1, 1) 0.994, 1) 0.0009 0.0875 [3610459 3498251
3,2,4, 1) 0, 0) (0.389, 0.418) 0.0008 0.0702 | 3501500 3418449
4,1,3,2) 0, 0) (0, 0.329) 0.0009 0.0678 | 1750750 1762310
2,3,1,4) (1, 1) (0.439, 0.617) 0.0009 0.0678 | 3498251 3846888
2,1,4,3) 0, 0) (0.329, 0.339) 0.0006 0.0692 | 1750750 2145036

From Table 5, we can see that the continuous model (three-way decisions cost
model based on continuous domain) performs better than the discrete model (three-way
decisions cost model based on discrete domain). In terms of time, the continuous model
only accounts for 1% of discrete model. In terms of cost, the continuous model is less
11% than discrete model, and in the optimal situation, the cost of continuous model is
even less 46%. There are two main reasons as follows.

(1) One is that the thought of calculating the optimal thresholds are different between
the two models. That is to say, the continuous model searches the optimal
thresholds based on the idea of global optimum, while the discrete model is based
on the thought of local optimum. So the accuracy, robustness and generalization
of the continuous model are stronger than the discrete model.

(2) The other is that the method of calculating the optimal thresholds are different
between the two models. In the continuous model, cost function is established by
equal probabilistic objects, and the optimal thresholds are obtained by searching
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the minimum value of the cost function. While in the discrete model, the only way
of calculating the optimal thresholds is that all the conditional probabilities of
equivalence classes should be traversed. So the time complexity of the continuous
model is significantly less than discrete model. Surely, the bigger the domain is,
the more advantages continuous model has.

5 Conclusions

In this paper, initially, a new concept on number of equal probability is defined for
indicating three-way decisions in the continuous domain. After that, the three-way
decisions cost based on continuous domain is established, and Theorem 1 is proposed
and proved successful. Finally, the algorithm of EASOT is presented to search the
optimal thresholds. And the experimental results show that the efficiency, robustness
and generalization ability of the proposed model are better than the model based on
discrete domain for large datasets. In our future research, we will focus on applying the
proposed model to the practical engineering projects and others. We hope these
researches can promote the development of three-way decisions theory and further
enrich the decisions models from different viewpoints.

Acknowledgments. This work is supported by the National Natural Science Foundation of
China (No. 61472056).
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Abstract. Pythagorean fuzzy sets as generalizations of intuitionistic
fuzzy sets are effective for dealing with uncertainty information, but little
effort has been paid to conflict analysis of Pythagorean fuzzy information
systems. In this paper, we present the concepts of the maximum positive
alliance, central alliance, and negative alliance with the two thresholds a
and 3. Then we show how to compute the thresholds o and 3 for conflict
analysis based on decision-theoretic rough set theory. Finally, we employ
several examples to illustrate how to compute the maximum positive
alliance, central alliance, and negative alliance from the view of matrix.

Keywords: Pythagorean fuzzy sets - Pythagorean fuzzy information
systems + Three-way decision - Decision-theoretic rough sets

1 Introduction

Pythagorean fuzzy sets (PFSs), as generalizations of intuitionistic fuzzy sets
(IFSs), are characterized by a membership degree and a non-membership degree
satisfying the condition that the square sum of its membership degree and non-
membership degree is equal to or less than 1, and they have more powerful ability
than IFSs satisfying the condition that the sum of its membership degree and
non-membership degree is equal to or less than 1 to model the uncertain infor-
mation in decision making problems. So far, much effort [1,2,15,19] has been
paid to Pythagorean fuzzy sets. For example, Beliakov et al. [1] provided the
averaging aggregation functions for preferences expressed as Pythagorean mem-
bership grades and fuzzy orthopairs. Bustince et al. [2] investigated a historical
account of types of fuzzy sets and discussed their relationships. Reformat et al.
[15] proposed a novel collaborative-based recommender system that provides a
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user with the ability to control a process of constructing a list of suggested items.
Yager [19] introduced a variety of aggregation operations for Pythagorean fuzzy
subsets.

Many scholars [3,9,11-14,16,17] focused on conflict analysis of information
systems, and improved the relationship between the two sides of a conflict by
finding the essence of the conflict issue. For example, Deja [3] examined nature
of conflicts as we are formally defining the conflict situation model. Pawlak [12]
initially considered the auxiliary functions and distance functions and offered
deeper insight into the structure of conflicts and enables the analysis of relation-
ships between parties and the issues being debated. Silva et al. [13] presented
a multicriteria approach for analysis of conflicts in evidence theory. Sun et al.
[16] subsequently proposed a conflict analysis decision model and developed a
matrix approach for conflict analysis based on rough set theory over two uni-
verses. Skowron et al. [17] explained the nature of conflict and defined the con-
flict situation model in a way to encapsulate the conflict components in a clear
manner.

In practice, if opinions of agents on issues are expressed by Pythagorean fuzzy
sets, then they are more effective than intuitionistic fuzzy sets for describing
imprecise information. But little effort focus on conflict analysis of Pythagorean
fuzzy information systems now. Much research [4-8,10,18,20] has illustrated
three-way decision theory and matrix theory are effective for knowledge discov-
ery of information systems, we will study conflict analysis of Pythagorean fuzzy
information systems based on decision-theoretic rough sets. The contributions
of this paper are as follows. Firstly, we provide the concept of Pythagorean
fuzzy information system, Pythagorean matrix, Pythagorean closeness index
matrix, whole Pythagorean closeness index, and whole Pythagorean closeness
index matrix. Secondly, 