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Preface

The two-volume set of proceedings of IJCRS 2017, the 2017 International Joint
Conference on Rough Sets, contains the results of the meeting of the International
Rough Set Society held at the University of Warmia and Mazury in Olsztyn, Poland,
during July 3–7, 2017.

Conferences in the IJCRS series are held annually and comprise four main tracks
relating the topic rough sets to other topical paradigms: rough sets and data analysis
covered by the RSCTC conference series from 1998, rough sets and granular com-
puting covered by the RSFDGrC conference series since 1999, rough sets and
knowledge technology covered by the RSKT conference series since 2006, and rough
sets and intelligent systems covered by the RSEISP conference series since 2007.
Owing to the gradual emergence of hybrid paradigms involving rough sets, it was
deemed necessary to organize Joint Rough Set Symposiums, first in Toronto, Canada,
in 2007, followed by Symposiums in Chengdu, China in 2012, Halifax, Canada, 2013,
Granada and Madrid, Spain, 2014, Tianjin, China, 2015, where the acronym IJCRS
was proposed, continuing with the IJCRS 2016 conference in Santiago de Chile.

The IJCRS conferences aim at gathering together experts from academia and
industry representing fields of research in which theoretical and applicational aspects of
rough set theory already find or may potentially find usage. They also provide a venue
for researchers wanting to present their ideas before the rough set community, or for
those who would like to learn about rough sets and find out whether they could be
useful for their problems.

This year’s conference, IJCRS 2017, celebrated the 35th anniversary of the seminal
work by Prof. Zdzisław Pawlak published in 1982, in which the notion of a rough set
emerged.

Professor Zdzisław Pawlak (1926–2006) contributed to computer science with many
achievements such as addressless Pawlak machines, a random number generator, a
participant in the design and production of the Polish computing machine UMC-2, and
a proposition of the first genomic grammar (1965).

The emergence of the rough set idea owes much to Prof. Pawlak’s deep interest in
the foundations of logics and mathematics — in the 1960s he conducted seminars with
the eminent logician and mathematician Prof. Andrzej Ehrenfeucht at the Mathematical
Institute of the Polish Academy of Sciences. At the root of the idea of a rough set lie the
mathematical notions of the lower and the upper approximation known in geometry
and analysis, and the idea of an inexact concept as possessing a boundary that consists
of things belonging neither in the concept nor in its complement, going back to Gottlob
Frege.

The second motive for celebration was the 50th anniversary of the dissemination in
the scientific world by Prof. Solomon Marcus (1924–2015) of the Pawlak model of the
DNA grammar, published in 1965 in Polish, in a small popular monograph on grammar



theory, intended for high schoolers. This grammar, constructed also visually by means
of chains of triangles, was the precursor of visual and mosaic grammars.

The conference commemorated Prof. Pawlak with a special session on “Zdzisław
Pawlak— Life and Heritage” with Prof. Grzegorz Rozenberg as the honorary chair and
Professor Andrzej Skowron as the chair; there were also commemorative talks by Prof.
Grzegorz Rozenberg, Sankar Kumar Pal, Lech Polkowski, Roman Słowiski, Shusaku
Tsumoto, Guoyin Wang, Zbigniew Ras, and Urszula Wybraniec-Skardowska. The
essay by Prof. Wybraniec-Skardowska opens the proceedings.

The conference included six keynote lectures by Prof. Rakesh Agrawal, Jan
Komorowski, Eric Matson, Sankar Kumar Pal, Grzegorz Rozenberg, and Guoyin
Wang as well as four plenary lectures by Profs. Tianrui Li, Son Hung Nguyen, Pradipta
Maji, Amedeo Napoli, and Zbigniew Ras.

For the process of submission, review, acceptance, updating, and compilation of the
proceedings, the EasyChair Pro system was used that allowed for subdivision of
submissions into tracks: Rough Sets (68 submissions), Special Session on Vagueness,
Rough Sets and Mereology (11 submissions), Special Session on Trends in
Multi-Agent Systems (five submissions), Special Session on Formal Concept Analysis,
Rough Set Theory and Their Applications (five submissions), Special Session: Soft-
ware and Systems for Rough Sets (four submissions), Workshop Three-Way Decisions,
Uncertainty, Granular Computing (The 5th International Workshop on Three-way
Decisions, Uncertainty, and Granular Computing, TWDUG 2017; 17 submissions),
Workshop: Recent Advances in Biomedical Data Analysis (three submissions), and
one invited submission to the Special Session “Zdzisław Pawlak— Life and Heritage.”
In all, 114 (130 with invited talks) submissions were received. Submissions were
allowed to be regular at 10–20 long length and short at 6–8 pages. They were reviewed
by members of Program Committee (PC) and invited reviewers, each submission
reviewed by at least three reviewers in certainly positive cases and by four or five
reviewers in cases of conflicting reviews by the first three reviewers. Finally, the most
complex cases were decided by the conference and PC chairs.

Of 114 (130) submissions, after positive reviews and decisions, 74 papers were
selected to be included as regular papers and 16 as short papers in the proceedings,
which comprise two volumes. Section 1, Invite Talks, contains the essay by Urszula
Wybraniec Skardowska in remembrance of Prof. Pawlak, abstracts of the keynote,
plenary, IRSS fellow talks and tutorials, as submitted by respective speakers, making up
16 chapters. Section 2 on “General Rough Sets” contains papers devoted to the rough set
theory in its foundational and decision-theoretic aspects, collected in 44 chapters.
Section 3 on “Software and Systems for Rough Sets” contains papers submitted and
accepted to the special session with this title. These sections constitute the first volume
of proceedings.

The second volume of proceedings opens with Section 4, which collects papers
submitted and accepted to the special session on “Vagueness, Rough Sets, Mereology”
is devoted to foundational concept-theoretical and logical analysis of the rough set idea,
as well as papers on applications of mereology in intelligent methods of computer
science, containing ten chapters. Section 5, “Workshop on Three-Way Decisions,
Uncertainty, Granular Computing,” comprises 17 chapters. In these papers, the classic
trichotomy introduced by Prof. Pawlak into data objects with respect to a given concept
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as belonging certainly in the concept, certainly not belonging in the concept, and
belonging into the boundary of the concept is extended to soft computing with these
regions; the topic of granular computing fits naturally in this section since rough sets,
from their very inception, are computed with elementary granules defined by
attribute-value descriptors. In Section 6 on “Recent Advances in Biomedical Data
Analysis, Trends in Multi-Agent Systems, Formal Concept Analysis, Rough Set
Theory and Their Applications,” we find submitted and accepted regular papers on
these topics that are strongly tied to the rough set domain. Section 6 contains
13 chapters; 24 papers were rejected, i.e., 21% of submissions. In the “General Rough
Sets” track, 22 papers were rejected, i.e., 32% of submissions to this track.

In addition to the proceedings, participants of the conference found in the confer-
ence sets a booklet, “The Polish Trace,” consisting of four chapters dedicated to the
little known yet spectacular achievements of Polish scientists in the area of computer
science: on the work by Jan Czochralski, “the forefather of the silicon era”; on
achievements of cryptologists Jan Kowalewski and professors of Warsaw University
Stanisł aw Leśniewski, Stefan Mazurkiewicz, and Wacław Sierpiński in deciphering
codes of the Red Army during the Polish–Russian war of 1918–1920; on cryptologists
Marian Rejewski, Jerzy Różycki, and Henryk Zygalski, who broke the German Enigma
code in the 1930s; and on the contributions of Stanisław Leśniewski, Jan Łukasiewicz,
and Alfred Tarski to the theory of concepts, computing, and soft computing.

An additional booklet contained texts of talks in the Special Session devoted to the
memory of Prof. Zdzisław Pawlak.

We acknowledge the acceptance of our proposal of organizing IJCRS 2017 in
Poland at the University of Warmia and Mazury by authorities of the International
Rough Set Society, the owner of rights to the series.

Honorary patronage of the conference was accepted by Gustaw Marek Brzezin,
Marshal of the Province of Warmia and Mazury, Prof. Ryszard Górecki, Rector of the
University of Warmia and Mazury, and by Dr. Piotr Grzymowicz, President of the City
of Olsztyn.

Scientific patronage was given by the International Rough Set Society and by the
Committee on Informatics of the Polish Academy of Science.

Many eminent scientists offered us their kind help by accepting our invitations.
Thanks go to the honorary chairs of the conference, Profs. Ryszard Górecki, Sankar
Kumar Pal, Roman Słowiński, Andrzej Skowron, and Jerzy Nowacki as well as
Wojciech Samulowski, Director of the Olsztyn Park of Science and Technology, to
Guoyin Wang, to the keynote speakers Profs. Rakesh Agrawal, Jan Komorowski, Eric
Matson, Sankar Kumar Pal, Grzegorz Rozenberg, and Guoyin Wang, and to the ple-
nary speakers, Profs. Tianrui Li, Nguyen Hung Son, Pradipta Maji, Amedeo Napoli,
and Zbigniew Ras. The Steering Committee members are gratefully acknowledged for
their support.

We express our gratitude to the organizers and chairs of special sessions and
workshops: Profs. Mani A-, Andrzej Pietruszczak, Rafał Gruszczyński, Duoqian Miao,
Georg Peters, Chien Chung Chan, Hong Yu, Bing Zhou, Nouman Azam, Nan Zhang,
Sushmita Paul, Jan G. Bazan, Andrzej Skowron, Pradipta Maji, Dominik Ślȩzak, Julio
Vera, Grzegorz Rozenberg, Sankar Kumar Pal, Roman Słowiński, Shusaku Tsumoto,
Guoyin Wang, Zbigniew Ras, Urszula Wybraniec-Skardowska, Andrzej Zbrzezny,
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Agnieszka M. Zbrzezny, Magdalena Kacprzak, Jakub Michaliszyn, Franco Raimondi,
Wojciech Penczek, Bożena Woźna-Szczȩśniak, Mahdi Zargayouna, Jaume Baixeries,
Dmitry Ignatov, Mehdi Kaytoue, Sergei Kuznetsov, Tianrui Li, Jarosław Stepaniuk,
and Hung Son Nguyen.

We thank the following for the tutorials: Jan Komorowski, Piero Pagliani, Andrzej
Zbrzezny, Ivo Duentsch, and Dimiter Vakarelov. Our special thanks go to Program
Committee members and Program Committee chairs: Profs. Piotr Artiemjew, Davide
Ciucci, Dun Liu, Dominik Ślȩzak, and Beata Zielosko, for their dedicated work in
reviewing and selecting papers to be accepted, and to the members of the Organizing
Committee: Dr. Przemysław Górecki, Dr. Paweł Drozda, Dr. Krzysztof Sopyła, Dr. Piotr
Artiemjew, Dr. Stanisław Drozda, Dr. Bartosz Nowak, Łukasz Żmudzinski,
Dr. Agnieszka Niemczynowicz, Hanna Pikus, Dr. Marek Adamowicz, and Beata
Ostrowska. Special thanks for their dedicated and timely work toMr Łukasz Żmudziński,
for his work on the conference website, Dr. Paweł Drozda, for taking care of the
administration of conference finances, and to Dr. Przemysław Górecki, for liaising with
the hosting university’s administrative offices. Student volunteers should be mentioned
for their help in running the conference. Thanks go to our material sponsors: the Olsztyn
Park of Science and Technology, the Marshal of the Province of Warmia and Mazury,
Billennium. For moral support we would like to mention the co-organizers, the
Polish-Japanese Academy of Information Technology and the Polish Information Pro-
cessing Society. Our host, the University of Warmia and Mazury in Olsztyn, provided
ample space for the conference sessions, secured the participation of the Kortowo
ensemble, and the professional help of the university services: the financial and inter-
national exchange offices and the Foundation “ŻAK” that provided the catering. Thanks
go to Park Hotel in Olsztyn for hosting the participants.

Special thanks go to Alfred Hofmann of Springer, for accepting to publish the
proceedings of IJCRS 2017 in the LNCS/LNAI series, and to Anna Kramer and Elke
Werner for their help with the proceedings. We are grateful to Springer for the grant of
1,000 euro for the best conference papers.

April 2017 Lech Polkowski
Yiyu Yao

Piotr Artiemjew
Davide Ciucci

Dun Liu
Dominik Ślȩzak
Beata Zielosko
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Abstract. Not all approximations arise from information systems. The
problem of fitting approximations, subjected to some rules (and related
data), to information systems in a rough scheme of things is known
as the inverse problem. The inverse problem is more general than the
duality (or abstract representation) problems and was introduced by the
present author in her earlier papers. From the practical perspective, a few
(as opposed to one) theoretical frameworks may be suitable for formu-
lating the problem itself. Granular operator spaces have been recently
introduced and investigated by the present author in her recent work
in the context of antichain based and dialectical semantics for general
rough sets. The nature of the inverse problem is examined from number-
theoretic and combinatorial perspectives in a higher order variant of
granular operator spaces and some necessary conditions are proved. The
results and the novel approach would be useful in a number of unsuper-
vised and semi supervised learning contexts and algorithms.

Keywords: Inverse problem · Duality · Rough objects · Granular oper-
ator spaces · High operator spaces · Anti chains · Combinatorics · Hybrid
methods

1 Introduction

General rough set theory specifically targets information systems as the object
of study in the sense that starting from information systems, approximations
are defined and rough objects of various kinds are studied [1–6]. But the focus
need not always be so. In duality problems, the problem is to generate the infor-
mation system (to the extent possible) from semantic structures like algebras
or topological algebras associated (see for example [3,7–11]). Logico-algebraic
and other semantic structures typically capture reasoning and processes in the
earlier mentioned approach.

The concept of inverse problem was introduced by the present author in [9]
and was subsequently refined in [3]. In simple terms, the problem is a general-
ization of the duality problem which may be obtained by replacing the semantic
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structures with parts thereof. Thus the goal of the problem is to fit a given set of
approximations and some semantics to a suitable rough process originating from
an information system. Examples of approximations that are not rough in any
sense are common in misjudgments and irrational reasoning guided by prejudice.

The above simplification is obviously dense because it has not been formu-
lated in a concrete setup. It also needs many clarifications at the theoretical
level. At the theoretical level again a number of frameworks appear to be justi-
fied. These can be restricted further by practical considerations. All this will not
be discussed in full detail in this paper (for reasons of space). Instead a specific
minimalist framework called Higher Granular Operator Space is proposed first
and the problem is developed over it by the present author. All of the results
proved are from a combinatorial perspective and on the basis of these results
the central question can be answered in the negative in many cases.

2 Background

A relational system is a tuple of the form S = 〈S,R1, R2, . . . , Rn〉 with S being
a set and Ri being predicates of arity νi. The type of S is (ν1, ν2, . . . , νn).
If H = 〈H,Q1, Q2, . . . , Qn〉 is another relational system of the same type and
ϕ : S �−→ H a map satisfying for each i,

(Ria1a2 . . . aνi
−→ Riϕ(a1)ϕ(a2) . . . ϕ(aνi

)),

is a relational morphism [12]. If ϕ is also bijective, then it is referred to as a
relational isomorphism.

By an Information System I, is meant a structure of the form

I = 〈O, At, {Va : a ∈ At}, {fa : a ∈ At}〉
with O, At and Va being respectively sets of Objects, Attributes and Values
respectively. It is deterministic (or complete) if for each a ∈ At, fa : O �−→ Va

is a map. It is said to be indeterministic (or incomplete) if the valuation has
the form fa : O �−→ ℘(V ), where V =

⋃
Va. These two classes of information

systems can be used to generate various types of relational, covering or relator
spaces which in turn relate to approximations of different types and form a
substantial part of the problems encountered in general rough set theories. One
way of defining an indiscernibility relation σ is as below:

For x, y ∈ O and B ⊆ At, (x, y) ∈ σ if and only if (∀a ∈ B) ν(a, x) =
ν(a, y). In this case σ is an equivalence relation (see [1,7,8,13]). Lower and
upper approximations, rough equalities are defined over it and topological alge-
braic semantics can be formulated over roughly equivalent objects (or subsets
of attributes) through extra operations. Duality theorems, proved for pre-rough
algebras defined in [7], are specifically for structures relation isomorphic to the
approximation space (O, σ). This is also true of the representation results in
[8,9,14]. But these are not for information systems - optimal concepts of isomor-
phic information systems are considered by the present author in a forthcoming
paper.
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In fact in [9], it has been proved by the present author that

Theorem 1. For every super rough algebra S, there exists an approximation
space X such that the super rough set algebra generated by X is isomorphic
to S.

In simple terms, granules are the subsets (or objects) that generate approxi-
mations and granulations are the collections of all such granules in the context.
For more on what they might be the reader may refer to [3,15]. In this paper
a variation of generalized granular operator spaces, introduced and studied by
the present author in [16–18], will serve as the primary framework for most
considerations. For reference, related definitions are mentioned below.

Definition 1. A Granular Operator Space [16] S is a structure of the form
S = 〈S,G, l, u〉 with S being a set, G an admissible granulation(defined below)
over S and l, u being operators : ℘(S) �−→ ℘(S) (℘(S) denotes the power set
of S) satisfying the following (S is replaced with S if clear from the context.
Lower and upper case alphabets may denote subsets):

al ⊆ a & all = al & au ⊆ auu

(a ⊆ b −→ al ⊆ bl & au ⊆ bu)

∅l = ∅ & ∅u = ∅ & Sl ⊆ S & Su ⊆ S.

In the context of this definition, Admissible Granulations are granulations G
that satisfy the following three conditions (t being a term operation formed from
the set operations ∪,∩,c , 1, ∅):

(∀a∃b1, . . . br ∈ G) t(b1, b2, . . . br) = al

and (∀a) (∃b1, . . . br ∈ G) t(b1, b2, . . . br) = au, (Weak RA,WRA)

(∀b ∈ G)(∀a ∈ ℘(S)) (b ⊆ a −→ b ⊆ al), (Lower Stability,LS)

(∀a, b ∈ G)(∃z ∈ ℘(S)) a ⊂ z, b ⊂ z & zl = zu = z, (Full Underlap,FU)

Remarks:

• The concept of admissible granulation was defined for RYS in [3] using part-
hoods instead of set inclusion and relative to RYS, P =⊆, P =⊂. It should
be noted that the minimal assumptions make this concept more general than
the idea of granulation in the precision based granular computing paradigm
(and complex granules) [19,20].

• The conditions defining admissible granulations mean that every approxima-
tion is somehow representable by granules in a set theoretic way, that granules
are lower definite, and that all pairs of distinct granules are contained in def-
inite objects.

• The term operation t is intended to be defined over the power set Boolean
algebra in standard algebraic sense (see [21] for a detailed example).
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The concept of generalized granular operator spaces has been introduced in
[17,22] as a proper generalization of that of granular operator spaces. The main
difference is in the replacement of ⊂ by arbitrary part of (P) relations in the
axioms of admissible granules and inclusion of P in the signature of the structure.

Definition 2. A General Granular Operator Space (GSP) S is a structure of the
form S = 〈S,G, l, u,P〉 with S being a set, G an admissible granulation(defined
below) over S, l, u being operators : ℘(S) �−→ ℘(S) and P being a definable binary
generalized transitive predicate (for parthood) on ℘(S) satisfying the same condi-
tions as in Definition 1 except for those on admissible granulations (Generalized
transitivity can be any proper nontrivial generalization of parthood (see [20]).
P is proper parthood (defined via Pab iff Pab & ¬Pba) and t is a term operation
formed from set operations):

(∀x∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xl

and (∀x) (∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xu, (Weak RA,WRA)

(∀y ∈ G)(∀x ∈ ℘(S)) (Pyx −→ Pyxl), (Lower Stability,LS)

(∀x, y ∈ G)(∃z ∈ ℘(S))Pxz, &Pyz & zl = zu = z, (Full Underlap,FU)

2.1 Finite Posets

Let S be a finite poset with #(S) = n < ∞. The following concepts and notations
will be used in this paper:

• If F is a collection of subsets {Xi}i∈J of a set X, then a system of distinct
representatives SDR for F is a set {xi; i ∈ J} of distinct elements satisfying
(∀i ∈ J)xi ∈ Xi. Chains are subsets of a poset in which any two elements are
comparable. Singletons are both chains and antichains.

• For a, b ∈ S, a ≺ b shall be an abbreviation for b covering a from above (that
is a < b and (a ≤ c ≤ b −→ c = a or c = b)). c(S) shall be the number of
covering pairs in S.

• A chain cover of a finite poset S is a collection C of chains in S satisfying
∪C = S. It is disjoint if the chains in the cover are pairwise disjoint.

• S has finite width w if and only if it can be partitioned into w number of
chains, but not less.

The following results are well known:

Theorem 2. 1. A collection of subsets F of a finite set S with #(F) = r has
an SDR if and only if for any 1 ≤ k ≤ r, the union of any k members of F
has size at least k, that is

(∀X1, . . . , Xk ∈ F) k ≤ #(∪Xi).

2. Every finite poset S has a disjoint chain cover of width w = width(S).
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3. If X is a partially ordered set with longest chains of length r and if it can be
partitioned into k number of antichains then r ≤ k.

4. If X is a finite poset with k elements in its largest antichain, then a chain
decomposition of X must contain at least k chains.

Proofs of the assertions can be found in [23,24] for example. To prove the
third, start from a chain decomposition and recursively extract the minimal
elements from it to form r number of antichains. The fourth assertion is proved
by induction on the size of X across many possibilities.

3 Semantic Framework

It is more convenient to use only sets and subsets in the formalism as these are
the kinds of objects that may be observed by agents and such a formalism would
be more suited for reformulation in formal languages. This justifies the severe
variation defined below in stages:

Definition 3. A Higher Rough Operator Space S shall be a structure of the
form S = 〈S, l, u,≤,⊥,�〉 with S being a set, and l, u being operators : S �−→ S

satisfying the following (S is replaced with S if clear from the context.):

(∀a ∈ S) al ≤ a & all = al & au ≤ auu

(∀a, b ∈ S)(a ≤ b −→ al ≤ bl & au ≤ bu)

⊥l = ⊥ & ⊥u = ⊥ & �l ≤ � & �u ≤ �
(∀a ∈ S)⊥ ≤ a ≤ �
S is a bounded poset.

Definition 4. A Higher Granular Operator Space (SHG) S shall be a structure
of the form S = 〈S,G, l, u,≤,∨,∧,⊥,�〉 with S being a set, G an admissible
granulation(defined below) for S and l, u being operators : S �−→ S satisfying the
following (S is replaced with S if clear from the context.):

(S,∨,∧,⊥,�) is a bounded lattice

≤ is the lattice order

(∀a ∈ S) al ≤ a & all = al & au ≤ auu

(∀a, b ∈ S)(a ≤ b −→ al ≤ bl & au ≤ bu)

⊥l = ⊥ & ⊥u = ⊥ & �l ≤ � & �u ≤ �
(∀a ∈ S)⊥ ≤ a ≤ �

Pab if and only if a ≤ b in the following three conditions. Further P is proper
parthood (defined via Pab iff Pab & ¬Pba) and t is a term operation formed
from the lattice operations):
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(∀x∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xl

and (∀x) (∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xu, (Weak RA,WRA)

(∀y ∈ G)(∀x ∈ S) (Pyx −→ Pyxl), (Lower Stability,LS)

(∀x, y ∈ G)(∃z ∈ S)Pxz, &Pyz & zl = zu = z (Full Underlap,FU)

Definition 5. An element x ∈ S will be said to be lower definite (resp. upper
definite) if and only if xl = x (resp. xu = x) and definite, when it is both lower
and upper definite. x ∈ S will also be said to be weakly upper definite (resp
weakly definite) if and only if xu = xuu (resp xu = xuu & xl = x). Any one of
these five concepts may be chosen as a concept of crispness.

The following concepts of rough objects have been either considered in the
literature (see [3]) or are reasonable concepts:

• x ∈ S is a lower rough object if and only if ¬(xl = x).
• x ∈ S is a upper rough object if and only if ¬(x = xu).
• x ∈ S is a weakly upper rough object if and only if ¬(xu = xuu).
• x ∈ S is a rough object if and only if ¬(xl = xu).
• Any pair of definite elements of the form (a, b) satisfying a < b.
• Any distinct pair of elements of the form (xl, xu).
• Elements in an interval of the form (xl, xu).
• Elements in an interval of the form (a, b) satisfying a ≤ b with a, b being

definite elements.
• A non-definite element in a RYS (see [3]), that is an x satisfying ¬Pxuxl.

All of the above concepts of a rough object except for the last are directly
usable in a higher granular operator space. Importantly, most of the results
proved in this paper can hold for many choices of concepts of roughness and crisp-
ness. The reader is free to choose suitable combinations from the 40 possibilities.

Example 1 (No Information Tables). It should be easy to see that most examples
of general rough sets derived from information tables (and involving granules
and granulations) can be read as higher granular operator space. So a nontrivial
example of a higher granular operator space that has not been derived from an
information system is presented below:

Suppose agent X wants to complete a task and this task is likely to involve
the use of a number of tools. X thinks tool-1 suffices for the task that a tool-2 is
not suited for the purpose and that tool-3 is better suited than tool-1 for the same
task. X also believes that tool-4 is as suitable as tool-1 for the task and that tool-5
provides more than what is necessary for the task. X thinks similarly about other
tools but not much is known about the consistency of the information. X has a
large repository of tools and limited knowledge about tools and their suitability
for different purposes, and at the same time X might be knowing more about
difficulty of tasks that in turn require better tools of different kinds.

Suppose also that similar heuristics are available about other similar tasks.
The reasoning of the agent in the situation can be recast in terms of lower, upper
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approximations and generalized equality and questions of interest include those
relating to the agent’s understanding of the features of tools, their appropriate
usage contexts and whether the person thinks rationally.

To see this it should be noted that the key predicates in the context are as
below:

• suffices for can be read as includes potential lower approximation of a right
tool for the task.

• is not suited for can be read as is neither a lower or upper approximation of
any of the right tools for the task.

• better suited than can be read as potential rough inclusion,
• is as suitable as can be read as potential rough equality and
• provides more than what is necessary for is for upper approximation of a right

tool for the task.

Example 2 (Number of Objects). Often in the design, implementation and analy-
sis of surveys (in the social sciences in particular), a number of intrusive assump-
tions on the sample are done and preconceived ideas about the population may
influence survey design. Some assumptions that ensure that the sample is rep-
resentative are obviously good, but as statistical methods are often abused [25]
a minimal approach can help in preventing errors. The idea of samples being
representative translates into number of non crisp objects being at least above a
certain number and below a certain number. There are also situations (as when
prior information is not available or ideas of representative samples are unclear)
when such bounds may not be definable or of limited interest.

Example 3 (Non-rough Approximations). Suppose X1, . . . X24 are 24 colors
defined by distinct frequencies and suppose the weak sensors at disposal can
identify 3 of them as crisp colors. If it is required that the other 21 colors be
approximated as 9 rough objects, then such a classification would not be possi-
ble in a rough scheme of things as at most three distinct pairs of crisp objects
are possible. Note that using intervals of frequencies, tolerances can be defined
on the set. But under the numeric restriction, 9 rough objects would not be
possible.

3.1 Minimal Assumptions

For the considerations of the following sections on distribution of rough objects
and on counting to be valid, a minimal set of assumptions are necessary. These
will be followed unless indicated otherwise:

F1 S is a higher granular operator space.
F2 #(S) = n < ∞.
C1 C ⊆ S is the set of crisp objects.
C2 #(C) = k.
R1 R ⊂ S is the set of rough objects not necessarily defined as in the above.
R2 R ∪ C = S.
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R3 there exists a map ϕ : R �−→ C2.
RC1 R ∩ C = ∅.
RC2 (∀x ∈ R)(∃a, b ∈ C)ϕ(x) = (a, b) & a ⊂ b.

Note that no further assumptions are made about the nature of ϕ(x). It is
not required that ϕ(x) = (a, b) & xl = a & xu = b, though this happens often.

The set of crisp objects is necessarily partially ordered. In specific cases,
this order may be a lattice, distributive, relatively complemented or Boolean
order. Naturally the combinatorial features associated with higher granular oper-
ator space depend on the nature of the partial order. This results in situations
that are way more involved than the situation encoded by the following simple
proposition.

Proposition 1. Under all of the above assumptions, for a fixed value of
#(S) = n and #(C) = k, R must be representable by a finite subset K ⊆
C2 \ ΔC , ΔC being the diagonal in C2.

The two most extreme cases of the ordering of the set C of crisp objects
correspond to C forming a chain and C \{⊥,�} forming an anti-chain. Numeric
measures for these distributions have been defined for these in [17] by the present
author. The measure gives an idea of the extent of distribution of non crisp
objects over the distribution of the crisp objects and it has also been shown that
such measures do not provide reasonable comparisons across diverse contexts.

4 Pre-well Distribution of Objects over Chains: PWC

Definition 6. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a Pre-Well Distribution of Objects over Chains if the minimal
assumptions (Subsect. 3.1) (without the condition RC1) and the following three
conditions hold:

1. C forms a chain under inclusion order.
2. ϕ is a surjection.
3. Pairs of the form (x, x), with x being a crisp object, also correspond to rough

objects.

Though the variant is intended as an abstract reference case where the idea
of crispness is expressed subliminally, there are very relevant practical contexts
for it (see Example 4). It should also be noted that this interpretation is not com-
patible with the interval way of representing rough objects without additional
tweaking.

Theorem 3. Under the above assumptions, the number of crisp objects is related
to the total number of objects by the formula:

k
i=

(1 + 4n)
1
2 − 1

2
.

In the formula i= is to be read as if the right hand side (RHS) is an integer then
the left hand side is the same as RHS.
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Proof. • Clearly the number of rough objects is n − k.
• By the nature of the surjection n − k maps to k2 pairs of crisp objects.
• So n − k = k2.

• So integral values of
(1 + 4n)

1
2 − 1

2
will work.

��
This result is associated with the distribution of odd square integers of the

form 4n + 1 which in turn should necessarily be of the form 4(p2 + p) + 1
(p being any integer). The requirement that these be perfect squares causes
the distribution of crisp objects to be very sparse with increasing values of n.
The number of rough objects between two successive crisp objects increases in
a linear way, but this is a misleading aspect. These are illustrated in the graphs
Figs. 1 and 2.

Fig. 1. Rough objects between crisp objects: special chain case
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Fig. 2. Values of n and k: special chain case

Example 4. This example has the form of a narrative that gets progressively
complex.

Suppose Alice wants to purchase a laptop from an on line store for electronics.
Then she is likely to be confronted by a large number of models and offers
from different manufacturers and sellers. Suppose also that the she is willing
to spend less than ex and is pretty open to considering a number of models.
This can happen, for example, when she is just looking for a laptop with enough
computing power for her programming tasks.

This situation may appear to have originated from information tables with
complex rules in columns for decisions and preferences. Such tables are not
information systems in the proper sense. Computing power for one thing is a
context dependent function of CPU cache memories, number of cores, CPU
frequency, RAM, architecture of chipset, and other factors like type of hard disk
storage.
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Proposition 2. The set of laptops S that are priced less than ex can be totally
quasi ordered.

Proof. Suppose ≺ is the relation defined according to a ≺ b if and only if price
of laptop a is less than or equal to that of laptop b. Then it is easy to see that
≺ is a reflexive and transitive relation. If two different laptops a and b have the
same price, then a ≺ b and b ≺ a would hold. So ≺ may not be antisymmetric.

��
Suppose that under an additional constraint like CPU brand preference, the

set of laptops becomes totally ordered. That is under a revised definition of ≺
of the form: a ≺ b if and only if price of laptop a is less than that of laptop b
and if the prices are equal then CPU brand of b must be preferred over a’s.

Suppose now that Alice has more knowledge about a subset C of models
in the set of laptops S. Let these be labeled as crisp and let the order on C be
≺|C . Using additional criteria, rough objects can be indicated. Though lower and
upper approximations can be defined in the scenario, the granulations actually
used are harder to arrive at without all the gory details.

This example once again shows that granulation and construction of approxi-
mations from granules may not be related to the construction of approximations
from properties in a cumulative way.

5 Well Distribution of Objects over Chains: WDC

Definition 7. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a Well Distribution of Objects over Chains if the minimal
assumptions (Subsect. 3.1) and the following two conditions hold:

1. C forms a chain under ≺ order.
2. ϕ is an surjection onto C2 \ ΔC (ΔC being the diagonal of C).

In this case pairs of the form (a, a) (with a being crisp) are not permitted to
be regarded as rough objects. This amounts to requiring clearer conditions on
the idea of what rough objects ought to be.

Example 5. In the example for pre-well distributions, if Alice never let a crisp
object be a rough object, then the resulting example would fall under well distrib-
ution of objects over chains. In other words, the laptops would be well distributed
over the crisp objects (crisp models of laptops).

Theorem 4. When the objects are well distributed over the crisp objects, then
the number of crisp objects would be related to the total number of objects by the
formula:

n − k = k2 − k

So, it is necessary that n be a perfect square.
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Proof. • Under the assumptions, an object is either rough or is crisp.
• The number of rough objects is n − k.
• By the nature of the surjection n − k maps to k2 − k pairs of crisp objects

(as the diagonal cannot represent rough objects).
• So n − k = k2 − k.
• So n = k2 is necessary.

��
Theorem 5. Under the assumptions of this section, if the higher granular oper-
ator space is a Boolean algebra then the cardinality of the Boolean algebra 2x is
determined by integral solutions for x in

2x = k2.

Proof. As the number of elements in a finite power set must be of the form 2x for
some positive integer x, the correspondence follows. If 2x = k2, then x = 2 log2 k.

��
Remark 1. The previous theorem translates to a very sparse distribution of such
models. In fact for n ≤ 108, the total number of models is 27. Fig. 3 gives an idea
of the numbers that work.

6 Relaxed Distribution of Objects over Chains: RDC

Definition 8. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a α-Relaxed Distribution of Objects over Chains if the
minimal assumptions (Subsect. 3.1) and the following three conditions hold.

• C forms a chain under ≺ order.
• ϕ is not necessarily a surjection and

#(ϕ(R)) ≤ α(k2 − k),

for some rational α ∈ (0, 1] (the interpretation of α being that of a loose upper
bound rather than an exact one).

Any value of α that is consistent with the inequality will be referred to as an
admissible value of α.

Example 6. The following modifications, in the context of Example 5, are more
common in practice:

• No non crisp laptops may be represented by some pairs of crisp laptops and
consequently ϕ would not be a surjection onto C2 \ ΔC and

• an estimate of the number of rough laptops may be known (this applies when
too many models are available).

These can lead to some estimate of α. It should be noted that a natural subproblem
is that of finding good values of α.
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Fig. 3. Existence of power rough sets on chain

Theorem 6. In the context of relaxed distribution of objects over chains it is
provable that, for fixed n the possible values of k correspond to integral solutions
of the formula:

k =
(π − 1) +

√
(1 − π)2 + 4nπ

2π
,

subject to k ≤ �√n�, #(ϕ(R)) = π(k2 − k) and 0 < π ≤ α.

Proof. • When n − k = π(k2 − k) then π =
(n − k)
(k2 − k)

• So positive integral solutions of k =
(π − 1) +

√
(1 − π)2 + 4nπ

2π
may be

admissible.
• The expression for α means that it can only take a finite set of values given

n as possible values of k must be in the set {2, 3, . . . , �√n
α�}.

��



16 A. Mani

Fig. 4. Trimmed number of possible values of k

Remark 2. The bounds for k are not necessarily the best ones.

Theorem 7. In the proof of the above theorem (Theorem6), fixed values of n
and π do not in general correspond to unique values of k and unique models.

If the mentioned bounds on k are not imposed then it might appear that for
π = 0.5 and n = 1000000, the number of values of k that work seem to be 1413.
If the bounds on k are imposed then Fig. 4 gives a description of the resulting
pattern of values:

Algorithms: RDC

A purely arbitrary method of supplying values of α based on some heuristics
cannot be a tractable idea. To improve on this some algorithms for computing
admissible values of alpha are proposed in this subsection.

RDC Algorithm-1

1. Fix the value of n.
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2. Start from possible values of k less than
√

n − 1.
3. Compute α for all of these values.
4. Suppose the computed values are α1, . . . αr.
5. Check the admissibility of solutions.

RDC Algorithm-2

Another algorithm for converging to solutions is the following:

1. Start from a sequence {αi} of possible values in the interval (0, 1).
2. Check the admissibility and closeness to solutions.
3. If a solution appears to be between αi and αi+1, add an equally spaced

subsequence between the two.
4. Check the admissibility and closeness to solutions.
5. Continue.
6. Stop when solution is found.

Theorem 8. Both of the above algorithms converge in a finite number of steps.

Proof. Convergence of the first algorithm is obvious.
Convergence of the second follows from the following construction:

• Suppose the goal is to converge to an α ∈ (0, 1).
• Let αo = 0, α1 = 1 and for a fixed positive integer n and i = 1, . . . , n, let

α1i = i
n and α ∈ (α1j , α1j+1).

• Form n number of equally spaced partitions {α2i} of (α1j , α1j+1) and let
α ∈ (α2j , α2j+1).

• Clearly (∀ε > 0∃N ∀r > N) |α − αrj | < ε.
• So the algorithm will succeed in finding the required α.

��

7 Relaxed Bounded Distribution on Chains: RBC

Definition 9. A distribution of rough objects relative to a chain of crisp objects
C will be said to be a α-Relaxed Bounded Distribution of Objects over Chains
(RBC) if the minimal assumptions (Subsect. 3.1) and the following three condi-
tions hold.

• C forms a chain under ≺ order and ϕ is not necessarily a surjection,

#(ϕ(R)) ≤ α(k2 − k),

for some rational α ∈ (0, 1] (the interpretation of α being that of a loose upper
bound rather than an exact one) and

• R is partitioned into disjoint subsets of size {ri}g
i=1 with g = k2 − k subject

to the condition

a ≤ ri ≤ b ≤ n − k, with a, b being constants. (β)
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Any value of α that is consistent with the inequality will be referred to as an
admissible value of α.

RBC differs from RDC in the explicit specification of bounds on number of
objects that may be represented by a pair of crisp objects.

Proposition 3. For a = 0 and b = n − k, every RDC is a RBC.

Theorem 9. If the crisp objects form a chain, then the total number of possible
models B is

B =
∑

α∈π(r)|β

k2−k∏

i=1

αi andnoa
k2−k ≤ B ≤ nob

k2−k,

with the summation being over partitions α = {αi} of r subject to the condition
β and no being the number of admissible partitions under the conditions.

Proof. • On a chain of length k, k2 − k spaces can be filled.
• The next step is to determine the partitions π(r) of r into k2 − k distinct

parts.
• The condition β eliminates many of these partitions resulting in the admissible

set of partitions π(r)|β.
• Each of the partitions α ∈ π(r)|β corresponds to

∏
i αi number of possibilities.

• So the result follows.
��

8 Distribution of Objects: General Context

Definition 10. A distribution of rough objects relative to a poset of crisp objects
C will be said to be a α-Relaxed Bounded Distribution of Objects (RBO) if the
minimal assumptions (Subsect. 3.1) without the restriction R2 and the following
three conditions hold:

• #(ϕ(R)) = t ≤ n − k,
• t = β(k2 − k) and,
• n − k = α(k2 − k), for some constants t, β, α.

Example 7. In the context of Example 5, if Alice is not able to indicate a single
criteria for the chain order, then the whole context would naturally fall under
the context of this section.

This perspective can also be used in more general contexts that fall outside
the scope of SHG. It is possible, in practice, that objects are neither crisp or
rough. This can happen, for example, when:

• a consistent method of identifying crisp objects is not used or
• some objects are merely labeled on the basis of poorly defined partials of

features or
• a sufficiently rich set of features that can provide for consistent identification

is not used
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For RBO, in the absence of additional information about the order structure,
it is possible to rely on chain decompositions or use generalized ideals and choice
functions for developing computational considerations based on the material of
the earlier sections. The latter is specified first in what follows.

Definition 11. The lower definable scope SL(x) of an element x ∈ R will be
the set of maximal elements in ↓ (x) ∩ C, that is

SL(x) = max(↓ (x) ∩ C).

The upper definable scope SU(x) of an element x ∈ R will be the set of
minimal elements in ↑ (x) ∩ C, that is

SU(x) = min(↑ (x) ∩ C).

All representations of rough objects can be seen as the result of choice oper-
ations

ψx : SL(x) × SU(x) �−→ C2 \ ΔC .

Letting #(SL(x)) = c(x) and #(SU(x)) = v(x) formulas for possible values may
be obtainable. Finding a simplification without additional assumptions remains
an open problem though.

Chain Covers

Let C∗ be the set of crisp objects C with the induced partial order, then by the
theorem in Sect. 2.1, the order structure of the poset of crisp objects C∗ permits
a disjoint chain cover. This permits an incomplete strategy for estimating the
structure of possible models and counting the number of models.

• Let {Ci : i = 1, . . . h} be a disjoint chain cover of C∗. Chains starting from
a and ending at b will be denoted by [[a, b]].

• Let C1 be the chain [[0, 1]] from the the smallest(empty) to the largest object.
• If C1 has no branching points, then without loss of generality, it can be

assumed that C2 = [[c2l, c2g]] is another chain with least element c2l and
greatest element c2g such that 0 ≺ c21, possibly c2g ≺ 1 and certainly c2g < 1.

• If c2g < 1, then the least element of at least two other chains ([[c3l, c3g]] and
[[c4l, c4g]]) must cover c2g, that is c2g ≺ c3l and c2g ≺ c4l.

• This process can be extended till the whole poset is covered.
• The first step for distributing the rough objects amongst these crisp objects

consists in identifying the spaces distributed over maximal chains on the dis-
joint cover subject to avoiding over counting of parts of chains below branch-
ing points.

The above motivates the following combinatorial problem for solving the
general problem:
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Let H = [[cl, cg]] be a chain of crisp objects with #(H) = α and let co be a
branching point on the chain with #([[cl, co]]) = αo. Let

SC = {(a, b) ; a, b ∈ [[co, cg]] or cl < a, b < co}.

In how many ways can a subset Rf ⊆ R of rough objects be distributed over SC

under #(Rf ) = π?

Theorem 10. If the number of possible ways of distributing r rough objects over
a chain of h crisp elements is n(r, h), then the number of models in the above
problem is

n(r, h) − n(r, ho).

Proof. This is because the places between crisp objects in [[cl, co]] must be omit-
ted. The exact expression of n(r, h) has already been described earlier. ��

Using the above theorem it is possible to evaluate the models starting with
splitting of n − k into atmost w partitions. Because of this it is not necessary to
use principal order filters generated by crisp objects to arrive at direct counts of
the number of possible cases and a representation schematics.

8.1 Applications: Hybrid Swarm Optimization

Many unsupervised and semi-supervised algorithms do not converge properly
and steps involved may have dense and unclear meaning. The justification for
using such algorithms often involve analogies that may appear to be reasonable
at one level and definitely suspect in broader perspectives - typically this can be
expected to happen when the independent intelligence of computational agents
or potential sources of intelligence in the context are disregarded. For example,
the class of ant colony algorithms (see [26]) uses probabilist assumptions and
restricted scope for control at the cost of simplifying assumptions.

For example, for a set of robots to navigate unfamiliar terrain with obsta-
cles, a swarm optimization method like the polymorphic ant colony optimization
method may be used [27]. The method involves scouts, workers and other types
of robots (ants). Additional information about the terrain can be used to assess
the quality of paths being found through the methods developed in this paper
- the guiding principle for this can be that if the approximations of obstacles
or better paths do not fit in a rough scheme of things, then the polymorphic
optimization method is warranted.

The other kind of situation where the same heuristics can apply is when
the robots are not fully autonomous and under partial control as in a hacking
context. More details of these applications will appear in a separate paper.

9 Interpretation and Directions

The results proved in this research are relevant from multiple perspectives. In the
perspective that does not bother with issues of contamination, the results mean
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that the number of rough models relative to the number of other possible models
of computational intelligence is low. This can be disputed as the signature of the
model is restricted and categoricity does not hold.

In the perspective of the contamination problem, the axiomatic approach
to granules, the results help in handling inverse problems in particular. From a
minimum of information, it may be possible to deduce

• whether a rough model is possible or
• whether a rough model is not possible or
• whether the given data is part of some minimal rough extensions

The last possibility can be solved by keeping fixed the number of rough objects
or otherwise. These problems apply for the contaminated approach too. It should
be noted that extensions need to make sense in the first place. The results can
also be expected to have many applications in hybrid, probabilist approaches
and variants.

An important problem that has not been explored in this paper is the concept
of isomorphism between higher granular operator spaces. This is considered in
a forthcoming paper by the present author.
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Abstract. Lattice-theoretic ideals have been used to define and gen-
erate non granular rough approximations over general approximation
spaces over the last few years by few authors. The goal of these studies,
in relation based rough sets, have been to obtain nice properties compa-
rable to those of classical rough approximations. In this research paper,
these ideas are generalized in a severe way by the present author and
associated semantic features are investigated by her. Granules are used
in the construction of approximations in implicit ways and so a concept
of co-granularity is introduced. Knowledge interpretation associable with
the approaches is also investigated. This research will be of relevance for
a number of logico-algebraic approaches to rough sets that proceed from
point-wise definitions of approximations and also for using alternative
approximations in spatial mereological contexts involving actual contact
relations. The antichain based semantics invented in earlier papers by
the present author also applies to the contexts considered.

Keywords: Co-granular approximations by ideals · High operator
spaces · Generalized ideals · Rough objects · Granular operator spaces ·
Algebraic semantics · Knowledge · Mereotopology · Rough spatial
mereology · GOSIH

1 Introduction

In general rough set theory that specifically targets information systems as the
object of study, approximations are defined relative to information systems and
rough objects of various kinds are studied [1–3]. These approximations may be
defined relative to some concept of granules or they may be defined without
direct reference to any concept of granules or granulations. The corresponding
approximations are in general not equivalent. Among the latter class, few new
approximations have been studied in [4–6] over general approximation spaces of
the form (X,R) with X being a set and R being at least a reflexive relation. In
these approximations, a point is in an approximation of a subset of X if it sat-
isfies a condition that involves lattice ideals of the Boolean power set lattice. The
formalism in the overview paper [6] makes use of a more laborious formalism -
but is essentially equivalent to what has been stated in the last sentence.
c© Springer International Publishing AG 2017
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The significance of the obtained results and potential application contexts are
not explored in the three papers mentioned [4–6] in sufficient detail and many
open problems remain hidden.

In this research paper, a definition of co-granularity of approximations is
introduced, the methodology is generalized to specific modifications of granu-
lar operator spaces [7,8] (called co-granular operator spaces) and in particular
to lattices generated by collections of sets and lattice ideals, connections with
general approximation spaces (or adjacency spaces) are dropped, connections
with granular operator spaces are established, issues in possible semantics of the
generalized approach are computed, knowledge interpretation in the contexts
are proposed, meaningful examples are constructed, ideal based rough approx-
imations are shown to be natural in spatial mereological contexts and related
problems are posed. One meaning that stands out in all this is that if a prop-
erty has little to do with what something is not, then that something has the
property in an approximate sense. This idea might work in some contexts - the
developed/invented formalisms suggest some restrictions on possible contexts.

Ideals and filters have been used by the present author in algebraic semantics
of general rough sets in some of her earlier papers like [1,9–11]. Concepts of
rough ideals have also been studied by different authors in specific algebras
(see for example [12,13])- these studies involve the use of rough concepts within
algebras. The methodology of the present paper does not correspond to those
used in the mentioned papers in a direct way.

In the next section, some of the essential background is mentioned. In Sect. 3,
generalized set theoretic frameworks are introduced and properties of approx-
imations are proved. In the following section, co-granular operator spaces are
defined and studied. In Sect. 5, the meaning of the approximations and general-
izations are explained for the first time and both abstract and concrete examples
are constructed. Mereotopological approximations are invented/developed over
very recent work on actual contact algebras in Sect. 6.

2 Background

By an Information System I, is meant a tuple of the form

I = 〈O, At, {Va : a ∈ At}, {fa : a ∈ At}〉
with O, At and Va being respectively sets of Objects, Attributes and Values
respectively. In general the valuation has the form fa : O �−→ ℘(V ), where
V =

⋃
Va (as in indeterminate information systems). These can be used to gen-

erate various types of relational, covering or relator spaces which in turn relate
to approximations of different types and form a substantial part of the problems
encountered in general rough set theories. One way of defining an indiscernibility
relation σ is as below:

For x, y ∈ O and B ⊆ At, (x, y) ∈ σ if and only if (∀a ∈ B) ν(a, x) =
ν(a, y). In this case σ is an equivalence relation. Lower and upper approxima-
tions, rough equalities are defined over it and topological algebraic semantics can
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be formulated over roughly equivalent objects (or subsets of attributes) through
extra operations. Duality theorems, proved for pre-rough algebras defined in [14],
are specifically for structures relation isomorphic to the approximation space
(O, σ). This is also true of the representation results in [15–17]. But these are
not for information systems - optimal concepts of isomorphic information sys-
tems are considered by the present author in a forthcoming paper.

In fact in [15], it has been proved by the present author that

Theorem 1. For every super rough algebra S, there exists an approximation
space X such that the super rough set algebra generated by X is isomorphic
to S.

The concept of inverse problem was introduced by the present author in [15]
and was subsequently refined in [1]. In simple terms, the problem is a general-
ization of the duality problem which may be obtained by replacing the semantic
structures with parts thereof. Thus the goal of the problem is to fit a given set of
approximations and some semantics to a suitable rough process originating from
an information system. From the practical perspective, a few (as opposed to one)
theoretical frameworks may be suitable for formulating the problem itself. The
theorem mentioned above is an example of a solution of the inverse problem in
the associated context.

The definition of approximations maybe granular, point wise, abstract or
otherwise. In simple terms, granules are the subsets (or objects) that generate
approximations and granulations are the collections of all such granules in the
context. For more details see [1,18]. In this paper a variation of generalized
granular operator spaces, introduced and studied by the present author in [7,8],
will serve as the main framework for most considerations. For reference, related
definitions are mentioned below.

Definition 1. A Granular Operator Space [7] GOS S is a structure of the form
S = 〈S,G, l, u〉 with S being a set, G an admissible granulation(defined below)
over S and l, u being operators : ℘(S) �−→ ℘(S) (℘(S) denotes the power set of
S) satisfying the following (S is replaced with S if clear from the context. Lower
and upper case alphabets may denote subsets):

al ⊆ a & all = al & au ⊆ auu

(a ⊆ b −→ al ⊆ bl & au ⊆ bu)

∅l = ∅ & ∅u = ∅ & Sl ⊆ S & Su ⊆ S.

In the context of this definition, Admissible Granulations are granulations G
that satisfy the following three conditions (t is a term operation formed from the
set operations ∪,∩,c , 1, ∅):

(∀a∃b1, . . . br ∈ G) t(b1, b2, . . . br) = al

and (∀a) (∃b1, . . . br ∈ G) t(b1, b2, . . . br) = au, (Weak RA, WRA)

(∀b ∈ G)(∀a ∈ ℘(S)) (b ⊆ a −→ b ⊆ al), (Lower Stability, LS)

(∀a, b ∈ G)(∃z ∈ ℘(S)) a ⊂ z, b ⊂ z & zl = zu = z, (Full Underlap, FU)
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The concept of admissible granulation was defined for rough Y-systems RYS
(a more general framework due to the present author in [1]) using parthoods
instead of set inclusion and relative to RYS, P =⊆,P =⊂ in granular operator
spaces [7]. The concept of generalized granular operator spaces has been intro-
duced in [8] by the present author as a proper generalization of that of granular
operator spaces. The main difference is in the replacement of ⊂ by arbitrary part
of (P) relations in the axioms of admissible granules and inclusion of P in the
signature of the structure.

Definition 2. A General Granular Operator Space (GSP) S is a structure of the
form S = 〈S,G, l, u,P〉 with S being a set, G an admissible granulation(defined
below) over S, l, u being operators : ℘(S) �−→ ℘(S) and P being a definable binary
generalized transitive predicate (for parthood) on ℘(S) satisfying the same condi-
tions as in Definition 1 except for those on admissible granulations (Generalized
transitivity can be any proper nontrivial generalization of parthood (see [11]). P
is proper parthood (defined via Pab iff Pab & ¬Pba) and t is a term operation
formed from set operations on the powerset ℘(S)):

(∀x∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xl

and (∀x) (∃y1, . . . yr ∈ G) t(y1, y2, . . . yr) = xu, (Weak RA, WRA)

(∀y ∈ G)(∀x ∈ ℘(S)) (Pyx −→ Pyxl), (Lower Stability, LS)

(∀x, y ∈ G)(∃z ∈ ℘(S))Pxz, &Pyz & zl = zu = z, (Full Underlap, FU)

There are ways of defining rough approximations that do not fit into the
above frameworks and the present paper is mainly about specific such cases.

2.1 Ideals on Posets

A lattice ideal K of a lattice L = (L,∨,∧) is a subset of L that satisfies the
following (≤ is assumed to the definable lattice order on L):

(∀a ∈ L)(∀b ∈ K)(a ≤ b −→ a ∈ K) (o-Ideal)
(∀a, b ∈ K) a ∨ b ∈ K (Join Closure)

An ideal P in a lattice L is prime if and only if (∀a, b)(a ∧ b ∈ P −→ a ∈
P or b ∈ P ). Spec(L) shall denote the set of all prime ideals. Maximal lattice
filters are the same as ultrafilters. In Boolean algebras, any filter F that satisfies
(∀a)a ∈ F or ac ∈ F is an ultra filter. Chains are subsets of a poset in which any
two elements are comparable, while antichains are subsets of a poset in which no
two distinct elements are comparable. Singletons are both chains and antichains.

2.2 Ideal Based Framework

The approximations in [6] are more general than the ones introduced and studied
in [4,5]. A complete reformulation of the main definition and approximation
is presented in this subsection. These approximations are not granular in any
obvious way and need not fit into generalized granular operator spaces.
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Definition 3

• Let 〈X,R〉 be a general approximation space with X being a set and R being
a reflexive binary relation on X,

• 〈℘(X),∪,∩, ∅,X〉 be the Boolean lattice on the power set of X. Any lattice
ideal in the Boolean lattice would be referred to as an ideal and the collection
of all ideals would be denoted by I(X) (this is algebraic distributive lattice
ordered and the implicit σ used is the Boolean order ⊆) and I a fixed ideal in
it.

• Let [x]R = {a : a ∈ X & Rxa} and < x >=
⋂{[b]R : b ∈ X & x ∈ [b]R}.

• (∀A ∈ ℘(X))Alκ = {a : a ∈ A& < a > ∩Ac ∈ I}
• (∀A ∈ ℘(X))Auκ = {a : a ∈ X & < a > ∩A /∈ I} ∪ A.

The approximations have properties similar to those of approximations in
classical rough set theory using the point wise definition of approximations.
This is mainly due to the nature of the sets of the form < a >.

Theorem 2. All of the following hold for any subset A,B ⊆ X in the context
of the above definition:

• Alκ ⊆ A ⊆ Auκ and ∅uκ = ∅,X lκ = X
• A ⊂ B −→ Alκ ⊆ Blκ & Auκ ⊆ Buκ

• Alκlκ = Alκ , Auκuκ = Auκ ; (∀A ∈ I)Auκ = A
• (A ∩ B)lκ = Alκ ∩ Blκ and (A ∪ B)lκ ⊇ Alκ ∪ Blκ

• (A ∪ B)uκ = Auκ ∪ Buκ and (A ∩ B)uκ ⊆ Auκ ∩ Buκ

• Auκ = (Ac)lκc, Alκ = (Ac)uκc and (∀Ac ∈ I)Alκ = A.

τ∗
R = {A : Alκ = A} is a topology.

3 Set-Theoretic Generalization of Ideal-Based Framework

Set theoretic generalizations of the approach in [4–6] are proposed in this section
by the present author.

If R is a binary relation on a set S, then for any x ∈ S, the successor
neighborhood [x]R generated by x is the set [x]R = {a : a ∈ S & Rax}, while
the predecessor neighborhood [x]R is the set [x]R = {a : a ∈ S & Rxa}.

Definition 4

• Let 〈X,R〉 be a general approximation space with X being a set and R being
a reflexive binary relation on X,

• X be a distributive lattice (a ring of subsets of X). Let I(X) be the lattice of
lattice ideals of X and I ∈ I(X)

• Let [x]R = {a : a ∈ X & Rxa} and < x >=
⋂{[b]R : b ∈ X & x ∈ [b]R}.

• (∀A ∈ ℘(X))Alk = {a : a ∈ A& < a > ∩Ac ∈ I}
• (∀A ∈ ℘(X))Auk = {a : a ∈ X & < a > ∩A /∈ I} ∪ A
• If I(X) is replaced by Spec(X) in the last two statements, then the resulting

lower and upper approximations will be denoted respectively by lp and up.
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The approximations will be referred to as Distributive set approximations by
ideals (IAD approximations). If in the second condition if X is an algebra of
subsets of X instead, then the definitions of the approximations can be improved
as below:

• (∀A ∈ X )Al+ = {a : a ∈ A& < a > \A ∈ I}
• (∀A ∈ X )Au+ = {a : a ∈ X & < a > ∩A /∈ I} ∪ A

These approximations will be referred to as Set difference approximations by
ideals (IASD approximations).

When the ideals refer to a ring of subsets, the operations used in the definition
of IAD approximations refer to an algebra of sets over X. IASD approximations
are better behaved.

Proposition 1. In the above, all of the following hold:

• For a, b ∈ X, if a ∈< b > then < a >⊆< b >.
• If τab if and only a ∈< b > then τ is a reflexive, transitive and weakly

antisymmetric relation in the sense, if τab & τba then < a >=< b >.

Theorem 3. The IAD approximations are well defined and satisfy all of the
following for any subsets A and B:

Alk ⊆ A ⊆ Auk (1)

∅uk = ∅ ; X lk = X (2)

A ⊂ B −→ Alk ⊆ Blk & Auk ⊆ Buk (3)

Alklk = Alk ; Aukuk = Auk (4)

(A ∩ B)lk = Alk ∩ Blk ; (A ∪ B)lk ⊇ Alk ∪ Blk (5)
(A ∪ B)uk = Auk ∪ Buk ; (A ∩ B)uk ⊆ Auk ∩ Buk (6)

Proof

• Alk ⊆ A ⊆ Auk follows from definition
• ∅uk = ∅ because it contains no elements. X lk = X because < x > ∩∅ = ∅ is

a trivial ideal.
• Let A ⊂ B

If x ∈ Auk then < x > ∩A /∈ I

So < x > ∩B /∈ I and x ∈ Buk

If x ∈ Alk then < x > ∩Ac ∈ I

< x > ∩Bc ⊂< x > ∩Ac ∈ I

and so < x > ∩Bc ∈ I(X) and x ∈ Blk .

• If a ∈ Alk then < a > ∩Ac ∈ I and < a > ∩Ac ⊆< a > ∩Alkc. The converse
also holds because of the definition of < a >. So Alklk = Alk .
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• It is obvious that Auk ⊆ Aukuk . If x ∈ Aukuk , then x ∈ A or x ∈< x >
∩Auk /∈ I. As < x > ∩A ⊆< x > ∩Auk , so Aukuk = Auk .

• x ∈ (A∩B)lk , if and only if < x > ∩(A∩B)c ∈ I and x ∈ A∩B if and only if
(< x > ∩Ac ∈ I and < x > ∩Bc ∈ I and x ∈ A∩B So (A∩B)lk = Alk ∩Blk .

• x ∈ (A∪B)lk if and only if < x > ∩(A∪B)c ∈ I and x ∈ A∪B if and only if
(< x > ∩Ac)∩(< x > ∩Bc) ∈ I and x ∈ A∪B. This implies (< x > ∩Ac) ∈ I

and x ∈ A or < x > ∩Bc ∈ I and x ∈ B. So (A ∪ B)lk ⊇ Alk ∪ Blk .
• x ∈ (A ∪ B)uk if and only if x ∈ A ∪ B or < x > ∩(A ∪ B) /∈ I. If x ∈ A ∪ B,

then x ∈ Auk ∪ Buk . < x > ∩(A ∪ B) /∈ I if and only if < x > ∩A /∈ I and
< x > ∩B /∈ I. So it follows that x ∈ Auk ∪ Buk and conversely.

• x ∈ (A ∩ B)uk if and only if x ∈ A ∩ B or < x > ∩(A ∩ B) /∈ I. If x ∈ A ∩ B,
then x ∈ Auk ∩ Buk . < x > ∩(A ∩ B) /∈ I if and only if < x > ∩A /∈ I or
< x > ∩B /∈ I. So it follows that (A ∩ B)uk ⊆ Auk ∩ Buk . ��
Actually full complementation can be omitted and replaced with set differ-

ence. This way the approximations can be defined on subsets of the powerset.

Theorem 4. The IASD approximations are well defined and satisfy all of the
following for any subsets A and B in X :

Al+ ⊆ A ⊆ Au+ ; ∅u+ = ∅ ; X l+ = X (7)

A ⊂ B −→ Al+ ⊆ Bl+ & Au+ ⊆ Bu+ (8)

Al+l+ = Al+ ; Au+u+ = Au+ (9)

(A ∩ B)l+ = Al+ ∩ Bl+ ; (A ∪ B)l+ ⊇ Al+ ∪ Bl+ (10)
(A ∪ B)u+ = Au+ ∪ Bu+ ; (A ∩ B)u+ ⊆ Au+ ∩ Bu+ (11)

Proof. The proof is similar to that of the previous theorem. Relative comple-
mentation suffices. ��
Remark 1. The main advantages of the generalization are that knowledge of
complementation is not required in construction of the IASD approximations, a
potentially restricted collection of ideals is usable in the definition of approxi-
mations and this in turn improves computational efficiency.

4 Co-granular Operator Spaces by Ideals

Given a binary relation on a set it is possible to regard specific subsets of the set
as generalized ideals relative to the relation in question. The original motivations
for the approach relate to the strategies for generalizing the concept of lattice
ideal to partially ordered sets (see [19–21]). It is also possible to use a binary
relation on the power set to form generalized ideals consisting of some subsets
of the set. Both approaches are apparently compatible with the methods used
for defining approximations by ideals.

In this section the two possibilities are examined and generalizations called
co-granular operator spaces by ideals and higher co-granular operator spaces are
proposed.
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Definition 5. Let H be a set and σ a binary relation on H (that is σ ⊆ H2)
then

• The Principal Up-set generated by a, b ∈ H shall be the set

U(a, b) = {x : σax & σbx}.

• The Principal Down-set generated by a, b ∈ H shall be the set

L(a, b) = {x : σxa & σxb}.

• B ⊆ H is U-directed if and only if (∀a, b ∈ B)U(a, b) ∩ B �= ∅.
• B ⊆ H is L-directed if and only if (∀a, b ∈ B)L(a, b) ∩ B �= ∅. If B is both

U- and L-directed, then it is σ-directed.
• K ⊂ H is a σ-ideal if and only if

(∀x ∈ H)(∀a ∈ K)(σxa −→ x ∈ K) (12)
(∀a, b ∈ K)U(a, b) ∩ K �= ∅ (13)

• F ⊂ H is a σ-filter if and only if

(∀x ∈ H)(∀a ∈ F )(σax −→ x ∈ F ) (14)
(∀a, b ∈ F )L(a, b) ∩ F �= ∅ (15)

• The set of σ-ideals and σ-filters will respectively be denoted by I(H) and F(H)
respectively. These are all partially ordered by the set inclusion order. If the
intersection of all σ-ideals containing a subset B ⊂ H is an σ-ideal, then it
will be called the σ-ideal generated by B and denoted by 〈B〉. The collection of
all principal σ-ideals will be denoted by Ip(H). If 〈x〉 exists for every x ∈ H,
then H is said to be σ-principal (principal for short).

• A σ-ideal K will be said to be prime if and only if

(∀a, b ∈ H)(L(a, b) ∩ K �= ∅ −→ a ∈ K or b ∈ K).

The dual concept for filters can also be defined.
• A subset B ⊆ H will be said to be σ-convex if and only if

(∀a, b ∈ B)(∀x ∈ H)(σax & σxb −→ x ∈ B)

Proposition 2. All of the following hold in the context of the above definition:

• All σ-ideals are σ-convex and U-directed.
• If H is σ-directed, then all σ-ideals are σ-directed subsets.
• Every σ-ideal is contained in a maximal σ-ideal.
• If H is L-directed, K is a prime ideal and for K1,K2 ∈ I if K1 ∩ K2 ⊆ K,

then K1 ⊆ K2 or K2 ⊆ K1.
• If 〈a〉, 〈b〉 ∈ Ip(H) and τ(σ)ab (τ(σ) being the transitive completion of σ),

then 〈a〉 ⊆ 〈b〉.
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Proof. The proofs are not too complex and may be found in [19]. ��
Proposition 3. Neighborhoods generated by points relate to bound operators
according to (∀x)[x]σ = Lσ(x, x) & [x]σ = Uσ(x, x).

Remark 2. The connection between the two is relevant when σ is used for gener-
ating ideals and also for the neighborhoods. There are no instances of such usage
in the literature as of this writing and is an open area for further investigation.

Definition 6. In the context of Definition 5, σ will be said to be supremal if
and only if

(∀a, b ∈ H)(∃!>0s(a, b) ∈ U(a, b))(x ∈ U(a, b) −→ s(a, b) = x or σs(a, b)x)(16)

Elements of the form s(a, b) are σ-supremums of a and b.

Theorem 5. All of the following hold:

• Anti symmetrical relations are uniquely supremal.
• σ-ideals are closed under supremal relations.
• If σ is supremal then 〈K〉 exists for all nonempty subsets K ⊆ H in (H,σ)

and is principal.
• If σ is supremal and (I(H),⊆) has a least element, then it is an algebraic

lattice and the finitely generated σ-ideals are its compact elements.
• If σ is supremal, let L, λ,π,Σ : ℘(H) \ {∅} �−→ ℘(H) be maps such that for

any ∅ �= X ⊆ H,

L(X) = {x ∈ H;∃a ∈ X σxa} and λ(X) = L(X) ∪ X (17)
π(X) = {a ∈ H; (∃b, c ∈ X) a = s(b, c)} and Σ(X) = π(X) ∪ X, (18)

then 〈X〉 =
⋃∞

1 (Σλ)n(X). If σ is also reflexive, then 〈X〉 =
⋃∞

1 (πL)n(X).
• If (∀a, b)σab or σba, then (H,σ) is principal, (∀a ∈ H)〈a〉 = {x : τ(σ)xa}

and (I(H),⊆) is a chain.
• S is principal and for each a ∈ S, 〈a〉 = {b; σba} if and only if σ is a quasi

order.

The above results mean that very few assumptions on σ suffice for reasonable
properties on I(H).

Definition 7. By a neighborhood granulation G on a set S will be meant a subset
of the power set ℘(S) for which there exists a map γ : S �−→ G such that

(∀B ∈ G)(∃x ∈ S) γ(x) = B (Surjectivity)
⋃

x∈S

γ(x) = S (Cover)
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Definition 8. By a Co-Granular Operator Space By Ideals GOSI will be meant
a structure of the form S = 〈S, σ,G, l∗, u∗〉 with S being a set, σ being a binary
relation on S,G a neighborhood granulation over S and l∗, u∗ being *-lower and
*-upper approximation operators : ℘(S) �−→ ℘(S) (℘(S) denotes the power set
of S) defined as below (S is replaced with S if clear from the context. Lower and
upper case alphabets may denote subsets):

(∀X ∈ ℘(S))X l∗ = {a : a ∈ X & γ(a) ∩ Xc ∈ Iσ(S)} (*-Lower)
(∀X ∈ ℘(S))Xu∗ = {a : a ∈ S & γ(a) ∩ X /∈ Iσ(S)} ∪ X (*-Upper)

In general, if rough approximations are defined by expressions of the form
X⊕ = {a : γ(a) � X∗ ∈ J } with ⊕ ∈ {l, u},G ⊂ ℘(S), γ : S �−→ G being a map,
∗ ∈ {c, 1} and � ∈ {∩,∪} , then the approximation will be said to be co-granular.

The definition of co-granularity can be improved/generalized in a first order
language with quantifiers.

Definition 9. By a Higher Co-Granular Operator Space By Ideals GOSIH will
be meant a structure of the form S = 〈S, σ,G, lo, uo〉 with S being a set, σ being
a binary relation on the powerset ℘(S),G a neighborhood granulation over S
and lo, uo o-lower and o-upper approximation operators : ℘(S) �−→ ℘(S) (℘(S)
denotes the power set of S) defined by the following conditions (S is replaced with
S if clear from the context. Lower and upper case alphabets may denote subsets):

For a fixed I ∈ Iσ(℘(S)) (Ideal)

(∀X ∈ ℘(S))X lo = {a : a ∈ X & γ(a) ∩ Xc ∈ I} (o-Lower)
(∀X ∈ ℘(S))Xuo = {a : a ∈ S & γ(a) ∩ X /∈ I} ∪ X (o-Upper)

Theorem 6. All of the following hold in a GOSI S:

(∀A ∈ ℘(S))Al∗ ⊆ A ⊆ Au∗) (Inclusion)

(∀A ∈ ℘(S))Al∗l∗ ⊆ Al∗ (l-Weak Idempotency)
(∀A ∈ ℘(S))Au∗ ⊆ Au∗u∗ (u-Weak Idempotency)

∅l∗ = ∅ = ∅u∗ (Bottom)

Sl∗ = S = Su∗ (Top)

Remark 3. The proof of the above theorem is direct. Monotonicity of the approx-
imations need not hold in general. This is because the choice of parthood is not
sufficiently coherent with σ in general. A sufficient condition can be that σ-ideals
be generated by σ that are at least quasi orders.

Proposition 4. In a GOSI S all of the following hold:

• The granulation is not admissible
• The approximations l∗, u∗ are not granular
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Proof. It is clear that both the lower and upper co-granular approximations are
not representable in terms of granules using set operations alone on ℘(S). So
weak representability (WRA) fails. ��

The properties of approximations in a GOSIH depend on those of the ideal
and the granulation operator γ. This is reflected in the next theorem:

Theorem 7. In a GOSIH S satisfying

• σ is supremal,
• σ is a quasi order and
• (∀a)a ∈ γ(a)

then all of the following hold:

Alo ⊆ A ⊆ Auo ; ∅uo = ∅ ; X lo = X (19)

A ⊂ B −→ Alo ⊆ Blo & Auo ⊆ Buo (20)

Alolo = Alo ; Auo ⊆ Auouo (21)

(∀A ∈ I)Auo = A; (∀Ac ∈ I)Alo = A (22)

Proof. Some parts are proved below:

• Monotonicity happens because the σ-ideals behave reasonably well. If A ⊂
B, then for any z ∈ Alo , it is necessary that γ(z) ∩ Bc ⊆ γ(z) ∩ Ac. This
ensures that Alo ⊆ Blo . Again for the upper approximation, If A ⊂ B and
z ∈ Auo , γ(z) ∩ A /∈ I holds. As then γ(z) ∩ A ⊆ γ(z) ∩ B, it follows that
γ(z) ∩ B /∈ I. This ensures Auo ⊆ Buo .

• For proving (∀A ∈ I)Auo = A, note that if z ∈ Auo then it is necessary that
γ(z) ∩ A /∈ I or z ∈ A. It is not possible that γ(z) ∩ A /∈ I as A is in I. So
Auo = A.

• Again, if z ∈ A and γ(z) ∩ Ac ∈ I and Ac ∈ I, then z ∈ A and z ∈ Alo . This
yields A = Alo .

All this shows that the ideal based approach works due to the properties of
the ideals.

Definition 10. For all of the above cases, a natural concept of A being roughly
included in B (A � B) if and only if Al ⊆ Bl and Au ⊆ Bu for relevant choices
of l, u. A is roughly equal to B (A ≈l,u B) if and only if A � B & B � A.
Quotients of the equivalence ≈l,u will be referred to as rough objects.

Theorem 8. The antichain based semantics of [7,8] applies to all of GOSI and
GOSIH contexts with corresponding concepts of rough equalities.

The proof consists in adapting the entire process of the semantics in the
papers to the context. Granularity of approximations is not essential for this.
More details will appear in a separate paper.
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5 Meanings of Generalization and Parallel Rough
Universes

The generalizations of the classical definition of approximations derived from
approximation spaces and general approximation spaces using ideals differ sub-
stantially from those that have been introduced in this research paper. Both
possible meanings and properties differ substantially in a perspective that is
formulated below. An extended example is also used to illustrate some of the
concepts introduced in this paper.

In all algebras of arbitrary finite type, ideals can be viewed in second order
perspectives as subsets satisfying closure and absorption conditions. Ideals can
be described through first order conditions [22] in some universal algebras with
distinguished element 0 (that are ideal determined). In the latter case every
ideal is always the 0-class of a congruence. In both cases, ideals behave like
higher order zeros.

The following implication holds always in a GOSI for a point x ∈ S,A ⊆ S
and K being an ideal:

γx ⊆ A −→ γx ∩ Ac = ∅ −→ γx ∩ Ac ⊆ K (23)

The same idea essentially extends to GOSIH where it is also possible to regard
subsets of ideals as essential zeros.

But a subset of an ideal need not behave like a generalized zero in general.
This statement is opposed to the subset is part of a generalized zero. But if
every subset is contained in a minimal ideal, the restriction becomes redundant.
In the absence of any contamination avoidance related impositions, the latter
statement is justified only under additional conditions like the subset is part of
a specific generalized zero. All this is behind the motivation for the definition of
GOSIH. In the relational approximation contexts of [4–6], subsets of generalized
zeros are generalized zeros. Apart from wide differences in properties, major
differences exist on the nature of ideals. Therefore if a property has little to do
(in a structured way) with what something is not, then that something has the
property in an approximate sense. The idea of little to do with or set no value of
relative operations is intended to be captured by concepts of ideals.

If σ-ideals are seen as essentially empty sets, then they have a hierarchy
of their own and function like definite entities. The σ-ideals under some weak
conditions permit the following association. If A is a subset then it is included
in the smallest σ-ideal containing it and a set of maximal σ-ideals contained in
it. These may be seen as a representation of rough objects of a parallel universe.

This motivates the following definition:

Definition 11. In a GOSI S = 〈S, σ,G, l, u〉 in which σ is supremal every sub-
set A ⊆ S can be associated with a set of maximal σ-ideals (μ(A)) contained
in S and least σ-ideal Υ (A) containing it. These will be termed parallel rough
approximations and pairs of the form (a, b) (with a ∈ μ(A) and b = Υ (A)) will
be referred to as parallel rough objects. Elements of μ(A) will be referred to as
lower parallel approximation and Υ (A) as the upper parallel approximation.
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The lower parallel approximations can be useful for improving the concept of
GOSI with additional approximations because they refer to inclusion of worthless
things. This is done next.

Definition 12. In a GOSI S with supremal σ, for any subset A ⊆ S, the strong
lower and strong upper approximations will be as follows:

Als = {x : x ∈ A & {∅} ⊂ μ(γ(x) ∩ Ac)} (s-lower)
Aus = {a : a ∈ S & γ(a) ∩ A ⊂ Υ (γ(a) ∩ A)} ∪ A (s-upper)

Proposition 5. In a GOSI S, for any A ⊆ S, the following hold:

Al∗ ⊆ Als ⊆ A

Au∗ = Aus

Proof. If {∅} ⊂ μ(γ(x)∩Ac), then there is at least one nonempty σ-ideal included
in γ(x) ∩ Ac. This does not imply that γ(x) ∩ Ac is a σ-ideal, but the converse
holds. So Al∗ ⊆ Als ⊆ A follows.

For the second part, as σ is supremal, γ(a) ∩ A ⊂ Υ (γ(a) ∩ A) ensures that
γ(a) ∩ A is not a σ-ideal. The converse is also true. Au∗ = Aus follows from
this. ��

Often it can happen that objects/entities possessing some set of properties
are not favored by objects/entities having some other set of properties. This
meta phenomena suggests that anti chains on the collection of σ-ideals can help
in associated exclusions and inclusions.

Definition 13. In a GOSI S, let O be an antichain in Iσ(S) and O+ = {B :
B ∈ Iσ(S) & (∃C ∈ O)C ⊆ B},O− = Iσ(S) \ O+. For any subset X ⊆ S, the
a-lower and a-upper approximations will be as follows:

X la = {a : a ∈ X & γ(a) ∩ Xc ∈ O−} (a-Lower)

Xua = {a : a ∈ S & γ(a) ∩ X /∈ O−} ∪ X (a-Upper)

The resulting GOSIS of this form will be referred to as a GOSIS induced by the
antichain O.

Proposition 6. In a GOSI S, for any X ⊆ S and nontrivial antichain A, the
following hold:

X la ⊆ X l∗ ⊆ X

Xu∗ ⊆ Xua

5.1 Abstract Examples

Let S = {a, b, c, e, f, g}, and σ = {(a, c), (a, e), (b, c), (b, e), (c, c), (c, b),
(e, a), (f, f)} be a binary relation on it. It is a not symmetric, transitive or
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Table 1. Upper and lower bounds

Pair (x, z) U(x, z) L(x, z)

(a, b) {e, c} ∅
(a, c) {c} ∅
(a, e) ∅ ∅
(b, c) {c} {c}
(b, e) ∅ ∅
(c, e) ∅ {a, b}
(∗, f) ∅ ∅
(∗, g) ∅ ∅

reflexive. In Table 1, the computed values of the set of upper bounds, lower
bounds, and neighborhoods are presented. ∗ in the last two rows refers to any
element from the subset {a, b, c, e}. Values of the form U(x, x) and L(x, x) have
been kept in Table 2 because they correspond to values of neighborhoods of σ.

In Table 2, U(x,x) = [x]σ and L(x,x) = [x]σ.

Table 2. Neighborhoods

x U(x,x) L(x,x) < x >

a {c, e} {e} {a}
b {c, e} {c} {b.c}
c {b, c} {a, b, c} {c}
e {c} {a, b} {c, e}
f {f} {f} {f}
g ∅ ∅ ∅

Given the above information, it can be deduced that

Proposition 7. In the context, the nontrivial σ- ideals are I1 = {a, b, e, c} and
I2 = {a, b, e, c, f}.

If a co-granulation is defined as per γ(a) = {b}, γ(b) = {g}, γ(c) = {c, a},
γ(e) = {e}, γ(f) = {f}, γ(g) = {g, b, c}, then the GOSI approximations of the
set A = {a, b} can be computed to be Al

∗ = {b} and Au
∗ = {a, b, c, g}. For distinct

lattice ideals many approximations of A by lk and uk can be computed.
GOSIH related computations of approximations are bound to be cumbersome

even for four element sets and so have been omitted.
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5.2 Example: On Dating

Dating contexts can involve a huge number of variables and features. Expression
of these depend substantially on the level of inclusion of diverse genders and
sexualities in the actual context. A person’s choice of pool of potential dates
depends on factors including the person’s sexuality.

People may decide on their potential dating pool by excluding parts of the
whole pool and focusing on specific subsets. The operation of excluding parts of
the pool often happens as a multi stage process involving progressive additions
to desired features or confirmation of undesired features. This means that a
person’s construction of relative dating pools must be happening through rough
approximations based on ideals. An ideal can include a number of features, but
in general it can be impossible to collect all undesired features in a single ideal
as then it would not correspond to anything remotely actualizable.

Typically actualizability depends on the reasoning strategies adopted by the
person in question. It is not that everybody thinks in terms of concrete people
with undesirable features and people with analogous features - abstraction can be
in terms of feature sets. For example, some lesbian women prefer femme women.
But concepts of femme and variants are very subjective in nature. Instances of
such classification (or actualization) may depend on exclusion of many features
like muscular build, but some features like tattoos may be desirable/optional.
These kind of features may be in the general ideal in question.

6 Mereotopology and Approximations

In spatial mereology, spatial regions are associated with elements of a distrib-
utive lattice or a Boolean algebra and which in turn are intended to represent
collections of regions with operations of aggregation and commonality. Over
these binary contact relations C can be defined over them to represent instances
of two regions sharing at least one point. Various constructions in the subfield
are suited for the ideal based approach to rough approximations. In this section,
some of the basic aspects and recent results are stated and connections with
approximations are established. All this can be viewed as a new example for the
theories invented/developed.

Some concepts and recent results of spatial mereology are mentioned first
(see [23]).

Definition 14. A contact relation C over a bounded distributive lattice L is a
binary relation that satisfies

Cab −→ 0 < a & 0 < b (C1)
Cab −→ Cba (C2)

Cab & b ≤ e −→ Cae (C3)
Ca(b ∨ e) −→ Cab or Cae (C4)

0 < a ∧ b −→ Cab (C5)
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If L is a Boolean algebra, then (L,C) is said to be a contact algebra. If C satisfies
C1 − C4 alone, then it is said to be a precontact relation and then (L,C) would
be a precontact algebra.

C1 is also written as Cab −→ Ea & Eb (for contact implies existence). C5 is
basically the statement that overlap implies contact Oab −→ Cab. The axioms
yield C(a ∨ b)e ←→ Cae or Cbe and Cab & a ≤ u & b ≤ v −→ Cuv.

When temporal aspects of variation of C are permitted, the predicate for
ontological existence E that is defined via Ea if and only if 0 < a is too strong as
non existence is equated with emptiness. In [24], to handle variation of existence
over time, concepts of actual existence, actual part of, actual overlap and actual
contact have been proposed and developed. The actual existence predicate AE
is one that satisfies

AE(1) & ¬AE(0) (AE1)
AE(a) & a ≤ b −→ AE(b) (AE2)

AE(a ∨ b) −→ AE(a) or AE(b) (AE3)

Subsets of a Boolean algebra that satisfy AE1, AE2 and AE3 are called Grills.
Every grill is a union of ultrafilters or an ultra filter.

A discrete space with actual points is a pair Z = (X,Xa) with X being a
nonempty set and ∅ ⊂ Xa ⊂ X. For H ⊂ X, let AEZ(H) if and only if H∩Xa �=
∅. If B(Z) is the Boolean algebra of all subsets over X, then (B(Z), AEZ) would
be a Boolean algebra with a predicate of actual existence. It is proved in [24]
that

Theorem 9. In Boolean algebras with predicate of actual existence (B,AE),
there exist a discrete space Z = (X,Xa) and an isomorphic embedding h :
(B(Z), AEZ) �−→ (B,AE).

On a Boolean algebra with an extra predicate for actual existence, it is pos-
sible to define the actual contact predicate or define the latter as a predicate Ca

that satisfies the following axioms:

Ca11 & Ca00 (Ca1)
Caxb −→ Cabx (Ca2)
Caxb −→ Caxx (Ca3)

Caxb & b ≤ z −→ Caxz (Ca4)
Cax(b ∨ e) −→ Caxb or Caxe (Ca5)

It is also possible to define a unary predicate AC via AC(x) if and only if Caxx.
A subset H of a contact algebra B is a clan if it is a grill that satisfies CL:

(∀a, b ∈ H)Cab, while a subset H of a precontact algebra B is an actual clan if
it is a grill that satisfies ACL: (∀a, b ∈ H)Caab.
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Associated collections of all clans and actual clans will respectively be
denoted by CL(B) and CLa(B) respectively. It can be shown that CLa(B) ⊆
CL(B) in general. If Z is the set of all ultrafilters Fu(B) and Ra is the canonical
relation for Ca defined by

RaUV if and only if (∀x ∈ U)(∀b ∈ V )Caxb

The canonical relation R for C is defined in the same way. An ultra filter U is
reflexive if RaUU and all reflexive ultrafilters are actual clans. Ra is a nonempty,
symmetric and quasi-reflexive relation while R is a reflexive and symmetric rela-
tion (Quasi reflexivity is Rabe −→ Rabb). All of the following are proved in [24]:

Proposition 8

• RUV if and only if RaUV or U = V .
• Every clan (resp. actual clan) is a union of nonempty sets of mutually R-

related (resp. Ra-related) ultrafilters.
• All ultrafilters contained in an actual clan are reflexive ultrafilters while any

ultra filter contained in a clan is an actual clan or a non-reflexive ultra filter.
• Cabe if and only if (∃G ∈ CLa(B)) b, e ∈ G.

6.1 New Approximations

All of the definitions and results in this subsection are new and differ fundamen-
tally from the approach in [25]. If (X,Xa) is the discrete space associated with
a Boolean algebra with actual contact (B,Ca) and γ : X �−→ ℘(Xa) is a map
then approximations in B can be defined in at least two different ways (for a
fixed actual clan K ∈ CLa(B)):

Ala = {x : x ∈ A & γ(x) ∩ Ac /∈ K} (CG-Lower)
Aua = {x : x ∈ X & γ(x) ∩ A ∈ K} ∪ A (CG-Upper)

Alg =
⋃

{γ(x) : γ(x) ∩ Ac /∈ K} ∩ A (G-Lower)

Aug =
⋃

{γ(x) : γ(x) ∩ A ∈ K} ∪ A (G-Upper)

Alc =
⋃

{H : H ∩ Ac /∈ K} ∩ A (Clan-Lower)

Auc =
⋃

{H : H ∈ K & H ∩ A �= ∅} ∪ A (Clan-Upper)

The properties of these approximations depend to a substantial extent on
the definition of γ used. One possibility is to use the actual-contact relation or a
derived mereotopological relation. In the present author’s view some meaningful
phrases are the things in actual contact with, the things in contact with, the
most common things that become in actual contact by, the things that become in
actual contact by, and the relative wholes determined by. The first of these can
be attempted with the neighborhoods generated by Ca itself in the absence of
additional information about the context.
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One practical context where approximations of the kind can be relevant is in
the study of handwriting of people. Many kinds of variations in the handwriting
of people (especially of morphological subunits and their relative placement) can
be found over time, location and media used.

So if γ is defined as per (∀x) γ(x) = [x]Ca = {b : Cabx}, then the context
becomes a specific instance of a GOSI in which the ideals are also regulated by
C. If instead γ(x) =< x > holds, then it is provable that:

Theorem 10. All of the following hold (in the context of this subsection) for
any two elements of the Boolean algebra with actual contact when γ(x) =< x >

Ala ⊆ A ⊆ Aua ; ∅ua = ∅ = ∅la ; X la = X = Xua (24)

A ⊂ B −→ Ala ⊆ Bla & Aua ⊆ Bua (25)

Alala = Ala ; Auaua = Aua (26)

(A ∩ B)la = Ala ∩ Bla ; (A ∪ B)la ⊇ Ala ∪ Bla (27)
(A ∪ B)ua = Aua ∪ Bua ; (A ∩ B)ua ⊆ Aua ∩ Bua (28)

Proof. Note that actual clans determine specific subclasses of ideals. So all of
the above properties follow from results of Sect. 3

Theorem 11. All of the following hold (in the context of this subsection) for
any two elements of the Boolean algebra with actual contact when γ(x) = [x]Ca =
[x] (for short)

Ala ⊆ A ⊆ Aua (29)

∅ua = ∅ = ∅la ; X la = X = Xua (30)

A ⊂ B −→ Ala ⊆ Bla & Aua ⊆ Bua (31)

Proof

• Ala ⊆ A ⊆ Aua follows from definition.
• X la = {b : b ∈ X [b] ∩ ∅ /∈ K} = X
• If A ⊂ B, then (∀b ∈ Ala) [b] ∩ Ac ∈ Kc and [b] ∩ Bc ⊆ [b] ∩ Ac. Since Kc is

an ideal, it follows that Ala ⊆ Bla .
If b ∈ Aua , then [b] ∩ A ∈ K. Also [b] ∩ A ⊆ [b] ∩ B. But K is a union of
ultrafilters, so [b] ∩ B ∈ K and consequently b ∈ Bua . ��
Since the basic duality theorems for actual contact algebras (and contact

algebras in particular) are in place [24], the duality/inverse problem of such
algebras enhanced with approximation operators may be solvable with ease. In
the present author’s opinion, the following formalism would be optimal:

Problem 1 (Inverse Problem). Given an algebraic system of the form A =
〈B,Ca, la, ua〉 with B,Ca being an actual contact algebra and la, ua are unary
operations satisfying:
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(∀z) zla ⊆ z ⊆ zua (32)

0ua = 0 = 0la ; 1la = 1 = 1ua (33)

(∀z, v) (z ⊂ v −→ ala ⊆ vla & zua ⊆ vua (34)

(∀z) zlala = zla (35)
(∀z) zua ⊆ zuaua (36)

under what additional conditions does there exist a neighborhood operator γ and
an actual clan K that permit a definition of the operators la, ua according to

zla = {x : x ∈ z & γ(x) ∩ zc /∈ K} (CG-Lower)
zua = {x : x ∈ B & γ(x) ∩ z ∈ K} ∪ z (CG-Upper)

Further Directions and Remarks

In this research, a relatively less explored area in the construction of point wise
approximations by ideals has been investigated from new perspectives by the
present author. The previously available theory has been streamlined and the
meaning of approximations in the approach has been explained. A concept of
co-granular approximations has been introduced to explain the generation of
related approximations including the popular point wise rough approximations.
Further

• the methodology is generalized to specific modifications of granular operator
spaces [7,8] (called co-granular operator spaces) and in particular to lattices
generated by collections of sets and lattice ideals,

• the restrictions to general approximation spaces are relaxed,
• knowledge interpretation in the contexts are proposed,
• few meaningful examples and application areas have been proposed,
• ideal based rough approximations are shown to be natural in spatial mereo-

logical contexts and
• related inverse problems are posed.

In a forthcoming paper, the fine details of the mentioned antichain based seman-
tics and other algebraic semantics will be considered by the present author.

References

1. Mani, A.: Dialectics of counting and the mathematics of vagueness. In: Peters, J.F.,
Skowron, A. (eds.) Transactions on Rough Sets XV. LNCS, vol. 7255, pp. 122–180.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31903-7 4

2. Pagliani, P., Chakraborty, M.: A Geometry of Approximation: Rough Set Theory:
Logic, Algebra and Topology of Conceptual Patterns. Springer, Berlin (2008)

3. Yao, Y., Lin, T.Y.: Generalizing rough sets using modal logics. Intell. Autom. Soft
Comput. 2(2), 103–120 (1996)

http://dx.doi.org/10.1007/978-3-642-31903-7_4


42 A. Mani

4. Abo-Tabl, A.: A comparison of two kinds of definitions of rough approximations
based on a similarity relation. Inf. Sci. 181(12), 2587–2596 (2011)

5. Allam, A., Bakeir, M., Abo-Tabl, A.: Some methods for generating topologies by
relations. J. Malays. Math. Sci. Soc. 31, 35–45 (2008)

6. Kandil, A., Yakout, M., Zakaria, A.: New approaches of rough sets via ideals. In:
John, S.J. (ed.) Handbook of Research on Generalized and Hybrid Set Structures
and Applications for Soft Computing, pp. 247–264. IGI Global, Hershey (2016)

7. Mani, A.: Antichain based semantics for rough sets. In: Ciucci, D., Wang, G.,
Mitra, S., Wu, W.-Z. (eds.) RSKT 2015. LNCS, vol. 9436, pp. 335–346. Springer,
Cham (2015). doi:10.1007/978-3-319-25754-9 30

8. Mani, A.: Knowledge and consequence in AC semantics for general rough sets.
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Abstract. The departing point of this study is a data table with cer-
tainty values associated to attribute values. These values are deeply
rooted in possibility theory, they can be obtained with standard pro-
cedures and they are efficiently manageable in databases. Our aim is
to study rough set approximations and reducts in this framework. We
define three categories of approximations that make use of the certainty
value and generalize different aspects of the approximations: their equa-
tion, the binary relation used and the granulation. Further, new kinds
of reducts aimed to make use or reduce the information provided by the
certainty values are given.

Keywords: Possibility theory · Rough sets · Approximations · Reducts

1 Introduction

Since the inception of rough set theory, it was clear that data can be incomplete
or uncertain. Thus, several models were proposed to tackle different forms of
uncertainty. We had the pioneering work about non-deterministic information
tables [8] where for a given object and attribute we do not know precisely the
value but a set of possible values (with equal probability). Then, Ziarko intro-
duced the variable precision rough set model [17], which was later generalized
to the probabilistic rough set model [14], where probabilities are introduced in
rough sets by means of the rough membership function.

Motivated by the recent results on possibilistic conditional tables [9,10], we
suppose here that data come with a possibility distribution in the simplified
form of certainty-based qualification [9] – hence the name given to the model of
“certainty-based” rough set. That is, we suppose that the value assigned to a
pair (object, attribute) can come with a degree of certainty. These values express
an epistemic uncertainty on data, such as we are undecided if James prefers
Raffaello or Tiziano paintings but we are sure that he does not like Tintoretto;
or we tend to believe that Julia’s car is red, but we are not sure.

For a detailed comparison and the advantages of using in this context pos-
sibility theory with respect to other approaches to uncertainty, we refer to [10].
Here, let us stress that
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1. adding certainty values to attributes does not increase the computational
complexity of database queries [9];

2. it is practically feasible to compute possibility distributions on data [4].

So, given a data table with associated certainty degrees for the attribute
values, we want to study how rough approximations and reducts can be defined.
We suppose the reader familiar with the basic notions of rough set theory, such
as information table, approximations and reducts [12]. As far as notation is
concerned we will denote an information table1 as I = (U,Att, V al, F ) with the
standard meaning, that is, U is the set of objects, Att the set of attributes,
V al = ∪a∈AttV ala the union of all possible values for attributes and F the
mapping object-attribute onto values.

We also notice that our approach is different from Nakata and Sakai one
[6,7] for two reasons. First of all, they study data with “full” possibility distri-
butions attached, whereas we suppose to only have necessity measures (for the
advantages of this approach see Sect. 2). Secondly, they adopt a possible world
interpretation and convert a possibilistic table into a set of classical tables to be
studied separately and then aggregate the results. Here, we do not need to split
the table but we directly use the necessity measures in defining the approxima-
tions and reducts.

The paper is organized as follows: in Sect. 2 we give the basis of Possibility
Theory and give an extended definition of information table. In Sect. 3 we define
the lower and upper approximations taking into account the necessity measure
associated to data; we will see three different approaches to give generalized
approximations. In Sect. 4, new kinds of reducts based on necessity measures
will be given. Finally, conclusions and future works are outlined.

2 Possibility Theory

Possibility theory is an uncertainty theory, complementary to probability, and
aimed to manage incomplete information [5]. Firstly meant to provide a graded
semantics to natural language statements [16], then it showed also useful in other
contexts, such as preference representation or to express imprecise probabilities
[5]. It relies on the notion of possibility distribution: let S = {s1, . . . , sn} be a
set of states referred to a world of interest and L be a totally ordered scale with
top element 1 and bottom element 0. A possibility distribution is a function
π : S → L that associates a value of possibility to each state of S. We notice
that it is not additive, contrary to probability distributions. It represents the
state of knowledge of an agent about the state set S and its values express the
possibility that a state shall occur. That is, if π(s) = 0 then the state s is believed
as impossible; if π(s) = 1 the state s is instead believed as totally possible. The
intermediate values between 0 and 1 are used to express a graded possibility:

1 Let us remark that we are not using the term information system on purpose, since
outside the rough-set community it has a different and broader meaning, as discussed
in [2].
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the larger the value of π(s) is, the more possible it is believed. Moreover, a
normalization condition is assumed: there exists a state s totally possible, i.e.,
such that π(s) = 1. In the following, we assume, for the sake of simplicity and
without loss of generality, that L is the unit interval [0, 1]. However, also finite set
of values, for instance representing linguistic labels, are a possible and simpler
choice for L. Using possibility distributions, we can associate to any event two
measures: the necessity and the possibility.

Definition 1. Given a possibility distribution on a set of states S and a sub-
set A ⊆ S, which represents an event, we can define possibility and necessity
measures, respectively, as

Π(A) = sup
s∈A

π(s) N(A) = inf
s/∈A

1 − π(s) (1)

These two measures are dual, that is N(A) = 1−Π(Ac) where Ac is the comple-
ment of A. This is another main difference with probability measures P which
are self-dual, that is P (A) = 1 − P (Ac). Furthermore, due to the normalization
condition on π:

if N(A) > 0 then ∀s ∈ A, π(s) = 1 (2)

Now, given an information table I = (U,Att, V al, F ), we want to associate
a possibilistic information to the data, representing their degree of confidence.
In this case, for each attribute a ∈ A, the states of the world are described by
the different values that can be assumed by a. So, for each object x ∈ U , we can
associate a possibility distribution to the pair (x, a), pointing out which values
are the most expected and which ones are unlikely to be seen.

Example 1. Let Temperature be an attribute with values {Low, Medium, High}.
Given an object x, a possibility distribution π on x for Temperature could be
πx

T (Low) = 1, πx
T (Medium) = 0.7, πx

T (High) = 0.2.

This is the general case but we are not interested in having a complete possi-
bility distribution for each attribute. Instead, we would simply like to have one
measure for each pair (x, a) associated to the value F (x, a). Thus, we need to
define a confidence function C : U × Att → [0, 1] using one of the two measures
above. An information table on which a function C is defined can be denoted
as I = (U,Att, V al, F, C). Our choice is to use the necessity measure N as the
confidence function in order to represent a degree of certainty about the data.
Formally, if πx

a is a possibility distribution for attribute a and object x and Nx
a

is the associated necessity measure, then C(x, a) = Nx
a ({F (x, a)}).

This restriction simplifies the framework but does not lead to a trivial situ-
ation. Firstly, the information conveyed by the many possibility distributions of
the general case could be hardly usable in a meaningful manner, thus we gain in
intelligibility. Then, it is easy to extend the operations of relational algebra to
the case where values of graded certainty are associated to the table, keeping at
the same time the data complexity of a classical database [9,10].
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Example 2. We give an example of an information table, with a confidence func-
tion expressed by a necessity measure, that is referred to natural language state-
ments made by several people regarding weather conditions in a sea location.

Table 1. Example of an information table

Person Weather Temperature Wind Humidity Sea

x1 Partly cloudy Medium Moderate Low Very rough

x2 Partly cloudy Medium Gentle Low Rough

x3 Overcast Medium Moderate Medium Very rough

x4 Rainy Low Moderate Low Rough

x5 Partly cloudy Medium Gentle Low Rough

x6 Overcast Medium Strong Medium Very rough

x7 Overcast Low Moderate Low Storm

x8 Overcast Low Gentle Low Very rough

x9 Partly cloudy Medium Moderate Low Very rough

x10 Overcast Medium Strong Medium Very rough

The confidence function C associated with the table is shown in a tabular
form in Table 2. Let us stress that, in general, we do not need to set all values
with infinite precision. The unspecified confidence values can be assumed to have
value 1 and the set of possible values L can be limited to a finite and small one.

Table 2. Necessity measure associated with the data of Table 1.

Person Weather Temperature Wind Humidity Sea

x1 0.8 0.9 0.7 0.9 0.8

x2 0.9 0.9 0.5 1.0 0.5

x3 1.0 0.9 0.8 0.7 1.0

x4 0.7 0.8 0.9 0.6 0.6

x5 0.8 1.0 0.6 0.8 0.4

x6 1.0 0.9 0.4 0.8 0.8

x7 1.0 0.8 0.9 0.9 0.3

x8 0.9 0.7 0.8 0.8 0.9

x9 0.8 0.9 1.0 1.0 0.8

x10 0.8 1.0 0.7 0.7 0.9

We notice that several possibility distributions can generate the same neces-
sity measure. Indeed, let us consider a pair (x, a) such that F (x, a) = val and
C(x, a) = α > 0. Then, we know that πx

a(val) = 1 since the degree of necessity
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is α and it is greater than 0 (see Eq. (2)). On the other hand, the possibility
distribution for all other values val′ ∈ V ala, val′ �= val is not known: we can
only say that πx

a(val′) ≤ 1 − α, according to the definition of necessity measure
given in Eq. (1). The largest of these possibility measures is of course the one
assigning the greatest possible value to all alternatives, i.e. πx

a(val′) = 1 − α.
Indeed, this is a common choice to define a possibility distribution once given a
certainty measure, see [9,10].

Example 3. With reference to the previous example, we have for the possibility
distribution πx1

W relative to the attribute Weather that πx1
W (Partly Cloudy) = 1,

πx1
W (Overcast) = 0.2, πx1

W (Rainy) = 0.2.

3 Approximations

In this section, we discuss how to exploit the confidence C in the definition of
the approximations. Let us recall the standard definitions of lower and upper
approximations generated by a (at least serial) relation R. They are mappings
LR, UR : P(U) 	→ P(U) such that for a set of objects S ⊆ U : LR(S) = {x ∈
U |R(x) ⊆ S} and UR(S) = {x ∈ U |R(x) ∩ S �= ∅} with R(x) the neighbourhood
of x with respect to R [13].

Remark 1. Seriality of the relation R is the condition that ensures that for all
sets S we have LR(S) ⊆ UR(S). It is debatable if this property is enough or not
to characterize the two mappings as lower and upper approximations or if the
stronger property LR(S) ⊆ S ⊆ UR(S) is needed [1,3]. We decided to adopt the
more general case, this choice will have an influence only in Sect. 3.3.

There are different elements playing a role in these definitions, for our scope
we take into account: the formula for the approximations, the relation R and
the granulation of the universe. By generalizing one of these three elements we
classify different possible generalized approximations that use the confidence
values.

3.1 Changing the Granulation

The standard definitions of lower and upper approximations are used, whereas
the granulation of the universe generated by the relation R is changed using the
confidence values.

Granulation Refinement. The granulation (partition in case of an equivalence
relation) is made finer by taking into account the confidence. There are several
ways that we can use to make the granulation finer: here, we will show two of
them, giving reasons for their relevance.

First, we illustrate a way to bipartite the granules considering a threshold for
each relevant attribute. Given a subset of attributes A = {a1, . . . an} ⊆ Att, let
s1, . . . , sn ∈ [0, 1] be the chosen thresholds. In each granule, we check if all the
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confidence values for the elements are higher than the relative thresholds: based
on the positive or negative results of these checks, we split the elements into two
subsets. That is, for each granule G (that is R(x) in case of neighbourhoods of
a binary relation), we create the subsets G0 and G1 and we divide the elements
x ∈ G as follows:{

x ∈ G1 if C(x, ai) ≥ si for i = 1, . . . , n

x ∈ G0 otherwise
(3)

This refinement can be useful when we want to assign a different relevance,
based on the confidence, to each attribute and, consequently, point out those
elements whose confidence values are satisfactory.

The second kind of granulation refinement considers a distance of confidence
between elements: each granule is split into two subsets according to the similar-
ity of the confidence values. Let ε ∈ [0, 1] be a threshold: given an element y ∈ U
and the granule G = R(y), each element x ∈ G is classified in the set G1 if the
distance between its confidence value C(x) and the confidence value of y, that
is C(y), is less than ε; otherwise it is put into the subset G2. So, this refinement
is expressed by {

x ∈ G1 if |C(y) − C(x)| ≤ ε

x ∈ G2 otherwise
(4)

This type of granulation refinement can be useful when we would like each
granule to contain only those elements whose confidence values are more or less
similar to the one of the element that generated the granule.

More Importance to Higher Confidence Values. It could be useful to consider
from the very beginning only those elements whose confidence values are high
enough. So, instead of taking into account the confidence after having established
an indiscernibility relation R, we could at first bipartite the space of objects U
separating the ones that have good confidence values Uhigh, i.e. above a partic-
ular threshold, from the ones that have lower confidence values Ulow. After this
step, we can proceed applying the relation R to obtain a finer granulation only
for the objects in Uhigh. The objects in Ulow will form a standalone granule.

3.2 Changing the Formula for the Approximations

There can be several ways in which the formula of the approximations can be
generalized. The one we present here is based on relaxing the constraints of the
set inclusion. Similarly as what is done with probabilistic rough set [14] and vari-
able precision rough set [15,17], for the lower approximation we require a partial
inclusion of R(x) in X and for the upper approximation that the intersection
between R(x) and X shall contain a certain number of elements. In our case
however, the thresholds that appear in the formulas of the approximations also
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depend on a single object x. As such they can be seen as a particular case of
approximations obtained by granulation in rough mereology [11, Chap. 2].

Let s(x) ∈ (0, 1] and s(x) ∈ [0, 1) be two real numbers. We define the approx-
imations as

R(X) = {x ∈ U | |R(x) ∩ X|
|R(x)| ≥ s(x)}

R(X) = {x ∈ U | |R(x) ∩ X|
|R(x)| > s(x)}

(5)

under the constraint that s(x) > s(x). These two thresholds can be defined
according to the confidence values of x. The reason is the following: given two
elements x1 and x2, with CA(x1) > CA(x2), it could be reasonable to request that
s(x2) > s(x1) (and s(x2) > s(x1)) so that x2 should have more neighbours in X
than x1 to have the right of being in the approximations of X since the values
that guarantee x2 membership in X are not as certain as the ones from x1

2.
It is straightforward to prove that these approximations satisfy some standard

properties.

Proposition 1. Let R and R be defined as in Eq. (5). Then, the following are
satisfied:

– R(∅) = R(∅) = ∅; R(U) = R(U) = U

– R(X ∪ Y ) ⊇ R(X) ∪ R(Y )
– R(X ∩ Y ) ⊆ R(X) ∩ R(Y )
– R(X ∩ Y ) ⊆ R(X) ∩ R(Y )
– R(X ∪ Y ) ⊇ R(X) ∪ R(Y )
– X ⊆ Y ⇒ R(X) ⊆ R(Y ) and R(X) ⊆ R(Y ).

3.3 Generalizing the Relation Using the Confidence

The confidence function C expresses a graded certainty about the data. The idea
is to bring this further information inside the relation R. This new kind of relation
connects the elements in a graded way, so that we can associate a certainty value
to each pair (x, y) ∈ R. We denote this value as NR(x, y). Furthermore, let us
suppose to be able to define a possibility grade for the relation R and denote
it as ΠR(x, y) (we will explain how to define these two values in the following).
Obviously, both NR(x, y) and ΠR(x, y) shall be included in the interval [0, 1].

Now, given an element x ∈ U and a real number α ∈ [0, 1], we denote as
Rα(x) the set of all elements y related to x for which the certainty value of
R(x, y) is greater than α:

Rα(x) = {y ∈ U | (x, y) ∈ R ∧ NR(x, y) ≥ α} (6)

2 By CA(x) we mean an overall confidence of x based on attributes A ⊆ Att, it is not
specified here how to compute this value.
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Similarly, given an element x ∈ U and a real number β ∈ [0, 1], we denote Rβ(x)
as the set of all elements y ∈ U for which the general maximum possibility grade
of being in relation with x is at least β, that is

Rβ(x) = {y ∈ U | ΠR(x, y) ≥ β} (7)

In order to obtain meaningful approximations, Π and N must be defined such
that Rα(x) ⊆ Rβ(x).

Given these definitions and constraints, we can now define the approxi-
mations. The lower approximation highlights the necessity of the relation R,
expressed by Rα, while the upper approximation uses the possibility of R,
expressed by Rβ . The definitions read as follows:

R(X) = {x ∈ U | Rα(x) ⊆ X ∧ Rα �= ∅}
R(X) = {x ∈ U | Rβ(x) ∩ X �= ∅} (8)

These approximations do satisfy the property R(X) ⊆ R(X): this fact sim-
ply follows from Rα(x) ⊆ Rβ(x). We notice that in the definition of the lower
approximation it is necessary to specify that Rα(x) must not be empty since the
empty set is always a subset of X: in fact there could exist an element y ∈ U for
which Rα(y) = ∅ and this element would be part of the lower approximation, if
there wasn’t this specified restriction for Rα. This constraint is somehow similar
to requesting the seriality of R in the standard case.

How to Obtain NR and ΠR. Now, we give a possible solution to the problem of
defining the necessity and possibility of the relation R given the confidence on
the attributes. For the sake of simplicity, we define NR(x, y) as the minimum of
all the confidence values relative to the elements x and y such that (x, y) ∈ R:

NR(x, y) = min
a∈A

{{C(x, a)} ∪ {C(y, a)}} (9)

So, we have established a certainty grade NR(x, y) for every pair (x, y) ∈ R.
This is enough in order to define the lower approximation according to Eq. (6).
Moreover, this value of certainty represents also a value of uncertainty: indeed,
it gives constraints on the possibility ΠR(x, y) that any two elements (x, y) are
in relation. It is easy to calculate this value for each pair (x, y) ∈ R since the
necessity grades NR(x, y) are available and, by Eqs. (1) and (2), if NR(x, y) >
0 then ΠR(x, y) = 1. So we need only to compute ΠR(x, y) for all the pairs
(x, y) /∈ R. At first, let us consider the following example.

Example 4. We have an information table where U = {x1, x2}, Att = {a1, a2},
V ala1 = {b, c, d}, V ala2 = {e, f, g} and each cell of the Table 3 shows firstly the
value of F (xi, aj) and then the value of C(xi, aj), for i, j = 1, 2.

Let R be the indiscernibility relation defined over A = {a1, a2} in the stan-
dard way, so (x1, x2) /∈ R.

Let us consider the attribute a1: the value of C is higher for x1 than x2, so
the value F (x1, a1) is more certain than F (x2, a1). If there is a chance for one of
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Table 3. An example to show the procedure to compute ΠR.

a1 a2

x1 (b, 0.9) (g, 0.6)

x2 (c, 0.5) (f , 0.8)

the elements to change its value, because of its uncertainty, this chance is surely
higher for x2: in particular, it is clear that Π(F (x2, a1) �= c) = 1−C(x2, a1) = 1−
0.5 = 0.5, which is higher than Π(F (x1, a1) �= b) = 1−C(x1, a1) = 1−0.9 = 0.1.
The same reasoning can be made for the attribute a2, where Π(F (x1, a2) �= g) =
0.4 > Π(F (x2, a2) �= f) = 0.2.

We cannot know exactly what is the possibility either that F (x2, a1) = b
or F (x1, a2) = f . But we know for sure that these possibilities are bounded by
the values of C(x2, a1) and C(x1, a2) respectively. That is, we can state that
Π(F (x2, a1) = b) ≤ 1−C(x2, a1) = 0.5 and Π(F (x1, a2) = f) ≤ 1−C(x1, a2) =
0.4. So the exact values of Π(F (x2, a1) = b) and Π(F (x1, a2) = f) are unknown
to us (unless, of course, we know the underlying possibility distribution that
have generated the values of C). However, similarly to what has been explained
at the end of Sect. 2, we assume the scenario with major uncertainty and set
Πmax(F (x2, a1) = b) = 0.5 and Πmax(F (x1, a2) = f) = 0.4.

Now, by generalizing what we have just shown in the example, we obtain for
(x, y) �∈ R:

Πmax(F (x, a) = F (y, a)) = 1 − min{C(x, a), C(y, a)} (10)

for each attribute a ∈ A. Supposing the independence of all these possibility
values for each attribute a ∈ A, we can calculate the general maximum grade of
possibility that two elements are related, using an independence product law as
follows:

ΠR(x, y) =
∏
a∈A

Πmax(F (x, a) = F (y, a)) (11)

for any two elements x, y ∈ U for which (x, y) /∈ R.
Of course, the definitions and thus the calculus of these possibility grades

(both Πmax and ΠR) depend on the definition of R: in the previous paragraphs
we have shown how to calculate them only for an equivalence relation. The
final step is to show that these two measures are well defined, in the sense that
Rα(x) ⊆ Rβ(x).

Proposition 2. Given the definitions NR and ΠR as in Eqs. (6), (7) and the
ones of Rα and Rβ as in Eqs. (9), (11), then Rα(x) ⊆ Rβ(x) for each α, β ∈ [0, 1]
and for each x ∈ U .

Proof. The proof is simple, as it follows directly from the definitions of Rα(x)
and Rβ(x). In fact from the definition of Rα(x) we can state that Rα(x) ⊆ R(x)
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and from the definition of Rβ(x) we can state that R(x) ⊆ Rβ(x): these two
facts together, that are valid for each α, β ∈ [0, 1] and for each x ∈ U , lead to
the initial statement.

4 Reducts

In the classical case, a reduct represents a reduction of the attributes that keeps
the relation R unchanged. When considering a table with a confidence function,
this classical definition holds, as the confidence is, at most, included in the defini-
tion of R. So taking as RC one of the relations based on the confidence C defined
in the previous section, we can define an attribute reduct in the standard way.

Definition 2 (Attribute reduct). Let (U,Att, V al, F, C) be an information
table with confidence, A ⊆ Att a subset of attributes and RA,C ⊆ U × U the
indiscernibility relation defined over A and C. A subset of attributes B ⊆ A is
an attribute reduct when

RA,C = RB,C and RB′,C �= RA,C ∀ B′ ⊆ B (12)

However, we can also reduce the information conveyed by the confidence
function: despite the fact that the confidence values have, in general, a qualitative
meaning, we can ask which are the minimal confidence values that keep the
relation R unchanged. This is what we call a reduct on confidence. At first, let
us define an order relation among confidence measures C,C ′

C ′ � C iff ∀x ∈ U,∀ a ∈ Att, C ′(x, a) ≤ C(x, a) (13)

As usual, the strict order relation is: C ′ ≺ C iff C ′ � C and C ′ �= C. A reduct
on confidence is then defined as follows.

Definition 3 (Reduct on Confidence). Let (U,Att, V al, F, C) be an infor-
mation table, A ⊆ Att a subset of attributes and RA,C ⊆ U × U the indiscerni-
bility relation defined over A and C. A function D : U × Att → [0, 1] is a reduct
on confidence when

RA,C = RA,D and RA,D′ �= RA,C ∀ D′ ≺ D (14)

This type of reduct is useful since it allows to maintain only the confidence
values that are essential for the relation R. In fact, all the values that don’t
influence R can be set to 0.

Example 5. Given the information table about weather conditions, let A ⊆ Att
be a subset of attributes such that A = {Temperature, Humidity}. Let R be the
equivalence relation defined over A and RA the (equivalence) relation obtained
after applying the granulation refinement specified in Eq. (3), with the thresholds
si = 0.8 for both attributes in A. Thus, the granulation space is as follows:

U/RA = {{x1, x2, x5, x9}, {x3, x10}, {x4, x8}, {x6}, {x7}}
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A reduct on confidence for this case is represented by the following function
D, represented in a tabular form:

Person Weather Temperature Wind Humidity Sea

x1 0.0 0.8 0.0 0.8 0.0

x2 0.0 0.8 0.0 0.8 0.0

x3 0.0 0.8 0.0 0.8 0.0

x4 0.0 0.0 0.0 0.0 0.0

x5 0.0 0.8 0.0 0.8 0.0

x6 0.0 0.0 0.0 0.0 0.0

x7 0.0 0.8 0.0 0.8 0.0

x8 0.0 0.0 0.0 0.0 0.0

x9 0.0 0.8 0.0 0.8 0.0

x10 0.0 0.8 0.0 0.8 0.0

We can observe that the confidence values of all attributes of Att that are
not included in A are set to 0, because they are not relevant to the relation RA.
Some of the confidence values of the attributes in A are set to 0 too, and this
happens when one or both these values are less than the threshold. Furthermore,
this is the only reduct on confidence for this case.

While the standard case keeps the relation R unchanged, we can define a reduct
which preserves another property, that is the average confidence of the informa-
tion table. We define this average confidence simply as an average over all the
confidence values of the table. In the example we give at the end of this section,
we use an arithmetic mean to calculate it, but other types of mean could also
be used.

Definition 4 (Average confidence reduct). Let B ⊆ Att be a subset of
attributes and C̃(B) the average confidence of B. Then B is a reduct for average
confidence when

C̃(B) ≥ C̃(Att) and C̃(B′) < C̃(B) ∀ B′ ⊂ B (15)

This reduct keeps the average confidence of data at least at the level of the initial
average confidence, but it does not preserve at all the relation R.

Example 6. Let us consider again the weather example and calculate the average
confidence of the whole table. As stated before, we use a simple arithmetic mean,
so the average confidence is C̃(Att) = 0.802. Now, the average confidence of each
attribute is:

– C̃(Weather) = 0.87
– C̃(Temperature) = 0.88



54 D. Ciucci and I. Forcati

– C̃(Wind) = 0.74
– C̃(Humidity) = 0.82
– C̃(Sea) = 0.70

It is obvious that the only reducts for average confidence are:

– B1 = {Weather}
– B2 = {Temperature}
– B3 = {Humidity}

As already noted, these reducts do not preserve at all the indiscernibility
relation among the elements of the table.

To make this kind of reduct more significant, we can use it as a selection criterion
among several already known reducts. That is, given the reducts B1, . . . , Bn,
which preserve the relation R, we could keep only those whose average confidence
is not lower than the initial one.

We can enunciate this confidence criterion as follows:

Definition 5. Given an information table (U,Att, V al, F, C) and some reducts
B1, . . . , Bn for it, it is preferable to consider only the reducts Bi such that
C̃(Bi) ≥ C̃(Att). If none of them satisfies this criterion, then we just keep the
best reduct, that is the reduct Bmax such that Bmax = argmaxi=1,...,n C̃(Bi).

Of course, this criterion can be used also with reducts obtained by decision tables
in order to define more confident rules.

5 Conclusions

In the present work, we have introduced the notion of information table with
certainty values with the aim to take advantage of some possible information
on the uncertain knowledge on data. Indeed, the consequences and usefulness of
this new information in rough set theory have been explored and in particular,
several kinds of approximations and reducts have been defined that use in a
different manner the confidence values.

Of course this is only a preliminary step. As a future work, these new approx-
imations and reducts should be tested and compared on real cases. In particular,
when dealing with decision tables, the role of the confidence to define the rules
has to be exploited. One possible solution is to use the criterion defined at the
end of Sect. 4.
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Abstract. In this paper, we use an example in evidence-based medi-
cine to illustrate the practical application backgrounds of Pawlak’s rough
membership function in real life. By this example, we also point out the
limitations of Pawlak’s rough membership function in real life appli-
cations and the necessity for constructing rough membership functions
for covering-based rough sets. Then, we construct covering-based rough
membership function for one type of covering-based rough sets which
was examined by Bonikowski et al. (Inf Sci 107:149–167, 1998), and use
it to characterize the covering-based rough set approximations numeri-
cally. We not only present theoretical backgrounds for this covering-based
rough membership function, but also show that this covering-based rough
membership function is more realistic than Pawlak’s rough membership
function in applications of real life.
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1 Introduction

The concept of rough sets was originally proposed by Pawlak [8]. It is a
new mathematical tool to handle uncertain knowledge, and has been success-
fully applied in pattern recognition, data mining, machine learning, and so on
[7,11,21]. A problem with Pawlak’s rough set theory is that partition or equiva-
lence relation is explicitly used in the definition of the lower and upper approx-
imations. However, such a partition or equivalence relation is still restrictive for
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many applications because it can only deal with complete information systems
[7,11,20]. To address this issue, generalizations of rough set theory were consid-
ered by scholars in order to deal with complex practical problems. One important
approach was to relax the partition to a covering and obtained covering-based
rough sets. Based on the mutual correspondence of the concepts of extension
and intension, Bonikowski et al. proposed a type of covering-based rough sets
[1]. Pomykala explored this covering-based rough set [12]. His main method
included interior and closure operators from topology [12]. Zhang et al. studied
axiomatic characterizations of this covering-based upper approximation operator
and examined the independence of axiom sets [22]. Furthermore, the minimiza-
tion of axiomatic characterizations of this covering-based upper approximation
operator was investigated and more refined axiom sets were presented in [23].

The concept of rough membership functions played an important role in
rough set theory for measuring the uncertainty of a set in an information sys-
tem [10]. For a finite universe, a rough membership function was typically com-
puted by Pawlak et al., and was used to present numerical characterizations of
Pawlak’s rough set approximations [9]. Based on the rough membership function,
Yao revisited probabilistic rough set approximation operators. He also made a
survey on existing studies, and gave some new results on the decision-theoretic
rough set model [18]. Pawlak and Skowron interpreted rough sets by constructing
membership function, weak membership function or strong membership function
[10]. Greco et al. used the concept of absolute and relative rough membership
functions to present a parameterized rough set model, which is a generalization
of the original definition of rough sets and variable precision rough sets [3]. In
addition, the relative rough membership function was an instance of a class of
measures known as the Bayesian confirmation measures [2]. However, as pointed
out by the authors of [5], a partition induced by equivalence relation may not
provide a realistic view of relationships between elements in the real-word appli-
cation although it is easy to analyze. Instead, a covering of the universe might
be considered as an alternative to provide a more realistic model of rough sets
[1,5,12,16]. Based on coverings of the universe, Yao and Zhang defined min-
imum, maximum and average rough membership functions, and studied their
properties [19]. Furthermore, Intan and Mukaidono constructed minimum, max-
imum and average rough membership functions which are based on α-coverings
of the universe, and examined their properties [4]. Xu and Zhang proposed new
lower and upper approximations and constructed a covering-based rough mem-
bership function for them [16]. They also defined a measure of roughness based
on the covering-based rough membership function and discussed some signifi-
cant applications of this measure [16]. Based on the covering-based rough mem-
bership function defined in [16], Shi and Gong constructed similarity measure
for covering rough sets, and established relationships between covering-based
probabilistic rough sets and Pawlak rough sets or covering-based rough sets or
Pawlak probabilistic rough sets [14]. In view that the rough membership func-
tions studied in the above papers are described only by a single binary relation or
a single covering on a given universe, which can not be applied in some practical
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multigranulation backgrounds, Lin et al. proposed the maximal and minimal
degree of rough membership to characterize the uncertainty of covering-based
multigranulation rough sets [5].

However, to the best of our knowledge, no researcher pays attention to rough
membership function of covering-based rough set mentioned in the first para-
graph of this section, or to the practical applications of Pawlak’s rough mem-
bership function in real life. In this paper, we use an example in evidence-based
medicine to illustrate the practical application backgrounds of Pawlak’s rough
membership function in real life. By this example, we also point out the limi-
tations of Pawlak’s rough membership function in applications of real life and
the necessity of constructing rough membership functions for covering-based
rough sets. Then, we construct covering-based rough membership function for
the covering-based rough set. We not only present theoretical backgrounds for
the covering-based rough membership function, but also show that this covering-
based rough membership function is more realistic than Pawlak’s rough mem-
bership function in applications of real life.

The remainder of this paper is arranged as follows: In Sect. 2, after reviewing
the concept of Pawlak’s rough membership function and numerical characteriza-
tions of Pawlak’s rough set approximations, we present theoretical backgrounds
of Pawlak’s rough membership function. Then, we give an example in medical
diagnosis to illustrate practical backgrounds of Pawlak’s rough membership func-
tion in real life. By this example, we also point out the limitations of Pawlak’s
rough membership function in applications of real life. In Sect. 3, we present sev-
eral fundamental concepts and basic facts needed in this paper. Section 4 is the
focus of this paper. In Sect. 4, we construct covering-based rough membership
function for the covering-based rough set, and present its numerical characteri-
zations. In Sect. 5, after presenting theoretic backgrounds for the covering-based
rough membership function, we use the example presented in Sect. 2 to illustrate
the covering-based rough membership function is more realistic than Pawlak’s
rough membership function when considering practical applications. This paper
concluded in Sect. 6 with remarks for future works.

2 Pawlak’s Rough Sets

In this section, we first review the concept of Pawlak’s rough membership func-
tion and numerical characterizations of Pawlak’s rough set approximations. Then
we present theoretical backgrounds of Pawlak’s rough membership function.
Finally, we employ an example in medical diagnosis to illustrate the practical
backgrounds and limitations of Pawlak’s rough membership function.

Pawlak’s rough sets are defined as follows [9]:
Let U be a finite set and R be an equivalence relation on U . R will generate

a partition U/R on U , and a block of the partition U/R containing the element
x will be denoted as [x]R. ∀X ⊆ U , the lower, upper approximations and the
boundary region of X are defined in the following way respectively:
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R(X) = {x ∈ U : [x]R ⊆ X},

R(X) = {x ∈ U : [x]R ∩ X �= ∅},

BNR(X) = R(X) − R(X).

2.1 Definition of Rough Membership Function

Pawlak’s rough membership function is a function μR
X : U → [0, 1], defined by

μR
X(x) =

|[x]R ∩ X|
|[x]R| , where x ∈ U,X ⊆ U and |X| denotes the cardinality of

X [15].
The rough membership function expresses conditional probability that x

belongs to X given by R and can be interpreted as the degree that x belongs to
X in view of information about x expressed by R [9].

2.2 Numerical Characterizations

Pawlak’s rough sets can be also defined by the rough membership function
instead of approximation. That is, if μR

X be a rough membership function on
U , then ∀X ⊆ U , the approximations and the boundary region of X can be
defined as follows [9]:

R(X) = {x ∈ U : μR
X(x) = 1},

R(X) = {x ∈ U : μR
X(x) > 0},

BNR(X) = {x ∈ U : μR
X(x) ∈ (0, 1)}.

2.3 Backgrounds of Rough Membership Function

Theoretical Backgrounds. The rough membership function may be inter-
preted as a special kind of fuzzy membership function. Under this interpretation,
it is possible to establish the connection between Pawlak rough sets and fuzzy
sets as follows [17]: ∀X ⊆ U ,

R(X) = {x ∈ U : μR
X(x) = 1} = core(μR

X),

R(X) = {x ∈ U : μR
X(x) > 0} = support(μR

X).

Besides, the rough membership function, in contrast to fuzzy membership
function, has a probabilistic flavor. The relationship between probabilistic rough
sets and Pawlak rough sets was established as follows in [20]: If the parameters
α = 1 and β = 0, then the probabilistic lower approximation PIα(X) and upper
approximation PIβ(X) are degenerated into the lower approximation R(X) and
upper approximation R(X) in the Pawlak rough sets respectively. That is, for
any X ⊆ U ,

PIα(X) = PI1(X) = {x ∈ U : P (X|[x]R) ≥ 1} = {x ∈ U : [x]R ⊆ X} = R(X),

P Iβ(X) = PI0(X) = {x ∈ U : P (X|[x]R) > 0} = {x ∈ U : [x]R ∩ X �= ∅} = R(X),

where P (X|[x]R) = |[x]R∩X|
|[x]R| is the conditional probability that x belongs to X

given by R.
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Practical Backgrounds. As we mentioned in Introduction Section, rough
membership functions play an important role in Pawlak’s rough sets. In the
following, by means of the analysis of an example about evidence-based med-
ical diagnosis data, we explain how we can use the Pawlak’s rough membership
function to determine the initial treatment of patients, in order to help doc-
tors to make subjective diagnose. At the same time, by this example, we point
out the limitations of Pawlak’s rough membership function in applications of
real life, and show the necessity to establish the covering-based rough member-
ship functions. An evidence-based medical diagnosis database of a hospital is
a database based on information of patients who visited the hospital and the
diseases of them were diagnosed. The database consists of symptom reaction
of patients and finally diagnosed illness. An evidence-based medicine database
cannot be simply regarded as an ‘if... then’ system, since it is possible that two
patients with identical symptoms were finally diagnosed with different diseases.
The example consists of data of 20 patients, including 16 patients (p1 − p16)
with diseases were identified according to their symptoms, for 2 patients (p17
and p18) although symptoms clear, but the disease has not been identified, for
the last two patients (p19 and p20) part of the symptom reaction still not clear.
The detailed information of the example is in Table 1.

Table 1. Clinical features of different types of lung cancer

Patient Chest
pain

Short
breath

Local
diffusion

Distant
metastasis

Lung
cancer

p1 1 1 1 1 C.L.C

p2 1 1 1 1 C.L.C

p3 1 1 1 1 C.L.C

p4 1 1 1 1 C.L.C

p5 1 1 0 1 C.L.C

p6 0 1 0 1 P.L.C

p7 1 1 0 1 P.L.C

p8 1 1 0 1 P.L.C

p9 1 1 0 1 P.L.C

p10 1 1 0 1 P.L.C

p11 1 1 0 0 P.L.C

p12 1 0 1 0 T.B.L.B.C

p13 1 1 1 0 T.B.L.B.C

p14 1 1 1 0 T.B.L.B.C

p15 1 1 1 0 T.B.L.B.C

p16 1 1 1 0 T.B.L.B.C

p17 1 1 0 1

p18 1 1 1 0

p19 1 1

p20 1 0
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Example 1. In Table 1, {chest pain, short breath, local diffusion, distant
metastasis} is a set of condition attributes, {lung cancer} is a set of decision
attribute, and C.L.C, P.L.C, T.B.L.B.C denote central lung cancer, peripheral
lung cancer, thin bronchuses lung bubble cancer respectively. Moreover, each row
can be seen as information about a specific patient, and 1 denotes yes, 0 denotes
no. The patient pi(i = 17, 18, 19 and 20) is waiting for the hospital diagnosis,
whereas the information of patient pi(1 ≤ i ≤ 16), which is from diagnostic data-
base of lung cancer cases in hospital, can determine the following seven decision
rules:

(1) if (chest pain, 1) and (short breath, 1) and (local diffusion, 1) and (distant
metastasis, 1), then (lung cancer, central lung cancer);

(2) if (chest pain, 1) and (short breath, 1) and (local diffusion, 0) and (distant
metastasis, 1), then (lung cancer, central lung cancer);

(3) if (chest pain, 0) and (short breath, 1) and (local diffusion, 0) and (distant
metastasis, 1), then (lung cancer, peripheral lung cancer);

(4) if (chest pain, 1) and (short breath, 1) and (local diffusion, 0) and (distant
metastasis, 1), then (lung cancer, peripheral lung cancer);

(5) if (chest pain, 1) and (short breath, 1) and (local diffusion, 0) and (distant
metastasis, 0), then (lung cancer, peripheral lung cancer);

(6) if (chest pain, 1) and (short breath, 0) and (local diffusion, 1) and (distant
metastasis, 0), then (lung cancer, thin bronchuses lung bubble cancer);

(7) if (chest pain, 1) and (short breath, 1) and (local diffusion, 1) and (distant
metastasis, 0), then (lung cancer, thin bronchuses lung bubble cancer).

Further analysis of decision rules induced from Table 1, we can note that
some rules are inconsistent, such as rule 1 and 2. This leads to patients 17 and
18 could not be easily diagnosed by these rules. One approach to overcoming this
problem is using the following method based on the Pawlak’s rough membership
function to take the most frequent decision in the decision table.

An equivalence relation I(C) can be defined on U = {pi : 1 ≤ i ≤ 18} by set
of condition attributes C as follows:

I(C) = {(x, y) ∈ U × U : fa(x) = fa(y),∀a ∈ C}, where fa(x) is the value of
a on x ∈ U .

For C = {chest pain, short breath, local diffusion, distant metastasis}, den-
ote C(x) = {y ∈ U : (x, y) ∈ I(C)}.

By Table 1, it is easy to verify that

C(p1) = C(p2) = C(p3) = C(p4) = {p1, p2, p3, p4};
C(p5) = C(p7) = C(p8) = C(p9) = C(p10) = C(p17) = {p5, p7, p8, p9, p10, p17};
C(p6) = {p6};
C(p11) = {p11};
C(p12) = {p12};
C(p13) = C(p14) = C(p15) = C(p16) = C(p18) = {p13, p14, p15, p16, p18}.

Thus, U/I(C) = {C(p1), C(p5), C(p6), C(p11), C(p12), C(p13)} is a partition
of U . Let 〈U,U/I〉 be the Pawlak approximation space and let X1 = {pi : 1 ≤
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i ≤ 5},X2 = {pi : 6 ≤ i ≤ 11} and X3 = {pi : 12 ≤ i ≤ 16}. We can easily
calculate values of the Pawlak’s rough membership function of pi(i = 17, 18)
belonging to Xi(i = 1, 2, 3) with respect to R = U/I(C) as follows:

μR
X1

(p17) =
1
6
; μR

X1
(p18) = 0;

μR
X2

(p17) =
2
3
; μR

X2
(p18) = 0;

μR
X3

(p17) = 0; μR
X3

(p18) =
4
5
.

We can make a preliminary judgement that p17 and p18 probably suffers
peripheral lung cancer and thin bronchuses lung bubble cancer, respectively.

2.4 Limitations of Rough Membership Function

In Example 1, we demonstrate that how we can make frequent decisions in diag-
nosis of lung cancer by using the Pawlak’s rough membership function when
all the symptoms of illness are clear. However, in some cases, since patients
are unable to describe all the symptoms of illness expressly and the clinical
treatment levels of doctors are not high enough to make them clear either,
the descriptions of clinical data about symptoms of patients are incomplete,
such as those of patients of p19 and p20 presented in Table 1. In such cases,
different of what we did in Example 1, we cannot take the most frequent deci-
sion by means of the Pawlak’s rough membership function. For example, on
U = {pi : 1 ≤ i ≤ 16 or i = 19, 20}, the set of condition attributes C is a
covering rather than a partition, because the blocks which are formulated by
condition attributes C have overlaps. Taking p19 for example, since the values
of condition attributes chest pain and local diffusion are unknown, they can be
0 or 1. If the values are 1, then by I(C), p1, p2, p3, p4 and p19 are indiscernible.
So, {p1, p2, p3, p4, p19} is a block determined by condition attributes C. If the
values are 0, then by I(C), p6 and p19 are indiscernible. So, {p6, p19} is a block
determined by condition attributes C. So, the above two blocks have a common
element p19, and it follows that condition attributes C is a covering instead of a
partition. The condition of p20 is similar. Thus, the Pawlak’s rough membership
function based on equivalence relation can not be used to make the frequent
decisions for patients p19 and p20 in Table 1. To solve this problem, the approach
in presented Sect. 2.3 should be improved by using rough membership function
based on covering instead of the Pawlak’s rough membership function based on
equivalence relation.

3 Basic Concepts

In this section, we present the basic concepts we need in this paper. To begin
with, we list some definitions in probabilistic approaches to rough sets.
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Definition 1 (Probabilistic approximation space [15]). Let U be the universe
of discourse, R an equivalence relation and P a probability measure on U . We
call the triplet (U,R, P ) a probabilistic approximation space. For every X ⊆ U ,
0 ≤ β < α ≤ 1 and the probabilistic approximation space (U,R, P ), the lower
approximation and the upper approximation of X with respect to parameters α
and β are defined as follows:

PIα(X) = {x ∈ U : P (X|[x]R) ≥ α},

P Iβ(X) = {x ∈ U : P (X|[x]R) > β},

where P (X|[x]R) is the conditional probability that x belongs to X given by R.

Then, we present some concepts about coverings to be used in this paper.

Definition 2 (Covering [26]). Let U be the universe of discourse and C a family
of nonempty subsets of U . If

⋃
C = U,C is called a covering of U .

In the following discussion, unless stated to the contrary, the universe are
considered to be finite, and it follows that coverings consist of a finite number
of sets.

Definition 3 (Covering approximation space [26]). Let U be the universe of
discourse and C a covering of U . We call the ordered pair 〈U,C〉 a covering
approximation space.

Definition 4 (Minimal description [26]). Let 〈U,C〉 be a covering approxima-
tion space, x ∈ U . Md(x) = {K ∈ C : (x ∈ K) ∧ (∀S ∈ C ∧ x ∈ S ∧ S ⊆ K ⇒
K = S)} is called the minimal description of x.

Definition 5 (Indiscernible neighborhood [26]). Let 〈U,C〉 be a covering approx-
imation space. ∀x ∈ U,

⋃{K ∈ C : x ∈ K} is called the indiscernible neighbor-
hood of x and denoted as Friends(x).

Definition 6. For a given covering C of U , the rough membership function in
general are defined as follows: ∀x ∈ U and X ⊆ U, μC

X(x) = max{ |K∩X|
|K| : x ∈

K ∈ C}.
The following facts about μC

X(x) are obvious:

Fact 1. 0 ≤ μC
X(x) ≤ 1;

Fact 2. μC
X(x) = 1 if and only if there exists K ∈ C such that x ∈ K ⊆ X;

Fact 3. μC
X(x) = 0 if and only if for any K ∈ C with x ∈ K,K ∩ X = ∅.

4 Main Results

In this section, we study rough membership function on the covering-based rough
set. We will address the following issues. First, we construct a rough membership
function which is based on topological structures of the covering approximation
operators. Then, we present numerical characterizations of the covering rough
set approximations by means of the covering-based rough membership function.
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4.1 Definition of the Covering-Based Rough Set and Its Rough
Membership Function

Definition 7. (CL,FH and BNF [1]). Let C be a covering of U . The operations
CL and FH: P (U) → P (U) are defined as follows: ∀X ⊆ U ,

CL(X) =
⋃

{K ∈ C : K ⊆ X},

FH(X) = CL(X) ∪ (
⋃

{
⋃

{Md(x) : x ∈ X − CL(X)}}),

BNF (X) = FH(X) − CL(X).

We call CL the covering lower approximation operation and FH the covering
upper approximation operation.

Definition 7 only presents the topological characterizations of CL and FH.
As it is well known, numerical characterizations are just as important to the-
oretical research of covering-based rough sets as topological characterizations.
Meanwhile, we also found that Pawlak’s rough membership function does not
work with missing data. Based on the topological structures of CL and FH
simultaneously, we construct a covering-based rough membership function for
CL and FH, and use it not only to present numerical characterizations about
CL and FH, but also to work suitably with missing data.

Definition 8. For a given covering C of U , the rough membership function of
CL and FH are defined as follows: ∀x ∈ U and X ⊆ U, μC

X(x)F = �μC
X(x)� +

μC
X(x) · �max{max{ |K1∩K2|

|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C} · �1 − μC
X(y)� : y ∈

Friends(x) ∩ X}� · �1 − μC
X(x)�.

4.2 Numerical Characterizations

Lemma 1. max{ |K1∩K2|
|K2| : K1,K2 ∈ C} = 1.

Lemma 2. ∀x ∈ U and X ⊆ U,max{max{ |K1∩K2|
|K2| : K1 ∈ Md(y), x ∈ K2 ∈

C} · �1 − μC
X(y)� : y ∈ Friends(x) ∩ X} ∈ [0, 1].

Proof. We choose any y ∈ Friends(x)∩X. By Fact 1 and Lemma 1, �1−μC
X(y)�

∈ {0, 1} and max{ |K1∩K2|
|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C} ∈ [0, 1]. Thus, max

{ |K1∩K2|
|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C} · �1 − μC

X(y)� ∈ [0, 1]. So, max{max

{ |K1∩K2|
|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C}·�1−μC

X(y)� : y ∈ Friends(x)∩X} ∈ [0, 1].

Lemma 3. ∀x ∈ U and X ⊆ U, μC
X(x)F ∈ [0, 1].

Proof. By Fact 1 and Lemma 2, �1 − μC
X(x)� ∈ {0, 1}, and �max{max{ |K1∩K2|

|K2| :
K1 ∈ Md(y), x ∈ K2 ∈ C} · �1 − μC

X(y)� : y ∈ Friends(x) ∩ X}� ∈ {0, 1}. Thus,
μC

X(x) · �max{max{ |K1∩K2|
|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C} · �1 − μC

X(y)� : y ∈
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Friends(x)∩X}� · �1−μC
X(x)� ∈ [0, 1]. If x ∈ U −CL(X), by Fact 1 and 2, then

�μC
X(x)� = 0. Thus, μC

X(x)F = μC
X(x) · �max{max{ |K1∩K2|

|K2| : K1 ∈ Md(y), x ∈
K2 ∈ C}·�1−μC

X(y)� : y ∈ Friends(x)∩X}�·�1−μC
X(x)� ∈ [0, 1]. If x ∈ CL(X),

by Fact 2, then �μC
X(x)� = 1, and �1 − μC

X(x)� = 0. So, μC
X(x)F = �μC

X(x)� = 1.
Hence, μC

X(x)F ∈ [0, 1].

Theorem 1. ∀X ⊆ U,CL(X) = {x ∈ U : μC
X(x)F = 1}.

Proof. We choose any x ∈ CL(X). By the proof in Lemma 3, μC
X(x)F = 1.

Thus, x ∈ {x ∈ U : μC
X(x)F = 1}. So, by arbitrariness of x,CL(X) ⊆ {x ∈ U :

μC
X(x)F = 1}.

We choose any x ∈ {x ∈ U : μC
X(x)F = 1}. Since μC

X(x)F = 1, �μC
X(x)� +

μC
X(x) · �max{max{ |K1∩K2|

|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C} · �1 − μC
X(y)� : y ∈

Friends(x) ∩ X}� · �1 − μC
X(x)� = 1. By Fact 1, �μC

X(x)� = 0 or 1. If �μC
X(x)� =

0, by Fact 1, then μC
X(x) ∈ [0, 1) and �1 − μC

X(x)� = 1. Thus, by Lemma 2,
μC

X(x)F = μC
X(x)·�max{max{ |K1∩K2|

|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C}·�1−μC
X(y)� :

y ∈ Friends(x)∩X}� ∈ [0, 1). This contradicts the assumption that μC
X(x)F = 1.

So, �μC
X(x)� = 1. By Fact 1, μC

X(x) = 1. Thus, by Fact 2, x ∈ CL(X). Hence, by
arbitrariness of x, {x ∈ U : μC

X(x)F = 1} ⊆ CL(X).

Theorem 2. ∀X ⊆ U,FH(X) = {x ∈ U : μC
X(x)F ∈ (0, 1]}.

Proof. We choose any x ∈ FH(X). If x ∈ CL(X), by Theorem 1, then μC
X(x)F =

1. So, x ∈ {x ∈ U : μC
X(x)F ∈ (0, 1]}. If x ∈ FH(X) − CL(X), then x ∈ FH(X)

and x /∈ CL(X). Since x /∈ CL(X), by Fact 1 and 2, μC
X(x) ∈ [0, 1). Thus,

�μC
X(x)� = 0 and �1 − μC

X(x)� = 1. Since x ∈ FH(X), by the definition of
FH(X), there exists y ∈ X − CL(X) such that x ∈ ⋃

Md(y). Thus, there
exists K1 ∈ Md(y) such that K1 � X and x ∈ K1. So, μC

X(x) ≥ |K1∩X|
|K1| > 0.

Since y ∈ X − CL(X), by Fact 1 and 2, μC
X(y) ∈ [0, 1). Thus, �1 − μC

X(y)� = 1.
Since max{max{ |K1∩K2|

|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C} · �1 − μC
X(y)� : y ∈

Friends(x) ∩ X} ≥ |K1∩K1|
|K1| = 1, by Lemma 2, �max{max{ |K1∩K2|

|K2| : K1 ∈
Md(y), x ∈ K2 ∈ C} · �1−μC

X(y)� : y ∈ Friends(x)∩X}� = 1. Thus, μC
X(x)F =

μC
X(x) ∈ (0, 1). Hence, x ∈ {x ∈ U : μC

X(x)F ∈ (0, 1]}. So, by arbitrariness of
x, FH(X) ⊆ {x ∈ U : μC

X(x)F ∈ (0, 1]}.
We choose any x ∈ {x ∈ U : μC

X(x)F ∈ (0, 1]}. By Fact 1, �μC
X(x)� = 0 or 1.

If �μC
X(x)� = 1, by Fact 1 and 2, then x ∈ CL(X) ⊆ FH(X). If �μC

X(x)� = 0, by
Fact 1, then μC

X(x) ∈ [0, 1). Thus, �1 − μC
X(x)� = 1. Hence, μC

X(x)F = μC
X(x) ·

�max{max{ |K1∩K2|
|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C}·�1−μC

X(y)� : y ∈ Friends(x)∩
X}� ∈ (0, 1]. By Fact 1 and Lemma 2, μC

X(x) ∈ (0, 1] and max{max{ |K1∩K2|
|K2| :

K1 ∈ Md(y), x ∈ K2 ∈ C} · �1 − μC
X(y)� : y ∈ Friends(x) ∩ X} = 1. So, there

exists y ∈ Friends(x) ∩ X such that max{ |K1∩K2|
|K2| : K1 ∈ Md(y), x ∈ K2 ∈

C} · �1 − μC
X(y)� = 1. Hence, by Fact 1 and Lemma 1, �1 − μC

X(y)� = 1 and
max{ |K1∩K2|

|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C} = 1. Since �1 − μC
X(y)� = 1, by
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Fact 1, μC
X(y) ∈ [0, 1). Since max{ |K1∩K2|

|K2| : K1 ∈ Md(y), x ∈ K2 ∈ C} = 1,

there exist K1 ∈ Md(y) and K2 ∈ C, x ∈ K2 such that |K1∩K2|
|K2| = 1. Since

μC
X(y) ∈ [0, 1), by Fact 2, y ∈ X − CL(X). Since |K1∩K2|

|K2| = 1, |K1 ∩ K2| = |K2|.
Thus, owing to the fact that K1 ∩ K2 ⊆ K2 can imply |K1 ∩ K2| ≤ |K2|,K2 ⊆
K1. So, x ∈ K1. Since K1 ∈ Md(y), by the fact that y ∈ X − CL(X) and
the definition of FH(X), x ∈ ⋃

Md(y) ⊆ FH(X). Hence, by arbitrariness of
x, {x ∈ U : μC

X(x)F ∈ (0, 1]} ⊆ FH(X).

Theorem 3. ∀X ⊆ U,BNF (X) = {x ∈ U : μC
X(x)F ∈ (0, 1)}.

Proof. Since BNF (X) = FH(X) − CL(X), by Theorem 1 and 2, BNF (X) =
{x ∈ U : μC

X(x)F ∈ (0, 1)}.

5 Theoretical Backgrounds and Practical Applications
of Rough Membership Function on the Covering-Based
Rough Set

In this section, we discuss relationship between covering-based probabilistic
rough sets and the covering-based rough set first, and which gives the theoretical
backgrounds of covering-based rough membership function studied in this paper.
Then we employ the example in Sect. 2.4 to illustrate practical applications of
this function.

5.1 Theoretical Backgrounds

Definition 9 (Covering probabilistic approximation space [14]). Let U be the
universe of discourse, C a covering of U and P a probability measure on U . We
call (U,C, P ) a covering probabilistic approximation space. For every X ⊆ U and
0 ≤ β < α ≤ 1, about the covering probabilistic approximation space (U,C, P ),
the lower approximation and the upper approximation of X with respect to para-
meters α and β are defined as follows:

Cα(X) = {x ∈ U : P (x ∈ X|C) ≥ α},

Cβ(X) = {x ∈ U : P (x ∈ X|C) > β},

where P (x ∈ X|C) is the conditional probability that x belongs to X given by C.

The covering-based probabilistic rough sets proposed in this paper can be
degenerated into covering-based rough sets as follows.

If the parameters α = 1, β = 0 and P (x ∈ X|C) = μC
X(x)F , then the lower

approximation Cα(X) and the upper approximation Cβ(X) are degenerated into
the lower approximation CL(X) and the upper approximation FH(X) respec-
tively in the covering approximation space. That is, for any X ⊆ U ,

Cα(X) = {x ∈ U : P (x ∈ X|C) ≥ α} = {x ∈ U : μC
X(x)F = 1} = CL(X),

Cβ(X) = {x ∈ U : P (x ∈ X|C) > β} = {x ∈ U : μC
X(x)F > 0} = FH(X).
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5.2 Practical Applications

In Sect. 2.4, we point out that we cannot use the Pawlak’s rough membership
function based on equivalence relation to make the frequent decisions for patients
p19 and p20 in Table 1, because the data of their symptoms of illness is incomplete.
In the following, we show that we can solve this problem by using the membership
function on covering-based rough set which is proposed in Sect. 4.

Example 2. Denote U = {pi : 1 ≤ i ≤ 20, i �= 17, 18} the set of patients. Let
C = {chest pain, short breath, local diffusion, distant metastasis} be the set of
condition attributes and let D = {lung cancer} be the set of decision attribute.
Just like what in Example 1, each row can be seen as information on one specific
patient, and 1 denotes yes, 0 denotes no. The patient pi(i = 19, 20) is waiting for
the diagnosis in the hospital, whereas the information of patient pi(1 ≤ i ≤ 16)
is from diagnostic database of lung cancer cases in hospital.

For set of condition attributes C, a similarity relation R
˜C can be defined

on U :
R
˜C = {(x, y) ∈ U × U : ∀a ∈ C, fa(x) = fa(y) or fa(x) = ∗or ∗= fa(y)},

where fa(x) is the value of a on x ∈ U , and ∗indicates unknown values.
Moreover, for C = {chest pain, short breath, local diffusion, distant

metastasis}, we write [x]
˜C = {y ∈ U : (x, y) ∈ R

˜C}.
By Table 1, it is easy to verify that

C1 = [p1] ˜C = [p2] ˜C = [p3] ˜C = [p4] ˜C = [p19] ˜C = {p1, p2, p3, p4, p19};
C2 = [p5] ˜C = [p7] ˜C = [p8] ˜C = [p9] ˜C = [p10] ˜C = [p19] ˜C = {p5, p7, p8, p9, p10, p19};
C3 = [p6] ˜C = [p19] ˜C = {p6, p19};
C4 = [p11] ˜C = [p20] ˜C = {p11, p20};
C5 = [p12] ˜C = [p20] ˜C = {p12, p20};
C6 = [p13] ˜C = [p14] ˜C = [p15] ˜C = [p16] ˜C = [p20] ˜C = {p13, p14, p15, p16, p20};

and Ci �= ∅,
⋃

Ci = U(1 ≤ i ≤ 6). Thus, C
′
= {Ci : 1 ≤ i ≤ 6} is a covering of

U . 〈U,C
′〉 is a covering approximation space.

Let X1 = {pi : 1 ≤ i ≤ 5},X2 = {pi : 6 ≤ i ≤ 11} and X3 = {pi : 12 ≤ i ≤
16}. By Definition 8, we can obtain:

μC
′

X1
(p19) =

4
5
; μC

′

X1
(p20) = 0;

μC
′

X2
(p19) =

2
3
; μC

′

X2
(p20) =

1
2
;

μC
′

X3
(p19) = 0; μC

′

X3
(p20) =

4
5
.

It is found that the degrees of p19 belonging to X2 and X3 are only 2
3 , which

means that it may not be peripheral lung cancer and thin bronchuses lung cancer
with respect to conditional attributes set C, although there are two conditional
attributes unknown for p19. The membership degree of p19 belonging to X1 is 4

5 ,
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and it means that p19 may well be central lung cancer. Although the accuracy
of this decision should be further validated by means of clinical analysis unless
central lung cancer has been confirmed, we can make a preliminary judgement
which will help the doctors in making their finial decisions. Similarly, according
to the membership degrees of p20 belonging to Xi(1 ≤ i ≤ 3), we can make a
preliminary decision that p20 may well be thin bronchuses lung bubble cancer.

6 Conclusion

The main contribution of this paper is to construct covering-based rough mem-
bership function and to discuss its properties and applications in depth. First, by
using a practical example in evidence-based medicine, we illustrate applications
of the Pawlak’s rough membership function in real life and the limitations of it.
Then, based on topological structures of the covering-based rough set which is
examined by Bonikowski et al. [1], we construct corresponding covering-based
rough membership function and present numerical characterizations of the rough
sets by this function. Furthermore, the theoretical backgrounds of it are dis-
cussed. At the end, we illustrate practical applications of this covering-based
rough membership function in medical diagnosis.

There are several issues about covering-based rough membership functions
deserving further investigation. For example, for models of covering-based rough
set appeared in literature [6,13,24,25,27], how to construct corresponding
covering-based rough membership functions on them? Moreover, to find more
applications of covering-based rough membership functions in the field of data
mining is an exciting area deserved to be explored. We will study these issues in
our future research.
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Abstract. In this paper we will attempt to create simple behavioral
agent with reasoning based in mereogeometry. Main purpose of this
research is to check if mereogeometry is viable approach for writing low
level behavioral system.
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1 Behavioral Robotics

When designing artificial minds we can take one of two approaches. In delib-
erative approach we would try to write monolithic algorithm that uses sensory
fusion to create complex responses from robot. Problem with this approach is
that it requires comprehensive knowledge about robot task because we need to
create virtual model of it that covers all edge cases. Difficulty of creating such
model increases quickly with introduction of new variables into robot environ-
ment. So while it is relatively easy to create complete model of manipulator
working in especially designed environment the same task for a robot that will
work in open, like self driving cars [12], environment may be incredibly com-
plex. And those are just examples of robots that are designed to do one specific
task. Creating holistic AI for general purpose robot is literally impossible as sets
of rules that describe it tasks and environment are potentially infinite. To deal
with this issue we must turn to behavioral robotics that instead of using one
monolithic algorithm relay on set of behaviors and arbiters (Figs. 1 and 2).

Following Arkin [1], we require that behaviors display following properties:

1. Parsimony - first level behaviors must be as simple as possible, we consider
a behavior to be of the first level if it cannot be redefined as set of smaller
behaviors and arbiters.

2. Exploration/speculation - With exception of recharging robot is never sta-
tionary, in other words system is never in stable state.

3. Attraction - system will attempt to move towards positive signals.
4. Aversion - system will attempt to move away from negative signals.
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part II, LNAI 10314, pp. 70–80, 2017.
DOI: 10.1007/978-3-319-60840-2 5
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Fig. 1. Monolithic A.I. structure Fig. 2. Behavioral A.I. structure

It should be mentioned that properties of attraction and aversion while very
common in behavior design are not universal. behaviors that rely on them are
called taxa while those that simply translate set of inputs into predefined set of
outputs are called reflexes. Another difference between taxa and reflexes is that
reflexes have very short activity time and usually will omit arbiters and directly
affect outputs. This distinction between behaviors is based on biology where
there are reflexes that very often can be executed without any interaction with
central nervous system. In behavioral robotics, complex behaviors do not arise
from equally complex algorithm but from interactions between large number of
behaviors and arbiters. This allows emergent generation of very complex reac-
tions for previously unknown stimuli and according to some research it is even
mechanism lying at the base of conciousness [5]. Very first example of behavioral
based robot was W. Grey Walters tortoise created in 1951 and described in his
book called The Living Brain [3] (Fig. 3).

Fig. 3. Circuit of Machina Speculatrix from The Living Brain by W. Grey Walter

All logic of this robot is realized by two vacuum tubes, with third one as a
sensor, despite that it displayed rather complex behavioral patterns with follow-
ing rules as base:

– Sensor will turn around until it detects light source (reflex).
– Robot will head towards dim light (taxa).
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– Robot will move away from bright light (taxa).
– If obstacle is hit robot will push on it while turning (reflex).

In case of simple behavioral systems we can analyse them like a dynamic systems.
It is especially obvious in case of behavioral engines like Machina Speculatrix
because those are realized by electronic circuits whose nature as a dynamic
systems is well known [2].

2 Spatial Reasoning with Rough Mereology

Mereology is field of mathematics that focuses on extensional objects [8]. Basics
of mereology were developed in early XX century by Leśniewski [4] He used con-
cept of “being part of” as his primitive notion. Another approach to mereology
was developed by Whitehead [13] where instead of focusing on “being part of”
relation of interconnection was chosen as a primitive notion. choose intercon-
nection relation. In Leśniewski theory being part of is represented as a binary
relation π(x, y) with means that x is part of y. Such relation fulfils following
requirements:

1. Irreflexivility: ∀x : ¬π(x, x)
2. Transitivity: ∀(x, y, z) : π(x, y) ∧ π(y, z) =⇒ π(x, z)

Another important relation in mereology is called ingredient and can be defined
as ingr(x, y) ⇐⇒ π(x, y) ∨ x = y. In this paper we will use concept of rough
inclusion that was first introduced by Polkowski and Skowron [10]. They intro-
duced concept of rough inclusion that provided relation μ(x, y, r) with means
that y is part of x to r degree. This relation can be defined by following
postulates:

1. μ(x, y, r) ⇐⇒ ingr(x, y)
2. μ(x, y, r) =⇒ ∀z[μ(z, x, r) =⇒ μ(z, y, r)]
3. μ(x, y, r) ∧ s < r =⇒ μ(x, y, s)

As our main focus is on description of robot physical environment, that is why we
will turn to mereogeometry. This approach provides means to transform euclid-
ean space into mereologic one. For example, if we have two geometric shapes
identified as A and B then degree of inclusion of B in A will be area of common
part of both figures divided by area of A. Another important relation is mereo-
geometric distance that can be described as κ(A,B) = max(μ(A,B), μ(B,A)).
Based on that definition we can tell that mereogeometric distance displays fol-
lowing properties:

1. ∀(A,B) : κ(A,B) ≥ 0 ∧ κ(A,B) ≤ 1.
2. In contrast to euclidean notion of distance higher value imply that objects

are closer.
3. If objects are disjoint their mereogeometric distance is always 0 even if their

euclidean distance changes.
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4. If one objects encompasses another their mereogeometric distance is 1 regard-
less of euclidean distance between their centroids.

Another concept that must be mentioned before we start describing previous
work on use of mereology in behavioral robotics is extens. Exntens refers to
smallest possible rectangle that will encompass both elements given (Fig. 4).

Fig. 4. Extens

3 Previous Works on Application of Mereology in Field
of Robotics

Use of mereogeometry in mobile robot control is rather young field of research.
Previous approach at tackling this problem was done by Polkowski and
Ośmia�lowski [7]. Their work was focused on path finding and robot formation.
For path finding modified version of potential field algorithm was used [6]. In
traditional approach value of potential field in given point is calculated as sum of
attraction forces created by robot goals and repulsion originating from obstacles.
Algorithm deployed by them instead is based on the concept of rough mereo-
logic inclusion. Potential field is constructed by a discreet construction. Free
workspace of a robot is filled with virtual squares in such a way that the density
of square field, measured as number of squares intersection the disc of a given
radius r centred at the target, increases towards target (Fig. 5).

Fig. 5. Obstacles layer together with potential field layer.
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After this field is prepared robot will move towards goal by means of following
algorithm:

1. If robot is at goal position finish algorithm execution otherwise go to step 2.
2. From the set of square areas that have any common part with previously

selected area choose one that have smallest mereological distance to it. Then
move robot to centroid of this area and return to step 1.

That algorithm will allow robot to reach the goal, of course as it is a variant
of potential field path planning there are configurations that will cause it to fail.
Another topic researched by Polkowski and Ośmia�lowski was use of mereology in
description of robot formations [9]. In their work they focused on use of notion
of betweenness and distance to maintain formation of robots. Do define robot
formation we define knowledge base that informs robot about their expected
relations to each other (Fig. 6).

Fig. 6. Cross formation definition for four Roomba robots

Basing on this requirements and robots starting position planner will set
target positions for all robots. Each robot (except a selected leader) will move
towards this generated position. Whenever collision is detected (on the robot
bumper device), robot goes back for a while then turns left or right for a while
and from this new situation, it tries again to go (Fig 7).

4 Mboids as Simple Mereology Based Behavior Engine

To test concept of behaviors based on mereogeometric description we have to
first create simulation environment that will provide us with mereologic sensors.
Second requirement of simulation is to provide basic mechanics of motion that
will allow for multiple robot to interact an generate patterns based on behaviors.
To create such environment we will turn to previous work on simulating move-
ment of flocking birds. Behavior based solution for that problem was proposed in
1987 by Craig Reynolds in form of Boids [11]. Term Boid refers to a single agent
in flock that in case of Reynolds work behaves according to following rules.
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Fig. 7. Roombas in formation, with trials from original positions

1. move away from obstacles
2. move away from local flock mates
3. move towards average position of local flock mates
4. steer towards average heading of local flock mates

From this four basic rules it was possible to create complex flock behaviors
(Fig. 8).

Fig. 8. Example of flock obstacle avoidance [11]

While our approach called Mboids (mereogeometric boids) is directly inspired
by Reynolds work there are major differences between two models. Reynold
boids used virtual sensor that told them distance towards all other boids within
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given range and their velocity vector. In our case Mboid will be equipped with
four sensors that can only tell mereogeometric distance between area covered by
sensor and measured object (Fig. 9).

Fig. 9. Mboid with visualised attractor and sensors

Mboid consists of following parts:

– body (repellent) - black filled square on visualisation, this is element that
represents physical body of Mboid

– attractor - small grey square, virtual area visible to sensors of other Mboids
– sensors - represented by four large grey squares, each square represents area

covered by single sensor.

Using this elements Mboid displays following behaviors:

1. Mboid will accelerate towards attractors that are within range of its sensors.
Acceleration value is reverse proportional to average mereological distance of
those attractors.

2. Mboid will accelerate away from repulsors within its sensors range. Acceler-
ation value is proportional to mereological distance of closest repulsor.

So Mboid is controlled by two behaviors of taxa type that means it also must
have one arbiter. This arbiter is the weighted average of acceleration forces of
both behavior.

5 Experiment

In our first experiment we will see if Mboids will display formation building
patterns. We will also analyse how sensor size and changes in arbiter weights
influence those patterns. We are able to change following parameters of simula-
tion (Figs. 10 and 11):

– repulsor width,
– repulsor height,
– attractor width,
– attractor height,
– sensor width,
– sensor height,
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– mass,
– friction,
– maximum thrust,
– force,
– repulsion force.

Repulsion and attraction forces are respective weights of the arbiter while the
maximum thrust, mass and friction refer to physical properties of Mboid. We
will only attempt to modify arbiter weights and maximum thrust (Table 1).

Table 1. Experiment parameters

Experiment no. 1 2 3 4

Repulsion 10 10 20 20

Thrust 1 5 1 5

Other parameters remain constants during all experiments and have following
values:

– repulsor width = 10,
– repulsor height = 10,
– attractor width = 40,
– attractor height = 40,
– sensor width = 15,
– sensor height = 15,
– mass = 10,
– friction = 0.02,
– attraction force = 10.

We got positive results when running first experiment. Starting from random
positions Mboids that are located in vicinity of each other will try to form regular
grid. It is worth noting that behaviors do not require four neighbours as evident
by empty spaces within the grid. Mboids are not stable as explorative nature of
behavioral engines prohibits static states, they are however oscillating around
fixed positions with results with pulsating but generally stable formation. This
result is fully compatible with our prediction and on it is own proves that it
is possible to create simple behavioral agents with use of mereogeometry based
spatial reasoning. Another interesting behavior can be observed when a obstacle,
represented by grey square, is introduced into formation. It is worth mentioning
that while unlike in original boids in our example the obstacle is moving trough
stationary flock this do not change avoidance or formation restoration behaviors.
As we already know that our algorithm guarantees formation emergence we can
check what behaviors of flock will be generated with other settings. If we use
settings from experiment number two thrust will be stronger while mass and
friction remains same. This should result in more chaotic movement of Mboids
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Fig. 10. Mboids initial position Fig. 11. Mboids after minute of behav-
ior based movement

and make flock formation more difficult. Experiment confirms this expectation
as while flock is able to form is much less stable than in experiment one and
Mboids must constantly adjust their positions by large margins (Figs. 12, 13
and 14).

Fig. 12. Flock is appro-
ached by a obstacle

Fig. 13. Obstacle moves
trough flock

Fig. 14. Flock after pass-
ing of obstacle

To test if this behavior disappears or only slows down in case of smaller
thrust forces we ran simulation with settings from experiment 1 for over 20 min
with different starting formations. After running those experiments it became
evident that it is not acceleration force that caused formation movement. Instead
this behavior appears when asymmetric formation shapes are present (Figs. 15
and 16).

Finally changing repulsion value have no significant effect with current con-
figuration of other parameters.
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Fig. 15. Formation that starts as black squares moves to position of grey ones without
any external motivation in about 5min.

Fig. 16. Example of moving formation with low thrust value

6 Conclusions and Plans for Future Research

After running our experiments we can conclude that mereogeometrical approach
is valid for creating simple behavioral systems. We also know from previous work
on this topic that it is possible to implement control on higher level of abstrac-
tion, like path planning or formation building, with use of rough meregeometry.
With that knowledge we can continue our research in design of holistic robot
behavioral system based on rough mereogeometric description of environment.
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ISMIS 1994. LNCS, vol. 869, pp. 85–94. Springer, Heidelberg (1994). doi:10.1007/
3-540-58495-1 9

11. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. In: SIG-
GRAPH 1987 Proceedings of the 14th Annual Conference on Computer Graphics
and Interactive Techniques (1987)

12. Urmson, C., Anthal, J., Bagnerll, D., et al.: Autonomous driving in urban envi-
ronments: boss and the urban challenge. In: Buehler, M., Iagnemma, K., Singh, S.
(eds.) The DARPA Urban Challenge, pp. 1–59. Springer, Heidelberg (2009)

13. Whitehead, A.N.: La theorie relationiste de l’espace (1916)

http://dx.doi.org/10.1007/3-540-58495-1_9
http://dx.doi.org/10.1007/3-540-58495-1_9


Distinguishing Vagueness from Ambiguity
in Dominance-Based Rough Set
Approach by Means of a Bipolar
Pawlak-Brouwer-Zadeh Lattice

Salvatore Greco1,2, Benedetto Matarazzo1, and Roman S�lowiński3,4(B)
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Abstract. In this paper, we present a new algebraic model for
Dominance-based Rough Set Approach. Extending the Pawlak-Brouwer-
Zadeh lattice introduced for indiscernibility-based rough set approach,
the new model permits to distinguish between two kinds of imperfect
information in case of ordered data: vagueness due to imprecision, and
ambiguity due to coarseness typical to rough sets. To build the model
we use the bipolar Brouwer-Zadeh lattice to represent a basic vagueness,
and to introduce dominance-based rough approximations we define a new
operator, called bipolar Pawlak operator. The new model we obtain in
this way is called bipolar Pawlak-Brouwer-Zadeh lattice.
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1 Introduction

After being introduced as an algebraic structure permitting representation of
possibility and necessity in an environment characterized by some form of vague-
ness, the Brouwer-Zadeh lattice [5] has been considered also as an abstract model
for rough set theory [1,2] (for rough set theory see [15,16]; for two extensive sur-
veys on algebraic structures for rough set theory see Chapt. 12 in [17] or [2]). In
this case, the elements of the lattice represent the pairs (A,B) where A and B
are the lower approximation (interior) and the complement of the upper approx-
imation (exterior) of a given set X, respectively. The bipolar complemented
c© Springer International Publishing AG 2017
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de Morgan Brouwer-Zadeh lattice [13] has been recently introduced as an exten-
sion of a Brouwer-Zadeh lattice to give an algebraic model for the dominance-
based rough set approach (DRSA) [8–12]. [14] proposed another extension of
the Brouwer-Zadeh lattice for indiscernibility-based rough set approach, called
Pawlak-Brouwer-Zadeh lattice, where the basic vagueness is represented by a
pair (A,B), with A being the necessity kernel and B being the non-possibility
kernel, and ambiguity due to the coarseness of information is introduced through
a new operator, called Pawlak operator. Pawlak operator assigns a pair (C,D)
to the pair (A,B), with A ∩ B = ∅, such that C and D represent the lower
approximations of A and B, respectively. In this paper, we make a non-trivial
synthesis of the ideas that stand behind the bipolar complemented de Morgan
Brouwer-Zadeh lattice and the Pawlak-Brouwer-Zadeh lattice in order to get an
algebraic model permitting to distinguish vagueness from ambiguity in DRSA.

Let us use an example to explain the intuition that stands behind the bipolar
Pawlak-Brouwer-Zadeh lattice. Suppose a financial institution wants to assess
the bankruptcy risk of some companies, taking into account the information car-
ried by some financial ratios. With this aim, a committee of experts is asked to
consider a certain universe U of companies described by some financial ratios. It
will not be surprising, if due to vagueness related to experts’ imprecise knowl-
edge, the committee will assign the companies from U to three classes: class A,
composed of companies for which for sure there is no risk of bankruptcy; class B,
A ∩ B = ∅, composed of companies for which there is a clear risk of bankruptcy,
and class C = U−A−B, composed of companies for which there is a doubt about
their risk of bankruptcy. On the other hand, information about financial ratios
permits to define a dominance relation in set U of companies. More precisely, we
say that company a (weakly) dominates company b if a is at least as good as b
on all the considered financial ratios. Dominance relation is a preorder, that is,
a reflexive and transitive binary relation. Using dominance, one can define lower
approximation of classes A and B. More precisely, any company dominated only
by companies belonging to class A is included in the lower approximation of A,
denoted by R≥A, as well as any company dominating only companies belong-
ing to class B is included in the lower approximation of B, denoted by R≤B.
Intuitively, this means that, based on the available data, the financial ratios
of companies from R≥A permit to exclude univocally the risk of bankruptcy.
Analogously, based on the available data, the financial ratios of companies from
R≤B permit to identify univocally the risk of bankruptcy. Using the same data
describing the companies in terms of the considered financial ratios, one can also
define the upper approximation of classes A and B, denoted by R

≥
A and R

≤
B,

respectively. More precisely, R
≥

A contains the companies dominating at least
one company for which there is no risk of bankruptcy, and R

≤
B contains the

companies dominated by at least one company for which there is the risk of bank-
ruptcy. The difference R

≥
A − R≥A contains all the companies whose financial

ratios do not permit to state with certainty that there is no risk of bankruptcy;
analogously, the difference R

≤
B − R≤B contains the companies whose financial

ratios do not permit to state with certainty that there is the risk of bankruptcy.
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In this example, we distinguished between two kinds of imperfections of infor-
mation: on one hand, the vagueness due to imprecise knowledge related to the
experts’ classification of the companies from U into classes of safe (A), risky (B),
and doubtful (C) companies, and, on the other hand, the ambiguity due to
coarseness related to granularity of information available in terms of the finan-
cial ratios of the companies from U . It is thus meaningful to consider rough
(lower and upper) approximations of class A, and class B, in terms of attributes
describing the companies (for an interesting real world application of rough set
theory to bankruptcy evaluation see [7]).

The paper is organized as follows. In the next section, we recall the Pawlak-
Brouwer-Zadeh lattice and its abstract representation of indiscernibility-based
rough set theory. In the third section, we introduce the bipolar Pawlak-Brouwer-
Zadeh lattice and we show that it is an abstract algebra for dominance-based
rough set approach. In the fourth section we present a didactic example illustrat-
ing the concepts of Pawlak-Brouwer-Zadeh lattice and bipolar Pawlak-Brouwer-
Zadeh lattice. This example suggests a possible application of these concepts in
aggregation of multi-expert classifications under vagueness and ambiguity. The
last section contains conclusions.

2 The Pawlak-Brouwer-Zadeh Distributive de Morgan
Lattice and Indiscernibility-Based Rough Set Theory

In this section, we recall the Pawlak-Brouwer-Zadeh distributive de Morgan lat-
tice introduced in [14], and show how it is an abstract model of the classical
rough set approach based on indiscernibility.

A system 〈Σ,∧,∨,′ ,∼ , 0, 1〉 is a quasi-Brouwer-Zadeh distributive lattice [5]
if the following properties (1)–(4) hold:

(1) Σ is a distributive lattice with respect to the join and the meet operations
∨, ∧ whose induced partial order relation is

a ≤ b iff a = a ∧ b (equivalently b = a ∨ b)

Moreover, it is required that Σ is bounded by the least element 0 and the
greatest element 1:

∀a ∈ Σ, 0 ≤ a ≤ 1

(2) The unary operation ′ : Σ → Σ is a Kleene (also Zadeh or fuzzy) comple-
mentation. In other words, for arbitrary a, b ∈ Σ,

(K1) a′′ = a,
(K2) (a ∨ b)′ = a′ ∧ b′,
(K3) a ∧ a′ ≤ b ∨ b′.

(3) The unary operation ∼ : Σ → Σ is a Brouwer (or intuitionistic) complemen-
tation. In other words, for arbitrary a, b ∈ Σ,

(B1) a ∧ a∼∼ = a,
(B2) (a ∨ b)∼ = a∼ ∧ b∼,
(B3) a ∧ a∼ = 0.



84 S. Greco et al.

(4) The two complementations are linked by the interconnection rule which must
hold for arbitrary a ∈ Σ:

(in) a∼ ≤ a′.

A structure 〈Σ,∧,∨,′ ,∼ , 0, 1〉 is a Brouwer-Zadeh distributive lattice if it is a
quasi-Brouwer-Zadeh distributive lattice satisfying the stronger interconnection
rule:

(s-in) a∼∼ = a∼′.

A Brouwer-Zadeh distributive lattice satisfying also the ∨ de Morgan
property

(B2a) (a ∧ b)∼ = a∼ ∨ b∼

is called a de Morgan Brouwer-Zadeh distributive lattice.
An approximation operator, called Pawlak operator [14], on a de Morgan

Brouwer-Zadeh distributive lattice is an unary operation A : Σ → Σ for which
the following properties hold: for a, b ∈ Σ

(A1) aA′ = a′A;
(A2) a ≤ b implies bA∼ ≤ aA∼;
(A3) aA∼ ≤ a∼;
(A4) 0A = 0;
(A5) a∼ = b∼ implies aA ∧ bA = (a ∧ b)A;
(A6) aA ∨ bA ≤ (a ∨ b)A;
(A7) aAA = aA;
(A8) aA∼A = aA∼;
(A9) (aA ∧ bA)A = aA ∧ bA.

2.1 The Pawlak-Brouwer-Zadeh Lattice as an Algebraic Model
of Indiscernibility-Based Rough Set Theory

A knowledge base K = (U,R) is a relational system where U �= ∅ is a finite set
called the universe and R is an equivalence relation on U . For any x ∈ U , [x]R
is its equivalence class. The quotient set U/R is composed of all the equivalence
classes of R on U . Given the knowledge base K = (U,R), one can associate the
two subsets RX and RX to each subset X ⊆ U :

RX = {x ∈ U : [x]R ⊆ X},

RX = {x ∈ U : [x]R ∩ X �= ∅}.

RX and RX are called the lower and the upper approximation of X, respectively.
Let us consider the set of all pairs 〈A,B〉 such that A,B ⊆ U and A∩B = ∅.

We denote by 3U the set of these pairs, i.e.

3U = {〈A,B〉 : A,B ⊆ U and A ∩ B = ∅}.

Given a knowledge base K = (U,R), we can define an unary operator L :
3U → 3U , as follows: for any 〈A,B〉 ∈ 3U

〈A,B〉L = 〈RA,RB〉 .
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Let us consider the following operations on 3U :

〈A,B〉 � 〈C,D〉 = 〈A ∩ C,B ∪ D〉 ,

〈A,B〉 � 〈C,D〉 = 〈A ∪ C,B ∩ D〉 ,

〈A,B〉− = 〈B,A〉 ,

〈A,B〉≈ = 〈B,U − B〉 .

Observe that � and � induce the following partial order relation on 3U : for all
〈A,B〉 , 〈C,D〉 ∈ 3U

〈A,B〉 � 〈C,D〉 iff 〈A,B〉 � 〈C,D〉 = 〈A,B〉
(or, equivalently, 〈A,B〉 � 〈C,D〉 = 〈C,D〉)

The following results hold [14].

Proposition 1. The structure
〈
3U ,�,�,− ,≈ ,L , 〈∅, U〉 , 〈U, ∅〉〉 is a Pawlak-

Brouwer-Zadeh lattice. ��
Proposition 2. For every Pawlak-Brouwer-Zadeh lattice LPBZ = 〈Σ,∧,∨,′ ,
∼,A , 0, 1

〉
, satisfying the condition

(P) there exists c ∈ Σ for which c = c′,

there is a knowledge base K = (U,R) such that the structure

RSPBZ(U,R) =
〈
3U ,�,�,− ,≈ ,L , 〈∅, U〉 , 〈U, ∅〉〉

is isomorphic to LPBZ . ��

3 The Bipolar Pawlak-Brouwer-Zadeh Distributive
de Morgan Lattice and Dominance-Based Rough Set
Theory

After giving a formulation of the bipolar de Morgan Brouwer-Zadeh distributive
lattice, being a bit simpler and a bit more general than the one given in [13],
we propose the bipolar Pawlak-Brouwer-Zadeh distributive de Morgan lattice.
It results from a definitely non-trivial synthesis of the basic ideas of [13] and
[14]. We show that it constitutes a formal model for dominance-based rough set
theory.

A system 〈Σ,Σ+,∧,∨,′ ,∼ , 0, 1〉 is a bipolar de Morgan Brouwer-Zadeh dis-
tributive lattice if

(B1) 〈Σ,∧,∨,′ ,∼ , 0, 1〉 is a de Morgan Brouwer-Zadeh distributive lattice,
(B2) Σ+ ⊆ Σ is a distributive lattice with respect to the join and the meet

operations ∨ and ∧,
(B3) a ∈ Σ+ implies that a′∼, a∼′ ∈ Σ+.
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Observe that by (B3), (K1) and (s-in), we have that a ∈ Σ+ implies that
a′′, a∼∼ ∈ Σ+. Let us consider the set

Σ− = {a ∈ Σ : a = b′ or a = b∼ with b ∈ Σ+}.

Σ− is a distributive lattice with respect to the join and the meet operations ∨
and ∧, and a ∈ Σ− implies that a′∼, a∼′, a∼∼, a′′ ∈ Σ−.

A bipolar approximation operator, called bipolar Pawlak operator, on a
bipolar de Morgan Brouwer-Zadeh distributive lattice is a unary operation
M : Σ+ → Σ+ satisfying the following properties (A2B)–(A9B) (the numbering
underlines the correspondence of the properties of bipolar Pawlak operator M

with the analogous properties of Pawlak operator A):

(A2B1) a ≤ b implies bM∼ ≤ aM∼;
(A2B2) a ≤ b implies aM ′∼ ≤ bM ′∼;
(A3B1) aM∼ ≤ a∼;
(A3B2) aM ′∼ ≤ a′∼;
(A4B1) 0M = 0;
(A4B2) 1M = 1;
(A5B1) a∼ = b∼ implies aM ∧ bM = (a ∧ b)M ;
(A5B2) a′∼ = b′∼ implies aM ∨ bM = (a ∨ b)M ;
(A6B1) aM ∨ bM ≤ (a ∨ b)M ;
(A6B2) (a ∧ b)M ≤ aM ∧ bM ;
(A7B) aMM = aM ;
(A8B1) aM∼′M = aM∼′;
(A8B2) aM ′∼M = a′∼M ;
(A9B1) (aM ∧ bM )M = aM ∧ bM ;
(A9B2) (aM ∨ bM )M = aM ∨ bM ;

We define the bipolar Pawlak-Brouwer-Zadeh lattice as system 〈Σ,Σ+,∧,
∨,′ ,∼ ,M , 0, 1

〉
, where 〈Σ,Σ+,∧,∨,′ ,∼ , 0, 1〉 is a bipolar Brouwer-Zadeh distrib-

utive de Morgan lattice, and operator M is a bipolar Pawlak operator.

3.1 The Bipolar Pawlak-Brouwer-Zadeh Lattice as an Algebraic
Model of Dominance-Based Rough Set Theory

An ordered knowledge base K = (U,R) is a relational system where the universe
U �= ∅ is a finite set, and R is a preorder on U , that is R is a reflexive and
transitive binary relation on U . For any x ∈ U , let us consider its dominating
set [x]≥R = {y ∈ U : yRx} and its dominated set [x]≤R = {y ∈ U : xRy}. Given
the ordered knowledge base K = (U,R), to each subset X ⊆ U one can associate
the four subsets R≥X, R

≥
X, R≤X, R

≤
X:

R≥X = {x ∈ U : [x]≥R ⊆ X},

R
≥

X = {x ∈ U : [x]≤R ∩ X �= ∅},
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R≤X = {x ∈ U : [x]≤R ⊆ X},

R
≤

X = {x ∈ U : [x]≥R ∩ X �= ∅}.

R≥X and R
≥

X are called the upward lower and upper approximations of X,
while R≥X and R

≥
X are called the downward lower and upper approximations

of X.
The preorder R can be identified with the dominance relation which relates

two objects a and b (for example companies for which the bankruptcy risk is
assessed) evaluated with respect to a set of points of view, technically called
criteria (for example, financial ratios), when on all criteria, object a is at least
as good as object b.

Given an ordered knowledge base K = (U,R), let us consider U+ ⊆ 2U , such
that

– ∅, U ∈ U+,
– for all A,B ⊆ U , if A,B ∈ U+ then also A ∩ B,A ∪ B ∈ U+,
– for all A ⊆ U , if A ∈ U+ then also R≥A,R

≥
A ∈ U+.

The sets A ⊆ U , such that A ∈ U+, are called positive sets. Let us observe
that, possibly, U+ = 2U , in which case all subsets of U are positive. Having a
family U+ of positive sets, it is possible to define a family U− of negative sets
as follows:

U− = {A ⊆ U : U − A ∈ U+}.

On the basis of U+ (and, consequently, of U−) we can define the set W(U+) of
all pairs 〈A,B〉, such that A ∈ U+, B ∈ U− and A ∩ B = ∅. Let us observe that
if U+ = 2U , then W(U+) = 3U .

Given an ordered knowledge base K = (U,R) and a family of positive sets U+

(and, therefore, W(U+)), we can define an unary operator N : W(U+) → W(U+),
as follows: for any 〈A,B〉 ∈ W(U+)

〈A,B〉N =
〈
R≥A,R≤B

〉
.

The following result holds.

Proposition 3. The structure
〈
3U ,W(U+),�,�,− ,≈ ,N , 〈∅, U〉 , 〈U, ∅〉〉 is a

bipolar Pawlak-Brouwer-Zadeh lattice.

Sketch of the proof. This can be proved by a relatively straightforward ver-
ification.

〈
3U ,�,�,− ,≈ , 〈∅, U〉 , 〈U, ∅〉〉 is clearly a de Morgan Brouwer-Zadeh

distributive lattice. W(U+) is a distributive lattice with respect to � and �
because, by definition, U ∈ U+ and for all A,B ⊆ U , if A,B ∈ U+ then also
A ∩ B,A ∪ B ∈ U+. Moreover, N is a binary operation on W(U+), because,
again by definition, for all A ⊆ U , if A ∈ U+ then also R≥A,R

≥
A ∈ U+.

Finally, one can prove that N satisfies all properties (A2B)–(A9B). For example,
for all A,C ∈ U+, B,D ∈ U− with A ∩ B = C ∩ D = ∅, if 〈A,B〉 � 〈C,D〉, that
is A ⊆ C and B ⊇ D, we have

〈C,D〉N≈ =
〈
R≤D,U − R≤D

〉 � 〈
R≤B,U − R≤B

〉
= 〈A,B〉N≈

so that property (A2B1) holds. ��



88 S. Greco et al.

4 Didactic Example

A financial institution wants to assess the bankruptcy risk of a set of six compa-
nies. To this end, two experts were contacted. The six companies are evaluated
on three criteria: Debt ratio (Total debt / Total assets), ROA (return on assets,
i.e., Net income / Total assets) an ROS (return on sales, i.e., Net income / Sales
revenue). Using some thresholds on criteria scales, agreed between the experts,
the evaluations were transformed to qualitative ones, as shown in Table 1. Then,
the experts were asked to make their first assessment of the bankruptcy risk,
by assigning the companies to the classes of “safe” and “risky” companies. In
case the experts had doubts with respect to the risk of bankruptcy of some com-
panies, they abstained from the assignment. The financial evaluations and the
classifications of the six companies made by the experts are shown in Table 1,
where the abstentions are marked with “?”.

Table 1. Financial data of companies and bankrutcy risk assessment by the two experts

Company Debt ratio ROA ROS Expert 1 Expert 2

A1 Good Medium Medium Safe Safe

A2 Medium Bad Medium ? Risky

A3 Medium Bad Medium Risky ?

A4 Medium Good Bad Risky Safe

A5 Medium Medium Bad ? Risky

A6 Medium Bad Good Safe ?

In this case, the set 3U is the family of all the pairs of sets 〈A,B〉 with A
interpreted as the set of safe companies, B as the set of risky companies, and
U − A − B the set of companies for which there is some doubt. The assessment
of each conceivable expert E is therefore represented by one pair E = 〈A,B〉
from 3U . For example, the assessment of Expert 1 is represented by the pair
E1 = 〈{A1, A6}, {A3, A4}〉, and the assessment of Expert 2 is represented by
the pair E2 = 〈{A1, A4}, {A2, A5}〉. The operators of the Brouwer-Zadeh lattice
permit to obtain different aggregations of the assessments of the experts.

In particular, the join operator � gives an optimistic synthesis of the assess-
ments of the two experts, i.e., a company is safe if it is safe for at least one of
the two experts, and a company is risky if it is risky for both the experts. In
case of Expert 1 and Expert 2, we get E1 � E2 = 〈{A1, A6, A4}, ∅〉 (Table 2).

On the other hand, the meet operator � gives a pessimistic synthesis of the
assessments of the two experts, i.e., a company is safe if it is safe for both experts,
and a company is risky if it is risky for at least one of the two experts. In case
of Expert 1 and Expert 2, we get E1 � E2 = 〈{A1}, {A2, A3, A4, A5}〉.

The Kleene negation − represents the assessments of an expert giving inverse
assignments comparing to E, that is an expert E− for which the companies eval-
uated safe by expert E are risky, and the companies evaluated risky by expert E
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Table 2. Explanation of the meaning of knowledge base K = (U,R) and elements of
the Pawlak-Brouwer-Zadeh lattice and bipolar Pawlak-Brouwer-Zadeh lattice in terms
of the example.

Element Meaning

U Set of companies assessed by the experts wrt risk

R Indiscernibility relation or dominance relation
in the set of companies wrt financial ratios

〈A,B〉 Pair of sets of safe companies (A) and risky companies (B) from U

U − A − B Set of doubtful companies wrt risk

3U Family of all the pairs of sets 〈A,B〉
U+ All possible subsets of companies

� Join operator on assessment of the experts: gives 〈A,B〉,
where A contains companies safe for at least one expert,
and B contains companies risky for all the experts

� Meet operator on assessment of the experts: gives 〈A,B〉,
where A contains companies safe for all the experts,
and B contains companies risky for at least one expert

− Kleen negation: transforms 〈A,B〉 to 〈B,A〉,
i.e., makes of safe companies risky ones and vice versa

≈ Brouwer negation: transforms 〈A,B〉 to 〈B,U − B〉,
i.e., makes of risky companies safe ones, and of all the others risky ones

≈− Conjunction of Brouwer and Kleene negations:
transforms 〈A,B〉 to 〈U − B,B〉,
i.e., adds all doubtful companies to the safe ones

−≈ Conjunction of Kleene and Brouwer negations:
transforms 〈A,B〉 to 〈A,U − A〉,
i.e., adds all doubtful companies to the risky ones

L Pawlak operator exploiting knowledge about indiscernibility relation
in U :
transforms 〈A,B〉 to pair of lower approximations 〈RA,RB〉,
i.e., eliminates from A and B all companies indiscernible with doubtful
ones

N Pawlak operator exploiting knowledge about dominance relation in U :
transforms 〈A,B〉 to pair of lower approximations

〈
R≥A,R≤B

〉
,

i.e., eliminates from A all companies dominated by risky or doubtful
ones, and from B all companies dominating risky or doubtful ones

are safe. For example, for experts E1 and E2 we get E−
1 = 〈{A3, A4}, {A1, A6}〉

and E−
2 = 〈{A2, A5}, {A1, A4}〉.

The Brouwer negation ≈ gives back the assessments of an expert E≈

for which the companies evaluated risky by expert E are safe, while all the
remaining companies are evaluated risky, so that there is no more space for
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the doubtful companies. For example, for experts E1 and E2 we get E≈
1 =

〈{A3, A4}, {A1, A2, A5, A6}〉 and E≈
2 = 〈{A1, A6}, {A2, A3, A4, A5}〉.

Of course, one can use multiple operators in conjunction. For example, it
is interesting to combine the two negations. Obviously, applying two times the
Kleene negation the original pair is obtained, that is E−− = E. If one applies
first the Brouwer negation and after the Kleene negation, one obtains a new
pair that can be seen as an optimistic revision of the initial assessment, that is
all the companies that were not considered originally as risky are considered as
safe. For the two experts E1 and E2 we get E≈−

1 = 〈{A1, A2, A5, A6}, {A3, A4}〉
and E≈−

2 = 〈{A1, A3, A4, A6}, {A2, A5}〉. Instead, if one applies first the Kleene
negation and after the Brouwer negation, then one obtains a new pair that
can be seen as a pessimistic revision of the initial assessment, that is all the
companies that were not considered originally as safe are considered as risky.
For the two experts E1 and E2 we get E−≈

1 = 〈{A3, A4}, {A1, A2, A5, A6}〉 and
E−≈

2 = 〈{A1, A4}, {A2, A3, A5, A6}〉.
On the logical basis of the Brouwer-Zadeh lattice, taking into account knowl-

edge about the indiscernibility relation in U with respect to financial ratios, one
can define the Pawlak rough approximation operator L which assigns to each
pair E = 〈A,B〉 of safe and risky companies, the pair EL = 〈RA,RB〉 of the
rough lower approximations of safe and risky companies. Let us remember that
the indiscernibility relation R holds if two companies have equal evaluation with
respect to all the considered financial ratios, so that

R = {(A2, A3), (A3, A2)} ∪ {(Ai,Ai) : i = 1, . . . , 6}.

Thus, for the two experts E1 and E2, we get

EL
1 = 〈R{A1, A6}, R{A3, A4}〉 = 〈{A1, A6}, {A4}〉 ,

EL
2 = 〈R{A1, A4}, R{A2, A5}〉 = 〈{A1, A4}, {A5}〉 .

The pairs EL
1 and EL

2 can be interpreted as the assignments to safe and risky
companies by experts E1 and E2, for which there is no doubt on the basis of
the available knowledge. In result of this operation, one can see that accord-
ing to available knowledge and assessment made by E1, among the companies
considered as certainly risky A3 is not present, although it was classified as
risky by expert E1, because it is indiscernible with A2 that was not classified as
risky. Thus, A3 is not present in the lower approximation of the class of risky
companies. This fact can also be interpreted such that on the basis of avail-
able knowledge, i.e., indiscernibility of A3 and A2 classified by this expert to
different classes, there is some doubt about classifying A3 as risky. An analo-
gous argument explains why among the companies considered as certainly risky,
according to the available knowledge and assessment made by E2, company A2
is not present.

Of course, the logic structure of the Brouwer-Zadeh lattice can be applied
also on the pairs EL obtained in result of rough approximation using
the Pawlak operator. For example, one can consider the optimistic assess-
ment resulting from the application of the Brouwer negation first and then
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the Kleene negation, that for the two experts E1 and E2 gives EL≈−
1 =

〈{A1, A2, A3, A5, A6}, {A4}〉 and EL≈−
2 = 〈{A1, A2, A3, A4, A6}, {A5}〉. One

can also consider the pessimistic assessment resulting from the application of
the Kleene negation first and then the Brouwer negation on the rough approx-
imations EL

1 and EL
2 ; then, we get EL−≈

1 = 〈{A1, A6}, {A2, A3, A4, A5}〉 and
EL−≈

2 = 〈{A1, A4}, {A2, A3, A5, A6}〉.
Observe now, that the evaluations of the companies on the financial ratios, as

well as the assessments given by the two experts E1 and E2 are, in fact, ordered.
Indeed, with respect to the qualitative evaluations on the financial ratios “Good”
is better than “Medium” which, in turn, is better than “Bad”, while, with respect
to the assessment of the experts, class “Safe” is better than “?” that, in turn,
is better than “Risky”. Therefore, it seems more appropriate to consider DRSA
and its algebraic counterpart, that is the bipolar Brouwer-Zadeh lattice with
the bipolar Pawlak operator N . In this case, any pair E = 〈A,B〉 has to be
approximated using dominance relation R that for two companies is true when
the first one is at least as good as the second one with respect to evaluations on
all the considered financial ratios. For the six companies A1, . . . , A6 evaluated
on the three considered financial ratios, shown in Table 1, we have

R = {(A1, A2), (A1, A3), (A1, A5), (A2, A3), (A3, A2), (A4, A5), (A6, A2), (A6, A3)}
∪

{(Ai,Ai) : i = 1, . . . , 6}.
For the assessments of experts E1 and E2, the approximated pairs of safe and
risky companies obtained by applying the bipolar Pawlak operator N are the
following:

EN
1 = 〈{A1, A6}, ∅〉 ,

EN
2 = 〈{A1, A4}, {A5}〉 .

On these pairs, the operators of the Brouwer-Zadeh lattice can be used again,
and based on them, a financial institution can formulate various procedures to
aggregate the assessments of the experts taking into account the knowledge sup-
plied by financial ratios. Let us exemplify some of these aggregation procedures:

– aggregation with an optimistic attitude: the join of the rough approximated
assessments obtained using the bipolar Pawlak operator, i.e.,

EN
1 � EN

2 = 〈{A1, A4, A6}, ∅〉 ;

– aggregation with a pessimistic attitude: as in the previous point, replacing
the join by the meet, i.e.,

EN
1 � EN

2 = 〈{A1}, {A5}〉 ;

– aggregation with an extremely optimistic attitude: the join of the optimistic
assessments obtained by applying first the Brouwer negation and then the
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Kleene negation to the rough approximated assessments obtained using the
bipolar Pawlak operator, i.e.,

EN≈−
1 � EN≈−

2 = 〈U, ∅〉 ;

– aggregation with a mildly optimistic attitude: as in the previous point, replac-
ing the join by the meet, i.e.,

EN≈−
1 � EN≈−

2 = 〈{A1, A2, A3, A4, A6}, {A5}〉

– aggregation with an extremely pessimistic attitude: the meet of the pes-
simistic assessment obtained by applying first the Kleene negation and then
the Brouwer negation to the rough approximated assessments obtained using
the bipolar Pawlak operator, i.e.,

EN−≈
1 � EN−≈

2 = 〈{A1}, {A2, A3, A4, A5, A6}〉 ;

– aggregation with a mildly pessimistic attitude: as in the previous point,
replacing the meet by the join, i.e.,

EN−≈
1 � EN−≈

2 = 〈{A1, A4, A6}, {A2, A3, A5}〉

5 Conclusions

We extended the Pawlak-Brouwer-Zadeh lattice to the bipolar Pawlak-Brouwer-
Zadeh lattice, obtaining a new algebraic model which permits a joint consid-
eration of vagueness due to imprecision typical of fuzzy sets, and ambiguity
due to coarseness typical of rough set theory, when reasoning about ordered
data using the dominance-based rough set approach (DRSA). In the context of
DRSA applied to ordinal classification with monotonicity constraints, vagueness
is due to imprecision in object classification - it appears when an expert is hes-
itant when classifying the objects because her knowledge of the objects is not
perfectly precise; ambiguity is due to coarseness or granularity of the description
of the objects by the attributes - it appears when some attribute is missing in the
description, or when the considered attributes do not have sufficiently fine scales
to avoid violation of indiscernibility or dominance principle. Joint consideration
of vagueness and ambiguity within DRSA shows once again [6] a complementary
character of fuzzy sets and rough sets in dealing with distinct facets of imperfect
knowledge.

Using a didactic example, we have shown how the logic structure of the
Pawlak-Brouwer-Zadeh lattice can be used to aggregate evaluations of multiple
experts taking into account the available information. In the future research, we
envisage similar extensions of other algebraic structures for rough set theory,
different from Brouwer-Zadeh lattice, such as Nelson algebra, Heyting algebra,
�Lukasiewicz algebra, Stone algebra, and so on (see, e.g., Chap. 12 in [17] or [2]).



Distinguishing Vagueness from Ambiguity 93

References

1. Cattaneo, G.: Generalized rough sets (preclusivity fuzzy-intuitionistic (BZ) Lat-
tices). Stud. Logica. 58, 47–77 (1997)

2. Cattaneo, G., Ciucci, D.: Algebraic structures for rough sets. In: Peters, J.F.,
Skowron, A., Dubois, D., Grzyma�la-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.)
Transactions on Rough Sets II. LNCS, vol. 3135, pp. 208–252. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-27778-1 12

3. Cattaneo, G., Ciucci, D.: Lattices with interior and closure operators and abstract
approximation spaces. In: Peters, J.F., Skowron, A., Wolski, M., Chakraborty,
M.K., Wu, W.-Z. (eds.) Transactions on Rough Sets X. LNCS, vol. 5656, pp. 67–
116. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03281-3 3

4. Cattaneo, G., Ciucci, D., Dubois, D.: Algebraic models of deviant modal operators
based on de Morgan and Kleene lattices. Inform. Sci. 181, 4075–4100 (2011)
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9. Greco, S., Matarazzo, B., S�lowiński, R.: Rough sets methodology for sorting prob-
lems in presence of multiple attributes and criteria. Eur. J. Oper. Res. 138, 247–259
(2002)
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Abstract. Pawlak’s indiscernibility relation (which is an equivalence
relation) represents a limit of our knowledge embedded in an information
system. In many cases covering approximation spaces rely on tolerance
relations instead of equivalence relations. In real practice (for example
in data mining) tolerance relations may be generated from the proper-
ties of objects. A given tolerance relation represents similarity between
objects, but the usage of similarity is very special: it emphasizes the
similarity to a given object and not the similarity of objects ‘in general’.
The authors show that this usage has some problematic consequences.
The main goal of the paper is to show that if one uses the method of
correlation clustering then there is a way to construct a general (partial)
approximation space with disjoint base sets relying on the similarity of
objects generated by their properties. At the end a software describing
a real life problem is presented.

Keywords: Rough set theory · Correlation clustering · Set approxima-
tion

1 Introduction

From the theoretical point of view a Pawlakian approximation space (see in [12–
14]) can be characterized by an ordered pair 〈U,R〉 where U is a nonempty set
of objects and R is an equivalence relation on U . In order to approximate an
arbitrary subset S of U the following tools have to be introduced:

– the set of base sets: B = {B | B ⊆ U, and x, y ∈ B if xRy}, the partition of
U generated by the equivalence relation R;

– the set of definable sets: DB is an extension of B, and it is given by the
following inductive definition:
1. B ⊆ DB;
2. ∅ ∈ DB;
3. if D1,D2 ∈ DB, then D1 ∪ D2 ∈ DB.

– the functions l, u form a Pawlakian approximation pair 〈l, u〉, i.e.
1. Dom(l) = Dom(u) = 2U

2. l(S) =
⋃{B | B ∈ B and B ⊆ S};

3. u(S) =
⋃{B | B ∈ B and B ∩ S 	= ∅}.

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-60840-2 7
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R is called an indiscernibility relation. It represents a sort of limit of our
knowledge embedded in an information system (or background knowledge).
Indiscernibility has an affect on the membership relation. In some situation it
makes our judgment of the membership relation uncertain – making the set
vague – because a decision about a given object affects the decision about all
other objects which are indiscernible from the given object. Indiscernibility plays
a crucial role in approximation process: if we are interested in whether x ∈ S
(where S is the set to be approximated), then

1. the answer ‘yes’ (i.e. x ∈ l(S)) means that not only x ∈ S but all y, such that
xRy are members of S;

2. the answer ‘no’ (i.e. x ∈ l(S), where S is the complement of S) means that
not only x /∈ S but all y, such that xRy are not members of S;

3. the answer ‘maybe’ (i.e. x ∈ u(S)\ l(S)) means that there are y1, y2 such that
xRy1 and xRy2 for which y1 ∈ S and y2 /∈ S.

In practical applications indiscernibility relation is too strong: we have to
handle indiscernible objects in the same way but in real practice we have to
consider them as similar objects. Pawlakian approximation spaces have been
generalized using tolerance relations (instead of equivalence ones), which are
similarity relations and so they are symmetric and reflexive. Covering-based
approximation spaces (see for instance [16]) generalize Pawlakian approximation
spaces in two points:

1. R is (only) a tolerance relation;
2. B = {[x] | [x] ⊆ U, x ∈ U and y ∈ [x] if xRy}, where [x] = {y | y ∈ U, xRy}.

These spaces use the definitions of definable sets and approximation pairs of
Pawlakian approximation spaces.

Covering approximation spaces use similarity relations instead of equivalence
relations, but the usage of similarity relations (which are tolerance relations from
the mathematical point of view) is very special. It emphasizes the similarity to a
given object and not the similarity of objects ‘in general’. We can recognize this
feature when we try to understand the precise meaning of the answer coming
from an approximation relying on a covering approximation space. If we are inter-
ested in whether x ∈ S (where S is the set to be approximated), then (see Fig. 1)

1. the answer ‘yes’ (i.e. x ∈ l(S)) means that there is an object x′ such that
x′Rx, x′ ∈ S and all y for which x′Ry are members of S;

2. the answer ‘no’ (i.e. x ∈ l(S)) means that there is an object x′ such that
x′Rx, x′ /∈ S and all y for which x′Ry are not members of S;

3. otherwise the answer is ‘maybe’ (informally x is a member of the border of
S) means that there is no x′ for which x′Rx, [x′] ⊆ U , and there is no x′′ for
which x′′Rx, [x′′] ∩ U 	= ∅.

Some practical problems of covering approximation spaces:

1. The former answers show, that generally the lower and upper approximations
are not close in the following sense (see Fig. 2):
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Fig. 1. Some base sets in covering cases

Fig. 2. In covering the lower and upper approximations are not closed

(a) If x ∈ l(S), then we cannot say that [x] ⊆ S.
(b) If x ∈ u(S), then we cannot say, that [y] ∩ S 	= ∅ for all y ∈ [x].

2. The number of base sets is not more than the number of members of U , so
we have too many base sets for practical applications.
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If we want to avoid these problems we can generate a Pawlakian approxima-
tion space by constructing a system of disjoint base sets (see in [7]) (see Fig. 3).
If we have two base sets B1, B2, such that B1 ∩B2 	= ∅, then we substitute them
with the following three sets: B1 \B2, B2 \B1, B1 ∩B2. Applying this iteratively
we can get the reduction. Although it is not a real solution from the practical
point of view. The base sets can become too small for practical applications.
The smaller base sets we have, the closer we are to the classical set theory. (If
all base sets are singleton, then there is no difference between the approximation
space and classical set theory.)

(a) Covering (b) Partition

Fig. 3. Covering and its reduction to a partition

In rough set theory the members of a given base set share some common
properties.

– In Pawlak’s original system all members of a given base set have the same
attributes (i.e. they have the same properties with respect to the represented
knowledge).

– In covering approximation spaces all members of a given base set are similar
to a distinguished object (which is used to generate the given base set).

Further generalization is possible (see): General (partial) Pawlakian approx-
imation spaces can be obtained by generalization of the set of base sets:

– let B be an arbitrary nonempty set of nonempty subsets of U .

These spaces are Pawlakian in the sense that they use Pawlakian definition
of definable sets and approximation pairs. This generalization is very useful
because a base set can be taken as a collection of objects with a given property,
and we can use very different properties in order to define different base sets.
The members of the base set can be handled in the same way relying on their
common property. In this case there is no way to give a corresponding relation
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which is able to generate base sets (similarly to covering approximation spaces),
so a general (partial) Pawlakian approximation space can be characterized only
by the pair 〈U,B〉, since the lower and upper approximations of a subset of U
are determined by the members of B. However, any system of base sets induces
a tolerance relation R on U : xRy if there is a base set B ∈ B such that x, y ∈ B.
If we use this relation in order to get the system of base sets, the result can be
totally different from our original base system (see Fig. 4).

In Fig. 4 x is in the intersection of B1 and B2 (B1 and B2 are defined by
some properties). It means that it has common properties with all yi and zi,
where i = 1, 2, 3. So if some x ∈ B1 ∩ B2 it means that:

– xRy for all y ∈ B1

– xRz for all z ∈ B2

Therefore the base set generated by x is the following: [x] = B1 ∪ B2. (In this
example we used only two base sets, but it is the same when we have more.)

Fig. 4. Base sets by properties of objects

The main goal of the present paper is the following: the authors want to
show that there is a way to construct a general (partial) approximation space
with disjoint base sets relying on the properties of our objects. These spaces are
very useful in data mining. At the very beginning we have a general (partial)
approximation space 〈U,B〉. A base set is a collection of objects with the same
(practically useful) property. Common properties represent similarity between
objects, and the generated tolerance relation can be used to define the system
of disjoint base sets with the help of correlation clustering. The final general
(partial) Pawlakian approximation space is the core notion of similarity based
on rough set theory. This space has the following features:

– the similarity of objects relying on their properties (and not the similarity to
a distinguished object) plays a crucial role in the definition of base sets;

– the system of base sets consists of disjoint sets, so the lower and upper approx-
imation are closed;

– only the necessary number of base sets appears (in applications we have to
use an acceptable number of base sets);

– the size of base sets is not too small, or too big.
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At first the authors overview the most important points of correlation clus-
tering, and then they deal with how to apply correlation clustering in rough set
theory. At the end an implementation of similarity based rough set theory is
showed.

2 Correlation Clustering

Cluster analysis is a widely used technique in data mining. Our goal is to create
groups in which objects are more similar to each other than to those in other
groups. Usually the similarity and dissimilarity are based on the attribute values
describing the objects. Although there are some cases, when the objects cannot
be described by numbers, but we can still say something about their similarity
or dissimilarity. Think of the humans for example. It is hard to detail someone’s
looks by a number, but we still make statements whether two persons are similar
to each other or not. Of course these opinions are dependent on the persons. Some
can treat two random persons as similar, while others treat them dissimilar. If
we want to formulate the similarity and dissimilarity by using mathematics, we
need a tolerance relation. If this relation holds for two objects, we can say that
they are similar. If this relation does not hold, we say that they are dissimilar.
Of course each object is similar to itself, so the relation needs to be reflexive,
and it is easy to show, that it also needs to be symmetric. But we cannot go any
further, e.g. the transitivity does not hold necessarily.

If we take a human and a mouse, then due to their inner structure they are
similar. This is the reason why mice are used in drug experiments. Moreover a
human and a Paris doll are similar due to their shape. This is the reason why
these dolls are used in show-windows. But there is no similarity between a mouse
and a doll except that both are similar to the same object. Correlation clustering
is a clustering technique based on a tolerance relation (see in [5,6,17]).

Our task is to find an R ⊆ V ×V equivalence relation closest to the tolerance
relation. A (partial) tolerance relation R (see in [10,15]) can be represented by
a matrix M . Let matrix M = (mij) be the matrix of the partial relation R of
similarity: mij = 1 whenever objects i and j are similar, mij = −1 whenever
objects i and j are dissimilar, and mij = 0 otherwise.

A relation is partial if there exist two elements (i, j) such that mij = 0. It
means that if we have an arbitrary relation R ⊆ V ×V we have two sets of pairs.
Let Rtrue be the set of those pairs of elements for which the R holds, and Rfalse

be the one for which R does not hold. If R is partial then Rtrue∪Rfalse ⊆ V ×V .
If R is total then Rtrue ∪ Rfalse = V × V .

A partition of a set S is a function p : S → N. Objects x, y ∈ S are in the
same cluster at partitioning p, if p(x) = p(y).

The cost function counts the negative cases i.e. it gives the number of cases
whenever two dissimilar objects are in the same cluster, or two similar objects
are in different clusters. The cost function of a partition p and a relation RM

with matrix M is
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f(p,M) =
1
2

∑

i<j

(mij + abs(mij)) −
∑

i<j

δp(i)p(j)mij ,

where δ is the Knockecker delta symbol (see [11]). For a fixed relation the parti-
tion with the minimal cost function value is called optimal. Solving a correlation
clustering problem is equivalent to minimizing its cost function, for the fixed
relation. If the value of this optimal cost function is 0, the partition is called
perfect. Given the R and R we call the value f the distance of the two relations.
The partition given this way, generates an equivalence relation. This relation can
be considered as the closest to the tolerance relation.

It is easy to check that the solution cannot be generally perfect for a simi-
larity relation. Take the relation on the left of Fig. 5. The dashed line denotes
dissimilarity and the normal line similarity. On the right, Fig. 5 shows all the
partition of these objects, where rectangles indicate the clusters. The thick lines
denote the pairs which are counted in the cost function. In the upper row the
value of the cost function is 1 (in each case), while in the two other cases it is 2
and 3, respectively.

Fig. 5. Minimal frustrated similarity graph and its partitions

The number of partition can be given by the Bell number (see [1]), which
grows exponentially. Hence, in general — even in the case of some dozens of
objects — the optimal partition cannot be determined in reasonable time, thus
a search algorithm which produces a quasi optimal partition would be more
useful in practical cases. However in practical examples it gives us the right to
handle objects, which are in the same class, the same way.

3 Correlation Clustering in Rough Set Theory

When we would like to define the base sets we use the background knowledge
embedded in a given information system. If we have a Pawlakian system then
we call two objects indiscernible if all of their known attribute values are the
same. In many cases covering systems rely on a similarity (tolerance) relation.
As we mentioned earlier some problems can come up using these covering sys-
tems. A base set contains members which are similar to a distinguished member.
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This means that covering does not consider the similarity relation itself but the
similarity with respect to a distinguished object. As a result of the correlation
clustering based on the tolerance relation we obtain a partition of the universe
[2–4]. The clusters contain elements which are usually similar to each other (not
just to a distinguished member). So the partition can be understood as a system
of base sets. Singleton base sets represent very little information (its member
is only similar to itself). Without increasing the number of conflicts we cannot
consider its member similar to any objects. By deleting singleton base sets we
get a partial system of base sets.

4 Program

The authors of this article wrote a software, which represents the theory in real
life problems. The software can be downloaded from:
https://arato.inf.unideb.hu/aszalos.laszlo/covering/.

Fig. 6. Graphical user interface

Figure 6 illustrates the graphical user interface of the program. For giving
the input datasets we have two options.

1. Generating random points
2. Reading a predetermined formatted dataset

1. Random points
At first the user gives the number of points, and then the points are generated
in a 2 dimensional interval which is also given by the user (These options can
be given on the left panel of the user interface). The base of the tolerance
relation is the Euclidean distance of the objects (d). We defined a similarity
(S) and a dissimilarity threshold (D). The tolerance relation R can be given
this way for any objects A,B:

ARB =

⎧
⎪⎨

⎪⎩

+1 d(A,B) ≤ S

−1 d(A,B) > D

0 otherwise

https://arato.inf.unideb.hu/aszalos.laszlo/covering/
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2. Predetermined formatted dataset
The so called ProgCont system (see in [9]), which was developed at the Faculty
of Informatics at the University of Debrecen evaluates the programming com-
petitions and midterms. Our software can read and handle data, generated
by the ProgCont system. Each record consists of the following attributes:
competitor id, problem id, solution id and the id of the programming lan-
guage. Let A,B be two arbitrary competitors. Let SA and SB the sets of the
solutions of the problems made by the competitors A and B. So the tolerance
relation R for any competitors A,B is the following:

ARB =

⎧
⎪⎨

⎪⎩

+1 |SAΔSB | ≤ S

−1 |SAΔSB | ≥ D

0 otherwise

The similarity and difference are defined by the cardinality of the symmetric
difference (Δ) of the given sets.

Algorithm 1. Run method
1: procedure Run(N)
2: best partition ← FindBestPartition(N)
3: covering base sets ← GetCovering()
4: disjoint covering base sets ← MakeDisjointSets(covering base sets)
5: print best partition
6: print covering base sets
7: print disjoint covering base sets
8: end procedure

So in our program two competitors are similar to each other, if among the
same solutions there is a difference less than or equal to S, and they are treated
as different if this difference is greater than D. They are neutral otherwise. In
our algorithm we used 1 as S. We thought that if two persons have only one
different solution, then it does not imply that they have different knowledge.
The D threshold was set to 3.

After reading/generating the data, the software finds the quasi optimal parti-
tion (see Algorithm 1). Whereas numerous algorithms can be used for finding the
optimal clustering, we used a genetic search algorithm (see Algorithm 2 in [8]).
This algorithm is simple, it can be easily implemented, and it gives a relatively
optimal solution for the correlation clustering’s problem.

The set to be approximated can also be defined in two ways. The user can
select the points of this set manually, or if we have a ProgCont dataset, then we
can give IDs of the problems. The algorithm managing the approximation checks
which competitors solved the given problems, and adds the points representing
them to the set.
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Algorithm 2. Genetic algorithm
1: function Find best partition(N)
2: population ← random population
3: while exit condition false do
4: sort(population)
5: for i ← 1, N do
6: new population.add(population.get(i))
7: end for
8: p1 ← select parents()
9: p2 ← select parents()
10: children ← crossover(p1, p2)
11: if small probability then
12: mutation(children)
13: end if
14: new population.add(children)
15: population ← new population
16: max ← find max(population)
17: end while
18: return max
19: end function

As mentioned in the previous sections the singleton base sets hold little infor-
mation about the similarity. In our software there is an option to throw the sin-
gleton base sets away. The base sets, we got this way, are partial because their
union does not cover the universe.

5 Results

The execution time of the algorithm managing the set-approximation can be seen
in Fig. 7. The axis x represents the number of points, and the axis y represents
the execution time in milliseconds.
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Fig. 7. Execution time
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Fig. 9. The set to be approximated

If we take a look at the figure we can see that the approximation by cov-
ering is the slowest. This was expected, because there are a lot of base sets to
work with. Between the disjoint covering and the correlation clustering there
is no significant difference. Nevertheless, as the number of points increases, the
correlation clustering gives the fastest way to approximate. It is an interesting
fact that there is such a great difference between the covering and its disjoint
variant. Despite the fact that a disjoint covering has the largest number of base
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A. The lower (left) and upper (right) approximation by correlation clustering

B. The lower (left) and upper (right) approximation by covering

C. The lower (left) and upper (right) approximation by disjoint covering

Fig. 10. The outputs of the approximations by the software

sets, their cardinality is much less (most of them are singleton) than in the case
of a regular covering.

The following figures show the output of our software for 100 random points.
The similarity threshold S was set to 50, and D was set to 90. Figure 8 repre-
sents the clusters (base sets) created by the correlation clustering. The set to be
approximated is shown in Fig. 9. The members of this set are denoted by the
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× symbols, and the other members are denoted by the cross symbol. The mem-
bers were chosen randomly.

The approximation generated by the correlation clustering is displayed in
Fig. 10A. The cardinality of the base sets is relatively great so the lower approx-
imation consists of only a few members. (Only the members denoted by the
empty circle and filled diamond are in the set.)

The approximation generated by the covering is shown in Fig. 10B. Like in
correlation clustering the lower approximation consists of only a few members.
The two lower approximations have some difference, but they only differ in a set
which has two members.

Between the upper approximations we can see a significant difference. The
upper approximation defined by covering contains much more objects, almost
twice as much as the one defined by correlation clustering.

The approximation generated by the disjoint covering is shown in Fig. 10C.
We can see that among the methods this generated the finest approximation
(lower and upper approximation coincide). The reason is that almost all base
sets are singleton. As mentioned before if we have only singleton base sets we
get the common set theory back.

6 Conclusion and Future Work

The authors introduced a new method to define base sets in a general approxi-
mation space. The most important novelty of the introduced method is the usage
of similarity relation of objects. It emphasizes and so relies on the similarity of
objects ‘in general’ (and not on the similarity to a given object). Correlation
clustering is a possible way to define a system of disjoint base sets corresponding
to a given similarity ‘in general’. There are many different algorithms of corre-
lation clustering. In the application presented in the paper the authors used a
genetic algorithm. It worked well, but in the near future other algorithms have
to be checked, and a comparative (empirical and theoretical) study seems to
be very important in order to determine the properties of different algorithms.
Relying on the results the whole method can be useful in data mining and deep
learning.
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Abstract. Mereology is a theory of concepts using the notion of a part
as its primitive notion. This notion is well suited for analysis and reason-
ing about mass concepts like solids, figures, swarms of things. We aim
here at highlighting foundations of mereology and its extension, rough
mereology in which the notion of a part undergoes a ‘fuzzification’ to the
notion of a part to a degree, along with applications to problems of intel-
ligent control of teams of intelligent agents, granular computing, spatial
reasoning, data analysis and approximate reasoning about classification
of data into decision classes.

Keywords: Mereology · Rough mereology · Rough set theory · Intelli-
gent control · Granular computing · Data analysis

1 Mereology: First Steps

In this introductory section, we present the two main stems of the mereology
tree: the classical mereology due to Leśniewski [8] and the contact mereology
whose development ends with Clarke [4]. The primitive notion of mereology due
to Leśniewski is that of a part. Given a set U of objects, a relation of a part is
a binary relation π which should satisfy the followng conditions:

(1) π(u, v) → u �= v.
(2) π(u, v) ∧ π(v, w) → π(u,w).

The relation of part induces the relation of an ingredient, ing, defined as follows:

(3) ing(u, v) ↔ π(u, v) ∨ u = v.

The relation of being an ingredient plays some crucial roles in mereology and
it is the faithful counterpart of the notion of an element in set theory. First, it
is used in definitions of notions parallel to notions of set theory:
c© Springer International Publishing AG 2017
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– The Overlap relation: Ov(u, v) ↔ ∃z.ing(z, u) ∧ ing(z, v).
– The Disconnectedness relation:Dis(u, v) ↔ ¬Ov(u, v).
– The Subset relation: Sub(u, v) ↔ ∀z.[ing(z, u) → ing(z, v)].

We introduce the Rule of Inference (RI) proved in Leśniewski [8]:
(RI) For each pair u, v of objects, the truth of the formula (4) below for each

object t:

(4) ing(t, u) → ∃z.Ov(t, z) ∧ ing(z, v)

implies that

(5) ing(u, v).

The notion of a mereological class follows; for a non–vacuous property Φ of
objects, the class of Φ, denoted ClsΦ is defined by the conditions:

(6) Φ(u) → ing(u,ClsΦ).
(7) ing(u,ClsΦ) → ∃z.[Φ(z) ∧ Ov(u, z)].

The class axiom (CL) guarantees the existence of ClsΦ for each plausible Φ.
(CL) For each non–vacuous property Φ there exists a class ClsΦ.

In [8], the uniqueness of the class is secured by an axiom and then (RI) is
proved.

The relation el(u, v) of being an element is defined as follows:

(8) el(u, v) ↔ ∃Φ.v = ClsΦ ∧ Φ(u).

Proposition 1. The relations of ing, Sub and el are identical.

For the proof, see [8]. For the property Ind(u), defined by the equivalence

(9) Ind(u) ↔ ing(u, u),
the class ClsInd is called the the universe, in symbols V . It follows that

(10) ∀u.ing(u, V ).

The notion of the complement to an object, with respect to another object,
is rendered as a ternary relation comp(u, v, w), to be read:‘u is the complement
to v with respect to w’, and it is defined by means of the following requirements:

(11) ing(v, w).
(12) ing(u,w).
(13) u = Cls{t : Dis(t, v) ∧ ing(t, w)}.

The notion of the complement to u, −u is then rendered as

(14) −u = Cls{t : Dis(t, u)},

i.e.,

(15) comp(−u, u, V ).
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The complement relation − can be a candidate for the boolean complement
in a structure of a quasi–Boolean algebra within mereology, constructed in Tarski
[44], and anticipated in Tarski [45]. This algebra will be obviously rid of the null
element, as the empty object is not allowed in mereology by (9) and the meet of
two objects will be possible only when these objects overlap. Under this caveat,
the construction of Boolean operators of join and meet proceeds on the following
lines:

(16) ing(u, v + w) ↔ ing(u, v) ∨ ing(u,w).
(17) ing(u, v · w) ↔ ing(u, v) ∧ ing(v, w).

The universe V with operators −,+, · is a complete Boolean algebra with no
null element.

1.1 Contact Mereology

The alternate approach to parts, begins with a relation C(u, v) interpreted as ‘u
and v are connected, in contact, etc.’ The relation C has to satisfy the following
conditions:

(18) C(u, u).
(19) C(u, v) → C(v, u).
(20) ∀z.[C(z, x) ↔ C(z, y)] → u = v.

The relation C induces the relation of C-ingredient C − ing(u, v):

(21) C − ing(u, v) ↔ ∀z.[C(z, u) → C(z, v)].

The notion of a C–part C − π is introduced as follows:

(22) C − π(u, v) ↔ C − ing(u, v) ∧ u �= v.

With C − ing and C − π, one does introduce C-counterparts of notions of
overlap, disconnectedness, complement, meet and join in already standard way.
Due to the geometric appeal of the relation C, new relations are introduced:

(23) EC(u, v) ↔ C(u, v) ∧ C − Dis(u, v).

EC is the external connectedness relation, below we define the tangential
ingredient relation TC − ing and non–tangential ingredient NTC − −ing

(24) TC − ing(u, v) ↔ C − ing(u, v) ∧ ∃z.EC(z, u) ∧ EC(z, v),
(25) NTC − ing(u, v) ↔ ¬TC − ing(u, v) ∧ C − ing(u, v).

1.2 A Model for Mereology

A standard playground for contact mereology, motivated also by practical appli-
cations in spatial imagery is the space RO(E2) of regular open sets in the Euclid-
ean plane. We recall that a set X is regular open if and only if the condition is
satisfied:

(26) X = IntClX,
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where Int, Cl are, respectively, the interior and the closure operators in the plane
topology. Given two sets A,B in RO(E2), one lets

(27) C(A,B) ↔ ClA ∩ ClB �= ∅.

A straightforward topological computations reveal the meaning of relations
C − ingr, C − Ov,EC, TP,NTP :

(28) C − ing(A,B) ↔ A ⊆ B.
(29) C − Ov(A,B) ↔ A ∩ B �= ∅.
(30) EC(A,B) ↔ ClA ∩ ClB �= ∅ ∧ A ∩ B = ∅.
(31) TP (A,B) ↔ A ⊆ B ∧ ClA ∩ (ClB \ B) �= ∅.
(32) NTP (A,B) ↔ ClA ⊆ B.

Accounts of mereology and contact mereology can be found in Casati and
Varzi [3], Calosi and Graziani [2], Simons [40]. An account of applications of
mereology is given in Polkowski [18].

2 Rough Mereology

Rough mereology replaces the notion of a part with the notion of a part to a
degree called the rough inclusion which is a ternary relation μ(u, v, r) where u, v
are objects and r ∈ [0, 1], read ‘the object u is a part to degree at least of r to the
object v’. Any rough inclusion is associated with a mereological scheme based
on the notion of a part by postulating that μ(u, v, 1) is equivalent to ing(u, v),
where the ingredient relation is defined by the adopted mereological scheme.
Our postulates about rough inclusions stem from intuitions about the nature
of partial containment; these intuitions can be manifold, a fortiori,postulates
about rough inclusions may vary. In our scheme for rough mereology, we begin
with some basic postulates which would provide a most general framework.
When needed,other postulates, narrowing the variety of possible models, can be
introduced.

2.1 Rough Inclusions: General Facts

For a set U of objects, and a given on U part relation π with the associated
ingredient relation ing, we have the inference scheme (IR) of mereology at our
disposal. The relation μ(u, v, r), see Polkowski and Skowron [38], [39], is supposed
to satisfy the conditions:

(33) μ(u, v, 1) ↔ ing(u, v).
(34) μ(u, v, 1) → [∀z.[μ(z, u, r) → μ(z, v, r)].
(35) μ(u, v, r) ∧ s < r → μ(u, v, s).
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Proposition 2. The immediate consequences of postulates (33)–(35) are

1. μ(u, u, 1).
2. μ(u, v, 1) ∧ μ(v, z, 1) → μ(u, z, 1).
3. μ(u, v, 1) ∧ μ(v, u, 1) ↔ u = v.
4. x �= y ⇒ ¬μ(x, y, 1) ∨ ¬μ(y, x, 1).
5. ∀z.∀r.[μ(z, u, r) ↔ μ(z, v, r)] → u = v.

We now describe some models for rough mereology which at the same time
give us methods by which we can define rough inclusions, see Polkowski [17],
Chap. 7. An important property of rough inclusions is the transitivity. For a
function f : [0, 1]2 → [0, 1] such that (i) f(1, r) = r (ii) f(r, s) = f(s, r), we say
that a rough inclusion μ is f–transitive when the condition

μ(u, v, r) ∧ μ(v, w, s) → μ(u,w, f(r, s)

is satisfied.

2.2 Rough Inclusions: Residual Models

We begin with continuous t–norms on the unit interval [0,1]. We recall that it
follows from results in Mostert and Shields [10] and Faucett [5], cf., Hájek [7], that
the structure of a continuous t–norm T depends on the set F (T ) of idempotents
of T , i.e., values x such that T (x, x) = x; we denote with OT the countable
family of open intervals Ai ⊆ [0, 1] with the property that

⋃
i Ai = [0, 1] \ F (T ).

Then we have

Proposition 3. T (x, y) is an isomorph to either L(x, y) or P (x, y) when x, y ∈
Ai for some i, and T (x, y) = min{x, y}, otherwise.

We recall, that, for a continuous t–norm T (x, y), the residual implication,
residuum, x ⇒T y is defined by the condition:

(36) x ⇒T y ≥ z ⇔ T (x, z) ≤ y.

It follows that x ⇒T y = 1 if and only if x ≤ y, as T (x, x) ≤ x for each
continuous t–norm T . For a continuous t–norm T , we define a relation μT ⊆
[0, 1]3 by means of

(37) μT (x, y, r) ⇔ x ⇒T y ≥ r.

Proposition 4. The quadruple M(T ) = ([0, 1], <,≤, μT ) is a model for rough
mereology induced by the residuum of the t–norm T .

Proof. First, let us make positive that μT satisfies (33)–(35). For (33), μT (x, y, 1)
means that x ⇒T y = 1, hence, x ≤ y, i.e.,ingrM (x, y). For (34), assume that
μT (x, y, 1) and μT (z, x, r), hence (i) x ≤ y (ii) z ⇒T x ≥ r, i.e., by (1), (iii)
T (z, r) ≤ x. By (i), (iii), T (z, r) ≤ y, hence, by (1), z ⇒T y ≥ r. (35) follows
by (37).
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Clearly, the underlying part relation in the above proposition is the strict
ordering < and the ingredient relation is ≤. In particular important cases, of
t–norms L,P,M , one obtains the specific models ML,MP ,MM . In each model
M(T ), μ(x, y, 1) ⇔ x ≤ y, hence, we recall below only the case when x > y. In
the most important case of the Lukasiewicz t–norm L, the residual implication
⇒L is the classical �Lukasiewicz implication:

(38) μL(x, y, r) ↔ min{1, 1 − x + y} ≥ r.

From (38), we can extract a transitivity rule.

Proposition 5. From μL(x, y, r), μL(y, z, s) it follows that μL(x, z, L(r, s)).

Proof. It suffices to consider the case when x > y and y > z, by (38), we have
x−y ≤ 1−r and y−z ≤ 1−s, hence, x−z ≤ 1−(r+s−1), i.e., μL(x, y, L(r, s)).

2.3 Rough Inclusions: Information Models

For an information system IS = (U,A, V ) where U is a universe of objects, A
is a set of attributes and V is a set of admissible values of attributes, i.e., each
attribute a ∈ A maps the universe U into the set V , we define sets

(39) DIS(u, v) = {a ∈ A; a(u) �= a(v)}
and

(40) IND(u, v) = {a ∈ A : a(u) = a(v)}.

Following the idea in (38), we replace the distance |x− y| with the difference
set DIS(u, v) and let

(41) μI(u, v, r) ↔ card(DIS(u,v))
card(A) ≤ 1 − r.

In virtue of (39) and (40), (41) is equivalent to

(42) μI(u, v, r) ↔ card(IND(u,v))
card(A) ≥ r.

The idea of (38) which goes back to �Lukasiewicz’s idea of partial truth values
[9] can be adapted to geometric and set–theoretic contexts.

2.4 Rough Inclusions: Geometric and Set–Theoretic Contexts

Consider a collection of solids in a Euclidean space. For two solids A,B, we let

(43) μG(A,B, r) ↔ area(A∩B)
area(A) ≥ r.

Similarly, for a collection of finite non–empty sets, we let

(44) μS(X,Y, r) ↔ card(X∩Y )
card(X) ≥ r.
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Finally, we propose a 3–valued rough inclusion on finite sets.

(45) μS,3(X,Y, 1) ↔ X ⊆ Y .
(46) μS,3(X,Y, 1/2) ↔ X�Y �= ∅
and

(47) μS,3(X,Y, 0) ↔ X ∩ Y = ∅,

where X�Y = (X \ Y ) ∪ (Y \ X).

3 Intelligent Control: An Application of Mereogeometry

We demonstrate in this section usage of rough inclusions in constructing a system
for intelligent control of formations of intelligent agents. The system rests on
mereogeometry constructed from rough inclusions. Consider a rough inclusion
μG for the sake of attention, along with a collection of intelligent agents exploring
a bounded compact region R of an Euclidean space E. Each agent is perceived
as the centre of a regular closed region around it, be it a closed disc, a square or
a rectangle, which may be termed the influence region of an agent. This region
may be determined by the extent of agent’s sensors, or a safety region around
the agent which is ususal in case of mobile robots. For agents a, b, and their
regions of influence r(a), r(b), the value

(48) argmaxrμ
G(r(a), r(b), r)

defines the maximal degree of closeness of the agent a to the agent b whereas

(49) μG(r(a), r(b), r)

when true states that the agent a is close to the degree of at least r to the agent
b. We define the mereological quasi–distance δ(a, b) by letting

(50) δ(a, b) = min{r, s},

where μG(r(a), r(b), r) and μG(r(b), r(a), s) hold true.
We observe that δ(a, b) = 1 means a = b whereas δ(a, b) = 0 means that

influence regions of a and b do not overlap. We borrow from elementary geometry
defined by Alfred Tarski in His Warsaw University lectures in the years 1926–27
as the part of Euclidean geometry which can be described by means of the 1st
order logic, the notion of betweenness, see Tarski and Givant [43]. The relation
of betweenness in axiomatization of elementary geometry is responsible for affine
properties. We will consider the Euclid Axiom relating two principal relations B
of betweenness and Eq of equidistance:

(51) B(x, y, z) ∨ B(z, x, y) ∨ B(x, z, y) ∨ ∃a.Eq(x, a; y, a) ∧ Eq(x, a; z, a).

A paraphrase of (51) was proposed in van Benthem [1] in terms of two rela-
tions: of nearness N(x,y,z) and of betweenness Btw(x,y,z).

The relation N(x, y, z) read ’x is nearer to y than z’ becomes formalized in
terms of the quasi–distance δ as:
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(52) N(x, y, z) ↔ δ(x, y) ≥ δ(y, z).

The relation of betweenness Btw(x, y, z) read ‘x is between y and z’ is then
introduced as follows:

(53) Btw(x, y, z) ↔ ∀w.[w = x ∨ N(x, y, w) ∨ N(x, z, w)].

Given two robots a, b as discs of same radii, and their safety regions as cir-
cumscribed on them regularly positioned rectangles A,B, we search for a proper
choice of a region X containing A, and B with the property that a robot C
contained in X can be said to be between A and B. For two (possibly but not
necessarily) disjoint rectangles A,B, we define the extent, ext(A,B) of A and B
as the smallest rectangle containing the union A ∪ B. We can prove.

Proposition 6. For any two rectangles A,B positioned regularly in the Euclid-
ean plane, the only rectangle between A and B is the extent ext(A,B).

For details of the exposition which we give now, please consult Ośmia�lowski
[11–13], Polkowski and Ośmia�lowski [31–33], Ośmia�lowski and Polkowski [14].
The notion of betweenness along with Proposition 6 permits to define the notion
of betweenness for robots. Recall that we represent the disc–shaped Roomba
robots by means of safety squares around them, regularly placed, i.e., with sides
parallel to coordinate axes. For robots a, b, c, we say that a robot b is between
robots a and c, in symbols

(54) (between b a c)

in case the rectangle ext(b) is contained in the extent of rectangles ext(a), ext(c),
i.e.

(55) μ(ext(b), ext(ext(a), ext(c)), 1).

This allows as well for a generalization of the notion of betweenness to the
notion of partial betweenness which models in a more realistic manner spatial
relations among a, b, c; we say in this case that robot b is between robots a and
c to a degree of at least r, in symbols,

(56) (between−deg r b a c )

if and only if

(57) μ(ext(b), ext[ext(a), ext(c)], r).

For a team of robots, T (r1, r2, ..., rn) = {r1, r2, ..., rn}, an ideal forma-
tion IF on T (r1, r2, ..., rn) is a betweenness relation (between...) on the set
T (r1, r2, ..., rn) of robots. In implementations, ideal formations are represented
as lists of expressions of the form

(57) (between a b c)
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indicating that the object a is between b, c, for all such triples, along with a list
of expressions of the form

(58) (not−between a b c)

indicating triples which are not in the given betweenness relation. To account
for dynamic nature of the real world, in which due to sensory perception inad-
equacies, dynamic nature of the environment etc., we allow for some deviations
from ideal formations by allowing that the robot which is between two neighbors
can be between them to a degree. This leads to the notion of a real formation.
For a team of robots, T (r1, r2, ..., rn) = {r1, r2, ..., rn}, a real formation RF on
T (r1, r2, ..., rn) is a betweenness to degree relation (between−deg . . .) on the set
T (r1, r2, ..., rn) of robots.

In practice, real formations will be given as a list of expressions of the form:

(59) (between−deg η a b c),

indicating that the object a is to degree of η in the extent of b, c, for all triples
in the relation (between−deg . . .), along with a list of expressions of the form:

(60) (between 0 a b c),

indicating triples which are not in the given betweenness relation. Description
of formations, as proposed above, can be a list of relation instances of large
cardinality, effectively exponential in size of the formation. The problem can
be posed of finding a minimal set of instances sufficient for describing a given
formation, i.e., implying the full list of instances of the relation (between...).
This problem turns out to be NP–hard, see Ośmia�lowski and Polkowski [14].

Proposition 7. The problem of finding a minimal description of a formation
is NP–hard.

Proof. We construct an information system Formations as a triple (U,A, V ),
where U is a set of objects, A is a set of attributes and V is the set of val-
ues of attributes. It will be convenient to add to this description the value
assignment, i.e., a mapping f : A × U → V . For a formation F , with
robots r1, ..., rn we let U = T (r1, ..., rn), a team of robots; A = {[rk, rl, rm] :
rk, rl, rm pairwise distinct robots}. For a given formation F of robots r1, ..., rn,
the value assignment f is defined as follows,

f([rk, rl, rm], ri) =

⎧
⎨

⎩

1 in case ri = rl and (between rl rk rl)
1
2 in case ri = rl or ri = rm and (between rl rk rm)
0 in case ri �= rl rk rm

(1)

The system Formations describes the formation F . Clearly, reducts of the
system Formations provide a complete description of the formation F and cor-
respond to minimal descriptions of the formation. As shown by Skowron and
Rauszer [41] the problem of finding a minimum size reduct of a given informa-
tion system is NP–hard.
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4 Granular Computing: Mereological Granulation
of Knowledge

Assume that a rough inclusion μ is given along with the associated ingredient
relation ing, on a universe U of objects. The granule gμ(u, r) of the radius r
about the center u is defined as the class of property Φμ

u,r:

(62) Φμ
u,r(v) ⇔ μ(v, u, r).

The granule gμ(u, r) is defined by means of

(63) gμ(u, r) = ClsΦμ
u,r.

Properties of granules depend, obviously, on the type of rough inclusion used
in their definitions. We consider separate cases, as some features revealed by
granules differ from a rough inclusion to a rough inclusion. Consult Polkowski
[19–28] for details of granule calculi and applications. In case of Archimedean
t–norm–induced rough inclusions, or metric–induced rough inclusions, by their
transitivity, and symmetry, the important property holds.

Proposition 8. In case of a symmetric and transitive rough inclusion μ, for
each pair u, v of objects, and r ∈ [0, 1], ingr(v, gμ(u, r)) if and only if μ(v, u, r)
holds. In effect, the granule gμ(u, r) can be represented as the set {v : μ(v, u, r)}.
Proof. Assume that ingr(v, gμ(u, r)) holds. Thus, there exists z such that
Ov(z, v) and μ(z, u, r). There is x with ingr(x, v), ingr(x, z), hence, by tran-
sitivity of μ, also μ(x, u, r) holds. By symmetry of μ, ingr(v, x), hence, μ(v, x, r)
holds also.

Granules as collective concepts can be objects for rough mereological calculi.

5 Rough Inclusions on Granules

Due to the feature of mereology that it operates (due to the class operator) only
on level of individuals, one can extend rough inclusions from objects to granules;
the formula for extending a rough inclusion μ to a rough inclusion μ on granules
is a modification of the mereological axiom (IR):

(64) μ(g, h, r) ↔ ∀z.[ing(z, g) ⇒ ∃w.ing(w, h) ∧ μ(z, w, r)].

Proposition 9. The predicate μ(g, h, r) is a rough inclusion on granules.

Proof. μ(g, h, 1) means that for each object z with ing(z, g), there exists an
object w with ing(w, h) such that μ(z, w, 1), i.e., ing(z, w), which, by the infer-
ence rule (IR) implies that ing(g, h). This proves (33). For (34), assume that
μ(g, h, 1) and μ(k, g, r) so for each ing(x, k) there is ing(y, g) with μ(x, y, r). For
y there is z such that ing(z, h) and μ(y, z, 1), hence, μ(x, z, r) by property (34)
of μ. Thus, μ(k, h, r). (35) is obviously satisfied.

We now examine rough mereological granules with respect to their properties.
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6 General Properties of Rough Mereological Granules

They are collected below in the following proposition:

Proposition 10. The following constitute a set of basic properties of rough
mereological granules

1. If ing(y, x) then ing(y, gμ(x, r)).
2. If ing(y, gμ(x, r)) and ing(z, y) then ing(z, gμ(x, r)).
3. If μ(y, x, r) then ing(y, gμ(x, r)).
4. If s < r then ing(gμ(x, r), gμ(x, s)).

which follow straightforwardly from properties (33)–(35) of rough inclusions
and the fact that ing is a partial order, in particular it is transitive, regardless
of the type of the rough inclusion μ. For transitive rough inclusions, we can be
more specific, and prove.

Proposition 11. For each transitive rough inclusion μ,

1. If ing(y, gμ(x, r) then ing(gμ(y, s), gμ(x, T (r, s)).
2. If μ(y, x, s) with 1 > s > r, then there exists α < 1 with the property that

ing(gμ(y, α), gμ(x, r).

Proof. Property 1 follows by transitivity of μ with the t–norm T . Property 2
results from the fact that the inequality T (s, α) ≥ r has a solution in α, e.g., for
T = P , α ≥ r

s , and, for T = L, α ≥ 1 − s + r.

It is natural to regard granule system {gμt
r (x) : x ∈ U, r ∈ (0, 1)} as a neigh-

borhood system for a topology on U that may be called the granular topology.
In order to make this idea explicit, we define classes of the form

(65) NT (x, r) = Cls(ψμT
r,x),

where

(66) ψμT
r,x(y) ⇔ ∃s > r.μT (y, x, s).

We declare the system {NT (x, r) : x ∈ U ; r ∈ (0, 1)} to be a neighborhood
basis for a topology θμ. This is justified by the following

Proposition 12. Properties of the system {NT (x, r) : x ∈ U ; r ∈ (0, 1)} are as
follows:

1. ing(y,NT (x, r)) → ∃δ > 0.ing(NT (y, δ), NT (x, r)).
2. s > r → ing(NT (x, s), NT (x, r)).
3. ing(z,NT (x, r) · NT (y, s)) → ∃δ > 0.ing(NT (z, δ), NT (x, r) · NT (y, s)).

Proof. For Property 1, ing(y,N t(x, r)) implies that there exists an s > r such
that μt(y, x, s). Let δ < 1 be such that t(u, s) > r whenever u > δ; δ exists
by continuity of t and the identity t(1, s) = s. Thus, if ing(z,N t(y, δ)), then
μt(z, y, η) with η > δ and μt(z, x, t(η, s)), hence, ing(z,N t(x, r)). Property 2
follows by (35) and Property 3 is a corollary to properties 1 and 2. This concludes
the argument.
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Granule systems defined above form a basis for applications, where approx-
imate reasoning is a crucial ingredient. We begin with a basic application in
which approximate reasoning itself is codified as a many–world (intensional)
logic, where granules serve as possible worlds.

7 Reasoning in Information and Decision Systems:
Granular Intensional Logics

We assume that a decision system (U,A, V, d) is given, see Pawlak [15,16], where
(U,A, V ) is an information system, and d is a decision attribute, i.e., d /∈ A,
d : U → V , along with a rough inclusion ν, representing either μS of (44) or
μS,3 of (45)–(47), on the subsets of the universe U ; for a collection of unary
predicates Pr, interpreted in the universe U (meaning that for each predicate
φ ∈ Pr the meaning [[φ]] is a subset of U), we define the intensional logic GRMν

by assigning to each predicate φ in Pr its intension Iν(φ) defined by the set of
extensions I∨

ν (g) at granules g, as

(66) I∨
ν (g)(φ) ≥ r ↔ ν(g, [[φ]], r).

With respect to the rough inclusion μS , the formula (61) becomes

(67) I∨
μS (g)(φ) ≥ r ⇔ |g∩[[φ]]|

|g| ≥ r.

The counterpart for μS,3 is specified by definitions (45)–(47) and it comes
down to the following

(68) I∨
muS,3(g)(φ) ≥ r ⇔

⎧
⎨

⎩

g ⊆ [[φ]] and r = 1
g ∩ [[φ]] �= ∅ and r ≥ 1

2
g ∩ [[φ]] = ∅ and r = 0

(2)

We say that a formula φ interpreted in the universe U of an information system
(U,A) is true at a granule g with respect to a rough inclusion ν if and only if

(69) I∨
ν (g)(φ) = 1.

We recall that a decision rule in a decision system is a formula
∧

a∈B(a, v) →
(d,w) where the expression (a, v) is a descriptor formula with the meaning
defined as {u ∈ U : a(u) = v}. Hence, for each of rough inclusions ν, a for-
mula φ interpreted in the universe U , with the meaning [[φ]] = {u ∈ U : u |= φ},
is true at a granule g with respect to ν if and only if

(70) g ⊆ [[φ]].

In particular, for a decision rule r : p → q in the descriptor logic, the rule r
is true at a granule g with respect to a rough inclusion ν if and only if

(71) g ∩ [[p]] ⊆ [[q]].
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We state these facts in the following proposition:

Proposition 13. For either of rough inclusions ν, a formula φ interpreted in
the universe U , with the meaning [[φ]], is true at a granule g with respect to ν if
and only if g ⊆ [[φ]]. In particular, for a decision rule r : p ⇒ q in the descriptor
logic, the rule r is true at a granule g with respect to either of rough inclusions
ν if and only if g ∩ [[p]] ⊆ [[q]].

Proof. Indeed, truth of φ at g means that ν(g, [[φ]], 1) which in turn, by regularity
of ν is equivalent to the inclusion g ⊆ [[φ]].

We will say that a formula φ is a tautology of our intensional logic if and only
if φ is true at every world g. The preceding proposition implies that:

Proposition 14. For either of rough inclusions ν, a formula φ is a tautology if
and only if Cls(G) ⊆ [[φ]], where G is the property of being a granule; in the
case when granules considered cover the universe U this condition simplifies to
[[φ]] = U . This means for a decision rule p ⇒ q that it is a tautology if and only
if [[p]] ⊆ [[q]].

Hence, the condition for truth of decision rules in the logic GRMν is the
same as the truth of an implication in descriptor logic, under caveat that gran-
ules considered cover the universe U of objects. Let us observe that results in
this section remain true for each regular rough inclusion ν, i.e., satisfying the
condition that ν(X,Y ) = 1 if and only if X ⊆ Y .

8 Dependencies and Decision Rules

It is an important feature of rough set theory that it allows for an elegant
formulation of the problem of dependency between two sets of attributes, see
Pawlak [15,16], in terms of indiscernibility relations. We recall that in an
information system (U,A, V ), the indiscernibility relation IND is defined as
{(u, v) : ∀a ∈ A : a(u) = a(v)}. A relative version IND(B) for B ⊆ A takes into
account only attributes in B. We recall that for two sets C,D ⊆ A of attributes,
one says that D depends functionally on C when IND(C) ⊆ IND(D), sym-
bolically denoted C �→ D. Functional dependence can be represented locally by
means of functional dependency rules of the form:

(72) φC({va : a ∈ C}) ⇒ φD({wa : a ∈ D}),

where φC({va : a ∈ C}) is the formula
∧

a∈C(a = va), and [[φC ]] ⊆ [[φD]]. We
assume a regular rough inclusion ν on subsets of the universe U . The proposition
holds

Proposition 15. If α : φC ⇒ φD is a functional dependency rule, then α is a
tautology of logic induced by ν.

Proof. For each granule g, we have g ∩ [[φC ]] ⊆ [[φD]].
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Let us observe that the converse statement is also true, i.e., if a formula
α : φC ⇒ φD is a tautology of logic induced by ν3, then this formula is a
functional dependency rule in the sense of (72). Indeed, assume that α is not
any functional dependency rule, i.e., [[φC ]] \ [[φD]] �= ∅. Taking [[φC ]] as the
witness granule g, we have that g is not any subset of [[α]], i.e., I∨

ν3
(g)(α) ≤ 1

2 ,
so α is not true at g, a fortiori it is not any tautology. A more general and also
important notion is that of a local proper dependency: a formula φC ⇒ φD is a
local proper dependency when [[φC ]]cap[[φD]] �= ∅. We will say that a formula α
is acceptable with respect to a collection M of worlds when

(73) I∨
ν3

(g)(α) ≥ 1
2

for each world g ∈ M , i.e., when α is false at no world g ∈ M . A world g is
C–exact if g ⊆ [[φC ]]. Then,

Proposition 16. If a formula α : φC ⇒ φD is a local proper dependency rule,
then it is acceptable with respect to all C–exact worlds.

Proof. Indeed, for a C–exact granule g, the case that I∨
ν3

(g)(α) = 0 means that
g ⊆ [[φC ]] and g ∩ [[φD]] = ∅. As g is C–exact and [[φC ]] is a C–indiscernibility
class, either [[φC ]] ⊆ g or [[φC ]] ∩ g = ∅. When [[φC ]] ⊆ g, then [[φC ]] = g which
makes g ∩ [[φD]] = ∅ impossible. When [[φC ]] ∩ g = ∅, then g ∩ [[φD]] = ∅ is
impossible. In either case, I∨

ν (g)(α) = 0 cannot be satisfied with any C–exact
granule g.

Again, the converse is true: when α is not local proper, i.e., [[φC ]]∩[[φD]] = ∅,
then g = [[φC ]] does satisfy I∨

ν (g)(α) = 0. For a detailed discussion of this
topic, the reader may consult Polkowski [20] and Polkowski and Semeniuk–
Polkowska [34].

9 Granular Preprocessing in Data Analysis

We assume that we are given a decision system (U,A, V, d) from which a classifier
is to be constructed; on the universe U , a rough inclusion μ is given, and a radius
r ∈ [0, 1] is chosen, see Polkowski [21–28]. The detailed study of granular classi-
fiers is conducted in Polkowski and Artiemjew [30]. The granular pre–processing
of the system consists in the following steps.

(74) We find granules gμ(u, r) for all u ∈ U , and make them into the set G(μ, r).
(75) From this set, a covering Cov(μ, r) of the universe U can be selected by

means of a chosen strategy G, i.e.,
(76) Cov(μ, r) = G(G(μ, r)).

We intend that Cov(μ, r) becomes a new universe of the decision system
whose name will be the granular reflection of the original decision system. It
remains to define new attributes for this decision system.
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r tst trn rulex aex cex MI

nil 345 345 5597 0.872 0.994 0.907
0.0 345 1 0 0.0 0.0 0.0

0.0714286 345 1 0 0.0 0.0 0.0
0.142857 345 2 0 0.0 0.0 0.0
0.214286 345 3 7 0.641 1.0 0.762
0.285714 345 4 10 0.812 1.0 0.867
0.357143 345 8 23 0.786 1.0 0.849
0.428571 345 20 96 0.791 1.0 0.850

0.5 345 51 293 0.838 1.0 0.915
0.571429 345 105 933 0.855 1.0 0.896
0.642857 345 205 3157 0.867 1.0 0.904
0.714286 345 309 5271 0.875 1.0 0.891
0.785714 345 340 5563 0.870 1.0 0.890
0.857143 345 340 5574 0.864 1.0 0.902
0.928571 345 342 5595 0.867 1.0 0.904

Fig. 1. Train–and–test; Australian credit; granulation for radii r; RSES exhaustive
classifier; r = granule radius, tst = test set size, trn= train set size, rulex = rule number,
aex = accuracy, cex = coverage

(77) Each granule g in Cov(μ, r) is a collection of objects; attributes in the set
A∪{d} can be factored through the granule g by means of a chosen strategy
S, i.e., for each attribute q ∈ A∪{d}, the new factored attribute q is defined
by means of the formula:

(78) q(g) = S({a(v) : ingr(v, gμ(u, r))}).

In effect, a new decision system (Cov(μ, r), {a : a ∈ A}, d) is defined. The
object v with

(79) Inf(v) = {(a = a(g)) : a ∈ A}
is called the granular reflection of g. Granular reflections of granules need not

be objects found in data set; yet, the results show that they mediate very well
between the training and test sets. We begin with a classifier in which granules
computed by means of the rough inclusion μL form a granular reflection of
the data set and then to this new data set the exhaustive classifier, see [37], is
applied. In the table of Fig. 1, the results are collected of results obtained after the
procedure described above is applied. The classifier applied was exhaustive one;
the method was train–and–test. The rough inclusion applied was the �Lukasiewicz
t–norm induced μI and Majority Voting was applied as the averaging strategy.
We can compare results expressed in terms of the Michalski index MI as a
measure of the trade–off between accuracy and coverage; for template based
methods, the best MI is 0.891, for covering or LEM algorithms the best value
of MI is 0.804, for exhaustive classifier (r = nil) MI is equal to 0.907 and for
granular reflections, the best MI value is 0.915 with few other values exceeding
0.900. What seems worthy of a moment’s reflection is the number of rules in the
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classifier. Whereas for the exhaustive classifier (r = nil) in non–granular case, the
number of rules is equal to 5597, in granular case the number of rules can be
surprisingly small with a good MI value, e.g., at r = 0.5, the number of rules is
293, i.e., 5% of the exhaustive classifier size, with the best MI at all of 0.915.
This compression of classifier seems to be the most impressive feature of granular
classifiers.

10 Spatial Reasoning: The Boundary Problem

The problem of boundary definition is one of the longest-standing in philosophy,
ontology and mereology. It is of the utmost importance for rough set theory as the
separator of exact sets from the rough ones. For a mereo–topological analysis
of the notion of a boundary see Polkowski and Semeniuk–Polkowska [35,36],
Varzi [46], Smith [42]. We prefer here the language of predicates and for a rough
inclusion μ assumed to be symmetric and transitive, and u ∈ U , r ∈ [0, 1], we
define a new predicate N(u, r)(v) if there exists an s ≥ r such that μ(v, u, s).
N(u, r) is the neighborhood granular predicate about u of radius r. Consider a
predicate Ψ on U having a non–empty meaning [[Ψ ]]. The complement to Ψ is
the predicate −Ψ such that −Ψ(u) if and only if not Ψ(u). We define the upper
extension of Ψ of radius r, denoted Ψ+

r by letting Ψ+
r (u) if there exists v such

that Ψ(v) and N(u, r)(v). Similarly, we define the lower restriction of Ψ of radius
r, denoted Ψ−

r by letting Ψ−
r (u) if and only if not (−Ψ)+r (u).

Proposition 17. 1. Predicates Ψ+
r and Ψ−

r are disjoint in the sense that there
is no v ∈ U such that Ψ+

r (v) and Ψ−
r (v) hold true. 2. If Ψ+

r (u) holds true then
Ψ+

r (v) holds true for each v such that μ(v, u, 1). 3. If Ψ−
r (u) holds true then

Ψ−
r (v) holds true for each v such that μ(v, u, 1).

Proof. Claim 1 follows by definitions of the two predicates. For Claim 2, consider
u, v such that Ψ+

r (u) and μ(v, u, 1). There exists w such that Ψ(w), N(u, s)(w)
hold true with some s ≥ r so μ(w, u, s) holds true. By symmetry of μ, we have
μ(u, v, 1) true and transitivity of μ for an adequate pre–norm f implies that
μ(w, v, f(1, s)) holds true, i.e., μ(w, v, s) holds true which means that N(v, r)(w)
holds true and finally Ψ+

r (v) holds true. For Claim 3, assume that Ψ−
r (u) and

μ(v, u, 1) hold true, i.e.,

(80) ¬∃w, s ≥ r.μ(w, u, s) ∧ ¬Ψ(w),

which is equivalent to

(81) μ(w, u, s) → Ψ(w).

As μ(v, u, 1) is equivalent to μ(u, v, 1), we have by f–transitivity of μ that

(82) μ(w, v, s) → Ψ(w),

which is equivalent to the thesis Ψ−
r (v).

We will say that a predicate Ψ is el–saturated if and only if true formulas
Ψ(u) and el(v, u) imply that Ψ(v). A corollary to Claim 3 in Proposition 17 says
that for each r ∈ [0, 1], predicates Ψ+

r and Ψ−
r are el–saturated.
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A Global and Local Definition of the Boundary. For a predicate Ψ , we
define the predicate boundary of Ψ with respect to a rough inclusion μ, denoted
BdμΨ as follows:

(84) BdμΨ ↔ (¬Ψ+
1 ) ∧ (¬Ψ−

1 ).

Arguing like in proof of Proposition 17, we prove the following proposition:

Proposition 18. 1. BdμΨ is el–saturated 2. For no w ∈ U , BdμΨ(w) ∧ Ψ+
1 (w)

is true and for no v ∈ U , BdμΨ(v) ∧ Ψ−
1 (v) is true.

Proposition 19. For each u ∈ U , BdμΨ(u) holds true if and only if there exist
w, v ∈ U such that Ψ(w), −Ψ(v), μ(w, u, 1), μ(v, u, 1).

A predicate Open is defined on predicates on U and a predicate Φ on U is
open, Open(Φ) in symbols if and only if it is el–saturated.

Corollary 1. Open(Ψ+
r ) and Open(Ψ−

r ) hold true for each r ∈ [0, 1]. Open
(BdμΨ) holds true.

Proposition 20. For a finite collection of predicates {Ψ1, Ψ2, . . . , Ψk} if
Open(Ψi) holds true for each i ≤ k, then Open(

∨
i Ψi) holds true.

A predicate Closed holds true for a predicate Ψ if and only if Open(−Ψ)
holds true.

Corollary 2. Closed(Ψ+
r ) and Closed(Ψ−

r ) hold true for each r ∈ [0, 1].
Closed(BdμΨ) holds true.

10.1 The Pawlak Notion of a Boundary Is a Special Case of the
Rough Mereological Notion of a Boundary

We return to an information system (U,A, V ). When applying the rough inclu-
sion μI we have that the predicate of element el(v, u) holds true if and only if
μI(v, u, 1) holds true if and only if Ind(v, u), i.e., v, u are indiscernible. Hence,
a predicate is el–saturated if and only if its meaning is the union of a family of
indiscernibility classes and rough mereological notions of Ψ+

1 and Ψ−
1 become,

respectively, the notions of the upper and the lower approximations of the mean-
ing of Ψ and the meaning of the boundary predicate BdμIΨ is the boundary of
the meaning of Ψ .

11 Approximate Assembling

We address the problem of assemblage, important for applications of mereology.
The first step in assemblage is design. It proceeds with categories of parts in a
set Cat. Categories form an exact ontology and assembling works first on them
in a design process. Categories appear as a result of the equivalence relation sim
on objects, related to a relation of a part π on the universe U of objects:



On Mereology as a Tool in Problems of Intelligent Control 125

(85) u ∼ v ↔ ∀t.[π(u, t) ↔ π(v, t)].

Categories enter as equivalence classes of sim:

(86) Cat(u) = Cat(v) ↔ u ∼ v.

Things in the same category Cat are ‘universally replaceable’. It is manifest
that the part relation π can be factored through categories, to the relation Π of
part on categories:

(86) Π(Cat(u), Cat(v)) ↔ π(u, v).

In our formalism, design will imitate assembling with things replaced with
categories of things and the part relation π replaced with the factorization Π.
We need for our treatment of design: the designer set D, the functionality set
F , and the time set T . The act of design is expressed by means of a predicate,

Des(d,< Cat1, · · · , Catk >,Cat, f(Cat), t(Cat), T (Cat))

which reads: a designer d designs at time t a category of things Cat with func-
tionality f(Cat) according to the design scheme T (Cat) organized by d which is
a dag with the out-node Cat, from categories Cat1, · · · , Catk which are in-nodes
of T (Cat). The category Cati enters in the position i the design process for Cat.
The predicate Des is subject to the following requirements.

DES1. If Des(d,< Cat(v1(u)), · · · , Cat(vk(u)) >,Cat(u), f(u), t(u), T (u))
and for any i in {1, · · · , k}, it holds that

Des(p(Cat(vi(u))), < Cat(vi1(vi(u))), · · · , Cat(vik(vi(u)))) >,

Cat(vi(u)), f(vi(u)), t(vi(u)), T (vi(u))),

then t(vi(u)) < t(u), f(u) ⊆ f(vi(u)), p(vi(u)) ⊆ p(u), and T (vi(u)) attached
to T (u) at the leaf Cat(vi(u)) yields a dag, called the unfolding of T(u) via the
design dag for Cat(vi(u)).

DES2.

Des(d,< Cat(v1(u)), · · · , Cat(vk(u)) >,Cat(u), f(u), t(u), T (u)) ⇒
Π(Cat(vi(u)), Cat(u))

for each vi(u).
Meaning that each object can be designed only from its parts.
We introduce an auxiliary predicate App(v, i(v), u, t(u)) meaning: Cat(v)

enters in the position i the design process for Cat(u) at time t(u).
DES3. Π(Cat(v), Cat(u)) ⇒ ∃Cat(w1(v, u)), · · · , Cat(wk(v, u)), and,

t(w2(v, u)), · · · , t(wk(v, u)), i(w1(v, u)), · · · , i(wk(v,u)−1))

such that v = w1(v, u), t(w2(v, u)) < · · · < t(wk(v, u), wk(v, u)) = u,

App(wj(v, u)), i(wj(v, u)), wj+1(v, u), t(wj+1(v, u))

for j = 1, 2, · · · , k(v, u) − 1.
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This means that for each object which is a part of the other object, the
category of the former will enter the design dag for the category of the latter.

DES4. Values t(u) belong in the set T = {0, 1, 2, · · · } of time moments.

Corollary 3. The universe of categories is well–founded.

We define a design artifact as a category Cat(u) at an out-node such that
Π(Cat(u), Cat(v)) is true for no v.

11.1 Approximate Assembling Along the Design Scheme

Assembling proceeds along the dag employed in design. The difference is that
assembling operates on objects idealistically ordered by the part relation π. In
reality, one must take into account the usage of objects which formally regarded
as identical to design object factually have a different characteristic, e.g., spare
parts for an auto may be not original by manufacturer but substitutes: we are
told they will work but for a shorter time etc. To characterize this aspect, we
introduce an endurance factor en. Let us observe that in a wider ontological sense
this may be related to the endurantism problem, see Gilmore [6]. Using the factor
en, each node node works in the following way: it establishes a function Propnode

which acts on the node incoming objects factors en(ob1), en(ob2), ..., en(obk) and
issues the factor for the node produced object obnode:

(87) Propnode(en(ob1), en(ob2), ..., en(obk)) = en(obnode).

By means of (87), node, having a demand en∗(obnode) can issue demands to
supplying nodes on en∗(ob1), en∗(ob2), ..., en∗(obk) as to satisfy

(88) Propnode(en∗(ob1), en∗(ob2), ..., en∗(obk)) ≥ en∗(obnode).

The requirements for en∗ are back–propagated through the design dag from
the out-nodes to the in-nodes by means of Prop functions of the nodes. We
include the description of the assembling process in analogy to our description
of the design process. It does require a category of operators P , a category
of functionalities F , a linear time T with the time origin 0. The domain of
objects is a category Things(P, F, π) of objects endowed with a part relation π.
The assignment operator S acts as a partial mapping on the Cartesian product
P × F × Things(P, F, π) with values in the category dag of dags. The act of
assembling is expressed by means of a predicate

Art(p(u), < v1(u), · · · , vk(u) >, u, en∗(u), f(u), t(u), T (u)),

which reads: an operator p(u) assembles at time t(u) an object u with endurance
factor en∗(u), functionality f(u) according to the assembling scheme T (u) orga-
nized by p(u) which is a dag, from things v1(u), · · · , vk(u) which are in–nodes
of dag. The thing vi(u) enters in the position i the assembling process for u.
The predicate ART is subject to the requirements analogous to Des1–Des4 for
design. The details of the assembling scheme without the requirements for en∗

are to be found in Polkowski [29].
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D., Tsumoto, S. (eds.) Transactions on Rough Sets XII. LNCS, vol. 6190, pp.
143–169. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14467-7 8

15. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–366 (1982)
16. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer,

Dordrecht (1991)
17. Polkowski, L.: Approximate Reasoning by Parts. An Introduction to Rough Mere-

ology. ISRL, vol. 20. Springer, Berlin (2011)
18. Polkowski, L.: Mereology in engneering and computer science. In: [12], pp. 217–292
19. Polkowski, L.: A rough set paradigm for unifying rough set theory and fuzzy set

theory. Fundamenta Informaticae 54, 67–88 (2003). Proceedings RSFDGrC 2003,
Chongqing, China. Lecture Notes in Artificial Intelligence, vol. 2639, pp 70–78.
Springer, Berlin (2003)

20. Polkowski, L.: A note on 3-valued rough logic accepting decision rules. Fundamenta
Informaticae 61, 37–45 (2004)

http://dx.doi.org/10.1007/978-3-642-14467-7_8


128 L. Polkowski

21. Polkowski, L.: Formal granular calculi based on rough inclusions. In: Proceedings
of IEEE 2005 Conference on Granular Computing, GrC 2005, Beijing, China, pp.
57–62. IEEE Press (2005)

22. Polkowski, L.: Rough-fuzzy-neurocomputing based on rough mereological calculus
of granules. Int. J. Hybrid Intell. Syst. 2, 91–108 (2005)

23. Polkowski, L.: A model of granular computing with applications. In: Proceedings
of IEEE 2006 Conference on Granular Computing, GrC 2006, Atlanta, USA, pp
9–16. IEEE Press (2006)

24. Polkowski, L.: Granulation of knowledge in decision systems: the approach based
on rough inclusions. The method and its applications. In: Kryszkiewicz, M., Peters,
J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp.
69–79. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73451-2 9

25. Polkowski, L.: The paradigm of granular rough computing. In: Proceedings of the
6th IEEE International Conference on Cognitive Informatics, ICCI 2007, pp 145–
163. IEEE Computer Society, Los Alamitos (2007)

26. Polkowski, L.: Rough mereology in analysis of vagueness. In: Wang, G., Li,
T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008.
LNCS (LNAI), vol. 5009, pp. 197–204. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-79721-0 30

27. Polkowski, L.: A unified approach to granulation of knowledge and granular
computing based on rough mereology: a survey. In: Pedrycz, W., Skowron, A.,
Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 375–400. Wiley,
Chichester (2008)

28. Polkowski, L.: Granulation of knowledge: similarity based approach in information
and decision systems. In: Meyers, R.A. (ed.) Springer Encyclopedia of Complexity
and System Sciences. Springer, Berlin (2009). doi:10.1007/978-0-387-30440-3 262.
Article 00 788

29. Polkowski, L.: Rough sets, rough mereology and uncertainty. In: Wang, G., et al.
(eds.) Thriving Rough Sets. Springer Series in Computational Intelligence. Springer
International Publishing, Cham (2017). doi:10.1007/978-3-319-54966-8 4

30. Polkowski, L., Artiemjew, P.: Granular Computing in Decision Approximation.
ISRL, vol. 77. Springer International Publishing, Cham (2015)
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45. Tarski, A.: Les fondements de la géométrie des corps. Supplement to Annales de
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Abstract. In this paper we consider information granules based on cov-
erings. We also present a topological approximation space, where lower
and upper approximations are open sets. We show a way of forming
neighbourhoods for ‘new’ (testing) objects. A topological rough fuzzy
membership function is defined and then generalized to an extended
rough fuzzy membership function of the ‘new’ objects. Basing on this
extended membership function and the least neighbourhood of any ‘new’
object, we propose a new topological approach to classification problem.

Keywords: Rough sets · Approximation space · Information granules ·
Topology · Rough fuzzy membership function · Classification

1 Introduction

We consider a topological approach to rough approximation space. Approxima-
tion spaces for information systems (see [1,2]) were defined by partitions, whereas
these were defined by attributes of a pattern space. Skowron and co-authors
[3–5] proposed a more universal approach based on various attribute-dependent
coverings, in particular by tolerance and similarity relations defined by attribute
values. It also turned out that the problem of existing of missing values (see
[6–10]) can be solved by coverings. Some researchers used a topological point of
view (see [11–15]) to describe approximation spaces.

An important generalization of an approximation space via the information
granulation approach has been proposed by Skowron and Polkowski (see papers
like [16–21]). The theoretical results are eventually implemented in machine
learning methods for solving practical problems like classification, pattern recog-
nition etc. (see e.g. [22,23]).

In this paper we assume that a covering of the finite set is given. The origin
of the covering sets is of two kinds, so the covering set is divided into two parts.
The first one is attribute-dependent part where the covering subsets are sets
of objects indiscernible under attribute-dependent properties. This part of the
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covering is crucial for recognizing a neighbourhood of any ‘new’ object via the
attribute values of this object (missing values are allowed). The second kind is
an expert-dependent part based on available data, domain knowledge as well as
subjective decisions of experts.

In Sect. 2 we describe a topology generated by a covering of the set U and
we take minimal neighbourhoods of objects of U as the information granules.
Such an approach were presented in [14]. Theorem 1 states that the granules are
join irreducible elements in the distributive lattice of the topology. This lattice-
theoretic fact yields that every open set is a join of granules. Moreover, every
open set is a join of maximal granules included in this set, what could be used
for minimization of description.

In Sect. 3 we assume that the lower approximation of a set X is given by the
topological interior of X and its upper approximation coincides with the least
open set that includes X. This latter assumption differs from the usual definition
in approximation spaces defined by topological spaces, in which, on the contrary,
the upper approximation of a set X is its closure. Our assumption leads to the
very natural fact that X is definable if and only if it is open. This extends
to arbitrary topological spaces occurring in Pawlak’s approximation spaces (in
which lower and upper approximations are clopen, that is, closed and open). We
also define a rough fuzzy membership function, which could be generalized to a
rough inclusion function of open sets into subsets of U .

In Sect. 4 we present an application of our topological approach to the clas-
sification problem. The most important issue is to recognize a ‘new’ object via
its attribute values and describe the neighbourhood of this ‘new’ object i.e. an
open set of objects ‘indiscernible’ (under available information) with the given
‘new’ object. The value of a rough inclusion function of this neighbourhood to
the given decision class is used as an extended rough fuzzy membership function
of the ‘new’ objects to the decision class.

2 Covering Based Granulation

In this paper U is a finite non-empty set of objects. A non-empty family C of
subsets of U is a covering on U (or covers U) if and only if

⋃
C =U .

Recall that a family T of subsets of a finite set U is a topology on U if and
only if ∅, U ∈ T and for any X,Y ∈ T , X ∩ Y ∈ T and X ∪ Y ∈ T . Given any
family A of subsets of U there exists the least topology T (A) containing A.

Let C be a covering of U . For any object u ∈ U let NC(u)={C ∈ C : u ∈ C}
denote the family of all its neighbourhoods in T (C). Let gC(u)=

⋂
NC(u). Then

gC(u) is the least neighbourhood of u in T (C). Hence gC(u) can be treated as the
smallest portion of information (an information granule) about u in the context
of the covering C. The set of all granules GranC(U) = {gC(u) : u ∈ U} will be
called a granulation set of U determined by C.

It is worth mentioning here that if C is not a covering of U then there is a
u ∈ U such that NC(u)=∅. Then taking

⋂
∅=U , we get the following equality

GranC(U) = GranC∪{U}(U) \ {U}. From this moment C denotes a covering on
U such that U ∈ C.
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If there is no confusion, we omit the subscript C writing N (u), g(u), Gran(U).

Example 1. 1. Let U ={u1, u2, u3, u4, u5} and let
{{u1, u2, u4}, {u2, u3, u4}, {u1, u2, u5}, U} be the given covering of U .
Then g(u1) = {u1, u2}, g(u2) = {u2}, g(u3) = {u2, u3, u4}, g(u4) = {u2, u4},
g(u5)={u1, u2, u5}.

2. Consider the granulation: g(u1) = {u1}, g(u2) = {u2}, g(u3) =
{u1, u2, u3}, g(u4) = g(u5) = {u1, u2, u4, u5}, g(u6) = U . This shows that the
intersection of two different granules does not necessarily be a granule, two
different objects can have equal granules, U is a granule.

Proposition 1. For any u, v ∈ U

1. if u ∈ g(v) then g(u) ⊆ g(v),
2. g(u) ⊆ g(v) if and only if N (u) ⊇ N (v),
3. if g(u) ⊂ g(v) then v 	∈ g(u),
4. g(u) ⊂ g(v) if and only if N (u) ⊃ N (v),
5. (Gran(U),⊆) is a partial ordered set dual to ({Nu : u ∈ U},⊆).

We set uTInd v if and only if g(u)= g(v) and call TInd a topological indis-
cernibility relation. Then [u]TInd=g(u) \

⋃
{g(v) : v ∈ g(u), g(v) ⊂ g(u)}.

Notice that every topology T on a finite set U forms a finite distributive
lattice (T ,∪,∩). Figure 1 presents the diagrams of the two lattices for topologies
obtained by the coverings from Example 1. The granules are labeled.

Fig. 1. Lattices of the topologies from Example 1

It is known in lattice theory (see [24]) that join irreducible elements play a
crucial role in description of finite distributive lattices. An object X ∈ T is join
irreducible if for any Y,Z ∈ T , X = Y ∪ Z implies X = Y or X = Z. Let J(T )
be the set of all join irreducible elements in (T ,∪,∩) and for any X ∈ T let
J(X) = {Y ⊆ X : Y ∈ J(T )} and let Jmax(X) denote all maximal elements
in J(X).

For any finite distributive lattice (T ,∪,∩) and every X,Y ∈ T , the following
properties of join irreducible elements (see [24]) will be useful in our paper:
X =

⋃
J(X)=

⋃
Jmax(X), J(X∪Y )=J(X)∪J(Y ) and J(X∩Y )=J(X)∩J(Y ).

The next theorem describes all join irreducible elements in (T (C),∪,∩).
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Theorem 1. Let C be any covering of U . Then

1. g(u) is join irreducible in (T (C),∪,∩) for any u ∈ U ,
2. X =

⋃
{g(x) : x ∈ X} for any non-empty X ∈ T (C),

3. J(T (C)) \ {∅}=GranC(U),
4. T (C)=T (GranC(U)) and GranGranC(U)(U)=GranC(U).

Proof. 1. Let g(u) = g(v) ∪ g(w) for some u, v, w ∈ U . Then g(v), g(w) ⊆ g(u)
and u ∈ g(v) or u ∈ g(w). Hence g(u) ⊆ g(v) or g(u) ⊆ g(w) and thus
g(u)=g(v) or g(u)=g(w).

2. Let X ∈ T (C)\{∅} and x ∈ X. Then there is a neighbourhood of x included in
X. Hence g(x) ⊆ X as the least neighborhood of x and X =

⋃
{g(x) : x ∈ X}.

3. Using 1 GranC(U) ⊆ J(T (C)). By 2, any nonempty X ∈ T (C) \ GranC(U) is
not join irreducible. Hence J(T (C)) \ {∅}=GranC(U).

4. It is an immediate consequence of 1–3.

The properties of join irreducible elements allow us to choose the unique
optimal (in the sense of number of components) granular covering of X consisting
of all maximal granules included in X. Also notice that any maximal granule g(u)
is obtained by intersection of minimal set N (u), thus the optimal coverings can
be obtained by minimization of sets N (.). Notice, that all the above properties
are true for any topology T on U , because T is a covering of U and T (T )=T .

3 Topological Approximation Spaces and Rough Fuzzy
Membership Function

Let U be a finite non-empty set of objects and let T be a topology on U . We
define a topological approximation space TAS =(U, T ) as a topology on U with
topological operators of lower and upper approximation of subsets of U as follows
(see also [14]):

1. LOW (X) is the greatest open set Y such that Y ⊆ X,
2. UPP (X) is the least open set Y such that X ⊆ Y .

A subset X ⊆ U is definable if LOW (X)=UPP (X). It can be easily observed
that X ⊆ U is a definable set in TAS if and only if X ∈ T . Moreover,
LOW (X)=

⋃
{g(x) : g(x) ⊆ X}, UPP (X)=

⋃
{g(x) : x ∈ X}, where g(x) denotes

a granule of x ∈ U , in the granulation set GranT (U).
Let TAS = (U, T ) be any topological approximation space. For any u ∈ U ,

X ⊆ U and X ′ =U \X we introduce a rough fuzzy membership function μ(u,X)
based on TAS as follows:

μ(u,X)=

⎧
⎨

⎩

0, for u ∈ U \ UPP (X)
card(X∩g(u))
card(g(u)) , for u ∈ UPP (X) ∩ UPP (X ′)

1, for u ∈ U \ UPP (X ′)
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Example 2. Let us take the granulation from Example 1.2 and X ={u2, u3, u4}.
Then UPP (X) = g(u2) ∪ g(u3) ∪ g(u4) = {u1, u2, u3, u4, u5} and UPP (X ′) =
g(u1) ∪ g(u5) ∪ g(u6)=U . All elements, but u6, belong to UPP (X) ∩ UPP (X ′).
g(u1)={u1} and X ∩ g(u1)=∅ and thus μ(u1,X)=0
g(u2)={u2} and X ∩ g(u2)={u2} and thus μ(u2,X)=1
g(u3)={u1, u2, u3} and X ∩ g(u3)={u2, u3} and thus μ(u3,X)= 2

3
g(u4)=g(u5)={u1, u2, u4, u5} and X ∩ g(u4)={u2, u4} and thus
μ(u4,X)=μ(u5,X)= 1

2 . u6 ∈ UPP (X ′) \ UPP (X) and thus μ(u6,X)=0.

Notice that UPP (X) ∩ UPP (X ′) would represent an ‘uncertainty’ region.
However, this region cannot be described as {u ∈ U : 0 < μ(u,X) < 1}. In
Example 2, u1, u2 ∈ UPP (X) ∩ UPP (X ′) and μ(u1,X)=0, μ(u2,X)=1.

The next proposition shows that the rough fuzzy membership function
determines a two-point probability distribution and preserves topological
indiscernibility.

Proposition 2. For any u, v ∈ U and X ⊆ U

1. μ(u,X)=1 for every u ∈ LOW (X),
2. μ(u,X)=0 for every u ∈ LOW (X ′),
3. μ(u,X ′)=1 − μ(u,X),
4. if g(u)=g(v) then μ(u,X)=μ(v,X).

Proof. We prove only 3. Notice that U = (U \ UPP (X))∪̇(U \
UPP (X ′))∪̇(UPP (X) ∩ UPP (X ′)), where ∪̇ denotes the disjoint union of sets.
Let u ∈ LOW (X ′).

1. If u ∈ U \ UPP (X) then μ(u,X)=0=1 − μ(u,X ′).
2. If u ∈ U \ UPP (X ′) then μ(u,X)=1=1 − μ(u,X ′).
3. If u ∈ UPP (X) ∩ UPP (X ′) then g(u) ⊆ UPP (X) ∩ UPP (X ′).

And g(u)=g(u) ∩ (X∪̇X ′)=(g(u) ∩ X)∪̇((g(u) ∩ X ′).
Hence 1= g(u)

g(u) = g(u)∩X
g(u) + g(u)∩X′

g(u) =μ(u,X) + μ(u,X ′).

If X ⊆ U and V ∈ T is any open set, we can propose different kinds of
rough inclusion measure based on values of the rough fuzzy membership function
for objects from V and then we can use this measure to classify new objects.
Dependent on the specific application, statistical measures of central tendency
can be used as well as some other ‘aggregation’ methods. Let μ(V,X) denote
any such aggregated measure.

4 Classification Based on TAS

In this section we discuss the application of topological approximation space in
building classifiers of new objects to decision classes. We are going to present
here the steps to obtain tools for classification. Let U be a finite non-empty set of
objects (sample, training set of objects) and let o 	∈ U be a ‘new’ object (testing
object) that we want to classify into one of the decision classes (categories of
objects) D1, . . . , Dk ⊆ U .
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STEP I - Information Table
Start with Pawlak’s information system, where missing values are also admit-
ted. Systems with missing values can be obtained, when for example, someone
needs to aggregate information from many sources. An information system is
a pair IS =(U,A), where A is a set of attributes such that for every a ∈ A,
a partial function a : U → V ala is determined. An information table is a
table represented by a partial function IT : U × A →

⋃
{Vala : a ∈ A} such

that IT (u, a) is defined if and only if a(u) is defined and then IT (u, a)=a(u).
If we don’t want to use partial functions for some reason, we can add some
artificial symbols (like �) for indicating missing values.
We assume that the new object o is described as {a(o) : a ∈ A}.

STEP II - Attribute-Dependent Subsets
Let IS =(U,A) be the information system from STEP I. We say that C ⊆ U
is attribute-dependent if there is a logical condition l based on attribute values
(like boolean expression on descriptors), such that C = Cl, where Cl is the
set of all objects from U satisfying l. For example, if l is a descriptor a = s
then Cl = {u ∈ U : a(u) = s} is an attribute dependent set. Let L be the
set of logical conditions based on attribute values. Recall that we assumed in
Sect. 2 that the covering set contains the set U , so we can add to L a logical
formula l0 which describes a condition like ‘an object is of the same category
as other objects in U ’ and then Cl0 = U . Hence assume that lo ∈ L. Then
CL ={Cl : l ∈ L} denotes the set of attribute-dependent subsets determined
by L. We will say that CL is an attribute-dependent part of the given covering
system (U, C) if CL ⊆ C.

STEP III - Covering and Granulation
We form a covering system (U, C) with C =CL∪̇C+, where CL is an attribute-
dependent part for some set of logical conditions L and C+ is a family of
subsets which represent the additional information. We will say that C+ is
the expert-dependent part. The subsets from the expert-dependent part can
be obtained in many ways like expert’s indication of similar objects, object
properties that cannot be described by attributes, decisions based on hidden
premises, hypotheses about the similarity of objects, etc.

Having the covering, we calculate the granulation set Gran(U). This is the
moment when reduction of number of covering sets should be done, so we
can use some minimal covering sets (like reducts for Pawlak’s information
systems) with the aim to get the granulation. A reduction of the attribute-
dependent part is particularly important, because this part will be used in
describing neighbourhoods of new objects (to be classified).

STEP IV - Neighbourhoods of New Objects
In this step we are going to obtain a description of o by the attribute-
dependent part CL. For every l ∈ L if o ‘satisfies’ l, then Cl is a neighbour-
hood of o. Thus N (o)= {Cl : o satisfies l, l ∈ L}. Notice that this definition
depends on the chosen way of ‘satisfaction’, especially, when missing values
are involved. Different types of satisfaction, were considered in partial alge-
bras theory (see e.g. our papers [25,26]), and also in partial structures (see
[27–30]). In a wider perspective, N (o) can also contain sets from the expert-
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dependent part i.e. N (o) = {Cl : o satisfies l, l ∈ L} ∪ C0, where C0 ⊆ C+.
The latter holds when at least one of the methods of gaining the additional
information is still active during the classification process.
The least neighbourhood of o is the open set G(o)=

⋂
N (o). Hence G(o) can

be interpreted as a reflection of the object o in TAS.
STEP V - Topological Measure of Membership of New Objects and Classification

Having G(o), we can calculate a value of an extended membership function
of the object o to any decision class Di as μ(o,Di)=μ(G(o),Di). Finally, we
use the calculated value of the extended membership function in the chosen
classification method. Certainly, the method of calculating μ(G(o),Di) can
depend on the method of classification, and vice versa.
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Abstract. This paper is devoted to an axiomatic characterization of an
ontological predicate called “actual existence”. We analyze this predicate
in the context of some mereological and mereotopological systems. The
resulting mereological system is a Boolean algebra with a predicate of
actual existence and the resulting system in mereotopology is a Boolean
algebra with predicate of actual existence and a binary relation called
“actual contact”. For both systems we present standard models and prove
the corresponding representation theorems.

Keywords: Mereotopology · Contact algebra · Actual existence ·
Actual contact · Topological representation

1 Introduction

This paper is to be considered as an extended abstract of [16] which was devoted
to a formal treatment of the predicate of ontological existence in the context of
mereology and mereotopology. We omit in the present text all formal proofs
and consider more intuitive explanations and some new motivating examples.
We consider [5,9,10] as standard reference books correspondingly for mereology,
topology and Boolean algebra.

1.1 Mereology and Mereotopology

“Mereology is a formal theory of part-whole and associated concepts” - Simons
[10]. Mereotopology is a combination of mereology with some topological rela-
tions between objects. The idea of this combination arose in the first part of 20th
century when a number of philosophers, including mainly Whitehead [17–19] and
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de Laguna [7], decided to build a new, point-free theory of space based on mere-
ology. This was inspired by some criticism to the classical Euclidean approach,
based on the primitive notions of point, straight line and plane, which are in a
sense some fictions having no separate existence in reality. The aim was to put
on the base of the new approach more realistic primitive notions like regions (in
Whitehead’s terminology) as abstractions of physical bodies and some simple
mereological and topological relations between regions, like one region to be a
part of another (part-of relation), or two regions to have as a common part a
third one (overlap relation), or two regions to be in a contact, which intuitively
means to have at least one common point. This idea does not disregard points at
all, but requires they to be introduced in the theory later on by appropriate def-
initions. Let us note that part-of and overlap relations are typical for mereology,
while its language is too weak to express the contact relation, which has some
topological nature. That is why the two disciplines - mereology and topology,
had to be integrated in “mereotopology”. Probably the name “mereotopology”
for the new discipline was used for the first time by Simons [10]. Another name,
related to the new approach to geometry, is “Region Based Theory of Space”
(RBTS). Survey papers on mereotopology and RBTS are, for instance [1,12].
Let us note that due to its simple language for representing spatial knowledge,
mereotopology found applications in some applied areas - see, for instance, the
survey papers [2,6].

One of the founders of mereology is Leśnewski. In [10] Leśnewski’s system
is referred to as the system of Classical Extensional Mereology (CEM). Due
to Tarski (see [10], p. 25) the algebraic structure of Leśnewski’s mereology is
that of complete Boolean algebra with zero deleted. However, deleting the zero
element from Boolean algebra complicates the existing Boolean theory making
the operation of product x · y a partial operation. Probably mereologists do not
like the zero 0 because it is in a sense a “nonexisting individual” while ontology is
the science of the existent entities. If one wants to use only first-order language for
mereology, the first-order theory of Boolean algebras with zero included can be
used. So, Boolean algebras in their mereological interpretation can be considered
as a first-order version of CEM. We adopt the following signature for Boolean
algebra B = (B,≤, 0, 1,+, ·,∗ ). The elements of B in the intended mereological
meaning can be considered as formal analogs of physical (or spatial) bodies and
following Whitehead’s terminology they will be called regions. The relation ≤
is the Boolean ordering which can be considered as representing the part-of
relation. The constant 0 (zero) is now interpreted as the only “non-existing”
region, and the constant 1 (unit) is the only region “universe”, having as its
parts all other regions. The Boolean operations + (sum), · (product), and ∗

(complement) can be considered as operations for obtaining new regions from
given ones. Let us note that the overlap relation xOy in the language of Boolean
algebras has the following equivalent definitions: xOy iff (∃z �= 0)(z ≤ x and
z ≤ y) iff x · y �= 0. Note also that the interpretation of 0 as a “non-existing”
region makes possible to define a predicate of ontological existence E(x) “x
(ontologically) exists” as follows: E(x) ↔def x �= 0. The negation of E(x) will
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be denoted by E(x) and will be considered as a non-existence predicate. We
will always consider that 1 �= 0, which means that the universal region 1 always
ontologically exists. Since this paper will deal with some predicates of ontological
existence, the above definition of E(x) in Boolean algebras will be discussed later
on with more details.

Let us note that part-of and overlap relations can be expressed by the pred-
icate E(x) as follows.

Part-of relation: x ≤ y iff x · y∗ = 0 iff E(x · y∗).
Overlap: xOy iff (∃z)(z �= 0 and z ≤ x and z ≤ y) iff (∃z)(E(z) and z ≤ x

and z ≤ y) iff E(x · y).
The representation theory for Boolean algebras as Boolean algebras of subsets

gives standard examples for the first-order version of CEM. This representation
theory shows the weakness of this language to represent regions as spatial bodies:
each set of points is a spatial body which geometrically and ontologically is not
satisfactory and it shows that mereology is not capable to distinguish in regions
their boundary and internal points. This also shows that some kinds of contact,
as for instance, external contact (of having common only boundary points) is
not expressible. CEM is criticized in [10] also for his static nature and that it is
not capable to express change in time. Let us mention, however, that Boolean
algebra considered as a first-order CEM has one good formal property - it is a
decidable first-order theory, which is important for some applications.

1.2 Mereotopology and Contact Algebras

Having in mind the fact that mereology can be identified in a certain sense
with Boolean algebra, one suitable algebraic formulation of mereotopology is
the notion of contact algebra, which is a Boolean algebra B extended with the
relation C of contact, satisfying a number of simple first-order axioms. Different
versions of contact algebras (with different names) were introduced by several
authors (see [1,6,12] for their history), but the simplest one was introduced in
[3] just with the name “contact algebra” by the following set of axioms for the
contact relation:

(C1) If xCy, then x �= 0 and y �= 0,
(C2) If xCy, then yCx,
(C3) If xCy, x ≤ u and y ≤ v, then uCv,
(C4) If xC(y + z), then xCy or xCz,
(C5) If x.y �= 0, then xCy.

The intended meaning of xCy is “the regions x and y share at least one com-
mon point” and because the notion of point is not a primitive notion in contact
algebras, the contact relation is introduced axiomatically. The point-based defi-
nition of contact as sharing a common point is given in the topological models
presented below.

Let us note that axioms (C1), (C3) and (C5) can be rephrased as follows:
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(C1) If xCy, then E(x) and E(y),
(C3) If xCy,E(x · u∗) and E(y · v∗), then uCv,
(C5) If E(x · y), then xCy.

Topological Model of Contact Algebra. The following topological model of
contact algebra is given in [3]. Let X be a topological space and let Int(a) and
Cl(a) be the interior and the closure of a subset a of X. Namely Int(a) is the
union of all open sets included in a and Cl(a) is the intersection of all closed
sets containing a. A subset a ⊆ X is called a regular closed set (a region) if
a = Cl(Int(a)) and let RC(X) be the set of all regular closed sets of X. It is a
well known fact that RC(X) is a Boolean algebra under the following definitions:
a ≤ b iff a ⊆ b, 0 = ∅, 1 = X, a+b = a∪b, a ·b = Cl(Int(a∩b)), a∗ = Cl(X \a) =
Cl(−a). If we define the contact as follows: aCb iff a ∩ b �= ∅, then RC(X) is a
contact algebra, called a topological contact algebra over X. It is proved in [3]
that each contact algebra can be represented as a topological contact algebra
over a certain topological space X (satisfying some additional properties like
compactness etc.). On the base of this representation theory topological models
can be considered as the main “standard” topological point-based models of
contact algebras.

All relations which can be defined by means of C in the signature of contact
algebra will be called mereotopological relations. Relations definable by using
only the Boolean signature will be called mereological relations. For instance
part-of x ≤ y, overlap xOy and existence predicate E(x) are mereological rela-
tions. Thus, the Boolean part of the signature of contact algebra can be consid-
ered as its mereological part, while the contact C represents the topological part.
By means of the contact C one can define other interesting mereotopological
relations:

• external contact: aCextb iff aCb and aOb,
• non-tangential part-of: a 
 b iff aCb∗,
• tangential part-of: a ≺ b iff a ≤ b and a �
 b.

The names of these predicates comes from their topological equivalents.

1.3 The Existence Predicate and Time

As we have seen in the above section, the language of contact algebras as an
algebraic version of mereotopology considerably extends the expressive power
of mereology. Still contact algebras can be considered as a static theory, not
incorporating time and change in time, hence mereotopology in this form can be
considered as a static mereotopology. However, it was shown in [13–15] how
to generalize contact algebras in order to obtain their dynamic versions incor-
porating both space and time in a point-free abstract definition and obtaining
in this way the notion of dynamic contact algebra considered as a version of
dynamic mereotopology. Point-free here means that neither space points,
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nor time moments are considered as primitives, fulfilling in this way the White-
heads program of building an integrated point-free theory of space and time,
mentioned for instance in [17], p. 195.

The idea realized in [13–15] can be roughly described as follows. First we
define a concrete space-time structure describing an area of changing regions,
called the “snapshot model”. Second, we define in this structure several spatio-
temporal relations between changing regions and study some of their concrete
properties, which will be used further as axioms in the abstract definition. Third,
we consider the concrete signature of operations and relations as abstract ones
satisfying axioms which are facts in the model. Finally, to show that the abstract
definition contains the concrete information of the model, we prove a represen-
tation theorem, stating that each abstract system is isomorphic to a concrete
one. This representation theorem is based on a special canonical construction
extracting from the abstract dynamic algebra the time structure, coordinate
contact algebras and reconstructing by them the snapshot model.

For the realization of this strategy we start with a notion of time structure,
T = (T,≺), where T is a nonempty set of time points (moments of time) and
≺ is the standard before-after time relation. Then, to each moment of time
i ∈ T we associate a contact algebra (Bi, Ci) (called the coordinate contact
algebra corresponding to the moment i) considered as a snapshot of the static
configuration of the changing regions at the moment i. Changing regions in this
model (called now dynamic regions) are identified with their series of snapshots
a =< ai >i∈T , where the coordinate ai ∈ Bi is considered as the region a at the
moment i.

Dynamic regions form a Boolean algebra defining Boolean operations, con-
stants and relations in a coordinate-wise way. This Boolean algebra is then aug-
mented with the following important spatio-temporal relations:

• Space contact aCsb iff (∃m ∈ T )(amCmbm).

Intuitively space contact between a and b means that there is a time point
in which a and b are in a contact.

• Time contact aCtb iff (∃m ∈ T )(Em(am) and Em(bm)).

Intuitively time contact between a and b means that there exists a time point
in which a and b exist simultaneously.

• Precedence aBb iff (∃m,n ∈ T )(m ≺ n and Em(am) and En(bn))

Intuitively a is in a precedence relation with b means that there is a time
point in which a exists which is before a time point in which b exists.

Remark 1. (i) The relations time contact Ct and precedence relation B have a
very high expressive power, namely they can define almost all interesting first-
order properties of the before-after time relation, studied in temporal logic. For
instance consider the density property of ≺:

Dens i ≺ j → (∃k)(i ≺ k∧k ≺ j) and the formula dens aBb → aBp or p∗Bb.
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We have the following definability condition:
Dens is true in the time structure iff dens is true in the snapshot model.
(ii) The theory of dynamic algebras developed in [15] introduces special con-

structs expressing Past, Present and Future making possible to express dif-
ferent time situations like, for instance:

(1) “The region a will always be in a contact with the region b and sometimes
it will be a part of c”.

(2) “The region a does not exist, but it will exist sometimes in the future”.

All this shows that dynamic mereotopology is a rich ontological formalism.
(iii) Let us note that the definitions of Ct and B in the snapshot model

are given by using the existence predicate E from the corresponding coordinate
contact algebras. In the abstract model the predicates Ct and B are responsible
in the representation theory of dynamic contact algebras for the construction of
canonical time structure and the properties of time. This shows the importance
of the predicate of ontological existence and its hidden relations to time.

1.4 Actual Existence, Actual Contact and the Aim of the Paper

In Sect. 1.1 we introduced the predicate of ontological existence E(x) ↔def x �= 0
and in Sect. 1.3 we discussed its importance in the theory of dynamic contact
algebras. However this predicate has some drawbacks which we want to discuss.
First its negation E(x) ↔ x = 0, the non-existence predicate, is too strong -
it shows in fact that all ontologically non-existing regions are equal to the zero
region 0. Hence the predicate E(x) is too weak - there are too many existing
regions. However, one can consider in reality different modes of existence and
nonexistence. One for, instance, is just the predicate E(x) - when x ceases to
exist, x disappeares (annihilates) and becomes 0, so E(x) → x = 0 (the converse
implication x = 0 → E(x) is obvious). Example: burning candle - when the
candle burns out it nothing remains, the candle ceases to exist and becomes 0.
But there are other examples. Consider, for instance, a small lake, which during
the summer has no water. So, during the summer the lake actually does not exist
and exists only during the other seasons. During the summer time the lake is not
equal to 0, because it still is not totally annihilated. So, it is possible for some
region a to be different from 0 and at the same time not to exist, but in some
other sense. In the natural language this mode of existence and non-existence is
captured quite well by the terms “actual existence” and “actual non-existence”.
Let us denote the new predicate by AE(x) and its negation by AE(x). The
notation AE comes from “actual existence” but it can also be associated with
the “average mode of existence”, because average mode of existence is any of
the acting modes of existence in reality. Obviously the predicate AE(x) is not
definable in Boolean algebra, so it has to be characterized by a set of reasonable
postulates. The aim of this paper is just to find these postulates and to study
the related notions. First we will do this in the context of Boolean algebra
considered as a kind of first-order CEM. By means of AE(x) we define “actual”
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analogs of the base mereological relations: x ≤a y - actual part-of, xOay -
actual overlap. We will give set theoretical models of Boolean algebras with
the predicate AE(x) and prove the corresponding representation theorem. Then
we consider the predicate AE(x) together with the contact relation and propose
minimal changes in the axioms of contact replacing accordingly the relations
part-of, overlap and existence E(x) from the definition of contact algebra by
their “actual” versions: ≤a, Oa and AE. As a result we obtain a generalization
of contact relation which is called actual contact - notation xCay. We prove
that AE is definable by Ca, which shows that actual existence has a certain
spatial meaning. We present relational and topological models for the obtained
system and prove related representation theorems. The last section contains
some concluding remarks.

2 Boolean Algebras with a Predicate of Actual Existence

Let B be a Boolean algebra considered in its mereological interpretation. In
Subsect. 1.4 we discussed some properties of the predicate E(x) ↔def x �= 0
interpreted as a predicate of ontological existence and concluded that it is too
weak and some natural examples show that there are more strong modes of
existence for which we adopt the notation AE(x). The problem is what kind of
axioms to take for AE(x) preserving the inclusion AE ⊆ E and having E as
a natural special case. One way is to find an abstract characterization of the
predicate E and then to take a reasonable relaxation.

Proposition 1. Let B be a Boolean algebra and let E(x) ↔def x �= 0. Then:

(i) E(x) satisfies the following firs-order conditions:

(AE1) E(1) and E(0),
(AE2) If E(x) and x ≤ y, then E(y),
(AE3) If E(x + y), then E(x) or E(y).

(ii) E(x) is the maximal (under inclusion) predicate satisfying the axioms
(AE1), (AE2) and (AE3).

Proposition 1 suggests to take the first-order conditions (AE1), (AE2), (AE3)
as axioms for the predicate of actual existence AE(x). Since it is a one place
predicate it can be identified as usual with a subset of B which allows to write
both AE(x) or x ∈ AE. Thus we have the following definition.

Definition 1. Let B = (B,AE) be a Boolean algebra with an unary predicate
AE(x), called a predicate of actual existence, which satisfies the axioms (AE1),
(AE2), (AE3). The first-order theory of this system is considered as a First-order
CEM (Classical Extensional Mereology) with the predicate of actual (ontological)
existence. We denote by AE the negation of the predicate AE.
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Remark 2. Axiom (AE1) is obvious: 0 is non-existing in any sense and we may
consider 0 as a “totally non-existing” region. Axioms (AE2) and (AE3) together
can be replaced by one axiom: AE(x + y) iff AE(x) or AE(y). The implication
from left to right is obvious and the implication from right to left implies that
it is possible for a region to be actually existing and to have parts which are
not actually existing which is acceptable. Example: let’s assume that John is
actually existing. Obviously his appendicitis is a part of John and assume that
John is after a surgery of appendicitis. So, after the surgery the appendicitis is
not actually existing part of John. Let us note also that the complement of the
predicate AE is a proper ideal in B (see [9] for the definition of ideal).

Proposition 2. The first-order CEM with the predicate of actual existence
AE(x) is decidable.

This proposition follows directly from Rabin’s Theorem 2.11 from [8] and the
fact that AE is an ideal.

2.1 Several Predicates of Existence

A given Boolean algebra may have several non-equivalent existence predicates
satisfying the axioms (AE1), (AE2), (AE3). Example: let (B,AE) be a Boolean
algebra with a predicate AE of actual existence and assume that there is a x0 �= 0
such that x0 �∈ AE. Define NAE =def {x ∈ B : x �= 0 and x �∈ AE}. It is easy to
see that this new predicate satisfies all axioms (AE1), (AE2), (AE3), so it is an
existence predicate such that NAE(x0). How to interpret it? We may consider
it as a predicate of existence but not as the predicate of actual existence. If we
have several predicates of existence, considering one of them as the predicate
of actual existence we claim that it corresponds to existence statements for the
actual state of affairs. Actual existence is a predicate stated only for the actual
state of reality, which may have also other, not actual states. Actual state is the
state at the moment, now. We may formulate existence statements for things in
the past (before “now”) or for the things in the future (after “now”) and these
will be predicates for “past existence” or “future existence”, but not for “actual
existence”. It is possible also a non-temporal but situational meaning for the
case of several predicates of existence. Models for Boolean algebras with two
predicates of existence with motivation of their names are given in Sect. 2.4.

2.2 Actual Part-of, Actual Overlap

Having in mind that the standard mereological relations part-of and overlap are
expressible by the existence predicate E(x) ↔ x �= 0 (see Sect. 1.1), analogical
definitions with the predicate AE(x) can be considered as their “actual” versions.

Actual part-of: x ≤a y ↔def AE(x · y∗).

Actual overlap: xOay ↔def (∃z)(AE(z) and z ≤a x and z ≤a y).
It is easy to see that for actual overlap the following is true.

Lemma 1. xOay iff AE(x · y).
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2.3 Set Models of Boolean Algebras with a Predicate of Actual
Existence

Definition 2. By a discrete space with actual points we will understand
any pair X = (X,Xa), where X is a nonempty set and Xa is a nonempty subset
of X, called the set of actual points of X. Let B(X) be a Boolean algebra of
subsets of X and for α ⊆ X define AEX(α) ↔def α ∩ Xa �= ∅. Then it is easy
to verify that AE satisfies the axioms (EA1), (EA2) and (EA3). If B(X) be
the Boolean algebra of all subsets of X, then (B(X), AEX) is called full Boolean
algebra with the predicate of actual existence over the space X.

By this definition of actual existence, a region α actually exists iff it contains
at least one actual point. Having in mind the definitions of actual part-of and
actual overlap we can easily obtain:

α ≤a β iff all actual points of α are actual points of β,
αOaβ iff α and β share at least one actual point.
Now we shall show that set models of Boolean algebras with the predicate of

actual existence are typical in the sense of the following representation theorem.

Theorem 1. Representation theorem for Boolean algebra with a predi-
cate of actual existence. Let (B,AE) be a Boolean algebra with the predicate
of actual existence. Then there exists a discrete space X = (X,Xa) and an
isomorphic embedding h into the full Boolean algebra with predicate of actual
existence (B(X), AEX) over the space X.

Let (B,AE) be a Boolean algebra with the predicate of actual existence.
Remind that U is an ultrafilter in B if it is a subset of B satisfying the following
conditions:

(Ult 1) 0 �∈ U and 1 ∈ U ,
(Ult 2) If x ∈ U and x ≤ y, then y ∈ U ,
(Ult 3) If x, y ∈ U , then x · y ∈ U ,
(Ult 4) If x + y ∈ U , then x ∈ U or y ∈ U .

We define a canonical discrete space (X,Xa) associated with (B,AE) and
an isomorphic embedding h over the Boolean algebra with actual contact over
(X,Xa) as follows: define X to be the set ULT (B) of all ultrafilters of B and put
Xa to be the set of all ultrafilters contained in AE. Let us call such ultrafilters
actual ultrafilters. Define h to be the Stone embedding: for x ∈ B put h(x) =
{U ∈ X : x ∈ U}. It is clear from the representation theory of Boolean algebras
that h is an embedding from B into B(X). It can be shown also that h preserves
the predicate AE which proves the representation theorem.

Remark 3. Points as properties of regions. In the representation theorem for
Boolean algebras with actual existence ultrafilters play the role of the (definable)
points of B. We say that a point U belongs to a region x iff U ∈ h(x). Since
ultrafilters are certain sets of regions, the question arises why these sets have to
be considered as spatial points. And a more general question: if spatial points do
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not have a separate existence in reality, then what is the real ontological nature
of spatial points definable as ultrafilters?

To answer the first question, let us start with the algebra of all subsets of the
given set X. Let the points of X be called “real points” and for every real point
x ∈ X define the set Po(x) = {α ⊆ X : x ∈ α}. The set Po(x) will be called
“abstract point associated to the real point x”. The first observation is that the
collections of subsets of X in the form Po(x) are ultrafilters in the algebra of all
subsets of X. Also we have: for all x ∈ X and α ⊆ X,x ∈ α iff α ∈ Po(x). Let us
call the subsets of X “real sets” and for each real set α define its abstract analog
H(α) = {Po(x) : α ∈ Po(x)} = {Po(x) : x ∈ α} by an analogy with the Stone
mapping h and let ̂X = {Po(x) : x ∈ X}. It is easy to see that the following
holds: H(∅) = ∅,H(X) = ̂X,α ⊆ β iff H(α) ⊆ H(β),H(X \ α) = ̂X \ H(α),
H(α ∩ β) = H(α) ∩ H(β) and H(α ∪ β) = H(α) ∪ H(β). All this shows that
abstract analogs of real points and real sets can replace the real points and the
real sets. In the case of the abstract definition of Boolean algebra we imitate
the same procedure, which shows that ultrafilters are good for the definition of
points and the Stone mapping is a good way to assign points to the members of
the algebra.

As for the second question, “what is the real nature of spatial points in
Boolean algebra definable as ultrafilters”, the answer is more difficult. Many
people have an intuition about points which contradicts the fact to treat them
as certain sets of regions. One explanation why points are certain sets of regions
is to consider these sets as special properties of regions. Since very often we
identify a given property of an object by a subset of the universe to which this
object belongs, then ultrafilters (as sets of regions) can be treated as certain
spatial properties of regions of mereological kind, related to our intuition of a
“region to possess a given point” - “point possession”, which is formally presented
by region x to belong to an ultrafilter U : x ∈ U . Just by the property “point
possession” we can obtain an easy description of the basic mereological constants,
relations, and operations from the signature of Boolean algebra. For instance,
x is a part of y if all points of x are points of y - this corresponds to the
following axiom of ultrafilter: if x ∈ U and x ≤ y, then y ∈ U (and similarly
for the Boolean operations and constants). The fact that in a Boolean algebra
we may define such “properties” of regions as ultrafilters is quite non-trivial
and depends of some versions of the axiom of choice. Let us say that “point
possession” is not one property - different ultrafilters define different properties
of this kind. This is quite similar with properties of the form “color possession”-
each different color defines different property. It can be said that the properties of
the type “point possession” can be treated as the basic mereological properties
of regions. One motivation for this is the following observation. The function
h from the representation theorem assigns to a region x the set h(x) of all
ultrafilters containing x, namely all “point possesion” properties of x. Having in
mind the Leibniz’s definition of equality -“two things are equal if they have the
same properties”, we see that this can be applied also to regions: two regions
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are “mereologically equal” if they have the same basic mereological properties,
formally - x = y iff h(x) = h(y).

The above reasoning shows the real ontological nature of points treating them
as certain spatial properties of regions. Then the statement that points have no
separate existence in reality, they exists just as properties of regions, stands quite
natural. This treatment is just the same for the case of colors: colors do not have
separate existence in reality - they just exists as properties of things.

In a similar way actual points considered as actual ultrafilters can be
explained as certain actual properties, namely actual properties of the type
of “point possession”. Because actual ultrafilters are, by definition, all ultrafil-
ters contained in the predicate AE, then a region x actually exists - x ∈ AE,
iff there exists at least one actual ultrafilter U such that x ∈ U . So x actually
exists if it has at least one actual property of the kind “point possession”. This
interpretation of the predicate of actual existence gives another intuition of this
property, reducing them to the property of the kind of “point possession”.

2.4 Cartesian Models for Boolean Algebra with a Predicate
of Actual Existence

We will give an algebraic construction which also gives models for Boolean alge-
bras with predicate of actual existence.

Let B1 and B2 be two non-degenerate Boolean algebras and let B = B1 ×B2

be their Cartesian product. Define AE = {(x1, x2) : x2 �= 0}. Then it is easy to
verify that AE satisfies the axioms (AE1), (AE2) and (AE3) for actual existence.
It can be proved that every Boolean algebra with predicate of actual existence
AE such that AE is not the maximal predicate of existence is representable as a
subalgebra of such a Cartesian kind, but we will not do this in this paper. This
example gives the following intuition. Assume that each element x = (x1, x2)
represents x at two situations: x1 is x at situation 1 and x2 is x at situation 2,
and the situation 2 is considered as the actual situation. Then (x1, x2) ∈ AE just
states that “x exists in the actual situation”, using for “x exists” the definable
in B2 predicate E(x) ↔def x �= 0. The predicate E1 = {(x1, x2) : x1 �= 0} is
just the existence predicate for the situation 1. It is definable by AE as follows:
E1((x1, x2)) iff (x1, x2) �= (0, 0) and (x1, x2) �∈ AE. So B has two predicates of
existence but we consider only one of them as the predicate of actual existence
- the one which corresponds to the actual situation.

3 Boolean Algebras with Predicates of Actual Existence
and Actual Contact

3.1 Abstract Definitions

Let B = (B,AE) be Boolean algebra with actual existence. We extend its lan-
guage with a new relation Ca called actual contact by “actualizing” the axioms
of contact algebra. Namely we obtain the following definition.
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Definition 3. First definition of BA with actual contact. Axioms of
actual contact:

(AC1) If xCay, then AE(x) and AE(y),
(AC2) If xCay, then yCax,
(AC3) If xCay and y ≤a z, then xCaz,
(AC4) If xCa(y + z), then xCay or xCaz,
(AC5) If xOay, then xCay.

The triple B = (B,AE,Ca), where B = (B,AE) is Boolean algebra with
actual existence and Ca is the relation of actual contact in B, is called Boolean
algebra (BA) with actual contact.

Note that y ≤a z ↔def y · z∗ ∈ AE and xOay ↔def x · y ∈ AE in the above
definition are the relations of actual part-of and actual overlap introduced in
Sect. 2. The intended meaning of xCay in the point topological models (to be
introduced later on) is “x and y share an actual point”.

Lemma 2. In BA with actual contact the predicate of actual existence is defin-
able by the following equivalence: AE(x) iff xCax.

This fact says, first, that actual existance AE has certain spatial meaning,
and second, that the definition of Boolean algebra with actual contact can be
simplified without taking the predicate AE as a primitive notion.

Definition 4. Second definition of Boolean algebra with actual contact.
The pair B = (B,Ca) is called a Boolean algebra with actual contact if it satisfies
the following list of axioms:

(Ca1) 1Ca1, 0C
a
0,

(Ca2) xCay, then yCax,
(Ca3) If xCay, then xCax,
(Ca4) If xCay and y ≤ z, then xCaz,
(Ca5) If xCa(y + z), then xCay or xCaz.
AC(x) ↔def xCax.

Lemma 3. The two definitions of BA with actual contact are equivalent.

Lemma 4. Let B = (B,Ca) be a Boolean algebra with actual contact according
to the second definition and for x, y ∈ B define xCy ↔def xCay or x · y �= 0.
Then (B,C) is a contact algebra.

Remark 4. Lemma 4 shows that Boolean algebra with actual contact is a rich
system containing also the standard contact relation. This relation can be used
in the representation theory of Boolean algebras with actual contact for defining
the topological structure in the set of the definable points.
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3.2 Actualized Versions of Some Mereotopological Relations

By means of the relation of actual contact we may define “actualized” versions
of some important mereotopological relations.

• Actual external contact xCaexty ↔def xCay and xO
a
y,

• Actual non-tangential part-of x 
a y ↔def xC
a
y∗,

• Actual tangential part-of x ≺a y ↔def x ≤a y and x �
a y.

3.3 Topological Models of Boolean Algebras with Actual Contact

Topological model of BA with actual contact is a slight modification of topolog-
ical models of contact algebra.

Definition 5. By a topological space with actual points we mean any pair X =
(X,Xa) such that X is a nonempty topological space and Xa is a nonempty
subset of X. Let RC(X) be the Boolean algebra of regular-closed subsets of X.
For α, β ∈ RC(X) define actual contact αCa

Xβ ↔def α∩β∩Xa �= ∅. It is easy to
see that axioms for Ca from the second definition of BA with actual contact are
fulfilled and that B(X) = (RC(X), Ca

X) is a Boolean algebra with actual contact.

We shall show later on that the above model is typical in a sense that each
BA with actual contact is representable as a subalgebra of this topological kind.

3.4 Discrete (Relational) Models of BA with Actual Contact

Definition 6. Let X = (X,Ra) be a relational system with a non-empty set X
and a binary relation Ra in X. X is called adjacency space with actual adjacency
relation if Ra satisfies the following conditions:

(R1) Ra is a nonempty relation,
(R2) Ra is a symmetric relation: (∀x, y ∈ X)(xRy implies yRx), and
(R3) Ra is a quasi-reflexive relation: (∀x, y ∈ X)(xRy implies xRx).

Let B(X) be a Boolean algebra of some (or all) subsets of X and for α, β ∈ B(X)
define αCa

Rβ ↔def (∃x ∈ α)(∃y ∈ β)(xRay). It is a routine matter to verify that
axioms for actual contact from the second definition are fulfilled.

We shall show in the next section that the above kind of models of actual
contact are also typical.

If we want to construct from X = (X,Ra) the Boolean algebra with actual
contact according to the first definition, we need the set Xa of actual points
which now is definable: Xa = {x ∈ X : xRax} - the set of all reflexive points
of X.

Let us note that adjacency spaces for contact algebras are based on reflexive
and symmetric R. Note also that the reflexivity of R is equivalent to the axiom
(C5) for contact (see [4]). Since quasi-reflexivity does not imply reflexivity (there
are easy examples) the above spaces are more general which implies that Ca does
not satisfy the axiom (C5).
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3.5 Cartesian Models of Boolean Algebras with Actual Contact

The cartesian models of Boolean algebras with actual existence can be easily
modified for Boolean algebras with actual contact. Let B1 be a Boolean alge-
bra and (B2, C2) be a contact algebra and let B = B1 × B2 be the Cartesian
product of the two Boolean algebras. Define actual contact Ca in B as fol-
lows: (x1, x2)Ca(y1, y2) iff x2C2y2. There is no problem to verify that axioms for
actual contact (from the second definition) are fulfilled. It can be proved that
each Boolean algebra with actual contact Ca (with some additional assump-
tions) can be represented as a subalgebra of such Cartesian model. The intuition
of this model comes from the suggested intuition for Cartesian model for actual
existence: each object x = (x1, x2) is presented at two situations 1 and 2 in
which 2 is the actual one. Actual contact is just the (standard) contact of x and
y at the actual situation 2.

4 Representation Theory of Boolean Algebras
with Actual Contact

4.1 Discrete Representation

We assume in this section that B = (B,Ca) is a BA with actual contact
according to the second definition (Definition 4). Following [4] we will construct
a canonical relational system (X,Ra) related to B as follows: we put X to
be the set ULT (B) of all ultrafilters of B and for two ultrafilters U, V define
URaV ↔def (∀a ∈ U)(∀b ∈ V )(aCab).

Lemma 5. The canonical relational system (X,Ra) of B is an adjacency space
with actual adjacency relation.

Consider the Boolean algebra with actual contact associated to X = (X,Ra)
and let h be the Stone mapping - for x ∈ B : h(x) = {U ∈ X : x ∈ U}. It is
known that h is an isomorphic embedding of B into B(X). It can be proved that
h also preserves the actual contact Ca.

This proves the following representation theorem.

Theorem 2. Let B = (B,Ca) be a BA with actual contact. Then there is an
adjacency space X = (X,Ra) with actual relation Ra and there exists an embed-
ding h from B into the BA with actual contact B(X,Ca

R) over X.

4.2 Topological Representation

We assume in this section that B = (B,Ca) is a BA with actual contact accord-
ing to Definition 4. First we have to extract from B a canonical topological space
with actual points X = (X,Xa) and an embedding h from B into the Boolean
algebra with actual contact B(X) = (RC(X), Ca

X) over X (see Sect. 3.3). To this
end we will use the fact that B has a definable contact relation C which makes
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possible the adaptation of the topological representation theory for contact alge-
bras developed in [3] to the case of Boolean algebra with actual contact. The
abstract points in the representation theory of contact algebras are called clans
which will be the elements of X. The new thing now is a modification of clan,
called actual clan, and actual clans will be just the actual points of the set Xa.

Grills, Clans and Actual Clans

Definition 7. A subset Γ of B is called a grill if the following conditions are
fulfilled:

(Grill 1) 0 �∈ Γ ,
(Grill 2) If a ∈ Γ and a ≤ b, then b ∈ Γ ,
(Grill 3) If a + b ∈ Γ , then a ∈ Γ or b ∈ Γ .

Grills were introduced by Choquet (see Thron [11]). It follows from this
definition that actual existence is a grill containing 1. Note that the complement
of a grill is an ideal and all properties for grills can be deduced from this fact.
More information about grills can be found, for instance, in [3]. We mention the
following lemma.

Lemma 6

(i) Grill Lemma. Let F be a filter in B and G be a grill in B such that
F ⊆ G. Then there is an ultrafilter U in B such that F ⊆ U ⊆ G.

(ii) Every grill coincides with the union of all ultrafilters contained in it.
(iii) Let G be a grill and x ∈ B. Then x∗ ∈ G iff (∀y ∈ B)(x+ y = 1 → y ∈ G).

Remind also the definable contact C in B: xCy ↔def xCay or x · y �= 0 (see
Lemma 4).

Definition 8. Clan and actual clan. A subset Γ of B is a clan if it is a
non-empty grill and satisfies the condition

(Clan) If x, y ∈ Γ , then xCy, where C is the defined contact relation in B.
A subset Γ of B is an actual clan, if it is a non-empty grill and satisfies

the condition
(Clana) If x, y ∈ Γ , then xCay.
Denote by CLANS(B) the set of all clans of B and by CLANSa(B) - the

set of all actual clans of B.

Clans are introduced for the first time by Thron [11] and were used exten-
sively in the theory of contact algebras in [3], actual clans are new.

In order to study clans and actual clans let us remind some facts about ultra-
filters in B. For the discrete representation of BA with actual contact (see Sect. 2)
we introduced the canonical structure (X,Ra) where X is the set ULT (B) of
all ultrafilters of B with Ra, called a canonical relation for Ca is defined in
ULT (B) as follows: URaV iff (∀x ∈ U)(∀y ∈ V )(xCay). It follows by Lemma 5
that (X,Ra) is an adjacency space with actual adjacency relation. Define an
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ultrafilter U to be a reflexive ultrafilter if URaU . Let us define now the
canonical relation R in the set ULT (B) for the definable contact C:

URV iff (∀x ∈ U)(∀y ∈ V )(xCy).
The following lemma is true for R.

Lemma 7

(i) URV iff URaV or U = V .
(ii) R is a reflexive and symmetric relation.

The next lemma describes clans and actual clans.

Lemma 8

(i) Every ultrafilter is a clan.
(ii) Every reflexive ultrafilter is an actual clan.
(iii) Every actual clan is a clan.
(iv) Let Σ be a non-empty set of ultrafilters such that for any U, V ∈ Σ we

have URV and let Γ =
⋃

U∈Σ U . Then Γ is a clan and every clan can be
obtained in this way.

(v) Let Σ be a non-empty set of ultrafilters such that for any U, V ∈ Σ we have
URaV and let Γ =

⋃

U∈Σ U . Then Γ is an actual clan and every actual
clan can be obtained in this way.

(vi) All ultrafilters contained in an actual clan are reflexive ultrafilters.
(vii) Let Γ be a clan which is not actual clan. Then Γ is an ultrafilter which is

not reflexive.

Corollary 1. CLANS(B) = CLANSa(B) ∪ {U ∈ ULT (B) : UR
a
U}.

Lemma 9

(i) [3] xCy iff there exists a clan Γ such that x, y ∈ Γ .
(ii) xCay iff there exists an actual clan Γ such that x, y ∈ Γ .
(iii) [3] x ≤ y iff (∀Γ ∈ CLANS(B)(x ∈ Γ → y ∈ Γ ).

The Canonical Topological Space. We construct the canonical topological
space with actual points X(B) = (X,Xa) corresponding to B as follows: put X
to be the set of all clans of B and put Xa to be the set of all actual clans of B.
Note that Xa is a subset of X. To define a topology in X define the mapping h
from B into the set of subsets of X as follows: h(x) = {Γ ∈ CLANS(B) : x ∈ Γ}
and consider the set B(X) = {h(x) : x ∈ B} as a closed sub-basis for a topology
in X. Denote by Int and Cl the operations of interior and closure corresponding
to the obtained topology.

Lemma 10

(i) h(1) = X,h(0) = ∅.
(ii) h(x + y) = h(x) ∪ h(y).
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(iii) x ≤ y iff h(x) ⊆ h(y).
(iv) x = y iff h(x) = h(y), especially x = 1 iff h(x) = X.
(v) h(x∗) = Cl(−h(x)), where −h(x) = X \ h(x).
(vi) xCy iff h(x) ∩ h(y) �= ∅.
(vii) xCay iff h(x) ∩ h(y) ∩ Xa �= ∅.
Lemma 11. h(x) is a regular-closed subset of X.

Before formulating the next statement let us remind some topological notions.
A topological space X is semi-regular if it has a closed base of regular-closed
sets. X has the separation property T0, if for every two different points there
exists an open set containing one of them and not containing the other. X is
compact if it satisfies the following condition: let {Ai : i ∈ I} be a non-empty
family of closed sets of X such that for every finite subset J ⊆ I the intersection
⋂{Ai : i ∈ J} �= ∅, then

⋂{Ai : i ∈ I} �= ∅.

Lemma 12 [3,13]. Let X = (X,Xa) be the canonical space of B. Then the
space X is semi-regular, T0 and compact.

Theorem 3. Topological representation theorem for Boolean algebras
with actual contact. Let B = (B,Ca) be a BA with actual contact. Then
there exists a topological space with actual points X = (X,Xa) such that X is a
compact and T0 semiregular space and there exists an embedding h of B into the
Boolean algebra with actual contact B(X) = (RC(X,Ca

X) over X = (X,Xa).

Remark 5. Atomic and molecular points. In the representation theory of BA
with actual existence we used as abstract points ultrafilters (and actual ultrafil-
ters). Now, in the representation theory for BA with actual contact ultrafilters
are not enough and we introduce some additional kind of points - clans (and
actual clans). By Lemma 8 (iv) and (v) we see that clans and actual clans are
unions of ultrafilters connected by the canonical relations R and Ra correspond-
ingly. So in this case we have two sorts of abstract points - of ultrafilter sort
and of clan sort and the later are composed in some way by ultrafilters. This
gives an intuition to consider ultrafilters as “atomic points” and clans as
“molecular points”. It is interesting to note that in the boundary of a given
region h(x) there are no atomic points, so the two kinds of points have different
distributions in a given region. Note also that in the classical Euclidean approach
to the theory of space, we have only one sort of points and they have no any
internal structure.

Remark 6. In Remark 3 we discussed an interpretation of ultrafilters in BA with
actual existence as properties of regions of certain kind - “point possession”. In
BA with actual contact we have other kinds of spatial points - clans and actual
clans and the same questions arise: why clans are good for the new spatial points
and what is their real ontological meaning. An additional question is why the
topology is definable in just the way as proposed in the canonical construction
of the associated space of the corresponding BA with actual contact.
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Let us start with a given topological space with actual points X = (X,Xa)
and let RC(X) be the set of regular-closed subsets of X. In general the space
X may not be semi-regular, but we may define a new semi-regular topology
in X taking the closed base of the new topology to be the set RC(X). Let
us note that the new topology defines the same set of regular-closed subsets
of X (see [3]), which shows that changing the topology to semi-regular one is
inessential, because we will have the same regions. As from Remark 3 we consider
points and subsets of X as “real points” and “real sets”. For x ∈ X define the
“abstract point” associated to x by Po(x) = {α ∈ RC(X) : x ∈ α} and for
α ∈ RC(X) define H(α) = {Po(x) : x ∈ α} and let ̂X = {Po(x) : x ∈ X}
and ̂Xa = {Po(x) : x ∈ Xa}. Define a semi-regulat topology in the set ̂X,
considering the set {H(a) : a ∈ RC(X)} as a closed base for the topology. The
first observation is that Po(x) is a clan, which shows that the definition of a clan
is good for the new kind of spatial point for BA with actual contact. More over
the following facts are true:

H(∅) = ∅,H(X) = ̂X,α ⊆ β iff H(α) ⊆ H(β),H(ClX(X \ α) = Cl
̂X( ̂X \

H(α)), H(ClX(IntX(α∩β)) = Cl
̂X(Int

̂X(H(α)∩H(β)) and H(α∪β) = H(α)∪
H(β), and α ∩ β ∩ Xa �= ∅ iff H(α) ∩ H(β) ∩ ̂Xa �= ∅.

All this shows that abstract analogs of real points and real sets can replace
the real points and the real sets. In the case of the abstract definition of Boolean
algebra with actual contact we imitate the same procedure, which shows that
clans and actual clans are good for the definition of points and actual points
and the Stone mapping is a good way to assign points to the members of the
algebra. As for the question of the real ontological meaning of clans and actual
clans we can consider them as a kind of mereotopological properties of regions
of the type of “point possession”, repeating the motivations from Remark 3. The
new thing is that these properties are now of mereotopological kind and they
are similar, but at the same way different from the corresponding mereological
properties of the form “point possession”, just because clans are different from
ultrafilters and have some topological nature on the base of contact relation.

5 Concluding Remarks

We discussed in this paper possible formal explications of the predicate of onto-
logical existence and its importance in dynamic mereotopology. We introduced
an extension of Boolean algebra with a one-place predicate AE with intended
meaning of “actual (ontological) existence”, considering a mereological mean-
ing of the Boolean signature. Then we extend the Boolean algebra with actual
existence with a two place relation Ca with the intended meaning of “actual
contact”, obtaining in this way a generalization of the notion of contact alge-
bra introduced in [3]. We present natural models for actual existence and actual
contact and proved the intended representation theorems showing that the for-
mal systems correspond to the given models. We plan to develop the theory of
dynamic contact algebras based on the notion of actual existence and actual
contact. Another thing which remains to be done is the following. There are
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extensions of contact algebras with several additional axioms which require spe-
cial, more good topological models and representation theorems. These are the
following axioms:

(Con) If x �= 0, 1, then xCx∗ - connectedness axiom.
(Ext) (∀z)(xCz ↔ yCz) → x = y, extensionality axiom.
(I) x 
 y → (∃z)(x 
 z 
 y) - interpolation axiom. Here x 
 y is the

definable predicate of non-tangential part-of xCy∗. This axiom is known also as
Efremovic̆ axiom in the following equivalent form

xCy implies (∃z)(xCz and z∗Cy).
For instance axiom (Con) is true in contact algebras over connected spaces

and contact algebras with (Con) are representable in connected spaces. All
results concerning the representation theory of contact algebras extended with
some or all of these axioms can be found in [3]. Adding these axioms to BA
with actual contact for the definable contact C we may repeat the results from
[3] and obtain representation theorems in some T1 and T2 topological spaces
(with actual points). In the corresponding representation theorems for T1 and
T2 spaces other abstract points are used. In such cases Remarks 3 and 6 have to
be stated and rephrased again for the new kinds of abstract points, which shows
that mereotopological properties of the form “point possession” depend on the
corresponding mereotopology which requires different notion of abstract spatial
point.

The above axioms can be formulated also for the actual contact and it will
be interesting to see the effect of these axioms for the required models and for
the expected representation theory.
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Abstract. This paper focuses on path planning for a remote robotic
agent using rough mereology potential field method. We test the pro-
posed path-creation and path-finding algorithms and propose working
alternative versions. Furthermore we apply path smoothing with custom
collision detection to further optimize the route from the robot initial
position to the goal.

Keywords: Robotics · Rough mereology · Path planning · Robot nav-
igation · Mereogeometry

1 Introduction

Rough mereology [1] as a paradigm is successfully used in various fields of com-
puter science: robotics [2–4], medical analysis [5,6], etc. In this work we have
tested the path planning algorithm based on mereological potential field, where
the path is smoothed and obstacle avoidance procedure is applied. We have
performed the real time experiment with exemplary mobile robot, which is con-
trolled via P-controller based on the compass reads and the camera based local-
ization. In the next section, we will describe the process of creating the potential
force field using rough mereology.

2 Rough Mereology in Intelligent Agent Control

Rough mereology based reasoning employs the notion of a rough inclusion
μ(x, y, r), which relation needs x is a part of y to a degree of at least r. As
our reasoning is concerned with spatial objects, the rough inclusion involved in
our reasoning is the one defined as μ(X,Y, r) if and only if |X∩Y |

X >= r, where
X,Y are n-dimensional solids and |X| is the n-volume of X. We consider in this
work a planar case of an autonomous mobile robot moving in a 3-dimensional
environment, hence, our spatial objects X,Y are figures assumed concept regions
and |X| is the area of X. The rough inclusion μ(X,Y, r) is applied in the con-
struction of the mereological potential field. Elements of this field are square and
the distance between them is defined as

K(X,Y ) = min{maxrμ(X,Y, r)},maxsμ(Y,X, s)}.

c© Springer International Publishing AG 2017
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The construction of the field is described in Sect. 3. The robot movement through
the field to the goal is driven by waypoints defined inductively: the next waypoint
is the centroid of the union of set of field squares closest to the square containing
the current waypoint with respect to the distance K(X,Y ).

3 Square Fill Algorithm

In this paper we are using variations of the Square Fill Algorithm as proposed
by [2]. The result of the algorithm can be seen on Fig. 1.

1. Define initial values:
– Set current distance to the goal: d = 0,
– Set algorithm direction to clockwise,

2. Create an empty queue Q:

Q = ∅ (1)

3. Add to queue Q the first potential field p(x, y, d), where x, y describe the
location of the field and d represents the current distance to the goal:

Q ∪ {p(x, y, d)} (2)

4. Enumerate through Q,
5. If ({pk(x, y, d)} ∩ F ) ∨ ({pk(x, y, d)} ∩ C) where pk(x, y, d) is the current

potential field, F is a set of already created potential fields and C is a set
of collision objects, then remove the current field pk(x, y, d) from Q and go
back to point 4,

6. Add the current potential field pk(x, y, d) to the created potential fields
set F :

F ∪ {pk(x, y, d)} (3)

7. Increase the current distance to the goal:

d = d(pk) + 0.01 (4)

8. Define neighbours depending on the current direction:
– clockwise as N :

N =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = p(x − d, y, d),
p1 = p(x − d, y + d, d),
p2 = p(x, y + d, d),
p3 = p(x + d, y + d, d),
p4 = p(x + d, y, d),
p5 = p(x + d, y − d, d),
p6 = p(x, y − d, d),
p8 = p(x − d, y − d, d)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)
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– anticlockwise as N ′:

N ′ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p0 = p(x − d, y − d, d),
p1 = p(x, y − d, d),
p2 = p(x + d, y − d, d),
p3 = p(x + d, y, d),
p4 = p(x + d, y + d, d),
p5 = p(x, y + d, d),
p6 = p(x − d, y + d, d),
p8 = p(x − d, y, d)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

9. Add neighbours to queue Q depending on current direction:
– If direction is clockwise then: Q ∪ N ,
– If direction is anticlockwise then: Q ∪ N ′,

10. Change the current direction to the opposite,
11. Remove the current potential field pk(x, y, d) from the queue Q,
12. if Q(p) = ∅ then finish, else go to 4.

Fig. 1. The potential field created by the Square Fill Algorithm. The white squares
represent individual potential cells, hatched squares represent obstacles. The robot
initial position and target goal are represented by dots - the left one is the robot initial
position
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3.1 Path Finding

We are using the Path Search Algorithm proposed by [2].
IF robot po s i t i o n i s equal to goa l p o s i t i o n

END
SET the cur rent f i e l d to c l o s e s t to robot
WHILE goa l i s not found

ADD f i e l d with the sma l l e s t me r eo l og i c a l
d i s t ance from the cur rent po int
SET the cur rent f i e l d to f i e l d

END

The algorithm can be divided into three steps:

– Checking, if the robot initial position is equal to the goal position,
– Finding the closest field to the robot,
– Moving through potential fields with the smallest mereological distance from

the current point until we reach the goal.

4 Extending the Algorithm

After going through tests with the Square Fill Algorithm and the generated
path, we created a set of changes to the original ideology: neighbouring potential
fields creation and path smoothing.

4.1 Type Variation

The default Square Fill Algorithm alternates between clockwise and anti-
clockwise methods while creating its potential field neighbours. We experimented
with possible outcomes:

– Clockwise variation, always using the N set,
– Anticlockwise variation, always using the N ′ set (Fig. 2).

Fig. 2. Potential field on the left was created by the Clockwise variation, the one
on the right by the Anticlockwise variation.
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Depending on the complexity of the map and placement of the robot, goal
and obstacles different results were produced. For a simple map containing two
obstacles (as seen on Fig. 3) the following algorithm time and path length (in
pixels) was returned:

– Alternating
• Path creation time: 2234.52 ms
• Total distance: 557.21 px

– Clockwise
• Path creation time: 2370.07 ms
• Total distance: 540.86 px

– Anticlockwise
• Path creation time: 2178.11 ms
• Total distance: 546.27 px

Fig. 3. Comparison of created paths for a real environment using variants: Alternat-
ing (solid), Clockwise (dashed) and Anticlockwise (dotted).

The Clockwise and Anticlockwise variants were working better (and
faster) in environments without many obstacles. When the amount of obsta-
cles was increased (10+), we experienced performance drop as well as issues
with path-finding. The default Square fill algorithm (alternating variant) was
working much better in such situations. In order to improve our results, we tried
to smooth the created paths, as seen in Sect. 4.2.
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4.2 Path Smoothing

After the path from the robot initial position to the goal is created, we are
applying a smoothing algorithm, to make the route optimal. We then run the
presented algorithm n times, until we get a satisfying result:

1. We apply a chosen data weight α and move the position of the point xk

depending on the position of the previous xk−1 and next xk+1 point on the
given path:

xk = xk + α(xk−1 + xk+1 − 2xk) (7)

2. Next we are counter balancing the updated position x + k with a chosen
smooth weight β, so that a straight line isn’t created.

yk = yk + β(xk − yk) (8)

The problem we encountered after going through the smoothing algorithm, is
that collisions were ignored, thus creating a path that wasn’t usable for the
robotic agent as seen on Fig. 4.

Fig. 4. The figure shows output smoothed path as compared to the original route.

We modified the standard smoothing algorithm, by adding custom condi-
tions, to keep a safe distance from the robot to possible collision fields, as it can
be seen on Fig. 5. The final algorithm can be represented as:

ITERATE n times
COMPUTE po s i t i o n apply ing data weight
UPDATE po s i t i o n apply ing smoothing weight
IF po s i t i o n d i s t ance < c o l l i s i o n d i s t ance

CONTINUE
ELSE

WRITE po s i t i o n
END
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Fig. 5. Custom smoothing algorithm output.

5 Testing

Testing was performed using a top observer (camera, QR marker recognition)
and a LEGO Mindstorms NXT robot. The test code was written in python and
is available on Github [7].

5.1 Map Creation

To test the algorithm and its variations we needed an environment for the robotic
agent (Fig. 6). Our idea was to create map elements using QR code markers, in
order to make it easily configurable, while having precise control over key element
positions:

– Robot position (1 marker),
– Planned goal (1 marker),
– Obstacles (2 markers),
– Map bounds (4 markers).

To recognize markers, marker ids and their x, y positions through camera
output we used OpenCV[8] and Python AR Markers [9]. Once we got infor-
mation about all map markers, we used the values as input for our path finding
algorithm. All positions were based on the camera image pixel positions (mean-
ing the start point (0, 0) was on the top-left side of the created map).

5.2 Robot Control

We used the LEGO Mindstorms NXT 2.0 robot for our tests. In order to
be able to run the agent through the desired path we used the NXT Python
library [10].
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Fig. 6. Test environment based on Augmented Reality - see the video [11].

Each Robot object, had the following properties:

– Motor access (Port B and C),
– Compass sensor access (Port 4),
– NXT Brick reference,
– Current position (relative to map),
– Desired goal (next point on path to goal),
– Robot North (relative to map top).

The first step after connecting to the robot, was setting the Robot North
property, in order to set a relative point to the map (to allow easier path-
following). Each time the Robot marker was found, the robot was establishing
movement based on the P-Controller.

5.3 P-Controller

The robot we used in experimental part is equipped with the compass sensor,
which allows tracking the fixed direction. After the path is created and smoothed
with obstacle avoidance mode, we obtain the set of coordinates, which we can
use to reach the goal. The robot is localised in real time based on the camera
view with use of robot′s marker detection. The goal position can vary, but in
each run of experimentations is chosen as a static point.

With assumption that (x, y) is the current robot position and (x′, y′) is the
next point on the route to the goal. And that the (0, 0) position is on the left top
side of map. To obtain the proper direction in range [0, ..., 359], where 0 is the
North, 90 is the East, 180 is South, and 270 is West, for path tracking we use the
estimation of direction based on these points considering the following options.



166 L. Zmudzinski and P. Artiemjew

IF x == x ’ and y < y ’ :
d i r e c t i o n = 180

IF x == x ’ and y > y ’
d i r e c t i o n = 0

IF y == y ’ and x < x ’
d i r e c t i o n = 90

IF y == y ’ and x > x ’
d i r e c t i o n = 270

Assuming that c =
√

a2 + b2, alpha = arccos(a
c ) ∗ ( 180.

π ),
IF x < x ’ and y < y ’

a = x ’ − x , b = y ’ − y , d i r e c t i o n = 90 + alpha
IF x > x ’ and y < y ’

a = y ’ − y , b = x − x ’ , d i r e c t i o n = 180 + alpha
IF x > x ’ and y > y ’

a = y − y ’ , b = x − x ’ , d i r e c t i o n = 360 − alpha
IF x < x ’ and y > y ’

a = y − y ’ , b = x ’ − x , d i r e c t i o n = alpha

Considering the new north direction of the map, we have to convert direction
as follows,

direction = (direction + (360 − north direction of map))%360 (9)

After goal direction estimation, we use P-controller to drive to the next
points. Our version of controller use the conversion of compass readings accord-
ing to the current goal direction. Conversion consists of the following mapping:

va lues [ d i r e c t i on , d i r e c t i o n +1 , . . . , d i r e c t i o n +180]
are converted in to [ 0 , 1 , . . . , 1 8 0 ]
va lues [ d i r e c t i on , d i r e c t i on −1 , . . . , d i r e c t i on −179]
are converted in to [ −1 , −2 , . . . , −179]

The conversion can be obtain based on the following steps,

cur rent compass read ing −= di r e c t i on ,
o r i e n t=current compass read ing ;
IF o r i e n t > 180 :

o r i e n t −= 360
IF o r i e n t < −180

o r i e n t += 360

and the P controller works as follows,

speed whee l 1 = speed
speed whee l 2 = speed
cte = o r i e n t

IF cte <= 0 :
IF | c te | > p r e c i s i o n :

speed whee l 1 = −speed whee l 2
ELSE:

speed whee l 1 = speed whee l 2 + ( k s i ∗ c te )
IF cte > 0 :

IF cte > p r e c i s i o n :
speed whee l 2 = −speed whee l 1

ELSE:
speed whee l 2 = speed whee l 1 − ( k s i ∗ c te )

s e l f . motor b . run ( speed whee l 1 , Fa l se )
s e l f . motor c . run ( speed whee l 2 , Fa l se )

where cte is the cross track error, and ksi is the steering scalar, orient is the
current compass reading.
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6 Conclusion

In this work we have developed three variants of an algorithm for the problem of
path planning based on the mereological potential field. An additional problem
was to smooth the path and use the obstacle avoidance mode during smoothing.
The path algorithm was tested in the robotic laboratory - see [11]. To achieve our
goal we have used a mobile robot equipped with electronic compass sensor and
a camera used for robot localisation. Our tests demonstrate the effectiveness of
path planning, the optimal path is generated in a fast way, robot can effectively
reach the goal position tracking the points of path. We have tested variants where
the potential field is generated clockwise, anticlockwise and alternately. The
experiments show that the two first variants are more effective for simple maps,
with small number of obstacles, but in case of complex maps the alternating
variant wins in most cases. In our future work, we plan to apply the various
types of potential field generation algorithms and to apply it to the other robots
including Nao humanoidal robot. The other direction of further research is to
apply the idea of path planning to three dimensions with applications to drones
in mind.

Acknowledgements. This research has been supported by a grant 23.610.007-300
from the Ministry of Science and Higher Education of the Republic of Poland, and grant
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Abstract. In network, nodes are joined together in tightly knit groups.
Local group information is used to search the natural community. It
can be crucial to help us to understand the functional properties of
the networks and detect the true community structure. In this paper,
we propose an algorithm called Three-way Decision Community Detec-
tion Algorithm based on Local Group Information(LGI-TWD) to detect
community structure by using local group information. Firstly, we define
sub-communities of each node v. Node v and v’s neighbors which are
reachable to each other construct one sub-communities of node v. Then,
each sub-communities is regarded as a granular, and then hierarchical
structure is constructed based on granulation coefficient. Finally, a fur-
ther classification for boundary region’s nodes can be done according to
belonging degree. Compared with other community detection algorithms
(N-TWD, CACDA, GN, NFA, LPA), the experimental results on six real
world social networks show that LGI-TWD gets higher modularity value
Q and more accurate communities.

Keywords: Communities · Three-way decision · Local group informa-
tion · Sub-community

1 Introduction

Many complex networks in society, nature, and technology display a common
feature, called community structure [1]. Communities are groups of vertices,
many links connect vertices of the same group and comparatively few links
join vertices of different groups [1,2].Various complex network examples include
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social networks in the Internet, interpersonal networks in social systems, neu-
ronal networks and protein interaction networks in ecosystems. Therefore, many
algorithms have been proposed to detect communities. With a further study,
overlapping problem of community has attracted much research attention. Over-
lapping nodes play a special role in complex network system. How to divide the
overlapping nodes into a single community to achieve non-overlapping commu-
nity is crucial to reveal abundant hidden information and help us to understand
the functional properties of the networks [3,4].

In recent years, a great number of algorithms have been proposed to detect
nonoverlapping community. Two of most classical algorithms are GN algorithm
and Newman Fast Algorithm (NFA). GN algorithm [5]measures the importance
of each edge by betweenness. Newman Fast Algorithm (NFA)[6] obtains the
optimization depending on modularity. Zhao et al. [7] proposed Tolerance Gran-
ulation based Community Detection Algorithm (TGCDA), which uses tolerance
relation (namely tolerance granulation) to granulate a network hierarchically.
Generally, these methods are suitable for various networks and most of them
can perform well. However, these algorithms only use the traditional two-way
decisions which takes the decision simply according to present information for
acceptance and rejection, regardless of whether information is lacking. This app-
roach may result in wrong decisions when the information is insufficient. So the
three-way decision theory is introduced into non-overlapping community detec-
tion to deal with overlapping problem.

Three-way decision theory has been proposed by Professor Yao [8], which can
solve the uncertainty problem effectively. The main idea of three way decision
theory [9,10] is to divide the whole region of discourse into three parts: positive
region (POS), negative region (NEG) and boundary region (BND). Different
parts were adopted different ways to solve respectively. The positive decision
rules generated by positive region make decision of acceptance. The negative
decision rules generated by negative region make decision of rejection. With
the difference between the two-way decisions of acceptance or rejection, the
boundary region leads to a third way of decision, namely noncommitment or
defrement [11], and the problem in the boundary region will be further handled to
make the right judgement to achieve final two-way decision. Three-way decision
has been widely used in many applications of uncertain information [12–17].

In our previous work, three-way decision was introduced into non-overlapping
community division and an algorithm of three-Way Decisions Based on Nonover-
lapping Community Division was proposed, shorted by N-TWD. N-TWD can get
communities by initial granulation operation. And then hierarchical granulation
is used to acquire final communities. The granules are regarded as communities
so that the granulation for a network is actually the community partition of the
network. N-TWD algorithm is based on hierarchical granulation. An original
granular contains n nodes and its all neighborhood nodes. However, it get com-
munities which consist of nodes loosely connected. How to get the small, tightly
connected overlapping communities are valuable to further study.

As we all know, the property of community structure, in which network
nodes are joined together in tightly knit groups, between which there are only
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looser connections [1]. Therefore, local group nodes information can be used to
search for the natural community of each node. For example, in a social network,
separate sub-communities may represent the groups of the individual’s friends
from college, friends from senior, acquaintances from work, and so on. When we
consider the subgraph immediately around node v, those of v’s neighbors that
know one another from the same community are likely to be better connected to
one another than to those of v’s neighbors that v knows from a different group
(e.g., v’s friends from college likely know each other, but are less likely to know
v’s co-workers).

Therefore, we further improve the initial granulation method of N-TWD’s
and propose Three-way Decision Community Detection Algorithm based on
Local Group Information (LGI-TWD)in this paper. Firstly, sub-communities are
constructed by the node v and v’s neighbors which are reachable to each other.
Secondly, these sub-communities which satisfy granulation coefficient are hierar-
chically merged to construct hierarchical structure. Finally, a further partition
for boundary region’s nodes can be done according to the belonging degree.

The rest of the paper is organized as follows: The related work was briefly
reviewed in Sect. 2; In Sect. 3, local group information algorithm which can iden-
tify sub-communities in network G, and we combine a community partition algo-
rithm which based on three way decision theory to form the final non-overlapping
community. In Sect. 4, we display and analyze the experimental results; Finally,
the paper presents the summary in Sect. 5.

2 Related Basic Concepts

In this section, hierarchical granulation process and three region of community
detection representation were reviewed. And index of community evaluation also
was given.

2.1 Hierarchical Granulation

In our previous work, N-TWD got overlapping communities by initial granula-
tion operation. Each node in the network was regarded as an original granule
Gri = Granule (vi) which formed by the neighbor nodes of vi. And then the
granule set Gr = {Gri |∀ vi ∈ V,Gri = Granule (vi)} was obtained by initial
granulation operation Gran (G,Gr). To get hierarchical overlapping communi-
ties structure Grm+1

i , two granules Grm
i and Grm

j from m-th layer comply gran-
ulation operations. The process was finished until the granulation coefficient was
not satisfied granulation coefficient condition and hierarchical granulation struc-
ture of Gr1, Gr2, . . . Grm were formed, a granule set Grl with maximum Q which
existed overlapping community was selected to achieve the final non-overlapping
community.

Definition 1. Granulation Coefficient [18]: f(Grm
i , Grm

j ):

f(Grm
i , Grm

j ) =
‖ Grm

i ∩ Grm
j ‖

‖ Grm
i ∪ Grm

j ‖ , Grm
i , Grm

j ∈ Grm (1)
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Definition 2. Granulation Operations: GO(Grm
i , Grm

j ):

Grm+1
i ← Grm

i ∪ Grm
j

Grm+1 ← Grm + Grm+1
i − Grm

i − Grm
j

(2)

2.2 Three Region of Community Detection

Based on the three-way decision theory, the result of overlapping communities
structure can be defined as positive region, negative region and boundary region.

1. Boundary region (BND(Gri,Grj)): the overlapping nodes between Gri and
Grj ,BND = Gri ∩ Grj

2. Positive region (POS(Gri,Grj)): the non-overlapping nodes of left community
Gri,POS = Gri − BND

3. Negative region (NEG(Gri,Grj)): the non-overlapping nodes of right commu-
nity Grj ,NEG = Grj − BND.

So, three regions of overlapping communities are given as:

BND =
⋃

(BND(Gri, Grj));
POS =

⋃
(POS(Gri, Grj));

NEG =
⋃

(NEG(Gri, Grj));
(3)

Therefore, granulation coefficient can be represented as follows:

Granulation Coefficient Based on Three Way Decision Theory:

GC =
||BND||

||POS + NEG + BND|| . (4)

2.3 Modularity Q

The most widely used and accepted metric designed specifically for the purpose of
measuring quality of a network division into communities is modularity (Q)[19],
calculated as follows.

Q =
1

2m

∑

ij

(Aij − kikj

2m
)δ(Ci, Cj) (5)

Where i, j are two arbitrary vertices, m are the total number of the net-
works, (Ai,j ) is the element of adjacency matrix. The value ranges from Q = 0,
when the within-community edges are no better than random, to Q = 1. Gen-
erally speaking, the value of Q typically range from about 0.3 to 0.7 real-world
networks.
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3 Three-Way Decision Community Detection Algorithm
Based on Local Group Information

In this section, we firstly define sub-communities of each node v (shorted by
SubC (v)) as a original granular based on Local Group Information which truly
produce overlapping community’s structure. Then final non-overlapping commu-
nity structure is obtained by using the three-way decision community detection
algorithm.

3.1 Sub-communities of Each Node v Based on Local Group
Information

Local Group Information can predict the change rule of network and grasp poten-
tial function better, thus it can help us to understand the common preference
and group behaviors of the networks.

To get communities which consist of nodes tightly connected, each node v
in network is iterated, and one or more sub-communities SubC (v) which con-
tain node v and node v’s partial neighbors can be created. Nodes in one sub-
community are reachable to each other. The same sub-community may be cre-
ated multiple times, and we allow multiple copies of the same sub-community,
but one may consider only one copy.

Given an undirected network G (V,E), where V is the set of vertices and E is
the set of edges. For ∀v ∈ V , Let L (v) notes the neighbor notes set of node v. For
each v ∈ V , we can get sub-communities SubC (v) =

{
Ci (v) =

(
V i (v) , Ei (v)

)}
.

Where SubC (v) means the node v and sub-communities around v. An exam-
ple of sub-community is shown in Fig. 1. Assume node A is regarded as the center
L (A) = {B,C,D,E, F}. Therefore, sub-community SubC(A) = {SubC1 = {A,
B,C,D} , SubC2 = {A,F,E}}.

Fig. 1. The network with 6 vertices and 8 edges.

Along with different node as center, same sub-community may be created
repeatedly. For example, SubC(E) = SubC(F ) = {A,E, F}. The detail of sub-
communities detection algorithm is described as follows.
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Algorithm 1. SubC (v) Detection Algorithm
Input: G = (V, E).
Output: SubC(V ).
Initialize i = 0, V i(v) = {v}, Ei(v) = ∅.
for each vm ∈ L (v) and L(v) �= ∅ do

V
i (v) = V

i (v) + vm

E
i (v) = E

i (v) + (vm, v)
L (V ) = L (V ) − {vm}

while ∀vn ∈ L(v), ∀ vm ∈ V
i (v) , (vm, vn) ∈ E do

V
i (v) = V

i (v) + vm

E
i (v) = E

i (v) + (vm, vn)
L (V ) = L (V ) − {vn}

end while
i = i + 1

end for
Output SubC (v) =

{
C

i (v) =
(
V

i (v) , E
i (v)
)}

SubC are the original granule sets acquired by Algorithm1, which can be
merged to form hierarchical structure after granulation operations. Assume that
SubCi, SubCj ∈ SubC. The redefinition of three region are given as:

POS = SubCi −BND;
NEG = SubCj −BND;
BND = SubCi ∩SubCj ;

(6)

Therefore, sub-communities are hierarchically merged as follows according to
Granulation Operations SGO

(
Subm

i , Subm
j

)
:

SubCm+1
i ← SubCm

i ∪ SubCm
j

SubCm+1 ← SubCm + SubCm+1
i − SubCm

i − SubCm
j

(7)

3.2 Three-Way Decision Community Detection Algorithm Based
on Local Group Information

In Sect. 3.1, we can acquire small, tightly connected overlapping sub-communities.
To achieve final two-way decisions, the nodes in the boundary can be further
divided through further observations.

Here, in order to calculate the similarity between the nodes in boundary
region and positive region (negative region), the index of LHN-I [20] is used to
define the similarity of neighbor nodes svv.

svv (vi, vj) = |Γ (vi)∩Γ (vj)|
k(vi)×k(vj)

(8)

In addition, the belonging degree BP , BN is defined in formula (9) of. It is
denotes as:
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for ∀v ∈ BND
(
SubCl

)
,

BP =

NP∑

i
svv(vi,vj)

NP
∗ NLP

BN =

NN∑

i

svv(vi,vj)

NN
∗ NLN

(9)

Where vi ∈ BND, vj ∈ POS(NEG), NLP denotes number of neighbors between

BND (v) and POS
(
SubCl

)
. NLN denotes number of neighbors between

BND (v) and NEG
(
SubCl

)
. NP is the number of nodes in positive region,

NN is the number of nodes in negative region.
The differences of belonging degree |dPN | can be calculated as follows:

|dPN | = |BP − BN |
|BP − BN |max

(10)

where |X| denotes the absolute value of X.
Based on Algorithm 1 and the index of further division in definition(10), the

detail of Three-way Decision Community Detection Algorithm based on Local
Group Information (LGI − TWD) is described as follows.

According to the definition of |dPN |, the nodes in boundary regions are
divided into positive region or negative region when |dPN | > γ. However,
there may be a few nodes which are still in the boundary regions that satis-
fied |dPN | < γ. Therefore, these nodes in the boundary region will finally be
determined by voting according to link number.

4 Experiment and Analysis

In order to verify the performance of LGI-TWD, we have carried out a num-
ber of experiments on five data sets with six compared algorithms, such as
N-TWD,CACDA [18], GN [1], NFA [6] and LPA [21]. Our experiments were per-
formed on six data sets from http://www-personal.umich.edu/∼mejn/netdata/
and http://arnetminer.org/lab-datasets/soinf/. The detail of data sets is shown
in Table 1.

In LGI-TWD algorithm, two parameters are granulation parameter λ and
boundary parameter γ. The parameter of λ ∈ (0, 1) is regarded as a granula-
tion criterion which can determine the process of granulation operation and
control the granularity of the initial sub-communities. The merger process-
ing of sub-communities is stop when the value of granulation coefficient
GC (SubCi, SubCj) < λ.

The parameter of γ ∈ (0, 1) is defined as boundary parameter, its value have
great influence on the boundary region division. If γ = 1 , the nodes in the
boundary domain are all divided by neighbor voting; If γ = 0 , the nodes in
the boundary domain are all divided according to belonging degree. Besides, the
nodes in the boundary domain are divided by both methods.

http://www-personal.umich.edu/~mejn/netdata/
http://arnetminer.org/lab-datasets/soinf/
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Algorithm 2. LGI-TWD Algorithm
Input: G = (V, E)
Output: Non-overlapping community structure POS

(
SubCl

)
, NEG

(
SubCl

)
.

1. Generate Sub-Communities of POS (SubC) , NEG (SubC) , BND (SubC) by
Algorithm 1;
2. Build hierarchical structure POS (SubCm) , NEG (SubCm) , BND (SubCm)

for ∀ SubCi, SubCj ∈ SubC
m = 1, Qmax = 0
Calculate GC (SubCi, SubCj)
end for
if ∃GC

(
SubCm

i , SubCm
j

)
is maximum

SGO
(
SubCm

i , SubCm
j

)

Calculate value of Q, Q = Qm+1

if Qm+1 > Qmax

then Qmax = Qm+1, l = m + 1
m ← m + 1
until SubCm include one granule
end if

3. Select a granule set SubCl with maximum Qmax, l is the layer of maximum. And
three regions POS

(
SubCl

)
, NEG

(
SubCl

)
, BND

(
SubCl

)
are formed.

For v ∈ BND
(
Sub C

l
)
do

4. According to the formula (8),calculate the belonging degree (BP , BN )
While ∃v ∈ BND, |dPN | > γ do

if dPN > γ then
POS = POS ∪ v, BND = BND − v;

else
NEG = NEG ∪ v, BND = BND − v;

End while
While ∃v ∈ BND, |dPN | < γ do

if edges between v and POS is maximum;
POS = POS ∪ v
else
NEG = NEG ∪ v

End while
end for
Return POS

(
SubCl

)
, NEG

(
SubCl

)

end

Table 1. The information of data sets

Data set Number of vertices Number of edges

Karate 34 78

Football 115 613

Dolphin 62 159

Les misrables 77 254

Book US politics 105 441

Topic16 679 1687
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Fig. 2. The connection between λ and Q in different value of γ

In Fig. 2, nineteen groups of experimental thresholds were listed. According
to Fig. 2 (a,c,d,e), we can find that with the increasing of granulation parameter
λ, the value of Q is clear better than γ = 0 or γ = 1. In Fig. 2(b), the division
result is not obvious because the dolphin data set is particularly sparse and have
less overlapping nodes.
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Fig. 3. Comparison of Q-value by different algorithms on real world networks.

In the experiments, LGI-TWD was compared with N-TWD, CACDA, GN,
NFA and LPA on the Karate, Football, Dolphin, Lesmis and Polbooks data sets.
The experimental results are shown in Fig. 3. The x-axis represents the data
sets of real world, and the y-axis represents the value of Q. Figure 3 shows that
LGI-TWD is superior to others community division algorithms in most cases.
Our algorithm is not effective on the dolphin network because this network is
particularly sparse and exists less overlapping parts.

After all, LGI-TWD algorithm not only deals with overlapping nodes in the
boundary regions, but also makes the division of the community more reasonable.

5 Conclusion

In this paper, we propose LGI-TWD algorithm to detect non-overlapping com-
munities. Sub-communities of each node v based on local group information can
be defined firstly. Then, these sub-communities which satisfy granulation coef-
ficient are hierarchically merged to construct hierarchical structure. Finally, a
further division for boundary region’s nodes can be done according to belonging
degree. Compared with others community division algorithm (N-TWD, CACDA,
GN, NFA, LPA), the experimental results on five real world social networks show
that LGI-TWD algorithm get a higher modularity value Q and can get a quite
reasonable division results.
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Abstract. Rough set theory uses three pair-wise disjoint regions to
approximate a concept. This paper adopts actionable strategies in three-
way decision with rough sets. We suggest actionable rules for transfer-
ring objects from one region to another and propose a model of opti-
mal actions based on cost-benefit analysis. Actionable strategies allow
us to transfer objects from less favourable regions to a favourable region,
so that we can reduce the boundary region and the negative region.
We design and analyze an algorithm for searching for an optimal solu-
tion. The experimental results on a real dataset show that the algorithm
has promising outcomes and objects can be effectively moved between
regions.

Keywords: Rough sets · Three-way decisions · Actionable strategies ·
Actionable rules · Actions

1 Introduction

The theory of rough sets may be interpreted in terms of three-way decisions [26–
28]. Given a set of objects X representing the instances of a concept, based
on their descriptions, we divide a universal set of objects OB into three pair-
wise disjoint regions. The positive region POS(X) consists of objects, based on
their descriptions, belonging to X and the negative region NEG(X) consists of
objects not belonging to X. For an object in the boundary region BND(X), based
on its description we cannot determine if it is in X or not. Probabilistic rough
sets [27] use a pair of thresholds to divide OB into three regions according to the
conditional probability of an object belonging to X given its description. Many
approaches have been proposed to find an optimal pair of thresholds according
to certain criteria in different applications. Examples of criteria include cost [31],
information entropy [5], Gini index [33], chi-square statistic [8], variance [2], and
other statistical measures [30].

There are two steps in the trisecting-and-acting model of three-way decisions.
The first step trisects the universal set into three pair-wise disjoint regions and
the second step adopts actions to process objects in these regions. In this paper,
we introduce the notion of actionable strategies based on actionable rules [23] and
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part II, LNAI 10314, pp. 183–199, 2017.
DOI: 10.1007/978-3-319-60840-2 13
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action rules [19] in data mining into the second step of three-way decisions with
rough sets. Specifically, by analyzing descriptions of objects in the three prob-
abilistic regions, we propose to design actionable rules for transferring objects
from one region to another. For example, if a suspected patient is determined
having a disease, that is, he or she is classified into the positive region, we will
take an action of treatment, in order to transfer the patient into the negative
region NEG(X).

Silberschatz and Tuzhilin [21] introduced the concept of actionability that
a user can react to realize his or her advantage. Ras and Wieczorkowska [19]
adopted action rules to mine profitable pattern for banks. Yang et al. [25]
introduced a postprocessing decision tree method to find actions for benefit.
Su et al. [22] searched actionable behavioral rules with a high utility. Many stud-
ies on actionable rules and action rules cover topics in data mining and machine
learning, such as association rule mining [14,20], classfication [4,6,18,19,23–25],
clustering [1,12,15,32], and outlier detecting [3,11,13]. These studies on action-
able rules and action rules provide a basis of actionable strategies in three-way
decisions.

The rest of the paper is organized as follows. Section 2 reviews the basic
concept of probabilistic rough sets and actionable rules. Section 3 proposes a
model to improve the quality of three regions. Section 4 designs and analyzes an
algorithm. Section 5 presents experimental results.

2 Three-Way Decisions with Rough Sets

This section reviews the basic idea of probabilistic rough sets in the context of
three-way decisions.

The trisecting-and-acting three-way decision model [29] suggests two steps,
i.e., trisecting and acting. The trisecting step divides a universal set into three
pair-wise disjoint regions and the acting step takes actions to process objects
in the three regions. The ideas of trisecting and acting are often used in our
daily works. Let us consider the example of election. Based on an opinion poll,
one typically divides a set of voters into three groups: voters who support the
candidate, voters who oppose the candidate, and voters who are undecided or
not willing to tell their decisions. According to the poll result, the candidate
may take actions to sustain the group of supporters, to persuade the undecided
voters, and to change the non-supporters.

2.1 Trisecting

In probabilistic rough sets, we assume that we can divide a universal set of
objects into equivalence classes based on their descriptions [10,27,31]. Let [x]
denote the equivalence class of objects that have the same description as x. Let
Pr(X|[x]) denote the conditional probability that an object is in X given that
the object is in [x], which may be computed by

Pr(X|[x]) =
|[x] ∩ X|

|[x]| , (1)
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where | · | is the cardinality of a set. Let us consider a class X ⊆ OB representing
a concept. Given a pair of thresholds (α, β) with 0 ≤ β < α ≤ 1, we divide
a universal set of objects OB into positive, boundary, and negative regions,
denoted by POS(α,β)(X), BND(α,β)(X), and NEG(α,β)(X), respectively:

POS(α,β)(X) = {x ∈ OB | Pr(X|[x]) ≥ α},

BND(α,β)(X) = {x ∈ OB | β < Pr(X|[x]) < α},

NEG(α,β)(X) = {x ∈ OB | Pr(X|[x]) ≤ β}. (2)

The pair of thresholds can be computed by using different criteria. In the Pawlak
rough sets [16], we have α = 1 and β = 0.

To get an optimal trisection π = (POS(α,β)(X),BND(α,β)(X),NEG(α,β)(X)),
we construct an objective function to measure the quality or effectiveness of three
regions as follows [8,26]:

Q(π) = wP Q(POS(α,β)(X)) + wBQ(BND(α,β)(X)) + wNQ(NEG(α,β)(X)), (3)

where Q(POS(α,β)(X)), Q(BND(α,β)(X)), and Q(NEG(α,β)(X)) are goodness
(quality, cost, or other measure) of the positive, boundary, and negative regions,
respectively, and wP , wB , and wN represent the relative importances of three
regions. The overall measure of the trisection is determined by the weighted sum
of the corresponding measure of each region. An optimal trisection is the one
that maximizes or minimizes Eq. (3). Depending on particular applications, we
may have different meaningful objective functions. The objective functions based
on cost [31], information entropy [5], and Gini index [33] should be minimized
and those based on chi-square statistic [8] and variance [2] should be maximized.
Without loss of generality, we minimize the objective function in Eq. (3) in the
rest of this paper.

2.2 Acting

In the acting step, strategies and actions for processing each region take a deci-
sion maker’s advantage. Different strategies and actions may be used in dif-
ferent applications, such as description of concept, prediction of the classes of
objects, and transferring objects between different regions. In rough set theory,
the actions for three regions are accepting objects to be in X, rejecting objects
to be in X, and making non-commitment decisions, respectively.

In this paper, we consider actionable strategies that lead to movement of
objects between different regions. Given the original trisection π=(POS(α,β)(X),
BND(α,β)(X), NEG(α,β)(X)), we can design strategies to promote movement
of objects from less preferred regions to preferred regions. Specifically, strate-
gies enable us to obtain a new trisection, denoted by π′ = (POS(α,β)(X ′),
BND(α,β)(X ′), NEG(α,β)(X ′)), where X ′ is a new set of objects obtained by
movement of objects on X and represents the same concept as X. According to
the objective function, we can search for optimal strategies by minimizing Q(π′):

min Q(π′).

Fundamental question in such a framework is to define the class of possible strate-
gies and to construct an algorithm to minimize the objective function Q(π′).
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3 Actionable Strategies for Transferring Objects

In this section, we introduce the concept of actionable rules for transferring
objects, analyze benefit and cost of actions, and provide an example to illustrate
the main idea.

3.1 Actionable Rules

We formulate actionable strategies based on the notion of a decision table.

Definition 1. A decision table is the following tuple:

S = (OB, AT = As ∪ Af ∪ {d}, {Va | a ∈ AT}, {Ia | a ∈ AT})

where OB is a nonempty finite set of objects, AT is a finite nonempty set con-
sisting of attributes composed by three subsets, in which As stands for stable
attributes, Af flexible attributes and d a decision attribute, Va is a non-
empty set of values for every attribute a ∈ AT , and Ia : OB −→ Va is a mapping.
For every x ∈ OB, an attribute a ∈ AT , and a value v ∈ Va, Ia(x) = v means
that the object x has the value v on attribute a.

In Definition 1, the set of stable attributes As consists of attributes that
their values cannot be modified, such as age, flexible attributes are attributes
that their values can be modified by actions, such as cholesterol level and blood
pressure.

Given an object x ∈ OB, [x] is the equivalence class of x based on values on
attributes As ∪ Af :

[x] = {y ∈ OB | Ia(y) = Ia(x),∀a ∈ As ∪ Af}.

Classification rules in rough set theory have X ⇒ Y form that indicates if X
then Y . Given two objects with equivalence classes [x] and [y], we can get two
classification rules:

r[x] :
[ ∧

s∈As

s = Is(x)
]

∧
[ ∧

f∈Af

f = If (x)
]

⇒ d = Id(x),

r[y] :
[ ∧

s∈As

s = Is(y)
]

∧
[ ∧

f∈Af

f = If (y)
]

⇒ d = Id(y).

The left hand side of the rule, X, is a conjunction of all stable and flexible
attribute-value pairs and the right hand side of the rule, Y , is the decision
attribute-value pair. Let ST (r[x]) be the stable attributes part in the left hand
side of the rule r[x], FL(r[x]) be the flexible attributes part in the left hand side
of the rule r[x], i.e.,

ST (r[x]) =
[ ∧

s∈As

s = Is(x)
]
,

FL(r[x]) =
[ ∧

f∈Af

f = If (x)
]
. (4)
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We use ST (r[y]) = ST (r[x]) to denote that [x] and [y] have the same values on
each stable attribute. If ST (r[y]) = ST (r[x]), then [x] and [y] can be changed to
each other by changing the flexible attributes values via actions. If a user wants
to change [x] into [y], the action is to execute the following actionable rule:

r[x] � r[y] :
�∧

f∈Af

If (x) � If (y), subject to
∧

s∈As

Is(x) = Is(y) (5)

where If (x) � If (y) means that the value of attribute f is changed from If (x)

to If (y) and the symbol
�∧

means all the flexible attributes’ values have to be
changed.

We define some concepts of actionable rule as follows.

Definition 2. An equivalence class [x] ⊆ OB is called actionable if ∃[y] ⊆
OB, [y] = [x], such that ST (r[x]) = ST (r[y]). The notation r[x] � r[y] given in
Eq. (5) is called an actionable rule that changes [x] into [y] and each clause
If (x) � If (y) for f ∈ Af is called a sub-actionable rule. [x] is called non-
actionable if �[y] ⊆ OB satisfying ST (r[x]) = ST (r[y])

In Definition 2, equivalence classes may be from different regions or the same
region. If [x] is non-actionable, then we cannot find any actionable rule for trans-
ferring [x] to a different region.

The actionable rules can be used to design actions to transfer objects between
regions. The action process does not change the classification rules generated in
trisecting step. In this paper, we analyze benefit and cost from actionable rules.
We also call actionable rule as action and sub-actionable rule as sub-action.

3.2 Cost-Benefit Analysis of Actions

Each action incurs cost and brings benefit. The motivation of taking actions is
to minimize the objective function by least cost. Therefore, we can define the
benefit as follows:

B = Q(π) − Q(π′), (6)

where π′ is a new trisection after taking some actions on π.
We use misclassification cost matrix in Table 1, in which λPP , λBP , λNP indi-

cate the costs of classifying an object in X to the positive, boundary, and negative
regions, respectively. Others are explained similarly. Therefore, the qualities of
three regions can be computed by:

Q(POS(α,β)(X)) = |X ∩ POS(α,β)(X)|λPP + |XC ∩ POS(α,β)(X)|λPN ,

Q(BND(α,β)(X)) = |X ∩ BND(α,β)(X)|λBP + |XC ∩ BND(α,β)(X)|λBN ,

Q(NEG(α,β)(X)) = |X ∩ NEG(α,β)(X)|λNP + |XC ∩ NEG(α,β)(X)|λNN .(7)
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Table 1. Misclassification cost matrix.

POS BND NEG

X λPP λBP λNP

XC λPN λBN λNN

We now analyze the benefit of one actionable rule r[x] � r[y]. Let a denote
the number of objects in [x] belonging to class X and b the number of objects
in changed [x] belonging to class X ′:

a = |X ∩ [x]|,
b = |X ′ ∩ [x]|, (8)

where X ′ is a new set of objects obtained by changing [x] into [y], representing
the same concept as X. We use Eq. (1) to compute a and use an assumption to
compute b:

(A1) After taking an action r[x] � r[y], the changed equivalence class [x] will
have the same probability with [y]’s, i.e., Pr(X ′|[x]) = Pr(X|[y]).

The idea of this assumption can be explained by an example. Some people in
Canada will change all season tires to winter tires for their cars in winter due to
safety. This assumption suggests that replacing to winter tires will improve the
safety level to the level of those cars using winter tires. Therefore, after taking
action r[x] � r[y], b can be computed by:

b = |X ′ ∩ [x]| = |[x]|Pr(X ′|[x]) = |[x]|Pr(X|[y]) = |[x]||X ∩ [y]|/|[y]|. (9)

Further, we have the following proposition:

Proposition 1. Taking any action r[x] � r[y] to transfer objects from region V
to W , the benefit is computed by:

Br[x]�r[y] = wW

[− bλWP − (|[x]| − b)λWN

]
+ wV

[
aλV P + (|[x]| − a)λV N

]
, (10)

where V,W ∈ {P,B,N}, in which P , B, and N represent positive, boundary,
and negative regions, respectively.

The notation Br[x]�r[y] indicates the benefit of action r[x] � r[y].
There are many types of cost involved with changing attribute values, such as

money, time, and other resources. We suppose that all kinds of cost associated
with a sub-action If (x) � If (y) can be synthesized as one cost defined by a
function Cf :

Cf : Vf × Vf −→ �, ∀f ∈ Af .

For each f ∈ Af , Cf (v1, v2) denotes the cost of changing the value of attribute f
from v1 to v2 and Cf (v1, v2) does not have to be equal to Cf (v2, v1). Generally,
the cost functions {Cf | f ∈ Af} are given by domain experts and they have no
impact on the misclassification cost.
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Further, we use two assumptions:

(A2) Value changings among different attributes are independent, which means
the value changing of one attribute will not affect others.

(A3) All actions are independent, which means any action will only affect two
equivalence classes, all other equivalence classes will not be affected.

Assumption (A2) allows us to calculate the cost of transferring one object by
simply summing all sub-action costs up. For example, the cost of transferring an
object from [x] to [y] is: ∑

f∈Af

Cf (If (x), If (y)). (11)

Let Cr[x]�r[y] denote the cost of action r[x] � r[y] and it can be computed by:

Cr[x]�r[y] = |[x]|
∑

f∈Af

Cf (If (x), If (y)). (12)

Assumption (A3) allows us to calculate and analyze the benefit and cost
of any action independently. Based on this assumption, given any two actions
r[x] � r[y] and r[p] � r[q], whether or not we take action r[p] � r[q], the Br[x]�r[y]

and Cr[x]�r[y] will not be changed.

3.3 An Illustrative Example

Table 2 is an example decision table describing the relation between a heart
disease and some symptoms. The table consists of 9 people (rows), 3 symptoms
or attributes (columns), and a diagnosis. Chol and Bp stand for cholesterol level
and blood pressure, respectively. The first three attributes are symptoms and
the last column is the diagnosis result of the heart disease. Symbols + and −
denote that a suspected patient does not have heart disease and has the heart
disease, respectively.

Table 2. A decision table for medicine.

# Gender Chol Bp Result

o1 Female Medium Normal +

o2 Female Medium Normal −
o3 Female Low Normal +

o4 Female Low Normal −
o5 Female Low Normal −
o6 Female Medium Low +

o7 Female High High −
o8 Male High Low −
o9 Male Low Normal +
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Table 3. Cost matrix.

POS BND NEG

X 2 4 8

XC 11 9 8

According to this table, As = {Gender}, Af = {Chol,Bp}, and d = Result,
Vd = {+,−}, and OB = {o1, o2, · · · , o9}. We can get following equivalence
classes: [o1] = {o1, o2}, [o3] = {o3, o4, o5}, [o6] = {o6}, [o7] = {o7}, [o8] = {o8},
and [o9] = {o9}. Their conditional probabilities are 0.5, 0.3, 1.0, 0.0, 0.0, and
1.0, respectively with regard to X = {oi ∈ OB | Id(oi) = +} = {o1, o3, o6, o9}.
Given cost matrix in Table 3, we can compute (α, β) = (0.5, 0.2) that minimizes
the objective function and three regions are constructed:

POS(0.5,0.2)(X) = {x ∈ OB | Pr(X|[x]) ≥ 0.5} = {o1, o2, o6, o9},

BND(0.5,0.2)(X) = {x ∈ OB | 0.2 < Pr(X|[x]) < 0.5} = {o3, o4, o5},

NEG(0.5,0.2)(X) = {x ∈ OB | Pr(X|[x]) ≤ 0.2} = {o7, o8}.

Now, we consider to transfer [o7] ⊆ NEG(X) to POS(X). There are two
actions that can transfer it: r[o7] � r[o1] and r[o7] � r[o6]. The cost functions
CChol and CBp are given in Table 4 and Table 5, respectively.

Table 4. Cost function CChol.

Low Medium High

Low 0 1 3

Medium 2 0 1

High 4 1 0

Table 5. Cost function CBp.

Low Normal High

Low 0 1 2

Normal 1 0 1

High 2 1 0

Then the costs of these two actions can be computed as follows according to
Eq. (12):

Cr[o7]�r[o1] = |[o7]|(CChol(high,medium) + CBp(high, normal)) = 2,
Cr[o7]�r[o6] = |[o7]|(CChol(high,medium) + CBp(high, low)) = 3.

Now, we compute the benefits of two actions. According to Eq. (10) and using
wP = wB = wN = 1, we can get:

Br[o7]�r[o1] = wP

[ − bλPP − (|[o7]| − b)λPN

]
+ wN

[
aλNP + (|[o7]| − a)λNN

]
= −0.5 ∗ 2 − (1 − 0.5) ∗ 11 + 0 ∗ 8 + (1 − 0) ∗ 8 = 1.5,

Br[o7]�r[o6] = wP

[ − bλPP − (|[o7]| − b)λPN

]
+ wN

[
aλNP + (|[o7]| − a)λNN

]
= −1 ∗ 2 − (1 − 1) ∗ 11 + 0 ∗ 8 + (1 − 0) ∗ 8 = 6.

Obviously, action r[o7] � r[o1] has less cost but less benefit and r[o7] � r[o6] has
both larger cost and benefit.
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4 An Optimization-Based Solution

There are different criteria in different applications. For example, one may want
to enlarge positive region, one may want to reduce boundary region, and one may
want to simultaneously enlarge one region and reduce another. In this paper, we
consider to enlarge positive region.

4.1 The Optimal Solution

Given any actionable equivalence class [xi] ⊆ OB, i = 1, · · · , n, there may
exist many equivalence classes [y1], · · · , [yni

] satisfying ST (r[xi]) = ST (r[yj ]),
j = 1, · · · , ni. Therefore, we may have many action options to transfer [xi] and
they have different benefits and costs. We use cij and bij to denote the cost and
benefit of action r[xi] � r[yj ], j = 1, · · · , ni, respectively and use aij ∈ {0, 1}
to indicate taking or not taking the [xi]’s jth action. For example, c23 denotes
the cost of [x2]’s 3rd action, b35 denotes the benefit of [x3]’s 5th action, a24 = 1
indicates that [x2]’s 4th action is taken, and a21 = 0 indicates that [x2]’s 1st

action is not taken. For all actions transferring [xi], we may take none or one of
them. In other words, given [xi], all aij satisfy

∑ni

j=1 aij ≤ 1, aij ∈ {0, 1}.
We want to find a solution that maximizes the benefit when we have limited

cost. Based on these notations, we define the optimal solution as follows:

Definition 3. Given a trisection π, actionable equivalence class [xi] has ni

actions, and the cost and benefit of [xi]’s jth action are denoted as cij and bij,
respectively, j = 1, · · · , ni. The optimal solution with maximum benefit under
limited action cost ca is to find a set of aij that

max
n∑

i=1

ni∑
j=1

aijbij , subject to
n∑

i=1

ni∑
j=1

aijcij ≤ ca,

where
ni∑

j=1

aij ≤ 1, aij ∈ {0, 1}, i = 1, · · · , n.

Definition 3 formulates a wide range of constrained optimization problems in
real applications. For example, a company may have limited budget to make
maximum profit from a product and a government may have limited resources
to improve a social problem.

The problem defined in Definition 3 is similar to the multiple-choice knap-
sack problem (MCKP) [17], where the constraint of aij in our problem is looser
(MCKP requires

∑ni

j=1 aij = 1, aij ∈ {0, 1}, i = 1, · · · , n). Suppose there are
n actionable equivalence classes and each has m actions, then the exhaustive
search for the solution has to check mn combinations. Due to the similarity to
the MCKP, it is also NP-hard to find the optimal solution of the problem in
Definition 3.
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4.2 Algorithm

To efficiently search for an approximate optimal solution of Definition 3, a
dynamic programming based strategy can be adopted. Suppose we have n action-
able equivalence classes given in an order, denoted as [x1], · · · , [xn]. Any order
can be used and will not affect the result of algorithm. Let f(i, k) denote the
maximum benefit for the first i actionable equivalence classes (i.e., [x1], · · · , [xi],
i ≤ n) and k is the limited action cost (k ≤ ca). Therefore, f(n, ca) is the
maximum benefit under limited cost ca. Suppose we know all the values of
f(i − 1, k′), k′ = 0, · · · , k (i.e., the maximum benefit when we have the first
i − 1 equivalence classes under different limited action costs from 0 to k). To
calculate the maximum benefit when we take the ith equivalence class [xi] into
account, we have to consider all [xi]’s actions and the f(i, k) will be computed
as the maximum one from the following ni + 1 cases:

(0) f(i, k) = f(i − 1, k), if none of [xi]’s action is taken;
(1) f(i, k) = f(i − 1, k − ci1) + bi1, if [xi]’s first action is taken;
(2) f(i, k) = f(i − 1, k − ci2) + bi2, if [xi]’s second action is taken;

· · ·
(ni) f(i, k) = f(i − 1, k − cini

) + bini
, if [xi]’s last action is taken.

We define ci0 = 0 and bi0 = 0, i = 0, · · · , n, i.e., there are no benefit and cost
if we do not take any [xi]’s action. Thus, the first case (0) can be rewritten in
the same form as others, i.e., f(i, k) = f(i − 1, k − ci0) + bi0. By synthesising all
cases, f(i, k) is computed by:

f(i, k) = max{f(i − 1, k − cij) + bij | cij ≤ k}, j = 0, · · · , ni.

The number j that maximizes f(i, k) is chosen, which means [xi]’s jth action is
taken:

aij =

{
1, j = arg max

l=0,··· ,ni

{f(i − 1, k − cil) + bil | cil ≤ k};

0 otherwise.
(13)

This is an iterative strategy gradually reducing the size of problem (i.e., the
number of equivalence classes). That is, to compute f(i, k), we have to know
f(i − 1, 0), · · · , and f(i − 1, k), and to compute f(i − 1, k), we have to know
f(i − 2, 0), · · · , and f(i − 2, k). Finally, the base conditions f(0, 0), · · · , f(0, k)
will be reached. We define f(0, k) = 0, k = 0, · · · , ca, because there is no benefit
when no equivalence class can be transferred. Thus, a complete iterative formula
for computing f(i, k) can be formulated as follows:

f(i, k) =
{

0 if i = 0;
max{f(i − 1, k − cij) + bij | cij ≤ k}, j = 0, · · · , ni otherwise.

(14)
We continue to use previous example to show how the strategy works.
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Table 6. A list of all actionable equivalence classes with costs and benefits from Table 2.

[o3] bij cij
r[o3] � r[o1] 2.5 3
r[o3] � r[o6] 16 6

[o7] bij cij
r[o7] � r[o1] 1.5 2
r[o7] � r[o6] 6 3

[o8] bij cij
r[o8] � r[o9] 6 5

Example 1. We consider enlarging positive region by transferring objects from
NEG(X) and BND(X) to POS(X). Based on Table 2, we list all benefits and
costs with regard to actionable equivalence classes in Table 6.

Suppose the limited cost ca = 10, therefore the task is to find f(3, 10).
We compute all values of f(i, k) in a table by considering equivalence classes
one by one. Without losing generality, we use order: [o3], [o7], [o8] and notations
[x1] = [o3], [x2] = [o7], and [x3] = [o8]. In the beginning, i = 0. According to
Eq. (14), we have Table 7, in which column [xi] shows equivalence classes, column
cij and bij are action costs and benefits, respectively, and columns from k = 1 to
10 stand for different action cost k from 1 to ca. The [x0] does not exist, we use
it as a symbol to compute f(i, k). The first row is the base condition computed
by f(0, k) = 0, k = 1, · · · , 10 according to Eq. (14).

Table 7. A maximum benefit computing table when i = 0.

[xi] cij bij k = 1 2 3 4 5 6 7 8 9 10

[x0] 0 0 0 0 0 0 0 0 0 0 0 0

Next, we take [x1] into account and get Table 8 according to Eq. (14). We
provide the computations of cell f(1, 1) and f(1, 10) here, other cells are similar.
To compute f(1, 1), the current limited action cost is k = 1, there is no [x1]’s
action has cost less than 1. Therefore, 0(0) is written into the cell (1, 1), the
row of [x0] is not counted here, which means the first row is the row of [x1].
The first number 0 denotes benefit, the second number 0 in the parenthesis
denotes the sequence number of action that is taken to get such benefit, i.e., j, 0
means that no action is taken. Similarly, when k = 10, we have three options for
f(i − 1, k − cij) + bij , where i = 1 and j = 0, · · · , 2. The values are 0(0), 2.5(1),
and 16(2), respectively. Therefore, f(1, 10) = max{0, 2.5, 16} = 16 and 16(2) is
written into the cell (1, 10).

Table 8. A maximum benefit computing table when i = 1.

[xi] cij bij k = 1 2 3 4 5 6 7 8 9 10

[x0] 0 0 0 0 0 0 0 0 0 0 0 0

[x1] 3, 6 2.5, 16 0(0) 0(0) 2.5(1) 2.5(1) 2.5(1) 16(2) 16(2) 16(2) 16(2) 16(2)
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By repeating the procedure for [x2] and [x3], we get Table 9. The maximum
benefit is in the bottom right cell of the table, i.e., f(3, 10) = 22. It is worth
mentioning that the optimal solution may be not unique.

Table 9. The complete maximum benefit computing table.

[xi] cij bij k = 1 2 3 4 5 6 7 8 9 10

[x0] 0 0 0 0 0 0 0 0 0 0 0 0
[x1] 3,6 2.5,16 0(0) 0(0) 2.5(1) 2.5(1) 2.5(1) 16(2) 16(2) 16(2) 16(2) 16(2)
[x2] 2,3 1.5,6 0(0) 1.5(1) 6(2) 6(2) 6(2) 16(0) 16(0) 17.5(1) 22(2) 22(2)
[x3] 5 6 0(0) 1.5(0) 6(0) 6(0) 6(0) 16(0) 16(0) 17.5(0) 22(0) 22(0)

Once the maximum benefit is found, the associated set of actions to obtain
this benefit, i.e., the set of aij , can be inferred reversely. According to Table 9, the
maximum benefit 22 is reached by taking none of [x3]’s action. Thus, we consider
f(3 − 1, 10) = f(2, 10). We get 22(2) in cell (2, 10) and it indicates [x2]’s 2nd

action is taken. Then we get rest cost 7 by subtracting cost 3 (the taken action’s
cost c22 = 3) from 10. Next, we check the cell of f(2 − 1, 10 − 3) = f(1, 7)
and we get 16(2), it shows that [x1]’s 2nd action is taken. Finally, by checking
f(1−1, 7−6) = f(0, 1) = 0, we reach the top row, inferring procedure completes.
We get a22 = 1 and a12 = 1 and all other aij are 0. In other words, the optimal
solution with maximum benefit 22 under limited cost 10 is realized by taking
following actions:

r[o7] � r[o6] and r[o3] � r[o6].

The inferring procedure is indicated by arrows in Table 9.
According to the strategies analyzed above, an algorithm is designed and

shown in Algorithm 1. The algorithm consists of three parts. Part one is from
line 1 to line 4, it computes all action costs and benefits for each actionable
equivalence class. The second part is from line 6 to line 22, it is the main part of
the algorithm computing the complete maximum benefit table (i.e., f(i, k)). The
last part is from line 24 to line 33, it infers actions (i.e., aij) which are taken to
obtain the maximum benefit. h(i, k) is an action table associated with f(i, k) by
simply collecting all numbers in parentheses of Table 9. For example, h(2, 4) = 3
means that [x2]’s 3rd action maximizes the benefit when action cost is limited
at 4. Thus, the last part of the algorithm is accomplished by h(i, k) table.

The function floor(a) offers the largest integer less than a. It is used to
ensure that the column index floor(k − cij) is always an integer. Because the
action cost cij may be a decimal number in real applications. Thus, k − cij as
a column index might be a decimal number, this makes an incorrect reference
to a cell (i − 1, k − cij). By using floor(·), each reference to a cell gets an equal
or less benefit than the maximum benefit that can be obtained. Therefore, the
computed maximum benefit from the algorithm is an approximate value that is
equal to or less than the real maximum benefit. Suppose B′ is the real maximum
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Algorithm 1. Compute maximum benefit under limited action cost.
input : Trisection π, cost matrix, cost functions, and limited action cost ca.
output: B, aij . //B is the approximate maximum benefit.

1 foreach [xi] ⊆ BND(X) ∪ NEG(X) do
2 Find all [y1], · · · , [yni

] ∈ POS(X), where ST (r[xi]) = ST (r[yj ]), j = 1, · · · , ni;

3 let cij = Cr[xi]
�r[yj ]

, bij = Br[xi]
�r[yj ]

;

4 end
5 let f(0, k) = 0, h(0, k) = 0, where k = 0, · · · , ca; //f and h are benefit table and action

table, respectively.
6 for i = 1 to n do
7 for k = 1 to ca do
8 let b = 0, t = f(i − 1, k), p = 0; //temporary variables;
9 for j = 1 to ni do

10 if cij ≤ k then
11 b = f(i − 1, floor(k − cij)) + bij ;
12 else
13 b = 0;
14 endif
15 if b > t then
16 t = b;
17 p = j;

18 endif

19 end
20 let f(i, k) = t, h(i, k) = p;

21 end

22 end
23 let B = f(n, ca), k = ca, all aij = 0;
24 for i = n to 0 do
25 if k ≤ 0 then
26 break;
27 endif
28 let t = h(i, k);
29 if t > 0 then
30 let ait = 1;

31 let k = floor(k − cit); //cit is the ith equivalence class’ tth action’s action cost.

32 endif

33 end
34 Output B and aij .

benefit, B is the benefit obtained by Algorithm1, they satisfy (B′−ca) < B ≤ B′.
Specifically, we have B = B′ when all cij are integers.

The time complexity analysis of Algorithm1 is straightforward. In the first
part of the this algorithm, each equivalence class in BND(X) ∪ NEG(X) has
to check all equivalence classes in POS(X) by comparing all attributes’ val-
ues. Therefore, the maximum computation of this part is |POS(X)||BND(X) ∪
NEG(X)||As ∪ Af |, or simply denoted as |OB|2|AT |. The second part has three
nested loops, the computation is ncam, where m is the average of all ni, i.e.,
m = 1/n

∑n
i=1 ni. The last part has one loop and its computation is n. Over-

all, the algorithm reduces the time complexity from NP-hard to polynomial by
searching for an approximate optimal solution.

5 Experimental Results

We use heart disease Cleveland data set [9], which has 303 people, 13 symptoms,
and one diagnosis. Three attributes, age, sex, and ca (i.e., number of major
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vessels) are recognized as stable attributes, others are flexible. The values of some
attributes are grouped and reassigned as follows. Age is categorized into 5 groups,
i.e., 0–20, 21–39, 40–59, 60–79, and 80+, they are reassigned to values 1 to 5
respectively. Cholesterol is categorized into 3 groups: 0–199, 200–239, and 240+,
they are reassigned to values 1 to 3 respectively. Blood pressure is categorized
into 3 groups: 0–89, 90–139, and 140+, they are reassigned to 1 to 3 as well.
Maximum heart rate is categorized into 3 groups: 0–149, 150–209, and 210+,
they are reassigned to 1, 3, and 5, respectively. All missing values are filled with
most often appeared values. The decision attribute has 5 categories, valued from
0 to 4, in which only the value 0 means healthy. Therefore, we construct three
regions to approximate the concept of healthy people X = {x ∈ OB | Id(x) = 0}.
Table 10 is used to compute the quality of three regions. We use cost functions
Cf (v1, v2) = |v1 − v2| for all flexible attributes.

Table 10. Cost matrix for experiments.

POS BND NEG

X 1 10 25

XC 100 60 40

Two experiments are studied based on this setting, one is to compare the
performances of our algorithm and random-action-select method, the other is
to show the relation between cost and the number of transferred objects. The
experimental results are shown in Fig. 1. All lines in Fig. 1(a) and (b) are drawn
by connecting the points that have step of 10 on x-axis, i.e., limited cost.
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Fig. 1. Results of two experiments. (Color figure online)

In Fig. 1(a), the solid line shows the result of Algorithm1 and every dot
shows the obtained benefit by randomly choosing actions under a limited cost.
Obviously, our algorithm has overwhelming outcomes. The algorithm reaches
the maximum benefit when cost is about 630, the random method needs almost
twice cost to obtain it. In Fig. 1(b), the black solid line, red dashed line, and blue
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solid line indicate the numbers of objects in POS(X ′), NEG(X ′), and BND(X ′),
respectively. By increasing the cost, objects are gradually transferred from nega-
tive region and boundary region to positive region. When the cost reaches about
630, three regions get to a stable status, no object will be transferred. This
is because the rest equivalence classes of objects in negative region are non-
actionable. In this status, the POS(X ′), BND(X ′), and NEG(X ′) regions have
about 280, 0, and 20 objects, respectively. Most objects in less favourable regions
are transferred into favourable region.

6 Conclusion

The transitional probabilistic rough sets focus on searching for an optimal tri-
section of the universal set of objects based on an objective function. In this
paper, we adopt actions to facilitate movement of objects between regions. The
movement of objects reflects a change of the original set of objects representing
a concept to a new set of objects. Such movement leads to a new trisection and
can improve the qualities of three regions.

By cost-benefit analysis of actions, a dynamic programming based algorithm
is designed to search for optimal actions. Such optimal actions can produce max-
imum benefit under limited cost. The algorithm has polynomial time complexity.
The experimental results on a real dataset show that the algorithm has promising
outcomes and objects can be effectively moved between regions.

In the future, we will study more constrained optimization problems and
movement patterns in real applications. The action cost is strongly related to
attributes and we prefer to find a reduct with low cost attributes. Therefore, an
addition strategy based reduct construction method [7] may be used to minimize
action costs.
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Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS,
vol. 8818, pp. 535–546. Springer, Cham (2014). doi:10.1007/978-3-319-11740-9 49

8. Gao, C., Yao, Y.Y.: Determining thresholds in three-way decisions with chi-square
statistic. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS, vol. 9920, pp. 272–281.
Springer, Cham (2016). doi:10.1007/978-3-319-47160-0 25

9. Gennari, J.H., Langley, P., Fisher, D.: Models of incremental concept formation.
Artif. Intell. 40, 11–61 (1989)

10. Grzymala-Busse, J.W., Clark, P.G., Kuehnhausen, M.: Generalized probabilistic
approximations of incomplete data. Int. J. Approx. Reason. 55, 180–196 (2014)

11. He, Z., Xu, X., Huang, J.Z., Deng, S.: Mining class outlier: concepts, algorithms
and applications in CRM. Expert Syst. Appl. 27(11), 681–697 (2004)

12. Jonker, J.-J., Piersma, N., Van den Poel, D.: Joint optimization of customer seg-
mentation and marketing policy to maximize long-term profitability. Expert Syst.
Appl. 27(2), 159–168 (2004)

13. Knorr, E.M., Ng, R.T.: Finding intentional knowledge of distance-based outliers.
In: VLDB 1999, pp. 211–222 (1999)

14. Liu, B., Hsu, W., Ma, Y.: Identifying non-actionable association rules. In: Proceed-
ings of the 7th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pp. 329–334 (2001)

15. Mishra, N., Ron, D., Swaminathan, R.: A new conceptual clustering framework.
Mach. Learn. 56, 115–151 (2004)

16. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishers, Dordrecht (1991)

17. Pisinger, D.: Algorithms for Knapsack Problems. Ph.D. thesis, University of Copen-
hagen, Department of Computer Science (1995)

18. Ras, Z.W., Tsay, L.S.: Discovering extended action-rules (System DEAR). In:
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Abstract. We present a new method for constructing and interpreting
rough set approximations in an incomplete information table in four
steps. Step 1: we introduce the notion of conjunctively definable concepts
in a complete table. Step 2: we suggest a slightly different version of
Pawlak rough set approximations in a complete table by using the family
of conjunctively definable concepts. Step 3: we adapt a possible-world
semantics that interprets an incomplete table as a family of complete
tables. Correspondingly to conjunctively definable concepts in a complete
table, we introduce the notion of conjunctively definable interval concepts
in an incomplete table. Step 4: we study rough set approximations in an
incomplete table by using the family of conjunctively definable interval
concepts. Our method focuses on a conceptual understanding of rough
set approximations for the purpose of rule induction. It avoids difficulties
with existing approaches with respect to semantical interpretations.

1 Introduction

Analyzing an incomplete information table for rule induction is an important
topic in rough set theory. Following Pawlak’s formulations of rough set approx-
imations using equivalence relations in a complete table [18,19], the majority of
commonly used approaches is to construct a similarity or tolerance relation on a
set of objects and to define generalized rough set approximations by using simi-
larity classes. A fundamental difficulty with this type of approaches is that a par-
tially defined similarity relation does not truthfully and fully reflect the available
partial knowledge given in an incomplete table. For this reason, many authors
have proposed and studied different definitions of similarity relations [3,7,9–
12,17,21,22]. However, those solutions are not entirely satisfactory. It is nec-
essary to study the family of all possible similarity relations in an incomplete
table [13].

Yao [24] argued that there are two sides of rough set theory. The conceptual
formulation focuses on the meanings of various concepts and notions of rough
set theory. The computational formulation focuses on methods for constructing
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these concepts and notions. Pawlak’s formulation based on an equivalence
relation in a complete table is an example of computational formulations.
A conceptual formulation of rough sets uses a description language and explains
rough set approximations in terms of the definability of sets under the descrip-
tion language [3,4,15,24]. To obtain a semantically sound and superior inter-
pretation of rough set approximations in an incomplete table, we adopt the
notion of a possible-world semantics of an incomplete table, that is, we truth-
fully represent an incomplete table by using a family of all its possible complete
tables. The possible-world semantics of an incomplete table was used in inter-
preting incomplete databases by Lipski [14]. Several authors, for example, Li and
Yao [13], Sakai et al. [16,20] and Hu and Yao [8], have adopted this semantics to
study rough sets. By representing an incomplete table as a family of complete
tables, we have an advantage of simply using any existing approaches to analyze
an incomplete table, without the need to introduce new approaches. With the
possible-world semantics of an incomplete table, we have shown earlier that, cor-
respondingly to definable sets, one has the notion of definable interval sets [8].
Continuing with our study, in this paper we investigate rough set approximations
by using definable interval concepts.

There are two formulations of rough sets. One uses a pair of lower and upper
approximations. The other uses three pair-wise disjoint positive, boundary and
negative regions. The latter has led to the introduction of three-way decisions
with rough sets [25,26]. The positive and negative regions can be used to learn
acceptance and rejection (i.e., rule-out) rules, respectively. However, we cannot
learn such acceptance or rejection rules from the boundary region. Therefore, it
is sufficient and meaningful to investigate, in this paper, only the positive and
negative regions.

For simplicity, we only consider conjunctive rules in which the left-hand-side
of a rule contains only logic conjunctions. We only study conjunctively definable
concepts in a complete table and conjunctively definable interval concepts in an
incomplete table. This enables us to arrive at the main results of this paper:
rough set approximations are families of conjunctively definable concepts in a
complete table and are families of conjunctively definable interval concepts in
an incomplete table.

2 Conjunctively Definable Concepts and Rule Induction

An important task in rough set theory is to construct decision rules to classify
objects. The left-hand-side of a conjunctive decision rule is a conjunction of con-
ditions. For such a purpose, we introduced the notion of structured rough set
approximations in a complete information table by using conjunctively defin-
able concepts [28]. Compared with Pawlak rough set approximations [18,19],
the structured approximations not only give the same definable part of a given
set but also reveal their internal structure in terms of conjunctively definable
concepts. This facilities the learning process of decision rules.
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2.1 Conjunctively Definable Concepts in a Complete Information
Table

An information table provides the context for concept analysis with rough
sets [23]. According to whether the information is complete or not, there are
two types of information tables, namely, complete and incomplete information
tables. Formally, a complete information table T is represented by a tuple:

T = (OB,AT, {Va | a ∈ AT}, {Ia : OB → Va | a ∈ AT}), (1)

where OB is a finite nonempty set of objects as rows, AT is a finite nonempty
set of attributes as columns, Va is the domain of an attribute a ∈ AT and Ia is
an information function mapping each object to a unique value in the domain
of the attribute a.

A description language is commonly used to describe the objects in an infor-
mation table. In this paper, we consider a description language DL0 that contains
only logic conjunctions and is a sublanguage of the commonly used one in rough
set analysis [3,4,14,15,18,24]:

(1) Atomic formulas : ∀ a ∈ AT, v ∈ Va, (a = v) ∈ DL0;
(2) If p, q ∈ DL0, and p and q do not share any attribute, then p ∧ q ∈ DL0.

By demanding that p and q do not share any attribute, we actually consider a
subset of conjunctive formulas in which each attribute appears at most once.

Given a formula in DL0, an object satisfies the formula if it takes values on
the corresponding attributes as specified by the formula. Formally, for an object
x ∈ OB, an attribute a ∈ AT , a value v ∈ Va and two formulas p, q ∈ DL0, the
satisfiability |= is defined as:

(1) x |= (a = v) iff Ia(x) = v;
(2) x |= p ∧ q iff x |= p and x |= q. (2)

The set of objects satisfying a formula describes the semantics or meaning of the
formula.

Definition 1. Given a formula p ∈ DL0, the following set of objects:

m(p) = {x ∈ OB | x |= p}, (3)

is called the meaning set of p.

Finding the meaning set of a formula is an easy task. However, given an
arbitrary set of objects, there might not be a formula in the description language
whose meaning set contains exactly these given objects. In other words, such a
set cannot be described or defined with respect to the description language.
In this sense, we may divide all sets of objects into two categories by their
definability, that is, definable and undefinable sets. According to the school of
Port-Royal Logic [1,2], a concept is represented by a pair of its intension and
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extension, where the intension describes the properties of the concept and the
extension is the set of instances of the concept. Based on the ideas from formal
concept analysis, Yao [23] represented a conjunctively definable concept as a
pair of a conjunctive formula and the corresponding conjunctively definable set,
which makes the meaning of the set explicit for the purpose of rule induction.
D’eer et al. [3,4] adopted the conjunctively definable concepts and presented a
semantically sound approach to Pawlak rough set and covering-based rough set
models, which focuses on the conceptual understanding of those models.

Definition 2. A pair of a formula and a set of objects (p,X) is a conjunctively
definable concept if p ∈ DL0 and X = m(p). The set m(p) is called a conjunc-
tively definable set.

The family of all conjunctively definable concepts is denoted by
CDEF(OB) = {(p,m(p)) | p ∈ DL0}. It should be noted that a conjunctively
definable set may be defined by more than one formula.

2.2 Approximating a Set by Structured Positive and Negative
Regions

Suppose that a subset of objects X ⊆ OB consists of instances of a concept, that
is, X is the extension of the concept. A fundamental issue of rough set theory is
to describe the concept or its extension X by using definable concepts or sets.
With respect to the family of conjunctively definable concepts CDEF(OB), we
use a pair of positive and negative regions to approximate X. Instead of using the
standard definition, we adopt the definition of structured approximations [28].

Definition 3. Given a set of objects X ⊆ OB, the following families of con-
junctively definable concepts:

SPOS(X) = {(p,m(p)) ∈ CDEF(OB) | m(p) ⊆ X,m(p) �= ∅},
SNEG(X) = {(p,m(p)) ∈ CDEF(OB) | m(p) ⊆ Xc,m(p) �= ∅}, (4)

are called the structured positive and negative regions of X, respectively.

Figure 1 demonstrates the relationships between a conjunctively definable
set m(p) in the structured positive and negative regions and the set of objects
X, respectively. To construct the structured positive region, we collect all con-
junctively definable concepts whose extensions are included in the given set of
objects. In this way, we explicitly indicate the composition of the family of con-
junctively definable concepts used to approximate the given set. Similarly, to
construct the structured negative region, we collect all conjunctively definable
concepts whose extensions are included in the complement set of the given set
of objects. There might be two conjunctively definable concepts with the same
conjunctively definable set but different formulas. We include all the possible
formulas for a conjunctively definable set in defining a region. There might be
redundant conjunctively definable concepts in each of the two regions.
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Fig. 1. Relationships between X and m(p) in the two regions

The structured positive and negative regions cover the same sets of objects
as defined by the lower approximation of X and Xc, respectively, in Pawlak’s
framework [18,19], that is:

apr(X) =
⋃

{m(p) | (p,m(p)) ∈ SPOS(X)},
apr(Xc) =

⋃
{m(p) | (p,m(p)) ∈ SNEG(X)}. (5)

They also cover the same sets of objects in the standard unstructured positive
and negative regions of X, that is, POS(X) and NEG(X), respectively [25]:

POS(X) =
⋃

{m(p) | (p,m(p)) ∈ SPOS(X)},
NEG(X) =

⋃
{m(p) | (p,m(p)) ∈ SNEG(X)}. (6)

The two sets of objects POS(X) and NEG(X) may not contain all objects in
OB. The set

BND(X) = (POS(X) ∪ NEG(X))c (7)

is the boundary region of X. We define the structured boundary region as follows:

SBND(X) = {(p,m(p)) ∈ CDEF(U) | m(p) ⊆ BND(X),m(p) �= ∅}. (8)

If we want to define the structured boundary region of X by using X directly, we
need to consider conjunctively definable concepts with specific properties. The
details are omitted in this paper.

2.3 Acceptance and Rejection Rules

According to the three regions, we can construct a three-way decision model
for rough set theory [25]. From the positive region, we build rules of acceptance
for accepting an object to be an instance of the concept represented by X by
examining the descriptions of the object. In the same way, we can build rules of
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rejection for rejecting an object to be an instance of the concept represented by
X. For the boundary region, we cannot make such a definite decision. For this
reason, in this paper, we are not interested in building rules from the boundary
region.

Given a set of objects X ⊆ OB, we can build two sets of acceptance and
rejection rules from the structured positive and negative regions, respectively.
The explicit representation of the intension of a conjunctively definable concept
in the structured regions makes this task much simpler. From a conjunctively
definable concept (p,m(p)) in the structured positive region SPOS(X), one may
immediately get an acceptance rule by taking the formula p as the left-hand-side,
that is:

If an object x satisfies p, then accept x ∈ X, denoted by p → X. (9)

Similarly, from a conjunctively definable concept (q,m(q)) in the structured
negative region SNEG(X), one may immediately get a rejection rule by taking
the formula q as the left-hand-side, that is:

If an object x satisfies q, then reject x ∈ X, denoted by q → ¬X. (10)

Since there might be redundancy in the two regions, redundant rules may exist
in the derived sets of acceptance and rejection rules. Removing redundant rules,
that is, finding a rule redundant, is a future research topic.

3 Approximations in an Incomplete Information Table

The notion of definable interval sets was presented to investigate the defin-
ability in an incomplete information table [8]. By considering the conjunctive
formulas, we present the notion of conjunctively definable interval concepts
and use it to define two types of structured positive and negative regions to
approximate a set of objects in an incomplete information table. Our approach
focuses on a conceptual understanding of the approximations with incomplete
information.

3.1 Conjunctively Definable Interval Concepts

An interval set is typically defined by a lower bound and an upper bound [27].
The interval set contains the family of all sets between the two bounds.

Definition 4. Suppose OB is a universe of objects. An interval set is defined by:

A = [Al, Au] = {A ⊆ OB | Al ⊆ A ⊆ Au}. (11)

Al and Au are the lower and upper bounds, respectively, and they satisfy the
condition Al ⊆ Au.
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The value of an object on an attribute is unique. However, due to incomplete
information, we may not know this unique value. Instead, a set of values is known
to be possible. Let 2Va denote the power set of a set of values Va, that is, the
family of all subsets of Va. An incomplete information table is represented by
the following tuple:

T̃ = (OB,AT, {Va | a ∈ AT}, {Ĩa : OB → 2Va − {∅} | a ∈ AT}), (12)

where OB is a finite nonempty set of objects as rows, AT is a finite nonempty
set of attributes as columns, Va is the domain of an attribute a and Ĩa is the
information function mapping one object to a nonempty subset of values in the
domain of a. We assume that all attributes are applicable to all objects, and
demand a nonempty subset of values for every object on every attribute.

Lipski [14] presented a possible-world semantics that interprets an incom-
plete table as a collection of complete tables. It provides a method to study an
incomplete table through a family of complete tables.

Definition 5. For an incomplete table T̃ =(OB,AT, {Va | a∈AT}, {Ĩa : OB →
2Va −{∅} | a ∈ AT}), a complete table T = (OB,AT, {Va | a ∈ AT}, {Ia : OB →
Va | a ∈ AT}) is called a completion of T̃ if and only if it satisfies the following
condition:

∀x ∈ OB, a ∈ AT, Ia(x) ∈ Ĩa(x). (13)

That is, a completion takes exactly one value from the incomplete table for
every object on every attribute. The family of all completions of T̃ is denoted
by COMP(T̃ ) = {T | T is a completion of T̃}. Since in the incomplete table
T̃ , Ĩa(x) represents all possibilities of the actual value of x on a, the family
COMP(T̃ ) is the collection of all possibilities of the actual table. In other words,
once the information becomes complete, we will get a completion in COMP(T̃ ).

For a formula p ∈ DL0, we can get a meaning set m(p|T ) in each completion
T ∈ COMP(T̃ ). By collecting all the meaning sets of p in the family COMP(T̃ ),
we get a family of sets that interprets p in the incomplete table T̃ .

Definition 6. For a formula p ∈ DL0 in an incomplete table T̃ , its meaning set
is defined as:

m̃(p) = {m(p|T ) | T ∈ COMP(T̃ )}, (14)

where m(p|T ) is the meaning set of p in a completion T .

Our definition of the meaning set of a formula is related to the formulation
proposed by Grzymala-Busse et al. [5,6]. In particular, they called an atomic
formula an attribute-value pair, and a conjunctive formula a complex. However,
they defined the meaning set as a set of objects; we define it as a family of sets
of objects.

The meaning set of a formula in an incomplete table is actually an interval
set, which is formally stated in the following theorem whose proof is given in
AppendixA.
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Theorem 1. For a formula p ∈ DL0 in an incomplete table T̃ , its meaning set
m̃(p) is an interval set with ∩m̃(p) as the lower bound and ∪m̃(p) as the upper
bound:

m̃(p) = [∩m̃(p),∪m̃(p)]. (15)

By Definition 6, the interval set m̃(p) is actually the family of all possibilities
of the actual meaning set of p. In this sense, the sets ∩m̃(p) and ∪m̃(p) are the
lower and upper bounds of the actual meaning set of p. Thus, we denote the
sets ∩m̃(p) and ∪m̃(p) as m∗(p) and m∗(p), respectively. Accordingly, Eq. (15)
can be written as m̃(p) = [m∗(p),m∗(p)]. The two bounds can be interpreted in
terms of the family COMP(T̃ ) as follows:

m∗(p) =
⋂

T∈COMP(˜T )

m(p|T ) = {x ∈ OB | ∀T ∈ COMP(T̃ ), x ∈ m(p|T )},

m∗(p) =
⋃

T∈COMP(˜T )

m(p|T ) = {x ∈ OB | ∃T ∈COMP(T̃ ), x∈m(p|T )}. (16)

By Theorem 1, the meaning set of a conjunctive formula in DL0 in an incom-
plete table is an interval set. Such an interval set is considered to be conjunctively
definable. By explicitly giving the conjunctive formulas, we define a conjunc-
tively definable interval concept as a pair of a formula and its meaning set in an
incomplete table.

Definition 7. A pair of a formula and an interval set (p,A) is a conjunctively
definable interval concept if p ∈ DL0 and A = m̃(p). The interval set m̃(p) is
called a conjunctively definable interval set.

The family of all conjunctively definable interval concepts is denoted as
CDEFI(OB) = {(p, m̃(p)) | p ∈ DL0} = {(p, [m∗(p),m∗(p)]) | p ∈ DL0}.

3.2 Two Types of Structured Positive and Negative Regions
in an Incomplete Table

By using the family CDEFI(OB) instead of the family CDEF(OB), we generalize
the structured positive and negative regions in a complete table into two types
of structured positive and negative regions in an incomplete table.

Given a set of objects X in a complete table, its structured positive and neg-
ative regions are defined by considering the set-theoretic inclusion relationships
between a conjunctively definable set, that is, the meaning set of a conjunc-
tive formula, and X and Xc, respectively. With respect to an incomplete table,
the meaning set of a formula becomes a conjunctively definable interval set.
The family CDEFI(OB) is consequently used to define the structured positive
and negative regions. We consider the component-wise inclusion relationships
between a conjunctively definable interval set and X and Xc, that is, the set-
theoretic inclusion between a set in the interval set and X and Xc. This leads
to two types of structured positive and negative regions.
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Definition 8. For a set of objects X in an incomplete table T̃ , we define two
types of structured positive and negative regions of X as follows:

(1) SPOS∗(X) = {(p, m̃(p)) ∈ CDEFI(OB) | m̃(p) �= [∅, ∅], ∀S ∈ m̃(p), S ⊆ X},
SNEG∗(X) = {(p, m̃(p)) ∈ CDEFI(OB) | m̃(p) �= [∅, ∅], ∀S ∈ m̃(p), S ⊆ Xc};

(2) SPOS∗(X) = {(p, m̃(p)) ∈ CDEFI(OB) | ∃S ∈ m̃(p), S �= ∅, S ⊆ X},
SNEG∗(X) = {(p, m̃(p)) ∈ CDEFI(OB) | ∃S ∈ m̃(p), S �= ∅, S ⊆ Xc}. (17)

It should be noted that the intersection of the two regions SPOS∗(X) and
SNEG∗(X) may not be empty since we use the existence of the set S to define
these two regions. Suppose (p, [∅,m∗(p)]) is a conjunctively definable interval
concept where m∗(p) ∩ X = S1 �= ∅ and m∗(p) ∩ Xc = S2 �= ∅. Since S1, S2 ⊆
m∗(p), we have S1, S2 ∈ [∅,m∗(p)]. By Definition 8 and the fact that S1 ⊆ X
and S2 ⊆ Xc, the concept (p, [∅,m∗(p)]) will be included in both SPOS∗(X) and
SNEG∗(X).

By Definition 6, the meaning set m̃(p) is actually the collection of the meaning
sets of p in all the completions. Thus, we can re-write Definition 8 as given in
the following theorem.

Theorem 2. For a set of objects X in an incomplete table T̃ , its two types of
structured positive and negative regions can be equivalently expressed as:

(1) SPOS∗(X) = {(p, m̃(p)) ∈ CDEFI(OB) | m̃(p) �= [∅, ∅],∀T ∈ COMP(T̃ ),
m(p|T ) ⊆ X},

SNEG∗(X) = {(p, m̃(p)) ∈ CDEFI(OB) | m̃(p) �= [∅, ∅],∀T ∈ COMP(T̃ ),
m(p|T ) ⊆ Xc};

(2) SPOS∗(X) = {(p, m̃(p)) ∈ CDEFI(OB) | ∃T ∈ COMP(T̃ ),m(p|T ) �= ∅,
m(p|T ) ⊆ X},

SNEG∗(X) = {(p, m̃(p)) ∈ CDEFI(OB) | ∃T ∈ COMP(T̃ ),m(p|T ) �= ∅,
m(p|T ) ⊆ Xc}. (18)

By the fact that m∗(p) ⊆ m∗(p), the two types of structured regions could
be computed in terms of the two bounds of the interval sets, which is given in
the following theorem.

Theorem 3. For a set of objects X in an incomplete table T̃ , its two types of
structured positive and negative regions can be computed as:

(1) SPOS∗(X) = {(p, [m∗(p),m
∗(p)]) ∈ CDEFI(OB) | m∗(p) �= ∅,m∗(p) ⊆ X},

SNEG∗(X) = {(p, [m∗(p),m
∗(p)]) ∈ CDEFI(OB) | m∗(p) �= ∅,m∗(p) ⊆ Xc};

(2) SPOS∗(X) = {(p, [m∗(p),m
∗(p)]) ∈ CDEFI(OB) | (m∗(p) �= ∅ ∧ m∗(p) ⊆ X)

∨(m∗(p) = ∅ ∧ m∗(p) ∩ X �= ∅)},
SNEG∗(X) = {(p, [m∗(p),m

∗(p)]) ∈ CDEFI(OB) | (m∗(p) �= ∅ ∧ m∗(p) ⊆ Xc)

∨(m∗(p) = ∅ ∧ m∗(p) ∩ Xc �= ∅)}. (19)
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By Theorem 3, we call SPOS∗(X) and SNEG∗(X) the upper-bound struc-
tured positive and negative regions, respectively; and SPOS∗(X) and SNEG∗(X)
the lower-bound structured positive and negative regions, respectively. The rela-
tionships between the set of objects X and a conjunctively definable interval set
m̃(p) in the four regions can be depicted by Fig. 2. We use two concentric circles
to represent m̃(p), one with solid line to represent the lower bound and the other
with dashed line to represent the upper bound. There are other possibilities of
the relationships in Fig. 2. We only focus on the upper bound for SPOS∗(X) and
SNEG∗(X), and the lower bound for SPOS∗(X) and SNEG∗(X).

Fig. 2. Relationships between X and m̃(p) in the four regions

We have discussed three equivalent forms for the four regions. Definition 8
provides a direct generalization of the structured positive and negative regions
in a complete table. Theorem 2 clarifies the semantical meanings of the four
regions in terms of the family of completions. Theorem 3 offers a computa-
tional formalization by using the bounds of the interval sets. Theorem2 could be
viewed as a conceptual model of the regions and Theorem 3 as a computational
model [24].

One may easily verify the properties of the four regions stated in the following
theorem by using any of the three forms.
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Theorem 4. For two sets of objects X,Y ⊆ OB, the following properties are
satisfied:

(1) SPOS∗(X) ∩ SNEG∗(X) = ∅;
(2) SPOS∗(X) ⊆ SPOS∗(X),

SNEG∗(X) ⊆ SNEG∗(X);
(3) X ⊆ Y =⇒ SPOS∗(X) ⊆ SPOS∗(Y ),

X ⊆ Y =⇒ SNEG∗(X) ⊇ SNEG∗(Y ),
X ⊆ Y =⇒ SPOS∗(X) ⊆ SPOS∗(Y ),
X ⊆ Y =⇒ SNEG∗(X) ⊇ SNEG∗(Y );

(4) SPOS∗(X ∩ Y ) = SPOS∗(X) ∩ SPOS∗(Y ),
SNEG∗(X ∩ Y ) ⊇ SNEG∗(X) ∩ SNEG∗(Y ),
SPOS∗(X ∩ Y ) = SPOS∗(X) ∩ SPOS∗(Y ),
SNEG∗(X ∩ Y ) ⊇ SNEG∗(X) ∩ SNEG∗(Y );

(5) SPOS∗(X ∪ Y ) ⊇ SPOS∗(X) ∪ SPOS∗(Y ),
SNEG∗(X ∪ Y ) = SNEG∗(X) ∩ SNEG∗(Y ),
SPOS∗(X ∪ Y ) ⊇ SPOS∗(X) ∪ SPOS∗(Y ),
SNEG∗(X ∪ Y ) = SNEG∗(X) ∩ SNEG∗(Y );

(6) SPOS∗(X ∩ Y ) ⊆ SPOS∗(X ∪ Y ),
SNEG∗(X ∩ Y ) ⊇ SNEG∗(X ∪ Y ),
SPOS∗(X ∩ Y ) ⊆ SPOS∗(X ∪ Y ),
SNEG∗(X ∩ Y ) ⊇ SNEG∗(X ∪ Y ). (20)

The properties in Theorem 4 correspond to the properties of positive and nega-
tive regions of rough sets in a complete table.

3.3 An Example

We give an example to illustrate the ideas of constructing the two types of
structured positive and negative regions in an incomplete table. Suppose we
have an incomplete table given in Table 1.

Table 1. An incomplete table ˜T

a b c

o1 {1} {3} {6}
o2 {1} {4} {6}
o3 {1, 2} {5} {6}
o4 {1} {4, 5} {6}
o5 {2} {5} {7}
o6 {2} {5} {7}
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The table T̃ could be equivalently represented by the family of its completions
given in Table 2.

Table 2. The family of completions COMP( ˜T )

The formulas in DL0 and the family CDEFI(OB) are given by Tables 3 and 4,
respectively. We take p1 = (a = 1) as an example. The meaning sets of p1 in the
four completions are:

m(p1|T1) = {o1, o2, o3, o4},
m(p1|T2) = {o1, o2, o3, o4},
m(p1|T3) = {o1, o2, o4},
m(p1|T4) = {o1, o2, o4}. (21)

By Definition 6, the meaning set of p1 in T̃ is:

m̃(p1) = {m(p1|T ),m(p2|T ),m(p3|T ),m(p4|T )}
= {{o1, o2, o4}, {o1, o2, o3, o4}}. (22)
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By Theorem 1, m̃(p1) is an interval set:

m̃(p1) = [{o1, o2, o4}, {o1, o2, o3, o4}], (23)

which is a conjunctively definable interval set. The corresponding conjunctively
definable interval concept is:

C1 = (p1, [{o1, o2, o4}, {o1, o2, o3, o4}])
= (a = 1, [{o1, o2, o4}, {o1, o2, o3, o4}]). (24)

Table 3. The formulas in DL0 in the example

Label Formula Label Formula

p1 a = 1 p19 (b = 3) ∧ (c = 7)

p2 a = 2 p20 (b = 4) ∧ (c = 6)

p3 b = 3 p21 (b = 4) ∧ (c = 7)

p4 b = 4 p22 (b = 5) ∧ (c = 6)

p5 b = 5 p23 (b = 5) ∧ (c = 7)

p6 c = 6 p24 (a = 1) ∧ (b = 3) ∧ (c = 6)

p7 c = 7 p25 (a = 1) ∧ (b = 3) ∧ (c = 7)

p8 (a = 1) ∧ (b = 3) p26 (a = 1) ∧ (b = 4) ∧ (c = 6)

p9 (a = 1) ∧ (b = 4) p27 (a = 1) ∧ (b = 4) ∧ (c = 7)

p10 (a = 1) ∧ (b = 5) p28 (a = 1) ∧ (b = 5) ∧ (c = 6)

p11 (a = 2) ∧ (b = 3) p29 (a = 1) ∧ (b = 5) ∧ (c = 7)

p12 (a = 2) ∧ (b = 4) p30 (a = 2) ∧ (b = 3) ∧ (c = 6)

p13 (a = 2) ∧ (b = 5) p31 (a = 2) ∧ (b = 3) ∧ (c = 7)

p14 (a = 1) ∧ (c = 6) p32 (a = 2) ∧ (b = 4) ∧ (c = 6)

p15 (a = 1) ∧ (c = 7) p33 (a = 2) ∧ (b = 4) ∧ (c = 7)

p16 (a = 2) ∧ (c = 6) p34 (a = 2) ∧ (b = 5) ∧ (c = 6)

p17 (a = 2) ∧ (c = 7) p35 (a = 2) ∧ (b = 5) ∧ (c = 7)

p18 (b = 3) ∧ (c = 6)

Given a set of objectsX={o1, o3, o5} and its complement setXc={o2, o4, o6},
the four regions of X are as follows:

(1) SPOS∗(X) = {C3, C8, C16, C18, C24, C34},
SNEG∗(X) = {C4, C9, C20, C26};

(2) SPOS∗(X) = {C3, C8, C10, C16, C18, C22, C24, C28, C34},
SNEG∗(X) = {C4, C9, C10, C20, C26, C28}. (25)

There is redundancy in these four regions. For example, the two concepts C4 and
C26 have the same extension but different intensions. Accordingly, the regions
including both C4 and C26, that is, SNEG∗(X) and SNEG∗(X), have redundancy
in them.
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Table 4. The family CDEFI(OB) in the example

Label Intension Extension Label Intension Extension

C1 p1 [{o1, o2, o4}, {o1, o2, o3, o4}] C19 p19 [∅, ∅]
C2 p2 [{o5, o6}, {o3, o5, o6}] C20 p20 [{o2}, {o2, o4}]
C3 p3 [{o1}, {o1}] C21 p21 [∅, ∅]
C4 p4 [{o2}, {o2, o4}] C22 p22 [{o3}, {o3, o4}]
C5 p5 [{o3, o5, o6}, {o3, o4, o5, o6}] C23 p23 [{o5, o6}, {o5, o6}]
C6 p6 [{o1, o2, o3, o4}, {o1, o2, o3, o4}] C24 p24 [{o1}, {o1}]
C7 p7 [{o5, o6}, {o5, o6}] C25 p25 [∅, ∅]
C8 p8 [{o1}, {o1}] C26 p26 [{o2}, {o2, o4}]
C9 p9 [{o2}, {o2, o4}] C27 p27 [∅, ∅]
C10 p10 [∅, {o3, o4}] C28 p28 [∅, {o3, o4}]
C11 p11 [∅, ∅] C29 p29 [∅, ∅]
C12 p12 [∅, ∅] C30 p30 [∅, ∅]
C13 p13 [{o5, o6}, {o3, o5, o6}] C31 p31 [∅, ∅]
C14 p14 [{o1, o2, o4}, {o1, o2, o3, o4}] C32 p32 [∅, ∅]
C15 p15 [∅, ∅] C33 p33 [∅, ∅]
C16 p16 [∅, {o3}] C34 p34 [∅, {o3}]
C17 p17 [{o5, o6}, {o5, o6}] C35 p35 [{o5, o6}, {o5, o6}]
C18 p18 [{o1}, {o1}]

4 Conclusions

We have proposed a new semantically sound framework to study rough set
approximations in an incomplete table. In a complete table, we use the fam-
ily of conjunctively definable concepts to define a pair of structured positive
and negative regions in order to approximate a set of objects. These two struc-
tured regions correspond to Pawlak rough set approximations and the standard
positive and negative regions. Following the same argument, in an incomplete
table we introduced the notion of conjunctively definable interval concepts. By
using the family of conjunctively definable interval concepts, we construct two
types of structured positive and negative regions. These regions are semantically
meaningful in the sense that the possible-world semantics fully and truthfully
reflects all partial information of an incomplete table. By adopting possible-world
semantics of an incomplete table, we transform the study of an incomplete table
into a study of a family of complete tables. By using concepts instead of sets to
construct the regions, we explicitly include the intensions, that is, the formulas,
which makes the rule induction much simpler. As future work, we will investigate
rule induction in an incomplete table based on the structured regions introduced
in this paper.
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A Appendix: Proof of Theorem1

We prove Theorem 1 by verifying m̃(p) ⊆ [∩m̃(p), ∪m̃(p)] and [∩m̃(p),∪m̃(p)]
⊆ m̃(p).

(1) m̃(p) ⊆ [∩m̃(p),∪m̃(p)].
For any set S ∈ m̃(p), it is evident that ∩m̃(p) ⊆ S ⊆ ∪m̃(p), which means
S ∈ [∩m̃(p),∪m̃(p)]. Thus, m̃(p) ⊆ [∩m̃(p),∪m̃(p)].

(2) [∩m̃(p),∪m̃(p)] ⊆ m̃(p).
By Definition 6, for any set S ∈ [∩m̃(p),∪m̃(p)], we prove that S ∈ m̃(p) by
constructing a completion T ∈ COMP(T̃ ) in which S = m(p|T ). Suppose
p = (a1 = v1) ∧ (a2 = v2) ∧ · · · ∧ (am = vm) and Ap = {a1, a2 . . . , am}.
The completion T is constructed as given in Table 5. One can easily verify
that in Table 5, the objects in S satisfy p and the objects in OB − S do not
satisfy p. That is, S = m(p|T ). Thus, [∩m̃(p),∪m̃(p)] ⊆ m̃(p).

Table 5. A completion T in which S = m(p|T )

Objects Attributes

Ap AT − Ap

S ∀ai ∈ Ap, Iai(x) = vi ∀a ∈ AT − Ap, Ia(x) ∈ ˜Ia(x)

OB − S ∃ai ∈ Ap, Iai(x) ∈ ˜Iai(x) − {vi}
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S�lowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS,
vol. 7413, pp. 1–17. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32115-3 1

27. Yao, Y.Y.: Interval-set algebra for qualitative knowledge representation. In: Pro-
ceedings of the Fifth International Conference on Computing and Information, pp.
370–374 (1993)

28. Yao, Y.Y., Hu, M.J.: A definition of structured rough set approximations. In:
Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś,
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Abstract. Knowledge acquisition, one of essential issues for data min-
ing, has always been a hot topic due to the explosive growth of informa-
tion. However, when handling large-scale data, many current knowledge
acquisition algorithms based on rough set theory are inefficient. In this
paper, novel decomposition approaches for knowledge acquisition are put
forward. The principal of decomposition is to split a complex problem
in several problems. Those problems are composed of a master-problem
and several sub-problems which are simpler, more manageable and more
solvable by using existing induction methods, then joining them together
in order to solve the original problem. Compared with some traditional
algorithms, the efficiency of the proposed approaches can be illustrated
by experiments with standard datasets from UCI database.

Keywords: Knowledge acquisition · Decomposition · Master-problem ·
Sub-problem · Rough sets

1 Introduction

Knowledge acquisition can be viewed as one of the most fundamental problems
in the field of data mining. It is defined as a process of eliminating superflu-
ous attributes and selecting relevant attributes out of the larger set of candi-
date attributes. Rough sets is a powerful mathematical tool proposed by Pawlak
[1–4,10–13], for dealing with imprecise, uncertain, and vague information. One
limitation of rough set theory is the lack of effective algorithms for processing a
relative large number of attributes. We may gain worse performance even get no
result when dealing with large-scale data with traditional knowledge acquisition
algorithms based on rough set theory.

The main motivation of this study is to design a approach that can deal
with massive and complicated real-world problems. We apply a decomposi-
tion idea to solve complex problems. The principal of decomposition [5,6] is
to split a large and complex task in several simpler and more manageable sub-
tasks that can be solved by using existing induction algorithms. Their results
will be jointed together in the sequel in order to solve the original problem.
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part II, LNAI 10314, pp. 216–225, 2017.
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The decomposition method can make the original task easier and less time con-
suming. However, some decomposition approaches may result in the loss of infor-
mation or distortion of original data and knowledge, and can even lead to the
original data mining system unusable.

We should choose the appropriate decomposition approach in order to avoid
these disadvantages of decomposition in data mining. Jiawei Han introduces
multirelational data mining [7] using keys to link multiple tables, furthermore,
there is the same expression in database. When we convert a single table into
multirelational tables, there is no any loss of information or distortion of original
data and knowledge. Therefore, we split a large-scale information system in a
master-information system and several sub-information systems. This approach
may greatly improve computational efficiency.

2 Preliminaries

In this section, we briefly introduce the basic concepts of rough sets and describe
two reduct construction algorithms and computing core algorithm.

2.1 Rough Set Theory

We assume that knowledge discussed in this paper is represented by information
system (also called information table).

Definition 1. Information system: An information system is defined as S =
〈U,A, V, f〉, where U is a non-empty finite set of objects; A is a non-empty finite
set of featutes; V =

⋃
a∈A Va, Va is a set of attribute values of attribute a; and

f : U × A → V is an information function.
For any B ⊆ A, an equivalence(indiscernibility) relation induced B by on U

is defined as Definition 2.

Definition 2. Equivalence relation:

IND (B) = {(x, y) ∈ U × U |∀b ∈ B, b(x) = b(y)}. (1)

The family of all equivalence classes of IND (B), i.e., the partition induced
by B, is given in Definition 3.

Definition 3. Partition:

U/IND (B) = {[x]B |x ∈ U} , (2)

where [x]B is the equivalence class containing x. All the elements in [x]B are
equivalent (indiscernible) with respect to B. Equivalence classes are elementary
sets in rough set theory.

For any B ⊆ A, B is called a reduct of A, if B satisfies the two conditions.
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Definition 4. Reduct:

– U/IND (B) = U/IND (A);
– for any a ∈ B, U/IND (B − {a}) �= U/IND (A).

Core is defined as Definition 5.

Definition 5. Core:
Core = ∩j≤rWj . (3)

{Wj |j ≤ r} is the set of reducts.
Finding all reducts is NP-hard. However, it is usually enough for most prac-

tical applications to find one of the reducts. The knowledge reduction methods
of this paper are to find a reduct.

2.2 Knowledge Reduction Algorithms and Computing Core
Algorithm

General knowledge reduction algorithm (GKR) starts with the entire attribute
set and consecutively deletes one attribure at a time until we obtain a reduct.
The algorithm can check every attribute and eliminate the attributes that are
superfluous.

Computing core algorithm (CC) can check all attributes in information sys-
tem. If the attribute is indispensable, it is a core attribute, or else continues the
next loop. At last, we get all the core attributes.

According to CC algorithm, core is computed. Core knowledge reduction
algorithm (CKR) starts with core, checks the remainder and deletes one attribute
at a time until we obtain a reduct.

GKR and CKR algorithms are very brief and comprehensible. And they are
efficient when the number of attributes is small. However, a large number of
attributes in information system will decrease the performance greatly because
GKR and CKR algorithms have to check every attribute.

In order to solve the problem we employ a decomposition method for knowl-
edge reduction. The idea of decomposition is to break a large and complex table
down into several simpler and more manageable sub-tables that can be solved
by using existing induction methods. Their results will be jointed together in
the sequel in order to solve the original table. The decomposition approach can
make the original task easier and less time consuming. In this paper, we propose
a decomposition based method to perform knowledge reduction. The proposed
knowledge reduction algorithms based on decomposition can be described as
detailed below.

3 Proposed Algorithms

In this section, we introduce some definitions and properties at first. Then the
knowledge reduction and computing core algorithms based on decomposition are
proposed.



Two Novel Decomposition Approaches for Knowledge Acquisition Model 219

3.1 Basic Definitions

We break an information table down into a master-table and several sub-tables.
The master-table consists of several joint attributes which are the keywords in
sub-tables. The sub-table is composed of a subset of attributes.

Definition 6. Sub-table, master-table and mid-table. Given an information sys-
tem S =< U,A, V, f >.

– A sub-table is defined as SBi =< UBi , Bi ∪ {bi}, V Bi , fBi >, i = 1, 2, · · · ,m,
where U is a non-empty finite set of objects, called universe; Bi ⊆ A, i =
1, 2, · · · ,m, A = ∪m

i=1Bi and Bi ∩ Bj = ∅, i �= j. bi is a joint attribute
which join the sub-table to the master-table and it is a keyword in SBi ;
V Bi =

⋃
a∈Bi

V Bi
a , V Bi

a is a set of attribute values of attribute a; and fBi :
UBi × Bi → V Bi is an information function.

– A master-table is defined as SQ =< U,Q, V Q, fQ >, where U is a non-
empty finite set of objects, called universe; Q = ∪m

i=1 {bi} is a set of all joint
attributes; V Q =

⋃
a∈Q V Q

a , V Q
a is a set of attribute values of attribute a;

and fQ : U × Q → V Q is an information function.
– A mid-table is defined as SMi =< U,Mi, V

Mi , fMi >, i = 1, 2, · · · ,m, where
U is a non-empty finite set of objects, called universe; Mi = (Q − {bi}) ∪Bi;
V Mi =

⋃
a∈Mi

V Mi
a , V Mi

a is a set of attribute values of attribute a; and
fMi : U × Mi → V Mi is an information function.

Example 1. Table 1 is a information table, we decompose it into one master-
table (Table 2) and two sub-tables (Tables 3 and 4). Combine Tables 2 and 3 to
compose a mid-table Table 5. Similarly, Table 6 comes from Tables 2 and 4.

Table 1. An information
table

U a1 a2 a3 a4

1 1 1 1 0

2 1 0 1 1

3 0 0 0 1

4 1 0 1 0

Table 2. A master-table

U b1 b2
1 b11 b12
2 b21 b22
3 b31 b32
4 b21 b12

Table 3. The first sub-
table

b1 a1 a2

b11 1 1

b21 1 0

b31 0 0

Table 4. The second sub-
table

b2 a3 a4

b12 1 0

b22 1 1

b32 0 1

Table 5. The first mid-
table

U a1 a2 b2
1 1 1 b12
2 1 0 b22
3 0 0 b32
4 1 0 b12

Table 6. The second mid-
table

U b1 a3 a4

1 b11 1 0

2 b21 1 1

3 b31 0 1

4 b21 1 0
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3.2 Basic Properties

The following are some properties according to the above definition. Assume
an information system S =< U,A, V, f >, sub-tables SBi =< UBi , Bi ∪
{bi}, V Bi , fBi >, i = 1, 2, · · · ,m, a master-table SQ =< U,Q, V Q, fQ >,
mid-tables SMi =< U,Mi, V

Mi , fMi >, i = 1, 2, · · · ,m. Some properties are
described as follows.

Property 1. The attribute a in the original information table S is indispens-
able, that is U/IND (A − {a}) �= U/IND (A), iff the attribute a in S belongs
to Core, that is a ∈ Core.

Property 2. The partition induced by Q in the master-table SQ is equiva-
lent to the partition induced by A in the original information table S, that is
U/IND (Q) = U/IND (A).

Corollary 1. The partition induced by Mi in the mid-table SMi is equiva-
lent to the partition induced by A in the original information table S, that is
U/IND (Mi) = U/IND (A).

Property 3. The joint attribute bi in the master-table SQ is dispensable, that
is U/IND (Q − {bi}) = U/IND (Q), iff the attribute set Bi in the original
information table S corresponding to the joint attribute bi is dispensable, that
is U/IND (A − Bi) = U/IND (A).

Corollary 2. The attribute a in the mid-table SMi is dispensable, that is
a ∈ Bi, U/IND (Mi − {a}) = U/IND (Mi), iff the attribute a in the original
information table S is dispensable, that is U/IND (A − {a}) = U/IND (A).

Corollary 3. If the joint attribute bi in the master-table SQ is indispensable,
that is U/IND (Q − {bi}) �= U/IND (Q), then a subset E included in the
attribute set Bi corresponding to the joint attribute bi is indispensable in the
original information table S, that is E ⊆ Bi, U/IND (A − E) �= U/IND (A).

Corollary 4. If the attribute a in the mid-table SMi is indispensable (a core
attribute), that is U/IND (Mi − {a}) �= U/IND (Mi), then the attribute a
in the original information table S is indispensable (a core attribute), that is
U/IND (A − {a}) �= U/IND (A).

These properties will be applied in following methods.

3.3 General Knowledge Reduction Based on Decomposition

According to the above definitions and properties, we employ decomposition
principle and modify GKR algorithm. Suppose that the number of sub-tables is
k. First, we break the original information table down into one master-table and
k sub-tables. The attributes of the original information table are divided equally
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among k sub-tables. The joint attribute and a subset of attributes compose a
sub-table. The master-table is made up of k joint attributes that are the key
words in sub-tables.

Then if the joint attribute in master-table is dispensable, we can delete the
joint attribute in master-table and combine the same objects (Properties 2, 3).
Judge the next joint attribute. Otherwise, we combine a sub-table with the
master-table to compose a mid-table, if the attribute in the mid-table is dis-
pensable, we can delete the attribute in the mid-table and combine the same
objects (Corollaries 1, 2), or else continue the next loop. Finally, a reduction can
be found.

Algorithm 1. General knowledge reduction method based on decomposition
(GKRD)

Input: An information system S = 〈U,A, V, f〉. The number of sub-tables
is k.

Output: A reduct P .
(1) Break S down into one master-table SQ =< U,Q, V Q, fQ > and sub-

tables SBi =< UBi , Bi ∪ {bi}, V Bi , fBi >, i = 1, · · · , k. Set P = A.
(2) While every joint attribute bi ∈ Q do
(3) If U/IND (Q − {bi}) = U/IND (Q), then
(4) bi is dispensable and delete it from SQ, i.e., Q = Q − {bi}.
(5) P = P − Bi.
(6) Combine the same objects.
(7) Else
(8) Compose a mid-tableSMiwith a sub-tableSBiand the master-tableSQ.
(9) While every attribute a ∈ Bi do
(10) If U/IND (Mi − {a}) = U/IND (Mi), then
(11) a is dispensable and delete it from SMi , i.e., Bi = Bi − {a}.
(12) P = P − {a}.
(13) Combine the same objects.
(14) Output P .

The attributes of an information table are divided into several parts. We
process every part instead of every attribute. Every part is substituted by a joint
attribute. In other words, |A| attributes are compressed to k joint attributes. If
the joint attribute is dispensable, the attribute set corresponding to the joint
attribute is dispensable and can be deleted all at once. Each attribute in this
attribute set needn’t to be checked again. Even though the joint attribute is
indispensable, the scale of the mid-table is compressed a lot.

3.4 Computing Core Based on Decomposition

Core knowledge reduction method is to construct a reduct from the core, and
consequently delete one attribute from the remainder until a reduct is obtained.
Hence we firstly modify computing core algorithm according to the proposed
decomposition principle.

We assume that the number of sub-tables is k. We decompose the original
information table into one master-table and k sub-tables.
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Algorithm 2. The method of computing core based on decomposition (CCD)
Input: An information system S = 〈U,A, V, f〉. The number of sub-tables is

k.
Output: Core denoted by CORE.

(1) Break S down into one master-table SQ =< U,Q, V Q, fQ > and sub-
tables SBi =< UBi , Bi ∪ {bi}, V Bi , fBi >, i = 1, · · · , k. Set CORE = ∅.

(2) While every joint attribute bi ∈ Q do
(3) If U/IND (Q − {bi}) �= U/IND (Q), then
(4) Compose a mid-tableSMiwith a sub-tableSBiand the master-tableSQ.
(5) While every attribute a ∈ Bi do
(6) If U/IND (Mi − {a}) �= U/IND (Mi), then
(7) a is indispensable, i.e., CORE = CORE ∪ {a}.
(8) Output CORE.

3.5 Core Knowledge Reduction Based on Decomposition

According to the above computing core method, core is put into the first sub-
table and others are decomposed equally into k − 1 sub-tables. Initial condition
starts at the second joint attribute. Repeating the same procedure as GKRD
algorithm, all selected attributes consist of a reduct.

Algorithm 3. Core knowledge reduction method based on decomposition
(CKRD)

Input: An information system S = 〈U,A, V, f〉. The number of sub-tables
is k.

Output: A reduct P .
(1) According to CCD algorithm, calculate the core CORE in S.
(2) If U/IND (CORE) = U/IND (A) , then P = CORE , stop
(3) Set P = A.
(4) Break S down into one master-table SQ =< U,Q, V Q, fQ > and sub-

tables SBi =< UBi , Bi ∪ {bi}, V Bi , fBi >, i = 1, · · · , k. ( core CORE
is put

into the first sub-table and others are decomposed equally into k − 1
sub-tables)

(5) While every joint attribute bi ∈ Q ( i = 2, · · · , k ) do
(6) If U/IND (Q − {bi}) = U/IND (Q), then
(7) bi is dispensable and delete it from SQ, i.e., Q = Q − {bi}.
(8) P = P − Bi.
(9) Combine the same objects.
(10) Else
(11) Compose a mid-tableSMiwith a sub-tableSBiand the

master-tableSQ.
(12) While every attribute a ∈ Bi do
(13) If U/IND (Mi − {a}) = U/IND (Mi), then
(14) a is dispensable and delete it from SMi , i.e., Bi = Bi − {a}.
(15) P = P − {a}.
(16) Combine the same objects.
(17) Output P .
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Clearly, the chance of deleting joint attributes of CKRD algorithm all at once
is higher than GKRD algorithm, the procedure of computing core will increase
the computation time. The time complexity of CKRD involves two parts which
are the time complexity of CCD and time complexity of rest procedures.

4 Experiments

In this section, we show that our knowledge reduction methods based on decom-
position can reduce the computation complexity significantly.

4.1 A Comparative Experiment on Six Datasets

In order to test the validity of the algorithm, we compare the proposed methods
with general knowledge reduction algorithm (GKR), computing core algorithm
(CC) and core knowledge reduction algorithm (CKR). According to GKRD,
CCD and CKRD algorithms of this paper, we suppose the number of sub-tables
is four. We perform the experiments on publicly available datasets from UCI
database (These datasets can be downloaded at http://www.ics.uci.edu). The
experiment results are shown in Table 7. The results is average of repeating 10
times experiments.

When there are missing values in datasets, these values are filled with mean
values for continuous attributes and majority values for nominal attributes [8]. If
the datasets are numerical, all continuous attributes are discretized using Equal
Frequency per Interval [9].

Table 7. Comparison of efficiencies of different knowledge reduction algorithms

Dataset Objects Attributes GKR GKRD CKR CKRD

Breast 699 10 1S 1S 2S 1S

Chess 3196 37 52S 18S 102S 32S

Insurance 9822 86 190S 44S 1706S 64S

Mushroom 8124 23 112S 31S 596S 57S

Optical 1796 65 15S 4S 44S 10S

SPECT 267 45 6S 1S 15S 3S

As listed in Table 7, the performance of GKRD algorithm outperforms that
of GKR algorithm. CKRD method is less time consuming than CKR method.
GKRD and CKRD have been shown to be superior to GKR and CKR.

4.2 An Experiment on Optical Dataset with Different Attributes

The second experiment is performed on Optical dataset which has 65 attributes
and 1796 objects. We select bottom 10, 20, 30, 40, 50, 60 and 65 attributes from

http://www.ics.uci.edu
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this dataset respectively. According to our proposed two methods we break the
datasets down into one master-table and four sub-tables.

From Fig. 1, we can see the comparison of efficiencies of various methods as
attributes increasing gradually. As depicted in Fig. 1, the running time of our
methods increases slightly as attributes increasing gradually. However, other
methods consume much more time. GKRD and CKRD outperform other two
methods.

4.3 An Experiment on Mushroom Dataset with Different Objects

We do another experiment on Mushroom dataset which has 23 attributes and
8124 objects. We select top 2000, 4000, 6000 and 8124 objects from this dataset.
The number of sub-tables is the same as the above experiments.

Figure 2 shows the comparison of efficiencies of various algorithms based on
different size of objects. As depicted in Fig. 2, GKRD and CKRD can achieve
better performance than GKR and CKR.
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5 Conclusions

Knowledge reduction is a key task in the research on rough set theory. Existing
traditional methods do not perform very well on large datasets. In this paper,
we introduce some efficient decomposition methods for rough set knowledge
reduction and core calculation. We decompose a complex information table into
a master-table and several sub-tables, which can be dealt with simply, more
manageable and solvable with existing induction methods. Then after joining
the results of decomposition together, the original table can be easily handed.
Extensive experiments conducted on UCI database are to test validity of the
proposed algorithms. Experimental results demonstrate that our methods are
efficient for various datasets.
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Abstract. In this paper, we set up a data envelopment analysis (DEA)
based three-way decision approach to solve the “multi-input and multi-
output” problem when the decision attributes are “more than one” in
rough sets. The estimation of production frontiers of DEA, is used to
generate the three regions by three-way decisions: DEA efficiency region,
weak DEA efficiency region and DEA inefficiency region, respectively. An
empirical study of company efficiency evaluation is employed to validate
the reasonability and effectiveness of the proposed method.

Keywords: Three-way decisions · Data envelopment analysis · Rough
sets · Multiple decision-making

1 Introduction

Three-way decisions (3WD), a “trisecting-and-acting” cognitive model proposed
by Yao [19], have drawn more and more attentions in nearly seven years. The
basic idea of three-way decisions is to divide a universal set into three pair-
wise disjoint regions, and then the decision makers utilize appropriate strategies
to generate decision rules from the different regions. Yao presented some basic
models of three-way decisions in [18], e.g., interval sets and three-valued logic,
three-valued approximations and fuzzy sets, shadowed sets, Pawlak approxima-
tions and rough sets, etc. These perspectives provided some new ideas to help
people to easily understand the intension and extension of three-way decisions.

As a fundamental uncertainty mathematical theory on soft computing, rough
set theory (RST) uses lower and upper approximations to describe the uncer-
tainties on decision problems. Three regions (positive region, boundary region
and negative region), form a trisection or a tri-partition of an universal set. If
we further consider the linearly ordered relation of three regions, e.g., positive
region � boundary region � negative region in rough sets, three different types
of decision rules are created after decision procedure. The rules generated by the
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part II, LNAI 10314, pp. 226–237, 2017.
DOI: 10.1007/978-3-319-60840-2 16
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positive region are used for making a decision of acceptance, the rules gener-
ated by the negative region are used for making a decision of rejection, the rules
generated by the boundary region are used for making a decision of noncommit-
ment [16,17]. In general, rough sets can be seemed as a special cognitive model
of three-way decisions.

In many decision problems, we usually consider a decision table has “multi-
ple conditional attributes but one decision attribute”, which is called a “single
decision systems” in rough sets. However, decision tables with many-valued deci-
sions arise often in various applications. Pawlak gave a decision table with two
decision attributions in [15]. Chikalov and Zielosko [3] investigated decision rules
for decision tables with many-valued decisions. Moshkov and Zielosko [13] con-
structed an α-decision trees for tables with many-valued decisions. Azad et. al [1]
proposed a greedy algorithm for the construction of approximate decision rules
with many-valued decisions. Yu et. al [20] presented a rough sets based knowl-
edge acquisition methods for multi-label decision system. Liu et. al [8] gave their
ideas for a DEA evaluation model of transportation manufacturing based on
rough sets. In summary, there are two routes to solve the “many-valued decision”
problems. One is simply converting this “many-valued system” to several “single
decision systems”, then utilize classical rough set method to deal with these sin-
gle systems, respectively [12]. The other is extending the definitions of classical
rough sets, and redefine the rough approximations to achieve the goal [20]. In
this paper, we introduce the model of “data envelopment analysis (DEA)” into
rough sets with economics perspective. The multiple conditional attributes are
treated as the “input features”, and the multiple decision attributes are labeled
as “output features”. As well, we treat the objects in decision table as the deci-
sion making units (DMUs) in DEA, and the productive efficiency of DEA are
used to determine the DEA efficiency for DMUs. At last, a three-way decision
model with DEA is constructed.

The remainder of this paper is organized as follows: Sect. 2 provides the basic
concepts of three-way decisions, DEA model and their extensions. A DEA based
three-way decision model with “multi-input, multi-output” production functions
is proposed in Sect. 3. Then, a case study of company efficiency evaluation is used
to elucidate our model in Sect. 4. Section 5 concludes the paper and outlines the
future work.

2 Preliminaries

Basic concepts, notations and results of three-way decisions and DEA model are
briefly reviewed in this section [5–7,9–11,14,21,22]. In [18,19], Yao gave some
generalized descriptions of three-way decisions.

Definition 1. Suppose U denotes a universal set. The triplet {R1, R2, R3} is
called a tri-partition of U and satisfies the following two properties:

(1). U = R1 ∪ R2 ∪ R3;
(2). R1 ∩ R2 =Ø, R1 ∩ R3 =Ø, R2 ∩ R3 =Ø.
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For three regions Ri, one can develop three different strategies, e.g., Strat-
egy 1, Strategy 2 and Strategy 3, respectively. Specially, if there exists one region
Rl =Ø (l=1, 2, or 3), the three-way decision problem converts to two-way deci-
sion problem. Intuitively, the basic ideas of the three-way decision model can be
simply outlined in Fig. 1.

Fig. 1. The basic ideas of three-way decision model

In [19], Yao named the cognitive process in Fig. 1 as “trisecting-and-acting”
model. As Yao stated in [18], many generalizations of sets have been proposed
and studied with three-way decisions, including interval sets and three-valued
logic, Pawlak rough sets, decision-theoretic rough sets (DTRS), three-valued
approximations in many-valued logic, fuzzy sets and shadowed sets, etc. Obvi-
ously, rough set theory is one kind of typical model of three-way decisions when
we treat R1, R2 and R3 as positive region, boundary region and negative region,
respectively.

Data envelopment analysis (DEA) is a nonparametric method in operations
research and decision making for the estimation of production frontiers. It is used
to empirically measure productive efficiency of decision making units (DMUs).
The basic DEA model (called CCR model), which was proposed by Charnes,
Cooper and Rhodes [4], is defined as Definition 2.

Definition 2. Supposed there are p decision units with the same varieties, and
we denote the kth unit as DMUk, k = 1, 2, · · · , p. To each decision unit, there
are m kinds of input indicators and n kinds of output indicators, and we denote
the ith input indicator as Xi, i = 1, 2, · · · ,m; and the jth output indicator as
Yj, j = 1, 2, · · · , n. The total efficiency respected with the k0th decision unit is:

θ∗ = min θ

s.t.

⎧
⎨

⎩

∑p
k=1 λkXk ≤ θXk0∑p
k=1 λkYk ≥ Yk0

λk ≥ 0, k = 1, 2, · · · , p.
(1)
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where DMUk0 represents one of the k DMUs, Xk0 and Yk0 are the input and
output for DMUk0 , respectively. λk is the weight given to DMUk in its efforts
to dominate DMUk0 and θ is the efficiency of DMUk0 . Since DMUk0 appears
on the left hand side of the equations as well, the optimal θ cannot possibly be
more than 1. In [5], Cooper et al. gave the definitions of “DEA efficiency” and
“DEA relative efficiency”, respectively.

Definition 3 (Efficiency). Full efficiency is attained by any DMU iff none of
it’s inputs or outputs can be improved without worsening some of its other inputs
or outputs.

Definition 4 (Relative Efficiency). A DMU is to be rated as fully efficient
on the basis of available evidence iff the performances of other DMUs does not
show that some of its inputs or outputs can be improved without worsening some
of its other inputs or outputs.

Based on the CCR model, Banker, Charnes and Cooper [2] further adjoined
the constrain of

∑p
k=1 λk = 1 to CCR model, and propose the BCC model. If

we further consider the input slacks sθ−
i and output slacks sθ+

j for BCC model,
we can build the linear programming model to determine the possible non-zero
slacks as follows.

max
∑m

i=1 sθ−
i +

∑n
j=1 sθ+

i

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∑p
k=1 λkxik + sθ−

i = θ∗xik0 i = 1, 2, · · · , m
∑p

k=1 λkyjk − sθ+
j = yjk0 j = 1, 2, · · · , n

λk ≥ 0, k = 1, 2, · · · , p∑p
k=1 λk = 1

(2)

where, θ∗ is calculated by the minimizing θ in (1), it’s a two stages process to
compute the θ∗ and the sθ−

i , sθ+
j represent input and output slacks, respectively.

In fact, the models (1) and (2) represent a two-stage DEA process involved
in the following DEA model.

min [θ − ε(
∑m

i=1 sθ−
i +

∑n
j=1 sθ+

j )]

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∑p
k=1 λkxik + sθ−

i = θxik0 i = 1, 2, · · · , m
∑p

k=1 λkyjk − sθ+
j = yjk0 j = 1, 2, · · · , n

λk ≥ 0, k = 1, 2, · · · , p∑p
k=1 λk = 1

(3)

where, the non-Archimedean ε of the objective function of (3) effectively allows
the minimization over θ to preempt the optimization involving the slacks, sθ−

i

and sθ+
j . Note that the frontier determined by model (3) exhibits variable returns

to scale (VRS). Model (3) is called input-oriented DEA model. DMUk0 is efficient
to DEA if and only if θ∗ = 1 and sθ−

i = sθ+
j = 0 for all i and j. DMUk0 is weak

efficient if θ∗ = 1 and sθ−
i �= 0 and (or) sθ+

j �= 0 for some i and j.
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Analogously, we can define the output-oriented DEA model, which can be
expressed as:

max [φ + ε(
∑m

i=1 sφ−
i +

∑n
j=1 sφ+

j )]

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

∑p
k=1 λkxik + sφ−

i = xik0 i = 1, 2, · · · , m
∑p

k=1 λkyjk − sφ+
j = φyjk0 j = 1, 2, · · · , n

λk ≥ 0, k = 1, 2, · · · , p∑p
k=1 λk = 1

(4)

DMUk0 is efficient to DEA if and only if φ∗ =1 and sφ−
i =sφ+

j = 0 for all i and
j. DMUk0 is weak efficient if φ∗ =1 and sφ−

i �=0 and (or) sφ+
j �= 0 for some i and j.

Ozcan [14] gave some semantic interpretations for (3) and (4). He pointed
out the efficiency and effectiveness evaluations are two important measures in
DEA. The efficiency in input-oriented DEA model generally refers to using the
minimum number of inputs for a given number of outputs. As well, the effective-
ness in output-oriented DEA model encourages us to ask if the necessary inputs
are being used in order to produce the vest possible outcomes.

3 A DEA Based Three-Way Decision Model

In rough set theory, an information system is utilized to store the related infor-
mation of decision units. An information system is a quadruple S = (U,A, V, f).
U is a finite set of reference actions, called the domain; A is a finite set of
attributes, A = C ∪D and C ∩D =Ø, where C denotes the condition attributes
and D denotes the decision attributes. V = ∪

a∈A
Va, Va is a domain of the

attribute a. f : U × A → V is an information function such that f(x, a) ∈ Va for
every x ∈ U , a ∈ A. Specially, if D = {d} and the system have only one decision
attribute, we call the information system as a decision table.

In our following discussions, we assume there are p decision units U =
{DMU1,DMU2, · · · ,DMUp} in a DEA decision system. X = {x1, x2, · · · , xm}
denotes m input indicators, which can be treated as C in S. Similarly, Y =
{y1, y2, · · · , yn} denotes n output indicators, which can be dealt with D in
S. Obviously, the DEA model is a “multiple conditional attributes and mul-
tiple decision attributes” model. In our proposed model, we combine the input
and output indicators together to generate the new condition attribute set C,
and further integrate the parameters θ, φ, as well as the slack variables vector
S = {sθ−

i , sθ+
j ; sφ−

i , sφ+
j } to construct the new decision attribute set D, then

utilize D to evaluate the efficiency of the decision unit DMUk (k = 1, 2, · · · , p)
in U . An integrated matrix can clearly illuminate the key ideas of this method.

Objects
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

DMU1

DMU2

...
DMUp

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Decision units

New conditional attributes C
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

x11

x21

...
xp1

x12

x22

...
xp2

· · ·
· · ·
...

· · ·

x1m;
x2m;

...
xpm;

y11
y21
...

yp1

y12
y22
...

yp2

· · ·
· · ·
...

· · ·

y1n

y2n

...
ypn

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Input and output indicators

New decision attributes D
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎝

θ1
θ2
...
θp

φ1

φ2

...
φp

S1

S2

...
Sp

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Efficiency
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On basis of the above matrix and the definitions (3) and (4), we generate the
DEA based three-way decisions. The three-way decision rules for DEA, namely,
efficiency, weak efficiency and inefficiency can be described as follows:

• Efficiency decision region: If θ∗
k = φ∗

k = 1 and sθ−
i = sθ+

j = 0; sφ−
i =

sφ+
j = 0 for all i and j, the decision union DMUk is DEA efficiency;

• Weak efficiency decision region: If θ∗
k = φ∗

k = 1, and at least one slack
parameter sθ−

i , sθ+
j , sφ−

i , sφ+
j not equal to zero for i and j, the decision union

DMUk is DEA weak efficiency;
• Inefficiency decision region: If θ∗

k �= 1 and φ∗
k �= 1, the decision union

DMUk is DEA inefficiency.

With the above discussions, we summarize four key steps to construct the
DEA based three-way decision approach, and the framework of our study is
displayed in Fig. 2.

Step I: Selecting the decision unions and determining the input and output
indicators in a decision problem.

Step II: Using BCC model to calculate the efficiency of each decision unit with
input-oriented and output-oriented viewpoints, respectively.

Step III: Generating three-way decision regions/rules followed by the three
criteria with DEA based three-way decisions.

Step IV: Providing some improvement strategies for the no efficient decision
units after three-way decisions in DEA.

Fig. 2. The framework of DEA based three-way decisions
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4 An Illustration

In this section, we utilize a didactic example of company efficiency evaluation
to illustrate the proposed model. Table 1 presents 15 companies from the top
Fortune Global 500 list in 1995 (Data can available from [22]). We denote the
15 companies U = {u1, u2, · · · , u15} as 15 decision unions in our following dis-
cussions, where u1: Mitsubishi; u2: Mitsui; u3: Itochu; u4: General Motors; u5:
Sumitomo; u6: Marubeni; u7: Ford Motor; u8: Toyota Motor; u9: Exxon; u10:
Royal Dutch/Shell Group; u11: WalMart; u12: Hitachi; u13: Nippon Life Insur-
ance; u14: Nippon Telegraph & Telephone; u15: AT&T. In addition, there are
three input indicators: x1 assets ($ millions), x2 equity ($ millions), x3 number
of employees; and two output indicators: y1 revenue ($ millions), y2 profit ($
millions).

Followed by Table 1, we firstly compute the efficiency of each decision union
with the input-oriented and output-oriented DEA model, respectively. The scores
on x-axis stand for the DEA efficiency evaluations; the companies on y-axis stand
for the 15 DMUs in Table 1. The calculating results are outlined in Figs. 3 and 4.

According to the above two figures, {u7, u8, u12, u14, u15} are DEA ineffi-
ciency. Although the scores of {u1, u2, u3, u4, u5, u6, u9, u10, u11, u13} are equal
to 1 on both input-oriented and output-oriented models, we need to do fur-
ther investigations to distinguish the DEA efficiency DMUs and weak efficiency
DMUs.

Then, we check the slack variables by solving the programming (3) and (4),
the calculating results are outlined in Table 2. Here, the θ∗ in the second column

Table 1. 15 companies from fortune global 500 list

Company (DMUs) x1 (Assets) x2 (Equity) x3 (Employees) y1 (Revenue) y2 (Profit)

u1 91920.6 10950 36000 184365.2 346.2

u2 68770.9 5553.9 80000 181518.7 314.8

u3 65708.9 4271.1 7182 169164.6 121.2

u4 217123.4 23345.5 709000 168828.6 6880.7

u5 50268.9 6681 6193 167530.7 210.5

u6 71439.3 5239.1 6702 161057.4 156.6

u7 243283 24547 346990 137137 4139

u8 106004.2 49691.6 146855 111052 2662.4

u9 91296 40436 82000 110009 6470

u10 118011.6 58986.4 104000 109833.7 6904.6

u11 37871 14762 675000 93627 2740

u12 91620.9 29907.2 331852 84167.1 1468.8

u13 364762.5 2241.9 89690 83206.7 2426.6

u14 127077.3 42240.1 231400 81937.2 2209.1

u15 88884 17274 299300 79609 139
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Fig. 3. The efficiency of companies with input-oriented DEA model

Fig. 4. The efficiency of companies with output-oriented DEA model

are equivalent to the score in Fig. 3; and the φ∗ in the eighth column are equiv-
alent to the 1/score in Fig. 4.

In Table 2, we can easily generate three decision regions for the 15 companies
followed by the decision criteria in Sect. 3.

Region 1: (DEA Efficiency): {u1, u2, u3, u4, u5, u9, u11, u13}.
Region 2: (Weak DEA Efficiency): {u6, u10}.
Region 3: (DEA Inefficiency): {u7, u8, u12, u14, u15}.
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Table 2. The calculating results based on input-oriented and output-oriented DEA
models

DMU θ∗ sθ−
1 sθ−

2 sθ−
3 sθ+

1 sθ+
2 φ∗ s

φ−
1 s

φ−
2 s

φ−
3 s

φ+
1 s

φ+
2

u1 1 0 0 0 0 0 1 0 0 0 0 0

u2 1 0 0 0 0 0 1 0 0 0 0 0

u3 1 0 0 0 0 0 1 0 0 0 0 0

u4 1 0 0 0 0 0 1 0 0 0 0 0

u5 1 0 0 0 0 0 1 0 0 0 0 0

u6 1 2.946 0 0 0 0 1 8.201 0 0 0 0

u7 0.738 0 0 0 457.489 0 1.159 94925.9 0 0 0 0

u8 0.603 0 10532.1 0 29761.7 0 1.372 0 25810.6 0 0 0

u9 1 0 0 0 0 0 1 0 0 0 0 0

u10 1 0.278 0.965 0 1.126 0 1 0.083 0.287 0 0.335 0

u11 1 0 0 0 0 0 1 0 0 0 0 0

u12 0.558 0 4634.8 0 58811.5 0 1.898 0 12485.2 181494.1 0 0

u13 1 0 0 0 0 0 1 0 0 0 0 0

u14 0.471 0 3103.8 0 60994.2 0 1.892 0 16476.4 0 0 0

u15 0.534 0 680.77 0 70958.7 652.033 2.311 0 7031.92 257526.3 0 20.824

Obviously, {u1, u2, u3, u4, u5, u9, u11, u13} are DEA efficiency because of θ∗
k =

φ∗
k = 1 for all k and sθ−

i = sθ+
j = 0; sφ−

i = sφ+
j = 0 for all i and j. {u6, u10} are

weak DEA efficiency because of θ∗
k = φ∗

k = 1 for all k, but sθ−
1 �= 0, sφ−

1 �= 0 for
{u6}; sθ−

1 �=0, sθ−
2 �=0, sθ+

1 �=0, sφ−
1 �=0, sφ−

2 �=0, s+∗
1 (φ) �=0 for {u10}. {u7, u8, u12,

u14, u15} are DEA inefficiency because of θ∗
k �= 1 and φ∗

k �= 1.
Finally, we provide some improvement strategies for the inefficiency DMUs

and weak DEA efficiency DMUs after three-way decisions.
• In the input-oriented DEA model, for the DEA inefficiency DMUs, the

targets for input variables (xik) will comprise proportional reduction in the input
variables by the efficiency score of the DMU minus the slack value as: x̂ik =
θ∗xik − sθ−

i (i = 1, 2, · · · ,m). In the same way, the efficient output targets are
calculated as ŷjk = yjk + sθ+

j (j = 1, 2, · · · , n). Specially, for the weak DEA
efficiency DMUs, x̂ik = xik − sθ−

i (i = 1, 2, · · · ,m) and ŷjk = yjk + sθ+
j (j =

1, 2, · · · , n) for θ∗ = 1. Table 3 outlines the improvement strategies for the Region
2 and Region 3 based on input-oriented DEA model.

Table 3. Improvement strategies of input-oriented DEA model

uk Efficiency x1k x̂1k x2k x̂2k x3k x̂3k y1k ŷ1k y2k ŷ2k

u6 Weak 71439.3 71435.9↓ 5239.1 5239.1 6702 6702 161057.4 161057.4 156.6 156.6

u7 Non 243283 179434.4↓ 24547 18104.7↓ 346990 255924↓ 137137 137594.5↑ 4139 4139

u8 Non 106004.2 63946.1↓ 49691.6 19443.9↓ 146855 88589↓ 111052 140813.7↑ 2662.4 2662.4

u10 Weak 118011.6 118008.5↓ 58986.4 58984.1↓ 104000 104000 109833.7 109834.8↑ 6904.6 6904.6

u12 Non 91620.9 51087↓ 29907.2 12041.2↓ 331852 185038↓ 84167.1 142978.6↑ 1468.8 1468.8

u14 Non 127077.3 59803.5↓ 42240.1 16774.7↓ 231400 108899↓ 81937.2 142931.4↑ 2209.1 2209.1

u15 Non 88884 47423↓ 17274 8535.6↓ 299300 159688↓ 79609 150567.7↑ 139 791↑
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From Table 3, u6 and u10 are weak DEA efficiency DMUs, these com-
panies are closer to an efficiency frontier and only need a little change for
their inputs and outputs. Take u10 for an example, we just reduce a little bit
resources (Assets: 118011.6 to 118008.5; Equity: 104000 to 103998) and increase
a little bit achievements (Profit: 58986.4 to 58986.1). Furthermore, companies
{u7, u8, u12, u14, u15} are identified as inefficient in the input-oriented model.
These companies can improve their efficiency, or reduce their inefficiencies pro-
portionately, by reducing their inputs. For example, u8 can improve its efficiency
by reducing inputs (Assets: 106004.2 to 63946.1; Equity: 49691.6 to 19443.9;
Employees: 146855 to 88589), and increasing it’s outputs (Revenue: 111052 to
140813.7).

• In the outnput-oriented DEA model, for the DEA inefficiency DMUs, the
targets for output variables (yjk) will comprise proportional increment in the
output variables by the efficiency score of the DMU add the slack value as:
ŷjk = φ∗yjk + sφ−

j (j = 1, 2, · · · , n). In the same way, the efficient input targets
are calculated as: x̂ik = xik −sφ−

i (i = 1, 2, · · · ,m). Specially, for the weak DEA
efficiency DMUs, ŷjk = yjk + sφ+

j (j = 1, 2, · · · , n) and x̂ik = xik − sφ−
i (i =

1, 2, · · · ,m) for φ∗ = 1. Table 4 outlines the improvement strategies for the
Region 2 and Region 3 based on output-oriented DEA model.

Table 4. Improvement strategies of output-oriented DEA model

uk Efficiency x1k x̂1k x2k x̂2k x3k x̂3k y1k ŷ1k y2k ŷ2k

u6 Weak 71439.3 71431.1↓ 5239.1 5239.1 6702 6702 161057.4 161057.4 156.6 156.6

u7 Non 243283 148357.2↓ 24547 24547 346990 346990 137137 158862.8↑ 4139 4794.7↑
u8 Non 106004.2 106004.2 49691.6 23881↓ 146855 146855 111052 152318.9↑ 2662.4 3651.7↑
u10 Weak 118011.6 118011.5↓ 58986.4 58986.1↓ 104000 104000 109833.7 109834.8↑ 6904.6 6904.6

u12 Non 91620.9 91620.9 29907.2 17422↓ 331852 150358↓ 84167.1 159829.4↑ 1468.8 2789.2↑
u14 Non 127077.3 127077.3 42240.1 25763.7↓ 231400 231400↓ 81937.2 155101.6↑ 2209.1 4181.7↑
u15 Non 88884 88884 17274 10242.1↓ 299300 41773.7↓ 79609 183993.5↑ 139 342.1↑

From Table 4, we also do some small changes for the weak DEA efficiency
DMUs u6 and u10. Take u10 for an example, we just reduce a little bit resources
(Assets: 118011.6 to 118008.5; Equity: 58986.4 to 58986.1) and increase a lit-
tle bit achievements (Profit: 109833.7 to 109834.8). In addition, companies
{u7, u8, u12, u14, u15} have scores greater than 1; thus they are identified as ineffi-
cient in the output-oriented model. These companies can improve their efficiency,
or reduce their inefficiencies proportionately, by augmenting their outputs. For
example, u8 can improve its efficiency by increasing outputs (Revenue: 111052
to 152318.9; Profit: 2662.4 to 3651.7), and reducing it’s inputs (Equity: 49691.6
to 23881).

Overall, with the insightful gains from Tables 3 and 4, we can use the above
two methods to improve the DEA efficiency for these weak DEA efficiency DMUs
(in Region 2) and DEA inefficiency DMUs (in Region 3) with input-oriented
and output-oriented viewpoints. Compared with the existing rough set methods,
DEA based three-way decisions provides a useful way to improve the DMUSs in
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boundary region (Region 2) and negative region (Region 3), to positive region
(Region 1). In a short, we can provide three different strategies for their corre-
sponding regions as follows.

Strategy 1: Keep unchanged for the DMUs {u1, u2, u3, u4, u5, u9, u11, u13} in
Region 1.

Strategy 2: Do small changes for the DMUs {u6, u10} in Region 2 to improve
their efficiencies.

Strategy 3: Do some significant changes for the DMUs {u7, u8, u12, u14, u15} in
Region 3 to improve their efficiencies.

5 Conclusions

Decision tables with multiple conditional attributes and multiple decision
attributes are frequently used in real decision procedure. In order to solve this
problem, an DEA based three-way decision method is proposed in this paper.
The conditional and decision attributes (also viewed as the input and output
indicators in DEA) are treated as the new conditional attributes on DEA based
three-way decisions. The two parameters θ and φ, as well as the slacks are utilized
to construct new decision attributions. Three decision regions: efficiency decision
region, weak efficiency decision region and inefficiency decision region, can be
automatically generated by the decision criteria of DEA. We also use an empirical
study to validate our model, and give some improvement strategies for these weak
DEA efficiency and DEA inefficiency DMUs. Our method provides an interesting
semantic interpretations and a new perspective to better understand three-way
decisions. In the future, we will focus on the attribute reduction on DEA based
three-way decisions, and the rule generation of DEA based three-way decision.
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Abstract. This paper investigates decision-theoretic rough set app-
roach in the frameworks of multi-covering approximation space. We
mainly discuss optimistic multigranulation decision-theoretic rough sets
by employing maximal descriptors of elements. First, we present the def-
initions of covering-based optimistic multigranulation decision-theoretic
rough sets on the basis of Bayesian decision procedure. Then, we dis-
close some important and interesting properties of the model. Finally,
we investigate the relationships between the proposed model and other
related rough set models.

Keywords: Multigranulation · Decision-theoretic rough sets ·
Optimistic · Maximal descriptor

1 Introduction

A three-way decision model is an extension of the commonly used two-way,
binary-decision model with an added third option. With respect to the proba-
bilistic positive, negative and boundary regions, one can build rules for making
a decision of acceptance,rejection and non-commitment, respectively. This inter-
pretation provides insights in to a deeper understanding of rough set theory
and its applicability in granular computing. Since Yao and Wong [1] proposed
the notion of decision-theoretic rough sets (DTRS), many researchers have been
working on the theory. For example, Herbert and Yao [2] explored the game-
theoretic rough set by combining game theory with DTRS. Liu et al. [3] dis-
cussed a multiple-category classification approach with decision-theoretic rough
sets, which can effectively reduce misclassification rate. Yu et al. [4] studied an
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automatic method of clustering analysis with the decision-theoretic rough set
theory. Li et al. [5] studied an axiomatic characterization of decision-theoretic
rough sets. Jia et al. [6] proposed an optimization representation of decision-
theoretic rough set model and developed a heuristic approach and a particle
swarm optimization approach for searching an attribute reduction with a min-
imum cost. Based on the DTRS, Yao [7,8] presented a new decision-making
method known as three-way decisions, where a universe is divided into three
pairwise disjoint regions, positive, negative and boundary regions by using an
evaluation function and a pair of thresholds. Three-way decisions have been
applied to many domains, such as email filtering [9], cost-sensitive face recogni-
tion [10], recommender system design [11], and so on.

The study on decision-theoretic rough set in a multigranulation environment
is a new and interesting topic. Qian et al. [12] developed the multigranulation
decision-theoretic rough set and proved that it is a general framework of many
existing multigranulation rough set models. To tackle the problem of computa-
tional cost in calculating the approximation of a target set with larger scale data,
Qian et al. [13] proposed the combination of local rough sets with multigran-
ulation decision-theoretic rough sets to obtain local multigranulation decision-
theoretic rough sets (LMG-DTRSs) as a semi-unsupervised learning method. It
is proved to be an excellent solution for dealing with data that have limited
labels. However, those two models have their own limitations: (1) All granular
structures in those models are based on equivalence relations, hence they are
not suitable for coverings or neighborhoods based environments. (2) The models
evaluate the multigranulation approximations in a quantitative way, so they are
not suitable for the situations where general binary relations are considered. To
tackle the above problems, Liu et al. [14] have proposed optimistic multigranu-
lation decision-theoretic rough set model by employing the minimal descriptors
of elements in a multi-covering space. The model may help to build a more rea-
sonable and suitable decision environment for solving real world problems. The
maximal descriptor of x contains all objects in the approximation space that are
related to x, and the maximal descriptor may provide a detailed and compre-
hensive description for x when we discuss the issue of set approximations. As
Yao et al. [15] have pointed out that the utilization of the maximal descriptors of
objects is equally reasonable as the utilization of the minimal ones in a covering
approximation space. Therefore, in this paper, we discuss the optimistic multi-
granulation decision-theoretic rough set model by using the maximal descriptors
of elements.

The remainder of the paper is organized as follows. Section 2 reviews some
basic notions and notations. Section 3 proposes the optimistic multigranulation
decision-theoretic rough set model and discusses the interrelationships with the
other generalized rough sets. Section 4 concludes the paper.

2 Preliminaries

In this section, some basic notions and notations will be reviewed.
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2.1 Covering-Based Rough Sets

In this subsection, we will review some concepts related to the covering-based
rough sets.

Definition 1 [16]. Let U be a universe of discourse and C a family of nonempty
subsets of U . If ∪C = U , then C is called a covering of U . The ordered pair 〈U,C〉
is called a covering approximation space.

Definition 2 [19]. Let 〈U,C〉 be a covering approximation space, x ∈ U , then
MDC(x) = {K ∈ Cx| ∀S ∈ Cx(S ⊇ K ⇒ K = S)} is called the maximal
descriptor of x, where Cx = {K ∈ C|x ∈ K}.

2.2 Qian’s MGRS

In this subsection, we will briefly outline the definition of optimistic multi-
granulation rough sets.

Definition 3. Let K = (U,R) be a knowledge base, where R is a family of
equivalence relations on the universe U . Let A1, A2, . . . , Am ∈ R, where m is a
natural number. For any X ⊆ U , its optimistic lower and upper approximations
with respect to A1, A2 . . . , Am are defined as follows.

m∑

i=1

Ai(X) = {x ∈ U | [x]A1 ⊆ X or [x]A2 ⊆ X or · · · or [x]Am
⊆ X}

m∑

i=1

Ai(X) =∼
m∑

i=1

Ai(∼ X)

where ∼ X denotes the complement set of X. (
m∑

i=1

Ai(X),
m∑

i=1

Ai(X)) is called the

optimistic multi-granulation rough sets of X. Here, the word “optimistic” means
that only a single granular structure is needed to satisfy the inclusion condition
between an equivalence class and a target concept when multiple independent
granular structures are available in the problem.

2.3 Decision-Theoretic Rough Sets

In [8], Yao proposed the theory of three-way decisions. Compared with two-way
decisions, three-way decisions exhibit a third option, that is, non-commitment
in addition to acceptance and rejection. The theory of three-way decisions can
be described as follows.

Within the frame of three-way decisions, the set of states is given by
Ω = {X,¬X} (where ¬X denotes the complement of X), the set of actions
is given by A = {aP , aB , aN}, where aP , aB and aN represent the three actions
in classifying an object x, namely, deciding x ∈ POS(X), deciding x should be
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further investigated x ∈ BND(X), and deciding x ∈ NEG(X). λPP , λBP and
λNP denote the loss incurred for taking actions of aP , aB and aN , respectively,
when an object belongs to X. Similarly, λPN , λBN and λNN denote the loss
incurred for taking the correspondence actions when the object belongs to ¬X.
By Bayesian decision procedure, for an object x, the expected loss R(a•|[x])
associated with taking the individual actions can be expressed as

R(aP |[x]) = λPP P (X|[x]) + λPNP (¬X|[x]),
R(aN |[x]) = λNP P (X|[x]) + λNNP (¬X|[x]),
R(aB |[x]) = λBP P (X|[x]) + λBNP (¬X|[x]).

Then the Bayesian decision procedure suggests the following three minimum-
risk decision rules.

(P1) If R(aP |[x]) ≤R(aB|[x]) and R(aP |[x])≤R(aN |[x]), decide x∈POS(X),
(N1) If R(aN |[x])≤R(aP |[x]) and R(aN |[x])≤R(aB |[x]), decide x∈NEG(X),
(B1) If R(aB |[x])≤R(aP |[x]) and R(aB |[x])≤R(aN |[x]), decide x∈BND(X).

By considering 0 ≤ λPP ≤ λBP < λNP and 0 ≤ λNN ≤ λBN < λPN ,
(P1)–(B1) can be expressed concisely as:
(P2) If P (X|[x]) ≥ α and P (X|[x]) ≥ γ, decide x ∈ POS(X),
(N2) If P (X|[x]) ≤ γ and P (X|[x]) ≤ β, decide x ∈ NEG(X),
(B2) If P (X|[x]) ≤ α and P (X|[x]) ≥ β, decide x ∈ BND(X),

where:

α = λPN−λBN

(λPN−λBN )+(λBP −λPP ) ,
β = λBN−λNN

(λBN−λNN )+(λNP −λBP ) ,
γ = λPN−λNN

(λPN−λNN )+(λNP −λPP ) .

If 0 ≤ β < γ < α ≤ 1, (P2)–(B2) can be rewritten as follows:

(P3) If P (X|[x]) ≥ α, decide x ∈ POS(X),
(N3) If P (X|[x]) ≤ β, decide x ∈ NEG(X),
(B3) If β < P (X|[x]) < α, decide x ∈ BND(X).

Based on the decision rules above, we obtain lower and upper approximations
of the decision-theoretic rough sets as follows.

PR(X) = {x ∈ U | P (X|[x]) ≥ α} and PR(X) = {x ∈ U | P (X|[x]) > β}.

3 Optimistic Multigranulation Decision-Theoretic Rough
Sets Based on Maximal Descriptors

In this paper, we define 〈U,C〉 as a multi-covering approximation space, where
U is a universe of discourse and C is a family of coverings on the universe U .
C1, C2 ∈ C are two granular structures of U . The set Ωi = {X,¬X} of two
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states for i-th granular structure (i = 1, 2) indicates that an element is in X
or not. A = {aP , aB , aN} denotes the set of actions, where aP means deciding
x ∈ POS(X), aB means deciding x ∈ BND(X) and aN deciding x ∈ NEG(X).
λi

PP , λi
BP and λi

NP denote the loss, or cost, for aP , aB and aN , respectively, when
an object x belongs to X under i-th granular structure. Analogously, λi

PN , λi
BN

and λi
NN denote the loss, or cost, for taking the corresponding actions when x

belongs to ¬X.
For each x ∈ U , ∪MDCi

(x) is adopted as its description. For the i-th granular
structure, the expected losses of taking different actions for x are as follows.

R(aP | ∪ MDCi
(x)) = λi

PP P (X| ∪ MDCi
(x)) + λi

PNP (¬X| ∪ MDCi
(x)),

R(aB | ∪ MDCi
(x)) = λi

BP P (X| ∪ MDCi
(x)) + λi

BNP (¬X| ∪ MDCi
(x)),

R(aN | ∪ MDCi
(x)) = λi

NP P (X| ∪ MDCi
(x)) + λi

NNP (¬X| ∪ MDCi
(x)).

If we suppose λ1
PP = · · · λi

PP , λ1
PN = · · · λi

PN , λ1
BP = · · · λi

BP , λ1
BN =

· · · λi
BN , λ1

NP = · · · λi
NP , λ1

NN = · · · λi
NN , then considering the strategy “seeking

commonality while preserving difference”, the expected overall loss of taking
actions aP , aB and aN for x can be computed as follows.

R(aP |(∪MDC1(x),∪MDC2(x)))

= λPP

2∧

i=1

P (X| ∪ MDCi
(x)) + λPN

2∧

i=1

P (¬X| ∪ MDCi
(x)),

R(aB|(∪MDC1(x),∪MDC2(x)))

= λBP

2∧

i=1

P (X| ∪ MDCi
(x)) + λBN

2∧

i=1

P (¬X| ∪ MDCi
(x)),

R(aN |(∪MDC1(x),∪MDC2(x)))

= λNP

2∧

i=1

P (X| ∪ MDCi
(x)) + λNN

2∧

i=1

P (¬X| ∪ MDCi
(x)).

where “
∧

” denotes the operation “minimum”.
Then the Bayesian decision procedure is suggested to use the following three

minimum-risk decision rules.

(OMP1) If R(aP |(∪MDC1(x),∪MDC2(x)))R(aB |(∪MDC1(x),∪MDC2(x)))
and R(aP |(∪MDC1(x),∪MDC2(x))) ≤ R(aN |(∪MDC1(x),∪MDC2(x))), decide
x ∈ POSC1+C2

OM (X);

(OMN1) If R(aN |(∪MDC1(x),∪MDC2(x)))R(aP |(∪MDC1(x),∪MDC2(x)))
and R(aN |(∪MDC1(x),∪MDC2(x)))≤R(aB |(∪MDC1(x),∪MDC2(x))), decide
x ∈ NEGC1+C2

OM (X);

(OMB1) If R(aB |(∪MDC1(x),∪MDC2(x)))R(aP |(∪MDC1(x),∪MDC2(x)))
and R(aB|(∪MDC1(x),∪MDC2(x)))≤R(aN |(∪MDC1(x),∪MDC2(x))), decide
x ∈ BNDC1+C2

OM (X).
Consider a special kind of loss function satisfies 0 ≤ λPP ≤ λBP < λNP and

0 ≤ λNN ≤ λBN < λPN , that is, the loss of classifying an object x in state X
into the positive region X is less than or equal to the loss of classifying x into the
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boundary region X, and both of these losses are less than the of classifying x into
the negative region X. Then use P (X| ∪ MDCi

(x)) + P (¬X| ∪ MDCi
(x)) = 1,

we have:

(1) For rule (OMP1):
R(aP |(∪MDC1(x),∪MDC2(x)))≤ R(aB |(∪MDC1(x),∪MDC2(x)))

⇐⇒
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≥ λPN−λBN

(λPN−λBN )+(λBP −λPP )

and

R(aP |(∪MDC1(x),∪MDC2(x))) ≤ R(aN |(∪MDC1(x),∪MDC2(x)))

⇐⇒
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≥ λPN−λNN

(λPN−λNN )+(λNP −λPP ) .

where “
∨

” denotes the operation “maximum”.

(2) For rule (OMN1):
R(aN |(∪MDC1(x),∪MDC2(x))) ≤ R(aP |(∪MDC1(x),∪MDC2(x)))

⇐⇒
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≤ λPN−λNN

(λPN−λNN )+(λNP −λPP )

and

R(aN |(∪MDC1(x),∪MDC2(x))) ≤ R(aB |(∪MDC1(x),∪MDC2(x)))

⇐⇒
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≤ λBN−λNN

(λBN−λNN )+(λNP −λBP ) .

(3) For rule (OMB1):
R(aB |(∪MDC1(x),∪MDCm

(x))) ≤ R(aP |(∪MDC1(x),∪MDC2(x)))

⇐⇒
∧2

i=1 P (X|∪MDCi
(x)

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≤ λPN−λBN

(λPN−λBN )+(λBP −λPP )

and
R(aB |(∪MDC1(x),∪MDC2(x))) ≤ R(aN |(∪MDC1(x),∪MDC2(x)))

⇐⇒
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≥ λBN−λNN

(λBN−λNN )+(λNP −λBP ) .

Therefore, the rules (OMP1)–(OMB1) can be rewritten as:

(OMP2) If
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≥ α and
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≥ γ

decide x ∈ POSC1+C2
O(X);

(OMN2) If
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≤ γ and
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≤ β

decide x ∈ NEGC1+C2
O(X);

(OMB2) If
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≤ α and
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≥ β
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decide x ∈ BNDC1+C2
O(X).

Where α = λPN−λBN

(λPN−λBN )+(λBP −λPP ) , β = λBN−λNN

(λBN−λNN )+(λNP −λBP ) ,

γ = λPN−λNN

(λPN−λNN )+(λNP −λPP ) .

Consider an additional condition on the loss function with (λPN −
λBN )(λNP − λBP ) > (λBN − λNN )(λBP − λPP ). It follows that 0 ≤ β < γ <
α ≤ 1. Thus the following simplified rules are obtained.

(OMP3) If
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≥ α,

decide x ∈ POSC1+C2
O(X);

(OMN3) If
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≤ β,

decide x ∈ NEGC1+C2
O(X);

(OMB3) If β <
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

< α,

decide x ∈ BNDC1+C2
O(X).

By rules (OMP3)–(OMB3), we therefore obtain the optimistic multigranula-
tion positive, negative, and boundary regions for X, as follows.

Definition 4. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, and
P : 2U −→ [0, 1] is a probability function defined on the power set 2U . For any
X ⊆ U , the positive, negative, and boundary regions of X of covering-based
optimistic multigranulation decision-theoretic rough set are defined as:

POSC1+C2
OM

(X) = {x ∈ U |
∧2

i=1 P (X| ∪ MDCi
(x))

1 +
∧2

i=1 P (X| ∪ MDCi
(x)) −∨2

i=1 P (X| ∪ MDCi
(x))

≥ α}

NEGC1+C2
OM

(X) = {x ∈ U |
∧2

i=1 P (X| ∪ MDCi
(x))

1 +
∧2

i=1 P (X| ∪ MDCi
(x)) −∨2

i=1 P (X| ∪ MDCi
(x))

≤ β}

BNDC1+C2
OM

(X) = {x∈U | β <

∧2
i=1 P (X| ∪ MDCi

(x))

1 +
∧2

i=1 P (X| ∪ MDCi
(x)) −∨2

i=1 P (X| ∪ MDCi
(x))

<α}.

The corresponding lower and upper approximations of X of optimistic multi-
granulation decision-theoretic rough sets can be defined as follows.

Definition 5. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, and
P : 2U −→ [0, 1] is a probability function defined on the power set 2U . For any
X ⊆ U , the lower and upper approximations of X are defined as follows.

C1 + C2
OM,α(X) = {x∈U |

∧2
i=1 P (X|∪MDCi

(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

≥ α}

C1 + C2
OM,β

(X) = {x∈U |
∧2

i=1 P (X|∪MDCi
(x))

1+
∧2

i=1 P (X|∪MDCi
(x))−∨2

i=1 P (X|∪MDCi
(x))

> β}

The pair (C1 + C2
OM,α(X), C1 + C2

OM,β
(X)) is called an optimistic multi-

granulation decision-theoretic rough set.
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By the definition of optimistic multigranulation decision-theoretic lower and
upper approximations, we have the following properties.

Proposition 1. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, and
P : 2U −→ [0, 1] is a probability function defined on the power set 2U . For any
0 ≤ β < α ≤ 1, and X,Y ⊆ U , we have

(1) C1 + C2
OM,α(∅) = C1 + C2

OM,β
(∅) = ∅,

C1 + C2
OM,α(U) = C1 + C2

OM,β
(U) = U ;

(2) C1 + C2
OM,α(X) ⊆ X ⊆ C1 + C2

OM,β
(X);

(3) If X ⊆ Y , we have C1 + C2
OM,α(X) ⊆ C1 + C2

OM,α(Y ) and

C1 + C2
OM,β

(X) ⊆ C1 + C2
OM,β

(Y );
(4) If α > 0.5, we have C1 + C2

OM,α(X) = ¬C1 + C2
OM,1−α

(¬X);

If β < 0.5, we have C1 + C2
OM,β

(X) = ¬C1 + C2
OM,1−β(¬X).

Proof. We only offer the proofs of (4) here, others can be easily proved according
to Definition 5.
For given α > 0.5,

¬C1 + C2
OM,1−α

(¬X)

= ¬{x ∈ U |
∧2

i=1 P (¬X| ∪ MDCi
(x))

1 +
∧2

i=1 P (¬X| ∪ MDCi
(x)) −∨2

i=1 P (¬X| ∪ MDCi
(x))

> 1 − α}

= {x ∈ U | 1 −∨2
i=1 P (X| ∪ MDCi

(x))

1 −∨2
i=1 P (X| ∪ MDCi

(x)) +
∧2

i=1 P (X| ∪ MDCi
(x))

≤ 1 − α}

= {x ∈ U |
∧2

i=1 P (X| ∪ MDCi
(x))

1 +
∧2

i=1 P (X| ∪ MDCi
(x)) −∨2

i=1 P (X| ∪ MDCi
(x))

≥ α}

= C1 + C2
OM,α(X).

Other part of (4) can be proved in a similar way.

Theorem 1. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, for
any 0 ≤ β < α ≤ 1, and X ⊆ U , we have

(1) C1 + C2
OM,α(C1 + C2

OM,α(X)) ⊆ C1 + C2
OM,β

(C1 + C2
OM,α(X));

(2) C1 + C2
OM,β

(C1 + C2
OM,β

(X)) ⊇ C1 + C2
OM,α(C1 + C2

OM,β
(X)).

Theorem 2. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, for
any 0 ≤ β2 ≤ β1 ≤ α1 ≤ α2 ≤ 1, and X ⊆ U , we have

C1 + C2
OM,α2(X) ⊆ C1 + C2

OM,α1(X) ⊆ C1 + C2
OM,β1(X) ⊆

C1 + C2
OM,β2(X)
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Theorem 3. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, for
any 0 ≤ β < α ≤ 1, and X ⊆ U , we have

(1) C1 + C2
OM,α(X) ⊆ C1 + C2

O,α(X);

(2) C1 + C2
O,β

(X) ⊆ C1 + C2
OM,β

(X).

Where C1 + C2
O,α(X) and C1 + C2

O,β
(X) are defined by Liu et al. in [14].

Theorem 4. Let 〈U,C〉 be a covering approximation space, C1, C2 ∈ C, for
any 0 ≤ β < α ≤ 1, and X ⊆ U , we have

(1) If α = 1, C1 + C2
O,α(X) = SC1+C2(X)

(2) If β = 0, C1 + C2
O,α

(X) = SC1+C2(X)

Where SC1+C2(X) and SC1+C2(X) are defined by Liu et al. in [17].

Proof. If α = 1, noting that P (X| ∪ MDCi
(x)) = |X∪(∪MDCi

(x))|
|∪MDCi

(x)| , then

C1 + C2
O,1(X) = {x ∈ U |

∧2
i=1 P (X| ∪ MDCi

(x))

1 +
∧2

i=1 P (X| ∪ MDCi
(x)) −∨2

i=1 P (X| ∪ MDCi
(x))

≥ 1}

= {x ∈ U |
∨2

i=1
P (X| ∪ MDCi

(x)) ≥ 1}
= {x ∈ U | P (X| ∪ MDC1 (x)) = 1 or P (X| ∪ MDC2 (x)) = 1}
= {x ∈ U | ∪MDC1 (x) ⊆ X or ∪ MDC2 (x) ⊆ X}
= SC1+C2 (X);

If β = 0, we have that

C1 + C2
O,0

(X) = {x ∈ U |
∧2

i=1 P (X| ∪ MDCi
(x))

1 +
∧2

i=1 P (X| ∪ MDCi
(x)) −∨2

i=1 P (X| ∩ MDCi
(x))

> 0}

= {x ∈ U |
∧2

i=1
P (X| ∩ MDCi

(x)) > 0}
= {x ∈ U | P (X| ∪ MDC1 (x)) > 0 and P (X| ∪ MDC2 (x)) > 0}
= {x ∈ U | ∪MDC1 (x) ∩ X �= ∅ and ∪ MDC2 (x) ∩ X �= ∅}
= SC1+C2 (X).

Theorem 4 implies that, in this case, the optimistic multigranulation decision-
theoretic rough set model will degenerate to the covering-based multigranulation
rough set model in [17].

Remark 1. If C is a set of partitions of U , the optimistic multigranulation
decision-theoretic rough set model in multi-covering space will degenerate to the
optimistic multigranulation decision-theoretic rough set model in [12].

For the readers’ convenience, the relationships of the lower and upper opera-
tors between the proposed model and the models in [17,18] are shown as Fig. 1.

In Fig. 1, each node denotes an approximation or a concept. Each line con-
nects two approximations, where the lower element is a subset of the upper
element. Each arrow means that when the corresponding condition is given, the
head element in the arrow will degenerate to the rear one.
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Fig. 1. Relationships of multigranution DTRSs

4 Conclusion

In the present paper, we mainly discussed a kind of multigranulation decision-
theoretic rough set model in the multi-covering space by employing the maximal
descriptions of elements. We gave the properties of the proposed model. And
we also found some interrelationships between the proposed model and other
existing models.
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Abstract. The similarity degree and divergence degree between intu-
itionistic fuzzy objects are defined respectively, and the related prop-
erties are presented in this paper. Then, we define the (α, β)-level cut-
sets based on intuitionistic fuzzy similarity relation under decision objec-
tive circumstances. Moreover, the upper and lower approximation sets
of objective sets are derived by utilizing the defined rough membership
function. Some properties of the derived upper and lower approximations
are discussed, and a ranking method for intuitionistic fuzzy numbers is
proposed. According to Bayesian decisions, an intuitionistic fuzzy three-
way decision-theoretic model and a rule induction algorithm based on
intuitionistic fuzzy decision systems are constructed. Finally, a numerical
example is given to illustrate the effectiveness of the proposed method.

Keywords: Similarity degree · Divergence degree · Intuitionistic fuzzy
decision systems · Three-way decisions

1 Introduction

The model of three-way decisions is usually encountered in handling cost-
sensitive decision issues [1–3], e.g., text classification [4], risk decision [5], clus-
tering analysis [6], etc. Since it was initially proposed by Yao based on rough
set, it has received much attention and has widely applied in many fields, such
as spam filtering [7], face recognition [8], granularity computing [9–11] and fuzzy
information systems [12,13].

As a generalization of rough set, the decision-theoretic rough set (DTRS) was
proposed by Yao and vastly pushed the development of three-way decisions [14].
According to Bayesian decision theory, considering the minimum of overall risk,
Yao [14] proposed the model for deriving three-way decisions with DTRS. So far,
the researches on three-way decisions with DTRS have made many theoretical
and applied achievements. For example, Liu et al. [15] concluded four-level choos-
ing criteria for probabilistic rules. Qian et al. [16] developed a multi-granulation
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part II, LNAI 10314, pp. 249–263, 2017.
DOI: 10.1007/978-3-319-60840-2 18
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decision-theoretic rough set with the help of DTRS and multi-granular struc-
tures. For multiple sets of decision preferences, Yang and Yao [17] studied some
aggregations of loss functions under the multi-agent DTRS model. With respect
to the reduction problem, Zhang and Miao [18] constructed a reduction frame-
work on two-category decision-theoretic rough sets. Besides, Liang et al. [19],
Liu et al. [20,21], Liang and Liu [22] evaluated the loss function by the form
of triangular fuzzy numbers, intervals, hesitant fuzzy set, and linguistic value
effectively. With the previous literature, the determination of loss function is
a key issue [25], and nowadays the uncertain evaluation scenarios are a novel
research direction for three-way decisions with DTRS, which can further extend
the applications of three-way decisions [26].

Intuitionistic fuzzy set (IFS) is served as a new form of the uncertain eval-
uation scenarios. The IFS, proposed by Atanassov [23], can better describe the
uncertainty or vagueness by the membership degree and non-membership degree
than the fuzzy set [24]. By introducing the new evaluation form of loss function
with the IFS, Liang and Liu [25] proposed a method to derive three-way deci-
sions in multi-period decision making under intuitionistic fuzzy environment.
Liang et al. [26] discussed the decision principles of three-way decision rules
based on the variation of loss functions with IFS.

From the existing literature, there are few researches on discussing the inter-
nal relationship between IFS and DTRS in the frame of three-way decisions.
Soothly, the IFS and DTRS are consistent but limited. For one thing, they can
all characterize the fuzziness or uncertainty, the IFS describes the uncertainty by
the hesitation index between the membership and non-membership degree, while
the DTRS by adding boundary decisions between positive and negative decisions.
Moreover, the elements between them exist one to one corresponding relation-
ship. For another thing, the IFS determines its membership, non-membership
and hesitation degree through mankind’s subjective judgement, but the positive,
negative and boundary decisions in DTRS model are determined by Bayesian
theory, which is objective when the loss function is given by decision makers
as IFS. If both combination, we can integrate the advantages of two theories,
respectively. Hence, there is a need to be intensive research. In this paper, we
propose a novel three-way decision-theoretic model based on both combination.

2 Preliminaries

The basic concepts of an intuitionistic fuzzy set and an intuitionistic fuzzy infor-
mation system are briefly reviewed in this section.

Definition 1 [23]. Let U be a finite non-empty universe set, an intuitionis-
tic fuzzy set(IFS) in U is defined as ˜A = {〈x, u

˜A(x), v
˜A(x)〉|x ∈ U}, which is

described by the membership function u
˜A : U �→ [0, 1] and non-membership func-

tion v
˜A : U �→ [0, 1] with u

˜A(x) + v
˜A(x) ∈ [0, 1] for ∀x ∈ U . Furthermore,

π
˜A(x) = 1 − u

˜A(x) − v
˜A(x) is called the hesitation degree or hesitation margin

of the element x to the set ˜A. Especially when π
˜A(x) = 0, an IFS ˜A is degraded

to the fuzzy set.
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The complement of an IFS ˜A can be denoted by ˜Ac = {〈x, v
˜A(x), u

˜A(x)〉|x ∈
U}. We call 〈u

˜A(x), v
˜A(x)〉 an intuitionistic fuzzy number (IFN) [27].

Let 〈L,≥L〉 be a complete bounded lattice with L = {〈x, y〉 ∈ [0, 1]×[0, 1]|0 ≤
x+ y ≤ 1}. Suppose ãi = 〈ui, vi〉(i = 1, 2) are two IFNs, the operations for IFNs
are given as follows [27]:

(1) ã1 ⊕ ã2 = 〈1 − (1 − u1)(1 − u2), v1v2〉;
(2) kã1 = 〈1 − (1 − u1)k, vk

1 〉 where k > 0;
(3) The complement setãc

1 = 〈v1, u1〉;
(4) ã1 ≥L ã2 if and only if u1 ≥ u2 and v1 ≤ v2.

(1)

In addition, Li [28] and Xu [29] presented the definition of the normal-
ized hamming distance d(ã1, ã2) and the intuitionistic fuzzy divergence e(ã1, ã2)
between ã1 and ã2, respectively.

d(ã1, ã2) =
1
2
(|u1 − u2| + |v1 − v2| + |π1 − π2|),

e(ã1, ã2) =
1
2
(|u1 − u2| + |v1 − v2|).

(2)

Definition 2 [30]. An intuitionistic fuzzy information system(IFIS) is defined
as a 4-tuple S = (U,A = C ∪ D,V, f), where U is a non-empty finite object
set. A represents a non-empty finite set of attributes, including the conditional
attribute set C and decision attribute set D. V = ∪c∈CVc and Vc is a domain
of the attribute c, and f : U × A �→ V is an information function such that
f(x, c) = 〈u, v〉 ∈ Vc for ∀x ∈ U . Especially, if C ∩ D = ∅, IFIS is called an
intuitionistic fuzzy decision system(IFDS).

Definition 3 [31]. Let U be a given domain, a binary intuitionistic fuzzy relation
R is defined as follows:

R = {〈(x, y), uR(x, y), vR(x, y)〉|(x, y) ∈ U × U}, (3)

where uR : U ×U �→ [0, 1] and vR : U ×U �→ [0, 1] denote, respectively, the mem-
bership function and non-membership degree with the relation R between x and
y satisfying the condition: 0 ≤ uR(x, y) + vR(x, y) ≤ 1 for every (x, y) ∈ U × U .
Besides, we say that R is a binary intuitionistic fuzzy similarity relation(BIFSR)
in U × U , the following condition is required.

(1) R is reflexive, if uR(x, x) = 1 and vR(x, x) = 0 for any x ∈ U .
(2) R is symmetric, if uR(x, y) = uR(y, x) and vR(x, y) = vR(y, x) for x, y ∈ U .

3 Intuitionistic Fuzzy Rough Approximation

In order to construct a binary intuitionistic fuzzy similarity relation, which is
used to characterize the similarity degree between two objects with respect to
the attributes in intuitionistic fuzzy information systems. We first propose a new
general definition on the similarity degree between IFNs based on the normalized
hamming distance, as presented in Definition 4.
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Definition 4. Let ai = 〈ui, vi〉(i = 1, 2) be two IFNs. The IFN similarity degree
s(a1, a2) between a1 and a2 is defined as follows:

s(a1, a2) = 1 − 1
2
(|u1 − u2| + |v1 − v2| + |π1 − π2|), (4)

where πi = 1 − ui − vi for i = 1, 2.

It is obviously required that s(a1, a2) ≤ 1. If a1 = a2, then s(a1, a2) = 1.
Especially when a1 and a2 are taken as two extreme cases respectively, that
is a1 = 〈1, 0〉 and a2 = 〈0, 1〉. s(a1, a2) is equal to 0 which is consistent with
practical implication. Here we mainly prove the conclusion of s(a1, a2) ≥ 0.

Proof. (1) When π1 = π2, clearly, s(a1, a2) ≥ 0; (2) when π1 = π2, (a) if u1 = u2

and v1 = v2, s(a1, a2) ≥ 0 holds; (b) if u1 = u2 and v1 = v2, s(a1, a2) ≥ 0
holds; (c) if u1 = u2 and v1 = v2, s(a1, a2) ≥ 0 also holds; (d) if u1 = u2 and
v1 = v2, i.e., there are four cases as follows: u1 < u2 and v1 > v2; u1 < u2

and v1 < v2; u1 > u2 and v1 < v2; u1 > u2 and v1 > v2. we prove that
s(a1, a2) ≥ 0 with the aid of the geometrical representation of IFNs. Without
loss of generality, we only prove that 0 ≤ s(a1, a2) ≤ 1 under the case of u1 < u2

and v1 > v2, and the same with the others. For convenience, let h = |u1−u2|, l1 =
|v1 − v2|, l2 = |π1 − π2| and S be the area of the right trapezoid CHDG (See
the Fig. 1). According to the geometrical representation of IFNs, we require
|GC| = h, |GD| = l1, |CH| = l2. Thus, we can get S = 1

2 (l2 + l1)h by the
formula of trapezoid area, and l1 = h+l2 with l1, l2, h ∈ [0, 1]. We further require
l2 + l1 = 2S

h . Since S = S1 +S2 = 1
2h2 +hl2, so we get 2S

h = h+2l2. It is easy to
obtain s(a1, a2) = 1− 1

2 (h+l1+l2) = 1− 1
2 (h+ 2S

h ) = 1− 1
2 (2h+2l2) = 1−l1 > 0.

Hence, 0 ≤ s(a1, a2) ≤ 1.

1l

1 1 11u v2 2 21u v

2l

u

v

O

C

A

B

D

P H

hG

1S

2S

2l
1 1,u v

2 2,u v

1,0E

  0,1F

Fig. 1. The geometrical representation of IFNs
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In view of Definition 4, we try to introduce the similarity degree and diver-
gence degree of IFNs into IFIS. The similarity degree uR(x, y) and divergence
degree vR(x, y) between two objects on the attributes are defined below.

Definition 5. Let S = (U,A = C ∪ D,V, f) be an IFDS and R be a BIFSR,
B ⊆ C is a subset of attributes. Suppose that f(x, c) = 〈uc(x), vc(x)〉 is an
intuitionistic fuzzy attribute value of an object x ∈ U under the attribute c ∈ B.
The similarity degree uR(x, y) and divergence degree vR(x, y) with respect to the
attribute set B between x and y are respectively defined as follows:

uR(x, y) = min
c∈B

{s(f(x, c), f(y, c))}
vR(x, y) = max

c∈B
{e(f(x, c), f(y, c))},

(5)

where s(f(x, c), f(y, c)) and e(f(x, c), f(y, c)) represent the similarity degree and
divergence degree of the IFNs f(x, c) and f(y, c), respectively.

Theorem 1. Let S = (U,C∪D,V, f) be an IFDS and R be a BIFSR. x, y ∈ U,
c ∈ B ⊆ C. The similarity degree uR(x, y) and divergence degree vR(x, y) for the
attribute set B between x and y have the following properties:

(1) 0 ≤ uR(x, y) ≤ 1, 0 ≤ vR(x, y) ≤ 1 and 0 ≤ uR(x, y) + vR(x, y) ≤ 1;
(2) uR(x, y) = uR(y, x) and vR(x, y) = vR(y, x);
(3) If uR(x, y) = 1, then vR(x, y) = 0 and vice versa;
(4) f(x, c) = f(y, c) for any c∈B if and only if uR(x, y) = 1 and vR(x, y)=0;
(5) If f(x, c) = 〈1, 0〉 and f(y, c) = 〈0, 1〉 for any c ∈ B, then uR(x, y) = 0
and vR(x, y) = 1;
(6) If f(x, c) = 〈1, 0〉 and f(y, c) = 〈0.5, 0.5〉 for any c ∈ B, then uR(x, y) =
0.5 and vR(x, y) = 0.5;
(7) If f(x, c) = 〈0.5, 0.5〉 and f(y, c) = 〈0, 1〉 for any c ∈ B, then uR(x, y) =
0.5 and vR(x, y) = 0.5.

Proof. It is straightforward to prove Theorem 1 by use of Definition 5.

Definition 6. Let S = (U,C ∪ D,V, f) be an IFDS and R be a BIFSR. For
any α, β ∈ [0, 1] with 0 ≤ α + β ≤ 1. uR(x, y) and vR(x, y) denote the similarity
degree and divergence degree of x, y ∈ U with respect to the attribute set B ⊆ C.
We define (α, β)-level cut-sets Rβ

α based on a binary intuitionistic fuzzy similarity
relation as follow:

Rβ
α = {(x, y) ∈ U × U |uR(x, y) ≥ α and vR(x, y) ≤ β}, i.e.,

Rβ
α(x) = {y ∈ U |(x, y) ∈ Rβ

α}.
(6)

Furthermore, Rα = {(x, y) ∈ U ×U |uR(x, y) ≥ α} is called α-level cut-sets which
consist of two tuples whose the membership degree between them belonging to R
is no less than α, while Rβ = {(x, y) ∈ U ×U |vR(x, y) ≤ β} is defined as β-level
cut-sets which consist of two tuples whose non-membership degree between them
belonging to R is less than β.
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Obviously, Rβ
α is a classical binary relation where α ∈ [0, 1] is regarded as

a given least threshold on membership values and β ∈ [0, 1] is considered as a
given largest threshold on non-membership values. For real decision process in
practice, the threshold α and β is usually given by decision makers according
to actual requirements on “membership levels” and “non-membership levels”
respectively.

Theorem 2. Let R be a BIFSR, then (α, β)-level cut-sets Rβ
α is a binary intu-

itionistic fuzzy similarity relation in U × U .

Proof. ∀α ∈ [0, 1], notice that uR(x, x) = 1 ≥ α, vR(x, x) = 0 ≤ β, thus (x, x) ∈
Rβ

α. Namely, Rβ
α satisfies reflexivity. Besides, if (x, y) ∈ Rβ

α, then uR(x, y) ≥ α
and vR(x, y) ≤ β. Considering that R ∈ BIFSR, so uR(y, x) = uR(x, y) ≥ α and
vR(y, x) = vR(x, y) ≤ β. Therefore, (y, x) ∈ Rβ

α. Namely, Rβ
α satisfies symmetry.

Nevertheless, Rβ
α is not generally transitive. As have discussed above, Rβ

α is a
binary intuitionistic fuzzy similarity relation.

Definition 7. Let S = (U,C ∪ D,V, f) be an IFDS and 〈L,≥L〉 be a complete
bounded lattice with L = {〈x, y〉 ∈ [0, 1]× [0, 1]|0 ≤ x+y ≤ 1}. A given threshold
pair (α, β) satisfying α, β ∈ [0, 1] and α + β ≤ 1. The (α, β)-level cut-sets Xβ

α

under intuitionistic fuzzy decision objects is defined as

Xβ
α = {y ∈ U |f(y, c) ≥L 〈α, β〉,∀c ∈ D}, (7)

where 〈α, β〉 is an constant IFN which consists both of the threshold α and β.

Definition 8. Let Xβ
α be a non-empty finite set in U and Rβ

α(x) be a similarity
class under intuitionistic fuzzy (α, β)-level cut-sets. The threshold α̃, β̃ ∈ [0, 1]
satisfying: 0 ≤ β̃ ≤ α̃ ≤ 1 and α̃+ β̃ ≤ 1. We define the (α̃, β̃)-probabilistic lower
and upper approximations of Xβ

α regarding Rβ
α as follows, respectively.

apr(α̃,β̃)(Xβ
α) = {x ∈ U |Pr(Xβ

α |Rβ
α(x)) ≥ α̃},

apr(α̃,β̃)(Xβ
α) = {x ∈ U |Pr(Xβ

α |Rβ
α(x)) > β̃},

(8)

where Pr(Xβ
α |Rβ

α(x)) represents the conditional probability of Xβ
α given the

description Rβ
α(x), i.e., Pr(Xβ

α |Rβ
α(x)) = |Rβ

α(x)∩Xβ
α|

|Rβ
α(x)| , and | · | denotes the cardi-

nality or element numbers of a given set.
We further call the pair (apr(α̃,β̃)(Xβ

α), apr(α̃,β̃)(Xβ
α)) an intuitionistic fuzzy

rough set based on the relation Rβ
α. Moreover, the positive region POS

(α̃,β̃)

Rβ
α

(Xβ
α),

negative region NEG
(α̃,β̃)

Rβ
α

(Xβ
α) and boundary region BND

(α̃,β̃)

Rβ
α

(Xβ
α) are given

as follows:

POS
(α̃,β̃)

R
β
α

(Xβ
α) = apr(α̃,β̃)(Xβ

α) = {x ∈ U |Pr(Xβ
α |Rβ

α(x)) ≥ α̃},

BND
(α̃,β̃)

R
β
α

(Xβ
α) = apr(α̃,β̃)(Xβ

α) − apr(α̃,β̃)(Xβ
α) = {x ∈ U |β̃ < Pr(Xβ

α |Rβ
α(x)) < α̃},

NEG
(α̃,β̃)

R
β
α

(Xβ
α) = U − apr(α̃,β̃)(Xβ

α) = {x ∈ U |Pr(Xβ
α |Rβ

α(x)) ≤ β̃}.
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Theorem 3. Let S = (U,C ∪ D,V, f) be an IFDS. Xβ1
α1

,Xβ2
α2

⊆ U where 0 ≤
α1, β1, α2, β2 ≤ 1. Then the (α̃, β̃)-probabilistic lower and upper approximations
of Xβ1

α1
and Xβ2

α2
have the following properties:

(1) apr(α̃,β̃)(Xβ1
α1

) ⊆ Xβ1
α1

⊆ apr(α̃,β̃)(Xβ1
α1

); (2) apr(α̃,β̃)(U) = apr(α̃,β̃)(U) = U ;

(3) apr(α̃,β̃)(∅) = apr(α̃,β̃)(∅) = ∅; (4) IfXβ1
α1

⊆ Xβ2
α2

, thenapr(α̃,β̃)(Xβ1
α1

) ⊆
apr(α̃,β̃)(Xβ2

α2
), apr(α̃,β̃)(Xβ1

α1
) ⊆ apr(α̃,β̃)(Xβ2

α2
);

(5) apr(α̃,β̃)(Xβ1
α1

∩ Xβ2
α2

) = apr(α̃,β̃)(Xβ1
α1

) ∩ apr(α̃,β̃)(Xβ2
α2

),

apr(α̃,β̃)(Xβ1
α1

∪ Xβ2
α2

) = apr(α̃,β̃)(Xβ1
α1

) ∪ apr(α̃,β̃)(Xβ2
α2

);

(6) apr(α̃,β̃)(Xβ1
α1

∪ Xβ2
α2

) ⊇ apr(α̃,β̃)(Xβ1
α1

) ∪ apr(α̃,β̃)(Xβ2
α2

),

apr(α̃,β̃)(Xβ1
α1

∩ Xβ2
α2

) ⊆ apr(α̃,β̃)(Xβ1
α1

) ∩ apr(α̃,β̃)(Xβ2
α2

);

(7) apr(α̃,β̃)(Xβ1
α1

) =∼ apr(α̃,β̃)(∼ Xβ1
α1

), apr(α̃,β̃)(Xβ1
α1

) =∼ apr(α̃,β̃)(∼ Xβ1
α1

).

Proof. The proofs are straightforward from Definition 8.

In order to rank IFNs ai = 〈ui, vi〉(i = 1, 2), a novel method to rank IFNs
is proposed in [32]. For two IFNs a1 = 〈0.6, 0.1〉 and a2 = 〈0.7, 0.3〉, we get
τ(a1) = 1−0.1

1+0.3 = 0.6923 and τ(a2) = 1−0.3
1+0 = 0.7 by the method in [32], that is

a1 ≺ a2. However, we have a1 � a2 via adopting the ranking method based on
score function and accurate function [27], which is extremely classical rankings
of IFNs and widely applied in practice. Thereby the rankings of two IFNs in [32]
are worthy of further research.

Let a = 〈u, v〉 be an intuitionistic fuzzy number, it is clearly acknowledged
that a+ = 〈1, 0〉 and a− = 〈0, 1〉 are the positive and negative ideal point of a,
respectively. According to (4), we get

s(a, a+) = 1 − 1
2
(|u − 1| + |v − 0| + |π − 0|) = u, (9)

s(a, a−) = 1 − 1
2
(|u − 0| + |v − 1| + |π − 0|) = v, (10)

where π = 1 − u − v.
The longer the similarity degree between a and a+ while the smaller the

similarity degree between a and a−, the better the a by TOPSIS. Hence, the
closeness degree of the a is defined as follows:

Definition 9. Let a = 〈u, v〉 be an intuitionistic fuzzy number. The closeness
degree τ(a) of a is calculated as:

τ(a) =
s(a, a+)

s(a, a+) + s(a, a−)
=

u

1 − π
, (11)

where s(a, a+) denotes the degree of similarity between a and a+ as (9) and
s(a, a−) stands for the similarity degree between a and a− as (10).
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In addition, Wan et al. proposed to employ ϕ(a) = 1 − 1
2π2 to measure

information reliability, which has apparent geomet-ric meaning by geometrical
representation of IFNs [32]. Thus, a more reasonable ranking is developed to
deal with the above problem.

Definition 10. Let a1 = 〈u1, v1〉 and a2 = 〈u2, v2〉 be two IFNs. Then the
ranking of them can be given as follows:

(1) If τ(a1) > τ(a2), then a1 is better than a2, denoted as: a1 � a2;
(2) If τ(a1) = τ(a2), then a) if ϕ(a1) > ϕ(a2), then a1 is better than a2,
denoted as: a1 � a2; b) if ϕ(a1) = ϕ(a2), then a1 is indifferent to a2, denoted
as: a1 ∼ a2; c) if ϕ(a1) < ϕ(a2), then a1 is worse than a2, denoted as:
a1 ≺ a2.

For the above IFNs a1 = 〈0.6, 0.1〉 and a2 = 〈0.7, 0.3〉, according to
Definition 9, we can recover τ(a1) = 0.6

1−0.3 = 0.8571 and τ(a2) = 0.7
1−0 = 0.7.

Then a1 � a2, which conforms to the ranking with score function and accurate
function widely applied to rank IFNs.

Suppose ai = 〈ui, vi〉(i = 1, 2) are two IFNs. a+ = 〈1, 0〉, ā = 〈0.5, 0.5〉 and
a− = 〈0, 1〉 are the positive ideal point, intermediate point and negative ideal
point of IFNs respectively. Some practical results on the rankings of IFNs with
the closeness degree are given as follows:

(1) τ(a+) = 1, τ(ā) = 0.5 and τ(a−) = 0.
(2) If a1 ≥L a2, that is to say that u1 ≥ u2 and v1 ≤ v2, then τ(a1) � τ(a2).
(3) τ(a1) + τ(ac

1) = 1, especially, if u1 > v1, then a1 � ac
1.

4 Intuitionistic Fuzzy Three-Way Decision Model

In this section, we introduce an intuitionistic fuzzy three-way decision model
based on three-way decision theory. There are two states Ω = {Xβ

α ,¬Xβ
α} �

{P,N} and three actions A = {aP , aB , aN} (positive decision, delayed decision
and negative decision). The state set Ω denotes an element in Xβ

α and not in
¬Xβ

α , respectively; the action aP , aB and aN represent three decision actions that
an object is in positive region, boundary region and negative region respectively.
Suppose that the losts of taking different actions under two states take the form
of the IFN ˜A(λij) = 〈u

˜A(λij), v ˜A(λij)〉(i = P,B,N ; j = P,N). That is, when
an object belongs to Xβ

α , ˜A(λPP ), ˜A(λBP ) and ˜A(λNP ) represent the costs of
adopting actions P,B and N respectively while when an object does not belong
to Xβ

α , ˜A(λPN ), ˜A(λBN ) and ˜A(λNN ) represent the costs of adopting the same
three actions, respectively. The loss functions with regard to two states Xβ

α and
¬Xβ

α can be expressed by a 3 × 2 matrix, as shown in Table 1.
Suppose that S =(U,A, V, f) is an IFDS, we have Pr(Xβ

α |Rβ
α(x))= |Rβ

α(x)∩Xβ
α|

|Rβ
α(x)|

and Pr(¬Xβ
α |Rβ

α(x)) = 1 − Pr(Xβ
α |Rβ

α(x)) by Definition 8. Based on Bayesian
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Table 1. The cost matrix of intuitionistic fuzzy decision

Xβ
α(P ) ¬Xβ

α(N)

aP
˜A(λPP ) = 〈u

˜A(λPP ), v
˜A(λPP )〉 ˜A(λPN ) = 〈u

˜A(λPN ), v
˜A(λPN )〉

aB
˜A(λBP ) = 〈u

˜A(λBP ), v
˜A(λBP )〉 ˜A(λBN ) = 〈u

˜A(λBN ), v
˜A(λBN )〉

aN
˜A(λNP ) = 〈u

˜A(λNP ), v
˜A(λNP )〉 ˜A(λNN ) = 〈u

˜A(λNN ), v
˜A(λNN )〉

decision theory, the decision costs fix = ˜R(ai|Rβ
α(x))(i = P,B,N) can be com-

puted as follows:

fPx = ˜R(aP |Rβ
α(x)) = ˜A(λPP )Pr(Xβ

α |Rβ
α(x)) ⊕ ˜A(λPN )Pr(¬Xβ

α |Rβ
α(x))

fBx = ˜R(aB |Rβ
α(x)) = ˜A(λBP )Pr(Xβ

α |Rβ
α(x)) ⊕ ˜A(λBN )Pr(¬Xβ

α |Rβ
α(x))

fNx = ˜R(aN |Rβ
α(x)) = ˜A(λNP )Pr(Xβ

α |Rβ
α(x)) ⊕ ˜A(λNN )Pr(¬Xβ

α |Rβ
α(x))

For simplification, we introduce several symbols, denote η = Pr(Xβ
α |Rβ

α(x))
and γ = Pr(¬Xβ

α |Rβ
α(x)) with η + γ = 1, where the conditional probabilities η

and γ are the respective possibilities of elements in Rβ
α(x) divided into Xβ

α and
¬Xβ

α . Then the fix(i = P,B,N) above can be further presented with the aid of
(1) as follows:

fPx = 〈1 − (1 − u
˜A(λPP ))η(1 − u

˜A(λPN ))γ , (v
˜A(λPP ))η(v

˜A(λPN ))γ〉 � 〈uP , vP 〉
fBx = 〈1 − (1 − u

˜A(λBP ))η(1 − u
˜A(λBN ))γ , (v

˜A(λBP ))η(v
˜A(λBN ))γ〉 � 〈uB , vB〉

fNx = 〈1 − (1 − u
˜A(λNP ))η(1 − u

˜A(λNN ))γ , (v
˜A(λNP ))η(v

˜A(λNN ))γ〉 � 〈uN , vN 〉

In light of Definition 9, the closeness degree τ(fix) and ϕ(fix) of fix(i =
P,B,N) can be computed as

τ(fPx) =
uP

1 − πP
, τ(fBx) =

uB

1 − πB
, τ(fNx) =

uN

1 − πN
;

ϕ(fPx) = 1 − 1
2
(πP )2, ϕ(fBx) = 1 − 1

2
(πB)2, ϕ(fNx) = 1 − 1

2
(πN )2.

where πi = 1 − ui − vi for any i = P,B,N .
According to Definition 10, we can further rank fPx, fBx and fNx. Therefore,

some prerequisites (C1) − (C12) on intuitionistic fuzzy three-way decision are
established as follows:

(C1) : τ(fPx) < τ(fBx); (C2) : τ(fPx) = τ(fBx) ∧ ϕ(fPx) ≤ ϕ(fBx);
(C3) : τ(fPx) < τ(fNx); (C4) : τ(fPx) = τ(fNx) ∧ ϕ(fPx) ≤ ϕ(fNx);
(C5) : τ(fBx) < τ(fPx); (C6) : τ(fBx) = τ(fPx) ∧ ϕ(fBx) ≤ ϕ(fPx);
(C7) : τ(fBx) < τ(fNx); (C8) : τ(fBx) = τ(fNx) ∧ ϕ(fBx) ≤ ϕ(fNx);
(C9) : τ(fNx) < τ(fPx); (C10) : τ(fNx) = τ(fPx) ∧ ϕ(fNx) ≤ ϕ(fPx);
(C11) : τ(fNx) < τ(fBx); (C12) : τ(fNx) = τ(fBx) ∧ ϕ(fNx) ≤ ϕ(fBx).
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Hence, a three-way decision rule with intuitionistic fuzzy risk preference can
be constructed based on the above prerequisites as follows:

(P ) : If (C1 ∨ C2) ∧ (C3 ∨ C4), then decide : x ∈ POS
(α̃,˜β)

Rβ
α

(Xβ
α);

(B) : If (C5 ∨ C6) ∧ (C7 ∨ C8), then decide : x ∈ BND
(α̃,˜β)

Rβ
α

(Xβ
α);

(N) : If (C9 ∨ C10) ∧ (C11 ∨ C12), then decide : x ∈ NEG
(α̃,˜β)

Rβ
α

(Xβ
α).

Especially when ∀ πi = 1 − ui − vi = 0(i = P,B,N), namely, ui + vi =
1(i = P,B,N), then the above three-way decision rules (P ) − (N) are reduced
to decision rules (P ′) − (N ′) or (P ′′) − (N ′′) as follows:

(P ′) : If uP ≤ uB and uP ≤ uN , then decide : x ∈ POS
(α̃,˜β)

Rβ
α

(Xβ
α);

(B′) : If uB ≤ uP and uB ≤ uN , then decide : x ∈ BND
(α̃,˜β)

Rβ
α

(Xβ
α);

(N ′) : If uN ≤ uP and uN ≤ uB, then decide : x ∈ NEG
(α̃,˜β)

Rβ
α

(Xβ
α).

or

(P ′′) : If vP ≥ vB and vP ≥ vN , then decide : x ∈ POS
(α̃,˜β)

Rβ
α

(Xβ
α);

(B′′) : If vB ≥ vP and vB ≥ uN , then decide : x ∈ BND
(α̃,˜β)

Rβ
α

(Xβ
α);

(N ′′) : If vN ≥ vP and vN ≥ vB, then decide : x ∈ NEG
(α̃,˜β)

Rβ
α

(Xβ
α).

5 Rule Induction Algorithm to Derive 3WD from IFDS

This section summarizes four steps to derive three-way decision (3WD) rules
from intuitionistic fuzzy decision systems (IFDS) based on the proposed method.
These steps focus on the combination of IFDS and loss function with IFSs
in DTRS model together, and the rule induction algorithm is outlined in
Algorithm 1 in detail.

Step 1: Given an IFDS = (U,A = C ∪ D,V, f), we use (5) to calculate the
similarity degree uR(x, y) and divergence degree vR(x, y) for the attribute set
B ⊆ C between x and y in U .

Step 2: Given a certain α and β, for any x ∈ U , we can compute the simi-
larity class Rβ

α(x) via (6) and (α, β)-level cut-sets Xβ
α by (7) as well as rough

membership degree η = Pr(Xβ
α |Rβ

α(x)), respectively.

Step 3: We further compute the risk costs fix(i = P,B,N) of x ∈ U under
three decision actions ai respectively and then calculate τ(fix), ϕ(fix).

Step 4: According to the prerequisites (C1) − (C12) and three-way decision
rules (P ) − (N) to acquire the corresponding three-way decision rules.
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Algorithm 1. Rule induction algorithm to derive 3WD from IFDS
Input: IFDS = (U, A = C ∪ D, V, f), two parameters α and β, a concept B ⊆ U .
Output: The three-way decision rules for any x ∈ U .
1: begin: Suppose G = {P, B, N}, given a concept B ⊆ U , α and β.
2: for x ∈ U do
3: for y ∈ U do
4: Compute uR(x, y) and vR(x, y) via (5) respectively.
5: end for
6: Compute Rβ

α(x) = {y ∈ U |(x, y) ∈ Rβ
α} using (6); we then take (7) to calculate

Xβ
α and η = Pr(Xβ

α |Rβ
α(x)) respectively.

7: for i ∈ G do
8: Compute the corresponding fix, τ(fix) and ϕ(fix).
9: end for

10: Calculate tk = min{τ(fPx), τ(fBx), τ(fNx)}, k = P, B or N and then assume
{g1, g2} = G − {k}.

11: if (k == P ) ∧ (C1 ∨ C2) ∧ (C3 ∨ C4) then decide x ∈ POS
(α̃,˜β)

R
β
α

(Xβ
α).

12: end if
13: if (k == B) ∧ (C5 ∨ C6) ∧ (C7 ∨ C8) then decide x ∈ BND

(α̃,˜β)

R
β
α

(Xβ
α).

14: end if
15: if (k == N) ∧ (C9 ∨ C10) ∧ (C11 ∨ C12) then decide x ∈ NEG

(α̃,˜β)

R
β
α

(Xβ
α).

16: end if
17: end for
18: end

6 A Numerical Example

This section presents a numerical example [33] to illustrate the effectiveness of
the proposed intuitionistic fuzzy three-way decision method. An intuitionistic
fuzzy decision system on the security audit assessment is given in Table 2 whose
the object set of audit is x = {x1, x2, x3, x4}. The set of the conditional attributes
is C = {c1, c2, c3, c4, c5}, where c1, c2, c3, c4 and c5 stand for eminent system
environment, preferable system control, reliably financial data, credible auditing
software and standard operation, respectively; the decision attribute is c6 which
denotes acceptable safety audit risk. The value of any conditional attribute is
comprehensively given by many auditing experts based on auditing results and
their professional quality, e.g. f(x4, c4) = 〈0.7, 0.1〉 representing the value of
the attribute c4 with regard to x4, which means that 70 % of experts on audit
consider the auditing software of the object x4 creditable while 10 % believe it
not creditable. In addition, 20 % failed to make a decision. Similarly, for the
decision attribute c6, f(x2, c6) = 〈0.6, 0.4〉 can be understood that 60 % of the
experts believe security audit risk acceptable while 40 % believe it not acceptable.
The risk costs of taking different actions under two states(acceptable and not
acceptable for audit risk) take form of IFNs, as shown in Table 3.

Suppose the threshold α = 0.7 and β = 0.3 are given in advance by experts.
In this paper, we adopt the proposed method to acquire the related decision
rules, in which the detailed steps are as follows:
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Table 2. Intuitionistic fuzzy decision systems on the security audit assessment

c1 c2 c3 c4 c5 c6

x1 〈0.8, 0.2〉 〈0.7, 0.3〉 〈0.6, 0.3〉 〈0.5, 0.5〉 〈0.7, 0.2〉 〈0.7, 0.3〉
x2 〈0.7, 0.2〉 〈0.6, 0.4〉 〈0.8, 0.2〉 〈0.7, 0.3〉 〈0.5, 0.5〉 〈0.6, 0.4〉
x3 〈0.6, 0.4〉 〈0.9, 0.1〉 〈0.8, 0.2〉 〈0.4, 0.6〉 〈0.7, 0.3〉 〈0.7, 0.3〉
x4 〈0.9, 0.1〉 〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.7, 0.1〉 〈0.6, 0.4〉 〈0.8, 0.2〉

Table 3. Risk cost matrix of intuitionistic fuzzy decision

Xβ
α(accept) ¬Xβ

α(not accept)

aP 〈0.1, 0.8〉 〈0.8, 0.2〉
aB 〈0.5, 0.5〉 〈0.6, 0.4〉
aN 〈0.8, 0.2〉 〈0.1, 0.8〉

Step 1: Calculate the similarity degree uR(xj , xk) and divergence degree
vR(xj , xk) between xj and xk(j, k = 1, 2, 3, 4; j = k) below.

uR(x1, x2) = 0.7, vR(x1, x2) = 0.25;uR(x1, x3) = 0.8, vR(x1, x3) = 0.2;
uR(x1, x4) = 0.6, vR(x1, x4) = 0.3;uR(x2, x3) = 0.7, vR(x2, x3) = 0.3;
uR(x2, x4) = 0.8, vR(x2, x4) = 0.15;uR(x3, x4) = 0.5, vR(x3, x4) = 0.4.

Step 2: Compute the similarity class Rβ
α(xj)(j = 1, 2, 3, 4) and the (α, β)-level

cut-sets Xβ
α as well as rough membership degree ηj as follows:

Rβ
α(x1) = {x1, x2, x3}, Rβ

α(x2) = {x1, x2, x3, x4}, Rβ
α(x3) = {x1, x2, x3, x4},

Rβ
α(x4)={x2, x4},Xβ

α = {x1, x3, x4},¬Xβ
α = {x2}, η1 =

2
3
, η2 = η3 =

3
4
, η4=

1
2
.

Step 3: We can further compute the risk costs fixj
of xj , τ(fixj

) and ϕ(fixj
)(i =

P,B,N ; j = 1, 2, 3, 4).

fPx1 = 〈0.4549, 0.5040〉, fBx1 = 〈0.5358, 0.4642〉, fNx1 = 〈0.6698, 0.3175〉,
fPx2 = 〈0.3821, 0.5657〉, fBx2 = 〈0.5271, 0.4729〉, fNx2 = 〈0.7087, 0.2828〉,
fPx3 = 〈0.3821, 0.5657〉, fBx3 = 〈0.5271, 0.4729〉, fNx3 = 〈0.7087, 0.2828〉,
fPx4 = 〈0.5757, 0.4000〉, fBx4 = 〈0.5528, 0.4472〉, fNx4 = 〈0.5757, 0.4000〉.

the corresponding τ(fixj
) of fixj

can be computed as follows:

τ(fPx1) = 0.4744, τ(fBx1) = 0.5358, τ(fNx1) = 0.6784, τ(fPx2) = 0.4031,

τ(fBx2) = 0.5271, τ(fNx2) = 0.7148, τ(fPx3) = 0.4031, τ(fBx3) = 0.5271,

τ(fNx3) = 0.7148, τ(fPx4) = 0.5900, τ(fBx4) = 0.5528, τ(fNx4) = 0.5900.
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Step 4: According to the prerequisites (C1) − (C12) and three-way decision
rules (P ) − (N) to require rules as follows:

x1 ∈ POS
(α̃,˜β)

R
β
α

(Xβ
α), x2 ∈ POS

(α̃,˜β)

R
β
α

(Xβ
α), x3 ∈ POS

(α̃,˜β)

R
β
α

(Xβ
α), x4 ∈ BND

(α̃,˜β)

R
β
α

(Xβ
α).

That is, the auditing risk is deemed to be safe for the object x1, x2 and x3

under a confidence level α = 0.7 and β = 0.3 while the risk of x4 is further
discussed.

As we can see from this example, the proposed model in this paper can well
deal with three-way decision problems whose the loss function is IFNs, and it
is also an extension to the classical three-way decision model. Besides, deriving
three-way decision rules may different for taking different threshold α and β.
Hence, we focus on the research of the threshold α and β in follow-up work.

7 Conclusion

In this paper, we propose an intuitionistic fuzzy three-way decision-theoretic
model with intuitionistic fuzzy decision systems to obtain three-way decision
rules, and then a novel rule induction algorithm is developed. Whereafter, a
numerical example is presented to illustrate the effectiveness of the proposed
method. In the future, we will further explore the intuitionistic fuzzy three-way
decision theory based on intuitionistic fuzzy decision systems.

Acknowledgments. This research is supported by the National Natural Science
Foundation of China under grant No. 71671086, 61473157, 61403200, 71201076 and
71171107.
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Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp.
287–296. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32115-3 34

8. Li, H.X., Zhang, L.B., Huang, B.: Sequential three-way decision and granulation
for cost-sensitive face recognition. Knowl.-Based Syst. 91(1), 241–251 (2016)

9. Li, J.H., Huang, C.C., Qi, J.J.: Three-way cognitive concept learning via multi-
granularity. Inf. Sci. 378, 244–263 (2017)

10. She, Y.H., He, X.L., Shi, H.X., Quan, Y.: A multiple-valued logic approach for
multigranulation rough set model. Int. J. Approx. Reason. 82, 270–284 (2017)

11. Qian, Y.H., Liang, X.Y., Lin, G.P., Guo, Q., Liang, J.Y.: Local multigranulation
decision-theoretic rough sets. Int. J. Approx. Reason. 82, 119–137 (2017)

12. Li, H.X., Wang, M.H., Zhou, X.Z., Zhao, J.B.: An interval set model for learning
rules from incomplete information table. Int. J. Approx. Reason. 53(1), 24–37
(2012)

13. Liu, D., Liang, D.C., Wang, C.C.: A novel three-way decision model based on
incomplete information system. Knowl.-Based Syst. 91, 32–45 (2016)

14. Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models.
Inf. Sci. 180, 1080–1096 (2011)

15. Liu, D., Li, T.R., Ruan, D.: Probabilistic model criteria with decision-theoretic
rough sets. Informance Sci. 181, 3709–3722 (2011)

16. Qian, Y.H., Zhang, H., Sang, Y.L., Liang, J.Y.: Multigranulation decision-theoretic
rough sets. Int. J. Approx. Reason. 55, 225–237 (2014)

17. Yang, X.P., Yao, J.T.: Modelling multi-agen three-way decisions with decision the-
oretic rough sets. Fundam. Informaticae 115(2–3), 157–171 (2012)

18. Zhang, X.Y., Miao, D.Q.: Reduction target structure-based hierarchical attribute
reduction for two-category decision-theoretic rough sets. Informance Sci. 277, 755–
776 (2014)

19. Liang, D.C., Liu, D., Pedrycz, W., Hu, P.: Triangular fuzzy decision theoretic rough
sets. Int. J. Approx. Reason. 54(8), 1087–1106 (2013)

20. Liang, D.C., Liu, D.: Systematic studies on three-way decisions with interval-valued
decision-theoretic rough sets. Informance Sci. 276, 186–203 (2014)

21. Liang, D.C., Liu, D.: A novel risk decision-making based on decision-theoretic
rough sets under hesitant fuzzy information. IEEE Trans. Fuzzy Syst. 23(2), 237–
247 (2015)

22. Liang, D.C., Pedrycz, W., Liu, D., Hu, P.: Three-way decisions based on decision-
theoretic rough sets under linguistic assessment with the aid of group decision
making. Appl. Soft Comput. 29, 256–269 (2015)

23. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
24. Deng, X.F., Yao, Y.Y.: Decision-theoretic three-way approximations of fuzzy sets.

Informance Sci. 279, 702–715 (2014)
25. Liang, D.C., Liu, D.: Deriving three-way decisions from intuitionistic fuzzy

decision-theoretic rough sets. Inf. Sci. 300, 28–48 (2015)
26. Liang, D.C., Xu, Z.S., Liu, D.: Three-way decisions with intuitionistic fuzzy

decision-theoretic rough sets based on point operators. Inf. Sci. 375, 183–201 (2017)
27. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuition-

istic fuzzy sets. Int. J. Gen. Syst. 35, 417–433 (2006)
28. Li, D.F.: Some measures of dissimilarity in intuitionistic fuzzy structures. J. Com-

put. Syst. Sci. 68, 115–122 (2004)

http://dx.doi.org/10.1007/978-3-642-32115-3_34


A Three-Way Decision Model 263

29. Xu, Z.S., Yager, R.R.: Intuitionistic and interval-valued intuitionistic fuzzy pref-
erence relations and their measures of similarity for the evaluation of agreement
within a group. Fuzzy Optim. Decis. Making 8(2), 123–139 (2009)

30. Zhang, X.X., Chen, D.G., Tsang, E.C.C.: Generalized dominance rough set models
for the dominance intuitionistic fuzzy information systems. Inf. Sci. 378, 1–25
(2017)

31. Bustince, H., Burillo, P.: Structures on intuitionistic fuzzy relations. Fuzzy Sets
Syst. 78, 293–303 (1996)

32. Wan, S.P., Wang, F., Dong, J.Y.: A novel risk attitudinal ranking method for
intuitionistic fuzzy values and application to MADM. Appl. Soft Comput. 40, 98–
112 (2016)

33. Huang, B., Wei, D.K.: Distance-based rough set model in intuitionistic fuzzy infor-
mation systems and its application. Systems Engineering Theory &. Practice 336,
1356–1362 (2011)



Sequential Three-Way Decisions in Efficient
Classification of Piecewise Stationary

Speech Signals

Andrey V. Savchenko(B)

Laboratory of Algorithms and Technologies for Network Analysis,
National Research University Higher School of Economics,

Nizhny Novgorod, Russian Federation
avsavchenko@hse.ru

Abstract. In this paper it is proposed to improve performance of the
automatic speech recognition by using sequential three-way decisions.
At first, the largest piecewise quasi-stationary segments are detected in
the speech signal. Every segment is classified using the maximum a-
posteriori (MAP) method implemented with the Kullback-Leibler mini-
mum information discrimination principle. The three-way decisions are
taken for each segment using the multiple comparisons and asymptotical
properties of the Kullback-Leibler divergence. If the non-commitment
option is chosen for any segment, it is divided into small subparts, and
the decision-making is sequentially repeated by fusing the classification
results for each subpart until accept or reject options are chosen or the
size of each subpart becomes relatively low. Thus, each segment is asso-
ciated with a hierarchy of variable-scale subparts (granules in rough set
theory). In the experimental study the proposed procedure is used in
speech recognition with Russian language. It was shown that our app-
roach makes it possible to achieve high efficiency even in the presence of
high level of noise in the observed utterance.

Keywords: Signal processing · Speech recognition · Three-way deci-
sions · Sequential analysis · Granular computing · Kullback-Leibler
divergence

1 Introduction

The mathematical model of the piecewise stationary stochastic (random) process
[1,2] is widely used in many practical pattern recognition tasks including sig-
nal classification [3,4], computer vision [5] and speech processing [6]. One of
the most popular approach to classify its realization (sample function) is based
on the hidden Markov model (HMM), specially developed for recognition of
the piecewise stationary signals [6]. In these methods an observed realization of
stochastic process [7] is divided into stationary parts using a fixed scale time
window (typically 20–30 ms) [1]. Next, the corresponding parts (segments) of
c© Springer International Publishing AG 2017
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the observation and all instances in the database are matched using such models
of these segments, as the GMM (Gaussian Mixture Model), and the total sim-
ilarity is estimated. The recent research has moved focus from GMMs to more
complex classifiers based on the deep neural networks (DNN), which have estab-
lished the state-of-the-art results for several multimedia recognition tasks [8,9].
The most impressive modern results are achieved with acoustic models based on
long-short term memory (LSTM) recurrent neural networks trained with con-
nectionist temporal classification [10]. Unfortunately, the run-time complexity of
all these approaches is rather high, especially for large utterances, which contain
many phones [6,11]. In practice the situation is even worse, because the seg-
ments are usually aligned using dynamic programming to deal with inaccurate
segmentation.

It is known [1], that the speech signals are multi-scale in nature (vowel phones
last for 40–400 ms while stops last for 3–250 ms). Hence, to improve classification
performance, this paper explores the potential of sequential three-way decisions
(TWD) [12], which has been recently used to speed-up the face recognition algo-
rithms [13,14]. The TWD theory [15,16] have grown from the ideas of the rough
set theory [17] to divide the universal set into positive, negative and bound-
ary regions. Unlike the traditional two-way decision, the TWD incorporates the
delay decision as an optional one. It is selected, if the cost of such delay is mini-
mal [15]. It is of great importance in practice, besides taking a hard decision, to
allow such “I do not know” option. There are several industrial applications of
TWD in such data mining tasks, as visual feature extractions using deep neural
networks [18], frequent item sets mining [19], attribute reduction [20], medical
decision support systems [21], recommender systems [22] and software defect
prediction [23]. However, the research of TWD in the classification problems for
complex data has just begun [13]. Thus, in this paper we propose to examine
the hierarchical representation of each segment using the methodology of gran-
ular computing [24,25]. The more detailed representation is explored only if the
non-commitment option of TWD was chosen for the current representation.

The rest of the paper is organized as follows. In Sect. 2 we describe statis-
tical speech recognition using an autoregression (AR) model [6,26]. In Sect. 3
we introduce the proposed classification algorithm based on sequential TWD.
Section 4 contains experimental study of our approach in speech recognition for
Russian language. Concluding comments are given in Sect. 5.

2 Conventional Classification of Piecewise-Stationary
Speech Signals Using Statistical Approach

In this section we explore the task of isolated word recognition, which typically
appears in, e.g., the voice control intelligent systems [27]. Let a vocabulary of
D > 1 words/phrases be given. The dth word is usually specified by a sequence of
phones {cd,1, . . . , cd,Sd

}. Here cd,j ∈ {1, . . . , C} are the the class (phone) labels,
and Sd ≥ 1 is the transcription length of the dth word. It is required to assign the
new utterance X to the closest word/phrase from the vocabulary. We focus on
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the speaker-dependent mode [6], i.e. the phonetic database of R ≥ C reference
signals {xr}, r ∈ {1, . . . , R} with labels c(r) ∈ {1, . . . , C} of all phones of the
current speaker should be available.

We use the typical assumption that the speech signal X can be represented as
a piecewise stationary time-varying AR ergodic Gaussian process with zero mean
[1,7,26]. To apply this model, the input utterance is divided into T fixed-size
(20–30 ms) partially overlapped quasi-stationary frames {x(t)}, t ∈ {1, . . . , T},
where {x(t)} is a feature vector with the fixed dimension size. Next, each frame
is assigned to one of C reference phones. It is known [28,29] that the maximal
likelihood (ML) solution for testing hypothesis Wc, c ∈ {1, . . . , C} about covari-
ance matrix of the Gaussian signal x(t) is achieved with the Kullback-Leibler
(KL) minimum information discrimination principle [30]

c∗(x(t)) = argmin
c(r),r∈{1,...,R}

ρKL(x(t),xr), (1)

where the KL divergence between the zero-mean Gaussian distributions is com-
puted as follows

ρKL(x(t),xr) =
1
2

ln
det(Σr)

det(Σ(t))
+

1
2
tr(Σ(t)(Σr)−1) − p

2
.

HereΣ(t) andΣr are the estimates of the covariancematrices of signalsx(t) and
xr, respectively, det(Σ) and tr(Σ) stand for the determinant and trace of thematrix
Σ. This KL discrimination for the Gaussian model of the quasi-stationary speech
signals can be computed as the Itakura-Saito distance [26,28] between power spec-
tral densities (PSD) Gx(t)(f) and Gr(f) of the input frame x(t) and xr:

ρKL(x(t),xr) =
2
F

F/2∑

f=1

(
Gx(t)(f)
Gr(f)

− ln
Gx(t)(f)
Gr(f)

− 1
)

. (2)

Here f ∈ {1, . . . , F}, is the discrete frequency, and F is the sample rate (Hz).
The PSDs in (2) can be estimated using the Levinson-Durbin algorithm and the
Burg method [31]. The Itakura-Saito divergence between PSDs (2) is well known
in speech processing due to its strong correlation with the subjective MOS (mean
opinion score) estimate of speech closeness [6].

Finally, the obtained transcription {c∗(x(1)), c∗(x(2)), . . . , c∗(x(T ))} of the
utterance X is dynamically aligned with the transcription of each word from
the vocabulary to establish the temporary compliance between the sounds.
Such alignment is implemented with the dynamic programming techniques, e.g.,
Dynamic Time Warping or the Viterbi algorithm in the HMM [6]. The decision
can be made in favor to the closest word from the vocabulary in terms of the
total conditional probability or, equivalently, the sum of distances (2).

The typical implementation of the described procedure includes the esti-
mation of AR coefficients and the PSDs for each frame, matching with all
phones (1), (2) and dynamic alignment with transcriptions of all words in
the vocabulary. Thus, the runtime complexity of this algorithm is equal to
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O(F ·p ·T +R ·F ·T +T ·∑D
d=1 Sd), where p is the order of AR model. The more

is the count of frames T , the less is the recognition performance. Unfortunately,
as it is written in introduction, the duration of every phone varies significantly
even for the same speaker. Hence, the frame is usually chosen to be very small
in order to contain only one quasi-stationary part of the speech signal. In the
next section we propose to apply the TWD theory to speed-up the recognition
procedure by using multi-scale representation of the speech segments.

3 Sequential Three-Way Decisions in Speech Recognition

3.1 Three-Way Decisions

Though speech recognition on the phonetic level at the present time is com-
parable in quality with the phoneme recognition by human [6], the variability
sources (the noisy environment, children speech, foreign accents, speech rate,
voice disease, etc.) usually lead to the misclassification errors [32]. Hence, in this
paper we apply the TWD to represent each cth phone with three pair-wise dis-
joint regions (positive POS, negative NEG and boundary BND). These regions
can be defined using the known asymptotic chi-squared distribution of the KL
divergence between feature vectors of the same class [29,30]:

POS(α,β)(c) = {x ∈ X|2(n(x) − p)ρ(x, c) < χ2
1−α,p(p+1)/2}, (3)

NEG(α,β)(c) = {x ∈ X|2(n(x) − p)ρ(x, c) ≥ χ2
1−β,p(p+1)/2}, (4)

BND(α,β)(c) = X − (POS(α,β)(c) ∪ NEG(α,β)(c)), (5)

where
ρ(x, c) = min

r∈{1,...,R},c(r)=c
ρKL(x,xr). (6)

Here X is the universal set of the stationary speech signals, n(x) is the
count of samples in the signal x, χ2

α,p(p+1)/2 is the α-quantile of the chi-squared
distribution with p(p + 1)/2 degrees of freedom, 0 < β < α < 1 is the pair
of thresholds, which define the type II and type I errors of the given utterance
representing the cth phone. In this case the type I error is detected if the cth
phoneme is not assigned to the positive region (3). The type II error takes place
when the utterance from any other phoneme is not rejected (4).

3.2 Multi-class Three-Way Decisions

Though the described approach (3)-(5) can provide an additional robust-
ness of speech recognition, it does not deal with the multi-scale nature of
the speech signals [1]. To solve the issues with performance of traditional
approach, we will use the multi-granulation approach [24,35] and describe
the stationary utterance as a hierarchy of fragments. Namely, we obtain
the largest piecewise quasi-stationary speech segments X(s), s ∈ {1, . . . , S}
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with the borders (t1(s), t2(s)), 1 ≤ t1(s) < t2(s) ≤ T in observed utter-
ance using an appropriate speech segmentation technique [1,11]. Here S is
the count of extracted segments. Then, l speech parts of the same size
are extracted at the lth granularity level, where the kth part x(l)

k (s) =[
x

(
t1(s) +

⌊
(k−1)·(t2(s)−t1(s)+1)

l

⌋)
, . . . ,x

(
t1(s) +

⌈
k·(t2(s)−t1(s)+1)

l

⌉)]
. Hence,

only one part x(1)
1 (s) = X(s) of the sth segment is examined at the coarsest

granularity level l = 1, and all L = (t2(s) − t1(s) + 1) frames are processed at
the finest granularity level.

According to the idea of sequential TWD [12], it is necessary to assign three
decision regions at each granularity level. Though the concept of a phoneme
is naturally mapped into TWD theory (3)-(5), speech recognition involves the
choice of only one phoneme for each segment (1). Three basic options of accep-
tance, rejection and non-commitment are best interpreted in the binary classifi-
cation task (C = 2) [15]. It includes three decision types: positive (accept the first
class), negative (reject the first class and accept the second class), and boundary
(delay the final decision and do not accept either first or second class). It cannot
directly deal with multi-class problems (C > 2). This problem has been studied
earlier in the context of multiple-category classification using decision-theoretic
rough sets [34]. Lingras et al. [33] discussed the Bayesian decision procedure with
C classes and specially constructed 2C −1 cost functions. Liu et al. [37] proposed
a two stages algorithm, in which, at first, the positive region is defined to make
a decision of acceptance of any class, and the best candidate classification is
chosen at the second stage using Bayesian discriminant analysis. Deng and Jia
[36] derived positive, negative and boundary regions of each class from the cost
matrix in classical cost-sensitive learning task.

However, in this paper we examine another enhancement of the idea of TWD
for multi-class recognition, namely, (C +1)-way decisions, i.e., acceptance of any
of C classes or delaying the decision process, in case of an unreliable recognition
result [13]. In this case, it is necessary to define C positive regions POS

(l)
(α,β)(c)

for each cth phone and one boundary region BND
(l)
(α,β) for delay option.

3.3 Proposed Approach

Let us aggregate the three regions of each phoneme (3)–(5) into such (C+1)-way
decisions. The most obvious way is to assign an utterance x to the cth phone if
this utterance is included into the positive region (3) of only this class:

POS
(l)
(α,β)(c) = POS(α,β)(c) −

⋃

i∈{1,...,c−1,c+1,...,C}
POS(α,β)(i), (7)

BND
(l)
(α,β) = X −

C⋃

c=1

POS
(l)
(α,β)(c). (8)
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It is not difficult to show, that the signal x is included into the positive region
(7) of the nearest class c∗(x) (1), only if

{
2(n(x) − p)ρ(x, c∗(x)) < χ2

1−α,p(p+1)/2

2(n(x) − p)ρ(x, c∗
2(x)) ≥ χ2

1−α,p(p+1)/2

. (9)

Here the second nearest neighbor class for the utterance x is denoted as

c∗
2(x) = argmin

c∈{1,...,C},c �=c∗(x)
ρ(x, c). (10)

However, in such definition of the positive regions the parameter α does not
stand for the type I error anymore. As a matter of fact, the multiple-testing
problem occurs in the multi-class classification, so appropriate correction should
be used in the thresholds (9) [38]. If we would like to control the false dis-
covery rate and accept the cth phone if only one hypothesis is accepted, the
Benjamini-Hochberg test [39] with (C − 1)/C correction of type I error of the
second hypothesis can be applied:

{
2(n(x) − p)ρ(x, c∗(x)) < ρ1(α)
2(n(x) − p)ρ(x, c∗

2(x)) ≥ ρ2(α)
, (11)

where the thresholds are defined as follows: ρ1(α) = χ2
1−α,p(p+1)/2, ρ2(α) =

χ2
1−α(C−1)/C,p(p+1)/2. If condition (11) holds for all l parts at the lth granularity

level, then the closest phones c∗(x(l)
k (s)) (1) are accepted as the final decisions.

Otherwise, the delayed decision is chosen and the phoneme recognition problem
is examined at a finer granulation level l+1 with more detailed information [12].

Unfortunately, the proposed procedure (11) can be hardly used in practice,
because the distance between real utterances of the same phoneme is rather
large and does not satisfy the theoretical chi-squared distribution with p(p+1)/2
degrees of freedom [29]. Hence, the first condition in (11) does not hold anymore.
Thus, it is necessary to tune the thresholds ρ1, ρ2. However, in this paper we
explore an alternative solution. Namely, the search termination condition (10)
is modified by using the known probability distribution of the KL divergence
between different hypothesis [30]. If the utterance x corresponds to the nearest
neighbor phoneme c∗(x), then the 2(n(x) − p)-times distance ρ(x, c∗

2(x)) is dis-
tributed as the non-central chi-squared distribution with p(p + 1)/2 degrees of
freedom and the non-centrality parameter proportional to the distance between
phonemes ρ(c∗(x), c∗

2(x)) [27,40]. Thus, the ratio of the distances between the
input signal and its second and first nearest neighbor has the non-central F-
distribution F (p(p + 1)/2, p(p + 1)/2; 2(n(x) − p))ρ(c∗(x), c∗

2(x)). Hence, in this
paper we will use the following positive region for acceptance of class c:

POS
(l)
(α,β)(c) = {x ∈ X|c = c∗(x)&

ρ(x, c∗
2(x))

ρ(x, c∗(x))
> ρ2/1(α)}, (12)

where a threshold ρ2/1(α) is chosen from the α-quantile of the non-central
F-distribution described above.
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Fig. 1. Complete data flow of speech recognition using sequential three-way decisions
and granular computing.

The complete data flow of the proposed recognition procedure using sequen-
tial TWD is shown in Fig. 1. At first, the input signal is preprocessed in
order to decrease its variability, detect voice activity regions, etc. [6]. Next, the
largest piecewise quasi-stationary speech segments are detected, and the coars-
est approximation of the observed signal is analyzed. After that, each extracted
segment is processed alternately. As we assume, that the scale of each part of
the large segment X(s) is identical, so the sequential analysis is terminated only
when decisions are accepted for any speech part x(l)

k (s). This procedure can be
also implemented with the Benjamini-Hochberg correction of the type I error in
(12). If it is possible to obtain a reliable solution x(s) ∈ POS

(l)
(α,β)(c)(12), the

phoneme matching process (1), (2) is terminated and, as a result, the c∗(x(s))
class label is assigned to this segment. Otherwise, its scale is refined, and the
process is repeated for each part, until any of these parts are accepted (12). If the
absence of acceptance decisions at all L levels for individual frames x(t), we can
obtain the least unreliable level [13]. Finally, the estimated transcription of the
refined segments can be processed using the dynamic programming techniques
[6] in order to obtain the final decision of the speech recognition problem.

Let us demonstrate how the proposed procedure works in practice. In this
example we consider rather simple task of Russian vowel recognition in a syllable
“tro”(/t/ /r/ /oo/). Table 1 contains the KL distances (2) between R = 6 vowel
phonemes and all segments in L = 2 hierarchical levels. The closest distance
in each row is marked by bold. Here the vowel /aa/ is the nearest neighbor
(1) of the signal x(1)

1 (see the first row in Table 1). Hence, the whole syllable
(l = 1) is incorrectly classified. However, this decision cannot be accepted (12),
because the distance to the second nearest neighbor /oo/ is quite close to the
distance between x(1)

1 and the first nearest neighbor (45.38/38.4 = 1.18). Thus,
according to sequential TWD scheme (Fig. 1) the granularity level should be
refined, and the whole syllable is divided into l = 2 parts. Though the first part
is still misclassified (second row in Table 1), this decision is still unacceptable
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as the distance ration in (12) is rather low (57.94/38.40 = 1.6). At the same
time, the second part of the utterance is correctly recognized as the phone /oo/.
This decision can be accepted (12), because the distance to the second nearest
neighbor is rather large (46.02/5.83 = 7.89). As we know, that a syllable contains
only one vowel, we can accept /oo/ phone as the final decision for the whole
syllable. Thus, the proposed approach can be use to increase the recognition
accuracy. In the next section we experimentally demonstrate that an additional
refinement of the granularity level makes it possible to significantly decrease the
decision making time.

Table 1. Computed distances (2) in the vowel recognition in the syllable /t/ /r/ /oo/

Level /aa/ /ee/ /ii/ /oo/ /uu/ /y/

l = 1 38.40 85.38 270.80 45.38 113.33 99.28

l = 2 36.17 77.26 277.83 57.94 129.84 93.16

333.39 303.94 198.47 5.83 46.02 460.33

4 Experimental Results

In this section the proposed approach (Fig. 1) in used in the isolated words
recognition for Russian language. All tests are performed at a 4 core i7 laptop
with 6 Gb RAM. Two vocabularies are used, namely, (1) the list of 1832 Russian
cities with corresponding regions; and (2) the list of 1913 drugs. All speakers
pronounced every word from all vocabularies twice in isolated syllable mode
to simplify the recognition procedure [27,40]. In such mode every vowel in the
syllable is made stressed, thus, it is recognized quite stably. The part of speech
data suitable to reproduce our experiments is available for free download1. In
the configuration mode, each speaker clearly spoke ten vowels of the Russian
language (/aa/, /ja/, /ee/, /je/, /oo/, /jo/, /ii/, /y/, /uu/, /ju/) in isolated
mode [41]. The following parameters are chosen: sampling frequency F = 8
kHz, AR-model order p = 20. The sampling rate was set on telephone level,
because we carried out this experiment with our special software [27,42], which
was mainly developed for application in remote voice control systems.

The closed sounds /aa/, /ja/, /ee/, /je/, /oo/, /jo/, /ii/, /y/, /uu/, /ju/
are united into C = 5 clusters [6]. Observed utterances are divided into 30 ms
frames with 10 ms overlap. The syllables in the test signals are extracted with
the amplitude detector and the vowels are recognized in each syllable by the
simple voting [40] based on the results obtained using vowel recognition. The
latter is implemented using either proposed sequential TWD procedure with
termination condition (12), or traditional techniques: (1) recognition (1), (2) of
low-scale frames with identical size; (2) distance thresholding (11); and (2) the

1 https://sites.google.com/site/andreyvsavchenko/SpeechDataIsolatedSyllables.zip.

https://sites.google.com/site/andreyvsavchenko/SpeechDataIsolatedSyllables.zip
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state-of-the-art recognition of vowels in each syllable using the DNN from the
Kaldi framework [43] trained with the Voxforge corpus. We added an artificially
generated white noise to each test utterance using the following procedure. At
first, the signal-to-noise ratio (SNR) is fixed. Next, the pauses are detected in
each utterance using simple energy thresholding, and the standard deviation of
the remaining part with high energy is estimated. Finally, these standard devia-
tion was corrected using given SNR, and uncorrelated normal random numbers
with zero mean and the resulted standard deviation was added to each value of
the speech signal.

Except the KL divergence (2), its symmetric version (COSH distance [2,28])
is implemented:

ρCOSH(x(t),xr) =
1
F

F/2∑

f=1

(Gx(t)(f) − Gr(f))2

Gx(t)(f)Gr(f)
. (13)

The thresholds in (11), (12) for each discrimination type are tuned exper-
imentally using the small validation set of 5 vowels per phone class2. Namely,
we compute the pairwise distances between all utterances from this validation
set Xval. If type I error rate is fixed α = const, then ρ2/1(α) is evaluated as a
(1 − α)-quantile of the ratio of these distances

⎧
⎨

⎩

min
xr∈Xval,c(xr) �=c(x)

ρ(x,xr)

min
xr∈Xval,xr �=x

ρ(x,xr)

∣∣∣∣∣∣
x ∈ Xval

⎫
⎬

⎭ .

Similar procedure is applied to estimate thresholds in (11) [5]. The depen-
dence of the words recognition accuracy on the SNR is shown in Tables 2 and 3
for cities and drugs vocabularies, respectively. The average time to recognize one
testing phrase is shown in Figs. 2 and 3.

Table 2. Dependence of error rate (%) on SNR (dB), cities vocabulary

Distance Method 25 dB 20 dB 15 dB 10 dB 5 dB 0 dB

DNN 6.3 7.9 10.2 18.9 30.6 34.1

Conventional approach (1) 7 7.9 8.8 14.5 31.6 38.2

KL divergence Distance thresholding (11) 7.5 8.8 10.5 18.9 30.1 36.1

Proposed approach (12) 6.3 7.3 9.6 17.3 31.1 37.1

Conventional approach (1) 3.9 4.2 4.1 9.8 23.7 28.1

COSH distance Distance thresholding (11) 3.1 3.9 4.7 10.8 26 32.7

Proposed approach (12) 3.9 4.7 5.3 11.8 26.9 33.9

Though the state-of-the-art DNN does not use speaker adaptation, its accu-
racy of vowel recognition is comparable to the nearest neighbor search (1), which
2 https://sites.google.com/site/andreyvsavchenko/ValidationDataVowels.zip.

https://sites.google.com/site/andreyvsavchenko/ValidationDataVowels.zip
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Table 3. Dependence of error rate (%) on SNR (dB), drugs vocabulary

Distance Method 25 dB 20 dB 15 dB 10 dB 5dB 0dB

DNN 9.9 10.6 11.4 13.9 18.4 23.2

Conventional approach (1) 3.1 5.4 8.1 8.3 15.9 20.4

KL divergence Distance thresholding (11) 4.1 6.6 8.7 8.7 17 20.3

Proposed approach (12) 3.9 6.6 8.3 8.6 15.9 19.9

Conventional approach (1) 5.6 6.6 6.8 6.8 14.3 17.4

COSH distance Distance thresholding (11) 3.5 4.3 7.5 7.9 14.1 18.6

Proposed approach (12) 2.9 3.7 7.5 8.1 14.1 17.4

Fig. 2. Experimental results, cities vocabulary.

is implemented in other examined techniques. However, the DNN’s performance
is inappropriate: it is 2–10 times slower than all other methods. McNemar’s test
[44] with 0.95 confidence verified that the COSH distance is more accurate in
most cases, than the KL divergence. This result supports our statement about
superiority of the distances based on the homogeneity testing in audio and visual
recognition tasks [2]. The obvious implementation of sequential TWD (11) is
inefficient in the case of high noise levels, because the thresholds in (11) cannot
be reliably estimated for huge variations in speech signals. Finally, the proposed
approach (Fig. 1) allows to increasing the recognition performance. Our imple-
mentation of sequential TWD is 12–14 times faster that the DNN and 4–5 times
faster than the conventional approach with matching of the fine-grained frames
(1). McNemar’s test verified that this improvement of performance is significant
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Fig. 3. Experimental results, drugs vocabulary.

in all cases except the experiment with drugs vocabulary (Fig. 3), in which clas-
sification speed of both (11) and (12) is similar for low level of noise (SNR > 5).
Moreover, our approach leads to the most accurate decisions (for a fixed dissim-
ilarity measure) in all cases except the recognition of drugs (Table 3) with the
KL-divergence (2) and low noise level. However, these differences in error rates
are mostly not statistically significant.

5 Conclusion

To sum it up, this article introduced an efficient implementation (1), (6), (10),
(12) of sequential three-way decisions in multi-class recognition of piecewise sta-
tionary signals. It was demonstrated how to define the granularity levels in quasi-
stationary parts of the signal, so that the count of the coarse-grained granules
is usually rather low. As a result, the new observation can be classified very
fast. The acceptance region (12) was defined using the theory of multiple com-
parisons and contains only computing the KL divergence. Hence, our method
can be applied with an arbitrary distance by tuning the threshold ρ2/1. The
experimental study demonstrated the potential of our procedure (Fig. 1) to sig-
nificantly speed-up speech recognition when compared with conventional algo-
rithms (Figs. 2 and 3). Thus, it is possible to conclude that the proposed tech-
nique makes it possible to build a reliable speech recognition module, which
is suitable for implementing, e.g., a voice control intelligent system with fast
speaker adaptation [27].



Sequential Three-Way Decisions in Efficient Classification 275

As a matter of fact, our experiments are reported on own speech data with
requirement of isolated syllable pronunciation. Thus, our results are not directly
comparable with other ASR methods. Hence, the further research of the proposed
method can be continued in the following directions. First, it should be applied
in continuous speech recognition, in which only the last granularity level is ana-
lyzed with the computationally expensive state-of-the-art procedures (HMMs
with GMMs/DNNs or LSTMs) [6,9,10]. Second possible direction is the appli-
cation of our method with non-stationary signal classification tasks [4].
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Abstract. Recommender systems help e-commerce corporations to
make profit among a large amount of customers. Three-way recommender
systems handle this issue through considering misclassification and pro-
motion costs. The setting of costs in existing approaches is the same
for items with different popularity. However, success recommendation of
unpopular items is more profitable. In this paper, we define a new cost-
sensitive recommendation problem. The new problem is more general
than existing ones in that the cost function is variable w.r.t the popular-
ity of the item. First, we adopt a three-way approach with three kinds of
actions: recommending, not recommending and promoting. For any item,
a threshold pair is calculated from its cost matrix. Second, we employ
the M-distance to obtain the probability which measures how much a
user likes an item. Consequently, the action to any item for any user is
determined. Experiments are undertaken on the well-known Movielens
dataset. Compared with the existing three-way recommendation algo-
rithm, our algorithm results in less average cost through recommending
more unpopular items.

Keywords: Cost-sensitive learning · Popularity · Recommender sys-
tem · Three-way decision

1 Introduction

Shopping online has become a part of our daily life, and e-commerce corporations
have gained much success in the last decade. Amazon.com is the first website
attracting more than 30 million customers. At the end of 2014, Taobao.com has
nearly 500 million registered members, including 120 million active users. Its
turnover is around 120 billion yuan on November 11th (double eleven), 2016.
These websites usually provide some hyper-links including “find similar”, “find
relevant”, and “guess you like” to improve user satisfaction and promote the
sale. The software in charge of these issues is called a recommender system (RS).
Naturally, the performance of an RS has an essential impact to the success of
the corporation.

A number of measures have been designed for different scenarios to eval-
uate the quality of an RS. For top-N recommendation, recall [2,18] refers to
c© Springer International Publishing AG 2017
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the proportion of successful recommended items. For numeric rating prediction,
MAE [1] refers the mean absolute error across all ratings of users to items. For
“find all good items” task, coverage refers to percentage of items the RS can
form predictions for [7,8]. For classification recommendation [8], accuracy refers
to the proportion of correct behavior (recommend or not). For cost-sensitive
recommendation [14,24], average cost is more general than accuracy through
considering different costs for different behaviors. An appropriate measure helps
attracting customers or maximizing the profit of the corporation.

Three-way recommender systems (3RSs) [24,25] aim at minimizing the aver-
age cost considering both misclassification and promotion costs. Misclassifica-
tion indicates that an item belongs to class X when its real class is Y , while
promotion through coupon distribution is widely adopted by corporations. The
misclassification and promotion costs are expressed as a 3 × 2 cost matrix. The
rows correspond to three actions, namely recommending, not recommending,
and promotion; while the columns are users’ two actual preferences, namely like
or dislike. For simplicity, we let the costs of correct behaviors be 0s. This app-
roach coincides with the three-way theory [9,13,22]. However, the cost matrix of
existing 3RS is fixed for any item. Since success recommendation of unpopular
items is more profitable, this setting is not reasonable.

In this paper, we define a new cost-sensitive recommendation problem. It is
more general than existing ones in that the cost function is variable w.r.t the
popularity of the item. The input includes the rating information and the cost
function. Let the situation of recommending an item that a user dislike be PN,
and not recommending an item that a user like be NP. For items with smaller
popularity, the cost of NP is bigger, while the cost of PN is smaller. The purpose
is to encourage the recommendation of unpopular items. The output is the action
to each user-item pair. Naturally, the optimization objective is to minimize the
average cost.

First, we adopt a three-way approach with three kinds of actions mentioned
above. For each item, the popularity is determined by the number of rating times
without considering the rating values. With the popularity, the cost matrix is
computed from the cost function. Then a threshold pair (α, β) is calculated
from the cost matrix according to the three-way theory [22]. α determines the
probability necessary to recommend an item, and β determines that necessary
not to recommend an item. The cost function is designed in the way that for
items with lower popularity, the cost of PN are smaller, and the cost of NP are
bigger. Consequently, both α and β values for items with lower popularity are
smaller such that they are more likely to be recommended or promoted.

Second, we employ the M-distance [26] to compute the liking probability P
of a user on an item. Similar to [26], we obtain the neighbors of the predicted
object through setting a certain radius. Different from [26], we count the rating
distribution, rather than compute the prediction. Using the like threshold, we
obtain the probability of a user liking an item.

Finally, we determine the recommender’s behavior based on α, β and P . If P
is greater than α, the item is recommended. If P is less than β, the item is not
recommended. Otherwise, we pay a promotion cost to learn his/her preference.
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Experiments on the well-known MovieLens dataset show that (1) our algo-
rithm results in less average cost and (2) recommends more unpopular items
than the existing three-way recommendation algorithm [24].

This paper is organized as follows. Section 2 gives the related works, includ-
ing the data model, the cost-sensitive learning and the theory of three-way deci-
sion. 3RS for popularity-based costs (3RSPC) is described in detail in Sect. 3.
Section 4 shows extensive experiments to validate the effectiveness of our algo-
rithm. Section 5 concludes the paper.

2 Related Works

In this section, we review some related works. First, we revisit the data model
for RSs. It includes the demographic, the content, and the rating tables. Second,
we revisit the existing 3RSs. There is only one cost matrix for the problem.

2.1 Data Model

Generally, there are a set of users, a set of items, and a table of ratings from
different users rating to different items.

Definition 1. Let UA to be the matrix of users and their attributes. U =
{u1, u2, . . . , un} is the set of users as the column of matrix UA, and A =
{a1, a2, . . . , am} is the set of attributes as the row of matrix UA.

Definition 2. Let MA to be the matrix of items and their attributes. Its rows
and columns are a set of identifications of movies M = {m1,m2, . . . ,mk} and
a set of release years genres of movies respectively. For example, a movie m3 is
an action movie and the value of attribute Action is equal to 1.

Definition 3. Let R to be a rating matrix of every movie from different users,
shown in Table 1. R contains the identifications of users and the ratings for some
movies. We set {1, 2, 3, 4, 5} as the range of scores, and set 3 as the threshold.
If the score is over 3, the user likes the movie. Conversely, if the score is below
or equal to 3, the user dislikes the movie. The rating function is defined as (1):

UA × MA → R (1)

We can conclude from Table 1 that the user u1 likes m2, dislikes m1 and m4 and
does not watch the m3 and m5.

Table 1. Users rating for movies

UID \ MID m1 m2 m3 m4 m5

u1 3 4 0 1 0

u2 2 0 1 3 0

u3 0 2 1 0 5

u4 1 4 5 4 3

u5 4 1 2 0 1
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2.2 Cost-Sensitive Learning

Cost-sensitive learning has extended machine learning methods [5,10,11], where
classification plays an essential role. Minimizing the cost of misclassification and
avoiding the shortcomings of traditional classifiers have become the aims of cost-
sensitive learning [20]. Min et al. [14,15] aimed to decrease the test cost and
improve the classification accuracy.

Fan [6] proposed a misclassification cost-sensitive boosting method.
Pendharkar [17] designed a two-stage solution approach for solving misclassi-
fication cost minimizing feature selection problem. In our case, misclassification
cost is paid for wrong recommender behaviors. For example, the RS recommends
a movie to a costumer who dislikes, or do not recommend it when the type of
the song is just her favourite [24]. We also consider the promotion cost.

The contribution of promotion cost is to obtain the feedback of customers’
preference. Active learning algorithms can actively query the user for labels and
guide the acquisition of new knowledge suitable to update related information
[19,24]. Promotion cost in this paper is produced by sending coupons and dis-
counts to users.

2.3 Existing 3RS Problem

The existing three-way recommendation problem is stated as follows [24].

Problem 1. Existing three-way recommendation problem.
Input: UA, MA, R, C3×2,
Output: T ,
Optimization objective: minimizing the average cost.

UA, MA and R have been mentioned in Sect. 2.1. C3×2 is a cost matrix with
fixed values. T is possible actions of a user-item pair according to three-way
decision. The detail is as follows.

Using Pawlak rough-set model [16], we define a subset X ⊂ U and obtain a
pair of concept lower and upper approximations:

apr(X) = {x ∈ U |[x] ⊆ X}, (2)
apr(X) = {x ∈ U |[x] ∩ X = ∅}. (3)

Yao proposed the rules of three-way decision [22]. It divided the universe into
three disjoint regions: the positive region, the negative region and the boundary
region. They are expressed as POS(X), NEG(X) and BND(X) respectively:

POS(X) = apr(X), (4)
NEG(X) = U − apr(X), (5)
BND(X) = apr(X) − apr(X). (6)
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Yao et al. have been developing the Decision-theoretic rough set models
[4,12,23]. The expected cost associated with different actions is

R(aj |x) =
m∑

i=1

λ(aj |ωi)P (ωi|x). (7)

aj expresses one kind of n possible actions in the set T = {a1, a2, . . . , an}, and
aj |x means we have taken action aj to object x. Let λ(aj |ωi) denote the loss of
taking action aj under the state ωi. Let the set Ω = {ω1, ω2, . . . , ωm} be the set
of all kinds of states. Let P (ωi|x) be the conditional probability of classification.
For the Bayesian decision procedure, we define the set Ω = {X,X} to indicate
that the customers like or dislike the item recommended. Explicitly, we define the
set of actions T = {aP , aB , aN}. aP denotes that we classify an item into POS(X)
(recommend), aB denotes that we classify an item into BND(X) (promote) and
aN denotes that we classify an item into NEG(X) (not recommend). So the cost
matrix C3×2 is given by Table 2.

Table 2. Cost matrix

Action\Preference X X

aP λPP λPN

aB λBP λBN

aN λNP λNN

The expected cost R(aj |x) associated with taking the individual actions can
be expressed as:

RP = λPP P (X|[x]) + λPNP (X|[x]), (8)
RB = λBP P (X|[x]) + λBNP (X|[x]), (9)
RN = λNP P (X|[x]) + λNNP (X|[x]). (10)

The Bayesian decision procedure suggests the following minimum-risk decision
rules [21,23]:

(P) If RP ≤ RN and RP ≤ RB, then decide x ∈ POS(X);
(B) If RB ≤ RP and RB ≤ RN , then decide x ∈ BND(X);
(N) If RN ≤ RP and RB ≤ RB, then decide x ∈ NEG(X).

There should be some constraints added. Let us first set the rule that each
item can be classified into only one region:

P (X|[x]) + P (X|[x]) = 1. (11)

Second, we limit the vales of different kinds of loss:

λPP ≤ λBP < λNP , (12)

λNN ≤ λBN < λPN . (13)
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The inequality (12) describes that if RS recommends an item that user likes, the
cost is less than or equal to the cost produced by the situation that RS promotes
an item that user likes. Both of the two kinds of loss must be less than the cost
of not recommending an item that user likes. According to (11) and (12), we can
derive and simplify our decision rules from(P )to(N) as follows:

(P1) If P (X|[x]) ≥ α and P (X|[x]) ≥ γ, then decide x ∈ POS(X);
(B1) If P (X|[x]) ≤ α and P (X|[x]) ≥ β, then decide x ∈ BND(X);
(N1) If P (X|[x]) ≤ β and P (X|[x]) ≤ γ, then decide x ∈ NEG(X).

Here, α, β and γ are expressed as:

α =
λPN − λBN

(λPN − λBN ) + (λBP − λPP )
, (14)

β =
λBN − λNN

(λBN − λNN ) + (λNP − λBP )
, (15)

γ =
λPN − λNN

(λPN − λNN ) + (λNP − λPP )
. (16)

Additionally, the condition of rule (B1) should be α ≥ β. So we have

λNP − λBP

λBN − λNN
>

λBP − λPP

λPN − λBN
. (17)

We also have 0 ≤ β < α ≤ 1. After tie-breaking, we can rewrite and simplify
our decision rules again:

(P2) If P (X|[x]) > α, then decide x ∈ POS(X);
(B2) If β < P (X|[x]) < α, then decide x ∈ BND(X);
(N2) If P (X|[x]) ≤ β, then decide x ∈ NEG(X).

Then the existing recommendation approach employ the random tree to pre-
dict the probability P of a user-item pair. P determines the three possibilities of
T . It has proven that the three-way decision model has lowest average cost not
only on the training set but also on the testing set. So the threshold pair (α, β)
is optimal.

3 The Proposed Approach

In this section, we first introduce a new problem with a cost function. We propose
three kinds of cost functions for different scenarios. We also discuss the parameter
settings for cost functions to satisfy our requirements, namely, unpopular items
are more desired. For items with different popularity, the cost matrix is different.
Third, we propose an algorithm to the new problem.
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3.1 Problem Statement

Our new problem is stated as follows.

Problem 2. Three-way recommendation with a cost function.
Input: UA, MA, R, cPRM , cNP , cPN ,
Output: T ,
Optimization objective: Minimizing the average cost.

As discussed in Sect. 3.1, UA is the demographic information, MA is the
content information, and R is the rating information. For simplicity, the promo-
tion cost cPRM is set to be fixed rather than variable. cNP , cPN are the mis-
classification functions where the argument of functions is the item popularity.
cNP and cPN are the misclassification cost for false positive and false negative,
respectively.

3.2 The Cost Function Design and Threshold Pairs

Our 3RSPC aims at promoting more unpopular items. Not every cost function
is fit for our 3RSPC, some of which would suitable for promoting the popular
ones. So some constraints should be added. In Sect. 1, we have mentioned that
the penalty of NP are more than that of PN at lower popularity. Based on the
three-way decision rules, it is conductive for promoting the unpopular that a
threshold pair (α, β) should keep a certain interval.

We sample the popularity to express the popularity as a vector conveniently.
We choose eleven points on the popularity, and averagely divide this range [0, 1]
into ten intervals. So the popularity is expressed as 0 through 10. 0 and 10
indicate the lowest and highest popularity respectively. We have a linear cost of
PN between 60 and 80, and the common difference is equal to (80−60)/10 = 2.
The cost of NP are from 100 down to 60, and the common difference is equal to
(60 − 100)/10 = −4. The cPN and cNP are shown in Fig. 1.
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Naturally, the optimal setting of thresholds α and β are dependent on the
misclassification costs. Therefore there are essentially two threshold functions
fα, fβ : (0, 1) → R. Let us assume initially that cPRM is equal to 20. Equations
(14) and (15) are re-expressed as

fα = 1 − 20
cPN

, (18)

and

fβ =
20

cNP
. (19)

Figure 2 shows that both α and β are increasing with the popularity.
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3.3 Favorite Probability Prediction

We employ the M-distance [26] to solve the problem of the favorite probability.
The detail is stated as follows.

Problem 3. Favorite probability prediction.
Input: R, Radius,
Output: P .

R is the rating information of dataset, and Radius is a parameter to determine
a range of neighbours. P describes a probability that a user likes a movie. We
employ leave-one-out approach to predict the favorite probability. The content
of the approach is as follows [3,26]. Suppose n is the rating times of users for



286 Y.-Y. Xu et al.

the same item. We remove one of the n training samples, and test the resulting
hypothesis on the training example that was left out.

Then we compute the average score of the n − 1 samples, and set a radius
to obtain a range. For example, we predict the probability of the user-item pair
(u1,m1). First, we compute the average score 3.2 except the score 4 at (u1,m1).
Second, we set a radius 0.3 to obtain a range [2.9, 3.5]. In this range, there are
23 ratings but only 10 records above the threshold. So the favourite probability
is 10/23 = 0.435.

There is a special case that only one user rates for a movie before computa-
tion. In leave-one-out algorithm, the denominator will be 0. So we consider the
average score is equal to 3.

4 Experiments

Table 3 has shown us the classification results of our algorithm.

Table 3. The result of classification

Action\Preference Like Dislike

Recommend 27284 6556

Promote 26219 27212

Not recommend 1872 10857

We compute the success rate of recommendation Rrec and success rate of not
recommendation Rnrec:

Rrec =
PP

PP + PN
=

27284
27284 + 6556

= 81%, (20)

Rnrec =
NN

NP + NN
=

10857
1872 + 10857

= 85%. (21)

Figure 3 demonstrates the distributions of instances in each class. It shows
the classified instances change when the popularity changes with a interval of 1.
The items with lower popularity (less than 4) in Fig. 3(a) and (c) have account for
71% and 78% (19498/27284 = 0.71, 20563/26219 = 0.78). So, we can conclude
that the unpopular items are recommended well in our 3RSPC.

Compared with [24], even if our costs of PN and NP are more than that of
[24], we still obtain the lower average cost than that of [24] (Table 4).
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Fig. 3. Instances classified into six classes

Table 4. Comparing the results of [24] and 3RSPC

[24] 3RSPC

Cost of PN 50 60–80

Cost of NP 40 100–60

Average cost 17.25(testing set) 16.75
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5 Conclusion

We have proposed a new three-way recommender system considering the variable
cost. The new cost is a function w.r.t the popularity of the item. Compared with
the existing 3RSs, our approach obtains the lower average cost. The future work
will combine the theory of sequential three-way decision to classify the instance
in boundary.
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Abstract. The intuitionistic fuzzy set is introduced to incomplete infor-
mation systems, in which the membership and non-membership degrees
that an object belongs to a concept are constructed by the rough set
approximations based on similarity relation. Then, by combining the
intuitionistic fuzzy set and three-way decisions, we proposed two evalu-
ation functions to generate decision rules and make three-way decisions
in incomplete information systems.

Keywords: Intuitionistic fuzzy sets · Incomplete information systems ·
Three-way decisions · Rough sets

1 Introduction

In 1982, Pawlak [14] originally proposed rough set theory to deal with uncer-
tain knowledge in information systems. In this theory, the notions of lower and
upper approximations are introduced, by which a universe is divided into three
nonempty and disjoint regions: positive, negative and boundary regions. By
this means, knowledge hidden in information systems may be unravelled and
expressed in the form of decision rules. Concretely, an object is contained in
the positive region of a set if and only if its equivalence class is fully contained
in the set. This results in the rigidness of partition and makes positive region
small. To resolve this problem, decision-theoretic rough sets have been proposed
and studied as generalizations of Pawlak rough sets [16,17,20–23,31,32]. Many
methods were used to research decision-theoretic rough sets. To get the theory
frame, three-way decisions are further used in the interpretation of the rough
set by three regions [24–26]. Many studies further investigated extensions and
applications of three-way decisions [2,4,5,7,10–13,18,19,28].

In 1965, Zadeh [29] proposed the concept of fuzzy set in which the member-
ship degree specified as a real number in the unit interval was used to describe
the clingingness of objects to a set. Fuzzy set theory is widely used in many
fields nowadays. Nevertheless, it is difficult for a fuzzy set to express both the
positive and negative information of knowledge. For this reason, Atanassov [1]
c© Springer International Publishing AG 2017
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proposed the concept of intuitionistic fuzzy set, in which both membership and
non-membership degrees are used to deal with uncertain information, and their
sum does not exceed 1. Thus, an intuitionistic fuzzy set expresses the positive
and the negative information more flexibly than a fuzzy set.

There have been many studies in combining fuzzy sets or intuitionistic fuzzy
sets with rough sets [3,6,15,30]. As we know, the membership, non-membership
and hesitancy degrees in intuitionistic fuzzy sets correspond to the positive, neg-
ative and boundary regions in three-way decisions, respectively. This means, the
intuitionistic fuzzy sets and three-way decisions may be combined for improv-
ing their individual performance in decision making. In decision-theoretic rough
set, the evaluation functions are usually related to condition probabilities and a
pair of thresholds (α, β) need to be chosen. In this paper, we use membership
degrees in evaluation functions instead of condition probabilities. Further more,
we try to omit the pair of thresholds by comparing the membership degrees in
some cases. We apply intuitionistic fuzzy sets to deal with the data in incom-
plete information systems and propose three-way decisions for the incomplete
information systems.

2 Incomplete Information Systems and Intuitionistic
Fuzzy Sets

We will briefly introduce the basic notions of incomplete information systems
and intuitionistic fuzzy sets which will be used throughout the paper.

2.1 Incomplete Information Systems

A pair S = (U,AT ) is referred to as an information system, where U is a non-
empty finite set of objects called the universe of discourse, AT is a non-empty
finite set of attributes such that a : U → Va for any a ∈ AT , where Va is
called the value set of a. It may happen that some attribute values of objects are
missing. We will denote the missing value by “∗”. A system S = (U,AT ) with
missing values is called an incomplete information system [8,9].

Let S = (U,AT ) be an incomplete information system, and A ⊆ AT , a
similarity relation on U is defined as follows [8]:

SIM(A) = {(x, y) ∈ U × U |∀a ∈ A, a(x) = a(y) or a(x) = ∗ or a(y) = ∗}.
SA(x) = {y ∈ U |(x, y) ∈ SIM(A)} denotes the set of all objects similar to x

with respective to A.

Example 2.1. Table 1 [8] depicts an incomplete information system S =
(U,AT ), where U = {x1, x2, x3, x4, x5, x6}, AT = {P,M,S,X}, and P,M,S,X
stand for Price, Mileage, Size, Max-Speed, respectively.

Let A = {P, S,X}, we have SA(x1) = {x1}, SA(x2) = {x2, x6}, SA(x3) =
{x3}, SA(x4) = {x4, x5}, SA(x5) = {x4, x5, x6}, SA(x6) = {x2, x5, x6}. These
similarity sets constitute a cover of U .
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Table 1. An incomplete information system

Car Price Mileage Size Max-Speed

x1 High High Full Low

x2 Low * Full Low

x3 * * Compact High

x4 High * Full High

x5 * * Full High

x6 Low High Full *

A decision table (DT) is an information system S = (U,AT ∪ {d}), where
d /∈ AT and ∗ /∈ Vd, d is a distinguished attribute called the decision, and the
elements of AT are called conditions. If S = (U,AT ∪ {d}) is an incomplete
information system, then the DT is called an incomplete decision table.

Example 2.2. Table 2 [8] depicts an incomplete decision table S =(U,AT ∪{d}).

Table 2. An incomplete decision table

Car Price Mileage Size Max-Speed d

x1 High High Full Low Good

x2 Low * Full Low Good

x3 * * Compact High Poor

x4 High * Full High Good

x5 * * Full High Excel

x6 Low High Full * Good

For X ⊆ U and A ⊆ AT , the lower and upper approximations of X are
defined by similarity relation as follows [8]:

AX = {x ∈ U |SA(x) ⊆ X} = {x ∈ X|SA(x) ⊆ X},

AX = {x ∈ U |SA(x) ∩ X 	= ∅} =
⋃

{SA(x)|x ∈ X}.

Obviously, AX is the set of objects that belong to X with certainty, AX is the
set of objects that possibly belong to X, ∼ AX is a set of objects that impossibly
belong to X. Denote BNAX = AX −AX, which is called the boundary set, and
objects in BNAX may or may not belong to X.

2.2 Intuitionistic Fuzzy Sets

Let U be a non-empty finite set of objects called the universe of discourse, an
intuitionistic fuzzy set X on U is defined as follows [1]:

X = {〈x, μX(x), γX(x)〉|x ∈ U},
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where μX(x) ∈ [0, 1] is called the degree of membership of x in X and γX(x) ∈
[0, 1] is the degree of non-membership of x in X, and 0 ≤ μX(x) + γX(x) ≤ 1.
Denote πX(x) = 1 − μX(x) − γX(x), which is called the hesitancy degree of the
element x in X.

2.3 Intuitionistic Fuzzy Sets in Incomplete Information Systems

Now we try to introduce the intuitionistic fuzzy sets to incomplete informa-
tion system. We present the definition of intuitionistic fuzzy sets in incomplete
information system.

Let S = (U,AT ) be an incomplete information system, X ⊆ U and A ⊆ AT .
Denote |X| as the cardinality of set X. Define

X∗ = {〈x,AμX(x), AγX(x)〉|x ∈ U},

where AμX(x) = |SA(x)∩AX|
|SA(x)| , AγX(x) = |SA(x)∩∼AX|

|SA(x)| .
According to the definition, AμX : U → [0, 1], AγX : U → [0, 1], and for all
x ∈ U , AμX(x) + AγX(x) ≤ 1. So X∗ is an intuitionistic fuzzy set on U . We
denote

AπX(x) = 1 − AμX(x) − AγX(x) = 1 − |SA(x) ∩ AX|
|SA(x)| − |SA(x)∩ ∼ AX|

|SA(x)| =
|SA(x) ∩ BNAX|

|SA(x)| .

Obviously, AμX(x), AγX(x) and AπX(x) indicate the degrees of membership,
non-membership and hesitancy, respectively.

3 Three-Way Decisions Based on Intuitionistic Fuzzy
Sets

In this section, we study the three-way decisions. A basic idea of three-way
decisions is to classify a universe into three regions, called the positive, negative
and boundary regions, respectively, by using an evaluation function and a pair
of thresholds [27].

3.1 Evaluation Functions for Three-Way Decisions

There are three degrees in intuitionistic fuzzy sets. If the membership degree of
x belonging to X is large and the non-membership degree of x belonging to X
is small, we decide x belongs to the positive region. If the membership degree
of x belonging to X is small and the non-membership degree of x belong to X
is large, we decide x belongs to the negative region. If both of the membership
and non-membership degrees of x belonging to X are small, the hesitancy degree
must be large, we decide x belongs to the boundary region. Thus, we give out
evaluation function and decision Rule I as follows:
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Rule I
(P) If AμX(x) − AγX(x) > α, decide x ∈ POS(X);
(N) If AμX(x) − AγX(x) < β, decide x ∈ NEG(X);
(B) If β ≤ AμX(x) − AγX(x) ≤ α, decide x ∈ BND(X)
The pair of thresholds (α, β) (0 < α < 1,−1 < β < 0) need to be chosen

according to the practical background. We usually suggest that α = 0.5, β =
−0.5 for convenience.

Since the three degrees in intuitionistic fuzzy sets describe the extent of x
belonging to the three regions, it is reasonable to make decision by comparing
the three degrees. We give out Rule II as follows:
Rule II

(P) If AμX(x) > AγX(x), AμX(x) > AπX(x), decide x ∈ POS(X);
(N) If AγX(x) > AμX(x), AγX(x) > AπX(x), decide x ∈ NEG(X);
(B) Otherwise, decide x ∈ BND(X).

In Rule II, α and β are unnecessary.

3.2 Application of the Intuitionistic Fuzzy Sets in Incomplete
Information Systems

Obviously, AμX(x) describes the membership degree of x ∈ AX. AγX(x)
describes the non-membership degree of x 	∈ AX. AπX(x) describes the mem-
bership degree of x ∈ BNAX which implies that x may or may not be in X.
Thus, given an object x, we can figure out all its degrees of membership, non-
membership and hesitancy, and get the intuitionistic fuzzy sets. By these three
degrees we decide which class it might belong to.

Example 3.1. Let us consider Table 2 which depicts an incomplete decision
table S = (U,AT ∪ {d}), where U = {x1, x2, x3, x4, x5, x6}, AT = {P,M,S,X},
{d} = {Good, Poor, Excel}. The decision classes classified by decision attribute
are D1, D2 and D3, namely, D1 = {xi|d(xi) = Good} = {x1, x2, x4, x6}, D2 =
{xi|d(xi) = Poor} = {x3}, D3 = {xi|d(xi) = Excel} = {x5} which mean good,
poor and excellent car sets, respectively. They constitute a partition of U . From
the incomplete decision table, we decide which class a car might belong to by its
condition attribute values.

First, we classify U with similarity relation according to the chosen sub-
set of attributes. Let A = AT , U/SIM(A) = {SA(x1), SA(x2), SA(x3), SA(x4),
SA(x5), SA(x6)}, where SA(x1) = {x1}, SA(x2) = {x2, x6}, SA(x3) = {x3},
SA(x4) = {x4, x5}, SA(x5) = {x4, x5, x6}, SA(x6) = {x2, x5, x6}. These similar
sets constitute a cover of U . We calculate the lower and upper approximations,
the negative and boundary of Di and list these results in Table 3.

All kinds of the degrees of membership and non-membership belonging to
each Di are listed in Table 4.

For x1, from Table 4 we see the degree of membership of x1 ∈ D1 is 1 and that
of non-membership is 0; Let α = 0.5, β = −0.5, AμX(x1) − AγX(x1) = 1 > α,
according to Rule I, decide x1 ∈ POS(D1).

For x2, AμX(x2) − AγX(x2) = 0.5, decide x2 ∈ BND(D1).
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Table 3. The approximations, the negative and boundary sets

Di ADi ADi ∼ ADi BNADi

{x1, x2, x4, x6} {x1, x2} {x1, x2, x4, x5, x6} {x3} {x4, x5, x6}
{x3} {x3} {x3} {x1, x2, x4, x5, x6} ∅
{x5} ∅ {x4, x5, x6} {x1, x2, x3} {x4, x5, x6}

Table 4. The degrees of membership and non-membership

xi AμD1(xi) AγD1(xi) AμD2(xi) AγD2(xi) AμD3(xi) AγD3(xi)

x1 1 0 0 1 0 1

x2 1/2 0 0 1 0 1/2

x3 0 1 1 0 0 1

x4 0 0 0 1 0 0

x5 0 0 0 1 0 0

x6 1/3 0 0 1 0 1/3

For x3, AμX(x3) − AγX(x3) = 0 − 1 = −1, decide x3 ∈ NEG(D1).
For x4, −0.5 ≤ AμX(x4) − AγX(x4) ≤ 0.5, decide x4 ∈ BND(D1).
For x5, −0.5 ≤ AμX(x5) − AγX(x5) ≤ 0.5, decide x5 ∈ BND(D1).
For x6, −0.5 ≤ AμX(x6) − AγX(x6) ≤ 0.5, decide x6 ∈ BND(D1).
So, POS(D1) = {x1};NEG(D1) = {x3};BND(D1) = {x2, x4, x5, x6}.
In the same way, we have
POS(D2) = {x3}; NEG(D2) = {x1, x2, x4, x5, x6}; BND(D2) = ∅
POS(D3) = ∅; NEG(D3) = {x1, x3}; BND(D3) = {x2, x4, x5, x6}
The regions above are listed as Table 5.

Table 5. The regions got by Rule I

Di POS(Di) NEG(Di) BND(Di)

{x1, x2, x4, x6} {x1} {x3} {x2, x4, x5, x6}
{x3} {x3} {x1, x2, x4, x5, x6} ∅
{x5} ∅ {x1, x3} {x2, x4, x5, x6}

We also make three-way decisions with Rule II.
For x1, AμD1(x1)>AγD1(x1), AμD1(x1)>AπD1(x1), decide x1∈POS(D1).
In the same way, we decide x3 ∈ NEG(D1), x2, x4, x5, x6 ∈ BND(D1).
We list all three regions in Table 6
The three regions in Table 5 and 6 happened to be the same.
We make decisions according to Table 5.
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Table 6. The regions got by Rule II

Di POS(Di) NEG(Di) BND(Di)

{x1, x2, x4, x6} {x1} {x3} {x2, x4, x5, x6}
{x3} {x3} {x1, x2, x4, x5, x6} ∅
{x5} ∅ {x1, x3} {x2, x4, x5, x6}

For x1, we see the x1 ∈ POS(D1); x1 ∈ NEG(D2); x1 ∈ NEG(D3). So we
decide x1 is a good car, not a poor car, not an excellent car.

For x2, we see x2 ∈ BND(D1), x2 ∈ NEG(D2) and x2 ∈ BND(D3); It is
not certain x2 is a good car; It is not certain x2 is an excellent car, but it is
certain x2 is not a poor car.

For x3, we see x3 ∈ NEG(D1), x3 ∈ POS(D2) and x3 ∈ NEG(D3). So it is
certain x3 is not a good car; it is certain x3 is a poor car, it is certain x3 is not
an excellent car.

For x4, x5 and x6, similar to x2, we see they are in BND(D1), NEG(D2)
and BND(D3); So it is not certain they are good cars or excellent cars, but it
is certain they are not poor cars.

4 Making Three-Way Decision in Incomplete Information
Systems

The main purpose of three-way decision is to make decisions by knowledge dis-
covered in training sample database. There is no equivalence relation in incom-
plete information systems, so we use similarity relation instead of equivalence
relation to make decision with uncertainty. We take the incomplete decision table
as a training sample table and make decision according to the acquired knowl-
edge. For an object y with same attribute values in training sample table, we
make decision as in above section. For the object y with different attribute values
from the training sample table, if y is compatible with objects in training sample
table, we also use similarity relation to deal with y. In incomplete information
system, some attribute values are unknown, these unknown values mean all pos-
sible values. Given an object y outside the incomplete decision table, similarity
set of the object S(y) might be found, objects in similarity set from the table
may be used for making decision. The more missing data there are in incomplete
decision table, the more objects outside the table will be compatible with the
objects in the training table and may be made decision but with less accuracy.
The more missing attribute values are in an object y, the larger its similarity set
S(y) is. This results in larger boundary region and uncertainty.

Now we make decisions. For a car which has the same attribute values as one
of the cars in U , we can use the way as in above section to discuss the car. For
a car y which has the different attribute values from anyone in U , we first find
the similar set of y in training sample table. Then, we find intuitionistic fuzzy
set {〈y,AμDi

(y), AγDi
(y)〉}. At last, we make three way decisions. We discuss it

by illustration in Example 4.1.
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Example 4.1. Take Table 2 as a training sample table. Given cars y1, y2 and
y3 with attribute values listed in Table 7. We discuss which class each car might
belong to.

Table 7. The attribute values of the cars

Car Price Mileage Size Max-Speed

y1 * High Full Low

y2 * * Full Low

y3 * * * High

We first calculate the similar set of yi according to Table 1, that is, SAT (y1) =
{x1, x2, x6}, SAT (y2) = {x1, x2, x6}, SAT (y3) = {x3, x4, x5, x6}. Then we get all
the degrees of membership and non-membership listed in Table 8.

Table 8. The degrees of membership and non-membership of the car y1

yi AμD1(yi) AγD1(yi) AμD2(yi) AγD2(yi) AμD3(yi) AγD3(yi)

y1 2/3 0 0 1 0 2/3

y2 2/3 0 0 1 0 2/3

y3 0 1/4 1/4 3/4 0 1/4

For y1, from Table 8, we see the degree of membership of y1 ∈ D1 is 2/3, and
that of non-membership is 0; Let α = 0.5, β = −0.5, according to Rule I,

AμD1(y1) − AγD1(y1) = 2/3, decide y1 ∈ POS(D1);
AμD2(y1) − AγD2(y1) = −1, decide y1 ∈ NEG(D2);
AμD3(y1) − AγD3(y1) = −2/3, decide y1 ∈ NEG(D3).
Thus, we decide y1 is a good car, y1 is not a poor car, y1 is not an excellent

car.
For y2 has the same degrees of membership and non-membership as y1 in

Table 8, we decide y2 is good car, not a poor car and not an excellent car.
For y3,
AμD1(y3) − AγD1(y3) = −1/4, decide y3 ∈ BND(D1);
AμD2(y3) − AγD2(y3) = −2/4, decide y3 ∈ BND(D2);
AμD3(y3) − AγD3(y3) = −1/4, decide y3 ∈ BND(D3).
So, we can not decide whether y3 is a good car or not, y3 is a poor car or

not, y3 is an excellent car or not.
We also use Rule II to make decisions.
AμD1(y1) = 2/3 > AγD1(y1), AμD1(y1) > AπD1(y1), decide y1 ∈ POS(D1);
AγD2(y1) = 1 > AμD2(y1), AγD2(y1) > AπD2(y1), decide y1 ∈ NEG(D2);
AγD3(y1) = 2/3 > AμD3(y1), AγD3(y1) > AπD3(y1), decide y1∈NEG(D3).
According to Rule II, y1 is a good car, y1 is not a poor car, y1 is not an

excellent car.
For y2, we decide y2 is a good car, not a poor car and not an excellent car

for the same reason.
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For y3,
AπD1(y3) = 3/4 > AμD1(y3), AπD1(y3) > AγD1(y3), decide y3∈BND(D1);
AγD2(y3) = 3/4 > AμD2(y3), AγD2(y3) > AπD2(y3), decide y3∈NEG(D2);
AπD3(y3) = 3/4 > AμD3(y3), AπD3(y3) > AγD3(y3), decide y3∈BND(D3).
So, it is not certain y3 is a good car. It is certain y3 is not a poor car.
It is not certain y3 is an excellent car.

5 Conclusion

Three-way decision has been applied to many fields. It is a useful method to deal
with uncertainty. Owing to the rampant existence of incomplete information sys-
tems in real life, it is significant to find a suitable way to make a reasonable deci-
sion from incomplete information systems. In this paper, intuitionistic fuzzy sets
have been introduced in incomplete information systems, in which membership,
non-membership and hesitancy degrees of an object belonging to a concept have
been defined. Using the three degrees in the intuitionistic fuzzy sets, we have
proposed evaluation functions to make three-way decisions. The study in this
paper has put forward three-way decisions in incomplete information systems
based on intuitionistic fuzzy sets.
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Z., Szczuka, M., Cercone, N.J., Ślȩzak, D. (eds.) RSKT 2007. LNCS (LNAI), vol.
4481, pp. 1–12. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72458-2 1

22. Yao, Y.Y.: Probabilistic approaches to rough sets. Expert Syst. 20, 287–297 (2003)
23. Yao, Y.Y.: Probabilistic rough set approximations. Int. J. Approx. Reason. 49,

255–271 (2008)
24. Yao, Y.: Three-way decision: an interpretation of rules in rough set theory. In:

Wen, P., Li, Y., Polkowski, L., Yao, Y., Tsumoto, S., Wang, G. (eds.) RSKT 2009.
LNCS (LNAI), vol. 5589, pp. 642–649. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-02962-2 81

25. Yao, Y.: Three-way decisions with probabilistic rough sets. Inf. Sci. 180, 341–353
(2010)

26. Yao, Y.: The superiority of three-way decisions in probabilistic rough set models.
Inf. Sci. 181, 1080–1096 (2011)

27. Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J.T., Yang, Y.,
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Abstract. A new framework of clustering is proposed inspired by the
theory of three-way decisions, which is an alternative formulation dif-
ferent from the ones used in the existing studies. The novel three-way
representation intuitively shows which objects are fringe to the cluster
and it is proposed for dealing with uncertainty clustering. Instead of
using two regions to represent a cluster by a single set, a cluster is rep-
resented using three regions through a pair of sets, and there are three
regions such as the core region, fringe region and trivial region. A cluster
is therefore more realistically characterized by a set of core objects and a
set of boundary objects. In this paper, we also illustrate an algorithm for
incomplete data by using the proposed evaluation-based three-way clus-
ter model. The preliminary experimental results show that the proposed
method is effective for clustering incomplete data which is one kind of
uncertainty data. Furthermore, this paper reviews some three-way clus-
tering approaches and discusses some future perspectives and potential
research topics based on the three-way cluster analysis.

Keywords: Clustering · Three-way decision theory · Uncertainty ·
Three-way clustering

1 Introduction

Clustering is a method that uses unsupervised learning and it has been widely
applied to many areas such as information retrieval, image analysis, bioinformat-
ics, networks structure analysis and a number of other applications [16]. Often,
there is uncertainty in the real world. To take the social networks services as
an example, the user’s interests are changing and the interest community is also
varied. The study of artificial intelligence and cognitive science had observed
a well recognized feature of human intelligence, that is, in the cognition and
treatment of real world problems, human often observe and analyze the same
problem from different levels or different granularity. The process of clustering
just reflects the process of making decision in different levels. That is, clustering
is a process of deciding whether an object belongs to a cluster or not on a certain
granularity level.
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Let us take the objects in Fig. 1 as a universe. For the finest granularity
clustering result, each object is taken as a single cluster. For a coarser granularity
clustering result, the objects may be clustered in two classes. For the coarsest
granularity clustering result, all objects are included in a large cluster. In the
process of clustering, if the known information is enough, a certain clustering
result corresponding to a granularity will be obtained; if the known information
is not sufficient to judge whether an object belongs to a cluster, it needs further
information to make decision.

Fig. 1. Schematic diagram of a data set Fig. 2. Schematic diagram of cluster-
ing (Color figure online)

Let us observe Fig. 1 again. When we observe the universe in view of a gran-
ularity level, we see that there are two distinct clusters, the red one and the
yellow one shown in Fig. 2. Then, let us observe x1 and x2, they might belong to
the red cluster, but it is also possible that they belong to the yellow cluster. One
of the solving strategies is that an object “determinately” belongs to different
clusters. In view of this strategy, it is often referred to some terminologies such
as soft clustering, fuzzy clustering, or an overlapping clustering; in other words,
an object can belong to different clusters. We continue to observe x3 and x4. It
is absolutely reasonable that we assign them into the red cluster. It is the same
to x5 and x6. The results are shown in Fig. 3 and it is a typical two-way result
of overlapping (soft) clustering. Actually, this kind of clustering strategy is a
two-way decision result, namely, it decides that an object belongs to a certain
cluster or not belongs to this certain cluster. At present, researches are basically
based on the two-way decisions. However, the two-way result can not intuitively
reveal the fact that x3 and x4 are the fringe objects of the red cluster, the same
to x5 and x6. By contrast, Fig. 4 depicts a three-way clustering result, where x1,
x2, x3 and x4 are assigned into the fringe regions of the red cluster.

Fig. 3. The two-way clustering result
(Color figure online)

Fig. 4. The three-way clustering result
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One usually makes a decision based on available information and evidence.
However, the information acquisition is usually a dynamic process. Since the
current information is not sufficient, we can produce another solution to the
uncertain clustering problem. For those objects which are difficult to make deci-
sion at present, we can put forward a two-way decisions result after game playing
under the existing knowledge system; we can also produce a three-way decisions
result, which makes decisions exactly for these objects which have enough infor-
mation and waits for new information to make further decisions for those objects
whose information is not sufficient. This is a typical idea of three-way decisions.

The three-way decision method represents a concept using three regions
instead of two. This three-way decisions scheme has not been considered explic-
itly in theories of machine learning and rule induction, although it has been
studied in other fields. There are three relationships between an object and a
cluster: (1) the object certainly belongs to the cluster, (2) the object certainly
does not belong to the cluster, and (3) the object might or might not belong to
the cluster. It is a typical three-way decision processing to decide the relationship
between an object and a cluster. Such relationships will inspire us to introduce
the three-way decisions into the cluster analysis problem in this paper.

2 Related Work

A common assumption underlying many cluster analysis methods is that a clus-
ter can be represented by a single set, where the boundary of the cluster is crisp.
The crisp boundary leads to easy analytical results but may be too restrictive for
some practical applications. Several proposals have been made to reduce such a
stringent assumption.

In the fuzzy cluster analysis, it is assumed that a cluster is represented by
a fuzzy set that models a gradually changing boundary [6]. However, a fuzzy
clustering provides a quantitative characterization of the unclear cluster bound-
ary at the expense of losing the qualitative characterization that better shows
the structures provided by a clustering. To resolve this problem, Lingras and
his associates [12,13] studied rough clustering and interval set clustering. Yao
et al. [20] represented each cluster by an interval set instead of a single set as
the representation of a cluster. Chen and Miao [3] described a clustering method
by incorporating interval sets in the rough k-means. The basic idea of these
work is to derive and describe a cluster by a pair of lower and upper bounds.
By describing a cluster in terms of a pair of crisp sets, one recovers the qual-
itative characterization of a cluster. Most of these algorithms are explained in
rough set terminology and an equivalence relation that is needed for defining
approximations is not explicitly referred to.

The main objective of this paper is to extend cluster analysis by represent-
ing a cluster with two sets. This leads to the introduction of three-way cluster
analysis. Furthermore, the strategy of three-way cluster analysis does not require
an equivalence relation. Objects in the core region are typical elements of the
cluster and objects in the fringe region are fringe elements of the cluster. That
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is, a cluster is more realistically characterized by a set of core objects and a set
of fringe objects.

The essential ideas of three-way decisions are commonly used in everyday
life and widely applied in many fields and disciplines including medical decision-
making, social judgement theory, hypothesis testing in statistics, management
sciences and peer review process. Therefore, Yao [17,18] introduced and studied
the notion of three-way decisions, consisting of the positive, boundary and nega-
tive rules. Three-way decisions construct from three regions which are associated
with different actions and decisions.

Recently, the three-way decisions approach has been achieved in some areas
such as decision making [1,8–11], email spam filtering [31], clustering analysis [21,
22], and so on [2,7,19,26–28,30]. We also proposed some clustering approaches
based on the three-way decisions [23–25]. In this paper, we first formalize the
representation of a cluster with two sets, then we illustrate a clustering approach
for incomplete data based on the proposed framework.

3 Framework of Three-Way Clustering

3.1 Representation of Three-Way Clustering

Let U = {x1, · · · ,xn, · · · ,xN} be a finite set, called the universe or the reference
set. xn is an object which has D attributes, namely, xn = (x1

n, · · · , xd
n, · · · , xD

n ).
xd
n denotes the value of the d-th attribute of the object xn, where n ∈ {1, · · · , N},

and d ∈ {1, · · · ,D}. The result of clustering scheme C = {C1, · · · , Ck, · · · , CK}
is a family of clusters of the universe, in which K means this universe is composed
of K clusters.

According to Vladimir Estivill-Castro, the notion of a “cluster” cannot be
precisely defined, which is one of the reasons why there are so many clustering
algorithms [4]. There is a common denominator: a group of data objects. Cluster
analysis or clustering is the task of grouping a set of objects in such a way that
objects in the same group (called a cluster) are more similar (in some sense or
another) to each other than to those in other groups (clusters).

In the existing works, a cluster is usually represented by a single set, namely,
Ck = {xk

1 , · · · ,xk
i , · · · ,xk

|Ck|}, abbreviated as C without ambiguous. From the
view of making decisions, the representation of a single set means that, the
objects in the set belong to this cluster definitely, the objects not in the set do
not belong to this cluster definitely. This is a typical result of two-way decisions.
For hard clustering, one object just belong to one cluster; for soft clustering,
one object might belong to more than one cluster. However, this representation
cannot show which objects might belong to this cluster, and it cannot show the
degree of the object influence on the form of the cluster intuitively. As discussed
before, the use of three regions to represent a cluster is more appropriate than
the use of a crisp set, which also directly leads to three-way decisions based
interpretation of clustering.
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In contrast to the general crisp representation of a cluster, we represent a
three-way cluster C as a pair of sets:

C = {Co(C), F r(C)}. (1)

Here, Co(C) ⊆ U and Fr(C) ⊆ U . Let Tr(C) = U − Co(C) − Fr(C). Then,
Co(C), Fr(C) and Tr(C) naturally form the three regions of a cluster as Core
Region, Fringe Region and Trivial Region respectively. That is:

CoreRegion(C) = Co(C),
F ringeRegion(C) = Fr(C),
T rivialRegion(C) = U − Co(C) − Fr(C).

(2)

If x ∈ CoreRegion(C), the object x belongs to the cluster C definitely; if x ∈
FringeRegion(C), the object x might belong to C; if x ∈ TrivialRegion(C),
the object x does not belong to C definitely.

These subsets have the following properties.

U = Co(C) ∪ Fr(C) ∪ Tr(C),
Co(C) ∩ Fr(C) = ∅,
F r(C) ∩ Tr(C) = ∅,
T r(C) ∩ Co(C) = ∅.

(3)

If Fr(C) = ∅, the representation of C in Eq. (1) turns into C = Co(C); it
is a single set and Tr(C) = U − Co(C). This is a representation of two-way
decisions. In other words, the representation of a single set is a special case of
the representation of three-way cluster.

Furthermore, according to Formula (3), we know that it is enough to represent
expediently a cluster by the core region and the fringe region.

In another way, we can define a cluster scheme by the following properties:

(i) Co(Ck) �= ∅, 1 ≤ k ≤ K;
(ii)

⋃
Co(Ck)

⋃
Fr(Ck) = U, 1 ≤ k ≤ K.

(4)

Property (i) implies that a cluster cannot be empty. This makes sure that a
cluster is physically meaningful. Property (ii) states that any object of U must
definitely belong to or might belong to a cluster, which ensures that every object
is properly clustered.

With respect to the family of clusters, C, we have the following family of
clusters formulated by three-way representation as:

C = {{Co(C1), F r(C1)}, · · · , {Co(Ck), F r(Ck)}, · · · , {Co(CK), F r(CK)}}.
(5)

Obviously, we have the following family of clusters formulated by two-way
decisions as:

C = {Co(C1), · · · , Co(Ck), · · · , Co(CK)}. (6)
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3.2 An Evaluation-Based Three-Way Cluster Model

In this subsection, we will introduce an evaluation-based three-way cluster
model, which produces three regions by using an evaluation function and a
pair of thresholds on the values of the evaluation function. The model partially
addresses the issue of trisecting a universal set into three regions.

Suppose there are a pair of thresholds (α, β) and α ≥ β. Although evaluations
based on a total order are restrictive, they have a computational advantage. One
can obtain the three regions by simply comparing the evaluation value with a
pair of thresholds. Based on the evaluation function v(x), we get the following
three-way decision rules:

Co(Ck) = {x ∈ U |v(x) > α},
F r(Ck) = {x ∈ U |β ≤ v(x) ≤ α},
T r(Ck) = {x ∈ U |v(x) < β}.

(7)

In fact, the evaluation function v(x) can be a risk decision function, a similar-
ity function and so on. In other words, the evaluation function will be specified
accordingly when an algorithm is devised. We will give an algorithm as an exam-
ple in Sect. 4 for clustering incomplete data, since incomplete data is a typical
kind of uncertain data.

Objects in Co(Ck) definitely belong to the cluster Ck, objects in Tr(Ck)
definitely do not belong to the cluster Ck, and objects in the region Fr(Ck)
might or might not belong to the cluster. For the objects in Fr(Ck) �= ∅, we
need more information to make decisions.

Under the representation, we can formulate the soft clustering and hard clus-
tering as follows. For a clustering, if there exists k �= t, such that

(1) Co(Ck) ∩ Co(Ct) �= ∅, or
(2) Fr(Ck) ∩ Fr(Ct) �= ∅, or
(3) Co(Ck) ∩ Fr(Ct) �= ∅, or
(4) Fr(Ck) ∩ Co(Ct) �= ∅,

(8)

we call it is a soft clustering; otherwise, it is a hard clustering.
As long as one condition from Eq. (8) is satisfied, there must exist at least

one object belonging to more than one cluster.

4 An Algorithm for Incomplete Data Using
the Three-Way Cluster Model

4.1 To Measure Distance Between Incomplete Objects

In this paper, we suppose we have the attribute significance degrees in advance.
Of course, it is another interesting research issue, which is not discussed here
for sake of space. Thus, we set the descending order of attribute importance
degree to be A = {a1, · · · , aD}, D is the number of attributes. Set W =
{w1, w2, · · · , wd, · · · , wD} be the set of attribute weights, and w1 ≥ w2 ≥ · · · ≥
wk ≥ · · · ≥ wD.
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Cluster analysis or clustering is the task of grouping a set of objects in such a
way that objects in the same group are more similar to each other than to those
in other groups. So how to measure the distance or similarity between objects is a
key problem in cluster analysis. However, some common methods for computing
similarity could not be used to calculate the similarity between incomplete data
directly because of the missing values. The partial Euclidean distance formula
[5,14,29] is used to measure the distance between the two incomplete data. But
the formula only considers non-missing attributes and ignores the impact of
missing values on similarity. Besides, Euclidean distance is not conducive to find
the spherical structure.

Therefore, we proposed a new similarity measurement between incomplete
data by improving the existing partial Euclidean distance formula. The proposed
method considers the influence on similarity from the attribute importance as
well as the missing rate. Let us consider the following situation, there are two
incomplete data in far away distance in fact. The attribute values are similar
on non-important attributes but different on important attributes. When the
two objects miss a great deal of important attributes, the distance computed by
the previous formula will be much less than the actually distance because the
result might come from some non-important attributes. The inaccurate distance
could seriously affect the effect of the clustering algorithm. In order to avoid this
situation, the missing rate and the sum of missing attribute weight are added to
the weighted partial Euclidean distance formula. Thus, the improved formula will
drastically enlarge the distance when missing lots of important values. Similarly,
the improved formula just increases the distance slightly when missing a small
account of non-important values. Then, the improved partial Euclidean distance
formula is given as follows:

Dist(xi,xj) =
1

∑D
d=1 Idwd

(∑D
d=1(x

d
i − xd

j )
2Idw

2
d

)1/2

(∑D
d=1(x

d
i Idwd)2

)1/2

+
(∑D

d=1(x
d
j Idwd)2

)1/2

+Wmiss × MR,

(9)

where Id =
{

1, xd �= ∗ ∧ xd
j �= ∗

0, else
, ∗ means the value is missing, and Wmiss is the

sum of attribute weights which are missing on xi or xj , the formula is as follows:

Wmiss =
∑

xd
i =∗∨xd

j=∗
wd. (10)

MR is the joint miss rate of object xi and xj . It is the proportion of the
number of missing attributes on the total number of attributes as follows: MR =
∑D

d=1 MId
D , where MId =

{
1, xd

i = ∗ ∨ xd
j = ∗

0, else
.

If there is no missing value on the two objects, the proposed formula is the
tradition Euclidean distance formula.
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4.2 The Algorithm Based on Three-Way Cluster Framework

So far, Formula 9 can be used as the evaluation function in applications. However,
we find that the property of clustering is not good enough as required. Thus, we
proposed to divide the incomplete data into four types such as sufficient data,
valuable data, inadequate data and invalid data according to the concept of
complete degree in [23]. In this paper, we continue the sort thought except further
working on the measurement of similarity as described in the last subsection.

The proposed three-way clustering algorithm for incomplete data is depicted
in Algorithm 1: the three-way clustering algorithm for incomplete data, shorted
by TWD-ID. We first divide the data set to four subset, i.e., sufficient data, valu-
able data, inadequate data and invalid data. Generally speaking, sufficient data
have more information. Thus, we find the center of K clusters in the sufficient
data set. In fact, there are a bunch of clustering approaches to determine the
center. In our experiments, we adopt the outstanding density peaks clustering
method in the reference [15]. So, the left work is to decide the left objects where
to go. Step 4 describes how to decide the left objects in sufficient data, and Step
5 describes how to decide the other types data.

Algorithm 1. the three-way clustering algorithm for incomplete data
Input: U , W = {w1, w2, · · · , wD}, K, α, β, Rth1;
Output: C = {{Co(C1), F r(C1)}, · · · , {Co(CK), F r(CK)}}.
Step 1: divide the incomplete data set into four subsets according to the concept
of complete degree in [25];
Step 2: compute the distance matrix between objects using Eq. (9);
Step 3: obtain the K center of clusters using the method [17] in the sufficient
data subset;
Step 4: compute the local density for each remaining sufficient data point and
sort the local densities in descending order; and assign the remaining sufficient
data to the core region of the cluster which is its nearest neighbor of highest
density;
Step 5: decide the rest of objects to the core region or fringe region of the
corresponding cluster according to the three-way decision rules [112].

There could be many missing values in important attributes in the valuable
data, inadequate data and invalid data, it is often that the common strategy
of filling values may cause new uncertainty. Thus, it is more reasonable that
we assign the incomplete data to the fringe regions of clusters waiting more
information to help further decision than assign them arbitrarily to the core
region or trivial region, when decision information is insufficient or the object
just meet the divided condition to the fringe region.

In order to make decisions on these data, we find the neighbors Xi−Neighbor

within the neighbor radius Rth of the object xi first, where Xi−Neighbor =
{xj |Dist(xi,xj) � Rth}. Then, the object xi is assigned to the core region or
fringe region of the corresponding clusters according to the proportion of each
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cluster in the neighbor objects set Xi−Neighbor. That is, the proportion is defined
as follows:

P (Xi−Neighbor|Ck) =

∣
∣
{
xj |xj ∈ Xi−Neighbor ∧ xj ∈ Ck

}∣
∣

|Xi−Neighbor| (11)

According to the above formula, the three-way decision rules are given as
follows:

if P (Xi−Neighbor|Ck) ≥ α, the object is decided to Co(Ck);
if β < P (Xi−Neighbor|Ck) < α, the object is decided to Fr(Ck);
if P (Xi−Neighbor|Ck) � β, the objecis decided to Tr(Ck).

(12)

How to decide the threshold α and β automatically is still an unsolved prob-
lem. We can decide the thresholds by experience or through active learning
method.

4.3 Experimental Results

In this subsection, we validate the proposed method TWD-ID on three UCI
repository [32] data sets with some classical clustering strategies for incomplete
data such as WDS-FCM, PDS-FCM, OCS-FCM, NPS-FCM [5] and NNI-FCM
[29]. All the experiments are performed on a 3.2 GHz computer with 4 GB mem-
ory, and all algorithms are programmed in C++. The quality of the final cluster-
ing is evaluated by the traditional indices such as the Accuracy and F-measure,
where the objects in fringe regions are deemed to be core regions to fit these
common formulae.

In order to reflect the effect of the missing rate on the performance of algo-
rithms, the incomplete data set is constructed randomly according to the 10%,
15% and 20% missing rate. To avoid the effect by the distribution of missing
data, we test 10 times by generating different incomplete data sets randomly for
each UCI data set. The mean and standard deviation of the results for 10 times
under each missing rate are recorded in the following tables, where α = 0.7 and
β = 0.45 (Tables 1, 2 and 3).

Table 1. Experimental results on the iris data set

Algorithm Miss rate

10% 15% 20%

Accuracy F-measure Accuracy F-measure Accuracy F-measure

TWD-ID 0.914± 0.031 0.913± 0.035 0.917± 0.038 0.915± 0.041 0.893± 0.019 0.888± 0.020

WDS-FCM 0.583 ± 0.020 0.586 ± 0.022 0.468 ± 0.036 0.476 ± 0.036 0.464 ± 0.069 0.447 ± 0.092

PDS-FCM 0.898 ± 0.006 0.897 ± 0.006 0.892 ± 0.012 0.891 ± 0.012 0.889 ± 0.008 0.888 ± 0.007

OCS-FCM 0.883 ± 0.015 0.882 ± 0.014 0.858 ± 0.073 0.846 ± 0.108 0.867 ± 0.026 0.866 ± 0.027

NPS-FCM 0.869 ± 0.020 0.868 ± 0.021 0.845 ± 0.024 0.844 ± 0.024 0.807 ± 0.067 0.800 ± 0.076

NNI-FCM 0.900 ± 0.014 0.899 ± 0.014 0.889 ± 0.020 0.889 ± 0.019 0.811 ± 0.073 0.802 ± 0.083
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Table 2. Experimental results on the page blocks data set

Algorithm Miss rate

10% 15% 20%

Accuracy F-measure Accuracy F-measure Accuracy F-measure

TWD-ID 0.825± 0.064 0.827± 0.033 0.802± 0.063 0.811± 0.037 0.810± 0.069 0.810± 0.069

WDS-FCM 0.607 ± 0.006 0.688 ± 0.004 0.710 ± 0.051 0.755 ± 0.032 0.772 ± 0.061 0.790 ± 0.036

PDS-FCM 0.690 ± 0.013 0.743 ± 0.007 0.689 ± 0.006 0.743 ± 0.004 0.691 ± 0.014 0.744 ± 0.008

OCS-FCM 0.652 ± 0.020 0.720 ± 0.013 0.613 ± 0.017 0.693 ± 0.012 0.583 ± 0.023 0.671 ± 0.018

NPS-FCM 0.668 ± 0.028 0.729 ± 0.017 0.656 ± 0.045 0.721 ± 0.029 0.648 ± 0.048 0.716 ± 0.031

NNI-FCM 0.717 ± 0.005 0.758 ± 0.003 0.697 ± 0.033 0.746 ± 0.021 0.692 ± 0.024 0.743 ± 0.014

Table 3. Experimental results on the pendigits data set

Algorithm Miss rate

10% 15% 20%

Accuracy F-measure Accuracy F-measure Accuracy F-measure

TWD-ID 0.753± 0.035 0.731± 0.043 0.746± 0.033 0.727± 0.041 0.737± 0.037 0.717± 0.048

WDS-FCM 0.331 ± 0.023 0.280 ± 0.024 0.323 ± 0.021 0.242 ± 0.023 0.319 ± 0.030 0.242 ± 0.026

PDS-FCM 0.663 ± 0.031 0.623 ± 0.033 0.689 ± 0.025 0.660 ± 0.036 0.676 ± 0.028 0.641 ± 0.041

OCS-FCM 0.539 ± 0.081 0.465 ± 0.099 0.464 ± 0.050 0.385 ± 0.061 0.369 ± 0.050 0.268 ± 0.055

NPS-FCM 0.630 ± 0.024 0.575 ± 0.028 0.581 ± 0.034 0.518 ± 0.044 0.530 ± 0.056 0.465 ± 0.066

NNI-FCM 0.489 ± 0.046 0.412 ± 0.051 0.481 ± 0.043 0.408 ± 0.051 0.421 ± 0.050 0.324 ± 0.064

The experiment results show that the proposed method is appropriate for
clustering uncertainty data such as incomplete data. Besides, the accuracy and
F-measure of the proposed algorithm are higher than the compared algorithms
in the experiments.

5 Discussions

This paper aims at presenting an interpretation of three-way clustering for uncer-
tainty clustering. The existing work usually represents a cluster with a single set
and it is a typical result of two-way decisions. That is, objects in the set belong to
the cluster definitely and objects not in the set do not belong to the cluster def-
initely. There are two regions to describe a cluster. In the proposed framework,
we use three regions to represent a cluster inspired by the theory of three-way
decisions. Objects in the core region belong to the cluster definitely, objects in
the trivial region do not belong to the cluster definitely and objects in fringe
region are the boundary elements of the cluster. The representation not only
shows which objects just belong to this cluster but also shows which objects
might belong to the cluster intuitively.

Through the further work on the fringe region, we can know the degree of an
object influences on the form of the cluster intuitively, which is very helpful in
some practical applications. Furthermore, an evaluation-based three-way cluster
model and an algorithm for clustering incomplete data based on the proposed
model are introduced.
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In the following paper, I will summarize and conclude the paper with listing
some important issues and research trends about the three-way clustering.

– Representation of three-way clustering. There are some work had been pro-
posed in view of interval sets, decision-theoretic rough sets [22]. We can also
represent the model of three-way clustering by using fuzzy set, shadow set
and other models. Different interpretations of three-way clustering could give
different solutions to different kinds of clustering problems.

– How to get the three-way clustering. It is a good way to extend from the
classical two-way decision clustering approaches. The following properties are
important to the efficiency and effectiveness of a novel algorithm: how to
decide the thresholds, how to know the truth number of clusters.

– Developing new clustering approaches for more uncertainty situations such
as dynamic, incomplete data or multi-source data. For example, we had done
some preliminary work [23,25].

– Application of three regions. We can put forward the three-way clustering
strategy to the application fields such as social network services, cyber mar-
keting, E-commerce, recommendation service and other fields.
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Abstract. A new semi-supervised clustering framework for uncertain
multi-view data is proposed inspired by the theory of three-way decisions,
which is an alternative formulation different from the ones used in the
existing studies. A cluster is represented by three regions such as the
core region, fringe region and trivial region. The three-way representation
intuitively shows which objects are fringe to the cluster. The proposed
method is an iterative processing which includes two parts: (1) the three-
way spectral clustering algorithm which is devised to obtain the three-
way representation result; and (2) the active learning strategy which
is designed to obtain the prior supervision information from the fringe
regions, and the pairwise constraints information is used to adjust the
similarity matrix between objects. Experimental results show that the
proposed method can cluster multi-view data effectively and is better in
performances than the compared single-view clusterings and other semi-
supervised clustering approaches.

Keywords: Multi-view data · Three-way decisions · Semi-supervised
clustering · Spectral clustering · Active learning

1 Introduction

In some applications such as computer video, social computing, and multimedia
area, objects are usually represented in several different ways. This kind of data
is termed as the multi-view data. Multi-view clustering, which is also one kind of
multi-view learning, has attracted more and more attentions [1–3,12,19]. In the
existing methods, spectral clustering [4,13] is a popular one for multi-view data
because it represents multi-view data via graph structure and makes it possible
to handle complex data such as high-dimensional and heterogeneous as well as it
can easily use the pairwise constraint information provided by users. Therefore,
some scholars research on spectral clustering for multi-view data [5,8,17].

Generally speaking, there are two types of typical prior supervised infor-
mation, namely, class labels and pairwise constraints [5,6,16]. In practice, it is
difficult to obtain the independent class labels, yet it could be relatively easy
to ensure correlated or uncorrelated information among data objects. Therefore,
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part II, LNAI 10314, pp. 313–325, 2017.
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pairwise constraints describe two objects whether they should be assigned to the
same class or the different classes. However, choosing the supervised information
is random in most of existing methods, and it does not produce positive effect on
improving the clustering result when the algorithm itself can find the prior infor-
mation or there are amounts of noises in the prior information. Therefore, the
active learning method is introduced to optimize the selection of the constraints
for semi-supervised clustering [15,18,28].

Most of the existing researches on the topic has focused on selecting an initial
set of pairwise constraints before performing semi-supervised clustering. This is
not suitable if we wish to iteratively improve the clustering model by actively
querying users. In fact, many clustering approaches are based on iterative frame-
work. Obviously, it is much better in each iteration that we determine objects
with the most important information toward improving the current clustering
result and form queries accordingly than just choosing the information randomly.
The responses to the queries (i.e., constraints) are then used to update the clus-
tering. This process repeats until we reach the stop conditions. Such an iterative
framework is widely used in active learning for semi-supervised clustering.

In this paper, we focus on how to improve the quality of clustering for multi-
view data with the aid of pairwise constraints. Therefore, we propose a semi-
supervised clustering framework based on active learning by using three-way
decisions. In order to further choosing the supervision information during the
iterative processing, we introduce the idea of three-way decisions into this work,
inspired by the three-way decisions theory as suggested by Yao [21,22]. Three-
way decisions extend binary-decisions in order to overcome some drawbacks of
binary-decisions. The basic ideas of three-way decisions have been widely used in
real-world decision-making problems, such as decision making [23], email spam
filtering [29], three-way investment decisions [9] and many others [25]. Interval
sets provide an ideal mechanism to represent soft clustering. Lingras and Yan [10]
introduced interval sets to represent clusters. Lingras and West [11] proposed an
interval set clustering method with rough k-means for mining clusters of web
visitors. Yao et al. [20] represented each cluster by an interval set instead of a
single set as the representation of a cluster. Inspired by these results, we have
introduced a framework of three-way cluster analysis [26,27].

In our work, a three-way representation for a cluster is presented, where a
cluster is represented by three regions, i.e., the core region, fringe region and
trivial region, instead of two regions as the other existing methods. Objects in
the core region are typical elements of the cluster, objects in the fringe region are
fringe elements of the cluster, and objects in the trivial region do not belong to
the cluster definitely. A cluster is therefore more realistically characterized by a
set of core objects and a set of boundary objects. The three-way representation
intuitively shows which objects are fringe to the cluster. Thus, we can reduce the
search space to the fringe regions when selecting the pairwise constraints. The
basic idea of the work is to propose an iterative processing, in which a three-way
clustering algorithm is devised to obtain the three-way clustering result and an
active learning strategy is designed to obtain the prior supervision information
from the fringe regions.
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The remainder of this paper is organized as follows. Section 2 introduces
some basic concepts. Section 3 describes the proposed framework, the three-way
spectral clustering algorithm and the active learning strategy. Section 4 reports
the results of comparative experiments and conclusions are provided in Sect. 5.

2 Preliminaries

In this section, some basic concepts of multi-view and semi-supervised clustering
are introduced.

2.1 Multi-view Data

In the multi-view setting, an object (data point) x is described with several
different disjoint sets of features. Let X = {x1, · · · ,xi, · · · ,xN} be a universe
with N objects. There are H numbers of views to describe the objects, and
X(1),X(2), · · · ,X(h), · · · ,X(H) be the data matrix of each view respectively.

For h-th view, X(h) ∈ R
N×d(h)

, and d(h) is the feature dimension of the h-th
view. X(h) = {x(h)

1 ,x(h)
2 , · · · ,x(h)

i , · · · ,x(h)
N }, where x(h)

i = (x1
i,h, x2

i,h, · · · , xj
i,h,

· · · , xd(h)

i,h ) is its i-th object, and xj
i,h is the j-th feature of i-th object in the h-th

view.

2.2 Pairwise Constraints

Pairwise constraints is one kind of typical prior information for semi-supervised
clustering. Wagstaff and Cardie [14] introduce must-link (positive association)
and cannot-link (negative association) to reflect the constraint relations between
the data points.

For the universe X = {x1, · · · ,xi, · · · ,xN}, let Y = {y1, · · · , yi, · · · , yN} be
the class labels of objects respectively. Must-link constraint requires that the two
points must belong to the same cluster, and this relation is denoted by ML =
{(xi,xj) | yi = yj , for i �= j,xi,xj ∈ X, yi, yj ∈ Y }. Cannot-link constraint
requires that the two points must belong to different clusters, and this relation
is denoted by CL = {(xp,xq) | yp �= yq, for p �= q, xp,xq ∈ X, yp, yq ∈ Y }.
Klein et al. [7] found that must-link constraint has the transitivity properties on
objects, namely, for xi,xj ,xk ∈ X,

(xi,xj) ∈ ML & (xj ,xk) ∈ ML ⇒ (xi,xk) ∈ ML,
(xi,xj) ∈ ML & (xj ,xk) ∈ CL ⇒ (xi,xk) ∈ CL.

(1)

In fact, simply using the constraint information in the algorithm may cause
a deflection problem of the singular points during the clustering process. The
so-called deflection of singular points is that the points belonging to ML are
assigned to CL or the points belonging to CL are assigned to ML. Therefore, it is
not always true that there are more pairwise constraints the better the clustering
result is. We hope to obtain the best possible result with fewer constraints which
is just the purpose of active learning.
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2.3 Representation of Three-Way Clustering

The purpose of clustering is to divide the N objects of a universe X into some
clusters. If there are K clusters, the family of clusters, C, is represented as
C = {C1, · · · , Ck, · · · , CK}. A cluster is usually represented by a single set in
the existing works, namely, Ck = {x1, · · · ,xi, · · · ,x|Ck|}, and it is abbreviated
as C by removing the subscript when there is no ambiguity. From the view
of making decisions, the representation of a single set means that, the objects
in the set belong to this cluster definitely, the objects not in the set do not
belong to this cluster definitely. This is a typical result of two-way decisions.
For hard clustering, one object just belong to one cluster; for soft clustering,
one object might belong to more than one cluster. However, this representation
cannot show which objects might belong to this cluster, and it cannot show the
degree of the object influence on the form of the cluster intuitively. Thus, the
use of three regions to represent a cluster is more appropriate than the use of
a crisp set, which also directly leads to three-way decisions based interpretation
of clustering.

In contrast to the general crisp representation of a cluster, we represent a
three-way cluster C as a pair of sets:

C = (Co(C), F r(C)). (2)

Here, Co(C) ⊆ X and Fr(C) ⊆ X. Let Tr(C) = X −Co(C)−Fr(C). Then,
Co(C), Fr(C) and Tr(C) naturally form the three regions of a cluster as Core
Region, Fringe Region and Trivial Region respectively. That is:

CoreRegion(C) = Co(C),
F ringeRegion(C) = Fr(C),
T rivialRegion(C) = X − Co(C) − Fr(C).

(3)

If x ∈ CoreRegion(C), the object x belongs to the cluster C definitely; if x ∈
FringeRegion(C), the object x might belong to C; if x ∈ TrivialRegion(C),
the object x does not belong to C definitely.

These subsets have the following properties.

X = Co(C) ∪ Fr(C) ∪ Tr(C),
Co(C) ∩ Fr(C) = ∅,
F r(C) ∩ Tr(C) = ∅,
T r(C) ∩ Co(C) = ∅.

(4)

If Fr(C) = ∅, the representation of C in Eq. (2) turns into C = Co(C); it
is a single set and Tr(C) = X − Co(C). This is a representation of two-way
decisions. In other words, the representation of a single set is a special case of
the representation of three-way cluster.

Furthermore, according to Eq. (4), we know that it is enough to represent a
cluster expediently by the core region and the fringe region.

In another way, we can define a cluster by the following properties:

(i) Co(Ck) �= ∅, 1 ≤ k ≤ K;
(ii)

⋃
Co(Ck)

⋃
Fr(Ck) = X, 1 ≤ k ≤ K.

(5)
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Property (i) implies that a cluster cannot be empty. This makes sure that a
cluster is physically meaningful. Property (ii) states that any object of X must
definitely belong to or might belong to a cluster, which ensures that every object
is properly clustered.

With respect to the family of clusters, C, we have the following family of
clusters formulated by three-way decisions as:

C = {(Co(C1), F r(C1)), · · · , (Co(Ck), F r(Ck)), · · · , (Co(CK), F r(CK))}. (6)

Obviously, we have the following family of clusters formulated by two-way
decisions as:

C = {Co(C1), · · · , Co(Ck), · · · , Co(CK)}. (7)

3 The Proposed Semi-supervised Clustering Method

In this section, a semi-supervised three-way clustering framework for multi-view
data is proposed. The three-way spectral clustering algorithm and the active
learning strategy are described.

3.1 The Framework

The proposed semi-supervised three-way clustering framework for multi-view
data (or SS-TWC, for short) is shown in Fig. 1, which is an iterative processing.
In short, the framework consists of two parts, i.e., the three-way clustering and
the active learning. The main goal of Part 1 is to produce the clustering result
in three-way representation. In other words, the other clustering algorithm also
works as long as we alter it to adopt to the three-way representation. The task
of Part 2 is to choose some objects (points) to query experts. The responses to
the queries (i.e., constraints) are then used to update the clustering in Part 1.

Fig. 1. SS-TWC: semi-supervised three-way clustering framework for multi-view data
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In this paper, the spectral clustering approach is used to produce the three-
way clustering in Part 1. The framework of three-way spectral clustering algo-
rithm is described in Algorithm1 in Subsect. 3.2. The algorithm computes on
the multiple views X(1),X(2), · · · ,X(H), to find a low-dimensional feature space
E of original data points by calculating eigenvectors of fused Laplacian matrix
L. In order to obtain more accurate partitions, uncertain objects are assigned to
the fringe region of corresponding cluster. For these uncertain objects, they can
get further decision when information is sufficient.

In Part 2, the SS-TWC uses the active learning method to learn dynam-
ically objects with most important information toward improving the current
clustering result. The framework of active learning algorithm is described in
Algorithm 2 in Subsect. 3.3. In each iteration, the active learning measures uncer-
tain objects in fringe regions with a certain strategy. The produced pairwise
constraints information is applied to adjust the similarity matrix between data
points in Algorithm1, which makes objects being more compact in one cluster
and more discrete in different clusters.

We need to note that the final result of clustering can be expressed by two-way
or three-way representation according to the user demands. In the framework,
the result of the first iteration is in three-way representation, and the fringe
regions reduce after processing iterations. In each iteration, we query experts to
acquire the prior information by choosing the objects from fringe regions. The
algorithm obtains the two-way clustering result finally when the iteration is going
on until the fringe regions are empty, which is the results in our experiments.
The algorithm also can obtain the three-way clustering result finally, if it stops
when the clustering result is stable or the iterative times q reaches the maximum
number Q.

3.2 The Three-Way Spectral Clustering

First, we need to map the data set X = {x1, · · · ,xi, · · · ,xN} to a similarity
matrix W . We refer to the concept of k -nearest neighbors in consideration of the
nearer neighbors contribute more to the classified information than the more
distant ones.

In spectral clustering, the Gaussian kernel function is widely used as the
similarity measure. However, it is difficult to determine the optimal value of
the kernel parameter, which reflects the neighborhood of the data points. In
addition, with a fixed kernel parameter, the similarity between two objects is
only determined by their Euclidean distance. Inspired by the idea of local scaling
parameter can be determined by shared nearest neighbors [24], we proposed
an adaptive parameter based on shared neighbors instead of traditional kernel
parameter.

Let N(x) = {xs|dist(x,xs) ≤ r,xs ∈ kNN(x)} contains objects that are
members of neighborhood of x with the neighbor radius r, where dist(x,xs)
describes the Euclidean distance between x and xs, kNN(x) denotes k neigh-
bor points of x. The neighbor radius r of object x is defined as r = 1

k

∑k
s=1
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dist(x,xs), such that xs ∈ kNN(x). Neighbor radius of each object can be con-
firmed by its k neighbor points. In addition, the number of points in the join
neighborhood of two objects indicates their closeness. Therefore, a similarity
function that considers global distribution and local consistency is given by:

wij =

⎧
⎪⎨

⎪⎩

exp(− ‖xi − xj)‖2
r2i r

2
j |N(xi)

⋂
N(xi)| + 1

),xi ∈ kNN(xj) or xj ∈ kNN(xi),

0, others.
(8)

where ri and rj are the neighbor radius of xi and xj respectively, |N(xi)
⋂

N(xj)|
is the number of objects in the join neighborhood of xi and xj .

We adopt graphs G(1), · · · , G(H) to describe the multiple views X(1), · · · ,X(H)

respectively. G(h) = (V (h), E(h),W (h)), where W (h) represents the similarity
relationship among data points of h-th view. L(h) denotes the normalized graph
Laplacian matrix of G(h) and is defined as:

L(h) = I − (D(h))−1/2W (h)(D(h))−1/2, (9)

where D(h) ∈ R
N×N denotes the degree matrix of graph G(h) whose i-th diagonal

element is d
(h)
i =

∑N
j=1 w

(h)
ij .

The objective function of the normalized spectral clustering is defined as:

min
G∈RN×K

H∑

h=1

tr(GT (Lh)G), s.t. GTG = I (10)

Due to G is the identical matrix of all views, Eq. 10 can be converted to:

min
G∈RN×K

tr(GT (
H∑

h=1

Lh)G), s.t. GTG = I (11)

In fact, the three-way spectral clustering algorithm (see Algorithm 1) imple-
ments the initial clustering and the iterative clustering. In the initial processing,
i.e. the iteration times be 1, the constraint set R = ∅. That means there is
no prior information and the spectral clustering is a unsupervised learning for
multi-view data. In the iterative clustering processing, i.e. the iteration times
more than 1, pairwise constraints information produced by the active learning
algorithm (see Algorithm 2) are added to the constraint set R. The similarity
matrixes of spectral clustering are adjusted by the following formula:

if (xi,xj) ∈ ML, then w
(h)
ij = w

(h)
ji = 1;

if (xi,xj) ∈ CL, then w
(h)
ij = w

(h)
ji = 0.

(12)

Based on the idea of three-way decisions, the proposed framework assigns the
current uncertain objects to the corresponding fringe region. First, for the objects
need to be divided, the proposed algorithm finds the neighborhood N(xi) with
neighbor radius ri. Then, it calculates the proportion of the objects in N(xi)
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Algorithm 1. The three-way spectral clustering algorithm
Input: the multi-view data {X(1), X(2), · · · , X(H)}, the number of clusters K,

the constraint set R, the threshold values α and β.
Output: C = {(Co(C1), F r(C1)), · · · , (Co(CK), F r(CK))}.
for each view X(h) do

if R �= ∅ then

to adjust similarity matrix W (h) according to Eq. 12;

else
to compute similarity wij according to Eq. 8;

to construct the normalized graph Laplacian matrix L(h) according to Eq. 9;

to compute the fused normalized Laplacian matrix L according to Eq. 11; to
compute the K smallest eigenvectors of L and construct eigenvector matrix E;
to normalize the rows of E to have unit norm; to cluster E by using k-means
algorithms, to assign objects to core regions, fringe regions and trivial regions,
by using the three-way rules Eq. 14.

belong to each cluster; and it assigns xi to the corresponding core region or
fringe region. The proportion that objects in N(xi) belong to Ck is given by:

P (N(xi)|Ck) =
|xj |xj ∈ N(xi) ∧ xj ∈ Ck|

|N(xi)| (13)

Naturally, we have the three-way decision rules as follows.

if P (N(xi)|Ck) � α, then xi is assigned to Co(Ck);
if β < P (N(xi)|Ck) < α, then xi is assigned to Fr(Ck);
if P (N(xi)|Ck) � β, then xi is assigned to Tr(Ck);

(14)

where α and β are the three-way decision thresholds.

3.3 The Active Learning to Acquire Pairwise Constraints

In this work, we consider active learning of constraints in the iterative framework.
The search space is reduced to the fringe regions in the proposed method. In the
current iteration, we need to decide which objects have the most important
information toward improving the current clustering result and form queries
accordingly. The responses to the queries (i.e., constraints) are then used to
update the similarity matrix by using Eq. 12.

Specifically, we define the uncertainty in terms of the concept of entropy,
which is a classic measure of uncertainty. In the h-th view, w

(h)
ij denotes similarity

between points x(h)
i and x(h)

j , the probability of x(h) belongs to different core
regions Co(Ck)(1 � k � K) is defined as:

p(h)(x | Co(Ck)) =
1

|Co(Ck)|
∑

xj∈Co(Ck)
w

(h)
.j

∑K
p=1(

1
|Co(Cp)|

∑
xj∈Co(Cp)

w
(h)
.j )

, (15)

where |Co(Ck)| is the cardinality of Co(Ck).
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Then, the maximum entropy of x among H views is calculated by the fol-
lowing formula.

HMax(x) =
H

argmax
h=1

(− 1
K

K∑

k=1

(p(h)(x | Co(Ck)) log2p
(h)(x | Co(Ck)))). (16)

An object with the bigger entropy will have more classification information
to help decision-making. Thus, the object with most important information is
selected by the following formula.

x∗ = argmax
x∈U

HMax(x), (17)

where U denotes the set of unlabeled data.
In order to reduce the cost of queries, we first sort the K probabilities,

p(h)(x∗ | Co(Ck)) for 1 ≤ k ≤ K, in descending order. Then, we begin query the
core of the cluster from the higher one until a must-link constraint satisfied.

Algorithm 2. The strategy of active learning
Input: the clustering result C
Output: the constraint set R
for each view X(h) do

for k = 1 to K do

for x ∈ Fr(Ck), to compute p(h)(x | Co(Ck)) according to Eq. 15;

to compute HMax(x) according to Eq. 16;
to select the most information object x∗ according to Eq. 17;
to sort probabilities p(x∗ | Co(Ck)) in descending order;
for k = 1 to K do

to query whether x∗ belongs to Co(Ck));
if the response is True then

to select a point x from Co(Ck) randomly, set (x∗,x) ∈ ML, and
Co(Ck) = Co(Ck)

⋃{x∗};
to update the constraint set R according to Eq. 12; break;

else
to construct pairwise constraint information (x∗,xi) ∈ CL;

4 Experimental Results

In this section, we validate the proposed method on some real-world datasets.
Table 1 gives the summary information about the datasets. SensIT1 uses two
sensors to classify three types of vehicle. We randomly sample 100 data for
each class, and then conduct experiments on 2 views and 3 classes. Reuters2

1 https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html.
2 https://archive.ics.uci.edu/ml/datasets.html.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
https://archive.ics.uci.edu/ml/datasets.html
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contains feature characteristics of documents originally written in five different
languages, and their translations over a common set of 6 categories. We use
documents originally in English as the first view and their French and German
translations as the second and the third view respectively. We randomly sample
1200 documents from this text collection, with each of the 6 clusters having 200
documents. Cora3 and CiteSeer4 collect kinds of scientific publications, with the
first view being the textual content of documents and the second view being
citation links between documents.

Table 1. Information about the datasets

Datasets Size #View #Cluster

SensIT 300 2 3

Reuters 1200 3 6

Cora 2708 2 7

CiteSeer 3312 2 6

We compare the proposed SS-TWC method with some representative multi-
view clustering strategies.

– Best Single View(BSV): running the proposed semi-supervised spectral clus-
tering on each input view, and then reporting the results of the view that
achieves the best performance.

– Feature Concatenation(FeatCon): concatenating the features of all views to
form a single representation, and then applying the proposed semi-supervised
spectral clustering on the concatenated view.

– AMVNMF: the adaptive multi-view semi-supervised nonnegative matrix fac-
torization, it is an iterative multi-view semi-supervised clustering algorithm
from the reference [16].

– SS-TWC(R): the method is similar with the SS-TWC except it obtains equiv-
alent constraint information by using the random strategy instead of the
active learning strategy in Algorithm2.

The quality of the final clustering is evaluated by the traditional indices such
as the accuracy (AC) and normalized mutual information (NMI). To ensure the
objectivity of the experimental results, the results of AMVNMF are from the
reference [16] and the other methods are programmed in C++. Each test runs
10 times, the average values of AC and the NMI are recorded in Table 2. The k,
the number of neighbors, is set to be the 5% of the universe in the tests.

Obviously, the SS-TWC outperforms the other compared methods on the
four datasets. Unlike the BSV and FeatCon, the SS-TWC profits from the cor-
relative and complementary information among multiple views. Compared to the
3 http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html.
4 http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html.

http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html
http://linqs.umiacs.umd.edu/projects//projects/lbc/index.html
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Table 2. Comparison of experimental results

Indices Datasets BSV FeatCon AMVNMF SS-TWC(R) SS-TWC

AC SensIT 68.73 76.39 71.33 67.71 77.67

Reuters 54.67 58.43 59.88 57.20 66.22

Cora 42.70 46.27 48.71 40.67 51.88

Citeseer 46.16 53.36 53.14 45.39 56.04

NMI SensIT 34.58 38.02 31.73 24.87 41.16

Reuters 44.35 45.62 42.75 32.13 47.88

Cora 30.71 34.41 34.59 20.19 36.72

Citeseer 21.49 23.38 26.13 18.27 30.26

AMVNMF, the proposed SS-TWC has the benefit of processing the uncertainty
in multi-view data by using the three-way decisions. In addition, the compared
results between the SS-TWC and the SS-TWC(R) show that the proposed strat-
egy of selecting pairwise constraints dynamically is much effective. In short, the
proposed method work well in dealing with multi-view data.

5 Conclusions

In many scenarios, more than one view can be provided to describe the data due
to the fact that data may be collected from different sources or be represented by
different kind of feature sets for different tasks. Clustering multi-view data is an
important problem. In this paper, we proposed a semi-supervised three-way clus-
tering framework for multi-view data. The framework is an iterative processing,
which consists of two parts, i.e., the three-way clustering and the active learn-
ing. The main goal of three-way clustering is to produce the clustering result in
three-way representation, in which the objects in fringe regions intuitively gives
the clue to query. Thus, the task of the active learning is to choose some objects
(points) from fringe regions to query experts, and the responses to the queries
(i.e., constraints) are then used to update the clustering result in iterations. The
spectral clustering and the active learning strategies are used to implement the
framework. The experimental results show that the proposed method achieves
better performance in both the accuracy and the NMI than the compared meth-
ods. However, we need further work to improve the time complexity though
the cost for computing has reduced little by constructing kNN graph. To con-
sider the different contribution of different view is another direction for future
research.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant Nos. 61379114 & 61533020.
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Abstract. Determination of thresholds is recognized as a fundamen-
tal problem in decision-theoretic rough sets. Traditionally, thresholds
are determined by observing Bayesian decision theory. Although the
semantic seems to be enriched as compared to probabilistic rough sets,
the functionality of risk is not comprehensively explored. In allusion
to this situation, we develop a multi-object optimization view based
model on determining thresholds. By generalizing the expected loss func-
tion to target function, this model claims that thresholds in three-way
are radically constructed by pair-wise region-based target functions. By
transferring the principle of pair-wise region-based target functions on
multi-quantitative scenario, we present a finer-grained formulation for
thresholds solving. Furthermore, we investigate the multi-layer of pre-
sented model. Finally, the optimistic and pessimistic multi-quantitative
decision-theoretic rough set is defined to illustrate the value of presented
model.

Keywords: Three-way decisions · Decision-theoretic rough sets · Multi-
object optimization · Multi-quantitative

1 Introduction

Three-way decisions (TWD) [1], originated from rough set theory [2], has demon-
strated the superiority in performing decision-making with uncertainty. Roughly
speaking, three-way decisions managed to divide the universe into three non-
overlapped regions and take actions of acceptance, rejection or non-commitment
respectively. A rational explanation for taking different strategies is that the com-
mitted decision, whether acceptance or rejection, corresponds to the information
with satisfied discernibility, whereas the non-commitment decision implies the
information with flawed discrimination. By incorporating with three-way deci-
sions, an increasing number of successful cases have been reported in different
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applications, including e-mail spam filtering [3], text semantic analysis [4,5]
image recognition [6], and cognitive computing [7].

Thresholds play a pivot role in determining the region boundary, and the
selections reflect the degree that concepts can be approximately defined by cer-
tain granular structure. In decision-theoretic rough sets (DTRS) [8], different
combinations of thresholds correspond to different risk, and the minimization of
risk is the decision principle. Studies on threshold solving can be categorized into
two groups. In the first case, all loss coefficients are given but may uncertain.
As suggested by [9], an analytical solution is invariantly expected. In the second
case, however, only part of them are roughly known, while no specific expres-
sions of the remaining are given. In this case, only numerical solutions can be
expected [10,11]. Although both solutions can be interpreted from optimization
view, it is not explicitly declared in terms of region construction. Consequently,
the semantics of α, β, and γ are merely enriched by introducing more loss coef-
ficients λ••. The problem thus becomes more obvious in the discussion of gen-
eralized double-quantitative rough sets [12], where the approximation operators
are merely generated on the basis of parameters.

In this paper, we take a multi-object optimization (MOP) view for thresholds
solving. By generalizing expected loss coefficients of DTRS to target functions,
this paper provides a revisit to decision-theoretic rough sets. The confrontation
within regions are thoroughly embodied in threshold solving. Accordingly, the
semantics of thresholds in DTRS are more intuitive, and the construction of
three-way structure is enriched simultaneously. By investigating the combina-
tions of pair-wise region-based target functions, we present a finer-grained view
for construction of thresholds. We further declare that under multi-quantitative
scenario, more combinations of thresholds can be generated by considering diver-
sity fusions of homogeneous region-based target function meanwhile. The formal-
ized representation is constructive in flourishing approximate knowledge repre-
sentation of multi-quantitative based rough sets.

The rest of the paper is organized as follows. Section 2 briefly reviews the
basic concepts with regard to decision-theoretic rough sets. In Sect. 3, a multi-
object optimization based model is investigated to solve the thresholds. By
extending the syntax of optimizing principal presented in Sect. 3, proposed model
is competent for thresholds solving for multi-quantitative scenario, as illustrated
in Sect. 4. Finally, it is concluded in Sect. 5.

2 Preliminary

In this section, we present a review of some basic concepts with regard to
decision-theoretic rough sets.

Definition 1 [2]. IS = {U,A, V, f} is an information system with quadruple,
where U denotes a non-empty finite universe, A = C ∪ D be a set of attributes,
V be the values of all attributes and is determined by the mapping function
f : U × A → V .

Under the equivalence relation R, a corresponding partition of U (U/R) can be
generated.
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Elements in the identical equivalence class constitute a basic information
granule [x]. The affiliation of information granular [x] to certain decision class
X can be measured by conditional probability P (X|[x]). Although this measure
can reflect the decision quality, the semantic of thresholds that support the
three-way structure is vagueness. To address this issue, Yao [13] introduced loss
coefficients λ•• to evaluate the effects of three-way decisions. Taking two classes
classification problem as an example, there are totally six loss coefficients, as
illustrated in Table 1.

Table 1. Loss coefficient matrix for two class classification problem

X ¬X

acceptance (a) λap λan

non-commitment (n) λnp λnn

rejection (r) λrp λrn

Consequently, the risk of all equivalence class [x] in the process of decision
making can be calculated as:

R =
∑

[x]

R(a|[x]) + R(n|[x]) + R(r|[x]) (1)

where R(a|[x]), R(r|[x]) and R(n|[x]) are defined as:

R(a|[x]) = λap × P (X|[x]) + λan × P (¬X|[x]);
R(n|[x]) = λnp × P (X|[x]) + λnn × P (¬X|[x]);
R(r|[x]) = λrp × P (X|[x]) + λrn × P (¬X|[x]).

The risk minimization principle indicates that the affiliation of information
granular [x] with regard to class X is reasonable if the following three inequality
are satisfied simultaneously.

R (a |[x] ) ≤ R (n |[x] ) ∧ R (a |[x] ) ≤ R (r |[x] ) ⇒ decide [x] ⊆ POS (X);
R (n |[x] ) ≤ R (a |[x] ) ∧ R (n |[x] ) ≤ R (r |[x] ) ⇒ decide [x] ⊆ BND (X);
R (r |[x] ) ≤ R (a |[x] ) ∧ R (r |[x] ) ≤ R (n |[x] ) ⇒ decide [x] ⊆ NEG (X).

Hence, we can make three-way decisions on the risk level. The DTRS model is
thus defined as follows:

Definition 2 [13]. Given relationship of loss coefficients λap ≤ λnp ≤ λrp and
λrn ≤ λnn ≤ λan and condition (λrp−λnp)(λan−λnn) ≥ (λnp−λap)(λnn−λrn),
three-way region with regard to X is defined as

POS(X) = {[x]|P (X|[x]) ≥ α};
BND(X) = {[x]|β < P (X|[x]) < α};
NEG(X) = {[x]|P (X|[x]) ≤ β}.
where parameters α and β are defined as:

α = λan−λnn

(λan−λnn)+(λnp−λap)
; β = λnn−λrn

(λnn−λrn)+(λrp−λnp)
;
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3 Multi-object Optimization View for Threshold Solving
with Single Quantification

For a given information system, decision risks of positive region, negative region
and defer region fluctuate as the selection of thresholds changes. It is reasonable
to assume that each threshold is determined by pair-wise region-based target
function, thus a multi-object optimization problem is formulated. To elaborate
the solving mechanism, this section will limit the scope of target function on
single granular structure.

3.1 Problem Formulation

Suppose the conditional probability P (X|[x]) is considered as evaluation crite-
rion, we term target functions as:

Definition 3. Target function T is an assemble of functions with TP , TB and
TN which describes the decision cost of positive region, boundary region and
negative region induced by P (X|[x]) respectively.

TP = (λap − λan) P (X |[x] ) + λan;
TB = (λnp − λnn) P (X |[x] ) + λnn;
TN = (λrp − λrn) P (X |[x] ) + λrn.

All target functions suggest that region-based decision cost is linearly related
to the conditional probability. Since three-way can be described by at most two
parameters, we can formulate the thresholds solving problem as follows:

arg min
(α∗,β∗)

T |(α, β, γ) = {TP |(α, β, γ), TB |(α, β, γ), TN |(α, β, γ)} (2)

where α∗ ≥ β∗, α∗, β∗ ∈ {α, β, γ} and T |(α, β, γ) denotes the target value given
α, β, γ. α, β, and γ are three conditional probabilities that are to be optimized.
The selection of α implies the relative boundary between positive region and
boundary region, while β and γ suggest the relative boundary of negative region
and boundary region, positive region and negative region respectively. To solve
the problem formulated in Eq. (2), we define the following optimization model.

Definition 4. Let Tα, Tβ , Tγ be the decision cost induced merely by α, β
and γ respectively, parameters α, β, γ can be solved by three pair-wise object
optimization.

arg min
(α)

Tα =
{

TP = (λap − λan) × α + λan

TB = (λnp − λnn) × α + λnn
;

arg min
(β)

Tβ =
{

TB = (λnp − λnn) × β + λnn

TN = (λrp − λrn) × β + λrn
;

arg min
(γ)

Tγ =
{

TP = (λap − λan) × γ + λan

TN = (λrp − λrn) × γ + λrn
.

s.t. 0 < α < 1, 0 < β < 1, 0 < γ < 1
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3.2 Problem Solving

It can be deduced from Definition 4 that solving for any parameter is similar.
Without losing generality, we investigate the solving process for parameter α.

Let TP = TB , we have P (X|[x]) = λan−λnn

(λan−λnn)+(λnp−λap)
. Then we have the

following Theorem.

Theorem 1. Tα achieves the minimum value if α = λan−λnn

(λan−λnn)+(λnp−λap)
.

Proof. Given λap − λan > λnp − λnn, the slope of TP is larger than that of TB . If
α is smaller than intersection of two target functions (see α1 and α0 in Fig. 1(a)),
then the equivalence class with conditional probability in interval (α1, α0) will
be determined to boundary region, which will have larger cost. If α is bigger than
intersection of two target functions (see α2 and α0 in Fig. 1(a)), then the equiv-
alence class with conditional probability in interval (α0, α2) will be determined
to positive region, which will also have larger cost. Analogously, intersection
α0 corresponds to minimum cost given λap − λan < λnp − λnn, as illustrated in
Fig. 1(b).

Fig. 1. Determination of parameter α given target function TP and TB

Based on Theorem 1, we have the following corollary holds.

Corollary 1. Let α = λan−λnn

(λan−λnn)+(λnp−λap)
, we have:

((λap − λan) > (λnp − λnn)) ∧ (1 > P (X |[x] ) > α > 0) ⇒ TP > TB ;
((λap − λan) > (λnp − λnn)) ∧ (0 < P (X |[x] ) < α < 1) ⇒ TP < TB ;
((λap − λan) < (λnp − λnn)) ∧ (1 > P (X |[x] ) > α > 0) ⇒ TP < TB ;
((λap − λan) < (λnp − λnn)) ∧ (0 < P (X |[x] ) < α < 1) ⇒ TP > TB.

Proof. It is straightforward as Theorem1 implies.

Analogously, we have the property with regard to β and γ according to
Definition 4. For β, let TB = TN , we have P (X|[x]) = λnn−λrn

(λnn−λrn)+(λrp−λnp)
. Then

we have Theorem 2 and Corollary 2 as follows:
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Theorem 2. Tβ achieves the minimum value if β = λnn−λrn

(λnn−λrn)+(λrp−λnp)

Proof. It is similar to that of Theorem 1.

Corollary 2. Let β = λnn−λrn

(λnn−λrn)+(λrp−λnp)
, we have:

((λrp − λrn) > (λnp − λnn)) ∧ (1 > P (X |[x] ) > β > 0) ⇒ TN > TB;
((λrp − λrn) > (λnp − λnn)) ∧ (0 < P (X |[x] ) < β < 1) ⇒ TN < TB;
((λrp − λrn) < (λnp − λnn)) ∧ (1 > P (X |[x] ) > β > 0) ⇒ TN < TB;
((λrp − λrn) < (λnp − λnn)) ∧ (0 < P (X |[x] ) < β < 1) ⇒ TN > TB .

Proof. It is straightforward as Theorem 2 implies.

For γ, let TP = TN , we have P (X|[x]) = λan−λrn

(λan−λrn)+(λrp−λap)
, then we have

Theorem 3 and Corollary 3.

Theorem 3. Tγ achieves the minimum value if γ = λan−λrn

(λan−λrn)+(λrp−λap)
.

Proof. It is similar to that of Theorem 1.

Corollary 3. Let γ = λan−λrn

(λan−λrn)+(λrp−λap)
, we have:

((λap − λan) > (λrp − λrn)) ∧ (1 > P (X |[x] ) > γ > 0) ⇒ TP > TN ;
((λap − λan) > (λrp − λrn)) ∧ (0 < P (X |[x] ) < γ < 1) ⇒ TP < TN ;
((λap − λan) < (λrp − λrn)) ∧ (1 > P (X |[x] ) > γ > 0) ⇒ TP < TN ;
((λap − λan) < (λrp − λrn)) ∧ (0 < P (X |[x] ) < γ < 1) ⇒ TP > TN .

Proof. It is straightforward as Theorem 3 implies.

By simultaneously considering the relations of relative parameters and slope of
target functions, we can determine the three-way structure as following theorems:

Theorem 4. If (λrp − λrn) > (λnp − λnn) > (λap − λan) and β ≤ γ ≤ α,
then the following decision rules hold: (P) P (X|[x]) ≥ α, decide x ∈ POS(X);
(B) β < P (X|[x]) < α, decide x ∈ BND(X); (N) P (X|[x]) ≤ β, decide x ∈
NEG(X).

Proof. Since the condition (λrp − λrn) > (λnp − λnn) > (λap − λan) is satisfied,
we have (λrp −λrn) > (λnp −λnn), (λnp −λnn) > (λap −λan), and (λrp −λrn) >
(λap − λan). Similarly, α ≤ γ ≤ β is equivalent to α ≤ γ, γ ≤ β and α ≤ β.
According to Corollaries 1 and 3, if additional condition P (X|[x]) ≥ α holds,
decide x ∈ POS(X). According to Corollaries 1 and 2, if additional condition
β < P (X|[x]) < α holds, decide x ∈ BND(X). According to Corollaries 2 and
3, if additional condition P (X|[x]) ≤ β holds, decide x ∈ NEG(X).

Theorem 5. If (λrp − λrn) > (λnp − λnn) > (λap − λan) and α ≤ γ ≤ β, then
the following decision rules hold: (P) P (X|[x]) ≤ γ, decide x ∈ NEG(X); (N)
P (X|[x]) ≥ γ, decide x ∈ POS(X).
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Proof. It is similar to that of Theorem 4.

Fig. 2. Three-way structure for X given conditional probability P (X|[x])

Theorems 4 and 5 illustrate that three-way structure can be different given the
relative relation of slope, as shown in Fig. 2. It reflects that the introduction of
target function TB do not necessarily give rise to three non-empty regions.

The three-way structure with regard to ¬X is derivable from the conditional
probability P (X|[x]). Since X and ¬X is complementary with regard to 1, the
slope of TP , TB and TN is opposite. Consequently, the condition (λrp − λrn) <
(λnp − λnn) < (λap − λan) is satisfied. Based on it, we investigate the relative
relation of parameter α, β and γ.

Theorem 6. If (λrp − λrn) < (λnp − λnn) < (λap − λan) and α ≤ γ ≤ β,
then the following decision rules hold: (P) P (X|[x]) ≤ α, decide x ∈ POS(X);
(B) α < P (X|[x]) < β, decide x ∈ BND(X); (N) P (X|[x]) ≥ β, decide x ∈
NEG(X).

Proof. It is similar to that of Theorem 4, as illustrated in Fig. 3(a).

Fig. 3. Three-way structure for ¬X given conditional probability P (X|[x])
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Theorem 7. If (λrp − λrn) < (λnp − λnn) < (λap − λan) and β ≤ γ ≤ α, then
the following decision rules hold: (P) P (X|[x]) ≤ γ, decide x ∈ POS(X); (N)
P (X|[x]) ≥ γ, decide x ∈ NEG(X).

Proof. It is similar to that of Theorem 4, as illustrated in Fig. 3(b).

4 Multi-object Optimization View for Threshold Solving
with Multiple Quantification

The multi-view of target function is quite ubiquitous in complicated applica-
tions such as group decision-making and double-quantification. It signifies that
for a specific object x, we may observe from different views, resulting in the
appearance of x in at least two different granular structures. Although double-
quantitative can define concepts with multi-view to some degree, some com-
plicated concepts still cannot be defined. For example, consider the following
requirements:

• To accept concept X, precision weighs more than grade, and precision should
be at least 80%;

• The relative differences between precision and grade are limited to 10%, and
percentages for cardinality of equivalent class in information system should
be at least 5%;

• Both precision and grade contribute to the three-way decisions, but the eval-
uation metrics for different regions are different.

The aforementioned requirements cannot be resolved in existing double-
quantitative rough set model since thresholds are not determined by target func-
tions from homogeneous quantification. Regarding every target function as an
atomic quantitative metric, this section intends to further examine the thresholds
construction on multiple granulation.

4.1 Problem Formulation

Compared to single quantification, major difference is that the three regions with
regard to concept X are implicitly determined by granular structures. We intro-
duce three region integration functions fP , fB and fN to induce the integrated
region-based target function TP , TB , and TN . Therefore, Eq. 2 is rewritten as:

arg min
(α∗,β∗)

T |(α, β, γ) = {fP |(α, β, γ), fB |(α, β, γ), fN |(α, β, γ)} (3)

Suppose there are two groups of target functions (T i, T j , with T i =
{T i

P , T i
B , T i

N}, T j = {T j
P , T j

B , T j
N}), then parameters α, β and γ can be solved by

transferring the principle of region confrontation, defined as:
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Definition 5. Let (T i
P , T i

B , T i
N ) and (T j

P , T j
B , T j

N ) represent two different groups
of target functions that are determined by Definition 4 respectively, then (α, β, γ)
can be computed as:

arg min
(α)

Tα =
{

fP (T i
P , T j

P )
fB(T i

B , T j
B)

;

arg min
(β)

Tβ =
{

fB(T i
B , T j

B)
fN (T i

N , T j
N )

;

arg min
(γ)

Tγ =
{

fP (T i
P , T j

P )
fN (T i

N , T j
N )

.

s.t.0 < α < 1, 0 < β < 1, 0 < γ < 1

where

T i
P =

(
λi

ap − λi
an

) × α + λi
an, T j

P =
(
λj

ap − λj
an

) × α + λj
an

T i
B =

(
λi

np − λi
nn

) × β + λi
nn, T j

B =
(
λj

np − λj
nn

) × β + λj
nn

T i
N =

(
λi

rp − λi
rn

) × γ + λi
rn, T j

N =
(
λj

rp − λj
rn

) × γ + λj
rn

To elaborate the structure of integrated region, we consider the trivial case,
namely, the output of region integration function is one of the integrated target
functions:

fP (T i
P , T j

P ) ∈ {T i
P , T j

P }; fB(T i
B , T j

B) ∈ {T i
B , T j

B}; fN (T i
N , T j

N ) ∈ {T i
N , T j

N}.

It can be inferred from Definition 5 that for each parameter α, β, γ, there
are four candidate combinations. Figure 4 illustrates the candidate α and β in
multi-quantification space for trivial cases, and combinations of the three-way
structure in this scenario can be at most sixteen cases.

Fig. 4. Thresholds solving in multi-quantification: α (left) and β (right)



Determining Thresholds in TWD: A Multi-object Optimization View 335

By allowing integrations on two different region integration functions, the
multi-objective optimization based model can be further generalized as:

Definition 6. Let (f i
P , f i

B , f i
N ) and (f j

P , f j
B , f j

N ) represent two different groups
of integrated target functions, then (α, β, γ) can be computed as:

arg min
(α)

Tα =
{

fP (f i
P , f j

P )
fB(f i

B , f j
B)

;

arg min
(β)

Tβ =
{

fB(f i
B , f j

B)
fN (f i

N , f j
N )

;

arg min
(γ)

Tγ =
{

fP (f i
P , f j

P )
fN (f i

N , f j
N )

.

s.t. 0 < α < 1, 0 < β < 1, 0 < γ < 1

4.2 Problem Solving

Definitions 5 and 6 are applicable in explaining thresholds construction of double-
quantitative rough sets [14]. Although the incorporation of decision-theoretic has
been discussed, it still deserves to be improved. For example, in GMDq-DTRS
[12], thresholds are approximated by performing operations on pair-wise three-
way thresholds. The results can be regarded as adding additional requirements
on Definition 5 that i = j holds for both α and β but with heterogeneous trivial
selections, whereas the remaining cases are not covered. Indeed, the trivial cases
correspond to the semantic that certain thresholds are completely determined by
certain target functions, whereas the non-trivial cases reflect the relevant degree
to target functions for certain thresholds. For example, one may define that
an equivalent class with 90% precision but with 10 objects should be deferred,
whereas an equivalent class with 80% precision but with 50 objects should be
accepted. The reason is that the acceptance of the latter may yield to a more
robust decision than acceptance of the former.

Figure 5 systematically illustrates the multi-object optimization perspective
for solving thresholds (α∗, β∗) of three-way decisions in granulation space. From
finest to coarsest, there are three levels. In the first level (Sq-TWD), only pair-
wise region confrontation is required to generate region boundary. The three-
way structure is totally determined by the very group of target function, which
means the three-way can not be further optimized given the target function T .
Thresholds solving for single-quantitative three-way decisions is completed in
this level. However, given another group of target function, the level is upgraded
to the second (Dq-TWD), where the three-way is determined by both target
functions (T i, T j) and integrated target functions (fP , fB , fN ). The result of
integrated target functions can be either trivial or non-trivial, and how to define
the integrated target function is an open issue. Take α for example, the fP can
generate trivial or non-trivial results, and similarly for fB and fN . Consequently,
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the number of solution structure for each parameter is four. As an example, we
enumerate the cases for α as follows:

(trivialP , trivialB), (trivialP , non − trivialB),
(non − trivialP , trivialB), (non − trivialP , non − trivialB).

where trivialP ∈ {T i
P , T j

P }, trivialB ∈ {T i
B , T j

B}.

Fig. 5. Levels for threshold solving of three-way decisions from multi-objective opti-
mization view

Thresholds of double-quantitative rough set with decision-theoretic rough set
are solved in this level. In the third level (Mq-TWD), there are more than two
groups of target functions, which indicates that integrated target functions may
be iteratively used. The trivial output is defined as the result which is identical
to either input. In terms of input type, there are also four cases for f i

P as follows:

(T s
P , T t

P ), (T s
P , f t

P ), (fs
P , T t

P ), (fs
P , f t

P ).
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It corresponds the general case for multi-granulation rough sets. For thresh-
olds with uncertainty like [16,17], we argue that they are the extensions of the
exact solution, and thus are not particularly treated as a level.

4.3 Examples

Three-way structure of multi-quantitative rough set is not as intuitive as single-
quantitative because of uncertainty in the selection of integrated target functions
fP , fB , and fN . Suppose the solutions for all integrated target functions are triv-
ial, by introducing the idea of optimistic and pessimistic defined in [15], we can
define optimistic multi-quantitative decision-theoretic rough set and pessimistic
multi-quantitative decision-theoretic rough set respectively as:

Definition 7. Given information system IS = (U,A, V, f), if (λrp − λrn) <
(λnp − λnn) < (λap − λan) and α ≥ γ ≥ β, then optimistic multi-quantitative
rough set with regard to concept X are defined as:

X = {x|P (X|[x]) ≥ α}
X = {x|P (X|[x]) ≥ β}

where α = arg min
(α)

(fP (T i
P , T j

P ) = fB(T i
B , T j

B)),∀i, j

β = arg max
(β)

(fN (T i
N , T j

N ) = fB(T i
B , T j

B)),∀i, j.

The boundary region of optimistic multi-quantification rough set is the smallest.
Specifically, α = α1, β = β4 if target functions Ti and Tj are as shown in Fig. 4.

Definition 8. Given information system IS = (U,A, V, f), if (λrp − λrn) <
(λnp − λnn) < (λap − λan) and α ≥ γ ≥ β, then pessimistic multi-quantitative
rough sets with regard to concept X are defined as:

X = {x|P (X|[x]) ≥ α}
X = {x|P (X|[x]) ≥ β}

where α = arg max
(α)

(fP (T i
P , T j

P ) = fB(T i
B , T j

B)),∀i, j

β = arg min
(β)

(fN (T i
N , T j

N ) = fB(T i
B , T j

B)),∀i, j.

The boundary region of pessimistic multi-quantitative rough set is the smallest.
Specifically, α = α4, β = β1 if target functions Ti and Tj are as shown in Fig. 4.

For other concept descriptions, there are varying methods to develop three-
way structure. One feasible solution is to interpret the problem as learning the
weights among pair-wise target functions, and for this part we intend to elaborate
the details in our future work. Hence, we argue that our work present a finer-
grained threshold construction, since we can not only enrich the meaning of
three-way in single quantification but also applicable in describing complicated
concept.
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5 Conclusion

This paper presents a novel threshold solving model from the perspective of
multi-object optimization for three-way decisions. From the view of region-based
target function, theories on determining three-way thresholds are significantly
enriched. Multi-object optimization on target function is demonstrated to gen-
erate finer-grained thresholds as compared to discussions on double-quantitative
decision-theoretic rough set. In the next step, we will not only theoretically exam-
ine the properties of multi-quantitative rough set, but also practically investigate
efficient algorithms for knowledge reduction.
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Abstract. Three-way decisions theory is an intelligent strategy to deal with the
uncertain information. The cost of three-way decisions could be reduced by
selecting a pair of appropriate thresholds. The complexity of obtaining a pair of
optimal thresholds will increase when processing the large datasets. In this
paper, firstly, a new concept on number of equal probability object is defined in
continuous domain. Secondly, the three-way decisions cost model based on
continuous domain is established. Finally, an efficient algorithm for searching
optimal thresholds of three-way decisions model is proposed for continuous
domain. The experimental results demonstrate that the proposed model is better
in the efficiency, robustness and generalization ability than that of the model
based on discrete domain for large datasets. These results further enrich the
theory of three-way decisions model.

Keywords: Three-way decisions � Optimal thresholds � Continuous domain �
Cost � Number of equal probability object

1 Introduction

More and more imprecise, inconsistent or uncertain information has been flooded into
people’s life from the middle of the 20th century [1], and many researchers make great
efforts to find some workable methods for dealing with the uncertain information.
Fuzzy set theory, which describes imprecise features by a membership function, is
proposed by Zadeh in 1965 [2]. D-S evidence theory is proposed by Dempster and
Shafer [8] in 1976. However, D-S evidence theory needs to depend on prior knowledge
and it also has very high computational complexity. Hence, rough set theory is pro-
posed by Pawlak to solve the defect of D-S evidence theory in 1982 [4]. Nowadays,
rough set model has successfully been applied to many fields, such as data mining,
machine learning, cloud computing, network security and so on [5–9, 30–34]. Some
scholars propose other practicable extended models [10–12]. Probabilistic rough set is
proposed by Yao and it could describe the uncertain information [13]. In 1993, variable
precision rough set model is put forward by Ziarko [14]. Then, Yao brings a pair of
thresholds a and b 0� b\a� 1ð Þ into Pawlak’s rough set theory and establishes
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DOI: 10.1007/978-3-319-60840-2_25



probabilistic rough set model in 90’s [15]. Probabilistic rough set model has been
widely used in many fields and disciplines now, including decision-theoretic rough set
model [16], Bayesian rough set model [17], information-theoretic analysis [18, 19],
attribute reduction [20], three-way decisions rough set model [21–23] and game-
theoretic rough set model [24]. Yao proposes three-way decisions rough set model
[21–23], and provides reasonable semantic interpretations for three regions of rough
set. Nowadays, the three-way decisions rough set model is widely used in daily life,
such as management sciences [25], peering review process [26], medical decision-
making [27, 28] and e-mail filtering [29].

To some extent, the three-way decisions rough set model can satisfy the demands in
real life. But some aspects should be further studied and improved. Firstly, there are
only four types of decision errors: Rejecting an object x which belongs to X (where X is
a target set), accepting an object x which does not belong to X, making a deferred
decisions for an object x which can’t be determined whether belongs or not belongs
to X. Secondly, in the case of large datasets, the problem how to calculate decisions
cost in the continuous domain could be solved, and continuous domain means the
values of conditional probability of classification is continuous. Finally, the question
how to obtain the optimal thresholds a and b 0� b\a� 1ð Þ from the perspective of
global optimal is also worth considering.

Hence, according to the three-way decisions cost model containing four types of
decision errors, the new concept on the number of equal probability object is defined at
first. Secondly, the three-way decisions cost model based on continuous domain is put
forward consequently. Finally, an efficient algorithm for searching optimal thresholds
of three-way decisions model is proposed for the continuous domain. The experimental
results show that the efficiency, robustness and generalization ability of the proposed
model are better than those based on discrete domain for large datasets. In specific
situations, the thresholds a and b can be calculated without prior knowledge, and it is
convenient to make decisions. Therefore, the proposed three-way decisions cost model
based on continuous domain may further develop three-way decisions theory.

The rest of this paper is organized as follows. First, some preliminary concepts
about rough set and three-way decisions theory are reviewed in Sect. 2. Then, the
number of equal probability object, three-way decisions cost model based on contin-
uous domain, and an efficient algorithm for searching optimal thresholds are proposed
in Sect. 3. Next, the experimental analysis is discussed in Sect. 4. Finally, the paper is
concluded in Sect. 5.

2 Preliminaries

The Pawlak’s rough set model is a mathematical tool to analyze uncertain information
[4]. Many scholars constantly extend this model to some new extensions, such as,
probabilistic rough set model and decision-theoretic rough set model, variable precision
rough set model. What’s more, according to granular computing, multi-granulation
rough set model was presented by Qian [36]. Yao [21–23] put forward the concept of
three-way decisions. In order to improve readability, many basic concepts on rough set
and three-way decisions are reviewed briefly in this section.
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Definition 1 (Indiscernible relation [3]). Given an information system S ¼ U;Rð Þ, U
is a nonempty finite set and A is an attribute set. For any subset of attributes R�A, an
indiscernible relation (or equivalence relation) IND Rð Þ is defined as follows,

IND Rð Þ ¼ x; yð Þj x; yð Þ 2 U2; 8b2R b xð Þ ¼ b yð Þð Þ� �
:

Definition 2 (Rough sets [3]). Given an information system S ¼ U;Rð Þ, attribute
subset R�A. For any target subset X�U, its lower and upper approximation sets are
defined, respectively, as follows,

R Xð Þ ¼ x 2 Uj x½ � 2 Xf g and �R Xð Þ ¼ x 2 Uj x½ � \X 6¼ £f g:

Where x½ � denotes the equivalence class of x. If and only if R Xð Þ 6¼ �R Xð Þ, X is
called a rough set with respect to R.

Definition 3 (Probabilistic rough set model [15]). Given an information system S ¼
U;Rð Þ with a pair of thresholds a and b 0� b\a� 1ð Þ, where R�A is a subset of the
attributes. For any X�U, the lower and upper approximation sets of X on universe U
are defined as follows,

R a;bð Þ Xð Þ ¼ x 2 UjP Xj x½ �ð Þ� af g and �R a;bð Þ Xð Þ ¼ x 2 UjP Xj x½ �ð Þ[ bf g:

Where P Xj x½ �ð Þ ¼ x½ � \Xj j= x½ �j j denotes conditional probability of classification.
�j j is the cardinality of a set. And the domain is divided into three disjoint regions as
follows,

POSða;bÞR ðXÞ ¼ x 2 UjPðXj½x� � af g ¼ Rða;bÞðXÞ;
NEGða;bÞ

R ðXÞ ¼ x 2 UjPðXj½x� � bf g ¼ U � �Rða;bÞðXÞ;
BNDða;bÞ

R ðXÞ ¼ x 2 Ujb\PðXj½x�\af g ¼ �Rða;bÞðXÞ � Rða;bÞðXÞ:

Definition 4 (Three-way decisions rough set model [21–23]). Let X ¼ C;Ccf g be
the set of states. A ¼ aP; aN ; aBf g be the set of actions, where aP, aN and aB represent the
three actions in classifying an object x, Namely, deciding x 2 POS Xð Þ, deciding
x 2 NEG Xð Þ, and deciding x 2 BND Xð Þ, respectively. The positive region POS Xð Þ and
the negative regionNEG Xð Þ, still correspond to the decisions of acceptance and rejection,
respectively. The third region BND Xð Þ corresponds to the decision of deferment.

If P Cj x½ �ð Þ� a and P Cj x½ �ð Þ � c; decide x 2 POS Xð Þ;
If P Cj x½ �ð Þ\b and P Cj x½ �ð Þ\c; decide x 2 NEG Xð Þ;
If P Cj x½ �ð Þ\a and P Cj x½ �ð Þ[ b; decide x 2 BND Xð Þ:

When an object belongs to X, kPP, kNP and kBP denote the cost for taking actions
aP, aN and aB, respectively, while kPN , kNN and kBN denote the cost of taking the same
actions when the object does not belong to X. Where the three thresholds a, b and c are
calculated from the cost function as follows:
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a ¼ kPN � kBNð Þ
kPN � kBNð Þþ kBP � kPPð Þ ; b ¼ kBN � kNNð Þ

kBN � kNNð Þþ kNP � kBPð Þ and c

¼ kPN � kNNð Þ
kPN � kBNð Þþ kNP � kPPð Þ :

With the introduction of the third action, the cost function is now given by the
3 	 2 matrix:

C : positive Cc : negative

aP : accept kPP kPN
aN : reject kNP kNN
aB : defer kBP kBN

In Yao’s three-way decisions model [21–23], the values of a and b are obtained
with minimum decisions cost based on discrete domain. However, when facing to big
datasets in the continuous domain this model need to be improved. In this paper, the
three-way decisions cost model based on continuous domain is presented, and an
efficient algorithm for searching optimal thresholds of three-way decisions model is
established from thought of global optimum. Accordingly, in this paper, some tentative
researches on three-way decisions based on continuous domain have been studied.

3 Three-Way Decisions Cost Model

At present many scholars usually discuss three-way decisions theory in the nonempty
finite set, which greatly limits the development of three-way decisions theory based on
continuous domain. In this section, firstly, according to three-way decisions cost model
based on discrete domain, a new concept on number of equal probability object is
defined for indicating three-way decisions in the continuous domain. Secondly,
three-way decisions cost model based on continuous domain is proposed. Finally, an
efficient algorithm is proposed to obtain the optimal thresholds a and b of this model.

3.1 Three-Way Decisions Cost Model Based on Discrete Domain

The domain U will be divided into positive region POSR Xð Þ, negative region NEGR Xð Þ
and boundary region BNDR Xð Þ by an equivalence relation R and a target set X�U.
However, in this process, it is inevitable to make wrong decisions. So, four types of
decision errors are defined to calculate the cost of three-way decisions model.

Definition 5 (Four types of decisions errors). Given an information system
S ¼ U;Rð Þ, X X�Uð Þ is a target set, R is an equivalence relation on U.

The first type of decision error (Error-1): If x 2 X, but x is classified into NEGR Xð Þ,
and the cost coefficient is denoted as k1 k1 [ 0ð Þ.
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The second type of decision error (Error-2): If x 62 X, but x is classified into
POSR Xð Þ, and the cost coefficient is denoted as k2 k2 [ 0ð Þ.

The third type of decision error (Error-3): If x 2 X, but x is classified into
BNDR Xð Þ, and the cost coefficient is denoted as u1 u1 [ 0ð Þ.

The fourth type of decision error (Error-4): If x 62 X, but x is classified into
BNDR Xð Þ, and the cost coefficient is denoted as u2 u2 [ 0ð Þ.

In the probabilistic rough set model, an equivalence class x½ � may be classified into
different regions based on its conditional probability P Xj x½ �ð Þ ¼ x½ � \Xj j= x½ �j j, and the
decision rules are shown as follows 0� b\a� 1ð Þ,

½x��POSRðXÞ; a�P Xj½x�ð Þ� 1;
½x��NEGRðXÞ; 0�P Xj½x�ð Þ� b;
½x��BNDRðXÞ; b\P Xj½x�ð Þ\a:

8<
:

Figure 1 shows the relationship between probabilistic rough set model and
three-way decisions model.

Let C x½ �ð Þ denote the decisions cost function of the equivalence class x½ � as follows,

C ½x�ð Þ ¼
k2 	 1� P Xj½x�ð Þð Þ 	 ½x�j j; a�P Xj½x�ð Þ� 1;
k1 	 P Xj½x�ð Þ 	 ½x�j j; 0�P Xj½x�ð Þ� b;
u1 	 P Xj½x�ð Þ 	 ½x�j j þ u2 	 1� P Xj½x�ð Þð Þ 	 ½x�j j; b\P Xj½x�ð Þ\a:

8<
:

Namely; C ½x�ð Þ ¼
k2 	 j½x�j � j½x� \Xjð Þ; a�P Xj½x�ð Þ � 1;
k1 	 ½x� \Xj j; 0�P Xj½x�ð Þ � b;
u1 	 ½x� \Xj j þ u2 	 ½x�j j � ½x� \Xj jð Þ; b\P Xj½x�ð Þ\a:

8<
:

For convenience, let C Pð Þ ¼ P
½x��POS

C ½x�ð Þ, C Nð Þ ¼ P
½x��NEG

C ½x�ð Þ and C Bð Þ ¼
P

½x��BND
C ½x�ð Þ. The calculation methods of decisions cost for different equivalent classes

are explained respectively.

Fig. 1. Relationship between probabilistic rough set model and three-way decisions model.
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(1) When P Xj½x�ð Þ � a, C x½ �ð Þ indicates that the cost of the equivalence class x½ �
which is classified into positive region, and it can be calculated as following
formula,

C ½x�ð Þ ¼ k2 	 1� P Xj½x�ð Þð Þ 	 j½x�j ¼ k2 	 j½x�j � j½x� \Xjð Þ;

(2) When P Xj½x�ð Þ� b, C x½ �ð Þ indicates that cost of the equivalence class x½ � which is
classified into negative region, and it can be calculated as following formula,

C ½x�ð Þ ¼ k1 	 P Xj½x�ð Þ 	 j½x�j ¼ k1 	 j½x� \Xjð Þ;

(3) When b\P Xj½x�ð Þ\a, namely equivalent class x½ � is divided into boundary
region), C x½ �ð Þ indicates that cost of the equivalence x½ � which is classified into
boundary region, and it can be calculated as following formula,

C ½x�ð Þ ¼ u1 	 P Xj½x�ð Þ 	 j½x�j þ u2 	 1� P Xj½x�ð Þð Þ 	 j½x�j
¼ u1 	 j½x� \Xj þ u2 	 j½x�j � j½x� \Xjð Þ:

Obviously, in Pawlak’s rough set, ½x��POSRðXÞ only when P Xj½x�ð Þ ¼ 1, so
C Pð Þ ¼ 0, similarly, ½x��NEGRðXÞ only when P Xj½x�ð Þ ¼ 0, so C Nð Þ ¼ 0. From the
above analysis, we can know that the decisions cost of Pawlak’s rough set only comes
from the boundary domain, namely, C Uð Þ ¼ C Bð Þ.

Three-way decisions cost model based on discrete domain can be established by the
four types of decisions errors and the decisions cost function.

Definition 6 (Three-way decisions cost model based on discrete domain). The
three-way decisions cost model based on discrete domain can be established as follows:

CðUÞ ¼ C Pð ÞþC Nð ÞþC Bð Þ
¼

X
a�P Xj½x�ð Þ� 1

C x½ �ð Þþ
X

0�P Xj½x�ð Þ� b

C x½ �ð Þ þ
X

b\P Xj½x�ð Þ\a

C x½ �ð Þ

¼
X

a�P Xj½x�ð Þ� 1

k2 	 ½x�j j � ½x� \Xj jð Þþ
X

0�P Xj½x�ð Þ� b

k1 	 ½x� \Xj j

þ
X

b\P Xj½x�ð Þ\a

u1 	 ½x� \Xj j þ u2 	 ½x�j j � ½x� \Xj jð Þ:

The cost coefficient of four types of decisions errors are k1, k2, u1 and u2 (see
Definition 5). The decision rules are shown as follows:

x 2 POSRðXÞ; a�P Xj½x�ð Þ� 1;

x 2 NEGRðXÞ; 0�P Xj½x�ð Þ� b;

x 2 BNDRðXÞ; b\P Xj½x�ð Þ\a:

8><
>:

Next, an example of the proposed model is presented in the following Example 1.
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Example 1. An information system is constructed by using the Adult [35] dataset in
UCI (see Table 1), for convenience, we only select 27 samples in the Adults data set
(namely, the domain U ¼ x1; x2; � � � ; x27f g in S1). The four condition attributes are
“Workclass”, “Education”, “Sex” and “Race” respectively, and the decision attribute is
“Salary”. The cost coefficient of four types of decision errors are denoted as k1, k2, u1
and u2 respectively.

Supposing the target set is X ¼ x13; x14; � � � ; x27f g in S1, then all objects in S1 will
be divided into 7 equivalent classes by attribute “Education”, namely R = {10th,
ASSoc-acdm, Bachelors, Some-college, Doctorate, Prof-school, Masters}, they are
shown as follows,

Table 1. Information system S1.

id Workclass Education Sex Race Salary

X1 Federal-gov 10th Female Amer-Indian-Eskimo � 50K
X2 Federal-gov 10th Female White � 50K
X3 Local-gov 10th Female Black � 50K
X4 Never-worked 10th Male White � 50K
X5 Private 10th Female Amer-Indian-Eskimo � 50K
X6 Private Assoc-acdm Female Amer-Indian-Eskimo � 50K
X7 Local-gov Bachelors Male Asian-Pac-Islander � 50K
X8 Local-gov Bachelors Male Black � 50K
X9 Federal-gov Some-college Male White � 50K
X10 Local-gov Some-college Male White � 50K
X11 Never-worked Some-college Male White � 50K
X12 Private Some-college Female White � 50K
X13 Local-gov Assoc-acdm Female White >50K
X14 Private Assoc-acdm Male Asian-Pac-Islander >50K
X15 Federal-gov Bachelors Male White >50K
X16 Federal-gov Doctorate Female Amer-Indian-Eskimo >50K
X17 Local-gov Doctorate Male White >50K
X18 Federal-gov Doctorate Female Black >50K
X19 Federal-gov Doctorate Female White >50K
X20 Federal-gov Doctorate Male Asian-Pac-Islander >50K
X21 Federal-gov Doctorate Male White >50K
X22 Federal-gov Masters Female White >50K
X23 Private Masters Male Asian-Pac-Islander >50K
X24 Private Prof-school Female Asian-Pac-Islander >50K
X25 Private Prof-school Female White >50K
X26 Private Prof-school Male White >50K
X27 Federal-gov Some-college Male Asian-Pac-Islander >50K
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U=R ¼ ffx1; x2; x3; x4; x5g; fx6; x13; x14g; fx7; x8g;
fx9; x10; x11; x12; x15g; fx24; x25; x26g; fx22; x23gg

¼ fX1;X2;X3;X4;X5;X6;X7g:

Therefore, the conditional probabilities of each equivalent class will be calculated
as follows,

P XjX1ð Þ ¼ X1 \Xj j= X1j j ¼ 0; P XjX2ð Þ ¼ X2 \Xj j= X2j j ¼ 2
3
;

P XjX3ð Þ ¼ X3 \Xj j= X3j j ¼ 0; P XjX4ð Þ ¼ X4 \Xj j= X4j j ¼ 1
5
;

P XjX5ð Þ ¼ X5 \Xj j= X5j j ¼ 1; P XjX6ð Þ ¼ X6 \Xj j= X6j j ¼ 1 and

P XjX7ð Þ ¼ X7 \Xj j= X7j j ¼ 1:

(1) In Pawlak’s rough set, the decisions cost for information system S1 can be
computed as follows,

C Uð Þ ¼ C Bð Þ
¼

X
b\P Xj½x�ð Þ\a

fu1 	 j½x� \Xj þ u2 	 ðj½x�j � j½x� \XjÞg

¼ 2u1 þ u2 þ u1 þ 4u2
¼ 3u1 þ 5u2:

(2) In the probabilistic rough set, the decisions cost for information system S1 will
change with the thresholds a and b (0� b\a� 1), and they are shown in Table 2.

In real life, the optimal thresholds a and b can be obtained by solving the cost
minimization problem in Pawlak’s rough set model or probabilistic rough set model.
Table 3 shows the relationship among the cost coefficients of four types of decisions
errors, optimal thresholds (a and b) and decisions cost in Example 1.

The above analysis is the process of obtaining the minimum decisions cost and the
optimal thresholds in the discrete domain. But there are two difficulties. One is very
high time complexity. That is to say, the more values the conditional probability is, the

Table 2. Decisions cost in the probabilistic rough set.

Thresholds a; b Decisions cost

0� b\a� 1
5

5k2
1
5\b\a\ 2

3
k1 þ k2

2
3\b\a� 1

5
3k1

0� b\ 1
5\a\ 2

3
k2 þ l1 þ 4l2

1
5\b\ 2

3\a� 1 k1 þ 2l1 þ l2

0� b\ 1
5\

2
3\a� 1 3l1 þ 5l2
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higher the time complexity of solving the optimal thresholds. The other is that the
optimal thresholds is an interval value in the discrete domain, so the accuracy,
robustness and generalization ability of this model are relatively low.

In order to solve above two problems, in this paper, the equal number of objects is
defined, and a three-way decisions cost model based on continuous domain is proposed
from a new viewpoint.

3.2 Three-Way Decisions Cost Model Based on Continuous Domain

In this section, the number of equal probability object is defined, then, the way of
obtaining the optimal thresholds is presented in the three-way decisions cost model
based on continuous domain.

Definition 7 (The number of equal probability object). Given an information system
S¼ U;Rð Þ, 8x; y x; y 2 Uð Þ, 9P Xj½x�ð Þ¼P Xj½y�ð Þ¼p p 2 0; 1½ �ð Þ, x and y be called equal
probability. f ðpÞ ¼ xjx 2 U ^ PðXj½x�Þ ¼ pf gj j is called the number of equal proba-
bility object.

In the Example 1, the number of equal probability object for each equivalent class
are calculated as follows.

P XjX1ð Þ ¼ P XjX3ð Þ ¼ 0; so f ð0Þ ¼ X1j j þ X3j j ¼ 7;

P XjX5ð Þ ¼ P XjX6ð Þ ¼ P XjX7ð Þ ¼ 1; so f ð1Þ ¼ X5j j þ X6j j þ X7j j ¼ 11;

P XjX2ð Þ ¼ 2
3
; so f ð2

3
Þ ¼ X2j j ¼ 3; P XjX4ð Þ ¼ 1

5
; so f ð1

5
Þ ¼ X4j j ¼ 5:

Therefore, there is a new method to calculate the three-way decisions cost by the
number of equal probability object. Then, the process of the decision cost in the
information system S1 is shown as follows.

(1) The total decisions cost can be calculated as following formula when
0� b\a\ 1

5.
CðUÞ ¼ C Pð ÞþC Nð ÞþC Bð Þ

¼ k2
X

a� q\1

1� pð Þf ðpÞþ 0þ 0 ¼ 5k2:

Table 3. Relationship among the cost coefficients, the optimal thresholds and decisions cost.

Cost coefficients Minimum decisions
cost

Optimal thresholds Cost coefficients Minimum decisions
cost

Optimal
thresholds

k1 [ l1 þ 5
3l2

k2 [ 5
3l1 þ l2

�
3l1 þ 5l2 0� b\ 1

5\
2
3\a� 1 k1\ 1

2 k2
k1\l1 þ 1

2 l2
k1\ 1

3 k2 þ 1
3l1 þ 4

3

8<
:

3k1 2
3\b\a� 1

k2\ 1
4 k1

k2\ 1
4l1 þl2

k2\ 1
5 k1 þ 2

5 l1 þ 1
5 l2

8<
:

5k2 0� b\a� 1
5 k1 [ l1 þ 4l2

1
4 l1þ l2\k2\2l1

�
k2 þl1 þ 4l2 0� b\ 1

5\a\ 2
3

k1\l1 þ 4l2
k2\2l1 þ l2

�
k1 þ k2 1

5\b\a\ 2
3 k2 [ 2l1 þl2

k1 [ l1 þ 1
2 l2

�
k1 þ 2l1 þ l2 1

5\b\ 2
3\a� 1
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(2) The total decision cost can be calculated as following formula when 1
5\b\a\ 2

3.

CðUÞ ¼ C Pð ÞþC Nð ÞþC Bð Þ
¼ k2

X
a� p\1

1� pð Þf ðpÞ þ k1
X

0\p� b

pf ðpÞþ 0 ¼ k1 þ k2:

(3) The total decision cost can be calculated as following formula when 2
3\b\a� 1.

CðUÞ ¼ C Pð ÞþC Nð ÞþC Bð Þ
¼ 0þ k1

X
0\p�b

pf ðpÞþ 0 ¼ 3k1:

(4) The total decision cost can be calculated as following formula when
0� b\ 1

5\a\ 2
3.

CðUÞ ¼ C Pð ÞþC Nð ÞþC Bð Þ
¼ k2

X
a� p\1

1� pð Þf ðpÞþ 0þ u1
X

b\p\a

pf ðpÞþ u2
X

b\p\a

1� pð Þf ðpÞ

¼ k2 þ u1 þ 4u2:

(5) The total decision cost can be calculated as following formula when
1
5\b\ 2

3\a� 1.

CðUÞ ¼ C Pð ÞþC Nð ÞþC Bð Þ
¼ 0þ k1

X
0\p� b

pf ðpÞþ u1
X

b\p\a

pf ðpÞþ u2
X

b\p\a

1� pð Þf ðpÞ

¼ k1 þ 2u1 þ u2:

(6) The total decision cost can be calculated as following formula when
0� b\ 1

5\
2
3\a� 1.

CðUÞ ¼ C Pð ÞþC Nð ÞþC Bð Þ
¼ 0þ 0þ u1

X
b\p\a

pf ðpÞþ u2
X

b\p\a

1� pð Þf ðpÞ

¼ 3u1 þ 5u2:

It is easy to calculate the three-way decisions cost based on discrete domain by the
number of equal probability object. In this paper, the discrete domain is extended to the
continuous domain for solving mass and high-dimensional data. At the same time, the
optimal thresholds can be obtained by new method, and it can improve the precision
and generalization ability of three-way decisions cost model.

It is difficult to accurately calculate each number of equal probability object when
the domain is too large. So, in this paper, the number of equal probability object with
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different conditions probability p p 2 0; 1½ �ð Þ will be obtained by sampling fitting, and
supposing that f ðpÞ 2 0; þ1ð Þ. The three-way decisions cost model based on con-
tinuous domain is defined as follows.

Definition 8 (The three-way decisions cost model based on continuous domain).
Given an information system S¼ U;Rð Þ, Let p p 2 0; 1½ �ð Þ be the conditional proba-
bility, and the number of equal probability object f ðpÞ is continuous differential. Then
the function of three-way decisions cost model based on continuous domain is CUða; bÞ
can be defined as follows:

CUða; bÞ ¼ CðPÞþCðNÞþCðBÞ

¼ k2

Z 1

a
ð1� pÞf ðpÞdpþ k1

Z b

0
pf ðpÞdp

þ u1

Z a

b
pf ðpÞdpþ u2

Z a

b
ð1� pÞf ðpÞdp:

Where a and b 0� b\a� 1ð Þ is the thresholds of this model, and the cost coeffi-
cient of four types of decisions errors are k1, k2, l1 and l2 (k1 � 0, k2 � 0, u1 � 0 and
u2 � 0).

The meaning of three parts of this model can be explained as follows.

(1) All the equivalent classes whose conditional probability is p a� p� 1ð Þ will be
classified into positive region, and ð1� pÞf ðpÞ indicates the number of objects
that are classified into positive region but they do not belong to the target set, and

k2 is the cost coefficient of Error-1. So the first part k2
R 1
a ð1� pÞf ðpÞdp is the

decision cost of positive region.
(2) All the equivalent classes whose conditional probability is p 0� p� bð Þ will be

classified into negative region, and pf ðpÞ indicates the number of objects that are
classified into negative region but they belong to the target set, and k1 is the cost

coefficient of Error-2. So the second part k1
R b
0 pf ðpÞdp is the decision cost of

negative region.
(3) All the equivalent classes whose conditional probability is p a\p\bð Þ will be

classified into boundary region, and pf ðpÞ indicates the number of objects that are
divided into boundary region but they belong to the target set, and ð1� pÞf ðpÞ
indicates the number of objects that are classified into boundary region but they do
not belong to the target set. u1 and u2 are the cost coefficients of Error-3 and
Error-4 respectively. So the third part u1

R a
b pf ðpÞdpþ u2

R a
b ð1� pÞf ðpÞdp is the

decision cost of boundary region.

In conclusion, CUða; bÞ can represent the three-way decisions cost in the whole
domain.

Theorem 1. In the three-way decisions cost model based on continuous domain, let
k1; k2; u1 and u2 be the cost coefficient of four types of decisions errors respectively
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(k1 � 0, k2 � 0, u1 � 0 and u2 � 0). If k1 [ u1 � u2 and k2 [ u1 þ u2, the optimal
thresholds a0 and b0ð0� b0\a0 � 1Þ will be easily calculated as follows:

a0 ¼ k2 � u2
k2 þ u1 � u2

; b0 ¼
u2

k1 � u1 þ u2
:

Proof. The first derivatives of CUða; bÞ are @CUða;bÞ
@a and @CUða;bÞ

@b .

@CUða; bÞ
@a

¼ �k2 1� að Þf ðaÞþ u1af ðaÞþ u2 1� að Þf ðaÞ
¼ f ðaÞ½ðk2 þ u1 � u2Þa� k2 þ u2�;

@CUða; bÞ
@b

¼ k1bf ðbÞ � u1bf ðbÞ � u2ð1� bÞf ðbÞ
¼ �f ðbÞ u1 � u2 � k1ð Þbþ u2½ �:

Because f ðaÞ and f ðbÞ are constants, a0; b0ð Þ is the stationary point as follows.

a0 ¼ k2 � u2
k2 þ u1 � u2

; b0 ¼
u2

k1 � u1 þ u2
:

The second derivatives of CUða; bÞ are @2CUða;bÞ
@að Þ2 and @2CUða;bÞ

@bð Þ2 .

@2CUða; bÞ
ð@aÞ2 ¼ f 0ðaÞ½ðk2 þ u1 � u2Þa � k2 þ u2� þ f ðaÞ k2 þ u1 � u2ð Þ

¼ A1 þA2 ¼ A;

@2CUða; bÞ
ð@bÞ2 ¼ �f 0ðbÞ u1 � u2 � k1ð Þbþ u2½ � � f ðbÞ u1 � u2 � k1ð Þ

¼ C1 þC2 ¼ C;

@2CUða; bÞ
@a@b

¼ 0 ¼ B:

The function of three-way decisions cost model based on continuous domain
CUða; bÞ can be minimized when the stationary point a0; b0ð Þ satisfies A[ 0 and
AC � B2 [ 0. Namely, the three-way decisions cost will reach minimum when
k1 [ u1 � u2, k2 [ u1 þ u2 and the thresholds is a0 and b0 (where a0 ¼ k2 �
u2=k2 þ u1 � u2 and b0 ¼ u2=k1 � u1 þ u2).

In summary, the proof is completed.
According to Theorem 1, the optimal thresholds are a0 ¼ k2 � u2=k2 þ u1 � u2 and

b0 ¼ u2=k1 � u1 þ u2 when k1 [ u1 � u2 and k2 [ u1 þ u2 (namely, the cost coeffi-
cient of Error-2 more than the sum of Error-3 and Error-4, and the cost coefficient of
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Error-1 more than the difference of Error-3 and Error-4). But in practice, the conditions
k1 [ u1 � u2 and k2 [ u1 þ u2 are hard to satisfy. So it is not easy to find the optimal
thresholds, and the minimum value of cost function is in the endpoint.

In the process of dealing with mass data, it is difficult to obtain the optimal
thresholds in the time and space by the three-way decisions cost model based on
discrete domain. So, the total cost of three-way decisions cost on the whole domain will
be fitted by the randomly sampling data. Then, Algorithm 1 is proposed to obtain the
optimal thresholds and the minimal decision cost based on continuous domain.

Algorithm 1. An efficient algorithm for searching optimal thresholds of three-way
decisions model based on continuous (EASOT).
Input: An information system (S) and the cost coefficients of four types of

decisions errors (k1 � 0, k2 � 0, u1 � 0 and u2 � 0).
Output: The thresholds of three-way decisions a0 and b0ð0� b0\a0 � 1Þ and the

minimal decision cost.
Step 1. The cost coefficients of the four types of decisions errors will be judged

whether satisfies the conditions k1 [ u1 � u2 and k2 [ u1 þ u2.
Step 2. If the cost coefficients satisfy the above conditions, the optimal thresholds

will be a0 ¼ k2 � u2=k2 þ u1 � u2 and b0 ¼ u2=k1 � u1 þ u2, then go to
step 6.

Step 3. If the cost coefficients do not satisfy the above conditions, the number of
equal probability object function f ðpÞ will be fitted by randomly sampling
some objects in the domain.

Step 4. According to the three-way decisions cost model based on continuous
domain, CUða; bÞ will be established by the number of equal probability
object function in Step 3.

Step 5. The optimal thresholds a0; b0ð Þ will be calculated by CUða; bÞ.
Step 6. Return a0; b0ð Þ and CUða; bÞ.

The algorithm flowchart is shown in Fig. 2.

Fig. 2. Flowchart of EASOT.
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4 Experiments and Analysis

In the first experiment, the correctness of the proposed model is verified with artificial
datasets. In the second experiment, the performance of the three-way decisions cost
model based on continuous domain will be compared with the model based on discrete
domain with actual data. Experimental environment is 8 G RAM, 3.0 GHz CPU, and
WIN 8.1 operating system, and the programming languages are MATLAB and Python.

4.1 Experiment Analysis with Artificial Datasets

In this experiment, the cost coefficient of four types of decisions errors (k1 � 0, k2 � 0,
u1 � 0 and u2 � 0) meet the conditions k1 [ u1 � u2 and k2 [ u1 þ u2. And then there
are four functions of equal probabilistic object fi pð Þ i ¼ 1; 2; 3; 4; p 2 ½0; 1�ð Þ, which are
f1 ¼ 100þ p� 0:5ð Þ2, f2 ¼ 100þ p� 0:5ð Þ2, f3 ¼ 100þ logp0:5 and f4 ¼ 100þ ep.
The function images are shown in Figs. 3, 4, 5, 6, and the datasets are 5 	 105

(namely, every domain collects 5 	 105 points from f pð Þ).
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Fig. 3. The function picture of f1 pð Þ.
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Fig. 4. The function picture of f2 pð Þ.
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Fig. 5. The function picture of f3 pð Þ.
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Fig. 6. The function picture of f4 pð Þ.
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Experimental results shown in Table 4 indicate the relationship among the cost
coefficients of four types of decisions errors, the four functions fi pð Þ i ¼ð
1; 2; 3; 4; p 2 ½0; 1�Þ, the minimum cost value and the optimal thresholds a and b. The
partial images of decision cost are shown in Figs. 7, 8, 9, 10.

In Table 4, item “ k1; k2; u1; u2ð Þ” stands for the cost coefficients of four types of
decisions errors. Item “fi pð Þ” i ¼ 1; 2; 3; 4ð Þ stands for the optimal thresholds a, b and
minimum decision cost in fi pð Þ i ¼ 1; 2; 3; 4ð Þ respectively. For example, in the case of
f1 pð Þ, (0.6,0.25,97.55) shows that the minimum decision cost is 97.55, when a¼ 0:6
and b¼ 0:25. From the results of experimental 1, it is known that the optimal
thresholds are a ¼ k2 � u2=k2 þ u1 � u2 and b ¼ u2=k1 � u1 þ u2, when the cost

Table 4. The results of experimental 1.

k1; k2; u1; u2ð Þ f1 pð Þ f2 pð Þ f3 pð Þ f4 pð Þ
(3, 5, 1, 2) (0.75, 0.5, 87.59) (0.75, 0.5, 87.46) (0.75, 0.5, 86.25) (0.75, 0.5, 89.03)
(4, 6, 2, 3) (0.6, 0.6, 120.05) (0.6, 0.6, 119.95) (0.6, 0.6, 122.77) (0.6, 0.6, 122.09)
(5, 4, 2, 1) (0.6, 0.25, 97.55) (0.6, 0.25, 97.45) (0.6, 0.25, 95.99) (0.6, 0.25, 99.13)

Fig. 7. The decision cost with f1 pð Þ and
(5, 4, 2, 1).

Fig. 8. The decision cost with f2 pð Þ and (4,
6, 2, 3).

Fig. 9. The decision cost with f3 pð Þ and
(3, 5, 1, 2).

Fig. 10. The decision cost with f4 pð Þ and (4,
6, 2, 3).
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coefficient of four types of decisions errors meet k1 [ u1 � u2 and k2 [ u1 þ u2
(k1 � 0, k2 � 0, u1 � 0 and u2 � 0). Namely, in the case of the three-way decisions
domain described by the number of equal probability object, the optimal thresholds and
minimum cost have no relevance with the cost coefficients of four types of decision
errors. This result presents a new perspective to calculate the optimal thresholds and
total cost of three-way decisions model.

4.2 Comparative Analysis Experiment

In UCI datasets, there is a large dataset Hepmass [35], which has 3.5 	 106 objects and
28 attributes, and it can be divided into 984497 equivalent classes. The above two
models are established by randomly sampling 1% objects of this big dataset. In the
three-way decisions cost model based on continuous domain, the minimum decision
cost and the optimal thresholds can be calculated by EASOT. In the three-way deci-
sions cost model based on discrete domain, the minimum decision cost and the optimal
thresholds can be calculated by traversing model. And the experimental results are
shown in Table 5.

From Table 5, we can see that the continuous model (three-way decisions cost
model based on continuous domain) performs better than the discrete model (three-way
decisions cost model based on discrete domain). In terms of time, the continuous model
only accounts for 1% of discrete model. In terms of cost, the continuous model is less
11% than discrete model, and in the optimal situation, the cost of continuous model is
even less 46%. There are two main reasons as follows.

(1) One is that the thought of calculating the optimal thresholds are different between
the two models. That is to say, the continuous model searches the optimal
thresholds based on the idea of global optimum, while the discrete model is based
on the thought of local optimum. So the accuracy, robustness and generalization
of the continuous model are stronger than the discrete model.

(2) The other is that the method of calculating the optimal thresholds are different
between the two models. In the continuous model, cost function is established by
equal probabilistic objects, and the optimal thresholds are obtained by searching

Table 5. Comparative analysis

k1; k2; u1; u2ð Þ Thresholds
(continuous)

Thresholds
(discrete)

Run time(s) Decision cost
Continuous Discrete Continuous Discrete

(1, 2, 3, 4) (1, 1) (0.654, 0.673) 0.0008 0.0869 1749125 3245843
(2, 4, 3, 1) (1, 1) (0.994, 1) 0.0009 0.0875 3610459 3498251
(3, 2, 4, 1) (0, 0) (0.389, 0.418) 0.0008 0.0702 3501500 3418449
(4, 1, 3, 2) (0, 0) (0, 0.329) 0.0009 0.0678 1750750 1762310
(2, 3, 1, 4) (1, 1) (0.439, 0.617) 0.0009 0.0678 3498251 3846888
(2, 1, 4, 3) (0, 0) (0.329, 0.339) 0.0006 0.0692 1750750 2145036
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the minimum value of the cost function. While in the discrete model, the only way
of calculating the optimal thresholds is that all the conditional probabilities of
equivalence classes should be traversed. So the time complexity of the continuous
model is significantly less than discrete model. Surely, the bigger the domain is,
the more advantages continuous model has.

5 Conclusions

In this paper, initially, a new concept on number of equal probability is defined for
indicating three-way decisions in the continuous domain. After that, the three-way
decisions cost based on continuous domain is established, and Theorem 1 is proposed
and proved successful. Finally, the algorithm of EASOT is presented to search the
optimal thresholds. And the experimental results show that the efficiency, robustness
and generalization ability of the proposed model are better than the model based on
discrete domain for large datasets. In our future research, we will focus on applying the
proposed model to the practical engineering projects and others. We hope these
researches can promote the development of three-way decisions theory and further
enrich the decisions models from different viewpoints.

Acknowledgments. This work is supported by the National Natural Science Foundation of
China (No. 61472056).
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Abstract. Pythagorean fuzzy sets as generalizations of intuitionistic
fuzzy sets are effective for dealing with uncertainty information, but little
effort has been paid to conflict analysis of Pythagorean fuzzy information
systems. In this paper, we present the concepts of the maximum positive
alliance, central alliance, and negative alliance with the two thresholds α
and β. Then we show how to compute the thresholds α and β for conflict
analysis based on decision-theoretic rough set theory. Finally, we employ
several examples to illustrate how to compute the maximum positive
alliance, central alliance, and negative alliance from the view of matrix.

Keywords: Pythagorean fuzzy sets · Pythagorean fuzzy information
systems · Three-way decision · Decision-theoretic rough sets

1 Introduction

Pythagorean fuzzy sets (PFSs), as generalizations of intuitionistic fuzzy sets
(IFSs), are characterized by a membership degree and a non-membership degree
satisfying the condition that the square sum of its membership degree and non-
membership degree is equal to or less than 1, and they have more powerful ability
than IFSs satisfying the condition that the sum of its membership degree and
non-membership degree is equal to or less than 1 to model the uncertain infor-
mation in decision making problems. So far, much effort [1,2,15,19] has been
paid to Pythagorean fuzzy sets. For example, Beliakov et al. [1] provided the
averaging aggregation functions for preferences expressed as Pythagorean mem-
bership grades and fuzzy orthopairs. Bustince et al. [2] investigated a historical
account of types of fuzzy sets and discussed their relationships. Reformat et al.
[15] proposed a novel collaborative-based recommender system that provides a
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user with the ability to control a process of constructing a list of suggested items.
Yager [19] introduced a variety of aggregation operations for Pythagorean fuzzy
subsets.

Many scholars [3,9,11–14,16,17] focused on conflict analysis of information
systems, and improved the relationship between the two sides of a conflict by
finding the essence of the conflict issue. For example, Deja [3] examined nature
of conflicts as we are formally defining the conflict situation model. Pawlak [12]
initially considered the auxiliary functions and distance functions and offered
deeper insight into the structure of conflicts and enables the analysis of relation-
ships between parties and the issues being debated. Silva et al. [13] presented
a multicriteria approach for analysis of conflicts in evidence theory. Sun et al.
[16] subsequently proposed a conflict analysis decision model and developed a
matrix approach for conflict analysis based on rough set theory over two uni-
verses. Skowron et al. [17] explained the nature of conflict and defined the con-
flict situation model in a way to encapsulate the conflict components in a clear
manner.

In practice, if opinions of agents on issues are expressed by Pythagorean fuzzy
sets, then they are more effective than intuitionistic fuzzy sets for describing
imprecise information. But little effort focus on conflict analysis of Pythagorean
fuzzy information systems now. Much research [4–8,10,18,20] has illustrated
three-way decision theory and matrix theory are effective for knowledge discov-
ery of information systems, we will study conflict analysis of Pythagorean fuzzy
information systems based on decision-theoretic rough sets. The contributions
of this paper are as follows. Firstly, we provide the concept of Pythagorean
fuzzy information system, Pythagorean matrix, Pythagorean closeness index
matrix, whole Pythagorean closeness index, and whole Pythagorean closeness
index matrix. Secondly, we provide the concepts of maximum positive alliance,
central alliance, and negative alliance with the thresholds α and β. Thirdly, we
investigate how to compute the thresholds α and β based on decision-theoretic
rough sets. We also employ examples to illustrate how to conduct conflict analy-
sis of Pythagorean fuzzy information systems.

The rest of this paper is shown as follows. Section 2 reviews the basic concepts
of Pythagorean fuzzy sets and decision-theoretic rough sets. Section 3 provides
conflict analysis models for Pythagorean fuzzy information systems. The conclu-
sion is given in Sect. 4.

2 Preliminaries

In this section, we review concepts of Pythagorean fuzzy sets and decision-
theoretic rough sets.

Definition 1 [19]. Let U be an arbitrary non-empty set, a Pythagorean fuzzy
set (PFS) P is a mathematical object of the form as follows: P = {< x,
(μ(x), ν(x)) > |x ∈ U}, where μ(x), ν(x) : U → [0, 1] such as μ2(x) + ν2(x) ≤ 1,
for every x ∈ U , μ(x) and ν(x) denote the membership degree and the non-
membership degree of the element x to U in P , respectively.
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By Definition 1, we see that an intuitionstic fuzzy set is a Pythagorean fuzzy
set, but a Pythagorean fuzzy set is not always an intuitionstic fuzzy set, and
Pythagorean fuzzy sets are generalizations of intuitionstic fuzzy sets. Further-
more, the hesitant degree of x ∈ U is defined as π(x) =

√
1 − μ2(x) − ν2(x). For

convenience, we denote the Pythagorean fuzzy number (PFN) as γ = P (μγ , νγ)
satisfying μγ , νγ ∈ [0, 1] and μ2

γ + ν2
γ ≤ 1, and the hesitant degree πγ(x) =√

1 − μ2
γ(x) − ν2

γ(x).

Definition 2 [21]. Let γ1 = (μγ1 , νγ1) and γ2 = (μγ2 , νγ2) be PFNs. Then the
Euclidean distance between γ1 and γ2 is defined as: d(γ1, γ2) = 1

2 (|μ2
γ1

− μ2
γ2

| +
|ν2

γ1
− ν2

γ2
| + |π2

γ1
− π2

γ2
|).

By Definition 2, we get the Euclidean distance between two Pythagorean
fuzzy numbers, which describes the similarity degree between Pythagorean fuzzy
numbers. Then we provide the concept of the closeness index of a Pythagorean
fuzzy number.

Definition 3 [21]. Let γ = (μγ , νγ) be a PFN, O+ = (1, 0) be the positive ideal
PFN, and O− = (0, 1) be the negative ideal PFN. Then the closeness index of γ

is defined as: P(γ) = d(γ,O−)
d(γ,O+)+d(γ,O−) = 1−ν2

γ

2−μ2
γ−ν2

γ
.

By Definition 3, we have the closeness index of a Pythagorean fuzzy number,
and obtain the relationship between the Pythagorean fuzzy number and the
positive ideal PFN, the negative ideal PFN.

Definition 4 [20]. Let S = (U,A) be an information system, and X ⊆ U . Then
the probabilistic lower and upper approximations of X are defined as follows:
apr

(α,β)
(X) = {x ∈ U | P (X|[x]) ≥ α}; apr(α,β)(X) = {x ∈ U | P (X|[x]A) ≥

β}, where P (X|[x]A) = |[x]A∩X|
|[x]A| , [x]A is the equivalence class of x with respect

to A, and 0 ≤ β ≤ α ≤ 1.

The probabilistic lower and upper approximation operators are better than
Pawlak’s model for handling the uncertain and imprecise information. By Defin-
ition 4, Prof. Yao presented the concepts of the probabilistic positive, boundary,
and negative regions as follows.

Definition 5 [20]. Let S = (U,A) be an information system, X ⊆ U , and
0 ≤ β ≤ α ≤ 1. Then the probabilistic positive, boundary, and negative regions
of X are defined as: POS(α,β)(X) = {x ∈ U | P (X|[x]) ≥ α}, BND(α,β)(X) =
{x ∈ U | β < P (X|[x]) < α}, NEG(α,β)(X) = {x ∈ U | P (X|[x]) ≤ β}.

3 Conflict Analysis for Pythagorean Fuzzy Information
Systems

In this section, we provide conflict analysis models for Pythagorean fuzzy infor-
mation systems.
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Definition 6. A Pythagorean fuzzy information system is a 4-tuple S =
(U,A, V, f), where U = {x1, x2, . . . , xn} is a finite set of objects, A =
{c1, c2, . . . , cm} is a finite set of attributes, V = {Va | a ∈ A}, where Va is the
set of attribute values on a, all attribute values are PFNs, and f is a function
from U × A into V .

Pythagorean fuzzy information systems are generalizations of intuitionistic
fuzzy information systems, which are more effective for depicting uncertain infor-
mation in practical situations.

Table 1. The Pythagorean fuzzy information system for the middle east conflict.

U c1 c2 c3 c4 c5

x1 (1.0, 0.0) (0.9, 0.3) (0.8, 0.2) (0.9, 0.1) (0.9, 0.2)

x2 (0.9, 0.1) (0.5, 0.5) (0.1, 0.9) (0.3, 0.8) (0.1, 0.9)

x3 (0.1, 0.9) (0.1, 0.9) (0.2, 0.8) (0.1, 0.9) (0.5, 0.5)

x4 (0.5, 0.5) (0.1, 0.9) (0.3, 0.7) (0.5, 0.5) (0.1, 0.9)

x5 (0.9, 0.2) (0.4, 0.6) (0.1, 0.9) (0.1, 0.9) (0.3, 0.9)

x6 (0.0, 1.0) (0.9, 0.1) (0.2, 0.9) (0.5, 0.5) (0.8, 0.4)

Example 1. Table 1 depicts the Pythagorean fuzzy information system for the
Middle East conflict, which is given by experts. Concretely, x1, x2, x3, x4, x5,
and x6 denotes Israel, Egypt, Palestinians, Jordan, Syria, and Saudi Arabia,
respectively. Moreover, c1 means Autonomous Palestinian state on the West
Bank and Gaza; c2 denotes Israeli military outpost along the Jordan River; c3
stands for Israeli retains East Jerusalem; c4 is Israeli military outposts on the
Golan Heights; c5 notes Arab countries grant citizenship to Palestinians who
choose to remain with their borders.

Definition 7. Let S = (U,A, V, f) be a Pythagorean fuzzy information system.
Then the Pythagorean matrix M(S) is defined as follows:

M(S) =

⎡

⎢⎢
⎣

(μ11, ν11) (μ12, ν12) . (μ1m, ν1m)
(μ21, ν21) (μ22, ν22) . (μ2m, ν2m)

. . . .
(μn1, νn1) (μn2, νn2) . (μnm, νnm)

⎤

⎥⎥
⎦ .

By Definition 7, we have the matrix representation of a Pythagorean fuzzy
information system, which is helpful for dealing with uncertain information with
computers.

Example 2 (Continuation from Example 1). By Definition 7, we have the
Pythagorean matrix M(S) as follows:
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M(S) =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

(1.0, 0.0) (0.9, 0.3) (0.8, 0.2) (0.9, 0.1) (0.9, 0.2)
(0.9, 0.1) (0.5, 0.5) (0.1, 0.9) (0.3, 0.8) (0.1, 0.9)
(0.1, 0.9) (0.1, 0.9) (0.2, 0.8) (0.1, 0.9) (0.5, 0.5)
(0.5, 0.5) (0.1, 0.9) (0.3, 0.7) (0.5, 0.5) (0.1, 0.9)
(0.9, 0.2) (0.4, 0.6) (0.1, 0.9) (0.1, 0.9) (0.3, 0.9)
(0.0, 1.0) (0.9, 0.1) (0.2, 0.9) (0.5, 0.5) (0.8, 0.4)

⎤

⎥⎥
⎥⎥⎥⎥
⎦

.

Definition 8. Let S = (U,A, V, f) be a Pythagorean fuzzy information system.
Then the Pythagorean closeness index matrix MP (S) is defined as follows:

MP (S) =

⎡

⎢⎢
⎣

P(γ11) P(γ12) . P(γ1m)
P(γ21) P(γ22) . P(γ2m)

. . . .
P(γn1) P(γn2) . P(γnm)

⎤

⎥⎥
⎦ ,

where γij = (μij , νij) denote the attribute value of xi with respect to cj.

By Definition 8, we get the matrix representation of Pythagorean closeness
indexes for the Pythagorean fuzzy information system, which is helpful for con-
ducting conflict analysis.

Example 3 (Continuation from Example 1). By Definition 8, we have the
Pythagorean closeness index matrix MP (S) as follows:

MP (S) =

⎡

⎢⎢⎢⎢
⎢⎢
⎣

1.000 0.827 0.727 0.839 0.835
0.839 0.500 0.161 0.283 0.161
0.161 0.161 0.273 0.161 0.500
0.500 0.161 0.359 0.500 0.161
0.835 0.432 0.161 0.161 0.173
0.000 0.839 0.165 0.500 0.700

⎤

⎥⎥⎥⎥
⎥⎥
⎦

.

Definition 9. Let S = (U,A, V, f) be a Pythagorean fuzzy information system,
γi denotes the attribute value of x ∈ U on ci ∈ A, 0 ≤ wj ≤ 1 and

∑m
j=1 wj = 1.

Then the whole Pythagorean closeness index of x on A is defined as: D(x) =

Σm
i=1wiP(γi) = Σm

i=1

wi(1−ν2
γi

)

2−μ2
γi

−ν2
γi

.

By Definition 9, we get the whole Pythagorean closeness index of each object
with respect to all attributes and present the concept of the whole Pythagorean
closeness index matrix CPA(S) as follows.

Definition 10. Let S = (U,A, V, f) be a Pythagorean fuzzy information system,
0 ≤ wj ≤ 1, and

∑m
j=1 wj = 1. Then the whole Pythagorean closeness index

matrix CPA(S) is defined as follows:

CPA(S) =

⎡

⎢⎢
⎣

D(x1)
D(x2)

.
D(xn)

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

w1P(γ11) + w2P(γ12) + . + wmP(γ1m)
w1P(γ21) + w2P(γ22) + . + wmP(γ2m)

.
w1P(γn1) + w2P(γn2) + . + wmP(γnm)

⎤

⎥⎥
⎦ .
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By Definition 10, we have the matrix representation of the whole Pythagorean
closeness indexes of all objects with respect to all attributes.

Example 4 (Continuation from Example 3). By Definition 10, we get the whole
Pythagorean closeness index matrix CPA(S) as follows:

CPA(S) =
[
0.84560.38880.25120.33620.35240.4408

]T
.

By Definition 9, we provide the concepts of the maximum positive alliance,
central alliance, and negative alliance as follows.

Definition 11. Let S = (U,A, V, f) be a Pythagorean fuzzy information system,
and 0 ≤ β ≤ α ≤ 1. Then the maximum positive alliance, central alliance,
and negative alliance are defined as: POA(α,β)(U) = {x ∈ U | D(x) ≥ α};
CTA(α,β)(U) = {x ∈ U | β < D(x) < α};NEA(α,β)(U) = {x ∈ U | D(x) ≤ β}.

By Definition 11, we see that the universe is divided into three parts: the max-
imum positive alliance, central alliance, and negative alliance using two thresh-
olds α and β.

Example 5 (Continuation from Example 5). By Definition 11, we have POA(α,β)

(U) = {x1}, CTA(α,β)(U) = {x2, x3, x4, x5, x6}, and NEA(α,β)(U) = ∅.

Thirdly, we calculate the parameters α and β for conflict analysis based on
decision-theoretic rough set theory.

Table 2. Loss function for Pythagorean fuzzy information systems.

Action x ∈ POA(α,β)(U) x ∈ NEA(α,β)(U)

aP λPP λPN

aC λCP λCN

aN λNP λNN

Theorem 1. Let S = (U,A, V, f) be a Pythagorean fuzzy information system,
and the losses λPP , λCP , λNP , λNN , λCN , and λPN , where 0 ≤ λPP ≤ λCP ≤
λNP and 0 ≤ λNN ≤ λCN ≤ λPN . Then

(1) If DA(x) > α, then x ∈ POA(α,β)(U);
(2) If α ≥ DA(x) ≥ β, then y ∈ CTA(α,β)(U);
(3) If DA(x) < β, then y ∈ NEA(α,β)(U), where

α =
λPN − λNN

λPN − λCN + λCP − λPP
, β =

λCN − λNN

λCN − λNN + λNP − λCP
.
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Proof. By Table 2, we have the expected losses R(aP |x), R(aC |x), and R(aN |x)
associated with taking the individual actions for the object x as follows:

R(aP |x) = λPP ∗ DA(x) + λPN ∗ (1 − DA(x));
R(aC |x) = λCP ∗ DA(x) + λCN ∗ (1 − DA(x));
R(aN |x) = λNP ∗ DA(x) + λNN ∗ (1 − DA(x)).

The Bayesian decision procedure suggests the following minimum-cost decision
rules:

(P ): If R(aP |x) ≤ R(aC |x) and R(aP |x) ≤ R(aN |x), then x ∈ POA(α,β)(U);
(N): If R(aC |x) ≤ R(aP |x) and R(aC |x) ≤ Rx(aN |x), then x ∈ CTA(α,β)(U);
(A): If R(aN |x) ≤ R(aP |x) and R(aN |x) ≤ R(aC |x), then x ∈ NEA(α,β)(U).
Suppose λPP ≤ λCP ≤ λNP , we simplify the rules (P ), (C), and (N) as
follows:
(C): If DA(x) > α, then x ∈ POA(α,β)(U);
(N): If β ≤ DA(x) ≤ α, then x ∈ CTA(α,β)(U);
(A): If DA(x) < β, then x ∈ NEA(α,β)(U).

Table 3. Loss function for Pythagorean fuzzy information systems.

Action x ∈ POA(α,β)(U) x ∈ NEA(α,β)(U)

aP λPP = 0 λPN = 10

aC λCP = 4 λCN = 4

aN λNP = 10 λNN = 0

By Theorem 1, we get the two thresholds α and β for computing the max-
imum positive alliance, central alliance, and negative alliance using loss func-
tions, which supplies a theoretical foundation for decision making with reason-
able thresholds α and β.

Example 6 (Continued from Example 5). By Theorem 1, we have the thresholds
α and β using Table 3 as follows:

α =
λPN − λCN

λPN − λCN + λCP − λPP
=

5 − 2
5 − 2 + 2 − 0

=
3
5
,

β =
λCN − λNN

λCN − λNN + λNP − λCP
=

2 − 0
2 − 0 + 6 − 2

=
1
3
.

By Definition 11, we get POA(α,β)(U)={x1}, CTA(α,β)(U)={x2, x4, x5, x6},
and NEA(α,β)(U) = {x3}.

In Example 6, we compute the thresholds α = 3
5 and β = 1

3 for computing
the maximum positive alliance, central alliance, and negative alliance using loss
functions in Table 3, and give a theoretical foundation for decision making with
reasonable thresholds.
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4 Conclusions

In this paper, we have introduced the concepts of the maximum positive alliance,
central alliance, and negative alliance. Furthermore, we have shown how to com-
pute the thresholds for conflict analysis of Pythagorean fuzzy information sys-
tems. Finally, we have employed several examples to illustrate how to conduct
conflict analysis of Pythagorean fuzzy information systems from the view of
matrix.

In practice, Pythagorean fuzzy information systems are effective for describ-
ing uncertain information, and there will be more Pythagorean fuzzy information
systems, and we will further study conflict analysis of Pythagorean fuzzy infor-
mation systems in the future.
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Abstract. Decision-theoretic rough set (DTRS) model, proposed by Yao in the
early 1990’s, introduces Bayesian decision procedure and loss function in rough
set theory. Considering utility function in decision processing, utility-based
decision-theoretic rough set model (UDTRS) is given in this paper. The utility of
the positive region, the boundary region and the negative region are obtained
respectively. We provide a reduction definition which can obtain the maximal
utility in decisions. A heuristic reduction algorithm with respect to the definition
is proposed. Finally, experimental results show the proposed algorithm is
effective.

Keywords: Attribute reduction � Utility theory � Decision-theoretic rough sets

1 Introduction

Decision-theoretic rough set (DTRS) model was firstly introduced by Yao et al. [1] in
the early 1990’s. As a probabilistic rough set model, it has been successfully used in
many research areas, such as knowledge presentation [2–4], data mining [5], machine
learning [6], artificial intelligence [7, 8] and pattern recognition.

Attribute reduction [9–14] aims to remove the unnecessary attributes from the
information system while keeping the particular property, and becomes one of the
hottest issues in rough set theory. Yao and Zhao [9] studied attribute reduction in
decision-theoretic rough set models with respect to the different classification proper-
ties, confidence, coverage, decision-monotocity, generality and cost, they also gave a
general definition of probabilistic attribute reduction. Jia et al. [10] provided a mini-
mum cost attribute reduction in decision-theoretic rough set model, and decision cost
induced from the reduct is minimum. Dou et al. proposed a parameterized
decision-theoretic rough set model in the paper [11]. In the proposed model, the
smallest possible cost and the largest possible cost are computed respectively. Li et al.
[12] introduced a non-monotonic attribute reduction for decision-theoretic rough set
model. The expanded positive region can be kept by the non-monotonic attribute
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reduction in an information system. To extend classical indiscernibility relation in
Yao’s decision-theoretic rough sets, Ju et al. [13] gave the d-cut decision-theoretic
rough set. In the proposed decision-theoretic rough set model, attribute reduction of the
decision-monotonicity criterion and the cost minimum criterion are proposed respec-
tively in the paper. By constructing variants of conditional entropy in decision-theoretic
rough set model, Ma et al. [14] proposed solutions to the attribute reduction based on
decision region preservation.

The remaining parts of this paper are arranged as follows. Some basic notions with
respect to utility-based decision-theoretic rough set (UDTRS) model are briefly recalled
in Sect. 2. Definition of attribute reduction in UDTRS and relative heuristic reduction
algorithm are investigated respectively in Sect. 3. We give the experimental analysis in
Sect. 4. The paper is summarized in Sect. 5.

2 Utility-Based Decision-Theoretic Rough Sets

By considering the subjective factors in risk decision, Zhang et al. [15] proposed
utility-based decision-theoretic rough set (UDTRS) model based on Yao’s decision-
theoretic rough set model [1]. In this section, we briefly recall some basic notions about
utility-based decision-theoretic rough set model. Detailed information about UTRS can
be found in the paper [15].

A decision system is defined as the 3-tuple S ¼ ðU;AT ¼ C [D;VaÞ.Universe U is
the finite set of the objects; AT is a nonempty set of the attributes, such that for all
a2AT ; C is the set of conditional attribute and D is the set of decision attribute; Va is
the domain of attribute a.

For each nonempty subset A�AT , the indiscernibility relation INDðAÞ is defined
as: INDðAÞ ¼ fðx; yÞ 2 U2; aðxÞ ¼ aðyÞ; 8a 2 Ag. Two objects in U satisfy INDðAÞ if
and only if they have the same value in 8a 2 A. U is divided into a family of disjoint
subsets U=INDðAÞ defined a quotient set of U as U=INDðAÞ ¼ f½x�A : x 2 Ug, where
½x�A ¼ fy 2 U : ðx; yÞ 2 INDðAÞg denotes the equivalence class determined by x with
respect to A. The set of states is given by X ¼ U=D ¼ fX;Xcg indicating that an object
is in state X or Xc.

Utility is an important economic concept, and it reflects degree of one’s satisfaction
related to the cost or profit in decision procedure. For 8x 2 U and ½x� 2 U=p, uðkÞ is
utility function, k denotes the cost of taking action. The expected utilities for different
actions can be expressed as:

WðaPj½x�Þ ¼ uðkPPÞPðXj½x�Þ þ uðkPNÞPðXcj½x�Þ
WðaN j½x�Þ ¼ uðkNPÞPðXj½x�Þþ uðkNNÞPðXcj½x�Þ
WðaBj½x�Þ ¼ uðkBPÞPðXj½x�Þ þ uðkBNÞPðXcj½x�Þ
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According to maximal utility in Bayesian procedures, we have the following as:

If WðaPj½x�Þ �WðaN j½x�Þ andWðaPj½x�Þ �WðaBj½x�Þ; then½x��POSpðXÞ;
If WðaN j½x�Þ�WðaPj½x�Þ andWðaN j½x�Þ�WðaBj½x�Þ; then½x��NEGpðXÞ;
If WðaBj½x�Þ �WðaPj½x�Þ andWðaBj½x�Þ �WðaN j½x�Þ; then½x��BNDpðXÞ:

If PðXj½x�Þ ¼ P then PðXcj½x�Þ ¼ 1� P, then we derived the following decision
rules:

If PðXj½x�Þ� au; then ½x��POSpðXÞ;
If PðXj½x�Þ� bu; then ½x��NEGpðXÞ;
If bu\PðXj½x�Þ\au; then ½x��BNDpðXÞ;

where

au ¼ uðkBNÞ � uðkPNÞ
ðuðkBNÞ � uðkPNÞÞþ ðuðkPPÞ � uðkBPÞÞ ;

bu ¼
uðkNNÞ � uðkBNÞ

ðuðkNNÞ � uðkBNÞÞþ ðuðkBPÞ � uðkNPÞÞ :

Since uðkPPÞ� uðkBPÞ[ uðkNPÞ; uðkNNÞ� uðkBNÞ[ uðkPNÞ; au 2 ð0; 1�; bu 2
½0; 1Þ Then, we can obtain

au ¼ 1
1þDðauÞ ¼

1

1þ uðkPPÞ�uðkBPÞ
uðkBN Þ�uðkPN Þ

;

bu ¼
1

1þDðbuÞ
¼ 1

1þ uðkBPÞ�uðkNPÞ
uðkNN Þ�uðkBN Þ

:

For 8X�U; ðau; buÞ -upper and lower approximations in utility-based decision-
theoretic rough set model are presented as:

aprðau;buÞ
ðXÞ ¼ fx 2 UjPðXj½x�Þ � aug;

aprðau;buÞðXÞ ¼ fx 2 UjPðXj½x�Þ[ bug:

Based on the definition of rough approximations in UDTRS, the positive, boundary
and negative regions are defined as

POSpðXÞ ¼ aprðau;buÞ
ðXÞ;

BNDpðXÞ ¼ aprðau;buÞðXÞ � aprðau;buÞ
ðXÞ;

NEGpðXÞ ¼ U � aprðau;buÞðXÞ:
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3 Attribute Reduction in UDTRS

In this section, we will give the definition of attribute reduction based on maximal
utility in UDTRS. By attribute reduction, the maximal utility will be obtain in deci-
sions. According to the proposed definition of reduction, a heuristic algorithm with
respect to the maximal utility will be investigated in this section.

Similar to the Bayesian expected cost [10] in decision-theoretic rough set model,
the Bayesian expected utility [15] of each rule is expressed as:

Utility of the positive rule : p � uðkPPÞþ ð1� pÞ � uðkPNÞ;
Utility of the negative rule : p � uðkBPÞþ ð1� pÞ � uðkBNÞ;
Utility of the boundary rule : p � uðkNPÞþ ð1� pÞ � uðkNNÞ:

From above, we can easily get the Bayesian expected utility of decision rules:
Utility of positive rules:

UtilityPOSA ¼
X

xi2POSðau ;buÞðpD=pAÞ
ðpi � uðkPPÞþ ð1� piÞ � uðkPNÞÞ ;

Utility of boundary rules:

UtilityBND
A ¼

X

xj2BNDðau ;buÞðpD=pAÞ
ðpj � uðkBPÞþ ð1� pjÞ � uðkBNÞÞ ;

Utility of negative rule:

UtilityNEG
A ¼

X

xk2NEGðau ;buÞðpD=pAÞ
ðpk � uðkNPÞþ ð1� pkÞ � uðkNNÞÞ:

For any subset A�AT , the whole utility is composed of three parts: utility of
positive region, utility of boundary region and utility of negative region. Then, we have
the whole utility of all decision rules in decision systems as follows [15]:

UtilityA ¼ UtilityPOS
A þUtilityBND

A þUtilityNEG
A

¼
X

xi2POSðau ;buÞðpD=pAÞ
ðpi � uðkPPÞþ ð1� piÞ � uðkPNÞÞ

þ
X

xj2BNDðau ;buÞðpD=pAÞ
ðpj � uðkBPÞþ ð1� pjÞ � uðkBNÞÞ

þ
X

xk2NEGðau ;buÞðpD=pAÞ
ðpk � uðkNPÞþ ð1� pkÞ � uðkNNÞÞ
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In real applications, it is better to obtain more utility in decision procedures. Thus,
according to “non-decreasing” principle, we define attribute reduction in utility-based
decision-theoretic rough set model as follows:

Definition 1. A decision system S ¼ ðU;C [D;VaÞ; R�C is a reduct of C with
respect to D if it satisfies the following two conditions:

(1) UtilityR �UtilityC;
(2) 8Rh0 � R; UtilityR0\UtilityR:

From Definition 1, the decision utility will be increased or unchanged by the
reduction. Condition (1) is the jointly sufficient condition and condition (2) is the
individual necessary condition. Condition (1) guarantees that the utility induced from
the reduct is maximal, and condition (2) guarantees the reduct is minimal.

The fitness function, which shows the significance of an attribute, is usually used to
construct a heuristic algorithm in rough set theory. In UTRS model, the fitness function
is defined as:

Definition 2. A decision system S ¼ fU;C [D;Vag; A�C The utility fitness func-
tion of attribute ai 2 A is defined as:

SigUtilityðA; aiÞ ¼
UtilityA�faig � UtilityA

UtilityA
:

The three strategies in heuristic algorithm is summarized in paper [9]. In this paper,
we take deletion strategy to give an algorithm in UDTRS. The heuristic algorithm (The
algorithm of maximal-utility attribute reduction, AMUAR) based on the utility fitness
function is described as follows:
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The fitness function shows the significance of an attribute. In the processing of
deleting attributes, if UtilityB �UtilityC, the algorithm will stop the deleting procedure
and output reduct of decision systems.

4 Experimental Analysis

In this section, we will verify effectiveness of the algorithm AMUAR and the mono-
tonicity of utility with attributions by experiments. All the experiments have been
carried out on a personal computer with Windows 7, Intel (R) Pentium (R) CPU G640
(2.8 GHz) and 6.00 GB memory. The programming language is Matlab 2010b.

We take uðkÞ ¼ að�kþ cÞb as the utility function. If 0\b\1, then UDTRS model
is risk aversion; If b ¼ 1, UDTRS model is risk neutrality; If b[ 1, UDTRS model is
risk loving; Six data sets from the UCI Machine Learning Repository are used. For
each data set, the utility functions are randomly generated in interval value [100, 1000].
Their values meet the following constraint conditions: uðkBPÞ[ uðkNPÞ;
uðkBNÞ[ uðkPNÞ; uðkPPÞ ¼ uðkNNÞ ¼ 1. 10 different groups of utility functions are
randomly generated. Table 1 shows the average length of the derived reduct with
different data sets.

To validate the monotonicity of utility with attributes, utility is calculated with the
increasing number of attributes from 1 to the total attribute number in each data set. In
Fig. 1, the x-coordinate represents the number of attributes, and the y-coordinate
represents the utility of three models. Figure 1 shows the utility of three models do not
strictly increase with the increasing of attribute numbers. For example, the utility
decrease with adding an attribute in data set credit_a, forestfires and vote. The utility
with the number of attributes increasing do not present monotonicity strictly.

Table 1. Average length of a reduct

Data sets Attributes Samples Risk aversion Risk neutrality Risk loving

credit_a 15 690 7.0 ± 0.0 7.0 ± 0.0 7.0 ± 0.0
forestfires 12 517 4.0 ± 0.0 4.0 ± 0.0 4.0 ± 0.0
german 20 1000 12.0 ± 0.0 12.0 ± 0.0 12.0 ± 0.0
heart_statlog 13 270 6.0 ± 0.0 6.0 ± 0.0 6.0 ± 0.0
lymph 18 148 8.0 ± 0.0 8.0 ± 0.0 8.0 ± 0.0
vote 16 435 11.9 ± 0.3 11.9 ± 0.3 11.8 ± 0.4
breast_cancer 9 286 7.9 ± 0.3 8.0 ± 0.0 7.9 ± 0.3
fertility 9 100 6.9 ± 0.3 6.9 ± 0.3 6.8 ± 0.4
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Fig. 1. Utility comparison of three attribute reductions
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5 Conclusions

Utility-based decision-theoretic rough set model is introduced in this paper. The utility
of the positive region, the boundary region and the negative region are given respec-
tively. We provide a definition of reduction which aims to obtain the maximal utility in
decisions. A heuristic reduction algorithm with respect to the definition is proposed.
Finally, experimental results show the proposed algorithm is effective.
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Abstract. In order to solve the issue of three way decisions under set’s dynamic
changing, we put forward a model of three way decisions model based on
two-direction PS-probabilistic rough set by analyzing the theory and properties of
two-direction PS-probabilistic rough set. Firstly, according to the upper and
lower approximation of two-direction PS-probabilistic rough set, we deduce the
boundary region, negative region and boundary region, explain the rules of three
way decisions and analyze the properties of confidence coefficient and error rate.
Then, we define decision metric function and decision loss function of three way
decisions based on two-direction PS-probabilistic rough set, and infer the esti-
mation method of the threshold value based on the minimum risk decision rules
of Bayesian decision theory. Finally, the properties of this dynamic model are
discussed; the example shows the correctness and feasibility of this model.

Keywords: Two-direction PS-probabilistic rough set � Three-Way decisions �
Dynamic decision

1 Introduction

Based on rough set [1] and probabilistic rough set [2], three way decisions theory is
raised by Yao, and it is the generalization of two way decisions and is one of the
methods for dealing with the imprecise or incomplete information. It uses the defer-
ment decision as the third decision behavior and has wide application on medical
diagnosis, paper review, emotion classification, incremental learning, text recognition,
etc. [3].

For the problem of decision rules based on three way decisions, many scholars have
come up with lots of models on basis of probabilistic rough set, such as
decision-theoretic rough set model, variable precision rough set model [4], Bayesian
rough set model [5, 6], interval-valued decision-theoretic rough set [7]. According to
probabilistic rough set model, the equivalence class with higher threshold value is
classified into positive region, the equivalence class not meeting the lower threshold
value into negative region; others are classified to boundary region. Probabilistic rough
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set model has better fault-tolerant ability. For the next decision of objects in boundary
region, the three-way decisions model based on constructive covering algorithm [8] is
constructed, and it provides two further decision schemes for the object in boundary
region. According to the parent-children relationships of interval concept lattice [9], a
three way decisions model is built to deal with the objects in boundary region and it
reduces the loss of incorrect decisions effectively. The methods above built on basis of
that objects in set are constant. Actually, the set is dynamically changing, which
includes immigration and emigration of elements. Both of the dynamic property of
set X and the statistical information of knowledge base can be considered by using
two-direction PS-probabilistic rough set [10], which can build a bridge between of
three way decisions and dynamic set. So in this paper, a three way decisions based on
two-direction PS-probabilistic rough set is put forward.

The rest of the paper is organized as follows. In Sect. 2, we review the main ideas
of decision rough set and the associated three-way decisions. In Sect. 3, we introduce
the theory of two-direction PS-probabilistic rough set and its some theorems. In
Sect. 4, we provide the detailed analysis of the three way decisions model based on
two-direction PS-probabilistic rough set. In Sect. 5, a case is discussed which shows
the validity and feasibility of the model.

2 Decision-Theoretic Rough Set and Three Way Decisions

2.1 Decision-Theoretic Rough Set

The approximation of rough set is defined on the qualitative relationship among
concepts. However, without considering the intersection of concepts, there are many
problems cannot be solved by rough set. Thus many scholars put forward various rough
set models combining with probability theory. In 1990, Yao Yiyu proposed
decision-theoretic rough set (DTRS), which expands the 0.5-probabilistic rough set
model.

Suppose quaternion S ¼ U;A;V ; Ið Þ is a decision table, in which, U ¼
x1; x2; . . .; xnf g is a nonempty finite set of objects; A ¼ C [D is an attribute set (C is a

condition attribute set, D is decision attribute set, and C\D ¼ ;); V is an attribute
values set; I is an information function to assign the attribute value of each object.

Definition 1. Suppose U is a universe, X�U; and R is an equivalence relationship, x½ �R
is X’s equivalence class in terms of R. To depict X, a pair of upper approximation and
lower approximation are defined as follow:

R Xð Þ ¼ xjx 2 U; x½ �R \X 6¼ ;� �

R Xð Þ ¼ xjx 2 U; x½ �R�X
� �

Definition 2. Suppose U is a universe, X�U; and R is an equivalence relationship. U
is partitioned based on X 0s upper approximation and lower approximation
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POS Xð Þ ¼ R Xð Þ ¼ xjx 2 U; x½ �R�X
� �

NEG Xð Þ ¼ U� R Xð Þ ¼ xjx 2 U; x½ �R \X ¼ ;� �

BND Xð Þ ¼ R Xð Þ � R Xð Þ ¼ xjx 2 U; x½ �R \X 6¼ ; ^ : x½ �R�X
� �� �

The three subsets above are called X 0s positive region, negative region and
boundary region, respectively.

Pawlak rough set is a qualitative approximation which cannot accept any uncer-
tainty. So it has limitation in some ways. In order to promote the faults tolerant
capability, Wong and Ziarko introduced the probability approximation space to rough
set, and purposed 0.5-probabilistic rough set model [3].

Definition 3. Suppose U is a universe, X�U. Let Pr Xj x½ �R
� �

denote the conditional
probability of each object belonging to X given that the object belongs to x½ �R, then the
positive region, negative region and boundary region of X under 0.5 are defined as
follow:

POS0:5 Xð Þ ¼ fxjx 2 U; Pr Xj x½ �R
� �

[ 0:5g

NEG0:5 Xð Þ ¼ fxjx 2 U; Pr Xj x½ �R
� �

\0:5g

BND0:5 Xð Þ ¼ xjx 2 U; Pr Xj x½ �R
� � ¼ 0:5

� �

The threshold value 0.5 can depict majority rule quantitatively. While the majority
rule cannot explain the general threshold value ða; bÞ. Yiyu Yao put forward
decision-theoretic rough set based on Bayesian decision theory which can achieve all
the positive region, negative region and boundary region of threshold value ða; bÞ.
Definition 4. Suppose U is a universe, X�U. One may choose a pair of thresholds
ða; bÞ with 0� b� a� 1, and introduce three probabilistic regions:

POSða;bÞ Xð Þ ¼ xjx 2 U; Pr Xj x½ �R
� �� a

� �

BNDða;bÞ Xð Þ ¼ fxjx 2 U; b\ Pr Xj x½ �R
� �

\ag

NEGða;bÞ Xð Þ ¼ xjx 2 U; Pr Xj x½ �R
� �� b

� �

When a ¼ 0; b ¼ 1; the Pawlak rough set is achieved.
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2.2 Three Way Decisions

The positive region, negative region and boundary region of rough set provide the
theoretical basis of three way decisions to a great extent. Suppose Des xð Þ denotes the
logic formula defining the equivalence class x½ �R, which is typically a conjunction of
attribute-value pairs in an information table. For the Pawlak rough set models, the
following positive, negative and boundary rules can be introduced:

Positive rule : DesðxÞ ! accept, x 2 X; x½ �R�POS Xð Þ

Negative rule : DesðxÞ ! reject, x 2 X; x½ �R�NEG Xð Þ

Boundary rule : DesðxÞ ! defer a decision; x 2 X; x½ �R�BND Xð Þ

For positive rule, confidence coefficient is d ¼ Pr Xj x½ �R
� � ¼ 1, error rate is

1� d ¼ 0; For negative rule, confidence coefficient is d0 ¼ Pr XCj x½ �R
� � ¼ 1, error rate

is 1� d0 ¼ 0; For boundary rule, confidence coefficient and error rate are between 0
and 1.

As positive region and negative region do not get wrong results, three way deci-
sions model based on Pawlak rough set is a qualitative decision rule.

For the decision-theoretic rough set, the following positive, negative and boundary
rules can be introduced:

Positive rule : DesðxÞ ! accept,x 2 X; x½ �R�POSða;bÞ Xð Þ

Negative rule : Des xð Þ ! reject,x 2 X; x½ �R�NEGða;bÞ Xð Þ

Boundary rule : Des xð Þ ! defer a decision; x 2 X; x½ �A�BNDða;bÞ Xð Þ

For positive rule, confidence coefficient is d ¼ Pr Xj x½ �A
� �� a, error rate is

1� d ¼ 1� a. For negative rule, confidence coefficient is d0 ¼ Pr XCj x½ �A
� � ¼

1� Pr Xj x½ �A
� � ¼ 1� b.

3 Two-Direction PS-Probabilistic Rough Set

Whether Pawlak rough set or decision-theoretic rough set, the subset X is constant.
Actually, X�U is dynamically changing, including immigration and emigration of
elements. In this context, Professor Shi Kaiquan of Shandong University proposes
S-rough set, two direction Singular Sets [11]. Based on probabilistic rough set and
S-rough set, a two-direction PS-probabilistic rough set is put forward, which allows for
the probability of two-direction transfer. It can describe the probability of X of x½ �R.
Definition 5 [10]. For any X subset of U: F ¼ f1; f2; . . .; fmf g and F ¼ f 1; f 2;

�
. . .; f mg is the element transfer family. The element transfers are defined as
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fi 2 F : 9u 2 U; u 62 X ) fi uð Þ ¼ x 2 X

f j 2 F : 9x 2 X ) f j xð Þ ¼ y 62 X

F ¼ f1; f2; . . .; fmf g means some objects move into X; on the contrary, F ¼
f 1; f 2; . . .; f m

� �
means some objects move out of X:

Definition 6 [10]. For any X subset of U, the two-direction S-set is defined as

X� ¼ X 0 [ u uj 2 U; u 62 X; f uð Þ ¼ x 2 Xf g

X 0 ¼ X � x x 2 X; f xð Þ ¼ u 62 X
��� �

X 0 is called loss set of X�U.

Definition 7 [10]. For any X subset of U; X� is the two-direction S-set. The lower
approximation of X��U is defined as

F� X�ð Þ ¼ fx x 2 U; x½ �R�X�g��

The upper approximation of X��U is defined as

F� X�ð Þ ¼ fxjx 2 U; x½ �R \X� 6¼ ;g

F� X�ð Þ;F� X�ð Þð Þ is called S-rough set of X�.

Definition 8 [10]. For any X subset of U; X� is the two-direction S-set. Based on the
upper and lower approximation of X�, positive region, negative region and boundary
region are defined as follow:

POS X�ð Þ ¼ F� X�ð Þ ¼ fxjx 2 U; x½ �R�X�g

NEG X�ð Þ ¼ U� F� X�ð Þ ¼ fxjx 2 U; x½ �R \X� ¼ ;g

BND X�ð Þ ¼ F� X�ð Þ � F� X�ð Þ ¼ fxjx 2 U; x½ �R \X� 6¼ ; ^ : x½ �R�X�� �g

When F ¼ ;, then X� ¼ X, the positive region, negative region and boundary
region of X� are the same to the ones of X: Two-direction S-rough set degenerates to
Pawlak rough set. In one form or another, Pawlak rough set is a particular case of
two-direction S-rough set.

Definition 9 [10]. For any X subset of U; X� is the two-direction S-set. f 2 F is an
element transfer defined in U. Given a pair of threshold values ða; bÞ which meet
0� b� a� 1: F X�ð Þ a;bð Þ is called probability PS-lower approximation of X� in

parameters ða; bÞ; if F X�ð Þ a;bð Þ¼ fxjx 2 U;Pr X�j x½ �R
� �� ag, F� X�ð Þ a;bð Þ is called
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probability PS-upper approximation of X� in parameters a; bð Þ; if F� X�ð Þ a;bð Þ¼
x x 2 U;Pr X�j x½ �R

� ��� �
b

� �
;ðF X�ð Þ a;bð Þ;F

� X�ð Þ a;bð ÞÞ is called probability PS-rough set
of X� in parameters a; bð Þ:

Positive region POS a;bð Þ X�ð Þ; negative region NEG a;bð Þ X�ð Þ; boundary region
BND a;bð Þ X�ð Þ of two-direction S-set are defined as follow:

POS a;bð Þ X�ð Þ ¼ F X�ð Þ a;bð Þ¼ fxjx 2 U;PrðX�j x½ �RÞ� ag

NEG a;bð Þ X�ð Þ ¼ U � F� X�ð Þ a;bð Þ¼ fxjx 2 U;PrðX�j x½ �RÞ� bg

BND a;bð Þ X�ð Þ ¼ F� X�ð Þ a;bð Þ�F X�ð Þ a;bð Þ¼ fxjx 2 U; b\PrðX�j x½ �RÞ\ag

When a; bð Þ is (1, 0), probability PS-rough set degenerates to S-rough set; when
X� ¼ X and 0� b� a� 1; probability PS-rough set becomes probabilistic rough set;
when X� ¼ X and a; bð Þ is (1, 0), probability PS-rough set becomes Pawlak rough set.

Definition 10 [10]. When BND a;bð Þ X�ð Þ ¼ ;, X� is called “can be defined in
parameters a; bð Þ”. Otherwise X� is called “can not be defined in parameters a; bð Þ” or
“two-direction probability PS-rough set”.

Theorem 1. Suppose X1;X2�U, if there are migrating elements, X�
1 is the

two-direction S-set of X1, X�
2 is the two-direction S-set of X2, and X�

1�X�
2 , then

F X�
1

� �
a;bð Þ�F X�

2

� �
a;bð Þ

F� X�
1

� �
a;bð Þ�F� X�

2

� �
a;bð Þ

Theorem 2. Suppose X1;X2�U; if there are migrating elements, X�
1 is the

two-direction S-set of X1, X�
2 is the two-direction S-set of X2, and X�

1�X�
2 , then

POS a;bð Þ X�
2

� � 	 POS a;bð Þ X�
1

� �

NEG a;bð Þ X�
2

� ��NEG a;bð Þ X�
1

� �

BND a;bð Þ X�
2

� ��BND a;bð Þ X�
1

� �

4 Three Way Decisions Based on Probability PS-Rough Set

4.1 Three Way Rules in X�

Suppose two-direction S-set X�. And the positive region, negative region, boundary
region of its probability PS-rough set in parameters a; bð Þ are POS a;bð Þ X�ð Þ,
NEG a;bð Þ X�ð Þ and BND a;bð Þ X�ð Þ: Then there are:
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Positive rule : DesðxÞ ! accept, x 2 X�; x½ �R�POS a;bð Þ X�ð Þ

Negative rule : Des xð Þ ! reject, x 2 X�; x½ �R�NEG a;bð Þ X�ð Þ

Boundary rule : Des xð Þ ! defer a decision, x 2 X�; x½ �R�BND a;bð Þ X�ð Þ

For positive rule, its confidence coefficient is d ¼ Pr X�j x½ �R
� �� a, error rate is

e ¼ 1� d� 1� a. For negative rule, its confidence coefficient is d0 ¼ Pr X�Cj x½ �R
� � ¼

1� Pr X�j x½ �R
� �� 1� b, error rate is 1� d0\b. For boundary rule, its confidence

coefficient and error rate are between a and b.

Theorem 3. Suppose X1;X2�U, if there are migrating elements, X�
1 is the

two-direction S-set of X1, X�
2 is the two-direction S-set of X2, X�

1�X�
2 , d1 is the con-

fidence coefficient of X�
1 , d2 is the confidence coefficient of X

�
2 , e1 is the error rate of X

�
1 ,

and e2 is the error rate of X�
2 , then d1 � d2, e1 � e2.

Proof. X�
1�X�

2 , so X�
1 \ x½ �R�X�

2 \ x½ �R.

Then X�
1 \ x½ �R

�� ��� X�
2 \ x½ �R

�� ��, d1 ¼ Pr X�
1 j x½ �R

� � ¼ X�
1 \ x½ �Rj j
x½ �Rj j � d2 ¼ Pr X�

2 j x½ �R
� � ¼

X�
2 \ x½ �Rj j
x½ �Rj j , e1 ¼ 1� d1 � e2 ¼ 1� d2.

Inference 1. Suppose X�U;X�
1 ;X

�
2 ; . . .X

�
m are the two-direction S-set of X in different

time, X�
i �X�

j ð1� i\j�mÞ. The confidence coefficient of X�
i ’s positive rule is di, and

the error rate is ei 1� i�mð Þ: Then d1 � d2 � . . .� dm, e1 � e2 � . . .� em.

Theorem 3 and Inference 1 show that if there is more information, the accuracy of
decision is higher, and the error rate is lower.

Inference 2. Suppose X�U;X�
1 ;X

�
2 ; . . .X

�
m are the two-direction S-set of X in different

time, X�
i 	 X�

j ð1� i\j�mÞ: The confidence coefficient of X�
i ’s positive rule is di, and

the error rate is ei 1� i�mð Þ. Then d1 � d2 � . . .� dm, e1 � e2 � . . .� em.

4.2 Computing of Threshold Value a; bð Þ
For X�U; its two-direction S-set is X�. A states set X ¼ X�;X�Cð Þ is constructed,
where X� and X�C are complementary. For the positive region, negative region and
boundary region of probability PS-rough set, the actions set A� ¼ a�P; a

�
N ; a

�
B

� �
is

constructed, where a�P; a
�
N ; a

�
B represent the three actions in classifying an object x. The

different decision actions will lead to different results, and all the 6 loss functions are
shown in Table 1.
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The conditional risks of the three actions given an equivalence class x½ �R are
computed as:

Lða�Pj x½ �RÞ ¼ k�PPPr X�j x½ �R
� �þ k�PNPr X�Cj x½ �R

� �

Lða�N j x½ �RÞ ¼ k�NPPr X�j x½ �R
� �þ k�NNPr X�Cj x½ �R

� �

Lða�Bj x½ �RÞ ¼ k�BPPr X�j x½ �R
� �þ k�BNPr X�Cj x½ �R

� �

Bayesian decision procedure gives rise to three minimum-risk decision rules:

ðP�ÞIf Lða�Pj x½ �RÞ� Lða�N j x½ �RÞ and Lða�Pj x½ �RÞ� Lða�Bj x½ �RÞ; decide x 2 POS a;bð Þ X�ð Þ

ðN�ÞIf Lða�N j x½ �RÞ� Lða�Pj x½ �RÞ and Lða�N j x½ �RÞ� Lða�Bj x½ �RÞ; decide x 2 NEG a;bð Þ X�ð Þ

ðB�ÞIf Lða�Bj x½ �RÞ� Lða�Pj x½ �RÞ and Lða�Bj x½ �RÞ� Lða�N j x½ �RÞ; decide x 2 BND a;bð Þ X�ð Þ

In order to ensure that each object can be classified into a only region, a decisive
rule need to be introduce when the risks of two actions are same. In two-direction
S-rough set, although there are migrating elements in X, the universe U is invariant,
namely, X� [X�C ¼ U. So Pr X�j x½ �R

� �þPr X�Cj x½ �R
� � ¼ 1. Hence, r X�j x½ �R

� �
and

loss function k� can be used to simplify the rule ðP�Þ
 ðB�Þ. Actually, an object x
belonging to X� is classified to positive region POS a;bð Þ X�ð Þ, that means
k�PP � k�BP � k�NP; an object x belonging to X� is classified to negative region
NEG a;bð Þ X�ð Þ, that means k�NN � k�BN � k�PN . On this basis, three threshold values with
ðP�Þ
 ðB�Þ can be got:

a ¼ k�PN � k�BN
� �

k�PN � k�BN
� �þ k�BP � k�PP

� �

b ¼ k�BN � k�NN
� �

k�BN � k�NN
� �þ k�NP � k�BP

� �

c ¼ k�PN � k�NN
� �

k�NP � k�PP
� �þ k�PN � k�NN

� �

Table 1. Loss function

X� (positive) X�C (negative)

a�P k�PP ¼ k�ða�PjX�Þ k�PN ¼ k�ða�PjX�CÞ
a�N k�NP ¼ k�ða�N jX�Þ k�NN ¼ k�ða�N jX�CÞ
a�B k�BP ¼ k�ða�BjX�Þ X�C (negative)
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Obviously, a 2 0; 1ð �; b 2 0; 1½ �, c 2 0; 1ð Þ. If the loss functions meet that
k�PN � k�BN
� � � k�NP � k�BP

� �
[ k�BP � k�PP

� � � k�BN � k�NN
� �

, a[ c[ b can be proved.
Then c is not needed. The rule ðP�Þ
 ðB�Þ can be simplified as follow:

ðP�
1Þ If Pr X�j x½ �R

� �� a; then x 2 POS a;bð Þ X�ð Þ

ðN�
1Þ If Pr X�j x½ �R

� �� b; then x 2 NEG a;bð Þ X�ð Þ

ðB�
1Þ If b\Pr X�j x½ �R

� �
\a; then x 2 BND a;bð Þ X�ð Þ

Suppose Pr X�j x½ �R
� � ¼ p�, then the risks of ðP�

1Þ
 ðB�
1Þ can be shown as follow:

Risk of positive rule P�
1

� �
: R P�

1

� � ¼ k�PP � p� þ k�PN � 1� p�ð Þ

Risk of negative ruleðN�
1Þ : R N�

1

� � ¼ k�NP � p� þ k�NN � 1� p�ð Þ

Risk of boundary ruleðB�
1Þ : R B�

1

� � ¼ k�BP � p� þ k�BN � 1� p�ð Þ

Usually in the learning process, we set k�PP ¼ 0; k�NN ¼ 0.

4.3 Properties of Dynamic Decision

Theorem 4. Suppose X�U on t0. If there are migrating elements, X�
1 is the

two-direction S-set of X on t1, and X�X�
1 , then

Pr X�
1 j x½ �R

� ��Pr Xj x½ �R
� �

Proof. X�X�
1 , so X \ x½ �R�X�

1 \ x½ �R, then X \ x½ �R
�� ��� X�

1 \ x½ �R
�� ��;

Pr Xj x½ �R
� � ¼ X \ x½ �R

�� ��
x½ �R

�� �� �Pr X�
1 j x½ �R

� � ¼ X�
1 \ x½ �R

�� ��
x½ �R

�� ��

Inference 3. Suppose X�U on t0. Let 1� i\j� n; and t0 � ti\tj � tn. If there are
migrating elements, X�

i is the two-direction S-set of X on ti, X�
j is the two-direction

S-set of X on tj, and X�X�
i �X�

j . Then

Pr X�
1 j x½ �R

� �� . . .�Pr X�
i j x½ �R

� �� . . .�Pr X�
j j x½ �R

� 	
� . . .�Pr X�

n j x½ �R
� �

:

Inference 4. Suppose X�U on t0, Pr Xj x½ �R
� �� a, and decide x 2 POS a;bð Þ Xð Þ. Let

1� i\j� n; and t0 � ti\tj � tn. If there are migrating elements, X�
i is the two-direction
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S-set of X on ti, X�
j is the two-direction S-set of X on tj, and X�X�

i �X�
j Then on each

tk 1� k� nð Þ, decide x 2 POS a;bð Þ X�
k

� �
.

Inference 5. Suppose X�U on t0, Pr Xj x½ �R
� �� a. Let 1� i\j� n; and t0 � ti\tj � tn.

If there are migrating elements, X�
i is the two-direction S-set of X on ti; X�

j is the

two-direction S-set of X on tj, and X�X�
i �X�

j . Ri P�
1

� �
is the risk of X�

i ’s positive rule

P�
1

� �
, and Rj P�

1

� �
is the risk of X�

j ’s positive rule P�
1

� �
. Then

R1 P�
1

� �� . . .Ri P
�
1

� �� . . .Rj P
�
1

� �� . . .�Rn P�
1

� �

Inference 6. Suppose X�U on t0, b\Pr Xj x½ �R
� �

\a, and decide x 2 BND a;bð Þ Xð Þ:
Let 1� i\j� n; and t0 � ti\tj � tn. If there are migrating elements, X�

i is the
two-direction S-set of X on ti ; X�

j is the two-direction S-set of X on tj, and X�X�
i �X�

j .

If on ti, Pr X�
i j x½ �R

� �� a, and decide x 2 POS a;bð Þ X�
i

� �
. Then on each tk i� k� nð Þ,

decide x 2 POS a;bð Þ X�
k

� �
.

Theorem 5. Suppose X�U on t0. If there are migrating elements, X�
1 is the

two-direction S-set of X on t1, and X 	 X�
1 , then

Pr X�
1 j x½ �R

� ��Pr Xj x½ �R
� �

Proof. X 	 X�
1 , so X \ x½ �R	 X�

1 \ x½ �R, then X \ x½ �R
�� ��� X�

1 \ x½ �R
�� ��,

Pr Xj x½ �R
� � ¼ X \ x½ �R

�� ��
x½ �R

�� �� �Pr X�
1 j x½ �R

� � ¼ X�
1 \ x½ �R

�� ��
x½ �R

�� ��

Inference 7. Suppose X�U on t0. Let 1� i\j� n, and t0 � ti\tj � tn. If there are
migrating elements, X�

i is the two-direction S-set of X on ti, X�
j is the two-direction

S-set of X on tj, and X 	 X�
i 	 X�

j . Then

Pr X�
1 j x½ �R

� �� . . .�Pr X�
i j x½ �R

� �� . . .�Pr X�
j j x½ �R

� 	
� . . .�Pr X�

n j x½ �R
� �

:

Inference 8. Suppose X�U on t0, Pr Xj x½ �R
� �� b, and decide x 2 NEG a;bð Þ Xð Þ: Let

1� i\j� n; and t0 � ti\tj � tn. If there are migrating elements, X�
i is the two-direction

S-set of X on ti, X�
j is the two-direction S-set of X on tj, and X 	 X�

i 	 X�
j Then on each

tk 1� k� nð Þ; decide x 2 NEG a;bð Þ X�
k

� �
:

Inference 9. Suppose X�U on t0, Pr Xj x½ �R
� �� b, and decide x 2 NEG a;bð Þ Xð Þ. Let

1� i\j� n; and t0 � ti\tj � tn. If there are migrating elements, X�
i is the two-direction

S-set of X on ti ; X�
j is the two-direction S-set of X on tj, and X 	 X�

i 	 X�
j . Ri N�

1

� �
is
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the risk of X�
i ’s negative rule N�

1

� �
; and Rj N�

1

� �
is the risk of X�

j ’s negative rule N�
1

� �
:

Then

R1 N�
1

� �� . . .Ri N
�
1

� �� . . .Rj N
�
1

� �� . . .�Rn N�
1

� �

Inference 10. Suppose X�U on t0, b\Pr Xj x½ �R
� �

\a, and decide x 2 BND a;bð Þ Xð Þ.
Let 1� i\j� n; and t0 � ti\tj � tn. If there are migrating elements, X�

i is the
two-direction S-set of X on ti; X�

j is the two-direction S-set of X on tj, and

X 	 X�
i 	 X�

j . If on ti, Pr X�
i j x½ �R

� �� a, and decide x 2 NEG a;bð Þ X�
i

� �
. Then on each

tk i� k� nð Þ, decide x 2 NEG a;bð Þ X�
k

� �
.

5 Case Study

In a venture capital management system, all risk factors affecting the system are
regarded as the universe ¼ fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12g. For some
investment project, the risk factors affecting it form the set X ¼ x1; x3; x5; x10; x11f g.
According to the investors’ experience and knowledge, U=d ¼ D1;D2;D3f g; where,
D1 ¼ x1; x2; x3; x4; x5f g, D2 ¼ x6; x7; x8f g, D3 ¼ x9; x10; x11; x12f g.

Suppose a; bð Þ ¼ 0:55; 0:35ð Þ, then the conditional probability is as follow:

Pr XjD1ð Þ ¼ 3=5[ 0:55 ¼ a

Pr XjD2ð Þ ¼ 0\0:35 ¼ b

b ¼ 0:35\Pr XjD3ð Þ ¼ 1=2\0:55 ¼ a

The probabilistic rough three way approximates are defined as follow with
Definition 5:

POS a;bð Þ Xð Þ ¼ x1; x2; x3; x4; x5f g

BND a;bð Þ Xð Þ ¼ x9; x10; x11; x12f g

NEG a;bð Þ Xð Þ ¼ x6; x7; x8f g

In X, x1; x2; x3; x4; x5 certainly affect the risk project (accept action); x9; x10; x11; x12
may affect the risk project (defer a decision); x6; x7; x8 certainly don’t affect the risk
project (reject action).

5.1 Three Way Decisions Based on Probability PS-Rough Set

With the development of the system, the risk factors x1; x3 have no impact on the
project, while the risk factors x2;x6; x8; x9; x12 become the new risk factors of the project.
Then a two-direction S-set X� ¼ x2; x5; x6; x8; x9; x10; x11; x12f g is achieved. Then the
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conditional probabilities are as follow:

b ¼ 0:35\Pr X�jD1ð Þ ¼ 2=5\0:55 ¼ a

Pr X�jD2ð Þ ¼ 2=3[ 0:55 ¼ a

Pr X�jD3ð Þ ¼ 1[ 0:55 ¼ a

For the decision concepts D1;D2;D3 of subset X�, probability PS-rough set of X� in
parameters a; bð Þ is ðF X�ð Þ a;bð Þ¼ x6; x7; x8; x9; x10; x11; x12f g;F� X�ð Þ a;bð Þ =
fx1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12gÞ, and the three regions are defined as
follow:

POS a;bð Þ X�ð Þ ¼ x6; x7; x8; x9; x10; x11; x12f g

BND a;bð Þ X�ð Þ ¼ x1; x2; x3; x4; x5f g

NEG a;bð Þ X�ð Þ ¼ ;

In X�, x6;x8; x9; x10; x11; x12 certainly affect the risk project (accept action); x2; x5
may affect the risk project (defer a decision).

5.2 Properties of Dynamic Decision

On t1, x6, x9 and x12 become the new risk factors of the project. Suppose
X�
1 ¼ x1; x3; x5; x10; x11f g[ x6; x9; x12f g ¼ x1; x3; x5; x6; x9; x10; x11; x12f g, then the

conditional probabilities are as follow:

Pr X�
1 jD1

� � ¼ 3=5

Pr X�
1 jD2

� � ¼ 1=3

Pr X�
1 jD3

� � ¼ 1

For the decision concepts D1;D2;D3 of subset X�
1 , on t1, the probabilistic rough

three way approximates are defined as follow:

POS a;bð Þ X�
1

� � ¼ x1; x2; x3; x4; x5; x9; x10; x11; x12f g

BND a;bð Þ X�
1

� � ¼ ;

NEG a;bð Þ X�
1

� � ¼ x6; x7; x8f g

By this time, for x10 2 X�
1 , the “accept action” is made; for x6 2 X�

1 , the “reject
action” is made still.
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On t2, x2 and x8 become the new risk factors of the project. Suppose
X�
2 ¼ x1; x3; x5; x6; x9; x10; x11; x12f g[ x2; x8f g ¼ x1; x2; x3; x5; x6; x8; x9; x10; x11; x12f g.

Then the conditional probabilities are as follow:

Pr X�
2 jD1

� � ¼ 4=5

Pr X�
2 jD2

� � ¼ 2=3

Pr X�
2 jD3

� � ¼ 1

For the decision concepts D1;D2;D3 of subset X�
2 , on t2, the probabilistic rough

three way approximates are defined as follow:

POS a;bð Þ X�
2

� � ¼ x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12f g

BND a;bð Þ X�
2

� � ¼ ;

NEG a;bð Þ X�
2

� � ¼ ;

By this time, for x6 2 X�
2 , the “accept action” is made.

Thus it can be seen that if X2 	 X1 	 X0, there are:

Pr X�
2 j x½ �R

� ��Pr X�
1 j x½ �R

� ��Pr Xj x½ �R
� �

POS a;bð Þ X�
2

� � 	 POS a;bð Þ X�
1

� � 	 POS a;bð Þ Xð Þ

NEG a;bð Þ X�
2

� ��NEG a;bð Þ X�
1

� ��NEG a;bð Þ Xð Þ

Namely, when increasing number of elements move into X, the positive region
becomes wider and the negative region becomes smaller. For the same element, as time
goes on, the decision is changing, which can become “accept action” from “defer a
decision” or “reject action”. It conforms to the decision reality that with more infor-
mation understood, confidence of decision will be bigger. Thus with the help of this
theory, decision-makers can make decisions more reasonably.

In a similar way, increasing number of elements move out of X, there are dynamic
changes according to Theorem 5 and Inferences 7–10.

6 Conclusions

A three way decisions based on two-direction probability PS-rough set is put forward,
which allows for dynamic change of set. Firstly, the positive region, negative region
and boundary region are divided according to two-direction probability PS-rough set,
and the decision rules are given by these regions. Secondly, the measurement and loss
functions of this model are given, on this basis, the method of computing threshold
value (a, b) is discussed. Finally, the validity is shown by a case. There are many
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problems of this model to be discussed much further/needing further discussion: the
optimized processing of the boundary objects, the application of specific decision, etc.
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Abstract. Biological systems are known to evolve mechanisms for acquiring
robust response under uncertainty. Brain is a complex adaptive system char-
acterized with system specific network features, at global as well as local level,
critical for its function and control. We studied controllability response in
C. elegans neuronal network with change in number of functionally important
feed-forward motifs, due to synaptic rewiring. We find that this neuronal net-
work has acquired a sigmoidal control response with a robust regime for satu-
ration of feed-forward motifs and an extremely fragile response for their
depletion. Further we show that, to maintain controllability this neuronal net-
work must rewire following a power law distance constraint. Our results
highlight distance constrained synaptic rewiring as a robust evolutionary strat-
egy in the presence of sigmoidal control response.

Keywords: C. elegans neuronal network � Controllability � Feed-forward
motifs � Synaptic rewiring � Optimization

1 Introduction

Brain networks are characterized with non-trivial topological features, on global as well
as local level, that are key to their function and control [1]. Typical to a complex
adaptive system, the neuronal map is known to be plastic, and undergoes synaptic
rewiring [2]. Under such dynamic synaptic reorganizations, it is important to know
how the brain maintains functionally important topological features. We investigated
this question in C. elegans neuronal network (CeNN), the most complete neuronal
wiring diagram available till date [3, 4]. CeNN is a small world network, characterized
with over-representation of feed-forward motifs (FFMs) and distributed control archi-
tecture [5–8]. FFMs represent functional building blocks of this system, a fine-grained
feature that potentially gives rise to coarse-grained properties specifying network
control [9].

A system is said to be controllable if it can be driven from any initial state to a
desired final state in finite amount of time. For a linear time-invariant system, the
necessary conditions to achieve structural control were specified by Lin in 1974 [10].
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To achieve full control with least efforts, minimum input theorem requires identifica-
tion of a minimal subset of ‘driver nodes’. Maximal matching algorithm facilitates
computation of the number of driver nodes (Dn) in a network [7]. Lesser the number of
inputs, the more centralized is the control [8].

CeNN is known to have distributed control with higher number of driver neurons
than its random counterpart [7, 8, 11]. By studying genotypic and phenotypic aspects of
CeNN, in our earlier study we have shown that ‘driver neurons’ are associated with
important biological functions such as reproduction, signaling processes and anatom-
ical structural development [11]. The CeNN has been shown to have a bimodal control
architecture which is sensitive to edge plasticity [8]. Synaptic plasticity can influence
the number of driver neurons and hence control mechanisms in CeNN. Hence, we
probed relationship between number of FFMs and number of driver neurons under
synaptic rewiring. While the saturation of feed-forward motifs in CeNN is of functional
consequence [6, 12, 13], it is not clear whether the system optimizes for the number of
FFMs.

Interestingly, our studies suggest that the controllability (number of driver neurons)
is sensitive to not ‘the absolute number of FFMs’ but to ‘change in FFMs’, exhibiting
an asymmetric, sigmoidal response. We also find that the distance constrained synaptic
rewiring can explain preservation of FFMs as well as robust controllability response of
the network.

2 Materials and Methods

Towards investigations done as part of this work, we compiled data of C. elegans
nervous system to construct its network model as well as its controls. Apart from
enumerating its motifs and driver nodes, we also designed an algorithm for imple-
menting motifs tuning.

2.1 C. elegans Neuronal Network

The nervous system of C. elegans consists of around 302 neurons which are inter-
connected via chemical synapses and gap junctions [3, 14]. We constructed CeNN, a
network model of C. elegans neuronal network, using neuronal connectivity data of
277 somatic neurons [4]. Multiple synaptic connections between two neurons were
merged to represent a single edge between them. Thus neuronal connectivity data were
represented as a directed unweighted graph, where neurons represent nodes and
synaptic connections represent links between them. We also constructed a random
control of CeNN viz. Erdős-Rényi random control (ER) in which the number of nodes
and edges were kept identical but wiring pattern was randomized [15]. Among topo-
logical properties of CeNN, we computed clustering coefficient and characteristic
path-length which represent global features of the network [5, 9].
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2.2 Analysis of Motifs

Network sub-structures that are significantly over-represented in networks compared to
their random counterparts are known as motifs [6]. Some of these motifs are known to
be of functional significance to the system [6, 12, 16]. A directed binary graph can have
13 types of three node sub-structures. These three node sub-graphs could further be
divided into angular and triangular motifs. Angular motifs are linear three node
sub-structures, whereas triangular motifs comprise of three nodes sub-graphs with
either unidirectional or bidirectional edges. Following the methodology of Milo et al.,
we computed the number of sub-structures and their over-representation using
Z�score ¼ X�l

r [6].

2.3 Number of Driver Neurons

In a network where every node can be in one of the multiple states, it has been shown
that the state of the network can be controlled with the help of driver nodes [7, 11, 17].
Aligned with this notion, driver neurons are those neurons which when controlled with
an external input can provide full control over the state of the network [7]. Due to their
role in control of network ‘number of driver neurons’ ðDnÞ are of functional relevance
to the neuronal network [11]. To find the minimum number of driver neurons we used
maximum matching criterion [7]. A pair of edges were matched if they share start and
end nodes [18]. A node is said to be matching if any matching edge points towards it
and is unmatched if no matching edge is directed towards it.

2.4 Motif Tuning Algorithm

Feed forward motifs are three neuron sub-graphs composed of two input neurons, one
of which regulates the other and both jointly regulating a third target neuron. FFMs are
known to be of critical functional relevance for CeNN [6]. To observe the effect of
increase/decrease (MTA +/MTA-) of FFMs on controllability of CeNN, we devised a
Motif Tuning Algorithm (MTA). This strategy achieves maximum increase/decrease in
the number of FFMs (nFFM) with minimal rewiring. Starting from a random neuron in
CeNN, MTA looks for a three node linear chain ðA ! B ! CÞ. In case of finding such
a linear chain, it adds a feed-forward link from A ! C if it doesn’t exist already. To
preserve the number of edges, it removes an edge randomly from the network, while
ensuring the connectedness of CeNN. An inverse procedure of searching for an FFM
and removing the feed-forward link was implemented to decrease the number of motifs.
The detailed logic of motif tuning algorithm is depicted in Fig. 1. Through monotonous
increase/decrease of number of FFMs, MTA achieves the desired tuning of motifs in
the network. The motif tuning was implemented enough number of times till the
saturation of the number of FFMs.
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2.5 Strategies for Synaptic Rewiring

Two types of strategies were implemented for simulating the synaptic rewiring:
(a) Random rewiring and (b) Distance constrained rewiring (DC).

(a) Random Rewiring: In this strategy it was assumed that, neurons rewire com-
pletely randomly under the influence of synaptic plasticity. Every synapse was
swapped randomly without affecting the number of nodes and edges [15].

(b) Distance Constrained Rewiring: In this strategy, while maintaining the number
of synapses of each neuron, the synapses were rewired such that the probability of
two neurons being connected to each other is proportional to d�b, where d is the
distance between two nodes and b is the distance constrain parameter. Despite
randomization of synapses, this strategy imposes a power law distance constraint.

Fig. 1. Motif tuning algorithm. Strategy implemented to (a) increase and to (b) decrease the
number of feed-forward motifs.
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3 Results and Discussion

A networked entity could be studied as a linear time invariant system to assess its
control architecture. A system could have centralized control with a small number of
nodes critical for driving its dynamics. The structural features of CeNN could be
probed at the coarse grained as well as fine grained levels to adjudge their connection to
control of the system. We investigated the control response of CeNN for change in in
number of feed-forward motifs to identify rewiring mechanisms that render it robust.

3.1 Topological Properties of CeNN

CeNN encodes the structural and functional correlates of the neuronal wiring of
C. elegans which are reflected in its topological features. These features could be
enumerated at coarse-grained level as well as at a fine-grained level. Consistent with
previous observations [5, 9, 11, 19, 20], we found that C. elegans neuronal network is a
small world network by virtue of high average clustering coefficient ð�C ¼ 0:172Þ and
small characteristic path length ðL ¼ 4:02Þ, when compared to its randomized coun-
terpart ðCrand ¼ 0:028� 0:001 and Lrand ¼ 2:97� 0:01).

CeNN is characterized with a distributed control architecture with higher number of
driver neurons compared to its random control. Knowing that driver neurons are of
biological significance to C. elegans [11] and that CeNN is over represented with
feed-forward motifs (Fig. 2) [6], we investigated their interrelationship that could be of
central importance for control of CeNN.

Fig. 2. Feed-forward motifs are significantly over-represented in CeNN, followed by feedback
motifs, as measured in terms of Z-score against a background of random networks.
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CeNN has significantly large number of driver neurons ðDn ¼ 34Þ compared to that
of its randomized counterpart ð0:26� 0:44Þ. Connectivity of neurons is one of the key
factors in specification of number of driver neurons, as preservation of degree distri-
bution leads to its increases ð22:38� 1:15Þ [7, 11]. Driver neurons in CeNN are
genotypically and phenotypically associated with various functions such as reproduc-
tion and maintenance of cellular processes of the organism [11]. CeNN is characterized
with distributed control with a large number of driver neurons [8]. Synaptic rewiring, a
common features in neuronal systems, could alter the motif saturation in CeNN with
repercussions for control mechanisms. To probe the response of CeNN with
increase/decrease of FFMs, we devised the motif tuning algorithm.

3.2 CeNN Shows Sigmoidal Controllability Response with Change
in FFMs

We used motif tuning algorithm (see Methods) to simulate monotonous increase/
decrease in number of FFMs due to synaptic plasticity. Interestingly, we observed that
the CeNN shows an asymmetric, sigmoidal response with a clear division between a
robust regime in which the number driver neurons (hence, the distributed control) is
maintained with monotonic increase in FFMs, and a fragile regime in which it rapidly
loses the distributed control with decrease in FFMs (Fig. 3). This implies that to
maintain the distributed control (through large number of driver neurons), the neuronal
system would need to maintain the number of FFMs. Prevalence of certain connectivity
patterns is associated with evolution and development [21]. Starting from the random
counterpart of CeNN, systematic monotonic increase/decrease was found to have no

Fig. 3. Asymmetric controllability response (enumerated with the number of driver neurons,
Dn) of C. elegans neuronal network with monotonic increase/decrease in number of FFMs
(nFFM). The random control (ER), on the other hand, does not show any change in Dn. This
implies that while CeNN exhibits robust control response to systematic increase in FFMs, it is
extremely sensitive to systematic depletion of FFMs. Dashed lines represent the starting points
for the models. Error bars indicate standard deviation over 1000 instances.
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impact on number of driver nodes (Fig. 3), indicating that neuronal architecture of C.
elegans has evolved to achieve an optimum structure with distributed control as well as
asymmetric response to change in number of key network motifs (FFMs).

Aligned with our observations, we hypothesize that the synaptic rewiring mecha-
nisms in C. elegans must have adapted a robust strategy to avoid depletion of FFMs,
and hence to maintain distributed control. Rooted in our distance constraint synaptic
plasticity model [9], we propose that the mechanisms of synaptic rewiring are not
random, but are dictated by distance constraint. We investigated effect of random
rewiring versus distance constrained rewiring on change in number of feed-forward
motifs (DnFFM), for which the network control was found to have sensitive dependence
(Fig. 3).

3.3 Response of CeNN to Random Versus Distance Constrained Rewiring

Neuronal networks evolving under cognitive stresses show a remarkable property of
forming new synapse and deleting older obsolete ones known as neuronal rewiring
[22]. To simulate neuronal plasticity in CeNN we implemented different strategies to
identify the best strategy the system may have evolved.

To assess the control response of different kind of rewiring mechanisms (MTA+,
MTA−, random and distance constrained), we measured the change in number of
feedforward motifs for every step of rewiring, DnFFM (Fig. 4). Positive value of DnFFM
indicates that such a mechanism yields robust control response by maintaining the
number of driver neurons (see Fig. 3). On the contrary, negative values suggest fragile
response. This is corroborated by observations made with MTA + and MTA- rewiring
strategies. MTA + and MTA- are artificial strategies implementing monotonous
increase and decrease of FFMs, respectively. While the rewiring mechanisms of CeNN
are not expected to follow such artificial processes, any process the brain network may
have evolved is expected to show robust controllability response.

Random Rewiring
The easiest way to simulate a natural phenomenon, such as synaptic rewiring, is to
assume that it is dictated by random processes. We observed that random rewiring is
expected to induce loss of FFMs over time, hence is fragile (Fig. 4). Such a strategy is
also expected to cause loss of clustering, an important topological feature which ren-
ders the network small-world [5, 9]. Randomized synaptic rewiring has been reported
to result in loss of number of driver neurons as well as FFMs [9]. Hence, we conclude
that such a mechanism could not have evolved through natural selection as it yields loss
of structurally important features as well as leads to fragile control response.

Distance Constrained Rewiring
The neuronal connectivity of CeNN is known to follow a scale free distribution sug-
gesting a deviation from random connectivity pattern [23, 24]. Further, it is also
observed that, in this spatially laid network, distance between two neurons is critical in
specifying probability of they being connected with a synapse [9]. The probability of
two neurons being linked with each other, interestingly, decreases as a power law. This
suggests that while increasing distance between neurons is a constraint in their
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connection, it still allows for more number of neuronal connections than expected by
exponential decay. Such a distance constraint has also been reported to be central in
determining the location of neurons in the body of organism [25–27].

With this premise, we modeled the synaptic rewiring in CeNN following the power
law distance constraint. In thismodel every neuronmaintains its connections (degree) and
every synapse is rewired following power law distribution, PðkÞ� k�b. We implemented
the model for varying values of the exponent bð0� b� 3), such that with increasing
value of b, chances of observing a synaptic connection are higher for a given distance
between neurons. We find that distance constrained rewiring is expected to maintain the
FFMs yielding robust response, unlike random rewiring (Fig. 4, DC for b ¼ 3).

To further probe the response to distance constrained rewiring, we studied the
change in number of FFMs (nFFM) and number of driver nodes (Dn) with increasing
number of rewiring for different values of exponent b (Fig. 5(a) and (b)). We also
computed the average change in number of FFMs ðDnFFMÞ with changing b (Fig. 5(c)).
Consistent with the observation made from Fig. 4, we find that number of FFMs drops
marginally regardless of the value of exponent, with better response observed for
higher values of b (Fig. 5(a)). Despite large number of rewirings, the number of driver
nodes is preserved to maintain the distributed control (Fig. 5(b)). The performance
improves with increasing values of b, suggesting that following a strong power law in
synaptic rewiring promotes robust controllability response.

In summary, we investigated the control response of CeNN, measured in terms of
the number of driver neurons, with varying number of FFMs known to be of functional
relevance. By implementing MTA, we surmise that monotonous increase or decrease of
FFMs shows an interesting asymmetric, sigmoidal response divided into robust and
fragile regimes, respectively. We find that, while random synaptic rewiring would lead
to fragile control response, distance constrained rewiring is expected to yield robust
response.

Fig. 4. Change in nFFM per rewiring for different strategies. DC and MTA + show a positive
DnFFM , whereas random and MTA- were presented with negative DnFFM . This implies that
MTA + and distance constrained rewiring induce robust response.
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Abstract. A decision tree with verifying cuts, called V-tree, uses addi-
tional knowledge encoded in many attributes to classify new objects. The
purpose of the verifying cuts is to confirm the correctness of the partition-
ing of tree nodes based on the (semi)-optimal cut determined by a greedy
approach. The confirmation may be relevant because for some new
objects there are discrepancies in the class prediction on the basis of
the individual verifying cuts. In this paper we present a new method
for resolving conflicts between cuts assigned to node. The method uses
an additional local discretization classifier in each node where there is a
conflict between the cuts. The paper includes the results of experiments
performed on data sets from a biomedical database and machine learning
repositories. In order to evaluate the presented method, we compared
its performance with the classification results of a local discretization
decision tree, well known from literature and called here C-tree, as well
as a V-tree with previous simple conflict resolution method. Our new
approach outperforms the C-tree, although it does not produce better
results than V-tree with simple method of conflict resolution for the sur-
veyed data sets. However, the proposed method is a step toward a deeper
analysis of conflicts between rules.

Keywords: Rough sets · Discretization · Classifiers · Conflict resolution

1 Introduction

In a classic local discretization tree [11], node divisions are based on only one
cut, i.e., one value of one of the attributes, that best divides objects in a node,
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in the sense of the chosen cut quality. All the knowledge related to divisions of
objects, contained in other attributes, is therefore lost at every stage of the tree
construction. To use this additional knowledge, we have developed a method
for inducing trees with verifications of cuts defined on many attributes. In each
node of a tree created using this method, called V-tree [1], the distribution of
objects based on the optimal cut is confirmed by other cuts on different attributes
that divide objects in a similar way. Such an approach mimics the behaviour of
domain experts who make decisions based on many aspects at the same time
during the decision-making process. The previous experiments with V-tree have
shown that such an application of the additional knowledge hidden in attributes
gives better results than a local discretization tree using node splitting based on
only one cut.

When using V-tree to classify new objects, the predicted decision class is
indicated by all cuts in the nodes. When all the cuts in a node are consistent, we
have more certainty (than with one cut) that the predicted decision is correct.
However, for some new objects there are discrepancies in the predicted class
indicated by the individual verification cuts. So far in such cases, we have used
a simple conflict resolution method to select the predicted decision class among
the decisions coming from the left and right subtrees. The method consists in
selecting the class that is indicated by the prevailing number of the cuts in the
node. This simplest method of resolving conflicts (the majority voting), presented
in [1], was additionally modified by taking into account the size of nodes from
which the decisions originate. With such a way of resolving conflicts, the question
arises whether other ways of dissolving it would give better results. In particular,
the question arises as to whether the general method of resolving such a conflict
with a classifier would improve the quality of the V-tree classification.

To answer this question in this paper we propose a new classifier based on the
V-tree. In order to construct it, the training data is divided into two parts. Part
one, called the basic training part, is used to build a V-tree classifier. Part two,
called the validation part, is used to construct classifiers, which resolve conflicts
at each node. When applying the proposed V-tree to classify new objects, in
situations where a conflicts between a right and a left subtree appears in a given
node, an additional (judging) classifier built for that node is used to determine
the final decision.

In this paper we consider the supervised discretization, i.e. the discretiza-
tion methods using the values of decision attribute for training cases. There are
many methods of supervised discretization, which are based on various heuris-
tics. We use an approach based on the generation of the so-called decision tree
of the local discretization (see, e.g., [2,5,7,11]). This is a binary tree, created
by multiple binary partitions of the set into two groups of objects (e.g., cases,
states, processes, patients, observations, vehicles) with the value of the selected
attribute. The decision tree of local discretization can be applied not only for
discretization but also can be treated as a classifier (see Sect. 2).

However, there are serious doubts as to the validity of this approach for
classifier induction, especially in case of a large number of attributes in a dataset.
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Therefore in [1] we proposed a method of a V-tree construction using additional
cuts to evaluate of quality of cuts in tree nodes (see Sect. 3). Here, we propose
a new approach of building V-tree with a more advanced method of resolving
conflicts.

To illustrate the method and to verify the effectiveness of presented clas-
sifiers, we have performed several experiments on the data sets obtained from
Kent Ridge Biomedical Dataset, UC Irvine Machine Learning repository and the
website of The Elements of Statistical Learning book (see Sect. 5).

2 The Discretization Tree

In this paper, we consider the supervised discretization based on the decision
tree over the local discretization (see, e.g., [2]). This is a binary tree, created by
multiple binary partitions of the set into two groups of objects with the value of
the selected attribute. Because this method is well known from literature (see,
e.g., [5,11]), in this paper we call this method as the classic method.

2.1 Cuts and Templates

Selection of an attribute and its value (for numeric attributes often called the
cut) during divisions of nodes is a key element of the local discretization tree
construction method and should involve the analysis of values of the decision
attribute for training objects.

Formally, a cut is a pair (a, v) that is defined for a given decision table A =
(U,A, d) in Pawlak’s sense (see, e.g., [12]), where a ∈ A (A is a set of attributes
or columns in the data table) and v is the value of the attribute a. For numeric
attributes, a cut (a, v) defines a partition of a set of objects into two subsets, the
first set, denoted by L(a, v), is the set of objects for which the value of attribute
a is less than v, and the second set of objects, denoted by R(a, v), for which the
value of attribute a is greater than or equal to v. Instead, for symbolic attributes
the L(a, v) is a set of objects for which the value of the attribute a is equal to v,
and the R(a, v) is a set of objects for which the value of attribute a is different
from v.

Moreover, any cut (a, v) defines two templates, where by a template we
understand a description of a set of objects, that are defined in different ways
for numerical and symbolical attributes. In case of numerical attributes, if we
define templates for a cut c = (a, v), the first template, called a left template, is
described by a formula: TL(c) = {u ∈ U : a(u) < v}, while the second template,
called a right template, is described by a formula: TR(c) = {u ∈ U : a(u) ≥ v}.
An object u ∈ U matches the template TL(c), if a(u) < v holds, that is
the value of the attribute a ∈ A of this object u is less than v, otherwise
the object u does not match the template TL(c). Whereas, an object u ∈ U
matches the template TR(c), if it satisfies a descriptor a(u) ≥ v, that is the
value of the attribute a ∈ A of this object u is greater than or equal to v, oth-
erwise the object u does not match the template TR(c). In case of symbolic
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attributes, the first template, called also a left template, is described by a for-
mula: TL(c) = {u ∈ U : a(u) = v}, while the second template, called also a right
template, is described by a formula: TR(c) = {u ∈ U : a(u) �= v}. An object
u ∈ U matches the template TL(c), if it satisfies a descriptor a(u) = v, that
is the value of the attribute a ∈ A of this object u is equal to v, otherwise the
object u does not satisfy the template TL(c). Finally, an object u ∈ U matches
the template TR(c), if it satisfies a descriptor a(u) �= v that is the value of the
attribute a ∈ A of this object u is not equal to v, otherwise the object u does
not satisfy the template TR(c).

If c is a cut, we denote in general by T (c) the template defined by the c,
keeping in mind that it might be one of two following templates TL(c) or TR(c).
In addition, to simplify the description, instead of T (c), we sometimes write T ,
when the cut c is established. Besides, if T is a template defined for some cut
c, by ¬T we understand the template TR(c) when T = TL(c), or the template
TL(c) when T = TR(c). Finally, if T is a template defined for the decision table
A = (U,A, d), by A(T ) we denote a subtable of A containing all objects from
U matching the template T .

A pair of objects (u1, u2) ∈ U × U is discerned by the cut which defines the
template T , if u1 matches the template T and u2 does not match the template T ,
or vice versa, u2 matches the template T and u1 does not match the template T .
By Dis(c) we denote the number of pairs of objects from the different decision
classes discerned by the cut c that defines the template T . After calculation of
a value of this measure for all possible cuts, one can greedily choose one of the
cuts and divide the entire set of objects into two parts on its basis. Of course,
this approach can be easily generalized to the case of more than two decision
classes. In our approach, the value of Dis(c) is treated as the quality of the cut
c for classic discretization tree.

It should be noted that above quality measure Dis(c) can be calculated for
the given cut in time O(n), where n is the number of objects in the decision table
(see, e.g., [5]). But the determination of the optimal cut requires the calculation
of quality measures for all the potential cuts. For this purpose it is necessary to
check all potential cuts, including all conditional attributes in a specific order.
This can be done using various methods. One of such methods for numerical
attributes firstly sorts the objects of the given attribute for which we seek the
optimal partition. This allows to determine the optimal cut in linear time.

Sorting a collection of objects results in the fact that the calculation of the
optimal partition is done in time O(n·log n·m), where n is the number of objects,
and m is the number of conditional attributes. This method is implemented in
our own RS-lib computational library, which is an extension of the RSES-lib
library forming the kernel of the RSES system [6].

Let us now introduce the concept of simultaneous discerning of pairs of
objects by two cuts. This concept will be used in Sect. 3. A pair of objects
(u1, u2) ∈ U × U is discerned simultaneously by the cuts c1 and c2 that define
templates T1 and T2 respectively, if u1 matches T1 and T2, but u2 matches
neither T1 nor T2, or vice versa, u2 matches T1 and T2, but u1 matches neither
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T1 nor T2. By Dis(c1, c2) we denote the number of pairs of objects from the
different decision classes (of a given decision table) discerned simultaneously by
the cuts c1 and c2.

2.2 Construction of the Classic Decision Tree

The quality of cuts may be computed for any subset of a given set of objects.
In the local strategy of discretization, after finding the best cut and dividing
the objects set into two subsets of objects (matching both templates mentioned
above for a given cut), this procedure is repeated for each set of objects separately
until a stop condition is met.

At the beginning of the procedure we have the whole set of objects at the
root of the tree. Then, we recursively apply the same splitting procedure to the
emerging parts that we assigned to tree nodes at higher levels. Stop condition
of partition is designed so that the given part is not divided (becomes a tree
leaf), if it contains only objects of one decision class (optionally the objects of
the given class constitute a certain percentage, which is treated as a parameter
of the method) or the considered cut does not have any effect, i.e., there are no
new pairs of objects of different decision classes separated by the cut. In this
paper, we assume that the partition stops when all objects from the current set
of objects belong to the same decision class. A simple method for constructing
the tree described above can be configured in many ways. For example, one
can change the cut quality, which may also be made by introducing the domain

Fig. 1. A fragment of an exemplary C-tree classifier
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knowledge. This often leads to the improvement of the classifier performance (see
[2,4]). The quality of a given cut computed as a number of object pairs discerned
by this cut and belonging to different decision classes was used in [3] and the
classifier constructed using this method we call here as the C-tree classifier.

Figure 1 presents an exemplary fragment of a decision tree classifier for the
problem of forecasting Parkinson’s disease on the basis of voice measurements.
Note that the above decision tree can be treated directly as a classifier, as test
objects can be classified by stating to which leaf of the tree they belong. This is
possible because, thanks to the designated partitions, one can trace membership
of an object in the path from the root to the leaf, and then classify the object
to the decision class whose objects dominate in the leaf.

2.3 The Decision Tree as a Classifier

The decision tree computed during the local discretization can be treated as
a classifier for the concept C represented by the decision attribute from a given
decision table A. Let A(T ) be a subtable containing all objects matching the
template T defined by the cut from the current node of a given decision tree (at
the beginning of an algorithm run, T is the template defined by the cut from
the root). We classify a tested object starting from the root of the tree using
Algorithm 1.

Algorithm 1. Classification by the decision tree (see [5])
Input: Let A be a decision table, T be a template of the table A and u be a

new (tested) object.
Output: The value of decision attribute for the object u.

1 begin
2 if u matches template T found for A then
3 go to subtree related to A(T )
4 else
5 go to subtree related to A(¬T )
6 end
7 if u is at the leaf of the tree then
8 go to line 12
9 else

10 repeat lines 2–11 substituting A(T ) (or A(¬T )) for A
11 end
12 Classify u using the decision rules for subtable attached to the leaf;

13 end

It is not hard to see that the time complexity of Algorithm1 depends on the
length of the largest path in the decision tree. If the largest path in the decision
tree is equal to l, then the time complexity of Algorithm1 is of order O(l · m),
where m is the number of conditional attributes in the table A.
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3 The Decision Tree with Verifying Cuts

We now present an approach to the decision tree construction, which introduces
the so-called verifying cuts.

3.1 Motivation

When applying the approach described in the previous section to the construc-
tion of classifiers for the case of data with a large number of attributes, there are
serious doubts as to the validity of this approach. The point is that the method
chooses only one split with the best quality based on the selected measure, at
the given step of searching for optimal binary partitions. In other words, just one
from among perhaps many partitions with the high quality is chosen, while the
others are ignored. Obviously, in the next step, the subsequent optimal binary
split is selected, but not for the entire input set of objects, but only for each
previously obtained part separately. Such an approach is often effective leading
to efficient classifiers, if the number of attributes is small and the attributes
carry diverse information (e.g., in terms of diverse positive areas relative to
the decision attribute). However, data sets with a large number of attributes
can contain a lot of attributes that bear similarity with respect to the qual-
ity of potential cuts but differ significantly with respect to domain knowledge
represented by the attributes. These attributes will be here called additional
or redundant attributes. The domain experts (such as medical doctors) who in
their daily work observe the redundancy of attributes, realize that and use it,
e.g., making diagnosis more secure through the use of several such attributes
simultaneously. Meanwhile, the above-mentioned greedy method, out of the plu-
rality of redundant attributes selects only one, eliminating others. However, in
practice, the classification of the test objects may reveal the object that for some
reason should not be classified according to the partition specified by the greedy
algorithm (e.g., an outlier, from the point of view of an attribute selected by the
greedy algorithm in the current node of the decision tree).

Therefore, the possibility of the object classification by greedily designated
binary partition would require a confirmation by other attributes, which in the
above method is not done. As a consequence, a situation may occur where, e.g.
for the microarray data with very many attributes and few objects the method
finds only a few partitions (on several attributes), that are sufficient to create
a tree allowing us for an unambiguous classification of objects from the training
sample. This situation is very difficult to be accepted by the domain experts
who are not able to come to terms with such a large reduction of the knowledge
encoded in the attributes and not using the rejected redundant attributes in
the tree construction.

Serious doubts arise also from a statistical point of view. Typically, a set
of objects is too small to call it representative. Therefore, the disposal of the
information contained in the rejected attributes may lead to overfitting of the
constructed tree to the objects from the training sample.
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Some might say that the problem could be solved by a method calculating
greedily k-partitions in one step, which at any given stage of the algorithm best
distinguish pairs of the objects in terms of the fixed criterion (for one or more
attributes). Unfortunately, no such algorithm is known with the time complexity
less than the square (of the number of objects). Such an algorithm would have
to optimize k at a given stage of its operation, examining different subsets of
potential partitions, which would increase its complexity. Due to the required
efficiency, in the work we are interested in the complexity of the algorithms of
the order at most n · log n relative to the number of objects n.

One of the approaches attempting to overcome the disadvantages of greedy
methods is to use ensemble methods, such as random forests (see, e.g. [8]) which
use random data samples in the learning step in order to produce several different
decision tree models and then to combine the predictions of those models to form
the prediction of the ensemble. The ensemble made of the individual models
built from many different data samples may provide a better approximation of
the concepts that any of the single models, which is the key for generalization.

3.2 Construction of the Decision Tree with Verifying Cuts

The basic idea of the V-tree lies in the fact that at a given stage of searching for
partitions of a set of objects, after determining the optimal binary partition, the
family of k-binary verifying partitions is determined (for other attributes than
the attribute used in the optimal partition).

The idea behind it is as follows. As discussed above, the optimal partition
is a tool for partial classification of the test object, i.e., it provides information
specifying where the test object should be sent for the classification: to the right
subtree or to the left one. Each partition from the family of verifying k-partitions
divides objects from the training table analogously to the optimal partition.
Thus, if a test object to be classified will be submitted for further classification
by the optimal partition to the left tree, there is a presumption that it should be
directed analogously by the verifying partition. If so, this increases our confidence
that the optimal partition correctly classified the test object (as it is possible in
a given node).

However, if it is not so, i.e., for instance, the optimal partition directs the
test object into the left tree, and the verifying partition to the right, then there
may be uncertainty about the performance of our classifier. Therefore, in this
situation, a caution is recommended in planning further classifier actions. This
precaution in the case of our method is revealed by the fact that the object is rec-
ommended to the classification by both the left and right subtree. After receiving
the results of the classification, the possible conflict between the received deci-
sions is resolved. Of course, there may be more than one verifying partition, and
therefore the methodology outlined above must take this into account.

Another issue is the question of how verifying partitions interfere with the
formation of the tree for a training table. In the classic method of tree construc-
tion (see Sect. 2), on a given stage of the tree construction, the optimal partition
of a set of objects into two disjoint sets is determined, for which subtrees are
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separately created in the subsequent stages. However, in the V-tree, the split of
a set of objects may not be a partition. On the one hand, as before, the opti-
mal partition divides a set of training objects into two disjoint sets, but on the
second hand there may be a number of objects matching the template defined
on the basis of the optimal partition, but not matching many of the templates
defined by verifying partitions. Analogously, there may be objects that do not
match the template defined on the basis of the optimal partition, but match
sufficiently many of the patterns defined for the verifying partitions.

One can claim about such objects that already at the stage of the tree con-
struction, it is doubtful that the template based on the determined optimal
partition is appropriate to classify this type of objects. Therefore, when creating
a tree, the objects will be included into both sets of objects, the one intended to
create a left subtree, as well as the set of objects intended to create a right sub-
tree. This corresponds to the intuition that learning to classify this type of object
is somehow postponed and transferred to both subtrees, where for their classi-
fication new partitions will be counted (perhaps better suited to these objects
than optimal partition counted in the current tree node).

3.3 The Algorithm of the V-Tree Construction

In this section, we present the algorithm for construction of a decision tree, based
on the above considerations (see Algorithm 2). Due to the fact that the algorithm
uses verifying cuts, the decision tree produced by this algorithm is called the
V-tree or V-decision tree. During the construction of V-tree we select verifying
cuts using a special measure of quality. The quality of a verifying cut ci relative
to a given optimal cut c is computed by the measure: V Q(c, ci) = Dis(c,ci)

Dis(c) , where
Dis(c) is the number of pairs of objects from different decision classes discerned
by the cut c, and Dis(c, ci) is the number of pairs of objects from different
decision classes discerned simultaneously by the cuts c and ci (see Sect. 2.1).
In construction of the V-tree we only use these verifying cuts ci, the quality of
which is greater than a fixed threshold t, i.e., ci satisfying the following condition:
V Q(c, ci) > t.

The stop condition in Algorithm2 is the same as in the algorithm discussed
in Sect. 2. Note that the only element of the algorithm, which would increase the
time complexity compared to the classical algorithm from Sect. 2 is step 3, in
which the collection of k verifying cuts for a given cut c is computed. We show in
Sect. 3.4 that this step can be accomplished in time O(n·log n·m), where n is the
number of objects and m is the number of conditional attributes and therefore it
does not increase the computational time complexity of the algorithm compared
to the algorithm from Sect. 2.

It’s not hard to see that for the symbolic attributes, which typically have
a small number of values, the determination of the best verification split can
be done in time O(n · l), where l is the number of values of symbolic attribute.
Somewhat more difficult situation occurs when the cut for numerical attribute
is computed.
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Algorithm 2. Construction of the V-decision tree

Input: Let A = (U,A, d) be a decision table, k be a parameter belonging to
natural numbers and t be a fixed threshold (t was equal to 0.9 in our
experiments).

Output: The V-decision tree computed for the table A.

1 begin
2 Find the optimal cut c in the table A and assign the template T = TL(c)

(and ¬T = TR(c)).
3 Find a collection of verifying cuts c1, ..., ck in the table A which verify the

cut c and a collection of templates V TC(T ) = {T}∪{T1, ..., Tk} associated
with verifying cuts, such that V Q(c, ci) > t, for i ∈ {1, ..., k} (this is the
collection of templates with maximal possible value of V Q, greater than t;
if the number of all such templates for a given T is less than k, the
collection can be smaller, but non-empty because T always belongs to it).

4 Split the table A into two subtables A(T ) and A(¬T ) such that A(T )
contains the objects matching a template T , and A(¬T ) contains the
objects matching a template ¬T .

5 Assign Al = A(T ) and Ar = A(¬T ).
6 Determine all the objects in the table A, which match the template T and

do not match a template Ti (for some i ∈ {1, ..., k}) or match the template
¬T and do not match a template ¬Ti (for some i ∈ {1, ..., k}), and attach
these objects both to the table Al and Ar (if they are not there yet)

7 If the tables Al and Ar satisfy the stop condition, then finish the tree
construction else repeat steps 2–6 for all the subtables which do not satisfy
the stop condition.

8 end

3.4 Calculation of Verifying Cuts

In this section, we present the algorithm for selection of verification cuts for
the computed earlier cut cb (cb is a cut for an attribute b), assuming that the
verification split is determined by a selected numerical attribute a different then
b (see Algorithm 3). In order to find globally the best verification cuts for the
cut cb, this algorithm can be executed for all numerical attributes different then
b. For ease of discussion, we assume that there are only two decision classes C0

and C1 in the data set. This approach can be easily generalized to the case of
more than two decision classes.

Assuming that the information about cuts from the memory M is accessible
in constant time, Algorithm3 runs in time O(n · log n), where n is the number
of objects (due to the sorting time of objects on the basis of the attribute a).

3.5 Classification by the V-Tree

Now we provide the classification algorithm, based on a tree with verifying cuts.
Suppose we classify the object u at a node where the optimal cut c = (a, v)
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Algorithm 3. Computation of verifying cuts for a given cut on the basis
of selected attribute

Input: Let A = (U,A, d) be a decision table with decision classes C0 and
C1, a be an attribute of the table A and cb be a cut of the table A
based on the attribute b (where a �= b).

Output: The computed collection of verifying cuts on the basis of the attribute
a for the cut cb with selection for every verifying cut c a proper left or
right template (TL(c) or TR(c))

1 begin
2 Sort the values of the numerical attribute a.
3 Browsing the values of the attribute a from the smallest to the largest,

determine for i = 0, 1, for each appearing cut c on a the following numbers
and store them in a memory M :

LL(a, c, Ci), LR(a, c, Ci) - numbers of objects from decision class Ci

with values of attribute a smaller than c and at the same time
matching the templates TL(cb), TR(cb), respectively.

4 Browsing the values of attribute a from the highest to the lowest, determine
for i = 0, 1, for each appearing cut c on a the following numbers and store
them in a memory of information about cuts M :

HL(a, c, Ci), HR(a, c, Ci) - numbers of objects from decision class Ci

with values of attribute a greater than or equal to c and at the same time
matching TL(cb), TR(cb), respectively.

5 Using information from the memory M , determine the quality of cuts on a
by the following formula Dis(cb, c) = max{QL(c), QR(c)}, where:

QL(c) = LL(a, c, C0) · HR(a, c, C1) + LL(a, c, C1) · HR(a, c, C0) and
QR(c) = LR(a, c, C0) · HL(a, c, C1) + LR(a, c, C1) · HL(a, c, C0);
also TL(c) is assigned to c if QL(c) > QR(c), otherwise TR(c)
is assigned to c.

6 end

and the family of verifying cuts c1, . . . , ck were found. Besides, let T denote the
template assigned to c, and T1, . . . , Tk the templates for cuts c1, . . . , ck, where
for any i ∈ {1, . . . , k} the template Ti = TL(ci) or Ti = TR(ci), depending on
a type of template selected for a given ci by the Algorithm 3. The classification
is performed according to Algorithm4 with t = 0.9.

In order to demonstrate classification by the Algorithm 4, let us consider a
decision table A = (U,A, z), such that A = {a, b, c, d, e, f} and the decision
attribute z has two values 0 and 1, that is, there are only two decision classes Z0

and Z1. Figure 2 illustrates the V-decision tree computed for the table A using
the Algorithm 2.
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Algorithm 4. Classification by the V-tree

Input: Let u be a new (tested) object and V T (A) be a V-decision tree
computed for a decision table A; besides by T and V TC(T ) we denote
the template for an optimal cut and the collection of templates
proposed by Algorithm2 for the current node of V T (A), respectively.

Output: The value of decision for the object u.
1 begin
2 If a node satisfies the stop condition, return the decision fixed in the tree

node and terminate.
3 Assign l1: = the number of templates from the collection V TC(T ), to which

the object u fits.
4 Assign l2 = l − l1, where l = card (V TC(T )).
5 if object u matches the template T and l1 = l then
6 Send it for classification by the subtree constructed for the table A(T ),

to obtain the value of the decision d1, and return d1.
7 else
8 if the object u does not match the template T, and l2 = l, then
9 Send u for classification by subtree designed for a table A(¬T ), to

obtain the value of the decision d2, and return d2.
10 else
11 Classify object u by node A(T ) to obtain the value of decision d1
12 Classify object u by node A(¬T ) to obtain the value of decision d2
13 if d1 = d2 then
14 return d1
15 else
16 //Simple method of conflict resolving between d1 and d2
17 Assign p1:= (leaf size of the left tree)/|A|
18 Assign p2:= (leaf size of the right tree)/|A|
19 if ( l1

l
∗ p1) > ( l2

l
∗ p2) then

20 return d1
21 else

22 if ( l1
l

∗ p1) < ( l2
l

∗ p2) then
23 return d2
24 else
25 //Decides the main cut
26 if object u matches the template T then
27 return d1.
28 else
29 return d2.

This V-decision tree consists of a root-node N1, two internal nodes N2 and
N3, and four leaf-nodes N4, N5, N6 and N7. In the node N1 there are the template
T related to the main cut from this node and two templates T1 and T2 related
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Fig. 2. Visualization of an exemplary V-decision tree

to verifying cuts. At the same time, in the node N2 there are the template S
related to the main cut from this node and two templates S1 and S2 related
to verifying cuts. Finally, in the node N3 there are the template R related to
the main cut from this node and two templates R1 and R2 related to verifying
cuts. We will examine how the Algorithm 4 classifies three test objects from the
Table 1.

The classification of all objects starts in the node N1. An object u1 matches
the template T , because a(u1) = 1 < 2. At the same time, object u1 matches
the template T1, because c(u1) = 3 < 4 and matches the template T2, because
e(u1) = −5 ≥ −6. It means that templates T, T1 and T2 suggest that object
u1 should be classified by node N2. In the node N2, the object u1 does not
match the template S, because b(u1) = 4 ≥ 3. At the same time, object u1 does
not match the template S1, because d(u1) = −7 < 6 and does not match the
template S2, because f(u1) = 14 ≥ 12. It means that the object u1 is directed
to classification by the node N5 and is classified to the decision class Z1.

Table 1. Three test objects.

Test objects a b c d e f

u1 1 4 3 −7 −5 14

u2 3 0 5 −3 −7 5

u3 1 4 3 −5 −8 10

An object u2 does not match the template T , because a(u2) = 3 ≥ 2. At the
same time, object u2 does not match the template T1, because c(u2) = 5 ≥ 4
and does not match the template T2, because e(u2) = −7 < −6. It means that
templates T, T1 and T2 suggest that object u1 should be classified by node N3.
Hence, the object u2 is directed to classification by the node N3. In the node N3,
the object u2 matches the template R, because b(u2) = 0 < 1. At the same time,
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object u2 does not match the template R1, because d(u2) = −3 < −2 and does
not match the template R2, because f(u2) = 5 ≥ 4. It means that the object u2

should be directed to classification by both nodes N6 and N7. However, more
templates from the node N3 suggest classification by the node N7. Therefore the
object u2 is classified to the decision class Z0.

An object u3 matches the template T , because a(u3) = 1 < 2. At the same
time, object u3 matches the template T1, because c(u3) = 3 < 4 and does not
match the template T2, because e(u3) = −8 < −6. It means that templates T
and T1 suggest that object u3 should be classified by node N2, while the template
T2 suggests that object u3 should be classified by node N3. Hence, the object u3

is directed to classification by the node N2. In the node N2, the object u3 does
not match the template S, because b(u3) = 4 ≥ 3. At the same time, object
u3 does not match the template S1, because d(u3) = −5 < 6 and matches the
template S2, because f(u3) = 10 < 12. It means that the object u3 should be
directed to classification by both nodes N4 and N5. However, more templates
from the node N2 suggest classification by the node N5. Therefore the object u3

is classified to the decision class Z1.
The classifier constructed with the use of V-tree will be called here the

V-tree classifier. Note that the above algorithm to classify the object in the
node utilizes a single tree only when all verifying splits classify the object just as
the main cut c. In other cases, the classification is done by both subtrees. Then
the following two cases are considered. The first case refers to the situation when
the two subtrees returned the same decision value. Then the value from any node
is returned as the decision. The second case refers to a situation where one of
the subtrees returned one decision value, and the second subtree the other one.
Then that node returns a decision coming from the subtree, which is associated
with a greater number of such verifying templates that classify a test object
for this tree. This is a simple method to resolve the conflict between decisions
generated by two subtrees. The classification made by each subtree is performed
recursively, that is at each node the stop condition is checked to find out whether
the node is the leaf. If so, the algorithm returns the decision assigned to that
node and terminates.

4 Classification by the RV-Tree with Resolving Conflicts
by a Judging Classifier

Due to the inconsistency of cuts indications that appear in V-tree nodes for
some test objects we developed more advanced method of resolving this con-
flicts. The section discusses the construction of a V-tree with a new method of
resolving conflicts between left and right subtrees, if such conflicts arise. A new
tree constructed in this way will be called a RV-tree or RV-decision tree.

First, based on the basic training set, a V-tree is built, according to the
Algorithm 2. Then, the objects from the validation set (mentioned in Sect. 1) are
used to build classifiers that resolve conflicts. Each object of this set is tested for
matching with templates defined by the cuts for subsequent nodes of RV-tree.



Resolving the Conflicts Between Cuts in a Decision Tree with Verifying Cuts 417

If the object fits all templates in the node, it is routed to the left subtree, while
in the opposite situation (it does not fit any pattern), it is moved to the right
subtree, until it reaches the leaf.

However, we are interested in the case when there is a conflict of cut indi-
cations, so that the object matches a part of templates and does not match the
rest of the templates. Then such an object is used to construct an additional
classifier aimed at resolving such conflicts. As the additional classifier in the tree
node, we used a local discretization tree with the number of pairs of objects
from the different decision classes discerned by the cut as a cut quality mea-
sure (see Sect. 2.2). To build such a classifier, we create a decision table for it,
in each conflicting node. Such a table consists of all objects of the validation
set for which there is a conflict in the given node. Figure 3 presents the schema
of such a resolving table, used to build a classifier for conflict resolution. The
decision attribute of this table corresponds to the indication of the subtree to
which the object should be directed so as to obtain the correct decision class (for
the object from the validation set, the value of the decision class is known). The
decision is therefore estimated based on the cuts indications for the validation
objects. The larger the set, the more accurate the RV-tree response prediction.
As the conditional attributes, used to build decision rules, information such as:
left and right subtree decisions, the number of cuts leading the object to the left
and right subtree, the percentage of objects in the leaf from the left and right
subtree (in the validation set) and a strength of decision from the left and from
the right subtree, are used. The decision strength of a given subtree is calculated
as the product of the percentage of cuts that direct the object to that subtree
and the percentage of objects in the leaf of the subtree (from which the decision
originates), out of the entire validation set.

Fig. 3. The schema of a resolving table
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The classification using a RV-tree is performed according to Algorithm5 and
the scheme of the process in one node is presented on Fig. 4. When applying the
RV-tree to classify a new object, in nodes where a conflict between the right
and left subtree appears, directing such an object to the corresponding subtree
is indicated by the decision of an additional classifier referred to as a judging
classifier.

Fig. 4. The schema of a classification in a node using RV-tree

5 Experiments and Results

To verify the efficiency of a classifier with the new approach of resolving conflicts
between main and verifying cuts, a series of experiments on a variety of data
sets was conducted. For that purpose, we have implemented the classifier in the
programming library CommoDM (Common Data Mining) - a continuation of
the RSES-lib library, which forms the kernel of the RSES system [6]. The exper-
iments have been performed on the data sets obtained from Kent Ridge Biomed-
ical Dataset [10], UCI ML repository (see [13]) and website of The Elements of
Statistical Learning book (Statweb) (see [9]). Six data collections from the first
source relates to microarray experiments and they are characterized by a large
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Algorithm 5. Classification by the RV-decision tree

Input: Let u be a new (tested) object, RV T (A) be a RV-decision tree
computed for a decision table A (based on training set) and JT (B) be a
classic decision tree computed for a decision table B (based on
validation set) in a conflict node of RV T (A); besides by T and
RV TC(T ) we denote the template for an optimal cut and the collection
of templates proposed by Algorithm2 for the current node of RV T (A),
respectively.

Output: The value of decision for the object u.
1 begin
2 If a node satisfies the stop condition, return the decision fixed in the tree

node and terminate.
3 Assign l1: = the number of templates from the collection RV TC(T ), to

which the object u fits.
4 Assign l2 = l − l1, where l = card (RV TC(T )).
5 if object u matches the template T and l1 = l then
6 Send it for classification by the subtree constructed for the table A(T ),

to obtain the value of the decision d1, and return d1.
7 else
8 if the object u does not match the template T, and l2 = l, then
9 Send u for classification by subtree designed for a table A(¬T ), to

obtain the value of the decision d2, and return d2.
10 else
11 //Classify u with judging classifier JT (B) according to Algorithm1
12 if decision returned by JT (B) indicates right subtree then
13 Classify object u by node A(T ) to obtain the value of the

decision d1, and return d1.
14 else
15 Classify object u by node A(¬T ) to obtain the value of the

decision d2, and return d2.
16 end

17 end

18 end

19 end

number of attributes. Our experiments were conducted on the merged original
training and testing data sets. Our goal was to verify whether the new approach
to resolving conflicts between cuts, which is based on knowledge acquired in the
validation process, performs better than the previous method. Table 2 presents
the experimental results received for given data sets and three classifiers: clas-
sic decision tree (marked as C-tree classifier), decision tree with verifying cuts
that uses the old method of resolving conflicts (marked as V-tree classifier), and
approach described in this paper (marked as RV-tree classifier). Each of them
utilizes the measure for determining the quality of cuts defined as the number
of pairs of objects from the different decision classes discerned by the cut). In
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case of classifiers with verifying cuts, the minimum quality of redundant cut was
equal to 0.9 in our experiments, and also the maximum number of redundant
cuts was set to 10.

For determining quality of the classifiers we applied 10 fold cross-validation
(CV) technique, which was repeated 10 times for every data set (i.e., 100 cycles
of a train-and-test scheme was conducted). Moreover, at each iteration of 10 fold
CV technique, the nine-folds data set was additionally divided into two parts:
the training set and the validation set, with splitting ratio equal to 0.75. So the
percentage of validation objects constituted 25% of the total training set. The
final result of the algorithm is the average of 100 cycles. Popular parameters,
i.e. accuracy (ACC) and coverage (COV) were used to measure the classification
success.

6 Conclusion

We presented a new method for resolving conflicts between cuts in a node of the
V-tree with verifying cuts. The method involves a judging classifier construction
in the nodes where the conflicts arise.

The assessment of the approach was conducted using eighteen datasets. The
experimental results show that the employment of the knowledge embedded in
the redundant attributes increases the quality of the classifiers. However, the
simple method of resolving conflicts, based on a majority voting, does well or
even slightly better than more advanced method of resolving conflicts.

Results indicate that in most cases of data sets the accuracy of the pro-
posed RV-tree classifier was better compared to the classical method, from an
insignificant increase (0.2%) to almost 32%. The biggest increase of ACC was
observed for a multi-class set (“audiology” with 24 classes). But although the
new approach is superior to the classical one, it does not always produce better
results than a simple method of solving conflicts for the surveyed data sets. One
of the reasons for this may be the size of the validation set which is used to build
a judging classifier. The average size of this set was about 260 objects in our
experiments. Assuming that only some objects encounter conflicts in tree nodes
and that the object is assigned only to one of all nodes, the effective number of
objects taking part in building a judging tree for one node was much lower than
the mean size. In the optimal case, it corresponds to the size of a validation set
divided by the number of RV-tree nodes. In case of several examined datasets,
the decision table for the judging classifier was ranged from a few to a dozen
or so. Perhaps this is why the average accuracy of the RV-tree for microarray
datasets (84.4%) is smaller than for V-tree (90.1%), but it is the highest (81.1%)
of all three tested methods for the remaining, much larger collections (79.9% for
C-tree and 80.3% for V-tree).

This approach may be good for some kind of data (e.g. with multiple decision
classes) and we plan to more accurate verify what properties of datasets suggest
the use of each particular method. One of the proposals for further research is
to test the approach, applying methods for inducing judging classifiers different
from the used in this paper.
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algorithms in classification problems. In: Polkowski, L., Lin, T.Y., Tsumoto, S.
(eds.) Rough Set Methods and Applications: New Developments in Knowledge Dis-
covery in Information. Systems Studies in Fuzziness and Soft Computing, vol. 56,
pp. 49–88. Springer/Physica, Heidelberg (2000). doi:10.1007/978-3-7908-1840-6 3

6. Bazan, J.G., Szczuka, M.: The rough set exploration system. In: Peters, J.F.,
Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 37–56.
Springer, Heidelberg (2005). doi:10.1007/11427834 2

7. Buregwa-Czuma, S., Bazan, J.G., Zareba, L., Bazan-Socha, S., Pardel, P.,
Sokolowska, B., Dydo, L.: The method for describing changes in the perception
of stenosis in blood vessels caused by an additional drug. Fundam. Inform. 147,
193–207 (2016)

8. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
9. The Elements of Statistical Learning Repository: http://statweb.stanford.edu/

∼tibs/ElemStatLearn/datasets/
10. Kent Ridge Biomedical Dataset Repository: http://datam.i2r.a-star.edu.sg/

datasets/krbd/
11. Nguyen, H.S.: Approximate boolean reasoning: foundations and applications in

data mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets
V. LNCS, vol. 4100, pp. 334–506. Springer, Heidelberg (2006). doi:10.1007/
11847465 16

12. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177, 3–27 (2007)
13. UC Irvine Machine Learning Repository: http://archive.ics.uci.edu/ml/

http://dx.doi.org/10.1007/978-3-642-31715-6_58
http://dx.doi.org/10.1007/978-3-642-31715-6_58
http://dx.doi.org/10.1007/978-3-7908-1840-6_3
http://dx.doi.org/10.1007/11427834_2
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/
http://statweb.stanford.edu/~tibs/ElemStatLearn/datasets/
http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://datam.i2r.a-star.edu.sg/datasets/krbd/
http://dx.doi.org/10.1007/11847465_16
http://dx.doi.org/10.1007/11847465_16
http://archive.ics.uci.edu/ml/


Depression Behavior Detection Model Based
on Participation in Serious Games

Rytis Maskeliūnas1, Tomas Blažauskas2,
and Robertas Damaševičius2(&)

1 Department of Multimedia Engineering, Faculty of Informatics,
Kaunas University of Technology, Kaunas, Lithuania

2 Department of Software Engineering, Faculty of Informatics,
Kaunas University of Technology, Kaunas, Lithuania

robertas.damasevicius@ktu.lt

Abstract. Managing depression is one of the main challenges that health
specialists have to deal with. Due to the cumulative nature of depression, the
major problem is that a long-term observation of symptoms is required to make
an accurate decision about an individual’s state. The depressed mood rate of an
individual can be estimated according to recorded physiological and emotional
information. We propose a mobile health monitoring system using wearable
smart identification sensors (EEG, ECG, EMG, gaze tracking, and physical
activity data) that capture stress and specific subject behaviors as a result of the
participation in a serious game. The main objective is to study the impact of
serious games on the human cognitive system in treating the early signs of
depression by using a multi-level systems approach for representing the struc-
ture and dynamics of human cognitive functions. Our initial findings show that
subjects with negative moods have been characterized by psychomotor retar-
dation and lower correlation between the neural and cardiac systems.

Keywords: Depression modeling � EEG � Cognitive functions � Serious games

1 Introduction

Mental health conditions account for 13% of the global disease burden, with depression
being the main cause of disability and the fourth largest burden of disease worldwide,
while not all potential patients favor or can access existing modes of treatment delivery.
Depression affects more than 300 million people worldwide. Europe also faces a high
number (25%) of persons affected by depression, and the associated cost is about 170B
EUR per year [1]. Therefore, managing depression is one of the main challenges that
national health systems face. The detection and treatment of early stages of depression
is a worldwide concern as the governmental institutions not only aim to decrease the
number of depressed persons and the negative impact of depression on life quality but
also to save a lot of money spent on its treatment.

Integrating user-driven options into general community-level settings is one of the
strategies promoted by the WHO Mental Health Action Plan 2013–2020 [1].
Computer-based therapies have been effective in reducing depression and anxiety
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symptoms in adults, adolescents, and children [2, 3], there are problems with user
engagement in current computerized cognitive behavioral therapy programs [4].
Cognitive rehabilitation shows increased potential for use in neuropsychological
evaluation allowing to be more engaging and user friendly [5]. Integration of EEG
modality in serious games (i.e., games with a more serious purpose than entertainment)
can help establishing a usable depression model [6] helping to understand etiology and
pathophysiology of depression.

Due to the cumulative nature of depression, the major problem is that a long-term
examination of the symptoms and observation of the recorded physiological and
emotional information is required to make an accurate decision about an individual’s
state of depression.

Our main objective is to study the impact of serious games on the human cognitive
system in treating the early signs of depression by using a multi-level systems approach
for representing the structure and dynamics of human cognitive functions.

This research brings researchers a step closer to continuous, real-time systemic
monitoring that will allow one to analyze the dynamic human physiology and under-
stand, diagnosis, and treat mood disorders. The structure of the remaining parts of the
paper is as follows. Section 2 discusses state-of-the-art works related to the considered
problem. Section 3 described the proposed model and architecture of a depression
monitoring system. Section 4 presents some preliminary results. Finally, Sect. 5 pre-
sents conclusions and discusses future work.

2 State-of-the-Art

Major depression is a debilitating condition characterized by diverse neurocognitive
and behavioral deficits. The EEG based depression research is far from new (reported
already 80 years from now [7]), ranging from general measurements to detection of
neuropsychiatric disorders underpinning EEG as one of the most heritable biomarkers
[8]. Chemistry based model such as based on monoamine depletion are generally
accepted. Severity of depression has a moderate positive correlation with left
parieto-occipital upper alpha event-related synchronization during the maintenance
period of a working memory task [9]. EEG based models investigate models of affect:
relationships among EEG alpha band asymmetry, depression, and anxiety [10]. So far
the more promising research data come from the sleep brain flow analysis [11], pro-
viding effective biomarkers [12], revealing an altered interaction between cardiac vagal
influence and delta sleep [13].

For example, Kim et al. [14] investigated statistical associations between
momentary depressive mood and behavioral dynamics measured in patients with major
depressive disorder (MDD). A small watch-type computer was used as an electronic
diary to record self-reported symptoms and as locomotor activity recorder through an
acceleration sensor. The constructed statistical model indicated that worsening of
depression was associated with increased intermittency of locomotor activity charac-
terized by lower mean and higher skewness. Findings suggest there are associations
between momentary depressive mood and behavioral dynamics in patients with
depression, which may motivate the continuous monitoring of the states of depression.
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Yang et al. [15] has investigated the relation between vocal prosody and change in
depression severity over time. Findings suggest that analysis of vocal prosody could
assist in depression screening and monitoring over the course of depressive disorder
and recovery.

The LiveNet system uses mobile physiologic sensors to track depression symptoms
over time and to measure objective measures of depression. The measured data
included skin conductance response, heart rate variability, movements, and vocal
characteristics [16].

Massey et al. [17] propose techniques to improve communication in Body Sensor
Network (BSN) that gathers data (accelerometers, galvanic response, electrocardio-
gram, audio sensor) on the affective states of the patient. These BSNs can continuously
monitor, discretely quantify, and classify a patient’s depressive states. In addition, data
on the patient’s lifestyle can be correlated with his/her physiological conditions to
identify how various stimuli trigger symptoms.

A real-time depression monitoring system for the home has been developed to
detect the early signs of a depression episode [18]. The data collected are multi-modal,
spanning a number of different behavioral domains including sleep, weight, activities
of daily living, and speech prosody.

An application based on smartphone behavior and activity monitoring proposed in
[19] is able to recognize depressive and manic states and detect state changes of
patients suffering from bipolar disorder and helps to detect state changes in order to
guarantee the availability of in-time treatment.

Other studies outline the associations between depression and cardiac outcomes, as
well as the mechanisms that may mediate these links [20, 21], and aims at investigating
how the autonomic nervous system, in terms of electrodermal activity (EDA), responds
to specific controlled emotional stimuli in bipolar patients [22].

Serious games have been shown to support improved outcomes of depression in
several health conditions [23] even in severe cases such as Alzheimer’s [24]. Appealing
to a user’s sense of self or agency and connectedness with others has been suggested to
improve uptake and support engagement of computer-delivered therapies for depres-
sion and anxiety [25]. Combining data obtained from EEG brain monitoring and other
physiological data such ECG, EMG and gait parameters, along with provocations
provided by involving in serious games [26], physiological activity models of
depression can be established.

3 Model and Methodology

The background of our research is Physiological Computing (PC), which uses physi-
ological data of the users as input during computing tasks. Using such inputs, PC
systems are becoming able to monitor, diagnose and respond to the cognitive, emo-
tional and physical states of persons in real time. The physiological measures are
measured from sensors attached to the body and include Electroencephalography
(EEG), Electrocardiography (ECG), Electromyography (EMG), Heart Rate Variability
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(HRV), etc. The measured data can be used to determine the internal changes and
events occurring within the human body, including the involuntary reactions of the
autonomic nervous system (ANS). As a PC system monitors the user’s state that it
improves, it creates a bio-cybernetic feedback loop [27], which allows to produce a
more accurate representation of the user’s state.

Affective Computing (AC) is a related paradigm of computing that is measuring the
emotional state of a human through behavioral and physiological signals and devel-
oping computational models for the emotional state [28]. One of the key elements in
AC is emotion recognition that estimates the emotional state of users from their
behavioral and physiological responses. The principles of Physiological/Affective
Computing are summarized in Fig. 1.

The proposed mobile health monitoring system using wearable smart identification
sensors (based on EEG, EMG and Physical Activity analysis) that capture stress and
specific behaviors as a result of participation in a serious game, are enhanced with a
knowledge based rule system to interpret the data and characterize depression symptom
trajectories. Depression is associated with a number of affective, motor, and physio-
logical changes that can be detected using the wearable device. We focus on the
following parameters that can be monitored remotely:

1. General level of activity as measured using physical activity sensors (accelerome-
ters, inclinometers and gravity sensors);

2. Analysis of physiological signals (including ECG, EMG and EEG) for identification
of specific biomarkers for mental/affective states for diagnosis of stress, anxiety and
mood disorders.

3. Gaze tracking data during the execution of an on-screen task.

We aim to develop a pervasive and personalized monitoring system for care
assessment in mental health, providing parameters, indices and trends in order to better
assess pathological mood states. The system is to provide a continuous communication
and feedback to the patient and physician through a closed loop in order to facilitate

Fig. 1. Model of a system based on physiological/affective computing paradigm
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disease management by fostering an innovative way to manage the illness, to help
patients, to facilitate interaction between patient and physician, as well as to alert
professionals in case of relapse and depressive or manic episodes. The closed-loop
system is implemented on the patient side through a noninvasive wearable platform to
acquire physiological signals from the patient as well as from a mobile platform. It
records the physiological signals during a dedicated serious game task based on a
prototype described in [29], allows patients to fill out a mood agenda and daily
self-administered questionnaires, and finally, sends data to a remote server wherein the
processing block is located. On the professional side, a central remote server is dedi-
cated to analyze the data acquired from the patients and to provide results to clinicians
for future evaluations. These data are used, together with other data of the same patient
already present in the management platform to extract data mining results that will be
shown to the attending physician, who will use them to optimize patient’s therapy, thus
closing the loop.

The methodology of research includes (1) Evaluation of user affective state using
standard questionnaires; (2) Serious game; (3) Data acquisition; (4) Data analysis using
advanced computing techniques; (5) Research architecture; and is summarized below.

Evaluation of User Affective State
An electronic diary is used to provide a computerized mood chart. To keep users
interested in filling the test and to prevent from random filling, several tests are pro-
vided as a part of a serious game. The initial psychological state of the users is be
evaluated using Social Readjustment Rating Scale (SRRS) [30]. A short test is used
each time a user feels exceptional symptoms of stress/anxiety/mood-change, while a
longer and more detailed test is used to evaluate the state of the user at the end of the
day. A longer and more detailed test is used to evaluate the state of the user at the end
of each week. In case of the occasional changes in the life of the users during the
survey, their state is evaluated using the SRRS. The results of the test survey is used to
find statistically significant biomarkers in physiological date that match the time and
severity of mood disorders across the participant population.

Serious Game
We introduce a serious game as a means to collect data in an engaging and controlled
environment which allows for introduction of mood affecting elements and measure-
ment of human reaction. We have developed a market simulation game based on a
Minority Game model [31], called OilTrader, which allows for users to experience
simplified market conditions while trading the digital shares of the fantasy company
OilFund. It involves seeing historical game outcomes and trying to predict outcome of
the next round. In each round, a player decides to sell or buy the OilFund shares, or is
not to place any trades in that round. Winning a game requires enabling complex
cognitive functions, while a limited response time ensures that an element of stress is
introduced.

Data Acquisition
For the daily monitoring of the state of a human, we use biomarkers. A biomarker is a
biological indicator that reflects underlying physiological processes, including both
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normative processes and pathogenic states [32]. Our aim is to capture allostatic load,
which is a summary measure of the cumulative biological burden of the repeated
attempts to adapt to daily stress [33]. The allostatic load is “the fatigue of the body”
which grows over time when the individual is exposed to repeated or chronic stress. It
represents the physiological consequences of chronic exposure to fluctuating or
heightened neural or neuroendocrine response that results from repeated or chronic
stress. In our case, the stress is induced and simulated by a serious game.

Data acquisition is performed using smart textiles. Clothes are natural possessions
and are part of the processes and routines in our daily life. A wearable shirt is used for
measuring the physiological parameters as well as physical activities (posture [34] and
gait [35]) help to detect the patient’s state. It is such a comfortable device that a patient
does not feel the presence of any sensor or other components in the shirt. The smart
shirt also ensures a wide range of mobility.

The main data that is registered using a smart shirt is electromyography (EMG).
EMG is a product of recruited muscle fibers by descending motor commands, driven
from higher neural centers. EMG analysis is used to evaluate the function of the neu-
romuscular sub-systems and identify kinetic related muscular fatigue. EMG recording
may be considered a sensitive technique for inferring subjective mood states or affective
responses. The differences in EMG features between rest and stress conditions indicate
that EMG is a useful parameter to detect stress levels and assess the state of discomfort
as has been demonstrated in [36]. However, identification of allostatic fatigue require
gathering of data for much longer periods (days instead of minutes) than existing EMG
studies perform. ECG and HRV is also a good indicator of overall activity levels, with a
high heart rate associated with an anxious state and a low rate with a relaxed state [37].
EEG patterns obtained during execution of several different tasks is also used as an
accurate diagnostic marker of Major Depression Disorder (MDD) as suggested in [38].
The eye movement data captured by gaze tracking is used as an indicator of an emo-
tional state. Eye movements during the execution of a task show an increase in reaction
time in prosaccade and antisaccade movements for subjects who report sad mood, which
can be associated with depression [39].

Data Processing and Analysis
First, data is denoised using an extension of the Empirical Mode Decomposition
(EMD) method [40]. Data analysis methods include phase space reconstruction and
correlation analysis. Phase space reconstruction deals with a phase space of a
dynamical system is a space in which all possible states of a system are represented,
with each possible state of the system corresponding to one unique point in the phase
space. The method is useful for detecting the dynamical structure and evolution of a
system. The analysis of periodic and aperiodic orbits in the reconstructed phase space
helps to determine specific mental/affective states of subjects. We use a modified phase
space reconstruction methods that is based on fractional time differences, which allows
extraction of more accurate signal trajectories [41]. Correlation analysis is used to
identify correlations between different physiological signals. It is expected that a person
in a depressive state would have lower levels of correlation (we specifically use
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Pearson correlation and Granger causality [42]) than a person in a normal emotional
state. For classification, nonlinear operators [43] are applied and signals are compressed
to extract features [44–47] before a custom class-adaptive classification method [48] is
applied to assign the correct affective state.

Research Architecture
The architecture of the system is based on the personalized health monitoring frame-
work [49]. The sensorized smart shirt with wireless Body Area Network (BAN) is
interfaced with a smartphone application, for the subject’s usage at home, as well as the
online database for remote supervision. It also stores the data from the smart shirt and
sends them to the server. The components are:

(1) Wearable Smart Shirt System: contains a hooded shirt with integrated BAN,
transmitter and a server computer for distant monitoring. Smart Shirt is used to
provide the individual physiological data. Then this data is transmitted in ad-hoc
wireless communication for further processing using a wireless link.

(2) Wearable Sensor Node: wearable EMG/ECG sensors acquire physiological data
from human body and transmit it through a wireless link.

(3) Consumer-grade EEG device integrated into the hood of a shirt to record the brain
activity of a subject [50].

(4) Gaze tracker to follow the eye landing sites and dwelling time [51].
(5) Smartphone that remains in communication with a central server using the GPRS

technology. Smartphone app provides the audio-visual biofeedback to the user.
(6) Central Server receives sensor data from all subjects and store it in database.

The acquired physiological signals are pre-processed at each node and transmitted
to the wearable data acquisition hardware (sink node) for further processing and
transmitted wireless to a remote monitoring station.

4 Preliminary Results

Our preliminary results include the analysis of Pearson correlations between ECG and
EEG (Fig. 2), analysis of Granger causality at different frequencies between ECG and
EEG (Fig. 3), and Granger causality demonstration on a head model of a subject
(Fig. 4). Here Fp1, …, O2 are stand for scalp electrode positions according to the
International 10–20 electrode placement system.

The results show an increased level of Pearson correlation and Granger causality
associated with frontal, vision association and cognitive processing areas of human
brain. The maximal value of Granger causality obtained at 16–20 Hz can be associated
with the presence of beta waves, which normally are linked with active thinking, focus,
and high alert.
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Fig. 2. Correlation between ECG (S-wave) and EEG channels

Fig. 3. Granger causality between ECG and EEG

430 R. Maskeliūnas et al.



5 Evaluation and Conclusion

The study of EEG and ECG in psychiatric disorders has previously been established,
and these physiological parameters are considered as promising biomarkers for the
detection and monitoring of affective disorders. The technology for the measurement of
the respective parameters is available and the methodology for the analysis and
interpretation of the data collected is established.

We propose the depression behavior measurement model and the system to mea-
sure these biological parameters, and prospectively test the sensitivity of the device in
the early detection of the depressive symptoms. The proposed system will integrate the
measurement of these physiological parameters in a single wearable system, and deploy
the necessary IT systems to store, transmit, and analyze the data that will be used in
future studies to trigger an alarm at a central monitoring station of a possible event
(onset of depression). The envisioned usage scenario for the depressive behavior
recognition system is to provide daily updates to the doctors and, possibly, the patients
who would then look at the trend evolving on the scale of a few days and, if the trend
points toward a negative change of state, make sure that a medical examination is
scheduled.

Our initial findings show that subjects with negative moods have been characterized
by psychomotor retardation and lower correlation between neural and cardiac systems.
The obtained data may be useful for understanding the link between emotion regulation
and mood disorders.

Future work will focus on the analysis of EEG-ECG discordance in the beta band of
EEG and its association with the recorded evidence of mood disorders.

Fig. 4. Granger causalities on a head model
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Abstract. The paper presents a formal system for describing dialogues
with emotional reasoning. This system has been proposed in order to
develop methods of analyzing and searching for dialogue participant’s
optimal strategy. The methodology used draws from a tradition of dia-
logue in games and game theory. Moreover the formal mathematical
model is applied towards designing and implementation of a software
tool. The aim of this tool is to improve communication skills during
parent-child dialogues, and will be an invaluable support for learning
how to talk to children. Developed formalism will also constitute the
basis for semantic verification dialogue protocols (e.g. model checking).

Keywords: Strategy · Persuasive dialogue game · Dialogue protocol ·
Emotions

1 Introduction

Decades ago, having a meaningful conversation with a friend was an enjoyable
experience. People loved meeting, chatting and listening to long stories about
distant lands. Nowadays, one of the most popular forms of communication is
a text conversation. It replaces phone calls and person-to-person conversations,
even with those people you really care about, which are family and friends.
Young people use texting as a way to share or solve some very difficult personal
problems like breaking up. Technology has transformed the way we communicate
but communicating is still one of the best ways to strengthen your connection
with someone. Even though the communication channels have changed, the mes-
sage should stay the same. Therefore, to keep a good relationship with someone
you should focus on asking and answering appropriate questions, engage in con-
versations that offer solutions, learn more about your interlocutor and his/her
behavior, what he/she likes, and what topics grab his/her attention. Multi-agent
systems provide the most natural and persistent methodologies for designing and
implementing an interactive tool that support studying and teaching of conver-
sational abilities, which is the purpose of our research.
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1.1 Aim and Challenge

In this work we focus on dialogues, in particular those between a human being
and a software agent playing the role of the opponent in a discussion. As an exam-
ple, we analyze the specific type of dialogue between a parent and a child. Such
a dialogue should not be considered as some intentional attempt to reach con-
clusions or express mere points of view, but as the very prerequisite of authentic
relationships between people. As a starting point, we have chosen argumentation
dialogues. Argumentation is the act of forming reasons, drawing conclusions, and
applying them to a case in a discussion. It can be an element of persuasion. The
aim of persuasion is to cause someone to do or believe something by asking,
arguing, or giving reasons. The range of possibilities is large. One of them is
the attempt to use argumentation to convince an opponent, without using force.
One of the most important elements of the persuasion process are emotions.
Both the influence of emotions on the process of giving reasons for and against
something as well as the influence of specific arguments on emotions and the
change of their intensity are significant in persuasion. It’s necessary to recog-
nize, name, and manage emotions to have a productive conversation. Ignoring
emotions interferes with reaching an agreement.

The aim of this paper is to propose a formal system which serves as a base for
human-machine tools for implementing persuasive dialogue. These tools will be
a support in the education of communication skills. It can also assist in parents’
self-develop- ment, or in the training of teachers. Incorporating emotions into
this system allows systemization and automation while still have a personal
touch. Such a system will allow automation, but yet the feel of a more personal
message. The tool must be based on a specified protocol. Therefore, analyzed
dialogue must be structured. This means that it is subject to the rules adopted. It
won’t reduce significantly analyzed dialogues but reject those that do not bring
anything new to the study because this dialogue contains a lot of redundant
information or indicates a very irrational behavior of the participants in the
dialogue. This is not of interest in this study. The tools are designed to help
consolidate the desired behavior.

The main question is what we seek in the analyzed dialogues, and why such
an analysis is needed? To answer this question let us consider two examples.
The first one concerns teams. The most common hazard for teams is a lack
of consensus. It is a particularly thorny problem, and brings a lot of teams to
heated arguments, division and disasters. Therefore, the task of the leader of
such a group is to find a solution and use tools which help to build consensus.
The second example concerns marketing strategies and building relationships
with a customer. The seller should use special techniques to keep clients excited
about participating in the sales process. People want to feel special. Therefore,
there is a need to learn more about interested buyers and their behaviors. Who
influences them? Who they follow, etc. so they are all looking for the optimal
strategy and the factors impacting it. They need to know when the persuasion
is impactful and how to convince the recipient to achieve the intended goal.

The same features can be found in a dialogue with a child. Many parents
would like to know how to talk to their children and which strategy to choose
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for reaching an agreement. Do such strategies exist? Are there rules that can help
and assist parents? Systematic and automatic analysis can give us an answer to
these and similar questions and assist parents in choosing effective strategies tai-
lored to the personality of the child, family relationships, and the situation. The
success of a dialogue with the child also strengthens relationships within the fam-
ily. Multi-agent systems can offer great assistance in improving communication
skills.

The original contribution of this paper consists in (a) defining a formal system
suitable for modeling the parent-child dialogue game which uses the concept of
the Nash-style game and (b) introducing a game-theoretic description of strate-
gies that players can choose in this game. For the first time, game theory is used
to characterize games in which emotions play a crucial role. Furthermore, the
game-theoretic concept of solutions like dominant strategies or Nash equilibrium
is used to explore strategic properties of the parent-child dialogue game. As a
result, we get a system that allows to examine the effectiveness of parent’s strate-
gies. This innovative approach is a great theoretical base for the tool designed
for training communication skills.

There are two key questions in this training: (1) Which strategy should you
choose to achieve the intended success? and (2) Does the winning strategy exist?
In response to these questions, it may be helpful to use a tool for automated
verification of dialogue systems. A new description language for such a tool is
introduced in the paper [39]. Developing a verifier relevant for dialogue games is a
big challenge. This verification differs from the typical verification of multi-agent
systems, where the analysis is performed on paths composed of the global states
of the system. In dialogue systems we analyze sequences of actions (dialogue
histories) rather than sequences of states. Obviously, the sequence of actions
determines a sequence of states, but vice versa is not necessarily. The parent-
child dialogue game can be an input of the tool described in [39]. This tool is
designed to verify a wide variety of games, not just the parent-child dialogue.

The rest of the paper is organized as follows. Section 1.2 discusses the related
work. In Sect. 2 the running example is presented. In Sect. 3 the game-theoretic
model for dialogues with emotional reasoning is introduced. Section 4 studies
two types of solutions for the parent-child dialogue game: dominant strategies
and Nash equilibrium. Section 5 concludes the paper.

1.2 Related Work

Dialogue Games. A software tool supporting learning how to conduct con-
versations with elements of persuasion should be equipped with a well defined
mathematical model. To give the theoretical background, we use the terminology
of persuasive dialogue games. Such games are played between two players, of the
kind where one plays the role of proponent and argues for some thesis, and one
is the opponent. The specification of these systems typically is given by defin-
ing the set of locution rules, protocol and the set of effect rules. Locution rules
indicate what kind of actions players can use. They are typically called locu-
tions and include speech acts such as: claim, concede, why, question, and since.
A protocol defines conditions under which specific actions can be executed and
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which actions can go next. In [20,21] protocol is defined by means of legal answer
function and protocol function. Effect rules define results of actions and in [21]
are given by means of global evolution function.

Dialogue games can be intended to examine dialogue types that meet condi-
tions of some policies like prohibition of formal fallacies [19,22] or other dialogue
fallacies (see e.g. [12,42]) or can concentrate on the requirements that dialog-
ical interaction must meet in order to serve specific goals, such as persuasion,
negotiation, information-seeking, and other discourses [2,13,32]. In the current
article a dialogue system which describes parent-child persuasive conversation is
presented. The important part of this kind of a dialogue is to show empathy to
the recipient and understanding and acceptance of his/her emotions. The key is
to ask follow-up questions and without being intrusive, dig deep to find the real
motivations of unsuitable behavior in a child. The parent acts as a coach, who
must choose the appropriate strategy to solve a difficult situation and lead to
approval. Searching for this strategy is the main reason for designing the dia-
logue game. To this end, players are equipped with emotional reasoning ability
[18]. Then some elements of game-theoretic framework are employed to study
which choices constitute the effective strategy [9].

Strategies in Dialogues. Much work has been devoted to strategies [8,35].
However only few of them discuss a Nash-style game-theoretic approach in the
context of dialogue games. Rahwan and Larson [34] focus on constructing a new
dialogue game that satisfy some selected properties but do not analyze the game-
theoretic features like Nash equilibrium for some existing game. The authors
of [33,37] also study the game they construct and study other game-theoretic
features like subgame perfect equilibria. In [17] the DC game introduced by
Mackenzie is taken into consideration. Players’ strategies have a game-theoretic
description and solutions for dominant strategies and Nash equilibrium are ana-
lyzed. In current work the similar analysis is performed for very special type of
game, that is parent-child persuasive dialogue. This analysis has lead to finding
the optimal strategy. Mackenzie’s DC game is also studied in [43] where the
authors show weaknesses of this game in preventing fallacious arguments and
common errors. Black and Hunter’s work [2] offers a dialogue-game-style proto-
col for inquiry dialogue. Emele et al. [11] introduce a theoretical account which
allows players to build flexible and adaptive strategies for agent’s arguing in
information-seeking domains. A logical system for specification and verification
of strategies is discussed in [16]. It enables to reason about the persuasive prop-
erties and develop winning strategies. Although an effort has been devoted to
strategies in games, only a few works employ game-theoretic approach [23,33,34].

The research on the optimization of persuasive strategies in argumentative
dialogues has two main streams. The first one refers to the tradition of game
theory where players maximize their utility and act optimally. The second uses
heuristic-based methods in which players use a strategy following a principle
which is not based on exact calculations, but rather on experience [38]. This
paper fits in the first approach since we assume, study and compute optimal
and monolithic strategies. This is justified in our system because we focus on
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behavior of leaders in dialogues which is assumed to be rational. A methodology
for predicting people’s argumentative choices during a dialogue using Machine
Learning techniques is described in [38]. It uses the approach which does not
force an opponent to act strategically nor optimally.

The development of automated argumentation-based agents combines argu-
mentation theory and methods of multi-agent systems to propose logical systems,
protocols for dialogues or policies for artificial agents to ensure correct and effec-
tive argumentation [3,24]. Much less attention is paid to models of argumentation
that can be applied to humans. Only few of them address this topic [6].

Models of Emotions. Many of the works devoted to formal modeling of emo-
tions in multi-agent systems appeals to appraisal theory of emotions [30,40]
where the main cause of changes in intensity of emotions are the beliefs and
intentions of the agents. The same emotions depend mainly on some events and
their consequences, that is how they impact beliefs, especially those concerning
the possibilities to achieve the intended goal [5,7]. Therefore in formal systems,
emotions are often determined by the mental states of the agents [4].

In our approach, the intensity of emotions also depend on events. It’s just that
these events are verbal actions, spoken during the dialogue. Emotions change not
only under the influence of content of speech acts, but also their type and intent.
For example locution scold is an action expressing frustration and annoyance of
the performer while the recipient feels in connection with this extreme discom-
fort. It can turn into anger or aggression, but also sadness or withdrawal. To
a large extent, it depends on the player’s profile and preferences. In addition,
the change of emotions depends on commitments and public declarations rather
then the beliefs of the agents.

The BDI-like formal model of emotions, which merge both empirical and
theoretical approaches, is given in [29]. The authors introduce the semanti-
cally grounded formal representation of rational dialogue agents, and implements
agents which can express empathy and recognize situations where this should
be shown. BDI description is also used in [14] for deducing and understand-
ing user’s emotions during interaction with a pedagogical virtual agent. In [26]
the communication theory of emotion [28] is applied. In this model emotional
behavior is based on selected mental attitudes expressed in modal logic and emo-
tions which indicate which actions should be performed by the agent. In many
works (see e.g. [1]) to generate emotions the Ortony, Clore and Collinss (OCC)
model is used [30]. It states that the strength of an agent’s emotion depends on
the events, other agents and objects found in the multi-agent environment. The
model distinguishes 22 emotion categories and five processes which determine
the behavior of the agent.

In recent times, more and more systems are equipped with agents with
emotional interactions. This feature significantly improves the expressiveness,
adaptability, and credibility of agents. This is very important in the design of
virtual, embodied agents, the aim of which is to keep human-machine interac-
tion. Other applications can be found in verification of hypotheses in theories
of emotions, developing new techniques for computer games or improvement of
decision-making mechanisms [27,41].
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2 Parent-Child Persuasive Dialogue

This section shows a dialogue that will become the basis for further discussion.
It is a dialogue between a parent (P) and his 10 year old child (C). Dialogue is
presented in 3 different versions. The beginning of all the dialogues is the same.
Later the parent chooses one of the three strategies. The result of these dialogues
is of course different. Dialogues are included in the following tables with their
description in a formal dialogue system.

Dialogue 1

Player Utterance Locution Locution’s
name

P: Dinner is ready. Come and get it. claim α1 a1

C: This is dinner? It isn’t ready. claim ¬α1 a2

P: Why isn’t it ready? why ¬α1 a3

C: Oh, these are whole pieces of food that
you’ve just cooked

¬α1 since {α2} a4

P: That’s right concede α2 a5

C: Do you think I’ll eat it? question α3 a6

P: Yes claim α3 a7

C: Why would I want to eat it? why α3 a8

P: Because today we’re eating something
healthy for dinner

α3 since {α4} a9

C: How can I be sure this is healthy? why α4 a10

P: Because I said so α4 since {α5} a11

C: I had pizza for breakfast, and then
I got a 5 in math

claim α6 a12

P: That’s not the way it works! scold ¬α7 a13

C: I think it’s cold claim α8 a14

P: It’s not cold scold ¬α8 a15

C: Look at it. It’s gone cold scold α8 a16

P: Obey, it’s not cold. scold ¬α8 a17

C: I’ll eat it if you let me play on the computer. claim α9 a18

P: I don’t agree claim ¬α9 a19

C: Why? why ¬α9 a20

P: Because I’m the grown-up and I said so.
Now quit asking me and go do something else
besides talking to me, for the love of God !

¬α9 since {α10} a21

C: Why are you yelling these things at me? why α11 a22

P: I’m sorry, I didn’t mean to yell. retract α11 a23

C: I’m not going to eat this meat. claim α12 a24

P: I’ll order pizza claim α13 a25
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In this version, the child is trying to convince the parent that pizza is the
best for lunch. He asks a lot of questions, has a lot of responses and leads the
parent to irritation. The parent feels a sense of guilt because of screaming at the
child and decides to order pizza. The child wins the dialogue.

Dialogue 2

Player Utterance Locution Locution’s
name

P: Dinner is ready. Come and get it. claim α1 a1

C: This is dinner? It isn’t ready. claim ¬α1 a2

P: Why isn’t it ready? why ¬α1 a3

C: Oh, these are whole pieces of food that
you’ve just cooked

¬α1 since {α2} a4

P: You always complain about food ! scold α14 a26

C: If you cooked like John’s mom, I won’t complain! scold α15 a27

P: So go to John’s mom! scold α16 a28

C: I’ll eat potato chips! claim α17 a29

P: You never eat anything healthy ! scold α18 a30

In the second version of the dialogue, the parent often uses the action scold.
The response of the child who feels cornered is screaming and wailing. As a
result, no one wins. For both this situation is not favorable.

Dialogue 3

Player Utterance Locution Locution’s
name

P: Dinner is ready. Come and get it. claim α1 a1

C: This is dinner? It isn’t ready. claim ¬α1 a2

P: Why isn’t it ready? why ¬α1 a3

C: Oh, these are whole pieces of food that
you’ve just cooked

¬α1 since {α2} a4

P: I see that you don’t like turkey. claim α19 a31

C: Exactly ! nod α19 a32

P: I understand, but you can eat it
or go to sleep hungry

claim α20 a33

C: No, I’ll just eat potato chips! ¬α20 since {α17} a34

P: You can’t. We don’t have any. ¬α17 since {α21} a35

C: OK, I’ll eat this meat if I have to. concede α1 a36
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In the last version, the parent shows interest, understanding and acceptance
of the child’s emotions. Simultaneously, he is consistent and gives the child a
choice. The child agrees to eat dinner, though he prefers something else. The
parent’s goal is reached. The child doesn’t protest, because his need for accep-
tance is satisfied.

The above dialogues can be played in a single dialogue game. In this game
there are two players P and C. They perform alternate actions. There are 36
actions, Act = {a1, . . . , a36}. Each action consists of locution and its content.
The used speech acts are: claim, why, since, concede, question, scold, retract,
nod. There are 21 applied contents, S0 = {α1, . . . , α21}, of the form ‘Dinner is
ready. Come and get it.’, ‘This is dinner? It isn’t ready.’, ‘Why isn’t it ready? ’,
‘Oh, these are whole pieces of food that you’ve just. . . cooked.’, etc.

3 A Game-Theoretic Model

In this section the model of a parent-child game is described in the game-theoretic
terminology. The model is a dialogue game formalizing persuasive dialogue with
elements of argumentation. When defining the model we use the following stan-
dard notation. Given a set Σ, the set of all finite sequences over Σ is denoted
by Σ∗ and the set of all infinite sequence over Σ is denoted by Σω. The empty
sequence is denoted by ε and the operation of concatenation is denoted by ·.
Given sets A, B, C ⊆ A, D ⊆ B, and a function f : A → B, we use

−→
f (C), to

denote the image of C, and
−→
f −1(D) to denote the inverse image of D. Before

we define the game, we need to define the following parameters of the game: the
set of statements, and the set of locutions.

Let S0 be a non-empty and countable set called the set of atomic statements.
The set of statements, FORM [S0], is a minimal set such that:

– S0 ⊆ FORM [S0].
– If s ∈ FORM [S0], then ¬s ∈ FORM [S0]. (Negation)
– If T ⊆ FORM [S0], then

∧
T ∈ FORM [S0]. (Conjunction)

– If T ⊆ FORM [S0], then
∨

T ∈ FORM [S0]. (Alternative)
– If s, t ∈ FORM [S0], then s → t ∈ FORM [S0]. (Conditional)

The set of locutions, L[S0], is then defined as follows:

L[S0] = {ε} ∪ {claim ϕ : ϕ ∈ FORM [S0]} ∪ {concede ϕ : ϕ ∈ FORM [S0]}∪
{why ϕ : ϕ ∈ FORM [S0]} ∪ {scold ϕ : ϕ ∈ FORM [S0]} ∪ {nod ϕ : ϕ ∈ FORM [S0]}∪
{ϕ since {ψ1, . . . , ψn} : ϕ, ψ1, . . . , ψn ∈ FORM [S0]} ∪ {retract ϕ : ϕ ∈ FORM [S0]}∪

{question ϕ : ϕ ∈ FORM [S0]}.

All the expression from the set FORM [S0], which have been spoken are
treated as public declarations of players and are called commitments. The com-
mitments of player i are stored in the commitment set Ci. This set changes
during the course of the dialogue.
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A key element of an effective strategy is to influence the change of the oppo-
nent’s emotions. There are five emotions considered in this dialogue system: fear,
disgust, joy, sadness, and anger. These emotions are recognized by Ekman [10] as
emotions which are universal despite the cultural context. They are universal for
all human beings and are experienced and recognized in the same way all around
the world. Other emotions are mixed and built from those basic emotions.

The strength (intensity) of emotions is represented by natural numbers from
the set {1, 2, . . . , 10}. Thus, the emotion vector Ei is a 5-tuple consisting of
five values which refer to fear, disgust, joy, sadness, and anger, respectively. The
change in the intensity of the emotions is dependent on the type of the performed
locution as well as on its content.

Given a set of atomic statements, S0, the parent-child persuasive game is a
tuple

Γ[S0] = 〈Pl, π, H, T, (�i)i∈Pl, (Ai)i∈Pl, (AAFi)i∈Pl, (Ci)i∈Pl, (Ei)i∈Pl, (Initi)i∈Pl〉
where

– Pl = {P,C} is the set of players.
– H ⊆ L[S0]∗ ∪ L[S0]ω is the set of histories. A history is a (finite or infinite)

sequence of locutions from L[S0]. The set of finite histories in H is denoted
by H̄.

– π : H̄ → Pl ∪ {∅} is the player function assigning to each finite history the
player who moves after it, or ∅, if no player is to move. The set of histories
at which player i ∈ Pl is to move is Hi = −→π −1(i).

– T = −→π −1(∅)∪(H∩L[S0]ω) is the set of terminal histories. A terminal history
is a history after which no player is to move, hence it consists of the set of
finite histories mapped to ∅ by the player function and the set of all infinite
histories.

– �i⊆ T × T is the preference relation of player i defined on the set of termi-
nal histories. The preference relation is a total preorder, i.e. it is total and
transitive.

– Ai = L[S0] is the set of actions of player i ∈ Pl.
– AAFi : Hi → 2Ai is the admissible actions function of player i ∈ Pl, deter-

mining the set of actions that i can choose from after history h ∈ Hi.
– Ci : L[S0]∗ → 2FORM [S0] is the commitment set function of player i ∈ Pl,

designating the change of commitments.
– Ei : L[S0]∗ → Emotioni is the emotion intensity function of player i ∈ Pl,

designating the change of emotions where Emotioni is the set of possible
emotional states of i.

– Initi determines the initial attributes of player i and consists of the set of
initial commitments ICi and the initial state of emotions IEi.

In what follows we will assume that the set of atomic statements S0 is fixed
and omit it, writing FORM rather than FORM [S0] and L rather than L[S0].
We start by defining the properties of the player function. In the case of parent-
child persuasive dialogue system, π(h) ∈ {P, ∅} if |h| is odd and π(h) ∈ {C, ∅}
if |h| is even.
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Having defined the sets of actions for the players and the player function, we
move on to define the admissible actions functions of the players. The functions
are determined by the rules of dialogue. In the case of parent-child dialogue
system, the rules of dialogue are defined using the notion of players’ commitment
sets and emotion levels.

The commitment set function of player i is a function

Ci : L∗ → 2FORM ,

assigning to each finite sequence of locutions h ∈ L∗ the commitment set Ci(h)
of i at h. The commitment set function of i ∈ Pl is defined inductively as follows.

CR0 Ci(ε) = ICi.
CR1 If h ∈ L∗, ϕ ∈ FORM and i = π(h), then

Ci(h · a) = Ci(h) for a ∈ {why ϕ, question ϕ}.

CR2 If h ∈ L∗, ϕ ∈ FORM and i = π(h), then

Ci(h · a) = Ci(h) ∪ {ϕ} for a ∈ {claim ϕ, scold ϕ, concede ϕ, nod ϕ}.

CR3 If h ∈ L∗, ϕ,ψ1, . . . , ψn ∈ FORM and i = π(h), then

Ci(h · a) = Ci(h) ∪ {ϕ,ψ1, . . . , ψn} for a ∈ {ϕ since{ψ1, . . . , ψn}}.
CR4 If h ∈ L∗, ϕ ∈ FORM and i = π(h), then

Ci(h · a) = Ci(h) \ {ϕ} for a ∈ {retract ϕ}.

The emotion intensity function of player i is a function

Ei : L∗ → Emotioni,

assigning to each finite sequence of locutions h ∈ L∗ the emotion vector Ei(h) of
i at h. The set Emotioni consists of all possible 5-tuples for levels of emotions,
i.e.,

Emotioni = {(n1, . . . , n5) : nk ∈ {1, . . . , 10} ∧ k ∈ {1, . . . , 5}}.
The emotion intensity function of i ∈ Pl determines the change of intensity of
emotions and is defined inductively as follows.

ER0 Ei(ε) = IEi.
ER1 If h ∈ L∗, a ∈ L and j = π(h), then

Ei(h · a) = EMOTi(Ei(h), j, a),

where EMOTi : Emotioni ×Pl×L → Emotioni is a function which shows
how emotions of player i can change if player j performs action a after the
history h. This function is defined for each specific application and depends
on player’s profile and character.
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The admissible actions function AAFi of player i ∈ Pl is defined below,
where, for i ∈ Pl, −i ∈ Pl\{i} denotes the opponent for i. Given h ∈ Hi,
AAFi(h) is a maximal set of locutions satisfying the following:

R0 AAFi(ε) = InitActions,
where InitActions are locutions that can begin a dialogue. It is mostly a col-
lection of actions of the type claim, question, since. Therefore InitActions ⊆
{claim ϕ, question ϕ, ϕ since {ψ1, . . . , ψn} : ϕ,ψ1, . . . , ψn ∈ FORM}.

R1 If h = h′ · claim ϕ, i ∈ π(h), ψ �∈ Ci(h) then

AAFi(h) = {why ϕ, concede ϕ, claim ψ,¬ϕ since {ψ1, . . . , ψn}}
for some ψ,ψ1, . . . , ψn ∈ FORM . Moreover, the set is extended to the fol-
lowing actions, if the following conditions are met:

- if Ei(h)[k] > 5 for k ∈ {1, 5}, then scold ψ ∈ AAFi(h) for some ψ ∈
FORM ,

- if Ei(h)[k] < 5 for k ∈ {2, 3, 4}, then nod ψ ∈ AAFi(h) for some ψ ∈
FORM .

R2 If h = h′ · scold ϕ, i ∈ π(h), ψ �∈ Ci(h), then

AAFi(h) = {why ϕ, concede ϕ, claim ψ, scold ψ, ¬ϕ since {ψ1, . . . , ψn}}
for some ψ,ψ1, . . . , ψn ∈ FORM .

R3 If h = h′ · ϕ since {ψ1, . . . , ψn}, i ∈ π(h), ψ �∈ Ci(h) then

AAFi(h) = {why ϕ, concede ϕ, claim ψ, ¬ϕ since {ψ1, . . . , ψn}}
for some ψ,ψ1, . . . , ψn ∈ FORM . Moreover, the set is extended to the fol-
lowing actions, if the following conditions are met:

- if Ei(h)[k] > 5 for k ∈ {1, 5}, then scold ψ ∈ AAFi(h) for some ψ ∈
FORM ,

- if Ei(h)[k] < 5 for k ∈ {2, 3, 4}, then nod ψ ∈ AAFi(h) for some ψ ∈
FORM ,

- if ψ ∈ C−i(h) and Ei(h)[k] > 5 for k ∈ {1, 5}, then concede ψ ∈ AAFi(h)
for some ψ ∈ FORM .

R4 If h = h′ · why ϕ, i ∈ π(h), then

AAFi(h) = {retract ϕ, ϕ since {ψ1, . . . , ψn}}
for some ψ,ψ1, . . . , ψn ∈ FORM .

R5 If h = h′ · question ϕ, i ∈ π(h), then

AAFi(h) = {retract ϕ, claim ϕ, claim ¬ϕ}.

R6 If h = h′ · a, a ∈ {concede ϕ, nod ϕ, retract ϕ}, i ∈ π(h), ψ �∈ Ci(h), then

AAFi(h) = {claim ψ, nod ψ, scold ψ, ψ since {ψ1, . . . , ψn}}
for some ψ,ψ1, . . . , ψn ∈ FORM .



446 M. Kacprzak

The set of histories, H, is the maximal set of sequences from L∗∪Lω satisfying
the following:

– ε ∈ H.
– For any h1 · h2 ∈ H with h1 ∈ L∗ and h2 ∈ L∗ ∪ Lω, h1 ∈ H.
– For any h1·s·h2 ∈ H with h1 ∈ L∗, h2 ∈ L∗∪Lω and s ∈ L, s ∈ AAFπ(h1)(h1).

The last two elements of the game are player preferences and the termina-
tion rules that describe which finite histories are mapped to ∅. The definition
of termination rules and preferences on terminal histories depend on the type
of dialogue the system is applied to and also some other application-dependent
considerations (some players could prefer histories which are shorter, as long as
they attain their objectives in the end). The parent-child dialogue system is a
pure persuasion system [32]. Therefore, the game should end if one of the follow-
ing happens: (i) The commitment sets of both players contain some expression
t which is the agreement of both players that, for example, the child is ready to
eat the dinner, or (ii) neither player’s commitment set contains the expression t.

Although the purpose of the parent is to influence on behavior of the child,
this may not be the result of intimidation. A wise parent tries to explain or
justify their decisions. However, the use of violence, even verbal is unacceptable.
The parent’s victory also means that the child is not scared or upset. Therefore,
the level of child’s emotions like fear, sadness, and anger may not exceed the
value 5. Likewise, it can be concluded that the child is successful when the
parent interrupts convincing, but does not do it with anger and aggression.

Formally, this amounts to a definition of finite terminal histories, which are
defined as follows. A finite history h ∈ H̄ is terminal, i.e. π(h) = ∅, if one of the
following conditions is satisfied:

TParent :EC(h)[k] ≤ 5 for k ∈ {1, 4, 5} and t ∈ CP(h) ∩ CC(h),
TChild : EP (h)[k] ≤ 5 for k ∈ {1, 4, 5} and t /∈ CP(h) ∪ CC(h).

Note that, since in the parent-child system the set of admissible actions at
each non-terminal history is non-empty, a finite history can be terminal only if
one of the above conditions is satisfied.

Having defined finite terminal histories we will now define the preferences of
the players. Let Hwin

P denote the set of finite histories for which condition TParent

is satisfied and let Hwin
C denote the set of finite histories for which condition

TChild is satisfied. Set Hwin
P contains the terminal histories at which player P,

the proponent, is the winner, and set Hwin
C contains the terminal histories at

which player P, the opponent, is the winner.
We assume the following preference relation on terminal histories. Given

h1, h2 ∈ T ,
h1 �P h2 if h2 ∈ Hwin

P or h2 /∈ Hwin
C and h1 ∈ Hwin

C or

h1, h2 �∈Hwin
P ∪Hwin

C and EC(h1)[k]<EC(h2)[k] for at least one k∈{1, 4, 5} and

h1 �C h2 if h2 ∈ Hwin
C or h2 /∈ Hwin

P and h1 ∈ Hwin
P or

h1, h2 �∈ Hwin
P ∪ Hwin

C and EP (h1)[k] < EP (h2)[k] for at least one k ∈ {1, 4, 5}.
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In other words, each player prefers a terminal history at which he wins to that
at which he does not win, and each player prefers a history at which the opponent
does not win to one at which the opponent wins. Moreover, both players prefer
histories after which the interlocutor is not scared, sad or angry, i.e. the levels
of this emotions are as low as possible.

4 Player’s Persuasive Strategy

A strategy of a player i is a function from player i’s histories to the set of actions
Si : Hi → L, such that for all h ∈ Hi, Si(h) ∈ AAFi(h). Thus a strategy is a
contingent plan that determines a player’s move at each of his histories. The set
of strategies of player i is denoted by Si. A strategy profile S̄ = (Si, S−i) is a
pair of strategies chosen by each of the players, S̄ ∈ Si × S−i. Every strategy
profile S̄ = (Si, S−i) determines a unique terminal history hS̄ such that for
each strategy s ∈ Si ∪ S−i, finite history h′ ∈ H̄ and history h′′ ∈ H with
hS̄ = h′ ·a ·h′′, a = Sπ(h′)(h′). Player i ∈ P prefers strategy profile S̄ to strategy
profile S̄′, S̄′ �i S̄, if hS̄′ �i hS̄ . Solution concepts define sets of strategy profiles
which represent stable outcomes of the game. Below we define two basic solution
concepts and illustrate them in the context of pure persuasion.

A strategy Si is dominant for player i if for all S′
i ∈ Si and all Sj ∈ Sj with

j = −i,
(S′

i, Sj) �i (Si, Sj).

A strategy is strictly dominant if the property above holds with strict inequality.
A strategy profile S̄ = (Si, S−i) is a solution in (strictly) dominant strategies iff
Si is dominant for player i and S−i is dominant for player −i. The solution in
strictly dominant strategies, if it exists, is unique.

A strategy profile S̄ = (Si, S−i) is a Nash equilibrium if for all i ∈ P and for
all S′

i ∈ Si,
(S′

i, S−i) �i (Si, S−i).

Note that if the game has a solution in dominant strategies, then it also has
a Nash equilibrium (but the reverse is not necessarily true).

Consider a parent-child game Γ[S0] defined for the set of atomic statements
S0 = {α1, . . . , α21} such as in Sect. 2. The initial attributes of players are defined
below. The sets of initial commitments are ICP = CP (∅) = ∅, ICC = CC(∅) = ∅.
The vectors of initial emotions which determine intensity of fear, disgust, joy, sad-
ness, and anger are IEP = EP (∅) = (1, 2, 7, 2, 3), IEC = EC(∅) = (3, 4, 6, 3, 4).
The initial action is only one InitActions = {a1} = {claim(α1)}. Other actions
Act = L[S0] = {a2, . . . , a36} are described is Sect. 2. The admissible action func-
tions for players given in Sect. 3 define very liberal dialogue system. Let us limit
them here to the following:

AAFP (h′ · ai) =
{{a5, a26, a31} if i = 4

ai+1 otherwise,

AAFC(h′ · ai) = ai+1 for any history h′ · ai ∈ HC .
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Table 1. Player’s emotions during the dialogue 1.

Therefore, only three histories are legal:

h1 = (a1, a2, a3, a4, a5, . . . , a25),
h2 = (a1, a2, a3, a4, a26, a27, . . . , a30),
h3 = (a1, a2, a3, a4, a31, a32, . . . , a36).

They are presented in Sect. 2. According to them players have the following
strategies. The parent has 3 strategies:

S1
P (h′ · a4) = a5 and S1

P (h′ · ai) = ai+1 for any history h′ and i =
{2, 6, 8, 10, . . . , 24}.

S2
P (h′ ·a4) = a26 and S2

P (h′ ·ai) = ai+1 for any history h′ and i = {2, 27, 29}.
S3

P (h′ ·a4) = a31 and S3
P (h′ ·ai) = ai+1 for any history h′ and i = {2, 32, 34}.

The child has one strategy:

S1
C(h′ · ai) = ai+1 for any history h′ and i = {1, 3, . . . , 23, 26, 28, 31, 33, 35}.

Assume that the commitment set function, players’ preferences and finite ter-
minal histories are as defined in Sect. 3. The EMOTp and EMOTC functions
are determined by Tables 1 and 2 where the change of players’ emotions in the
course of the dialogue is described. The first action is performed by the parent.
Next, players make their moves alternately.

Note that after the history h3, the commitment sets of both players con-
tain α1:

α1 ∈ CP (h3) ∩ CC(h3).

The parent claims α1 at the first move and the child concedes it in the last
move. Furthermore, the levels of child’s fear, sadness, and anger are lower then
5 (see Table 2):

EC(h3)[1] = 2, EC(h3)[4] = 4, EC(h3)[5] = 4.
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Table 2. Player’s emotions during the dialogues 2 and 3.

Whereas, after the histories h1 and h2, α1 is only in the commitment set of
the parent:

α1 ∈ CP (hi) and α1 �∈ CC(hi) for i = 1, 2

and most of levels of child’s fear, sadness, and anger are greater than 5:

EC(h1)[1] = 4, EC(h1)[4] = 5, EC(h1)[5] = 6,

EC(h2)[1] = 6, EC(h2)[4] = 6, EC(h2)[5] = 9.

Comparing these levels, we find that the history 2 leads to a state in which
the child is more frightened and upset than after the history 1. However, the
parent prefers situations in which the child is happy than situations where he is
sad and scared.

Thus, for the strategy S3
P , the outcome most preferred by player P is

obtained. Moreover, for any strategy SC of player C, the outcome of the game
from strategy profile (S3

P , SC) is the same, i.e., the commitment sets of both
players contain α1. Taking all this into account, we can conclude that strategy 3
is dominant for the parent since

(S2
P , S1

C) �P (S1
P , S1

C) �P (S3
P , S1

C)

and at the same time the strategy profile (S3
P , S1

C) is a Nash equilibrium of the
game and leads to an outcome whereby the parent wins. This means that the
parent should choose the strategy S3

P to be successful.
The aim of the above example is to show the idea of the presented formal

model and its analysis. The functions EMOT and AAF for real scenarios which
we want to study are much more complex and will be the subject of future
research. All aspects related to the change of emotions are consulted with a
group of psychologists who specialize in this subject.
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5 Conclusion

Designing conversational agents is one of the strongest trends in artificial intelli-
gence. The paradigm of multi-agent systems as well as methods and techniques
commonly used for construction and analysis of these systems can be successfully
used to construct a computer program that simulates human conversation. More
and more chatbots are engineered. They represent online stores, City offices,
insurance companies, telecommunications companies, etc. Problems associated
with speech recognition, speech synthesis, text recognition, text synthesis are
very excited but many of them still remains a challenge.

Learning effective persuasion can also be realized using the conversational
platform that provides tools for learning and training rules governing the con-
versation and looking for optimal or winning strategies. The large database of
examples is the excellent background of such a system. In this paper a formal
basis for a system which simulates human conversation using text messages was
proposed. This is a mathematical model which will be used in implementation of
a software tool. Furthermore, the protocols concerning persuasive dialogues will
be verified by means of symbolic model checking techniques [25,44]. We plan to
apply bounded model checking (BMC) and other techniques used for verification
multi-agent systems with knowledge and group strategies [15,31,36]. The math-
ematical model constitutes a theoretical base for an automatic verification tool.
The prototype of this system was presented in [18]. This time the focus was on
building and analyzing strategies. Therefore our approach combines argumenta-
tion theory, the paradigm of multi-agent systems and formal model of emotions.
All the above is incorporated into the formalism of dialogue systems described in
the game-theory terminology. The goal of our research is to construct a dialogue
agent that will support learning how a wise parent should talk to the child.
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framework of the work S/W/1/2014 and funded by Ministry of Science and Higher
Education.
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Lemâıtre, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS, vol.
3315, pp. 901–911. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30498-2 90

15. Jones, A.V., Lomuscio, A.: Distributed BDD-based BMC for the verification of
multi-agent systems. In: van der Hoek, W., Kaminka, G.A., Lespérance, Y., Luck,
M., Sen, S. (eds.), 9th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2010), Toronto, Canada, May 10–14, 2010, vol. 1–3, pp.
675–682. IFAAMAS (2010)

16. Kacprzak, M., Budzynska, K.: Reasoning about dialogical strategies. In: Graña,
M., Toro, C., Howlett, R.J., Jain, L.C. (eds.) KES 2012. LNCS (LNAI), vol. 7828,
pp. 171–184. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37343-5 18

17. Kacprzak, M., Dziubinski, M., Budzynska, K.: Strategies in dialogues: a game-
theoretic approach. In: Parsons, S., Oren, N., Reed, C., Cerutti, F. (eds.) Compu-
tational Models of Argument - Proceedings of COMMA 2014, Atholl Palace Hotel,
Scottish Highlands, UK, September 9–12, 2014, Frontiers in Artificial Intelligence
and Applications, vol. 266, pp. 333–344. IOS Press (2014)

18. Kacprzak, M., Rzenca, K., Sawicka, A.Z.A., Zukowska, K.: A formal model of an
argumentative dialogue in the management of emotions. In: Poznan Reasoning
Week, L&C 2016/14th ArgDiap/QuestPro 2016 Abstracts (2016)

19. Kacprzak, M., Sawicka, A.: Identification of formal fallacies in a natural dialogue.
Fundam. Inform. 135(4), 403–417 (2014)

20. Kacprzak, M., Sawicka, A., Zbrzezny, A.: Dialogue systems: modeling and predic-
tion of their dynamics. In: Abraham, A., Wegrzyn-Wolska, K., Hassanien, A.E.,
Snasel, V., Alimi, A.M. (eds.) Proceedings of the Second International Afro-
European Conference for Industrial Advancement AECIA 2015. AISC, vol. 427,
pp. 421–431. Springer, Cham (2016). doi:10.1007/978-3-319-29504-6 40

21. Kacprzak, M., Sawicka, A., Zbrzezny, A.: Towards verification of dialogue proto-
cols: a mathematical model. LNAI 9693, 329–339 (2016)

22. Kacprzak, M., Yaskorska, O.: Dialogue protocols for formal fallacies. Argumenta-
tion 28(3), 349–369 (2014)

http://dx.doi.org/10.1007/978-3-642-12805-9_6
http://dx.doi.org/10.1007/978-3-642-12805-9_6
http://dx.doi.org/10.1007/978-3-540-30498-2_90
http://dx.doi.org/10.1007/978-3-642-37343-5_18
http://dx.doi.org/10.1007/978-3-319-29504-6_40


452 M. Kacprzak

23. Matt, P.-A., Toni, F.: A game-theoretic measure of argument strength for abstract
argumentation. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008.
LNCS (LNAI), vol. 5293, pp. 285–297. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-87803-2 24

24. McBurney, P., Parsons, S.: Dialogue games for agent argumentation. In: Simari, G.,
Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 261–280. Springer
US, New york (2009). doi:10.1007/978-0-387-98197-0 13

25. Meski, A., Penczek, W., Szreter, M., Wozna-Szczesniak, B., Zbrzezny, A.: BDD-
versus SAT-based bounded model checking for the existential fragment of linear
temporal logic with knowledge: algorithms and their performance. Auton. Agents
Multi-agent Syst. 28(4), 558–604 (2014)

26. Meyer, J.-J.C.: Reasoning about emotional agents. In: Proceedings of the 16th
European Conference on Artificial Intelligence, pp. 129–133. IOS Press (2004)

27. Nawwab, F.S., Dunne, P.E., Bench-Capon, T.: Exploring the role of emotions in
rational decision making. In: Proceedings of COMMA (2010)

28. Oatley, K.: Best Laid Schemes: The Psychology of the Emotions. Cambridge Uni-
versity Press, Cambridge (1992)

29. Ochs, M., Sadek, D., Pelachaud, C.: A formal model of emotions for an empathic
rational dialog agent. Auton. Agents Multi-agent Syst. 24(3), 410–440 (2012)

30. Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cam-
bridge University Press, United Kingdom (1998)

31. Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundam. Inform. 55(2), 167–185 (2003)

32. Prakken, H.: Models of persuasion dialogue. In: Simari, G., Rahwan, I. (eds.)
Argumentation in AI, pp. 281–300. Springer US, New York (2009). doi:10.1007/
978-0-387-98197-0 14

33. Procaccia, A.D., Rosenschein, J.S.: Extensive-form argumentation games. In:
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Abstract. The background for this paper is a development that the
Danish hospitals are undertaking which requires the establishment of a
common emergency department. It is uncertain exactly what and how
many resources the department needs and so resources are assigned
dynamically as seen necessary by the staff. Such dynamic adjustments
pose a challenge in predicting what consequences these adjustments may
lead to. We propose an approach to deal with this challenge that applies
simulation with intelligent agents and logics for organizational reason-
ing. We present some of the expected obstacles with this approach and
potential ways to overcome them.

Keywords: Multi-agent organizations · Logic · Simulation · Soft com-
puting · Process mining

1 Introduction

One of the fundamental ideas behind multi-agent systems is that agents act
autonomously but in practice the agents are often encoded with rules for coordi-
nation that limit their ability to do so. A recent approach to address this issue is
by agent organizations [5]. The agents in an organization are aware of the norms
of the organization but may choose to go against rigorous rules decided by the
organization.

Our work is motivated by a recent development in how the Danish hospi-
tals manage acute patients. We consider agent based simulation as a tool for
forecasting delayed treatments and expected waiting times. We argue that agent
organizations are appropriate for simulating human behavior because of the nor-
mative aspect: humans generally act according to the norms of the hospital and
may act against rigorous rules that have been decided at a top level.

Inspired by the approach for agent simulation of an emergency department
by Taboada et al. [10], we propose an approach in which we distinguish between
three types of agents in the hospital organization: those are the active, the pas-
sive, and the external agents. For modeling the relationship between the agents
we use AORTA, a logical framework for agent organizations developed by Jensen
et al. [6]. We argue that a formalization of the framework in the proof assistant
c© Springer International Publishing AG 2017
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Isabelle/HOL [15,16] can be useful in verifying properties of the framework and
potential new extensions that we make during the project.

Finally we propose ideas on using KPIs to measure the ‘distance’ between the
expected global behavior, as expressed in the organization model, and the actual
global state as expressed by staff activity logs. The motivation is to automati-
cally extend the organizational model in the simulation from the data that the
hospital produces. In this way, the simulation should adjust itself to changes in
the behavior of the people at a given hospital and reduce some of the complexity
in the initial hand-crafted model.

2 Background

Traditionally, an emergency department takes care of acute patients and acts as
an entrance to further treatment in hospital. The acute treatment is taken care
of by acute doctors and the further treatment is taken care of by specialists.
The Danish hospitals are undergoing a reform in which they establish a com-
mon emergency department (FAM, Danish: Fælles AkutModtagelse) where all
acute patients can receive treatment from both specialists and acute doctors [1].
The vision is to put the patient in focus and plan the staff for the treatment
of the patient. A straightforward way to achieve this vision would be to hire
more staff for the FAM but it is not a feasible solution due to the cost and
the constrained budget. As a consequence, the FAM draws on staff from the
specialized departments that carry out operations, patient status check-ups and
other scheduled activities. It also means that the scheduled activities may be
delayed because the specialists are called to the FAM for an acute patient or
that an acute patient may have to wait for a long time because a specialist is
not available. The scenario is illustrated in Fig. 1.

2.1 Agent-Based Simulation

In our work, we will attempt to simulate the consequences of the actions of the
agents in the FAM and forecast likely delayed treatments and expected waiting
times for the acute patients. Simulation has been found useful for planning phys-
ical resources and staff for the FAM as it produces more accurate results than
traditional analytic approaches which tend to oversimplify the processes that
go on in the department [1,2]. Following the arguments presented at the UK
Operational Research Societys Simulation Workshop 2010 [4] and in the work of
Zhengchun Liu et al. [3], we believe that agent-based simulation is a promising
alternative for simulating a complex system with conflicting goals like the FAM
scenario.

2.2 Modeling Human Behavior

In general, hospital regulations describe best practice in an open manner and it
is then up to the individual staff members to determine the exact work processes
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Fig. 1. A case in the FAM scenario. Two doctors from department 1 were called for
FAM to assist with two acute patients. As a result, the treatments that they were
scheduled for were delayed.

that also fit within the individual hospital. Thus the regulations are not suffi-
cient for making a process model for an emergency department and a process
model that is accurate across different hospitals easily grows highly compli-
cated to maintain manually. With the advent of powerful computers that allow
analysis on big data, there has been an increasing focus on systems that learn
from human behavior, and soft computing systems that are inspired by human
behavior. Process mining is an approach for discovering process models, checking
conformance of models and extending models for such systems based on event
logs generated by an actual organization. In the context of healthcare, process
mining has been studied with the purpose of providing insight into the complex
system of a hospital that deals with a lot of human behavior and human values.
Typically the hospital model is based on a top-down analysis of the processes
that result from the interaction between the individuals in the hospital [11–13].
In our approach, we combine a top-down model that describes the organization
with a bottom-up model that describes the interaction between individuals. Con-
sidering the high amount of uncertainty in the FAM environment that depends
on eventualities and causalities, we expect our approach to provide better insight
into the processes of the environment than with a pure top-down approach.

3 The Hospital as a Multi-Agent Organization

A multi-agent system is specified at two levels: the agent level and the system
level. At agent level, an agent architecture defines the behavior of the agent. At
system level, a framework defines the world that the agents are acting within.
The framework includes the environment and interaction protocols. Ideally, the
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agent architectures and the system framework should be loosely coupled such
that new agents can enter the system with only local changes to the system, and
so that the agents can act independently no matter what architecture they use.

A key challenge in multi-agent systems is to make the agents able to act
in a coordinated fashion without limiting their ability to act autonomously.
A recent approach to achieve this is by applying frameworks that model the inter-
action and dependencies between the agents as an organization. In a multi-agent
organization, the agent is aware of its role in the organization and the norms
for ‘common good practice’ in the organization. Agents can enter and exit the
organization freely, and there is an explicit model of the expected behavior that
the agents can choose to go against if deemed necessary [5]. At agent level, the
agents distinguish between personal and organizational goals. At system level,
there is a framework for defining expected behavior of the agents.

Given the complex flow of information and the independent actors in FAM,
we believe that multi-agent organizations can provide insight into the relation
between micro-behavior of the agents and the macro-behavior of the system in
an agent-based simulation. In this section we propose our approach for model-
ing the hospital setting as a multi-agent organization. We define three types of
agents, and introduce the framework that we later use to model the hospital
organization.

3.1 Agent Model

As detailed below, we follow the analysis of Taboada et al. [10] that introduces
two distinct types of agents for an emergency department. We have active agents
that represent individuals and passive agents that represent services and other
reactive systems. We also introduce a third distinct type of agent for the FAM
scenario, the external agent, that represent an entire specialized department.

Active Agents. Active agents represent individuals that act on their own ini-
tiative toward achieving specific goals. A knee specialist that can diagnose
the pains that a patient feels is an example of an active agent. For the active
agents, we use a Belief-Desire-Intention (BDI) model that allows us inspect
the beliefs that the agent has about its current state, the goals that it would
like to achieve and the goal that it is currently working towards achieving. In
each step of the simulation, the agent takes an input vector of percepts and
messages from other agents, update its beliefs, desires and current goal, and
then outputs an action toward achieving its current goal.

Passive Agents. Passive agents represent passive entities that only react to
the other agents and they do not work toward achieving a goal on their own.
An IT-system that the nurses must register data with is an example of a
passive agent. For the passive agents we use a rule-based model, in which
the agent has a rule base that maps messages to actions. In each step of the
simulation, the agent takes an input vector of messages from other agents,
selects a corresponding rule for each message and then outputs the vector of
actions for all messages.
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External Agents. External agents represent an entity that acts towards achiev-
ing vague goals. A specialized department that requests assistant nurses for a
scheduled treatment is an example of an external agent. The agent is external
from the point of view of the FAM. For the external agents we use a BDI
model where the goals and actions are generated from a statistical model that
corresponds to the average behavior of the agent. The actions that it outputs
are in the form of requests for resources. In each step of the simulation, the
agent takes an input vector of messages from other agents, updates its beliefs
and goals, generates new goals from the statistical model and then outputs
the vector of requests.

3.2 AORTA

We investigate the logical framework AORTA for modeling organization-aware
agents as presented in [7,8]. In the framework, the agents are assumed to be
BDI-agents that each receives an additional module that allows it to include
organizational beliefs and goals in its reasoning. The module defines three phases
of organizational reasoning that are used in addition to the reasoning that the
agent already uses: the obligation check, the option generation, and the action
execution.

Step 1: obligation check. The agent updates the status of its obligation state:
it checks if an obligation has been satisfied (objective completed) or violated
(deadline reached before objective completed). The agent also checks for new
obligations.

Step 2: option generation. The agent generates options for what it can do
regarding the organization. It considers these aspects in the option genera-
tion: role enactment, role deactment, obligations (obligation state), delegation
(based on role dependency relations), information (exchange).

Step 3: action execution. The agent selects a single action to execute based
on rules of the form

option : context → action

By separating the organizational reasoning from the reasoning about the
personal goals and beliefs, the agents are able to take into account how they are
expected to behave, given the role they enact, while also able to reason about
personal goals independently. In this fashion, the model of the organization is
distributed among the agents so it is possible that the agents have different
models of the organization.

The three steps of organizational reasoning in AORTA are based on an orga-
nizational metamodel defined by the predicates in Table 1. In a later section, we
construct a metamodel that describes a simplified version of the situation in the
FAM.
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Table 1. Predicates of the AORTA metamodel and their informal meaning.

Predicate Informal meaning

role(Role,Objs) Role is the name of a role and Objs is a set of
main objectives of that role

obj(Obj ,SubObjs) Obj is an objective that has SubObjs as a set of
sub-objectives

dep(Role1,Role2,Obj ) Role1 depends on Role2 in order to complete Obj

rea(Ag ,Role) Agent Ag enacts Role

cond(Role,Obj ,Deadline,Cond) When the condition Cond holds, Role is obliged
to complete Obj before the objective Deadline

obl(Ag ,Role,Obj ,Deadline) Agent Ag is obliged to enact Role to complete
Obj before Deadline

viol(Ag ,Role,Obj ) Agent Ag enacting Role has violated the
obligation to complete Obj

3.3 Formalization of AORTA in Isabelle/HOL

AORTA can be viewed as a large logical framework. A formalization of the most
relevant parts of AORTA in a proof assistant like Isabelle/HOL [15,16] will allow
us to verify the logical framework and will also be useful for showing properties
of the logical framework. As we work with applying the logical framework for
organizational reasoning, we may also find that we want to extend the framework
with features that are needed or useful for the FAM scenario. For that purpose,
the formalization will allow us to extend the framework in a verified manner.
Verification of agents using AORTA has been investigated in [9].

4 Modeling a FAM in AORTA

In this section we present our approach to applying the AORTA framework to
the FAM scenario. To get started, we make a metamodel of a FAM based on
basic assumptions about what processes go on in and around the department
with inspiration from the work by Taboada et al. [10] about a conventional
emergency department. We will revise this model based on data from interviews
and observations from an actual FAM; for this purpose we have a collaboration
agreement with the hospitals in the capital area of Denmark.

Based on the descriptions of a FAM in [2] and the scenario described in [10]
we assume that the FAM scenario consists of the following stages:

1. Admission. Arrival of the patient in the department; check in at reception.
2. Triage. A nurse carries out the triage process on the patient.
3. Diagnosis and Treatment. A doctor performs a diagnosis and initial treatment

on the patient.
4. Round-up. The patient receives a plan for further treatment and leaves the

department.
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Additionally, we assume the following norms in the FAM scenario:

a. Patients arrive in the admission area, either by their own means or by
ambulance.

b. Patients must wait in the admission area until they have been attended to by
the reception.

c. After the admission, patients must wait in a designated room until called by
a triage nurse.

d. The nurse who carries out the triage must fill out a triage form for the patient.
e. After the triage, patients must wait in a designated room until called by a

doctor.
f. Patients are involved in making their plan for further treatment.
g. The doctors in the specialized departments take care of scheduled treatments.
h. The initial treatment of patients may require assistance from doctors from

specialized departments.

We translate the informal description of the scenario (1–4) and (a–h) into
a formal AORTA metamodel as follows. The complete AORTA metamodel is
shown in Table 2. This metamodel is the basis for the AORTA module that
allows each agent in the simulation to perform organizational reasoning.

4.1 Roles

The roles in the metamodel are defined by the role-predicate. We use roles to
formalize what kinds of actors are involved in the scenario and what their main
objectives are. Stages 1–4 mention these roles and their objectives: a patient that
receives treatment, a receptionist that admits patients, a nurse that carries out
triage, and an acute doctor that carries out acute treatment and gives the patient
a plan for further treatment. For example we formalize the patient role as such:

role(patient , {acute treatment(Patient), treatment plan(Patient ,Plan)})

Additionally, the norm (g) mentions a specialized department that carries out
scheduled treatments and specialized doctors that work in the department. As
mentioned in (h), the doctors are also sometimes needed in the acute department,
but we choose to not model it as their main objective.

role(specialized doctor , {scheduled treatment(Department ,Patient)})
role(specialized department , {scheduled treatment(Department ,Patient)})

4.2 Objectives

The objectives in the metamodel are defined by the obj-predicate. We use objec-
tives to formalize what objectives the roles have and what sub-objectives must be
solved with each objective. Stages 1–4 mention 4 objectives that are completed in
sequence: (1) admission, (2) triage, (3) acute treatment, and (4) treatment plan.
We define the sequence in AORTA as objectives that depend on the completion
of the previous objective: (4) depends on (3), (3) depends on (2), (2) depends on
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Table 2. Predicates of the AORTA metamodel for the FAM scenario. The “role”
predicate defines the roles and the objective of each role. The “obj” predicate defines
sub-objectives of each objective. Notice that the first four “obj” predicates form a
sequence of objectives. The “dep” predicate defines which other roles a role depends on
in order to complete an objective. The “cond” predicate defines conditional objectives
that should be fulfilled before a role completes an objective. For example, the first
predicate says that a patient should wait in the admission area until admission no
matter if they arrive by themselves or by ambulance. The end of each line shows the
part of the informal description the predicate corresponds to (1–4 or a–h).

role(patient , {acute treatment(Patient), treatment plan(Patient ,Plan)})

role(receptionist , {admission(Patient)}) 1

role(nurse, {triage(Patient)}) 2

role(acute doctor , {acute treatment(Patient), treatment plan(Patient)}) 3, 4

role(specialized doctor , {scheduled treatment(Department ,Patient)}) g

role(specialized department , {scheduled treatment(Department ,Patient)}) g

obj(treatment plan(Patient), {acute treatment(Patient)}) 4

obj(acute treatment(Patient), {triage(Patient)}) 3

obj(triage(Patient), {admission(Patient)}) 2

obj(admission(Patient), {}) 1

obj(scheduled treatment(Department ,Patient), {}) g

dep(patient , receptionist , admission(Patient)) 1

dep(patient ,nurse, triage(Patient)) 2

dep(patient , acute doctor , acute treatment(Patient)) 3

dep(patient , acute doctor , treatment plan(Patient)) 4

dep(specialized department , specialized doctor ,

scheduled treatment(Department ,Patient)) g

cond(patient ,wait in(Admission area), admission(Patient),

arrivedBy(Patient ,Self ) ∨ arrivedBy(Patient ,Ambulance)) a, b

cond(patient ,wait in(Room), triage(Patient), admission(Patient)) c

cond(nurse,fill form(Patient ,Nurse), triage(Patient), admission(Patient)) d

cond(patient ,wait in(Room), acute treatment(Patient), triage(Patient)) e

cond(acute doctor , involve patient(Patient ,Plan),

treatment plan(Patient ,Plan), acute treatment(Patient)) f

cond(acute doctor , specialized treatment(Patient , specialized doctor),

acute treatment(Patient), specialistNecessary(Patient , specialized doctor)) h

(1), and (1) does not depend on any sub-objective so that an acute patient can
be admitted at any time. For example we formalize the last step in the sequence
as such:

obj(treatment plan(Patient), {acute treatment(Patient)})
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Additionally, the norm (g) mentions that there are also scheduled treatments
that should be taken care of but the details about what those treatments involve
have been omitted from the description. We model a scheduled treatment as an
objective without sub-objectives:

obj(scheduled treatment(Department ,Patient), {})

4.3 Dependencies

The dependencies in the metamodel are defined by the dep-predicate. We use
dependencies to formalize which roles depend on other roles to complete their
objectives. Stage 1 mentions that the patient depends on the receptionist in
order to be admitted. Stage 2 mentions that the patient depends on the nurse in
order to receive triage. Stages 3–4 mention that the patient depends on the acute
doctor in order to receive acute treatment and a treatment plan. Finally norm (g)
mentions that the specialized department depends on specialized doctors in order
to carry out scheduled treatments. For example we formalize the dependency
between the patient and the receptionist as such:

dep(patient , receptionist , admission(Patient))

4.4 Conditions

The conditions in the metamodel are defined by the cond-predicate. We use
conditions to formalize the norms about how the roles are expected to complete
their main objectives. Norms (a) and (b) mention that patients should wait in
the admission area until they are admitted when they have arrived by themselves
or by ambulance. We formalize this norm as such:

cond(patient ,wait in(Admission area), admission(Patient),
arrivedBy(Patient ,Self ) ∨ arrivedBy(Patient ,Ambulance))

Norm (c) mentions that patients should wait in a room before triage when
they have been admitted :

cond(patient ,wait in(Room), triage(Patient), admission(Patient))

Norm (d) mentions that nurses should fill in the triage form before they
finish the triage when a patient has been admitted :

cond(nurse,fill form(Patient ,Nurse), triage(Patient), admission(Patient))

Norm (e) mentions that patients should wait in a room until they receive
acute treatment when they have gone through triage:

cond(patient ,wait in(Room), acute treatment(Patient), triage(Patient))
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Norm (f) mentions that acute doctors should involve the patient when they
make the treatment plan during the acute treatment :

cond(acute doctor , involve patient(Patient ,Plan),
treatment plan(Patient ,Plan), acute treatment(Patient))

Finally norm (h) mentions that acute doctors should involve specialized doc-
tors for specialized treatment in the acute treatment if a specialist is necessary :

cond(acute doctor , specialized treatment(Patient , specialized doctor),
acute treatment(Patient), specialistNecessary(Patient , specialized doctor))

On top of using the AORTA metamodel we also will investigate KPIs for
measuring the distance between the expected global behavior, as expressed by
the organization in the model, and the actual global state as expressed by event
logs. The goal of this investigation will be to repair the metamodel based on the
event logs with the process mining tool Prom. In order to get the event logs for
the evaluation, we need to analyze the current systems that they use to register
activity and assess that the additional necessary activity can be registered in a
feasible manner.

5 Related Work

Making autonomous agents has been a major focus in the academic Multi-Agent
Programming Contest that has taken place each year since 2005. Each year
the contest organizers adjust the contest to further promote solutions that take
advantage of distributed decision making and autonomous agents. The winning
team from 2016 used the multi-agent programming framework JaCaMo which
combines the multi-agent programming frameworks of Jason and Cartago with
the multi-agent organization framework of Moise made by Hübner et al. [14].
JaCaMo is based on the A&A approach which distinguishes between two types
of entities: agents and artifacts. An agent is a goal-oriented pro-active entity
where as an artifact is a non-autonomous function-oriented entity. The motiva-
tion for this approach is inspired by human organizations that are populated by
humans who assume roles and are responsible to obligations and permissions of
those roles in the organization, and artifacts that have a designated purpose in
the organization. Typical examples of such artifacts are whiteboards and tele-
phones that the agents can use to coordinate with, and access cards that enables
agents with certain permissions and obligations. In comparison, AORTA does
not distinguish artifacts from agents at a fundamental level. They are considered
primarily reactive agents and, like in JaCaMo, are designated with certain roles.

In 2009 Mans et al. [11] showed initial work on the feasibility of applying the
prominent process mining tool Prom in the hospital environment with a focus
on discovering a process model. In 2013 Kirchner et al. [12] noted the problem of
sparse event logs that are common in the hospital environment which increases
the importance of clearly defined clinical pathways in the hospital in order to
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apply process mining successfully. In the works of [11,12], the models produced
and treated with Prom were based on highly procedural modeling languages
which are difficult to fit across multiple hospitals with different execution paths.
In 2015 Rovani et al. [13] proposed an approach that applied the declarative
process modeling language Declare which is based on linear temporal logic. In
this language, the model only specifies constraints within finite traces on the
processes rather than concrete execution paths, which enables a Declare model
to allow multiple execution paths. They applied a cross validation methodology
for automatically creating a repaired model from a manually created model and
an event log.

6 Conclusion and Future Work

We have introduced and modeled the new kind of emergency department, FAM,
that is being implemented at Danish hospitals, as a multi-agent organization
in the agent organization framework AORTA. Our goal with this approach is
to use the model for simulating the activity that goes on in the department
and calculate consequences based on the predicted behavior of the agents in the
simulation. We have shown a model of the FAM in the framework. The model
is based on previous work on agent simulation for emergency departments and
the official descriptions of the FAM and its purposes.

In future work we will use proof assistants to verify properties of the AORTA
framework and implement the AORTA model in an agent simulation framework.
That way we may get a model that can adjust itself automatically to the soft
aspects of human behavior that influence the activity in an actual department.
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Abstract. Every day we use protocols unconsciously during the con-
versations and the ability to abide by them is an important part of our
communication skills (e.g. questioning the question is neither contribut-
ing to the conversation nor polite). The protocols can support dialogue to
achieve the goal of the conversation (e.g. a compromise, a persuasion). In
the paper, we focus on argumentative dialogues and we propose a descrip-
tion language for an argumentative dialogue game in which players can
perform actions representing speech acts like claim, question, scold etc.
We introduce a Game with Emotional Reasoning Description Language
(GERDL), since some of the speech acts introduced by us have an emo-
tional undertow. It will be used in our system for semantic verification of
properties of dialogue games with emotional reasoning. This framework
is based on interpreted system designed for a dialogue protocol in which
participants have emotional skills. To represent the verified properties of
the protocol we use the extension of CTL logic with commitment and
emotion modalities (formulated in [8]).

Keywords: Dialogue game · Description language · Dialogue protocol ·
Emotions

1 Introduction

Dialogues are certainly the most popular form of communication, but also - the
most complex one. To capture some aspects of the dialogue, we can formalize it
by defining e.g. a set of participants, a set of possible actions, a set of rules, and
so on.

Argumentation systems are formal frameworks for describing games where
participants try to reach an agreement, solve a conflict or convince somebody
and one of such systems is called a dialogue game [3,19]. A dialogue can be
treated as a two-player game, rules of which are intended to formalize and ensure
correctness of the communication [9,12,21]. Formal dialogue systems can be also
used as a schema for dialogues reasoning about emotions [11].
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However, the question arises, what are the properties of such a dialogue game?
We may wonder whether some of them are true e.g. that one of the players even-
tually have to admit that the other one was right. Currently, with increasing size
and complexity of many systems, there is also a growing demand for the verifi-
cation of properties of these systems. It is crucial to avoid unforeseen behaviours
and to be sure, that the design meet some requirements. One of the solutions is
to use formal verification, which takes the form of some logic-based technique
e.g. theorem proving or model checking. Model checking [1,4,14,16,22,23], which
we decided to use, is an automatic verifying technique for concurrent systems
such as distributed systems, real-time systems, multi-agent systems, protocols,
concurrent programs, and many others. To use this method, we can describe
properties of dialogue protocols using propositional temporal logics e.g. linear
temporal logic (LTL), computation tree logic (CTL), an extended computation
tree logic (CTL∗), the universal and existential fragments of these logics, and
other extended logics.

Our goal is to adapt existing methods of verification to a new field - dia-
logue games and to show what mechanisms occur in human argumentative dia-
logues. In our case, we focus on the dialogue games intended for human-computer
communication, but there are also other approaches (e.g. [2]). This paper is a
continuation of our earlier work, where we introduced a formal system for verifi-
cation dialogue games. We want to combine two approaches, dialogue games and
model checking techniques used in multi-agent systems, and adapt them to our
system designed for verification of dialogue games with emotional reasoning. We
consulted the psychological aspect of such a reasoning with a group of psychol-
ogists, and our current model of emotions is an effect of this collaboration. We
develop a system which can be used to extract elements of dialogue which relate
to emotion. The main contribution of this paper is a new description language
that meets our needs of describing rules of the dialogue game with emotional
reasoning - Game with Emotional Reasoning Description Language (GERDL).
This language will specify required aspects of the dialogue game on the input of
our system. We will also use it for describing players’ strategies and preferences.
We need a new language because the languages used in systems, which were
our inspirations, are not equipped in some specific for our domain features. The
first system, the Model Checker for Multi-Agent Systems (MCMAS) introduced
by Raimondi and Lomuscio [13,18] does not enable dialogue game description.
The second one, the Dialogue Game Description Language (DGDL) proposed
by Wells and Reed [20], is a language for describing dialectical games in order
to play these games in the Dialogue Game Execution Platform (DGEP). This
language also does not consider emotional aspects of dialogues. In contrast to
our language, DGDL language was created to play dialogue games, not to ver-
ify their properties. We will discuss these systems in more detail in the next
section.

Our aim is to create a universal tool, which allows verification and simulation
of different dialogue systems. We present an example of such a dialogue game,
both the model and the description in GERDL. In this paper, we do not propose
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a new model, but we use the presented one to explain the input specification of
our tool, which will be used in the verification of properties of the given dialogue
system described in GERDL.

The paper is structured as follows. In Sect. 2 we present our background and
inspirations. Section 3 describes interpreted system for dialogue games with emo-
tional reasoning, Kripke model as a basis for the application of model checking.
In Sect. 4 we present the Game with Emotional Reasoning Description Language
(GERDL) and a general input file structure in this language, as well as short
description of the language used for defining properties to be verified. Section 5
contains the GERDL usage example with some specific properties of the dialogue
game we want to verify. Conclusions are given in Sect. 6.

2 Background

Our goal is to build a novel system for dialogue systems verification, which was
inspired by existing concepts, such as dialogue systems, multi-agent systems,
and model checking. Below we briefly describe mentioned approaches.

2.1 Dialogue Games

As we mentioned, in dialogue games, a dialogue is treated as some kind of a game
played between two parties. A dialogue game can take place both between arti-
ficial agents or between the man and the machine. In argumentative dialogues,
players can perform actions affecting commitments. In our case, we need an
argumentative dialogue model which takes into account also their emotions. Our
model, which is designed for human-computer communication, is based on strict
rules (same as [3,7]). On one hand, it makes a game protocol a little trivial, but on
the other hand we can extract and focus on most important features of the game.

The dialogue game is specified by three basic categories of rules. Locution
rules define a set of locutions (actions, speech acts) the player is allowed to utter
during the game. Locutions express communication intentions of interlocutors.
Such rules specify for example that player can claim, argue, justify, question,
concede something etc.

The structural rules specify available responses for each specific locution.
For example, after one interlocutor claims something, the other one can concede
it (by performing concede), claim the opposite (by performing claim with the
opposite content) or ask for justification (by performing why).

The effect rules defines effects of actions. Due to performing some action a
set of commitments (public declarations) of the player can change. The result
of an action is a change in the commitments set of the player, i.e. addition or
removal of some statement.

To define a dialogue game, we must specify there three sets of rules, which
allow to determine available moves for each player at every point of the dialogue.
Even though every dialogue game must meet above general requirements, each
one is unique and we want to verify some properties of the dialogue games by
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the means of model checking method. Main approaches in this matter combine
bounded model checking (BMC) with symbolic verification using translations to
either ordered binary decision diagrams (BDDs) [6] or propositional logic (SAT)
[15]. This paper is a continuation of our work on the mathematical model of
dialogue inspired by Prakken’s argumentative dialogue games [10,17]. We want
to use this model as a base for our work on the verification of properties of
dialogue protocols.

2.2 MCMAS

One of our inspirations is MCMAS - the Model Checker for Multi-Agent Sys-
tems [13,18]. Verification is very important for multi-agent systems, which are
intended to capture complex properties of large, distributed, autonomous sys-
tems. There are many frameworks and languages able to describe a multi-agent
system (MAS), but what distinguish the concept of MCMAS is that it extends
the idea of interpreted systems by defining the Interpreted Systems Program-
ming Language (ISPL) dedicated to MAS characterization.

Given a MAS specification, MCMAS verifies a set of specified formulae. The
mentioned specification is provided using a dedicated language (ISPL), which
allows to describe agents and their behaviour using variables and Boolean expres-
sions. The evaluation of formulae uses algorithms based on Ordered Binary Deci-
sion Diagrams (OBDDs). MCMAS shows witnesses for true formulae and coun-
terexamples for false formulae. It provides many modalities e.g. CTL operators,
epistemic operators, and so on. In ISPL, there are two kinds of agents: standard
agents, and the optional environment agent, which represents common proper-
ties of the system. Each agent is characterised by: a set of local states, a set of
actions, a protocol describing which actions can be performed by an agent in a
given local state, and an evolution function, describing change of the local state
of the agent according to the current local state and other agents actions.

Each agent has a set of local variables, some of them can be defined as a visible
for other agents. All the Environment’s variables are visible for other agents.
Each of the local states of an agent contains a valuation of its local variables.
ISPL allows three types of variables: Boolean, enumeration and bounded integer.
The set of agent’s states is divided into two parts - green and red states, which
are used to check correct behaviour properties.

If we define a set of actions for an agent, we can use these actions to describe
some condition. Such a condition is represented by local states that satisfy the
condition and the list of actions allowed to be performed in local states specified
by the condition. There can be many conditions for each agent. If there are many
actions possible in one condition, the agent has non-deterministic behaviour and
all these actions are considered possible.

The definition of the evolution function consists of the elements of the form: a
set of assignments of local variables and an enabling condition, which is a Boolean
formula over local variables, visible Environment’s variables, and actions of all
agents. An item is enabled in a state if its enabling condition is satisfied in that
state.
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The specification of the evaluation function consists of a group of atomic
propositions, which are defined over global states. Each atomic proposition is
associated with a Boolean formula over local variables of all agents and observ-
able variables in the Environment. The proposition is evaluated to true in all
the global states that satisfy the Boolean formula.

The ISPL specification contains also the definition of initial states, proposi-
tions, groups, fairness formulae and formulae to be checked. A fairness formula
is a Boolean formula over atomic propositions, there are a few Boolean operators
allowed (and, or, ! as a negation, → as a implication). A formula to be checked
is defined over atomic propositions and one can use above operators but also it
can use following ones: AG, EG, AX, EX, AF, EF, AU, EU, K, GK, GCK, DK
and some other group operators.

The main reason ISPL was not sufficient in our case is the domain we are
considering. Probably the most important difference between multi-agent sys-
tems and dialogue games is a need for referring to the history of the dialogue.
In dialogue games, the history of moves is often crucial for the decision about
a current move. In opposition to MCMAS, our rules are based not only on the
last/next action of the agent but potentially on the whole history of the dialogue
between players. Therefore, we have to make some extensions to ISPL, which
enable such references.

Although to express the concept of the set of commitments it was enough to
use boolean variables introduced in ISPL, such a mechanism is not suitable for
the other sets, especially if the specified set is supposed to be changed during the
dialogue. That is why we decided to add the possibility to specify our own sets
of specific types. Thanks to that, we can base some decision (e.g. about current
move or change in variables) on the content of such a set, and indirectly on the
history of the dialogue.

Sometimes it is not the action itself that is interesting for us, but some of
its attributes, e.g. player which performed this action or the action it refers to.
In order to be able to use this information, we provided two additional variable
types (Action and Player). This way, we can catch more aspects of the dialogue.

Also, in ISPL we cannot specify any emotion-dependent conditions or prop-
erties because agents cannot refer to the other agent’s variables. They need a
special agent called Environment to convey the communication between agents.
In our solution there is no such a need, the players can make some of their vari-
ables directly visible for the other players (read-only). While maintaining the
general structure of the ISPL input file and most of the operators, we extended
ISPL to suit our needs of expressing emotions and players’ preferences. We also
omitted some elements of this language, which are irrelevant in our domain (e.g.
groups, red/green states). It seems that the verification method will be different,
MCMAS uses OBDDs and we plan to use SMT.

2.3 DGDL

Our second inspiration was the Dialogue Game Description Language (DGDL),
and also its refined version - DGDL+, which is a language for describing
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dialectical games [20]. Dialectical games are one of the kinds of multi-player
argumentative dialogue games, which provide argumentative behaviours. The
DGDL determines whether a game description is syntactically correct. This lan-
guage was created for describing the features of some commonly used dialectical
games and also to be able to describe other games. DGDL takes into account the
most important aspects of dialogue games: moves per turn, turn organization,
dialogue magnitude, move types, move content, openers, stores, store contents,
store visibility, move legality, move effects, participants, roles, and rules.

In DGDL the user can define a single dialectical game or a collection of
dialectical games with rules for enabling shifts between them (they form a single
system). Each game is specified by describing attributes of the game such as
turns, players, and so on. One can define a mandatory set of interactions and an
optional set of rules.

Turns control the alternations of players’ moves. Turns consist of a single
move, a defined set of moves, or any number of moves. There are two types of
turn orderings: a strict ordering (after each turn the speaker role is changed)
and a liberal ordering (after each turn the next player to move is chosen on the
basis of the previous moves).

The user can define the minimum and maximum numbers of players and for
each one of them, we specify an identifier and initial role. The players can be
referred by roles in different contexts in the rules of the game. Typical roles are
e.g. speaker, listener, initiator, respondent, proponent, and opponent.

Stores are collections (sets, stacks or queues) of game artifacts (e.g. commit-
ments or claimed facts). Each store is owned by a player, a group of players,
or shared by all players. The user can specify the visibility of the store (pub-
lic/private). They are usually used to follow the progress of the game.

Interactions take the form of locutions uttered during a dialogue, they change
the game components e.g. stores and they allow the player to interact with the
game components. Interactions are formed from a move ID, specification of con-
tent and opener, and a body. On the other hand, the optional rules allow to
define effects of reaching a particular game state. The difference between rules
and interactions is that rules’ requirements are checked at discrete time-points
(e.g. after each turn) and interactions’ effect is a result of a specific move. Rules
are formed from a rule ID, specification of the scope with which the rule should
be checked, and a body. The structure in these two cases is similar and consist of
either a set of effects or a conditional statement setting out the conditions under
which various sets of effects can occur. Conditions and effects are both predicate
statements having a condition ID/effect ID followed by a list of elements. The
conditions support a lot of features (e.g. inspecting previous moves or the con-
tent/ attributes of specified store, roles of the players, comparing stores, checking
the number of played turns, etc.). The user can also define responses, changes in
stores, updates to the status of a specific system or game, he can assign a role
to a player or swap of roles between players.

Despite large possibilities, DGDL does not suit our needs. There are no means
to express emotions and their changes. This language was not created to specify
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and verify properties, we can rather play specified games using Dialogue Game
Execution Platform. In our system, we need to have the possibility of expressing
properties of the game and verifying them by the means of the model checking
and we are not only interested in simulation of the dialogue game. We are inter-
ested in some mechanism that will allow us to describe the intensity and the
changes of emotions and use it in the player’s preferences notation.

3 Model

We start out by defining a mathematical model for argumentation dialogue
games, which uses the concept of interpreted systems and Kripke structures.
Obtained Kripke structure and model checking techniques allow us to perform
automatic verification of dialogue protocols. In this model formulas of a modal
logic adequate to express properties of dialogues are interpreted. This is an exam-
ple of the dialogue game, which can be realized and verified by our tool. The
tool itself is supposed to be universal and take any dialogue game described in
GERDL as an input.

First, we assume that the set of players of a dialogue game consists of two
players: White (W ) and Black (B), Pl = {W,B}. To each player p ∈ Pl, we
assign a set of possible local states Lp and a set of actions Actp. Player’s local
state lp ∈ Lp consists of the player’s commitments and emotions, lp = (Cp, Ep).

Players’ commitments are elements of a fixed topic language, which allows
expressing the content of locutions. They are understood as public declarations
of players but we do not assume their honesty and truthfulness. Thus, Cp are
sets of such expressions. These sets may be subject to change after a player’s
action. More specifically, the player can add or delete the selected expression.
Formally we assume a finite set FORM of expressions which can be used as a
content of a locution and thereby express some commitment of a player. We do
not assume that this set is closed under logical or material implication and it
can contain conflict expressions.

Emotions which we consider are fear, disgust, joy, sadness, and anger,
and their strength (intensity) is represented by natural numbers from the set
{1, 2, . . . , 10}. Thus, Ep is a 5-tuple consisting of five values, which may also
change after a certain action. It is worth highlighting here that a change in the
intensity of the emotions is dependent on the type of locution and, perhaps even
more, on its content.

Every action from Actp can influence participant’s commitments and emo-
tions. We assume that the set Actp contains also the special empty (null) action ε.
Every action (except null action) is synonymous with locution expressed by the
specific player. In argumentation systems the most commonly used locutions
are: claim - some statement, concede - confirmation, since - justification, why -
the request for justification, retract - revocation, and question about some fact.
Thus, in argumentation dialogues, a player can claim some facts, concede with
the opponent or change his mind performing action retract. To challenge the
opponent’s statement, he may ask why, or ask whether the opponent commits to
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something, i.e., perform action question. For defence he can use the action since.
It is the kind of reasoning and argumentation. To these typical actions, we added
two, which we believe allow better describe dialogues and changes in the inten-
sity of players’ emotions. These are scold and nod. They express reprimand and
approval, respectively. Results of locutions are determined by evolution function
and are specified afterwards.

Let α, β, ϕ, ψ1, . . . , ψn, γ1, . . . , γn∈FORM . Locutions used in players’ actions
are the same for both players:

ActW = ActB = {ε, claim ϕ, concede ϕ, why ϕ,

scold ϕ, nod ϕ, ϕ since {ψ1, . . . , ψn}, retract ϕ, question ϕ}.

Next, Act denotes a subset of the Cartesian product of the players’ actions such
that:

Act = {(a, ε) : a ∈ ActW } ∪ {(ε, a) : a ∈ ActB}.

The global action a ∈ Act is a pair of actions a = (aW , aB), where aW ∈
ActW , aB ∈ ActB and at least one of these actions is the empty action. This
means that players cannot speak at the same time. Moreover, a player cannot
reply to his own moves. Thus, the empty action is performed alternately by
players W and B.

Also, we need to order performed global actions and indicate which actions
correspond with which ones and therefore we define double-numbered global
actions set Num2Act = N × N × Act. During the dialogue, we assign to each
performed global action two numbers: the first one (ascending) indicates order
(starting from the value 1). The second one points out to which earlier action
this action is referring (0 at the beginning of the dialogue means that we are not
referring to any move).

Furthermore, we define numbered global actions set Num1Act = N × Act.
Each element of this set is a pair (n, a) consisting of an action a ∈ Act and the
identifier of the action it refers to, n ∈ N. If we want to find out whether we
can use some global action one more time, we should check if the possible move
containing the same global action refers to the different earlier move.

We define function Denum : Num2Act → Num1Act, Denum(n1, n2, a) =
(n2, a), which maps double-numbered global action to the numbered global
action. We understand dialogue d as a sequence of moves and in particular,
we denote d1..n = d1, . . . , dn, where di ∈ Num2Act, di = (i, j, a), j ∈ N, j < i,
a ∈ Act.

A global state g is a triple consisting of dialogue history and players’
local states corresponding to a snapshot of the system at a given time point
g = (d(g), lW (g), lB(g)), g ∈ G where G is the set of global states. Given a
global state g, we denote by d(g) a sequence of moves executed on a way to state
g and by lp(g) - the local state of player p in g.

An interpreted system for a dialogue game is a tuple IS = (I, {Lp, Actp}p∈Pl)
where I ⊆ G is the set of initial global states.
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Now we define legal answer function FLA : Num2Act → 2Num1Act, which
maps a double-numbered action to the set of possible numbered actions. This
function is symmetrical for both players and determines for every action a set
of legal actions which can be performed next:

– FLA(i, j, (ε, ε)) = ∅,
– FLA(i, j, (α, ε)) = {(i, (ε, β)) : β ∈ LEGAL(α)},

where LEGAL(α) is defined in Table 1:

Table 1. Definition of LEGAL function.

α LEGAL(α)

claim ϕ why ϕ, concede ϕ, claim ¬ϕ, nod ψ, scold ψ,
for some ψ ∈ FORM

scold ϕ why ϕ, concede ϕ, claim ¬ϕ, nod ψ, scold ψ,
for some ψ ∈ FORM

ϕ since {ψ1, . . . , ψn} why α, concede β, ¬ϕ since {γ1, . . . , γn}, nod ψ, scold ψ,
where α ∈ {ψ1, . . . , ψn}, β ∈ {ϕ, ψ1, . . . , ψn}, and ψ ∈ FORM

why ϕ ϕ since {ψ1, . . . , ψn}, retract ϕ

question ϕ retract ϕ, claim ϕ, claim ¬ϕ

concede ϕ ε, claim α, nod α, scold α, α since {ψ1, . . . , ψn},
for some α, ψ1, . . . , ψn ∈ FORM

nod ϕ ε, claim α, nod α, scold α, α since {ψ1, . . . , ψn},
for some α, ψ1, . . . , ψn ∈ FORM

retract ϕ ε, claim α, nod α, scold α, α since {ψ1, . . . , ψn},
for some α, ψ1, . . . , ψn ∈ FORM

The actions executed by players are selected according to a protocol function
Pr : G → 2Num2Act, which maps a global state g to the set of possible double-
numbered global actions. The function Pr satisfies the following rules.

(R1) For ι ∈ I Pr(ι) =
{(1, 0, (claim ϕ, ε)), (1, 0, (question ϕ,ε)), (1, 0, (ϕ since {ψ1, . . . , ψn}, ε))}.

(R2) Pr((d1..k−1, (k, l, (a, ε)), lW (g), lB(g))) = {(k + 1, numact) :
numact ∈ FLA(k, l, (a, ε))}, for a ∈ {ε, claim ϕ, scold ϕ, why ϕ,
question ϕ, ϕ since {ψ1, . . . , ψn}}.

(R3) Pr((d1..k−1, (k, l, (a, ε)), lW (g), lB(g))) = {(k + 1, numact) : numact ∈
((

⋃
i<=k FLA(di) ∩ {(n, (ε, α)) : n < k, α ∈ ActB})\{Denum(di) : i = 1, ..,

k})}, for a ∈ {concede ϕ, nod ϕ}.
(R4) Pr((d1..k−1, (k, l, (retractϕ, ε)), lW (g), lB(g))) = {(k+1, numact) : numact

∈ ((
⋃

i<=k FLA(di) ∩ {(n, (ε, α)) : n < k, α ∈ ActB})\{Denum(di) : i =
1, .., k})}∪ {(k + 1, x, (ε, why β)) : ∃x<k dx = (x, y, (β since ϕ, ε))} for
some ϕ, β ∈ FORM .



A Novel Description Language for Two-Agent Dialogue Games 475

These rules for player B are analogous. The protocol is a crucial element of
the model since it gives strict rules which determine the behaviour of players. In
other words, it formally describes who, when and which action can perform. Rule
(R1) defines the actions that can begin a dialogue. Rule (R2) states that after
locutions claim, scold, why, question, since and the empty action, only actions
determined by the legal answer function can be used. According to rule (R3)
actions concede and nod end one of the threads of dialogue. Therefore, the next
action can start a new thread or return to one of the unfinished. After opponent’s
locutions concede, nod or question the player can use one from possible answers
for all previous opponent’s moves, excluding these ones which he has already used
since this protocol does not allow the repetition of the same part of the dialogue,
if it is not caused by new locutions. Actions nod and scold act similarly to actions
concede and claim, but what distinguishes these actions is their emotional charge.
Rule (R4) expresses that after opponent’s locution retract ϕ the player can
use one from the possible answers for all previous opponent’s previous moves,
excluding those which he has already used, but also he can ask for the reason for
β if ϕ was previously used to justify β. In other words, the player can challenge
the statement β, which was defended by the previously withdrawn statement ϕ.

To express how locutions and their contents affect players’ emotions during
the dialogue we define a function, which determines the change of intensity of
emotions: EMOTp : Actp×Emotionp → Emotionp where p ∈ Pl and Emotionp

is a set of all possible 5-tuples for emotions, i.e., Emotionp = {(n1, . . . , n5) : ni ∈
{1, . . . , 10} ∧ i ∈ {1, . . . , 5}}.

Finally, we define global (partial) evolution function t : G × Num2Act → G,
which determines results of actions. This function is symmetrical for both play-
ers. Let d(g) = d(g)1,...,m, then:

– t(g, (m+1, j, (α, ε))) = g′ iff RESULT (α) ∧ EW (g′) = EMOTW (α,EW (g))∧
d(g′) = (d(g)1,...,m, (m + 1, j, (α, ε))),

where RESULT (α) is defined in Table 2.
Global evolution function defines results of actions. In particular, actions claim,
concede, scold, nod and since add an expression to the commitments set while
action retract deletes it. Actions why and question do not modify this set. The
t function also takes into account the changes in the levels of emotions that are

Table 2. Definition of RESULT function

α RESULT (α)

claim ϕ, scold ϕ CW (g′) = CW (g) ∪ {ϕ}
ϕ since {ψ1, . . . , ψn} CW (g′) = CW (g) ∪ {ϕ, ψ1, .., ψn}
concede ϕ, nod ϕ CW (g′) = CW (g) ∪ {ϕ}
why ϕ, question ϕ CW (g′) = CW (g)

retract ϕ CW (g′) = CW (g) \ {ϕ}
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determined by the function EMOT . Thus, the sets of emotions in the new state
of the system are results of this function having as the input the previous state.
Moreover, the history of the dialogue is extended with the last move.

The application of the model checking requires a model of the system under
consideration. We associate with the given interpreted system a Kripke structure,
that is the basis for the application of model checking. A Kripke structure is
defined as a tuple M = (G,Act, T, I) consisting of a set of global states G, a set of
actions Act (in our approach Num2Act), a set of initial states I ⊆ G, a transition
relation T ⊆ G×Act×G such that T is left-total. Relation T is defined as follows
(g, a, g′) ∈ T iff g′ ∈ t(g, a). By T ∗ we will denote the relation T ∗ ⊆ G × G
defined as follows: (g′, g) ∈ T ∗ if there exist a1, a2, . . . , an ∈ Num2Act and
there exists g1, g2, . . . , gn−1 such that (g′, a1, g1) ∈ T , (gn−1, an, g) ∈ T , and for
i = 1, 2, . . . , n − 2 it holds that (gi, ai+1, gi+1) ∈ T .

Also, we need to formulate properties of the dialogue protocol to be checked,
we present a suitable language in the next section.

4 Description Language

In this section, we introduce the Game with Emotional Reasoning Description
Language (GERDL) developed on the basis of the presented model. This lan-
guage is designed to describe a dialogue game on the input of the framework,
which will be focused on model checking of the properties of this dialogue game.
We present a few details about each section of the GERDL input file. In the next
section, we show an example the input file in GERDL based on the mentioned
model.

In contrast to MCMAS, there is no special agent Environment included, since
there is no such a concept in the context of dialogue games. A dialogue game is
specified by a set of players and some attributes of the game background (e.g.
turns’ rules, commitments). We focus on two-players games and one action per
turn, but we assume that we are going to extend this framework e.g. to allow
more players.

Below is the general structure of the input file in GERDL and descriptions
of each section. All of the sections and attributes are obligatory. First, there is
global settings section, in which we declare commitments (public declarations) of
players. After that, we specify the players, each one in his own Player section.
It contains the specification of the locutions available to this player, his vari-
ables (subsections PublicVars and PrivateVars), protocol and evolution function
(subsections Protocol and Evolution respectively).

After the declaration of players, we have to complete the input file by adding
InitStates and Formulae sections. The first one describes which states are initial
and the second one specifies properties of the dialogue game to be verified.

A single line comment in GERDL starts with #.
Commitments={ ... };
Player P1
Locutions = { ...};
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PublicVars:
...
end PublicVars
PrivateVars
...
end PrivateVars
Protocol:
...
end Protocol
Evolution
...
end Evolution
end Player
Player P2
...
end Player
InitStates
...
end InitStates
Formulae
...
end Formulae

Specification of the Game
We assume that players can perform one action per turn and after each turn,

the next player in the players’ list speaks (the ordering of the list is consistent
with the order of players in the input file). By “the action of the player” we
understand hereafter a global action, where only one of the players is making an
utterance.

We do not limit the number of turns since the real life dialogues usually do
not have such limitations and the players can continue the argumentation as
long as they have a valid argument.

We assume that the locutions are speech acts uttered during a dialogue. The
set of possible locutions (Locutions = { ... }) is declared inside of the player’s
section and it specifies the specific locutions of this player. To show the structure
of the locution we use the notation, where capital letters X, Y, Z, ... symbolize
some content of the locution, the notation X1...XN symbolizes the set of contents
(of non-zero length), and Z1|...|ZN symbolizes one element from such a set.

Players’ commitments are elements of a fixed topic language, which allows
expressing the content of locutions. We specify the sets of possible commitments
by listing them in the form of strings e.g. “alpha”. They represent some facts
players would like to talk about and they might as well be whole sentences
expressed in the natural language e.g. “I’m hungry”. These sets are also defined
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outside the players’ section because the commitments are public and each player
is aware of other player’s utterances.

For each player, there are boolean variables representing all possible commit-
ments and we can refer to it by Black.“alpha” where “alpha” is in the commit-
ments set. If the player Black has committed to “alpha”, then Black.“alpha” is
true, otherwise - it is false.

In our system, we have six types of variables. You can see below typical
declarations and possible operations for these types ( = and != always denote
respectively equality and inequality).

– a: boolean; - boolean variables with possible operators: =, !=, negation (˜),
conjunction (&), inclusive disjunction (|), exclusive disjunction (^ ),

– b: {m, n, p}; - enumeration variables with possible operators: =, != (compa-
rable if they have the same type, or one’s type is a subset of the type of the
other),

– c: 1..10; - bounded integer variables with possible arithmetic operators: =,
!=, <,<=, >,>=,

– A: Action; - action variables with possible operators: =, != and attributes:
number (in the dialogue), locution (performed speech act e.g. claim), con-
tent (elementary expression based on commitments), player (reference to the
player), referringTo (number of the action it refers to);

– P: Player; - player variables with possible operators: =, != and attribute
lastAction, which refers to the last action of this player (e.g. Black.lastAction
is the last action used by the player Black),

– S: set of Action; - set of elements of one of the above types with possible
operators: union (+), intersection (&), difference (-), membership in.

In the dialogue game specification we can use a few predefined variables:

– actionNumber - the integer variable describing a number of the action, which
is about to be executed,

– initialState - the boolean variable, which is true before the first action was
executed in the dialogue,

– lastAction - the action variable referring to the last action in the dialogue,
e.g. in condition lastAction.player=Black we check whether the player of the
last action is player Black,

– lastPlayer - the player variable referring to the player of the last action in the
dialogue.

Specification of Players
Each player has two sets of variables: private and public one. Private variables

are not visible for the other players, the public ones are visible, but read only.
Each local state of a player contains a valuation of all its variables.

Each player has also his own set of locutions, which can be uttered, a protocol
function, and an evolution function. The set of player’s possible commitments is
already specified before the player’s description.
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Specification of protocol function is composed of the conditions, which are
Boolean formulae over global states, and after each condition, there is a list of
actions which can be used, if a condition is fulfilled. The condition represents all
global states that satisfy the condition.

For example, in this line of protocol function
Black.lastAction=claim.X: why.X, concede.X, claim.(!X),nod.Y, scold.Y
We state that if the last action of the player Black was claim with some

content (X), the player White can reply with why or concede (with the same
content), claim (with the negation of the content) or nod/scold with any content.

Notation Z1...ZN refers to the set (e.g. premises) and means “the set
{Z1,...,ZN}” (“all from the set {Z1,...,ZN}”). Z1|...|ZN means “one of the set
{Z1,...,ZN}”, for example:

Black.lastAction=X.since.Z1...ZN:{ why.Z1|...|ZN, concede.X,
concede.Z1|...|ZN, (!X).since.Y1...YN, claim.X, claim.(!X), nod.Y, scold.Y}

By notation Before(White, claim.X)=true we understand that there is
White’s action in the dialogue history and this action was of the form claim.X.

If there are many matching rules, actions from all of them are considered
available. With many global states, we do not have to specify actions for every
state and we can encode all remaining states (except those specified before) by
defining optional section Other (Other: list of actions;). This section is the last
one in a protocol function.

An evolution function line consists of a set of assignments of variables (acces-
sible for the specific player ones) and an enabling condition, which is a Boolean
formula over variables of the player, public variables of the other players and
actions of all players. An item is enabled in a state if its enabling condition is
satisfied in that state. Below we have an example of such a line of an evolution
function:

Black.joy=Black.joy+1 if Black.joy<10 and White.lastAction=nod.X
This is interpreted as: “in the next step, the value of Black.joy is increased

by 1 if the current value of Black.joy is lower that 10 and the last action of
the player White was action nod”. Some of these rules can be interpreted as
properties of the dialogue game itself and the other ones as elements of player’s
profile.

The input specification in GERDL contains also the definition of initial states
and formulae to be verified.

Specification of Initial States
The section InitStates defines the set of initial states using a Boolean formula

over variables (public and predefined ones). The propositions in this formula can
take the form:

var = value or var1 = var2
where var, var1, var2 can be public variables of the player (e.g. P1.x) or pre-
defined ones (e.g. initialState). Allowed Boolean operators are and, or and !
(negation). Value and variable (or two variables) must be a matching type to
enable the comparison.
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Specification of Formulae to be Verified
The section Formulae contains the properties of dialogue systems to be ver-

ified, expressed in language based on CTL logic introduced by Emerson and
Clarke [5] enriched with commitment and emotion components (presented at
[8]). Usually, properties we want to verify are used to reason about desirable
behaviour of the system e.g. the safety property expresses that something bad
cannot happen or that something good is always true, the guarantee property
can ensure that something eventually happens, the response property expresses
the fact that some property is a guaranteed response to specific condition, and
so on.

Below, we present a few details about the mentioned language. Examples of
the expressed properties are shown in the next section. Let Pl = {W,B} be a
set of players. The set of formulas is defined inductively as follows:

• true is a formula.
• if ϕ ∈ FORM , p ∈ Pl and e ∈ {fear, disgust, joy, sadness, anger} then

COMp(ϕ) and EMOp(e) are formulas.
• if α and β are formulas, then so are ¬α, α ∧ β, EXα, EGα, E(αUβ).

The boolean connectives α ∨ β, α ⇒ β, α ⇔ β, and the formula false are
defined in the standard manner. The remaining temporal modalities are defined
by derivation: EFα

def
= E(true U β), AXα

def
= ¬EX¬α, AGα

def
= ¬EF¬α,

AFα
def
= ¬EG¬α, A(α U β)

def
= ¬E(¬β U (¬α ∧ ¬β)) ∧ ¬EG¬β, E(α R β)

def
=

¬A(¬αU¬β), A(α R β)
def
= ¬E(¬αU¬β).

The formula true is used for technical reasons. Formula COMp(ϕ) expresses
that ϕ is in the set of commitments of player p (ϕ is not a formula of this
language, but a part of a separate structure in which we express the uttered sen-
tences). Modality EMOp is intended to express properties concerning emotions
of player p. The temporal modalities X,G stand for “at the next step”, and “for-
ever in the future”, respectively. Since the modality E is the existential quantifier
(“exists”), EX means “for some next states” and EG means “for all states on
some path”. The formula E(αUβ) means that on some path β eventually occurs
and that α holds continuously until then.

Semantics of the logic is given by means of interpreted systems. By a compu-
tation in a Kripke structure M = (G,Act, T, I) we understand a possibly infinite
sequence of states π = (g0, g1, . . .) such that there exists an action am for which
(gm, am, gm+1) ∈ T for each m ∈ N, i.e., gm+1 is the result of applying the
transition relation T to the global state gm, and the action am.

In the interpreted systems terminology, a computation is a part of a run.
A k-computation is a computation of length k. For a computation π =
(g0, g1, . . .), let π(k) = gk, and πk = (g0, . . . , gk), for each k ∈ N. By Π(g)
we denote the set of all the infinite computations starting at g in M , whereas
by Πk(g) the set of all the k-computations starting at g.

Let M be a model (Kripke structure), g ∈ G be a state, π be a computation,
and α, β be formulas. M, g |= α denotes that α is true at the state g in the
model M . The relation |= is defined inductively as follows:
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M, g |= true for all g ∈ G,
M, g |= COMp(ϕ) iff ϕ ∈ Cp(g),
M, g |= EMOp(e) iff ni > 5 in Ep(g) = (n1, .., n5), where e is fear, disgust, joy,

sadness, or anger and i = 1, 2, 3, 4, 5, respectively,
M, g |= ¬α iff M, g �|= α,
M, g |= α ∧ β iff M, g |= α and M, g |= β,

M, g |= EXα iff ∃g′ ∈ G ∃a ∈ Num2Act((g, a, g′) ∈ T and M, g′ |= α),
M, g |= EGα iff ∃π ∈ Π(g) (∀m≥0[M, π(m) |= α]),
M, g |= E(α U β) iff ∃π ∈ Π(g) (∃m≥0[M, π(m) |= β and ∀j<m [M, π(j) |= α]]).

Since the input file is an ordinary text file, we simplified the notation in
formulae by replacing some symbols with their text equivalents e.g. ∧ is replaced
with &, ∨ with +, and ¬ with ˜. Also, the symbol after the underscore can be
understood as the subscript.

5 Example

In our example, we specify the GERDL input file of the dialogue game modeled
in Sect. 3. The players are called White and Black. For each player, we declare
five variables responsible for modeling emotions. Additionally, we declare the set
variable POSSIBLE ACTIONS to remember all the unused actions we would
like to be able to use at some moment. This set is expanding every time we
choose one of the possible actions - the other ones remain available and can be
used at certain (specified by the rules of the protocol) points of the dialogue.
Even though in the below input file locutions section in players are the same
there, we want to emphasize the potential asymmetry of players.

The protocol sections in both players reflect protocol function in our model
(Table 1 and R1–R4). Since our modeled dialogue game focus not only on the
commitments of the players but also on their emotions, some of the rules of
evolution functions represent properties of the dialogue game itself (changes in
the sets of commitments, Table 2) and the other ones can be understood as
elements of player’s emotional profile (changes in the emotions levels of the
specific player). In our example, last four rules of evolution function of each
player express the specific behaviour of the player. In real-life input files, this
section can be much more expanded to prevent too many possible dialogues.

The initial states are defined only be the means of predefined variable ini-
tialStates, which is true before the dialogue begins.

The first formula to be verified in the below example is one of the guarantee
properties - the termination property. Usually, the end of a dialogue means the
fulfillment of a certain termination condition e.g. that some player does not feel a
strong fear. This specific formula A(true U ¬EMOW (fear)) claims that every
computation contains a state at which the above condition holds and we can
assume it is the end of the dialogue.

The second formula, AG(COMp(α) ⇒ E(true U ¬ COMp(α))), is an exam-
ple of the response property - it expresses that even if a player p has committed
to α at some point, then during the dialogue he can change his mind and retract
this commitment.
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Below is the example of the input file in GERDL.
Commitments={“alpha”, “beta”, “theta”, “phi”, “psi”, “zeta”};

Player White

Locutions = {claim.X, concede.X, why.X, question.X, X.since.Z1...ZN, retract.X,
nod.X, scold.X};

PublicVars:

fear : 1 .. 10;
disgust : 1 .. 10;
joy : 1 .. 10;
sadness : 1 .. 10;
anger : 1 .. 10;

end PublicVars

PrivateVars

#the set variable to remember all the unused actions
POSSIBLE ACTIONS : set of Actions;

end PrivateVars

Protocol:

initialState=true : {claim.X, question.X , since.X}
Black.lastAction=claim.X : { why.X, concede.X, claim.(!X),nod.Y, scold.Y}
Black.lastAction=scold.X : { scold.Y, why.X, concede.X, claim.X, claim.(!X),

nod.Y}
Black.lastAction=X.since.Z1...ZN : { why.Z1|...|ZN, concede.X,

concede.Z1|...|ZN, (!X).since.Y1...YN, claim.X, claim.(!X), nod.Y, scold.Y}
Black.lastAction=why.X : { retract.X, X.since.Z1...ZN}
Black.lastAction=question.X : { retract.X, claim.X, claim.(!X)}
Black.lastAction=concede.X : { claim.Y, nod.Y, scold.Y, X.since.Z1...ZN}
Black.lastAction=nod.X : { claim.Y, nod.Y, scold.Y, Y.sinceZ1...ZN}

+POSSIBLE ACTIONS
Black.lastAction=retract.X : { claim.Y, nod.Y, Y.scold.Z1...ZN, since}

+POSSIBLE ACTIONS
Black.lastAction=retract.X and Before(White, Y.since.X) : {why.Y}

end Protocol

Evolution

White.X=true if (White.lastAction=claim.X or White.lastAction=scold.X)
White.X=true and White.Z1...ZN=true if White.lastAction=X.since.Z1...ZN
White.X=true if (White.lastAction=concede.X or White.lastAction=nod.X)
White.X=false if White.lastAction=retract.X

POSSIBLE ACTIONS=POSSIBLE ACTIONS+{why.X, concede.X,
claim.(!X), nod.Y, scold.Y} - White.lastAction if Black.lastAction=claim.X

POSSIBLE ACTIONS=POSSIBLE ACTIONS+{scold.Y, why.X, concede.X,
claim.X, claim.(!X), nod.Y} - White.lastAction if Black.lastAction=scold.X

POSSIBLE ACTIONS=POSSIBLE ACTIONS+{why.Z1|...|ZN, concede.X,
concede.Z1|...|ZN, (!X).since.Y1...YN , claim.X, claim.(!X), nod.Y, scold.Y}
- White.lastAction if Black.lastAction=X.since.Z1...ZN

POSSIBLE ACTIONS=POSSIBLE ACTIONS+{retract.X, X.since.Z1...ZN} -
White.lastAction if Black.lastAction=question.X
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POSSIBLE ACTIONS=POSSIBLE ACTIONS+
{retract.X, claim.X, claim.(!X)} - White.lastAction if Black.lastAction=why.X

POSSIBLE ACTIONS=POSSIBLE ACTIONS+
{claim.Y, nod.Y, scold.Y, Y.since.Z1...ZN} -White.lastAction
if Black.lastAction=concede.X

# Below are examples of rules describing White’s emotional profile

White.joy=White.joy-1 if lastAction=scold.X
and lastPlayer=White and White.joy>1 and Black.anger<10

White.joy=White.joy+1 if White.disgust<5
and White.joy<9 and lastAction=nod.“beta” and lastPlayer=Black

White.anger=White.anger+1
if Before(White, scold.“alpha”)=true and White.anger<10

and lastAction=question.“beta” and lastPlayer=Black

White.fear=White.fear+1
if lastAction=scold.X and lastPlayer=Black and White.fear<10

end Evolution

end Player

Player Black

Locutions = {claim.X, concede.X, why.X, question.X, X.since.Z1...ZN, retract.X,
nod.X, scold.X};

PublicVars:

fear : 1 .. 10;
disgust : 1 .. 10;
joy : 1 .. 10;
sadness : 1 .. 10;
anger : 1 .. 10;

end PublicVars

PrivateVars

#the set variable to remember all the unused actions
POSSIBLE ACTIONS : set of Actions;

end PrivateVars

Protocol:

initialState=true : {claim.X, question.X , X.since.Z1...ZN}
White.lastAction=claim.X : { why.X, concede.X, claim.(!X),nod.Y, scold.Y}
White.lastAction=scold.X : { scold.Y, why.X, concede.X, claim.X, claim.(!X),

nod.Y}
White.lastAction=X.since.Z1...ZN : { why.Z1|...|ZN, concede.X,

concede.Z1|...|ZN, (!X).since.Y1...Y2, claim.X, claim.(!X), nod.Y, scold.Y}
White.lastAction=why.X : { retract.X, X.since.Z1...ZN}
White.lastAction=question.X : { retract.X, claim.X, claim.(!X)}
White.lastAction=concede.X : { claim.Y, nod.Y, scold.Y, Y.since.Z1...ZN}
White.lastAction=nod.X : { claim.Y, nod.Y, scold.Y, Y.since.Z1...ZN}

+POSSIBLE ACTIONS
White.lastAction=retract.X : { claim.Y, nod.Y, scold.Y, Y.since.Z1...ZN}

+POSSIBLE ACTIONS
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White.lastAction=retract.X and Before(White, Y.since.X) : {why.Y}
end Protocol

Evolution

Black.X=true if (Black.lastAction=claim.X or Black.lastAction=scold.X)
Black.X=true and Black.Z1...ZN=true if Black.lastAction=X.since.Z1...ZN
Black.X=true if (Black.lastAction=concede.X or Black.lastAction=nod.X)
Black.X=false if Black.lastAction=retract.X

POSSIBLE ACTIONS=POSSIBLE ACTIONS+{why.X, concede.X,
claim.(!X), nod.Y, scold.Y} - Black.lastAction if White.lastAction=claim.X

POSSIBLE ACTIONS=POSSIBLE ACTIONS+{scold.Y, why.X, concede.X,
claim.X, claim.(!X), nod.Y} - Black.lastAction if White.lastAction=scold.X

POSSIBLE ACTIONS=POSSIBLE ACTIONS+{why.Z1|...|ZN, concede.X,
concede.Z1|...|ZN, (!X).since.Y1...YN , claim.X, claim.(!X), nod.Y, scold.Y}
- Black.lastAction if White.lastAction=X.since.Z1...ZN

POSSIBLE ACTIONS=POSSIBLE ACTIONS+{retract.X, X.since.Z1...ZN} -
Black.lastAction if White.lastAction=question.X

POSSIBLE ACTIONS=POSSIBLE ACTIONS+
{retract.X, claim.X, claim.(!X)} - Black.lastAction if White.lastAction=why.X

POSSIBLE ACTIONS=POSSIBLE ACTIONS+{claim.Y, nod.Y, scold.Y,
Y.since.Z1...ZN} - Black.lastAction if White.lastAction=concede.X

# Below there are rules specific for the player Black

Black.anger=Black.anger+1 if lastAction=question.X
and lastPlayer=White and Before(Black, claim.X)=true and Black.anger<10

Black.joy=Black.joy-1 if Black.disgust>5 and Before(White, scold.X)=true
and Black.joy>1 and lastAction=scold.Y

Black.joy=Black.joy-2 and Black.anger=Black.anger+2
if Before(White, scold.“alpha”)=true and Black.joy>2 and Black.anger<9

Black.anger=Black.anger+1 if lastAction=scold.X
and lastPlayer=White and White.joy>1 and Black.anger<10

end Evolution

end Player

InitStates

initialState=true;

end InitStates

Formulae

A(true U ˜EMO W (fear))
AG(COM p(α) − > E(true U ˜ COM p(α)))

end Formulae

6 Conclusion

The goal of our work is the specification and semantic verification of protocols for
dialogue games with a fixed protocol. We believe that it can show how important
is the role of emotions in the argumentative discourse. In this paper, as the
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next stage of this work, we introduced the Game with Emotional Reasoning
Description Language. The GERDL is essential to describe the verified dialogue
game on the input of our framework, which will be focused on model checking of
the properties of this dialogue game. We described the most important features
of dialogue games we wanted to capture in our specification. To represent the
verified properties of the protocol we used the extension of CTL logic with
commitment and emotion modalities (formulated in [8]).

We were inspired by existing frameworks which demand a similar specifica-
tion, whether it is for multi-agent systems or dialogue games. We pointed out
main differences in our approaches, what features of these systems we accom-
modated and which ones did not have an application in our domain. Next step
of our work on dialogue games verification will be focused on the design and the
implementation of model checker that will use presented in this paper GERDL
file as the input file and verify whether specified properties are true.
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framework of the work S/W/1/2014 and funded by Ministry of Science and Higher
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Abstract. The paper deals with symbolic approach to bounded model
checking (BMC) for metric temporal logic with epistemic operators
(MTLK) that is interpreted over timed interpreted systems (TIS). We
present an SMT-based BMC method based on the translation of MTLK
formulae to LTLqK formulae. We show how to implement the bounded
model checking technique for LTLqK logic and timed interpreted sys-
tems, and we present full translation to SMT problem for LTLqK. As
a case study, we apply the technique in the analysis of the Timed Generic
Pipeline Paradigm modelled by TIS. We also present the differences
between the old translation of MTLK and the new one. The theoretical
description is supported by the experimental results that demonstrate
the efficiency of the method.

1 Introduction

The formalism of interpreted systems (IS) was introduced in [5] to model multi-
agent systems (MAS) [10], which are intended for reasoning about the agents’
epistemic and temporal properties. The formalism of timed interpreted systems
(TIS) was presented in [11] extends IS to make the reasoning possible about
not only temporal and epistemic properties, but also about real-time aspects
of MASs.

Multi-agent systems (MASs) are composed of many intelligent agents that
interact with each other. The agents can share a common goal or they can
pursue their own interests. Also, the agents may have deadline or other timing
constraints to achieve in- tended targets. As it was shown in [5], knowledge is a
useful concept for analysing the information state and the behaviour of agents
in multi-agent systems. In particular, it is useful to reason about and to verify
the evolution over time of epistemic states [6].

Model checking [2] is an automatic method for formally verifying systems,
in particular, multi-agent systems. To check automatically whether the system
satisfies a given property, one must first create a formal model of the system,
and then describe the property in a modal logic [4].
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Bounded model checking [1,9] (BMC) is one of the symbolic model checking
techniques designed for finding witnesses for existential properties or counterex-
amples for universal properties. Its main idea is to consider a model reduced to a
specific depth, which means that we consider only finite prefixes of the paths in
the model. The SMT-BMC method works by mapping a bounded model check-
ing problem to the satisfiability modulo theories problem (SMT). For metric
temporal logic with epistemic operators (MTLK) [7,11] and timed interpreted
systems [11] the BMC method can by described as follows: given a model M
for a timed interpreted system, an MTLK formula ϕ, and a bound k, a model
checker creates a quantifier-free first-order formula [M, ϕ]k that is satisfiable if
and only if the formula ϕ is true in the model M.

The original contributions of the paper are as follows. First of all, we define
a translation of the existential model checking problem for MTLK to the exis-
tential model checking problem for linear temporal logic with additional proposi-
tional variables qI. This logic is denoted by LTLqK. Secondly, we define bounded
semantics for LTLqK and define the BMC algorithm. Finally, we define the trans-
lation of LTLqK formula to SMT problem and implement the new method.

The translation from MTLK to LTLqK requires neither new clocks nor new
transitions, whereas the translation to HLTLK [11] requires as many new clocks
as there are intervals in a given formula. It also requires an exponential number
of resetting transitions. Moreover, our BMC method needs only one path for
temporal operators, whereas the BMC method from [11] needs a number of
paths depending on a given formula ϕ. Thus, one may expect that our method
is much more effective since intuition is that an encoding which results in fewer
variables and clauses is usually easier to solve.

Finally, we evaluate the BMC method experimentally by means of a timed
generic pipeline paradigm (TGPP), which we model by a TIS, and then we
compare it with the corresponding SAT-based BMC method [14].

The rest of the paper is structured as follows. In Sect. 2 we briefly recall
the basic notion used through the paper. In Sect. 3 we define the translation to
LTLqK. In Sect. 4 we define the BMC method for LTLqK. In Sect. 5 we discuss
our experimental results. In Sect. 6 we conclude the paper.

2 Preliminaries

In this section we introduce the basic definitions used in the paper. In particular,
we define the semantics of timed interpreted systems and syntax and semantics of
MTLK. The semantics of timed interpreted systems provides a setting to reason
about MAS by means of specifications based on knowledge and discrete time.

2.1 Timed Interpreted System

Let us start by fixing some notation used through the paper. Let IN be a set
of natural numbers. We assume a finite set X = {x0, . . . , xn−1} of variables,
called clocks. Each clock is a variable ranging over a set of non-negative natural
numbers.
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A clock valuation is a total function v : X �→ IN that assigns to each clock x
a non-negative integer value v(x). The set of all the clock valuations is denoted
by INn. For X ⊆ X , the valuation v′ = v[X := 0] is defined as: ∀x∈X, v′(x) = 0
and ∀x∈X \X, v′(x) = v(x). For δ ∈ IN+, v+δ denotes the valuation v′′ such that
∀x ∈ X , v′′(x) = v(x) + δ. Let x ∈ X , c ∈ IN. The set C(X ) of clock constraints
over the set of clocks X is defined by the following grammar:

cc := true |x < c |x ≤ c |x = c |x ≥ c |x > c | cc ∧ cc.

Let v be a clock valuation, and cc ∈ C(X ). A clock valuation v satisfies a clock
constraint cc, written as v |= cc, iff cc evaluates to true using the clock values
given by the valuation v.

We begin by assuming a MAS to be composed of n agents A. Let E be a
special agent that is used to model the environment in which the agents operate,
and AP =

⋃
i∈A∪{E} AP i be a set of atomic formulae, such that AP i1

⋂
AP i2 =

∅ for all i1, i2 ∈ A ∪ {E}.
Timed Interpreted Systems were proposed in [11] to extend interpreted sys-

tems (ISs) in order to make possible reasoning about real-time aspects of MASs.
A timed interpreted system is a tuple

TIS = ({Li, Acti,Xi, Pi,Vi, Invi, ιi}i∈A∪{E}, {ti}i∈A, {tE}),

where:

– Li is a non-empty set of locations of the agent i,
– ιi ⊆ Li is a non-empty set of initial locations,
– Acti is a non-empty set of possible actions of the agent i, Act = Act1 × . . . ×

Actn × ActE is the set of joint actions. We assume that the special action -
called “null”, or “silent” action of agent i -εi belongs to Acti,

– Xi is a non-empty set of clocks,
– Pi : Li → 2Acti is a protocol function modelling the program the agent is

executing. Formally, for any agent i, the actions of the agents are selected
according to a local protocol.

– ti : Li × LE × C(Xi) × 2Xi × Act → Li is a (partial) evolution function for
agents. The evolution function determines how local states “evolve”, based on
the agent’s local state, on other agents’ actions, on the local state of a special
agent used to model the environment, on the clock constraints of agent i, and
on the set of clocks;

– tE : LE × C(XE) × 2XE × Act → LE is a (partial) evolution function for
environment,

– Vi : Li → 2APi is a valuation function assigning to each location a set of
atomic formulae that are assumed to be true at that location,

– Invi : Li → C(Xi) is an invariant function, that constraints the amount of
time the agent i may spend in a given location.

It is assumed that locations, actions and clocks for the environment are “pub-
lic”, which means that all the agents know the current location, the action, and
the clock valuation of the environment.
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We also assume that if εi ∈ Pi(�i), then ti(�i, �E , cci,X , (a1, . . . , an, aE)) = �i
for ai = εi, any cci ∈ C(Xi), and any X ⊆ Xi. Each element t of ti is denoted by
< �i, �E , cci,X ′, a, �′

i >, where �i is the source location, �′
i is the target location, a

is an action, cci is the enabling condition for cci, and X ′ ⊆ Xi is the set of clocks
to be reset after performing t. An invariant condition allows the TIS to stay at
the location � as long as the constraint Invi(�i) is satisfied. The guard cci has to
be satisfied to enable the transition.

2.2 Timed Model

For a given TIS let the symbol S =
∏

i∈A∪{E}(Li × INXi) denote the non-
empty set of all the global states. Moreover, for a given global state s =
((�1, v1), . . . , (�n, vn), (�E , vE)) ∈ S, let the symbols li(s) = �i and vi(s) = vi
denote, respectively, the local component and the clock valuation of agent
i ∈ A∪{E} in s. Now, for a given TIS we define a timed model (or a model) as a
tuple M = (S,Act, ι, T,V), where: Act = Act1× . . .×Actn ×ActE is the set of all
the joint actions, ι =

∏
i∈A∪{E}(ιi×{0}Xi) is the set of all the initial global states,

V : S → 2AP is the valuation function defined as V(s) =
⋃

i∈A∪{E} Vi(li(s)),
T ⊆ S × (Act ∪ IN) × S is a transition relation defined by action and time
transitions. Let s and s′ be two global states. For ã ∈ Act:

1. Action transition: (s, ã, s′) ∈ T (or s
ã−→ s′) iff for all i ∈ A∪{E}, there exists

a local transition ti(li(s), cci,X ′, ã) = li(s′) such that vi(s) |= cci ∧ Inv(li(s))
and v′

i(s
′) = vi(s)[X ′ := 0] and v′

i(s
′) |= Inv(li(s′)) (vi(s)[X ′ := 0] denotes

the clock valuation which assigns 0 to each clock in X ′ and agrees with vi(s)
over the rest of the clocks).

2. Time transition: let δ ∈ IN, (s, δ, s′) ∈ T iff for all i ∈ A ∪ E , li(s) = li(s′) and
vi(s) |= Inv(li(s)) and v′

i(s
′) = vi(s) + δ and v′

i(s
′) |= Inv(li(s′)).

Given a TIS, one can define for any agent i the indistinguishability relation
∼i⊆ S × S as follows: s ∼i s′ iff li(s′) = li(s) and vi(s′) = vi(s). We assume the

following definitions of epistemic relations: ∼E
Γ

def
=

⋃
i∈Γ ∼i, ∼C

Γ

def
= (∼E

Γ )+ (the

transitive closure of ∼E
Γ ), ∼D

Γ

def
=

⋂
i∈Γ ∼i, where Γ ⊆ A.

A run in M is an infinite sequence ρ = s0
δ0,a0−→ s1

δ1,a1−→ s2
δ2,a2−→ . . . of global

states such that the following conditions hold for all i ∈ IN : si ∈ S, ai ∈ Act, δi ∈
IN+, and there exists s′

i ∈ S such that (si, δi, s
′
i) ∈ T and (si, ai, si+1) ∈ T .

Observe that the above definition of the run ensures that the first transition is
the time one, and between each two action transitions at least one time transition
appears.

The set of all the runs starting at s ∈ S is denoted by Π(s), and the set of all
the runs starting at an initial state is denoted by Π =

⋃
s0∈ι Π(s0). Moreover,

for ã ∈ Act ∪ {τ}, we sometimes write s
ã−→ s′ instead of (s, ã, s′) ∈ T .

2.3 MTLK

Let p ∈ AP, and I be an interval in IN of the form: [a, b) or [a,∞), for a, b ∈ IN and
a �= b. The MTLK in negation normal form is defined by the following grammar:
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α := true | false | p | ¬p | α ∧ α | α ∨ α | αUIα | GIα | Kiϕ | Kiϕ.

Intuitively, UI and GI are the operators for bounded until and for bounded always.
The formula αUIβ is true in a computation if β is true in the interval I at least in
one state and always earlier α holds. The formula GIα is true in a computation
if α is true at all states of the computation that are in the interval I. The derived
basic modality FI for bounded eventually is defined as follows: FIα

def
= trueUIα.

Ki is the operator dual for the standard epistemic modality Ki (“agent i knows”),
so Kiα is read as “agent i does not know whether or not α holds”.

The EMTLK in the existential fragment of MTLK defined as:

α := true | false | p | ¬p | α ∧ α | α ∨ α | αUIα | GIα | Kiϕ.

Observe that we assume that MTLK (and so EMTLK) formulae are given in the
negation normal form, in which the negation can be only applied to propositional
variables. Moreover, EMTLK is existential only w.r.t. the epistemic modalities.

In order to define the satisfiability relation for MTLK, we need to define the
notion of a discrete path λρ corresponding to run ρ [11]. This can be done in a
unique way because of the assumption that δi ∈ IN+. First, define the sequence
Δ0 = [b0, b1),Δ1 = [b1, b2),Δ2 = [b2, b3), . . . of pairwise disjoint intervals, where:
b0 = 0, and bi = bi−1 + δi−1 if i > 0. Now, for each t ∈ IN, let idxρ(t) denote
the unique index i such that t ∈ Δi. A discrete path (or path) λρ corresponding
to ρ is a mapping λρ : IN �→ S such that λρ(t) = (�i, vi + t − bi), where i =
idxρ(t). Given t ∈ IN, the suffix λt

ρ of a path λρ at time t is a path defined as:
∀i ∈ IN, λt

ρ(i) = λρ(t + i).
In order to improve readability, in the following definition we write

λt
ρ|=MTLKϕ instead of M̂, λt

ρ|=MTLKϕ, for any MTLK formula ϕ.

Definition 1. The satisfiability relation |=MTLK, which indicates truth of
an MTLK formula in the model M along a path λρ at time t ∈ IN, is defined
inductively as follows:

– λt
ρ |=MTLK true, λt

ρ � |=MTLK false,
– λt

ρ |=MTLK p iff p ∈ V(λρ(t)), λt
ρ |=MTLK ¬p iff p �∈ V(λρ(t)),

– λt
ρ |=MTLK α ∧ β iff λt

ρ |=MTLK α and λt
ρ |=MTLK β,

– λt
ρ |=MTLK α ∨ β iff λt

ρ |=MTLK α or λt
ρ |=MTLK β,

– λt
ρ |=MTLK αUIβ iff (∃t′ ∈ I)(λt+t′

ρ |=MTLK β and (∀0 � t′′ <

t′)λt+t′′
ρ |=MTLK α),

– λt
ρ |=MTLK GIβ iff (∀t′ ∈ I)(λt+t′

ρ |=MTLK β),
– λt

ρ |=MTLK Kiα iff (∀π′ ∈ Π)(∀i ≥ 0)(π′(i) ∼i π(t) implies M, π′i |= α),
– λt

ρ |=MTLK Kiα iff (∃π′ ∈ Π)(∃i ≥ 0)(π′(i) ∼i π(t) and M, π′i |= α).

As λ0
ρ = λρ, we shall write M, λρ |=MTLK ϕ for M, λ0

ρ |=MTLK ϕ. An MTLK
formula ϕ is existentially valid in the model M, denoted M |=MTLK Eϕ, if, and
only if M, λρ |=MTLK ϕ for some path λρ starting in the initial state of M.
Determining whether an MTLK formula ϕ is existentially valid in a given model
is called the existential model checking problem.
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3 Translation from MTLK to LTLqK

3.1 Abstract Model

The set of all the clock valuations is infinite which means that a model has an
infinite set of states. We need to abstract the proposed model before we can
apply the bounded model checking technique.

Let ϕ be an MTLK formula and TIS = ({Li, Acti,Xi, Pi,Vi, Ii, ιi}i∈A∪{E},
{ti}i∈A, {tE}) be a timed interpreted system with X = {x0, . . . , xn}. For each
i ∈ A ∪ {E}, let cmax

i be the largest constant appearing in intervals of ϕ and in
any enabling condition involving the clock xi and used in the state invariants
and guards of TIS. For two clock valuations v and v′ in IN|X |, we say that v � v′

iff for each agent i either v(xi) > cmax
i and v′(xi) > cmax

i or v(x) � cmax
i and

v′(x) � cmax
i and v(x) = v′(x).

It is well known, that the relation � is an equivalence relation, what gives rise
to construct an finite abstract model. To this end we define the set of possible
values of the clock xi in the abstract model as IDi = {0, . . . , cmax

i +1}. Moreover,
for two clock valuations v and v′ in ID0 × . . . × IDn × IDE , we say that v′ is the
time successor of v (denoted succ(v)) as follows: for each x ∈ X ,

succ(v)(xi) =
{

v(xi) + 1, if v(xi) � cmax
j ,

cmax
i + 1, if v(xi) = cmax

i + 1.

Definition 2. A tuple M̂ = (Ŝ, Act, ι̂, T̂ , V̂), is an abstract model, where

– ι̂ =
∏

i∈A∪E(ιi × {0}|Xi|) is the set of all the initial global states,
– Ŝ =

∏
i∈A∪E(Li × ID|Xi|

i ) is the set of all the abstract global states.
– V̂ : Ŝ → 2AP is the valuation function such that: p ∈ V̂(ŝ) iff p ∈

⋃
i∈A∪E V̂i(li(ŝ)) for all p ∈ AP; and

– T̂ ⊆ Ŝ × (Act ∪ τ) × Ŝ. Let ã ∈ Act. Then,
• action transition is defined as (ŝ, ã, ŝ′) ∈ T̂ iff ∀i∈A∃φi∈C(Xi)∃X ′

i ⊆Xi

(ti(li(ŝ), φi,X ′
i , ã) = li(ŝ′) and vi |= φi ∧ Inv(li(ŝ)) and v′

i(ŝ
′) =

vi(ŝ)[X ′
i := 0] and v′

i(ŝ
′) |= Inv(li(ŝ′)));

• time transition is defined as (ŝ, τ, ŝ′) ∈ T̂ iff ∀i∈A∪E(li(ŝ) = li(ŝ′)) and
vi(ŝ) |= Inv(li(ŝ)) and succ(vi(ŝ)) |= Inv(li(ŝ))) and ∀i∈A(v′

i(ŝ
′) =

succ(vi(ŝ′))) and (v′
E(ŝ′) = succ(vE(ŝ))).

Definition 3. A path in M̂ is a sequence π = (s0, s1, . . .) of states such that

for each j ∈ IN, either (sj
τ
↪→ sj+1) or (sj

ã
↪→ sj+1) for some ã ∈ Act, and every

action transition is preceded by at least one time transition.

The above definition of the path ensures that the first transition is the time
one, and that between each two action transitions at least one time transition
appears.

For a path π, π(j) denotes the j-th state sj of π, π[..j] = (π(0), . . . , π(j))
denotes the j-th prefix of π ending with π(j), and πj = (sj , sj+1, . . .) denotes
the j-th suffix of π starting with π(j).
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Given a path π one can define a function ζπ : IN �→ IN such that for each
j � 0, ζπ(j) is equal to the number of time transitions on the prefix π[..j]. Let
us note that for each j � 0, ζπ(j) gives the value of the global time in the j-th
state of the path π.

3.2 Example of MAS and Its Model

The Timed Generic Pipeline Paradigm (TGPP) TIS model shown in Fig. 1 con-
sists of Producer producing data within the certain time interval ([a, b]) or being
inactive, Consumer receiving data within the certain time interval ([c, d]) or being
inactive within the certain time interval ([g, h]), and a chain of n intermediate
Nodes which can be ready for receiving data within the certain time interval
([c, d]), processing data within the certain time interval ([e, f ]) or sending data.
We assume that a = c = e = g = 1 and b = d = f = h = 2 · n + 2, where n
represents number of nodes in the TGPP.

Fig. 1. The TGPP system.

Each agent of the scenario can be modelled by considering its local states, the
local actions, the local protocol, the local evolution function, the local clocks, the
clock constraints, the invariants, and the local valuation function. Figure 1 shows
the local states, the possible actions, and the protocol, the clock constraints, invari-
ants and weights for each agent. Null actions are omitted in the figure. For envi-
ronment, we shall consider just one local state: LE ={·}. The set of actions for E is
ActE ={εE}. The local protocol of E is the following: PE(·)=ActE . The set of clocks
of E is empty, and the invariant function is defined as follows: InvE(·) = true.

Given Fig. 1, the local evolution functions of TGPP are straightforward
to infer. Moreover, we assume the following set of propositional variables:
AP = {ProdReady, ProdSend,ConsReady,ConsReceived} with the following
definitions of local valuation functions:

V̂P (ProdReady) = {ProdReady}, V̂P (ProdSend) = {ProdSend};
V̂C(ConsReady) = {ConsReady}, V̂C(ConsReceived) = {ConsReceived}.

Let Act = ActP ×
∏n

i=1 ActNi
×ActC ×ActE , with ActP = {Produce, Send1,

εP }, ActC = {Startn+1, Consume, Sendn+1, εC}, ActNi
= {Starti, Sendi,

Sendi+1, P roci, εNi
}, and ActE = {εE} defines the set of joint actions for
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the scenario. For ã ∈ Act let actP (ã) denotes an action of Producer, actC(ã)
denotes an action of Consumer, actNi

(ã) denotes an action of Node i, and actE(ã)
denotes an action of environment E . We assume the following local evolution
functions:

– tP (ProdReady, ·, x0 ≥ a, ∅, ã) = ProdSend, if actP (ã) = Produce;
– tP (ProdSend, ·, true, {x0}, ã) = ProdReady, if actP (ã) = Send1 and

actNi
(ã) = Send1;

– tC(ConsStart, ·, true, {xn+1}, ã) = ConsReady, if actC(ã) = Startn+1;
– tC(ConsReady, ·, xn+1 ≥ c, {xn+1}, ã)=ConsReceived, if actC(ã)=Sendn+1

and actNn
(ã) = Sendn+1;

– tC(ConsReceived, ·, xn+1 ≥ g, {xn+1}, ã) = ConsReady, if actC(ã) =
Consume.

The set of all the global states Ŝ for the scenario is defined as the product
(LP × ID|XP |

P )×
∏n

i=1(LNi
× ID|XNi

|
Ni

)× (LC × ID
|XLC

|
LC

)×LE . The set of the initial
states is defined as ι̂ = {s0}, where s0 = ((ProdReady, 0), (Node1Start, 0), . . . ,
(NodenStart, 0), (ConsStart, 0), (·)).

3.3 The Logic LTLqK

The logic LTLq was defined in [13]. LTLqK is the fusion of the two underlying
languages: LTLq and S5n for the knowledge operators [5].

Let I be the set of all intervals in IN. Let API = {qI | I ∈ I}. The LTLqK
formulae in the negation normal form are defined by the following grammar:

ψ ::= true | false | p | ¬p | qI | ¬qI | ψ ∧ ψ | ψ ∨ ψ | ψUψ | Gψ | Kiϕ | Kiϕ,

where p ∈ AP and qI ∈ API . The temporal modalities U and G are, respec-
tively, named as the until and the always. The derived basic temporal modality
for eventually is defined in the standard way: Fψ

def
= trueUψ.

In order to improve readability, in the following definition we write 〈π,m〉 |=k

ψ instead of M̂, 〈π,m〉 |=k ψ, for any LTLqK formula ψ.

Definition 4. The satisfiability relation |=d, which indicates truth of an LTLqK
formula in the abstract model M̂ along the path π with the starting point m and
at the depth d � m, is defined inductively as follows:

– 〈π,m〉 |=d true, 〈π,m〉 � |=d false,
– 〈π,m〉 |=d

p iff p ∈ V(π(d)), 〈π,m〉 |=d ¬p iff p /∈ V(π(d)),
– 〈π,m〉 |=d

qI iff ζπ(d) − ζπ(m) ∈ I,
– 〈π,m〉 |=d ¬qI iff ζπ(d) − ζπ(m) �∈ I,
– 〈π,m〉 |=d

α ∧ β iff 〈π,m〉 |=d
α and 〈π,m〉 |=d

β,
– 〈π,m〉 |=d

α ∨ β iff 〈π,m〉 |=d
α or 〈π,m〉 |=d

β,
– 〈π,m〉 |=d

αUβ iff (∃j � d)(〈π, d〉 |=j
β and (∀d � i < j) 〈π, d〉 |=i

α),
– 〈π,m〉 |=d Gβ iff (∀j � d) 〈π, d〉 |=j

β,
– 〈π,m〉 |=d Kiα iff (∀π′ ∈ Π)(∀j ≥ d)(〈π′, j〉 ∼i 〈π, d〉 implies 〈π′, d〉 |=j α),
– 〈π,m〉 |=d Kiα iff (∃π′ ∈ Π)(∃j ≥ d)(〈π′, j〉 ∼i 〈π, d〉 and ′ 〈π′, d〉 |=j α).
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An LTLqK formula ψ existentially holds in the model M̂, written M̂ |= Eψ,
if, and only if M̂, 〈π, 0〉 |=0

ψ for some path π starting at the initial state. The
existential model checking problem asks whether M̂ |= Eψ.

3.4 Translation

The translation from MTLK to LTLqK is based on translation presented in [13].
Let p ∈ AP, α and β be formulae of MTLK. We define the translation from
MTLK into LTLqK as a function tr : MTLK → LTLqK in the following way:

– tr(true) = true,
– tr(false) = false,
– tr(p) = p,
– tr(¬p) = ¬p,
– tr(α ∧ β) = tr(α) ∧ tr(β),
– tr(α ∨ β) = tr(α) ∨ tr(β),
– tr(αUIβ) = tr(α)U(qI ∧ tr(β)),
– tr(FIα) = Ftr(qI ∧ α),
– tr(GIβ) = G(¬qI ∨ tr(β))
– tr(αRIβ) = G(¬qI ∨ tr(α)) ∨ tr(α)U(qI ∧ tr(α ∨ β)),
– tr(Kα) = Kα,
– tr(Kα) = Kα.

Observe that the translation of literals as well as logical connectives and epis-
temic operators is straightforward. The translation of the UI operator ensures
that β holds somewhere in the interval I (this is expressed by the requirement
qI ∧ tr(β)), and α holds always before β. Similarly, the translation of the GI

operator ensures that β always holds in the interval I (this is expressed by the
requirement ¬qI ∨ tr(β)).

Now we show how to apply our new translation for a timed interpreted system
to verify a version of the timed generic pipeline paradigm (TGPP).

Example 1. Consider TGPP described in Sect. 3.2 for one node and the MTLK
formula ϕ = G[3,4)F[0,7)(ProdReady ∨ ProdSend) (Fig. 2).

Assume the following run ρ with the following prefix:
((ProdReady, 0)(NodeReady, 0)(ConsReady, 0))

1,Produce−→
((ProdSend, 0)(NodeReady, 1)(ConsReady, 1))

1,Send1−→
((ProdReady, 0)(NodeProc, 0)(ConsReady, 2))

1,Proc1−→
((ProdReady, 1)(NodeSend, 1)(ConsReady, 3))

1,Send2−→
((ProdReady, 2)(NodeReady, 0)(ConsFree, 0)) ...−→ ...
The corresponding path λρ is constructed as follows. First we take Δ0 = [0, 1),
Δ1 = [1, 2), Δ2 = [2, 3), Δ3 = [3, 4), Δ4 = [4, 5), Δ5 = [6, 7).... Next we have
idxρ(0) = 0 since 0 ∈ Δ0, idxρ(1) = 1 since 1 ∈ Δ1, idxρ(2) = 2 since 2 ∈ Δ2,
idxρ(3) = 3 since 3 ∈ Δ3, idxρ(4) = 4 since 4 ∈ Δ4, idxρ(5) = 5 since 5 ∈ Δ5

etc. Finally, we get the following discrete path λρ corresponding to the run ρ:
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Fig. 2. The TGPP system with one node and an example run.

λ0
ρ = ((ProdReady, 0)(NodeReady, 0)(ConsReady, 0)),

λ1
ρ = ((ProdSend, 0)(NodeReady, 1)(ConsReady, 1)),

λ2
ρ = ((ProdReady, 0)(NodeProc, 0)(ConsReady, 2)),

λ3
ρ = ((ProdReady, 1)(NodeSend, 1)(ConsReady, 3)),

λ4
ρ = ((ProdReady, 2)(NodeReady, 0)(ConsFree, 0)), etc.

From the semantics of MTLK we have that:
λt

ρ |=MTLK G[3,4)F[0,7)(ProdReady ∨ ProdSend) iff
(∀t′ ∈ [3, 4))(∃t′′ ∈ [0, 7))(λt+t′+t′′

ρ |=MTLK ProdReady∨
λt+t′+t′′

ρ |=MTLK ProdSend)).
Observe that following is true: V(λ3

ρ) = ProdReady. Therefore we have that
λ3

ρ |=MTLK G[3,4)F[0,7)(ProdReady ∨ ProdSend).
The tr(ϕ) is calculated as follows: tr(G[3,4)F[0,7)(ProdReady ∨ ProdSend))) =
G(¬q0[3,4) ∨ tr(F[0,7)(ProdReady ∨ ProdSend))) =
G(¬q0[3,4) ∨ F(q1[0,7) ∧ tr(ProdReady ∨ ProdSend))) =
G(¬q0[3,4) ∨ F(q1[0,7) ∧ (ProdReady ∨ ProdSend))).
From the semantics of LTLq we have that:
〈π,m〉 |=d G(¬q0 ∨ F(q1 ∧ (ProdReady ∨ ProdSend))) ⇔
(∀j � d)(〈π, d〉 |=j¬q0 ∨ 〈π, d〉 |=jF(q1 ∧ (ProdReady ∨ ProdSend))) ⇔
(∀j � d)(〈π, d〉 |=j(¬q0∨ (∃i � j)(〈π, j〉 |=i

q1∧ (ProdReady ∨ProdSend)))) ⇔
(∀j � d)(〈π, d〉 |=j¬q0 ∨ (∃i � j)(〈π, j〉 |=i

q1 ∧ 〈π, j〉 |=i(ProdReady ∨
ProdSend))).

Now we show how to check where q0[3,4) is true. We check q0[3,4) at the
starting point m = 0:

– at the depth d = 0: ζπ(0) − ζπ(0) = 0 − 0 = 0, 0 �∈ [3, 4)
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– at the depth d = 1: ζπ(1) − ζπ(0) = 1 − 0 = 1, 1 �∈ [3, 4)
– at the depth d = 2: ζπ(2) − ζπ(0) = 1 − 0 = 1, 1 �∈ [3, 4)
– at the depth d = 3: ζπ(3) − ζπ(0) = 2 − 0 = 2, 2 �∈ [3, 4)
– at the depth d = 4: ζπ(4) − ζπ(0) = 2 − 0 = 2, 2 �∈ [3, 4)
– at the depth d = 5: ζπ(5) − ζπ(0) = 3 − 0 = 3, 3 ∈ [3, 4).

It follows that the formula in question is true in the model under
consideration.

Theorem 1. Let TIS be a timed interpreted system, ϕ an MTLK formula, and
M the model for the timed interpreted system TIS, and M̂ the abstract model
for the timed interpreted system TIS and the formula ϕ. Then, M|=Eϕ if, and
only if M̂ |=Etr(ϕ).

4 Bounded Model Checking

In this section we define a bounded semantics for LTLqK in order to translate
the existential model checking problem for LTLqK into the satisfiability problem.

4.1 Bounded Semantics

To define the bounded semantics one needs to represent infinite paths in a model
in a special way. To this aim, we recall the notions of k-paths and loops [12].

Definition 5. Let M̂ be the abstract model, k ∈ IN, and 0 � l � k. A k-path is
a pair (π, l), also denoted by πl, where π is a finite sequence π = (s0, . . . , sk) of

states such that for each 0 � j < k, either (sj
τ
↪→ sj+1) or (sj

ã
↪→ sj+1) for some

ã ∈ Act, and every action transition is preceded by at least one time transition.
A k-path πl is a loop, written �(πl) for short, if l < k and π(k) = π(l).

If a k-path πl is a loop it represents the infinite path of the form uvω, where
u = (π(0), . . . , π(l)) and v = (π(l +1), . . . , π(k)). We denote this unique path by
π̃l. Note that for each j ∈ IN, π̃l

l+j = π̃l
k+j .

In the definition of bounded semantics for variables from API one needs to
use only a finite prefix of the sequence (ζπ̃l

(0), ζπ̃l
(1), . . .). Namely, for a k-path

πl that is not a loop the prefix of the length k is needed, and for a k-path πl

that is a loop the prefix of the length k + k − l is needed.
In order to improve readability, in the following definition we write 〈πl,m〉 |=k

ψ instead of M̂, 〈πl,m〉 |=k ψ, for any LTLqK formula ψ.

Definition 6 (Bounded semantics). Let M̂ be the abstract model, πl be a k-
path in M̂, and 0 � m, d � k. The relation |=d

k is defined inductively as follows:

– 〈πl,m〉 |=d
k true,

– 〈πl,m〉 � |=d
k false,
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– 〈πl,m〉 |=d
k p iff p ∈ V(πl(d)),

– 〈πl,m〉 |=d
k ¬p iff p /∈ V(πl(d)),

– 〈πl,m〉 |=d
k qI iff

⎧
⎪⎨

⎪⎩

ζπ̃l
(d) − ζπ̃l

(m) ∈ I, if πl is not a loop,

ζπ̃l
(d) − ζπ̃l

(m) ∈ I, if πl is a loop and d � m,

ζπ̃l
(d + k − l) − ζπ̃l

(m) ∈ I, if πl is a loop and d < m,

– 〈πl,m〉 |=d
k ¬qI iff 〈πl,m〉 � |=d

k qI,

– 〈πl,m〉 |=d
k α ∧ β iff 〈πl,m〉 |=d

k α and 〈πl,m〉 |=d
k β,

– 〈πl,m〉 |=d
k α ∨ β iff 〈πl,m〉 |=d

k α or 〈πl,m〉 |=d
k β,

– 〈πl,m〉 |=d
k αUβ iff (∃d�j�k)

(
〈πl, d〉 |=j

k β and (∀d�i<j) 〈πl, d〉 |=j
k α

)

or
(
�(πl) and (∃l<j<d) 〈πl, d〉 |=j

k β and (∀l<i<k) 〈πl, d〉 |=j
k α

and (∀d�i�k) 〈πl, d〉 |=j
k α

)
,

– 〈πl,m〉 |=d
k Gβ iff �(πl) and (∀j�k)j � min(d, l) implies 〈πl, d〉 |=j

k β,

– 〈πl,m〉 |=d
k Kiα iff (∃π′

l′ ∈ Πk)(∃d ≤ j ≤ k)(〈πl, d〉 |=j
k α and π(d) ∼i π′(j)).

An LTLqK formula ψ existentially k-holds in the model M̂, written
M̂ |=k Eψ, if, and only if M̂, 〈π, 0〉 |=0

k ψ for some path π starting at the initial
state.

Theorem 2. Let TIS be a timed interpreted system, ϕ an MTLK formula, and
M̂ the abstract model for the timed interpreted system TIS and the formula ϕ.
Moreover, let ψ = tr(ϕ). Then, M̂ |= Eψ if, and only if there exists k � 0 such
that M̂|=kEψ.

4.2 Translation to SMT

The presented SMT encoding of the BMC problem for LTLqK and for TIS
is based on the SAT encoding presented in [9,12] and it relies on defining a
quantifier-free first-order formula. It consists in encoding the transition relation
of M̂ and the LTLqK formula tr(ϕ). The only novelty lies in encoding of the
finite prefix of the sequence (ζπ̃l

(0), ζπ̃l
(1), . . .).

Let M̂ be an abstract model for the timed interpreted system and an MTLK
formula ϕ, tr(ϕ) the LTLqK formula, and k ∈ IN a bound. It is well known
that the main idea of the SMT-based BMC method consists in translating the
bounded model checking problem, i.e., M̂ |=k tr(ϕ), to the problem of checking
the satisfiability of the following quantifier-free first-order formula:

[M̂, ϕ]SMT
k := [M̂ϕ,ι̂]SMT

k ∧ [ϕ]SMT
̂M,k

.

The definition of the formula [M̂, tr(ϕ)]SMT
k assumes that each abstract

global state ŝ ∈ Ŝ of M̂ can be represented by a valuation of a symbolic state
w = ((w1, v1), . . . , (wn, vn), (wE , vE)) that consists of symbolic local states. Each
symbolic local state is a pair (wi, vi) of individual variables ranging over the nat-
ural numbers that consists of a local state of the agent i and a clock valuation.
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Similarly, each action can be represented by a valuation of a symbolic joint action
a that is a vector of the individual variables ranging over the natural number.

The formula [M̂tr(ϕ),ι̂]SMT
k constrains the fk(ϕ) symbolic k-paths to be valid

k-paths of M̂, while the formula [tr(ϕ)]
̂M,k

encodes a number of constraints
that must be satisfied on these sets of k-paths for tr(ϕ) to be satisfied. Note that
the exact number of necessary symbolic k-paths depends on the checked formula
tr(ϕ), and it can be calculated by means of the function fk : LTLqK → IN which
is an auxiliary function defined in [9,12]. Now, since in the BMC method we deal
with existential validity, the number of k-paths sufficient to validate ϕ is given
by the function f̂k : LTLqK → IN that is defined as f̂k(tr(ϕ)) = fk(tr(ϕ)) + 1.

Let w and w′ be two different symbolic states, a a symbolic action, δ a
symbolic time passage, and u be a symbolic number. We assume definitions of
the following auxiliary quantifier-free first-order formulae:

– Iŝ(w) - it encodes the state ŝ of the abstract model M̂,
– Ti(wi, (ai, δ), w′

i) encodes the local evolution function of agent i; We assume
that the first transition is the time one, and between each two action transi-
tions at least one time transition appears.

– A(a) encodes that each symbolic local action ai of a has to be executed by
each agent in which it appears, and

– T (w, (a, δ),w′) := A(a) ∧
∧

i∈A∪{E} Ti(wi, (ai, δ, w
′
i),

– Gtm(πn) is a function which encodes a global time at the symbolic path πn

at the depth m.

Thus, given the above, one can define the formula [M̂tr(ϕ),ι̂]SMT
k as follows:

[M̂tr(ϕ),ι̂]SMT
k :=

∨

s∈ι̂

Is(w0,0) ∧
̂fk(tr(ϕ))∨

j=1

w0,0 = w0,j∧
̂fk(tr(ϕ))∧

j=1

k∨

l=0

l = uj ∧
̂fk(tr(ϕ))∧

j=1

k−1∧

i=0

T
(
wi,j ,

(
ai,j , δi,j

)
,wi+1,j

)

where wi,j , ai,j , and δi,j are, respectively, symbolic states, symbolic actions, and
symbolic time passage for 0 ≤ i ≤ k and 1 ≤ j ≤ f̂k(tr(ϕ)).

The formula [tr(ϕ)]SMT
̂M,k

encodes the bounded semantics of a LTLqK formula
tr(ϕ), and it is defined on the same sets of individual variables as the formula
[M̂tr(ϕ),ι̂]SMT

k . Moreover, it uses the auxiliary quantifier-free first-order formulae
defined in [12].

Let Fk(tr(ϕ)) = {j ∈ IN | 1 ≤ j ≤ f̂k(tr(ϕ))}, and [tr(ϕ)][m,n,A]
k denote

the translation of tr(ϕ) along the n-th symbolic path πm
n with the starting

point m by using the set A ⊆ Fk(tr(ϕ)). Then, the next step is a translation
of a LTLqK formula tr(ϕ) to a quantifier-free first-order formula [tr(ϕ)]SMT

̂M,k
:=

[tr(ϕ)][0,1,Fk(tr(ϕ))]
k .
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Definition 7 (Translation of the LTLqK formula). Let M̂ be an abstract
model, α and β an LTLqK formula, and k ≥ 0 a bound. We define inductively
the translation of α over a path number n ∈ Fk(α) starting at the symbolic state
wm,n at the depth m as shown below, where n′ = min(A), hU = hU(A, f̂k(φ)),
and hR = hR(A, f̂k(α)).

[true[d,n,A]
k,m ] := true,

[false[d,n,A]
k,m ] := false,

[p[d,n,A]
k,m ] := p(wd,n),

[¬p
[d,n,A]
k,m ] := ¬p(wd,n),

[qI
[d,n,A]
k,m ] :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k−1∨

l=0

(
Gtd(πn) − Gtm(πn) ∈ I ∧ wk,n �= wl,n

)

k−1∨

l=0

(
Gtd(πn) − Gtm(πn) ∈ I ∧ wk,n = wl,n

)

if m ≥ d
k−1∨

l=0

(
Gtd+k−l(πn) − Gtm(πn) ∈ I ∧ wk,n = wl,n

)

if d < m

[¬qI
[d,n,A]
k,m ] := ¬[qI

[d,n,A]
k,m ],

[α ∧ β
[d,n,A]
k,m ] := [α[d,n,gl(A,fk(α))]

k,m ] ∧ [β[d,n,gr(A,fk(β))]
k,m ],

[α ∨ β
[m,n,A]
k,m ] := [α[m,n,gl(A,fk(α))]

k,m ] ∨ [β[m,n,gl(A,fk(β))]
k,m ],

[αUβ][d,n, A]
k,m :=

k∨

j=d

(

[β][j,n,hU(A, fk(β))(k)]
k,m ∧

j−1∧

i=d

[α][i,n,hU(A,fk(β))(i)]
k,m

)

∨

(
d−1∨

l=0

(
j > un ∧ wk,n = wl,n

)
∧

d−1∨

j=0

(
j > un∧

[β][j,n,hU(A, fk(β))(k)]
k,m ∧

j−1∨

i=0

(i > un → [α][i,n,hU(A,fk(β))(i)]
k,m )∧

k∧

i=d

[α][i,n,hU(A,fk(β))(i)]
k,m

)
)

,

[αRβ][d,n, A]
k,m :=

k∨

j=d

(

[α][j,n,hR(A, fk(α))(k+1)]
k,m ∧

j∧

i=d

[β][i,n,hR(A,fk(α))(i)]
k,m

)

∨
(

d−1∨

l=0

(
j > un ∧ wk,n = wl,n

)
∧

d−1∨

j=0

(
j > un∧
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[α][j,n,hR(A, fk(α))(k+1)]
k,m ∧

j−1∧

i=0

(
i > un → [β][i,n,hR(A,fk(α))(i)]

k,m

)

∧
k∧

i=d

[β][i,n,hR(A,fk(α))(i)]
k,m

)
)

∨
( k−1∨

l=0

(
wk,n = wl,n)

)
∧

k∧

j=l

(
i ≥ un → [β][j,n,hR(A,fk(α))(j)]

k,m

) k∧

j=d

[β][j,n,hR(A,fk(α))(j)]
k,m

)
,

[Kiα
[d,n,A]

k,m ] :=
∨

s∈ι

Is(w0,n′) ∧
k∨

j=0

(
[α][j,n

′,gs(A)]
k,m ∧ Hi(wd,n,wj,n′)

)
,

The theorem below states the correctness and the completeness of the pre-
sented translation. It can be proven by induction on the complexity of the given
LTLqK formula.

Theorem 3. Let M̂ be an abstract model for the timed interpreted system
and MTLK formula ϕ, and let tr(ϕ) be a LTLqK formula. Then, for every
k ∈ IN,M̂ |=d

k Etr(ϕ) if, and only if, the quantifier-free first-order formula
[M̂, tr(ϕ)]k is satisfiable.

5 Experimental Results

In this section we experimentally evaluate the performance of our new transla-
tion. We have conducted the experiments using Timed Generic Pipeline Para-
digm (TGPP) [13].

We have tested the TGPP timed interpreted system model, scaled in the
number of intermediate nodes on the following MTLK formulae that existentially
hold in the model of TGPP (n is the number of nodes):

– ϕ1 = G(KP (ProdSend ⇒ F[0,2n+2)(ConsReceived))). It expresses that Pro-
ducer knows that each time Producer produces data, then Consumer receives
this data not later than in 2n + 1 time units.

– ϕ2 = KP (F[0,2n+1)(ConsReceived)). It states that Producer knows that even-
tually Consumer will receive data not later than in 2n + 1 time units.

– ϕ3 = KC(KP (F[0,2n+2)(ConsReceived))). It expresses that Consumer knows
that Producer knows that eventually Consumer will receive data not later
than in 2n + 2 time units.

– ϕ4 = KP (ConsReceived ⇒ F[0,2n+1)(¬ConsReceived)). It states that Pro-
ducer knows that time Consumer receives data, then Consumer is ready to
receive data no later than 2n + 1 time units after that Consumer will receive
data.
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5.1 Performance Evaluation

We have performed our experimental results on a computer equipped with I7-
3770 processor, 32 GB of RAM, and the operating system Linux. Our SMT-
based BMC algorithm are implemented as standalone program written in the
programming language C++. We used the state of the art SMT-solvers Z3 [8] and
Yices2 [3], and the state of the art SAT-solver CryptoMiniSAT.

All the benchmarks together with instructions on how to reproduce our exper-
imental results can be found at the web page tinyurl.com/smt-bmc-tis-emtlk.

The number of considered k-paths for the properties ϕ1, ϕ2, and ϕ4, is equal
to 2, and for the property ϕ3 is equal to 3.

The line charts in Figs. 3, 4, 5 and 6 showing the total time and the memory
consumption for all the tested properties. In general, the experimental results
show that the SAT-based BMC outperforms the SMT-based BMC in the execu-
tion time (as shown below in the line charts), but the SMT-based BMC outper-
forms the SAT-based BMC in the memory consumption.

The reason of the higher efficiency of the SAT-based BMC method is small
number of arithmetic operations and small number of k-paths with a long length.
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6 Conclusions

We have proposed, implemented, and experimentally evaluated SMT-based
BMC method for timed interpreted systems and for properties expressible in
MTLK with the semantics over timed interpreted systems. The method is based
on a translation of the existential model checking for MTLK to the existential
model checking for LTLqK, and then on the translation of the existential model
checking for LTLqK to the quantifier-free first-order formula.

We believe that our approach is much better than the approach based on
translation to HLTLK as we could see in [13]. The reason is that the new method
needs only one new path for temporal operators, does not need any new clocks,
and does not need any new transitions. The paper presents preliminary experi-
mental results only, but they show that the proposed verification method is quite
efficient and worth exploring especially if memory usage is the priority.
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Abstract. Accurate and real time rainfall levels estimations are very useful in
various applications of hydraulic structure design, agriculture, weather fore-
casting, climate modeling, etc. An accurate measurement of rainfall with high
spatial resolution is possible with an appropriate positioned set of rainfall gauge,
but an alternative method to estimate the rainfall is the analysis of electro-
magnetic wave, in particular the microwave attenuation. Mainly this is done
concerning impact of rain on transmission of electromagnetic waves at the level
of radio frequency above 10 GHz. In this paper we investigate a new method to
estimate rainfall level using the analysis of received signal strength and its
variance in mobile LTE/4G terminal to produce a map of prediction.

Keywords: Rainfall estimation � LTE �Radio signal attenuation �Neural network

1 Introduction

In meteorology rainfall levels are important climatologic features for weather forecast
affecting humans, industries, and harvesting in agriculture. Intense rainfall events in
Italy have sparked shallow landslides leading to serious consequences. The rainfall
level is not easy to measure due to many factors such as the intermittent nature, the
spatial and temporal variability, and the sensitivity to environmental conditions [1]. In
order to provide accurate rainfall estimations, many studies focus on hybrid solutions
incorporating rain gauges and weather radar.

The first attempt to rainfall estimation based on microwave attenuation was carried
out by Atlas and Ulbrich [2]. The research has investigated the relation between
microwave attenuation and rainfall rate pointing out a nearly linear relation in
10–35 GHz range frequency. We can find several studies on rainfall estimation based on
microwave attenuation analysis using commercial microwave links [3, 5–7]. In addition
to higher spatial resolution rainfall estimation based on study of the electromagnetic
waves attenuation allows to increase temporal resolution [8]. However attenuation
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becomes considerable for frequencies higher than 10 GHz. Empirical results have
shown that at low frequencies signal attenuation is significantly higher than theoretical
attenuation model. In particular there are some studies on Global System for Mobile
(GSM) at 1.8 GHz to analyze effects of rain on signal propagation [9, 10]. Unfortunately
the GSM signals received by mobile terminal is affected by a considerable attenuation
and a mismatching levels due to the rain attenuation at these frequencies [11]. An
interesting approach to estimate rainfall level from data collected by a mobile terminal is
proposed in [12], while efficient programming approaches are in [4].

In this paper the rain condition effects on 4G/LTE mobile radio wave signal
propagation are analyzed, in particular we have examined the received signal strength
(RSS) from the Mobile Terminal (MT) for which proposed neural classifier is ana-
lyzing meteoric precipitation levels by LTE Received Signal Strength.

2 The Rain Attenuation Model

The rain attenuation depends on the frequency and on the rainfall level due to the
absorption and the rain scattering. Radio wave attenuation increases with number of
raindrops along path, as well as drop size and radio path length through rain [9]. If the
wavelength is larger than raindrop size, scattering is the predominant factor. Several
attenuation models have been proposed. In particular in this section we analyze the
model indicated by the International Telecommunication Union for the Radiocom-
munication (ITU-R), whose purpose is to provide frequency management service for
radiocommunications to ensure optimal and rational use of radio-frequency spectrum.

According to rain attenuation model provided by ITU-R recommendation, the
specific attenuation cR (dB/km) is obtained from rain rate R (mm/h) using power-law
relation:

cr ¼ kRa ð1Þ

The total attenuation A (dB) in a link of length L can be calculated as:

A ¼ Lcr ð2Þ

The values of coefficients k and a are determined as functions of frequency f (GHz)
in the range from 1 to 1000 GHz. The following equations have been developed from
curve-fitting to power-law coefficients derived from scattering calculations:

log10 k ¼
X4

j¼1
aj exp � log10 f � bj

cj

� �2
" #

þmk log10 f þ ck ð3Þ

a ¼
X5

j¼1
aj exp � log10 f � bj

cj

� �2
" #

þma log10 ca ð4Þ

where f is frequency (GHz), k is either kH or kV and a is either aH or aV. The values of
the coefficient k constants (kH for horizontal polarization and kV for vertical
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polarization) and the coefficient a constants (aH for horizontal polarization and av for
vertical polarization) are given in the appropriate tables in [13]. For linear and circular
polarization, and for all path geometries, coefficients in Eq. (1) can be calculated from
values obtained from Eqs. (3) and (4) using the following equation:

k ¼ kh þKv þ kh � kvð Þcos2h cos2s½ �
2

; a ¼ kh þ kv þ kh � kvð Þcos2h cos2s½ �
2

ð5Þ

where ϴ is path elevation angle and s is polarization tilt angle relative to horizontal
(s = 45° for circular polarization). ITU-R state that this attenuation model provides
sufficient accuracy up to 55 GHz. Theoretical attenuation is 0.002 dB for rain rate of
15 mm/h, although empirical results indicate 12 dB for measured attenuation [13].

3 The Scenario

In this paper we have analyzed the impact of weather conditions on LTE signal.
Smartphone with dedicated application to report ID and received signal strength was
used for data collection. In our case, knowledge of cell ID allows to verify received
signal measured by a mobile terminal which is referred to base station.

The wireless network application has provided collected data with programmable
frequency each 60 s. In Fig. 1 is shown the tested scenario in which distance between
base station and mobile terminal was about 200 m. The collected data are provided
with 5 min temporal resolution.

Fig. 1. The test-bed scenario
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4 The Signal Analysis

In this paper we classified the rainfall levels according to classification shown in
Table 1.

We have analyzed three weather conditions: no rain, light rain and moderate rain. In
Fig. 2 is reported the measured signal strength in no-rain condition (left) and in light
rain condition (right) while Fig. 3 the measured signal strength with moderate rain. All
the results were obtained with one hour of measurements collected every 60 s. Figure 4
shows the average values of received signal strength measured by a mobile terminal.
The average level of the received signal in no-rain conditions is −77.41 dBm, while for
other two rain conditions, i.e. light rain and moderate rain the average level of the
received signal is almost the same (−85.66 dBm for light rain and −85.86 dBm for
moderate rain).

It is clear that there is a considerable difference between rain and no-rain condi-
tions. In particular, there is a difference, in terms of attenuation, of about 8 dB. From
the analysis of the average signal level values we can discriminate between rain and
no-rain conditions. Although the analysis of the average signal level values may not be
sufficient to discriminate between light rain and moderate rain.

The probability distribution of received signal strength is represented in Fig. 5. The
probability distribution of received signal strength in light rain conditions is different
from moderate rain condition. Signal strength in light rain is more variable and presents

Table 1. Rainfall classification.

Rain classification mm/h

No rain 0 mm/h
Light Rain <2.5 mm
Moderate rain 2.5–5 mm/h
Heavy rain 6–10 mm/h
Very heavy rain 11–30 mm/h
Cloudburst >30 mm/h

Fig. 2. The received signal strength in no-rain conditions (left) and in light rain condition (right)
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higher variance. Then, on the basis of the signal strength analysis, in particular
instantaneous value in correlation with average value and variance, we can discriminate
between weather conditions.

Fig. 3. The received signal strength in moderate rain condition.

Fig. 4. The average values of received signal strength.

Fig. 5. Probability density of signal strength: no-rain, light rain, moderate rain.
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5 The Feature Extraction

In the research we consider three features: instantaneous signal strength value, average
and variance rainfall values. Average and variance values are calculated using sliding
window filter having size of 12 samples. Selected window size establishes good
compromise between measurement accuracy and speed to recognize change of state
(i.e. light rain – moderate rain). Figure 6 shows that higher window size allows better
discrimination capacity between light rain and moderate rain.

6 The Proposed Neural Classification

The proposed classifier is trained to recognize three weather condition: clear weather,
light and moderate rainfall. For the process we have used daily power attenuation data
of 4G Received Signal Strength.

To perform classification task we use a probabilistic neural network (PNN). This
kind of network can classify various input patterns. Also it is possible to associate
categories, which essentially improve performance with respect to particular statistical
parameters. PNN utilizes a kernel to discriminate operating within a multilayer feed
forward network. There are four layers within a PNN structure namely: input layer,
pattern layer, summation layer and output layer. The PNN is created by a set of
multivariate probability densities which are generated from the training vectors pre-
sented to the PNN. The input instance with unknown category is propagated to the
pattern layer. The outputs are a linear combination of the hidden nodes’ outputs. More
specifically, the k-th network output has the form:

ykðxðtÞÞ ¼
XM

j¼1
wk;jUjðxðtÞÞ ð6Þ

where

UjðxðtÞÞ ¼ exp � 1
2rj

ðx tð Þ � ljÞTR�1
j ðx tð Þ � ljÞ

� �
ð7Þ

Fig. 6. The variance calculated using sliding window size equals 5 (left) and 12 (right).
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We restricts R to three global and scalar smoothing parameter, r1, r2 and r3, where
r1 is used in those basis functions that have centers coming from the first class (clear
weather), r2 for the second class (light rainfall) while r3 for the third class (moderate
rainfall). The determination of the smoothing parameters is done by calculating the
spreads of the training data set belonging to the reference classes for r1, r2 and r3
respectively. The third layer (summation layer) performs an weighted average of the
outputs from the second layer for each class. The fourth layer (output layer) performs a
vote, selecting the largest value for each class. The resulting network after the training
phase is shown in Fig. 7). It consists of 399 neurons (133 of them represent the clear
weather, 133 represent the light rainfall and 133 represent the moderate rainfall). To
evaluate the pattern recognition algorithm, we have been used a test set composed of 57
patterns (different from that used for the training).

As shown by Fig. 8, a correct classification rate of 93% average has been obtained.
Out of 57 test patterns we had 4 misclassification. In all four cases the network
confuses the light rainfall with the moderate rainfall.

Fig. 7. The proposed neural classifier.

Fig. 8. The confusion matrix of the rain classification.

A Neural Network Pattern Recognition Approach 511



7 Conclusion

In this paper the rain condition effects on 4G/LTE mobile radio wave signal propa-
gation were analyzed in particular three weather conditions: no rain, light rain and
moderate rain. Other weather conditions are not analyzed due to a limited amount of
data collected. To discriminate between these conditions we have considered three
features: the instantaneous signal strength value, the average and variance values. The
average and variance values are calculated using sliding window filter having size of 12
samples. The results obtained in this paper show that the weather conditions have
noticeable impact on LTE signal propagation. On the basis of features extracted from
received signal by a mobile terminal (instantaneous, average and variance values) it is
possible to develop a relation with rainfall levels, providing rainfall information with a
higher spatial resolution than classical rainfall measurement methods. Therefore with
possibility to have each mobile terminal operating as sensor able to ensure real-time
rainfall data we can build a map of potential rain.
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Abstract. Rough Set Theory (RST) and Formal Concept Analysis
(FCA) are two mathematical tools for data analysis which, in spite of
considering different philosophies, are closely related. In this paper, we
study the relation between the attribute reduction mechanisms in FCA
and in RST. Different properties will be introduced which provide a new
size reduction mechanism in FCA based on the philosophy of RST.

Keywords: Formal Concept Analysis · Rough Set Theory · Attribute
reduction · Reduct

1 Introduction

Two fundamental mathematical tools for modeling and processing incomplete
information in databases are Rough Set Theory (RST) and Formal Concept
Analysis (FCA). Both theories extract information from databases composed by
a set of objects, a set of attributes and a relationship between them.

One of the principal targets in both theories is to reduce the number of
attributes, preserving the main information that can be obtained from the data-
base. To this end, reducts (minimal set of attributes preserving the information
in the database) have been studied in a number of papers, in these two frame-
works [4–7,10,11,13,15,16,19,20,24].

In addition, these theories have been related in different papers but few of
them have studied the connections between the attribute reduction mechanisms
given in both frameworks. For example, in [3], the authors reduce the number
of attributes of a formal context using equivalence class as covering generalized
in Rough Set Theory. With this covering of objects, they compute the same
reduction as Wille [13] and Medina [18] did, however, they do not introduce
a proper relationship between the attribute reduction given currently in both
framework. In [23], the obtained results are interesting although a proper relation
is not completely studied. Hence, a deeper comparison should be given.

In this paper, we relate information systems to the formal contexts in FCA,
establishing a way of obtaining an information system from a formal context and
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vice versa. We also present diverse interesting properties about the relationship
between the usual attribute reduction mechanisms in FCA and in RST. From
this relation, we will consider the philosophy of attribute reduction in RST, in
order to obtain a new mechanism of attribute reduction in FCA. Hence, this
paper introduces a new and different way of reducing a formal context in FCA,
which contributes with a new vision of reduction in this mathematical area from
the point of view of RST. The results and this mechanism has been illustrated
in an example.

This paper is organized as follows. Section 2 recalls some necessary definitions
and results. Section 3 presents the reduction mechanism considered in this work
together with some properties and examples, and finally Sect. 4 shows some
conclusions and prospects for future works.

2 Preliminaries

In this section, we will recall the basic notions of RST and FCA.

2.1 Rough Set Theory

In RST a relational database can be seen as a decision system or as an informa-
tion system, depending on the problem to be solve. In this paper we will consider
information systems, since these systems are the natural ones used when RST
and FCA are compared.

Definition 1. An information system (U,A) is a tuple, such that the sets U =
{x1, x2, . . . , xn} and A = {a1, a2, . . . , am} are finite, non-empty sets of objects
and attributes, respectively, in which, each a ∈ A corresponds to a mapping
ā : U → Va, where Va is the value set of a over U . For every subset D of A, the
D-indiscernibility relation, Ind(D), is defined as the equivalence relation

Ind(D) = {(xi, xj) ∈ U × U | forall a ∈ D, ā(xi) = ā(xj)}
where each class given by this relation can be written as [x]D = {xi | (x, xi) ∈ Ind
(D)}. Ind(D) produces a partition on U denoted as U/Ind(D) = {[x]D | x ∈ U}.

If we have that the value set of a is Va = {0, 1}, for all a ∈ A, (U,A) is called
a boolean information system.

Now, we will recall the definitions of consistent set and reduct of an infor-
mation system. These notions will be essential in the relationship between RST
and FCA considered in this paper.

Definition 2. Let (U,A) be an information system and a subset of attributes
D ⊆ A. D is a consistent set of (U,A) if

Ind(D) = Ind(A)

Moreover, if for each a ∈ D we have that Ind(D \ {a}) �= Ind(A), then D is
called reduct of (U,A).
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In order to characterize the reducts in RST, the notions of discernibility
matrix and discernibility function [20], are presented in the next definition.

Definition 3. Given an information system (U,A), its discernibility matrix is
a matrix of order |U | × |U |, denoted as MA, in which the element MA(i, j) for
each pair of objects (i, j) is defined by:

MA(i, j) = {a ∈ A | ā(i) �= ā(j)}

and the discernibility function of (U,A) is defined by:

τA =
∧{∨

(MA(i, j)) | i, j ∈ U and MA(i, j) �= ∅

}

The following result relates the discernibility function to the reducts of an
information system. This result shows a simple mechanism to obtain reducts of
an information system.

Theorem 1. Given a boolean information system (U,A). An arbitrary set D,
where D ⊆ A, is a reduct of the information system if and only if the cube∧

a∈D a is a cube in the restricted disjunctive normal form1 (RDNF) of τA.

2.2 Formal Concept Analysis

As we previously mentioned, another theory applied to the extraction of infor-
mation from databases is FCA. In this section, the basic definitions of this math-
ematical tool will be recalled.

In this environment, we consider a set of attributes A, a set of objects B, both
of them non empty, and a crisp relationship between them R : A × B → {0, 1}.
We define for each a ∈ A and b ∈ B the relation as R(a, b) = 1, if a and b are
related and R(a, b) = 0, otherwise. We will also write aRb when R(a, b) = 1.
A context is the triple (A,B,R) and we can define the mappings2 ↑ : 2B → 2A,
↓ : 2A → 2B , for each X ⊆ B and Y ⊆ A, as follows:

X↑ = {a ∈ A | for all b ∈ X, aRb} = {a ∈ A | if b ∈ X, then aRb} (1)
Y ↓ = {b ∈ B | for all a ∈ Y, aRb} = {b ∈ B | if a ∈ Y, then aRb} (2)

A concept in the context (A,B,R) is a pair (X,Y ), where X ⊆ B, Y ⊆ A,
X↑ = Y and Y ↓ = X hold. The subset of objects X of the concept (X,Y ) is
called extent and the intent is the subset of attributes Y .

The set of all the concepts is denoted as B(A,B,R). This set has a com-
plete lattice structure [8,13], when we consider the inclusion ordering on the left

1 We assume that the reader is familiar with the notions related to classical theory of
propositional logic [8,12].

2 Originally these operators were denoted as ′ by Ganter and Wille and they were
called derivation operators. In order to differentiate between the mapping on the set
of objects and on the set of attributes, we have changed the notation.
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argument (or, equivalently, the opposite of the inclusion ordering on the right
argument). That means, for each (X1, Y1), (X2, Y2) ∈ B(A,B,R), we have that
(X1, Y1) ≤ (X2, Y2), if X1 ⊆ X2 (or, equivalently, Y2 ⊆ Y1). We define the meet
(∧) and join (∨) operators by:

(X1, Y1) ∧ (X2, Y2) = (X1 ∧ X2, (Y1 ∨ Y2)↓↑)
(X1, Y1) ∨ (X2, Y2) = ((X1 ∨ X2)↑↓, Y1 ∧ Y2)

for all (X1, Y1), (X2, Y2) ∈ B(A,B,R).
Note that the operators defined in Eqs. (1) and (2) form a Galois connection.

Given an attribute a ∈ A, the concept generated by a, that is (a↓, a↓↑), will be
called attribute-concept. Note that this pair is really a concept due to (↑, ↓) is a
Galois connection [8,9]. Similarly, given an object b ∈ B, the concept generated
by b, that is (b↑↓, b↑), will be called object-concept.

On the other hand, reducing the set of attributes without modifying the
structure of the concept lattice is pursued by attribute reduction theory in formal
concept analysis. That means, obtaining a new concept lattice isomorphic to
the original one. Now, we recall some necessary definitions related to attribute
reduction in FCA.

Definition 4. Given two concept lattices B(A1, B,R1) and B(A2, B,R2). If for
any (X,Y ) ∈ B(A2, B,R2) there exists (X ′, Y ′) ∈ B(A1, B,R1) such that X =
X ′, then we say that B(A1, B,R1) is finer than B(A2, B,R2) and we will write:

B(A1, B,R1) ≤ B(A2, B,R2)

We said two concept lattices B(A1, B,R1),B(A2, B,R2) are isomorphic if
B(A1, B,R1) ≤ B(A2, B,R2) and B(A2, B,R2) ≤ B(A1, B,R1) hold; and we will
write

B(A1, B,R1) ∼= B(A2, B,R2)

If we consider a context (A,B,R), a subset of attributes, Y ⊆ A and the
restricted relation R|Y = R∩(Y ×B) then, the triple (Y,B,R|Y ) is also a formal
context. We can interpret it as a subcontext of the original one. Therefore, the
mappings ↓ and ↑ introduced in Eqs. (1) and (2) can be defined in this subcontext,
they will be denoted as ↓Y

and ↑Y in order to avoid some confusion. It is clear
that, given X ⊆ B, we obtain that X↑Y = X↑ ∩Y . Note that, when we consider
a subset Y1 ⊆ Y , then Y ↓Y

1 = Y ↓
1 .

Considering a formal context (A,B,R), it is easy to verify that for any Y ⊆ A,
such that Y �= ∅, B(A,B,R) ≤ B(Y,B,R|Y ) holds.

Definition 5. Let (A,B,R) be a context, if there exists a set of attributes
Y ⊆ A such that B(A,B,R) ∼= B(Y,B,R|Y ), then Y is called a consistent set
of (A,B,R). Moreover, if B(Y � {y}, B,R|Y �{y}) �∼= B(A,B,R), for all y ∈ Y ,
then Y is called reduct of (A,B,R).

The core of (A,B,R) is the intersection of all the reducts of (A,B,R).
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Finally, we will recall the notions of meet-irreducible and join-irreducible
elements of a lattice, since these definitions will also be considered later.

Definition 6. Given a lattice (L,�), such that ∧,∨ are the meet and the join
operators, and an element x ∈ L verifying

1. If L has a top element �, then x �= �.
2. If x = y ∧ z, then x = y or x = z, for all y, z ∈ L.

we call x meet-irreducible (∧-irreducible) element of L. Condition (2) is equiv-
alent to

2′. If x < y and x < z, then x < y ∧ z, for all y, z ∈ L.

A join-irreducible (∨-irreducible) element of L is defined dually.

Once the basic definitions on attribute reduction in RST and FCA have been
recalled we can relate both reductions since the study given in [23].

3 Attribute Reduction in RST and FCA

Only a few number of papers have worked in the relationship between the
attribute reduction in FCA and in RST [3,23]. In [3] the authors rewrite the
attribute reduction in FCA using covering sets and they do not introduce a
proper relationship between the attribute reduction currently given in both
frameworks. On the other hand, the authors in [23] introduce a real relationship,
although they only provides an interesting result which proves that a consistent
set in FCA is also a consistent set in RST. They also show that the counter-
part does not hold. Hence, the consideration of the RST attribute reduction in
a FCA framework will provide a different reduction mechanism from the usual
attribute reduction in FCA. Therefore, we can consider that we have another
new attribute reduction mechanism in FCA. However, before doing this consid-
eration we must study more useful properties and analyze whether this reduction
is meaningful and useful.

From now on, as it is usual in real-life knowledge systems, the sets of
attributes and the set of objects will be considered finite. Furthermore, in order
to highlight what notion of reduct is considered (in RST or in FCA), a reduct of
the information system (U,A) will be called RS-reduct and a reduct of the con-
text (A,B,R) as CL-reduct. In a similar way, a consistent set of the information
system (U,A) will be written in short as RS-consistent set and a consistent set
of the context (A,B,R) as CL-consistent set.

First of all, we will recall the result given in [23], which shows in some sense
that the attribute reduction in FCA implies an attribute reduction in RST. For
that, we need the definition of information system from a formal context and a
technical lemma.

Definition 7. Let (A,B,R) be a context, a context information system is
defined as the pair (B,A) where the mappings ā : B → Va, with Va = {0, 1}, are
defined as ā(b) = R(a, b), for all a ∈ A, b ∈ B.
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From the previous definition, the following result straightforwardly holds.

Lemma 1. Given a context (A,B,R) and the corresponding context informa-
tion system (B,A), the following equality holds, for each a ∈ A:

a↓ = ā

The following result given in [23] shows that a CL-consistent set of a context
provides an RS-consistent set of the context information system.

Theorem 2 [23]. Given a context (A,B,R) and the corresponding context infor-
mation system (B,A). If D ⊆ A is a CL-consistent set then D is an RS-
consistent set.

Note that the previous result is not valid if we consider reducts instead of
consistent sets as the following simple example shows.

Example 1. Let us consider a context (A,B,R) with two objects b1, b2 ∈ B, two
attributes a1, a2 ∈ A, and the following relation between them:

R a1 a2

b1 1 0
b2 0 1

In this case, we have that a↓
1 = {b1} and a↓

2 = {b2} and the associated
concept lattice is shown in Fig. 1. Note that, the concepts C1 = (a↓

1, a
↓↑
1 ) and

C2 = (a↓
2, a

↓↑
2 ) are both meet-irreducible elements of the concept lattice. There-

fore, these concepts cannot be removed and so, the attributes a1 and a2 cannot
be removed either. Hence, we have that the set {a1, a2} is a CL-reduct of the
context. Indeed, it is the unique CL-reduct.

Fig. 1. Concept lattice of the context of Example 1.

On the other hand, if we consider the context information system associated
with the context (A,B,R), we have that the discernibility matrix is

(
∅ {a1, a2}

{a1, a2} ∅

)
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Therefore, the discernibility function is τA = {a1} ∨ {a2}, which shows that we
only need a1 or a2 in order to discern the objects b1 and b2 (that is, Ind(D1) =
Ind(D2) = Ind(A)) and so, we obtain the RS-reducts D1 = {a1} and D2 = {a2},
whereas in FCA we need both attributes. �

Consequently, as we previously commented, the counterpart of Theorem2 is
not true, even though considering a small information system. Example 1 also
provides that, given an information system (U,A), an RS-consistent set (resp.
RS-reduct) may not be a CL-consistent set (resp. CL-reduct) in the informa-
tion context (A, U,R). Nevertheless, this fact can be positive if the use of RS-
consistent sets in FCA can provide a new and useful reduction mechanism in
FCA.

Hereon, we will prove interesting properties of the contexts associated with
an information system and an RS-consistent set. Before that, we need to present
how to consider a context from an information system.

Definition 8. Given a boolean information system (U,A), an information con-
text is defined as the triple (A, U,R), where the relation R : A × U → Va, with
Va = {0, 1}, is defined as R(a, b) = ā(b), for all a ∈ A, b ∈ U .

This is a dual notion of the definition of context information system. The
following result proves that different object-concepts in an information context
provides different object-concepts in the reduced information context, which
implies that the reduction given by an RS-consistent set preserves the number
of object-concepts.

Proposition 1. Given a boolean information system (U,A), D ⊆ A an RS-
consistent set of (U,A), the corresponding information contexts (A, U,R) and
(D,U,R|D), and the objects k, j ∈ U . If k↑ �= j↑, then k↑D �= j↑D .

The following proposition shows that the reduction given by a RS-consistent
set also preserves the (strict) inequality between object-contexts.

Proposition 2. Let (U,A) be a boolean information system, D ⊆ A an RS-
consistent set of (U,A) and the objects k, j ∈ U . If we have that k↑ ⊂ j↑ in the
information context (A, U,R), then k↑D ⊂ j↑D in (D,U,R|D).

Hence, if we consider an RS-consistent set, the ordering among the object-
concepts in the corresponding information context is practically preserved. The
unique possibility is that incomparable object-concepts in the original informa-
tion context can be comparable in the reduced one. This fact and other features
will be observed in Example 2.

Taking into account the previous result, the following theorem proves that
the join-irreducible elements in the reduced concept lattice by an RS-consistent
set are also join-irreducible elements of the original concept lattice.

Theorem 3. Given an information system (U,A) and a RS-consistent set D ⊆
A. If an object j ∈ U generates a join-irreducible concept in the corresponding
information context (D,U,R|D), then it also generates a join-irreducible concept
in (A, U,R).
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From the previous results, we have that the consideration of an RS-consistent
set does not introduce new join-irreducible elements in the lattice and the strict
inclusions between the join-irreducible elements must also be preserved. There-
fore, if an object does not generate a join-irreducible concept in the original
context, then we have that it cannot generate a join-irreducible concept in the
reduced context.

As a consequence, although the notion of RS-consistent set does not imply
the notion of CL-consistent set, it has interesting properties to be considered
in a reduction mechanism in the FCA framework. Specifically, this reduction
mechanism in FCA consists in, given a formal context (A,B,R), computing the
RS-reducts D1, . . . , Dn of the information context associated with (A,B,R), and
then the obtained reduced contexts are: (D1, B,R|D1×U ), . . . , (Dn, B,R|D1×U ).

In the following example, we will apply the proposed reduction mechanism
using RS-reducts in the FCA framework and we present several comments related
to other results introduced in this paper. The context considered in this example
has been extracted from [23].

Example 2. Let us consider the formal context (A,B,R), where B represents a
group of patients, B = {1, 2, 3, 4, 5, 6}, A is the set of symptoms (attributes)
A = {low fever(lf),high fever(hf), cough(c), tonsil inflam.(ti), ache muscle(am)}
and R is the relation given by Table 1. The concept lattice associated with this
context is displayed in Fig. 2.

Table 1. Relation of Example 2.

R low fever(lf) high fever(hf) cough(c) tonsil inflam.(ti) ache muscle(am)

1 0 1 0 0 0

2 0 1 0 1 1

3 1 0 1 1 0

4 1 0 1 1 0

5 0 1 1 1 1

6 0 0 1 1 0

Now, we will reduce the context taking into account RS-reducts. In order
to obtain RS-reducts, we have to consider the associated context information
system (B,A), to obtain the discernibility matrix and the corresponding dis-
cernibility function, according to Definition 3.

In this case, from the relation presented in Table 2, we obtain the following
discernibility matrix:3

3 Note that the discernibility matrix is symmetric due to the discernibility relation is
reflexive.
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Fig. 2. Concept lattice of the context of Example 2.

⎛

⎜⎜⎜⎜⎜⎜⎝

∅

{ti, am} ∅

{lf,hf, c, ti} {lf,hf, c, am} ∅

{lf,hf, c, ti} {lf,hf, c, am} ∅ ∅

{c, ti, am} {c} {lf,hf, am} {lf,hf, am} ∅

{hf, c, ti} {hf, c, am} {lf} {lf} {hf, am} ∅

⎞

⎟⎟⎟⎟⎟⎟⎠

From this matrix, we obtain the discernibility function,

τA = {ti ∨ am} ∧ {lf ∨ hf ∨ c ∨ ti} ∧ {c ∨ ti ∨ am} ∧ {hf ∨ c ∨ ti}
∧{lf ∨ hf ∨ c ∨ am} ∧ {c} ∧ {hf ∨ c ∨ am} ∧ {lf ∨ hf ∨ am}
∧{lf} ∧ {hf ∨ am}

= {lf ∧ c ∧ am} ∨ {lf ∧ hf ∧ c ∧ ti}

Consequently, by Theorem1, we have two RS-reducts:

D1 = {low fever, cough, ache muscle}
D2 = {low fever,high fever, cough, tonsil inflam.}

The concept lattices built from the two RS-reducts are shown in Fig. 3. As it
is natural, we can see that the structure of the original concept lattice is not
necessarily preserved when we consider RS-reducts. In this case, the original
structure is not preserved when we consider D1, whereas we obtain an isomorphic
concept lattice to the original one from D2, that is, D2 is also a CL-reduct.
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Moreover, we can observe in Fig. 2 that the set of join-irreducible elements of
the concept lattice are composed of the following concepts, generated by objects
1, 2, 3, 4 and 5:

(1↑↓, 1↑) = ({1, 2, 5}, {hf})
(2↑↓, 2↑) = ({2, 5}, {am,hf, ti})

(3↑↓, 3↑) = (4↑↓, 4↑) = ({3, 4}, {c, lf, ti})
(5↑↓, 5↑) = ({5}, {am, c,hf, ti})

Fig. 3. Concept lattices built from the RS-reducts D1 (left) and D2 (right).

Firstly, we will analyze the obtained result considering the RS-reduct D2. In
this case, the object-concepts generated after the reduction of the context from
this reduct are given in the following list4:

(1↑2↓2
, 1↑2) = ({1, 2, 5}, {hf})

(2↑2↓2
, 2↑2) = ({2, 5}, {hf, ti})

(3↑2↓2
, 3↑2) = (4↑2↓2

, 4↑2) = ({3, 4}, {c, lf, ti})
(5↑2↓2

, 5↑2) = ({5}, {c,hf, ti})

As we previously mentioned, considering D2 we do not alter the original struc-
ture of the concept lattice since this RS-reduct is also a CL-reduct. Hence,
Propositions 1, 2 and Theorem 3 trivially hold.
4 In order to simplify the notation, we will write (↑1 ,↓

1
) and (↑2 ,↓

2
), instead of

(↑D1 ,↓
D1

) and (↑D2 ,↓
D2

) to denote the concept-forming operators in the reduced
contexts by D1 and D2, respectively.
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On the other hand, when we consider the concept lattice obtained from the
RS-reduct D1, displayed in left side of Fig. 3, we have that the join-irreducible
concepts are ({3, 4}, {c, lf}), ({5}, {am, c}) and ({2, 5}, {am}) and they are gen-
erated by objects 2, 3, 4 and 5:

(2↑1↓1
, 2↑1) = ({2, 5}, {am})

(3↑1↓1
, 3↑1) = (4↑1↓1

, 4↑1) = ({3, 4}, {c, lf})
(5↑1↓1

, 5↑1) = ({5}, {am, c})

which are a subset of the join-irreducible concepts of the original context, as
Theorem 3 asserts.

We can observe that Proposition 2 is also satisfied in this case. For example,
we have that 2↑ < 1↑ in the original context, and the inequality 2↑1 < 1↑1 holds
after the reduction.

Besides, we can also note that two incomparable object-concepts in the origi-
nal information context can become comparable concepts in the reduced one. For
instance, the object-concept generated by 1 is not comparable with the object-
concept generated by 3 in the original context. Whereas, if we consider the
RS-reduct D1, the object-concepts generated by these objects are comparable.

Moreover, in this reduced context, we have that the concept generated by the
object 1 has become the top element ((1↑1↓1

, 1↑1) = ({1, 2, 3, 4, 5, 6}, {})) which
is not a join-irreducible element. Therefore, we have lost the join-irreducible
concept generated by object 1 in the original context, that is, the set of join-
irreducible elements is not preserved after the reduction process, which is also
natural. Hence, the converse of Theorem 3 is not true in general.

The most important property is that no new join-irreducible element is cre-
ated from the reduction. We have that objects 2, 3, 4, 5 generate join-irreducible
concepts of the concept lattice B(D1, B,R|D1) and they also generate join-
irreducible concepts of B(A,B,R), according to Theorem 3.

Thus, the new mechanism introduced in this paper to reduce contexts in
FCA, provides a significant reduction, since it satisfies useful properties and
preserves the necessary information to distinguish the objects. Specifically, in
this example, we have removed attributes ensuring that patients with different
symptoms will continue to be different.

4 Conclusions and Future Work

We have shown in this paper that the attribute selection procedure given in RST
is not equivalent to the attribute reduction in FCA, continuing the results given
in [23]. Although both procedures are not equivalent, we have proven that the
attribute selection mechanism given in RST has different interesting properties
when it is applied in the FCA framework. Diverse properties have been intro-
duced relating the object-concepts of the original concept lattice to the object-
concepts obtained from the reduced context given by the rough set reduction
mechanism. The most important result shows that the join-irreducible elements
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of the reduced concept lattice must be associated with the join-irreducible ele-
ments in the original one. Hence, this mechanism does not produce new join-
irreducible concepts.

These interesting properties provide the possibility of applying the philos-
ophy of RST in order to obtain a reduction in the number of attributes of a
context in FCA, offering a new perspective in the attribute reduction removing
the unnecessary attributes to distinguish the objects of the initial context. This
new mechanism has been illustrated by a detailed example.

Bireducts have recently been presented in RST as a new reduction procedure
providing more flexibility, with the possibility of also reducing attributes and
registering objects for which information is lost [1,2,14,17,21,22]. In the future,
we will apply the philosophy of bireducts within the FCA framework and we will
also analyze the possible interpretation of this kind of reduction.
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14. Janusz, A., Ślȩzak, D., Nguyen, H.S.: Unsupervised similarity learning from textual
data. Fundam. Informaticae 119, 319–336 (2012)

15. Li, J., Kumar, C.A., Mei, C., Wang, X.: Comparison of reduction in formal decision
contexts. Int. J. Approx. Reason. 80, 100–122 (2017)

16. Li, M., Wang, G.: Approximate concept construction with three-way decisions and
attribute reduction in incomplete contexts. Knowl.-Based Syst. 91, 165–178 (2016)

17. Mac Parthalain, N., Jensen, R.: Simultaneous feature and instance selection
using fuzzy-rough bireducts. In: IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE 2013), pp. 1–8, July 2013

18. Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices.
Inf. Sci. 190, 95–106 (2012)

19. Medina, J.: Relating attribute reduction in formal, object-oriented and property-
oriented concept lattices. Comput. Math. Appl. 64(6), 1992–2002 (2012)

20. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
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Abstract. We discuss a new approach to interactive exploration of high-
dimensional data sets which is aimed at building human’s understanding
of the data by iterative additions of recommended attributes and objects
that can together represent a context in which it may be useful to analyze
the data. We identify challenges and expected benefits that our method-
ology can bring to the users. We also show how our ideas got inspired
by Formal Concept Analysis (FCA) and Rough Set Theory (RST). It
is though worth emphasizing that this particular paper is not aimed at
investigating relationships between FCA and RST. Instead, the goal is
to discuss which algorithmic methods developed within FCA and RST
could be reused for the purpose of our approach.

Keywords: Attribute selection · Data visualization · User interaction

1 Introduction

There are plenty of methods aimed at data-based derivation of attributes that
can be useful for a variety of data mining and business intelligence purposes
[1]. Our goal in this paper is to discuss how to design an interactive framework
which supports domain specialists in browsing through a realm of attribute sub-
sets and takes advantage of their knowledge while resolving attribute selection
problems. The motivation for this kind of investigation is that it is still chal-
lenging to represent the data-driven meaning of derived attributes to the users.
The users are often able to interpret the meaning of a few attributes at a time
but navigation through their larger set and the corresponding interdependen-
cies becomes harder. To address this aspect of complexity, one can operate with
clusters of attributes that induce similar information (e.g. similar partitions or
rankings [2]) or employ some techniques of attribute selection which aim at
replacing large sets of attributes with their minimal subsets providing compara-
ble information about the data. Searching for such subsets is a well-established
task within Rough Set Theory (RST) [3]. Given an initial set of attributes, one
can search for so called (approximate) reducts or bireducts which induce (almost)
the same data-based level of information as all considered attributes. A number
c© Springer International Publishing AG 2017
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of heuristic methods were invented to search for the most valuable reducts and
ensembles of diversified reducts from complex data sets [4].

We would like to discuss how to enrich the aforementioned attribute selection
approaches with some elements of user interaction. Our assumption is that the
users (domain experts, data analysts, people responsible for data model design,
etc.) are able to understand practical meaning of particular attributes but they
would find it problematic to choose their best subsets manually. Thus, it may be
helpful for them to work with a kind of interactive recommendation framework
that – starting from the empty set – would suggest adding subsequent (sets of)
attributes, each time presenting several options and following user selections.
More precisely, the idea is to generate and recommend several possible exten-
sions to any set of attributes selected by a user and then let the user decide which
of them should be considered for further investigation. During such process, the
user should be able to interact with a kind of information lattice – infolattice
for short – whose nodes correspond to attribute subsets explored up to now,
whereby their cardinalities keep growing from layer to layer. Infolattice nodes
should also include information about examples of objects representing differ-
ent combinations of attribute values, i.e., every node should correspond to a
pair (X,B) consisting of a subset of objects X whose elements are (sufficiently)
discerned from each other using the subset of attributes B.

As an illustrative example, let us consider a repository of scientific publica-
tions and a student who wants to make her first steps in understanding, e.g.,
the theory and applications of RST. One might expect that she would query the
repository so as to search for some specific topics, using keywords translated to
some semantic indices [5]. Query outcomes might be then provided as a collection
of publications, optionally categorized with respect to some measures, like in the
faceted search applications [6]. On the other hand, let us imagine a student who
does not have crystalized interests yet, so he cannot formulate any specific query.
In this case, the idea of our approach is to let the student navigate through the
incrementally constructed infolattice of possible subsets of attributes represent-
ing semantic indices and objects representing publications labeled with different
combinations of attribute values. This way, the student could eventually discover
a suitable context for looking at the repository content, i.e., a set of attributes
discriminating articles that he is (not) interested in.

The above way of operating with attributes and objects is similar to For-
mal Concept Analysis (FCA) which has brought significant contributions in the
areas of data understanding, data visualization and user interaction [7]. As we
will see in further sections, there are analogies between our lattice-related ideas
and FCA principles with regards to conceptual and graphical data representa-
tion. This is an important reference because various methods of constructing lat-
tices of concepts emerged, basing on both intuitive meaning of lattice structures
and mathematical properties of formal concepts represented by lattice nodes.
It is particularly worth mentioning FCA-based techniques developed for the
unstructured data, including investigation reported in [8] on how to represent
FCA-related articles using FCA methods. In that paper, like in our example
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above, articles were represented as objects and their indices – produced using
well-known semantic tools – were defined as their attributes.

We rely on both FCA and RST to better specify the requirements related
to implementation of our approach to interactive attribute selection. We are
certainly aware of strong mathematical connections between these two method-
ologies that allow, e.g., to interpret reducts in terms of concept lattice character-
istics or introduce lattice simplification and approximation criteria by extending
the classical rough set notions. However, our goal in this particular study is
to avoid direct “FCA versus RST” comparisons and, instead, concentrate on
specific algorithmic developments in both of these domains that could be most
useful to design new tools for interactive data exploration. The presented mate-
rial is a continuation of our previous short communications referring to the use
cases in the area of data modelling processes [9]. In our opinion, the framework
discussed in this paper can be used together with other well-known methodolo-
gies of data analysis and information retrieval such as already mentioned faceted
search or, e.g., Online Analytical Processing (OLAP) which was also thoroughly
investigated within the framework of FCA [10]. The OLAP tools usually require
the users to interact with the data by selecting attributes and their values which
becomes difficult for more dimensions. On the other hand, our approach assumes
that attributes are recommended to the users automatically. Thus, we believe
that the infolattice framework could be actually useful also as a support to search
for attribute subsets that are a good basis for the OLAP cubes.

Let us think about an analyst who is supposed to design an intelligent services
layer in a risk monitoring system. In particular, the need is to model attribute
subsets that the users will work with once the system is put into production.
A lattice-based way of exploring attributes and objects can help the analyst to
understand dependencies in the data. Moreover, the ability to edit, delete and
expand the infolattice nodes can facilitate the data modeling process. As yet
another example, let us imagine a coal mine expert who is requested to define
attributes that will be used to train sensor-based prediction models. The role
of our framework in that case would be to recommend a variety of temporal
attributes labeling time windows extracted from historical logs. Then, step by
step again, one could collect attributes that discriminate different characteristics
of sensor measurements or – what may be especially helpful to support inter-
actions with domain specialists – information sources (e.g. types of sensors and
time interval lengths) that are sufficient to build those attributes [11]. Further-
more, the infolattice framework could be utilized to build interactively several
subsets of attributes that collectively represent the required data characteristics
as if they were the basis for an ensemble of rule-based classifiers [12].

The proposed framework should consist of (at least) three components. The
first one is a front-end allowing to display, modify and grow infolattices, starting
from a root-node that refers to an empty set of attributes. Although the mean-
ings of nodes in infolattices and concept lattices are different from a mathemat-
ical viewpoint, the experiences related to development of FCA-based interactive
retrieval tools may be helpful with this respect [13]. The framework is required
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to deliver several sets of attributes (together with object examples) that are its
initial recommendations. Next, a user should be able to mark relevant nodes or
to ask for more suggestions. The framework recommends further extensions of
chosen nodes and the process repeats until the user becomes satisfied with its out-
puts. The second component refers to algorithms generating the aforementioned
ensembles of new recommendations (X,B) whenever a user wishes to expand an
infolattice for some of its nodes. To provide a good variety of recommendations,
it is important for generated pairs (X,B) to be diverse with respect to both X
and B. Moreover, they should include objects and attributes present in their
parent nodes. This leads to quite a complex optimization problem which is, for-
tunately, similar to the tasks considered earlier in the literature [14]. Lastly, the
third component corresponds to attribute engineering mechanisms which may
vary between application areas. We would like to keep our algorithms domain-
agnostic, so they can work similarly in many scenarios. However, we also have
to embed domain-dependent attribute specifications. More research is needed to
make this component efficient enough for real-world applications.

The rest of the paper is organized as follows: In Sect. 2, we introduce basic
assumptions related to our framework’s functionality. In Sect. 3, we outline the
main challenges that need to be addressed to implement it in practice. In Sects. 4
and 5, we discuss to what extent the existing FCA and RST methods can be
adapted for our purposes. Section 6 concludes the paper.

2 Preliminaries

Let us refer to the data in a standard tabular form as used, e.g., in RST [3]. By
an information system we will mean a pair (U,A) of non-empty sets U and A,
where U is a universe of objects, and A is a set of attributes such that every
a ∈ A is a function a : U → Va, where Va is called a value set of a. This way
of looking at the data is equivalent also to some other popular representations
such as relations in relational database systems [15] or many-valued contexts
in Formal Concept Analysis (FCA) [16]. In any case – whatever the underlying
representation is – the users think about their analytical tasks by means of
objects and attributes that are more or less explicitly formulated.

Table 1 illustrates an example of an information system. This is a data set
that was used in [17] as an illustration for studying functional dependencies
within RST framework. This is a simple example including a small amount of
objects and attributes. In [17], we assumed that attributes are categorical, i.e.,
one can consider partitions induced by their values over U . In real world applica-
tions, one can expect millions of objects and hundreds of attributes with various
kinds of value sets [2]. Objects can correspond to (parts of) texts, (parts of)
images, (time windows of) sensor measurements, etc. Attributes can take a form
of domain-specific indices, often coming with additional parameters deciding
about specifics of how to calculate their values for particular objects [18].

We are interested in specifying requirements for software environment which
would support the users in an interactive selection of attributes. Figure 1 depicts
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Table 1. A data table with 7 objects U = {u1, . . . , u7} and 6 attributes A = {a, . . . , f}.

a b c d e f

u1 1 1 1 1 1 1

u2 0 0 0 1 1 1

u3 1 0 1 1 0 1

u4 0 1 0 0 0 0

u5 1 0 0 0 0 1

u6 1 1 1 1 1 0

u7 0 1 1 0 1 2

Fig. 1. Three attribute recommendations for information system in Table 1. Objects
{u1, u2}, {u1, u4} and {u1, u3} are representatives of partition classes induced by
attribute subsets {a}, {d} and {e}, respectively. Representatives are chosen according
to a natural order of objects in U . Recommendations are chosen to possibly maximize
diversity of displayed representative objects. An arrow symbolizes a hypothetical user
choice of {e} as the most interesting subset for further expansion.

an information structure that such framework could work with. Each node corre-
sponds to a subset of attributes and to examples of objects representing particu-
lar groups of objects that behave comparably with respect to selected attributes.
Such understood infolattice can be built incrementally as a result of interaction
between the users and a GUI layer. A user can start with a node corresponding
to the empty set of attributes and a single object representing all objects. Our
framework should then compute and present a certain amount of attribute sub-
sets that are its recommendations for the beginning. Then, the user can choose a
node which seems to be the most relevant according to her needs. Let us imagine
that someone selects attribute subset {e} as illustrated by an arrow in Fig. 1. In
the next step, as shown in Fig. 2, our framework should recommend extensions
of the selected subset and the process should iteratively continue until the user
becomes satisfied with the resulting subset.

In our opinion, displaying the examples of objects is as important as dis-
playing the examples of attributes. This differs from OLAP, where the object
groups are usually represented by some aggregated measures. In our approach
one can utilize measures too, although they would be used to select objects
rather than to compute aggregations. For instance, for each group of scientific
publications, one can display its most frequently cited element. Actually, one
can set up a linear order over objects and utilize it to display them while adding
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Fig. 2. Three further recommendations how to extend attribute subset {e} selected
in Fig. 1 – {a, e}, {d, e} and {e, f}. Representatives of corresponding partition classes
are chosen along the same order as in Fig. 1. Connections between nodes symbolize
inclusions of both attribute and object subsets. Although {a, e} and {d, e} occurred as
a result of choosing node {e} in previous iteration, they might be also reached by a
user through nodes corresponding to {a} and {d}, respectively.

attributes. If such order is the same for all visible nodes, then a connection
between them implies inclusion with respect to both attributes and objects. It
can be observed in Fig. 2. For instance, attribute subset {a, e} corresponds to
representatives {u1, u2, u3, u4}, i.e., a superset of {u1, u3} displayed earlier for
{e}. More advanced scenarios of choosing objects will be discussed in Sect. 5.

3 Framework Components

There are a number of tasks to be addressed to make our interactive frame-
work useful in practice. From a software design perspective, it is important to
think about the following three well-abstracted components that cooperate with
each other by means of internal interfaces. These components have been already
sketched in Sect. 1. Below we proceed with a few more details.

The first component is a GUI-based navigation front-end which should allow
to display structures like those in Figs. 1 and 2 in a clear form, supporting incre-
mental process of constructing attribute subsets. Such GUI layer should let the
users look at detailed formulations of attributes and summarized information
about objects. It should also let the users move and remove previously gener-
ated nodes. Any other GUI features need to be carefully discussed to provide
the users with reasonably (but not overwhelmingly) rich functionality [9].

The second component is a layer of fast algorithms that recommend additions
of attributes whenever a user selects one of displayed nodes. Such algorithms
should have certainly a lot in common with the tasks of attribute selection [1],
though there are some specific aspects worth remembering about:

– Typical attribute selection algorithms produce final outcomes rather than
ascending attribute subsets that converge to final outcomes. However, it could
be relatively easy to change some of their parameters to let them work in a
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more stepwise fashion. In particular, greedy and randomized methods aimed
at adding attributes within internal loops of such algorithms can be easily
extended to display consecutive additions to the users.

– Typical attribute selection algorithms produce a single attribute subset. Even
if there is an intermediate step resulting in a collection of different subsets,
it is followed by aggregating such results into a single one [19]. On the other
hand, we need several subsets to give the users a choice. It can be compared to
learning classifier ensembles, where each classifier should perform differently
than others [20]. In machine learning, “performing differently” means that
classifiers should not repeat similar mistakes. In our case, recommendations
should be diversified with respect to attributes, basing on their semantic
meaning and a way they partition the data.

The third component refers to the attribute generation mechanisms which may
vary significantly depending on application domain. Let us consider an attribute
selection algorithm that iteratively utilizes some data-based test measures to
decide whether randomly chosen attributes should be added to its outcomes. On
the one hand, we would like to keep such algorithm as “domain-agnostic”, so it
can be applied similarly in many scenarios. On the other hand, we need to be able
to somehow “plug in” a domain-specific space of possible attributes, so it can
work with above components of our framework. A reasonable solution is to design
a kind of “get attribute” function which generates a collection of object-value
pairs for a randomly chosen attribute. Domain-specific random selection and
value computation are then encapsulated within such function’s implementation
while higher-level algorithms responsible for attribute recommendations and user
interactions work with its standardized outcomes.

4 FCA Background

As mentioned in Sect. 1, our ideas are partially inspired by [8], where concept
lattices were used to visualize FCA-related scientific publications. However, com-
paring to that study, we would like to show objects that differ from each other
by means of considered many-valued attributes rather than regularity patterns
expressed in classical FCA [21]. From this perspective, it is useful to refer to FCA
techniques working with partitions [16] which can be represented by replacing
original objects with their pairs and redefining attributes a ∈ A as an FCA-
specific attributes having a cross over a pair of objects u, u′ ∈ U , if and only
if a(u) = a(u′). Then, concepts encode partitions corresponding to functional-
dependency-related closures. Herein, it is also worth referring to multi-valued
contexts and their connections to, e.g., triadic concept analysis [22].

Figure 3 shows a partition-based FCA lattice representation of the data set
introduced in Table 1. For simplicity, only subsets of attributes, i.e., intents of
partition-based formal concepts are presented. Additionally, in order to support
the data understanding, it can be truly useful to present the examples of objects
in particular partition classes, similarly as we did in Figs. 1 and 2. Moreover, as
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Fig. 3. Intents of concepts in partition-based lattice for the data set in Table 1. Extents
are omitted – they could be reported as sets of pairs of indistinguishable objects, sets
of partition classes, or sets of examples of objects from different classes.

it will be discussed in Sect. 6, we could also consider displaying examples rep-
resenting groups of objects that are not necessarily equivalence classes such as,
e.g., centers of tolerance classes or fuzzy equivalence classes. This would corre-
spond to operating with pairs of objects whose attribute values are compared
by means of similarity relations rather than crisp equalities [23].

Figure 3 shows also additional information that can be represented by two
ways of marking attributes. Within each node, bolded attributes can be derived
from underlined ones. An intent of every partition-based concept may include
multiple subsets of attributes which determine others. For instance, subset
{a, b, e, f} is an intent of formal concept corresponding to partition classes {u1},
{u2}, {u3, u5}, {u4}, {u6} and {u7}. The same partition can be obtained for
{a, b, f}, {a, e, f} and {b, e, f} which corresponds to functional dependencies
abf → e, aef → b and bef → a, respectively [15]. Although such information
could be determined from a lattice structure, a more explicit representation of
dependencies may help the users who are not familiar with FCA.

The above observations lead towards some questions about algorithms aimed
at the formal concept lattice construction. One of them is whether it is worth
searching for attributes that should be marked as underlined for the previously
found concepts or maybe rather searching for subsets of non-inter-dependent
attributes that can be further “closed” by adding bolded attributes. Such ques-
tions become even more interesting when our task is to deal with bigger lattice
fragments rather than their single components [24]. More generally, these are
examples of questions related to derivation and representation of concept lattice
structures corresponding to large and complex data sets [7].

In summary, Fig. 4 shows that our approach discussed in the previous sections
can be really easily interpreted in terms of the FCA lattices with many-valued
attributes. Let us go back to the example illustrated by Figs. 1 and 2 and imagine
that a user selects the attribute subset {e, f} for further expansion. Suppose
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Fig. 4. Continuation of Fig. 2 – three further recommendations how to extend attribute
subset {e, f}. The considered infolattice structure is enriched by showing functionally
dependent attributes in right-side tabs of particular nodes.

that subsets {b, e, f}, {c, e, f} and {d, e, f} are recommended. Let us extend
the previously discussed functionality and, for each particular node, display on
its right side all attributes that are functionally determined by those in the
main node’s box. This way, we actually obtain a piece of partition-based lattice.
A difference is that only the underlined attributes and only single examples
of partition classes are presented in detail. Such correspondence allows us to
better leverage methods developed within the FCA literature, even though we
concentrate on slightly different aspects of data representation.

5 RST Background

As already mentioned, there are a number of efficient attribute selection algo-
rithms developed according to RST principles. Complexity problems addressed
by most of them refer to the fact that, for a given set of attributes, there may
exist multiple irreducible subsets – called reducts – that induce (almost) the
same level of information [3]. The meaning of an information level may vary for
particular RST-based methods. In some scenarios, it is worth looking at a quality
of approximations of some predefined subsets of objects. In other cases, it is more
applicable to rely on attributes’ ability to distinguish between arbitrary objects.
That latter interpretation of information level has strong relationships to FCA
models for many-valued attributes [16] and discernibility-based formulation of
the notion of functional dependency in relational databases [15].

Most of RST techniques have been developed for a supervised learning frame-
work, where we search for decision reducts, i.e., optimal subsets of attributes
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determining a special decision attribute. Among a number of extensions of clas-
sical RST, there are fuzzy-rough attribute reduction methods, where objects
supporting different decision classes need to be discerned to a satisfactory degree
based on a distance between numeric attribute values [4]. However, in this paper
we should refer rather to RST-based methods specialized in unsupervised learn-
ing for which there are no predefined decision attributes.

Let us go back one more time to Fig. 3. A task of finding – for a given
node – a subset of attributes inducing unchanged partition over the universe of
objects is equivalent to finding an information reduct in the information system
restricted to a given set of attributes. For example, consider an information
system obtained from that presented in Table 1 by taking into account only
attributes {a, b, e, f}. It has three information reducts – {a, b, f}, {a, e, f} and
{b, e, f}. It is also worth recalling the notion of an association reduct which is a
pair of attribute subsets (B,C) such that there is functional dependency B → C
and there are neither proper subsets B′ � B nor proper supersets C ′ � C such
that B′ → C or B → C ′ [17]. Actually, every node in Fig. 3 corresponds to an
association reduct for original information system illustrated by Table 1, where
B and C gather underlined and bolded attributes, respectively.

Functional-dependency-related analogies between FCA and RST are impor-
tant from computational perspective, e.g., to adapt heuristic algorithms that
search for association reducts to incrementally build partition-based lattices.
However, in this paper, our goal is to represent the data by means of combina-
tions of attributes and objects. In RST, this can be addressed by bireducts [12].
For information system (U,A), a pair (X,B), where X ⊆ U and B ⊆ A, is called
an information bireduct, if and only if the following is satisfied:

(1) B discerns all pairs u, u′ ∈ X, i.e., there is a ∈ B such that a(u) �= a(u′);
(2) There is no proper subset C � B such that C discerns all pairs u, u′ ∈ X;
(3) There is no proper superset Y � X such that B discerns all pairs u, u′ ∈ Y .

Information bireducts were utilized in [14] for a purpose of defining similarity
between objects in high-dimensional spaces, specifically to analyze texts bas-
ing on their semantic indices. Therefore, one may say that this idea goes well
together with our previously mentioned case study related to scientific publica-
tions as well as with RST-based and FCA-based methods considered in [5] and
[8], respectively. On the other hand, a usage of bireducts can easily go beyond
text processing. Actually, information bireducts can be studied as a counterpart
to formal concepts understood as non-extendable subsets of objects that are
indiscernible with respect to non-extendable subsets of attributes. In contrast,
information bireducts correspond to non-extendable subsets of objects that can
be said as pairwise different using irreducible subsets of attributes.

Actually, every node in Figs. 1, 2 and 4 corresponds to an information
bireduct. For instance, pair ({u1, u3, u4, u6, u7}, {e, f}) cannot be extended with
respect to its objects and reduced with respect to its attributes without losing the
above condition (1). Let us note that navigation principles described in Sects. 2
and 3 do not explicitly require displayed combinations of attributes and objects
to be information bireducts. However, underlying algorithms are supposed to
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recommend subsets of attributes that are not redundant and subsets of objects
that “cover” all significant combinations of attribute values. Thus, at each step
of interaction, new recommendations may indeed take a form of bireducts. Rec-
ommendations should be diverse, letting the users look at the data by means of
possibly different attributes and objects. This is in line with optimization princi-
ples defined in [12] with respect to searching for ensembles of bireducts, inspired
by well-known ensembles of classifiers [20].

Let us slightly modify a bireduct derivation algorithm introduced in [14]. Let
us begin with (X,B), where X = U and B = ∅, and keep removing objects from
X and adding attributes to B in a random order, until the above condition (1)
starts holding. In the second phase, begin removing previously added attributes
and adding previously removed objects under constraint of satisfying (1). After
examining all attributes and objects, obtained (X,B) will hold conditions (2)
and (3) too. This approach creates some interesting opportunities:

– We can use function “get attribute” (see Sect. 3) to add elements to B.
– We can follow a measure-based order (see Sect. 2) to remove/add objects.
– We can replace a(u) �= a(u′) in condition (1) by, e.g., a dissimilarity relation.

Following the idea of using function “get attribute”, we do not need all attributes
to be materialized prior to computations of bireducts. This is convenient espe-
cially for data sets with huge cardinalities of A related, e.g., to biomedicine [2],
texts [5], sensors [11], images [18], etc. Further, thanks to combining bireduct
derivation algorithms with an idea of using measures to order objects, we can
be sure that elements of X correspond to most valuable representatives of some
blocks of objects. Finally, working with (dis)similarities instead of (in)equalities
makes it possible for our framework to handle complex attributes, whose values
do not necessarily induce any meaningful data partitions. In such cases, out-
comes are still in form of pairs (X,B) but elements of X may not correspond to
representatives of equivalence classes any longer. They rather correspond to the
most representative examples as it was discussed for FCA in Sect. 4.

6 Future Directions

We discussed the idea of a new interactive attribute selection framework helping
the users to specify a scope of their exploratory and modelling tasks. We based
it on an intuitive lattice-like data representation, whereby nodes correspond
to automatically generated attribute recommendations that are illustrated by
examples of objects available in the data. We showed that such data represen-
tation – referred to as infolattice – and the algorithms aimed at its iterative
construction, can refer to methods developed in FCA [21] and RST [3].

FCA is a great source of inspiration from knowledge representation and con-
ceptual exploration points of view. Although our infolattices – as illustrated by
Figs. 1, 2 and 4 – are not equivalent to formal concept lattices, they can be still
interpreted using the FCA terminology which makes it possible to adapt some
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useful algorithmic solutions [24]. On the other hand, RST is helpful when for-
mulating and addressing the optimization goals for local expansion of attribute
subsets selected by the users, by following advances in the RST-based attribute
selection [4] and the attribute/object diversification [14].

We present just a draft of how our interactive attribute selection framework
should look like. Apart from a discussion related to FCA and RST, we also made
an attempt to specify software components that must be developed in next steps.
An important part is a GUI layer that needs to encourage the users to work with
it, basing on its graphical and functional features. It is tempting to provide the
users with a wide spectrum of ways of using our framework to understand the
data. However, any extension of functionality presented in Sects. 2 and 3 needs
to be carefully investigated to avoid making it too complex.

An example of such functionality can be seen in Fig. 4, where each node
is additionally equipped with right-side tabs including derivable attributes. The
amount of such attributes can be treated as one more parameter while evaluating
recommendations. Moreover, in high-dimensional data sets, it is often useful to
group together attributes which induce similar partitions in the data [19]. Then,
recommendations can include representatives of such attribute clusters, while
right-side tabs may contain more general cluster descriptions.

Examining dependencies is also important when producing new recommen-
dations. It may happen that previously recommended attributes become func-
tionally dependent from the added ones, so they should be moved to right-side
tabs in new nodes. The users should be also able to remove attributes from
already generated nodes or replace them with other attributes visible in right-
side tabs [2]. All those operations need to be designed in such a way that our
infolattice structure based on attribute/object subset inclusions is maintained
and the users do not feel lost when the number of nodes increases.

Another important aspect is to continue comparing our framework with other
methods. We should refer, e.g., to analytical environments based on FCA/RST
as well as to the principles of faceted search [6], OLAP [10] and interactive
retrieval [18]. Although functionality proposed in Sects. 2 and 3 seems to be
relevant mainly to data modeling, it can be extended toward search support
too. As illustrated by Figs. 5 and 6, it would be quite straightforward to enrich
our GUI layer to let the users select particular objects in particular nodes. Then,

Fig. 5. Three attribute recommendations for information system in Table 1. Unlike in
Fig. 1, the arrow symbolizes a hypothetical user choice of a group of objects represented
by u1 to be further analyzed in context of attributes including e.
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Fig. 6. Two further recommendations how to extend attribute subset {e} within its
partition class represented by object u1. There is no connection between nodes corre-
sponding to {a} and {a, e} because they are built for different sets of objects.

further recommendations can be generated for a corresponding group of similar
objects, where similarity is defined by a given node’s attributes.

Besides things that can be seen by the users, there are also some decisions
to be made for internal algorithms. In Sect. 5, it was suggested that one can
adapt heuristics searching for ensembles of information bireducts – i.e., irre-
ducible subsets of attributes which make it possible to tell a difference between
non-extendable subsets of objects [14] – to generate several new attribute/object-
based recommendations whenever a user chooses one of visible nodes to be fur-
ther expanded. However, such algorithms have a number of tunable parameters
responsible for average cardinality and pairwise diversity of generated subsets.
Moreover, there is a question whether it is enough for new recommendations
to be reasonably different from each other or whether their diversity should be
measured also with respect to other leaves in a current structure.

Last but not least, in high-dimensional data sets there are usually some
semantic hierarchies, i.e., meanings of some attributes may be relatively similar
to each other, even if they do not partition the data identically. In such cases,
different recommendations should be based on “semantically distant” attributes.
One can say that this kind of diversity might be addressed by appropriate imple-
mentation of function “get attribute” discussed in Sects. 3 and 5. On the other
hand, it is important for our framework to memorize the user choices and – over
time – learn their favorite descriptions of the data.
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Abstract. Non-symmetric indiscernibility preorders, arising naturally
from hierarchically structured data, are general methods of conceptual
scaling for multi-valued data. Based on the original idea of Ganter on
non-symmetric indiscernibility preorders and the AFS (Axiomatic Fuzzy
Sets) theory, this paper investigates a multi-valued formal concept analy-
sis, in which multi-granule concept lattice is established on multi-valued
context, and the membership function is directly determined from the
original data of the multi-valued context. Compared with symmetric
indiscernibility relations, the main advantage of the proposed method is
capable of dealing with information table with fuzzy attributes, Boolean
attributes, and intuition order attributes, and describing the uncertainty
relations between the objects and the attributes for formal context with
complex data.
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1 Introduction

Formal Concept Analysis (FCA) was originally proposed by Rudolf Wille in
1980s [12]. In classical FCA approaches, the notion of indiscernibility is a funda-
mental tool. If two objects have same values for all the attributes under consid-
eration, they are called indiscernible [14]. In the language of FCA, one expresses
this setting as follows: for a given formal context (X,M, I), define the indiscerni-
bility equivalence relation on X by

g ∼ h :⇔ g′ = h′,
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where g and h belong to X and “′” is the concept forming operator. Ganter
suggested a generalised notion of indiscernibility by dropping the condition of
symmetry [14]. In the past three decades, FCA has had great development in
both theory and application fields. Nowadays, FCA has been used in various
fields such as data analysis, information retrieval, and knowledge processing [21,
30,31,34]. In artificial intelligence community, FCA has been used as a knowledge
representation mechanism [18,44,45] as well as a conceptual clustering method
[7,27] for crisp concepts. In database theory, FCA has been extensively applied
to class hierarchy design and management [15,28,35]. Its effectiveness in the
relationship analysis of databases has been demonstrated by the commercial
management system TOSCANA for conceptual information systems [38].

Currently, complex data widely exist in the current popular relational data-
base, in which the yes/no binary relations are not enough to describe the infor-
mation between the objects and the attributes. By introducing the yes/no binary
relations among three data sets, triadic formal concept is proposed to describe
the multi-relational setting on more than two data sets [8,9,46]. To cope with
imprecise and incomplete information, fuzzy sets and rough sets are introduced
in FCA to improve the ability on dealing with uncertain data [32]. Poelmans et al.
gave an overview of the literature on extending FCA with fuzzy logic and rough
set theory [32]. For most of information systems, the value domains of attributes
are recorded by some real numbers, in which the ternary relationship of object-
attribute-value is employed to store data. In the concept lattice theory, such a
formal context is known as the multi-valued context (X,M,W, I) [47]. The rows
correspond to objects, the columns correspond to (multi-valued) attributes, and
the entries correspond to attribute values. Incidence (x,m,w) ∈ I is read as “the
value of object x on attribute m is w” and abbreviated as m(x) = w [14,43].
Multi-valued formal concepts of a multi-valued context have been applied in
extracting knowledge from observation data [16,36,43], conceptual information
retrieval [2,20], switching signal [29], etc.

Table 1. Descriptions of contexts [37]

Owing to its structural characteristic, the construction of the concept lattice
is based on the single-valued context. Multi-valued contexts are usually trans-
lated into a single-valued context to build the concept lattice. The traditional
discretization methods include two categories, (1) transforming multi-valued con-
text into single-valued context by introducing some threshold values (when the
attribute value is greater than the specified “degree”, we call that the object has
the attribute; on the contrary, the object does not have the attribute [47]) and
(2) scaling multi-valued attribute into a single-valued context for each attribute
m ∈ M [47] (In Table 1, on the left a multi-valued context has been drawn and
on the right it is a scale for the color attribute).
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However, transforming and scaling method mentioned above may bring new
problems about threshold selection and the loss of associated information. There
are many methods to directly deal with multi-valued context with complex data
in FCA. Gugisch introduced formal description to deal with multi-valued con-
cept analysis, which avoids generating huge single valued contexts by mapping
the set of attributes to the power set of the values [17]. Pattern structures have
been proposed as a generalization of formal contexts [1]. By defining an appro-
priate semi-lattice operation, pattern structures translate FCA to any partially
ordered data descriptions to deal with complex data [13]. Symbolic Data Analy-
sis(SDA) has been introduced to build concept lattices, which can better deal
with formal context with different type values by formalizing symbolic objects
and defining Galois connections symbolic objects and their descriptions [1,6].
Functional dependency is another method of extracting knowledge from formal
context and multi-valued formal context. By using functional dependencies, Gan-
ter established a new formal context from multi-valued context (X,M,W, I) as
follows [12]:

(X × X,M, J), (g, h)Jm :⇔ m(g) = m(h).

In fact, the implications of the latter are the functional dependencies of the for-
mer. In the concept lattice of the formal context (X × X,M, J), concept extents
are subsets of X × X, and concept intents are the maximal attribute sets cor-
responding to a given indiscernibility relation “Coreducts” [14]. In order to deal
with non-numerical (“unprecise”) data, Ganter introduced ordinal dependencies
in ordinally scaled multi-valued attributes, and established the formal context

(X × X,M, K), (x, h)Km :⇔ m(x) ≤ m(h).

In (X × X,M, K), concept extents are the ordinal indiscernibility rela-
tions that can be obtained by shortening the attribute set. These relations
are preorders. Concept intents are the maximal attribute sets corresponding
to a given ordinal indiscernibility relation [14]. Baixeries et al. introduced pat-
tern structures to characterize functional dependencies for dealing with com-
plex data, which provides a new conceptual structure with better computational
properties [3].

Fuzzy formal concept analysis (FFCA) is another important method to repre-
sent multi-valued attributes with vague information, in which fuzzy logic can be
incorporated into FCA to handle uncertainty information for conceptual cluster-
ing and concept hierarchy generation [4,5,11,19,33]. Most of FFCA approaches
usually assume that the relationship between a given object and property is a
matter of degree in a scale L (generally [0,1]) [10]. Humans interpretation is
usually also required to define the membership function of the fuzzy set I for
FFCA. However, the extent to which “object o has property a” may be some-
times hardly assessed precisely [10]. Different people have different opinions on
the same attribute (or feature). For example, for evaluating the car, someone feels
comfortable, while others do not think so. So it is very important for both the
structure of FFCA and decision making to determine the reasonable membership
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function. Besides, in the real-world applications, based on humans interpreta-
tion, it is also difficult to define the fuzzy set I for describing the uncertainty
relations between the objects in X and the attributes in M .

The main purpose of the current study is to establish the multi-granule con-
cept lattice on multi-valued context and a method to determine the uncertainty
relations between the objects in X and the attributes in M from the origi-
nal data within the framework of the AFS (Axiomatic Fuzzy Sets) theory. The
rest of this paper is organized as follows: Sect. 2 introduces AFS algebra by an
illustrative example. In Sect. 3, the AFS-based concept lattice on multi-valued
context is presented. In Sect. 4, the membership function of fuzzy formal concept
is discussed. Section 5 concludes the paper.

2 Preliminaries

In this section, we briefly introduce some basic notions related to AFS algebras
and coherence membership functions of fuzzy sets.

2.1 Introduction to the AFS Algebras by an Example

AFS (Axiomatic Fuzzy Sets) theory was firstly proposed by Liu in 1998 [22,26],
which provides an effective tool to convert the information by training examples
and databases into the membership functions and their fuzzy logic operations.
The following example, which employs the information table, serves as an intro-
ductory illustration of the set EM∗ and EM∗/R used in AFS.

Example 1 [42]. Let X = {x1, x2, . . . , x10} be a set of 10 people with feature
set F = {f1, f2, . . . , f10}, where the features are described by real numbers (f1:
age, f2: height, f3: weight, f4: salary, f5: estate), Boolean values (f6: male, f7:
female), and order relation (f8: black hair, f9: white hair, f9: yellow color). Here,
the number i in the “hair color” column, which corresponds to some x ∈ X,
implies that the hair color of x is ordered as the i-th following our perception of
the color. For example, as to the numbers in the column “hair black”, xi < xj

(e.g., x7 < x10) means that the hair of xi is closer to the color black than that
of individual xj . The relationship xi = xj (e.g., x4 = x8) means that the hair of
xi looks as black as that of xj . Let M = {m1
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j is the j-th assertion about fi, mi
1 = large,

mi
2 = small, (i = 1, 2, 3, 4, 5), m6

1 = male, m7
1 = female, m8

1 = black, m9
1 = white,

and m10
1 = yellow.

Let Fi be the set of feature values on the i-th feature fi, and φi be the partial
function φi : X → Fi. The elements of M are viewed as “single” (or “simple”)
assertions because each of them associates to a single feature. Each m ∈ M is
an assertion of a feature value about an object x, that is mj

i (x) = ‘φi(x) should
be taken the j-th assertion value’. For instance, for object x1, denote m1

1(x1) =
‘φ1(x1) is large’, and m2

1(x1) = ‘φ2(x1) is large’. However, in many real-world
applications, an assertion on x may associate to more than one feature.
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For example, γ = m1
1m

4
1 + m1

1m
7
1 (“+” denotes a disjunction of the assertions

about features) is a complex assertion, and γ(x) = ‘φ1(x) is large and φ4(x) is
large’ or ‘φ1(x) is large and φ7(x) is female’. For Ai ⊆ M, i ∈ I,

∑
i∈I(

∏
m∈Ai

m)
has a well-defined semantic meaning such as the one we have discussed above.

Let M be a nonempty set. The set EM∗ is defined by

EM∗ = {
∑

i∈I

(
∏

m∈Ai

m) | Ai ⊆ M, i ∈ I, I is any nonempty indexing set}. (1)

In [22], Liu established the quotient set EM∗/R by introducing the binary
relation R on EM∗. Moreover, Liu established EI algebra (EM∗/R,∨,∧) by
introducing the algebra operations ∨ (“or”) and ∧ (“and”) on the set EM∗/R.

Theorem 1 [22]. Let M be a non-empty set. Then (EM∗/R,∨,∧) forms a com-
plete distributive lattice under the binary compositions ∨ and ∧ defined as fol-
lows. For any

∑
i∈I(

∏
m∈Ai

m),
∑

j∈J(
∏

m∈Bj
m) ∈ EM∗/R,

∑

i∈I

(
∏

m∈Ai

m) ∨
∑

j∈J

(
∏

m∈Bj

m) =
∑

k∈I�J

(
∏

m∈Ck

m), (2)

∑

i∈I

(
∏

m∈Ai

m) ∧
∑

j∈J

(
∏

m∈Bj

m) =
∑

i∈I,j∈J

(
∏

m∈Ai∪Bj

m), (3)

where for any k ∈ I 
J (the disjoint union of I and J , i.e., an element in I and
an element in J are always regarded as different elements in I 
 J), Ck = Ak if
k ∈ I, and Ck = Bk if k ∈ J .

In what follows, we introduce another AFS algebra — E#I algebra over X,
which will play the role of the extents of AFS-based formal concepts.

The set EX∗ is defined by EX∗ = {∑
i∈I ai|ai ∈ 2X , I is any non-empty

indexing set}.
In [26], Liu established the quotient set EX∗/R by introducing the binary

relation R# on EX∗ and E#I algebra (EX∗/R#, ∨, ∧) by introducing the
algebra operations ∨ and ∧ as follows:

Theorem 2 [22]. For any
∑

i∈I ai,
∑

j∈J bj ∈ EX∗/R#, then (EX∗/R#, ∨, ∧)
forms a complete distributive lattice under the binary compositions ∨, ∧ defined
as follows:

∑

i∈I

ai ∨
∑

j∈J

bj =
∑

k∈I�J

ck,
∑

i∈I

ai ∧
∑

j∈J

bj =
∑

i∈I,j∈J

(ai ∩ bj), (4)

where for any k ∈ I 
J (the disjoint union of I and J , i.e., an element in I and
an element in J are always regarded as different elements in I 
 J), ck = ak if
k ∈ I, and ck = bk if k ∈ J . (EX∗/R#, ∨, ∧) is called E#I algebra over X.

For μ =
∑

i∈I ai, ν =
∑

j∈J bj ∈ EX∗/R#, μ ≤ ν ⇐⇒ μ ∨ ν = ν ⇔ for
any ai (i ∈ I), ∃bh (h ∈ J) such that ai ⊆ bh. Just as shown in the Example 1,
EI algebra can be represented by the fuzzy terms, and the membership can be
defined in the sequel.
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2.2 Coherence Membership Functions of Fuzzy Terms

Let X be a set and M be a set of fuzzy terms on X. For A ⊆ M , x ∈ X, define

A�(x) = {y ∈ X | x �m y for any m ∈ A} ⊆ X. (5)

For m ∈ M , “x �m y” implies that the degree of x belonging to m is larger
than or equal to that of y. A�(x) is the set of all elements in X whose degrees of
belonging to

∏
m∈A m are less than or equal to that of x. A�(x) is determined

by the semantic of fuzzy set A and the probability distribution of observed data
set.

For fuzzy term ξ ∈ EM∗/R, let μξ : X → [0, 1]. {μξ(x)|ξ ∈ EM∗/R}
is called a set of coherence membership functions in the AFS algebra system
(EM∗/R,∨,∧), if the following conditions are satisfied [26]:

1. For α, β ∈ EM∗/R, if α ≤ β in (EM∗/R,∨,∧), then μα(x) ≤ μβ(x) for any
x ∈ X;

2. for x ∈ X, η =
∑

i∈I(Πm∈Ai
m) ∈ EM∗/R, if A�

i (x) = ∅ for all i ∈ I then
μη(x) = 0;

3. for x, y ∈ X, A ⊆ M , η =
∏

m∈A m ∈ EM∗/R, if A�(x) ⊆ A�(y), then
μη(x) ≤ μη(y); if A�(x) = X then μη(x) = 1, where A�(x) is defined by
Eq. (5).

The coherence membership function is associated with a measure over X. Liu
et al. proposed two types of measures for fuzzy terms, which can be constructed
by taking the semantics of the fuzzy terms and the probability distribution of
the feature values of the data [26].

Definition 1 [26]. Let ν be a fuzzy term on X, ρν : X → R+ = [0,∞). ρν is
called a weight function of the fuzzy term ν if ρν satisfies the following conditions:

1. ρν(x) = 0 ⇔ x �m x, for any x ∈ X;
2. ρν(x) ≥ ρν(y) ⇔ x �m y, for any x, y ∈ X.

In what follows, we discuss how to define the coherence membership functions
in a probability measure space.

Theorem 3 [26]. Let (Ω,F ,P) be a probability measure space and M be a set
of fuzzy terms on Ω. Let ργ be the weight function for a fuzzy term γ ∈ M . Let
X ⊆ Ω be a finite set of observed samples from the probability space (Ω,F ,P).
If for any m ∈ M and x ∈ Ω, {m}�(x) ∈ F , then the following assertions hold:

1. {μξ(x)|ξ ∈ EM∗/R} is a set of coherence membership functions of (EM∗/R,
∧,∨), provided that the membership function for each ξ =

∑
i∈I(Πm∈Ai

m) ∈
EM∗/R is defined as follows:

ξ(x) =
∑

i∈I

A�
i (x) ∈ EX∗/R#. (6)

μξ(x) = ||ξ(x)||ρ = ||
∑

i∈I

A�
i (x)||ρ = sup

i∈I
inf

γ∈Ai

∑
u∈A

�
i (x)

ργ(u)Nu
∑

u∈X ργ(u)Nu
∈ [0, 1], (7)
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μξ(x) = ||ξ(x)||ρ = ||
∑

i∈I

A�
i (x)||ρ = sup

i∈I
inf

γ∈Ai

∫
A

�
i (x)

ργ(t)dP (t)
∫

Ω
ργ(t)dP (t)

∈ [0, 1], (8)

where ||ξ(x)||ρ is a norm of ξ(x), and Nu is the number of times that u ∈ X
is observed.

2. If for every γ ∈ M , ργ(x) is continuous on Ω and X is a set of samples
randomly drawn from the probability space (Ω,F ,P), then the membership
function defined by (7) converges to the membership function defined by (8),
for all x ∈ Ω as |X| approaches to infinity.

Remark 1. Theorem 3 defines the membership functions based on the fuzzy logic
operations and the overall space by taking both fuzziness and randomness into
account via ργ(x). The following practical relevance of the coherence membership
functions can be ensured by Theorem3.

In this study, let ργ(u) ≡ 1 for any x ∈ X, and for the complex assertion
(feature) η =

∑
i∈I(

∏
m∈Ai

m) ∈ EM∗/R, the coherence membership function
of η is defined as follows:

μη(x) = ||η(x)||ρ = ||
∑

i∈I

A�
i (x)||ρ = sup

i∈I

|A�
i (x)|
|X| , for any x ∈ X. (9)

Example 2. Let X = {x1, x2, . . . , x10} be a set of 10 persons with the features
described by real numbers (i.e. age, height, weight, salary, estate), Boolean values
(i.e., male, female) and the order relations (hair black, hair white, hair yellow),
which are shown in Table 2.

By a straightforward comparison of the two assertion expressions γ1 =
m1

1m
4
1 + m1

1m
7
1 and γ2 = m1

1m
4
1 + m1

1m
7
1 + m1

1m
2
2m

7
1, we conclude that their

Table 2. Descriptions of features [26]

Appearance Wealth Gender Hair color

Age Height Weight Salary Estate Male Female Black White Yellow

x1 20 1.9 90 1 0 1 0 6 1 4

x2 13 1.2 32 0 0 0 1 4 3 1

x3 50 1.7 67 140 34 0 1 6 1 4

x4 80 1.8 73 20 80 1 0 3 4 2

x5 34 1.4 54 15 2 1 0 5 2 2

x6 37 1.6 80 80 28 0 1 6 1 4

x7 45 1.7 78 268 90 1 0 1 6 4

x8 70 1.65 70 30 45 1 0 3 4 2

x9 60 1.82 83 25 98 0 1 4 3 1

x10 3 1.1 21 0 0 0 1 2 5 3



AFS-Based Formal Concept Analysis on Multi-valued Context 547

left and right sides are equivalent. Considering the terms on the left side of the
assertion expression, for any x, the degree of x belonging to the fuzzy complex
assertion m1

1m
2
2m

7
1 is always less than or equal to the degree of x belonging to

the fuzzy complex assertion m1
1m

7
1. Therefore, the term m1

1m
2
2m

7
1 is redundant

when forming the left side of the fuzzy complex assertion.
Let us take two assertion expressions into consideration, which are ψ1 =

m1
2m

7
1+m2

1m
3
1m

6
1 and ψ2 = m2

1m
6
1+m6

1m
8
1 ∈ EM∗/R, respectively, as in Exam-

ple 2. The semantic content of the fuzzy complex assertions “ψ1 or ψ2” and “ψ1

and ψ2” can be expressed as follows:

“ψ1 or ψ′′
2 : m1

2m
7
1 + m2

1m
6
1 + m6

1m
8
1 + m2

1m
3
1m

6
1

equivalent to m1
2m

7
1 + m2

1m
6
1 + m6

1m
8
1,

“ψ1 and ψ′′
2 : m1

2m
2
1m

6
1m

7
1 + m1

2m
6
1m

7
1m

8
1 + m2

1m
3
1m

6
1 + m2

1m
3
1m

6
1m

8
1

equivalent to m1
2m

2
1m

6
1m

7
1 + m1

2m
6
1m

7
1m

8
1 + m2

1m
3
1m

6
1.

Accordingly, “and”, “or”, and “equivalent to” correspond to ∧, ∨, and the equiv-
alence R in EI algebra, respectively. The algebra operations of them are shown
as follows:

ψ2 ∧ ψ2 = m1
2m

7
1 + m2

1m
6
1 + m6

1m
8
1 + m2

1m
3
1m

6
1 = m1

2m
7
1 + m2

1m
6
1 + m6

1m
8
1,

ψ1 ∨ ψ2 = m1
2m

2
1m

6
1m

7
1 + m1

2m
6
1m

7
1m

8
1 + m2

1m
3
1m

6
1 + m2

1m
3
1m

6
1m

8
1

= m1
2m

2
1m

6
1m

7
1 + m1

2m
6
1m

7
1m

8
1 + m2

1m
3
1m

6
1.

For each fuzzy complex assertion α =
∑

i∈I Ai ∈ EM∗/R, one can get another
kind of L-fuzzy set representation of α, i.e., the E#I algebra. For any x ∈ X

α(x) =
∑

i∈I

A�(x) ∈ EX∗/R#. (10)

In [26], the authors proposed a special family of measures using the E#I
algebra with norms, by which we can convert the E#I algebra represented mem-
bership degrees into [0,1]. In the AFS-based formal concept [39], EX∗/R# plays
the role of the extents of AFS-based formal concepts, and E(X × X)∗/R# over
X × X plays the role of the extents of AFS-based fuzzy formal concepts in the
sequel.

Recently, AFS theory has been further developed and applied to fuzzy cluster-
ing analysis [23,24], fuzzy decision trees [25], concept representations [24,39,40],
decision management [48], set approximation [42], etc. About the detailedly
mathematical properties and operations of AFS algebras, please refer to [26].

3 Multi-valued Formal Concept Based on AFS Theory

To develop multi-granule concept lattice and AFS-based formal concept [39,41]
within multi-valued context (X,M,W, I), we shall propose a new AFS-based
multi-valued formal concept analysis, in which the extents are defined on
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E(X × X)∗/R#. Intents are defined on EM∗/R. This study extends AFS-based
formal concept from single context to multi-valued context, and establishes a
method to describe the uncertainty relations between the objects in X and the
attributes in M , which can deal with the information table with fuzzy terms,
Boolean terms, and intuition order terms.

3.1 AFS-Based Multi-valued Formal Concept

Let X be a set of objects and M be a set of simple assertions. Define the map
τ : X × X → 2M as follows: for any (x, y) ∈ X × X,

τ(x, y) = {m|m ∈ M,y ∈ m�(x)} ∈ 2M , (11)

where m�(x) is defined by Eq. (5) and 2M is the power set of M . Furthermore,
it follows from Eq. (11) directly that the following propositions hold for τ .

Proposition 1. Let X, M be sets, τ : X × X → 2M be defined as Eq. (11).
Then τ satisfies the following conclusions:

AX1: for any (x1, x2) ∈ X × X, τ(x1, x2) ⊆ τ(x1, x1);
AX2: for any (x1, x2), (x2, x3) ∈ X × X, τ(x1, x2) ∩ τ(x2, x3) ⊆ τ(x1, x3).

In the sequel, we explore multi-valued formal concept by using non-symmetric
indiscernibility preorders and AFS structure, in which each element in con-
cept intent EM∗/R is a fuzzy complex assertion with a definite semantic
interpretation.

Definition 2. Let X, M be two sets. The relationship Iτ between X × X and
M is defined as follows: for (x, y) ∈ X × X,m ∈ M ,

((x, y),m) ∈ Iτ ⇔ m ∈ τ(x, y) ⇔ y ∈ m�(x). (12)

(X × X, M , Iτ ) is called the formal context based on AFS theory.

As a matter of fact, the formal context based on AFS theory can be viewed as
the result of applying the ordinal dependencies in ordinally scaled multi-valued
attributes proposed by Ganter [14] to the AFS algebra systems.

In [39], Wang and Liu proposed AFS-based formal concept, which extends the
Galois connection formed by Wille [12] on the single-valued context (X,M, I) to
the one between two AFS algebra systems (EM∗/R,∨,∧) and (EX∗/R#,∨,∧).
The intent of an AFS-based formal concept is an element of the EI alge-
bra (EM∗/R,∨,∧)—a kind of AFS algebra over M ; correspondingly, the
extent of the AFS-based formal concept is an element of the E#I algebra
(EX∗/R#,∨,∧)—another kind of AFS algebra over X. The extent and intent
of an AFS-based formal concept are uniquely determined by each other. Thus,
the intent of an AFS-based formal concept not only generalizes that of the for-
mal concept, but also has a well-defined semantic interpretation. Unfortunately,
AFS-based formal concept proposed in [39] cannot be applied to fuzzy context
and multi-valued context.
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Based on the above mentioned works, we establish a new multi-granule con-
cept lattice by introducing the new context (X × X,M, Iτ ) on the multi-valued
context (X,M, I). The Galois connection is extended to the connection between
the EI algebra (EM∗/R,∨,∧) and the E#I algebra (E(X × X)∗/R#,∨,∧),
which are shown as follows: for any

∑
i∈I(

∏
m∈Ai

m) ∈ EM∗/R,
∑

j∈J aj ∈
E(X × X)∗/R#,

α(
∑

i∈I

(
∏

m∈Ai

m)) =
∑

i∈I

A′
i ∈ E(X × X)∗/R#, (13)

β(
∑

j∈J

aj) =
∑

j∈J

(
∏

m∈a′
j

m) ∈ EM∗/R. (14)

In the following, we denote the subsets of X with the lower case letters and
the subsets of M with the capital letters, in order to distinguish the subsets of
X from those of M .

Definition 3. Assume that (X × X,M, Iτ ) be context on the multi-valued con-
text (X,M, I), and (EM∗/R,∧,∨) be the EI algebra over M and (E(X ×
X)∗/R#,∧,∨) be the E#I algebra over X × X. Let ζ =

∑
i∈I(

∏
m∈Ai

m) ∈
EM∗/R, ν ∈ ∑

j∈J aj ∈ E(X × X)∗/R#. (ν, ζ) is called an AFS-based multi-
valued formal concept of the context (X × X,M, Iτ ), if α(ζ) = ν, β(ν) = ζ. Then
ν is called the extent of the AFS-based multi-valued formal concept (ν, ζ) and ζ
is called the intent of the AFS-based multi-valued formal concept (ν, ζ).

Theorem 4. Let (X × X,M, I) be context on the multi-valued context (X,M, I)
and B(E(X × X)∗/R#, EM, Iτ ) be the set of all AFS-based multi-valued for-
mal concepts of the context (X × X,M, Iτ ). Then, for any (ν, ζ) ∈ B(E(X ×
X)∗/R#, EM∗/R, Iτ ), ν and ζ are uniquely determined by each other.

Definition 4. Let (ν1, ζ1), (ν2, ζ2) ∈ B(E(X × X)∗/R#, EM∗/R, Iτ ). Define
(ν1, ζ1) ≤ (ν2, ζ2) if and only if ν1 ≤ ν2 in lattice E(X× X)∗/R# (or equivalently
ζ1 ≤ ζ2 in lattice EM∗/R).

It is obvious that ≤ defined in Definition 4 is a partial order relation on
B(E(X × X)∗/R#, EM∗/R, Iτ ). The following theorem shows that the set
B(E(X ×X)∗/R#, EM∗/R, Iτ ) forms a complete lattice under the partial order
relation ≤.

Theorem 5. Let (X× X,M, Iτ ) be context on the multi-valued context (X,M, I)
and B(E(X × X)∗/R#, EM∗/R, Iτ ) be the set of all AFS-based multi-valued
formal concepts of (X × X,M, Iτ ). Then (B(E(X × X)∗/R#, EM∗/R, Iτ ),≤)
is a complete lattice, in which suprema and infima are given as follows: for any
(νk, ζk) ∈ B(E(X × X)∗/R#, EM∗/R, Iτ ),

∨k∈K(νk, ζk) = (∨k∈Kα(ζk), β(∨k∈Kα(ζk))), (15)
∧k∈K(νk, ζk) = (∧k∈Kα(ζk), β(∧k∈Kα(ζk))). (16)

where k ∈ K, and K is any non-empty indexing set.
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(B(E(X × X)∗/R#, EM∗/R, Iτ ),≤) forms a complete lattice, and M can be a
fuzzy term set, Boolean term set or intuition order set. However, how to deter-
mine the membership of x belonging to

∑
i∈I

∏
m∈Ai

m is a key problem. In the
sequel, we shall explore how to obtain the membership function for FFCA from
the origin data within the framework of AFS algebras.

3.2 Membership Function Based on Lattice E(X × X)∗/R#

In this subsection, we show that the lattice EX∗/R# can be used in represen-
tation of each fuzzy set γ =

∑
i∈I ai ∈ E(X × X)∗/R# based on the coherence

membership functions [26].
Based on the semantics of the fuzzy terms and logic operations discussed

in Sect. 2.1, Liu et al. proposed the coherence membership functions, which are
associated with a measure over X [26]. The membership functions and the fuzzy
logic operations are determined by the observed data and drawn from a prob-
ability space. An example was presented in [26] to demonstrate the approach
of computing the membership functions. In Example 2, let η1 = m1

1, η2 = m4
1,

η3 = m1
1m

4
1, η4 = m1

1 + m4
1 ∈ EM∗/R, ρm(x) = 1 for any x �m x, x ∈ X. By

Eq. (7), we can get that

for η1, A = {m1
1}, A�(x3) = {x1, x2, x3, x5, x6, x7, x10}, μη(x3) = |A�

i (x3)|
|X| =

7
10 = 0.7;

for η2, A={m4}, A�(x3) = {x1, . . . , x6, x8, x9, x10}, μη(x3)= |A�(x4)|
|X| = 8

10 =0.8;

for η3, A = {m1
1,m

4
1}, A�(x3) = {x1, x2, x3, x5, x6, x10}, μη(x3) = |A�(x3)|

|X| =
6
10 = 0.6;
for η4, A1 = {m1

1}, A2 = {m4
1}, A�

1 (x3) = {x1, . . . , x6, x7, x10}, A�
2 (x3) =

{x1, . . . , x6, x8, x9, x10}, μη(x3) = supi∈{1,2}
|A�

i (x3)|
|X| = sup{0.7, 0.8} = 0.8.

Definition 5. Let X be a set and (E(X × X)∗/R#,∧,∨) be the E#I algebra
on X × X. For any a ⊆ X × X, x ∈ X, denote

aR(x) = {y ∈ X | (x, y) ∈ a} ⊆ X. (17)

For any γ =
∑

i∈I ai ∈ E(X × X)∗/R# and x ∈ X, the E#I algebra valued
membership function γR : X → EX∗/R# is defined as follows:

γR(x) =
∑

i∈I

aR
i (x) ∈ EX∗/R#, (18)

and the membership function μγR(x) of γR is defined as follows:

μγR(x) = ||γR(x)||ρ = ||
∑

i∈I

aR
i (x)||ρ ∈ [0, 1], (19)

where || · ||ρ is called a norm of ξ(x). Every γ ∈ E(X × X)∗/R# is called a fuzzy
set on X × X, whose membership function is defined by Eq. (18) or (19).
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Since EX∗/R# is a lattice, hence for each γ ∈ E(X × X)∗/R#, γR : X →
EX∗/R# defined by Definition 5 is a lattice-valued fuzzy set. One can easily
verify that for γ, η ∈ E(X × X)∗/R#, if γ ≤ η in lattice E(X × X)∗/R#, then
for any x ∈ X, γR(x) ≤ ηR(x) in lattice EX∗/R#. Thus in (X × X, M , Iτ ),
for each η ∈ EM∗/R, α(η) is a fuzzy set on X with the membership function
defined by Eq. (18) or (19). Contrastively, for any γ ∈ E(X × X)∗/R# as a fuzzy
set defined by Eq. (18) or (19), β(γ) is an attribute in EM∗/R. If (γ, η) is an
AFS-based multi-valued formal concept, then the fuzzy set γ is the extent of
(γ, η), and the attribute η is the AFS logic combination of the simple attributes
in M and has a definite semantic interpretation.

4 Membership Function of FFCA

Theorem 6. Let X be a set and M be a set of simple assertions on X. Let
τ(x, y) be specified by Eq. (11) and (X × X, M , Iτ ) be the formal context defined
by Definition 2. Then for ζ, ς ∈ EM∗/R, if β(α(ζ)) = β(α(ς)), then for any
x ∈ X, ζ(x) = ς(x) and μζ(x) = μς(x), where for any fuzzy complex asser-
tion γ =

∑
u∈U (

∏
m∈Cu

m) ∈ EM∗/R, γ(x) =
∑

u∈U Cu
�(x) ∈ E#X is

the E#I valued membership function of γ defined by Eq. (18) and μγ(x) =
||∑u∈U Cu

�(x)||ρ ∈ [0, 1] is the membership function of γ defined by Eq. (7).

Proof: By the definition of (X × X, M , Iτ ) and Eq. (18), we can verify that
for any A ⊆ M , x ∈ X,

α(A)R(x) = (∩m∈Aα(m))R(x)
= (∩m∈A{(x, y) ∈ X × X | m ∈ τ(x, y)})R(x)
= ({(x, y) ∈ X × X |A ⊆ τ(x, y)})R(x). (20)

By Eqs. (11) and (17), we have

({(x, y) ∈ X × X |A ⊆ τ(x, y)})R(x) = A�(x). (21)

Furthermore, for any γ =
∑

u∈U (
∏

m∈Cu
m) ∈ EM∗/R and x ∈ X, it follows

from Eqs. (7) and (18), one has

α(γ)R(x) =
∑

u∈U

α(Cu)R(x) =
∑

u∈U

Cu
�(x) = γ(x). (22)

For ζ, ς ∈ EM∗/R, if β(α(ζ)) = β(α(ς)), then

α(ζ) = α(β(α(ζ))) = α(β(α(ς))) = α(ς).

Therefore, for any x ∈ X, it follows

ζ(x) = α(ζ)R(x) = α(ς)R(x) = ς(x),
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and μζ(x) = ||ζ(x)||ρ = ||ς(x)||ρ = μς(x). �
Assume that each element in M is a crisp assertion. Then, for any x ∈ X,

either x �m y or x �m y for any y ∈ X. By Eq. (17), either {m}R(x) = X or
{m}R(x) = ∅. This also implies that for any A ⊆ M , x ∈ X, either AR(x) = X
or AR(x) = ∅. Furthermore, by Eqs. (18) and (19), for any ζ ∈ E#(X × X),
x ∈ X, either ζR(x) = X or ζR(x) = ∅, and either μζR(x) = 1 or μζR(x) = 0, i.e.,
μζR(x) is the characteristic function of a crisp set Cζ ⊆ X. In [26], the authors
proved that the AFS logic system can be reduced to Boolean logic system if
every element in M is a crisp assertion. Therefore, in the framework of AFS-
based formal concept analysis, the AFS-based formal concept lattice of an AFS
structure (M, τ,X) will be reduced to the classic formal concept lattice of the
context (X,M, I), where for x ∈ X and m ∈ M , (x,m) ∈ I ⇔ ((x, y),m) ∈ Iτ

for any y ∈ X ⇔ x �m y for any y ∈ X.

Example 3. From Table 2, one can verify that each element m ∈ M is a simple
assertion. Let ρ(x) = 1, for any x ∈ X. Then, for any fuzzy complex assertion
η =

∑
i∈I(

∏
m∈Ai

m) ∈ EM∗/R, the membership function of η defined by
Eq. (7) is as follows:

μη(x) = ||η(x)||ρ = ||
∑

i∈I

A�
i (x)||ρ ∈ [0, 1], for any x ∈ X, (23)

where η(x) is defined by Eq. (6).
There are 24 fuzzy concepts generated by {x1, x2, · · · , x10} and m1

1,m
2
1,

m3
1,m

6
1, m7

1, and the membership for any x ∈ X is shown in Table 3, where
m1

1,m
2
1,m

3
1 are fuzzy complex assertions, while m6,m7 are crisp assertions. By

using these fuzzy terms, we can obtain many multi-valued formal concepts, which
can provide a new method to determine the membership function for FFCA from
original data with fuzzy, crisp and order information.

Moreover, the above theorem can be applied to discuss the reducing problem
of elements in EM∗/R. For example, let

ζ = m1
1m

3
1m

4
1 + m1

1m
3
1m

7
1, ξ = m1

1m
2
1m

3
1m

4
1 + m1

1m
2
1m

3
1m

7
1

be two fuzzy complex assertions in EM∗/R. Then

α(m1
1m

3
1m

4
1) = {(x1, x1), (x1, x2), (x1, x10), (x3, x2), (x3, x3), (x3, x5), (x3, x10),

(x4, x2), (x4, x4), (x4, x5), (x4, x10), (x5, x2), (x5, x5), (x5, x10),

(x6, x2), (x6, x5), (x6, x6), (x6, x10), (x7, x2), (x7, x5), (x7, x7),

(x7, x10), (x8, x2), (x8, x5), (x8, x8), (x8, x10), (x9, x2), (x9, x5),

(x9, x9), (x9, x10)}
α(m1

1m
3
1m

7
1) = {(x2, x2), (x2, x10), (x3, x2), (x3, x3), (x3, x5), (x3, x10), (x6, x2),

(x6, x5), (x4, x8), (x4, x10), (x6, x10), (x9, x2), (x9, x3), (x9, x5),

(x9, x6), (x9, x7), (x9, x9), (x9, x10), (x10, x10)}
β(α(m1

1m
3
1m

4
1)) = {m1

1, m
2
1, m

3
1, m

4
1}

β(α(m1
1m

3
1m

7
1)) = {m1

1, m
2
1, m

3
1, m

7
1}
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Table 3. Membership about fuzzy complex assertions generated by X, m1, m2, m3,
m6, m7

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

μm1
1
(·) 0.3 0.2 0.7 1 0.4 0.5 0.6 0.9 0.8 0.1

μm1
1m2

1
(·) 0.3 0.2 0.6 0.8 0.3 0.4 0.5 0.5 0.7 0.1

μm1
1m3

1
(·) 0.3 0.2 0.4 0.6 0.3 0.4 0.4 0.5 0.7 0.1

μm1
1m6

1
(·) 0.3 0 0 1 0.4 0 0.6 0.9 0 0

μm1m7(·) 0 0.2 0.7 0 0 0.5 0 0 0.8 0.1

μm1m2m3(·) 0.3 0.2 0.4 0.6 0.3 0.4 0.4 0.4 0.7 0.1

μm1
1m2

1m6
1
(·) 0.3 0 0 0.8 0.3 0 0.5 0.5 0 0

μm1
1m2

1m7
1
(·) 0 0.2 0.6 0 0 0.4 0 0 0.7 0.1

μm1
1m3

1m6
1
(·) 0.3 0 0 0.6 0.3 0 0.4 0.5 0 0

μm1
1m2

1m3
1m6

1
(·) 0.3 0 0 0.6 0.3 0 0.4 0.4 0 0

μm1
1m2

1m3
1m7

1
(·) 0 0.2 0.4 0 0 0.4 0 0 0.7 0.1

μm2
1
(·) 1 0.2 0.7 0.8 0.3 0.4 0.7 0.5 0.9 0.1

μm2
1m3

1
(·) 1 0.2 0.4 0.6 0.3 0.4 0.6 0.4 0.9 0.1

μm2
1m6

1
(·) 1 0 0 0.8 0.3 0 0.7 0.5 0 0

μm2
1m7

1
(·) 0 0.2 0.7 0 0 0.4 0 0 0.9 0.1

μm2
1m3

1m6
1
(·) 1 0 0 0.6 0.3 0 0.6 0.4 0 0

μm2
1m3

1m7
1
(·) 0 0.2 0.4 0 0 0.4 0 0 0.9 0.1

μm3
1
(·) 1 0.2 0.4 0.6 0.3 0.8 0.7 0.5 0.9 0.1

μm3
1m6

1
(·) 1 0 0 0.6 0.3 0 0.7 0.5 0 0

μm3
1m7

1
(·) 0 0.2 0.4 0 0 0.8 0 0 0.9 0.1

μm6
1
(·) 1 0 0 1 1 0 1 1 0 0

μm7
1
(·) 0 1 1 0 0 1 0 0 1 1

while

β(α(m1
1m

2
1m

3
1m

4
1)) = m1

1m
2
1m

3
1m

4
1, β(α(m1

1m
2
1m

3
1m

7
1)) = m1

1m
2
1m

3
1m

7
1.

From Table 4, one can get μm1
1m3

1m4
1
(x) = μm1

1m2
1m3

1m4
1
(x), μm1m3m7(x) =

μm1m2m3m7(x) for any x ∈ X. So, the fuzzy assertion m1
1m

3
1m

4
1 is equiva-

lent to m1
1m

2
1m

3
1m

4
1, and the fuzzy complex assertion m1

1m
3
1m

7
1 is equivalent

to m1
1m

2
1m

3
1m

7
1. Consequently, the fuzzy complex assertion ζ is equivalent to ξ,

and μζ(x) = μξ(x) for any x ∈ X.

Remark:

1. For two fuzzy complex attributes ζ, ξ ∈ EM∗/R, ζ(x) = ξ(x) for any x ∈ X
if and only if β(α(ζ)) = β(α(ξ)). Therefore, we can find the simplest reduced
form for each attribute in EM∗/R.
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Table 4. Membership about fuzzy complex assertions

m1
1m

3
1m

4
1 m1

1m
2
1m

3
1m

4
1 m1

1m
3
1m

7
1 m1

1m
2
1m

3
1m

7
1 ζ ξ

x1 0.3 0.3 0 0 0.3 0.3

x2 0 0 0.2 0.2 0.2 0.2

x3 0.4 0.4 0.4 0.4 0.4 0.4

x4 0.4 0.4 0 0 0.4 0.4

x5 0.3 0.3 0 0 0.3 0.3

x6 0.4 0.4 0.4 0.4 0.4 0.4

x7 0.4 0.4 0 0 0.4 0.4

x8 0.4 0.4 0 0 0.4 0.4

x9 0.4 0.4 0.7 0.7 0.7 0.7

x10 0 0 0.1 0.1 0.1 0.1

2. For any γ ∈ EM∗/R, let γ =
∑

u∈U (
∏

m∈Au
m) be the simplest reduced

form. Then for any u ∈ U , A′′
u = Au in the context (X × X,M, Iτ ).

3. Let B = {A|A ⊆ M,A = A′′}. For any fuzzy attribute γ ∈ EM∗/R, there
exists η ∈ EB∗/R, such that γ(x) = η(x), for any x ∈ X under EX∗/R#.
Thus B is the dimension to measure the complexity of (M, τ,X).

5 Conclusions

This current study mainly focuses on the applications of multi-valued context to
the AFS algebra systems. Concretely, this paper explores multi-valued concept
lattices within the framework of AFS theory, in which non-symmetric indiscerni-
bility preorders are introduced to deal with conceptual scaling for multi-valued
data. The proposed method can be used to deal with the multi-valued informa-
tion with fuzzy attributes, Boolean attributes and intuition order attributes.
Besides, a method to determine membership function is proposed, which is
directly determined by the original data and does not need additional humans
interpretation to describe the uncertainty relations between the objects and the
attributes. This paper provides a new approach to explore the mathematization
of formal concepts of a multi-valued context from point of view of algebraic
logics.
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Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 323–331.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32115-3 38

42. Wang, L., Liu, X., Qiu, W.: Nearness approximation space based on axiomatic
fuzzy sets. Int. J. Approx. Reason. 53, 200–211 (2012)

43. Wei, L., Qian, T., Wan, Q., Qi, J.: A research summary about triadic concept
analysis. Int. J. Mach. Learn. Cybern. (2016). doi:10.1007/s13042-016-0599-7

http://dx.doi.org/10.1007/3-540-51295-0_119
http://dx.doi.org/10.1007/3-540-58950-3_374
http://dx.doi.org/10.1007/978-3-642-32115-3_38
http://dx.doi.org/10.1007/s13042-016-0599-7


AFS-Based Formal Concept Analysis on Multi-valued Context 557

44. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Ivan Rival, R. (ed.) Ordered Sets, pp. 445–470. Reidel, Boston (1982)

45. Wille, R.: Knowledge acquisition by methods of formal concept analysis. In: Diday,
E. (ed.) Data Analysis, Learning Symbolic and Numeric Knowledge, pp. 365–380.
Nova Science, NewYork (1989)

46. Wille, R.: The basic theorem of triadic concept analysis. Order 12, 149–158 (1995)
47. Wu, S., Li, M., Tang, Y., Xu, L., Wei, D.: The data scales in multi-valued context

based on formal concept analysis. In: IEEE Ninth International Conference on
Computer and Information Technology, pp. 278–282 (2009)

48. Xu, X., Liu, X., Chen, Y.: Applications of axiomatic fuzzy set clustering method
on management strategic analysis. Eur. J. Oper. Res. 198, 297–304 (2009)



Turning Krimp into a Triclustering Technique
on Sets of Attribute-Condition Pairs

that Compress
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Abstract. Mining ternary relations or triadic Boolean tensors is one
of the recent trends in knowledge discovery that allows one to take into
account various modalities of input object-attribute data. For example, in
movie databases like IMBD, an analyst may find not only movies grouped
by specific genres but see their common keywords. In the so called folk-
sonomies, users can be grouped according to their shared resources and
used tags. In gene expression analysis, genes can be grouped along with
samples of tissues and time intervals providing comprehensible patterns.
However, pattern explosion effects even with one more dimension are
seriously aggravated. In this paper, we continue our previous study on
searching for a smaller collection of “optimal” patterns in triadic data
with respect to a set of quality criteria such as patterns’ cardinality,
density, diversity, coverage, etc. We show how a simple data preprocess-
ing has enabled us to use the frequent itemset mining algorithm Krimp
based on MDL-principle for triclustering purposes.

Keywords: Itemsets that compress · Triclustering · MDL principle ·
Frequent patterns

1 Introduction

Frequent pattern mining is one of the major topics in Data Mining, which dates
back to early 1990s [1]. The classic level-wise Apriori approach to enumerate fre-
quent itemsets exploits antimonotonicity property between the itemset size and
the number of containing transactions [2]. However, even for relatively small
transaction datasets the number of frequent itemsets may be humongous up to
2m, where m is the number of transactions or items. The well-known remedy is
the usage of closed itemsets, i.e. itemsets with no superset of the same support
(the number of containing transactions). One can store only closed itemsets to
count the support of any other itemset contained in the input database. In case
this number is very high to generate frequent patterns within reasonable time
and limited memory, then only top-k frequent closed itemsets or maximal ones
can be obtained. However, there is another view on the way of generating relevant
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itemsets. One can apply minimal description length (MDL) principle to select
only a limited amount of itemsets to cover the original transaction database w.r.t.
set inclusion. This approach can be efficiently implemented by means of simple
sorting heuristics like ordering such coding itemsets by size, support, or lexico-
graphically [3,4]. In Formal Concept Analysis (FCA), an applied branch of Lat-
tice Theory, a convenient language for the problem formulation can be found in
terms of concepts and their hierarchies over object-attribute binary relations [5].

Later, more complex data came to the stage like sequences, graphs, linked
relational tables, and n-ary relations, in particular. n-ary relations (aka Boolean
tensors) can relate more than two entities; one of the famous examples are the
so-called Folksonomies, ternary relations, where users, resources, and tags are
tied by assignment relation. Similarly, in transactional or object-attribute binary
data, one can try to find frequent bisets like (tags, resources) that have been
frequently related, i.e. the tags that have been assigned to the resources by
sufficiently large number of users. However, the number of outputted frequent
bisets (or n-sets, to be more general) increases as nm in the worst case, where
m is the number of different input entities in the first component of the original
n-ary relation (m should be no greater than the total number of other related
entities of each type, respectively). Frequent closed bisets or, more generally,
closed n-sets can be a tool of choice to select only limited amount of potentially
interesting n-sets [6].

FCA proposes the so-called triadic formal concepts (or triconcepts), i.e. max-
imal cuboids in ternary relations w.r.t. possible permutations along the inter-
related dimensions [7]; triadic formal concepts are also known as closed trisets
in Data Mining community [8]. One way to reduce the number of outputted
patterns is to consider a relaxation of their definition. While maximality of a
frequent trisets already allows to reduce the number of patterns in comparison
to all the frequent trisets of a given ternary relation, trisets with some triples
missing may help to do it more efficiently [9,10]. To study those two ways of
searching for relevant patterns on common grounds, we treated trisets (not nec-
essarily closed) and trisets with missing triples as triclusters [10]. Moreover, we
proposed a reasonable set of criteria to select such relevant patterns like their
cardinality, density, diversity, coverage, and their variations. However, among
the five compared approaches (formal triconcepts TRIAS, least-square based
triclusters TriBox, two variants of FCA-based OAC-triclustering, and spectral
triclustering SpecTric) there were no a winner according to the whole set of
criteria. Only incomparable and non-dominated, i.e. Pareto-optimal solutions,
have been identified. Therefore, we are continuing our findings by investigation
of other prospective candidates into “optimal” patterns.

In fact, the aforementioned triclustering approaches have been rather well
studied, but MDL-based Krimp algorithm seems to be not even tested in tri-
adic setting, i.e. on ternary relations like Bibsonomy1. Since the resulting bisets
(or sets of pairs) are not necessarily closed but uniquely determine the supporting

1 There exists a version of Krimp for mining linked relation tables, which seems to be
suitable for n-ary relations as well [11].
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entities and thus similar, we would refer to the whole resulting triset as a tri-
cluster. Note that while closed trisets are well-known under the name of formal
triconcepts, closed bisets for binary relations are formal concepts.

In this short paper, we compare several triclustering algorithms, including
those for generation of formal triconcepts, against triclusters (in fact, bisets or
sets of pairs) generated by Krimp, according to the aforementioned criteria.

The remaining sections are organised as follows. In Sect. 2, we give a short
overview of the Krimp methodology for compressing itemset mining based on
paper [3]. Section 3 introduces the necessary notions from triadic data analysis
and describes the underlying data transformation from an input ternary relation
to the corresponding binary one; this section also presents the quality criteria to
assess the resulting patterns. Section 4 presents the results of experiments with
the original KKrimp implementation and several triclustering algorithms along
with the examples of outputted patterns. The last section concludes the paper.

2 Krimp Approach for Itemsets Compression

Let us briefly recall the idea of Krimp algorithm [3] in terms or FCA2.
Let K = (G,M, I) be a formal context, where G is a set of objects (e.g.,

transactions), M is a set of attributes (e.g., items), and I ⊆ G × M . This is a
more general mathematical representation of a transactional data table.

A code table consists of two columns. In the left column, sets of attributes
are listed (say, in lectic order) per row, in the right one the corresponding code
words are placed. The left column contains at least all 1-itemsets. All the code
words are unique. An example of a code table (CT ) for M = {a, b, c} is given
in Table 1. Note that the Usage column is not a part of the code table and the
codes are ordered by their lengths, e.g. L(α) < L(β) < L(γ) < . . ..

Table 1. An example of a formal context (left) and the corresponding code table.

a b c
1 × × ×
2 × × ×
3 × × ×
4 × × ×
5 × × ×
6 × ×
7 ×
8 ×

Attribute set (itemset) Code Usage
{a, b, c} α 5
{a, b} β 1
{a} γ 1
{b} 1
{c} - 0

The context encoded by the code table from Table 1 is given in Table 2. The
cover(CT, g) is a subset of CS, the coding set of CT such that the union of all
X ∈ cover(CT, g) equals g′ and elements of cover(CT, g) do not overlap, i.e. it
returns a unique partition of g′, g′ =

⊔

X∈cover(CT,g)

X.

2 FCA basics can found in books [5,12] or tutorial [13].
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Table 2. The database (context), its cover with the code table (CT ), and the encoded
database.

Object intents, g′ Cover with CT Encoded database

{a, b, c} {a, b, c} α

{a, b, c} {a, b, c} α

{a, b, c} {a, b, c} α

{a, b, c} {a, b, c} α

{a, b, c} {a, b, c} α

{a, b} {a, b} β

{a} {a} γ

{b} {b} δ

A special type of code table, standard code table, contains only sets of size
one. The example of the standard code table for the context from Table 2 is given
in Table 3.

Table 3. The database cover with the standard code table (ST ) and the encoded
database.

Attribute set (1-itemset) Code Usage
{a} α 7
{b} β 7
{c} γ 5

Cover with ST Encoded database

{a}, {b}, {c} αβγ
{a}, {b}, {c} αβγ
{a}, {b}, {c} αβγ
{a}, {b}, {c} αβγ
{a}, {b}, {c} αβγ

{a}, {b} αβ
{a} α
{b} β

It is clear that ST is not always optimal. Hence, the main problem here is
to find a Minimal Coding Set. Let K = (G,M, I) be a formal context, cover
be a cover function, and F be a set of candidates to cover K. We need to find
the minimal coding set CS ⊆ F such that the resulting code table CT has the
minimal size L(K, CT ).

The total compressed size of the encoded database and the code table is
computed as follows:

L(K, CT ) = L(K | CT ) + L(CT | K), where

L(K | CT ) is the size of the encoded context K and L(CT | K) is the size of
the code table CT , in bits.

The size of the code table CT is computed as follows:

L(CT | K) =
∑

X∈CT :usageK(X) �=0

L(codeST (X)) + L(codeCT (X))), where
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L(codeST (X)) and L(codeCT (X)) are the lengths of the codes of itemset X
with respect to the standard code table ST and the code table CT . The usage of
an itemset is the number of objects such that their intent contains this itemset
as a covering block:

usageK(X) = |{g ∈ G | X ∈ cover(CT, g)}|.

The size of the encoded K is computed as the sum over all object intents:

L(K|CT ) =
∑

g∈G

L(g|CT ), where

L(g|CT ) =
∑

X∈cover(CT,g)

L(codeCT (X)).

Concrete examples of computations with code lengths in bits can be found
in [3].

Let us shortly discuss algorithmic strategy of Krimp (see Algorithm 1).
It starts with the standard code table ST that contains only sets of single

attributes {m}, where m ∈ M . Then Krimp adds one-by-one candidate item-
sets from F . If the resulting code table provides better compression, keep the
candidate and continue search; otherwise remove the candidate.

The Krimp algorithm uses several heuristics, first, the so called standard
cover order. That is it orders X ∈ CT by decreasing cardinality, then by decreas-
ing support, and then by increasing position w.r.t. lexicographic order:

|X| ↓ suppK(X) ↓ lexicographically ↑ .

Second, Krimp exploits the standard order of candidates. Large and then
frequent sets are of priority:

suppK(X) ↓ |X| ↓ lexicographically ↑ .

Algorithm 1. Krimp Algorithm.
Input: K = (G, M, I) is a context, F ⊆ M is a set of candidates.
Output: A heuristic solution to the Minimal Coding Set Problem, code table CT .
1: CT ← StandardCodeTable(K)
2: F0 ← F in Standard Candidate Order
3: for all F ∈ F0 \ {{m} | m ∈ M} do
4: CTc ← (CT ∪ F ) in Standard Cover Order
5: if L(K, CTc) < L(K, CT ) then
6: CT ← CTc

7: end if
8: end for
9: return CT
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3 Triadic Data and Their Transformation

Let us consider, a triadic (formal) context denoted by (G,M,B, I ⊆ G×M ×B).
Here, sets G,M , and B are interpreted as objects, attributes, and conditions,
respectively, while (g,m, b) ∈ I means that the object g has the attribute m
under the condition b [7].

A triadic context K = (G,M,B, I) gives rise to the following dyadic context
K

(1) = (X1,X2 × X3, I
(1)), where gI(1)(m, b) :⇔ (g,m, b) ∈ I. We use such

contexts as an input for Krimp for mining triclusters in them.

Example 1. Triadic Data.

1. A sample of Top-250 movies from www.IMDB.com.
The objects are movie titles, the attributes are keywords, and the conditions
are genres.

2. A sample from bibliography sharing system BibSonomy.org.
The objects are users, the attributes are tags, and the conditions are electronic
bookmarks.

Example 2. Transformation of a triadic relation to a dyadic relation.
If there is a movie description in terms of keywords and genres

{Star Wars} × {Princess,Empire} × {Adventure, Sci-Fi,Action},

then these data can be transformed into object-attribute form as follows:

{Star Wars} ×

⎧
⎪⎨

⎪⎩

(Princess,Adventure), (Princess, Sci-Fi)
(Princess,Action), (Empire,Adventure)

(Empire, Sci-Fi), (Empire,Action)

⎫
⎪⎬

⎪⎭
.

Here, the role of new attributes is played by the original (attribute, condition)
pairs.

Consider K = (G,M,B, I), a triadic context; in what follows we will refer
to a trisets T = (X,Y,Z) with Z ⊆ G,Y ⊆ M,Z ⊆ B as an object-attribute-
condition tricluster or simply tricluster.

These triclusters are triadic patterns that we are going to find with Krimp
on a transformed triadic data.

Each encoding set of (object, attribute) pairs found by Krimp is contained
as a coding block in the description of some object g ∈ G. Let S be a coding
set returned by Krimp that consists of n attribute-condition pairs from M × B.
Then the first component X of the corresponding tricluster is {g | (g,m, b) ∈
Iforall(m, b) ∈ S}. The remaining two components are Y = {m | ∀(m, b) ∈ S}
and Z = {b | ∀(m, b) ∈ S}. It is clear that S is not necessarily equal to Y × Z,
so, some amount of missing triples is allowed inside T = (X,Y,Z). The quality
of such a tricluster can be assessed by its density.

The quality metrics that we use to compare triclusters and their collections
are below.

www.IMDB.com
https://www.bibsonomy.org/
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Density. The density of a tricluster T = (X,Y,Z) is defined as the fraction of
all triples of I in X × Y × Z:

ρ(T ) =
|I ∩ (X × Y × Z)|

|X||Y ||Z| .

For a tricluster collection T its average density is defined as follows:

ρ(T ) =

∑
Ti∈T ρ(Ti)

|T | .

If T = (X,Y,Z) ⊆ I, then ρ(T ) = 1.

Coverage. Coverage is defined as a fraction of the triples of the context (alterna-
tively, objects, attributes or conditions) included in at least one of the triclusters
of their resulting collection T :

coverage(T ,K) =
|
⋃

(X,Y,Z)∈T X × Y × Z ∩ I|
|I| .

Diversity. To define diversity of triclusters we use a binary function that equals
to 1 if the intersection of triclusters Ti and Tj is not empty, and 0 otherwise. For
the whole tricluster the diversity is defined as follows:

diversity(T ) = 1 −
∑

j

∑
i<j intersect(Ti, Tj)

|T |(|T |−1)
2

,

where

intersect(Ti, Tj) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, GTi
∩ GTj

	= ∅∧
∧MTi

∩ MTj
	= ∅∧

∧BTi
∩ BTj

	= ∅
0, otherwise.

Thus, one may assume that a not that large collection of triclusters, with
high average density, coverage, and diversity is a good alternative, for example,
to a large collection of absolutely dense triclusters of low coverage and diversity.

Now, having the definition of extracted patterns and the quality criteria, let
us test the Krimp-based triclustering approach on a real dataset of moderate
size against the triclustering techniques compared in [10].

4 Experiments

To perform experiments with Krimp on triadic data we have selected the IMDB
dataset with top-250 movies from [14]3; its basic statistics are given in Table 4.

3 http://bit.ly/triMLData.

http://bit.ly/triMLData
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As for the triclustering approaches for comparison, we have selected five triclus-
tering methods from [10]. The OAC-triclustering methods OAC-box [15] and
OAC-prime [10] are based on the idea of relaxation of the triadic formal con-
cept definition to allow missing triples. The TriBox follows the notion of box
tricluster based on the conventional least-squares criterion [14]. The SpecTric
triclustering approach is based on the adaptation of spectral clustering to the
triadic setting [15]. Trias is one of the first efficient algorithms for large triadic
contexts [8].

Table 4. Basic statistics of the IMDB dataset with top-250 movies.

Context |G| |M | |B| # triples Density

IMDB 250 795 22 3818 0.00087

All the methods, except of Krimp, have been implemented by the authors
of [10] and incorporated into a single triclustering toolbox. The toolbox has been
implemented in C# using MS Visual Studio 2010/2012. All the experiments
have been performed on Windows 7 SP1 x64 system equipped with an Intel
Core i7-2600 @ 3.40 GHz processor and 8 GB of RAM. AlgLib4 library was used
for performing eigenvalue decomposition. The Krimp implementation has been
taken from http://www.cs.uu.nl/groups/ADA/krimp/.

Technically, as we could see, this is possible to restore the movie component
of a Krimp-based tricluster in one pass over the initial data checking the pres-
ence (keyword, genre) pairs taken from the Krimp output, i.e. the corresponding
code table. According to the results summary in Table 5, the used Krimp imple-
mentation is the fastest; due to technical reasons we start only with minsup = 2
(Krimp has not terminated correctly in our experiments). While the number
of generated triclusters without singletons, i.e. pairs of (keyword, genre), is the
lowest, for arbitrary coding sets of pairs, this number is the highest. The density
is equal to 1 and the diversity is close to 1. However, the coverage is one of
the lowest for non-singletons. There is a trade-off between the coverage and the
number of triclusters outputted by Krimp.

To provide the reader with examples of the extracted triclusters, we have
selected three triclusters found by Krimp.

Example 3. Three triclusters extracted by Krimp from IMDB dataset.
Tricluster 1.
Keyword-genre component:

{(Princess,Adventure), (Princess,Fantasy), (Empire,Sci-Fi),

(Empire,Adventure), (Empire,Action), (Princess,Sci-Fi),

(Princess,Action), (Empire,Fantasy), (Death Star,Sci-Fi),

(Death Star,Fantasy), (Death Star,Adventure), (Death Star,Action)},

(2,2)

4 http://www.alglib.net/.

http://www.cs.uu.nl/groups/ADA/krimp/
http://www.alglib.net/
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Table 5. Time, cardinality, density, coverage and diversity of the resulting triclustering
collection for Top-250 IMDB movies dataset.

Algorithm t, ms N ,
number of triclusters

ρ, % Cov, % Div, %

IMDB

OAC (�) 2314 1500 1.84 100 15.650

OAC (′) 547 1274 53.85 100 96.550

SpecTric 98799 21 17.07 20.88 100

TriBox 197136 328 91.65 98.90 98.890

TRIAS 102554 1956 100 100 99.890

Krimp (minsup = 2,
only non-singletons)

87 152 100 24.04 99.556

Krimp (minsup = 2,
usage �= 0)

87 2859 100 99.97 99.997

Krimp (minsup = 3,
only non-singletons)

46 57 100 12.07 98.684

Krimp (minsup = 3,
usage �= 0)

46 2966 100 99.97 99.998

Movies component:

{Star Wars: Episode VI ? Return of the Jedi (1983), Star Wars (1977)}

Tricluster 2.
Keyword-genre component:

{(Future,Sci-Fi), (Future,Thriller), (Future,Action), (Cyborg,Thriller),

(Cyborg,Sci-Fi), (Cyborg,Action), (The Terminator,Thriller),

(The Terminator,Sci-Fi), (The Terminator,Action) },

(2,2)

Movies component:

{The Terminator (1984), Terminator 2: Judgment Day (1991)}

Tricluster 3.
Keyword-genre component:

{Gotham,Thriller), (Gotham,Drama), (Gotham,Crime), (Gotham,Action),

(Batman,Thriller), (Batman,Drama), (Batman,Crime), (Batman,Action)},

(2,2)

Movies component:

{Batman Begins (2005), The Dark Knight (2008)}.

The numbers in brackets like (2,2) after the keyword-genre component of
a tricluster represent the current count of this particular pattern in the cover
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and the total number of occurrences of this pattern in the original database,
respectively. As it is clear from the example, the corresponding encoding sets
of attribute-condition pairs form biset; this is also confirmed by the density of
triclusters ρ = 1. Such triclusters can be used to provide a user by relevant
recommendations based not only on movie genres but on the extra dimension of
keywords, which may result in more focused recommendations via this enriched
semantic.

5 Conclusion

The performed experiments allow us to say that Krimp can be considered as a
prospective method for triadic data analysis.

There are its positive features that we have seen:

– fast computational time (although on the dataset of rather moderate size
with the lowest minimal support minsup = 2);

– absolutely dense triclusters (however, this may not be the case for sparse and
noisy datasets);

– we can select a rather small set of “large” triclusters (e.g., by imposing higher
support for non-singletons).

The negative features that we have seen are the following:

– the strong trade-off between coverage and the number of triclusters (switching
from coding sets with singletons to itemsets of higher size);

– even higher number of triclusters than the number of triconcepts with the
usage of singletons is allowed.

So, now we have one more Pareto-suboptimal triclustering algorithm (there
is no a winner according to the chosen quality criteria) obtained by combining
a straightforward data transformation and the MDL-based Krimp approach for
sets of attribute-condition pairs that compress. Note that, a backward trans-
formation from object-attribute data to ternary ones may have sense, e.g. for
biclustering in numeric setting replaced by triclustering (triconcepts search) in
the transformed binary triadic relation [16].

A more detailed study involving comparison with Boolean tensor factorisa-
tion [17,18] to find tricluster cover close to the optimal one can be considered
as future prospects of the approach as well as its testing on n-ary relations with
direct usage of (n − 1)-sets.

Among the prospective applications of triclustering one may consider group-
ing by similarity and subsequent recommendations for medical informatics pur-
poses, where ternary relations can be composed by triples of patients, symptoms,
and diagnoses. From Rough Set Theory perspective, triclustering being tolerant
to missing triples can produce a tricluster in a rough manner with its core, i.e.
the indispensable absolutely dense part, within the boundary region [15,19].
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Bożena Staruch(B)

Faculty of Mathematics and Computer Science,
University of Warmia and Mazury in Olsztyn,

ul. S�loneczna 54, 10-710 Olsztyn, Poland
bostar@matman.uwm.edu.pl

Abstract. In this paper we present an application of a topological
approximation space and a rough fuzzy membership function in aim
to get classification models. We propose a model of obtaining cover-
ings based on statistical methods applied to attributes in decision sys-
tems (where missing values are also considered). We include in this
paper experimental results on classification of Horse Colic, Diabetes and
Austra data sets, and compare the results with classifiers built in RSES2.

Keywords: Topological approximation space · Coverings · Rough fuzzy
membership function · Classification

1 Introduction

We consider a topological approach to rough approximation space. In this paper
we assume that a covering of the finite set is given. In [1,2] a topological approx-
imation space based on coverings, where the lower approximation of a set X
is given by the topological interior of X and its upper approximation coincides
with the least open set that includes X. Minimal neighbourhoods of objects are
treated as information granules. A generalization of an approximation space via
the information granulation approach can be found in [3–5]. In [2] we define a
rough fuzzy membership function based on information granules. We also pro-
pose there, an extended rough fuzzy membership function, which is used to
classify ‘new’ (testing) objects.

There are many approaches to classification problem, e.g. [6,7] present rough
set based approach, while [8,9] are based on formal concept analysis, fuzzy app-
roach can be found in [10–13], and symbolic data analysis is in [14].

Section 2 recalls definitions and useful facts. In Sect. 3 the classification model
is described. The intuitive meaning of covering subsets is as similarity classes
i.e. objects in the same covering subset are similar under some (possibly hidden)
property. So, to simulate such a meaning we decided to create covering subsets
based on statistical frequency distribution and two thresholds high and low.
Given a covering of the set of training objects we calculate values of the rough

c© Springer International Publishing AG 2017
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fuzzy membership function. The next step is getting an open neighbourhood
for testing objects. Finally, after calculating values of an extended rough fuzzy
membership function we classify the testing objects. We also present experimen-
tal results for Horse Colic, Diabetes and Austra data sets (available in the open
repository UCI [15]) with their comparison with RSES2 classifier [16].

2 Covering Based Granulation and Topological
Approximation Spaces

The terminology and facts of this section are taken from [2]. Let U be a finite
non-empty set of objects (training objects). A non-empty family C of subsets of
U is a covering on U (or covers U) if and only if

⋃
C = U . Every C ∈ C will

be called a covering subset. Any covering C on U can be represented as a table
which is determined by a function FC : U × C −→ {0, 1} such that FC(u,C) = 1
if and only if u ∈ C. Every column C in the latter table is determined by the
characteristic function of the covering subset C. Any family of subsets of U can
be extended to a covering by adding the set U to this family.

A family T of subsets of a finite set U is a topology on U if and only if ∅, U ∈ T
and for any X,Y ∈ T , X ∩Y ∈ T and X ∪Y ∈ T . Given any family A of subsets
of U there exists the least topology T (A) containing A.

Let T = T (C). For any object u ∈ U the family NC(u) = {C ∈ C : u ∈
C} is a family of all its neighbourhoods. Then gC(u) =

⋂
NC(u) is the least

neighbourhood of u in T (C) and is called an information granule about u in the
covering C. The set GranC(U) = {gC(u) : u ∈ U} is a covering of U and will be
called a granulation set.

We define a topological approximation space TAS = (U, T ) as a topology T
on U with operators of the lower and upper approximation of subsets of U as
follows:

1. L(X) is the greatest open set Y such that Y ⊆ X,
2. UP (X) is the least open set Y such that X ⊆ Y .

If C is a covering then T (C)=T (GranC(U)) and UP (X)=
⋃

{gC(x) : x ∈ X}.
Let T = T (C) for a covering C. Then for any u ∈ U and X ⊆ U , X ′ = U \X

we define a rough fuzzy membership functions µ(u,X) as follows:

µ(u,X) =

⎧
⎨

⎩

0, foru ∈ U \ UP (X)
card(X∩gC(u))
card(gC(u))

, foru ∈ UP (X) ∩ UP (X ′)
1, foru ∈ U \ UP (X ′)

If X ⊆ U and V ∈ T , we can propose different kinds of rough inclusion
measure based on values of the rough fuzzy membership function for objects from
V and then we can use this measure to classification of new (testing) objects.
Depending on the specific application, statistical measures of central tendency
can be used as well as other ‘aggregation’ methods, like maximal/minimal value.
Let µ(V,X) denote any such aggregated measure. If t is a testing object and N (t)
is its open neighbourhood then we define an extended rough fuzzy membership
function as µ(t) = µ(N (t),X).
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3 Classification Model

In this section, we present the application of topological approximation spaces
in building classifiers of new objects to decision classes. A decision system is a
pair DS = (U,A ∪ {d}), where A is a set of conditional attributes such that for
every a ∈ A there is a partial ‘onto’ function a : U → V ala and d is the decision
attribute with a function d : U → V ald, where V ald is a finite set that determines
m decision classes (categories of objects) D1, . . . , Dm ⊆ U . Every decision class
can be represented as a binary decision attribute di such that di(u) = 1 if and
only if u ∈ Di.

We assume that the data set is divided into two parts: U is the set of training
objects and T is the set of testing objects and that the information about objects
is described in a form of a decision system DS, where the decision attribute d
is binary. Let D = {u ∈ U : d(u) = 1}.

For every a ∈ A the set PV ala = {a(u) : u ∈ U, d(u) = 1} will be called an a-
positive decision values set and every object u ∈ U such that a(u) ∈ PV ala will
be called an a-positive decision object. The set of all a-positive decision objects
is denoted by Posa.

The procedure of classification is based on the following steps:

1 Preparation of the covering C based on conditional attribute values of DS
and the decision attribute.

2 Calculation of the granules table and the values of the rough fuzzy member-
ship function µ(u,D) for every u ∈ U .

3 Determination of open neighbourhoods N (t) for t ∈ T .
4 Calculation of the measure µ(t) for t ∈ T and classification of t.

I - Preparation of the Covering C. The ideal situation in preparation of
the covering of U would be if the data set is collecting and preparing having in
mind the future coverings, for example, the covering subsets can be indicated by
experts’ decisions or human recognizing of pictures, sounds, smell and so on.

As an exemplary method of covering the training set U we use statistical
frequency distributions of the values of every conditional attribute a ∈ A as
follows:

1. The limits of distribution classes are determined by discrete values of a if
card(V ala) ≤ 10, and by deciles values dec(i) of a, in the opposite case. More
precisely, the different values of deciles are taken and the classes are intervals
in the form: 〈min, dec(1)〉, (dec(1), dec(2)〉, . . .

2. Let class(i) for i = 1, . . . , k be distribution classes. We calculate the following
two frequency distributions:
(a) the distribution frequency n(i) of V ala (we omit missing values),
(b) the distribution frequency nPosa(i) of PV ala.

3. We calculate na=card(V ala), nPosa=card(PV ala) and the following values:
(a) the fraction of 1’s pa = nPosa

na
i.e. the probability of the positive decision,

(b) the conditional fraction of 1’s pPosa(i) = nPosa(i)
na(i)

i.e. the conditional
probability of the positive decision in each distribution class,
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Table 1. Distribution frequency for rectal temperature and nasogastric tube, and
values calculated according to 3

classes na(i) nPosa(i) pPosa(i) factora(i)

Rectal temperature

〈35.40, 37.30〉 27 18 0.67 1.11

(37.30, 37.60〉 22 14 0.64 1.06

(37.60, 37.80〉 24 14 0.58 0.97

(37.80, 38.00〉 33 20 0.61 1.01

(38.00, 38.10〉 12 9 0.75 1.25

(38.10, 38.30〉 34 18 0.53 0.8

(38.30, 38.50〉 30 18 0.60 1.00

(38.50, 38.70〉 19 6 0.32 0.53

(38.70, 39.17〉 16 12 0.75 1.25

(39.17, 40.80〉 23 15 0.65 1.09

Nasogastric tube

1 120 72 0.60 0.80

2 35 29 0.83 1.21

3 39 33 0.82 1.20

(c) the factor factora(i) = pPosa(i)
pa

, which compares the fraction of 1’s in the
given class with the fraction of 1’s in the whole sample.

4. A decision which distribution class should be labelled by 1, is made by using
two thresholds low < high. Then we obtain the two covering subsets:
(a) the high covering is obtained by giving the value 1 for every distribution

class such that factora(i) ≥ high and the 0 value in the opposite case,
(b) the low covering is obtained by giving the value 1 for every distribution

class such that factora(i) ≤ low and the 0 value in the opposite case.

Repeating the above procedure for every attribute and adding the set U , we
get the covering C consisting of the obtained covering subsets and the set U .

We have used deciles to determining distribution classes but other types of
quantiles can be also used. The property of quantiles that they divide the sample
into parts of almost equal cardinality is why we use such kind of statistical
parameters, although other methods of distribution frequency can be used. It is
worth of effort to decide which method gives the best classification results. It is
worth mentioning here that the value 0 for missing values can be understand as
‘if we don’t know what is the value of the given attribute for the given object then
we do not use this object in any covering subset corresponding to this attribute’.

Table 1 contains an example of calculation of the above values for two
attributes of ‘Horse Colic’ (from UCI repository [15]). For ‘Rectal Temperature’
we have na = 240, nPosa = 144, pa = 0, 6, number of missing values = 60. For
‘Nasogastric Tube’ we have na = 194, nPosa = 133, pPos = 0, 69, number of
missing values = 106.
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Table 2. Nasogastric tube(NT) and rectal temperature(RT) with their values, the
covering and decision values

U NT RT C1 C2 C3 C4 C5 D

u1 2 ? 1 1 0 0 0 0

u2 1 39.2 1 0 1 0 0 0

u3 3 38.3 1 1 0 0 1 1

u4 1 38 1 0 1 0 0 1

u5 1 37.3 1 0 1 0 0 1

u6 2 ? 1 1 0 0 0 1

u7 3 37.9 1 1 0 0 0 0

u8 3 ? 1 1 0 0 0 1

u9 2 ? 1 1 0 0 0 1

Table 2 contains a part of the Horse Colic data set and the induced covering
based on the distribution frequencies from Table 1, where high = 1.2 and low =
0.83 (1.2 × 0.83 ≈ 1). To explain the role of the thresholds low and high notice
that if factora(i) = 1 then the class i has the same fraction of positive decisions
as the whole sample has, so this class does not carry much information on the
decision. If factora(i) > 1 then it is more probable to get the positive decision,
while factora(i) < 1 indicates that it is more probable to get the negative deci-
sion. Objects with a high value of factora are similar under the property that the
probability of positive decision is high, while objects with a low value of factora
are similar under the property that the probability of negative decision is high.

Table 3. Calculation of the values of the rough fuzzy membership function

U Granulation table D D′ UP (D) UP (D′) UP (D) ∩ UP (D′) µ(u,D)

u1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0.67

u2 0 1 0 1 1 0 0 0 0 0 1 1 1 1 0.67

u3 1 0 1 0 0 1 1 1 1 1 0 1 1 1 1.00

u4 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0.67

u5 0 1 0 1 1 0 0 0 0 1 0 1 1 1 0.67

u6 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0.67

u7 1 0 0 0 0 1 1 1 1 0 1 1 1 1 0.67

u8 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0.67

u9 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0.67

II - Calculation of Granules and µ(u,D). Table 3 contains the granulation
for the covering from Table 2 and the values that are used for calculating the
values of the rough fuzzy membership function for all training objects.
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III - Determination of N (t) for Every t ∈ T . Basing on attribute values
of the given testing object we associate the values 0 or 1 depending on the
distribution class to which the attribute value belongs. In Table 4 there are six
testing objects with their attribute values, 0–1 values and decision values.

Table 4. Testing objects with values of Nasogastric Tube (NT) and Rectal Tempera-
ture (RT), 0–1 values and decision values

T NT RT 0-1 values D

t1 1 38.3 1 0 1 0 0 1

t2 2 38.1 1 1 0 1 0 0

t3 2 39.1 1 1 0 1 0 1

t4 3 37.2 1 1 0 0 0 0

t5 ? 38.0 1 0 0 0 0 1

t6 2 38.2 1 1 0 0 1 1

The next step is obtaining the neighbourhood of each testing object as the
intersection of all covering subsets which are ‘similar’ to the testing object i.e. the
columns in the covering table corresponding to units in 0–1 values. Notice that
neighbourhoods obtaining this way are open sets as an intersection of covering
subsets (Table 5).

Table 5. The neighbourhood calculated for t1, the right part contains neighbourhoods
for the testing objects

U C1 C4 N (t1) N (t2) N (t3) N (t4) N (t5) N (t6)

u1 1 0 0 0 0 1 1 0

u2 1 1 1 0 0 0 1 0

u3 1 0 0 0 0 1 1 1

u4 1 1 1 0 0 0 1 0

u5 1 1 1 0 0 0 1 0

u6 1 0 0 0 0 1 1 0

u7 1 0 0 0 0 1 1 0

u8 1 0 0 0 0 1 1 0

u9 1 0 0 0 0 1 1 0

t1 1 1

IV - An extended Membership Function for Testing Objects and Their
Classification. Having an open neighbourhood N (t) of the testing object t we
calculate a value of an extended membership function to the positive decision
class D in two ways:
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1. µav(t,D) as the average value of {µ(u,D) : u ∈ N (t)},
2. µmax(t,D) as the maximal value of {µ(u,D) : u ∈ N (t)}.

The last step is classification of objects based on some a priori chosen satis-
fiability threshold 0 < µ ≤ 1 such that d(t) = 1 if and only if µ(t) ≥ µ.

Experimental Results. An experimental session was made for three of data
sets with randomly chosen training objects and testing objects:

1. Austra – card(U) = 490, card(T ) = 200. There was no missing values.
2. Diabetes – card(U) = 615, card(T ) = 153. There was no missing values.
3. Horse Colic – card(U) = 300, card(T ) = 100. The average fraction of missing

values for conditional attributes is 1
3 .

Table 6. Average classification accuracy

µav µmax

µ = 0.4 µ = 0.5 µ = 0.6 µ = 0.4 µ = 0.5 µ = 0.6

Low High Austra

0.6 1.6 0.83 0.83 0.85 0.51 0.51 0.51

0.7 1.4 0.84 0.82 0.81 0.65 0.65 0.65

0.8 1.25 0.81 0.80 0.81 0.71 0.71 0.71

Low High Diabetes

0.6 1.6 0.70 0.70 0.68 0.64 0.63 0.64

0.7 1.4 0.71 0.73 0.71 0.65 0.71 0.71

0.8 1.25 0.70 0.69 0.69 0.66 0.69 0.68

Low High Horse colic

0.6 1.6 0.72 0.73 0.50 0.69 0.70 0.72

0.7 1.4 0.76 0.76 0.60 0.68 0.67 0.68

0.8 1.25 0.59 0.57 0.58 0.54 0.59 0.58

For each of these data sets there were used three pairs of thresholds, two types
of measure and three of satisfiability. The accuracies (the number of properly
classified testing objects factored by the number of testing objects) of every of
the 54 classification tests are presented in Table 6.

4 Conclusion

We compared our results with RSES2 (see [16]) classifier based on rules gener-
ated from decision tables of the training objects. The chosen parameters were:
‘calculate Rules by Exhaustive algorithm - Don’t discern with misssing values’
applied to the training objects and ‘test table using rule sets, generate confu-
sion matrix’ applied to the testing objects with two options ‘Simple voting’ and
‘Standard voting’. The results are presented in Table 7.
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Table 7. Average classification accuracy

Data set RSES simplevoting RSES standardvoting Our best

Austra 0.80 0.82 0.85

Diabetes 0.65 0.68 0.73

Horse colic 0.77 0.68 0.76
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