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Abstract. In this article we present the new machine learning frame-
work called NRough. It is focused on rough set based algorithms for fea-
ture selection and classification i.e. computation of various types of deci-
sion reducts, bireducts, decision reduct ensembles and rough set inspired
decision rule induction. Moreover, the framework contains other routines
and algorithms for supervised and unsupervised learning. NRough is writ-
ten in C# and compliant with .NET Common Language Specification
(CLS). Its architecture allows easy extendability and integration.
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1 Introduction

Interest in machine learning tools and algorithms has been huge in recent years
and is still growing. There is a wide range of applications on the market that
use various machine learning routines. There is however still only a few solu-
tions compatible with the Microsoft .NET framework that can provide machine
learning algorithms. Those that exist are rather focused on numerical rather
than symbolic methods and so far none of these has included rough set [1] based
algorithms.

Machine learning models that are based on mathematically sophisticated
methods may achieve high accuracy but they are hardly understandable by users
who expect not only accurate results but also easy yet meaningful explanation
how these results were obtained. Models relaying on symbolic, e.g., rule based
methods may be less accurate but more intuitive and understandable for humans
[2]. In both cases, feature subset selection leads to an increase of interpretability
and practical usefulness of machine learning models.

Symbolic methods focus on finding relationships in data, typically reported
in a form of rules in a feature-value language. The rules are built with a use
of basic logical operators. Examples include the rule induction methods such as
learning if-then rules [3] or decision trees [4].

Rough sets have proven to be a successful tool in feature selection (see e.g.
[5]). The rough set approach is based on decision reducts – irreducible sub-
sets of features, which determine specified decision classes in (almost) the same
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degree as the original set of features. Determining decisions can be interpreted
analogously to, e.g., functional or multi-valued dependencies in relational data-
bases. Subsets of features providing exactly the same degree of determination
as the original set are often referred as crisp decision reducts, in opposite to
approximate decision reducts [6] where some controlled decrease of determina-
tion is allowed. By specifying a threshold for allowed decrease of determination,
one can address the balance between decision model’s simplicity and accuracy.
Indeed, it is easier to search for smaller subsets of features yielding simpler sub-
models under loosened constraints for decision determination, although too weak
constraints may also cause poorer accuracy. However, even relatively less accu-
rate sub-models may lead towards very accurate final model, if the processes of
sub-models’ design are appropriately synchronized.

NRough is a set of libraries written in C# programming language focusing
on rough sets and other symbolic machine learning methods. It contains a num-
ber of algorithms for searching approximate decision reducts and constructing
decision models. All presented algorithms has been successfully used in our pre-
vious research and proven their value. The framework is aimed to be used by
researchers who can extend it and test their methods against already imple-
mented models. The second user group are developers and system integrators
who can include described routines in their applications.

NRough can be downloaded from GitHub Repository [7] as well as from its
dedicated website [8] in a form of a Microsoft Visual Studio solution containing
source code for all described libraries. The sources include unit test code that
presents use case examples as well as unit testing procedures.

We present the framework’s key features as well as formal definitions behind
implemented algorithms in Sect. 2. We describe data representation, approximate
decision reducts and decision reduct classifier ensembles in this section. More-
over, we list other supervised and unsupervised machine learning algorithms
included in NRough. Finally, we list included features related to model eval-
uation. Next, in Sect. 3 we describe the architecture of our solution. We put
licensing information in Sect. 4. In Sect. 5 we describe other rough set based
frameworks. The last Sect. 6 concludes this paper and includes draft of a road
map as well as a direction in which we would like the framework to evolve.

2 Key Features

NRough framework contains a number of algorithms for searching approximate
decision reducts and constructing decision models based on the rough set the-
ory. Moreover, we added a number of decision rule based classifiers known from
machine learning. Last but not least, the framework contains routines for classi-
fier validation and results presentation. Below, we present the list of implemented
features starting with data representation description.
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2.1 Data Representation

We follow data representation in a form of a decision table which is a well known
structure in the rough sets domain. Decision table is a tuple A = (U,A ∪ {d}),
where U is a finite set of objects, A is a finite set of attributes and d /∈ A is a
distinguished decision attribute. We refer to elements of U using their ordinal
numbers i = 0, ..., |U | − 1 as well as by unique record identifier (if such exists
in the data set). We treat attributes a ∈ A as functions a : U → Va, where Va

denotes the set of values of a. Values vd ∈ Vd correspond to decision classes that
we want to describe using the values of attributes in A. The framework inter-
nally encodes attribute values using signed long base type which allows generic
approach for data access and avoiding boxing/unboxing from origin types i.e.
faster computations. Internal values can be however converted to their original
typed values using a dictionary lookup methods. There are no restrictions about
input types, that are automatically recognized during data loading.

Decision tables can be loaded from text files (including comma delimited
files and RSES 1.0 format [9]) as well as from the System.Data.DataTable
instance which is often used in .NET to store SQL query results. The frame-
work includes a number of filters to manipulate the data such as removal of
selected attributes or records based on a given user criteria. Filter concept is
also used to define more sophisticated data manipulations such as numeric value
discretization.

One of the key concepts in rough sets theory is the definition of indiscerni-
bility relation. For any subset of attributes B ⊆ A and the universe of objects
x ∈ U we are able to define an information vector B(x) = [ai1(x), . . . , ai|B|(x)]
where aij (x) are values of attributes aij ∈ B and j = 1, . . . , |B|. We can also
denote the set of all B-information vectors, which will then occur in A, as
VB = {B(x) : x ∈ U}. Each subset B ⊆ A partitions the space U onto so
called equivalence classes that can be enumerated as v1, . . . , v|VB |. For such divi-
sion we get the partition space denoted as U/B = {E1, . . . , Et} where Et ⊆ U for
t = 1, . . . , |VB |. Each equivalence class is defined as Et = {x ∈ U : B(x) = vt}.
NRough utilizes this concept in a form of a dedicated data structure which is
used in many scenarios like calculating functions information entropy, majority
or relative gain functions to name a few. The majority function is used in many
ways by framework algorithms e.g. for approximate decision reducts computation
as well as for decision tree pre-pruning or branch split calculation.

Last but not least, the library contains a number of benchmark data sets
taken from UCI repository [10]. These data can be accessed with a predefined
methods loading the data into memory including their meta data.

2.2 Approximate Decision Reducts

Attribute selection plays an important role in knowledge discovery. It establishes
the basis for more efficient classification, prediction and approximation models.
Attribute selection methods originating from the theory of rough sets aim at
searching for so called decision reducts – irreducible subsets of attributes that
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satisfy predefined criteria for keeping enough information about decision classes.
NRough contains a number of algorithms for computing approximate decision
reducts (as well as crisp decision reducts when approximation threshold is set
to 0). All reduct computation algorithms are based on heuristic approach and
many utilize parallel computing.

We define an (F, ε)-approximate decision reduct [11] where F is a measure
F (d|·) : 2|A| → � which evaluates the degree of influence F (d|B) of subset B ⊆ A
in d. Below we present the definition as well as the general routine for computing
(F, ε)-approximate decision reducts as Algorithm 1 called (F, ε)-REDORD [11]).

Definition 1. Let ε ∈ [0, 1) and A = (U,A∪{d}) be given. We say that B ⊆ A is
an (F, ε)-approximate decision reduct, iff it is an irreducible subset of attributes
satisfying the following condition:

F (B) ≥ (1 − ε)F (A) (1)

Algorithm 1. Modified (F, ε)-REDORD using Reach and Reduce operations
Input: ε ∈ [0, 1), A = (U, A ∪ {d}), σ : {1, ..., n} → {1, ..., n}, n = |A|
Output: B ⊆ A

1: B ← ∅
2: for i = 1 → n do //Reach
3: if F (B ∪ {aσ(i)}) < (1 − ε)F (A) then
4: B ← B ∪ {aσ(i)}
5: else
6: break
7: end if
8: end for
9: for j = |B| → 1 do //Reduce

10: if F (B \ {aσ(i)}) ≥ (1 − ε)F (A) then
11: B ← B \ {aσ(i)}
12: end if
13: end for
14: return B

The framework defines three types of F measures: γ(B) [1] which is based on
so called positive region, Majority M(B) [11] and Relative Gain R(B) [12]. Other
user defined measures can be used with (F, ε)-approximate reduct computation
algorithm.

M(B) =
1

|U |
∑

E∈U/B

max
k∈Vd

|Xk ∩ E| (2)

R(B) =
1

|Vd|
∑

E∈U/B

max
X∈U/{d}

|X ∩ E|
|X| (3)
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γ(B) =
1

|U | |POS(B)| =
1

|U |
∑

E∈U/B:P (X|E)=1

|E| (4)

In [13] it was shown how to compute approximate decision reducts over a
universe of weighted objects and that two different weighting schemes lead to an
unified way of computing M(B) and R(B) measures that is for 1 : U → {1} we
have M1(B) = M(B) and for r(u) = 1

|{x∈U :d(x)=d(u)}| we obtain Mr(B) = R(B).

Definition 2. Let ε ∈ [0, 1), A = (U,A∪{d}) and ω : U → [0,+∞) be given. We
say that B ⊆ A is an (ω, ε)-approximate decision reduct, iff it is an irreducible
subset of attributes satisfying the following condition:

Mω(B) ≥ (1 − ε)Mω(A) (5)

Mω(B) =
1

|U |ω
∑

E∈U/B

max
k∈Vd

|Xk ∩ E|ω (6)

|Y |ω =
∑

u∈Y

ω(u) (7)

Moreover the framework contains algorithms for computing decision
bireducts and their derivatives γ-bireducts and relative-bireducts [14]. Below
we present definitions as well as pseudo code as Algorithm 2. In [15] we showed
relationships between (F, ε)-approximate decision reducts and different types of
bireducts.

Definition 3. Let A = (U,A ∪ {d}) be a decision system. A pair (B,X), where
B ⊆ A and X ⊆ U , is called a decision bireduct, iff B discerns all pairs i, j ∈ X
where d(i) 
= d(j), and the following properties hold:

1. There is no C � B such that C discerns all pairs i, j ∈ X where d(i) 
= d(j);
2. There is no Y � X such that B discerns all pairs i, j ∈ Y where d(i) 
= d(j).

Definition 4. Let A = (U,A ∪ {d}) be a decision system. A pair (B,X), where
B ⊆ A and X ⊆ U , is called a decision γ-bireduct, iff B discerns all pairs
i ∈ X, j ∈ U where d(i) 
= d(j), and the following properties hold:

1. There is no C � B such that C discerns all pairs i ∈ X, j ∈ U where d(i) 
=
d(j);

2. There is no Y � X such that B discerns all pairs i ∈ Y, j ∈ U where d(i) 
=
d(j).

In [16] we presented the new definition of so called generalized majority
decision function, which can be treated as an extension to well known general-
ized decision function. We also showed the definition of generalized approximate
majority decision reducts. The pseudo code is presented as Algorithm 3. An inter-
esting extension in to use so called exceptions which on one hand allow further
feature reduction in the main model and on the other hand store details about
outlayers. Both definitions are implemented in NRough.



674 S. Widz

Algorithm 2. Decision bireduct calculation for a decision system A = (U,A ∪
{d})
Input: A = (U, A ∪ {d}), σ : {1, ..., n + m} → {1, ..., n + m}, m = |A|, n = |U |
Output: (B ⊆ A, X ⊆ U)

1: B ← A; X ← ∅
2: for i = 1 → n + m do
3: if σ(i) ≤ n then
4: if B \ {aσ(i)} �X d then
5: B ← B \ {aσ(i)}
6: end if
7: else
8: if B �X∪{σ(i)−n} d then
9: X ← X ∪ {σ(i) − n}

10: end if
11: end if
12: end for
13: return (B, X)

Definition 5. For any decision table A = (U,A ∪ {d}) and approximation
threshold ε ∈ [0, 1) one can consider generalized approximate majority decision
function mε

d : 2U → 2Vd that is taking the following form:

mε
d(E) = {k : |Xk ∩ E| ≥ (1 − ε)max

j
|Xj ∩ E|} (8)

Definition 6. Let A = (U,A ∪ {d}) be given. We say that B ⊆ A is a mε
d-

decision superreduct, if and only if the following condition holds:

∀
x,y∈U

mε
d([x]A) 
= mε

d([y]A) ⇒ ∃
a∈B

a(x) 
= a(y) (9)

We say that B is a mε
d-decision reduct, if and only if it is a mε

d-superreduct and
none of it proper subsets satisfy the above condition.

2.3 Approximate Decision Reduct Classifier Ensembles

Approximate decision reducts usually include less attributes than classical
reducts. On the other hand, they may generate if-then rules that make mis-
takes even within the training samples. For noisy data sets it is to some extent
desirable. Nevertheless, some methods for controlling those mistakes should be
considered. For example, if the goal is to construct a classification model based
on several approximate decision reducts, then – by following ideas taken from
machine learning [17] – one may wish to assure that if-then rules generated by
different reducts do not repeat the same mistakes on the training data. For this
purpose, we can consider a mechanism aiming at diversification of importance of
particular objects while searching for different approximate reducts. The same
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Algorithm 3. Generalized Majority Decision Reduct
Input: A = (U, A ∪ {d}), ε ∈ [0, 1), σ : {1, ..., n} → {1, ..., n}, n = |A|
Output: B ⊆ A

1: for all EA ∈ U/A do
2: d(x) ← mε

d(EA)
3: end for
4: B ← A
5: for i = 1 → n do
6: B ← B \ {aσ(i)}
7: stop ← 0
8: for all EB ∈ U/B do
9: for all (x1, x2) ∈ EB do

10: if d(x1) ∩ d(x2) = ∅ then
11: stop ← 1
12: break
13: else
14: d(x1) ← d(x1) ∩ d(x2)
15: d(x2) ← d(x1)
16: end if
17: end for
18: if stop = 1 then
19: B ← B ∪ {aσ(i)}
20: break
21: end if
22: end for
23: end for
24: return B

mechanisms are used in classifier ensemble methods. These methods perform
usually better than their components used independently [18,19]. Combining
classifiers is efficient especially if they are substantially different from each other.
In fact, the feature subsets applied in ensembles can be relatively smaller than
in case of a single feature subset approach, if we can guarantee that combination
of less accurate classifier components (further referred as weak classifiers) will
lead back to satisfactory level of determining decision or preserving information
about decision.

NRough includes several mechanisms for approximate decision reduct classi-
fier ensembles learning. One method is based on well known Adaptive Boosting
algorithm [20]. In NRough we introduced an AdaBoost version which use deci-
sion rules derived from approximate decision reducts [21] - the pseudo code is
presented in Algorithm 5.

When a reduct ensemble is used to create decision rules one can consider
a weak classifier output combination method. We implemented several voting
mechanisms described in [22]. We present different voting options in Table 1 in
the way compliant with (ω, ε)-approximate decision reducts. The voting weights
are presented in a slightly changed form where
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Xω
E = argmax

X∈U/{d}
|X ∩ E|ω (10)

Algorithm 4. Generalized Majority Decision Reduct with exceptions
Input: A = (U, A ∪ {d}), φ ∈ [0, 1), ε ∈ [0, 1), σ : {1, ..., n} → {1, ..., n}, n = |A|
Output: B ⊆ A

1: for all EA ∈ U/A do
2: d(x) ← mφ,0

d (EA)
3: end for
4: B ← A, c ← |U |
5: for i = 1 → n do
6: B ← B \ {aσ(i)}
7: stop ← 0
8: Shuffle(EB)
9: for all EB ∈ U/B do

10: for all (x1, x2) ∈ EB do
11: if d(x1) ∩ d(x2) = ∅ then
12: c ← c − |EB |
13: if c < (1 − φ) ∗ |U | then
14: stop ← 1
15: break
16: else
17: SaveExceptionRule(EB)
18: end if
19: else
20: d(x1) ← d(x2) ← d(x1) ∩ d(x2)
21: end if
22: end for
23: if stop = 1 then
24: B ← B ∪ {aσ(i)}
25: break
26: end if
27: end for
28: end for
29: return B

Table 1. Six options of weighting decisions by if-then rules, corresponding to the con-
sequent coefficient types plain, ω-confidence and ω-coverage, and antecedent coefficient
types single and ω-support. |E|ω denotes the support of a rule’s left side. Xω

E is defined
by formula (10).

Single ω-support

Plain 1 |E|ω/|U |ω
ω-confidence |Xω

E ∩ E|ω/|E|ω |Xω
E ∩ E|ω/|U |ω

ω-coverage (|Xω
E ∩ E|ω/|Xω

E |ω)/(|E|ω/|U |ω) |Xω
E ∩ E|ω/|Xω

E |ω
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Algorithm 5. AdaBoost with (ω, ε)-Approximate Reducts as Weak Classifier
Input: A = (U, A ∪ {d}), n = |A|, ε ∈ [0, 1), integer T specifying number of iterations
Output: Approximate Reduct Ensemble S = {r1, ..., rs}, s ≤ T
Initialize: ωi = 1/n for i = 1, 2, 3, ..., n

1: Calculate error threshold ε0 = 1 − Mω(∅);
2: for t = 1 → T do
3: Generate permutation σ
4: Create (ω, ε)-approximate decision reduct rt based on permutation σ
5: Generate decision rules based on conditional attributes from reduct rt

6: Classify training examples
7: Calculate the error εt

8: if εt > ε0 or εt = 0 then
9: Break

10: end if
11: Calculate weak classifier confidence αt

12: Update and normalize object weights ω
13: end for
14: Normalize α
15: return S

Another introduced method for decision reduct diversification is based on
decision reduct hierarchical clustering where a distance between reducts is based
on binary vectors created according to Formula 11. Figure 1 presents an example
of a dendrogram created based on hierarchical clustering of approximate decision
reducts. By choosing a cut level we create a number of reducts groups. From each
group a single reduct is selected and used as a base for creating a weak classifier.
Weak classifiers together form a classifier ensemble.

−→vB[k] =

⎧
⎨

⎩
1, if d(xk) = argmax

X∈U/{d}
|X ∩ E|

0, otherwise
(11)

The framework also includes selection mechanisms which allow to select from
a reduct pool those reducts that meet a user defines criteria e.g. contain least
number of features, generate least number of decision rules etc.

2.4 Other Machine Learning Algorithms

Except rough sets inspired classifiers the framework includes a number of deci-
sion rule induction algorithms. These algorithms can be combined with rough
set based feature selection methods defined in the previous section. Current
implementation includes the following routines:

Decision lists generation routine based on feature subsets and a given decision
table.

Majority voting based on a feature subset and a given decision table [23].
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Fig. 1. Dendrogram created based on hierarchical clustering of 18 approximate decision
reducts.

Decision trees (C4.5 [24], ID3 [25]) implementation supporting numerical
and nominal attributes types. The impurity functions can be easily exchanged
with one another and include information entropy, gini index, majority func-
tion or other user defined methods. Decision tree base class include pruning
option - current implementation includes an error based pruning and a reduced
error pruning [26]. We also introduce a new pre-pruning method based on the
majority function.

Random forest implementation with option to select ensemble size, base deci-
sion tree type and data sampling method.

1R rule inducer which, as suggested in [27], could be used to calculate data
set baseline accuracy.

Constant decision classifier which classifies all object as majority decision
from training data set.

The framework includes a set of unsupervised algorithms based on Hierar-
chical clustering [28] with different linkage and distance methods. Model con-
struction algorithms that work only with nominal data can utilize a number of
numerical attribute discretization methods, both supervised and unsupervised.
Supervised include hierarchical methods based on information entropy [29,30]
and majority function. Unsupervised include equal width and equal frequency
binning. Most of implemented algorithms can work with weighted instances.

2.5 Model Evaluation

Proper evaluation and error estimation is crucial in constructing and comparing
decision models. One of the key features in NRough is decision model evaluation.
Currently the framework provides the following evaluation methods [31]: k-fold
n-repeated cross validation (CV), leave-one-out CV, bootstrap with out-of-the-bag
testing and finally n-repeated hold out.
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Each evaluation test can return detailed information about experiment
results in a form of a formatted table which can be saved as a .CSV or .TEX
file. Additionally, results can be presented in a graphical form using an inter-
face to R environment [32] - the graphical presentation as well as the latex
tabular output are still under development but the working code is available in
the repository and can be customized according to your need. The classifica-
tion result class interface contains information such as error and accuracy rates,
balanced accuracy (useful for testing imbalanced data sets), error standard devi-
ation, confidence, coverage, f-score, recall and precision as well as classification
confusion table. If model definition allows it, there is possibility to include infor-
mation about complexity e.g. size of a decision tree, number of rules, average
length of rules, etc.

3 Architecture

NRough is a Microsoft .NET based framework written in C# programming lan-
guage. The source code is CLS compliant which enables to use it in other .NET
languages. Currently the framework is provided as a set of libraries targeting
.NET 4.6.1 and 64 bit architecture.

The libraries have the following structure:

NRough.Core Contains generic data structures and extensions methods.
NRough.Data Responsible for data handling. It defines the decision table

interface and equivalence class collection as well as routines for providing
meta data and interface to data filtering.

NRough.MachineLearning Contains approximate decision reduct computa-
tion algorithms as well as other described machine learning models and rou-
tines.

NRough.Math Contains special functions used across other modules e.g. sta-
tistical functions or distance metrics used in clustering.

NRough.Tests.* Contains a set of test fixtures which except unit testing pur-
pose serve as a code sample repository. Each of the above listed libraries has its
own unit test library e.g. NRough.Data is tested by NRough.Tests.Data.

The framework is currently dependent on the following external libraries
(except standard .NET): Math.NET.Numerics [33], NUnit [34] and R.NET
[35].

4 License

NRough libraries are provided under GNU Lesser General Public License ver.
3 (GNU LGPLv3). This means that provided source can be used for research,
commercial and non-commercial purposes without any charges as long as GNU
LGPLv3 restrictions are satisfied. Copyright and license notices must be pre-
served. Contributors provide an express grant of patent rights. However, a larger
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work using the licensed work through interfaces provided by the licensed work
may be distributed under different terms and without source code for the larger
work. The source code is provided “as is” without warranty of any kind, express
or implied. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability. Complete license can be found in [36].

5 Other Frameworks

Let us focus on other rough set related frameworks developed by various
researches. First of all, let us mention LERS - a system for Learning from Exam-
ples based on Rough Sets [37]. LERS contained two rules’ induction algorithms
(LEM1 and LEM2) that could cope with inconsistent data. LERS contained
also a number of algorithms for handling missing data and numerical attribute
discretization. Its performance was comparable with AQ15 and C4.5 algorithms.

Secondly let us mention more complete GUI-based systems: Rough Set Explo-
ration System (RSES) [9] and ROSETTA [38] (a toolkit for analyzing tabular
data within a framework of rough sets). Both solutions shared the same com-
putational kernel developed at the Group of Logic, Institute of Mathematics,
University of Warsaw, Poland and finally ROSE2 (Rough Sets Data Explorer)
[39] which is a software implementing basic elements of the rough set theory and
rule discovery techniques. It was created at the Laboratory of Intelligent Deci-
sion Support Systems of the Institute of Computing Science in Poznan, Poland.
RSES, ROSETTA as well as ROSE2 contained many different algorithms ranging
from data preprocessing, filtering, discretization, rule induction, to classification
and feature selection.

All mentioned above solutions are according to authors knowledge no longer
maintained. These solutions were based on Java or C++ and its source code was
not open. More recently, there were several attempts to revive RSES in a form
of an open source Java based library distributed under GNU GPL license called
RSESLib [40].

Last but not least we need to mention RoughSets [41] and RapidRoughSets
[42] packages as a most recent development in rough sets domain. The former
package contains the core computational methods for rough and fuzzy sets based
on already mentioned R statistical software. The latter package is the GUI exten-
sion based on RapidMiner software.

In .NET domain there were so far, according to authors knowledge, no
attempts to publish a machine learning framework containing rough set based
algorithms. We would like to mention Microsoft Azure Machine Learning [43]
which is a cloud based service integrating many different solutions resulting in a
platform worth considering for system integrators. Its is however a commercial
solution. We also would like to mention Accord.NET framework [44] which is an
open source machine learning framework focusing on numerical methods as well
as on machine vision. This framework could complement some general machine
learning routines not yet implemented in NRough.
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6 Conclusions and Future Work

We have created NRough framework based on our experience and research
focused on approximate decision reducts done over past few years. In the begin-
ning presented methods had been developed separately, but recently the whole
source code went through major refactoring process resulting in presented solu-
tion. We have added other machine learning routines to the framework for two
reasons: First to combine well known proven machine learning algorithms with
rough sets, secondly, in order to be able to compare their performance against
rough set inspired classifiers.

The whole framework was so far developed by a single person and there is
still much to be done. First of all the framework needs strong API documen-
tation and more examples. We are planning to add this in the nearest future
and publish it on-line Secondly, we would like to add more rough set related
algorithms in order to create a comprehensive library of different decision reduct
computation routines. Thirdly, we are planning to extend the approximate deci-
sion reduct selection and diversification criteria. Last but not least, there are
some development tasks to complete like graphical presentation methods using
R interface. Moreover the framework is currently targeting .NET version 4.6.1
which allows to compile it only on Windows platform. We plan to extend its
compatibility .NET Core to be able to use it on Linux and OSX platforms, but
so far .NET Core lacks some important functionality so we are waiting for its
new releases.

Appendix NRough Code Samples
Sample 1: 10-fold cross validation of C4.5 decision tree

1 //load data
2 var data = DecisionTable.Load("data.txt", FileFormat.CSV);
3

4 //create 10-fold 25-repeated cross validation
5 var cv = new CrossValidation(data, 10, 25);
6

7 //create C4.5 decision tree and run cv evaluation
8 var c45 = new DecisionTreeC45();
9 var result = cv.Run<DecisionTreeC45>(c45);

10

11 //output result
12 Console.WriteLine("Train Error: {0}", result.Error);

Sample 2: Random forest based on C4.5 decision trees

1 //load data from a CSV file
2 var data = DecisionTable.Load("german.data", FileFormat.CSV);
3 DecisionTable train, test;
4 var splitter = new DataSplitterRatio(data, 0.8);
5 splitter.Split(out train, out test);
6 //Initialize and Learn Random Forest
7 var forest = new DecisionForestRandom<DecisionTreeC45>();
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8 forest.Size = 500;
9 forest.Learn(train, train

10 .SelectAttributeIds(a => a.IsStandard).ToArray());
11 //Validate on test data set
12 var result = Classifier.Default.Classify(forest, test);
13 //Output the results
14 Console.WriteLine(result);

Sample 3: Generate (F, ε)-approximate decision reducts using reduct factory

1 //load data
2 var data = Data.Benchmark.Factory.Golf();
3 //set parameters for reduct factory
4 var parm = new Args();
5 parm.SetParameter(ReductFactoryOptions.DecisionTable, data);
6 parm.SetParameter(ReductFactoryOptions.ReductType,
7 ReductTypes.ApproximateDecisionReduct);
8 parm.SetParameter(ReductFactoryOptions.FMeasure,
9 (FMeasure) FMeasures.Majority);

10 parm.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
11 //compute reducts
12 var reducts =
13 ReductFactory.GetReductGenerator(parm).GetReducts();
14 //output reducts and attributes
15 foreach (IReduct reduct in reducts)
16 Console.WriteLine(reduct.Attributes.ToArray().ToStr());

Sample 4: Generate (ω, ε)-decision reducts using reduct factory

1 //load benchmark data
2 var data = Data.Benchmark.Factory.Zoo();
3

4 //set object weights using r(u) weighting scheme
5 data.SetWeights(new WeightGeneratorRelative(data).Weights);
6

7 //split data into training and testing sets
8 DecisionTable train, test;
9 var splitter = new DataSplitterRatio(data, 0.8);

10 splitter.Split(out train, out test);
11

12 //set parameters for reduct factory
13 var parm = new Args();
14 parm.SetParameter(ReductFactoryOptions.DecisionTable, train);
15 parm.SetParameter(ReductFactoryOptions.ReductType,
16 ReductTypes.ApproximateDecisionReduct);
17 parm.SetParameter(ReductFactoryOptions.FMeasure,
18 (FMeasure)FMeasures.MajorityWeighted);
19 parm.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
20

21 //compute reducts
22 var reductGenerator = ReductFactory.GetReductGenerator(parm);
23 var reducts = reductGenerator.GetReducts();
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24

25 //select 10 reducts with least number of attributes
26 var bestReduct = reducts
27 .OrderBy(r => r.Attributes.Count).Take(10);
28

29 //create decision rules based on reducts
30 var decisionRules = new ReductDecisionRules(bestReducts);
31

32 //when test instance is not recognized
33 //set output as unclassified
34 decisionRules.DefaultOutput = null;
35

36 //classify test data
37 var result = Classifier.DefaultClassifer
38 .Classify(decisionRules, test);
39

40 //output accuracy and coverage
41 Console.WriteLine("Accuracy: {0}", result.Accuracy);

Sample 3: Boosting (ω, ε)-decision reduct based classifier

1 //load training and testing DNA (spieces) data sets
2 var train = Data.Benchmark.Factory.Dna();
3 var test = Data.Benchmark.Factory.DnaTest();
4

5 //set weights
6 var weightGen = new WeightGeneratorConstant(train,
7 1.0 / (double)train.NumberOfRecords);
8 train.SetWeights(weightGen.Weights);
9

10 //create parameters for reduct factory
11 var parm = new Args();
12 parm.SetParameter(ReductFactoryOptions.ReductType,
13 ReductTypes.ApproximateDecisionReduct);
14 parm.SetParameter(ReductFactoryOptions.FMeasure,
15 (FMeasure)FMeasures.MajorityWeighted);
16 parm.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
17 parm.SetParameter(ReductFactoryOptions.NumberOfReducts, 100);
18 parm.SetParameter(ReductFactoryOptions.ReductComparer,
19 ReductRuleNumberComparer.Default);
20 parm.SetParameter(ReductFactoryOptions.SelectTopReducts, 1);
21

22 //create weak classifier prototype
23 var prototype = new ReductDecisionRules();
24 prototype.ReductGeneratorArgs = parm;
25

26 //create ada boost ensemble
27 var adaBoost = new AdaBoost<ReductDecisionRules>(prototype);
28 adaBoost.Learn(train,
29 train.SelectAttributeIds(a => a.IsStandard).ToArray());
30
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31 //classify test data set
32 var result = Classifier.Default.Classify(adaBoost, test);
33

34 //print result header & result
35 Console.WriteLine(ClassificationResult.TableHeader());
36 Console.WriteLine(result);

Sample 4: (F, ε)-decision reduct ensemble using hierarchical clustering diversification

1 //load training and testing DNA (spieces) data sets
2 var train = Data.Benchmark.Factory.Dna();
3 var test = Data.Benchmark.Factory.DnaTest();
4

5 //create reduct diversification
6 var reductDiversifier
7 = new HierarchicalClusterReductDiversifier();
8 reductDiversifier.Data = train;
9 reductDiversifier.Distance = ReductDistance.Hamming;

10 reductDiversifier.Linkage = ClusteringLinkage.Average;
11 reductDiversifier.NumberOfReducts = 10;
12

13 //create parameters for reduct factory
14 var parm = new Args();
15 parm.SetParameter(ReductFactoryOptions.ReductType,
16 ReductTypes.ApproximateDecisionReduct);
17 parm.SetParameter(ReductFactoryOptions.FMeasure,
18 (FMeasure)FMeasures.MajorityWeighted);
19 parm.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
20 parm.SetParameter(ReductFactoryOptions.NumberOfReducts, 100);
21 parm.SetParameter(ReductFactoryOptions.Diversify,
22 reductDiversifier);
23

24 var rules = new ReductDecisionRules();
25 rules.ReductGeneratorArgs = parm;
26 rules.DecisionIdentificationMethod
27 = RuleQualityMethods.Confidence;
28 rules.RuleVotingMethod = RuleQualityMethods.Coverage;
29

30 //classify test data set and show results
31 var result = Classifier.Default.Classify(rules, test);
32 Console.WriteLine(result);

Sample 5: Generate bireducts using class hierarchy

1 //load training data set
2 var train = Data.Benchmark.Factory.Dna();
3

4 //generate 100 permutations based on attributes and objects
5 var permGenerator =
6 new PermutationGeneratorAttributeObject(train, 0.5);
7 var permutations = permGenerator.Generate(100);
8
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9 //setup gamma-bireduct generator
10 //generate bireducts based on permutations
11 var bireductGammaGenerator = new BireductGammaGenerator();
12 bireductGammaGenerator.DecisionTable = train;
13 bireductGammaGenerator.Permutations = permutations;
14 var bireducts = bireductGammaGenerator.GetReducts();
15

16 //for each bireduct show its attributes and supported objects
17 foreach (var bireduct in bireducts)
18 {
19 Console.WriteLine(
20 bireduct.Attributes.ToArray().ToStr());
21

22 Console.WriteLine(
23 bireduct.SupportedObjects.ToArray().ToStr());
24 }

Sample 8: Compute Generalized Majority Decision Reducts

1 //load training data set
2 var train = Data.Benchmark.Factory.Dna();
3

4 //setup reduct factory parameters
5 Args parms = new Args();
6 parms.SetParameter(ReductFactoryOptions.DecisionTable, train);
7 parms.SetParameter(ReductFactoryOptions.ReductType,
8 ReductTypes.GeneralizedMajorityDecision);
9 parms.SetParameter(ReductFactoryOptions.WeightGenerator,

10 new WeightGeneratorMajority(train));
11 parms.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
12 parms.SetParameter(ReductFactoryOptions.PermutationCollection,
13 new PermutationCollection(10,
14 train.SelectAttributeIds(a => a.IsStandard)
15 .ToArray()));
16

17 //generate reducts
18 var reductGenerator = ReductFactory.GetReductGenerator(parms);
19 var reducts = reductGenerator.GetReducts();

Sample 9: Compute Generalized Majority Decision Reducts with exceptions

1 //load training and test data sets
2 var train = Data.Benchmark.Factory.Dna();
3 var test = Data.Benchmark.Factory.DnaTest();
4

5 //setup reduct factory parameters
6 Args parms = new Args();
7 parms.SetParameter(ReductFactoryOptions.DecisionTable, train);
8 parms.SetParameter(ReductFactoryOptions.ReductType,
9 ReductTypes.GeneralizedMajorityDecision);

10 parms.SetParameter(ReductFactoryOptions.WeightGenerator,
11 new WeightGeneratorMajority(train));
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12 parms.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
13 parms.SetParameter(ReductFactoryOptions.PermutationCollection,
14 new PermutationCollection(10,
15 train.SelectAttributeIds(a => a.IsStandard)
16 .ToArray()));
17 parms.SetParameter(ReductFactoryOptions.UseExceptionRules,
18 true);
19

20 //generate reducts with exceptions
21 var reductGenerator = ReductFactory.GetReductGenerator(parms);
22 var reducts = reductGenerator.GetReducts();
23

24 foreach (var reduct in reducts) {
25 var r = reduct as ReductWithExceptions;
26 foreach (var exception in r.Exceptions) {
27 Console.WriteLine(exception.Attributes
28 .ToArray().ToStr());
29 Console.WriteLine(exception.SupportedObjects
30 .ToArray().ToStr());
31 }
32 }
33

34 var rules = new ReductDecisionRules(reducts);
35 rules.DecisionIdentificationMethod
36 = RuleQualityMethods.Confidence;
37 rules.RuleVotingMethod = RuleQualityMethods.SingleVote;
38 rules.Learn(train, null);
39

40 //classify test data set
41 var result = Classifier.Default.Classify(rules, test);
42

43 //show results
44 Console.WriteLine(result);

Sample 10: Decision table discretization

1 var data = Data.Benchmark.Factory.Vehicle();
2

3 DecisionTable train, test;
4 var splitter = new DataSplitterRatio(data, 0.8);
5 splitter.Split(out train, out test);
6

7 var tableDiscretizer = new TableDiscretizer(
8 new IDiscretizer[]
9 {

10 //try to discretize using Fayyad MDL Criterion
11 new DiscretizeFayyad(),
12

13 //in case Fayyad MDL is to strict
14 //use standard entropy and 5 buckets
15 new DiscretizeEntropy(5)
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16 });
17

18 tableDiscretizer.FieldsToDiscretize = train
19 .SelectAttributeIds(a => a.IsStandard && a.CanDiscretize());
20

21 var filter = new DiscretizeFilter();
22 filter.TableDiscretizer = tableDiscretizer;
23 filter.Compute(train);
24

25 foreach(int attributeId in tableDiscretizer.FieldsToDiscretize)
26 {
27 var fieldDiscretizer = filter
28 .GetAttributeDiscretizer(attributeId);
29

30 Console.WriteLine("Attribute {0} was discretized with {1}",
31 attributeId, fieldDiscretizer.GetType().Name);
32 Console.WriteLine("Computed Cuts: {0}",
33 fieldDiscretizer.Cuts.ToStr());
34 }
35

36 var trainDisc = filter.Apply(train);
37 var testDisc = filter.Apply(test);
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