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Abstract. Mining incomplete data using approximations based on char-
acteristic sets is a well-established technique. It is applicable to incom-
plete data sets with a few interpretations of missing attribute values, e.g.,
lost values and “do not care” conditions. Typically, probabilistic approx-
imations are used in the process. On the other hand, maximal consistent
blocks were introduced for incomplete data sets with only “do not care”
conditions, using only lower and upper approximations. In this paper we
introduce an extension of the maximal consistent blocks to incomplete
data sets with any interpretation of missing attribute values and with
probabilistic approximations. Additionally, we present results of experi-
ments on mining incomplete data using both characteristic sets and max-
imal consistent blocks, using lost values and “do not care” conditions.
We show that there is a small difference in quality of rule sets induced
either way. However, characteristic sets can be computed in polynomial
time while computing maximal consistent blocks is associated with expo-
nential time complexity.

Keywords: Incomplete data · Lost values · “Do not care” conditions ·
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1 Introduction

We report results of experiments on incomplete data sets, using two interpreta-
tions of missing attribute values: lost values and “do not care” conditions [3].
A lost value, denoted by “?”, is interpreted as a value that we do not know
since it was erased or not inserted into the data set. Rules are induced from
existing, specified attribute values. “Do not care” conditions are interpreted as
any attribute value. For example, if an attribute is the hair color, and possible
values are blond, dark and red, a “do not care” condition is interpreted as any
of these three colors.
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For incomplete data sets special kinds of approximations: singleton, subset
and concept should be used [3]. In this paper we consider probabilistic approxi-
mations, an extension of lower and upper approximations. Such approximations
are defined using a probability denoted by α. If α = 1, the probabilistic approx-
imation is lower, if α is a positive number, slightly greater than 0, the proba-
bilistic approximation is upper. Such approximations were usually used for com-
pletely specified data sets [8,10–17]. Probabilistic approximations were extended
to incomplete data sets in [5]. First experimental results on such approximations
were reported in [1,2].

Maximal consistent blocks were introduced for incomplete data sets with only
“do not care” conditions, using only lower and upper approximations [9]. The
main objective of this paper is to extend the definition of maximal consistent
blocks to arbitrary interpretation of missing attribute values. Additionally, the
obvious question is what a better choice for data mining is: characteristic sets
or maximal consistent blocks. We conducted experiments on data sets with two
interpretations of missing attribute values, lost values and “do not care” con-
ditions. As a result, we show that there is a small difference in quality of rule
sets induced from approximations based on characteristic sets or on maximal
consistent blocks. However, characteristic sets can be computed in polynomial
time while computing maximal consistent blocks is associated with exponential
time complexity.

2 Incomplete Data Sets

An example of incomplete data set is presented in Table 1. A concept is a set of
all cases with the same decision value. In Table 1 there are two concepts, the set
{1, 2, 3, 4} of all cases with flu and the other set {5, 6, 7, 8}.

Table 1. An incomplete data set

Attributes Decision

Case Temperature Headache Cough Flu

1 Normal ? Yes Yes

2 * Yes No Yes

3 * No * Yes

4 High ? Yes Yes

5 High No No No

6 * No Yes No

7 High * ? No

8 Normal * No No

We use notation a(x) = v if an attribute a has the value v for the case x.
The set of all cases will be denoted by U . In Table 1, U = {1, 2, 3, 4, 5, 6, 7, 8}.
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For complete data sets, for an attribute-value pair (a, v), a block of (a, v),
denoted by [(a, v)], is the following set

[(a, v)] = {x|x ∈ U, a(x) = v}.

For incomplete decision tables the definition of a block of an attribute-value
pair must be modified in the following way [3,4]:

– If for an attribute a and a case x, a(x) = ?, then the case x should not be
included in any blocks [(a, v)] for all values v of attribute a,

– If for an attribute a and a case x, a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

For the data set from Table 1, all of blocks of attribute-value pairs are
[(Temperature, normal)] = {1, 2, 3, 6, 8},
[(Temperature, high)] = {2, 3, 4, 5, 6, 7},
[(Headache, no)] = {3, 5, 6, 7, 8},
[(Headache, yes)] = {2, 7, 8},
[(Cough, no)] = {2, 3, 5, 8},
[(Cough, yes)] = {1, 3, 4, 6}.

3 Characteristic Sets and Maximal Consistent Blocks

For a case x ∈ U the characteristic set KB(x) is defined as the intersection of
the sets K(x, a), for all a ∈ B, where B is a subset of the set A of all attributes
and the set K(x, a) is defined in the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) = ? or a(x) = ∗, then K(x, a) = U .

For the data set from Table 1, the characteristic sets are
KA(1) = {1, 3, 6},
KA(2) = {2, 8},
KA(3) = {3, 5, 6, 7, 8},
KA(4) = {3, 4, 6},
KA(5) = {3, 5},
KA(6) = {3, 6},
KA(7) = {2, 3, 4, 5, 6, 7},
KA(8) = {2, 3, 8}.

The B-characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows:

(x, y) ∈ R(B) if and only if y ∈ KB(x).
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We say that R(B) is implied by its B-characteristic sets KB(x), x ∈ U . The
B-characteristic relation R(B) is reflexive but—in general—does not need to be
symmetric or transitive. For the data set from Table 1, R(A) = {(1, 1), (1, 3),
(1, 6), (2, 2), (2, 8), (3, 3), (3, 5), (3, 6), (3, 7), (3, 8), (4, 3), (4, 4), (4, 6), (5,
3), (5, 5), (6, 3), (6, 6), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7), (8, 2), (8, 3),
(8, 8)}.

Let X be a subset of U . The set X is consistent with respect to B if (x, y) ∈
R(B) for any x, y ∈ X. If there does not exist a consistent subset Y of U
such that X is a proper subset of Y , the set X is called a maximal consistent
block of B. For data sets in which all missing attribute values are “do not care”
conditions, an idea of a maximal consistent block of B was defined in [9]. Note
that in our definition the maximal consistent blocks of B are defined for arbitrary
interpretations of missing attribute values. Following [9], we will denote the set
of all maximal consistent blocks of B by C (B). For Table 1, the set of all maximal
consistent blocks of A is C (A) = {{1}, {2, 8}, {3, 5} {3, 6}, {3, 7}, {3, 8}, {4}}.

4 Probabilistic Approximations

For incomplete data sets there exist a number of different definitions of
approximations [3]. In this paper we will use only concept approximations.

4.1 Probabilistic Approximations Based on Characteristic Sets

Let B be a subset of the set A of all attributes. A B-probabilistic approximation
of the set X with the threshold α, 0 < α ≤ 1, based on characteristic sets and
denoted by B-apprCS

α (X), is defined as follows

∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α},

where Pr(X|KB(x)) = |X∩KB(x)|
|KB(x)| is the conditional probability of X given

KB(x) [5]. A-probabilistic approximations of X with the threshold α will be
denoted by apprCS

α (X).

Table 2. Conditional probabilities Pr([(Flu, yes)]|KA(x))

x 1 2 3 4

KA(x) {1, 3, 6} {2, 8} {3, 5, 6, 7, 8} {3, 4, 6}
P ({1, 2, 3, 4} | KA(x)) 0.667 0.5 0.2 0.667

For Table 1 and both concepts, all conditional probabilities P (X|KA(x)) are
presented in Tables 2 and 3. All distinct probabilistic approximations based on
characteristic sets are
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Table 3. Conditional probabilities Pr([(Flu, no)]|KA(x))

x 5 6 7 8

KA(x) {3, 5} {3, 6} {2, 3, 4, 5, 6, 7} {2, 3, 8}
P ({5, 6, 7, 8} | KA(x)) 0.5 0.5 0.5 0.333

apprCS
0.2 ({1, 2, 3, 4}) = U,

apprCS
0.5 ({1, 2, 3, 4}) = {1, 2, 3, 4, 6, 8},

apprCS
0.667({1, 2, 3, 4}) = {1, 3, 4, 6},

apprCS
1 ({1, 2, 3, 4}) = ∅,

apprCS
0.333({5, 6, 7, 8}) = {2, 3, 4, 5, 6, 7, 8},

apprCS
0.5 ({5, 6, 7, 8}) = {2, 3, 4, 5, 6, 7},

apprCS
1 ({5, 6, 7, 8}) = ∅.

If for some β, 0 < β ≤ 1, a probabilistic approximation apprCS
β (X) is not

listed above, it is equal to the probabilistic approximation apprCS
α (X) with the

closest α to β, α ≥ β. For example, apprCS
0.4 ({1, 2, 3, 4}) = apprCS

0.5 ({1, 2, 3, 4}).

4.2 Probabilistic Approximations Based on Maximal Consistent
Blocks

By analogy with the definition of a B-probabilistic approximation based on char-
acteristic sets, a B-probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, based on maximal consistent blocks and denoted by B-apprMCB

α (X),
is defined as follows

∪{Y | Y ∈ C (B), P r(X|Y ) ≥ α},

where Pr(X|Y ) = |X∩Y |
|Y | is the conditional probability of X given Y . A-prob-

abilistic approximations of X, based on maximal consistent blocks, with the
threshold α will be denoted by apprMCB

α (X).
For Table 1 and the concept [(Flu, yes)], all conditional probabilities

Pr([(Flu, yes)]|Y ), where Y ∈ C (A), are presented in Table 4. Conditional prob-
abilities Pr([(Flu, no)]|Y ), where Y ∈ C (A), may be computed in an analo-
gous way. All distinct probabilistic approximations based on maximal consistent
blocks are

apprMCB
0.5 ({1, 2, 3, 4}) = U,
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Table 4. Conditional probabilities Pr([(Flu, yes)]|Y )

Y {1} {2, 8} {3, 5} {3, 6} {3, 7} {3, 8} {4}
P ({1, 2, 3, 4} | Y ) 1 0.5 0.5 0.5 0.5 0.5 1

apprMCB
1 ({1, 2, 3, 4}) = {1, 4},

apprMCB
0.5 ({5, 6, 7, 8}) = {2, 3, 5, 6, 7, 8},

apprMCB
1 ({5, 6, 7, 8}) = ∅.

5 Definability

Any union of characteristic sets KB(x) is called B-globally definable [7]. An A-
globally definable set is called globally definable. Let T be a set of attribute-value
pairs, where all involved attributes are distinct and are members of a set B. Such
set T is called B-complex. A block of a B-complex T , denoted by [T ], is the set
∩{[t]|t ∈ T}. Any union of blocks of B-complexes is called B-locally definable
[7]. A-locally definable set is called locally definable.

Rules are expressed by attribute-value pairs, so any set X may be described
by rules if it is locally definable, as was explained in [6]. As follows from [6],
maximal consistent blocks for incomplete data sets with only “do not care” con-
ditions are locally definable, so corresponding approximations are also locally
definable. However, in general, for arbitrary incomplete data sets, maximal con-
sistent blocks are not locally definable. For example, for the data set from Table 1,
sets {1} and {4}, maximal consistent blocks, are not locally definable. Indeed,
case 1 occurs in only two blocks: [(Temperature, normal)] and [(Cough, yes)],
and the intersection of these two sets is {1, 3, 6}. Similarly, case 4 occurs also
in only two blocks: [(Temperature, high)] and [(Cough, yes)], while the inter-
section of these two sets is {3, 4, 6}. Thus none of the sets: {1}, {4} and {1,
4} can be expressed by rules. From the point of rule induction the set {1, 4} =
apprMCB

1 ({1, 2, 3, 4}) is useless.

6 Experiments

Our experiments were conducted on nine data sets obtained from the University
of California at Irvine Machine Learning Repository. For any data set, a corre-
sponding incomplete data set was created by a random replacement of specified
values by question marks (lost values), until an entire row of a data set was full
of “?”s. Such a data set was removed from experiments, we used only data sets
with at least one specified value for any row. For any incomplete data set with
“?”s, another incomplete data set was created by replacing all “?”s by “*”s (“do
not care” conditions).
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Fig. 1. Number of rules for the breast
cancer data set

Fig. 2. Error rate for the echocar-
diogram data set with lost values

Fig. 3. Error rate for the global climate
data set with lost values

Fig. 4. Error rate for the hepatitis
data set with lost values

Fig. 5. Error rate for the image seg-
mentation data set with lost values

Fig. 6. Error rate for the iris data
set with lost values

Our main objective was to compare the quality of two approaches to rule
induction, based on characteristic sets and maximal consistent blocks, respec-
tively, in terms of an error rate. Note that due to computational complexity, our
experiments were restricted to only some percentage of missing attribute values
and to some type of incomplete data sets. Results of our experiments, presented
in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, are restricted to only three data
sets with “do not care” conditions, due to excessive computational complexity.
In Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, “Lower” means a lower approxima-
tion (α = 1), “Middle” means a middle probabilistic approximation (α = 0.5),
and “Upper” means an upper approximation (α = 0.001). Additionally, “CS”
means a characteristic set and “MCB” means a maximal consistent block.
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Fig. 7. Error rate for the lymphography
data set with lost values

Fig. 8. Error rate for the postopera-
tive patient data set with lost values

Fig. 9. Error rate for the small soybean
data set with lost values

Fig. 10. Error rate for the global
climate data set with “do not care”
conditions

Fig. 11. Error rate for the echocardio-
gram data set with “do not care” con-
ditions

Fig. 12. Error rate for the lymphog-
raphy data set with “do not care”
conditions

For a comparison of the two approaches to rule induction, based on char-
acteristic sets and maximal consistent blocks, we used the Friedman rank sum
test combined with multiple comparisons, with a 5% level of significance. For
all twelve possibilities, presented in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12,
for only one possibility (presented in Fig. 8 for postoperative patient with lost
values) the null hypothesis of nonsignificant differences between the six methods
is rejected: methods based on characteristic sets combined with middle approxi-
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mations are better than methods based on maximal consistent blocks with upper
approximations.

Thus, we may conclude that there is a small difference in quality of rule
sets induced by characteristic sets and maximal consistent blocks. Taking into
account computational complexity, it is better to apply data mining to charac-
teristic sets than to maximal consistent blocks.

Originally, maximal consistent blocks were introduced for incomplete data
sets with “do not care” conditions [9]. For such data sets rule induction is much
more time consuming than for data sets with lost values.

7 Conclusions

In experiments reported in this paper, we compared quality of rule sets induced
from characteristic sets and maximal consistent blocks. Results of our experi-
ments show that there is a small difference in quality of rule sets induced using
both approaches. Taking into account computational complexity, it is better to
apply data mining to characteristic sets than to maximal consistent blocks.
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