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Preface

The two-volume set of proceedings of IJCRS 2017, the 2017 International Joint
Conference on Rough Sets, contains the results of the meeting of the International
Rough Set Society held at the University of Warmia and Mazury in Olsztyn, Poland,
during July 3–7, 2017.

Conferences in the IJCRS series are held annually and comprise four main tracks
relating the topic rough sets to other topical paradigms: rough sets and data analysis
covered by the RSCTC conference series from 1998, rough sets and granular com-
puting covered by the RSFDGrC conference series since 1999, rough sets and
knowledge technology covered by the RSKT conference series since 2006, and rough
sets and intelligent systems covered by the RSEISP conference series since 2007.
Owing to the gradual emergence of hybrid paradigms involving rough sets, it was
deemed necessary to organize Joint Rough Set Symposiums, first in Toronto, Canada,
in 2007, followed by Symposiums in Chengdu, China in 2012, Halifax, Canada, 2013,
Granada and Madrid, Spain, 2014, Tianjin, China, 2015, where the acronym IJCRS
was proposed, continuing with the IJCRS 2016 conference in Santiago de Chile.

The IJCRS conferences aim at gathering together experts from academia and
industry representing fields of research in which theoretical and applicational aspects of
rough set theory already find or may potentially find usage. They also provide a venue
for researchers wanting to present their ideas before the rough set community, or for
those who would like to learn about rough sets and find out whether they could be
useful for their problems.

This year’s conference, IJCRS 2017, celebrated the 35th anniversary of the seminal
work by Prof. Zdzisław Pawlak published in 1982, in which the notion of a rough set
emerged.

Professor Zdzisław Pawlak (1926–2006) contributed to computer science with many
achievements such as addressless Pawlak machines, a random number generator, a
participant in the design and production of the Polish computing machine UMC-2, and
a proposition of the first genomic grammar (1965).

The emergence of the rough set idea owes much to Prof. Pawlak’s deep interest in
the foundations of logics and mathematics — in the 1960s he conducted seminars with
the eminent logician and mathematician Prof. Andrzej Ehrenfeucht at the Mathematical
Institute of the Polish Academy of Sciences. At the root of the idea of a rough set lie the
mathematical notions of the lower and the upper approximation known in geometry
and analysis, and the idea of an inexact concept as possessing a boundary that consists
of things belonging neither in the concept nor in its complement, going back to Gottlob
Frege.

The second motive for celebration was the 50th anniversary of the dissemination in
the scientific world by Prof. Solomon Marcus (1924–2015) of the Pawlak model of the
DNA grammar, published in 1965 in Polish, in a small popular monograph on grammar



theory, intended for high schoolers. This grammar, constructed also visually by means
of chains of triangles, was the precursor of visual and mosaic grammars.

The conference commemorated Prof. Pawlak with a special session on “Zdzisław
Pawlak— Life and Heritage” with Prof. Grzegorz Rozenberg as the honorary chair and
Professor Andrzej Skowron as the chair; there were also commemorative talks by Prof.
Grzegorz Rozenberg, Sankar Kumar Pal, Lech Polkowski, Roman Słowiski, Shusaku
Tsumoto, Guoyin Wang, Zbigniew Ras, and Urszula Wybraniec-Skardowska. The
essay by Prof. Wybraniec-Skardowska opens the proceedings.

The conference included six keynote lectures by Prof. Rakesh Agrawal, Jan
Komorowski, Eric Matson, Sankar Kumar Pal, Grzegorz Rozenberg, and Guoyin
Wang as well as four plenary lectures by Profs. Tianrui Li, Son Hung Nguyen, Pradipta
Maji, Amedeo Napoli, and Zbigniew Ras.

For the process of submission, review, acceptance, updating, and compilation of the
proceedings, the EasyChair Pro system was used that allowed for subdivision of
submissions into tracks: Rough Sets (68 submissions), Special Session on Vagueness,
Rough Sets and Mereology (11 submissions), Special Session on Trends in
Multi-Agent Systems (five submissions), Special Session on Formal Concept Analysis,
Rough Set Theory and Their Applications (five submissions), Special Session: Soft-
ware and Systems for Rough Sets (four submissions), Workshop Three-Way Decisions,
Uncertainty, Granular Computing (The 5th International Workshop on Three-way
Decisions, Uncertainty, and Granular Computing, TWDUG 2017; 17 submissions),
Workshop: Recent Advances in Biomedical Data Analysis (three submissions), and
one invited submission to the Special Session “Zdzisław Pawlak— Life and Heritage.”
In all, 114 (130 with invited talks) submissions were received. Submissions were
allowed to be regular at 10–20 long length and short at 6–8 pages. They were reviewed
by members of Program Committee (PC) and invited reviewers, each submission
reviewed by at least three reviewers in certainly positive cases and by four or five
reviewers in cases of conflicting reviews by the first three reviewers. Finally, the most
complex cases were decided by the conference and PC chairs.

Of 114 (130) submissions, after positive reviews and decisions, 74 papers were
selected to be included as regular papers and 16 as short papers in the proceedings,
which comprise two volumes. Section 1, Invite Talks, contains the essay by Urszula
Wybraniec Skardowska in remembrance of Prof. Pawlak, abstracts of the keynote,
plenary, IRSS fellow talks and tutorials, as submitted by respective speakers, making up
16 chapters. Section 2 on “General Rough Sets” contains papers devoted to the rough set
theory in its foundational and decision-theoretic aspects, collected in 44 chapters.
Section 3 on “Software and Systems for Rough Sets” contains papers submitted and
accepted to the special session with this title. These sections constitute the first volume
of proceedings.

The second volume of proceedings opens with Section 4, which collects papers
submitted and accepted to the special session on “Vagueness, Rough Sets, Mereology”
is devoted to foundational concept-theoretical and logical analysis of the rough set idea,
as well as papers on applications of mereology in intelligent methods of computer
science, containing ten chapters. Section 5, “Workshop on Three-Way Decisions,
Uncertainty, Granular Computing,” comprises 17 chapters. In these papers, the classic
trichotomy introduced by Prof. Pawlak into data objects with respect to a given concept
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as belonging certainly in the concept, certainly not belonging in the concept, and
belonging into the boundary of the concept is extended to soft computing with these
regions; the topic of granular computing fits naturally in this section since rough sets,
from their very inception, are computed with elementary granules defined by
attribute-value descriptors. In Section 6 on “Recent Advances in Biomedical Data
Analysis, Trends in Multi-Agent Systems, Formal Concept Analysis, Rough Set
Theory and Their Applications,” we find submitted and accepted regular papers on
these topics that are strongly tied to the rough set domain. Section 6 contains
13 chapters; 24 papers were rejected, i.e., 21% of submissions. In the “General Rough
Sets” track, 22 papers were rejected, i.e., 32% of submissions to this track.

In addition to the proceedings, participants of the conference found in the confer-
ence sets a booklet, “The Polish Trace,” consisting of four chapters dedicated to the
little known yet spectacular achievements of Polish scientists in the area of computer
science: on the work by Jan Czochralski, “the forefather of the silicon era”; on
achievements of cryptologists Jan Kowalewski and professors of Warsaw University
Stanisł aw Leśniewski, Stefan Mazurkiewicz, and Wacław Sierpiński in deciphering
codes of the Red Army during the Polish–Russian war of 1918–1920; on cryptologists
Marian Rejewski, Jerzy Różycki, and Henryk Zygalski, who broke the German Enigma
code in the 1930s; and on the contributions of Stanisław Leśniewski, Jan Łukasiewicz,
and Alfred Tarski to the theory of concepts, computing, and soft computing.

An additional booklet contained texts of talks in the Special Session devoted to the
memory of Prof. Zdzisław Pawlak.

We acknowledge the acceptance of our proposal of organizing IJCRS 2017 in
Poland at the University of Warmia and Mazury by authorities of the International
Rough Set Society, the owner of rights to the series.

Honorary patronage of the conference was accepted by Gustaw Marek Brzezin,
Marshal of the Province of Warmia and Mazury, Prof. Ryszard Górecki, Rector of the
University of Warmia and Mazury, and by Dr. Piotr Grzymowicz, President of the City
of Olsztyn.

Scientific patronage was given by the International Rough Set Society and by the
Committee on Informatics of the Polish Academy of Science.

Many eminent scientists offered us their kind help by accepting our invitations.
Thanks go to the honorary chairs of the conference, Profs. Ryszard Górecki, Sankar
Kumar Pal, Roman Słowiński, Andrzej Skowron, and Jerzy Nowacki as well as
Wojciech Samulowski, Director of the Olsztyn Park of Science and Technology, to
Guoyin Wang, to the keynote speakers Profs. Rakesh Agrawal, Jan Komorowski, Eric
Matson, Sankar Kumar Pal, Grzegorz Rozenberg, and Guoyin Wang, and to the ple-
nary speakers, Profs. Tianrui Li, Nguyen Hung Son, Pradipta Maji, Amedeo Napoli,
and Zbigniew Ras. The Steering Committee members are gratefully acknowledged for
their support.

We express our gratitude to the organizers and chairs of special sessions and
workshops: Profs. Mani A-, Andrzej Pietruszczak, Rafał Gruszczyński, Duoqian Miao,
Georg Peters, Chien Chung Chan, Hong Yu, Bing Zhou, Nouman Azam, Nan Zhang,
Sushmita Paul, Jan G. Bazan, Andrzej Skowron, Pradipta Maji, Dominik Ślȩzak, Julio
Vera, Grzegorz Rozenberg, Sankar Kumar Pal, Roman Słowiński, Shusaku Tsumoto,
Guoyin Wang, Zbigniew Ras, Urszula Wybraniec-Skardowska, Andrzej Zbrzezny,
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Agnieszka M. Zbrzezny, Magdalena Kacprzak, Jakub Michaliszyn, Franco Raimondi,
Wojciech Penczek, Bożena Woźna-Szczȩśniak, Mahdi Zargayouna, Jaume Baixeries,
Dmitry Ignatov, Mehdi Kaytoue, Sergei Kuznetsov, Tianrui Li, Jarosław Stepaniuk,
and Hung Son Nguyen.

We thank the following for the tutorials: Jan Komorowski, Piero Pagliani, Andrzej
Zbrzezny, Ivo Duentsch, and Dimiter Vakarelov. Our special thanks go to Program
Committee members and Program Committee chairs: Profs. Piotr Artiemjew, Davide
Ciucci, Dun Liu, Dominik Ślȩzak, and Beata Zielosko, for their dedicated work in
reviewing and selecting papers to be accepted, and to the members of the Organizing
Committee: Dr. Przemysław Górecki, Dr. Paweł Drozda, Dr. Krzysztof Sopyła, Dr. Piotr
Artiemjew, Dr. Stanisław Drozda, Dr. Bartosz Nowak, Łukasz Żmudzinski,
Dr. Agnieszka Niemczynowicz, Hanna Pikus, Dr. Marek Adamowicz, and Beata
Ostrowska. Special thanks for their dedicated and timely work toMr Łukasz Żmudziński,
for his work on the conference website, Dr. Paweł Drozda, for taking care of the
administration of conference finances, and to Dr. Przemysław Górecki, for liaising with
the hosting university’s administrative offices. Student volunteers should be mentioned
for their help in running the conference. Thanks go to our material sponsors: the Olsztyn
Park of Science and Technology, the Marshal of the Province of Warmia and Mazury,
Billennium. For moral support we would like to mention the co-organizers, the
Polish-Japanese Academy of Information Technology and the Polish Information Pro-
cessing Society. Our host, the University of Warmia and Mazury in Olsztyn, provided
ample space for the conference sessions, secured the participation of the Kortowo
ensemble, and the professional help of the university services: the financial and inter-
national exchange offices and the Foundation “ŻAK” that provided the catering. Thanks
go to Park Hotel in Olsztyn for hosting the participants.

Special thanks go to Alfred Hofmann of Springer, for accepting to publish the
proceedings of IJCRS 2017 in the LNCS/LNAI series, and to Anna Kramer and Elke
Werner for their help with the proceedings. We are grateful to Springer for the grant of
1,000 euro for the best conference papers.

April 2017 Lech Polkowski
Yiyu Yao

Piotr Artiemjew
Davide Ciucci

Dun Liu
Dominik Ślȩzak
Beata Zielosko
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Structure and Interpretation
of Classifiers – The Rule Networks

Jan Komorowski1,2

1 Program in Bioinformatics and Computational Biology,
Department of Cell and Molecular Biology,

Uppsala University, Uppsala, Sweden
jan.komorowski@icm.uu.se

2 Institute of Computer Science, PAN, Warsaw, Poland

Research in machine learning and in particular in supervised machine learning has been
over focused on numerical measures of the classification quality of the classifiers.
Although classification quality is, of course, of interest, this preoccupation shadowed
other important aspects such as interpretation of classifiers. Understanding the structure
of classifiers and, consequently, the ability to explain the classification in terms
comprehensible to the user are particularly important in several applications in Life
Sciences. For example, a molecular engineer does not only want to know whether a
protein will have a given function as predicted by the classifier, but also needs to know
how the function arises or is lost. Likewise, classifying an avian influenza virus into
high or low pathogenicity is helpful, but it does not elucidate the mechanisms of the
pathogenicity. And in precision medicine, the prediction of drug applicability must be
trusted, i.e. be explainable.

We have pioneered the research into interpretable classifiers by studying interac-
tions. In 2004 we published the first model of G-Protein Coupled Receptor-ligand
interactions that explained the reasons for strong versus weak bindings [1] and [2]. This
work was followed by a number of results in the world of transcriptomics, virology,
proteomics, (e.g. [3–5]) as well as in the now important field of discovering interactions
between an environment and organisms such as, for instance, allergy [6].

Recently, we have expanded our investigations to the issue of discovery if inter-
actions in living systems from rule-based classifiers, which lead us, among others, to a
development of the notion of rule networks. Essentially, a rule network is a graph
constructed from the rules of a classifier. Two nodes are connected by an edge if the
nodes are conjuncts in the IF-part of one rule. The strength of the edge is the sum for all
rules of the support for a rule multiplied by its accuracy. The construction of rule
networks was inspired by our earlier development of literature networks of genes [7].

We have developed two display formalisms to visualize interactions Ciruvis [8] and
VisuNet [9]. These networks often display unexpected properties that help understand
the modelled systems. It appears that rule networks are functional in that the interac-
tions do often represent true interaction in the living systems.

The rule networks are a supervised counterpart of co-expression networks that use
similarity of nodes: two genes are connected by an edge if the they are similarly
expressed [10] Co-expression networks are based on unsupervised learning, usually
hierarchical clustering. In contrast, rule networks are applicable to any study domain,



not only gene expressions, and since they are based on classifiers, they (a) are
predictive of the decision class, (b) can discover much more complex relationships than
co-expression nets. Possibly the most important property of rule networks is that
separate networks are constructed for each decision class (or outcome), which is not
possible for co-expression networks.

In the talk I shall introduce the concept of rule networks and illustrate their
applications in a number of Life Science applications. Our methodology is applicable
to big data. Using Monte Carl feature selection [11] or Random Reducts [12] we can
effectively preprocess decision systems of even 1 million features and reduce them to
several hundreds of significant features, but usually much fewer. We then apply
ROSETTA to generate rough set models [13, 14] and finally study the networks
displayed by Ciruvis or VisuNet. Selected case studies in transcriptomics, virology,
proteomics both published and unpublished ones will be presented [15, 16].

Research into rule networks has just started and there is a number of interesting
issues to be explored one of them the all important data integration, another the
relationship of the mechanism to other approaches to discovering interactions.
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Realizing Applied, Useful Self-organizing
Cyber-physical Systems with the HARMS

Integration Model

Eric T. Matson

M2M Lab, Purdue University, West Lafayette, IN, USA
ematson@purdue.edu

Abstract: The future in the enhancement of cyber-physical system and robotic
functionalities lies not only in the mechanical and electronic improvement of the
robots’ sensors, mobility, stability and kinematics, but also, if not mostly, in
their ability to connect to other actors (human, agents, robots, machines, and
sensors HARMS). The capability to communicate openly, to coordinate their
goals, to optimize the division of labor, to share their intelligence, to be fully
aware of the entire situation, and thus to optimize their fully coordinated actions
will be necessary. Additionally, the ability for two actors to work together
without preference for any specific type of actor, but simply from necessity of
capability, is provided by a requirement of indistinguishability, similar to the
discernment feature of rough sets.

Once all of these actors can effectively communicate, they can take on group
rational decision making, such as choosing which action to take that optimizes a
group’s effectiveness or utility. Given group decision making, optimized
capability-based organization can take place to enable human-like organiza-
tional behavior. Similar to human organizations, artificial collections with the
capability to organize will exhibit emergent normative behavior. In this session,
we will show how these models are applied to real world problems in security,
first response, defense and agriculture.

Biography: Eric T. Matson, Ph.D., is an Associate
Professor in the Department of Computer and Information
Technology in the College of Technology at Purdue
University, West Lafayette. Prof. Matson is also an Inter-
national Faculty Scholar in the Department of Electrical
Engineering at Kyung Hee University, Yongin City,
Korea. He was also formerly a Visiting Professor with the
LISSI, University of Paris et Creteil (Paris 12), Paris,
France, Visiting Professor, Department of Computer Sci-
ence and Engineering, Dongguk University, Seoul, South
Korea and in the School of Informatics at Incheon National
University in Incheon, South Korea. He is the Director

of the Robotic Innovation, Commercialization and Education (RICE) Research Center,
Director of the Korean Software Square at Purdue and the co-founder of the M2M Lab
at Purdue University, which performs research at the areas of multiagent systems,



cooperative robotics, wireless communication. The application areas are focused on
safety and security robotics and agricultural robotics and systems.

Prior to his position at Purdue University, Prof. Matson was in industrial and
commercial software development as a consultant, software engineer, manager and
director for 14 years. In his software development experience, he developed and lead
numerous large software engineering projects dealing with intelligent systems, applied
artificial intelligence, distributed object technologies, enterprise resource planning and
product data management implementations. Prof. Matson has a Ph.D. in Computer
Science and Engineering from the University of Cincinnati, M.B.A in Operations
Management from Ohio State University and B.S. and M.S.E. degrees in Computer
Science from Kansas State University.
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Granular Data Mining and Uncertainty
Modeling: Concepts, Features

and Applications

Sankar K. Pal

Center for Soft Computing Research, Indian Statistical Institute, Kolkata, India
http://www.isical.ac.in/*sankar

The talk has two parts. First it describes the

• Role of pattern recognition in data mining and machine intelligence
• Features of granular computing
• Significance of fuzzy sets and rough sets in granular computing
• Characteristics of fuzzy sets and rough sets in handling uncertainties arising from

overlapping regions/concepts, and granularity in domain respectively
• Relevance of defining the generalized rough sets and entropy by embedding fuzzy

sets into rough sets; providing a stronger paradigm for uncertainty modeling

The second part deals with various mining applications such as in

• Video tracking in ambiguous situations
• Bioinformatics (e.g., selection of miRNAs for cancer detection)
• Social network analysis (e.g., community detection)

The applications demonstrate the roles of different kinds of granules, rough lower
approximation, and various information measures. Granules considered range from
crisp, fuzzy, 1-d, 2-d, 3-d, and regular shape to arbitrary shape. While the concept of
rough lower approximation in temporal domain provides an initial estimate of object
model in video tracking, it enables in determining the probability of definite and
doubtful regions in cancer classification.

Several examples and results would be provided to explain the aforesaid concepts.
The talk concludes mentioning their relevance in handling Big data, the challenging
issues and the future directions of research.
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A Framework for Exploring Disciplines
of Science: Dynamic Processes Within a Static

Depository of Knowledge

Grzegorz Rozenberg1,2

1 Leiden University, Leiden, The Netherlands
2 University of Colorado in Boulder, Boulder, USA

In this lecture we present a framework for exploring disciplines of science. This
framework takes into account the knowledge about the given discipline as well as
dynamic processes (computations) taking place within this knowledge. We illustrate
this approach by considering a framework for exploring biology.

This framework, called exploration systems, consists of two parts:
A static part which is a depository of knowledge formalized by the notion of a

zoom structure. The integrating structure of such a depository allows one to deal with
the hierarchical nature of biology.

A dynamic part is given by reaction systems. They originated as models for pro-
cesses instigated by the functioning of living cells and they address two important
aspects of biology: non-permanency of its entities and open system aspect of biological
units such as living cells.

In this setup the depository of static knowledge given by a zoom structure is
explored by computations/processes provided by reaction systems, where this explo-
ration can use/integrate knowledge present on different levels (e.g., atomic, cellular,
organisms, species, … levels).

Research topics in this framework are motivated by considerations originating in
the modelled discipline of science as well as by the need to understand the underlying
structure of knowledge and the structure of computations exploring this knowledge.
The framework we discuss turned out to be novel and attractive also from the theory of
computation as well as from the modelling points of view.

The lecture is of interest to mathematicians and computer scientists interested in
models of computation and/or in modelling processes taking place in nature as well as
to bioinformaticians interested in foundational/formal understanding of biological
processes. The lecture is of a tutorial style and self-contained. In particular, no prior
knowledge of biochemistry or cell biology is required.

The presented framework was developed jointly with A. Ehrenfeucht from
University of Colorado at Boulder.



Big Data Analysis by Rough Sets
and Granular Computing

Tianrui Li

School of Information Science and Technology,
Southwest Jiaotong University, Chengdu 611756, China

trli@swjtu.edu.cn

Abstract. Enormous amounts of data are generated every day with the rapid
growth of emerging information technologies and application patterns in mod-
ern society, e.g., Internet, Internet of Things, and Cloud Computing [1, 2].
It leads to the advent of the era of Big Data. Big Data is often characterized by
using five V’s, e.g., Volume, Velocity, Variety, Value and Veracity [3]. Volume
refers to the very huge amount of data that needs to be managed; Velocity
implies that the very high speed of data update; Variety means that the nature of
data is varied and there are many different types of data that need to be properly
fused to make the most of the analysis; Value signifies high yield will be
achieved by handling the big data correctly and accurately; Veracity means the
data is full of uncertainty and ambiguity. Exploring efficient and effective
knowledge discovery approaches to manage Big Data with rich information has
become a hot research topic in the area of information science [4]. This talk aims
to show our recent work on big data analysis by rough sets and granular
computing. It covers the following seven aspects. (1) A hierarchical
entropy-based approach is demonstrated to evaluate the effectiveness of data
collection [5], the first step of knowledge discovery from data, which is vital
because it may affect mining results and its cost is generally huge [6]. (2) A
multi-view-based method is illustrated for filling missing data since it is very
common phenomenon in Big Data due to communication or device errors, etc
[7]. (3) A unified framework is outlined for Parallel Large-scale Attribute
Reduction, termed PLAR, to manage Big Data with high dimension through
applying a granular computing-based initialization [8, 9]. (4) A MapReduce-
based parallel method together with three parallel strategies are presented for
computing rough set approximations [10–13], which is a fundamental part in
rough set-based data analysis similar to frequent pattern mining in association
rules. (5) Incremental learning-based approaches are shown for updating
approximations and knowledge in dynamic data environments, e.g., the varia-
tion of objects, attributes or attribute values, which improve the computational
efficiency by using previously acquired learning results to facilitate knowledge
maintenance without re-implementing the original data mining algorithm
[14–17]. (6) A composite rough set model to deal with multiple different types
of attributes is developed, which provides a novel approach for complex data
fusion [18, 19]. (7) The uncertainty information processing under three-way
decisions for the veracity of data is discussed [20–22].

Keywords: Big data • Rough set • Granular computing • Incremental learning •

Knowledge discovery
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Exploratory Knowledge Discovery
and Approximations: An FCA Perspective

Extended Abstract

Amedeo Napoli
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Amedeo.napoli@loria.fr
https://members.loria.fr/ANapoli/

Abstract. Knowledge discovery (KD) in complex datasets can be considered as
a problem solving process, which can be either data-directed (most of the time)
or goal-directed [6]. Moreover, KD can be procedural when based on a specific
solver or declarative when based on a general-purpose solver (as in declarative
data mining approaches [4, 15]). These various dimensions have a direct impact
on the way of making KD an exploratory process (e.g. how to explore a pattern
space).

In this presentation, we will discuss the process of Exploratory Knowledge
Discovery (EKD) in the framework of Formal Concept Analysis (FCA) [12].
FCA starts with a binary context and outputs a concept lattice, which can be
visualized and navigated by human agents [2], and which can be processable by
software agents as well. In a concept lattice, each concept is made of an “intent”,
i.e. the description of the concept in terms of attributes, and an “extent” (i.e. the
objects instances of the concept). Intents and extents are two dual facets of a
concept that naturally apply in knowledge representation and ontology engi-
neering. Moreover, the structure of a concept lattice can be visualized – whole or
in part– allowing a suggestive interpretation by human agents while being
processable by software agents.

Plain FCA applies to binary data and can be extended to Pattern Structures
[11], based on description similarity, for dealing with more complex data such
as numbers, sequences, graphs and Linked Data (RDF) [1, 5, 14]. Pattern
Structures allow to solve various problems among which text mining [16],
information retrieval [10], biclustering and recommendation [9, 13], definition
mining [1] and discovery of functional dependencies [3, 8]…

For lowering computational costs, “approximations” can be introduced such
as similarity thresholds and description projections [7]. We will discuss and
illustrate the potential of approximations within Pattern Structures with the
discovery of definitions in Linked Data [1] and the discovery of crisp and soft
functional dependencies in numerical datasets [8].
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More with Less - A New Paradigm
in Modern Machine Learning
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Extended Abstract
A significant progress that Machine Learning has made in recent years is related to the
research and development of deep neural network. The first successful application of
deep neural network was achieved on image recognition where the model was trained
exhaustively on GPUs: a garden-variety parallel computing hardware used for
video-games. Similar advances were then quickly reported for speech recognition and
later for machine translation and natural language processing. In short order, big
companies like Google, Microsoft and Baidu established large machine learning
groups, quickly followed by essentially all other big tech companies. Since then, with
the combination of big data and big computers, rapid advances have been reported,
including the use of machine learning for self-driving cars, and consumer-grade
real-time speech-to-speech translation. Human performance has even been exceeded in
some specialised domains. It is no exaggeration to say that at present, machine learning
allows for many more applications than there are engineers capable of implementing
them.

However, most of deep learning approaches rely on the availability of huge
amounts of data, often requiring millions of correctly labelled examples. We will
discuss the newest learning techniques for the case when we have a huge amount of
data but very little amount of labelled data. Such challenging learning problems occurs,
for example, in the health care data, robotic applications or streaming data. In the
existing techniques, statistical methods and domain knowledge management play a
crucial role.

Micro-Data learning approaches is an application of this learning paradigm in
robotics where they can often only use a few dozen training examples because
acquiring them involves a process that is expensive or time-consuming. There are few
percepts of macro-data learning. As the examples we can refer to active learning,
control and strategy learning and learning to use the right prior knowledge in decision
making [2]. Bayesian optimisation [5] is such a data-efficient algorithm that has
recently attracted a lot of interest in the machine learning community. Using the data
acquired so far, this algorithm creates a probabilistic model of the function that needs to

1 This research is in frame of the project “Parking space in rest and service areas (RSA)” financed
by NCBiR/GDKKiA as a part of common undertaking “RID”, under the contract
DZP/RID-I-44/8/NCBR/2016.



be optimised. It then exploits this model to identify the most promising points of the
search space. This micro-data learning algorithm makes it possible to learn a complex
task in only a few trials.

Combining graphical models with deep learning is another example of learning
techniques that can be applied for large unlabeled data sets. The authors of [4] proposed
a comprehensive framework called Variational Auto Encoders. The main idea in this
approach is based on a double modelling process, i.e. (1) learning generative model to
simulate the data generation process, and (2) learning classification models, such as
deep learning, where measurements are directly mapped to class labels. The advantage
of this approach i based on the observation that Bayesian networks do not necessarily
represent the causal relationships, but they can express the expert knowledge and can
be interpreted as the “structural equation models”. If we know that one set of variables
causes another set of variables then we can simply insert that relation into the model.
Relations that we do not know will need to be learned from the data. Incorporating
expert knowledge (e.g., the laws of physics) into models is the everyday business of
scientists. They build sophisticated simulators with relatively few unidentified
parameters, for instance implemented as a collection of partial differential equations
(PDEs). Variational Auto Encoders are a framework for unsupervised learning.
However, they can be extended to semi-supervised learning by incorporating labels in
the generative model.

Rough set theory offers a couple of methods for data reduction, i.e. a smaller part of
data that make it possible to solve the learning task at the same, or even higher accuracy
level, as using the whole data set. The natural question for Rough Set Society is does
rough set theory can propose some new and accurate methods for big data. We will
present the most recent data reduction techniques in rough sets including feature
reduction, feature selection, object selection as well as the data decomposition.

As an example, we present an applications of the tolerance rough set model
(TRSM) in concept learning for scientific document repositories. In fact, this is a
general framework incorporating semantic indexing and semi-supervised machine
learning. In this approach, a semantic interpreter, which can be seen as a tool for
automatic tagging of textual data, is interactively updated based on feedback from the
users, in order to improve quality of the tags that it produces. As an illustration, we
presented an improved method for the Explicit Semantic Analysis (ESA) method [3].
In RSA algorithm, an external knowledge base is used to measure relatedness between
words and concepts, and those assessments are utilized to assign meaningful concepts
to given texts The improvement is based on learning the weights expressing relations
between particular words and concepts using the interaction with users or by
employment of expert knowledge [6].

The other ongoing research is to discover the link between the one working
example of intelligence, the brain, and learning principles. This relates to such diverse
questions as “How can goals be selected in an autonomous fashion?” and “How can we
optimise over many different learning problems with one system?”, but also in reverse:
“What can the success of deep neural networks tell us about the brain?”.

The last example is a part of our research investigation on interactive computations
based on the so called complex granules for dealing with the biggest challenges in
machine learning. In particular, this concerns control problems over such computations.
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We also investigate the special class of learning algorithm called ecorithms (propose by
Valiant) [7]. Unlike most algorithms, they can be run in environments unknown to the
designer, and they learn by interacting with the environment how to act effectively in it.
After sufficient interaction they will have expertise not provided by the designer, but
extracted from the environment.
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A Tutorial on Mereotopology: Contact
Structures, Crisp and Rough
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In this tutorial I shall present the main concepts and tools of mereotopology for
reasoning with both crisp and approximated regions.

Contemporary qualitative spatial reasoning is based largely on the relational and
topological properties of regions instead of points. A basic role is played by the binary
“part – of” and “contact” relations, from which many more meaningful relations can be
defined. The formal study of the “part – of” relation goes back to Stanisław Leśniewski,
a Polish mathematician, who, together with Twardowsky, Łukasiewicz, and his sole
doctoral student Tarski, formed the core of the Lwów – Warsaw school of Logic and
Philosophy, which, at the time, could be considered as the world’s foremost research
centre for the foundations of Mathematics. Mereology1, the “Science of parts”, is a part
of S. Leśniewski’s work on the foundations of Mathematics, developed from about
1915 onwards. Leśniewski’s works were mainly in Polish [5] or in German [6]. An
English translation of [6] appeared in [7], and a comprehensive overview of his work
can be found in [13].

Extending mereological structures by a relation of “contact” among regions leads to
what today is called “mereotopology” or “region based theory of space”. Its objects are
Boolean algebras (or more general structures) enhanced with a binary relation C which
satisfies some axioms. The objects of the algebra are considered to be regions, the
Boolean order as the mereological “part of” relation, and C as a relation of “contact”
between regions. These go back as far as the works of de Laguna [4], Nicod [9], and
Whitehead [14], Standard models are Boolean algebras of regular closed sets of a
topological space, where two regular closed sets are said to be in contact if they have a
nonempty intersection. The recent books [1] and [8] provide an extensive view of the
current state mereotopology.

It is not always the case that spatial regions can be determined up to their true
boundaries, if, indeed, they have such boundaries; in many cases, we can only observe
regions up to a certain granularity. Often, this is a desirable feature, since too much
detail can disturb the view, and we will not be able to see the wood for the trees, if our
desire is to see the wood. Thus, one aims for a language with models which can express
concepts as “approximated region”, “approximate contact”, and “approximate part of”.

1 Ivo Düntsch gratefully acknowledges support by the Natural Sciences and Engineering Research
Council of Canada Discovery Grant 250153 and by the Bulgarian National Fund of Science, contract
DN02/15/19.12.2016.
2 To ̀ léqeo1 = The Part



Such concepts can be obtained with the tools provided by Pawlak’s rough set theory:
The “part of” relation between regions is “rough inclusion” (also called “rough
mereology”) [10, 11] by measuring the degree to which a set is contained in another
one. An approximated region may be described by its lower and upper approximation;
approximated regions may be in possible contact or in certain contact [2, 12]. An
appropriate logic for contact relations in the style of Rasiowa and Sikorski was pre-
sented in [3].
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Rough Sets for Big Data – A Tutorial
on Applications in Life Sciences

Klev Diamanti1, Mateusz Garbulowski1, and Jan Komorowski1,2

1 Program in Bioinformatics and Computational Biology,
Department of Cell and Molecular Biology,

Uppsala University, Uppsala, Sweden
2 Institute of Computer Science, PAN, Warsaw, Poland

In this tutorial we shall show how rough sets can be effectively used to generate models
from big data collections as exemplified with applications in Life Sciences (Komor-
owski 2014). The tutorial is based on our successful applications in, for instance,
methylome analysis in the human brain (500K features), gene expression analysis and
avian inuenza virus pathogenicity.

Prerequisites: High school knowledge of molecular biology; general acquaintance
with machine learning principles, supervised and unsupervised ones; basic knowledge
of rough sets.

The attendees are recommended to download the ROSETTA (Komorowski and
Hrn 1997; Komorowski et al. 2002) and rMCFS systems (Draminski et al. 2008) and
install the systems on their laptops, as well as sample data sets from bioinf.icm.uu.se
and CRAN, respectively.

Syllabus

1. Introduction to ROSETTA with Graphical User Interface
2. Introduction to the scripting in ROSETTA
3. Big data: rMCFS for feature selection
4. Integrated scripting: from rMCFS to ROSETTA
5. Refinement and interpretation of rule sets
6. Introduction to rule networks

Basic facts needed to understand the fundamentals of the analyzed biomedical
phenomena will be provided.

Lecture notes will provide detailed instructions on how to develop the classifiers
and interpret their structure. Research articles, data sets and manuals will be down-
loadable from the web. (Available after 15 June 2017).
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Mereotopology: Static and Dynamic

(A survey talk)

Dimiter Vakarelov

Department of Mathematical Logic with applications,
Faculty of Mathematics and Computer Science, Sofia University,

blvd James Bouchier 5, 1126 Sofia, Bulgaria
dvak@fmi.uni-sofia.bg

This talk presents a formalization of some ideas of Alfred North Whitehead about space
and time. Alfred North Whitehead (February 15, 1861 – December 30, 1947) was an
English mathematician and philosopher. He is well-known as the co-author with
Bertrand Russell of the famous book “Principia Mathematica” and also as the founder
of the contemporary Process philosophy. The main part of his philosophical system is
related to his view on an integrated theory of space and time which should be put on a
relational base, which means that it has to be extracted from natural spatio-temporal
relations between real things. His early view on this subject can be found in his book
“The Organization of Thought” [8], page 195, where he claims that the theory of space
and time should be “point-free” in a sense that neither space points nor time points
(instances of time, moments) have to be put on the base of the theory, because they are
abstract things having no separate existence in reality. This does not mean that space
points, as well as time points should be disregarded at all - they should be defined in a
later stage of the theory on the base of the other primitives. A more detailed program of
how to rebuilt the theory of space on relational base is given in his famous book
Process and reality [10]. The primitive notions are the notion of a region as a for-
malization of physical body and some relations between regions as part-of, overlap
and contact. Note that part-of and overlap are ones of the base relations of mereology
(see [3]), so the approach is also known as the mereological approach to geometry.
Since the contact relation between regions has a certain topological nature which can
not be expressed in mereology, the extension of mereology with some contact-like
relations is called now mereotopology. Witehead’s approach to the theory of space is
also known as a Region-Based Theory of Space (RBTS). Survey papers on RBTS and
mereotopology are, for instance, [1, 2, 4].

Whitehead’s theory of time, named in his books [9, 10] Epochal Theory of Time
(ETT), is a quite unusual and interesting theory aiming to explain difficult and old
problems concerning the nature of time. It is called “epochal” because one of its main
notions is the notion of epoch considered as an atomic region of time. However, while
one can find in [10] a detailed program how to develop RBTS as a mathematical
theory, Whitehead did not present such a program for ETT and developed it in an
informal manner and on a quite complicated philosophical terminology. Influenced by
the Relativity theory, Whitehead claims that the theory of time should not be separated
from the theory of space and they both have to be presented as an integrated point free



theory of space-time, developed on a relational base. The first steps in formalization of
Whitehead’s ideas on an integrated theory of space and time are the papers by the
present author [5–7], based on some systems of dynamic mereotopology. Shortly
speaking dynamic mereotopology is an extension of mereotopology studying spatial
regions changing in time, called also dynamic regions. In this context standard
mereotopology which does not consider time will be called “static mereotopology”.
This terminology makes a parallel to the two main parts of the classical physics: Statics
and Dynamics.

The aim of this talk is to sketch a version of dynamic mereotopology based on the
paper [7]. For that purpose a survey of facts for static mereotopology needed in the
building of a version of dynamic mereotopology will also be given. We, first, build a
concrete point-based dynamic model of space based on the “snapshot construction”,
which to each moment of time associates a “snapshot” of the static picture of dynamic
regions at the corresponding moment of time. Then we define a suitable
spatio-temporal relations between dynamic regions. Finally we take some properties
of these relations as axioms and in this way we define the abstract dynamic
mereotopology, which is a point free in the above described sense. The main mathe-
matical result is a representation theorem of the abstract system into a concrete
snapshot model, which fact shows that the axiomatization is successful.

References

1. Bennett, B., Düntsch, I.: Axioms, algebras and topology. In: Aiello, M., Pratt, I., van
Benthem, J. (Eds.) Handbook of Spatial Logics, pp. 99–160. Springer (2007)

2. Hahmann, T., Gröuninger, M.: In: Hazarika, S. (ed.) Region-based Theories of Space:
Mereotopology and Beyond, in Qualitative Spatio-Temporal Representation and Reasoning:
Trends and Future Directions, pp. 1–62. IGI Publishing (2012)

3. Simons, P.: A Study in Ontology. Clarendon Press, Oxford (1987)
4. Vakarelov, D.: Region-based theory of space: algebras of regions, representation theory and

logics. In: Gabbay, D., et al. (Eds.) Mathematical Problems from Applied Logics. New
Logics for the XXIst Century. II, pp. 267–348. Springer (2007)

5. Vakarelov, D.: Dynamic mereotopology: a point-free theory of changing regions. I. Stable
and unstable mereotopological relations. Fundamenta Informaticae 100(1–4), 159–180
(2010)

6. Vakarelov, D.: Dynamic mereotopology II: Axiomatizing some Whiteheadian type
space-time logics. In: Bolander, Th., Braüner, T., Ghilardi, S., Moss, L. (eds.) Advances in
Modal Logic, vol. 9, pp. 538–558. College Publications (2012)

7. Vakarelov, D.: Dynamic mereotopology III. Whiteheadean type of integrated point free
theories of space and tyme. Part I, Algebra and Logic, vol. 53, No. 3, pp. 191–205 (2014).
Part II, Algebra and Logic, vol. 55, No. 1, pp. 9–197 (2016). Part III, Algebra and Logic,
vol. 55, No. 3, pp. 181–197 (2016)

8. Whitehead, A.N.: The Organization of Thought. London (1917)
9. Whitehead, A.N.: Science and the Modern World. MacMillan, New Work (1925)

10. Whitehead, A.N.: Process and Reality. MacMillan, New York (1929)

Mereotopology: Static and Dynamic XXXIX



Revisiting Indiscernibility as the foundation
of Rough Sets

Mihir Kumar Chakraborty

Jadavpur University, Kolkata, India

At the root of rough sets there lies an indiscernibility. This is true for rough sets of any
kind. I have been arguing for this position for a long time. After so much of devel-
opment in this area, it seems necessary to re-evaluate this position both philosophically
and mathematically. My first task would be to make a brief survey of the literature on
rough sets that have dealt with indiscernibility. During this survey, focus would be cast
on the various ways an indiscernibility crops up and on the various types of indis-
cernibility thus created. Relationship between indiscernibility and granulation would be
taken up. It may be realised that in any kind of rough set approach granulation of the
universe remains the starting point. Finally I will argue that indiscernibility and cor-
responding granulation, though necessary, are not sufficient to address the basic
essence of rough sets.
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Urszula Wybraniec-Skardowska(B)
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skardowska@gmail.com

The first test of a great man is his humility.
John Ruskin

An attempt at reaching the past, extracting the essence of humanity, creative
achievements and making them real from already partially obliterated traces
is not an easy task from the personal perspective. Thus, it is only crumbs of
thoughts and words which have been available to compose the picture of the
existence and output of Professor Zdzis�law Pawlak, presented here. The intention
behind the writing of the present paper excludes application of a regular – with
reference to scientific works – research procedure.

For me to be able to say who Zdzis�law Pawlak was – as a man, creator and
innovator of computer science – from the personal perspective in current and
contemporary time, I need to go back to the past which my recollection of him
emerges from; and an outline of his portrait comes out in a sort of freeze-frame,
reflecting his conceptual profile.

1. Let me begin with a memory belonging to the rather distant past – equally
real as the present time and equally important as contemporary reality.

My first meeting with Professor Pawlak took place many years ago, when
shortly after my completing the procedure of earning the title of Associate Pro-
fessor in the field of logic and philosophy of language, I still belonged to the
Polish generation of the pre-IT era and to the circle of propagators of formal
logic. The meeting took place in Nieborów, in the Palace of the Radziwi�l�l Fam-
ily, where – in the autumn of 1986 – the 9th School of Logic was held. It was
organized by Professor Ryszard Wójcicki then. I fell ill there, rather seriously,
and had difficulty in getting back home. Opole, where I was living at that time,
lies quite a distance away from Nieborów. It was then, that Professor Wies�law
Szczerba and another man of athletic build offered to take me in their car to
Warsaw, find a doctor and provide me with accommodation until I would recover
and could return home. That other man turned out to be Zdzis�law Pawlak, pre-
sented to me as a professor of computer science. This rather unexpected offer
initially raised my astonishment and distrust, although I had known Professor
Szczerba fairly well by that time and both men assured me of their absolutely
pure intentions. However, I did not accept their kind offer. It was not until some
time later that I found out I should not have declined it, as it was absolutely an
act of goodwill.
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4 U. Wybraniec-Skardowska

Being at home, where in the then – Teacher’s Training College (later trans-
formed into Opole University) I managed the freshly-established Chair of Com-
puter Science and Applied Logic, I was invited on the telephone to participate
in seminars devoted to computer science, which were run by Professor Pawlak at
the Polish Academy of Sciences in Warsaw. Since I had already made scientific
contacts with well-known logicians, but not with computer scientists I was only
too happy to accept the invitation; besides, my daughter was just beginning her
studies at the Academy of Music in Warsaw.

I remember I used to go to the seminars, mainly with Edward Bryniarski, a
colleague of mine, with whom we discussed questions pertaining to information
systems and Pawlak’s theory of rough sets. During his seminars, which dissemi-
nated the theses of his theory and information systems, Professor Pawlak always
managed to excellently extract and draw the participants’ attention to the main
and the most interesting aspects and conclusions in the lecture which he deliv-
ered.

My first observation related to the basic notions of the rough sets theory:
approximation space, approximations – the upper and the lower ones of a sub-
set of the given universum – concerned their relation with certain so-called unit
operations, which I had dealt with partially in my doctoral dissertation. I noticed
first of all, that the operation of upper approximation of a set, determined by
a certain equivalence relation R is an operation of the R-image of the set, and
that – in turn – it is a certain unit operation. I shared my suggestions with
Professor Pawlak at the beginning of 1988. He was quick to ask me to present
them in his seminar and to write a relevant article for publication in Bulletin
of the Polish Academy of Sciences in Mathematics series. In this way, the inspi-
ration of Professor Pawlak and his rough sets theory gave rise to my first work
in the field of Theoretical Computer Science, entitled “On a Generalization of
Approximation Space” (published in the Bulletin in 1989). The same issue of
the Bulletin also included Edward Bryniarski’s first work on rough-sets, which
came out under the title “Calculus of Rough Sets of the First Order”. That was
the beginning of taking up the problem of rough sets by a group of scientists
in the Chair managed by me in Opole at that time. Following, the history of
rough sets came into being at Opole University, since in the Chair I managed
there emerged a group of scientists, who were being honoured by Profesor’s invi-
tation to cooperate. Those contacts were indeed fruitful, resulting in completion
of three doctoral dissertations and a number of publications.

My second observation concerned the possibilities of using relations between
the rough sets theory and the problem area of vagueness in the logical theory
of language. This was connected with the change in the line of my scientific
interests and formulating them in the form of themes: (1) Knowledge and its
representation, incomplete information, vague information and logic; (2) Logical
and computer-science aspects of information and communication. The result
of these interests were about 10 publications, some co-authored with Zbigniew
Bonikowski.
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The harmonious cooperation of computer science and logic, which was devel-
oped by the Opole Group, was possible owing to strong dedication and integra-
tion around the common research goal realized within a scientific project in the
framework of Professor Pawlak’s grant. Our cooperation within the grant showed
Professor to be a man eager for knowledge, full of enthusiasm and imaginative-
ness, open to new ideas and trends as well as research perspectives; a friendly
man who was straightforward while being with others, consistently setting the
direction of further research which took into account progress of science, not
related solely to computers; a man of courage who perceived new perspectives
and ways of reaching for them, at the same time displaying a positive attitude
towards good co-existence and co-partnership.

Afterwards, in my eyes, Zdzislaw Pawlak appeared as a man worthy of trust,
somebody who could offer support in difficult moments, a man of natural good-
ness, warmth, tolerance; yet demanding and deserving respect, sensitive to new
trends emerging in computer science, a scholar of a wide spectrum of scientific
interests.

He was able to concentrate around himself a circle of young researchers who
felt no barrier of fear separating them from him. He influenced their intellectual
lives and scientific advancement. He created favourable conditions for creative
activity. He offered advice, set an example and provided substantive help. We
were full of respect and admiration for him for his modesty and dedication. He
was a reviewer of many doctoral and postdoctoral dissertations and the author of
scientific opinions. He was always a model of simplicity – a feature which earned
him appreciation with all who worked together with him and with everybody
who knew him. He was an intellectually dynamic person, this valuable trait
enabling him to perceive new vistas and to make them real. His scholarly and
organizational activities were dynamic, too. He was able to combine them with
an exceptional communicative skill.

2. Zdzis�law Pawlak, beyond any doubt, was not the type of a scholar-loner.
His seminars at Warsaw University of Technology were attended by computer
scientists, engineers and logicians, including Professor Helena Rasiowa and her
students, among others Ewa Or�lowska, Cecylia Rauszer, Grażyna Mirkowska,
and also Damian Niwiński, Andrzej Skowron, Henryk Rybiński. The atmosphere
of warmth, which was present during those meetings, favoured exchange of sci-
entific experience and making valuable friendly contacts, which in the case of
myself and my students invested our journeys from the land on the Oder (Opole)
to the land on the Vistula (Warsaw) with sense. And not only the journeys.

An astonishing feature of Zdzis�law Pawlak’s scholarly activity was his
opening to international cooperation and directing intellectual efforts towards
strengthening the position of Polish computer science. He initiated cyclical sci-
entific meetings and international conferences at home and abroad. I took part
in some of them myself or my students attended them, meeting well-known com-
puter scientists, e.g., Lotti Zadech – the creator of the fuzzy sets theory. The
two men entered into a particular friendship and scientific exchange. Professor
Pawlak’s pioneering and innovatory works attracted a lot of scientists from all
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over the world. He enjoyed high esteem abroad and was frequently invited to
deliver lectures and, in this way, disseminated many notions related to computer
science. As a scientist he was endowed with the ability to think both theoretically
and practically. He also carried out an unusually broad and effective cooperation
with scientific institutions abroad, among others located in Canada, the United
States, Russia, China, India. It was thanks to his widespread contacts that many
outstanding computer scientists visited Poland and many Polish scientists were
able to go on shorter or longer visits to scientific centres of world renown. The
visible effects of the international cooperation are numerous publications.

3. I have always looked at Zdzis�law Pawlak’s activity more from the position
of a distanced observer rather than that of somebody who would wholly approve
of it or understand it completely, although my contacts with the Professor and
his family grew closer due to my frequent stays in Warsaw, where my daughter,
a pianist by then, lived and where I took the opportunity of taking part in
seminars and conferences on logic or computer science.

With time I found out that Zdzis�law Pawlak was not only a great scholar, but
also a helpful man, very sociable, full of jolly sense of humour, and an individual
of a very rich and many-sided personality.

I remember very well our meetings and visits to Professor’s private house,
where he lived with his wife and daughter. I felt moved by Mr. and Mrs. Pawlak’s
unique kindness and hospitality, afternoon teas prepared by Professor’s wife,
Danuta, sometimes also for my husband and daughter. The natural and pleasant
atmosphere during the visits allowed me to gradually shorten the distance on
the professional ground and feel closer to his home space, and also some nooks
of his likings and creativity – not only that connected with his scientific activity.

He loved classical music (himself studied to play the violin in his youth) and
in the quiet of his home, he used to play the instrument and also the ocarina.
He, too, liked (as I learned from his daughter, Mrs Dorota Rybnik) slightly
jazzy standards performed by Edith Piaf, Frank Sinatra or Louis Armstrong.
Moreover, he used to listen to ABBA, was keen on humour, style and cabaret
pieces of the Cabaret of Elderly Men, once greatly popular in Poland. He adored
beauty, the world and nature, was keen on sport (he used to swim regularly
in the nearby swimming-pool). He simply loved life. He loved people. He was
highly tolerant of them. Confronted with an instance of stupidity or ugliness,
he would express his criticism by exclaiming: “Atrocity!”, which was to be a
manifestation of lack of acceptance. He then usually rounded it off with a joke.
He was characterized by buoyancy and wisdom of life.

He had in his home a small study, where he created his works: not only dealing
with scientific material on computer science and technological innovations, but
also revealing his artistic interests. He painted. Mainly landscapes which reflected
the beauty of nature he saw. His pictures were full of life and peculiar charm,
as well as bowing down to the beauty of nature. He reflected his creative vision
of the world also through abstract pieces of art, which were rich in clear, lively
colours and content, often making use of combinations of circular techniques. He
also wrote poetry.



Zdzis�law Pawlak: Man, Creator and Innovator of Computer Sciences 7

4. The years of Zdzis�law Pawlak’s life can be described as a series of inten-
sive creative explorations intended to work out positive forms of scientific and
organizational progress, as well as modes of self-realization. His artistic and cog-
nitive passion, his humbleness and reaching beyond the frames of temporariness
by taking up intellectual challenges, creation of space in which many entrants to
computer science were able to successfully develop scientifically and implement
their research projects, can be truly astonishing.

Zdzis�law Pawlak is multidimensional person – a creator-theoretician and
practician, a model of fulfilled humanity. Meeting such a man must be signifi-
cant and no wonder that it yielded numerous achievements of his co-workers and
students in the form of a host of scientific publications.

I will still remember him as a man of great stature, creative, worthy of admi-
ration for his activity, for revealing his intellectual potential; a warm-hearted,
sociable man, friendly to people, a modest scholar, sensitive to beauty and curi-
ous of the world and open to it.

To me Zdzis�law Pawlak remains a man of realized and creative being, lasting
in the living memory of new generations.

Now, I would like to present to you some of Zdzis�law Pawlak’s paintings from
the family archives of his daughter, Ma�lgorzata Dorota and his son-in-law Janusz
Rybnik.
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Abstract. Many artificial intelligence (AI) theoretical models are
inspired by human/natural/social intelligence mechanisms. Three main
schools of artificial intelligence have been formed, that is, symbolism, con-
nectionism and behaviorism. Cognitive computing is one of the key fields
of AI. It is a critical task for AI researchers to develop advanced cognitive
computing models. Cognitive computing is the third and the most trans-
formational phase in computing’s evolution, after the Tabulating Era and
Programming Era. Inspired by human’s granularity thinking based prob-
lem solving mechanism and the cognition law of “global precedence”, a
data-driven granular cognitive computing model (DGCC) is proposed in
this paper. It integrates two contradictory mechanisms, namely, human’s
cognition mechanism of “global precedence” which is a cognition process
of “from coarser to finer” and the information processing mechanism of
machine learning systems which is “from finer to coarser”. According
to DGCC, deep learning is taken as a combination of symbolism and
connectionism, and named hierarchical structuralism in this paper.

Keywords: Granular cognitive computing · Cognitive computing ·
Granular computing · Data-driven · Hierarchical structuralism · Arti-
ficial intelligence · DGCC

1 Introduction

Artificial intelligence (AI) was born at a conference at Dartmouth College in
1956. Since then, many intelligent computing models with inspiration of various
human/natural/social intelligence mechanisms have been developed. Three main
schools of artificial intelligence (symbolism, connectionism and behaviorism) are
formed.

In the middle 1950s, AI researchers began to explore the possibility that
human intelligence could be reduced to symbol manipulation. It is the symbol-
ism of AI. Newell and Simon introduced the physical symbol system hypothesis
in 1976 [38]. Feigenbaum introduced expert systems [23]. The connectionism of
AI was established by McClelland and Rumelhart in the 1980s [36]. It largely
resulted from various dissatisfactions with the symbolism of AI. It models mental
or behavioral phenomena as the emergent processes of interconnected networks
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 13–24, 2017.
DOI: 10.1007/978-3-319-60837-2 2



14 G. Wang

Fig. 1. Triangular structure of DGCC

of simple units. A lot of artificial neural network models were developed, for
example, BP neural network [17], Hopfield neural network [22], Kohonen self-
organizing maps [27], Boltzmann machine [1], radial basis function network [32],
et al. In the behaviorism of AI, “Perception-action” model is used, which con-
siders that intelligence depends on the perception and behavior [39]. In 1988,
Brooks developed the Hexapod Walking Robot, which was composed of 150
sensors and 23 actuators [6].

In the recent 20 years, AI has more and more great achievements. Deep
Blue became the first computer chess-playing system to beat Garry Kasparov, a
reigning world chess champion, in 1997. Watson defeated two greatest Jeopardy
champions, Brad Rutter and Ken Jennings in 2011. In 2016, AlphaGo defeated
Sedol Lee, a professional Go player. The development of AI has been accompa-
nied with the development of computer science in the past 60 years. Kelly intro-
duced the three phases in computing’s evolution: Tabulating Era, Programming
Era, and Cognitive Era [26]. AI is entering the cognitive era too.

A data-driven granular cognitive computing model (DGCC) is proposed in
this paper. Its triangular structure is shown in Fig. 1. It integrates the tradi-
tional data-driven bottom-up information computing mechanism of machine
learning/data mining systems, and the top-down “global precedence” law of
human cognition [8,16].

Deep learning [20,21,29] has great advances in machine learning and percep-
tion in recent 10 years. According to DGCC, the intelligence learning mechanism
of deep learning is a new artificial intelligence mechanism called hierarchical
structuralism in this paper.

2 Cognitive Computing

Cognitive science [33,40] includes research on intelligence and behavior, espe-
cially focusing on how information is represented, processed, and transformed
within nervous systems and machines. Cognitive computing aims to develop a
coherent, unified, universal mechanism inspired by the mind’s capabilities [34].
Cognitive computing is based on the scientific disciplines of artificial intelli-
gence and signal processing. Many intelligent computing models and machine
learning models have been developed to address complex real-world problems
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inspired by some specific intelligence observation of brain/mind law, biological
law, natural law, and social law. Fuzzy logic enables a computer to understand
natural language and reason in a similar way to human being [51]. Artificial
neural networks learn experiential data by operating like the biological/human
brain [1,17,22,27,32]. Evolutionary computing is based on the process of nat-
ural selection and evolution [11]. Swarm intelligence is inspired by biological
systems [5]. Artificial immune systems are inspired by theoretical immunology
and observed immune functions, principles and models [10]. Granular computing
mimics a way of thinking that relies on the human ability to perceive the real
world under various levels of granularity [47,52]. Some researchers are trying to
design a unified computational theory of the mind, and a set of mechanisms for
all cognitive behaviors [34]. Cognitive-based systems could build knowledge and
learn, understand natural language, and reason and interact more naturally with
human beings than traditional systems [2].

3 Granular Computing

Granular computing has emerged as a quick growing intelligent computing par-
adigm in the domain of cognitive intelligence and artificial intelligence [47]. It is
often regarded as an umbrella term to cover theories, methodologies, techniques,
and tools that make use of granules in complex problem solving [48]. Bargiela and
Pedrycz consider granular computing as a conceptual and algorithmic platform
for analyzing and designing human-centric intelligent systems [3]. Zadeh consid-
ers granular computing as a basis for computing with words [51]. Skowron uses
rough approximations to model syntax, semantics, and operations of information
granules [25]. Multilevel granulation structures could be induced by hierarchies of
the universe and neighborhood systems. Zhang proposes a quotient space theory
for problem solving inspired by the human thinking ability of perceiving the real
world under various levels of granularity in order to abstract and consider only
those things that serve a specific interest and switching among different granu-
larities [52]. Formal concept analysis could be adopted to automatically derive
ontology from a set of objects [45]. The granular structure of concept lattices
in formal concept analysis is useful for knowledge reduction [9,47]. Yao views
granular computing as a complementary and dependent triangle shown in Fig. 2,
which integrates three important perspectives [49,50]. Wang proposes a bidirec-
tional cognitive computing model (BCC) based on a qualitative and quantitative
mapping model for expressing and processing of uncertain concepts [31]. It uses 3
parameters (expected value, entropy, hyper entropy) to describe the intension of
a concept, while a set of samples to describe its extension. A multiple granular-
ity concept generation model was developed for generating hierarchical concept
trees as shown in Fig. 3 [31]. Xu and Wang develop an adaptive hierarchical
clustering approach to generate a hierarchical tree as shown in Fig. 4 [46].
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Fig. 2. GrC triangle Fig. 3. Hierarchical concept tree

Fig. 4. Hierarchical clustering

4 Data-driven Granular Cognitive Computing

In classical intelligent information systems, original data is collected from envi-
ronment at first, useful information is extracted through analyzing the input data
then, and it is used to solve problems at last. In traditional machine learning,
data mining and knowledge discovery models, knowledge is always transformed
(extracted) from data. It is a unidirectional transformation from finer granularity
to coarser granularity as shown in Fig. 5.

There is a human cognition law called “global precedence” [7,8,16]. In
Fig. 6(a) [16,35], there are 4 large characters (the global level) made out of 2
small characters (the local level). People always recognize the large characters
in the global level at first and then the small characters in the local level. It
is easy to draw and recognize a people, as shown in Fig. 6(b), through his/her
caricature, which has just a few lines, without analyzing detailed pixels. It shows
the cognition law of the information processing in human visual perception. It
is a process from coarser to finer.
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Fig. 5. Unidirectional transformation from finer to coarser

Fig. 6. Human cognition: from coarser to finer

There is a contradiction between the unidirectional transformation mech-
anism “from finer granularity to coarser granularity” of traditional intelli-
gent information systems with the global precedence law of human cognition.
A data-driven granular cognitive computing model (DGCC) is proposed to inte-
grate them. Its triangular structure is shown in Fig. 1. Computation emphasizes
the data science which includes all efficient computing models and methods for
processing big data; cognition emphasizes the smart understanding of big data
and the intelligent interaction between users and information systems; granu-
lation emphasizes the multiple granularity thinking and modeling for dealing
with big data. Computation, cognition and granulation are all implemented in
a data-driven manner. Wang developed a general multiple granularity structure
for DGCC as shown in Fig. 7 [44]. DGCC has the following key features.

– In DGCC, data is considered to be knowledge in the lowest granularity level,
and knowledge is considered to be the abstraction of data in different granu-
larity layers.
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– There could be relationship both between nodes (concepts) in a same granu-
larity layer, and between nodes (concepts) in different layers.

– Nodes in different granularity layers could take action jointly and simultane-
ously in a parallel way, while not just sequentially.

Fig. 7. A general multiple granularity structure for DGCC

There are many theoretical issues to be studied for implementing a DGCC
model.

(1) Multiple granularity representation of data, information and knowledge.
As shown in Fig. 7, data is in the bottom layer, information in the middle

layers, while knowledge in the high layers. In DGCC, data is considered to be
the knowledge represented in the lowest granularity layer. In other words, data
is viewed as the extension of concepts (knowledge in a higher granularity layer),
while a concept is viewed as the intension (abstraction) of some data. The idea of
taking data as a format for encoding knowledge was introduced in our early work
about domain-oriented data-driven data mining (3DM) [43]. Data, information
and knowledge are encoded in a hierarchical multiple granularity space together.
A general multiple granularity structure needs to be set up for expressing data,
information and knowledge.

(2) Integration of the human cognition of “from coarser to finer” and the
information processing of “from finer to coarser”.

In DGCC, there are two kinds of transformation operators, namely,
upward operators and downward operators. An upward operator transforms the
data/information/knowledge in a low granularity layer to a high granularity
layer, while a downward operator transforms the data/information/knowledge
in a high granularity layer to a low granularity layer. Downward operators mimic
the human cognition of “from coarser to finer”, while upward operators mimic
the information processing of “from finer to coarser”.

(3) Transformation of the uncertainty of big data in a multiple granularity
space.
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Generally speaking, concepts (information and knowledge) in a higher gran-
ularity layer would be more uncertain than the ones in a lower granularity layer.
A concept in a higher granularity layer is the abstraction of some objects (data
or concepts in a lower granularity layer). Exceptionally, some concepts in a lower
granularity layer could also be more certain than the ones in a higher granularity
layer, since there is more detailed information in a lower layer.

(4) Multiple granularity joint computing model and problem solving
mechanism.

Data, information and knowledge are encoded in a multiple granularity space
together. They could be used in problem solving simultaneously in a parallel way.
As shown in Fig. 8, decisions in a manufacturing industry group are being made
at several different layers simultaneously every day. Decisions in different layers
might be either dependent or independent. Mechanisms for joint computing and
decision making in a multiple granularity space is required.

Fig. 8. Joint decision making in a multiple granularity space

(5) Dynamical evolution mechanism in a multiple granularity knowledge
space.

Most real life systems are dynamical. The data, information and knowledge
of an intelligent information system would also be dynamical, while not static.
Dynamic evolution mechanisms need to be developed to deal with the dynamic
data, information and knowledge in a multiple granularity knowledge space.

(6) Affective progressive variable granularity computing method.
Usually, coarser answers could be generated in a higher granularity layer

with less time cost, while finer answers in a lower granularity layer with more
time cost. Affective progressive variable granularity computing method should be
developed. Some kinds of coarser answers are generated in a higher granularity
layer at first, and more exact answers will be available in lower granularity layers
later.

(7) Calculation goes ahead of some perception.
In some real life applications, not all input information (data) is available

simultaneously in the beginning. It would be better to make a draft decision
according to some partial inputs available at first, while not wait for all inputs.
In some problem solving tasks, we do not need all inputs. In such cases, in
order to take efficient actions, an answer (decision) in a lower granularity layer
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could be generated based on partial inputs at first, and then an improved answer
(decision) could be generated in a higher granularity layer after more inputs are
available. A decision (answer) will be generated according to partial inputs in a
lower granularity layer if it is impossible to have all inputs.

(8) Distributed multiple granularity machine learning method.
Since data, information and knowledge are encoded in a multiple granularity

space together, a parallel and distributed learning process would be possible. It
is not needed to learn layer by layer.

(9) Multiple granularity mechanism of associative memory with forgetting.
The information storage mechanism of computers is a mechanical one. Infor-

mation (data, knowledge) could be either stored in a memory system or not. It
will be unavailable after being removed. However, there is an association mecha-
nism in human brain. The bidirectional cognitive computing model in [34] might
be used to implement such an association mechanism of human brain. Upward
operators could simulate a forgetting process through transforming information
in a lower granularity layer to some abstracted information in a higher granu-
larity layer, while downward operators could simulate an associating (recalling)
process through transforming information in a higher granularity layer to some
detailed information in a lower granularity layer.

5 Hierarchical Structuralism: A New Mechanism for
Artificial Intelligence

Various deep learning architectures like deep neural networks [4,37], convolu-
tional deep neural networks [30], deep belief networks [20] and recurrent neural
networks [14] have been applied in many fields such as image recognition [28],
speech recognition [12], et al., successfully. Deep Learning architecture built from
artificial neural networks (ANN) could date back to the Neocognitron in 1980
[13]. The challenge of ANN study is to train a network with multiple layers. In
1989, LeCun applied the standard BP algorithm to a deep neural network with
the purpose of recognizing handwritten ZIP codes [30]. In 1995, Hinton trained
a network containing six fully connected layers and several hundred hidden units
using the wake-sleep algorithm [19]. However, the time cost was too high, making
it impractical for general applications.

It is always very difficult and time consuming to train a traditional ANN with
multiple layers. The inner structure of a traditional ANN is always considered as
a black box. Thus, there is no observable, understandable structure or feature in
a trained network. The more hidden layers an ANN has, the more difficult and
time cost to train it. This is the reason that almost all ANN researchers usually
used networks with only 3 layers before deep learning was developed.

In 2006, Hinton effectively pre-trained a many-layered feed forward neural
network one layer at a time, treated each layer in turn as an unsupervised
restricted Boltzmann machine, and then fine-tuned it using supervised back
propagation [18]. It has become part of many state-of-the-art systems in var-
ious disciplines in recent years. Deep learning is a branch of machine learning
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based on a set of algorithms attempting to model high-level abstractions in data
by using a deep graph with multiple processing layers of linear or non-linear
transformations [15].

In fact, there were some ANN researchers who had also implemented such
ideas in their many-layered neural networks in 1990s. Wang developed a neuro-
fuzzy network (FCN) for bucket motion control with 9 layers in 1992 [41]. As
shown in Fig. 9(a), it is composed of 3 structured sub networks. Jang developed
an adaptive-network-based fuzzy inference system (ANFIS) in 1993 [24], which
is a neural network with 5 layers as shown in Fig. 9(b). Wang developed a triple-
valued or multiple-valued logic neural network (TMLNN) in 1996 [42]. As shown
in Fig. 9(c), each neuron of TMLNN is a triple-valued or multiple-valued logic
neuron. A TMLNN with 5 layers could implement any logic function like XOR
(Exclusive OR).

Fig. 9. Many-layered neural networks. (a) FCN; (b) ANFIS; (c) TMLNN for XOR

It is easy to train an FCN, ANFIS and TMLNN with a low time cost since
they have clear logical structures. Unfortunately, both computation power and
data were very limited in 1990s. It was impossible to use them to solve large
scale complex real life problems at that time.

From the above discussion, it could be found that FCN, ANFIS and TMLNN
have the same idea of deep learning. A concept in a higher layer is learned from
the ones in a lower layer. It is a kind of multi-granularity representation structure
discussed in Sect. 4. The inner structure of these multi-level ANN models is
not a black box. Neurons in each layer have distinct logic meaning. The links
between neurons correspond to their logic relationship. This kind of ANNs could
be considered as a kind of logic reasoning networks of symbolism systems. It is a
special case of DGCC, and called hierarchical structuralism. It has the following
HD3 characteristics.

– Hierarchical. The knowledge and information are encoded in a hierarchical
system. The inner structure of a hierarchical system is understandable.
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– Distributed. The knowledge and information are encoded in a distributed
manner.

– Data-driven and training based. It is set up based on training in a data-driven
manner.

– Dynamical. The inner structure of a hierarchical system could be dynamically
adjusted in an adaptive and evolutionary way.

6 Conclusion

Inspired by human’s granularity thinking based problem solving mechanism and
the cognition law of “global precedence”, a data-driven granular cognitive com-
puting model (DGCC) is proposed. It integrates two contradictory mechanisms,
human’s cognition mechanism of “global precedence” which is a cognition process
of “from coarser to finer” and the “from finer to coarser” machine learning mech-
anism. It is a multiple granularity representation of data, information and knowl-
edge. It could implement multiple granularity joint computing and problem solv-
ing, simulate the dynamical knowledge evolution. Both computing mechanisms
of progressive variable granularity computation and calculation going ahead of
some perception could be realized. Multiple granularity mechanism of associa-
tive memory with forgetting could also be implemented in DGCC. A hierarchical
structuralism for artificial intelligence is proposed based on DGCC, which is a
combination of symbolism and connectionism.
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Abstract. Recent advancement in the area of medical imaging produces
a huge amount of image data. Automatic extraction of meaningful infor-
mation from these data has become necessary. In this regard, different
image processing techniques provide efficient tools to extract and inter-
pret meaningful information from the medical images, which, in turn,
provide valuable directions for medical diagnosis. One of the major prob-
lems in real-life medical image data analysis is uncertainty. Among other
soft computing techniques, rough sets provide a powerful tool to handle
uncertainties, vagueness, and incompleteness associated with data, while
fuzzy set and probabilistic paradigm serve as analytical tools for dealing
with uncertainty that arises due to the overlapping characteristics and/or
randomness in data. Hence, they can be integrated judiciously to develop
efficient algorithms for automatic analysis of medical image data. In this
regard, the paper presents a brief review on recent advances of rough set
based hybrid intelligent approaches for medical image analysis.

Keywords: Rough sets · Medical imaging · Hybrid intelligent systems

1 Introduction

Medical image analysis plays an important role in improving public health, by
introducing a number of complementary diagnostic tools such as x-ray computer
tomography, magnetic resonance imaging, position emission tomography, and so
on. A huge amount of medical imaging data has been generated due to the
improvement in the area of medical imaging. However, the manual extraction
of meaningful information from these huge data has become an insurmount-
able problem. In this regard, several automatic image analysis tools are being
developed to process these medical image data for diagnostic and treatment
purposes [31].

In recent years, there has been a growing interest towards the realization of
computer aided diagnostic systems for the analysis of medical images. Results
produced by these techniques can be used to support the scientists’ man-
ual/subjective analysis, leading to test results being more reliable and consistent
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across laboratories. In this background, there is a growing interest in both sci-
entific and industrial societies for automatic medical image pattern analysis due
to the following benefits:

– reducing high labor costs;
– increasing the reliability;
– avoiding ambiguous results caused by subjective analysis;
– providing more efficient analysis report; and
– increasing the test repeatability.

Pattern recognition and image processing techniques are widely used in the
field of medicine for the development of computer aided diagnostic system. Such
systems may support the physician in many ways: they can be adopted as a
second reader, thus augmenting the physician’s capabilities and reducing errors;
they allow to perform a pre-selection of the cases to be examined, enabling the
physician to focus his/her attention only on the most relevant cases, making it
easier to carry out mass screening campaigns; they may aid the physician while
he/she carries out the diagnosis; finally, they can be used as a tool for training
and education of specialized medical personnel. These issues can be addressed
by contributing to different aspects of the analysis of medical images such as
cell or tumor detection, image segmentation, intensity classification, and texture
pattern recognition [13].

In the analysis of medical images for computer-aided diagnosis and therapy,
segmentation is often required as a preliminary stage. However, medical image
segmentation is a complex and challenging task due to intrinsic nature of the
images. For example, the brain has a particularly complicated structure and
its precise segmentation is very important for detecting tumors, edema, and
necrotic tissues, in order to prescribe appropriate therapy [31]. Conventionally,
the medical images are interpreted visually and qualitatively by radiologists.
Advanced research requires quantitative information, such as the size of the
brain ventricles after a traumatic brain injury or the relative volume of ventricles
to brain. Fully automatic methods sometimes fail, producing incorrect results
and requiring the intervention of a human operator. This is often true due to
restrictions imposed by image acquisition, pathology and biological variation.
So, it is important to have a faithful method to measure various structures in
the brain. One of such methods is the segmentation of images to isolate objects
and regions of interest.

One of the major problems in real-life medical image data analysis is uncer-
tainty. Some of the sources of this uncertainty include incompleteness and vague-
ness in tissue class definition. The theory of rough sets [22] can deal with uncer-
tainty, vagueness, and incompleteness successfully. One of the key advantages
of using rough set theory is that it is capable of expressing vagueness, not by
means of membership, like fuzzy sets, but by employing a boundary region of a
set. If the boundary region of a set is empty, the set is crisp; otherwise the set
is rough (inexact). Nonempty boundary region of a set denotes that the present
knowledge about the set is not sufficient to define the set precisely. The the-
ory of rough set offers reasonable structures to model overlapping boundaries
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of image classes depending on some domain knowledge; and hence, it has been
widely used in image segmentation tasks. In this regard, the paper presents a
brief review on existing and recent advances of rough set based hybrid intelligent
approaches for medical image analysis.

2 Image Analysis Using Rough Sets

The rough set theory has been hybridized with other techniques of computa-
tional intelligence such as neural networks, support vector machines, fuzzy sets,
wavelets, mathematical morphology, Bayesian inference, and probabilistic mod-
els for image segmentation [5,6]. A method for image segmentation, based on
rough set theory and neural networks, is proposed in [9]. Sinha and Laplante [30]
developed a method to detect binary objects using rough sets by constructing
a gray-scaled (or, fuzzy) template for correlation-based matching. Pal et al. [21]
demonstrated the application of rough sets and granular computing for object
extraction from gray scale images. They described different object regions as
rough sets with upper and lower approximations to handle the uncertainty due
to overlapping class boundaries. Petrosino and Salvi [23] presented a multi-scale
method, based on the notion of rough-fuzzy sets, incorporating two models of
uncertainty, namely, vagueness and coarseness for multi-class image segmenta-
tion. Borkowski and Peters [4] introduced an approach for matching 2D image
segments using genetic algorithms and approximation spaces.

The segmentation of color images using the concept of histon, based on
rough set theory, is presented in [18,19]. An integration of rough set theoretic
knowledge extraction, expectation-maximization algorithm, and minimal span-
ning tree clustering is described in [20] to solve the problem of segmentation
of multispectral satellite images. Sen and Pal [29] described the application of
rough set theory and its certain generalizations for quantifying ambiguities in
images and demonstrated the performance using image processing operations
such as segmentation, edge detection, and enhancement evaluation.

A hybrid approach to MR image segmentation, using unsupervised cluster-
ing and the rules derived from approximate decision reducts, has been proposed
in [32]. Widz et al. [35] introduced an automated multispectral MR image seg-
mentation technique based on approximate reducts derived from the theory of
rough sets. The theory of rough sets has also been employed to automatically
identify partial volume effects from image voxels for segmentation of MR images
[33]. Widz and Śl ↪ezak utilized a classification approach for MR image segmen-
tation based on the attribute reduction, derived from the data mining paradigm
of rough set theory [34]. Hirano and Tsumoto [7,8] developed a medical image
segmentation method based on rough set theory, where the region of interest
is approximated using positive, boundary, and negative regions, depending on
multiple types of expert knowledge. Mao et al. [17] introduced the rough set
reasoning into the fuzzy Hopfield model for segmentation of multispectral MR
images. The rough-fuzzy clustering algorithms, introduced in [10–14], have been
shown to yield significantly more accurate results compared to fuzzy clustering
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in image segmentation tasks. It can avoid the noise sensitivity problem of fuzzy
clustering based segmentation algorithms. The rough-fuzzy clustering algorithm
has been used in [12] for segmentation of brain MR images.

3 Recent Advances of Rough Sets in Medical Imaging

This section presents some recent developments in the areas of medical imaging,
based on the theory of rough sets. The rough set based hybrid intelligent systems,
as depicted in Fig. 1, have been successfully applied to address several important
problems related to medical imaging as follows:

1. Skull stripping for brain MR volumes [15,25];
2. Correction of bias field or intensity inhomogeneity from brain MR images [1];
3. Introduction of new probability distribution for tissue class modeling [2,3];
4. Segmentation of healthy brain MR volumes [27];
5. Detection of brain tumor from MR volumes [16];
6. Segmentation of HEp-2 cell IIF images [26,28].

Each of these problems is briefly described next one by one.

Fig. 1. Some applications of rough set based intelligent systems in medical imaging
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3.1 Skull Stripping for 3-D Brain MR Images

The skull stripping is an important area of study in brain image processing
applications. It acts as preliminary step in numerous medical applications as
it increases the speed and accuracy of diagnosis in manifold. It removes non-
cerebral tissues like skull, scalp, and dura from brain volumes. In this regard,
a simple skull stripping algorithm has been described in [15,25], which is based
on brain anatomy and image intensity characteristics. The method is unsuper-
vised and knowledge based. It uses adaptive intensity thresholding followed by
morphological operations, for increased robustness, on brain MR volumes. The
threshold value is adaptively calculated based on the knowledge of intensity
distribution in brain MR volumes.

3.2 Bias Field Correction in MR Images

One of the challenging tasks for MR image analysis is to remove the intensity
inhomogeneity artifact present in MR images, which often degrades the per-
formance of an automatic image analysis technique. In this regard, the theory
of rough sets has been used in [1] for bias field correction in MR images. The
method judiciously integrates the merits of rough sets and contraharmonic mean.
While the contraharmonic mean is used in low-pass averaging filter to estimate
the bias field in multiplicative model, the concept of lower approximation and
boundary region of rough sets deals with vagueness and incompleteness in filter
structure definition. A theoretical analysis has been presented in [1] to justify
the use of both rough sets and contraharmonic mean for bias field estimation.
The integration enables the algorithm to estimate near optimum bias field.

3.3 New Probability Distribution for Tissue Class Modeling

Image segmentation is an essential prerequisite for any automatic medical image
analysis technique. It is useful for clinical analysis of medical images to visualize
human tissues as manual segmentation is labor intensive, time consuming, and
difficult task. The finite Gaussian mixture model is one of the popular models for
parametric model based image segmentation. However, the normality assump-
tion of this model induces certain limitations as a single representative value is
considered to represent each class. In this regard, a new probability distribution,
called stomped normal distribution, has been introduced in [2,3] to model each
tissue class. The intensity distribution of a tissue class is represented by the new
distribution, where each class consists of a crisp lower approximation and a prob-
abilistic boundary region. The intensity distribution of an image is modeled as a
mixture of finite number of new distributions. A new approach for segmentation
of medical images has been described, which integrates judiciously the concept of
rough sets and the merit of the new distribution. The method incorporates both
the expectation-maximization and hidden Markov random field frameworks to
provide an accurate and robust segmentation.
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3.4 Segmentation of Brain MR Volumes

The clustering in fuzzy approximation spaces provides an effective mean
for image segmentation by handling overlapping partitions and uncertainty
in cluster definition. However, the existing rough-fuzzy clustering algorithms
[10,11,13,14] assign pixels to the clusters depending on the distribution of pix-
els, without considering their spatial distribution in the image. In this regard,
a novel segmentation algorithm has been introduced in [27,28] for brain MR
volumes, integrating judiciously local contextual information and the merits of
rough-fuzzy clustering, which are very much effective for image segmentation.
The algorithm assigns the label of a pixel depending on the labels of its local
neighbors. The effect of immediate neighbors acts as a regularizer. Each clus-
ter in this approach consists of a cluster representative or prototype, a lower
approximation, and a boundary region. The lower approximation of each cluster
is possibilistic in nature, while the boundary region is probabilistic or fuzzy. The
cluster prototype depends on the lower approximation, boundary region, and
neighborhood regularizer.

3.5 Brain Tumor Detection

One of the important problems in medical diagnosis is the segmentation and
detection of brain tumor in MR images. The accurate estimation of brain tumor
size is important for treatment planning and therapy evaluation. In this regard,
Maji and Roy described a method in [16] for segmentation of brain tumor from
MR images. It integrates judiciously the merits of rough-fuzzy computing and
multiresolution image analysis technique. To extract the scale-space feature vec-
tor for each pixel of brain region, the dyadic wavelet analysis has been used,
while an unsupervised feature selection method, based on maximum relevance-
maximum significance criterion, has been used to select relevant and significant
textural features for brain tumor segmentation [15]. To address the uncertainty
problem of brain MR image segmentation, the brain tumor detection method
uses the robust rough-fuzzy clustering [14]. After the segmentation process,
asymmetricity is analyzed by using the Zernike moments of each of the tissues
segmented in the brain to identify the tumor. Finally, the location of the tumor
is searched by a region growing algorithm based on the notion of rough sets [24].

3.6 Segmentation of HEp-2 Cell IIF Images

Human epithelial type-2 (HEp-2) cell is currently the most recommended sub-
strate in indirect immunofluorescence (IIF) tests to diagnose various connective
tissue disorders. The IIF test identifies the presence of antinuclear antibody
(ANA) in patient serum. However, the proper detection of HEp-2 cells from the
IIF images is an important prerequisite for the recognition of staining patterns
of ANAs. The characteristics of HEp-2 cell images, due to fluorescence intensity,
make the segmentation process more challenging. Recently, rough-fuzzy cluster-
ing algorithms have been shown to provide significant results for HEp-2 cell IIF
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image segmentation by handling different uncertainties present in the images
[26]. But, the neighborhood information is completely ignored in these algo-
rithms. However, the spatial information is useful when the image is distorted by
different imaging artifacts. In this regard, a rough-fuzzy segmentation algorithm
has been introduced in [28], by incorporating the neighborhood information into
rough-fuzzy clustering algorithm.
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Abstract. This paper provides an overview of a user-friendly NPS-
based Recommender System for driving business revenue. This hier-
archically designed recommender system for improving NPS of clients
is driven mainly by action rules and meta-actions. The paper presents
main techniques used to build the data-driven system, including data
mining and machine learning techniques, such as hierarchical clustering,
action rules and meta actions, as well as visualization design. The system
implements domain-specific sentiment analysis performed on comments
collected within telephone surveys with end customers. Advanced natural
language processing techniques are used including text parsing, depen-
dency analysis, aspect-based sentiment analysis, text summarization and
visualization.

Keywords: NPS · Recommender system · Actionable knowledge min-
ing · Semantic similarity · Sentiment analysis · Visualization

1 Introduction

The main idea behind this system is based on today’s standard metric for mea-
suring customer satisfaction called Net Promoter Score (NPS)1. It was designed
to evaluate and improve the performance of a company’s growth engine. The NPS
metric is a concept based on the assumption that each customer can be labeled
as either Promoter, Passive or Detractor. Promoters are loyal enthusiasts who
are buying from a company and recommend others to do so. Passives are satis-
fied but unenthusiastic customers who are open to offers from competitors, while

1 NPS R©, Net Promoter R© and Net Promoter R© Score are registered trademarks of
Satmetrix Systems, Inc., Bain and Company and Fred Reichheld.
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detractors are the least loyal customers who may urge others to avoid that com-
pany. The total Net Promoter Score is computed as %Promoters - %Detractors,
where percentage is understood as the total number of promoters/detractors
divided by the total number of surveys. The goal here is to maximize NPS,
which in practice is a difficult task to achieve especially when a company has
already quite high NPS. Nowadays most businesses, whether small, medium-
sized or enterprise-level organizations with hundreds or thousands of locations
collect their customers’ feedback on products or services.

The data we worked on was collected by telephone surveys on customer’s sat-
isfaction. There are about 400,000 records in the dataset collected in the years
2011–2016, and the data is continued to be collected. The dataset represents
questionnaires sent to a randomly chosen group of customers and consists of
features related to customer’s details (localization, type of work done, invoice,
etc.), survey details (date, survey type, etc.), and benchmark questions on which
service is being evaluated. Benchmarks include numerical scores (0–10) on differ-
ent aspects of service. For example, if the job is done correctly, are you satisfied
with the job, likelihood to refer, etc. All the responses from customers are saved
into a database with each question (benchmark) as one feature in the dataset.
The entire dataset consists of 38 companies, located in different sites across the
United States as well as several parts of Canada. Based on overall benchmark
scores, the Net Promoter Status (Promoter, Passive or Detractor) is determined
for a client, which is a decision attribute in the dataset.

2 Semantic Similarity

The dataset was divided into single-client subsets (38 in total). Addi-
tional attributes were developed, including spacial and temporal attributes.
More detailed description of data pre-processing techniques is provided in
Kuang [1].

In the first place, classification experiments were conducted for each sin-
gle dataset in order to determine the predictive capability of standard classifier

Fig. 1. Javascript-based visualization for depicting the results (accuracy, coverage and
confusion matrix) of classification experiments on service data.
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model and the same ability to discern and recognize different types of customers
(promoters, passives and detractors). It was discovered that the classifier’s accu-
racy/coverage was high for the category “Promoters”, but low for the two other
categories “Passives” and “Detractors”.

We have used RSES (Rough Set Exploration System) to conduct initial
experiments. The results of the classification experiments - accuracy, coverage
and confusion matrix, for Service data for each client were implemented into a
visualization system. The view for a sample client is shown in Fig. 1. The con-
fusion matrix updates for a chosen year is displayed right after placing a mouse
over the corresponding bar on the first chart.

Following the classification experiments, the notion of semantic similarity
was defined [1]. Assuming that RC[1] and RC[2] are the sets of classification
rules extracted from the single-client datasets (of clients C1 and C2 ), and also:

RC[1] = RC[1, P romoter] ∪ RC[1, Passive] ∪ RC[1,Detractor], where the
above three sets are collections of classification rules defining correspondingly:
“Promoter”, “Passive” and “Detractor”:
RC[1, P romoter] = {r[1, P romoter, i] : i ∈ IPr}
RC[1, Passive] = {r[1, Passive, i] : i ∈ IPs}
RC[1,Detractor] = {r[1,Detractor, i] : i ∈ IDr}

In a similar way we define:
RC[2] = RC[2, P romoter] ∪ RC[2, Passive] ∪ RC[2,Detractor].
RC[2, P romoter] = {r[2, P romoter, i] : i ∈ JPr}
RC[2, Passive] = {r[2, Passive, i] : i ∈ JPs}
RC[2,Detractor] = {r[2,Detractor, i] : i ∈ JDr}

By C1[1, P romoter, i], C1[1, Passive, i], C1[1,Detractor, i] we mean confi-
dences of corresponding rules in a dataset for client C1.

We define C2[1, P romoter, i], C2[1, Passive, i], C2[1,Detractor, i] as confi-
dences of rules extracted from C1 calculated for C2.

Analogously, C2[2, P romoter, i], C2[2, Passive, i], C2[2,Detractor, i] are
confidences of rules extracted from C2, and C1[2, P romoter, i], C1[2, Passive, i],
C1[2,Detractor, i] are confidences of rules extracted from client C2 calculated
for client C1.

Based on the above, the concept of semantic similarity between clients C1,
C2, denoted by SemSim(C1, C2) was defined as follows:

SemSim(C1, C2) =
∑ {C1[1,Promoter,k]−C2[1,Promoter,k]|k∈IPr}

card(IPr) +
∑ {C1[1,Passive,k]−C2[1,Passive,k]|k∈IPs}

card(IPs) +
∑ {C1[1,Detractor,k]−C2[1,Detractor,k]|k∈IDr}

card(IDr) +
∑ {C2[2,Promoter,k]−C1[2,Promoter,k]|k∈IPr}

card(JPr) +
∑ {C2[2,Passive,k]−C1[2,Passive,k]|k∈IPs}

card(JPs) +
∑ {C2[2,Detractor,k]−C1[2,Detractor,k]|k∈JDr}

card(JDr)

The metric is used to find clients similar to a current client in semantic terms.
It calculates the distance between each pair of clients–the smaller the distance
is, the more similar the clients are. The resulting distance matrix serves as an
input to the hierarchical clustering algorithm. The output of the algorithm is a
structure, called dendrogram.
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3 Hierarchical Agglomerative Method for Improving
NPS

Hierarchical Agglomerative Method for Improving NPS (HAMIS) was proposed
in Kuang et al. [2] as a strategy for improving NPS of a company based on its
local knowledge and knowledge collected from other semantically similar com-
panies operating in the same type of industry. The strategy is based on the
definition of semantic similarity introduced in the previous section. HAMIS is a
dendrogram built by using agglomerative clustering strategy and semantic dis-
tance between clients.

The dendrogram was visualized in our web-based system by means of a node-
link diagram that places leaf nodes of the tree at the same depth (see Fig. 2).

Fig. 2. Javascript-based visualization of the dendrogram showing semantic similarity
between clients in 2015: chosen Client9 with highlighted semantically similar clients
ordered by numbers.

The clients (leaf nodes) are aligned on the right edge, with the clusters (inter-
nal nodes) - to the left. The data shows the hierarchy of client clusters, with the
root node being “All” clients. The visualization facilitates comparing the clients
by means of similarity. The nodes that are semantically closest to the chosen
client are the leaf nodes on the sibling side. The diagram is interactive: after
clicking on the client node, all the semantically similar clients are highlighted
with numbers in parentheses denoting sequence of the most similar clients (with
1 - denoting the first most similar client, 2 - the second similar, etc.), and the
color strength corresponding to the similarity.

The dendrogram was used to construct new “merged” datasets for further
data mining (in particular, action rule mining, described in the next section). The
merged datasets replace a current client’s dataset expanded by adding datasets
of better performing clients who are semantically similar to it. So, besides seman-
tic similarity, NPS efficiency rating is another primary measure considered when
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“merging” two semantically similar clients [2]. As a result of this strategy, the
NPS rating of the newly merged dataset will be higher than, or at least equal
to, the dataset before its extension. This way, we can offer recommendations to
the company with a lower NPS based on the data collected by companies with a
higher NPS assuming that these two are semantically similar (that is, their cus-
tomers understand the concepts of promoter, passive and detractor in a similar
way). The second factor considered in the merging operation, besides the NPS,
is the quality and consistency of the newly merged data. It is checked by means
of F-score calculated for a classifier extracted from the newly merged dataset.
The F-score was chosen for keeping track of datasets quality as it combines two
other important metrics: accuracy and coverage of the classifier. In summary,
three conditions have to be met for the two datasets to be merged:

– merged clients have to be semantically similar within defined threshold;
– NPS of the newly merged dataset must be equal or higher than the original

dataset’s score;
– F-score of the newly merged dataset must be equal or higher then the cur-

rently considered dataset’s score.

If these three conditions are met, the datasets are being merged, and corre-
spondingly the current NPS and F-score are updated as well. Then, the merging
operation check with the next candidate datasets is continued, until the merging
conditions fail or the root of hierarchical dendrogram is reached. By using den-
drogram terminology, the current node is being replaced by the newly updated
resulting node by “climbing up” the dendrogram. The HAMIS keeps expanding
a current client by unionizing it with all the clients satisfying the conditions. The
candidates are checked in a top down order based on their depth in the dendro-
gram: the smaller the depth of a candidate is, the earlier the candidate will be
checked. The detailed algorithm for HAMIS and experiments on example runs
with it are described in [1,2]. An example of expanding datasets of 36 clients
based on Service 2016 data is shown in Fig. 4. Half of the clients were extended
by applying the HAMIS procedure, and a client was extended on average by
about 3 other datasets. It can be observed that generally clients with lower NPS
were extended by a larger number of datasets. It shows that their NPS can be
improved more by using additional knowledge from semantically similar, bet-
ter performing clients. For example, in Fig. 4, Client20 with the worst NPS (of
63%) was extended by 10 other datasets and Client33 with the second worst
NPS (69%) was extended by 11 other datasets. Expanding the original, single-
client datasets was followed by action rule mining–the action rules mined from
the extended datasets are expected to be better in quality and quantity. Rec-
ommender system based on action rules extracted from the extended datasets
can give more promising suggestions for improving clients’ NPS score. The more
extended the datasets, the better recommendations for improving NPS can be
given by the system Fig. 3.



User Friendly NPS-Based Recommender System 39

Fig. 3. Results of running HAMIS procedure on 38 datasets representing clients for
Service survey data from 2016: the number of clients by which a client was extended
and its original NPS.

4 Action Rules

The whole system is built from the knowledge extracted from the preprocessed
dataset in the form of action rules. The knowledge is in actionable format and
collected not only from the customers using certain business, but also from cus-
tomers using semantically similar businesses having a higher NPS score.

Action rule concept was firstly proposed by Ras and Wieczorkowska in [11],
and since then investigated further in application areas such as business, health-
care, music automatic indexing and retrieval. Action rules present a new way
in machine learning domain that solve problems that traditional methods, such
as classification or association rules cannot handle. The purpose is to analyze
data to improve understanding of it and seek specific actions (recommendations)
to enhance the decision-making process. An action shows a way of controlling
or changing some of the attribute values for a given set of objects to achieve
desired results [5]. An action rule is defined [11] as a rule that describes a tran-
sition that may occur within objects from one state to another, with respect to
decision attribute, as defined by the user. Decision attribute is a distinguished
attribute [11], while the rest of the attributes are partitioned into stable and
flexible attributes.

In nomenclature, action rule is defined as a term: [(ω)∧(α → β) ⇒ (Φ → Ψ)],
where ω denotes conjunction of fixed condition attributes often called the header
of the rule, (α → β) are proposed changes in values of flexible features, and
(Φ → Ψ) is an expected change of a decision attribute value (action effect).

So, in our domain, decision attribute is PromoterStatus (with values Pro-
moter, Passive, Detractor). Let us assume that Φ means ‘Detractors’ and Ψ
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means ‘Promoters’. The discovered knowledge would indicate how the values of
flexible attributes need to be changed under the condition specified by stable
attributes so the customers classified as detractors should become promoters.
So, an action rule discovery applied to customer data would suggest a change
in flexible attribute values, such as different benchmarks to help “reclassify” or
“transit” an object (customer) to a different category (Passive or Promoter) and
consequently, obtain better overall customer satisfaction.

An action rule is built from atomic action sets.

Definition 1. Atomic action term is an expression (a, a1 → a2), where a is an
attribute, and a1, a2 ∈ Va, where Va is a domain of attribute a.

If a1 = a2 then attribute a is called stable on a1.

Definition 2. By action sets, we mean the smallest collection of sets such that:

1. If t is an atomic action term, then t is an action set.
2. If t1, t2 are action sets, then t1 ∧ t2 is a candidate action set.
3. If t is a candidate action set and for any two atomic actions (a, a1 → a2),

(b, b1 → b2) contained in t we have a �= b, then t is an action set. Here b is
another attribute (b ∈ A), and b1, b2 ∈ Vb.

Definition 3. By an action rule, we mean any expression r = [t1 ⇒ t2], where
t1 and t2 are action sets.

The interpretation of the action rule r is, that by applying the action set t1,
we would get, as a result, the changes of states in action set t2. So, action rule
suggests the smallest set of necessary actions needed for switching from current
state to another within the states of the decision attribute. We need to extract
these kind of actions, so that we can build an effective recommender system that
provides actionable suggestions for improving a client’s performance.

The first step to extract action rules from the dataset by our recommender
system is to complete the initialization of the mining program by setting up
all the variables. This process consists of selecting stable attributes, flexible
attributes and the decision attribute. We also need to set up the favorable state
and the unfavorable state for the decision attribute, as well as minimum sup-
port of the rule and its minimum confidence. PromoterScore is set as the deci-
sion attribute, with Promoter value to be the target state (most favorable one)
and Detractor the most undesirable state. For the stable attributes, all features
related to the general information about clients and customers are considered;
the final choice of stable attributes includes:

– ClientName - since rules should be client-oriented,
– Division - specific department,
– SurveyType - type of service: field trips, in-shop, parts, etc.
– ChannelType
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Initially, as the flexible attributes, all features denoting numerical benchmark
questions were chosen, as it is believed that representing them areas of ser-
vice/parts can be changed by undertaking certain actions. This set of bench-
marks has been reduced to smaller set of benchmarks, which we can call critical.
We used them for mining action rules. The choice of critical benchmarks was pre-
ceded by an analysis of decision reducts, which are visualized in a user-friendly
interface built for our recommender system.

Fig. 4. Javascript-based visualization supporting an analysis of features related to sur-
vey benchmarks. The color of the cell corresponds to an occurrence of the associated
benchmark in reducts of a corresponding dataset (for a client in a year). (Color figure
online)

According to the definition, reducts are minimal subsets of attributes that
keep the characteristics of the full dataset. In the context of action rule discovery,
an action reduct is a minimal set of attribute values distinguishing a favorable
object from another.

For our domain, decision reducts were extracted using Rough Set Explo-
ration System (RSES). We also kept track of how the importance (or criticality)
of particular benchmarks changed year by year and by client. The resulting
visualization is depicted as a heatmap with colors denoting the importance of
a benchmark (relative frequency of occurrence in decision reducts), rows rep-
resenting years (2011–2015) and columns representing benchmarks occurring in
decision reducts.
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5 Meta Actions and Triggering Mechanism

Our recommender system is driven by action rules and meta-actions to provide
proper suggestions to improve the revenue of companies. Action rules, described
in the previous section, show minimum changes needed for a client to be made
in order to improve its ratings so it can move to the Promoter’s group. Action
rules are extracted from the client’s dataset expanded by HAMIS procedure,
explained in the previous sections.

Meta-actions are the triggers used for activating action rules [4] and making
them effective. The concept of meta-action was initially proposed in Wang et
al. [9] and later defined in Ras [6]. Meta-actions are understood as higher-level
actions. While an action rule is understood as a set of atomic actions that need
to be made for achieving the expected result, meta-actions are the actions that
need to be executed in order to trigger corresponding atomic actions.

For example, the temperature of a patient cannot be lowered if he does not
take a drug used for this purpose - taking the drug would be an example of a
higher-level action which should trigger such a change. The relations between
meta-actions and changes of the attribute values they trigger can be modeled
using either an influence matrix or ontology.

An example of an influence matrix is shown in Table 1 [1]. It describes the
relations between the meta-actions and atomic actions associated with them.
Attribute a denotes stable attribute, b - flexible attribute, and d - decision
attribute. {M1,M2,M3,M4,M5,M6} is a set of meta-actions which hypotheti-
cally triggers action rules. Each row denotes atomic actions that can be invoked
by the set of meta-actions listed in the first column. For example, in the first
row, atomic actions (b1 → b2) and (d1 → d2) can be activated by executing
meta-actions M1, M2 and M3 together.

Table 1. Sample meta-actions influence matrix

a b d

{M1,M2,M3} b1 → b2 d1 → d2

{M1,M3,M4} a2 b2 → b3

{M5} a1 b2 → b1 d2 → d1

{M2,M4} b2 → b3 d1 → d2

{M1,M5,M6} b1 → b3 d1 → d2

In our domain, we assume that one atomic action can be invoked by more
than one meta-action. A set of meta-actions (can be only one) triggers an action
rule that consists of atomic actions covered by these meta-actions. Also, some
action rules can be invoked by more than one set of meta-actions.

If the action rule r = [{(a, a2), (b, b1 → b2)} ⇒ {(d, d1 → d2)}] is to be
triggered, we consider the rule r to be the composition of two association rules
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r1 and r2, where r1 = [{(a, a2), (b, b1)} ⇒ {(d, d1)}] and r2 = [{(a, a2), (b, b2)} ⇒
{(d, d2)}]. The rule r can be triggered by the combination of meta-actions listed
in the first and second row in Table 1, as meta-actions {M1,M2,M3,M4} cover
all required atomic actions: (a, a2), (b, b1 → b2), and (d, d1 → d2) in r. Also, one
set of meta-actions can potentially trigger multiple action rules. For example,
the mentioned meta-action set {M1,M2,M3,M4} triggers not only rule r, but
also another rule, such as [{(a, a2), (b, b2 → b3)} ⇒ {(d, d1 → d2)}], according to
the second and fourth row in Table 1, if such rule was extracted.

The goal is to select such a set of meta-actions which would trigger a larger
number of action rules and the same bring greater effect in terms of NPS improve-
ment. The effect is quantified as following [1]: supposing a set of meta-actions M =
{M1,M2, ...,Mn : n > 0} triggers a set of action rules {r1, r2, ..., rm : m > 0} that
covers objects in a dataset with no overlap. We defined the coverage (support) of
M as the summation of the support of all covered action rules. That is, the total
number of objects that are affected by M in a dataset. The confidence of M is
calculated by averaging the confidence of all covered action rules:

sup(M) =
∑m

i=1 sup(ri)
conf(M) =

∑m
i=1 sup(ri)·conf(ri)∑m

i=1 sup(ri)

The effect of applying M is defined as the product of its support and confi-
dence: (sup(M) ·conf(M)), which is a base for calculating the increment of NPS
rating.

6 Text Mining

Triggers aiming at different action rules are extracted from respectively relevant
comments left by customers in our domain [4]. Text comments are a comple-
mentary part of structured surveys. For example, for a rule described by: r =
[(a, a2)∧(b, b1 → b2)] ⇒ (d, d1 → d2)], where a is a stable attribute, and b is a flex-
ible attribute, the clues for generating meta-actions are in the comments of records
matching the description: [(a; a2) ∧ (b; b1) ∧ (d; d1)] ∨ [(a; a2) ∧ (b; b2) ∧ (d; d2)].

Mining meta-actions consists of four characteristic steps involving sentiment
analysis and text summarization [3]:

1. Identifying opinion sentences and their orientation with localization;
2. Summarizing each opinion sentence using discovered dependency templates;
3. Opinion summarizations based on identified feature words;
4. Generating meta-actions with regard to given suggestions.

The whole process of mining customers’ comments uses sentiment analy-
sis, text summarization and feature identification based on guided folksonomy
(domain specific dictionaries are built). It also generates appropriate sugges-
tions, such as meta-actions, which is important for the purpose of recommender
system.

The schema of the presented aspect-based sentiment mining was inspired by
a process described in [10]. Sentiment analysis is generally defined as analyzing
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people’s opinions, sentiments, evaluations, attitudes, and emotions from written
language. Aspect-based sentiment analysis is based on the idea that an opinion
consists of a sentiment (positive or negative) and a target of the opinion, that is,
a specific aspect or feature of the object. It offers more detailed and fine-grained
analysis than document-level or sentence-level sentiment analysis.

Consequently, the first step in text mining consists of identifying an opinion
sentence, based on the occurrence of an opinion word. A dictionary (list) of
positive and negative words (adjectives) were used for that purpose. Context
(localization) was also taken into account. For example, in the comment “the
charge was too high”, “high” is recognized according to the adjective lists as
neither positive nor negative. However, the comment still presents an insightful
opinion about discontent when it comes to pricing. Therefore, “high” was added
to the list as a negative in the context of pricing.

In the next step, sentences with opinion words identified are shortened into
segments. Feature-opinion pairs are generated based on grammatical dependency
relationships between features and opinion words. The foundation of this step is
the grammatical relations defined by Stanford Typed Dependencies Manual [8]
and generated by Stanford Parser. A dependency relationship describes a gram-
matical relation between a governor word and a dependent word in a sentence.
Given the wide definition of dependency templates (about 50 defined depen-
dencies in [8]), all the necessary relations associated with opinion words can be
identified. On top of it, negation and ‘but’-clauses are identified.

Having extracted segments, feature words are identified using the supervised
pattern mining method (similarly as described in [7]). The Parts-of-Speech tags
(POS) help in the process of recognizing the features.

Opinion summarizations are used in many sentiment analysis works (first in
[10]) to generate a final review summary about the discovery results on feature
and opinions mining and also rank them according to their appearances in the
reviews. In our work, we also focused on removing the redundancy of extracted
segments and clustering segments into different classes. The feature clustering
was based on the pre-defined list of seed words or phrases. To cluster a segment
into the corresponding class, its feature word or the base form of its feature is
checked whether it exists in any list of the seed words.

For the purpose of generating meta-actions, each feature class has been
divided into several subclasses. Each subclass is related to the specific aspect
of that feature. The aspects have been defined based on the domain knowledge.

The last step is generating meta-actions and providing them to the end busi-
ness user along with the comments from which they were mined. The recom-
mendations are divided into positive and negative recommendations. Negative
opinions show the undesirable behaviors that should be fixed, while the positive
segments indicate which areas should be continued.

7 Visualization

For review summarization purposes, often a variety of visualization methods
are deployed in the literature. We have developed an interactive user-friendly
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web-based interface for the recommender system. The interaction was divided
into three basic steps:

1. Selecting the entity (client) the business user would like to analyze (see Fig. 5);
2. Rating feasibility of improvements (drop-down lists in Fig. 6);
3. Exploring the recommended improvement options (bubble chart in Fig. 6) and

comments from raw data related to the chosen option (data table in Fig. 7).

Fig. 5. Javascript-based visualization for depicting clients’ locations and their semantic
neighbors. Also, it serves as an interface for further analysis of a chosen entity. (Color
figure online)

The map in Fig. 5 serves as an interface for further analysis of the cho-
sen client (amongst 38 in total). The current version of the interface allows for
choosing recommendations based on the datasets from the years 2016 or 2015 and
surveys on Service or Parts. The clients are represented as points (dots) placed in
their headquarters’ locations. The size of the dot informs about how many other
clients were added to the original client’s dataset to mine for actionable knowl-
edge (see section on semantic similarity and HAMIS procedure). The connecting
lines show the semantic neighbors. After clicking the client’s dot, it changes color
from blue to red and the corresponding semantic neighbors are highlighted in a
red scale as well. The color scale corresponds to the strength of semantic simi-
larity. Additionally, the number in parentheses denotes the sequence of semantic
similarity to the current client. We have hidden client labels (text next to the
dots) on the grounds of data confidentiality.
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Fig. 6. Javascript-based interactive visualization for exploring recommendations
options and their attractiveness based on chosen feasibility. (Color figure online)

Fig. 7. Javascript-based dynamic data table for exploring raw data comments associ-
ated with the analyzed recommendation option.

The next step of interaction with the business user is exploring the recom-
mendation options. The displayed options correspond to the extracted meta-
actions (see the previous section) mined from text comments and summarized
into aspect categories. The user (business consultant) can assign a feasibility
score to each option based on dialogue with the currently analyzed client. For
some clients some options might be more feasible that the others. For example,
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it might be quite difficult to change pricing, while it might relatively easier to
change technician knowledge (for example, by introducing appropriate training).

The option’s attractiveness depends on both factors: NPS improvement (cal-
culated as described in the previous section based on the action rule and meta
action mining) and feasibility chosen by the user. Each bubble (identified by an
ordering number) corresponds to a different set of improvement options and they
are ordered on the X-axis and the Y-axis according to their attractiveness (see
Fig. 6). The most attractive options lie in the top right corner of the chart. The
attractiveness is also denoted by the color scale - from red scale (unattractive)
to green scale (attractive).

The user can choose the option and analyze it further (see Fig. 7): the high-
lighted bubble shows details on:

– number of actions included in the option;
– the quantified attractiveness (calculated as combination of feasibilities and

NPS impact of single actions in the option);
– the combined overall NPS impact.

Furthermore, the data table shows raw text comments from customers asso-
ciated with the particular areas (aspects), divided into negative and positive
columns (see Fig. 7). Each comment can be investigated further by analyzing
the whole survey and context in which it was expressed, as each comment is
identified with Work Order ID.

8 Future Work

Currently, the system is driven by the knowledge extracted from questionnaires.
Our plan is to make it adaptive to text-only data, as the structured forms of sur-
veys will be replaced by open-ended questionnaires in the future. Another chal-
lenge lies in the system’s efficiency of mining processes and we need to develop
new methods of optimizing them by using distributed environment.

In general, there are many industrial solutions developed in recent years that
are based on aspect-based sentiment analysis and text analytics. However, we
recognized that although a lot of work has been done in the research community
in this area, the problem is still far from being solved. Also, the research focus
has been mainly on electronic products, hotels and restaurants. There are still
novel ideas needed to study different ranges of domains. Domain and context-
dependent sentiments remain to be highly challenging. There is a need to build
integrated systems that try to deal with different problems together in an inter-
active way. As of now, a completely automated and accurate solution is nowhere
in sight. On the other hand, there is still a huge and real demand in industry
for such systems because every business wants to know how customers perceive
their services or products.
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The Multi-purpose Role of the Relational
Approach to Classic and Generalized
Approximation Spaces. A Tutorial
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1 Introduction

Rough Set Theory is inherently connected with relations.
In its classical form, the theory is based on the intuition that objects (enti-

ties, observables) are linked by indiscernibility relations (equivalence relations)
induced by the properties that are fulfilled by the objects.

This approach reflects the more general fact that the world is made of
relations or, otherwise stated, that things and events are sheaves of relations.
Indeed, since inception, classical Rough Set Theory was generalised using arbi-
trary binary relations, other than equivalence relations, and fuzzy relations as
well.

In the tutorial we shall try and reconstruct most of Rough Set Theory on the
basis of a very limited set of operations between relations. This setting makes it
possible to achieve a number of goals, easily:

1. Comparing various approaches and generalisations.
2. Connecting Rough Set Theory and Logical Theories, especially Modal Logics.
3. Straightforwardly deriving the properties of a number of approximation

operators.
4. Setting Rough Set Theory and its generalisations into the framework of pre-

topology and topology.
5. Easily describing functions for computing approximations and functional

dependencies.
6. Expanding the scope of the approximation operators from simple sets to

relations.

Since the proposed set of relational operations are easily implemented by pro-
gramming languages, the tutorial will provide the audience with both a theoret-
ically and practical framework to deal with rough sets.

2 Binary Relations and Their Basic Operations

Let R ⊆ A × B be a binary relation. From now on we shall denote the Boolean
matrix corresponding to a relation R by R.
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 49–57, 2017.
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Definition 1. Let R ⊆ A × B, X ⊆ A and Y ⊆ B,

1. −R = {〈a, b〉 : 〈a, b〉 /∈ R} is called the complement of R.
2. R� = {〈b, a〉 : 〈a, b〉 ∈ R} is called the reverse relation of R.
3. R(X) = {b ∈ B : ∃x(x ∈ X ∧ 〈x, b〉 ∈ R)} is called the left Peirce product of

R and X. Vice-versa, R�(Y ) is called the right Peirce product of R and Y
(or the left Peirce product of R� and Y ).

We call (A,B,R) a relational system. If A = B, then we call (A,A,R) (or
simply (A,R)) a square relational system, SRS.

Definition 2. Let R ⊆ A × B and S ⊆ A′ × B′ be such that |B| = |A′|, where
|...| is the cardinality of a set. Let φ be a bijection between B and A. Then,

R ⊗φ S = {〈x, y〉 ∈ A × B′ : ∃z(〈x, z〉 ∈ R and 〈φ(z), y〉 ∈ S)}.
R ⊗φ S is called the composition of R and S.

Composition is simply the Boolean multiplication of matrices. Thus, to obtain
R ⊗ S we multiply pointwise row i with column j; if the pointwise Boolean
multiplication gives 1 for at least one point, then element at row i and column
j of R ⊗ S is 1. It is 0 otherwise.

If B = A′ then we intend the identity as φ and omit the subscript of ⊗.
Anyway, the bijection φ will be generally understood and omitted.

example 1. Let A = {a, b, c, d}, B = {e, f, g}, A′ = {α, β, γ}, B′ = {δ, ε, θ, μ, ν},
φ(e) = α, φ(f) = β, φ(g) = γ.

R e f g
a 1 1 1
b 0 1 1
c 0 0 1
d 1 0 0

S δ ε θ μ ν
α 1 1 1 0 0
β 0 0 0 1 1
γ 0 1 0 0 1

R ⊗ S δ ε θ μ ν
a 1 1 1 1 1
b 0 1 0 1 1
c 0 1 0 0 1
d 1 1 1 0 0

Definition 3. Let X ⊆ A. Then XC = X × B = {〈x, a〉 : x ∈ X ∧ a ∈ B} is
called the right cylinder of X.

Right cylinders will be used in SRS in order to represent sets in a relational
guise.

Now we can introduce two fundamental operations.

Definition 4. Assume R ⊆ A × B and S ⊆ A′ × B′.

R −→ S = −(R� ⊗ −S), right residuation of S with respect to R. (1)

S ←− R = −(−S ⊗ R�), left residuation of S with respect to R. (2)

The operation (1) is defined only if |A| = |A′|; (2) is defined only if |B| = |B′|.
In particular, if R and S are binary relations on a set U , then (see [10]):

R −→ S = {〈a, b〉 ∈ U × U : ∀c ∈ U(〈c, a〉 ∈ R =⇒ 〈c, b〉 ∈ S)} (3)
S ←− R = {〈a, b〉 ∈ U × U : ∀c ∈ U(〈b, c〉 ∈ R =⇒ 〈a, c〉 ∈ S)} (4)
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It can be shown that R −→ S, is the largest relation Z on U such that R⊗Z ⊆ S,
while S ←− R, is the largest relation Z such that Z ⊗ R ⊆ S.

3 Intensional and Extensional Constructors

Suppose now that R ⊆ G × M is a relation connecting objects in G with prop-
erties in M . That is, if 〈g,m〉 ∈ R, then g fulfils m. We call P = 〈G,M,R〉 a
property system.

Given a subset X of G it is important to know the properties which neces-
sarily and exclusively are fulfilled by the elements of X. They are the properties
which are fulfilled at most by the elements of X. Vice-versa, given a subset Y
of properties, one is interested to the set of the objects which fulfil at most the
properties from Y :

Definition 5. Let P = 〈U,M,R〉 be a property system, X ⊆ G,Y ⊆ M :

[i](X) = {m : ∀g(〈g,m〉 ∈ R =⇒ g ∈ X)} (5)
[e](Y ) = {g : ∀m(〈g,m〉 ∈ R =⇒ m ∈ Y )} (6)

[i](X) is the necessary intension of X, while [e](Y ) is the necessary extension of
Y . It is straightforward to see that they are cases of right residuations.

Example 2. Consider the relation R of Example 1. Let X = {a, b, c}. Let us
denote by XC the matrix representing its right cylinder1. Here is how [i](X) is
computed:

XC e f g
a 1 1 1
b 1 1 1
c 1 1 1
d 0 0 0

−XC e f g
a 0 0 0
b 0 0 0
c 0 0 0
d 1 1 1

R� a b c d
e 1 0 0 1
f 1 1 0 0
g 1 1 1 0

R� ⊗ −XC e f g
e 1 1 1
f 0 0 0
g 0 0 0

Therefore the right cylinder of [i](X) is −(R� ⊗−XC) which represents the set
{f, g}.

A couple of dual constructors can be defined to compute the properties which
possibly are fulfilled by the elements of X ⊆ G, that is, the properties such that
are fulfilled by at least an element from X. Conversely, one can compute the
entities which fulfil at least one property from a set Y ⊆ M :
1 If the cylindrification of X is given by X ×M , then [i](X) is a right cylinder subset

of M×M . If the cylindrification of X is X×G, then [i](X) is a right cylinder subset
of M ×G. Similar considerations apply to [e](X).
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Definition 6. Given a property system P = 〈G,M,R〉, X ⊆ G,Y ⊆ M :

〈i〉(X) = {m : ∃g(〈g,m〉 ∈ R ∧ g ∈ X)} (7)
〈e〉(Y ) = {g : ∃m(〈g,m〉 ∈ R ∧ m ∈ Y )} (8)

In this case one has that the two constructors are examples of composition.
Namely 〈i〉(X) is given by R� ⊗XC and 〈e〉(Y ) by R⊗Y C . They represent the
left Peirce product R(X) and R�(Y ), respectively.

Example 3. Consider again the relation R of Example 1. Let X = {c, d} and
Y = {e, f}. We have:

XC e f g
a 0 0 0
b 0 0 0
c 1 1 1
d 1 1 1

R� ⊗ XC e f g
e 1 1 1
f 0 0 0
g 1 1 1

YC a b c d
e 1 1 1 1
f 1 1 1 1
g 0 0 0 0

R ⊗ YC a b c d
a 1 1 1 1
b 1 1 1 1
c 0 0 0 0
d 1 1 1 1

Therefore, 〈i〉(X) = {e, g} while 〈e〉(Y ) = {a, b, d}.

4 Duality and Adjointness

It is evident that 〈e〉 and [e], on the one side, and 〈i〉 and [i] on the other side,
are dual, in that 〈e〉(X) = −[e](−X) and 〈i〉(Y ) = −[i](−Y ). This can be easily
proved by means of the logical equivalences ¬∃ ≡ ∀¬ and ¬(A∧¬B) ≡ A =⇒ B.
But one can also verify the duality by means of the equation 〈e〉(X) = −−(R�⊗
− − XC) = −[e](−XC), and so on.

But these constructors are connected by a more important property. Indeed,
given a property system P = 〈G,M,R〉, for any X ⊆ G,Y ⊆ M :

〈i〉(X) ⊆ Y iff X ⊆ [e](Y ) (9)
〈e〉(Y ) ⊆ X iff Y ⊆ [i](X) (10)

This means that 〈↑〉 is lower adjoint of [↓], where the two arrows signify the
opposite direction of the constructors. The proof comes straightforwardly from
the following important logical considerations:

〈·〉 has the form ∃ ∧ . (11)
[·] has the form ∀ =⇒ . (12)
∃ is adjoint of ∀ and ∧ is adjoint of =⇒ (13)

In view of the adjoint property, many and various consequences follow:

1. [·] are multiplicative while 〈·〉 are additive.
2. [·] and 〈·〉 are monotonic.
3. [e](M) = G (e-co-normality), [i](G) = M (i-co-normality) and 〈·〉(∅) = ∅

(e-i-normality).
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4. 〈·〉(A ∩ B) ⊆ 〈·〉(A) ∩ 〈·〉(B) and [·](A ∪ B) ⊇ [·](A) ∪ [·](B).
5. The combination 〈↑〉[↓] is an interior operator (that is, decreasing, monotonic

and idempotent) and [↑]〈↓〉 is a closure operator (that is, increasing,
monotonic and idempotent).

Let us then define the following operators, for all X ⊆ G,Y ⊆ M :

(a) int(X) = 〈e〉([i](X)) (b) cl(X) = [e](〈i〉(X)). (14)
(c) A(Y ) = [i](〈e〉(Y )) (d) C(Y ) = 〈i〉([e](Y )). (15)

Notice that int and cl map ℘(G) on ℘(G), while A and C map ℘(M) on ℘(M).
From 5 above we have that int and C are interior operators, while cl and A

are closure operators. However, in general they are not topological. Indeed, int
and C are not multiplicative, because the external constructor 〈·〉 is not, and cl
and A are not additive, because the external constructor [·] is not. Moreover,
int and C may fail to be co-normal, while cl and A may fail to be normal.

Example 3. Consider the property system 〈G,M,R〉 where G = {a, b, c}, M =
{α, β, γ, δ} and R = {〈b, α〉 , 〈b, β〉 , 〈b, γ〉 〈c, γ〉 , 〈c, δ〉}. Trivially, 〈e〉 (∅) = ∅ and
[e](M) = G, since for any subset X of G, X ∩∅ = ∅ and, by definition, X ⊆ G. A
little bit less trivial is, for instance, that [e](∅) = {a} �= ∅ or 〈e〉 (M) = {b, c} �= G.
But R(a) = ∅, thus R(a) ⊆ ∅ and R(a) ∩ M = ∅. One can easily verify that:
〈e〉({α, β, γ}) = {b, c}, [e]({α, γ, δ}) = {a, c}, [i]({a, c}) = {δ}, [i]({b, c}) = M ,
〈e〉({δ}) = {c}, 〈i〉({b, c}) = M . Consequently, int({a, c}) = {c}, cl({b, c}) = M ,
A({α, β, γ}) = M and C({α, γ, δ}) = {γ, δ}.

5 Relational Constructors and Operators Vs
Approximations

Notice, that in a SRS system 〈U,R〉, for x ∈ U the left Peirce product R({x}) is
what in Rough Set Theory is called a granule. We shall denote it by R(x) and
call it R-neighbourhood of x, too.

Let 〈U,R〉 be any SRS. As is well-known the generalised lower and upper
approximations (lR) and (uR) are defined as follows, for all X ⊆ U :

(lR)(X) = {x : R(x) ⊆ X}; (uR)(X) = {x : R(x) ∩ X �= ∅} (16)

In view of (6) and (8) one can easily verify that (uR)(X) = 〈e〉(X) and
(lR)(X) = [e](X). Thus from the above observations, we know some important
basic facts: generalised lower approximation operators are upper adjoints, thus
multiplicative, monotonic and co-normal, while generalised upper approximation
operators are lower adjoints, thus additive, monotonic and normal.

Indeed, additional properties depend on the properties of the relation R. For
instance, if R is reflexive, then (uR) is increasing and (lR) is decreasing.

If R is at least a preorder (transitive and reflexive), then for any X ⊆ U ,
[e](X) = C(X), [i](X) = int(X), 〈e〉(X) = A(X) and 〈i〉(X) = cl(X).
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It follows that in this case we are in the presence of topological interior
and closure operators. Since (lR) coincides with [e], hence A, and (uR) with 〈e〉,
hence with C, the structure 〈U, (lR)〉 is a topological space with interior operator
(lR) and closure (uR).

In particular, if R is an equivalence relation, the topological space is 0-
dimensional, that is, a space made of sets which are closed and open, or clopen.
This is the classical situation devised by Z. Pawlak.

Example 4. Let the Boolean matrix R below represent the SRS 〈U,R〉, where
U = {a, b, c, d}:

R a b c d
a 1 1 1 1
b 0 1 0 1
c 0 0 1 0
d 0 0 0 1

int({d, a}) = 〈e〉[i]({d, a}) = 〈e〉({a}) = {a}.
cl({d, a}) = [e]〈i〉({d, a}) = [e](U) = U.

C({d, a}) = 〈i〉[e]({d, a}) = 〈i〉({d}) = {d}.
A({d, a}) = [i]〈e〉({d, a}) = [i]({a, b, d}) = {a, b, d}.

It is worth noticing that int and cl are the interior, respectively closure
operators of the Alexandrov topology induced by the preorder R�, while C and
A are the interior, respectively closure operators of the Alexandrov topology
induced by the preorder R.

On the contrary, if R is not at least a preorder, one obtains various kinds
of pre-topological spaces, that is, spaces in which (lR) and (uR) fulfill weaker
properties than their topological companions.

However, in Modal Logics with Kripke models the definition of the construc-
tor 〈e〉 is the same as that of the modalization ♦ (possibility) and [e] is the same
as the necessity modalization �. Indeed, given a set of possible worlds W and
an accessibility relation between them R, for any formula α:

w |= �(α) iff ∀w′(〈w,w′〉 ∈ R =⇒ w′ |= α). (17)
w |= ♦(α) iff ∃w′(〈w,w′〉 ∈ R ∧ w′ |= α) (18)

If one considers instead of the formula α its set of validity �α� so that w′ ∈ �α�
stays for w′ |= α, one obtains that ��(α)� = [e](�α�) and �♦(α)� = 〈e〉](�α�).

Therefore, the results in Kripkean modal logics may be applied to generalized
approximations almost for free, thus avoiding useless efforts.

6 Further Applications

6.1 Covering-Based Rough Sets

A covering of a set U is a family C ⊆ ℘(U) such that
⋃

C = U . A family
GR(U) = {R(x) : x ∈ U} of R-neighbourhoods may form a covering of U (for
sure if R is reflexive or if for all x ∈ U there is an x′ such that 〈x′, x〉 ∈ R, that is,
if R is onto). Coverings, moreover, may occur from observations without being
induced by any binary relation necessarily. This fact launched a long series of
studies about covering-based rough sets, which is still a reach vein of research.
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Indeed, different lower and upper approximations can be defined from a cov-
ering of a set U . In some cases, however, granules are manipulated in order to
recover bases for topological spaces, and this manipulations may miss the added
value of the granulation at hand, even if they induce operators fulfilling the nice
properties of the topological operators.

We shall see how the relational machinery can be helpful in this approach
and simplify it. Below we give an example.

If one set for x ∈ U and K ∈ C, 〈x,K〉 ∈ R iff x ∈ K, then one obtains a
property system C = 〈U,C,R〉. Let int be defined on C. The following operator
was introduced in [15] and studied by Bonikowski, Zhu and others: C1(X) =⋃{K ∈ C : K ⊆ X}. It is straightforward to prove that C1 = int. Therefore, its
dual operator C1 coincides with cl. From this observation all the properties of
C1 and C1 are provided for free by the adjunction properties introduced above2.

For a comprehensive application to covering-based rough sets of the construc-
tor and operators introduced above, see [8].

6.2 Approximation of Relations

An n-ary Relational Approximation Space is a tuple RA(U) = 〈U,Z, nZ〉, where
U = {Ui}1≤i≤n is a family of sets, Z = {Zi}1≤i≤n is a family of binary relations
such that for any 1 ≤ i ≤ n, Zi ⊆ Ui × Ui and a modalizing relation nZ is
point-wise defined on

∏n
i=1 Ui by: 〈〈x1, ..., xn〉, 〈y1, ..., yn〉〉 ∈ nZ iff 〈xi, yi〉 ∈ Zi,

all i. Thus for any R ⊆ ∏n
i=1 Ui, we set:

(l nZ)(R) = {〈x1, ..., xn} : ∀〈y1, ..., yn〉(〈〈x1, ..., xn〉, 〈y1, ..., yn〉〉 ∈ nZ =⇒
〈y1, ..., yn〉 ∈ R}.

In particular, when all Zi are equivalence relations, under some constraints we
obtain the notion introduced in [13]. If, moreover, Ui = Uj , and Zi = Zj for
all i, j, we obtain the Generalized Approximation Spaces studied in [6] where a
modal relational characterization for the case n = 2, was given.

With a slight modification of that result, one can prove that for any binary
Relational Approximation Space 〈U,Z, 2Z〉, for any R ⊆ U1 × U2, (l 2Z)(R) =
(Z�

1 −→ R) ←− Z2 (which is the same as Z�
1 −→ (R ←− Z2); that is, we can

change the temporal but not the spatial application order of the two residua-
tions).

In particular when 〈U,Z, 2Z〉 is a Generalized Approximation Space, then we
have the case discussed in [2] and in [3], for which the following holds (see [6]):
for any binary Relational Approximation Space 〈U,Z, 2Z〉 such that U1 = U2

and Z1 = Z2 is an equivalence relation, for any R ⊆ U1 × U1:

(l 2Z)(R) = Z1 −→ R ←− Z1.

2 Our argument proves that the dual of C1(X) is not the operator X∗ introduced in
[1], in an elementary but analytic way without using counterexamples.
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6.3 Dependency Relations

In Rough Set Theory, dependency relations deserve a noticeable role. In an
Information System IS = (U,At, v) on a set of items U , with set of attributes At
and evaluation function v, if A and B are subsets of attributes, it is important to
know whether the indiscernibility relation EB induced by B functionally depends
on that induced by A, EA. This is the case if the granules of EA are finer than
the granules of EB , that is, if for any granule [x]EA

there is a granule [y]EB
such

that [x]EA
⊆ [y]EB

, for x, y ∈ U . Since we are dealing with equivalence relations,
one can set x = y. More precisely:

1. An element u ∈ U is said to fulfil the functional dependency A �→ B, and we
write A �→u B, if and only if EA(u) ⊆ EB(u).

2. By FD(A,B) we denote the set {u ∈ U : A �→u B}, that is the set of all the
elements of U fulfilling the functional dependency we are dealing with.

3. A subset B of attributes is said to be functionally dependent on A, A �→ B,
if FD(A,B) = U .

It is proved that for any Information System IS = (U,At, v), A,B ⊆ At

(EA −→ EB) ←− EA)) ⊗ 1 = FD(A,B)c

where, we recall, FD(A,B)c is the right cylindrification of the required set
FD(A,B). So we can compute functional dependencies between sets of attributes
by means of the fundamental operations of Relation Algebra.

Moreover, approximation of relations can be used to compute functional
dependencies between granules from arbitrary binary relations.
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Abstract. This paper is devoted to paraconsistent approximate rea-
soning with graded truth-values. In the previous research we introduced
a family of many-valued logics parameterized by a variable number of
truth/falsity grades together with a corresponding family of rule lan-
guages with tractable query evaluation. Such grades are shown here to
be a natural qualitative counterpart of quantitative measures used in var-
ious forms of approximate reasoning. The developed methodology allows
one to obtain a framework unifying heterogeneous reasoning techniques,
providing also the logical machinery to resolve partial and incoherent
information that may arise after unification. Finally, we show the intro-
duced framework in action, emphasizing its expressiveness in handling
heterogeneous approximate reasoning in realistic scenarios.

Keywords: Graded truth-values · Approximate reasoning · Paraconsis-
tent reasoning · Rule-based languages

1 Introduction and Motivations

Contemporary intelligent systems acquiring data from multiple information
sources have to cope with incomplete and potentially inconsistent information
of different reliability levels. Also, when heterogeneous techniques are involved
in reasoning, their relative strengths may vary: conclusions based on sure facts
and certain rules are typically stronger than those obtained from heuristic non-
monotonic rules. In addition, perception heavily depends on sensor platforms
with different accuracy. Therefore, the resulting model of the environment is
an approximation of the perceived reality. Major methodologies addressing such
imperfect models are based on approximate reasoning, like those originating
from fuzzy sets (see, e.g., [2,3,12–14,23,26,30–32]) or rough sets (see, e.g.,
[8–10,15,18,19,21,22,24,25,27–29]). Such a variety of methods calls for inte-
gration tools resulting in truly heterogeneous approximate reasoning.
c© Springer International Publishing AG 2017
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In previous works [7] we have introduced and investigated a paraconsistent
and paracomplete logic with graded truth values together with a correspond-
ing family of rule languages, RLN , with tractable query evaluation. These tools
are based on a family of paraconsistent many-valued logics supporting both
monotonic and non-monotonic reasoning. The combination of those many-valued
logics, together with RLN , allows both for modelling uncertain and inconsis-
tent information as well as for appropriate aggregation of information originat-
ing from multiple sources. The many-valued logic developing paraconsistency in
[7] provides several logical values for truthfulness, falseness and inconsistency,
selected from a finite but arbitrarily large set of truth-degrees reflecting relative
strengths of techniques involved in reasoning.

Given an integer N ≥ 1, we consider the following truth-degrees:

– degrees of truth: t1,. . . , tN , where t1 is the weakest and tN the strongest
truth;

– degrees of falsity: f1,. . . , fN , where f1 is the weakest and fN the strongest
falsity;

– degrees of inconsistency: i1,1 . . . ,iN,N , where ii,j is the inconsistency level
involving ti and f j ;

– unknown: u.

RLN accommodates positive and negative literals both in premises and con-
clusions of rules and is based on the Open World Assumption. Moreover, intro-
spection operators provide a machinery for non-monotonic reasoning, in particu-
lar for closing the world locally and globally and for resolving inconsistent infor-
mation. Other paraconsistent approaches are discussed, e.g., in [1,4,6,10,17,20].

Our goal is to show that RLN, presented in [7], and the corresponding fam-
ily of many-valued logics constitute a powerful tool to encompass various forms
of approximate reasoning, simultaneously combining, in a uniform framework,
various techniques and methodologies developed for approximate reasoning (see
Fig. 1(a)). We demonstrate that many approximate reasoning methods, that have
been developed in the literature, can be integrated with RLN by providing suit-
able interpretations of values associated with membership of elements in sets
(or satisfaction of formulas by such elements). Therefore we argue that the lan-
guage together with the developed methodology provide a step towards full het-
erogeneity of approximate reasoning. Let us stress that RLN is not meant to
substitute approximate reasoning techniques. We view the language as an inte-
grating umbrella, gathering results from other reasoning engines and allowing
one to derive improved or entirely new conclusions.

Paper Structure
The paper is structured as follows. In Sect. 2, we briefly recall the family of
logics introduced in [7] and continue, in Sect. 3, with indicating relationships of
graded truth-values to approximate reasoning based on fuzzy sets and rough sets.
Section 4 recalls the family of rule languages RLN . In Sect. 5 we show case studies
illustrating the use of our language in heterogeneous approximate reasoning.
Finally, Sect. 6 concludes the paper.
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While Sects. 2 and 4 mainly recall solutions from [7], Sects. 3 and 5 present
a novel material.

2 The Family of Logics

Let us now recall the family of logics introduced in [7].
For N ≥ 1, τN

def= {0, 1, ..., N} × {0, 1, ..., N}. Elements of τN denote truth-
values. For the sake of clarity, we adopt the following notation, where 1 ≤ i, j ≤ N :

u
def= (0, 0), ti

def= (i, 0),f i
def= (0, i), ii,j

def= (i, j). (1)

Semantics of rules requires two orderings on truth values on τN : the knowledge
partial order, to manage information at the level of multiple information sources,
and the truth-partial order, to perform computations on the information of a
single source.

Definition 1. Knowledge ordering, ≤k, is the transitive closure of the binary
relation ≤k, defined by:

(i, j) ≤k (p, q) if i ≤ j and p ≤ q (2)

Truth-ordering, ≤t, is the reflexive and transitive closure of the binary relation
≤t, defined by:

(0, i) ≤t (0, j) ≤t (0, 0) ≤t (k, l) ≤t (m, 0) ≤t (n, 0),
for 1 ≤ j ≤ i ≤ N, 1 ≤ k, l ≤ N, 1 ≤ m ≤ n ≤ N,

(i, j) ≤t (p, q) if (i = p + 1 and j = q) or (i = p and j = q + 1).
(3)

�

With respect to knowledge ordering we obtain: (i) u ≤k τ for all τ ∈ τN as
it represents the absence of information; (ii) ti and f j are never comparable in
terms of ammount of information; (iii) ti ≤k ip,q and f j ≤k ip,q for all i ≤ p
and j ≤ q as the inconsistent value contains more information than the true and
false truth-degrees.

The definition of truth-ordering states that:

f i ≤t f j ≤t u ≤t ip,q ≤t tm ≤t tn

for 1 ≤ j ≤ i ≤ N, 1 ≤ p, q ≤ N, 1 ≤ m ≤ n ≤ N, (4)
ii,j ≤t ip,q iff ip,q ≤k ii,j , for 1 ≤ p ≤ i ≤ N and 1 ≤ q ≤ j ≤ N.

With respect to truth-ordering we obtain: (i) fN is less true than fN−1, . . . ,f2,
being less true than f1; (ii) unknown (u) is less false than all f i and less true
than all ii,j , tk; (iii) all ii,j are more true than u and less true than tk (they
have a negative component grater than zero); (iv) t1 is less true than t2, . . . , tN−1

being less true than tN .
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Notice that 〈τN ,≤k〉 and 〈τN ,≤t〉 are complete lattices, in particular:

glbk{(i, j), (p, q)} = (min{i, p},min{j, q}),
lubk{(i, j), (p, q)} = (max{i, p},max{j, q}),

where glb stands for the greatest lower bound and lub for the lowest upper bound
w.r.t. the specified partial order.

From Definition 1 one can derive specific instances of truth-degrees; for exam-
ple, Fig. 1(b) and (c) show the lattices for the instance τ3.

Fig. 1. (a) Presented methodology. (b) and (c): partial orders for τ3.

Given {a1, ..., an} ⊆ τN (with n ≥ 2), we define the following logical
connectives:

a1 ∧t ... ∧t an
def= glbt{a1, ..., an}, a1 ∨t ... ∨t an

def= lubt{a1, ..., an}
a1 ∧k ... ∧k an

def= glbk{a1, ..., an}, a1 ∨k ... ∨k an
def= lubk{a1, ..., an}.

We also define ¬(i, j) def= (j, i) and the material implication:

a ⇒k b
def=

⎧
⎪⎨

⎪⎩

tN if a ≤k b

or a = f i for some 1 ≤ i ≤ N ;
fN otherwise.

(5)

The implication ⇒k is an extension of the classical two-valued implication
connective: it reflects the intuition of gathering new knowledge passing from the
antecedent to the consequent. That is, we solely derive conclusions containing a
non-zero truth component.
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3 Relationship to Approximate Reasoning

RLN can accommodate several forms of approximate reasoning, depending on
the interpretation of the introduced truth-values as a qualitative counterpart of
approximate reasoning techniques. Below we introduce some of them, perhaps the
most natural ones. In the sequel, U denotes the universe of considered elements.

3.1 Deriving Truth-Degrees from Fuzzy Values

Fuzzy set-based reasoning [30–32] is frequently used as a basis for decision mak-
ing. It belongs to a larger area of quantitative approaches to reasoning, like
those concentrated around models involving probability, credibility and plau-
sibility, possibility and necessity, degrees of belief and disbelief (mass distrib-
utions), fuzzy truth-degrees (see [16,23]). In many application areas it is nat-
ural to assume that truth-degrees of a property and its complement sum up to
1 [13,14,16,23,31].

A natural way to understand τN in the context of fuzzy reasoning, where
inconsistencies are not explicitly present, is to select 2∗N pairwise disjoint subin-
tervals ιfN , . . . , ιf1 , ιt1, . . . ι

t
N from the interval [0, 1] and then define the mapping:

δF : [0, 1] −→ {fN , . . . ,f1,u, t1, . . . , tN}
such that:

δF (x) def=

⎧
⎨

⎩

ti when x ∈ ιti;
f i when x ∈ ιfi ;
u otherwise.

(6)

Example 1. Let N = 3 and let us select six subintervals of [0, 1], e.g.,

ιf3 = [0.0, 0.2], ιf2 = (0.2, 0.3], ιf1 = (0.3, 0.4],
ιt1 = [0.6, 0.8], ιt2 = (0.8, 0.9], ιt3 = (0.9, 1.0].

In this case, for example,

– the interval ιf3 represents values considered to be “strong” false (f3);
– the interval ιf2 represents values considered to be “weaker” false (f2);
– the interval ιt3 represents values considered to be “strong” true (t3);
– the interval (0.4, 0.6) represents values being unknown (u). �

Let A ⊆ U be a fuzzy set. For a ∈ U , by A(a) we understand the
fuzzy value of the membership of a in A. The mapping of fuzzy values to
{fN , . . . ,f1,u, t1, . . . , tN} is natural:

a ∈ A obtains the truth-value δF (A(a)). (7)

Notice that we no longer deal with the interval [0, 1] which might compromise
the precision of reasoning. Nevertheless, all the results shown in [7] are valid
for any integer N > 0, thus the cardinality of {fN , . . . ,f1,u, t1, . . . , tN} is
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finite but arbirarly large. On the other hand, the gain is that grades become
symbolic entities. In applications of fuzzy sets, precise degrees of membership
are frequently less interesting than their interrelationships. For example, in fuzzy
decision making one is often more interested in relative reliability or strength
of conclusions than in exact fuzzy values associated with them. Fuzzy values
are sometimes difficult to interpret, especially when complicated algorithms,
requiring large numbers of iterations, are needed to compute them.

3.2 Deriving Truth-Degrees from Intuitionistic Fuzzy Sets

In fuzzy sets the fuzzy measure of a formula and its negation sum up to 1. This
assumption is problematic in modelling ignorance. Therefore, generalizations of
fuzzy sets have been proposed. In [2], so called, intuitionistic fuzzy sets are intro-
duced (see also the discussion in [11] and the most recent book [3]). In that app-
roach, a fuzzy set A is defined by a pair of membership functions 〈A+(x), A−(x)〉,
where A+(a) is the degree of membership of a in A and A−(a) is its degree of
membership in the complement of A. That is, for a ∈ U , A(a) ∈ [0, 1] × [0, 1].
It is required that for every a ∈ U , A+(a) + A−(a) ≤ 1. The intuition behind
introducing positive and negative characteristics of properties is that in many
cases such properties are more naturally modeled by separating positive and
negative evidence for concept membership. This is close to ideas underpinning
our approach.

In order to integrate intuitionistic fuzzy sets with RLN , we can select N
pairwise disjoint subintervals ι1, . . . , ιN from the interval [0, 1] and then define
the mapping:

δI : [0, 1] × [0, 1] −→ {fN , . . . ,f1,u, t1, . . . , tN}

such that:

δI(x, y) def=

⎧
⎨

⎩

ti when x > y and x − y ∈ ιi;
f i when x < y and y − x ∈ ιi;
u otherwise.

(8)

That is, a pair 〈x, y〉 represents a degree of truth when it contains more truth
and a degree of falsity when it contains more falsity. The mapping of fuzzy values
to truth values {fN , . . . ,f1,u, t1, . . . , tN} is again natural, where A ⊆ U and
a ∈ U :

a ∈ A obtains the truth-value δI(A+(a), A−(a)). (9)

Example 2. Let N = 3 and ι1 = [0.3, 0.5], ι2 = (0.5, 0.8] and ι3 = (0.8, 1.0].
Then:

δI(0.7, 0.7) = δI(0.1, 0.2) = u,
δI(0.7, 0.1) = δI(1.0, 0.3) = t2,
δI(0.1, 1.0) = f3.

�
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3.3 Deriving Truth-Degrees from Generalized Fuzzy Sets

In [26] the idea of intuitionistic fuzzy sets is further developed into paraconsistent
intuitionistic fuzzy sets, applied to model uncertainty, lack of knowledge as well
as inconsistency. It is no longer required here that A+(x)+A−(x) ≤ 1. Intuitively,
cases when A+(x)+A−(x) > 1 reflect inconsistencies. In [25] this idea is further
generalized, in particular by relaxing the concept of inconsistencies, where all
pairs involving non-zero truth and falsity, but not necessarily making A+(x) +
A−(x) > 1, are inconsistent. To address the more general case of [25] we can
select N pairwise disjoint subintervals ι1, . . . , ιN of the interval [0, 1] and then
define the mapping:

δG : [0, 1] × [0, 1] −→ τN

such that:

δG(x, y) def=

⎧
⎪⎪⎨

⎪⎪⎩

ti when x ∈ ιi and ∀j(y �∈ ιj),
f i when ∀j(x �∈ ιj) and y ∈ ιi,
ii,j when x ∈ ιi and y ∈ ιj ,
u in all other cases.

(10)

The mapping of generalized fuzzy values to truth values of τN is the following,
where A ⊆ U and a ∈ U :

a ∈ A obtains the truth-value δG(A+(a), A−(a)). (11)

Example 3. Let N = 3 and ι1, ι2 and ι3 be as in Example 2. Then δG(0.9, 0.2) =
t3, δG(0.1, 0.7) = f2, δG(0.4, 0.9) = i1,3, and δG(0.1, 0.2) = u. �

3.4 Deriving Truth-Degrees from Rough Sets

In the case of rough sets [8,10,18,19] one defines approximations in terms of
a family of elementary sets {Ei | i ∈ I} being a partition or a covering of the
domain. Intuitively, such sets consist of elements indistinguishable using available
information. Here, rather than elementary sets, we shall consider neighborhoods
of objects, consisting of objects indistinguishable from a given object. The func-
tion E : A −→ 2A, for each a ∈ A, E(a), determines the (unique) neighborhood
of a. For technical reasons, we assume that for each a ∈ A, a ∈ E(a) (meaning
that a is indistinguishable from itself).

Example 4. Let A = [0.0, 50.0] consist of temperature measurements in a given
environment. If a sensor measures temperature with accuracy up to 0.4oC then
it is natural to associate for every a ∈ A the neighborhood E(a) = [a − 0.4, a +
0.4]: if the sensor indicates temperature a, then the actual temperature can
actually be any value from E(a). E.g., E(10.3)=[9.9, 10.7] contains temperatures
indistinguishable from 10.3. �

Approximation operators can be defined by generalizing the corresponding
definitions from standard rough sets:

AE
def= {a ∈ U | E(a) ⊆ A} −the lower approximation;

AE def= {a ∈ U | E(a) ∩ A �= ∅} −the upper approximation.
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A natural way to define the semantics of rough sets within the framework
of many-valued logics is to consider three- or four-valued logics, where classi-
cal truth values indicate sure information and the two others, inconsistent and
unknown, represent values in boundary regions of relations.

Graded truth values can provide more fine-grained degrees of truth values
than three or four. Let A ⊆ U and let, for any a ∈ U , A(a) def= (a ∈ A). Then
with each A(a) one can associate 〈R+(A(a)), R−(A(a))〉 ∈ [0, 1] × [0, 1], where:1

R+(A(a)) def=
|A ∩ E(a)|

|E(a)| , R−(A(a)) def=
|(−A) ∩ E(a)|

|E(a)| . (12)

In this case A(a) can obtain the truth-value as shown in Sect. 3.2.2 That is, we
first select suitable subintervals of [0, 1] and then define truth values by δI or δG,
as needed, where δI and δG are defined by Eqs. (8), (10), respectively. That is,

a ∈ A (i.e., A(a)) obtains the truth-value δI(R+(A(a)), R−(A(a)))
(respectively δG(R+(A(a)), R−(A(a)))). (13)

Note that | . . . | in Formula (12) denotes:

– the cardinality of the argument set, when it is finite (see Example 5);
– a suitable measure, like length, area, volume, etc. in the case of one, two-,

three- and more dimensional geometric objects (for an example see calcula-
tions concerning distance in Sect. 5.2, p. 17).

Example 5. Let N = 3 and ι1, ι2 and ι3 be as in Example 2 and let be U =
{a1, . . . , a10}. Let the following sets consist of indistinguishable elements:

{a1, a2, a4, a5}, {a3, a10}, {a6, a9}, {a7, a8}.

That is,

E(a1)=E(a2)=E(a4)=E(a5)={a1, a2, a4, a5}, E(a3)=E(a10)={a3, a10}, etc.

Consider a set p={a5, a6, a8, a9} and the associated relation p(a)def=(a∈p). Then,
e.g.,

– R+(p(a5)) = 0.25, R−(p(a5)) = 0.75, so δI(p(a5)) = f1 and δG(p(a5)) = f2;
– R+(p(a7)) = 0.5, R−(p(a7)) = 0.5, so δI(p(a7)) = u and δG(p(a7)) = i1,1;
– R+(p(a6)) = 1.0, R−(p(a7)) = 0.0, so δI(p(a6)) = t3 and δG(p(a6)) = t3. �

1 Note that, in the classical setting, R+(a) + R−(a) = 1. If, however, the values of
A(z) may be unknown or inconsistent then these values do not have to sum up to 1.

2 Of course, one could also adapt here the method for fuzzy sets provided in Sect. 3.1.
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3.5 Deriving Truth-Degrees from Graded Rough Sets

Graded rough sets, as defined in [28], also assumes a family of neighborhood
functions represents objects not distinguishable from a given object. Rather than
a single function E, for every a ∈ U one considers sets Ei(a) (i = 1, . . . , N) such
that:

E1(a) ⊆ E2(a) ⊆ . . . ⊆ EN (a). (14)

That is, E1 distinguishes more elements than E2 which distinguishes more than
E3, etc. As shown in [28], if for every 1 ≤ i ≤ N and every a ∈ U , we have that
a ∈ Ei(a) and given that property (14) holds, approximations obtained using
Ei’s satisfy:

AEN
⊆ . . . ⊆ AE2 ⊆ AE1 ⊆ A ⊆ AE1 ⊆ AE2 ⊆ . . . ⊆ AEN . (15)

In this case, graded truth values can be assigned to formulas by simple adap-
tation of the methods for rough sets presented in Sect. 3.4. For this purpose,
we consider the best approximations of a given set, i.e., approximations closest
to the approximated set which are given by E1. That is, E used in Eq. (12) is
defined to be E1(a). Of course, whenever under given circumstances, for j < N
one cannot use E1, . . . , Ej (e.g., due to a failure of certain sensors) then one uses
the best available approximation given by Ej+1, i.e., E used in Eq. (12) becomes
Ej+1.

4 The Family of Rule Languages

4.1 The Basic Rule Language

Let us now recall the family of rule languages, RLN , of [7].

Definition 2. Given a set of truth-degrees τN , a set of predicate symbols Pred,
a finite set of constants Cons and a set of variables Var, we define:

L+
def= {P (t1, ..., tn) | P ∈ Pred and for 1 ≤ i ≤ n, ti ∈ Cons ∪ Var};

L−
def= {¬P (t1, ..., tn) | P ∈ Pred and for 1 ≤ i ≤ n, ti ∈ Cons ∪ Var};

L def= L+ ∪ L− ∪
N⋃

i=1

{truei} ∪ ⋃

1≤i≤N

{falsei} ∪ ⋃

1≤i,j≤N

{inci,j},

where each n, called the arity of a predicate, is a nonnegative integer (n ≥ 0), and
Pred, Cons and Var are mutually disjoint. Every element of L is called a literal.
L+ (respectively, L−) is the set of positive (respectively, negative) literals. A literal
without variables is called ground. We identify expressions ¬¬l with l. �
Definition 3. A rule R is an expression of the form:

H ← B1, ..., Bn (16)

with n ≥ 0 and H ∈ L+ ∪L− and B1, ..., Bn ∈ L. If n = 0 and H is ground then
R is called a fact. We abbreviate R as H ← B, assuming B = B1, ..., Bn. H is
called the head or a conclusion of the rule and B is called its body or premises.
We assume that all the rules are universally quantified. �
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Definition 4. A program P is a finite set of rules. By P ′ we denote the ground
version of P , i.e., the program with all the possible ground instances of rules
derived from P . GP

def= G+
P ∪ G−

P is the set of all ground literals appearing in P ′;
G+

P (respectively, G−
P ) is the set ofpositive (respectively, negative) ground literals

of P ′. �

The semantics of rules is provided by many-valued Herbrand interpretations.

Definition 5. Let P be a program. A many-valued Herbrand interpretation for
P is a set I ⊆ G+

P × (τN \ {u}) such that each positive literal of G+
P appears in

I in at most one pair. The set of all many-valued Herbrand interpretations is
denoted by V. �

Definition 6. Given a many-valued Herbrand interpretation I and a positive
ground literal l, we define the truth-degree associated to l as follows:

I(l) def=

{
τ if there is (a unique) τ such that (l, τ) ∈ I;
u otherwise.

We extend I to truth constants, negative literals, conjunctions of literals and
rules:

I(truei)
def= ti, I(falsei)

def= f i, I(incij)
def= iij ;

I(¬l) def= (q, p) iff I(l) = (p, q);
I(l1 ∧t . . . ∧t lk) def= I(l1) ∧t . . . ∧t I(lk);
I(H ← B) def= I(B) ⇒k I(H).

If B=B1, ..., Bn is a body of a rule and n ≥ 1 then I(B) def= I(B1)∧t ...∧t I(Bn).
If n = 0 then I(B) def= tN . �

Note that negation transforms a true literal (ti) into a false literal (f i) and
vice versa, whereas it swaps the components of inconsistent literals (from ip,q to
iq,p). Negation of u remains u.

Definition 7. Let P be a program and P ′ its ground version. A many-valued
Harbrand model of P is a many-valued Herbrand interpretation I such that
I(H ← B) = tN for every ground rule H ← B of P ′. �

The knowledge ordering ≤k can be extended to interpretations as follows.

Definition 8. Given a program P and many-valued Herbrand interpretations
I1 and I2, we define:

I1 ≤k I2 iff for every literal l in GP , I1(l) ≤k I2(l).

�
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In RLN , the semantics of programs is given in terms of minimal Herbrand
models w.r.t. ≤k, i.e. the semantics of P is a many-valued Herbrand model M
of P such that M ≤k M ′ for every many-valued Herbrand model M ′ of P . In [7]
the following important theorem is proved.

Theorem 1. Over finite domains, computing the least many-valued Herbrand
model of P can be done in deterministic polynomial time w.r.t. the size of the
domain. �

In [7] it is proven that the least many-valued Herbrand model of a program is
defined by the least fixpoint of the operator TP : V → V defined as follows:

TP (I)def=
{
(l, τ) | l ∈ G+

P and
τ =lubk

( {(p, q) | (l ← B) ∈ P ′ and I(B) = (p, q) ≥k t1}∪
{(q, p) | (¬l ← B) ∈ P ′ and I(B)=(p, q) ≥k t1}

)

}

(17)

4.2 Introspection Operators

In order to resolve inconsistencies and lack of knowledge, in [7] a logical machin-
ery called introspection operators is introduced. They empower RLN rules allow-
ing one to access and compare truth-values of (sets of) literals, generating further
truth-degrees as output. Introspection operators generalize Negation As Failure
and they can be also employed to introduce arbitrary truth orderings for evalu-
ating premises of rules (see [7]).

Definition 9. By an introspection operator we mean any function O mapping
sets of literals and truth-values into τN . �

Example 6. Let I be a many-valued Herbrand interpretation. A natural operator
O can be defined by:

I
(O∈({l}, {t1, . . . , tn})

) def=
{
tN when I(l) ∈ {t1, . . . , tn};
fN otherwise. (18)

For simplicity we often write l ∈ {t1, . . . , tn} rather than O∈({l}, {t1, . . . , tn}).
�

In [7] we extend rules allowing for introspection operators in their bod-
ies. However, analogically to stratified logic programs where recursion through
negation is forbidden, in RLN recursion through introspection operators is not
allowed. This follows from the fact that these operators are non-monotonic;
in fact, they allow for rather complicated forms of non-monotonic reasoning.
Introspection operators do not affect the complexity computing least Herbrand
models, as stated in the following theorem.
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Theorem 2. Over finite domains, computing the least many-valued Herbrand
model of programs extended with introspection operators can be done in deter-
ministic polynomial time w.r.t. the size of the domain. �

The least many-valued Herbrand model for programs containing introspec-
tion operators can be computed through an extended version of the TP operator
of (17).

4.3 Integrating Approximate Reasoning with Rules

A program used to model a scenario described by an approximate reasoning
technique can be decomposed into two parts:

– a set of rules exposing the logical relations among the entities in question;
– a set of facts generated by applying (7), (9), (11), (13), or similar formulas,

to obtain truth-degrees of literals involved in the rules of the program.

In order to keep mappings coherent, facts will be generated according to the
following rule, where l �→ τ with τ ∈ τN is a mapping defined by (7), (9), (11)
or (13). Then:

– A fact l ← truei is added to the program for every literal l that obtains the
truth-degree ti.

– A fact ¬l ← truei is added to the program for every literal l that obtains the
truth-degree f i.

– A fact l ← inci,j is added to the program for every literal l that obtains the
truth-degree ii,j .

Example 7. Let us assume that A(a) obtains the truth-degree δF (A(a)) and
A(b) obtains δF (A(b)), with δF (A(a)) = t1 and δF (A(b)) = f2. Then set of facts
added to the program is: {A(a) ← true1,¬A(b) ← true2}. �

5 Case Studies

In the sequel we show the benefits of modelling approximate reasoning scenarios
with the rule language RLN . Importantly, the case study presented in Sect. 5.2 is
based on a real-world scenario concerning industrial monitoring systems. This is
not accidental: for example, defeasible logics [5] can be used to resolve conflicts in
program rules implementing applications for embedded systems. Therefore, we
argue that the framework we propose might simplify the integration of heteroge-
neous approximate reasoning techniques in the engineering process of industrial
controllers, especially when dealing with contextual sensor data.

In the notation adopted for RLN , variables are denoted by x and y.
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5.1 From Approximate Reasoning to the Rule Language: An Image
Recognition Scenario

In the first case study we show how to establish relationships between approxi-
mate reasoning techniques and our rule language, using a many-valued logic to
draw information from fuzzy values.

We consider a software component used in an image recognition process. The
component is used to classify some objects based on their shapes and colors. Its
principal behaviour consists in recognizing yellow cups by resorting to two main
estimators: (i) estimator for color yellow; (ii) estimator for shape cup. Each
estimator is modelled through a fuzzy set Ai ⊆ U , where U is the set of objects.
In particular, we define Acol as the membership function for the fuzzy set of
color estimator and Ash for the fuzzy set of shape estimator. Ayc : U −→ [0, 1] is
the membership function for the fuzzy set in U of yellow cups, which is defined
as follows:

Ayc(x) def=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Acol(x) ∈ (0.8, 1] and Ash(x) ∈ (0.8, 1]
0.8 if

(
Acol(x) ∈ (0.6, 0.8] and Ash(x) ∈ (0.8, 1]

)

or
(
Acol(x) ∈ (0.8, 1] and Ash(x) ∈ (0.6, 0.8]

)

or
(
Acol(x) ∈ (0.6, 0.8] and Ash(x) ∈ (0.6, 0.8]

)

0.3 if
(
Acol(x) ∈ (0.2, 0.4] and Ash(x) �∈ [0, 0.2]

)

or
(
Ash(x) ∈ (0.2, 0.4] and Acol(x) �∈ [0, 0.2]

)

0 if Acol(x) ∈ [0, 0.2] or Ash(x) ∈ [0, 0.2]
0.5 otherwise

(19)

The definition of Ayc(x) looks a bit cumbersome. We will show that a more
natural way to interpret the same scenario is a logic program expressed in RLN .
In this case, τ2 provides enough truth-degrees to represent all the cases of (19).
We define the following subintervals of [0, 1]:

ιf2
def= [0, 0.2], ιf1

def= (0.2, 0.4], ιu
def= (0.4, 0.6], ιt1

def= (0.6, 0.8], ιt2
def= (0.8, 1].

Ayc can be translated in the following program:

YellowCup(x) ← Shape(x, cup),Color(x, yellow)
¬YellowCup(x) ← ¬Shape(x, cup)
¬YellowCup(x) ← ¬Color(x, yellow)

(20)

Literals Shape(x, cup) and Color(x, yellow) are associated with the two fuzzy
sets:

Shape(x, cup) obtains the truth-degree δF (Ash(x));
Color(x, yellow) obtains the truth-degree δF (Acol(x)). (21)

The first rule of the program reflects the cases for Ayc(x) ∈ {0.8, 1}, while
the second and the third one model respectively the cases for Ayc(x) = 0.3
and Ayc(x) = 0. YellowCup is the predicate associated with the fuzzy set of
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yellow cups: YellowCup(x) in the least Hebrand model of the program obtains
the truth-degree δF (Ayc(x)). The case Ayc(x) = 0.5 is reflected by the absence
of information about YellowCup in the least Herbrand model of the program.
Thus, we can model the scenario as an RLN program consisting of the three
rules (20).

As an example, let us consider U
def= {o1, o2, o3} and the following member-

ship functions for estimators:

Acol(o1)
def= 0.7, Acol(o2)

def= 0.35 Acol(o3)
def= 0.75

Ash(o1)
def= 0.9, Ash(o2)

def= 0.75, Ash(o3)
def= 0.5

We notice that Ayc(o1) = 0.8, Ayc(o2) = 0.3, Ayc(o3) = 0.5, thus w.r.t. the
fuzzy set of yellow cups, applying (7) we expect that o1 obtains δF (0.8) = t1, o2
obtains δF (0.3) = f1 and o3 obtains δF (0.5) = u.

From (21) we have the following mappings:

Color(o1, yellow) obtains t1 Shape(o1, cup) obtains t2
Color(o2, yellow) obtains f1 Shape(o2, cup) obtains t1
Color(o3, yellow) obtains t1 Shape(o3, cup) obtains u,

leading to the following program:

YellowCup(x) ← Shape(x, cup),Color(x, yellow)
¬YellowCup(x) ← ¬Shape(x, sc)
¬YellowCup(x) ← ¬Color(x, yc)
Color(o1, yellow) ← true1 ¬Color(o2, yellow) ← true1
Color(o3, yellow) ← true1 Shape(o1, cup) ← true2
Shape(o2, cup) ← true1

(22)

The least many-valued Herband model of (22) is:

M = {(Color(o1, yellow), t1
)
,
(
Color(o2, yellow),f1

)
,
(
Color(o3, yellow), t1

)
,(

Shape(o1, cup), t2
)
,
(
Shape(o2, yellow), t1

)
,
(
YellowCup(o1), t1

)
,(

YellowCup(o2),f1

)}
Therefore, we obtain:

M(YellowCup(o1)) = t1, M(YellowCup(o2)) = f1 and M(YellowCup(o3)) = u.

Note that such truth-degrees are the expected ones for the fuzzy set of yellow
cups.

5.2 Integration of Heterogeneous Approximate Reasoning
Techniques: A Chemical Warehouse Monitoring System

In the previous case study the logical relationship among fuzzy values is mainly
captured by the logical connective ∧t. In a more complex scenario of preventing
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safety hazards in a chemical warehouse, it may be necessary to handle truth-
degrees through non-monotonic operators and to resolve inconsistencies and lack
of information. This is needed especially when reasoning is based on data arriving
from multiple sources of information associated with different approximate rea-
soning techniques. Introspection operators (e.g., (18)) provide the logical machin-
ery to perform these tasks. In the sequel we resort to the following definitions.

Let I be a many-valued Herbrand interpretation. We define some useful intro-
spection operators by setting:

I
(O�∈({l}, {t1, ..., tn})

) def=
{
tN when I(l) �∈ {t1, ..., tn}
fN otherwise; (23)

I
(O≥t

({l}, {t})
) def=

{
tN when I(l) ≥t t;
fN otherwise. (24)

I
(OΔ1({l}, ∅)

) def=
{
ti if I(l) = (p, q), i = p − q, i > 0
fN otherwise. (25)

I
(OΔ2({l1, l2}, ∅)

) def=

⎧
⎨

⎩

ti if I(l1) = (p1, q1), I(l2) = (p2, q2),
i = p1 − p2, i > 0

fN otherwise.
(26)

Other useful operators can be defined using the following partial order:

(p1, p2) <truth (q1, q2) when (p1 − p2) < (q1 − q2) or
(p1 − p2) = (q1 − q2) and p1 < q1.

(27)

(p1, p2) ≤truth (q1, q2) when (p1, p2) <truth or (p1, p2) = (q1, q2). (28)

In particular,

I
(O<truth

({l1, l2}, ∅)
) def=

{
tN when I(l1) <truth I(l2);
fN otherwise; (29)

I
(O≤truth

({l1, l2}, ∅)
) def=

{
tN when I(l1) ≤truth I(l2);
fN otherwise; (30)

We will use the more convenient notation l �∈ {t1, ..., tn}, l ≥t t, Δ1(l),
Δ2(l1, l2), l1 ≤truth l2. In a similar way, we define the alternative notation for
O>t

({l}, {t}), O<t
({l}, {t}), O≤t

({l}, {t}), O>truth
({l1, l2}, ∅) and

O≥truth
({l1, l2}, ∅).

A monitoring system preventing safety hazards in a chemical warehouse con-
sidered in this section extends an existing prototype in which logic programs
encode legislation constraints that can be updated at run-time by authorized
persons.3 Logic programs reason on contextual-information gathered by hetero-
geneous sensors and trigger warning signals when they detect dangerous situ-
ations. In this scenario we consider an extended version of the system kernel,
3 A video of the prototype is available at:https://www.youtube.com/watch?v=4u

O6-ylhvU.

https://www.youtube.com/watch?v=4u_O6-ylhvU
https://www.youtube.com/watch?v=4u_O6-ylhvU
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enriched with approximate reasoning techniques and resorting to the follow-
ing sources of information: humidity level, temperature, category and distances
between shelf units. Every shelf unit is associated with a category that defines
the type of chemical compound stored in the container; Cat

def= {C1, C2, C3} is
the set of all recognized categories. A warning signal is triggered if at least one
of the following conditions holds:

• The humidity level and temperature for the environment surrounding a shelf
unit are both above a given threshold.

• The distance of two shelf units with categories C1 and C2 is below a certain
value.

Depending on the strength of the warning signal, the system can perform
one of actions: calling an operator, enabling an alarm siren or launching the
evacuation signal. In this case study we deal with information generated by
several sensors, modelled through different approximate reasoning techniques.
The system implements several strategies to manage the inconsistent information
that naturally arises during reasoning. Inconsistencies may occur due to the
presence of multiple sources of contextual information obtained from non-ideal
sensors. The underlying set of truth-degrees is τ3.

In order to assess the humidity threshold, the system resorts to a low-
precision and high-precision sensor. The first one is modelled through a fuzzy
set of U with membership function Ahl(x), associated with the following decom-
position of [0, 1]:

ιf3,hl
def= [0, 0.05], ιf2,hl

def= (0.05, 0.1], ιf1,hl
def= (0.1, 0.15], ιuhl

def= (0.15, 0.85],

ιt1,hl
def= (0.85, 0.9], ιt2,hl

def= (0.9, 0.95], ιt3,hl
def= (0.95, 1]

(31)
The high-precision humidity sensor is modelled through an intuitionistic fuzzy
set of U with membership functions

〈
A+

hh(x), A−
hh(x)

〉
, associated with the fol-

lowing subintervals of [0, 1]:

ι1,hh
def= [0.2, 0.45], ι2,hh

def= (0.45, 0.8], ι3,hh
def= (0.8, 1] (32)

Also the temperature is estimated through an intuitionistic fuzzy set of U , with
membership functions

〈
A+

t (x), A−
t (x)

〉
and the following subintervals of [0, 1]:

ι1,t
def= [0.15, 0.4], ι2,t

def= (0.4, 0.7], ι3,t
def= (0.7, 1] (33)

The distance among shelf units is estimated through a rough set on the domain
of values of measurements with membership functions δG(R+(A(d)), R−A(d)),
associated with the following subintervals of [0, 1]:

ι1,d
def= [0.2, 0.5], ι2,d

def= (0.5, 0.75], ι3,d
def= (0.75, 1] (34)

Since we are interested in evaluating the property that the measured distance d

exceeds a given threshold th, we have that A(d)
def≡ d > th.
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Finally, the category of a shelf unit is estimated through a paraconsistent
intuitionistic fuzzy set of U ×Cat, with membership functions

〈
A+

cat(x), A−
cat(x)

〉

and the following subintervals of [0, 1]:

ι1,cat
def= [0.4, 0.6], ι2,cat

def= (0.6, 0.8], ι3,cat
def= (0.8, 1] (35)

The condition on the temperature and humidity level for the environment
surrounding a shelf unit are verified by the following program P1:

HumLim(x) ← HLimL(x) ≥t t1,HLimH(x) ≥t t1,HLimH(x)
HumLim(x) ← HLimL(x) <t t1,HLimH(x) ≥t t1,

Δ2(HLimH(x),HLimL(x))
Warning ← HumLim(x),TempL(x)

HLimL(x) and HLimH(x) indicates whether the limit of humidity level for
shelf unit x is above the threshold respectively according to the low-precision and
high-precision sensor. Similarly, TempL(x) characterizes the threshold for the
temperature. The behaviour of P1 is the following one: if both humidity sensors
agree on the threshold (HLimL(x) ≥t t1 and HLimH(x) ≥t t1) then the truth-
degree of the high-precision sensor is finally considered (HLimH(x)). Otherwise,
if the low-precision sensor senses a humidity value below the threshold while
the high-precision one detects a value above the limit, the final truth-degree is
evaluated by the program as the difference between the positive components
of the literals Δ2(HLimH(x),HLimL(x)). The third rule produces a warning
literal if both the humidity and the temperature are above their thresholds.
The truth values of the literals of P1 are obtained by mapping fuzzy sets and
intuitionistic fuzzy sets to truth-degrees, following the strategy applied in (21).
Due to the involved techniques, HLimH(x), HLimL(x) and TempL(x) cannot be
inconsistent, thus Warning assumes values in {u, t1, t2, t3}.

The conditions on the categories and distances of shelf units are verified by
the program P2, where DistL(x, y) indicates whether the distance between shelf
units x and y is above the limit:

DistL(x, y) ← DistL(y, x)
DLim(x, y) ← Δ1(DistL(x, y))
¬DLim(x, y) ← ¬Δ1(DistL(x, y))
C(x,C1) ← Δ1(Cat(x,C1)),Cat(x,C1) ≥truth Cat(x,C2),

Cat(x,C1) ≥truth Cat(x,C3)
C(x,C2) ← Δ1(Cat(x,C2)),Cat(x,C2) ≥truth Cat(x,C1),

Cat(x,C2) ≥truth Cat(x,C3)
C(x,C3) ← Δ1(Cat(x,C3)),Cat(x,C3) ≥truth Cat(x,C1),

Cat(x,C3) ≥truth Cat(x,C2)
Warning ← true1,Cat(x, y) �∈ {u},C(x,C1) ∈ {u},C(x,C2) ∈ {u}

C(x,C3) ∈ {u}
Warning ← C(x,C1),C(y, C2),¬DLim(x, y)

When dealing with an inconsistent truth-degree ip,q, p can be considered
as an index of the evidence supporting a particular fact, whereas q estimates
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the evidence against the fact. Given that DistL(x, y) is obtained from a rough
set, its truth-degree may be inconsistent. In this case, the program considers
Δ1(DistL(x, y)): if there is a stronger evidence supporting the fact that the dis-
tance is above the limit (i.e., the positive component is greater than the negative
one), then the truth-degree of Δ1(DistL(x, y)) is considered as the representative
for the distance (with the difference between positive and negative component).
Otherwise, the truth-degree of ¬Δ1(DistL(x, y)) is kept.

Cat(x,C) with C ∈ {C1, C2, C3}, estimates the category C of the shelf unit
x. In P2 we adopt a different strategy to manage the inconsistent information
that may arise in Cat(x,C): if the difference between positive and negative
evidence for a category C is stronger than the ones sustaining the remaining
two categories, then C with Δ1(Cat(x,C)) is considered as the representative
category. In case the evidence does not allow to determine which category is
most supported (e.g. C(x,C)∈{u} for every category C), then a warning with
truth-degree t1 is generated.

The above strategies guarantee that the truth value of DLim(x, y) is con-
tained in {f3,f2,f1,u, t1, t2, t3}, whereas Cat(x,C) belongs to {t1, t2, t3}.
Thus, all possible inconsistencies are properly managed. The last rule of the
program tests the condition on the proximity of two shelf units having cate-
gories C1 and C2. Once again, the literals of the program are obtained by fuzzy
values and rough set values, by applying strategies similar to the one in (21).

The final program P3 analyses the truth-degree of the warning signal, entail-
ing a proper action depending on the criticality of the detected problem.

SafeLevel ← Warning ∈ {u}
CallOperator ← Warning ∈ {t1}
EnableSiren ← Warning ∈ {t2}
EvacuationSignal ← Warning ∈ {t3}

As a concrete instance of the case study, let us consider U
def= {o1, o2} and:

Ahl(o1)
def= 0.04 A+

hh(o1)
def= 0.96 A−

hh(o1)
def= 0.1 Ahl(o2)

def= 0.86
A+

hh(o2)
def= 0.83 A−

hh(o2)
def= 0.1 A+

t (o1)
def= 0.3 A−

t (o1)
def= 0.8

A+
t (o2)

def= 0.4 A−
t (o2)

def= 0.7 A+
cat(o1, C1)

def= 0.5 A−
cat(o1, C1)

def= 0.3
A+

cat(o1, C2)
def= 0.2 A−

cat(o1, C2)
def= 0.5 A+

cat(o1, C3)
def= 0.2 A−

cat(o1, C3)
def= 0.8

A+
cat(o2, C1)

def= 0.5 A−
cat(o2, C1)

def= 0.7 A+
cat(o2, C2)

def= 0.5 A−
cat(o2, C2)

def= 0.9
A+

cat(o2, C3)
def= 0.8 A−

cat(o2, C3)
def= 0.6

Assume further that distance between objects is measured with the accuracy of
0.5 m and the threshold th = 3.0 m. Let the actual measurement of the distance
between objects o1 and o2 be d = 3.3 m. We are interested in the truth value of
DistL(o1, o2) expressing that the distance between objects o1 and o2 exceeds th.
Thus, using formula (12), we have

R+(3.3>th)=
|{z |z>th} ∩ E(3.3)|

|E(3.3)| , and R−(3.3>th)=
{z |z≤ th} ∩ E(3.3)|

|E(3.3)| ,
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where E(3.3) is the neighborhood of distances indistinguishable from 3.3, i.e., the
interval [3.3 − 0.5, 3.3 + 0.5] being [2.8, 3.8]. Of course, {z |z >th} = (3.0,+∞),
{z |z≤ th} = (−∞, 3.0] and |E(3.3)| = 1.0. Therefore:

δG(R+(3.3 > th), R−(3.3 > th)) = δG(0.8, 0.2) = i3,1.

From such values we infer:

HLimL(o1) obtains f3 HLimL(o2) obtains t1 HLimH(o1) obtains t3
HLimH(o2) obtains t2 DistL(o1, o2) obtains i3,1

TempL(o1) obtains f2 TempL(o2) obtains f1

Cat(o1, C1) obtains t1 Cat(o1, C2) obtains f1 Cat(o1, C3) obtains f2

Cat(o2, C1) obtains i1,2 Cat(o2, C2) obtains i1,3 Cat(o2, C3) obtains i2,1

Thus, we obtain the following set of facts:

¬HLimL(o1) ← true3 HLimL(o2) ← true1 HLimH(o1) ← true3
HLimH(o2) ← true2 DistL(o1, o2) ← inc3,1

¬TempL(o1) ← true2 ¬TempL(o2) ← true1
Cat(o1, C1) ← true1 ¬Cat(o1, C2) ← true1 ¬Cat(o1, C3) ← true2
Cat(o2, C1) ← inc1,2 Cat(o2, C2) ← inc1,3 Cat(o2, C3) ← inc2,1

(36)

We consider the program obtained from the union of P1 ∪ P2 ∪ P3 and (36). Its
least many-valued Herbrand model is:

M ={ (HLimL(o1), f 3

)
,
(
HLimL(o2), t1

)
,
(
HLimH(o1), t3

)
,
(
HLimH(o2), t2

)
,(

DistL(o1, o2), i3,1

)
,
(
Cat(o1, C1), t1

)
,
(
Cat(o1, C2), f 1

)
,
(
Cat(o1, C3), f 2

)
,(

Cat(o2, C1), i1,2

)
,
(
Cat(o2, C2), i1,3

)
,
(
Cat(o2, C3), i2,1

)
,
(
TempL(o1), f 2

)
,(

TempL(o2), f 1

)
,
(
HumLim(o2), t2

)
,
(
DistL(o2, o1), i3,1

)
,(

DLim(o1, o2), t2
)
,
(
DLim(o2, o1), t2

)
,
(
C(o1, C1), t1

)
,
(
C(o2, C3), t1

)
,(

SafeLevel, t1
)}

Even in the presence of contradictory information about the category of o2, we
obtain M(SafeLevel) = t1, meaning that both safety constraints are met for shelf
units o1 and o2. In fact,

(
TempL(o1),f2

)
and

(
TempL(o2),f1

)
assure that the

first constraint is satisfied. Moreover,
(
C(o2, C3), t1

)
is inferred from the rules of

P2 and the truth-degree of DLim(o1, o2) is t2, which make the second constraint
satisfied.

We now consider these new values for the temperature:

A+
t (o2)

def= 0.8 A−
t (o2)

def= 0.5 TempL(o2) obtains t1

The set of facts becomes:

¬HLimL(o1) ← true3 HLimL(o2) ← true1 HLimH(o1) ← true3
HLimH(o2) ← true2 DistL(o1, o2) ← inc3,1

¬TempL(o1) ← true2 TempL(o2) ← true1
Cat(o1, C1) ← true1 ¬Cat(o1, C2) ← true1 ¬Cat(o1, C3) ← true2
Cat(o2, C1) ← inc1,2 Cat(o2, C2) ← inc1,3 Cat(o2, C3) ← inc2,1

(37)
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Computing the least many-valued Herbrand model of the program given from
the union of P1 ∪ P2 ∪ P3 and (37) we obtain:

M ={ (HLimL(o1), f 3

)
,
(
HLimL(o2), t1

)
,
(
HLimH(o1), t3

)
,
(
HLimH(o2), t2

)
,(

DistL(o1, o2), i3,1

)
,
(
Cat(o1, C1), t1

)
,
(
Cat(o1, C2), f 1

)
,
(
Cat(o1, C3), f 2

)
,(

Cat(o2, C1), i1,2

)
,
(
Cat(o2, C2), i1,3

)
,
(
Cat(o2, C3), i2,1

)
,
(
TempL(o1), f 2

)
,(

TempL(o2), t1
)
,
(
HumLim(o2), t2

)
,
(
DistL(o2, o1), i3,1

)
,(

DLim(o1, o2), t2
)
,
(
DLim(o2, o1), t2

)
,
(
C(o1, C1), t1

)
,
(
C(o2, C3), t1

)
,(

Warning, t1
)
,
(
CallOperator, t1

)}

In this case, the first safety constraint is violated because of
(
TempL(o2), t1

)
and

(
HumLim(o2), t2

)
;
(
Warning, t1

)
is inferred from P2 (we notice that t2∧tt1 = t1)

and
(
CallOperator, t1

)
is obtained from the second rule of P3.

6 Conclusions

In this paper we have developed a methodology for an integration of important
forms of approximate reasoning with a rule language RLN , based on a family of
many-valued logics. This way a framework to encompass and unify heterogeneous
reasoning techniques has been obtained. Besides truthfulness and falseness, the
underpinning many-valued logic can model unknown, uncertain and inconsistent
information. Also, the discrete set of truth-degrees can be parameterized in order
to achieve the best granularity required in the application in question. Clearly,
the best granularity does not necessarily mean the best accuracy. Importantly,
RLN offers a logical machinery to reason on truth-degrees, paving the way to
resolving inconsistencies and to managing the quality level of the inferred infor-
mation.

We have shown that by selecting the most appropriate underlying logic, infor-
mation treated through approximate reasoning techniques can be easily inte-
grated with the rule-based language RLN . This means that the framework can
be successfully used as an umbrella unifying several forms of approximate rea-
soning within the same logical model. This aspect turns out to be particularly
interesting when dealing with complex systems interacting with multiple infor-
mation sources of different credibility and accuracy modelled by heterogeneous
approximate reasoning techniques.

Last but not least, the complexity of queries remain tractable even though
the cardinality of truth-degrees increases to reach the best level of approxima-
tion w.r.t. the adopted reasoning technique. Therefore, the presented framework
represents an important step towards heterogeneous approximate reasoning.
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Abstract. The aim of this paper is to describe the issues concerning
the full formal translation of a single but important paper devoted to
generalized rough sets based on binary relations, authored by William
Zhu. Although we started the encoding (using automated proof-assistant
Mizar) quite some time ago, we met unexpected difficulties during this
task forcing us to refactor the created formal framework. Now, when the
work is completed, we can shed some light for lessons learned during the
process of encoding of the collection of quite elementary constructions
written by means of relatively simple syntactical apparatus.

1 Introduction

Recently, it seems that the main activity at the intersection of rough sets and
knowledge technology is discovering knowledge based on rough set methods:
granular computing, approximate reasoning or some non-classical logics (at least
that is the tradition of the core of rough set conference series). Essentially then,
if we deal with incomplete data, we meet the situation when classical logic or
classical set theory is just not sufficient. On the other hand, models for rough
set theory are often formalized within those above-mentioned traditional math-
ematical tools [4], but rough set theory itself is relatively rarely treated as a
testbed for methods of knowledge discovery. The main reason seems to be that
among many automatically generated theorems it is hard to point out those
really interesting for a working mathematician. In the same time, among ter-
abytes of data, interesting rules can be discovered and successfully applied. In
our opinion, mathematical reasoning is also an important part of the area of
information sciences, recently it belongs rather to the part explored by the com-
munity of automated reasoning within computer science. We can quote here the
words of Dana Scott opening Vienna Summer of Logic in 2014:

“Computers and logic have to come together to discover new unexpected
facts in mathematics and give their proofs. ( . . . ) So, we have to put
together all of our technology to really come up with new things.”1

1 http://vsl2014.at/livestream/index.html#Recordings.
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In order do achieve this goal, many activities should be done in parallel: the
formalization language should not be very artificial to be attractive for mathe-
matician. Also fundamental theorems of the basic areas of mathematics should
be provided in a uniform framework, or at least interfaces linking various plat-
forms should be provided; last but not least – not only archival papers, but also
those from the so-called research frontier should be encoded. In wide repository
of formalized mathematical knowledge we have the possibilities of using vari-
ous available tools from the area of computerized proof-assistants. The papers
should be carefully selected as sometimes the gap between theorems formulated
and proven by the author and the current state of the library could be too wide.
Our paper was intended a step towards bridging this gap.

The paper is organized as follows: in Sect. 2 we formulate the problem chosen
for the formalization, concentrating on basic ideas standing behind the formal
development, the next section shows the duality between relational and struc-
tural approaches which we used in Mizar. In Sects. 4 and 5 we show that the one
exception of a proof from [27] which was hard to follow for us and some solu-
tions of how to lift the formulations from predicative style into the language of
adjectives. The next two sections contain the description of chosen mechanisms
of automation and some statistical data about the code finally submitted by us
to the Mizar Mathematical Library. At the end of the paper, we conclude and
draw some hints for future work.

2 Generalized Rough Sets

Generalizations of rough sets [18], practically from their beginnings, attracted
much efforts from researchers’ side. Now we can treat the work of Skowron and
Stepaniuk on tolerance approximation spaces [21] as the foundational paper on
how to lift generality of the original (based on equivalence relations) a bit up,
but this slightly more general approach really opened new paths of reasoning
about incomplete knowledge. Many of these ways can be explored by means of
automated reasoning tools. As our software system, we used Mizar proof assistant
[1], which together with the Mizar Mathematical Library – the repository of
machine-verified mathematical knowledge has already shown its potential in the
field of rough sets [11].

As our challenge to do so we have chosen a paper of William Zhu “General-
ized rough sets based on relations” [27] published in a leading journal in the field.
Immediately we noticed, that many relatively popular notions of a general char-
acter quoted by Zhu (e.g. seriality and mediateness of a binary relation), were
not defined in MML, so they had to be introduced by us from scratch. Hence,
a major part of initial encoding was devoted to various basic properties of binary
relations (although some of them seem to be not of a general interest for ordinary
mathematician, as positive or negative alliance relations). We were facing lots of
tiny decisions of which approach should be formally chosen (a concrete model of
a rough set – pairs vs. approximations, application of relational structures, etc.),
however Zhu’s paper is written quite consistently with mathematical intuitions.
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Hence we were prepared for relatively simple formalization, and as informal pre-
sentation took 15 pages, it should be of the order of 60 pages in Mizar, a few
thousand lines of code (ca. two-three Mizar articles). We already deal with much
more complex frameworks, i.e. the formalization of the Jordan Curve Theorem
consisted of approx. 100 Mizar articles, and the encoding of A Compendium of
Continuous Lattices of the same order of complexity. Another case study of ours
on formalization of the connections between lattice theory and rough set theory
resulted in massive development, e.g. twenty Mizar articles, and as of now, is
still not completed [6].

2.1 Listed Characteristic Formulas

The main idea of the considered paper was to establish the connection between
basic properties of approximation operators [12,13] and corresponding proper-
ties of binary relations; in foundational mathematics it can be considered a pre-
liminary work to reverse mathematics. Original list of the common properties
considered by Zhu is rather long (16 formulas), we quote here only basic four of
them, briefly reflecting the idea of research:

(3L) R∗(X) ⊆ X
(4L) R∗(X ∩ Y ) = R∗(X) ∩ R∗(Y )
(7L) R∗(−R∗(X)) = −R∗(X)

(8LH) R∗(−X) = −R∗(X)

Of course, the considerations can be done on the very abstract level – the
definition of the approximation operator is quite meaningless and some of the
formulas are well known; we can find Kuratowski’s closure properties among
them. However, if we try to follow Yao [24] method of proving, we can freely
accept (8LH) as the definition of the dual approximation operator, so it is more
a kind of axiom than the property which should be proven. As in our primary
approach both approximation operators are defined separately, it is proven like
the remaining theorems. We could also separate properties dealing with algebraic
operations or set-theoretic (mainly, the complementation operator).

We were not aware of the adjectives of finiteness and non-emptiness of the
universe of discourse U – even if sometimes these assumptions can be avoided,
we left them in order to keep proofs simple (based on induction) and faithful to
the original. In the future, we will try to attack these proofs with the help of
automated theorem provers (from scratch).

2.2 Hidden vs. Visible Arguments

In real mathematics, one rarely uses the syntax of expressing all the arguments
explicitly. But to avoid the confusion, Zhu writes

L(R)(X ∪ Y )
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to underline that the lower approximation operator depends on the binary rela-
tion R or even introduces a notation letting L = L(R) and afterwards he uses
naturally-looking

L(X ∪ Y )

instead, which is especially justified taking into account complicated formula
from p. 5004 of [27]:

(5H ′′) H(R)H(R)(X)(X) ⊆ H(R)(X).

Using relational structures we should not give the argument of indiscernibility
relation explicitly as the type system recognizes it from the type of the argument.
This trick is called a hidden argument and it significantly simplifies the notation
without any affect of its understandability by the computer. That is the reason of
writing LAp X (parentheses around the single argument can be omitted) instead
of something like LAp(R)(X).

2.3 Refactoring of the Existing Proof

It appeared that old developments can be just reused, in order to do that, we
introduced a new object, the Mizar functor called GeneratedRelation. It is quite
natural to say that we generate a relational structure based on the ordering given
by the specific formula, such construction is then formally introduced.

Basic idea is expressed by the formula

xRy ⇔ x ∈ H({y})

definition

let R be non empty RelStr,

H be Function of bool the carrier of R, bool the carrier of R;

func GeneratedRelation (R,H) -> Relation of the carrier of R means

:: ROUGHS_3:def 3

for x,y being Element of R holds [x,y] in it iff x in H.{y};

end;

The idea standing behind this definition is justified by Theorem 3 from [24]:

theorem :: ROUGHS_3:14 :: Yao Theorem 3

for A being finite non empty set,

L, H being Function of bool A, bool A st L = Flip H holds

(H.{} = {} &

(for X,Y being Subset of A holds H.(X \/ Y) = H.X \/ H.Y))

iff

ex R being non empty finite RelStr st

the carrier of R = A & LAp R = L & UAp R = H &

for x,y being Element of R holds

[x,y] in the InternalRel of R iff x in H.{y};
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The auxiliary functor Flip H constructs from an arbitrary map defined on
the powerset of the universe its corresponding map (it takes the the value of the
set-theoretic complementation of the argument, and then complements it once
more, i.e. returns (H(xc))c for every subset x of the universe of discourse). This
clearly corresponds with the property (8LH) mentioned in Sect. 2.1.

The Mizar functor described in this subsection plays a role of the interface
between an arbitrary map (regardless of its properties) and corresponding rela-
tional structure, where approximation operators can be further studied. The use
of this lemma saved about 340 lines of Mizar code which was originally spent just
on copies of the same parts of proofs under various combinations of properties.

3 Relational vs. Structural View for Rough Sets

The distinction between classical and abstract mathematics (i.e. the one based
on ordinary axioms of set theory, and all those using the notion of a structure,
respectively) is important from the viewpoint of the organization of the Mizar
repository. We had to choose between two paths:

– it is possible to formulate practically all notions as logical predicates, without
the use of a structure, and also set theory could be meaningless for that
framework, only the classical logic with Mizar predicates is enough (equality
plays a special role in the system based on set theory;

– the use of Mizar structures forces us paradoxically to use basics of set theory
– defining a signature of any algebraic system needed to give a type of an
object, which was set-theoretic (as the Mizar language is typed, and in the
earlier case one should also give a type at least to primitive objects, otherwise
the most general type object is attributed).

The latter was also chosen by us as the theory of posets in MML is written
in abstract style (as the majority of MML, as you can read from the numbers:
323 articles are without structures, the rest, i.e. 966 use them at least once) as
structures in Mizar are present for a long time. Even if in ordinary mathemat-
ical tradition they are considered as ordered tuples, in the implementation in
Mizar they are treated rather as partial functions, with selectors as arguments,
and ordinary inheritance mechanism (with polymorphic enabled, which will be
extensively used in our formalizations).

Another main premise to cope with such an approach was the possibility
of further theory merging: rough fuzzy hybridization [5] (as we did fuzzy num-
bers [26] recently [8]) or variable precision [29] rough set models. Merging with
topology [25,28] is already provided formally as we described in [10].

Such construction is also known in other automated proof-assistants, e.g. in
Isabelle under the name modules, but their importance and the possibility of
its further reuse is not that high as in our case (recently, Isabelle is oriented on
programming rather than on mathematics). We were strongly convinced that
the structural view provides better readability for at least two reasons:
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– hidden arguments are structures, and usually we work within a single fixed
approximation space;

– structures are relatively well developed in the Mizar Mathematical Library (at
least they offer more flexible syntax than other proof-assistants), furthermore
they provide merging theories.

The first added value soon appeared to be a significant drawback: we observed
that if we have to deal with two or more approximation spaces at the same time,
i.e. we deal with the union and the intersection of two approximation spaces,
things get much worse formally. That was the situation with the final theorems of
[27] dealing also with a problem of the uniqueness of binary relations to generate
rough sets. We have no space here to describe how we successfully coped with
this problem, but of course it can be tracked in MML.

4 The Gap

Our original aim is to translate full paper into Mizar formalism, and we almost
succeeded formalizing Zhu’s paper as a whole. There is one exception, though:
the theorem named “Proposition 10”, p. 5005, and as a consequence, the single
item from Theorem 2, p. 5007, which is in fact, a corollary (7H) are proven in
a weaker form, that is only for singletons instead of arbitrary sets. Of course,
the other implication (that the alliance relation exists under the assumptions of
(2H), (4H), and (7H)) is proven.

theorem :: ROUGHS_3:33 :: Proposition 10 (7H’) for singletons

for R being finite positive_alliance non empty RelStr,

x being Element of R holds

((UAp R).{x})‘ c= (UAp R).(((UAp R).{x})‘);

::theorem :: Proposition 10 (7H’) general case - FAILED

:: for R being finite positive_alliance non empty RelStr,

:: X being Subset of R holds

:: ((UAp R).X)‘ c= (UAp R).(((UAp R).X)‘);

We left it unproven intentionally (of course, it is not present in the Mizar
code as in order to be included in the Mizar Mathematical Library it can contain
no errors in the source) just to let the automated theorem provers automatically
discover proof for this single inference. Unfortunately, neither of basic methods
of automated proving (running basic MPTP, Vampire 4.1, and E prover 2.0)
succeeded in this concrete case.

This second theorem was commented out, because otherwise it would be
marked by the system as erroneous.

5 Attributes

In a form of a summary, all the characterizations of approximations in terms
of the properties of binary relations are collected in Sect. 3.7, page 5007 of [27].
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Not to get into details, we can give the simple idea of how this works in Mizar,
quoting two conditional registrations of clusters.

registration

cluster positive_alliance -> serial for non empty RelStr;

cluster transitive serial -> positive_alliance for non empty RelStr;

end;

It should be noted that regardless of the use of adjectives, all the summarizing
content can be expressed in Mizar in terms of ordinary implications between cor-
responding formula denoting properties; it is quite straightforward, but registra-
tions of clusters provide the automatic treatment of positive alliance relations as
serial ones, and additionally, those which are transitive and serial, are equipped
with the property of positive alliance. Similar connection between seriality and
totality of a binary relation was automatically discovered before [9].

As a side effect, we can further consider other properties originating in conflict
theory: alliance, conflict, and coalition [17]. This quite natural setting within the
information system is also well-known in the theory of social choice, when the
buyer expresses his opinion about the goods: either he/she expresses his/her
preference to this object, or he/she is strongly against that, or is neutral, i.e.
none of special opinions are emphasized, or neutrality is stated. Thanks to theory
merging mechanism, we can reuse at least some of such theorems.

6 Automatizing Properties

In mathematical papers, there are many phrases like “The proof is obvious” or
just theorems are left without the proof (which is considered trivial and marked
by the sign “��”). This very informal level of obviousness, which of course varies
depending on many circumstances, was considered by Rudnicki in [20], and in the
setting of automated proof verifiers describes the “smartness” of the software,
or the ability of justification of an inference based on available premises.

For example, the inclusion

H(R)((H(R)(∅))c) ⊆ (H(R)(∅))c

expressed in the Mizar formalism as

theorem :: Obvious due to the mechanism of clusters

for R being non empty RelStr holds

UAp ((UAp ({}R))‘) c= (UAp ({}R))‘;

is obvious because of the mechanism of registrations and reductions formulated
by us:

– UAp {}R reduces to the subterm {}R;
– ({}R)‘ is automatically expanded to set-theoretic difference of the universe

of R and the empty set;
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– X \ ∅ is automatically unified with X or, in our case, with the universe of a
relational structure R;

– that the left hand side term is included in the right hand side term is auto-
matically calculated from the type of the left hand side term (it is just the
subset of R), hence an inference is accepted provided the last item;

– the upper approximation operator is properly defined, i.e., for subset of a
relational structure R it returns again a subset of R (or, to be formally strict,
a subset of the carrier of R).

The mechanism of reductions, i.e. the first item from the above list, was a
relatively recently implemented example of the influence of equational theorem
provers [1]. The issue of creating the net of such connections as smart as possible
is important as mathematicians do not want to cope with very rigorous details of
their proofs (also the design of flexary connectives in Mizar, i.e. logical operations
with an ellipsis in the list of arguments [15] allows to decrease the rigour on the
syntax level).

7 Some Statistics

In total, we have formulated and proven all items2 from Zhu’s paper. The results
were accepted for inclusion to the Mizar Mathematical Library and the formal-
ized content is divided into two parts (two files with MML identifiers ROUGHS 2
and ROUGHS 3). First part was finished already a couple of years ago, the second
– more problematic – part was finished last year [7] and this paper is a kind of a
brief report on it. The Mizar articles are hyperlinked and can be browsed freely
online3. We decided also to give some data for two other files – ROUGHS 1 contains
very basic notions specific to rough set theory, obviously not introduced by Zhu,
but heavily used in his paper. The Mizar article ROUGHS 4 contains potentially
useful constructions of operators, also not used directly in [27], but improving
the readability of the proper code. As we can read from Table 2, the time of both
verification and finding irrelevant premises is notably bigger in these auxiliary
submissions than in straight translations of Zhu’s theorems.

The summary of our work is given in two tables. Table 1 gives the idea of the
complexity of the code by some quantitative measures. Four files containing the
formal development needed to understand and prove material from considered
paper took about 125 pages of fully formal definitions, theorems, proofs and
more Mizar-specific constructions allowing for better use of the encoded work.
The ratio of the number of theorems and the number of definitions can be slightly
disappointing (ca. 2.4 vs. 3–5 claimed to be optimal), but we have to bear in
mind that the formalization of this theory is in its early stage, so many new
constructions had to be introduced.

2 One exception is described in Sect. 4.
3 The addresses are http://mizar.org/version/current/html/roughs 2.html and

http://mizar.org/version/current/html/roughs 3.html.

http://mizar.org/version/current/html/roughs_2.html
http://mizar.org/version/current/html/roughs_3.html
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Table 1. Basic statistical data on our four main contributions

MML Id ROUGHS 1 ROUGHS 2 ROUGHS 3 ROUGHS 4 Total

Lines of code 1686 1791 2392 1605 7474

Pages (approx.) 28 30 40 27 125

Core lines 0 848 1645 0 2493

Core pages 0 14 27 0 41

Definitions 19 18 12 28 77

Theorems 61 44 54 23 182

TPTP problems 591 557 858 566 2572

Notations attached 29 19 22 42 51

Used articles 61 39 55 75 83

In the last line we counted all originally attached articles, some of them could
bring relatively small percentage of knowledge (it should be remembered that
MML is subject to continuous evolution, one of important changes are those
increasing the integrity of the library, that is making the library better orga-
nized, without much accidental theory placements). Significantly higher value
(75 files) in the fourth file is caused by the fact that we reuse general and
algebraic topology there, and even a bit of category theory. It should be also
mentioned that ROUGHS 4 was completed before ROUGHS 3 and in fact it develops
some formal apparatus for the earlier; even if it does not bring any “core” for-
malization (i.e. directly translating Zhu’s paper), it merges known approaches
to make the formalization more smooth.

Times measured on a machine with 8 GB of RAM and Intel i7 processor
(under Linux operating system by time command, in seconds) are contained in
Table 2.

Table 2. Running time of selected Mizar commands (in seconds)

Command ROUGHS 1 ROUGHS 2 ROUGHS 3 ROUGHS 4

Accomodator 0.548 0.327 0.412 0.396

Verifier 6.672 3.817 4.901 6.428

Relprem 15.040 8.486 12.081 13.728

Even if we established the automation at quite high level via tight network
of registrations and reductions, the time of checking is reasonable: relprem tool
discovers potential irrelevant premises (of course, in our case, all such linkages
were removed), so the values are approximately three times bigger. The acco-
modator imports all the needed knowledge previously stored in the MML.

Summarizing, the translation of [27] took slightly over 40 pages of Mizar code.
Taking into account only number of pages, not kilobytes, the rough de Bruijn
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factor [23] (the ratio of the fully formal translation within the computer system
and its informal counterpart) is equal to 41/15 ≈ 2.73, which is significantly
below 4 claimed as an average value. In our opinion that shows both the high
level of formalism used in [27], and relatively high expressive power of the Mizar
language applied to rough set theory.

For a broader development, having also lattice theory in mind (see our case
study [11]), these numbers are not so optimistic (the value 3.3 is one of the best
cases measured for a single section). On the other hand, the nature of textbooks,
monographs like [14], and regular papers [27] is different: textbooks provide usu-
ally more detailed proofs, and the exposition of the topic is rather elementary. In
recent papers from research frontier significant part of proofs is usually sketchy,
while monographical publications are somewhere in the middle. Frankly speak-
ing, both abovementioned publications chosen to formalize in Mizar provide very
rigorous proofs, which was an exceptional circumstance for us, making the work
much easier.

8 Conclusions and Further Work

One of our main objectives was to provide reasonably faithful translation of Zhu’s
paper to be included as a part of one of the largest repositories of automatically
verified mathematical knowledge. This allows for further exploration via TPTP
(Thousands of Problems for Theorem Provers) tools.4

Of course, this encoding should not be treated as l’art pour l’art ; the gains
can be potentially at least threefold:

– it opens the possibility of further translation into other repositories, as
Isabelle’s Archive of Formal Proofs [2]; we do not know about formalization
of rough sets in any other popular proof-asistant like HOL Light, Isabelle,
Coq, and Metamath;

– even if as of now, automated provers offer about 50% of positive hits [22],
completed results can serve for machine learning in order to be more success-
ful, also experiments with external SAT solvers are quite successful [16]; this
could eventually save a lot of time spent for more time-consuming tedious
passages in proofs;

– fully formal, hyperlinked version of proofs can be explored via Semantic Web-
type tools. Such computerized, mechanically verified repository is an ideal
starting point for further transformations: in fact, Wikipedia was established
years after the project of hyperlinking knowledge contained in the Mizar
Mathematical Library (started in 1995). The choice of the appropriate formal
model just to open an area of research is quite hard – we hope however that
our framework allows to attract more people to continue this work (especially
because of the open access to the repository of Mizar texts).

4 The set of problems extracted from the Mizar Mathematical Library was used for
years at yearly CADE (Conferences on Automated Deduction) conferences.
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It should be noted here, that our failure in proving one of the Zhu’s proposi-
tions had rather unexpected consequence: as we did not provide the proof of the
general case (for arbitrary sets), but only in case of singletons, we spent some
time to study the so-called unit operations proposed by Bonikowski [3]. We hope
that more formal interconnections with this method will be shown as in the
future. It could allow to do reasonings basically only about singletons, having
general theory behind these to justify needed theorems on universal sets. On the
other hand, Theorem 3 from [24] is of general character and can be used not
only for approximation operators, but also e.g., for maps in topological spaces
as the properties are very intuitive.

The next step will be to automatize the proofs [19] and notions as much as
possible in order to gain additional linking between various theories. As of now,
we see general topology as a promising area of mathematics – well represented in
MML, and an important framework for expressing notions of rough set theory.
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Abstract. In this work, we focus on the study of the algebra of strong
subobjects obtained from a category of rough sets that forms a quasito-
pos. A new algebraic structure called ‘contrapositionally complemented
pseudo Boolean algebra’ is obtained and its basic properties studied. The
corresponding logic ‘intuitionistic logic with minimal negation’ is intro-
duced, and its connection with the intuitionistic and minimal logics is
discussed.

Keywords: Rough sets · Quasitopos · Contrapositionally comple-
mented lattices · Pseudo-Boolean algebras · Intuitionistic logic · Minimal
logic

1 Introduction

Rough set theory was defined by Pawlak [1] in 1982 to deal with incomplete infor-
mation. Since then it has been studied from both foundational and application
points of view. One of the many directions of study on the foundational side is
that involving algebraic studies of rough sets, a summary of which can be found
in [2]. Another direction involves the category-theoretic study of rough sets. Our
work is an amalgamation of the algebraic and category-theoretic approaches.

Categories ROUGH and ξ-ROUGH of rough sets were first given by Baner-
jee and Chakraborty in [3]. Further work on categories and rough sets were later
done, and can be found in [4–7]. In [8], it was shown that the category RSC
[7] is equivalent to ROUGH; RSC and ξ-RSC (equivalent to ξ-ROUGH) were
further investigated. Their generalizations, categories RSC(C ) and ξ-RSC(C )
over an arbitrary elementary topos C , were defined, such that in the special
case when C is the topos SET , we get RSC and ξ-RSC. The topos-theoretic
properties of these categories were studied, and RSC(C ) was shown to form
a quasitopos. Furthermore, the algebra of strong subobjects of an RSC-object
obtained using the internal logic of the quasitopos RSC was studied. ‘Contra-
positionally ∨ complemented’ (c. ∨ c.) lattices were obtained by replacing the
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negation operator in the algebra with Iwiński’s rough difference operator [9]. In
fact, starting with an arbitrary Boolean algebra, a whole class of c. ∨ c. lattices
was obtained by abstracting the constructions in the algebra of RSC-subobjects
(which is a Boolean algebra).

In this work, we study the algebra and logic of the class of strong subob-
jects of an RSC(C )-object. We proceed in a way similar to this study done for
RSC in [8]. As the algebra of RSC(C )-subobjects is a pseudo-Boolean alge-
bra, here we start with an arbitrary pseudo-Boolean algebra. On abstracting the
constructions in the algebra of RSC(C )-subobjects, we obtain a class of contra-
positionally complemented (c.c.) lattices instead of c. ∨ c. lattices. In fact, the
strong subobjects of an RSC(C )-object form a new algebraic structure with two
negations which we call ‘contrapositionally complemented (c.c.) pseudo-Boolean
algebra’. We give the representation theorem for this class of algebras. Further
we define the corresponding logic which we call ‘intuitionistic logic with minimal
negation’ (ILM). We introduce the definition of ‘interpretation’ and show that
ILM is interpretable in intuitionistic logic (IL). We can further show that ILM is
interpretable in minimal logic (ML) as well, using well-known mappings between
IL and ML [10,11].

In the next section, we recall the definitions and properties of various cate-
gories of rough sets [3,4,8], and also derive a necessary and sufficient condition
for the category ξ-RSC(C ) to be a quasitopos. In Sect. 3, the algebra of strong
subobjects of an object in RSC(C ) is investigated. The c.c.-pseudo-Boolean
algebras are defined and their representation theorem is obtained. The corre-
sponding logic ILM and its connection with other logics is discussed in Sect. 4.
Section 5 concludes the article.

For all basic category-theoretic notions, we refer to [12,13].

2 Categories of Rough Sets

An approximation space is a pair (U,R), where R is an equivalence relation over
a set U . For any set X ⊆ U , X R denotes the collection of equivalence classes in
U properly intersecting X and X R denotes the collection of equivalence classes
in U contained in X, that is,

X R := {[x]R | [x]R ∩ X �= ∅}, and

X R := {[x]R | [x]R ⊆ X}.

The R-upper approximation of X is XR =
⋃ X R and the R-lower approximation

of X is XR =
⋃ X R, where union is taken over the elements of equivalence classes

in the respective collections. The suffix R can be dropped from the notation
whenever the approximation space is clear from the context. The following two
categories of rough sets are defined in [3] and [7] respectively.

Definition 1 (The category ROUGH [3]). The category ROUGH has the
triples 〈U,R,X〉 as objects, where (U,R) is an approximation space and X ⊆ U .
The set functions f : X R → YS are the arrows with domain 〈U,R,X〉 and
codomain 〈V, S, Y 〉 such that f(X R) ⊆ YS.
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The arrows of ROUGH thus preserve the lower approximation.

Definition 2 (The category RSC [7]). The category RSC has the pairs
(X1,X2) as objects, where X1, X2 are sets and X1 ⊆ X2, and the set func-
tions f : X2 → Y2 as arrows with domain (X1,X2) and codomain (Y1, Y2) such
that f(X1) ⊆ Y1.

The category ROUGH is finitely complete but not a topos [3]; the category
RSC is also not a topos [7]. In fact, the categories RSC and ROUGH are
equivalent [8]. Furthermore, RSC forms a weak topos [7] as well as a quasitopos
[8], structures that are weaker than a topos. Note that an important feature of
a quasitopos distinguishing it from a topos is that the subobject classifier in a
quasitopos classifies only the strong monics and not the monics.

Elementary toposes were defined to capture properties of the category SET
of sets. With a similar goal in mind, in [8] we proposed the following natural
generalization RSC(C ) of the rough set category RSC.

Definition 3 (The category RSC(C ) [8]). The category RSC(C ) has the
pairs (A,B) as objects, where A and B are objects in C such that there exists a
monic arrow m : A → B in C . m is said to be a monic arrow corresponding to
the object (A,B).
The pairs (f ′, f) are the arrows with domain (X1,X2) and codomain (Y1, Y2),
where f ′ : X1 → Y1 and f : X2 → Y2 are arrows in C such that m′f ′ = fm, and
m and m′ are monic arrows corresponding to the objects (X1,X2) and (Y1, Y2)
in RSC(C ) respectively.

X1

m

��

f ′
�� Y1

m′

��

X2
f

�� Y2

We observe that RSC(C ) is just RSC, when C is the topos SET . RSC
forms a quasitopos. Therefore, a natural question is what kind of topos-theoretic
structure does RSC(C ) form.

Theorem 1 [8]. RSC(C ) is a quasitopos.

Let us recall one more category of rough sets defined in [3]. In both the defini-
tions of the categories ROUGH and RSC, the morphisms preserve the upper and
lower approximations. Capturing the idea that during ‘communications’ (being
represented by morphisms) between rough sets, the boundary region (X R \X R)
may be an invariant, the category ξ-ROUGH is defined as follows.

Definition 4 (The category ξ-ROUGH [3]). The category ξ-ROUGH has
the objects same as ROUGH-objects. An arrow in ξ-ROUGH with domain
〈U,R,X〉 and codomain 〈V, S, Y 〉 is a map f : X R → YS such that f(X R) ⊆ YS

and f(X R \ X R) ⊆ YS \ YS.
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Similarly, we can define ξ-RSC category having objects same as RSC and
arrows satisfying f(X1) ⊆ Y1 and f(X2 \ X1) ⊆ Y2 \ Y1. Both ξ-RSC and
ξ-ROUGH are equivalent to SET 2, and thus, they form a topos [8]. The gen-
eralization of ξ-RSC is also possible over any topos C , as the set difference
operation can be abstracted in any topos using the negation ¬ operator in the
algebra of subobjects of C . Given any monic arrow f : A → C in C , the negation
¬f : ¬A → C is obtained by taking the pullback of the morphism ¬ ◦ χf along
the subobject classifier � : 1 → Ω in C . The domain of ¬f , that is ¬A, is the
set difference C \ A in the topos SET . Therefore, we can say that ¬ abstracts
the definition of set difference operation. We are now in a position to define
ξ-RSC(C ).

Definition 5 (The category ξ-RSC(C ) [8]). Objects of ξ-RSC(C ) are same
as objects of RSC(C ). An arrow (f ′, f) of RSC(C ), where f ′ : X1 → Y1 and
f : X2 → Y2, is an arrow in ξ-RSC(C ) if there exists an arrow f ′′ : ¬X1 → ¬Y1

such that the following diagram commutes,

¬X1

¬m

��

f ′′
�� ¬Y1

¬m′

��

X2
f

�� Y2

where m,m′,¬m and ¬m′ are monics corresponding to the objects (X1,X2),
(Y1, Y2), (¬X1,X2) and (¬Y1, Y2) respectively. Arrows in ξ-RSC(C ) are repre-
sented as the triple (f ′′, f ′, f).

ξ-RSC(SET ) is just the category ξ-RSC, which, as mentioned earlier, is a
topos. However, for an arbitrary topos C , we are able to show that ξ-RSC(C ) is
not always a topos (or a quasitopos), and that depends on the Boolean property
of the ‘base’ topos C . By a ‘Boolean topos’ C , we mean that for any monic
m : A → B in C , we have (m ∪ ¬m) ∼= IdB in the subobject lattice of B. Using
standard notation [12], we write C ∼= D to denote that there is an iso arrow
f : C → D in C .

Theorem 2. ξ − RSC(C ) is a quasitopos if and only if C is a Boolean topos.

Proof. We have seen in [8], that if C is Boolean topos, ξ-RSC(C ) is equivalent
to C 2 and thus, a topos (and quasitopos).

For the converse, assume C to be a non-Boolean topos, that is, there exists a
monic arrow m : A → B such that (m∪¬m) � IdB in the subobject lattice of the
object B in C . Consider the arrow (Id0,m∪¬m, IdB) : (A∪¬A,B) → (B,B) in
ξ-RSC(C ), where A∪¬A is the domain of m∪¬m, and m∪¬m and IdB are the
monic arrows corresponding to the objects (A ∪ ¬A,B) and (B,B) respectively
in RSC(C ). It can be checked that (Id0,m ∪ ¬m, IdB) is epi and strong monic,
but not iso as (m ∪ ¬m) � IdB. However, in any quasitopos, any arrow which
is epi and strong monic is iso. Therefore, ξ-RSC(C ) is not a quasitopos. ��
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Recall the category RSC(2-Set) defined in [8], where 2-Set is the category of
monoid actions of 2 := {0, 1} on sets. Since, 2-Set is a topos but not a Boolean
topos, ξ-RSC(2-Set) does not form a quasitopos. In general, any topos M-Set
[12], where M is a monoid but not a group, is non-Boolean. Therefore, we have

Corollary 1. ξ-RSC(M-Set) is not a quasitopos, where M is any monoid that
is not a group.

Any quasitopos, just like a topos, has an internal logic associated with the
class of strong subobjects of its objects. In the next section, we exploit this
feature to study the algebras of strong subobjects in the quasitopos(es) of rough
sets just discussed.

3 Algebras of Strong Subobjects in RSC and RSC(C )

One of our goals of studying the categories of rough sets discussed above, is
to investigate the algebraic structures emerging from the internal logic of the
categories. In any topos (quasitopos), the class of all the monics (strong monics)
with fixed codomain forms a pseudo-Boolean algebra, where one defines the
basic operators ∩, ∪, → and ¬ on the class by the internal logic associated with
the topos (quasitopos) [13]. Let us recall the algebra of strong subobjects of an
object in the quasitopos RSC, and its properties [8].

Consider the set M(X) of all the strong subobjects of an RSC-object (X ,X ).
Elements of M(X) are the pairs (A1, A2) such that A1 ⊆ A2 ⊆ X and A1 =
A2 ∩ X , that is A2 \ A1 ⊆ X \ X . In RSC, (M(X), (X ,X ), (∅, ∅),∩,∪,→,¬)
forms a pseudo-Boolean algebra, where operations are obtained using pullbacks
of specific characteristic morphisms along the RSC subobject classifier (�,�) :
(1, 1) → (2, 2). In fact, we have something more.

Proposition 1 [8]. In RSC, the class of strong subobjects of an RSC-object
(X ,X ), (M(X), (X ,X ), (∅, ∅),∩,∪,→,¬) forms a Boolean algebra.

The class of monics in ξ-RSC and the class of strong monics in RSC are the
same and the algebras of subobjects obtained over the same object in ξ-RSC
and RSC are also identical. Therefore, it is sufficient to study the algebra of
subobjects of any one of them.

It is well-known that the algebraic structures formed from rough sets (e.g. cf.
[14]) are non-Boolean. The prime reason for the classical behavior of the strong
subobjects of an RSC-object lies in the definition of negation ¬ of the RSC-
object (A1, A2). We had noted in [8] that since the complementation ¬ is with
respect to the object (X ,X ), we actually require the concept of relative rough
complementation. Iwiński’s rough difference operator [9] is what we use, and we
define a new negation ∼ on M(X) as:

∼: ∼ (A1, A2) := (X \ A2,X \ A1).

Let us note the following definitions from literature.
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Definition 6.

1. [15] The algebra (B, 1,∧,∨,→,¬) is a contrapositionally complemented lat-
tice (c.c. lattice) if (B, 1,∧,∨,→) is a relatively pseudo-complemented lattice
(r.p.c. lattice) and for any x ∈ B, x → ¬y = y → ¬x.
Equivalently, (B, 1,∧,∨,→,¬) is a c.c. lattice if and only if (B, 1,∧,∨,→) is
an r.p.c. lattice, and for any x ∈ B, ¬x = x → ¬1.

2. [16] A c.c. lattice (B, 1,∧,∨,→,¬) is a contrapositionally ∨ complemented
lattice (c. ∨ c. lattice) if for any x ∈ B, x ∨ ¬x = 1.

Proposition 2 [8]. For every RSC-object (X ,X ), (M(X), (X ,X ),∩,∪,→,∼)
is a c. ∨ c. lattice with the least element (∅, ∅).

We shall see in the sequel that (M(X), (X ,X ),∩,∪,→,∼), in fact, forms a richer
structure.

As RSC(C ) is a quasitopos, just as in the case of RSC, the set of strong
monics of an RSC(C )-object (U1, U2) also forms a pseudo-Boolean algebra. Let
us recall what the strong monics in RSC(C ) are. An arrow (f ′, f) : (X1,X2) →
(U1, U2) is a strong monic if and only if f : X2 → U2 is a monic and the following
diagram in a pullback,

X1

m1

��

f ′
�� U1

m2

��

X2
f

�� U2

where m1 and m2 are the monic arrows corresponding to (X1,X2) and (U1, U2)
respectively. Let M((U1, U2)) denote the set of all strong monics in RSC(C )with
codomain (U1, U2). We can characterize the operations on M((U1, U2)) as fol-
lows.

Proposition 3. The operations on M((U1, U2)) obtained by taking the pull-
backs of specific characteristic morphisms along the RSC(C )-subobject classifier
(�,�) : (1, 1) → (Ω,Ω) are

∩ : (f ′, f) ∩ (g′, g) = (f ′ ∩ g′, f ∩ g),
∪ : (f ′, f) ∪ (g′, g) = (f ′ ∪ g′, f ∪ g),

¬ : ¬(f ′, f) = (¬f ′,¬f),
→: (f ′, f) → (g′, g) = (f ′ → g′, f → g),

where (f ′, f) and (g′, g) are strong monics with codomain (U1, U2), and � : 1 →
Ω is the subobject classifier of the topos C . The operations on f ′, g′ (f, g) used
above are those of the algebra of subobjects of U1 (U2) in the topos C .

As noted above, (M((U1, U2)), (IdU1 , IdU2), (0, 0),∩,∪,→,¬) is a pseudo-
Boolean algebra. Bringing Iwiński’s rough difference operator into this general-
ized scenario as well, we define a new negation ∼ on M((U1, U2)).
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Definition 7. On the set M((U1, U2)), define ‘rough’ negation as:

∼ : ∼ (f ′, f) := (¬f ′,¬(m ◦ f ′)).

where (f ′, f) is strong monics with codomain (U1, U2) and m : U1 → U2 is the
corresponding monic arrow associated to (U1, U2).

Simplifying ∼ (f ′, f), we have ∼ (f ′, f) = (¬f ′,¬(f ∩ m)) = (¬f ′, f → (¬m)) =
(f ′, f) → (0,¬m) and ∼ (IdU1 , IdU2) = (¬IdU1 , IdU2 → ¬m) = (0,¬m). There-
fore, from the definition of a c.c. lattice (cf. Definition 6), we have the following.

Theorem 3. A := (M((U1, U2)), (U1, U2), (0, 0),∩,∪,→,∼) is a c.c. lattice
with the least element (0, 0).

Moreover, we have

Proposition 4.

1. The algebra A satisfies the following properties:
∼ (IdU1 , IdU2) = ¬¬ ∼ (IdU1 , IdU2), and
∼ (f ′, f) = (f ′, f) → (¬¬ ∼ (IdU1 , IdU2)), for any (f ′, f) ∈ M((U1, U2)).

2. ∼ does not satisfy the semi-negation property: in general,
∼ ((f ′, f) → (f ′, f)) → (g′, g) �= (IdU1 , IdU2),
for (f ′, f), (g′, g) ∈ M((U1, U2)).

3. ∼ does not satisfy the involution property: in general,
∼∼ (f ′, f) �= (f ′, f) for (f ′, f) ∈ M((U1, U2)), as the first component of
∼∼ (f ′, f) is ¬¬f ′, which need not be equal to f ′ in a non-Boolean topos C .

The properties in Proposition 4(1) are not true in general for an arbitrary c.c.
lattice. Proposition 4(2) and (3) suggest that the lattice A is neither pseudo-
Boolean nor quasi-Boolean. Therefore the proposition indicates that A is an
instance of a new algebraic structure, involving two negations ∼ and ¬ and
defined as follows.

Definition 8. An abstract algebra A := (A, 1, 0,∩,∪,→,¬,∼) is said to be a
contrapositionally complemented pseudo-Boolean algebra (c.c.-pseudo-Boolean
algebra) if (A, 1, 0,∩,∪,→,¬) forms a pseudo-Boolean algebra and for all a ∈ A,
the following condition holds:

∼ a = a → (¬¬ ∼ 1).

If, in addition, for all a ∈ A, a∨ ∼ a = 1, we call A a c. ∨ c.-pseudo-Boolean
algebra.

Observation 1.

1. For each RSC(C )-object (U1, U2), (M((U1, U2)), (U1, U2), (0, 0),∩,∪,→,¬,∼)
is a c.c.-pseudo-Boolean algebra.

2. For each RSC-object (X ,X ), (M(X), (X ,X ),∩,∪,→,¬,∼) is a c. ∨ c.-
pseudo-Boolean algebra.
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Let us compare the algebras defined above with some existing lattices having
two different negations. One of the most familiar such structures is the quasi-
pseudo Boolean algebra [15,17], in which one of the negations satisfies the invo-
lution property. However, both the negations in c.c.-pseudo-Boolean and c. ∨ c.-
pseudo-Boolean algebras are non-involutive in general. Another example is from
fuzzy logics, where the strict basic logic (SBL) with an additional negation and
the corresponding algebras SBL∼ are defined [18]. Again, the additional negation
is always taken to be involutive in SBL∼-algebras.

Starting from the Boolean algebra property of the set M(X) in the quasito-
pos RSC, we had obtained a c.∨c. lattice (cf. Proposition 2). More generally, we
have seen in [8] that starting with an arbitrary Boolean algebra, a whole class of
c. ∨ c. lattices can be obtained by abstracting the constructions in the Boolean
algebra M(X). We proceed in a way similar to this for RSC(C ). As the algebra
of strong subobjects of an RSC(C )-object is a pseudo-Boolean algebra, here
we start with an arbitrary pseudo-Boolean algebra H := (H, 1, 0,∧,∨,→,¬).
On abstracting the constructions in the algebra, we find an entire class of c.c.-
pseudo-Boolean algebras.

Theorem 4. Let u := (u1, u2) ∈ H[2] := {(a, b) : a ≤ b, a, b ∈ H}. Consider
the set Au := {(a1, a2) ∈ H[2] : a2 ≤ u2 and a1 = a2 ∧u1}. Define the following
operators on Au:

� : (a1, a2) � (b1, b2) := (a1 ∨ b1, a2 ∨ b2),
� : (a1, a2) � (b1, b2) := (a1 ∧ b1, a2 ∧ b2),

→: (a1, a2) → (b1, b2) := ((a1 → b1) ∧ u1, (a2 → b2) ∧ u2),
∼: ∼ (a1, a2) := (u1 ∧ ¬a1, u2 ∧ ¬a1),
¬ : ¬(a1, a2) := (a1, a2) → (0, 0).

Then A := (Au, (u1, u2), (0, 0),�,�,→,¬,∼) is a c.c.-pseudo-Boolean algebra.

Proof. (Au, (u1, u2),�,�,→) forms a r.p.c. lattice. In fact with the negation
¬, (Au, (u1, u2), (0, 0),�,�,→,¬) forms a pseudo-Boolean algebra. For A to be
a c.c.-pseudo-Boolean algebra, we must have ∼ (a1, a2) = (a1, a2) → (¬¬ ∼
(u1, u2)) for all (a1, a2) ∈ Au. We have ∼ (u1, u2) = (u1 ∧ ¬u1, u2 ∧ ¬u1) =
¬(u1, u1) and

∼ (a1, a2) = (u1 ∧ ¬a1, u2 ∧ ¬a1) = (a1, a2) → ((u1, u1) → (0, 0))
= (a1, a2) → (¬(u1, u1)) = (a1, a2) → (¬¬¬(u1, u1))
= (a1, a2) → (¬¬ ∼ (u1, u2)).

��
Corollary 2. If H is a Boolean algebra, then Au forms a c.∨c.-pseudo-Boolean
algebra.

The class of pseudo-Boolean algebras has a representation theorem [15]. For
every pseudo-Boolean algebra H, there exists a monomorphism h from H into
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the pseudo-field of all open subsets of a topological space. Using the definition
of pseudo-fields of open subsets, we can define the corresponding set lattice for
c.c.-pseudo-Boolean algebras.

Definition 9 (Contrapositionally complemented pseudo-fields). Let
G (X) := (G(X),X, ∅,∩,∪,→,¬) be a pseudo-field of open subsets of a topo-
logical space X. Define

∼ X := ¬¬Y0 for some Y0 belonging to G(X),
∼ Z := Z → (¬¬ ∼ X).

The algebra (G(X),X, ∅,∩,∪,→,¬,∼) is called the contrapositionally comple-
mented pseudo-field (c.c. pseudo-field) of open subsets of X.

The definition of c.c. pseudo-field is motivated by the definition of the c.c. set
lattice [15]. In c.c. set lattice also, the negation of any element is defined using
an arbitrary but fixed element Y0.

We now obtain the representation for the class of c.c.-pseudo-Boolean
algebras.

Theorem 5 (Representation theorem). For every c.c.-pseudo-Boolean
algebra A := (A, 1, 0,∩,∪,→,¬,∼), there exists a monomorphism h from A
into a c.c. pseudo-field of all open subsets of a topological space X.

Proof. By the representation theorem for pseudo-Boolean algebras, there exists
a monomorphism h from H := (A, 1, 0,∩,∪,→,¬) into the pseudo-field G (X) :=
(G(X),X, ∅,∩,∪,→,¬) of all open subsets of a topological space X. Fixing Y0 :=
h(∼ 1) and defining ∼ on G(X) as in Definition 9, (G(X),X, ∅,∩,∪,→,¬,∼) is
a c.c. pseudo-field of all open subsets of X. We now have

∼ X = ¬¬Y0 = ¬¬h(∼ 1) = h(¬¬ ∼ 1) = h(∼ 1) (*)

because ¬h(a) = h(¬a) for all a ∈ A, and ¬¬ ∼ 1 =∼ 1. For h to be a monomor-
phism from A into a c.c. pseudo-field, we must have h(∼ a) =∼ a. Indeed, using
(*), we get the following.

h(∼ a) = h(a → (¬¬ ∼ 1)) = h(a) → (¬¬h(∼ 1))
= h(a) → (¬¬ ∼ X) = ∼ h(a). ��

4 Intuitionistic Logic with Minimal Negation

Since the class of all pseudo-Boolean algebras is equationally definable, the class
of all c.c.-pseudo-Boolean algebras is also so. We can now define the logic corre-
sponding to c.c.-pseudo-Boolean algebras.
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Definition 10 (Intuitionistic logic with minimal negation (ILM)). The
language of ILM, Ls, consists of propositional variables p, q, r, . . . ,; logical unary
symbols ∼,¬; logical binary symbols ∧,∨,→; and the constant symbols �,⊥; and
parentheses. The class F of well-formed formulas is defined recursively as:

� | ⊥ | p | α ∧ β | α ∨ β | α → β | ¬α |∼ α

Axiom schemes:

Ax(1). α → (β → α)
Ax(2). (α → (β → γ)) → ((α → β) → (α → γ))
Ax(3). α → (α ∨ β)
Ax(4). β → (α ∨ β)
Ax(5). (α → γ) → ((β → γ) → ((α ∨ β) → γ))
Ax(6). (α ∧ β) → α
Ax(7). (α ∧ β) → β
Ax(8). (α → β) → ((α → γ) → (α → (β ∧ γ)))
Ax(9). (α → ¬β) → (β → ¬α)

Ax(10). ¬(α → α) → β
Ax(11). α → �
Ax(12). ⊥ → α
Ax(13). ∼ α → (α → ((∼ � → ⊥) → ⊥))
Ax(14). (α → ((∼ � → ⊥) → ⊥)) →∼ α

With the modus ponens rule of inference and above formulas as axioms, we define
Γ �ILM α, where Γ ∪ {α} ⊆ F .

One can define the semantics Γ �ILM α with respect to the class of c.c.-
pseudo-Boolean algebras in the standard way, and get the soundness and com-
pleteness results.

Theorem 6. ILM is sound and complete with respect to the class of c.c.-pseudo-
Boolean algebras.

Remark 1. If we add the following axiom Ax(15) in ILM, we obtain the logic
corresponding to the class of all c. ∨ c.-pseudo-Boolean algebras.

Ax(15). � → (α∨ ∼ α)

We have seen that any c.c.-pseudo-Boolean algebra is a pseudo-Boolean alge-
bra. In ILM, Ax(1)−Ax(12) are the axioms of intuitionistic logic (IL), the logic
corresponding to the class of pseudo-Boolean algebras. Consider Lx, the language
of IL, which is the same as Ls but without the negation ∼ sign. Then F ∗, the
set of all IL-formulas on Lx, is a subset of F . IL is embedded into ILM through
the inclusion map from F ∗ to F , that is, for any Γ ∪ {α} ⊆ F ∗,

Γ �IL α ⇔ Γ �ILM α.

A natural question is whether some ‘interpretation’ of ILM in IL exists? The
answer is in the positive. Let us first formally define the notion of interpretation
of one logic in another that is being considered in this work.
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Definition 11 (Interpretation). Consider two formal logics L1 and L2. The
mapping r : L1 → L2, from the set L1 of formulas in L1 to the set L2 of formulas
in L2, is called an interpretation of L1 in L2, if for any formula α ∈ L1, we have
the following condition:

�L1 α if and only if Δα �L2 r(α),

where Δα is a finite set of formulas in L2 corresponding to α.
The mapping r is called interpretation of L1 in L2 with respect to derivability,

if for any set Γ ∪ {α} of formulas in L1, we have

Γ �L1 α if and only if r(Γ ) ∪ Δα �L2 r(α),

where Δα is a finite set of formulas in L2 corresponding to α.

Various definitions of mappings from one formal system to another can be found
in literature. The very first studies of logic connections were done by Kolmogorov
in 1925 and Glivenko in 1929 (cf. [10]). Some definitions of mappings from one
logic into another, called translations, can be found in [11,19]. A detailed study
of connections between classical logic (CL), IL and minimal logic (ML) can
be found in [10], which has defined the term ‘interpretable’. Our definition of
interpretation is more general. In the above definition, if Δα is empty, both the
definitions coincide. Note that we are not requiring the interpretation r to be
schematic [10].

Let us now prove that ILM can be interpreted in IL, according to Defini-
tion 11. The proof is similar to the one used to show the connections between
constructive logic with strong negation and IL [15, Chap. XII]. Using axioms
(13) and (14) of ILM, we obtain the following proposition.

Proposition 5. Let α ∈ F such that p1, p2, . . . , pn are all the distinct proposi-
tional variables in α. Then there exists a formula α∗ ∈ F such that (i) there is
no occurrence of ∼ sign in α∗, (ii) α∗ contains p1, p2, . . . , pn and a propositional
variable q distinct from the pi’s, and (iii) the following condition is satisfied.

(**) For any substitution T such that T (pi) = pi and T (q) =∼ � for all i =
1, . . . , n, we have �ILM α ↔ T (α∗).

Proof. For the formula α, define α∗ by (i) replacing all the occurrences of ∼ γ by
γ → ¬¬ ∼ �, where ∼ γ is any subformula of α other than ∼ �, and (ii) replac-
ing ∼ � by a propositional variable q, where q is distinct from p1, p2, . . . , pn. In
the language Ls, for any δ ∈ F and a subformula β of δ, if �ILM β ↔ γ for some
γ ∈ F , then �ILM δ ↔ δ, where δ is obtained by replacing all the occurrences of
β by γ in the formula δ. Since �ILM (∼ γ ↔ (γ → ¬¬ ∼ �)) using the axioms
(13)–(14) of ILM, we have �ILM α ↔ T (α∗) for any substitution T as defined in
the condition (∗∗). ��

Using the above proposition and Theorems 5 and 6, we have the following
result.
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Theorem 7. For any formula α ∈ F , consider α∗ and a propositional variable
q as in Proposition 5. Let β := ¬¬q → q. Then �ILM α if and only if {β} �IL α∗.

Proof. Let �ILM α. Using Proposition 5, there exists a formula α∗ such that
for any substitution T , where T (pi) = pi for all propositional variables pi,
i = 1, . . . , n, occurring in α and T (q) =∼ �, we have �ILM T (α∗). Using
the completeness, there exists a c.c.-pseudo-Boolean algebra A and a valua-
tion v on A such that v(T (α∗)) �= 1. Define a valuation Tv on A such that
Tv(p) := v(T (p)) for all propositional varibales p. We have, for any formula
γ ∈ F , Tv(γ) = v(T (γ)). Therefore Tv(α∗) �= 1. For β,

Tv(β) = Tv(¬¬q → q) = ¬¬Tv(q) → Tv(q)
= ¬¬v(Tq) → v(Tq) = ¬¬v(∼ �) → v(∼ �)
= v(¬¬ ∼ � → ∼ �) = 1

Therefore, we have {β} �IL α∗, and by soundness, {β} �IL α∗.
Let {β} �IL α∗. By completeness, we have {β} �IL α∗. Thus, there exists

a pseudo-Boolean algebra H := (H, 1, 0,∩,∪,→,¬) and a valuation v on H
such that v(α∗) �= 1 and v(β) = 1. Define a c.c.-pseudo-Boolean algebra B :=
(H, 1, 0,∩,∪,→,¬,∼) such that ∼ 1 := v(q) and ∼ a := a → (¬¬ ∼ 1), for any
a ∈ H. Note that we have ¬¬ ∼ 1 = v(¬¬q) = v(q) as v(β) = v(¬¬q → q) = 1.
Therefore the operator ∼ is well defined in B. Consider a valuation v′ on B
such that v′(pi) := v(pi) for all propositional variables pi occurring in α and
v′(q) := ∼ 1. For the valuation v′, we have v′(α∗) = v(α∗). Therefore v′(α∗) �= 1
and by soundness, �ILM α∗. Finally using Proposition 5, we have �ILM α. ��

Therefore, we have an interpretation of ILM in IL. What about a connection
between ILM and ML? We know that ML corresponds to the class of c.c lattices
[15], and any c.c.-pseudo-Boolean algebra is a c.c. lattice. In fact, in any c.c.-
pseudo Boolean algebra A := (A, 1, 0,∩,∪,→,¬,∼), both the negations ∼ and
¬ satisfy the contraposition law x → ¬y = y → ¬x. Consider Lm, the language
of ML, which is the same as the language Lx of IL, but without the symbol
⊥. Therefore, ML is embedded inside ILM. The interpretation of ILM in ML
(according to Definition 11) can be obtained by a composition of interpretations.
For instance, one can take the mapping r between F ∗ and F̄ , the set of formulas
of ML, given in [10, Theorem B]: for any α ∈ F ∗, r(α) is obtained by induction,
by replacing every subformula β of α with β∨¬�. We then have �IL α if and only
if �ML r(α). Composing r with the interpretation of ILM in IL (cf. Theorem7),
we have the following.

Corollary 3. There exists an interpretation t : F → F̄ of ILM in ML.

5 Conclusions

While studying topos and quasitopos properties of categories of rough sets, one
finds that the subobjects constitute a new algebraic structure, that we call ‘c.c.
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pseudo Boolean algebra’. We obtain an entire class of instances of these algebras.
A representation theorem for the algebras is proved. The corresponding logic,
‘intuitionistic logic with minimal negation’, is then studied and connections with
the intuitionistic and minimal logics are presented.

The algebraic structure formed by the subobjects of ξ-RSC(C ) when it is
a quasitopos, has not yet been investigated. As we saw in the case of RSC
and ξ-RSC, the class of monics in ξ-RSC is the same as the class of strong
monics in RSC. Proceeding in a similar way, to answer the above question about
the algebraic structure, we could first study the relation between the classes of
monics and strong monics of the categories ξ-RSC(C ) and RSC(C ) respectively.

We have also seen some properties of another rough set category ξ-ROUGH
[3], which is based on the condition of ‘boundary’ preservation. There can be
other possibilities of defining categories of rough sets depending on the ‘regions’
of rough sets that are required to be invariant. For instance, one may want
the ‘negative’ region to be preserved, in which case one may refer to Pagliani’s
definition of rough sets [20] to define the corresponding categories. These studies
may give rise to different category-theoretic properties, algebras of subobjects
and corresponding logics.

The connections of ILM with IL and ML could also be studied in greater
detail. For example, one may check whether some schematic interpretations or
translations, based on the definitions in [10,11,19], can be obtained between ILM
and IL.

Acknowledgments. We are grateful to the anonymous referees for their valuable
remarks.

References

1. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11(5), 341–356 (1982). doi:10.
1007/BF01001956

2. Banerjee, M., Chakraborty, M.K.: Algebras from rough sets. In: Pal, S.K.,
Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing. Cognitive Technolo-
gies, pp. 157–184. Springer, Heidelberg (2004). doi:10.1007/978-3-642-18859-6 7

3. Banerjee, M., Chakraborty, M.K.: A category for rough sets. Found. Comput.
Decis. Sci. 18(3–4), 167–180 (1993)

4. Banerjee, M., Chakraborty, M.K.: Foundations of vagueness: a category-theoretic
approach. Electron. Notes Theor. Comput. Sci. 82(4), 10–19 (2003). doi:10.1016/
S1571-0661(04)80701-1

5. Banerjee, M., Yao, Y.: A categorial basis for granular computing. In: An, A.,
Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC
2007. LNCS, vol. 4482, pp. 427–434. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72530-5 51

6. Eklund, P., Galán, M.A.: Monads can be rough. In: Greco, S., Hata, Y., Hirano,
S., Inuiguchi, M., Miyamoto, S., Nguyen, H.S., S�lowiński, R. (eds.) RSCTC 2006.
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9. Iwiński, T.B.: Algebraic approach to rough sets. Bull. Pol. Acad. Sci. Math. 35,
673–683 (1987)

10. Prawitz, D., Malmnäs, P.E.: A survey of some connections between classical, intu-
itionistic and minimal logic. Stud. Log. Found. Math. 50, 215–229 (1968). doi:10.
1016/S0049-237X(08)70527-5

11. Carnielli, W.A., D’Ottaviano, I.M.L.: Translations between logical systems: a man-
ifesto. Log. Anal. 40(157), 67–81 (1997)

12. Goldblatt, R.: Topoi: The Categorial Analysis of Logic. Dover Books on Mathe-
matics. Dover Publications, Mineola (2006)

13. Wyler, O.: Lecture Notes on Topoi and Quasitopoi. World Scientific, Singapore
(1991)

14. Banerjee, M., Chakraborty, M.K.: Rough sets through algebraic logic. Fundam.
Inf. 28(3,4), 211–221 (1996). doi:10.3233/FI-1996-283401

15. Rasiowa, H.: An Algebraic Approach to Non-classical Logics. Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam
(1974)

16. Nowak, M.: The weakest logic of conditional negation. Bull. Sect. Log. 24(4), 201–
205 (1995)

17. Gurevich, Y.: Intuitionistic logic with strong negation. Stud. Logica. 36(1), 49–59
(1977). doi:10.1007/BF02121114
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Abstract. Near sets were introduced by J.F. Peters in 2007 in the con-
text and within the conceptual framework of rough sets, which were
initiated by Z. Pawlak in the early 1980s. However, due to further evolu-
tion and development, near set theory has become an independent field
of study. For this reason, nowadays, the relationships between near set
theory and rough set theory are not easy to spot. In this short paper we
would like to re-define near sets and to re-think their foundations and
relationships to/bearing on rough sets. To this end we translate the basic
concepts of near set theory into the framework of modal logic, which has
already been successfully applied to rough sets. The concept of nearness
of sets, however, was originally defined globally (that is, with respect to
the whole underlying space), but modal logic is intrinsically local: the
logical value of a formula is computed with respect to a single point and
its neighbourhood. Our approach to near sets is local in the very same
sense: we are concerned with nearness of sets seen from the perspective of
a single point. Interestingly, this local perspective brings together rough
set theory and near set theory, revealing their deep theoretical connec-
tions. Therefore, what we offer is a modal and algebraic “shared history”
of the two theories at issue.

1 Introduction

Near sets were introduced by J.F. Peters in 2007 papers [22,23]. The main
idea stemmed from the 2002 private correspondence between J.F. Peters and
Z. Pawlak – the creator of rough set theory [16–21] – and the collaboration
between J.F. Peters, A. Skowron, and J. Stepaniuk in 2006 [24]. Thus, near sets
were brought in within the context of rough set theory, and primarily regarded
as a kind of “young siblings” of rough sets. The next natural context for intro-
duction of near sets is the spatial nearness of sets. The beginning of the study
of that type of nearness might be traced back to the address by F. Riesz at the
International Congress of Mathematicians in Rome in 1908 [27]. The most fun-
damental concepts were introduced by Čech during the 1936–1939 Brno seminar
series (published in [7]), and V.A. Efremovič in 1933 (published in [8]). In this
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 109–122, 2017.
DOI: 10.1007/978-3-319-60837-2 9
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regard, the main novelty of near set theory comes from introduction of descrip-
tive nearness, which is more concerned with descriptions of objects rather than
objects alone. Still, a lot of topological results about spatial nearness may be
naturally transferred to the descriptive framework. The study of formal connec-
tions between spatially near sets and descriptively near sets may be found in
papers by J.F. Peters and S.A. Naimpally [15,25]. On the one hand, this topo-
logical development is of great importance: it has made near sets an independent
framework and field of study. On the other hand, it has also made the formal
relationships between near sets and rough sets much harder to notice.

The main goal of this paper is to re-tell the story of near sets and rough
sets within the conceptual framework of modal logic and re-build the formal
relationships between these two theories. We would like to emphasise once again
that our goal is not to define a new modal system, but to use modal logic to
reveal some hidden relationships between rough sets and near sets, which are
not visible outside that modal frame.

Modal logic is intrinsically local, therefore we need to translate basic concepts
of near set theory into the local framework. Surprisingly, this frame reveals many
interesting connections between rough sets and nearness collections, which are
hardly noticeable from the global standpoint. More importantly, these connec-
tions turn out to be a part of a bigger story about modal logic and Kripke frames,
on the one hand, and modal coalgebraic logic and relational liftings [12,13], on
the other hand. The beginning of interest in coalgebraic modal logic may be
traced back to the seminal paper by L. Moss [13]. Since then the so-called cover
modality has been studied extensively by many authors. General overview my
be found in [12]. The study of proof systems and axiomatisation are discussed
in M. Bilkova et al. [5,6]. It is worth recalling that coalgebraic logic is a part of
a very important research area of the theory of coalgebras, which was initiated
by P. Aczel in the late 1980s [1,2]. Therefore, in the paper we offer a descrip-
tion of formal relationships between rough sets and near sets within the general
framework of coalgebras, which is now one of the most important conceptual
frameworks in theoretical computer science.

The paper is organised as follows. In the first part we recall rough set theory
and its modal counterpart. Then we recall fundamental concepts from topology
and near sets. We focus our attention especially on nearness collections and
discuss their relationships with rough set approximation operators. Finally, we
assign to nearness collections corresponding modal operators and compare them
with ♦ and � of S5 modal logic, which provides the modal counterpart of rough
approximations. At the end we embed our study into the coalgebraic framework
of modal logic [12,13].

2 Rough Sets: Modal Story

In this section we present the fundamental concepts of rough set theory within
the framework of (normal) modal logic. We start with a standard presentation
and then discuss its modal counterpart. In the next section we are going to repeat
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this scheme/method for the case of near set theory, whose modal counterpart
has never been discussed before.

In rough set theory knowledge about a specific domain is construed as a
classification of its elements [21]. For this very reason the fundamental structure
of rough set theory, an approximation space, is a classification itself.

Definition 1 (Approximation Space). A pair (U,E), where U is a finite set
of objects, and E is an equivalence relation, is called an approximation space.

As is well known, each equivalence relation E determines a partition U/E of the
universe U , which is usually interpreted as a classification of objects (of course,
each object x may be classified only to one equivalence class [x]E). Therefore
an approximation space expresses the information/knowledge encoded by the
underlying information system. Any subset X ⊆ U is called a concept, U/E
is called a knowledge basis, and concepts built up from elements of the knowl-
edge basis are called definable concepts or exact concepts. Since definable (exact)
concepts/sets are supposed to form some algebraic structure (e.g., a topology
or an algebra), usually the empty set ∅ is added to the knowledge basis. An
undefinable (not exact) concept/set is then approximated by a pair of exact
concepts/sets.

Definition 2 (Set’s Approximations). Let be given an approximation space
(U,E). Every subset X of U is given two approximations:

X = {x ∈ U : [x]E ⊆ X},

X = {x ∈ U : [x]E ∩ X �= ∅}.

The set X is called the lower approximation of X, and the set X is called the
upper approximation of X.

Let PU denote the collection of all subsets of U . By the usual abuse of language
and notation, the operator : PU → PU sending X to X will be called the
lower approximation operator, whereas the operator : PU → PU sending X
to X will be called the upper approximation operator.

If X is a definable concept/set, then X = X = X. A rough set is defined
as a pair (X,X); in this approach a definable set is also a rough set. It may
seem (philosophically) unintuitive, however it is necessary due to mathematical
reasons – otherwise rough sets would not form any interesting structure.

Approximation operators might be easily generalised by replacing an equiv-
alence relation E by any reflexive relation R ⊆ PU × PU , and equivalence
classes [x]E by R[x] = {y ∈ U : (x, y) ∈ R} in the body of Definition 2. In Sect. 4
we regard R as a function R[ ] : U → PU sending x to R[x].

What written above may be regarded as a standard “biography” of rough
sets; in what follows we would like to translate it into modal language. Our
presentation of modal logic is based upon G. Priest book [26].

Definition 3 (Modal Language). Let be given a set Φ of propositional vari-
ables, elements of which are denoted by p, q, r, and so on, constants �,⊥, and
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a modal operator ♦. Then the formulas of modal language are generated by the
following grammar:

α, β ::= p | � | ⊥ | ¬α | α ∨ β | α ∧ β | ♦α | �α

where p ranges over elements of Φ. The set of well-formed formulas is denoted
by F . The Boolean part of F (i.e., the subset of formulae without any occurrence
of modal operators) will be denoted by F(Boolean).

Definition 4 (Kripke Model). A Kripke model K is a triple (W,R, v), where
W is a non-empty set of worlds, R is a binary relation on W , and v : W × Φ →
{0, 1} is a function assigning to each pair (w, p) a truth value 1 (truth) or 0
(falsity). We usually write vw(p) instead of v(w, p) and read as at the world w,
p is true. The function v is extended to every formula α ∈ F in the standard
way:

– vw(�) = 1,
– vw(⊥) = 0,
– vw(¬α) = 1 if vw(α) = 0, and 0 otherwise,
– vw(α ∧ β) = 1 if vw(α) = 1 and vw(β) = 1, and 0 otherwise,
– vw(α ∨ β) = 1 if vw(α) = 1 or vw(β) = 1, and 0 otherwise,
– vw(♦α) = 1 if for some w′ ∈ W such that wRw′, vw′(α) = 1, and 0 otherwise,
– vw(�α) = 1 if for all w′ ∈ W such that wRw′, vw′(α) = 1, and 0 otherwise.

If vw(α) = 1, for K = (W,R, v) and w ∈ W , then we also write: K, w |= α. This
notation is very handy when we need to covert the relation |= into some other
form: e.g., to extend |= to PW and PF . We shall return to this problem in the
last section of this article.

Definition 5 (Semantic Consequence). Let Σ ⊆ F and α ∈ F :

– Σ |= α if and only if for all Kripke models K = (W,R, v) and all w ∈ W , if
vw(β) = 1 for all β ∈ Σ, then vw(α) = 1.

Along the standard lines, we write |= α if Σ is empty.

Thus the inference is valid if it is truth preserving at all worlds of all Kripke
models. The logic which stems from Kripke models, where R is an equivalence
relation, is well-known as S5.

For every model (W,R, v) let us define: |α| = {x ∈ U : vx(α) = 1}. It is a
straightforward observation that:

Proposition 1. Every approximation space (U,E) and a map φ : Φ → PU
give rise to a Kripke model K = (U,E, v) of S5, where vx(p) = 1 iff x ∈ φ(p).
Furthermore:

|�α| = |α| and |♦α| = |α|.
This approach can be easily applied to generalised approximation spaces (U,R),
where R is at least a reflexive relation, and to other modal systems like KT,
S4, K4, etc., see e.g. [4,28]. It suffices to take other types of Kripke structures
K = (U,R, v), and the corresponding modal operators ♦, � as the upper and
lower approximation operators, respectively.
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3 Spatially and Descriptively Near Sets

As said in the introduction, the concept of spatial nearness may be traced back
to 1908. As the result of its long history, comes its theoretical depth. Actually, its
theoretical “range” goes beyond elementary topology. In this section we focus our
attention on the very simplest and fundamental examples of nearness relations
and structures, along with their bearing on descriptive nearness. An excellent
introduction to spatially near sets is given by S.A. Naimpally [14]. The role of
nearness in topology, proximity spaces, and uniform spaces is discussed in great
detail in [25].

Definition 6 (Topology). Let U be a set. A topology in U is family τ of
subsets such that:

– each union of members of τ is a member of τ ;
– each finite intersection of members of τ is also a member of τ ;
– U and ∅ are members of τ .

If τ is closed under arbitrary intersections, then τ is called an Alexandrov topol-
ogy. A couple (U, τ) is called a topological space; members of τ are called open
sets. A set X ⊆ U is closed if U \ X ∈ τ .

As usual, the smallest closed set containing X is denoted by Cl(X), and the
largest open set contained in X is denoted by Int(X). Operator Cl : PU → PU
sending X to Cl(X) is called a closure, whereas an operator Int : PU → PU
sending X to Int(X) is called an interior. Thus, Cl(X) is called a closure of X
and Int(X) is called an interior of X.

Definition 7 (Spatial Nearness). A spatial nearness relation δ (called a dis-
crete proximity) is defined by

δ = {(X,Y ) ∈ PU × PU : Cl(X) ∩ Cl(Y ) �= ∅} .

A pair (U, δ) is called a proximity space.

We need to emphasise, that a discrete proximity defined above is only an example
of proximity relations discussed in topology. The theory of nearness spaces [3,9]
is very rich and we discuss here only a small fragment, which is relevant to near
set theory.

If two sets X and Y belong to δ, that is (X,Y ) ∈ δ, we will (as usual) write
X δ Y . If sets X and Y are not near, then we say that these sets are far from
each other (denoted by X δ Y ), where

δ = PU × PU \ δ.

As an example, let us consider an approximation space.

Proposition 2. Let be given an approximation space (U,E) and the collection σ
of all definable sets. Then (U, σ) is an Alexandrov topological space, whose closure
operator is an upper approximation operator. Therefore for the corresponding
proximity space (U, δ) it holds that:

δ = {(X,Y ) : X,Y ⊆ U & X ∩ Y �= ∅}.
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The next step in unfolding the nearness relation δ it to find nearness collections
ξ such that

ξ(X) = {Y ∈ U : X δ Y } .

These collections lead to very rich structures: nearness spaces [9] and the cate-
gory Near [3].

Definition 8 (Perceptual System). A perceptual system is a pair (U,F),
where U is a non-empty finite set of perceptual objects and F is a finite sequence
of probe functions φi : U → R.

The probe functions describe physical features of objects and usually are
regarded as sensors. We define F as a sequence in order to assign to each object
x ∈ U a feature vector Φ(x) over F, i.e., a vector (φ1(x), φ2(x), . . . , φn(x)) of
feature values that describe the object x. For a set X ⊆ U let as define:

Q(X) = {Φ(x) : x ∈ X} .

Definition 9 (Descriptive Nearness). A set X is descriptively near to Y in
(U,F), denoted by X δΦ Y , iff Q(X) ∩ Q(Y ) �= ∅.
It is important to note that descriptively near sets can be spatially far sets. How-
ever, we may “produce” the spacial counterpart of descriptive nearness. Firstly,
each perceptual system (U,F) gives rise to an approximation space (U,E), where
(x, y) ∈ E iff {x} δΦ {y}. Thus, secondly, we also have its Alexandrov topological
space (U, σ) and the discrete proximity δσ.

Proposition 3. A set X is is descriptively near to Y in (U,F) iff X is spatially
near to Y in the corresponding (U, σ).

Let us define a nearness collection of X:

ξσ(X) = {Y ∈ U : X δσ Y } .

It is worth to note the following inverse of standpoints between upper approxi-
mations and nearness collections.

Proposition 4. For a perceptual system (U,F) and its approximation space
(U,E) it holds that:

X = {x : [x]E ∩ X �= ∅ } =
⋃

{[x]E : [x]E ∩ X �= ∅ }, (1)

ξσ({x}) = {X ⊆ U : [x]E ∩ X �= ∅ }. (2)
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This proposition is of pivotal importance: it establishes a connection between
rough set and near set perspectives on points, sets, and a granulation of U (in
terms of neighbourhoods). In the rough set approach we examine how points
are related to a given set X via their minimal neighbourhoods. In the near set
approach we examine how sets are related to a given point via the same granu-
lation. It is worth emphasising that Eq. (2) holds only for equivalence relations.
If we replace [x]E by R[x], where R is, e.g., a preorder, then we fail to define the
nearness collection ξσ({x}) even for the Alexandrov topological space induced
by R. The important consequence of Proposition 4 is the following fact.

Proposition 5. Let (U,F) be a perceptual system and (U,E) be its approxima-
tion space; then

x ∈ X iff X ∈ ξσ({x}).

Before we elaborate on that important statement, let us additionally note what
follows.

Proposition 6. For a perceptual system (U,F) and its approximation space
(U,E) the following holds: Xδσ Y , for all X,Y ∈ ξσ({x}) and x ∈ U .

Thus all elements of ξσ({x}) are near to each other. Let us rewrite Xδσ Y as
δσ(X,Y ). Then, by Proposition 6, we can extend (the predicate) δσ for any
(finite) family of sets {Xi}i∈I and make it relative to x:

δx
σ{Xi}i∈I iff it holds that Xi ∈ ξσ({x}), for every i ∈ I. (3)

As already said, Proposition 4 is of special importance. (1) stands that the
upper approximation of X is a cover of X by equivalence classes (minimal open
neighbourhoods), such that [x] ∩ X �= ∅. (2) stands that ξ({x}) is a maximal
cover of [x]E by X ⊆ U , such that [x] ∩ X �= ∅. Since we want to link these
nearness collections to rough set theory, we need to allow them consist of a
single set X (in order to compare them with X and X). Therefore we introduce
Nx{Xi}i∈I , which stands that {Xi}i∈I is a subcover of ξσ({x}).

In the next section we discuss δx
σ{Xi}i∈I and Nx{Xi}i∈I in the modal set-

tings. Let us summarise what we have already discussed with the proposition
relating our nearness operators with rough set approximation operators.

Proposition 7. Let (U,F) be a perceptual system and (U,E) be its approxima-
tion space; then

x ∈ X iff δx
σ{X},

x ∈ X iff Nx{X}.

Actually, Nx is strong enough to define δx
σ.

Proposition 8.
δx
σ(Xi)i∈I iff Nx({Xi}i∈I ∪ {U}).
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4 Modal Rendering of Nearness

In this subsection we are going to provide modal version of descriptive nearness.
As in the case of rough sets, our aim is firstly to show representations of nearness
collections in modal language and compare them with rough set modalities. It
turns out that nearness collections’ modalities are special cases of coalgebraic
modalities, which have been extensively studied (including axiomatisations and
proof systems) for more than 20 years, e.g. [5,6,12,13]. Thus, as rough sets have
the well-defined modal counterpart, near sets have the coalgebraic modal coun-
terpart. However, let us emphasise it again, this strong connection to coalgebraic
logic holds only for equivalence relations. Rough sets may be easily generalised
to, e.g., a preorder and modal logic S4; but any generalisation of near sets “ruins”
the connection to coalgebraic modalities.

Let K = (U,E, v) be a Kripke model for a perceptual system (U,F) and
its approximation space (U,E). Thus, we are additionally provided with a map
φ : Φ → PU , and vx(p) = 1 iff x ∈ φ(p), for p ∈ Φ. The function φ may be
further extended to | | : F → PU , by |α| = {x ∈ X : vx(α) = 1}.

Let us emphasise once again that modal logic is intrinsically local: a given
formula/statement α ∈ F is always evaluated with respect to the actual world
x and we can move only within its neighbourhood, which, in our case, is [x]E .
Therefore let us now fix a point x, and rewrite the consequences of Proposition 1:

K, x |= ♦α iff [x]E ∩ |α| �= ∅ iff x ∈ |α|,

K, x |= �α iff [x]E ⊆ |α| iff x ∈ |α|.
Thus, when we translate X into the modal language, the set X is replaced by α
and the operator is represented by ♦; so we finally obtain ♦α in F . In the
same way we translate X into F as �α. Our goal is to make similar translations
of δx

σ(Xi)i∈I and Nx(Xi)i∈I . Firstly, as X is replaced by α, (Xi)i∈I is replaced by
a finite set of formulae Γ . Secondly, we need modal operators to represent δx

σ and
Nx. Let us write nearΓ and NearΓ , respectively, and define a new language:

α, β ::= p | ¬α | α ∨ β | α ∧ β | nearΓ | NearΓ

where p ranges over the set Φ, and Γ is a finite set of formulae. The set of all
formulae of this language will be denoted by Fnear. In consequence we obtain:

K, x |= nearΓ iff δx
σ{|α|i}i∈I , where Γ = {αi : i ∈ I}, (4)

K, x |= NearΓ iff Nx{|α|i}i∈I , where Γ = {αi : i ∈ I}. (5)

Since the main topic of this paper is the story of two theories (rather than a
theory incorporating both of them), we will keep rough set theory and near set
theory separately “written” in two different modal languages. Thus our task is
to show “translations” between F and Fnear.
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Proposition 9. Let be given a perceptual system (U,F) and its Kripke model
K = (U,E, v), where (U,E) is an approximation space induced by (U,F), and v
is defined with respect to a map φ : Φ → PU . Then for any α ∈ F(Boolean) the
following equivalences hold:

K, x |= ♦α iff K, x |= near{α}, (6)

K, x |= �α iff K, x |= Near{α}, (7)

K, x |= ♦α iff K, x |= Near{α,�}. (8)

This proposition describes “translation” of rough set and near set operators
on the level of a single formula α ∈ F(Boolean). The next step is to describe
it on the granular level of Γ ⊆ F(Boolean). This step however is a bit more
complicated. The formula nearΓ actually means that for every element p of Γ ,
it is true that ♦p. Therefore we need to generalise ∧ and ∨ for sets of formulae,
that is:

∧
Γ and

∨
Γ , respectively. Now, we may write

∧{♦p : p ∈ Γ}. The
formula NearΓ means that nearΓ and additionally that

⋃{|p| : p ∈ Γ} covers
[x]E , where x is the actual world. Therefore we need to redefine our near set
language:

α, β ::= p | ¬α |
∨

Γ |
∧

Γ | nearΓ | NearΓ

Thus, α ∧ β is an abbreviation of
∧{α, β}. Similarly, α ∨ β stands for

∨{α, β}.
Let us denote the set of all formulae by FNEAR. The standard Kripke semantics
is extended on FNEAR in the obvious way:

– vw(
∧

Γ ) = 1 if vw(α) = 1 for all α ∈ Γ , and 0 otherwise,
– vw(

∨
Γ ) = 1 if vw(α) = 1 for some α ∈ Γ , and 0 otherwise.

Proposition 10. Let be given a perceptual system (U,F) and its Kripke model
(U,E, v), defined as above. Then for all Γ ⊆ FNEAR(Boolean):

K, x |=
∧

{♦α : α ∈ Γ} iff K, x |= nearΓ,

K, x |=
∧

{♦α : α ∈ Γ} ∧ �
∨

Γ iff K, x |= NearΓ.

The above proposition is of great importance, because it allowed us to notice
that the relationships between rough sets and near sets is a part of a bigger
story.

In 1995 S. Janin and I. Walukiewicz in the paper [11] extended the syntax of
μ-calculus by a → A, where a is an action and A is a finite set of formulae, and
observed that a → A is semantically equivalent to

∧{< a > α : α ∈ A}∧ [a]
∨

A.
If we simplify this settings and assume that the set of actions is a singleton, and
replace A by our language, that is, Γ ⊆ FNEAR(Boolean), then we obtain:

a → Γ iff
∧

{♦p : p ∈ Γ}
︸ ︷︷ ︸

nearΓ

∧ �
∨

Γ

︸ ︷︷ ︸
NearΓ

.
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S. Janin and I. Walukiewicz also observed that a formula < a > α is equivalent
to a → {α,�} (compare Proposition 9, Eq. 9) and a formula [a]α is equivalent
to a → {α} ∨ a → ∅. Since we deal with equivalence relations (actually, any
serial relation would do the job), we may drop out the second part, i.e., a → ∅
(compare Proposition 9, Eq. 8).

Even more interestingly, 4 years later, in 1999, L. Moss in [13] initiated the
re-invention of a → A in the co-algebraic framework, which further led to the
generalisation of this “modality”, denoted this time by ∇, from Kripke structures
K = (W,R, v) to coalgebras. The further studies of this modality, proof systems,
and axiomatisation may be found, e.g., in [5,6]. The reader is also encourage to
consult also [12], which provides a very good overview of this topic. Let us also
recall that the theory of coalgebras – initiated by P. Aczel in the late 1980s [1,2]
– is a very rich field of study with deep mathematical foundations and interesting
applications. The modern introduction to this field may be found in [10]. For the
sake of clarity we simplify here coalgebraic results and (instead of discussing the
most general cases), we discuss only a case relevant to our study. To make the
paper self-contained we firstly recall some basic definitions from category theory
and then discuss coalgebras.

Definition 10 (Category). A category C consists of:

– a class of objects denoted by |C|,
– a class of arrows (or morphisms) from a to b, denoted by C(a,b), for all

a,b ∈ |C|,
– a composition operation ◦ : C(b, c) ×C(a,b) → C(a, c), for all a,b, c ∈ |C|,
– the identity arrows ida ∈ C(a,a), for all a ∈ |C|,
such that, for all f ∈ C(a,b), g ∈ C(b, c), h ∈ C(c,d), the following equations
are satisfied:

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

f ◦ ida = f = idb ◦ f.

A standard example of a category is Set which has sets as objects and total
functions as arrows. Let us recall that for any topological space (U, τ) its open
sets are partially ordered by set inclusion ⊆. Now, we can regard τ as a small
category where there is an arrow from X ∈ τ to Y ∈ τ iff X ⊆ Y . Such a
category will be denoted by C(τ).

Definition 11 (Functor). A functor F from a category A to a category B
consists of:

– a mapping |A| → |B| of objects; the image of a ∈ |A| is denoted by Fa;
– a mapping A(a,b) → B(Fa, Fb) of arrows, for all a,b ∈ |A|; the image of

function f ∈ A(a,b) is denoted Ff ;

such that, for all a,b, c ∈ |A|, f ∈ A(a,b), g ∈ A(b, c), the following conditions
are satisfied:

F(g ◦ f) = Fg ◦ Ff and Fida = idFa.



Rough and Near: Modal History of Two Theories 119

To give an example, let C(τ1) and C(τ2) be two categories defined above. Then
a functor F : C(τ1) → C(τ2) is an order preserving function: if X ⊆ Y , then
F(X) ⊆ F(Y ), for all X,Y ∈ τ1. Another important example is a covariant
powerset functor P : Set → Set. For objects of Set we have PX = PX, that
is, the functor P sends a set X to its powerset. For any function f : U → W ,
Pf : PU → PW is defined by Pf(X) = f [X] = {f(x) : x ∈ X}, for X ⊆ U ,
that is, Pf(X) is a direct image of X via f .

A T -colagebra is a pair (W, f), where T : Set → Set is a functor (as defined
above) and f : W → TW is a function. In particular, given (U,R) (a generalised
approximation space) or K = (U,R, v), the pair (U,R[ ]) is a P -colagebra, where
P is the covariant powerset functor, and R[ ] : U → PU is a function sending
x ∈ U to {y ∈ U : (x, y) ∈ R}.

In category theory any relation R from U to W determines and is determined
by its graph GR ⊆ U × W and two projections π1 : GR → U and π1 : GR → W .
Therefore, R is construed as:

GR

U

�

π 1

W

π
2

�

Thus, xRy, for x ∈ U , y ∈ W , means (x, y) ∈ GR. Now, given an endofunctor
T : Set → Set, we would like to lift R via TR

TGR

TU

�
T
π 1

TW

T
π
2

�

to (a very special relation) TR.

Definition 12 (Relational Lifting). Given a set endofunctor T : Set → Set,
and GR ⊆ U × W , the T -lifting GTR ⊆ TU × TW is defined as:

GTR = {(s, t) ∈ TU× TW : there exits w ∈ TGR s.t. Tπ1(w) = s, Tπ2(w) = t}.

L. Moss’ main (and very significant) idea – in short – was to define a new modal-
ity based on the T -relational lifting. Following [12], which is a great overview
of this topic, we are going to use the finitary version of Moss’ language. Let be
given a language L:

α, β ::= p | ¬α |
∨

Γ |
∧

Γ | ∇T Λ
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where Γ ∈ PωL and Λ ∈ TωL (as usual, Pω and Tω are finitary versions of P
and T , respectively). The key observation of L. Moss is that the truth condition
for the modal operator ∇T with respect to a coalgebra ζ : W → TW , may be
defined by:

w |= ∇T Γ iff (ζ(w), Γ ) ∈ GT |= .

Now we would like to translate this idea into our framework. For the powerset
functor P the definition of relation lifting is given by:

GPR = {(X,Y ) ∈ PU× PW : there exits w ∈ PGR s.t. π1[w] = X, π2[w] = Y },

where πi[w] is a direct image of w ⊆ GR via πi. In consequence, we obtain the
following result.

Proposition 11. Let be given a perceptual system (U,F) along with its Kripke
model K = (U,E, v), and the P -colagebra (U,E[ ]) of K. Then for Γ ⊆
FNEAR(Boolean) it holds that:

x |= NearΓ iff ([x]E , Γ ) ∈ GP |= .

Thus, the relationships between rough sets and near sets are theoretically much
deeper than we would have previously thought. Both theories bring different
yet complementary perspective on the universe U , its objects, and granulation
expressed in terms of equivalence classes of relation E, which stands that two
objects have exactly the same description. The rough set approach my be con-
strued as (standard) modal S5 framework, whereas the near set approach as a
co-algebraic rendering of this framework. Even more precisely, as a specific and
concrete instantiation of L. Moss’ significant idea of ∇T and its T -lifting seman-
tics. Thus near sets may be viewed as the powerset lifting of the main concepts
and assumptions of rough set theory.

5 Conclusions

In the paper we have discussed the modal counterpart of near set theory
[22,23,25], which has not been previously studied. We have firstly discussed
topological settings of rough sets [16–21] and near sets and then defined the
corresponding modal operators for nearness collections. It has turned that we
can mutually translate rough set operators and near set operators. Finally, we
have discovered that near set operators may be construed as an instantiation of
L. Moss coalgebraic modal operator ∇T . Thus, the relationships between rough
sets and near sets are part of more general scheme of modal and coalgebraic
logic. However, all said above holds only for equivalence relations as the under-
lying descriptive nearness of objects. As noted in Introduction, the idea of near
sets (or descriptive nearness) stemmed from the 2002 private correspondence
between J.F. Peters and Z. Pawlak. Now we may regard the near set methodol-
ogy as the powerset lifting of the main concepts and assumptions of Z. Pawlak’s
theory.
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24. Peters, J., Skowron, A., Stepaniuk, J.: Nearness in approximation spaces. In: Pro-
ceedings of Concurrency, Specification and Programming (CS&P 2006), Humboldt
Universitat, pp. 435–445 (2006)

25. Peters, J., Naimpally, S.: Applications of near sets. Am. Math. Soc. Not. 59(4),
536–542 (2012). doi:10.1090/noti817.

26. Priest, G.: An Introduction to Non-classical Logic. Cambridge University Press,
Cambridge (2001)

27. Riesz, F.: Stetigkeitsbegriff und abstrakte mengenlehre. IV Congresso Inter-
nazionale dei Matematici II, pp. 18–24 (1908)

28. Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logic. Intell. Autom.
Soft Comput. 2(2), 103–120 (1996)

http://dx.doi.org/10.1090/noti817.


Multi-stage Optimization of Matchings in Trees
with Application to Kidney Exchange

Michal Mankowski(B) and Mikhail Moshkov

Computer, Electrical and Mathematical Sciences and Engineering Division,
King Abdullah University of Science and Technology,

Thuwal 23955-6900, Saudi Arabia
{michal.mankowski,mikhail.moshkov}@kaust.edu.sa

Abstract. In this paper, we propose a method for multi-stage opti-
mization of matchings in trees relative to different weight functions that
assign positive weights to the edges of the trees. This method can be use-
ful in transplantology where nodes of the tree correspond to pairs (donor,
recipient) and two nodes (pairs) are connected by an edge if these pairs
can exchange kidneys. Weight functions can characterize the number of
exchanges, the importance of exchanges, or their compatibility.

Keywords: Tree · Matching · Weight function · Multi-stage optimiza-
tion

1 Introduction

In this paper, we consider problems of matching optimization connected with
kidney paired donation [7,13]. This is a novel alternative for living, incompatible
(donor, recipient) pairs to get an organ by matching with another incompatible
pair. Let G be an undirected graph which edges and nodes have positive weights.
Nodes of this graph can be interpreted as pairs (donor, recipient) and two nodes
A = (a1, a2) and B = (b1, b2) are connected by an edge if the donor a1 can
donate a kidney to the recipient b2, and the donor b1 can donate a kidney to
the recipient a2. The weight of a node A can be interpreted as an importance
of the transplantation for the recipient from the pair A. The weight of an edge
connecting nodes A and B can be interpreted as a compatibility of the exchange
of kidneys between the pairs A and B.

A matching in G is a set of edges without common nodes. We consider
three optimization problems connected with matchings: (c) maximization of the
cardinality of a matching, (n) maximization of the sum of weights of nodes
in a matching, and (e) maximization of the sum of edges in a matching. The
considered problems can be solved in polynomial time [6,10].

Each solution of the problem (c) allows us to help to the maximum number
of transplants. It is known [9] that each solution of the problem (n) is also a
solution of the problem (c). The situation with the problem (e) is different: a
solution of the problem (e) can be not a solution of the problem (c) (see Fig. 1).
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 123–130, 2017.
DOI: 10.1007/978-3-319-60837-2 10
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Fig. 1. Matching with maximum weight of edges (a) and matching with maximum
cardinality (b)

In such a situation, it is reasonable to consider multi-stage optimization of
matchings relative to different criteria, for example, to describe all matchings
with maximum cardinality and later to describe among these matchings all
matchings with maximum weight of edges. Another possibility is to describe
the whole set of matchings with maximum weight of nodes and after that to
describe among these matchings all matchings with maximum weight of edges.

The problem (c) can be formulated as the problem (e) when the weight of
each edge is equal to 1. The problem (n) can be formulated as the problem (e)
when the weight of each edge is equal to the sum of weights of its ends. So we
can consider multi-stage optimization of weights of edges in matchings relative
to a number of weight functions each of which assigns a positive weight to each
edge of the graph G.

The algorithm for weighted matching in trees is very well known [8]. In this
paper, we consider an extension of dynamic programming algorithm for multi-
stage optimization of matchings in trees. This algorithm can be generalized in a
natural way to the forests.

The dynamic programming multi-stage optimization approach was created
initially for the decision trees and decision rules [2]. One of the main areas of
applications for the approach is the rough set theory [11,12] in which decision
trees and rules are widely used. This approach was extended also to some com-
binatorial optimization problems [1,3–5]. Here we consider one more its appli-
cation.

This paper consists of four sections. In Sect. 2, we consider a graph D(G)
corresponding to the tree G. We use this graph to describe the set of matchings
in G and to optimize these matchings. Section 3 is devoted to the multi-stage
optimization of matchings in G relative to different weight functions. Section 4
contains short conclusions.

2 Graph D(G) Corresponding to Tree G

Let G be a tree. A matching in G is a set of edges without common nodes. We
choose a node in the tree G as a root. It will be useful for us to consider G as a
directed graph with the orientation of edges from the root. Now each node v in
G defines a subtree G(v) of G in which v is the root.

We describe now a graph D(G) (forest of directed trees) which will be used to
describe the set of matchings in G and to optimize these matchings. It contains
main nodes from G and auxiliary nodes corresponding to the main ones.
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Let v be a terminal node of G – see Fig. 2(a). Then in the graph D(G)
there are two nodes v (main) and v(∅) (auxiliary) corresponding to v which are
connected by an edge starting in v and entering v(∅) – see Fig. 2(b).

Fig. 2. Nodes and edge in D(G) (b) corresponding to terminal node v of G (a)

Let v be a nonterminal node of G which has k outgoing edges e1, . . . , ek

entering nodes v1, . . . , vk, respectively – see Fig. 3(a). Then in D(G) there are
the main node v, k + 1 auxiliary nodes v(e1), . . . , v(ek), v(∅), and k + 1 edges
starting in v and entering these auxiliary nodes – see Fig. 3(b).

Fig. 3. Nodes and edges in D(G) (b) corresponding to nonterminal node v of G (a)

A proper subgraph Δ of the graph D(G) is a graph obtained from D(G) by
removal of some edges such that each main node in Δ has at least one outgoing
edge. Let v be a main node in D(G) with children v(e1), . . . , v(ek), v(∅). We
denote by EΔ(v) the set of all σ ∈ {e1, . . . , ek, ∅} such that there is an edge in Δ
from v to v(σ). Proper subgraphs of the graph D(G) can be obtained as results
of optimization of matchings in G relative to weight functions.

Let Δ be a proper subgraph of the graph D(G). We correspond a set MΔ(u)
of matchings in G to each node u of Δ. Let C and D be sets elements of which
are also sets. We denote C ⊗ D = {c ∪ d : c ∈ C, d ∈ D}.
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Let v be a terminal node of G. Then MΔ(v) = MΔ(v(∅)) = {λ} where λ is
the empty matching. Let v be a nonterminal node of G which has k outgoing
edges e1, . . . , ek entering nodes v1, . . . , vk, respectively. Then, for i = 1, . . . , k,

MΔ(v(∅)) =
⊗

j∈{1,...,k}
MΔ(vj),

MΔ(v(ei)) =
⊗

j∈{1,...,k}\{i}
MΔ(vj) ⊗ MΔ(vi(∅)) ⊗ {{ei}},

MΔ(v) =
⋃

σ∈EΔ(v)

MΔ(v(σ)).

Let Δ = D(G). One can show that, for any node v of G, MD(G)(v) is the set of
all matchings in G(v) and MD(G)(v(∅)) is the set of all matchings in G(v) which
do not use the node v (have no edges with the end v). For any nonterminal node
v of G and for any edge e starting in v, MD(G)(v(e)) is the set of all matchings
in G(v) containing the edge e.

Let G contain n nodes and, therefore, n − 1 edges. Then the graph D(G)
contains 3n − 1 nodes and 2n − 1 edges. It is clear that the graph D(G) can be
constructed in linear time depending on n.

3 Multi-stage Optimization of Matchings

Let Δ be a proper subgraph of the graph D(G) and w be a weight function
which assigns a positive weight w(e) to each edge e of G. We now describe the
procedure of optimization of matchings described by Δ relative to the weight
function w. During the work of this procedure, we attach a number wΔ(u) to
each node u of Δ and, may be, remove some edges from Δ.

Let v be a terminal node of G. Then wΔ(v) = wΔ(v(∅)) = 0. Let v be a
nonterminal node of G which has k outgoing edges e1, . . . , ek entering nodes
v1, . . . , vk, respectively. Then, for i = 1, . . . , k,

wΔ(v(∅)) =
∑

j∈{1,...,k}
wΔ(vj),

wΔ(v(ei)) =
∑

j∈{1,...,k}\{i}
wΔ(vj) + wΔ(vi(∅)) + w(ei)

= wΔ(v(∅)) − wΔ(vi) + wΔ(vi(∅)) + w(ei),
wΔ(v) = max{wΔ(v(σ)) : σ ∈ EΔ(v)}.

For each σ ∈ EΔ(v) such that wΔ(v(σ)) < wΔ(v), we remove the edge con-
necting nodes v and v(σ) from the graph Δ. We denote by Δw the obtained
proper subgraph of the graph D(G). It is clear that EΔw(v) = {σ : σ ∈
EΔ(v), wΔ(v(σ)) = wΔ(v)} for each nonterminal node v of the tree G.
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One can show that, for each node u of the graph Δ, the number wΔ(u) is
the maximum total weight of edges in a matching from MΔ(u) relative to the
weight function w, and the set MΔw(u) is the set of all matchings from MΔ(u)
that have the total weight of edges wΔ(u) relative to the weight function w.

Let G contain n nodes and, therefore, n − 1 edges. For a terminal node v
of the tree G, we do not need arithmetical operations to find values of wΔ(v)
and wΔ(v(∅)). Let v be a nonterminal node of G which has k outgoing edges
e1, . . . , ek entering nodes v1, . . . , vk, respectively. We need k−1 additions to com-
pute the value wΔ(v(∅)), 3k additions and subtractions to compute the values
wΔ(v(e1)), . . . , wΔ(v(ek)), at most k comparisons to compute the value wΔ(v),
and at most k + 1 comparisons to determine edges starting in v that should be
removed. As a result, for the node v, the considered algorithm makes at most
6k arithmetical operations. To process the tree G, the procedure of optimiza-
tion makes at most 6n arithmetical operations, i.e., has linear time complexity
depending on n.

We can use the considered procedure for multi-stage optimization of match-
ings. Let we have a tree G and weight functions w1, w2, . . . which assign positive
weights to the edges of G. We choose a node v of G as the root and construct
the graph Δ = D(G). We know that the set MΔ(v) corresponding to the node
v of Δ is equal to the set of all matchings in G.

We apply to the graph Δ the procedure of optimization relative to the weight
function w1. As a result, we obtain a proper subgraph Δw1 of the graph D(G).
The set MΔw1 (v) corresponding to the node v of Δw1 is equal to the set of all
matchings from MΔ(v) which have maximum total weight of edges relative to
the weight function w1.

We apply to the graph Δw1 the procedure of optimization relative to the
weight function w2. As a result, we obtain a proper subgraph Δw1,w2 of the
graph D(G). The set of matchings MΔw1,w2 (v) corresponding to the node v of
Δw1,w2 is equal to the set of all matchings from MΔw1 (v) which have maximum
total weight of edges relative to the weight function w2, etc.

In particular, we can maximize the cardinality of matchings and after that
among all matchings with maximum cardinality we can choose all matchings
with maximum total weight of edges.

It is easy to extend the considered approach to forests: we can apply the
optimization procedures to each tree from a forest independently.

4 Example

We consider an example of matching optimization problem for the tree G
depicted in Fig. 4(a) which has five nodes v1, v2, v3, v4, v5 and four edges
e1, e2, e3, e4 with weights 2, 5, 1, 2, respectively. There are two matchings with
maximum cardinality {e1, e3} and {e1, e4}, and one matching {e2} with maxi-
mum edge weight. Our aim is to find all matchings with maximum edge weight
among all matchings with maximum cardinality. To this end, we apply to G a
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Fig. 4. Graph D(G) (b) corresponding to tree G (a)

multi-stage optimization procedure relative to two cost functions w1 and w2:
w1(e1) = w1(e2) = w1(e3) = w1(e4) = 1 and w2(e1) = 2, w2(e2) = 5, w2(e3) =
1, w2(e4) = 2.

First, we construct the graph D(G) – see Fig. 4(b). We denote Δ = D(G)
and apply to Δ the procedure of optimization relative to the weight function
w1. As a result, we obtain the proper subgraph Δw1 of the graph D(G) (see
Fig. 5(a)). It is easy to see that MΔw1 (v1) = {{e1, e3} , {e1, e4}}. This is exactly
the set of all matchings in G with maximum cardinality.

We apply to the graph Δw1 the procedure of optimization relative to the
weight function w2. As a result, we obtain the proper subgraph Δw1,w2 of the
graph D(G) (see Fig. 5(b)). The set MΔw1,w2 (v1) = {{e1, e4}} contains the only
matching with maximum edge weight among all matchings with maximum car-
dinality.
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Fig. 5. Graph Δw1 (a) and graph Δw1,w2 (b)

5 Conclusions

In this paper, we proposed a method for multi-stage optimization of matchings
in trees relative to a sequence of weight functions. This method can be useful in
transplantology if besides of the maximization of transplanted kidneys we would
like to maximize the compatibility of the transplantations. In the future, we will
try to generalize this method to other classes of graphs.
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Abstract. This paper aims to provide a rough set-based reduction solu-
tion for a type of domination problem in graph theory. First, we introduce
a decision table to represent the vertices and edges of a graph. Second,
we claim that computing a minimal total dominating set of a graph is
equivalent to finding a reduct of the induced decision table. Then, a
reduction algorithm in rough set theory is designed for finding a subop-
timal total dominating set of a graph. In the end, numerical experiments
are conducted to examine the effectiveness and efficiency of the proposed
algorithm.

Keywords: Attribute reduction · Total dominating set · Graph · Rough
set · Information table

1 Introduction

Rough set theory, proposed by Pawlak [3], is a useful mathematical tool for
dealing with uncertain and inexact knowledge. It has been widely used in the
fields of data analysis, data mining and artificial intelligence [11]. The notion of
attribute reductions plays an essential role in rough set theory [9]. An attribute
reduct is a minimal subset of attributes, which remains the same classification
ability as the entire decision table. Meanwhile, the domination problem is well
known in graph theory and combinatorial optimization theory [1,2,5]. A total
dominating set of a graph is a minimal subset of vertices, which covers all the
vertices of the graph. However, the problems for finding the attribute reducts
of a decision table and the minimal dominating sets of a graph are both NP-
hard. Subsequently, many approximation algorithms have been proposed [6–8]
to calculate a suboptimal solution for the two problems. For instance, Ślȩzak
[7,8] defined dependencies between attributes, which were used to construct
generalized decision functions of decision systems.

It is exciting that the theoretical principles for solving the two problems have
been grasped in essence, i.e., all their solutions can be obtained by the Boolean
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 131–139, 2017.
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algebra theory by using the same Boolean logic operations. Inspired by this
idea, this paper aims to connect the two problems and introduce intersectional
methods for dealing with these problems. First, for a given graph, we induce a
decision information table in rough set theory. Second, we point out that each
total dominating set of the graph is exactly the attribute reduct of the induced
decision table. Based on our analysis, the methods of attribute reduction in
rough set theory can be directly used for solving the domination problem in
graph. Especially, a rough set method based on positive region is introduced to
compute a total dominating set of a graph. In the end, numerical experiments
are conducted to show the efficiency of the proposed method.

2 Preliminaries

In this section, we review some basic concepts related to the problems of attribute
reduction in rough set and domination in graph.

2.1 Attribute Reduction in Rough Set Theory

Formally, an information table is a pair S = (U,A), where U is a nonempty and
finite set of objects called the universe, A is a nonempty finite set of attributes.
If A is the union of two kinds of attributes, i.e., A = C ∪ D, where C is the
so-called condition attributes set, D is the so-called decision attribute set and
C ∩ D = ∅, then S is called a decision table. Each nonempty subset B ⊆ A
determines an indiscernibility relation: RB = {(x, y) ∈ U × U |a(x) = a(y),∀a ∈
B}. Since RB is an equivalence relation on U , it forms a partition U/RB =
{[x]B |x ∈ U}, where [x]B is the equivalence class determined by x with respect
to B, i.e., [x]B = {y ∈ U |(x, y) ∈ RB}.

Let B ⊆ A and X ⊆ U , two sets

RB(X) = {x ∈ U |[x]B ⊆ X}, RB(X) = {x ∈ U |[x]B ∩ X �= ∅},

are called the lower and upper approximation of X w.r.t. B, respectively.
In a decision table S = (U,C ∪ {d}), suppose U/{d} = {D1,D2, . . . Dr} are

the equivalence classes determined by d. The positive region of the decision table
S w.r.t. B ⊆ A is defined as POSB(d) = ∪r

i=1RB(Di).
In the theory of rough set, the attribute reduction is one of the key processes

for knowledge discovery.

Definition 1 [3]. Let S = (U,C ∪ {d}) be a decision table. An attribute set
B ⊆ C is called a consistent set of the information table, if [x]B ⊆ [x]{d} for
all x ∈ U . Furthermore, if B is consistent and any proper subset of B is not
consistent, then B is called an attribute reduct of the information table.

Definition 2 [10]. Let S = (U,C ∪ {d}) be a decision table. For all (x, y) ∈
U × U , the discernibility set of x, y in S is referred to as

MS(x, y) =
{ {a ∈ C|a(x) �= a(y)}, d(x) �= d(y);

∅, d(x) = d(y).
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MS = {MS(x, y)|(x, y) ∈ U × U} is called the discernibility matrix of S.

If MS(x, y) �= ∅, then the pair (x, y) is called a discernible object pair.

Definition 3 [10]. Let S = (U,C ∪ {d}) be a decision table with C =
{a1, a2, . . . am}. The Boolean expression of S is defined as:

fS(a∗
1, a

∗
2, . . . a

∗
m) = ∨{∧MS(x, y)|MS(x, y) ∈ MS ,MS(x, y) �= ∅},

where each Boolean variable a∗
i corresponds to each attribute ai, respectively.

The expression ∨MS(x, y) is the disjunction of all attributes in MS(x, y),
indicating that the object pair (x, y) can be distinguished by any attribute
in M(x, y). The expression ∧{∨MS(x, y)} is the conjunction of all ∨MS(x, y),
indicating that the family of discernible pairs can be distinguished by a set of
attributes satisfying ∧{∨MS(x, y)} [10].

Based on the discernibility matrix and Boolean expression, one can compute
the reducts as follows.

Theorem 1 [10]. Let S = (U,C ∪ {d}) be a decision table with C =
{a1, a2, . . . am}. An attribute subset B ⊆ C is a reduct of S iff ∧ai∈Ba∗

i is a
prime implicant of the Boolean function fS.

From Theorem 1, if

fS(a
∗
1, a

∗
2, . . . a

∗
m) = ∧{∨MS(x, y)|MS(x, y) ∈ MS ,MS(x, y) �= ∅} = ∨t

i=1(∧si
j=1a

∗
j ),

then, Bi = {aj |j ≤ sj}, i ≤ t, are all the reducts of S.

Example 1. Let S = (U,C ∪ {d}) be a decision table as shown in Table 1, where
U = {x1, x2, . . . , x6} and C = {v1, v2 . . . , v5}.

By Definition 3, the Boolean expression of S is:

fS(v
∗
1 , v

∗
2 , . . . v

∗
5) = (v1 ∨ v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v3) ∧ (v4 ∨ v5) ∧ (v4 ∨ v5)

= (v1 ∧ v4) ∨ (v1 ∧ v5) ∨ (v2 ∧ v4) ∨ (v2 ∧ v5) ∨ (v3 ∧ v4) ∨ (v3 ∧ v5).

Thus, there exist 6 reducts of S: B1 = {v1, v4}, B2 = {v1, v5}, B3 = {v2, v4},
B4 = {v2, v5}, B4 = {v3, v4}, B6 = {v3, v5}.

2.2 The Domination Problem in Graph Theory

In this part, we introduce the domination problem in graph. A graph is a pair
G = (V,E) consisting of a set of vertices V and a set of edges E such that
E ⊆ V × V . Two vertices v1, v2 ∈ V are adjacent if there is an edge that has
them as ends, i.e., (v1, v2) ∈ E.

Definition 4 [1,2]. Let G = (V,E) be a graph. For a subset S ⊆ V , if for every
vertex v ∈ V , there is some u ∈ S such that (v, u) ∈ E, then S is called a total
dominating set(TDS) of the graph. Furthermore, if S is a TDS, and every subset
of S is not a TDS any more, then S is a minimal TDS.
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Table 1. A decision table S

U/(C ∪ {d}) v1 v2 v3 v4 v5 d

x1 2 1 1 1 2 1

x2 2 1 1 0 2 1

x3 2 1 1 0 2 1

x4 2 0 0 1 1 1

x5 1 0 0 1 1 1

x6 1 0 0 0 2 0

Given a graph G = (V,E) and v ∈ V , let N(v) denote a set of vertices adjacent
to v, i.e., N(v) = {v′ ∈ V |(v, v′) ∈ E}. We call N(v as the adjacency set of v.

We next use the Boolean logic operations to solve the domination problem.

Definition 5 [5]. Let G = (V,E) be a graph with V = {v1, v2, . . . , vm}. The
Boolean expression is defined as fTDS(v∗

1 , v
∗
2 , . . . v

∗
m) = ∧{∨N(v)|v ∈ V }.

Theorem 2 [5]. Let G = (V,E) be a graph. Then, a set of vertices S ⊆ V is
a minimal TDS of G iff ∧vi∈Sv∗

i is a prime implicant of the Boolean function
fTDS.

Theorem 2 shows that if fTDS(v∗
1 , v

∗
2 , . . . v

∗
m) = ∧{∨N(v)|v ∈ V } =

∨t
i=1(∧si

j=1v
∗
j ), then Bi = {vj |j ≤ sj}, i ≤ t, are all the minimal TDSs of S.

Example 2. Let G = (V,E) be the graph with V = {v1, v2, v3, v4, v5} and E =
{e1, e2, e3, e4, e5}, where e1 = (v1, v2), e2 = (v2, v5), e3 = (v1, v3), e4 = (v1, v4)
and e5 = (v4, v5).

The adjacency sets are listed as:

N(v1) = {v2, v3, v4}, N(v2) = {v1, v3}, N(v3) = {v1, v2},
N(v4) = {v1, v5}, N(v5) = {v4}.

The Boolean expression of G is:

fTDS(v∗
1 , v

∗
2 , . . . v

∗
5) = (v2 ∨ v3 ∨ v4) ∧ (v1 ∨ v3) ∧ (v1 ∨ v2) ∧ (v1 ∨ v5) ∧ (v4)

= (v1 ∧ v4) ∨ (v2 ∧ v3 ∧ v4 ∧ v5).

Thus, there are 2 minimal TDSs of G: B1 = {v1, v4}, B2 = {v2, v3, v4, v5}.

3 An Induced Decision Table of Graph

In this section, we first induce a decision table from a graph and then discuss the
relationship between the attribute reduction problem and domination problem.

First, we introduce the notions of adjacency matrices of a graph. Let G =
(V,E) with V = {v1, v2, . . . vm}. The adjacency matrix of G is an m×m matrix
MTDS = (dij)m×m such that dij = 1 if vj ∈ N(vi); otherwise, dij = 0.

Based on the adjacency matrix, we next construct a decision table for repre-
senting a graph.
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Definition 6. Let G = (V,E) be a graph with V = {v1, v2, . . . vm} and MDS =
(dij)m×m be the adjacency matrix of G. STDS = (U,C∪{d}) is called the induced
decision table of G, if it satisfies the following conditions:

(1) U = {x1, x2, . . . xm, xm+1};

(2) C = {v1, v2, . . . vm};

(3) vj(xi) =
{

dij , 1 ≤ i ≤ m, 1 ≤ j ≤ m,
0, i = m + 1, 1 ≤ j ≤ m;

(4) d(xi) =
{

0, 1 ≤ i ≤ m,
1, i = m + 1.

The new decision table has m + 1 objects, while the adjacency matrix of the
graph is a m × m matrix. The aim of this idea is to construct an appropriate
discernibility matrix, which will be shown in the following.

Example 3. Continue Example 2.
According to Definition 6, we can induce a decision table STDS of G is as

shown in Table 2.

Table 2. Decision table STDS

U/(C ∪ {d}) v1 v2 v3 v4 v5 d

x1 0 1 1 1 0 0

x2 1 0 1 0 0 0

x3 1 1 0 0 0 0

x4 1 0 0 0 1 0

x5 0 0 0 1 0 0

x6 0 0 0 0 0 1

Property 1. Let G = (V,E) be a graph with V = {v1, v2, . . . vm} and SDS =
(U,C ∪ {d}) the induced decision table. Then the discernibility set of (xi, xj) ∈
U × U satisfies:

MSTDS
(xi, xj) =

{ ∅, 1 ≤ i ≤ m, 1 ≤ j ≤ m;
N(vi), 1 ≤ i ≤ m, j = m + 1.

Proof. By Definition 6, d(xi) = 0 for any 1 ≤ i ≤ m, then d(xi) = d(xj) for any
1 ≤ i, j ≤ m. By Definition 2, the discernibility set satisfies MSTDS

(xi, xj) = ∅
for any 1 ≤ i, j ≤ m.

Moreover, with the fact that vj(xm+1) = 0 for any vj ∈ C. Then for any 1 ≤
i ≤ m, we have that vj(xi) �= vj(xm+1) ⇔ vj(xi) = 1. Thus, the discernibility set
satisfies MSTDS

(xi, xm+1) = {vj ∈ C|vj(xi) �= vj(xm+1)} = {vj ∈ C|vj(xi) = 1}
for any 1 ≤ i ≤ m.
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On the other hand, we have that vj(xi) = 1 ⇔ vj ∈ N(vi). The discernibility
set satisfies MSTDS

(xi, xm+1) = {vj ∈ C|vj ∈ N(vi)} = N(vi) for any 1 ≤ i ≤ m.
We finish the proof. �

Theorem 3. Let G = (V,E) be a graph and STDS = (U,C∪{d}) be the induced
decision table. Then, S ⊆ V is a minimal TDS of G iff S is an attribute reduct
of STDS.

Proof. It can be concluded from Property 1. �

Theorem 3 shows that the problem of finding a minimal TDS of a graph can
be translated into the problem of finding the reduct of a decision table. Based on
this analysis, we in the next section introduce the attribute reduction algorithms
to solve the domination problem.

4 Algorithms for the Domination Problem Based
on Rough Set

Let S = (U,C ∪ {d}, V ) be a decision table. For any B ⊆ C and a ∈ C − B, the
significance of a w.r.t. B is

Sig(a,B) = γB∪{a}(d) − γB(d),

where γB(d) = |POSB(d)|
|U | and | · | denotes the cardinality of a set.

In [4], Qian et al. introduced an attribute reduction method, called positive
approximation algorithm, which performs well in saving time consumption. We
use this method to construct an approximation algorithm for the domination
problem.

Algorithm 1. A rough set-based algorithm for computing a TDS of a graph
Input: A graph G = (V,E)
Output: A suboptimal TDS

1: Generate the decision table STDS = (U,C ∪ {d});
2: R ← ∅;
3: i = 1;
4: While POSDS(d) �= U do
5: Ui ← U − POSDS(d);
6: R ← R ∪ {v0}, where v0 satisfies Sig(v0, R) = max{Sig(v,R)|v ∈ C − R};
7: i ← i + 1;
8: End while
9: Output A TDS R.

The time complexity of Algorithm 1 is O(|U |2|V |2).
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5 Experiments

To illustrate efficiency of the proposed algorithm, we compare it with some
classical algorithms for domination problems in this section. In [7], Sanchis et
al. constructed and summarized several algorithms. As shown in [7], greedy-
ran algorithm does a good job in reducing time consumption and greedy-rev
algorithm works well in finding a TDS with relative small cardinality. So we
choose the greedy-ran algorithm and the greedy-rev algorithm for comparison.

These algorithms are tested on randomly generated graphs which are input
by adjacency matrices. Density of a graph is the percentage of non-zero entries in
the adjacency matrix of the graph. The experiments are performed on a personal
computer with Windows XP and an Intel Pentium R Dual (E2140) 3 GHz with
4 GB of memory. The algorithms are implemented using Matlab 7.8. All the
algorithms are executed 4 times on random graphs with the same number of
vertices and density. We test 16 random graphs which are divided into 4 sets as
shown in Table 3.

Table 3. Graphs in the tests

Set No. of vertices Density No. of graphs

A 100 1% 4

B 100 2% 4

C 200 4% 4

D 200 6% 4

Table 4 lists the experiment results of the algorithms. In the table, the column
“Time”is the running time (in seconds) of the algorithms and “Value” is the value
of a solution found by an algorithm.

As shown in Table 4, greedy-ran algorithm is the most fast, but the vertices
found are the most which implies that it does not perform better than greedy-rev
algorithm and rough set algorithm. We can also see that when the vertex number
is equal to 100, the vertices found by greedy-rev algorithm are less than by rough
set algorithm, and their time consumptions are not much different, when the
vertex number is equal to 200, the vertices found by rough set algorithm are less
than by greedy-rev algorithm and the time consumptions of rough set algorithm
are also less than greedy-rev algorithm. So the larger the graph’s size is, the
better rough set algorithm performs.
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Table 4. Results on the three algorithms

Graph Greedy-ran Greedy-rev Rough set

Value Time Value Time Value Time

A1 94 0.002 58 0.445 60 0.302

A2 95 0.002 60 0.382 62 0.266

A3 93 0.002 54 0.386 63 0.267

A4 96 0.002 59 0.386 62 0.266

B1 84 0.002 40 0.333 42 0.219

B2 85 0.002 36 0.340 42 0.223

B3 87 0.002 44 0.354 43 0.221

B4 84 0.002 38 0.338 41 0.217

C1 81 0.002 43 1.319 37 0.490

C2 93 0.002 43 1.265 33 0.417

C3 90 0.002 45 1.256 33 0.418

C4 91 0.002 45 1.268 32 0.404

D1 69 0.003 37 1.267 25 0.322

D2 68 0.003 38 1.263 23 0.297

D3 67 0.002 36 1.263 24 0.311

D4 67 0.002 38 1.261 22 0.286

6 Conclusions

In this paper, we have transformed the domination problem in graph theory into
the attribute reduction problem in rough set theory. Based on our approach, the
methods for finding the attribute reducts of a decision table can be used for
solving the domination problem. Moreover, a substantial reduction algorithm
has been introduced to compute a suboptimal total dominating set of a graph.
Experiments have been conducted to examine the efficiency of the proposed
algorithm.

Acknowledgements. This work was supported by a grant from the National Natural
Science Foundation of China (No. 61602415).

References

1. Haynes, T., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs.
Marcel Dekker Inc., New York (1998)

2. Henning, M.: A survey of selected recent results on total domination in graphs.
Discret. Math. 309, 32–63 (2009)

3. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer
Academic Publishing, Dordrecht (1991)



A Rough-Set Based Solution of the Total Domination Problem 139

4. Qian, Y., Liang, J., Pedrycz, J., Dang, C.: Positive approximation: an accelerator
for attribute reduction in rough set theory. Artif. Intell. 174, 597–618 (2010)

5. Sanchis, L.: Experimental analysis of heuristic algorithms for the dominating set
problem. Algorithmica 33, 3–18 (2002)

6. Skowron, A., Rauszer, C.: The discernibility matrices and functions in informa-
tion systems, handbook of applications and advances of the rough sets theory. In:
Slowinski, R. (ed.) Intelligent Decision Support. Kluwer, Dordrecht (1992)
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Abstract. A new model of rough sets induced by coverings is proposed.
In this new model, the elementary sets are defined as set components gen-
erated by a given covering of universe. The new model is compared with
two other existing models of rough sets induced by covering and with a
standard rough sets where elementary sets are defined by a given equiv-
alence relation. The concept of optimal approximation is also introduced
and analyzed for all models discussed in the paper. It is shown that, for
a given covering of a universe, our model provides better approximations
than the other ones.

Keywords: Rough sets induced by coverings · Set components · Lower,
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1 Introduction and Motivation

Rough sets [15,16] and fuzzy sets [25] are currently the two most popular math-
ematical approaches to imperfect knowledge. In the classical Pawlak model of
rough sets, the basic observable, measurable, or atomic sets, the building blocks
for whatever that can be to expressed, usually called elementary sets, are equiv-
alence classes of some given equivalence relation. In other words, elementary
sets, i.e. building blocks, are a partition of the given universe of objects of our
interest. All objects we can describe in a constructive way are called definable
or exact sets and are defined as a union of some elementary sets.

In the classical model each subset of the universe X has two definable approx-
imations, the lower approximation of X, which is the biggest definable set
included in X and the upper approximation of X, which the smallest definable
set that contains X.

A natural extension is to replace a partition of the universe by an arbitrary
covering of the universe. This idea, first proposed by Żakowski in 1983 [27],
discussed later in eighties and nineties among other in [2,17], resulted recently
in two refined models, that of [22,26]. An excellent survey of covering based
rough sets models (up to 2012) can be found in [24].

The differences between existing different models based on coverings of uni-
verse depend and rely on two definitions:
c© Springer International Publishing AG 2017
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• how elementary and definable sets are set up,
• how lower and upper approximations are defined.

These definitions must be treated as axiomatic assumptions of the model. Both
definable sets and all approximations must be derived from a given covering by
using some primitive operations. The choice of these operators and circumstances
where and when they are allowed to be used, in principle defines the model.

Lower and upper approximations stem from the fact that empirical numerical
data always have errors, so in reality we seldom have the exact value x (even if the
measurements are expressible in integers) but usually some interval 〈x−ε, x+ε〉.
In the standard model, the lower approximation is also a kernel and the upper
approximation is a closure for the property of being definable set (cf. [1]).

However there are other kind of approximations, as for example the linear
least squares approximation of points in the two dimensional plane (cf. [3]). It
is neither lower nor upper approximation of any kind. This kind of ‘optimal’
approximations requires a well defined concept of similarity (or distance) and
some techniques for finding maximal similarity (or minimal distance) between
entities and their approximations.

Recently, in [10,11], a concept of an optimal approximation have been intro-
duced and analyzed for the standard model of rough sets.

Our new model of rough sets induced by coverings follows from the assump-
tion that the primitive operations we can use to construct elementary and defin-
able sets are set union, set intersection and set subtraction (i.e. ∪, ∩ and \), and
we can use them without any restriction. We do not think that any of them is
superior to other in any sense, their computational complexities are identical,
i.e. quadratic in general case. Such assumption implies that elementary sets are
set components (as defined and discussed in [12]) generated by the elements of
a given covering.

We will show that both lower and upper approximations provided by our
model are tighter than that of both [22,26].

We also will define optimal approximation for all three models based on
coverings and we will show that optimal approximations in our model are closer
to a given set than the ones based on approaches of [22,26], for any similarity
measure that satisfies usually required axioms (cf. [10,11]).

Our new model with coverings can be in a very natural way transformed into
an equivalent standard model with some equivalence relation.

2 Rough Sets and Approximations

In this chapter we introduce, review, and also adapt for our purposes, some
general ideas that are crucial to our approach.

The principles of rough sets [15,16] can be formulated as follows.
Let U be a finite and non-empty universe of elements, and let E ⊆ U × U

be an equivalence relation. Recall that for each E ⊆ U × U , [x]E denotes the
equivalence class of E containing x, and U/E denotes the set of all equivalence
classes of E. Moreover U/E is also a partition of U .
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The pair AS = (U,E) is usually referred to as a Pawlak approximation space,
or just approximation space.

The elements of ESets = U/E (or ESets(AS), if necessary) are called elemen-
tary sets1 and they are interpreted as basic observable, measurable, or atomic
sets. They are just building blocks for whatever we want to express in this model.
Since the elements of ESets are disjoint, union is the most obvious an natural
tool to construct bigger objects from elementary sets.

A set A ⊆ U is definable (or exact) [16] if it is a union of some equivalence
classes of the equivalence relation E. Let DSets (or DSets(AS), if needed) denote
the family of all definable sets defined by the space (U,E). Formally:

Definition 1. A ∈ DSets ⇐⇒ ∃A1, . . . , Ak ⊆ ESets. A = A1 ∪ . . . ∪ Ak. �

A non-empty set X ⊆ U is approximated by two definable sets; A(X) ∈
DSets and A(X) ∈ DSets. They are called the lower and upper approximations
of X respectively, and defined as follows:

Definition 2 [15,16]. For each X ⊆ U ,

1. A(X) =
⋃{A | A ∈ Esets ∧ A ⊆ X},

2. A(X) =
⋃{A | A ∈ Esets ∧ A ∩ X �= ∅}. �

Clearly A(X) ⊆ X ⊆ A(X). Moreover, with respect to set inclusion, A(X) is
the greatest lower bound of X in DSets and A(X) is the least upper bound of
X in DSets. Hence, in DSets, A(X) is the best approximation of X from the
bottom and A(X) is the best approximation of X from the top.

We may write AAS(X) and AAS(X) when more than one approximation
space is discussed.

There are many versions and many extensions of this basic model, see for
example [9,19,20,23], as well as many various applications (cf. [8,18,20,21]).

Recently, in [10,11], a concept of an optimal approximation, has been intro-
duced and analyzed. Assuming that we have a well defined function that mea-
sure the numerical similarity between two sets, sim(A,B), we can define optimal
approximations as follows:

Definition 3 [10,11]. For every set X ⊆ U , a definable set O ∈ DSets is an
optimal approximation of X (w.r.t. a given similarity measure sim) if and only
if:

sim(X,O) = max
A∈DSets

(sim(X,A))

The set of all optimal approximations of X will be denoted by Optsim(X) (or
Optsim,AC(X), if needed). �

1 The name components is also often used, however this paper we will use the name
‘component’ in the sense of [12].
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Note that in general we might have more than one optimal approximation
for a given similarity measure sim.

In [10,11] it is shown that any (total) function sim : 2U ×2U → [0, 1] satisfy-
ing the following five axioms can be used as a similarity measure in Definition 3
above. These axioms are:

S1 : sim(A,B) = 1 ⇐⇒ A = B,
S2 : sim(A,B) = sim(B,A),
S3 : sim(A,B) = 0 ⇐⇒ A ∩ B = ∅,
S4 : if a ∈ B \ A then sim(A,B) < sim(A ∪ {a}, B),
S5 : if a /∈ A ∪ B and A ∩ B �= ∅ then sim(A,B) > sim(A ∪ {a}, B).

For sim satisfying the above five axioms, we have:

Proposition 1 [10,11]. For every set X ⊆ U , and every O ∈ Optsim(X):
A(X) ⊆ O ⊆ A(X) �

There are many similarity measures satisfying the axioms S1–S5 [5], the
oldest one was proposed by Jaccard2 in 1901 [7]. The notion of consistency
introduced in [10] makes many of different similarity measures equivalent for
our purposes.

Definition 4 [10,11]. We say that two similarity indexes sim1 and sim2 satis-
fying axioms S1–S5 are consistent if for all sets A,B,C ⊆ U ,

sim1(A,B) < sim1(A,C) ⇐⇒ sim2(A,B) < sim2(A,C). �

Corollary 1 [10,11]. If sim1 and sim2 are consistent then for each X ⊆ U ,
then

Optsim1
(X) = Optsim2

(X). �

An efficient greedy algorithm for finding the set Optsim(X) has been proposed
in [11] for all similarity measures that are consistent with Marczewski-Steinhaus
index3 [14], which includes such similarity measures as Jaccard, Dice-Sørensen,
symmetric Tversky, etc. [5,11]. The complexity of this algorithm is O(|X|2), i.e.
the same as complexities of calculating A(X) and A(X) (cf. [18]). The algorithm
relies heavily on the fact that definable sets are unions of disjoint elementary
sets.

Since an equivalence relation and a partition it generates are dual equivalent
notions, an approximation space AS = (U,E) can equivalently be defined as
AS = (U,ESets). This lead to a natural extension by replacing a partition ESets
of U by an arbitrary covering C of U . This idea, first considered probably in [2],
resulted in two relatively known models, that of [22,26]. Our approach will be
based on the concept of set components as defined and discussed in [12].

2 Jaccard index is defined as sim(X,Y ) = |X∩Y |
|X∪Y | [7].

3 Marczewski-Steinhaus index is defined as sim(X,Y ) = μ(X∩Y )
μ(X∪Y )

, where µ is a finite

measure on U and X,Y ⊆ U [14].



144 R. Janicki

3 Coverings, Components and Definability

Let U be a set and let C be a family of nonempty subsets of U .

• We say that C is a covering of U if U =
⋃

C∈C

C.

In the rest of this section we briefly adapt the results of Chap. 1.7 of [12] for
our purposes. We start with the definition of definable sets as this concept is
crucial in our approach.

Definition 5. Let U be a set and let C be a nonempty family of nonempty
subsets of U . A non-empty set X ⊆ U definable by C if it can be constructed
from the elements of C by means of set operations ∪, ∩ and \.
The family of all sets definable by C will be denoted by definable(C). �

We would like to point out that the family of sets C in Definition 5 does not
have to be a covering.

The next crucial idea in our approach in the concept of set components.

Definition 6 [12]. Let U be set and C = {C1, . . . , Cn} be any nonempty family
of nonempty subsets of U . For each i = 1, 2, . . . , n, let C0

i = Ci and C1
i = U \Ci.

Each intersection
C(i1,...,in) = Ci1

1 ∩ . . . ∩ Cin
n ,

where ik = 0, 1 and k = 1, 2, . . . , n, is called a component of C.
The set of all nonempty components of C, will be denoted by comp(C), i.e.

comp(C) = {C(i1,...,in) | ik = 1, 2, k = 1, 2, . . . , n, C(i1,...,in) �= ∅}. �

The above definition is illustrated in Fig. 1. If neither component is empty, we
have exactly 2n components, in general |comp(C)| ≤ 2n.

In the rest of this paper, an arbitrary component will be denoted by C(α).
First note that C is a covering if and only if the component C(1,...,1) = U \ (C1 ∪
. . . ∪ Cn) is empty, i.e. not a member of comp(C).

Corollary 2. U =
⋃

C∈C

C ⇐⇒ C(1,...,1) = ∅ ⇐⇒ C(1,...,1) /∈ comp(C). �

The basic properties of components are the following.

Theorem 1 [12]. Let U be a set and C a covering of U .

1. U =
⋃

C(α)∈comp(C)

C(α).

2. For all C(α), C(β) ∈ comp(C), we have C(α) ∩ C(β) = ∅ ⇐⇒ α �= β.
3. Every set X ∈ definable(C) is a union of some components of C, i.e.

X ∈ definable(C) ⇐⇒ ∃C(α1), . . . , C(αk) ∈ comp(C). X = C(α1)∪. . .∪C(αk).

�
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C(0,0,0)

C(0,0,1)

C(0,1,0)

C(1,1,0)

C(1,1,1)

C(1,0,0)

C(0,1,1) C(1,0,1)

C1 C2

C3

U

Fig. 1. All eight components for a given U and C = {C1, C2, C3}. In this case neither
component is an empty set.

Theorem 1 simply says that the set of all components comp(C) is a partition
of U and each definable set is a union of some components. In particular each
element of C is a union of some components, i.e. C ⊆ definable(C).

Theorem 1 has a natural interpretation in propositional logic. Let C =
{C1, . . . , Cn} and assume that all elements of Ci satisfy some property (predi-
cate) πi, and additionally πi �= πj if i �= j. Then the elements of definable(C)
correspond to all nonequivalent predicates that can be derived from {π1, . . . , πn}
by means of logical operators ∨,∧ and ¬. With this interpretation Theorem1(3)
simply states that each propositional predicate built from {π1, . . . , πn} has its
disjunctive normal form [6]. The elements of C(1,...,1) then satisfy the property
¬(π1 ∨ . . . ∨ πk).

Since comp(C) is always a partition of U , we can define the following an
equivalence relation EC ⊆ U × U :

Definition 7. Let U be a set and C be a nonempty family of nonempty subsets
of U . We define the relation EC ⊆ U × U as follows:

∀a, b ∈ U. aECb ⇐⇒ ∃C(α) ∈ comp(C). a ∈ C(α) ∧ b ∈ C(α).

The relation EC is called the equivalence relation induced by a family C. �

Clearly U/EC = comp(C), i.e. the set of all equivalence classes of EC is equal to
the set of all components of the covering C.

While in the next section we will assume that C is some covering of U , there
is not such an assumption for the results of this section. In this section C is just
an arbitrary nonempty family of nonempty subsets of U .

4 Rough Sets Induced by Coverings

In this section we recall two two types of generalized rough sets induced by
coverings, one from [22] and another from [26]. Their mutual relationship is
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discussed in detail in [13]. We will also introduce our new model of rough sets
induced by coverings, based on the concept of a component from the previous
section and show that lower and upper approximations provided by our model
are tighter that these from both [22,26].

Let U be a finite and non-empty universe of elements and let C be its covering.
Following [13], we will call the pair CS = (U, C) a covering approximation space.

Definition 8. Let (U, C) a covering approximation space.

1. For every x ∈ U , the set N(x) =
⋂

{C ∈ C | x ∈ C} is called the neighbor-
hood of an element x ∈ U [13].

2. For every X ⊆ U , its Zhu lower approximation [26] is defined as:

A+(X) =
⋃

{C ∈ C | C ⊆ X}

and its Zhu upper approximation [26] is defined as:

A+(X) = A+(X) ∪
⋃

{N(x) | x ∈ X \ A+(X)}.

3. For every X ⊆ U , its Xu-Zhang lower approximation [22] is defined as:

A∗(X) = {x | N(x) ⊆ X}
and its Xu-Zhang upper approximation [22] is defined as:

A∗(X) = {x | N(x) ∩ X �= ∅}. �

The relationship between A+(X) and A∗(X), and between A+(X) and
A∗(X) is discussed in details in [13].

Definition 3 can be used for defining optimal approximations in both Zhu
and Xu-Zhang models, provided the definable sets are well and precisely defined.
While definable sets are not explicitly described in [13,22,26] the following defi-
nitions are a safe bet for both models: neighborhoods play the role of elementary
sets, i.e.

ESets+∗ = {N(x) | x ∈ U},

and definable sets are standardly unions of elementary sets, i.e.

A ∈ DSets+∗ ⇐⇒ ∃N1, . . . , Nn ⊆ ESets+∗. A = N1 ∪ . . . ∪ Nn.

We may now define an optimal approximation, for both Zhu and Xu-Zhang
models as follows.

Definition 9. For every set X ⊆ U , a definable set O ∈ DSets+∗ is an optimal
approximation of X (w.r.t. a given similarity measure sim) if and only if:

sim(X,O) = max
A∈DSets+∗

(sim(X,A))

The set of all optimal approximations of X will be denoted by Opt+∗
sim(X). �
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We still have (assuming sim satisfies axioms S1–S5):

Proposition 2. For every set X ⊆ U , and every O ∈ Opt+∗
sim(X):

1. A+(X) ⊆ O ⊆ A+(X), and
2. A∗(X) ⊆ O ⊆ A∗(X).

Proof

(1) Suppose that A = A+(X) \ O �= ∅. Since C ⊆ X, then by axiom S4,
sim(O,X) < sim(O ∪ A,X), so O must not be optimal. Now suppose that
A = O \A+(X) �= ∅. i.e. A ⊆ O but A �⊆ X. By axiom S5, sim(O \ C,X) >
sim(O,X), so O must not be optimal again.

(2) Identically as (1). �

Unfortunately, the efficient greedy algorithm for finding optimal approxima-
tions for standard Pawlak approximation spaces, i.e. Optsim(X), described in
[11] for large class of similarity measures, does not work for Opt+∗

sim(X), and it
it not clear how it can be modified or adapted.

While both approaches [22,26] are mathematically correct and have believ-
able intuitions that support them, the author of this paper thinks that both
approaches are missing one important point.

In classical Pawlak’s approach, we have:

• Definable sets are the only sets that can be expressed exactly, everything else
must be approximate by some definable set.

• The lower approximation of X ⊆ U is defined as the biggest definable (exact)
set (or greatest lower bound) included in X, while

• The upper approximation is defined as the smallest definable (exact) set (or
least upper bound) containing X.

• Definable sets can be derived from some class of elementary sets by using a
finite number of simple and ‘natural’ operations.

We believe that the above mantra should be followed when any extension is
considered, so the only differences could be in the definitions of greatest lower
bound, least upper bound, and, especially, in the definition of definable and
elementary sets.

When we have a classical Pawlak approximation space (U,E), the elementary
sets are defined as just equivalence classes of the relation E and definable sets
as arbitrary unions of elementary sets.

• However, we can define definable set is a slightly different but equivalent
manner, namely, a set is definable or exact if it can be derived from the
elements of U/E by applying operations ∪, ∩ and \ finitely many times.

Since two different equivalence classes are disjoint, the standard definition and
this new one are equivalent, so one can replace another. For equivalent classes
the operators ∩ and \ are never used, but they do not any harm either. Further-
more, there is no obvious reason why the operation ∩ should only be allowed
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in a restricted manner (to calculate neighborhoods but not definable sets in
the models of [22,26]). There is no ‘natural’ advantage of the operator ∪ over
the operators ∩ or \, all three are primary operations in set theory and they
computational complexities are identical.

All the above lead to the following third model of rough sets induced by
coverings. This model utilizes the fact that comp(C) is a partition of U (cf.
Theorem 1), so the pattern used in standard Pawlak approximation space can
be applied again.

Definition 10. Let (U, C) be a covering approximation space, and let comp(C)
be the set of all components of C.

1. ESets = C, i.e. the elements of C are elementary sets.
2. DSets = definable(C), i.e. the elements of definable(C) are definable sets.
3. For every X ⊆ U , its lower approximation Ac(X) is defined as:

Ac(X) =
⋃

{C(α) | C(α) ∈ comp(C) ∧ C(α) ⊆ X}.

4. For every X ⊆ U , its upper approximation A
c
(X) is defined as:

A
c
(X) =

⋃
{C(α) | C(α) ∈ comp(C) ∧ C(α) ∩ X �= ∅}.

5. For every set X ⊆ U , a definable set O ∈ definable(C) is an optimal approxi-
mation of X (w.r.t. a given similarity measure sim) if and only if:

sim(X,O) = max
A∈definable(C)

(sim(X,A))

The set of all optimal approximations of X will be denoted by Optcsim(X). �

The key part of the above definition are the points (1) and (2). They guar-
antee the below results, which was our initial motivation.

Corollary 3. DSets, i.e. definable sets, are all subsets of U than can be con-
structed from the elements of C by applying the operations ∪,∩ and \ finite
number of times.

Proof. From Theorem 1(2). ��
We will now show that lower and upper approximations of our model are

tighter, and the optimal approximation of our model is closer than appropriate
approximations from the previous two models, i.e. approximations of our model
are more precise.

Theorem 2

1. Let (U, C) be a covering space. For every X ⊆ U we have:

A+(X) ⊆ Ac(X) and A
c
(X) ⊆ A+(X)

A∗(X) ⊆ Ac(X) and A
c
(X) ⊆ A∗(X)
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2. There are coverings (Ui, Ci) and Xi ⊆ Ui, for i = 1, . . . , 4 such that

A+(X1) �= Ac(X1) and A
c
(X2) �= A+(X2)

A+(X3) �= Ac(X3) and A
c
(X4) �= A+(X4)

3. Let (U, C) be a covering space. For every X ⊆ U , every O ∈ Opt+∗
sim(X) and

every O′ ∈ Optcsim(X), we have:

sim(X,O) ≤ sim(X,O′).

4. There is a covering (U, C), X ⊆ U , O ∈ Opt+∗
sim(X) and every O′ ∈

Optcsim(X), such that:

sim(X,O) �= sim(X,O′).

Proof

(1) Let x ∈ A+(X). Then there is C ∈ C such that x ∈ C ⊆ X. By Theo-
rem 1(2), C is a union of some components, so there is C(α) ∈ comp(C) and
x ∈ C(α) ⊆ X, i.e. x ∈ Ac(X). Hence A+(X) ⊆ Ac(X).

Let x ∈ A
c
(X). If x ∈ X then clearly x ∈ A+(X), so assume x ∈

A
c
(X)\X. This means there is C(α) ∈ comp(C) such that C(α)∩X �= ∅, but

x ∈ C(α)\X. Assume that y ∈ C(α)∩X. If y ∈ A+(X) then C(α) ⊆ A+(X),
so x ∈ A+(X). Nevertheless, always, {x, y} ⊆ C(α) ⊆ ⋂{C | C ∈ C∧C(α) ⊆
C} ⊆ N(y), and, if y ∈ X \ C(α) ∩ X, {x, y} ⊆ N(y) ⊆ A+(X). Hence
A

c
(X) ⊆ A+(X).
Let x ∈ A∗(X). Hence x ∈ N(x) =

⋂{C ∈ C | x ∈ C} ⊆ X. By
Theorem 1(2), there is C(α) ∈ comp(C) such that x ∈ C(α) ⊆ N(x)}, i.e.
x ∈ Ac(X). Hence A∗(X) ⊆ Ac(X).

Let x ∈ A
c
(X). If x ∈ X then clearly x ∈ A∗(X), so assume x ∈

A
c
(X) \ X. This means there is C(α) ∈ comp(C) such that C(α) ∩ X �= ∅,

but x ∈ C(α) \ X. Assume that y ∈ C(α) ∩ X. Since we always have
{x, y} ⊆ C(α) ⊆ ⋂{C | C ∈ C ∧ C(α) ⊆ C} ⊆ N(y), we can conclude
{x, y} ⊆ N(y) ⊆ A∗(X). Hence A

c
(X) ⊆ A∗(X).

(2) Consider the following example: U = {1, 2, 3}, C1 = {1, 2}, C2 = {2, 3},
i.e. C = {C1, C2}, and X = {1}. Hence we have: C(0,0) = {2}, C(1,0) =
{3}, C(0,1) = {1}, C(1,1) = ∅, and comp(C) = {C(0,0), C(0,1), C(1,0)} =
{{1}, {2}, {3}}. Moreover: N(1) = C1 = {1, 2} = C(0,1) ∪ C(0,0), N(2) =
C1 ∩ C2 = {2} = C(0,0), N(3) = C2 = {2, 3} = C(1,0) ∪ C(0,0). In this case
we have (since X = {1}):
A+(X) = A∗(X) = ∅ � {1} = Ac(X) = A

c
(X) = X,

A
c
(X) = X � A∗(X) = N(1) = {1, 2} � A+(X) = N(1)∪N(2)∪N(3) =

{1, 2, 3}.
(3) Since for every x ∈ X, N(x) is a union of some elements from comp

(C), we have DSets+∗ ⊆ definable(C). Hence sim(X,O′) = maxA∈DSets+∗

(sim(X,A)) ≤ sim(X,O)maxA∈definable(C)(sim(X,A)).



150 R. Janicki

(4) Consider the same example as in (2). For X = {1} we have Optcsim(X) =
{{1}} = {X} and Opt+∗

sim(X) = {{1, 2}}. Hence sim(X, {1}) = 1 and by
axiom S1, sim(X, {1, 2}) < sim(X, {1}). �

While occasionally appropriate approximations from above theorem are
equal, for most random cases the inclusions and inequality are sharp.

Let CS = (U, C) be a given covering approximation space. We define the
Pawlak approximations space ASCS = (U,EC), where EC is an equivalence rela-
tion on U given by Definition 7.

• The Pawlak approximations space ASCS = (U,EC) is called derived from the
covering approximation space CS = (U, C).

Proposition 3. For every covering approximation space CS = (U, C), the
Pawlak approximations space ASCS = (U,EC) has the following properties:

1. ESets(ASCS) = comp(C), i.e. the elements of comp(C) are also the elementary
sets of ASCS.

2. DSets(ASCS) = definable(C), i.e. the elements of definable(C) are also defin-
able sets of ASCS.

3. For all X ⊆ U , we have:

AASCS
(X) = Ac(X)

AASCS
(X) = A

c
(X)

Optsim,ACCS
(X) = Optcsim(X)

Proof. Directly from the properties of the equivalence relation EC. �

Proposition 3 describes an easy and natural transformation of rough sets
induced by coverings into an equivalent standard rough sets, i.e. rough sets
induced by partitions. This allows us to apply all methods invented for standard
rough sets for our model of rough sets induced by a given covering. Among others,
the greedy algorithm from [11] works for Optsim,ACCS

(X) (if sim is consistent with
Marczewski-Steinhaus index), so it can also be used for Optcsim(X).

This again, was one of the intentions of our model.

The set of components comp(C) is defined for any family C of subsets of U ,
i.e. C does not need to be a covering of U . This allows us to make a generalization
of covering approximation space to subset approximation space.

Let U be a set and let C be a nonempty family of nonempty subsets of U .

• The pair (U, C) is called a subsets approximation space.

If C is a covering of U , then (U, C) is an covering approximation space, if C

is a partition of U , then (U, C) is a standard Pawlak approximation space.

• Note that Definition 10, Corollary 3 and Proposition 3 are still valid and cor-
rect when we replace ‘covering approximation space’ with ‘subsets approxi-
mation space’.
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In other words, from mathematical point of view, covering approximation space
is just a special case of subsets approximation space. What is substantially dif-
ferent is an interpretation. Let C = {C1, . . . , Cn} and all elements of Ci satisfy
some property (predicate) πi, with πi �= πj if i �= j. If (U, C) is a covering
approximation space then the component C(1,...,1) = ∅, if (U, C) is a subsets
approximation space then the component C(1,...,1) �= ∅. All the elements of the
component C(1,...,1) satisfy the property ¬(π1 ∨ . . . ∨ πn). This might be inter-
preted as some incomplete information. For the elements of C(1,...,1) all we know
if that neither of πi is satisfied, but we do not have any particular π, different than
¬(π1 ∨ . . .∨πn), that is satisfied. Every exact set, i.e. an element of definable(C),
that contains C(1,...,1), has also some part with incomplete information.

For subset approximation spaces we can define two types of lower, upper and
optimal approximations. We can define As(X), A

s
(X) and Optssim(X) just by

applying appropriate formulas from Definition 10(3–5). These approximations
are built from the components that belong to comp(C), including the compo-
nent C(1,...,1), and they might be interpreted as approximations with incomplete
information.

We can also replace C in Definition 10 with Ĉ = C \ {C(1,...,1)}, and
define appropriate approximations Aŝ(X), A

ŝ
(X) and Optŝsim(X). While A

ŝ
(X)

always exists, it has a standard interpretation, i.e. X ⊆ A
ŝ
(X), only if

X ∩ C(1,...,1) = ∅, but in such case A
ŝ
(X) = A

s
(X), and also Aŝ(X) = As(X)

and Optŝsim(X) = Optssim(X).

5 Final Comments

A new model of rough sets induced by coverings has been proposed. The model
is based on the assumption that ∪, ∩ and \ are the primitive operations used for
deriving elementary and definable sets from a given coverings of a universe. This
assumption resulted in representing elementary sets by components (in the sense
of [12]) generated by a covering. Both lower and upper approximations of this
new model are tighter than the ones from [22,26], two other popular models that
use coverings instead of partitions. Optimal approximations, first introduced for
standard rough sets in [10] and analyzed in detail in [11], were defined for the new
model and for models of [22,26], and it was proven that optimal approximation
for the new model is closer to a given set than similar optimal approximations
of [22,26] for any similarity measure that satisfies axioms from [10].

It is also shown that our new model can easily be extended from coverings
to any arbitrary family of subsets of the universe.

The model introduced in this paper can also be interpreted as an aim to
provide a sound semantics foundations of covering based rough sets (in a sense
of [4]). The difference is that we use set-theoretic operations instead of operators
of logic as in [4]. In terminology of [4] our model corresponds to the case when
atomic formulas are predicates π1, . . . , πn, each π uniquely defines Ci ∈ C, and
an extended descriptive language (denoted EDLA in [4]) is just the set of all
propositional formulas built from atoms. The latter is due to Theorem1.
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Last, but not least, the model can in a very natural manner be transformed
into an equivalent standard rough set, so the whole rich theory of standard rough
sets can be used without any restriction, including algorithms for finding optimal
approximations [11].
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Abstract. We present a new collection of upper approximation opera-
tors for covering based rough sets, obtained from sub modular functions
and closure operators. Each non decreasing submodular function defines
a closure operator that can be considered as an approximation opera-
tor. The construction allows us to define several upper approximation
operators. Some properties of these operators are studied.

Keywords: Covering rough sets · Approximation operators · Submod-
ular functions

1 Introduction

The rough set theory was extended to covering based rough sets by many authors
to applying in other contexts. In 2012, Yao and Yao [21] introduced a general
framework for the study of dual pairs of covering-based approximation operators,
distinguishing between element based, granule based and subsystem based defi-
nitions. Other approximation pairs have been studied in literature; for instance,
in [16], Yang and Li present a summary of seven non dual pairs of approximation
operators used by Żakowski [22], Pomykala [6], Tsang et al. [11], Zhu [25], Zhu
and Wang [26], Xu and Wang [15]. On the other hand, Restrepo et al. present
a general framework of pairs of dual operators and established partial order
relation among these operators [7,8]. Deer et al. [3] present a systematic work
about neighborhood based operators. Recently Zhao [23] develops approximation
operators from a topological point of view.

The concept of submodular function has a relationship with attribute reduc-
tion, Matroids theory and closure operators [9]. The relationship with covering
rough sets was presented in [10,13,18,27]. Some relationships with binary rela-
tion based rough sets were presented in [17,19]. Each non decreasing submodular
function defines a closure operator which can be used as an upper approximation
operator. In this paper we establish a new way of defining upper approximation
operators from submodular functions.

Here we extend this definition to other coverings to define new approximation
operators and we show that they are different from the operators in previous
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frameworks. We use some neighborhood operators of covering based rough sets,
for defining other sub modular functions and their respectively closure operators.
Some properties of these operators also are studied.

The paper is organized as follows. Sections 2 presents preliminary concepts
about covering based rough sets, as lower and upper approximations, the main
neighborhood operators, and different coverings obtained from a covering C.
Section 3 presents the concept of submodular function and the closure operator
obtained from a sub modular function. Here we show that using this procedure
it is possible to obtain new approximation operators. Section 4 presents a list
of new approximation operators. Finally, Sect. 5 presents some conclusions and
future work.

2 Preliminaries

2.1 Pawlak’s Rough Set Approximations

In Pawlak’s rough set model an approximation space is an ordered pair apr =
(U,E), where E is an equivalence relation defined on a non-empty set U [5]. In
this paper we consider U as a finite set. The set [x]E represents the equivalence
class of x and P(U) represents the set of parts of U . According to Yao and Yao
[20,21], there are three different, but equivalent ways to define lower and upper
approximation operators: element based definition, granule based definition and
subsystem based definition. For each A ⊆ U , the lower and upper approximations
are defined by:

apr(A) = {x ∈ U : [x]E ⊆ A} =
⋃

{[x]E ∈ U/E : [x]E ⊆ A} (1)

apr(A) = {x ∈ U : [x]E ∩ A �= ∅} =
⋃

{[x]E ∈ U/E : [x]E ∩ A �= ∅} (2)

The first equality of Eqs. 1 and 2 and the second parts are called element
based and granule based definition, respectively.

Other equivalent sub-system based definition for approximation in covering
based rough sets can be seen in [21].

2.2 Covering Based Rough Sets

Covering based rough sets were proposed to extend the range of applications of
rough set theory. In rough set theory an element x ∈ U belongs to an unique
set or equivalent class, but in covering based rough sets this same element can
belong to many sets, so we need to consider the sets K in C such that x ∈ K.

Definition 1 [24]. Let C = {Ki} be a family of nonempty subsets of U . C is
called a covering of U if

⋃
Ki = U . The ordered pair (U,C) is called a covering

approximation space.
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Definition 2. Let (U,C) be a covering approximation space and x ∈ U . The
set collection of minimal sets K ∈ C such that x ∈ K, is called the minimal
description of the object x ∈ U and it is denoted as md(C, x).

Similarly, it is possible to define MD(C, x), the maximal description of x ∈ U .
In this case we consider the maximal sets K, with x ∈ K.

Definition 3 [21]. A mapping N : U → P(U), such that x ∈ N(x) is called a
neighborhood operator.

According to the first parts in Eqs. 1 and 2, each neighborhood operator
defines a pair of approximation operators, when we use the neighborhood N(x)
instead of the equivalence class [x]E .

apr
N

(A) = {x ∈ U : N(x) ⊆ A} (3)

aprN (A) = {x ∈ U : N(x) ∩ A �= ∅} (4)

Equations 3 and 4 give the neighborhood element based definition in covering
based rough sets.

From md(C, x) and MD(C, x), Yao and Yao define the following neighbor-
hood operators [21]:

1. NC
1 (x) =

⋂{K : K ∈ md(C, x)}
2. NC

2 (x) =
⋃{K : K ∈ md(C, x)}

3. NC
3 (x) =

⋂{K : K ∈ MD(C, x)}
4. NC

4 (x) =
⋃{K : K ∈ MD(C, x)}

Therefore, we have four lower and upper approximation operators aprNi
using

Eqs. 3 and 4.
Generalizing the granule based definitions given by the second parts of Eqs. 1

and 2, the following approximation operator based on a covering C was consid-
ered in [21]:

aprC(A) =
⋃

{K ∈ C : K ∩ A �= ∅} (5)

Other coverings obtained from a covering C have been used for new definitions
of approximation operators.

From a covering C of U , the following coverings have been defined:

1. C1 =
⋃{md(C, x) : x ∈ U}

2. C2 =
⋃{MD(C, x) : x ∈ U}

3. C3 = {⋂
(md(C, x)) : x ∈ U}

4. C4 = {⋃
(MD(C, x)) : x ∈ U}

5. C∩ = C \ {K ∈ C : (∃K ⊆ C \ {K}) (K =
⋂
K)}

6. C∪ = C \ {K ∈ C : (∃K ⊆ C \ {K}) (K =
⋃
K)}
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Coverings C∩ and C∪ are called the ∩-reduction and the ∪-reduction of C,
respectively. The main idea is to eliminate the elements K in C that can be
expressed as intersection or union of other sets in the covering.

The following two covering based upper approximation operators were intro-
duced in [14,26] as IHC and XHC, respectively and they were presented in [7]
as follows:

– HC
5 (A) = ∪{N1(x) : x ∈ A}

– HC
6 (A) = {x : N1(x) ∩ A �= ∅} = aprN1

(A)

In [7] a partial order relation, based on the property: apr1 ≤ apr2 if and only
if apr1(A) ⊆ apr2(A), for all A ⊆ U , was established among these operators.

The operators HC
5 and HC

6 are minimal elements in the framework of upper
approximations. Therefore, for each operator apr in this framework we have that
HC

5 ≤ apr or HC
6 ≤ apr.

3 SubModular Functions

Submodular functions, also called rank function [18], are used to connect many
theories like rough sets, matroids, attribute reduction and closure operators.
Submodular functions are the generalization of rank concept in vector spaces of
finite dimension. The submodular functions can be employed for both attribute
reduction and feature selection simultaneously [27]. They have important appli-
cations on graph theory, game theory and optimization.

3.1 Closures

The notion of closure operator usually is used on ordered sets and topological
spaces. Some relations between closure operators with upper approximation and
matroids are presented in [1,4].

We present some concepts about ordered structures, according to Blyth [2].

Closure Operators

Definition 4. A map C : P(U) → P(U) is a closure operator on U if it is
such that, for all A,B ⊆ U :

1. A ⊆ C(A), (extensive).
2. A ⊆ B implies C(A) ⊆ C(B), (order preserving).
3. C(A) = C[C(A)], (idempotent).

3.2 Submodular Functions from Coverings

Some relationships among submodular functions and covering rough sets was
presented in [13].
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Definition 5. If C is a covering of U , for all A ⊆ U is defined the function
fC : P(U) → N (natural numbers):

fC(A) = |{K ∈ C : K ∩ A �= ∅}| (6)

This function is called upper approximation number of A and it represents
the number of sets K in the covering with a nonempty intersection with A.

Proposition 1 [13]. If A and B are subsets of U , the function fC satisfies:

1. fC(∅) = 0
2. If A ⊆ B then fC(A) ≤ fC(B)
3. fC(A ∪ B) + fC(A ∩ B) ≤ fC(A) + fC(B) (Sub-modular property).

Function fC is sub-modular and non decreasing. For each function fC is
possible to define a closure operator given by:

Cf (A) = {x ∈ U : fC(A) = fC(A ∪ x)} (7)

To establish that Cf is a closure operator we need the following lemma,
proved in [12], using induction over the elements of B − A.

Lemma 1 [12]. If A,B ⊆ U and for all b ∈ B − A we have fC(A ∪ b) = fC(A),
then fC(A ∪ B) = fC(A).

Proposition 2. If fC is a non-decreasing sub modular function such that
fC(∅) = ∅, then the operator Cf defined by means Eq. (7) is a closure opera-
tor.

Proof. a. Clearly A ⊆ Cf (A), because x ∈ A implies fC(A) = fC(A ∪ x).
b. For the order preserving property, if z ∈ Cf (A), then fC(A) = fC(A ∪ z). By

the property 2 in Proposition 1, we know that fC(B) ≤ fC(B ∪z). To establish
the other inequality we will see that for each K ∈ C such that K ∩ (B ∪z) �= ∅
there exist at least a K ′ ∈ C such that K ′ ∩ B �= ∅. Effectively, for K ∈ C

such that K ∩ (B ∪ z) �= ∅, we have that K ∩ B �= ∅ or z ∈ K. If K ∩ B �= ∅,
then K ′ = K. On the other hand, if z ∈ K then K ∩ (A ∪ z) �= ∅. Since
fC(A) = fC(A ∪ z), there exists a K ′ ∈ C such that K ′ ∩ A �= ∅ and by the
inclusion A ⊆ B, we have that K ′∩B �= ∅. This shows that fC(B) ≥ fC(B∪z).
Therefore, z ∈ Cf (B), because fC(B) = fC(B ∪ z).

c. Finally, we will see that Cf (A) = Cf [Cf (A)]. For the extensive property we
have Cf (A) ⊆ Cf [Cf (A)]. Now, if x ∈ Cf [Cf (A)] then fC(Cf (A) ∪ x) =
fC(Cf (A)). For all b ∈ Cf (A) − A, fC(A ∪ b) = fC(A) and for Lemma 1,
fC(A) = fC(A∪ (Cf (A)−A)) = fC(Cf (A)), thus fC(Cf (A)∪x) = fC(A) and
therefore fC(A ∪ x) = fC(A), so x ∈ Cf (A).

�
According to the properties of Cf , fC also defines an upper approximation

operator denoted as aprf . Lower approximation operators can be defined from
apr, for example by means of the relation apr(A) = co(apr(co(A))) we obtain a
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dual operator. The Example 1 shows that aprf is different from all operators in
the framework of [7], because they are not comparable, by means of the order
relation apr1 ≤ apr2 if and only if apr1(A) ⊆ apr2(A), for all A ⊆ U . As was
presented in [8], all operators are dominated by HC

5 or HC
6 . Therefore we have a

new way of defining approximation operators.

Example 1. In this example we show a comparison of aprf and operators HC
5 and

HC
6 . For the covering C = {{2}, {1, 2}, {1, 3}, {2, 4}, {1, 2, 3}} of U = {1, 2, 3, 4}

we have the information in Table 1.
According to this, aprf (A) is a new approximation operator, different from

any operator in the cited framework.

Table 1. Illustration of sub-modular function and a comparison with HC
5 and HC

6 .

A fC(A) aprf (A) HC
6 (A) HC

5 (A)

{1} 3 {1, 3} {1} {1, 3}
{2} 4 {2, 4} {2} {2, 4}
{3} 2 {3} {1, 3} {3}
{4} 1 {4} {2, 4} {4}
{1, 2} 5 {1, 2, 3, 4} {1, 2} {1, 2, 3, 4}
{1, 3} 3 {1, 3} {1, 3} {1, 3}
{1, 4} 4 {1, 3, 4} {1, 2, 4} {1, 3, 4}
{2, 3} 5 {1, 2, 3, 4} {1, 2, 3} {2, 3, 4}
{2, 4} 4 {2, 4} {2, 4} {2, 4}
{3, 4} 4 {3, 4} {1, 2, 3, 4} {3, 4}
{1, 2, 3} 4 {1, 2, 3, 4} {1, 2, 3} {1, 2, 3, 4}
{1, 2, 4} 4 {1, 2, 3, 4} {1, 2, 4} {2, 3, 4}
{1, 3, 4} 5 {1, 3, 4} {1, 2, 3, 4} {1, 3, 4}
{2, 3, 4} 5 {1, 2, 3, 4} {1, 2, 3, 4} {2, 3, 4}

Obviously, different sub modular functions fC can be obtained from other
coverings, for example C1, C2, C3, C4, C∪ and C∩.

Proposition 3. For the operator aprf , we have: aprf (∅) = ∅ and aprf (U) = U .

Proof. From the property 1 in Proposition 1, fC(∅) = 0. If x ∈ aprf (∅), then
fC(x) = 0. So, there is not exists K ∈ C such that x ∈ K, and it is impossi-
ble, because C is a covering of U . The second property is a consequence of the
extensive property of a closure operator. �

Some relations between these functions can be established immediately from
the order relations in [8]. For example, we have the next proposition.
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Proposition 4. If C and C
′ are coverings of U such that C ⊆ C

′, then fC ≤ fC′ .

Proof. It is easy to show from definition of fC. �
Example 2. The operator aprf are not a joint morphism. According to values in
Table 1, we can see that aprf ({2}) ∪ aprf ({3}) = {2, 4} ∪ {3} �= aprf ({2, 3}) =
{1, 2, 3, 4}.

Other sub modular functions can be defined from different approximation
operators in covering based rough sets.

3.3 Neighborhood Operators

From the neighborhood operators defined above, we have the following coverings:

CN = {N(x) : x ∈ U} (8)

Therefore, using Definition 5 is possible to obtain new approximation opera-
tors. In the same way, it is possible to show they are different from aprNi

.

Example 3. For the covering C in Example 1, we have the coverings:

1. CN1 = {{1}, {2}, {1, 3}, {2, 4}}
2. CN2 = {{1, 2, 3}, {2}, {1, 3}, {2, 4}}
3. CN3 = {{1, 2, 3}, {2}, {2, 4}}
4. CN4 = {{{2, 4}, {1, 2, 3}, {1, 2, 3, 4}}

Each covering CNi
for i = 1, 2, 3, 4 defines a non decreasing sub modular

function and therefore a closure operator according to Proposition 1, that can
be used as an approximation operator. In this case we note this approximation
operators as: aprfi

.
It is possible to see that operators aprfi

, in general, are different from aprNi
.

The values for the sub modular functions fNi
(A) and the approximations aprfi

,
are presented in Table 2.

From the results in Table 2 is possible to see that the upper approxima-
tions aprfi

are different from the operators aprNi
. For example, aprN2

({2, 4}) =
{1, 2, 4}, while aprf2

({2, 4}) = {2, 4}. Similarly, aprN3
({1}) = {1, 3}, while

aprf3
({1}) = {1} and aprN4

({1}) = {1, 2, 3}, while aprf4
({1}) = {1, 3}. The

values of aprNi
(A) were calculated before and they are not shown in this table.

Example 4. The operators aprfi
are not joint morphism, they do no satisfy the

relation apr(A ∪ B) = apr(A) ∪ apr(B). For example, according to the values
in Table 2, we can see that aprf3

({3}) ∪ aprf3
({4}) = {3} ∪ {4} = {3, 4} �=

{1, 3, 4} = aprf3
({3, 4}).

Using different concepts in covering rough sets it is possible to define other
sub-modular functions. As an alternative way, we use the element approach of
neighborhood for defining other type of sub modular functions.
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Table 2. Illustration of sub-modular functions from neighborhood operators.

A fN1 (A) fN2 (A) fN3 (A) fN4 (A) aprf1
aprf2

aprf3
aprf4

{1} 2 2 1 2 {1, 3} {1, 3} {1} {1, 3}
{2} 2 3 3 3 {2, 4} {2, 4} {1, 2} {1, 2, 3, 4}
{3} 1 2 1 2 {3} {1, 3} {3} {1, 3}
{4} 1 1 1 2 {4} {4} {4} {4}
{1, 2} 4 4 3 3 {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3} {1, 2, 3, 4}
{1, 3} 2 2 1 2 {1, 3} {1, 3} {1, 3} {1, 3}
{1, 4} 3 3 2 3 {1, 3, 4} {1, 3, 4} {1, 3, 4} {1, 2, 3, 4}
{2, 3} 3 4 3 3 {2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
{2, 4} 2 3 3 3 {2, 4} {2, 4} {1, 2, 3, 4} {1, 2, 3, 4}
{3, 4} 2 3 2 3 {3, 4} {1, 3, 4} {1, 3, 4} {1, 2, 3, 4}
{1, 2, 3} 4 4 3 3 {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
{1, 2, 4} 4 4 3 3 {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
{1, 3, 4} 3 3 2 3 {1, 3, 4} {1, 3, 4} {1, 3, 4} {1, 2, 3, 4}
{2, 3, 4} 3 4 3 3 {2, 3, 4} {2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}

Definition 6. If (U,C) is a covering space and Ni are the neighborhood opera-
tors defined above, is possible to define the functions:

ψNi
(A) = |{x ∈ U : Ni(x) ∩ A �= ∅}| (9)

Clearly ψNi
(∅) = 0 for N1, N2, N3 and N4.

Proposition 5. The functions ψNi
are non decreasing.

Proof. It is simple to prove from definition. �
Proposition 6. The functions ψNi

are sub modulars.

Proof. Using a similar counting method, used in [13] we will show that ψNi
(A ∪

B) + ψNi
(A ∩ B) ≤ ψNi

(A) + ψNi
(B).

a. If z ∈ apr
N

(A∪B) then N(z)∩(A∪B) �= ∅, therefore (N(z)∪A)∩(N(z)∪B) �=
∅, so N(z) ∩ A �= ∅ or N(z) ∩ B �= ∅, then z ∈ apr

N
(A) or z ∈ apr

N
(A).

b. On the other hand, If z ∈ apr
N

(A ∩ B) then N(z) ∩ (A ∩ B) �= ∅, therefore
(N(z) ∩ A) ∩ (N(z) ∩ B) �= ∅, so N(z) ∩ A �= ∅ and N(z) ∩ B �= ∅, then
z ∈ apr

N
(A) or z ∈ apr

N
(A). �

Each closure operator can be seen as an approximation operator. In this case
we will see that the approximation operators Cfi

= aprψi
obtained from the sub

modular functions ψNi
are different from the approximation operators defined

before.

Example 5. From the covering C = {{1, 2}, {1, 3}, {1, 2, 3}, {2, 4}} of U =
{1, 2, 3, 4} in Example 3, we have the coverings obtained from neighborhoods.
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The values for the sub modular functions ψN1(A), the approximation operators
aprψ, HC

6 (A) and HC
5 (A) are presented in Table 3. Comparing with values of fNi

in Table 2, it is easy to see that fNi
�= ψNi

.

Table 3. Illustration of sub-modular function and the approximation operator.

A ψN1(A) aprψ1
(A) HC

6 (A) HC
5 (A)

{1} 3 {1, 3} {1} {1, 3}
{2} 4 {2, 4} {2} {2, 4}
{3} 2 {3} {1, 3} {3}
{4} 1 {4} {2, 4} {4}
{1, 2} 5 {1, 2, 3, 4} {1, 2} {1, 2, 3, 4}
{1, 3} 3 {1, 3} {1, 3} {1, 3}
{1, 4} 4 {1, 3, 4} {1, 2, 4} {1, 3, 4}
{2, 3} 5 {1, 2, 3, 4} {1, 2, 3} {2, 3, 4}
{2, 4} 4 {2, 4} {2, 4} {2, 4}
{3, 4} 4 {3, 4} {1, 2, 3, 4} {3, 4}
{1, 2, 3} 4 {1, 2, 3, 4} {1, 2, 3} {1, 2, 3, 4}
{1, 2, 4} 4 {1, 2, 3, 4} {1, 2, 4} {2, 3, 4}
{1, 3, 4} 5 {1, 3, 4} {1, 2, 3, 4} {1, 3, 4}
{2, 3, 4} 5 {1, 2, 3, 4} {1, 2, 3, 4} {2, 3, 4}

From results in Table 3 is it easy to see that the closure operators are dif-
ferent from the approximations aprNi

given in Eq. 4. (See approximation of
A = {1, 2, 4}).

4 List of New Approximation Operators

In this section we list the new approximation operators obtained from submod-
ular functions via closure operators.

Approximation operators aprCi
are obtained from submodular functions

fCi
, therefore we have seven different operators one for each covering:

C, C1, C2, C3, C4, C∪ and C∩. Similarly, the four operators, aprfi
are

obtained from functions aprfi
defined from Eq. 6 with the coverings C =

{NC
1 (x)}, {NC

2 (x)}, {NC
3 (x)}, {NC

4 (x)}. Finally aprψi
are obtained from ψNi

functions with Definition 6. Therefore we have at least eleven new closure oper-
ators, which are listed in Table 4.
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Table 4. List of sub-modular functions and the approximation operators.

N Sub-modular Upper approximation Element used

1 fCi apr
Ci

C, C1, C2, C3, C4, C∪, C∩
2 fNi aprfi

N1, N2, N3, N4 (granules)

3 ψNi aprψi
N1, N2, N3, N4 (elements)

5 Conclusions

This paper presents new approximation operators obtained from submodular
functions via closure operators. The submodular definition given for a covering
C is extended to different coverings. Neighborhood operators can be used for new
coverings, therefore they also define operators. A new element based submodular
function is introduced and used for new operators. Finally some properties of
these operators are studied. As a future work, we will study partial order relation
among the new operators and the relationship with matroid theory for attribute
reduction.
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7. Restrepo, M., Cornelis, C., Gómez, J.: Duality, conjugacy and adjointness of

approximation operators in covering-based rough sets. Int. J. Approx. Reason.
55, 469–485 (2014)

8. Restrepo, M., Cornelis, C., Gómez, J.: Partial order relation for approximation
operators in covering-based rough sets. Inf. Sci. 284, 44–59 (2014)

9. Roa, L.: Una nueva construcción de los espacios topológicos finitos desde las fun-
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Abstract. In this paper we take an attempt to depart from the closed
way of presenting information table characterizing a vague concept with
respect to a closed sample of objects, a fixed set of attributes, and a static
time point. The aim is rather to have an interactive information system
which is open to incorporate new information based on the interactions
of an agent with the physical reality. This in turn prepares the ground
for the notion of adaptive information system which incorporates the
possibility of adapting decision strategies based on the history of making
decisions over a period of time through interactions of an agent with the
physical reality.

Keywords: Information flow · Interactive information system ·
Adaptive rough set · Adaptive reasoning

1 Introduction

Natural languages are abundant with imprecise, vague linguistic expressions
of different characteristics [2,10]. Relationship of the rough set approach with
vague, imprecise concepts has been investigated by many researchers (see, e.g.,
[3,8,9,17,30,41,42,44,48,49,51,57,59,62,64]). Plenty of other approaches are
also existing in the literature (see, e.g., [11–18,29,46,47]). As mentioned in [33],
some prefer to have for new ontology for semantics going beyond set theory, and
some prefer addressing vagueness by new ways staying inside the framework of
set theory.

From the perspective of rough sets [39,40,43] impreciseness, arising from
lack of information about a universe, is addressed as follows. A universe U is
accessible with respect to properties of the elements of U , expressed through
a set of attributes. An indiscernibility relation R, which can only distinguish
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those objects of the universe which are of different natures with respect to the
set of attributes, plays a central role in the theory. This indiscernibility relation
represents a perspective of viewing whether for a set of objects a (vague) concept
applies or not. Now as the concept under consideration is imprecise because of
lack of information, perspectives about whether an object satisfies the concept
can be different. These differences in perspectives can have different reasons
behind.

(i) The same set of objects with respect to the same set of attributes can be
viewed differently as satisfying or not satisfying or partially satisfying a
concept by different individuals or agents.

(ii) A concept can be differently perceived by a number of agents with respect
to different sets of attributes based on the same set of objects.

(iii) A concept can be perceived by a number of agents with respect to different
sets of objects and different sets of attributes.

(iv) Perspective about (vague) imprecise concepts can change with respect to
time, and appearance of new objects and attributes.

It is not hard to understand that vague concepts cannot be approximated with a
satisfactory quality by static constructs such as induced membership/inclusion
functions, or models that are derived from a sample. Understanding vague con-
cepts can be only realized in a process, in which the induced models are adapted
through matching the concepts in a dynamically changing environment. Thus,
our goal in this paper would be to emphasize the role of interactive information
systems, i.e., information systems which are open for interactions with the phys-
ical reality, and which are changing with time based on those interactions. This
requires some modifications in the existing definition of information system. Our
approach, in this paper, differs from the existing attempts to interactive informa-
tion systems, and this formalization is based on the ideas outlined in [23,56,61].
Each information system can be modified, with time, with the change of the
perspective of an agent. In contrast to the existing approaches, we propose to
consider different parameterized families of attributes together, with one kind
influencing the other kind. The values of parameters, characterizing properties of
objects, are fixed by some control parameters, which are set by the owner/agent
on the basis of her accumulated knowledge. On the basis of interactive informa-
tion systems we introduce adaptive information systems which are crucial for
introducing adaptation strategies, taking care of dynamically changing nature
of information.

The content of the paper is organized as follows. In Sect. 2, an introduction to
the basic notions from the literature of information systems, rough sets, and com-
plex granules is presented. Section 2.2 presents some intuitions behind complex
granules, necessary for modeling computations on granules based on interactions
in the physical world. A general background explaining different components and
requirements for introducing the notions of interactive information systems and
adaptive information systems is presented in Sect. 3. Section 4 presents an out-
line for a proposal towards adaptive information systems. In Sect. 5 we discuss
the further challenges to build a substantially grown-up theory of adaptive infor-
mation systems.
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2 Rudiments of Rough Sets and Complex Granules

2.1 Rough Sets

The rough set (RS) approach was proposed by Professor Zdzis�law Pawlak in
1982 [39,40,43] as a tool for dealing with imperfect knowledge. Over the years
many methods based on rough set theory, alone or in combination with other
approaches, have been developed.

The starting point of rough set theory is the indiscernibility relation, which
is generated from the information about objects of interest (defined later in this
section as signatures of objects). Through indiscernibility relation it is reflected
that due to lack of information (or knowledge) some objects based on the avail-
able information (or knowledge) become indiscernible with each other. This
entails that, in general, we are unable to deal with each particular object sep-
arately; rather we can only consider granules (clusters) of indiscernible objects
as a fundamental units of the theory.

From a practical point of view, it is better to define basic concepts of this
theory in terms of data. Therefore we will start our considerations from a data
set called an information system.

Suppose we are given a pair A = (U,A) of non-empty, finite sets U and A,
where U is the universe of objects, and A is a set consisting of attributes, i.e.,
functions a : U −→ Va, where Va is the set of values of attribute a, called the
domain of a. The pair A = (U,A) is called an information system (see, e.g.,
[38]). It is to be noted here that similar to the notion of information system, in
[4], Barwise and Seligman have introduced a notion of classification. Drawing
analogy with classification [4], an information system A can be viewed as a
triple, InfA(U) = (U,A, e : U × A �→ L), where L = ∪a∈AVa and e(u, a) = a(u)
for a ∈ A, u ∈ U . In order to keep the symbols uniform, from now onwards by
information system we would refer to a triple of the above kind.

Any information system can be represented by a data table with rows labeled
by objects and columns labeled by attributes. Any pair (x, a), where x ∈ U and
a ∈ A defines the particular entry in the table indicated by the value e(x, a) (or
in other words a(x)).

Any subset B of A determines a binary relation INDB on U , called an indis-
cernibility relation, defined by

x INDB y if and only if e(x, a) = e(y, a) for every a ∈ B, (1)

where e(x, a) denotes the value of attribute a for object x.
Obviously, INDB is an equivalence relation. The family of all equivalence

classes of INDB , i.e., the partition determined by B, will be denoted by U/INDB,
or simply U/B; an equivalence class of INDB , i.e., the block of the partition U/B,
containing x will be denoted as [x]B (or more precisely [x]INDB

). Thus in view
of the data we are unable, in general, to observe individual object; rather we
are forced to reason only about the accessible granules of objects with respect
to available knowledge (see, e.g., [35,40,45]).
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If (x, y) ∈ INDB we will say that x and y are B-indiscernible. Equivalence
classes of the relation INDB (or blocks of the partition U/B) are referred to
as B-elementary sets or B-elementary granules. In the rough set approach the
elementary sets are the basic building blocks (concepts) of our knowledge about
reality. The unions of B-elementary sets are called B-definable sets.

For B ⊆ A we denote by SgB(x) the B-signature of x ∈ U , which is repre-
sented by the set {(a, e(x, a)) : a ∈ B}. Let SgB(U) = {SgB(x) : x ∈ U}. Then
for any objects x, y ∈ U the following equivalence holds: xINDBy if and only if
SgB(x) = SgB(y).

This indiscernibility relation is further used to define basic concepts of rough
set theory. The following two operations on any set X ⊆ U , given by,

LOWB(X) = {x ∈ U : [x]B ⊆ X}, (2)
UPPB(X) = {x ∈ U : [x]B ∩ X �= ∅}, (3)

assign to every subset X of the universe U respectively to two sets LOWB(X)
and UPPB(X), called the B-lower and the B-upper approximation of X. The set

BNB(X) = UPPB(X) − LOWB(X), (4)

will be referred to as the B-boundary region of X.
If the boundary region of X is the empty set, i.e., BNB(X) = ∅, then the set

X is crisp (exact) with respect to B; in the opposite case, i.e., if BNB(X) �= ∅,
the set X is referred to as rough (inexact) with respect to B. Thus any rough
set, in contrast to a crisp set, has a non-empty boundary region.

Thus a set is rough (imprecise) if it has non-empty boundary region; other-
wise the set is crisp (precise). Therefore with every rough set we associate two
crisp sets, called lower and upper approximation. Intuitively, the lower approx-
imation of a set consists of all elements that surely belong to the set, and the
upper approximation of the set constitutes of all elements that possibly belong
to the set. The boundary region of the set consists of all elements that cannot
be classified uniquely as belonging to the set or as belonging to its complement,
with respect to the available knowledge. This is exactly the idea of vagueness
proposed by Frege.

Let us also observe that the definition of rough sets start with referring to
data (knowledge), and hence it is subjective, in contrast to the definition of
classical sets which is in some sense an objective one.

2.2 Complex Granules

Obtaining a convincingly complete description of a universe of objects, lying in
the reality, usually comes through a process of learning which dynamically keeps
on changing with time. So, models of computations should be based on learning
through interactions with the physical reality. In [63] the need for considering
the physical world as the basis for computations is expressed as follows.
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further study of this [learning] phenomenon requires analysis that goes
beyond pure mathematical models. As does any branch of natural science,
learning theory has two sides:

– The mathematical side that describes laws of generalization which are
valid for all possible worlds and

– The physical side that describes laws which are valid for our specific
world, the world where we have to solve our applied tasks.

[. . . ] To be successful, learning machines must use structures on the set of
functions that are appropriate for problems of our world. [. . . ] Construct-
ing the physical part of the theory and unifying it with the mathematical
part should be considered as one of the main goals of statistical learning
theory. [. . . ] In spite of all results obtained, statistical learning theory is
only in its infancy. . .

According to Vapnik [63] there are many aspects of this theory that have not yet
been analyzed and that are important both for understanding the phenomenon
of learning and for practical applications. Surely, one of the aspects should be
to consider the necessity of linking the abstract world of mathematics with the
physical world. This may be related to the grounding problem investigated in
psychology [1,19,20,23]. In this paper, in order to link these two worlds we follow
the approach based on complex granules (c-granules, for short) [23,26,27,52–56].

One of the main assumptions in interactive computations on c-granules is
that the computations are based on physical objects. These physical objects
can be control tools, for following some schemes of measurements, as well as
the objects that are to be measured. They interact among themselves. These
activities take place in the physical world (i.e., P of Fig. 1). The results of these
interactions are recognized (measured) by a given agent ag using so called mea-
surable objects, i.e., objects whose states at a given moment of time t may be
measured. The values of measurements are represented as values of attributes
(e.g., real numbers) or degrees of satisfiability of some formulas. This pertains
to the activity of the abstract world (cf. Fig. 1). Using measurable objects the
agent may indirectly recognize properties of other physical objects, which are
not-directly measurable, in a given configuration. Prior to that ag must have
learned relevant rules of interaction for predicting the states of such objects
on the basis of measurement performed on the measurable objects. Information
about states of non-directly measurable objects is transmitted to measurable
objects through interactions in the considered configuration.

Using the information flow approach by Barwise and Seligman [4], in partic-
ular using the definition of infomorphism, one can explain how the abstract part,
related to measurable objects, is conjugated to physical objects (see Fig. 1).

In Fig. 1, the abstract world is represented by a set of formulas Σ (e.g.,
Boolean combinations of descriptors over a given set of attributes A [43]), and the
set SgA(U) of A-signatures of objects. The satisfiability relation |=A is defined
by u |=A α iff u satisfies (matches) some of the disjunctive components of α. The
abstract world is defined by a classification (SgA(U), Σ, |=A) [4]. P denotes the
set of physical objects, and SP is the set of states of physical objects. Moreover,
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Fig. 1. Infomorphism from the abstract world to the physical world.

State : P → SP is a function assigning a unique state to each physical object
lying in the reality. The satisfiability relation for the physical world is defined
by p |=State s iff p ∈ State−1(s) for any p ∈ P and s ∈ SP . The physical world
is represented by a classification (P, SP |=State) [4]. A pair of functions (f̂ , f̌) is
an infomorphism from the abstract world to the physical world iff the condition
at the bottom of the figure holds for all p ∈ P and α ∈ Σ [4].

3 Towards Adaptive Decision Strategies: Focusing on
Different Perspectives of Agents with Time

In the definition presented in this paper, we have observed that the notion of
boundary region is defined as a crisp set BNB(X). While in [28], it is stressed
that boundaries of vague concepts are not crisp. In this context, let us notice the
crucial point in the definition of boundary region, as given above, lies in the fact
that this definition is relative to the subjective knowledge expressed with respect
to a set of attributes B. Different sources of information, may be called agents,
may use different sets of attributes for approximating a concept with the basis
of the same set of objects (see point (ii) of Introduction). Hence, the boundary
region can change when we consider these different views. Another reason behind
the change of boundary region could be because of change in information with
respect to time. At some point of time, we only have information available for
some samples of objects [21]. Hence, when new objects appear again the bound-
ary region may change. This seems to have important consequences for further
development of rough set theory, in combination with fuzzy sets and other soft
computing paradigms, towards adaptive approximate reasoning.

Let us consider a context when approximations of a vague concept are consid-
ered over a family of decision systems {InfAt

(Ut)}t∈T , where T is a set of time
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points. Hence, we obtain a family of the lower approximations, upper approxi-
mations and boundary regions of a considered vague concept which are changing
with time (see Fig. 2). As a result, an agent’s perception about a vague concept
gets adapted with dynamically changing environment and time.

Fig. 2. Adaptive rough sets.

It is worthwhile to mention that the information systems in this family are
obtained through interactions with the environment, and that points to the
necessity of embedding the adaptive rough set approach in the framework of
interactive granular computing and WisTech program [23–25,27].

In the next section, we shall illustrate a formal way of introducing a prototype
of adaptive information system. Here, we present a general perspective in order
to prepare a ground for an adaptive information system.

We start with the consideration that the information systems (decision sys-
tems) are created on the basis of interactions of an agent with the environment,
using some control parameters. In particular, control parameters are used to per-
form some actions or plans on some distinguished physical objects for predicting
different values of parameters about the physical objects. This process of control-
ling the schemes for obtaining values of attributes by fixing control parameters
may be called as agent’s control. In general, by fixing the control parameters,
e.g., space, time, location, position of sensors and/or actuators etc., agent pre-
pares the ground for obtaining an information system describing the properties
of real physical objects. These real physical objects along with the set-up of the
control tools (i.e., space-time-angle of sensors or cameras) generates a complex
granule (c-granule, for short) [23,53]. These c-granules, parts of c-granules and
relationships among them, features of parts of the c-granules, and links of the
c-granules all together help to transmit the results of interactions with objects
to the agent, the owner of the so called information tables (see Fig. 3). The com-
plex c-granule lying in the reality represents the physical world, in Fig. 1 which
is denoted as P . On the other hand, the information tables basically represent
the states of the measurable physical objects lying in the c-granules in terms of
values of attributes; this is part of the abstract world, information about which
is represented by some formulas (cf. Σ in Fig. 1).
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Fig. 3. An illustrative fragment of the control of agent ag for acquiring values va, vb, vc

of attributes a, b, c using interactions of the control of ag with the c-granule gt created
by ag at the local time t of ag.

Figure 3 presents a summary of the idea discussed above. An agent ag at
time t initiates some actions for computing values of attributes a, b, c for some
objects lying in the reality, and that creates a c-granule gt. The values va, vb, vc
represent the states of some objects oa, ob, oc at time t. These values are trans-
mitted by a set of links. Configurations of physical objects in gt, related to
the attributes a, b, c, are denoted by confa, confb, confc. LINKS is the set of
links for transmitting results of interactions, that take place in configurations
confa, confb, confc on the measurable objects oa, ob, oc, to the agent ag. That
is, the links from gt to ag are responsible for transmitting values va, vb, vc of
attributes a, b, c corresponding to the states of objects oa, ob, oc at time t. The
symbol x is a variable assuming names for objects of gt together with a pointer
to gt.

The control of an agent works for preparing the granule gt by setting control
parameters in the physical reality as a prior step of constructing the relevant cur-
rent information system. The prediction regarding how the control parameters
are to be set is performed on the basis of knowledge accumulated in the memory
of the control. The aim of the control of an agent is to satisfy the needs of the
agent by controlling computations on c-granules. The algorithms, called classi-
fiers (or regressors), for predicting the values of parameters are induced on the
basis of information dynamically accumulated by the agent in the form of inter-
active information (decision) systems. These systems are dynamically changing
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with time due to interactions of the control with the environment. The process of
inducing classifiers (or regressors) is often supported using hierarchical learning
[7,23,60].

Next comes the necessity of developing adaptive strategies on the basis of the
history/memory of control regarding how the information was gathered in such
interactive systems, as well as how the structures of classifiers (regressors) were
used in the past for predicting values of parameters. All these help to induce
high quality classifiers (regressors) for predicting values of the parameters for
the current situation. The challenge is to develop methods for learning classi-
fiers (regressors) for predicting adaptation of parameters following the agent’s
available learning about the already perceived changes in situations and in the
classifiers (regressors). The induced classifiers (regressors) can be treated as the
temporary approximations of decision functions [57,58].

The fundamental intuition behind the concept of the c-granule gt is the fol-
lowing:
C-granules are generated by an agent ag depending on the specific configurations
of spatio-temporal portions of physical matter (called hunks [22]) related to the
ag. The control of an agent ag creates (her/his) c-granules for perceiving and/or
accessing fragments of the surrounding of the physical world. Each c-granule
consists of three architectural layers:

1. Soft suits, which are configurations of hunks that represent the properties of
the ag’s environment of activity. That means in the Soft suit all the properties
of the present, past, and expected phenomena, as well as the expected prop-
erties of interaction plans and/or the results of some interactions, potentially
activated by the agent’s c-granule, are included.

2. Link suits are the communication channels (links) which transmit the results
of interactions among accessible fragments of the agent’s environment of activ-
ities and the results of interactions among different representations of prop-
erties in the soft suit (i.e., information systems); according to the weight
(significance) of the current ag’s needs, links may have assigned priorities,
which reflect the results of judgment, performed by ag.

3. Hard suits are the configurations of hunks that are accessible by links from
the link suit.

The hard suits, link suits, and soft suits of more compound c-granules are
defined using the relevant networks over already defined c-granules. The networks
may satisfy some constraints which can be interpreted as definitions for types
of networks. The link suits of such more compound granules are responsible for
transmission of interactions between the hard suits and soft suits represented
by the corresponding networks. The results and/or properties of transmitted
interactions are recorded in the soft suits.

Any c-granule makes it possible to record in its soft suit what is perceived
by the interactions in its hard suit. The perceived information is transmitted
by the link suit to the soft suit. This is typical for sensory measurement. On
the other hand, a c-granule may cause some interactions in its hard suit by
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transmitting through its link suit some interactions from the soft suit. How-
ever, the c-granule may perceive the results (or properties) of such interactions,
caused in the hard suits, only by using the soft suit. This is done by transmitting
back (through the link suit) the results of interactions, which take place in the
hard suit, to the soft suit. These results (or properties) may be different from
the predicted ones which can a priori be stored in soft suit. This is typical for
performing actions initiated by c-granules.

It should be underlined that any typical active c-granule is a dynamically
changing entity. It means that all components of c-granules (i.e., soft suite,
link suite and hard suite) are usually subject to continuous changes.

4 Adaptive Information System: An Outline

The imprecise nature of a concept is often caused due to the unavailability of
the information about all possible objects of the discourse. An agent at some
point of time t may become able to gauge some part of the reality by accessing
some objects, lying in the real world, and certain properties of them. Thus, at
time t the agent only becomes able to describe the nature of the real world
by a vague/imprecise concept. At some further point of time t′ the agent may
manage to access some more objects relevant to the concerned fragment of the
reality, and learn about their properties. This helps the agent to have a better
description of the vague concept, fitting to the reality. The following quote by Noë
[32] regarding having a vague perception about reality and thereby generating
vague concepts, may be proper here.

Think of a blind person tap-tipping his or her way around a cluttered space,
perceiving that space by touch, not all at once, but through time, by skill-
ful probing and movement. This is or ought to be, our paradigm of what
perceiving is.

Keeping this in mind, in this section our target would be to develop a set-up for
departing from the notion of information system [34,36–38,40,43] to a notion of
Adaptive Information System (AIS). In order to do so, below, we first present
an intuitive background of the proposed formalism.

Let us explain the formal requirements for the notion of adaptive information
system through the example of a blind person’s way of gauging the real world
surrounding her/him, through a process of probing over a passage of time.

(i) Let us assume that at some time point t0 of starting a walk, the person
knows certain things, e.g., where is what, of a local surrounding. So, the
person is aware of a certain set of objects and some of its properties (rele-
vant attributes A). Availability of this knowledge at t0 may be caused due
to some earlier process of probing through some sensory tools, like white
cane, a stick for blind persons. So, there are two kinds of parameters; para-
meters for describing the characteristics of the objects, and the parameters
like time, space, tools, methods, etc., based on which one can access the
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information about the former kind of parameters of the objects. The latter
kind may be called control parameters as change of these parameters may
change the observation about the real attributes of the objects. So, at t0
the person has an information system specifying values of a set of objects
with respect to the attributes A. In fact, the person based on the informa-
tion system may be aware of the usual decisions to be taken, e.g., moving
forward, turning left, in the context of object surrounding her. So, at t0
the person is aware of some usual set of decisions D which may include all
possible functions over control parameters, indicating different actions for
modifying control parameters. These are all part of a knowledge base KB
of the person, and a state of KB at t0 may be denoted as kb0.

(ii) Now at time t1 (> t0), after starting a walk, with the white cane (i.e.,
a control tool) the person guesses presence of a new set of objects U =
{o1, o2, . . . , on} in the surrounding. Through an initial probing she may
guess that object o1 is very close to her position, object o2 is on the left
side of o1, there is no object left to o2, and so on. We may call this sort
of evaluation of properties of the objects as crude evaluation. The sense of
close to a position may have some mental mapping with some exact value,
and in that sense each exact value v may be considered to be surrounded
by a set of inexact expressions having some sense of mapping with v.

(iii) Now based on this crude evaluation of the objects surrounding her, the
person may consider moving towards the left. But while taking a move
towards the left he stumbles over an object that he did not expect. So,
she needs to change the direction of the control parameter, which might
lead to initiate a fresh probing to the left hand side of o2 (with the white
cane) carefully. Thus, with gradual probing the person may come to know
about the properties of the objects in real. So, we can think of that at
time t0, at first, the appearance of new objects to an agent’s crude sensory
level generates some expectation regarding the properties of the objects,
then based on that the agent chooses some mode of probing by fixing some
control parameters. While fixing the control parameters the agent expects
to get some concrete values in order to satisfy her hypothesis about the
properties of the objects. In order to get the real values for the attributes
of the objects, the agent then needs to make some interactions (e.g., actions)
with the reality following the decisions regarding control parameters. Based
on how close the real values are to the expected values of the attributes, an
agent can decide what is to be changed in the control parameters. That is, at
each time point in a sequential manner three kinds of information regarding
the parameters are playing role in obtaining an information system; first
comes the expected values for the attributes, then that expectation pushes
the agent for a specific interaction with the physical reality by fixing set-
up of the control parameters, and finally that process of interaction with
physical reality using agent’s control helps to get the real values for the
attributes.



176 S. Dutta and A. Skowron

4.1 Formal Counterpart

Below we take an attempt to formalize the above idea in order to develop a
framework for adaptive information system.

(1) Let us assume that we have a knowledge base KB, and at time t0 the state
of the knowledge base is denoted as kb0.
• kb0 may contain information about a set of objects with respect to a

set of attributes A, and the information regarding some specification of
some control parameters based on which values for the attributes of A
are obtained. We assume that VA is the set of values for the attributes of
A. It is to be noted that kb0 is subjective to an agent’s perspective.

• kb0 may also contain information regarding how for a set of objects an
initial crude evaluation of some attributes from A works as an guide for
selecting specification for control parameters. This crude evaluation might
be interpreted as a function which assigns a set of crude values Cr(VA)
(⊇ VA) to the objects of concern. The intuitive idea behind introducing
the notion of crude values, without entering into much technical details,
is that these values are some values lying very closely surrounding the
actual set of values VA. One may think of that for each value v ∈ VA,
there is a set of values N(v) containing v, and in some sense similar to v.
The set Cr(VA) then can be considered as ∪v∈VAN(v).

• kb0 may contain information of a time window, preceding t0 and ending at
t0. Fr(kb0) denotes a set of, possibly overlapping, clusters which divides
kb0.

(2) A set of new objects U appeared at time t0. At the time of appearance there
is a crude evaluation function e

Fr(kb0)
TA : U × A �→ Cr(VA). It is to be noted

that for some attributes there might be missing values, and that is why we
assume possibility of a blank-value, denoted as Λ, in VA. In other words, we
have an information system InfA(U) where for each object o ∈ U there is
a row, for each attribute a ∈ A there is a column, and value that an object
o assumes with respect to a is given by e

Fr(kb0)
TA (o, a). It is to be noted that

this initial crude evaluation of objects with respect to the attributes depends
on some clues taken from some fragment of kb0, and thus the function eTA

is suffixed by Fr(kb0).
(3) Based on the crude evaluation of the objects with respect to the attributes,

the agent may consider a set of decisions regarding fixing a set of control
parameters. Let us consider D to be the set of decisions, and VD is the set of
values for D. We consider the possibility of having no-values for some deci-
sions, and hence Λ ∈ VD. Agent’s decision about which control parameter
is to be set with which specification also depends on some previous prece-
dences from kb0. So, we have an approximate-decision function e

Fr(kb0)
d :

InfA(U) �→ V
|D|
D . It is to be mentioned that InfA(U) can be presented as

a set of sequences {〈eFr(kb0)
TA (o, a1), . . . , e

Fr(kb0)
TA (o, an)〉 : ai ∈ A, o ∈ U}.

(4) While making decisions regarding which control parameters are to be fixed
with which specification using the function e

Fr(kb0)
d , the agent expects to
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have some concrete values, improving the crude values, for the attributes of
A. So, we have a prediction function e

Fr(kb0)
p : InfA∪D(U) �→ V

|A|
A . The

set InfA∪D(U) = {〈eFr(kb0)
TA (o, a1), . . . , e

Fr(kb0)
TA (o, an), eFr(kb0)

d (o, d1), . . . ,
e
Fr(kb0)
d (o, dm)〉 : ai ∈ A, dj ∈ D, o ∈ U}, where A = {a1, . . . , an} and

D = {d1, . . . , dm}.
(5) Based on the decisions, taken regarding fixing control parameters, the agent

initiates some interaction with the physical reality at some point of time
t1 (> t0). Outcomes of such interaction is reflected in some part of the
configuration of the physical reality, denoted as CFU (PR). As decisions
are regarding the objects of U , the configuration of the physical reality also
concerns about a set of objects in the physical reality surrounding U . So,
CFU (PR) is the set of all relational structures Rel(Sr(U)) where Sr(U)(⊇
U) represents a neighbourhood of U . Rel(Sr(U)) represents a relational
structure which includes descriptions of some possible states of the objects
of Sr(U). So, the interaction of agent with the physical reality is presented
by a function

−→
Int : V

|D|
D �→ CFU (PR).

(6) As the result of this interaction some actual values are assigned to the
attributes, and these values get transmitted to the agent. So, we have
another interaction function, may be called transmission function

←−
Int :

CFU (PR) �→ ∪AV
|A|
A . In order to explain how this transmission function

works we need to refer to some earlier interaction, which has taken place in
the process of obtaining the initial information system InfA(U) from the
physical reality at time t0 (cf. (1)).
• Let us consider the relational structure Rel(Sr(U)) lying in the physical

reality, surrounding the objects of U . We can represent such a structure
Rel(Sr(U)) as a classification (Sr(U), {sti}li=1, |=) in the sense of Barwise
and Seligman [4], where Sr(U) is the set of objects, {sti}li=1 is a collection
of states, and |= is a binary relation which specifies which object satisfies
which state.

• Now from the initial information table InfA(U) let us consider the clas-
sification given by (U,A × Cr(VA), ekb0TA : U × A �→ Cr(VA)). This is
obtained based on some interaction of the agent with the physical real-
ity; that is we have a flow of information, in the sense of Barwise and
Seligman, from Rel(Sr(U)) to (U,A × Cr(VA), ekb0TA : U × A �→ Cr(VA)).
The direction of information flow indicates presence of an infomorphism
[4] I : (Sr(U), {sti}li=1, |=) � (U,A × Cr(VA), ekb0TA : U × A �→ Cr(VA))
where Î(sti) ∈ A × Cr(VA) for each sti ∈ {sti}li=1, Ǐ(o) = o ∈ Sr(U) for
each o ∈ U , and Ǐ(o) |= sti iff ekb0TA(o,Π1(Î(sti))) = Π2(Î(sti)). It is to be
noted that Π1 and Π2 represent the projection functions on the first and
second components of A × Cr(VA) respectively.

• ←−
Int(Rel(Sr(U))) ∈ V

|A|
A if there is an infomorphism from Rel(Sr(U)) to

(U,A × Cr(VA), ekb0TA : U × A �→ Cr(VA)) (see Fig. 4).
(7) We now have a real evaluation function based on the interaction with phys-

ical reality at time t1, and the function is given by et1r =
←−
Int ◦ −→

Int ◦ e
Fr(kb0)
d

(see Fig. 4).
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Figure 4 presents an illustrative basic cycle of the control of agent ag. In order to
keep simplicity of the presentation we drop the references of kb0 from the above
mentioned functions.

Fig. 4. Basic cycle

First the value of function ep is computed on the basis of the agent’s knowl-
edge base state kb, the row of values for decision attributes, called dec, and
values of conditional attributes from A. The predicted valuation valp of condi-
tional attributes A (i.e., the row of values for each attributes from A) is obtained
by ep. The gray box in Fig. 4 illustrates the process of construction (by oper-
ation

−→
Int) of c-granule g, in particular on the basis of valuation of decision

attributes (control parameters). At next step, using the configuration of the
c-granule g, through another interaction (operation

←−
Int) (real) valuation of con-

ditional attributes valr (which can be different from valp, the predicted ones) is
transmitted to the agent. This box is related to the Vapnik [63] remark:

[. . . ] further study of this [learning] phenomenon requires analysis that
goes beyond pure mathematical models. . .

Next valuations valp, valr are compared by operation Sim and in the result a
degree of similarity between valp and valr is obtained. Using this degree together
with the valuations of conditional attributes valp, valr, valuation of control para-
meters dec, and the control state of knowledge base the function ed helps to
adapt new values for the decision parameters (decision attributes). In the result
we obtain the corrected valuation dec′ of control parameters. The computed enti-
ties are next used to update the contents of knowledge base, and the new state
kb′ is obtained. This cycle illustrates an idea of adaptation of control parameters.
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5 Concluding Remarks

As concluding remarks, we would like to emphasize two basic problems related
to the discussed idea of adaptation.

Functions presented in Fig. 4 such as ep, er, Sim,UPDATE, ed should be
learned by the agent. They can be learned on the basis of partial information
about these functions stored in the knowledge base. For each of these functions,
this information has usually a form of a decision system. Hence, the agent should
have strategies to learn from such partial information the models of the functions
making it possible to compute their values for new situations not yet stored in
the decision systems.

In the case of gray area, the agent should be ready to learn the rules of
interactions allowing her to perceive if the c-granule g has been properly con-
structed, and predict the results of interactions (at least in typical situations)
transmitted by g, and transformed into values of conditional attributes. Though
for simlicity the role of environment is not included in the formal part, in Fig. 4
we see that obtained values depend also on the state of the environment env,
which can change in an unpredictable way. Hence, the conclusions obtained by
using interaction rules may be treated only as hypotheses. The interaction rules
are related to the above mentioned point view of Vapnik [63] about necessity of
the second component of learning consisting of:

The physical side that describes laws which are valid for our specific world,
the world where we have to solve our applied tasks.

Iteration of the basic cycle leads to histories. A partial information about
histories (e.g., in a form of time windows, or sequences of such windows) may
be stored in the knowledge base in the form of decision tables which can be
used for inducing more advanced forms of adaptation of decision valuations.
The new decisions may depend not only on the current values of decisions but
also on the decisions contained in histories, which are treated as objects in these
more advanced decision systems. Thus, modeling process of perception adjoined
with actions, as mentioned in [32], can be realized. One may observe that this
process is related to hierarchical modeling and hierarchical learning and it may be
modeled using networks of information systems analogous to Barwise and Selig-
man’s approach [4]. This process is based on reasoning which is called adaptive
judgment [23,26,27,52–56] which has some roots not only in logic, but also in
psychology and phenomenology [31] (see Fig. 5).

Definitely, the reasoning for adaptation should allow agents to base their
reasoning on experience what is the main concept of phenomenology. Hence,
it is necessary to have good understanding of this concept for implementation
in intelligent systems. This reasoning should allow agents to discover relevant
patterns of behavior of other agents or objects what is the subject of studies in
psychology.

One can observe that this kind of reasoning is crucial for tasks mentioned
above by Vapnik [63], related to the following sentence:
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Fig. 5. (Adaptive) judgment

To be successful, learning machines must use structures on the set of func-
tions that are appropriate for problems of our world.

It is worthwhile mentioning that the considered information systems (deci-
sion systems) should be considered not as closed objects but in the context of
c-granules, these are interacting with the environment. This means that these
systems should be treated as open information systems. This requires to develop
methods for concept approximation based on networks of information systems
changing with time. One of the important changes in such information sys-
tems is that instead of value sets of attributes relational structures over the
value sets together with set of formulas interpreted over such structures are
considered. This makes the process of modeling relevant granules, searching for
relevant computational building blocks (patterns) for the approximation of com-
plex vague concept, challenging. These concepts are used as guards for initiating
actions performed by agents [23,50].

Apart from that, there is an interesting branch of logic, well known as Adap-
tive Logic [5,6], where deductive proof techniques are developed based on chang-
ing the steps of a proof with the adaptation of new information along the line of
the proof. Whether our proposed idea of adaptive information system can serve
as a semantics of such a logical system would be a point of future interest too.
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Abstract. A generalized multi-scale information table is an attribute-
value system in which each object under each attribute is represented
by different scales at different levels of granulations having a granular
information transformation from a finer to a coarser labeled value. In
such table, diverse attributes have different numbers of levels of scales.
In this paper, information granules and optimal scale selections in con-
sistent generalized multi-scale decision tables are studied. The concept of
scale combinations in generalized multi-scale information tables is first
reviewed. Representation of information granules in generalized multi-
scale information tables is then shown. Lower and upper approximations
with reference to different levels of granulations in multi-scale informa-
tion tables are further defined and their properties are presented. Finally,
belief and plausibility functions in the Dempster-Shafer theory of evi-
dence are used to characterize optimal scale selections in consistent gen-
eralized multi-scale decision tables.

Keywords: Granular computing · Information tables · Multi-scale deci-
sion tables · Optimal scale selections · Rough sets

1 Introduction

Human beings often observe objects or deal with data hierarchically structured
at different levels of granulations. Granular computing (GrC), which imitates
human being’s thinking, is an approach for knowledge representation and data
mining. The purpose of GrC is to seek for an approximation scheme which
can effectively solve a complex problem at a certain level of granulation. The
theory of rough sets, proposed by Pawlak [6], is proved to be well performed for
constructing a granulated view of the universe of discourse and for interpreting,
representing, and processing concepts in the granulated universe.

Most applications based on rough set theory belong to the attribute-value
representation model. It is well-known that, in rough-set data analysis, each
object can only take on one value under each attribute in almost all of infor-
mation tables [1,6,11,17,20]. However, in some real-life applications, one has to
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 185–198, 2017.
DOI: 10.1007/978-3-319-60837-2 15



186 Y.-H. Xu et al.

make decision with different levels of granulations. That is, an object may take
on different values under the same attribute, depending on at which scale it is
measured. Therefore, some authors proposed multi-granulation rough set mod-
els to generalize traditional rough set models (see e.g. [5,7–9,18]). These multi-
granulation rough set models are in fact obtained by adding/deleting attributes
in information tables.

In [14], Wu and Leung introduced the notion of multi-scale information
tables, which was called Wu-Leung model in [4], from the perspective of granu-
lar computing, represented the structure of and relationships among information
granules, and analyzed knowledge acquisition in multi-scale decision tables under
different levels of granularity. In a multi-scale information table, each object
under each attribute is represented by different scales at different levels of gran-
ulations having a granular information transformation from a finer to a coarser
labeled value. Wu and Leung [15] further investigated optimal scale selection
for choosing a proper decision table for final decision or classification with an
assumption that all attributes are granulated with the same number of levels of
granulations. Based on the same assumption, Gu et al. [2,3] and She et al. [12]
explored knowledge acquisitions and rule induction in multi-scale decision tables.
Recently, multi-scale information tables have been extended to incomplete and
ordered information tables [13,16]. However, such assumption may bring some
limitations on the applications of multi-scale information tables in real-life world.
To overcome this shortcoming, Li and Hu [4] made a generalization of Wu-Leung
model in which attributes may have different numbers of levels of granulations.
They also developed two methods, called complement model and lattice model,
to obtain optimal scale selection of a generalized multi-scale decision table. We
found that the definition of optimal scale combinations in the lattice model is
not so reasonable. In this paper, we redefine the concept of optimal scale combi-
nations and use belief and plausibility functions in the Dempster-Shafer theory
of evidence to characterize optimal scale combinations in consistent generalized
multi-scale decision tables.

2 Information Systems and Belief Functions

Throughout this paper, for a nonempty set U , the class of all subsets of U
is denoted by P(U). For X ∈ P(U), we denote the complement of X in U
as ∼ X, i.e. ∼ X = U − X = {x ∈ U |x /∈ X}. In this section, we review
some basic notions related to information systems, decision tables, and belief
and plausibility functions in the Dempster-Shafer theory of evidence.

2.1 Information Systems and Decision Tables

The notion of information systems (also called information tables) provides a
convenient tool for the representation of objects in terms of their attribute values
[6,20].
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Definition 1. An information system is a 2-tuple (U,A), where U =
{x1, x2, . . . , xn} is a non-empty, finite set of objects called the universe of dis-
course and A = {a1, a2, . . . , am} is a non-empty, finite set of attributes, such
that a : U → Va for each a ∈ A, i.e. a(x) ∈ Va, x ∈ U , where Va = {a(x)|x ∈ U}
is called the domain of a.

A decision table (sometimes called decision system) is a 2-tuple S = (U,C ∪
{d}) where (U,C) is an information system, and d /∈ C is a special attribute
called the decision. In this case, C is called the conditional attribute set, d is a
mapping d : U → Vd from the universe of discourse U into the value set Vd, we
assume, without any loss of generality, that Vd = {1, 2, . . . , r}. Define

Rd = {(x, y) ∈ U × U |d(x) = d(y)}.

Then we obtain a partition U/Rd = {D1,D2, . . . , Dr} of U into decision classes,
where Dj = {x ∈ U |d(x) = j}, j = 1, 2, . . . , r.

For any B ⊆ C, denote an equivalence relation (also called indiscernibility
relation) RB as

RB =
⋂

a∈B

Ra = {(x, y) ∈ U × U |a(x) = a(y),∀a ∈ B}.

Since RB is an equivalence relation on U , it forms a partition U/RB = {[x]B |x ∈
U} of U , where [x]B denotes the equivalence class determined by x with respect
to (w.r.t.) B, i.e., [x]B = {y ∈ U |(x, y) ∈ RB}.

If RC ⊆ Rd, then the decision table S = (U,C ∪ {d}) is referred to as
consistent, it is said to be inconsistent otherwise.

2.2 Belief Structures and Belief Functions

The Dempster-Shafer theory of evidence, also called the “evidence theory” or
the “belief function theory”, is treated as a promising method of dealing with
uncertainty in intelligence systems. The basic representational structure in the
Dempster-Shafer theory of evidence is a belief structure [10].

Definition 2. Let U be a non-empty finite set, a set function m : P(U) → [0, 1]
is referred to as a basic probability assignment if it satisfies axioms (M1) and
(M2):

(M1) m(∅) = 0, (M2)
∑

A⊆U

m(A) = 1.

The value m(A) represents the degree of belief that a specific element of U
belongs to set A, but not to any particular subset of A. A set A ∈ P(U) with
nonzero basic probability assignment is referred to as a focal element. We denote
by M the family of all focal elements of m. The pair (M,m) is called a belief
structure on U .

Associated with each belief structure, a pair of belief and plausibility func-
tions can be defined [10].
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Definition 3. Let (M,m) be a belief structure on U . A set function Bel :
P(U) → [0, 1] is referred to as a belief function on U if

Bel(X) =
∑

A⊆X

m(A), ∀X ∈ P(U).

A set function Pl : P(U) → [0, 1] is referred to as a plausibility function on U if

Pl(X) =
∑

A∩X �=∅
m(A), ∀X ∈ P(U).

Belief and plausibility functions based on the same belief structure are connected
by the dual property

Pl(X) = 1 − Bel(∼ X), ∀X ∈ P(U).

And furthermore,
Bel(X) ≤ Pl(X), ∀X ∈ P(U).

The following theorem shows that probabilities of lower and upper approxi-
mations are a dual pair of belief and plausibility functions [19].

Theorem 1. Let (U,R, P ) be a probabilistic approximation space, for any X ⊆
U , denote

Bel(X) = P (R(X)), Pl(X) = P (R(X)).

Then Bel and Pl are a dual pair of belief and plausibility functions on U respec-
tively, and the corresponding basic probability assignment is

m(Y ) =
{

P (Y ), if Y ∈ U/R,
0, otherwise.

3 Knowledge Representations in Generalized Multi-scale
Information Tables

In this section, we introduce the concept of multi-scale decision tables from the
perspective of granular computation.

3.1 Multi-scale Information Tables

In [14], Wu and Leung proposed a model, which was called Wu-Leung model
in [4], to extract rules and discover knowledge in multi-scale decision tables.
This model is based on two assumptions, one is that all attributes have the
same number of levels of granulations and the other is that the order indexes
(superscript) of all single-attributes in any subsystem are the same.
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Definition 4. A multi-scale information table is a tuple S = (U,A), where
U = {x1, x2, . . . , xn} is a non-empty, finite set of objects called the universe of
discourse, A = {a1, a2, . . . , am} is a non-empty, finite set of attributes, and each
aj ∈ A, j = 1, 2, . . . ,m, is a multi-scale attribute, i.e., for the same object in
U , attribute aj can take on different values at different scales. Such a multi-
scale information table can be represented as a table (U, {ak

j |k = 1, 2, . . . , I, j =
1, 2, . . . ,m}), where ak

j : U → V k
j is a surjective function and V k

j is the domain
of the k-th scale attribute ak

j . For 1 ≤ k ≤ I −1, there exists a surjective function
gk,k+1
j : V k

j → V k+1
j such that ak+1

j = gk,k+1
j ◦ ak

j , i.e.

ak+1
j (x) = gk,k+1

j (ak
j (x)), x ∈ U,

where gk,k+1
j is called a granular information transformation function.

Definition 5. A multi-scale decision table is a system S = (U,C ∪ {d}) =
(U, {ak

j |k = 1, 2, . . . , I, j = 1, 2, . . . ,m} ∪ {d}), where (U,C) = (U, {ak
j |k =

1, 2, . . . , I, j = 1, 2, . . . ,m}) is a multi-scale information table and d /∈ {ak
j |k =

1, 2, . . . , I, j = 1, 2, . . . ,m}, d : U → Vd, is a special attribute called the decision.

For k ∈ {1, 2, . . . , I}, denote that Ak = {ak
j |j = 1, 2, . . . ,m}, then a multi-

scale information table S = (U,A) can be decomposed into I information tables
Sk = (U,Ak), k = 1, 2, . . . , I. Similarly, a multi-scale decision table S = (U,C ∪
{d}) can be decomposed into I decision subsystems Sk = (U,Ck ∪ {d}), k =
1, 2, . . . , I, with the same decision attribute.

However, the Wu-Leung model which assumed that each attribute is gran-
ulated by granules with the same number of levels may limit its applica-
tions in real-life world. Recently, Li and Hu [4] made a generalization that
attributes may have different numbers of levels of granulations. Formally, a
generalized multi-scale information table S = (U,A) can be described as a
table (U, {ak

j |k = 1, 2, . . . , Ij , j = 1, 2, . . . ,m}), where ak
j : U → V k

j is a
surjective function and V k

j is the domain of the k-th scale attribute ak
j . For

1 ≤ k ≤ Ij − 1, there exists a surjective function gk,k+1
j : V k

j → V k+1
j such

that ak+1
j = gk,k+1

j ◦ ak
j . Similarly, a generalized multi-scale decision table is a

system S = (U,C ∪{d}) = (U, {ak
j |k = 1, 2, . . . , Ij , j = 1, 2, . . . ,m}∪{d}), where

(U,C) = (U, {ak
j |k = 1, 2, . . . , Ij , j = 1, 2, . . . , m}) is a generalized multi-scale

information table and d /∈ {ak
j |k = 1, 2, . . . , I, j = 1, 2, . . . ,m}, d : U → Vd, is a

special attribute called the decision. We see that if I1 = I2 = · · · = Im = I, then
the generalized multi-scale information table and generalized multi-scale deci-
sion table are degenerated to a multi-scale information table and a multi-scale
decision table respectively defined by Wu and Leung in [14].

3.2 Scale Combinations in Generalized Multi-scale Information
Tables

The main method of knowledge acquisition in a multi-scale information table is
to decompose it into several single-scale information systems since a multi-scale
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attribute can become a single-scale one when it is restricted on a special scale
[4,14]. How to obtain an appropriate single-scale information system is an impor-
tant issue in the knowledge representation in a multi-scale information table. In
[4], Li and Hu introduced the concept of scale combination which can be used to
describe a single-scale information system from a multi-scale information table.

Definition 6. Let S = (U,A) = (U, {ak
j |k = 1, 2, . . . , Ij , j = 1, 2, . . . ,m}) be a

generalized multi-scale information table, where attribute aj has Ij levels of gran-
ulations, j = 1, 2, . . . ,m. Attributes a1, a2, . . . , am restricted on their lj-th scale,
j = 1, 2, . . . ,m, respectively, form a single-scale information table SK , where
K = (l1, l2, . . . , lm). The index set (l1, l2, . . . , lm) is called the scale combination
of SK in S. The family of all scale combinations in S, called the scale collection of
S, is denoted as L, i.e. L = {(l1, l2, . . . , lm)|lj ∈ {1, 2, . . . , Ij}, j = 1, 2, . . . ,m}.

For any K = (l1, l2, . . . , lm) ∈ L, let AK = {al1
1 , al2

2 , . . . , alm
m }, then SK =

(U,AK) is a single-scale information table determined by the scale combination
K.

Definition 7. Let S = (U,A) be a generalized multi-scale information table and
L the scale collection of S. For K1 = (l11, l

1
2, . . . , l

1
m),K2 = (l21, l

2
2, . . . , l

2
m) ∈ L,

if l1j ≤ l2j for all j ∈ {1, 2, . . . ,m}, then we say that K1 is weaker than K2, or
K2 is stronger than K1, denoted as K1 � K2. Furthermore, if there exists a
j ∈ {1, 2, . . . ,m} such that l1j < l2j , then K1 is strictly weaker than K2, or K2 is
strictly stronger than K1, denoted as K1 ≺ K2.

Proposition 1. Let S = (U,A) be a generalized multi-scale information table
and L the scale collection of S. For K1 = (l11, l

1
2, . . . , l

1
m),K2 = (l21, l

2
2, . . . , l

2
m) ∈

L, define K1 ∧ K2 = (l11 ∧ l21, l
1
2 ∧ l22, . . . , l

1
m ∧ l2m) and K1 ∨ K2 = (l11 ∨ l21, l

1
2 ∨

l22, . . . , l
1
m ∨ l2m), where l1j ∧ l2j = min{l1j , l

2
j} and l1j ∨ l2j = max{l1j , l

2
j} for all

j ∈ {1, 2, . . . ,m}. Then

K1 � K2 ⇔ K1 ∧ K2 = K1 ⇔ K1 ∨ K2 = K2.

And (L,�,∧,∨) is a bounded lattice with the maximal element (I1, I2, . . . , Im)
and the minimal element (1, 1, . . . , 1).

Just as pointed out by Li and Hu in [4], for a generalized multi-scale informa-
tion table, a scale selection is to determine an appropriate subsystem for decision
making. After all, weaker scale combination means higher cost and stronger scale
combination may reduce attributes discernibility.

3.3 Information Granules and Rough Approximations in Multi-scale
Information Tables

Let S = (U,A) be a generalized multi-scale information table and L the scale
collection of S. For B ⊆ A and K = (l1, l2, . . . , lm) ∈ L, denote the limitation
of K on B as KB (for example, if A = {a1, a2, a3, a4}, B = {a2, a4}, and K =
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(2, 2, 3, 4) ∈ L, then KB = (2, 4)) and let LB = {KB |K ∈ L}. Obviously, LB is
the scale collection of the multi-scale information sub-table (U,B). Define

RBK = {(x, y) ∈ U × U |bl(x) = bl(y),∀bl ∈ BKB}.

Then RBK is an equivalence relation on U determined by attribute subset B
with the scale level K. For x ∈ U , denote [x]BK = {y ∈ U |(x, y) ∈ RBK}, [x]BK

is called the RBK -equivalence class of x. Denote U/RBK = {[x]BK |x ∈ U}.

Definition 8. Let U be a nonempty set, and A1 and A2 two partitions of U .
If for each A1 ∈ A1, there exists A2 ∈ A2 such that A1 ⊆ A2, then we say
that A1 is finer than A2 or A2 is coarser than A1, and is denoted as A1 � A2.
Furthermore, if there exist A1 ∈ A1 and A2 ∈ A2 such that A1 ⊂ A2, then we
say that A1 is strictly finer than A2, and is denoted as A1 ≺ A2.

Proposition 2. Let S = (U,A) be a generalized multi-scale information table
and L the scale collection of S. For B ⊆ A, and K1,K2 ∈ L, we have

(1) K1 � K2 ⇒ RBK1 ⊆ RBK2 ,
(2) K1 � K2 ⇒ [x]BK1 ⊆ [x]BK2 ,∀x ∈ U,
(3) K1 � K2 ⇒ U/RBK1 � U/RBK2 ,
(4) B ⊆ C ⊆ A ⇒ RCK ⊆ RBK .

For B ⊆ A, X ⊆ U , and K ∈ L, the lower and upper approximations of X
w.r.t BK , denoted by RBK (X) and RBK (X) respectively, are defined as follows:

RBK (X) = ∪{[x]BK | [x]BK ⊆ X} = {x ∈ U | [x]BK ⊆ X},

RBK (X) = ∪{[x]BK | [x]BK ∩ X �= ∅} = {x ∈ U | [x]BK ∩ X �= ∅}.

Proposition 3. Let S = (U,A) be a generalized multi-scale information table
and L the scale collection of S. If B ⊆ A, and K,K1,K2 ∈ L, then: ∀X,Y ∈
P(U),

(1) RBK (X) =∼ RBK (∼ X),
(2) RBK (X) =∼ RBK (∼ X),
(3) RBK (∅) = RBK (∅) = ∅,
(4) RBK (U) = RBK (U) = U ,
(5) RBK (X ∩ Y ) = RBK (X) ∩ RBK (Y ),
(6) RBK (X ∪ Y ) = RBK (X) ∪ RBK (Y ),
(7) X ⊆ Y ⇒ RBK (X) ⊆ RBK (Y ),
(8) X ⊆ Y ⇒ RBK (X) ⊆ RBK (Y ),
(9) RBK (X ∪ Y ) ⊇ RBK (X) ∪ RBK (Y ),

(10) RBK (X ∩ Y ) ⊆ RBK (X) ∩ RBK (Y ),
(11) RBK (X) ⊆ X ⊆ RBK (X),
(12) K1 � K2 ⇒ RBK2 (X) ⊆ RBK1 (X),
(13) K1 � K2 ⇒ RBK1 (X) ⊆ RBK2 (X),
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(14) B ⊆ C ⊆ A ⇒ RBK (X) ⊆ RCK (X),
(15) B ⊆ C ⊆ A ⇒ RCK (X) ⊆ RBK (X).

For B ⊆ A, X ⊆ U , and K ∈ L, the accuracy of approximation of X w.r.t.
BK is defined as follows:

α
BK

(X) =
|RBK (X)|
|RBK (X)| ,

where |X| is the cardinality of X, and, for the empty set ∅, we define α
BK

(∅) = 1.
Clearly, if K1,K2 ∈ L and K1 � K2, then

α
BK2

(X) ≤ α
BK1

(X).

By employing Theorem 1 and Proposition 3, we can conclude following:

Proposition 4. Let S = (U,A) be a generalized multi-scale information table
and L the scale collection of S. For B ⊆ A, and K,K1,K2 ∈ L, denote

BelBK (X) = P (RBK (X)) =
|RBK (X)|

|U | , ∀X ∈ P(U),

PlBK (X) = P (RBK (X)) = |RBK (X)|
|U | , ∀X ∈ P(U).

Then BelBK : P(U) → [0, 1] and PlBK : P(U) → [0, 1] are a dual pair of
belief and plausibility functions on U , and the corresponding basic probability
assignment m

BK
: P(U) → [0, 1] is

m
BK

(Y ) =

{
P (Y ) = |Y |

|U | , if Y ∈ U/R
BK

,

0, otherwise.

Moreover, the belief and plausibility functions satisfy the following properties:

(1) K1 � K2 ⇒ BelBK2 (X) ≤ BelBK1 (X) ≤ P (X),
(2) K1 � K2 ⇒ P (X) ≤ PlBK1 (X) ≤ PlBK2 (X),
(3) B ⊆ C ⊆ A ⇒ BelBK (X) ≤ BelCK (X) ≤ P (X) ≤ PlCK (X) ≤ PlBK (X).

4 Optimal Scale Selections in Consistent Generalized
Multi-scale Decision Tables

Knowledge acquisition in the sense of rule induction from a multi-scale decision
table is an important issue. As we know not all decision tables (corresponding
to all scale combinations) are consistent with some requirements to the decision
table under the finest level of scale. So, it is critical to select the optimal level of
details corresponding a suitable decision table before decision rules are produced.
In this section, we study optimal scale selections in consistent generalized multi-
scale decision tables.



Optimal Scale Selections 193

Definition 9. A generalized multi-scale decision table S is referred to as con-
sistent if the decision table under the finest level of scale K0 = (1, 1, . . . , 1),
SK0 = (U, {a1

j |j = 1, 2, . . . ,m} ∪ {d}) = (U,CK0 ∪ {d}), is consistent, and S is
called inconsistent if SK0 is an inconsistent decision table.

For a consistent generalized multi-scale decision table S = (U,C ∪ {d}) =
(U, {ak

j |k = 1, 2, . . . , Ij , j = 1, 2, . . . , m}∪{d}), we have RCK0 ⊆ Rd. For K,H ∈
L with K ≺ H, if SH is a consistent decision table, i.e. R

CH
⊆ Rd, then, by

Proposition 2, it can be observed that R
CK

⊆ R
CH

⊆ Rd. Hence, SK is also a
consistent decision table.

In [4], Li and Hu defined the concept of “optimal scales combination” in
lattice model as follows:

Definition 10 [4]. Let S be a consistent generalized multi-scale decision table
and L the scale collection of S. For K ∈ L, denote Q(K) = {K ′ ∈ L|K � K ′}.
K is called optimal scales combination if SK is consistent and SK′

(if there
exists K ′ ∈ Q(K)) is inconsistent.

Remark 1. If H,K,K ′ ∈ L, K ≺ H ≺ K ′, both of SK and SH are consistent,
and SK′

is inconsistent, then, according to Definition 10, K and H are all “opti-
mal scales combinations”, thus, the concept of an optimal scale combination in
Definition 10 is unreasonable and we make a reasonable definition of an optimal
scale combination as follows:

Definition 11. For a consistent generalized multi-scale decision table S and
K ∈ L, if SK is a consistent decision table and SH is an inconsistent deci-
sion table for all H ∈ L with K ≺ H, then K is said to be an optimal scale
combination of S.

According to Definition 11, we can see that an optimal scale combination of a
consistent multi-scale decision table is one of the best scales for decision making
or classification in the multi-scale decision table. And K is an optimal scale if
and only if K is a maximal scale combination in L such that SK is a consistent
decision table.

Consider Example 3.3 in [4].

Example 1. Table 1 depicts an example of a consistent generalized multi-scale
decision table (U,C ∪{d}), where U = {x1, x2, . . . , x12} and C = {a1, a2, a3, a4},
a1 has two levels of scales while the others have three, where “E”, “G”, “F”,
“B”, “S”, “M”, “L”, “Y”, and “N” stand for, respectively, “Excellent”, “Good”,
“Fair”, “Bad”, “Small”, “Medium”, “Large”, “Yes”, and “No”. Va1

1
= Va1

2
=

{1, 2, 3, 4, 5, 6}, Va1
3

= {1, 2, 3, 4, 5}, Va1
4

= {1, 2, 3, 4}, Va2
1

= Va2
2

= {E,G,F,B},
Va2

3
= Va2

4
= {S,M,L}, and Va3

2
= Va3

3
= Va3

4
= {Y,N}. Granular informa-

tion transformation functions can be seen directly from Table 1, for example,
g1,21 (1) = E, g1,21 (2) = g1,21 (3) = G, g1,21 (4) = F, g1,21 (5) = g1,21 (6) = B, and
g2,34 (S) = Y, g2,34 (M) = g2,34 (L) = N.

Let K1 = (2, 2, 3, 3), it can be calculated that RCK1 ⊆ Rd and RC(2,3,3,3) �⊆
Rd, notice that K = (2, 3, 3, 3) is the unique scale combination in L such that
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Table 1. An example of consistent generalized multi-scale decision table

U a1
1 a2

1 a1
2 a2

2 a3
2 a1

3 a2
3 a3

3 a1
4 a2

4 a3
4 d

x1 1 E 1 E Y 1 S Y 1 S Y 1

x2 2 G 2 E Y 1 S Y 1 S Y 1

x3 3 G 3 G Y 2 S Y 2 S Y 1

x4 4 F 4 F N 3 M N 3 M N 2

x5 5 B 5 F N 4 L N 4 L N 1

x6 6 B 6 B N 5 L N 4 L N 1

x7 4 F 4 F N 1 S Y 1 S Y 2

x8 5 B 5 F N 1 S Y 1 S Y 2

x9 6 B 6 B N 2 S Y 2 S Y 1

x10 4 F 4 F N 3 M N 1 S Y 2

x11 5 B 5 F N 4 L N 1 S Y 1

x12 6 B 6 B N 5 L N 2 S Y 1

K1 ≺ K, so, by Definition 11, K1 = (2, 2, 3, 3) is an optimal scale combination
of S. Similarly, it can be checked that K2 = (1, 3, 3, 3, ),K3 = (2, 3, 1, 3), and
K4 = (2, 3, 3, 1) are also optimal scale combinations of S.

Let K4 = (2, 2, 2, 2), according to Definition 10, it can be seen that K4 is an
optimal scale combination of S. Since K4 ≺ K1 = (2, 2, 3, 3) and RCK1 ⊆ Rd,
K4 is not an optimal scale combination in the sense of Definition 11. Hence, we
see that Definition 10 is unreasonable.

The following two theorems show that belief and plausibility functions of
Dempster-Shafer theory of evidence can be used to determine an optimal scale
combination.

Theorem 2. Let S = (U,C ∪ {d}) = (U, {ak
j |k = 1, 2, . . . , Ij , j = 1, 2, . . . ,m} ∪

{d}) be a consistent generalized multi-scale decision table and L the scale col-
lection of S. Then, for K = (k1, k2, . . . , km) ∈ L, the following statements are
equivalent:

(1) SK = (U, {a
kj

j |j = 1, 2, . . . ,m} ∪ {d}) is a consistent decision table, i.e.,
RCK ⊆ Rd,

(2)
r∑

j=1

BelCK (Dj) = 1,

(3)
r∑

j=1

PlCK (Dj) = 1.

Proof. “(1) ⇒ (2)” For any j ∈ {1, 2, . . . , r}, denote

JCK (Dj) =
{
[y]CK ∈ U/RCK |[y]CK ⊆ Dj

}
.
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Since RCK ⊆ Rd, we see that JCK (Dj) forms a partition of Dj . Then we have

BelCK (Dj) =
∑{m

CK
(X)|X ⊆ Dj}

=
∑{m

CK
([x]CK )|[x]CK ∈ U/RCK , [x]CK ⊆ Dj}

=
∑{m

CK
([x]CK )|[x]CK ∈ JCK (Dj)}

=
∑{P ([x]CK )|[x]CK ∈ JCK (Dj)} = P (Dj).

It follows that
r∑

j=1

BelCK (Dj) =
r∑

j=1

P (Dj) = 1.

“(2) ⇒ (1)” Assume that
r∑

j=1

BelCK (Dj) = 1. By Proposition 4, we observe

that

BelCK (Dj) ≤ P (Dj) =
|Dj |
|U | , ∀j ∈ {1, 2, . . . , r}.

Since 1 =
r∑

j=1

BelCK (Dj) ≤
r∑

j=1

P (Dj) = 1, by Proposition 4 again, we can

conclude that
BelCK (Dj) = P (Dj), ∀j ∈ {1, 2, . . . , r}.

From which we can see that {[x]CK |[x]CK ∈ U/RCK , [x]CK ⊆ Dj} forms a
partition of Dj . Since {Dj |j ∈ {1, 2, . . . , r}} is a partition of U , we conclude
that {[x]CK |[x]CK ⊆ Dj , j ∈ {1, 2, . . . , r}} forms a partition of U . Hence, for any
x ∈ U , there exists j ∈ {1, 2, . . . , r} such that [x]CK ⊆ Dj . Evidently,

x ∈ [x]CK ⊆ Dj ⇐⇒ [x]d = Dj .

Thus, [x]CK ⊆ [x]d for all x ∈ U , that is, RCK ⊆ Rd.
“(1) ⇒ (3)” Since RCK ⊆ Rd, we have [x]CK ⊆ [x]d for all x ∈ U . Define

JCK (Dj) = {[x]CK ∈ U/RCK |[x]CK ⊆ Dj}, j ∈ {1, 2, . . . , r}.

It is easy to see from RCK ⊆ Rd that JCK (Dj) forms a partition of Dj , and
moreover,

[x]CK ∩ Dj �= ∅ ⇐⇒ [x]CK ⊆ Dj , ∀x ∈ U.

Hence

PlCK (Dj) =
∑{m

CK
(Y )|Y ∩ Dj �= ∅}

=
∑{m

CK
([x]CK )|[x]CK ∈ U/RCK , [x]CK ∩ Dj �= ∅}

=
∑{m

CK
([x]CK )|[x]CK ∈ U/RCK , [x]CK ⊆ Dj}

=
∑{P ([x]CK )|[x]CK ∈ JCK (Dj)}

= P (Dj), ∀j ∈ {1, 2, . . . , r}.
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It follows that
r∑

j=1

PlCK (Dj) =
r∑

j=1

P (Dj) = 1.

“(3) ⇒ (1)” Assume that
r∑

j=1

PlCK (Dj) = 1. Since S is consistent, by

Proposition 4, we have 1 =
r∑

j=1

PlCK0 (Dj) ≥
r∑

j=1

PlCK (Dj) = 1. Then, by Propo-

sition 4 again, we have PlCK (Dj) = PlCK0 (Dj) = P (Dj) for all j ∈ {1, 2, . . . , r},
that is,

P (RCK (Dj)) = P (RCK0 (Dj)) = P (Dj),∀j ∈ {1, 2, . . . , r}.

By Proposition 3, we observe that RCK (Dj) ⊇ RCK0 (Dj) ⊇ Dj , then we con-
clude that RCK (Dj) = RCK0 (Dj) = Dj for all j ∈ {1, 2, . . . , r}. Thus

RCK ([x]d) = RCK0 ([x]d) = [x]d, ∀x ∈ U.

Given x ∈ U and for any y ∈ [x]CK , notice that [y]CK = [x]CK , then [y]CK ∩
[x]d = [x]CK ∩ [x]d �= ∅, that is, y ∈ RCK ([x]d) = [x]d, and in turn, [x]CK ⊆ [x]d.
It follows that RCK ⊆ Rd.

According to Theorem 2, we can conclude following:

Theorem 3. Let S = (U,C ∪ {d}) = (U, {ak
j |k = 1, 2, . . . , Ij , j = 1, 2, . . . ,m} ∪

{d}) be a consistent generalized multi-scale decision table and L the scale collec-
tion of S. Then, for K ∈ L, the following statements are equivalent:

(1) K is an optimal scale combination of S,

(2)
r∑

j=1

BelCK (Dj) = 1. And for any H ∈ L with K ≺ H,

r∑

j=1

BelCH (Dj) < 1.

(3)
r∑

j=1

PlCK (Dj) = 1. And for any H ∈ L with K ≺ H,

r∑

j=1

PlCH (Dj) > 1.

Example 2. (Continued from Example 1). For the consistent multi-scale decision
table S = (U,C ∪ {d}) of Example 1, let K1 = (2, 2, 3, 3), it can be calculated
that

BelCK1 (D1) + BelCK1 (D2) = 1,
PlCK1 (D1) + PlCK1 (D2) = 1,

and, for K = (2, 3, 3, 3), it can be conclude that
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BelCK (D1) + BelCK (D2) = 10/12 < 1,
PlCK (D1) + PlCK (D2) = 14/12 > 1.

Notice that K = (2, 3, 3, 3) is the unique scale combination in L such that K1 ≺
K, so, according to Theorem 3, K1 = (2, 2, 3, 3) is an optimal scale combination
of S. Similarly, it can be checked that K2 = (1, 3, 3, 3, ),K3 = (2, 3, 1, 3), and
K4 = (2, 3, 3, 1) are also optimal scale combinations of S.

5 Conclusion

Optimal scale selection is a main issue in the study of knowledge representation
and knowledge discovery in multi-scale decision tables. In [4], Li and Hu studied
optimal scale selection for multi-scale decision tables with an assumption that
diverse attributes may have different numbers of levels of granulations. We found
that the definition of “optimal scales combinations” of the lattice model in [4] is
unreasonable. We have redefined in this paper the concept of optimal scale com-
binations in generalized multi-scale decision tables. We have also used belief and
plausibility functions in the Dempster-Shafer theory of evidence to characterize
optimal scale combinations in consistent generalized multi-scale decision tables.
In the further study, on one hand, optimal scale selections in various situations
for inconsistent generalized multi-scale decision tables are interesting issues. On
the other hand, since scale combinations in generalized multi-scale decision tables
are very high, study on algorithms to select optimal scale combinations is also
an important topics.
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University of Warsaw, Warsaw, Poland
j.skirzynski@student.uw.edu.pl

Abstract. Granular neural networks are neural networks which operate
at the level of information granules. Granules, in turn, can be seen as
collections of objects that exhibit similar structure or possess similar
functionality. In this work we try to provide a comprehensive look at the
problem of how granular, feed-forward neural networks conduct their
computations, i.e. what is the interpretation for the connections and the
neurons of such networks. The paper orbits around the assumption that
the networks come from the superposition of their certain subnetworks
which emulate membership functions for the granules. The superposition
represents an aggregation of a certain number of granules into another
one. This interpretation comes from a general granular tree-model that
is constructed prior to the network and which describes a particular
problem in a semantically understandable form.

Keywords: Framework · Neural networks · Granules · Granular com-
puting · Granular neural networks · Information aggregation

1 Introduction

According to granular computing conceptualization (read more in [1,13,15,20])
all the information taking part in a reasoning process is interpreted, and then
processed in terms of information granules. Granules can be seen as possibly non-
disjoint collections of objects exhibiting similar structure or behavior, i.e. objects
that are close to each other with regards to some measure of similarity. To this
date, the most common formal models include intervals, fuzzy sets, rough sets,
fuzzy-rough sets, shadowed sets and probability calculus [5,6,8,10–12,16,19].

In this work we are concerned with the interpretation for feed-forward,
numerical granular neural networks (GNNs) and the description of processes
occurring in the course of their signal propagation. A step-by-step construction
of a GNN has not been fully covered yet, though it should be noted Pedrycz and
Vukovich [16] or Song and Pedrycz [17] made an attempt to sketch an overall
(yet sometimes vague) model. The approach presented herein can be put briefly
the following way: A GNN is the lower level of creation of a granular model, a
level of implementation. The higher level, depicted as a tree with possibly many
roots, is the level of granules which we know in what structure should be aggre-
gated to derive to the goal concept and this constitutes a part of our domain
c© Springer International Publishing AG 2017
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knowledge. Besides the initial granules constructed from the data though, we do
not know the exact form of other aggregated granules from this tree. A granular
neural network then, is a network consisting of subnetworks each of which learns
to emulate a function describing each of such granules, i.e. it models how the
membership for one of the tree’s nodes is computed from the memberships of its
sons (for membership value see section below). Ideas similar to those elaborated
in this work can be found in [18]. More details regarding hierarchical classifiers
are discussed in [2,9].

The paper is constructed as follows. The Sect. 2 lays some basic assump-
tions regarding the structure of a GNN. The Sect. 3 introduces common-sense
framework for granular aggregation and sketches an example. It is followed by a
discussion on framework’s strengths and limitations. The work ends with a short
summary.

2 GNN Axioms

This section is devoted to introduction of certain propositions regarding GNNs
in general. To understand them in full, it should be firstly noted that each of
the formalisms for describing information granules presents an entity of a set-
alike structure (e.g. each can contain elements). Additionally, the granules are
all understood in terms of some functions that can be used as their equivalent
definitions. In case of a standard, crisp set it is obviously a characteristic function
which describes it and for an information granule it is a membership function.

Remark 1. Further in the text we will use the word membership function (value)
as a general name for a function (a value) describing any information granule,
whether it is a rough set, a probabilistic set, an interval, etc.

(1) Axiom of input neurons. All the input neurons represent granules created
from the original data that was in our possession, and the input values for a
GNN are the membership values of those data points to every of the granules.

(2) Axiom of subnetworks’ homogeneity. All the neurons of a granular
neural network are used to emulate granules of the same type (same formal
model).

(3) Axiom of available data. For each of the raw data points we start from
(input), we are able to determine the correct membership value of the top-
most aggregation (output) and a value for an arbitrary, non-ultimate aggre-
gation.

By (1) we actually equate the input level of the network with the leaves level
of the granulation tree. In (2), if a GNN was constructed to process information
encoded, say, in terms of fuzzy sets, then each subnetwork used in the creation of
a GNN also computes the membership function of a fuzzy set. In particular, this
assumption guarantees that the network does not generate granules of higher
types such that contain other granules in them etc. [14]. By acknowledging (3)
we make sure that the data we possess enable us to train a subnetwork for the
function in each node of the granules’ aggregation tree.
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3 GNN as a Robust Tool for Information Aggregation

In this section we present the framework for analysis of GNNs in detail. The
main idea orbits around the notion that given some task and universe of our
raw data X we are able to represent the problem in a granular form by forming
some kind of a granulation tree which is a semantic model of the issue at hand
(see Fig. 1). By Axiom (3), we can specify membership values for each of the
nodes of this tree. In general, finding these numbers is deeply an unobvious task
which has been under the scope of many research endeavors in the recent years,
e.g. [3,7]. A solution which has been often proposed is to transform linguistic
descriptions provided by experts into their numerical counterpart. A different
way could be to extrapolate the values for the granules with the help of the
data we start from (e.g. with a weighted mean, etc.). Given the abstract model
of the problem and a sample of input-output pairs we translate it to a more
down-to-earth specification, namely a neural network which performs the task
in question robustly. This network is a GNN.

Fig. 1. A tree structure for granular aggregation. Lines connecting the nodes repre-
sent the fact that from a given set of granules, another granule emerges through the
aggregation operator.

First, consider Fig. 1 which presents a hierarchical model with a tree structure
for information granules aggregation. Here, we treat a granule as equivalent
to its membership function. Ag (written on top of the nodes) are unknown
aggregation operators (possibly different for each node) which transform a given
set of granules into another granule keeping the formal model of its components.
µGi

’s (written on top of the input nodes) are membership functions for known
granules Gi (the ones we create from the data). The tree itself is generated
using rich domain knowledge which enables us to state exactly which notions
of higher order that are represented by the granules we need, and what those
notions consist of, i.e. which granules are used as arguments to the aggregation
operator.
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3.1 Overall Framework

Now we can present the framework for a GNN interpretation.
Using the knowledge we possess, we first build the granulation tree. Then, we

compose granules G1, . . . , Gl that somehow describe the elements in X. Using
axioms (1) and (3) we know that for any of their aggregation and all the sub-
sequent aggregations we are able to provide some number of input-output pairs.
Let’s present our partial data regarding the granules in a table form (Table 1).

Definition 1. We will call an aggregation n-composite if it has a n−1-composite
aggregation as one of its arguments. A 1-composite aggregation is just Ag(. . .).

Table 1. Table presenting membership values (a, b, c, . . . , z labeled by pairs of natural
numbers) for all the granules of the granulation tree. We assume there are l leaves, k
1-composite aggregations, ..., p the highest level-composite aggregations (roots of the
granulation tree). Each element in the table, besides the first column, is a membership
value to a granule given as a column’s label. Each Ag operator is potentially different.

X G1 . . . Gl Ag(. . .) . . . Ag(. . .) Ag(Ag(. . .), . . . ,Ag(. . .)) . . . Ag(. . . (Ag(. . .), . . . ,Ag(. . .)) . . .)

x1 a11 . . . al1 b11 . . . bk1 c11 zp1

x2 a12 . . . al2 b12 . . . bk2 c12 zp2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xn a1n . . . aln b1n . . . bkn c1n zpn

This information is a starting point for building a GNN. We begin with
training neural networks to recognize 1-composite aggregations first, based on
the input-output pairs that are somewhere to be found within the table (G1

to Gl columns). Then we do the same for 2-composite aggregations, etc. until
we reach the ultimate aggregations for which we also train neural networks.
After this process we have many networks each of which approximates one of
the nodes of the granulation tree. Obviously, each has just one output neuron.
We now superpose these networks preserving the structure of the tree, i.e. by
“substituting” each tree’s node with a trained network and connecting its output
neuron to a correct input neuron of the higher aggregation network with an
arbitrary weight. The resulting ANN is a GNN. It is later possible to tune it
a bit if we have some examples for training left, but even without doing so we
already created a granular neural network. Recapitulation of the procedure is
presented in Procedure 1 box.

3.2 A Schematic Example

Let’s consider an example of a GNN construction in the scheme we developed
above. Suppose our problem concerns music genre recognition or equivalently,
song classification. Assume the training set consists of songs represented as time
series and the main task is to label such an element of a larger information system
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Procedure 1. Steps involved in the advent of a granular neural network
1. Based on the problem in question create a granulation tree which represents how

to tackle the problem starting from the elements in the universe X.
2. Create basic, leaves granules from the data and set them as input neurons to the

network.
3. Create input-output pairs for each of the aggregation nodes of the tree created in

1.
4. Using data points from 3, train neural subnetworks on each of the aggregations

represented by nodes of the tree in 1.
5. Superpose resulting subnetworks into a bigger network.
6. (Optionally) refine all the connection weights, or at least the ones which were newly

formed, with new examples.

(with possibly thousands of attributes extracted from the series or representing
the series itself) with one of the two classes: rock or classic.

First, equipped with a rich, musical knowledge and using help of various
sound producers, record producers, musicians, etc., we may construct one possi-
ble way of semantic representation of the problem at hand (see Fig. 2). Here, the
top-most aggregation is a granule denoting the genre itself, and as our decision
is binary we might assume lower membership values indicate rock, and higher,
classical music. It is aggregated from granules standing for the tempo, intensity,
pleasantness, harmony and structurality, all fairly difficult to describe with the
means of the time series attributes’ only. Hence, they are decomposed to simpler
entities, with all of those also requiring decomposition. Finally, we get the leaves
level of the tree with the granules for numeric amount of particular instruments
in certain time intervals, e.g. every 1

10 -th of the musical piece. We assume these
non-composite granules are of a certain form, e.g. of triangular fuzzy sets form
with parameters extracted from the available data or chosen arbitrarily. The
construction of a proper membership function is another interesting issue, how-
ever, it falls out of the scope of this paper to discuss it thoroughly. Assuming
it was manageable to construct those functions, we set the input neurons of our
network to receive numerical data from their outputs on the raw time series
representing the songs.

Table 2. Table presenting normalized membership values for all the granules of the
granulation tree in Fig. 2.

Song Instrument 1 . . . Instrument N Drums, 1
10

-th . . . Dynamics Genre

s1 0.3 . . . 0 0.44 . . . 0.9 . . . 0.38

s2 0 . . . 1 0.05 . . . 0.02 . . . 0.93

. . . . . . . . . . . . . . . . . . . . . . . . . . .

sn 0.78 . . . 0.5 0.75 . . . 0.2 . . . 0.04
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Fig. 2. A tree structure for song’s genre recognition. Fractions appearing in some of
the nodes denote parts of the song in which we measure a given quantity, e.g. 2/10
means we take time interval that covers the second tenth of the whole recording. There
are N instruments. Lines connecting the nodes represent the fact that from a given set
of granules, another granule emerges through the aggregation operator.

Now, we ask the experts for their assistance once more and request them
to (qualitatively) describe the amount of wind instruments, string instruments,
electronics, etc., in a song, (qualitatively) measure its harmony, structurality,
continuity, calmful tonation, pleasantness and so on until we get all the data
points in our possession labeled. This gives us a linguistic characterization of
the granules that shall be now translated to numerical values. This, again, is a
tremendous leap to make which nevertheless does not concern the matter of this
paper.

After the process of decoding word instructions to quantitative data we might
obtain a table as presented in Table 2. The next step is to take a 1-composite
granule, e.g. the amount of string instruments in the first 1

10 -th of the song,
and with the help of the data in Table 2 try to construct a neural network which
could learn to emulate the aggregation operator. In this particular case we would
look for a network which has 10N input nodes, for all the instruments, and one
output node. For the harmony granule we would take two inputs (equanim-
ity, structurality) and one output, etc. After a successfull construction, we take
another k-composite aggregations until we “ticked” them all.

Finally, we substitute the nodes of the granulation tree with the subnetworks
and superpose them by connecting their outputs accordingly. At the very end,
we can test the working of such a GNN with new examples and tune some
connection weights if necessary.
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4 Discussion

The proposition put forth by this paper is that the new models of numerical
granular neural networks should try to follow the steps recapitulated in Proce-
dure 1, as the outcome of this process is a network that is intelligible because
of its inspiration in higher level analysis of the problem. Thanks to that, GNNs
lose some of their black-box character, in a sense that it becomes apparent what
happens to the granules at the input, how they are transformed, etc. A GNN
differs from standard ANNs in that it was created as an implementation of a
model from non-numerical level. The input neurons represent the granules that
are leaves of the granulation tree but later these are whole parts of the network
that act similarly. Connections do not have any granular interpretation.

One major drawback of the approach we employed is that there is no place
for granules of higher order in that understanding. It still poses a great issue of
how to implement higher-order granules into the numerical level (for interval-
valued fuzzy sets cf. [4]), which is certainly a huge downside in the case of
neural networks. Nevertheless, in GNNs it seems like a natural process for an
aggregation operator to return a granule that is more general not only in its
interpretation but also in structure. Hence, we could potentially gain a more
beneficial insight into the problem if we decided to dismiss Axiom (2).

5 Summary

Throughout this paper we tried to lay foundations for building a framework for
analysis of granular feed-forward neural networks. The main idea that was pre-
sented in the paper stated that a GNN is a numerical level made from a granular
model of the problem which had a form of a tree. Conforming to three axioms the
network imitated the tree using subnetworks for training each of its nodes.

On the other hand, an approach which was not discussed in this work is the
topic of a GNN and granules of higher types, like interval fuzzy sets, etc. There
is still no acknowledged way in which so-called type-n granules could be imple-
mented in an ANN which served as the main reason for omitting deliberations on
this issue. For later work however, a careful research on this problem may provide
valuable insights into the field of granular computing in general. As the presented
scheme is also very general it may be beneficial to specify the construction of the
GNN’s subnetworks in more detail, tackle the problem of developing quantitative
data for training them, and use the framework in a practical application.
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Abstract. On the one hand, Petri nets are a powerful graphical and for-
mal tool to model real-life dynamic systems. Special attention in research
and applications is focused on the so-called high-level Petri nets enabling
us to obtain much more succinct and expressive descriptions than can
be obtained by means of low-level Petri nets. On the other hand, ontolo-
gies specify the concepts and relationships among them comprising the
vocabulary from real-life areas. In the paper, we propose a new model
of high-level Petri nets, called Petri nets over ontological graphs. In the
new model, we try to combine the graphic power of Petri nets with the
semantic power of ontologies. The new type of Petri nets is used by us
to model, at the abstract level, some tasks performed by robots.

Keywords: Petri nets · Ontological graphs · Semantics · Behaviour of
robots

1 Introduction

Research on the development of autonomous robots is one of the fastest-growing
scientific disciplines. In case of a mobile robot, one of the basic functions is mov-
ing in relation to its surroundings. The mobile autonomous robot performs its
tasks in a specific period of time, without human intervention. One of the basic
abilities of the robot is the capacity to independently create and execute action
plans on the basis of observation of the environment. A navigation system is
a complex control system with the feedback from the environment. Appropri-
ate models are needed in terms of object recognition and control. The control
algorithms are based on data recorded in a way that allows the robot to detect
an association or aggregation between the objects. For this purpose, domain
ontologies seem to be the most suitable choice (cf. [3]). The domain knowledge
is stored in ontologies efficiently and unambiguously. The task of the robot is to
recognize, in the environment, objects that can be named and next to find asso-
ciations of these objects with other objects in ontologies. It gives information

c© Springer International Publishing AG 2017
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what the abstraction level of recognized objects is. For example, the robot can
recognize that the object is a specific plant or, in case of insufficient information,
that the object is a plant, but it is unknown which one. Identifying the objects
and their abstraction levels can be helpful to select further actions.

As a tool for modeling the robot tasks, we have selected Petri nets. Petri
nets were developed by Petri [11] as a graphical and formal (mathematical)
tool, among others, for describing information processing systems and mod-
elling dynamic systems with distinguished states and transitions between states.
In general, a Petri net structure has two types of nodes, places and transitions,
and arcs connecting them. It is a bipartite graph, i.e., arcs cannot directly con-
nect nodes of the same type. Two types of nodes in the Petri net structure are
differentiated when it is drawn. The convention is to use circles to represent
places and rectangles to represent transitions. There are many different classes
of Petri nets extending the basic definition. Special attention in research and
applications is focused on the so-called high-level Petri nets [5]. They enable us
to obtain much more succinct and expressive descriptions than can be obtained
by means of low-level Petri nets (e.g., place-transition nets [12]). The step from
low-level nets to high-level nets is often compared to the step from assembly
languages to modern high-level programming languages. In low-level nets, there
is only one kind of tokens. In high-level nets, each token can carry complex infor-
mation. In the paper, we propose a new model of high-level Petri nets, called
Petri nets over ontological graphs. In the new model, we try to combine the
graphic power of Petri nets with the semantic power of ontologies. Each token
in Petri nets over ontological graphs corresponds to one concept from ontolo-
gies describing objects present in the modeled domain. The information carried
by the token is much closer to the human perception. Therefore, analysis of
such models is easier. Moreover, it enables us to define the conditions for firing
transitions in a coherent way on the basis of linguistic semantics of tokens.

To our knowledge, none of the Petri net models use concepts as tokens and
perform actions on the basis of linguistic semantics of tokens directly derived
from ontologies. Some combinations of Petri nets and ontologies were earlier con-
sidered. In [13], Fuzzy semantic Petri nets were proposed as a subclass of colored
Petri nets proposed by Jensen [4]. Fuzziness was introduced by equipping tokens
with weights. However, concepts included in ontologies are not directly incorpo-
rated into tokens. Moreover, some high-level Petri nets with tokens belonging to
the domains defined as abstract data types were considered in [2].

2 Petri Nets over Ontological Graphs

In this section, we recall basic notions concerning ontological graphs and seman-
tic relations. Next, we define our new model called Petri nets over ontological
graphs. Finally, we give a simple example explaining an idea of using Petri nets
over ontological graphs in modeling some tasks performed by robots.

An ontology specifies the concepts and relationships among them compris-
ing the vocabulary from a given area (cf. [9]). Formally, the ontology can be
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represented by means of graph structures (cf. [10]). In our approach, the graph
representing the ontology O is called the ontological graph. Let O be a given
ontology. An ontological graph is defined as

OG = (C, E,R, ρ),

where:

– C is the nonempty, finite set of nodes representing concepts in the ontology
O,

– E ⊆ C × C is the finite set of edges representing semantic relations between
concepts from C,

– R is the family of semantic descriptions (in a natural language) of types of
relations (represented by edges) between concepts,

– ρ : E → R is the function assigning a semantic description of the relation to
each edge.

Let OG = (C, E,R, ρ) be an ontological graph. We will use the following
notation:

– [ci, cj ] - a simple path in OG between ci, cj ∈ C,
– E([ci, cj ]) - a set of edges from E belonging to the simple path [ci, cj ],
– P(OG) - a set of all simple paths in OG.

In general, ontology can model various semantic relations between concepts.
A comprehensive review of the literature concerning semantic relations is given
in [8]. In the presented approach, our attention is focused on two fundamental
paradigmatic semantic relations (or paradigmatic relations shortly) used in lin-
guistics (cf. [6]), namely, synonymy and hyponymy. For simplicity, we will use
the following labels for these paradigmatic relations:

– R∼ - synonymy,
– R� - hyponymy.

Let OG = (C, E,R, ρ) be an ontological graph. We are interested in three
relations that can hold between two concepts c, c′ ∈ C:

– An exact meaning relation

EMR = {(c, c′) ∈ C × C : c = c′}

– A synonymous meaning relation

SMR = {(c, c′) ∈ C × C : (c, c′) ∈ E and ρ((c, c′)) = R∼}.

– A generalization relation

GR = {(c, c′) ∈ C × C : ∃
[c,c′]∈P(OGa)

∀
e∈E([c,c′])

ρ(e) ∈ {R∼, R�}}.
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It is worth noting that the relation GR is reflexive, i.e., each concept c ∈ C is
generalized by itself.

In description logics used in ontological modelling, there are two distinguished
concepts with useful applications (cf. [1]), namely:

– � - the top concept, i.e., a concept with every individual as an instance.
– ⊥ - the bottom concept, i.e., an empty concept with no individuals as

instances.

The top concept is a concept that generalizes each concept present in a given
ontology. The bottom concept will be called further, the empty concept.

We can build some formulas over the set of concepts C from the ontologi-
cal graph OG = (C, E,R, ρ). In the presented approach, we will use formulas
collected in Table 1. The semantics of a given formula φ built over the set of
concepts C from the ontological graph OG, will be denoted by ||φ||OG.

Table 1. Formulas built over the set of concepts from the ontological graph

Syntax Semantics Description

c c ∈ C An individual concept c

c= {c} A set containing just an individual
concept c

c� {c′ ∈ C : (c′, c) ∈ EMR or (c′, c) ∈
SMR}

A set containing an individual
concept c and all of the synonyms
of c

c≤ {c′ ∈ C : c′ �= ⊥ and (c′, c) ∈ GR} A set containing all of the concepts
generalized by c (including c but
excluding ⊥)

Definition 1. A marked Petri net over ontological graphs (PNOG) is a tuple

PNOG = (Pl, Tr, {OGp}p∈Pl, Arcin, Arcout, Formin, Formout,Mark0),

where:

– Pl is the finite set of places,
– Tr is the finite set of transitions,
– {OG}p∈Pl is the family of ontological graphs associated with places,
– Arcin ⊆ Pl×Tr is the set of input arcs (i.e., arcs from places to transitions),
– Arcout ⊆ Tr × Pl is the set of output arcs (i.e., arcs from transitions to

places),
– Formin is the input arc formula function mapping each input arc (p, t) to a

formula Formin(p, t), such that:

∀
(p,t)∈Arcin

||Formin(p, t)||OGp
⊆ Cp,
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– Formout is the output arc formula function mapping each output arc (t, p) to
a formula Formout(t, p), such that:

∀
(t,p)∈Arcout

||Formout(t, p)||OGp
∈ Cp,

– Mark0 is the initial marking function mapping each place p to {⊥} ∪ Cp,

and Cp is the set of concepts from the graph OGp.

The initial marking function Mark0 assigns concepts to places. The dynam-
ics of a marked Petri net over ontological graphs (PNOG) is given by firing
enabled transitions causing the movement of concepts through the net. A map-
ping Mark : Pl → {⊥} ∪ Cp assigning concepts to places is called a marking of
PNOG. A transition t ∈ Tr is said to be enabled if and only if

1. Mark(p) ∈ ||Formin(p, t)||OGp
for all p ∈ Pl such that (p, t) ∈ Arcin,

2. Mark(p) = ⊥ for all p ∈ Pl such that (t, p) ∈ Arcout.

If, for t ∈ Tr, there is no p ∈ Pl such that (p, t) ∈ Arcin, then only condition (2)
must be satisfied. When a transition t ∈ Tr is enabled, we say that it can fire.
After firing an enabled transition t, we obtain a new marking Mark′ of PNOG :

– Mark′(p) = ⊥ for all p ∈ Pl such that (p, t) ∈ Arcin,
– Mark′(p) = ||Formout(t, p)||OGp

for all p ∈ Pl such that (t, p) ∈ Arcout.
– Mark′(p) = Mark(p), otherwise.

Now, we will show a simple example explaining an idea of using Petri nets over
ontological graphs to model some tasks performed by the robot. Let us consider
an agricultural robot intended to perform two basic actions. After recognizing a
plant in its environment, the robot should either pull it out if it is a weed or water
it if it is a vegetable. A part of the ontological graph OGoperations describing
operations that can be made by an agricultural robot is shown in Fig. 1(a). A
part of the ontological graph OGplants describing plants is shown in Fig. 1(b). It
is worth noting that real-life ontological graphs are much more complex. Both
ontological graphs are depicted as a hierarchy of classes in Protege. Protege [7] is
a free, open source, platform-independent environment for creating and editing
ontologies and knowledge bases. The top concept � is said to be Thing in the
OWL ontologies created in Protege.

A marked Petri net over ontological graphs (PNOG)

PNOG = (Pl, Tr, {OGp}p∈Pl, Arcin, Arcout, Formin, Formout,Mark0),

representing actions taken by an agricultural robot is shown in Fig. 2. For the
net PNOG, we have:

– Pl = {pl1, pl2, pl3},
– Tr = {tr1, tr2, tr3, tr4, tr5, tr6, tr7, tr8, tr9, tr10},
– Mark0(pl1) = ⊥, Mark0(pl2) = Searching, Mark0(pl3) = ⊥.
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Fig. 1. Hierarchies of classes in Protege for: (a) a part of the ontological graph describ-
ing operations that can be made by an agricultural robot, (b) a part of the ontological
graph describing plants

Fig. 2. A marked Petri net representing actions taken in one of tasks of an agricultural
robot (an initial state)

An ontological graph associated with place pl1 is shown in Fig. 1(b). An
ontological graph associated with places pl2 and pl3 is shown in Fig. 1(a). The
set Arcin of input arcs, the set Arcout of output arcs, the values of the input
arc formula function Formin, and the values of the output arc formula function
Formout can be obtained from Fig. 2.

Place pl1 represents an object recognized in the environment. It can be either
a specific plant or a plant, in general, if no suitable information is provided.
According to the token (concept) present in pl1, one of the two actions can be
selected. Petri nets over ontological graphs enable us to give succinct conditions
for firing transitions. A formula on the input arc of transition tr8 determines
a more general class of plants, i.e., vegetables. For each vegetable, the action
Watering is performed. Analogously, a formula on the input arc for transition
tr9 determines a more general class of plants, i.e., weeds. For each weed, the
action Pulling out is performed. Figure 3 shows the marked Petri net representing
actions taken in one of tasks of an agricultural robot after firing transition tr5.
At this state, transition tr9 is enabled to fire. Figure 4 shows the marked Petri
net after firing transition tr9.
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Fig. 3. A marked Petri net representing actions taken in one of tasks of an agricultural
robot (after firing transition tr5)

Fig. 4. A marked Petri net representing actions taken in one of tasks of an agricultural
robot (after firing transition tr9)

If the robot cannot recognize a specific kind of a plant, no actions can be
performed (transitions tr8 and tr9 are not enabled to fire). One can see that
both actions, Watering and Pulling out, are followed by action Searching. The
formula on the input arc of transition tr10 causes that each token in place pl3 is
accepted. �≤ means each concept in the ontological graph excluding the empty
concept.

3 Conclusions

We have proposed a new model of Petri nets, called Petri nets over ontological
graphs. This model enables us to deal directly with concepts included in ontolo-
gies describing modeled systems. Our approach tries to make Petri nets fit into
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a general trend in computations proposed by Zadeh and called computing with
words [14]. One of further directions leads to considering tokens as multi-sets of
concepts as in coloured Petri nets [4]. Moreover, one of the challenging problems
is to consider other paradigmatic semantic relations (e.g., meronymy/holonymy)
or any other semantic relations, especially those non-hierarchical.
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Abstract. Granular computing has emerged as one of the fastest grow-
ing information processing paradigms in computational intelligence and
human-centric systems. Fractal analysis has equally gained ground in
understanding complex phenomena. This article examines and analyzes
fractal analysis and its close relationship with granular computing. We
argue that fractal analysis can be viewed as special granular computing
approaches especially from methodology and mechanism point of views.
In this article, we also bring out the granular structure existing in a frac-
tal analysis application. The aim of this research is to demonstrate fractal
analysis as a granular computing approach based on these findings.

Keywords: Granular computing · Fractal analysis · Fractals · Fractal
dimension · Information granulation

1 Introduction

The research on granular computing has attracted much attention from various
fields in recent years. Granular computing is regarded as an umbrella term which
contains theories, methodologies, techniques, and tools that use granules in prob-
lem solving precess [21]. Granular computing is geared towards representing and
processing granules. Granules are basic building blocks of granular computing,
and they are arranged together due to some relationships [20,22]. A granule or
information granule is defined as a subset of objects, class or cluster of a universe.
Granulation is the operation performed on granules [3,20]. Granulation involves
two basic operations: decomposition and construction. Decomposition involves
dividing a larger granule into smaller granules. Construction on the other hand,
involves forming a larger granule from smaller ones [22].

There are different views and approaches to granular computing [20]. Yao
presents a triarchic view which is composed of philosophy of structured think-
ing, methodology of structured problem solving, and mechanism of structured
information processing [21]. Yao argues that the applications are the fourth per-
spective of granular computing, in addition to triarchic view, and should be a
focus of study [18,19]. Bargiela and Pedrycz see granular computing as a concep-
tual and algorithmic platform supporting analysis and design of human-centric
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 215–222, 2017.
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intelligent system [4]. Research has identified a need for new tools, theories and
methods to granular computing [20]. It is thereby expected that there will be
new approaches to granular computing.

Fractal analysis deals with theories, techniques and methodologies that
explain, define and offer problem solving solutions to complex phenomena [5].
A fractal is an object that exhibits a repeating pattern displayed at every
scale [6]. The underlying principle of fractals is that a simple object that goes
through infinite times of iterations becomes a very complex system. Fractals
attempt to model the complex system by searching for the simple process under-
neath. The idea of fractals is originated in naturally existing phenomena that
have the ability to replicate themselves while still maintaining a self-similar
property [11]. The key feature of fractals is the self-similarity across a range
of spatial scales. This means that a part of the fractal is identical or similar
to the entire fractal itself without considering the scale. Originally, fractals are
proposed to investigate the geometric figures with self-similarity and non-integer
dimensions [11]. Nowadays fractal analysis is extended to study the self-similarity
from the different perspectives, such as structures, functions, and times. Fractal
theory has been widely applied in different areas, such as economics, ecology,
physics, image processing, and speech processing [2,5]. Some researchers regard
fractal theory as a methodology with which we can understand a whole complex
system via a simple part of the system [5].

There are connections between some concepts and processes in granular com-
puting and fractal analysis. Concepts such as similarity, granules, fractals, and
granulation are seen to have some things in common. The box-counting, walking-
divider and prism-counting method of determining the fractal dimension of frac-
tals employ information granulation [9,12]. In spite of these, not much work has
been done to harmonize the fields of granular computing and fractal analysis [12].
In this research, we investigate the connections between granular computing and
fractal analysis. We also examine an existing application of fractal analysis and
bring out the granular computing structure of the application. This will lead to
a proposition of adopting fractal analysis as a granular computing approach.

2 Fractal Analysis and Concepts

Fractal analysis aims at constructing a very complex object or system by infi-
nitely iterating a simple process. Fractals are objects or system that have self-
similar and self-repeating patterns across a wide range of scale in the iterative
process. They are created by repeating simple processes over and over again.
A fractal is a rough or fragmented geometric shape that can be subdivided in
parts, each of them is (at least approximately) a reduced copy of the whole [11].

Fractals can be categorized as either artificially created or naturally exist-
ing objects. The artificial fractals are usually mathematically generated by an
iteration function, i.e., Zk+1 = f(Zk). The fractal Zk+1 is obtained by divid-
ing the fractal Zk, and f represents the iteration function or process. Examples
of artificial fractals include Koch curve, Mandelbrot set, Cantor set, Sierpinski
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triangle, etc [2]. These mathematically generated fractals are formed from algo-
rithms with repetition of steps. The Sierpinski triangle, for instance, may be
constructed from an equilateral triangle by repeated removal of the central tri-
angles, as shown in the Fig. 1. The algorithm starts with an equilateral triangle
denoted by Z0. It is further subdivided into four smaller congruent equilateral
triangles and the central one is removed. The geometric figure Z1 is obtained
and it contains 3 smaller equilateral triangles. Each of the smaller equilateral
triangles in Z1 is subdivided into four smaller congruent equilateral triangles
and the central ones are removed. The geometric figure Z2 is obtained and it
contains 9 smaller equilateral triangles. This subdivision step can be repeated
infinite times. The Fig. 1 shows the fractals of Sierpinski triangle after 4 itera-
tions. Similar process of repetition occurs in algorithms for constructing other
types of mathematical fractals [1,11]. Naturally existing fractals are those found
in nature such as mountains, water masses, water drops, lung, blood cells of the
nervous systems, trees, ferns, leaves, coastlines, etc [1].

Fig. 1. Sierpinski triangle

Self-similarity means that a part of the fractal is identical to the entire frac-
tal itself except smaller [7]. Self-similarity can be exact or deterministic self-
similarity. The mathematically defined fractals possess an exact similar pattern
at all scales. For example, in the Fig. 1, the fractal Z1 is obtained by decompos-
ing Z0 into three disjoint equilateral triangles, each of which is an exact copy
of Z0. Self-similarity can also be statistical self-similarity. Many natural fractals
such as trees, human lung, leaves, etc. exhibit statistical self-similarity. The frac-
tals are similar in the sense that each portion can be considered a reduced-scale
image of the whole [10,13].

Fractal dimension is used to measure the complexity or space filling capacity
of fractal objects. It is one of the factors in determining whether an object is a
fractal or not. Fractal dimension D is given by the following formula,

D =
log(N)
log(ε)

, (1)

where N is the number of self-similar pieces and ε is the scaling factor. For
example, Sierpinski triangle is cut in half and 3 similar triangles are obtained,
so we have N = 3 and ε = 2. The fractal dimension of Sierpinski triangle is
D = log(3)

log(2) = 1.585. There are different methods used in determining fractal
dimension of an object, including box-counting method, the divider method, the
triangular prism method, spectral methods and area-based methods [8,9].
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3 Connection in Granular Computing and Fractal
Analysis

Some concepts in granular computing have certain things in common with con-
cepts in fractal analysis. In this section we will examine some of these concepts
and bring out the connection between them.

3.1 Granules and Fractals

The definition of fractals given earlier shows that a fractal can be broken down
or divided into smaller parts. These smaller parts are similar to each other, and
they also are similar to the whole fractal. When fractals are broken down, they
are just like granules of granular systems with some relationships bonding them
together. As such, a fractal can be viewed as a granular system and the parts of
a fractal are the granules of the system. Assuming an artificial fractal generated
by mathematical iteration function Zk+1 = f(Zk). The fractal Zk is obtained
from Z0 after k iterations. Z0 can be viewed as a granule g0. In the first iteration,
Z0 is divided into N smaller parts to obtain Z1. Thus Z1 contains N smaller
granules, i.e., Z1 = {g11, g12, . . . . . . , g1N}. In the next iteration, each granule
in Z1 is divided into N smaller parts or granules. This subdivision step can be
repeated many times or infinite times. The fractal Zi after i iterative processes
contains N i finer granules. We have,

Z0 = {g0},

Z1 = {g11, g12, . . . . . . , g1N},

Z2 = {g21, g22, . . . . . . , g2N2},

. . . . . .

Zi = {gi1, gi2, . . . , giNi}, (2)

where gij denotes the jth granule in the fractal generated after i iterations. The
parts of a fractal are in fact the granules of the granular system constructed
based on this fractal.

3.2 Relationships

In granular computing, granules in a certain granular level or in the different
granular levels need different relationships to conduct granulation [20]. Similarly,
the parts of fractals in the different iterative processes are not independent to
each other, and there are some relationships existing between these parts. As we
discussed in last subsection, the parts of a fractal and granules correspond to each
other. The relationships that used to construct granulation can be used to define
the relationships among the parts of a fractal. We consider three relationships,
i.e., similarity, refinement and coarsening, and granulations as partitions and
coverings.
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Similarity. The fractals are self-similar, that is, a fractal is broken down into an
arbitrary number of small parts, and each of those parts is a replica of the entire
fractal. This means all granules are similar to each other without considering
scale. This similarity may be evaluated by different measures according to the
different types of fractals. The fractals with exact self-similarity, for example,
the mathematically generated artificial fractals, contain the granules which all
have same geometric figures. The similarity in this case means the exactly same
shapes. Assuming a fractal generated by Zk+1 = f(Zk) and a part is divided into
N smaller parts, we can altogether get Ni+1−1

N−1 + 1 granules after i iterations, as
shown in Eq. 2. All the granules have geometrical similarity. Any two granules
gik and git generated in the same iteration are totally same. Any two granules
gik and gjt in generated different iterations are same except for different scale.

Refinement and Coarsening. Refinement and coarsening relationship is
defined in granular computing [20]. A granule g1 is a refinement of another
granule g2, or equivalently g2 is a coarsening of g1, which is denoted by g1 � g2
or g2 � g1, if g1 is contained in g2. The fine relationship is represented by � and
the coarse relationship by � [20]. The granular system constructed from a frac-
tal involves refinement and coarsening relationship. The granules generated in
a former iteration are coarsening of the granules generated in a latter iteration.
The granules contained in fractals Zi and Zi+1 maintain the following relations,

g(i+1)1, g(i+1)2, . . . . . . , g(i+1)N � gi1,

g(i+1)(N+1), g(i+1)(N+2), . . . . . . , g(i+1)(N∗2) � gi2,

. . . . . .

g(i+1)(Ni+1−N+1), g(i+1)(Ni+1−N+2), . . . . . . , g(i+1)Ni+1 � giNi . (3)

Granulations as Partitions and Coverings. A partition of a finite universe
is a collection of nonempty and pairwise disjoint subsets of the universe whose
union is the universe [20]. A covering of a finite universe is a collection of non-
empty subsets of the universe whose union is the universe [20]. The granules
contained in a fractal Zi is a partition of the fractal Zi if the granules meet the
following conditions,

Zi = {gi1 ∪ gi2 ∪ . . . ∪ giNi} and giu ∩ giv = ∅, 1 ≤ u, v ≤ N i and u �= v. (4)

The granules contained in a fractal Zi is a covering of the fractal Zi if the granules
meet the following conditions,

Zi = {gi1 ∪ gi2 ∪ . . . ∪ giNi}. (5)

The Fig. 2 shows the granular relationships in Sierpinski triangle. The left
side is Z1 which is generated after the first iteration, and it contains 3 granules,
i.e., Z1 = {g11, g12, g13}. The three granules form a partition of Z1. The right side
is Z2 which is generated after the second iteration, and it contains 9 granules,
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Fig. 2. Granular relationships in Sierpinski triangle

i.e., Z2 = {g21, g22, . . . . . . , g29}. The nine granules form a partition of Z2. The
granule g11 is a coarsening of granules g21, g22 and g23, that is, g21, g22, g23 � g11.
The granules g12 and g13 are coarsening of other smaller granules. All granules
in the Fig. 2 are similar to each other, and they are all equilateral triangles.

3.3 Granulation and Fractal Dimension

Pedrycz and Bargiela [12] pointed out a linkage existing between fractal dimen-
sion and information granulation. The relationship is explained as a power law
existing in the form:

M = MD
nominal

where M is the number of information granules (fuzzy sets) to use, Mnominal is
the maximal number of fuzzy sets to use in the modelling process and D is the
fractal dimension. Therefore, the more complex a phenomena to be modelled,
the more information granules one needs to use to construct the model. Pedrycz
claimed that fractal analysis is inherently rooted in information granulation [12].
The three methods for determining fractal dimension, i.e., box counting, divider
and triangular prism employ the use of objects such as, boxes, dividers and prism
to determine fractal dimension [9]. The objects are divided into smaller pieces
and sizes each time. The logarithm of the number of divisions to the size of the
object is used in calculating fractal dimension. This attempt to divide the mea-
suring objects resembles granulation technique of decomposition. In order words,
these measures attempt to granulate the fractal objects into smaller elements.
Hence, the claim of fractal dimension having root in granulation [14,15].

4 Fractal Analysis Application and Its Granular
Computing Structure

Fractal analysis has been used extensively to address many problems. When
some problems are carefully examined, we see their granular computing aspects.
We examine image analysis with fractal analysis method in this part. A common
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process in image analysis is image segmentation. Segmentation is the identifi-
cation of different regions of an image, it can be used to identify objects and
boundaries in images. Image segmentation assigns a label to every pixel in an
image such that pixels with the same label share certain characteristics. Frac-
tal analysis approach is one of the methods through which image segmentation
can be done. Many disease diagnosis procedures in healthcare rely on image
analysis. Squarcina et al. [16] carried out an experiment to diagnose occurrence
of schizophrenia and bipolar disorder in patients. Brain images were analysed
in this experiment to distinguish healthy brains from pathological brains. The
segmentation of the images were done with fractal analysis approach. Fractal
dimensions of the brain images were calculated using the box-counting method.
The result was proper diagnosis of the brain image using fractal analysis
approach [16].

Although the article did not discuss the details of the segmentation with
box-counting method, further research on methods of segmentation using
box-counting method reveals close relationship to granular computing. Vuduc
described image segmentation with box-counting method [17]. A basic proce-
dure was to segment images. For each pixel in the image, fractal dimension of
a small window surrounding the pixel is calculated and this is assigned to the
pixel. The process is repeated till all pixels of the image have been assigned a
fractal dimension. Then a histogram is made of the various fractal dimension
values. The image is subsequently color-coded based on the fractal dimension
values. The different color-codes represent the different segments of the image.
The image segmentation process in this example clearly resembles granulation
in granular computing. It involves both decomposition and construction. Seg-
menting images into different regions is an example of decomposition. Grouping
images together based on their fractal dimension values is construction.

5 Conclusion

The aim of this paper is to provide a granular computing view of fractal analysis.
We summarize basic concepts in granular computing and fractal analysis. The
connections between concepts of granules, fractals, granulation, fractal dimen-
sion and some relationships are examined. The analysis shows that fractals can
be viewed as granular system and many granules are contained in them. We
also examine a real life application of fractal analysis and present the granular
computing aspects of the application.

It can be concluded that there are close connections between granular com-
puting and fractal analysis. Fractal analysis indeed can be considered as a granu-
lar computing approach. Some fractal analysis applications have granular struc-
tures in them. These applications with granular structures are more or less gran-
ular systems which have been benefitted from fractal analysis approach.
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Abstract. The understanding of results of Knowledge-based systems (KBS)
working on complex Dynamic Systems (DS) requires expert knowledge and
interpretation capability in order to make a correct analysis of observations at
multiple scales and instants. Normally, these kinds of KBS generate extensive
inference-trees before showing a definitive result to final users; these
inference-trees are not included in the KBS outputs, but they could provide
additional information to understand the functioning of the KBS, and also to
understand the overall performance of a DS. This document describes a method
to generate natural language explanations, based on the results reached by a
KBS in respect to a DS behavior, using a specific ontology and discourse
patterns. The input of the method is an intermediate-state tree (the inference-
tree) and specific domain knowledge represented on domain ontology. The
document describes also the software architecture to generate the explanations
and the test cases designed to validate the results in a specific domain.

Keywords: Knowledge-based systems � Automatic natural language
generation � Expression generation � Ontology � Automatic generation of
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1 Introduction

Modern Knowledge-based Systems (KBS) usually produce long inference-trees as
intermediate results before presenting final results to users; this is frequently due to the
enormous complexity of these systems. Recently, the interest on inference-trees is
growing because these inference-trees can help to improve the understanding of KBS
results [1]; in addition, the inference-tree can show how a KBS arrived at a final
conclusion in respect to a recently Dynamic System (DS) behavior, showing the set of
intermediate states concluded during the inference process. In general, the task of
presenting the intermediate state to final users is not made because it can be compli-
cated and difficult to show [1].

An example of DS is an industrial copper bioleaching heap, which is divided into
lifts and strips. Generally the heaps are built with run-of-mine (ROM) ore, characterized
as low-grade sulfide material [2]. Bioleaching is the process that uses ROM and
microorganisms populations to obtain valuable metals (e.g. copper) which otherwise
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would not be economically profitable [3, 4]. Various works are presented in the literature
that shows results of bacterium incidence on optimum conditions of bioleaching [24].

Actually several intelligent tools (such as KBS), mathematical models or middleware
are used for the setting up of data mechanisms interpretations about DS states, in order to
monitor DS behavior. Specifically on the copper bioleaching domain, there are several
mathematical models used to simulate bacterium activity on simulated bioleaching heaps,
but on real heaps they are not adequate due to the complexity and limited knowledge in
respect to bacteria population behavior. In this context some KBS can help operators
understand the copper bioleaching process and support the decision making process [3].

At the moment, copper mining is the most important economic activity in Chile,
generating almost 10% of copper production worldwide [5], bioleaching is gaining
ground over the copper mining activity because of the low environmental impact and
the profits that it is possible to obtain. The management of a bioleaching heap usually
involves operator teams and decision makers [1], and in general the human teams are
interested not only in the output of a KBS, but also in the description of possible states
of the dynamic system at the time, in order to improve production. A tool that auto-
matically generates descriptions of a heap behavior can help end-users understand and
analyze the heap complexity.

In this paper we describe how such textual descriptions can be generated from
internal inference-trees that represent intermediate results of a KBS in a specific
domain. Our method of text descriptions generation from data brings to a more general
problem on the natural language generation community: reference expression gener-
ation [23]. Our method uses specific domain ontology [19] and discourse patterns to
generate the explanations. Discourse patterns are structures used for automatic text
processing applications, among other objectives, to generate coherent text. For a more
general overview of discourse patterns approaches, see Wang et al. [32], Sect. 2.

In this paper we describe the results of our recent research in the area of automatic
generation of explanation from non textual data. We discuss the facility of using
intermediate-state tree (the inference-tree) from a KBS, specific knowledge and pre-
defined discourse structures, to automatically construct descriptions in natural lan-
guage. We present a method that we evaluated using a KBS results with a significant
amount of conclusions related to a Dynamic System. In general, the evaluation results
on the selected domain show that this approach generates acceptable descriptions.

This paper also describes briefly the bioleaching process and related works; then the
software methodology to construct the prototype, and finally the proposal and vali-
dation are described; at the end of this paper a discussion on the practical utility, a
comparative discussion on the human interpretation of Expert System results, and the
automatically generated presentation by the software are made.

2 Bioleaching Process and Work Context

In order to understand the method presented here, the general characteristics of a
bioleaching heap should be described. This description is focused on copper bioleaching,
and basically, the copper bioleaching process involving dumping a low-grade (otherwise
waste) copper-bearing ore in the form of small pieces of rock into vast mounds and
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irrigating it with diluted H2SO4 to enhance the growth and the activity of iron-oxidizing
microorganisms [24]. The latest developments on the hydrometallurgical and new
engineering techniques have been included in order to optimize the process.

Nowadays a bioleaching heap is divided into lifts and strips and provided of an
irrigation line and a data pickup line with PLSs, with a data pick up line with PLSs, and
these are provided with multiple sensors; to monitor the performance of bioleaching
heaps the use of PLS (Pregnant Leach Solution) is common [24]. The PLS monitoring
could be made to assess concentration of microorganisms, microbial activity and
physicochemical parameters; this task can generate a huge amount of information [3].
Figure 1 depicts (in a simplified form) a three-floors bioleaching heap.

2.1 Work Context

Metals are one of the most significant natural resources for humans. The metals are
extracted from the rocks using different techniques, and several produce environmental
pollution [7, 8]. Actually, there are recent and clear methods of copper extraction such
as bioleaching that give the option of obtaining metals such as copper from low-grade
material, at a lower cost and at a minimized environmental impact [3].

There are some works that use KBSs to improve mining processes results, for
example the “Centro de Biotecnología Alberto Ruiz” is developing an Expert System
to improve the actual knowledge on the bioleaching process and the influence of certain
parameters on the microbial oxidation (this software is being developed under public
funding granted by the government of Chile); also in [26] a predictive mineral potential
mapping using neuro-fuzzy and expert knowledge-base is described, and the authors
explain in this paper that the mapping could be used (in the future) to create criteria for
the exploitation of copper.

2.2 Domain Specifications

Our method needs to know certain characteristics of the domain in order to work
properly. This method generates descriptions that describe the behavior of a certain

Fig. 1. Schematic design of a Bioleaching heap considering three lifts
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type of dynamic systems; the general characteristics of such a dynamic system should
be the following:

• Interpretability, the behavior of the system is observed with the help of sensors that
periodically measure the value of a number of quantitative properties and these
observations are interpreted, using expert knowledge.

• Complex, the system has different types of components and relations among
components that can be aggregated on different levels or that can be decomposed
into small parts. Moreover, this complexity can change due to new elements
incorporated in the system.

• Prefixed goals, the system are controlled according to prefixed management goals
that try to keep certain indicators on predetermined operating objectives.

In the same way, our method must cover certain communicative challenges in
respect to the descriptions shown to the user. Our descriptions must have the following
characteristics:

• Discourse dynamically constructed, the structure of the descriptions is not rigid and
these descriptions must be generated dynamically.

• Relevant descriptions, our descriptions have to provide additional information to
understand the overall performance of the dynamic system.

• Detail and level of information, the management of dynamic systems usually
involves operator teams and decision makers, our description needs to include
evidence that helps operator teams to trust the text’s content. In this respect, each
communicative goal of our model has been defined according to certain rhetorical
relations [31] that establish the structure of discourse [27]. The detail of these
communicative structures and communicative goals are described later.

2.3 Knowledge-Based Systems

There are many papers about Knowledge-based system (KBS) definition. For example,
in [25] a KBS (also known as Expert System) is defined as a software system that
contains a significant amount of knowledge in an explicit, declarative form. Another
way to describe a KBS can be, a computer system that operates by applying an
inference mechanism to obtain results, based on a specific knowledge represented and
in which results are similar to those obtained by a human expert [20].

The ideas of KBS or Expert Systems are regularly used in the extensive sense of
systems whose main components are a set of production rules and an inference engine
that fires these rules in a non-deterministic way. This kind of intelligent system is being
used in many domains to support tasks such as decision making or the prediction of
behavior in DS [1].

Our interest is focused on Expert systems that use rules to determine the state of a
dynamic system. Deterministic rules are commonly used in Expert Systems as a valid
form of knowledge representation [8] and to infer Dynamic System states [1, 9]. It is
due to the fact that many real complex situations are governed by deterministic rules,
and this representation can simplify the problem complexity and generate human-like
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reasoning. These reasons have contributed to KBS popularity on different domains. The
kind of Expert System type considered on this proposal is the Rule-based Expert
System (RBES), can have different states over time and those states are measurable
with a variety of devices such as electronic devices, specific sensors, etc. There are
previous works to summarize behavior or relevant information, for example in [1] a
model for automatically generation of presentations is presented.

2.4 Ontology

A formal definition of an ontology proposed by Gruber [17] is that “ontology is an
explicit specification of a conceptualization”; ontology models the domain using the
elements concepts, attributes and relationships, in order to specify the domain vocab-
ulary. In the literature various ontologies classifications are presented; Mizoughi et al.
[18] propose that ontology can be a domain, task or general/common specification.

Ontology representation is comprised of four main elements [21]: concept or class
as an abstract group; set or collection of elements; instance, which is the “ground-level”
component; relation or slot, used to express relationships between two concepts and
axiom, which is used to improve constraints on the values of classes or instances. These
elements are combined on tuples in order to generate the structure of ontology [22].

An important function of ontologies for our work is its capacity to represent
knowledge. Today there are several techniques to knowledge representation. A classi-
fication of knowledge-based modeling techniques is presented on [11], this classifi-
cation is made based on the fundamental theories of knowledge-based modeling and
manipulation. In this classification, the following groups are considered: linguistic
knowledge basis [12], expert knowledge basis [13, 14], ontology and cognitive
knowledge basis [15, 16]. At present, these knowledge representations are widely used
for support Intelligent Systems build applications.

3 Software Methodology

Software has emerged as a means for creating value to products and services in many
industries [6] including the copper mining industry. In this context, it is well known
that quality software products depend largely on the processes development, final
quality [6] and level of knowledge used to build the responses [1]. The methodology
corresponds to an incremental process that combines software engineering with arti-
ficial intelligence steps in order to generate a prototype. The steps in our methodology
can be described as follows:

• In the first step, the task of collecting both information and relevant knowledge related
tomining copper domainwasmade. For this task, experts on bioleaching domainwere
consulted to identify how to show relevant information on the copper mining domain.

• In the second step, the structure of the inference-tree from the bioleaching heap was
identified.

• The specific ontology was built in the third step, using for this the collected
knowledge.
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• The algorithm of presentation was generated in the fourth step. In order to perform
this task, the expert knowledge related to what is important to show was modeled.

• The validation cases were achieved in the fifth step; these cases allowed validating
our prototype and evaluating its possible practical value.

• The preparation of validation was made in the sixth step. Validation is an important
step in Expert Systems, therefore, a real complex domain was selected and test cases
were designed.

The core of this proposal is made during the fourth to sixth steps. All the expert
knowledge mentioned in the steps of our methodology was modeled on the domain
ontology; this process is described below.

4 Proposed Method for Generating Natural Language
Explanations

The proposal presented here corresponds to a method for generating natural language
explanations on Expert System results; the aim is presenting a tool that helps to
understand the results shown by a KBS, working on a Dynamic System (DS). Our
method follows a knowledge-based approach with a set of particular inference steps
that use domain specific knowledge about what is important to say related to a KBS
outputs.

Our method performs two main tasks: abstraction - to both interpret and abstract the
intermediate (inference-tree) from the KBS - and planning to generate the explanation
plan according to specific communicative objectives (previously identified for the work
domain). The final output of our method is the explanation plan; using this explanation
plan a natural language explanation of the KBS intermediate-states is generated.

Figure 2 describes the components of our method with two principal tasks:
abstraction and planning, inputs/outputs and the domain knowledge. For the abstraction
task, the inputs are (1) an XML file containing events triggered by the Drools inference
engine and (2) the specific ontology (RDF/XML); and for the planning task the inputs
are both a list structure with all the interpretations (the abstraction output) and the
ontology.

Fig. 2. The general architecture for our method of automatic generation of explanations
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Briefly, the method works as follow: the abstraction task uses the XML file to
interpret the relevant intermediate-states from the KBS; each of these intermediate-
states is characterized by an object of the KBS data-model, then, the inference-tree
interpreter relates these objects with elements (concepts) of our ontology. The general
structure of each of our abstractions (output of the abstraction task) is: ‹class, object,
attribute, value›. These abstractions together with the domain ontology are the input to
planning. All elements (tasks and knowledge) from the model are described in detail in
the following sections.

Our ontology has the relevant knowledge to decide how interpretations (abstrac-
tions) could be selected for the explanation plan, so later it can provide the explanations
for the process. The explanation generator uses the ontology and the presentation
model to produce the explanation plan.

In order to represent the domain knowledge, an ontology scheme has been designed.
There are two aims of the ontology construction, the first being to improve a usable
representation close to the important dynamic system elements to be described, and the
second to ensure that its concepts can be understood by the presentation module.

The knowledge base is composed by three ontologies: domain knowledge, interest
knowledge and knowledge related to how and what to present on the final explanation
(discourse patterns). The details about the core concepts of these ontologies are aligned
with the model given in [1].

4.1 The Domain Knowledge

To support the abstraction task the domain knowledge ontology has been developed
using expert knowledge related to structure and behavior of certain kinds of dynamic
systems (previously described in the section entitled domain specifications). Our
approach is based on expert knowledge described in the literature (previous works as
[1–5, 24]) and validated by a human expert. The domain representation is focused on
the structure and process involved in the production of copper in a bioleaching heap.

The general class is the bioleaching heap. A bioleaching heap is considered here as
any physical entity space on the soil’s surface. The first level of the hierarchy has two
disjoint classes: Microorganisms and Heap; in this document the Microorganism
hierarchy is described because it is richer in its number of elements. For the class
microorganisms, three disjoint classes are considered. Figure 3 shows some of the main
classes and properties of the Microorganisms using UML notation.

Our ontology representation is based on principles of representation of Protégé1

tool, so the Thing class is a superclass of protégé that we use in our representation. As
Fig. 3 shows, the domain ontology consists of 6 main classes, a brief description of
these elements and their characteristics is: Gen represents a biological gene, Sample
represents a biological sample, Bacteria represents a Bacterium, Arches represents an
Achaea, Microorganism represents a microorganism, Target-sample represents a target
sample and Target-control represents a sample that is used to contrast with the
Target-sample.

1 www.progete.org.
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The relations between classes are defined as follows: Gen is-a Thing, Microor-
ganism is-a Thing, Bacteria is-a Thing. Sample is-related to Gen, Sample contains
genes, also Target control and Target sample contains genes, Bacteria is-a-kind-of
Microorganism, Archaea is-a-kind-of Microorganism, Sample-control is-a-kind-of
Sample, Target-sample is-a-kind-of Sample. Axioms on this representation are:

Axiom-1: If B is-a Bacteria and A is-an Archaea ! A 6¼ B and A \ B = Ø.
Axiom-2: If A is-a Sample Target, B is-a Sample Control ! A 6¼ B and

A \ B = Ø.
Axiom-3: If B is-a Bacteria and A is-an Archaea ! A � Microorganism and

B � Microorganism and A[B = Microorganism.
Axiom-4: If C, D is-a-kind-of Sample, C is-a Target-sample, D is-a Tar-

get-control ! C 6¼ D and C £ D, where £ represents an expression of
D in respect to C and £ is IN {over-expressed, sub-expressed,
non-expressed, equally-expressed}.

Our ontology contains also abstract qualitative values that abstract other qualitative
values that correspond to basic elements. When two or more instances of a concept are
abstracted by another more general, Functions is-an-abstract-of. For example, if £ is the
set of elements {A, B, C} and they are related with other elements, D is-a relation, then
D represents the set £.

4.2 Interest Knowledge

The interest knowledge represents knowledge about how to generate abstractions and
what behavior (what intermediate-states) is relevant to show in the final presentation.
Our method simulate is designed to simulate interpretation tasks performed by pro-
fessional human operators and expert researchers with approximated knowledge about

Fig. 3. A subset of the conceptualization of the domain knowledge
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the behavior of the dynamic system. Our representation shares certain elements existing
common ontologies used in qualitative physics [1, 17].

The domain ontology includes both single and complex components; we obtain the
state value of a single component by both goals, to interpret the abstractions (output of
the abstraction task) and to select what information to show. In order to make this task
we use qualitative interpretation rules. The following rules are examples of the
described above:

½value \Bacteria; bacteria - 1; current - value; n[ð Þ ^ value( \Bacteria; bacteria - 2; current -

value;m[ ) ^ n[m� ! select�to�show \Bacteria; bacteria - 1; current - value; n[ð Þ
ð1Þ

½value( \control sample; sample1; current - value; n[ ) ^ value( \target sample; sample2;

current - value;m[ ) ^ n[mþ k� ! select�to�showðvalue( \target sample; sample2; current -

value;m[ )Þ
ð2Þ

The rule present on Eq. (1) means: when the current qualitative value of bacteria-1
is greater than the value of bacteria-2, then the relevant abstraction to show is
‹Bacteria, name- bacteria-1, current-value, n›, and the rule present on Eq. (2) means:
when the value of the target sample is less than the sum of the control value plus a k
value (where k is a differentiator value), then the important value to be displayed is the
sample value. A second type of rules is used to abstract single components into more
complex ones. The Eq. (3) is an example of this set of rules.

\Bacteria; bacteria - 1; current - value; n[½ Þ ^ \Bacteria; bacteria - 2; current - value;m [ Þ^
type - bacteria bacteria - 1ð Þ ¼ type - bacteria bacteria - 2ð Þ� ! select - to -

show \microorganism; name - microorganism; average - value n;m; pð Þ; p[ð Þ
ð3Þ

4.3 Discourse Patterns

The discourse patterns are used to automatically construct description plans. The dis-
course pattern represents knowledge about strategies that express how to present
abstracted information, related to intermediate-states from the KBS. We use discourse
patterns similarly as described in [30]; the knowledge base of the patterns contains a set
of operators that represents atomic presentation operations. Operators generate natural
language descriptions using templates. Each operator includes a set of conditions; these
conditions help the inference engine select the appropriate template.

Our operators correspond to communicative objectives (goals) [31, 32] and these
were defined in accordance to rhetorical relations that establish a natural structure of
discourse [27]. Each operator is linked to one of these communicative objectives; we
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have selected a subset of rhetorical relations applied in our context of dynamic system.
Some of these are: detail, this relation is used to show the value of a quantity (value)
that characterize an intermediate-state; list, this relation is used to show sequentially
several of the detail relations. Figure 4 shows a set of operators related to abstractions,
in these example operators generate text using templates according to rhetorical rela-
tions. An example of operator in accordance with the list relation is the following:

Operator: list-2-current-values-bacteria
Goal: detail-quantities-2-bacteria
Conditions: is-a-kind-of (Microorganism,bacteria),

is-a(bacteria, bact-1), is-a(bacteria, bact-2)
Input: ‹bacteria, bact-1, quantity, 10e4›,‹bacteria, bact-2, quantity, 10e2›
Effect: add-text(“The Bacterium: “ bact-1, bact-2 “ are presents with a values:”,

10e4,“,”,10e2)

4.4 Abstraction

To facilitate access to intermediate-states of a KBS to specific users (operators and/or
researchers), a solution is to use data-to-text techniques [29, 30]. As mentioned above,
the input for abstraction task is an XML file generated for Drools; this file has specifics
tags that identify elements of the domain in the inference process. Table 1 describes the
tags used to characterize these elements and Fig. 5 shows a segment of this file.

Fig. 4. Examples of operators
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Table 1. Tags and their descriptions of the XML file generated by Drools

Tag identifier Description

<object-stream> This tag identifies the beginning of the section
used to describe the objects that have been
placed in the working-memory

</object-stream> This tag identifies the end of the section
<object-stream>

<events> This tag identifies the beginning of the section
used to describe the events that have been
placed in the working-memory

</events> This tag identifies the end of the section
<events>

<activationId> This tag identifies a rule-name that has been
placed in the working-memory

</activationId> This flag identifies the end of the section
<activationId>

<objectToString> This tag identifies an object, its corresponding
class and an object attribute that have been
placed in the working-memory

</objectToString> This flag identifies the end of the section
<objectToString>

<rule> This tag identifies a rule that was activated
placed in the working-memory

</rule>

Fig. 5. Code segment of the XML file generated by Drools (www.drools.org) (using the
workingMemoryLogger)
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Once the objects and their characteristics have been identified, the process of
relating these elements with the concepts of the domain ontology is carried out. Our
algorithm to perform the task described above is detailed below:

Algorithm 1. Abstraction
1. Input: inference-tree (XML file), ontology. 
2. Var integer total_events =0
3. Var list abstractions[aI,bI,cI,dI] where a, b,c = string, d = real and I is an index value.
4. output: the abstraction results (abstractions)
5. select <event> from inference-tree & make 

total_events equal to COUNT(<event>)
6. If total_event> 0 then
7. For I=1 to total_events do
8. Extract values from tag:<objectToString> and do the 

assignment: aI= class-name, bI= object-name, cIattribute-
name and dI= value.

9. End-For
10. Else
11. abstractions[aI,bI,cI,dI]=<empty,empty,empty,0>.
12. End-IF
13. If Count(abstractions[aI,bI,cI,dI])> 1 then
14. For each (abstractions[aI,bI,cI,dI]) do
15. IFaI=aI+1 then
16. Abstract bI, bI+1 an another 

representative object (to do this the abstraction 
knowledge in the ontology must be used)

17. End-If
18. End-For
19. Output the result Abstractions = 

{abstraction[a1,b1,c1,d1], abstraction 
[a2,b2,c2,d2],.., abstraction[aI,bI,cI,dI]}.

4.5 Planning

The planning process follows a heuristic approach using text templates. Our method
defines patterns of natural language descriptions and they are selected and instantiated
according to specific strategies formulated with a set of productions rules. The rules
help to generate the descriptions taking into account the abstractions (output of the
abstraction task) and the constraints generated when the ontology interest knowledge is
used. The general format of such rules is the following:

The planning is the one in charge of gathering the criteria that allows to auto-
matically constructing a presentation that shows the information corresponding to the
rules fired at the moment of executing the KBS. The purpose of this presentation is to
explain “why” a KBS arrives at a particular result; to achieve this goal and generate
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descriptions that sound natural to final users, a presentation model was built. Our
presentation model builds a presentation plan. In practice, this presentation plan is
designed as a combination of elements of presentation and presentation strategies.

The elements of presentation are explanatory elements that we used to show the
Expert System status and explain salient events; specifically in this proposal presen-
tation elements are text-template. A text-template combines variables (concept char-
acteristic) and fixed text, and the graphic-directive are commands to build graphics
within the explanation.

Presentation strategies are patterns that are schematic of how to articulate the
presentation; a presentation strategy establishes relationships between text-template and
graphic-directive and indicates which of these are to be used to structure the presen-
tation. Presentation strategies are selected using an inference process based on rules.
For example, let us consider the following rule:

The domain ontology includes single and complex components as classes; we
obtain the state value of a single component by both goals, to interpret the abstractions
(output of the abstraction task) and to select what information to show. In order to make
this task we use qualitative interpretation rules. For example, let us consider the fol-
lowing rule: IF value (mesophyll) > 10e5, value (thermophile) > 10e6, value (oxid-
level) < 5 ! select-strategy (strategy-1).

This rule selects strategy-1 that uses a set of operators combined according to the
overall discourse goal: highlight the oxidation level value (oxid-level). Thus, the
strategy-1 would consist of: show-final-state (oxid-level) ˄ list-2-current-values-
bacteria(‹bacteria, thermophile, quantity, 10e6›, ‹bacteria, mesophyll, quantity, 10e5›).

5 Validation

In order to evaluate the proposed model a file that shows the results of an Expert
System working on a complex real world domain was used. As we have previously
mentioned, the selected domain was a bioleaching heap because this is a real Dynamic
System that has certain features as follows: (1) a large and complex amount of physical
elements that might also have a significant number of characteristics and connections
between them, (2) the real dynamic system has to be managed and supervised by
human experts, and (3) these experts can interact with the system in order to change its
behavior. To construct the ontology the software Protégé [10] was used (for more
details, see Flores et al. [1], Sect. 3).

5.1 Examples

Table 2 shows examples of natural language descriptions generated using our method
(descriptions translated into English) for each description. Table 2 also shows the
correspondence that exists between the objects and their descriptions. Example number
2 in the Table corresponds to a partial-state description when that state is characterized
by the quantity of a bacterium (mesophyll).
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5.2 Practical Utility

Practical utility can be made with the help of an expert and using the post-edition
technique [1, 28–30]. Basically, the post-editing technique consists of the following:
first the expert uses the descriptions to generate a new text (an expert version), and then
both versions are contrasted. Finally, the level of satisfaction is measured in terms of
the amount of changes.

Currently this validation is being applied on the results of the explanatory gener-
ator. According to the authors’ assessment, the use of the post-editing technique has
allowed to increase the confidence of the experts on the validity results. Our partial
evaluation indicates that the automatically generated texts are easily interpreted and
reflect the partial states of the KBS, and this helps to understand these results.

6 Conclusions and Future Work

This work is a step towards the creation of a module that automatically generates
explanations in natural language, using ontology and speech patterns. This work is
based on previous proposals, but it is different in the sense that it incorporates an
ontological representation that contributes more wealth and flexibility to the repre-
sentation. Our proposal is also distinguished because we generate a relevance model
that is able to identify the most relevant behavior that should be shown in the expla-
nation. Our method is also capable of transforming code from an XML file into domain
abstractions, which are then transformed into text segments using operators. These
operators correspond to communicative goals and discourse strategies that are of
interest to a complex domain of a dynamic system.

The prototype that we developed in the copper mining domain showed that our
method was able to generate coherent descriptions in natural language by using
approximate knowledge that was possible to acquire with acceptable effort. This was
possible thanks to the use of paradigms such as the ontologies, discursive structures
(from automatic generation of natural language) and recent tools to program Expert
Systems. The model was validated in a complex dynamic system, such as a bioleaching
heap. As a future line of work, we intend to generate new cases of study in the same
domain, but cases with greater complexity in respect to the case described in [1] and
mentioned in this document, and then proceed to validate the model in another complex
domain.

Table 2. Examples of generated descriptions

Object Abstractions Generated description

bact-1 ‹Bacteria, bact-1,
quantity, 10e2›

The microorganism: Bacterium, named: bact-1 is
present with a value: 10e2

mesophyll ‹Bacteria, mesophyll,
quantity, 10e5›

The microorganism: mesophyll is present with a
value: 10e5

arque-1 ‹Archaea, arche-1,
quantity, 10e3›

The microorganism: Achaea, named: arque-1 is
present with a value: 10e3
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Abstract. Different from English processing, Chinese text processing
starts from word segmentation, and the results of word segmentation will
influence the outcomes of subsequent processing especially in short text
processing. In this paper, we introduce a novel method for Short Text
Information Retrieval based Chinese Question Answering. It is developed
from the Discernibility Matrix based Rules Acquisition method. Based
on the acquired rules, the matching patterns of the training QA pairs
can be represented by the reduced attribute words, and the words can
also be represented by the QA patterns. Then the attribute words in
the test QA pairs can be used to calculate the matching scores. The
experimental results show that the proposed representation method of
QA patterns has good flexibility to deal with the uncertainty caused
by the Chinese word segmentation, and the proposed method has good
performance at both MAP and MRR on the test data.

Keywords: Question Answering · Information Retrieval · Rough Set ·
Discernibility matrix · Rules acquisition · Short Text Similarity

1 Introduction

Question Answering System (QA System) is one of the most recent research
topics in Natural Language Processing (NLP). Most of the existing QA systems
are based on one of these two architectures: one is Knowledge based Question
Answering (KBQA), and the other is Information Retrieval (IR) based Question
Answering (IRBQA). KBQA system generates answering based on the given
knowledgebase, while IRBQA searches for the best matching sentence or docu-
ment from a given list of sentences or documents and returns the matched item
as the answering. Because of the difficulty of both knowledgebase construction
and text generation, IRBQA is more widely used than KBQA [1,2].

The technology of English Question Answering has been developed well, while
the research on Chinese Question Answering still faces a lot of difficulties, espe-
cially in Chinese Short Text Question Answering. One of the reasons is that
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 239–248, 2017.
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Chinese text processing starts from word segmentation, and the results of word
segmentation will influence the outcomes of subsequent processing. One of the
influences is that the wrong segmentation will reduce the count of the similar
words between the question and candidate items, and then reduce the similarity
between them. Another is that different word segmentation principles and Chi-
nese abbreviation will also cause the decreasing of the similar words, for example,
in some context, the Chinese proper noun “People’s Square” is not similar with
the word “People”, while the proper noun “Baidu Company” is similar with
“Baidu”. In English, sometimes this kind of proper nouns can be recognized by
capital letters, while in Chinese, all the Chinese characters are without grammat-
ical marker. Since each word of a short sentence text takes a large proportion,
the semantic representation of the uncertain word segmentation parts plays an
important role in the process of QA matching.

In this paper we will introduce a novel method for Short Text and Infor-
mation Retrieval based Chinese Question Answering. Based on the Rough Set
Theory and Discernibility Matrix based Rules Acquisition method, the match-
ing patterns of the training QA pairs can be represented as rules by the reduced
attribute words, and the words can also be represented by the QA patterns. Then
the attribute words in the test QA pairs can be used to calculate the matching
scores. The experimental results show that the proposed representation method
of QA patterns has good flexibility to deal with the uncertainty caused by the
Chinese word segmentation, and the proposed method has good performance at
both MAP and MRR on the test data.

The remainder of the paper is represented as follows: Sect. 2 introduces
related works, and Sect. 3 introduces the training processing of system, such like
rules acquisition and attribute vector representation. Section 4 introduces the
method of matching QA patterns by a trained QA system. Section 5 describes the
experiment details and presents the experimental results and analysis. Section 6
is the conclusion and future work.

2 Related Works

Rough Set Theory [10,11] is one of the most popular Granular Computing [13,14]
models and can be used to deal with uncertainty problems. In Rough Set Theory,
a decision table [12] is defined as Formula (1).

DecisionTable = {U,A = C ∪ D,V, f} (1)

In a decision table, U is a finite nonempty set of objects, and A is a finite
nonempty set of attributes of the objects. A is divided into two subsets, where one
is the set of condition attributes and the other is the set of decision attributes.
V is a nonempty set of values of all the attributes, and f : U × A → V is
the function that maps an object of U by a attribute of A to a value of V . If
there are two objects having the same values of all the condition attributes but
their decision attribute values are different, the decision table is inconsistent;
otherwise it is consistent.
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Based on a decision table, we can get its POSc(D) by Formula (2) and (3).
POSC(D) is called a positive region of the partition U/D with respective to C,
and is a set of all elements of U that can be uniquely classified to blocks of the
partition U/D, by means of C. C∗X is called the C − lower region of X, and
C(x) is the equivalence class containing an element x.

POSC(D) =
⋃

X∈U/D

C∗X (2)

C∗X = {x ∈ U |C(x) ⊆ X} (3)

Sometimes not all the condition attribute are necessary. If a condition
attribute c ∈ C satisfies Formula (4), c is not necessary and can be reduced.

POS{C−c}(D) = POSC(D) (4)

A lot of Rough Set Theory based methods have been proposed for attribute
reduction [3–5]. Our proposed method for QA system is developed from the dis-
cernibility matrix theory [6,7]. The classical discernibility matrix is a |U | × |U |
matrix, and its element M(x, y) defined as Formula (5). Based on the discerni-
bility matrix, we can get the discernibility function by Formula (6).

M(x, y) = {a|a ∈ A, f(x, a) �= f(y, a)} (5)

df(M) = ∧{∨(M(x, y))|M(x, y) �= ∅} (6)

In traditional IR, the key words are input by users. Different from IR, the
input of IRBQA is natural language sentence. The QA system must abstract the
key words from the sentence and then match the most related answers. A lot of
works have been done for different English and Chinese QA applications [15,16].
Because of different applications and its corpus or knowledgebase, the method of
generating answers is also different, but commonly the QA process is matching
the QA pairs by topic similarity. The topic similarity can be measured using the
cosine similarity method of word vector representation. In recent years, many
word vectorization have been proposed such like VSM [17], LSI [19], LDA [18],
Word2Vec [20], and there are also some text similarity related works based on
Rough Set method [22,23].

3 Rules Acquisition and Attribute Vectorization

In this section, we will introduce the training processing of our method, includ-
ing rules acquisition of Chinese QA sentences and vector representations of the
attribute words. The attribute word representations are based on the rules,
and the representations will be used for matching QA patterns in the testing
processing.
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3.1 Rules Acquisition of Chinese QA Sentences

Given one question and m labeled candidate items (all the sentences have been
segmented into words, the label means whether the item can be used as a answer
of the question or not), we first construct a dictionary of all the words of the
question and the items. For convenience, we name the item which can match
the question as Positive Sentence (PS), and the other Negative Sentence (NS).
We name the set of all the PS as Positive Sentence Set (PSS) and the other
Negative Sentence Set (NSS). After we get the dictionary, we first remove the
words which appear only in the NSS, and also remove some Chinese stopwords.
This pre-filtering step will help reduce the dimension and accelerate the following
attribute reduction and rules acquisition, and can also make each of the final
rule attribute words appear at least once in a PS or the question.

Table 1. Question Answering Matching System (QAMS)

Item/question w1 w2 wn Decision label

I1 v11 v12 . . . v1n v1l

I2 v21 v22 . . . v2n v2l

. . . . . . . . . . . . . . . . . .

Im vm1 vm2 . . . vmn vml

Question vq1 vq2 . . . vqn vql

Using the dictionary of n words, we can construct a small Question Answering
Matching System (QAMS) for the question and its candidate items, like Table 1.
We define this small decision system as QAMS = {U = I ∪ Q,A = W ∪ D,V =
1, 0, f}. I = {I1, I2, . . . , Im} is the candidate items set, and Q is a set with
only one question in it. W = {w1, w2, . . . , wn} is the word attribute set (the
dictionary), and D is the decision attribute set with only the matching label
attribute in it. The function f(u, a) is defined as Formula (7).

f(u ∈ U, a ∈ A) =

⎧
⎪⎨

⎪⎩

1, if a ∈ D and u ∈ PSS ∪ Q;
or if a ∈ W and a ∈ u

0, the other
(7)

The function f : U × A → V means that if an attribute word appears in an
item or the question, and the attribute value equals 1, or if the item is a PS or
the question, its decision attribute value is 1. Then we need to mining the rules
in the QAMS. Since for QA system, we only need to concern about the rules for
question and its PSS. Then the discernibility matrix of the QAMS is a x × y
matrix, x = |PSS|+ |Q|, y = |NSS|. The values of the QA Discernibility Matrix
(QADM) is defined as Fomular (8) and (9).

Dset(up, un) =
{a|a ∈ W,un ∈ NSS, up ∈ PSS ∪ Q, f(up, a) �= f(un, a)} (8)
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QADM(up, un) =

{
Dset(up, un), if |Dset(up, un)| > 0
{a|a ∈ up}, the other

(9)

The discernibility function of the QADM is defined as Fomular (10).

df(QADM) =
∧ {∨(QADM(up, un))|un ∈ NSS, up ∈ PSS ∪ Q,QADM(up, un) �= ∅}

(10)
In the function expression of QADM , ∨(QADM(up, un)) is the disjunction of

all attributes in QADM(up, un) and ∧{∨(QADM(up, un))} is the conjunction
of all ∨(QADM(up, un)). When up and un is inconsistent, that is to say, all
of their attribute words are the same, we will set the value of QADM by the
attributes of up. The original corpus of QA system is consistent theoretically.
However, there are two reasons for this definition: one is that it can avoid the
error case of the mislabeled items in the corpus, and the other is that after the
pre-filtering step the consistent QAMS may turn to inconsistent.

Table 2. An example of a QAMS

Item/question w1 w2 w3 w4 Decision label

I1 0 0 1 1 1

I2 1 0 1 0 1

I3 0 1 1 1 0

I4 0 1 0 1 0

Question 1 1 1 1 1

A QAMS example is showed in Table 2 and its QADM is showed in Table 3.
The example QAMS is with 4 attribute words and 4 candidate items. 2 of
the 4 candidate items are PSs. The QADM of it is a 3 × 2 matrix. Based on
Formula (10) we can get the discernibility function, showed in Formula (11).
The result of Formula (11) means that a question and its PSs can be discerned
from the NSs by the words w1 and w2.

df(M) = (w2) ∧ (w2 ∨ w3)
∧ (w1 ∨ w2 ∨ w4) ∧ (w1 ∨ w2 ∨ w3 ∨ w4)
∧ (w1) ∧ (w1 ∨ w3)

= (w1) ∧ (w2)

(11)

If the result is like (w1 ∨ w3) ∧ (w2), that means the discernibility rules can
be w1 and w2, or can be w3 and w2.
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Table 3. The QADM of the QAMS in Table 2

I3 I4

I1 {w2} {w2, w3}
I2 {w1, w2, w4} {w1, w2, w3, w4}
Question {w1} {w1, w3}

3.2 Vector Representation of Attribute Word

Given a set of questions and their labeled candidate items, we can get all of their
QAMSs, reduced attributed words and rules. Based on the reduced attribute
words and the acquired rules, each of the attribute words can be represented as
list of vectors. The vector unit v is defined as Formula (12). NO.(QADM) is the
number label of the QADM , Len(dfQADM ) is the sum count of all conjunction
elements in the final result of the discernibility function, and NO.(wdf ) is the
number label of the conjuncted element of the final result in which the word
appears. T (wdf ) is the tag whether the word is appeared in the question or
candidate items or both of them.

v = [NO.(QADM), Len(dfQADM ), NO.(wdf ), T (wdf )] (12)

After we trained a set of questions and its labeled candidate items, all the
attribute words can be represented like Formula (13). In this Formula, θ is the
appearance times of the attribute words in all the QADM of the corpus.

WV = [v1, v2, . . . , vθ] (13)

For example, if the QAMS is the second one of the whole training corpus and
the word w1 and w2 does not appears in other QAMSs, based on Formula (11)
the word w1 can be represented as Formula (14) and the word w1 can be repre-
sented as Formula (15). The ellipsis is the cases of the word appearance vectors
in other QAMSs.

WVw1 = [ [2, 2, 1, {’Q’,’PSS’}] , . . .] (14)

WVw2 = [ [2, 2, 2, {’Q’}] , . . .] (15)

The attribute words and the acquired rules can be treated as a kind of QA
sentence patterns, and NO.(QADM) can be treated as the QA pattern number.
However, the model lacks the topic information of the QA. So when it comes to
practical application, it must be used at the same time with some topic similarity
model.

4 Method of Matching QA Patterns

We can get a dictionary with all the attribute words represented by
Formula (13). Then when a test question and an unlabeled candidate item are
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given, we can get two list of word vector elements from the attribute words
appears in the two word sequence: V Lq = [v1, v2, . . .] and V LIi = [v1, v2, . . .].
The next step is to count up the QA pattens and measure their completeness.
But before that we must do some preliminary reduction.

At the reduction step, there are two kinds of processing choices. One is that
we need to concern the word vector element tag T (wdf ), that means, for example,
if a word appears only in the question, and one of its vector tag means it appears
only in the NSS in a QA pattern of the train corpus, we must remove it from
V Lq. That means we treat strictly that in one QA pattern, the word role of it
should not be exchanged. The other processing choice is that we just ignore the
tags and we consider that sometimes the words among question and candidate
items can be exchanged and will not change the semantic too much.

Table 4. An example of the middle dictionary of the patterns

NO.(QADM) vlist Len(dfQADM ) vlistlength CQADM

36 {[36, 4,2, {‘Q’}], [36, 4,1, {‘PSS’}]} 4 2 0.5

53 { [53, 1,1, {‘Q’, ‘PSS’}] } 1 1 1

. . . . . . . . . . . . . . .

182 {[182, 4,2, {‘Q’}] } 4 1 0

Then based on the NO.(QADM) we count up the pattern and its vector
elements (the same elements are counted only once). An example of the middle
dictionary of the patterns is illustrated in Table 4. Here we define the complete-
ness of a pattern (QADM) as Formula (16).

CQADM =

⎧
⎨

⎩

0, if vlistlength = 1 and Len(dfQADM ) �= 1
vlistlength

Len(dfQADM )
, the other

(16)

and the final completeness of the QA pairs is calculated by Formula (17).

C(q, Ii) =
∑

⋃
QADM |q,Ii

CQADM (17)

5 Experiment

The experiment is divided into two parts: one is on the sentence pattern similarity
and the other is on the text retrieval. As there are two choice at the reduction
step of the Matching method (with vector tags and without tags), we evaluate
both in the experiment. The first experiment is comparing the proposed method
with the word2vec pattern similarity method, and in the second experiment
it is compared with cosine similarity of LDA and LSI model. In the second
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experiment, the text similarity matching part of our method is the same as LDA
baseline.

Both the two experiments use the opensource corpus and toolkits of NLPCC-
ICCPOL2016 Shared Task (Evaluation Competition) [8]. The corpus contains a
train subset and test subset. The train set contains 8772 question texts, and the
test set contains 5997 questions. Each of the question is given a list of candidate
items and some of the items can be used as answers to the question. The train
set contains 181882 items and the test set contains 122531 items. The baseline
models of the experiments are constructed by Gensim Toolkit [9], and the word
segmentation of all the Chinese text is completed by the NLPIR (also named as
ICTCLAS) tool [21].

In our experiment, the evaluation metrics is the same with the competition:
Mean Average Precision (MAP) (see Formula (18) and (19)) and Mean Recip-
rocal Rank (MRR) (see Formula (20)).

MAP =
1

|Q|
|Q|∑

i=1

AveP (Ci, Ai) (18)

AveP (Ci, Ai) =

{
0, if min(m,n) = 0
∑n

k=1(P (k)·rel(k))

min(m,n) , the other
(19)

MRR =
1

|Q|
|Q|∑

i=1

1
ranki

(20)

Here is the explanation of MAP and MRR from the official document [8]: In
MAP formula, k is the rank in the sequence of retrieved answer sentences, m is
the number of correct answer sentences, and n is the number of retrieved answer
sentences. P (k) is the precision at cut-off k in the list. rel(k) equals 1 if the item
at rank k is an answer sentence, otherwise it equals 0. In MRR formula, ranki

is the position of the first correct answer in the generated answer set Ci for the
Qi, and if Ci doesn’t overlap with the golden answer Ai for Qi, 1

ranki
equals 0.

The experimental results are in Tables 5 and 6. In Table 5, the withtags ver-
sion of our method has best performance, but the withouttags version is not
unsatisfactory. In Table 6, both the two version of our method have improve the
performance of LDA baseline, and they all have better performance that LSI
baseline model.

Table 5. Results of sentence patterns similarity experiment

MAP MRR

W2Vcosine 0.4075 0.4081

DM (withtags) 0.4520 0.4525

DM (withouttags) 0.2923 0.2924
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Table 6. Results of QA retrieval experiment

MAP MRR

LDAcosine 0.6386 0.6392

LSIcosine 0.5372 0.5376

DM (withtags) 0.6464 0.6469

DM (withouttags) 0.6436 0.6440

The MAP and MRR results of the withtags version of our method are higher
than the withouttags version at both of the two experiments. It shows that at
this QA corpus, most of the attribute words have fixed roles in QA patterns. So
the final rule expressions acquired by the withtags version method can represent
more information of the QA patterns.

6 Conclusion

In this paper a novel method for short text and Information Retrieval based
Chinese Question Answering is proposed. It has good flexibility to deal with
the Chinese QA uncertainty by mining and representing QA pattern, and the
proposed method has good performance at both MAP and MRR on the test
data. The future work will focus on more QA experiments by other kinds of
feature selection and attribute reduction method based on Rough Sets and on
other Chinese and English QA corpus.
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Abstract. In the study, issues related to the decision-making process
using knowledge that is accumulated in several local knowledge bases are
considered. In order to analyze conflicts and to create coalitions of base
classifiers, three modifications of Pawlak’s model were applied. A sys-
tem that uses these three modifications was then used for two dispersed
sets of medical data. The main aim of this study was to compare the
structure of the coalitions that were created. In the paper, the quality
of the classification of the system using the proposed modifications was
also compared.

Keywords: Decision-making system · Dispersed knowledge · Conflict
analysis · Pawlak’s model

1 Introduction

The use of dispersed knowledge is very important. When knowledge is collected
in independent and separate bases by different units, in order to use all of the
available knowledge in the classification process, adequate methods must be used.
Such methods should be general enough to cope with many decision tables, in
which both the sets of attributes and the sets of objects are not pairwise disjoint
or equal.

The author has been dealing with the issues associated with the use of
dispersed knowledge for several years. Different approaches to solving this prob-
lem have been proposed. Various methods for creating a system’s structure have
been analyzed - from a static structure [17] through a simple dynamic struc-
ture [21] to a complex dynamic structure [19]. It was observed that in a system
with dispersed knowledge, an inconsistency of knowledge may occur and method
for dealing with this have been proposed [17]. Various methods for fusing local
decisions into a global decision have been considered [19,22].

In this article, methods for creating the structure of a dispersed system -
coalitions of base classifiers that are based on the Pawlak’s conflicts model, are
considered. The study is a continuation and extension of the paper [23], in which
these methods were proposed for the first time. The paper [23] only contains
c© Springer International Publishing AG 2017
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a description and a theoretical analysis of these methods. In this article, the
methods have been applied to two medical data sets. These data sets were also
considered in the paper [18] but for different approach. The goal of this paper
is to experimentally investigate the structure of the coalitions of classifiers that
are generated using three methods based on Pawlak’s conflicts model. In this
article, a comprehensive analysis of the generated coalitions is discussed.

In the study, new methods of creating coalitions of classifiers were used, but
the general scheme for operating a dispersed system was taken from the previous
work [19]. The general scheme for generating global decisions is as follows. First,
each classifier generates a certain vector of ranks that expresses the classification
made by the classifier. Then, the structure of the system is created by generating
coalitions of classifiers. In this step, new methods are used. For each coalition, a
common knowledge is generated. In this step, the method for the elimination of
inconsistencies in the knowledge that was proposed in the previous work [19] is
used. Then, local decisions are taken. In order to determine the global decisions,
a certain method of conflict analysis, which is based on a density algorithm [17],
is used.

The main issues that are discussed in this paper are analyzing conflicts and
forming coalitions of classifiers. In an article in 1984 [10], Professor Pawlak pro-
posed a model of conflict analysis. This model was then developed in the papers
[11–16]. The model provides a simple way to determine the relations between
individuals involved in a conflict. It enables an analysis of the strength of units
and allows the modeling of the conflict. In this study, modifications of this model
were used. In the literature, other approaches to conflict analysis can be found.
A brief overview of the various negotiation models that have been proposed in
the literature can be found in the paper [9]. Some theoretical models have been
proposed for describing, specifying, and reasoning about the key features of nego-
tiating agents [3,25]. Computational models have been suggested for specifying
the key data structures of negotiating agents and the processes operating on
these structures [4,24]. Many mathematical models of conflict situations have
been proposed [6–8]. In these models, a number of different aspects such as
risks, consequences and alternatives have been analyzed. In the situation that
is considered in the paper, only vectors of ranks are available and it would be
difficult to apply such general frameworks since many of the aspects that occur
in it are not determined.

The concept of distributed decision making is widely discussed in the paper
[26]. The concept of taking a global decision on the basis of local decisions is also
used in issues concerning the multiple model approach. Examples of the appli-
cation of this approach can be found in the literature [1,28]. Moreover, in many
other papers [2,27], the problem of using distributed knowledge is considered.
This paper describes a different approach to the global decision-making process.
We assume that the set of local knowledge bases that contain information from
one domain is pre-specified. The only condition that must be satisfied by the
local knowledge bases is to have common decision attributes.
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In the literature, different fusion methods have been proposed [5,7]. These
methods are used to combine the predictions of base classifiers. Fusion methods
do not identify the coalitions of classifiers, but simply generate a common deci-
sion. Fusion methods are divided into three groups: the abstract level, the rank
level and the measurement level. In the paper [22], selected fusion methods in a
dispersed system were analyzed.

2 An Overview of Pawlak’s Conflict Model and Proposed
Modifications

In this section, the basic concepts of the Pawlak’s model are given.
It is assumed that the set Ag is the set of agents that are involved in the

conflict. An opinion about certain discussed issues is expressed by each agent
by assigning one of three values. −1 means that an agent is against the issue,
0 means it is neutral and 1 means it is for the issue. This knowledge can be
written in the form of an information system S = (U,A), where the universe U
is the set of agents, A is the set of issues and the set of values of a ∈ A is equal
to V a = {−1, 0, 1}. The value a(x), where x ∈ U, a ∈ A is the opinion of agent
x about issue a.

In the first step of conflict analysis, the relationships between agents are
determined. For this purpose, the function φa : U × U → {−1, 0, 1} is defined
for each a ∈ A:

φa(x, y) =

⎧
⎨

⎩

1 if a(x)a(y) = 1 or x = y,
0 if a(x)a(y) = 0 and x �= y,
−1 if a(x)a(y) = −1.

Three relations are defined: R+
a alliance, R0

a neutrality and R−
a conflict over

U × U . These relationships are expressed as follows

R+
a (x, y) if and only if φa(x, y) = 1,

R0
a(x, y) if and only if φa(x, y) = 0,

R−
a (x, y) if and only if φa(x, y) = −1.

Each equivalence class of alliance relation R+
a is called a coalition on a.

In order to determine the relations between agents due to a set of attributes,
the function of the distance between agents ρ∗

B : U × U → [0, 1] for the set of
issues B ⊆ A is defined

ρ∗
B(x, y) =

∑
a∈B φ∗

a(x, y)
card{B} ,

where

φ∗
a(x, y) =

1 − φa(x, y)
2

=

⎧
⎨

⎩

0 if a(x)a(y) = 1 or x = y,
0.5 if a(x)a(y) = 0 and x �= y,
1 if a(x)a(y) = −1.
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In the definition, it is assumed that the distance between the agents that are in
conflict is greater than the distance between the agents that are neutral. The
function of the distance between the agents for the set of all issues B = A is
written in short as ρ∗.

The conflict between agents can also be expressed in another way. The conflict
function ρB : U × U → [0, 1] for the set of issues B ⊆ A is defined as follows:

ρB(x, y) =
card{δB(x, y)}

card{B} ,

where δB(x, y) = {a ∈ B : a(x) �= a(y)}. When we consider a single attribute in
this function, the distance between some agents that are in conflict R−

a is equal
to the distance between the agents that are neutral R0

a. That means that this
function assesses the relationship between agents more restrictively. Agents who
are neutral toward some issue (value 0 has been assigned) and all of the agents
that are against or for are treated as agents that have opposing goals.

When applying one of the two functions mentioned above, we can define
the relations between agents more generally by taking into account a set of
attributes. A pair x, y ∈ U is said to be:

– allied R+(x, y), if ρ(x, y) < 0.5,
– in conflict R−(x, y), if ρ(x, y) > 0.5,
– neutral R0(x, y), if ρ(x, y) = 0.5.

Set X ⊆ U is a coalition if for every x, y ∈ X, R+(x, y) and x �= y.
The concepts proposed by Pawlak that were discussed above have been

applied to the analysis of the relations between the base classifiers. It was
assumed that each of the base classifiers made an initial classification that was
saved as a vector of ranks. In this vector, one rank was assigned for each decision.
More precisely, each classifier is called an agent ag (in this paper, the concepts
classifier and agent are used interchangeably). It is assumed that for a classified
object x and for each classifier agi, a vector of ranks [ri,1(x), . . . , ri,c(x)], where
c is the number of decision classes, is generated. In order to apply the Pawlak’s
model, an information system should be generated based on these vectors of
ranks. The universe in such a system will be equal to the set of classifiers and the
set of issues that are considered by the classifiers will be equal to the set of deci-
sion classes. Two different methods of defining the function a : U → {−1, 0, 1},
a ∈ A were considered in this study.
In the first method the function a : U → {−1, 0, 1} for each a ∈ A is defined in
the following way

a(ag) =
{

1 if rag,a(x) = 1
−1 if rag,a(x) > 1

In the second method the function a : U → {−1, 0, 1} for each a ∈ A is defined
in the following way

a(ag) =

⎧
⎨

⎩

1 if rag,a(x) = 1
0 if rag,a(x) = 2
−1 if rag,a(x) > 2
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The first method for defining an information system is more restrictive.
Agents are for only to the decisions that received Rank 1. For all other decision
values the agents are against. In the second method for defining an information
system agent is neutral to the decisions that received Rank 2.

As was described above, in order to determine the coalitions of agents, two
functions can be used: the function of distance between agents ρ∗ or the conflict
function ρ. The first function is less restrictive because the distance between
agents which are neutral is smaller than distance between agents being in conflict.
Since defining neutrality in an information system does not exist in the first
method, both functions generate the same set of coalitions for this system. Thus,
three different methods of generating coalitions of classifiers based on Pawlak’s
model can be distinguished

– Method 1 - the first method for defining an information system is used,
– Method 2 - the second method for defining an information system and the

function of the distance between the agents are used,
– Method 3 - the second method for defining an information system and the

conflict function are used.

In this study, all three methods of creating coalitions will be considered and
compared.

Below, some aspects concerning the organization of a dispersed system, which
are taken from the author’s previous works [17,19,22], will be briefly discussed.

Before defining an information system, a vector of ranks for each classifier
must be generated. This is accomplished by generating a vector of probabilities
for each classifier using the m1 nearest neighbor classifier. The vector of ranks
is generated based on the vector of probabilities.

After generating the coalitions using one of the methods discussed above,
a certain common knowledge for the classifiers from one coalition is generated.
For this purpose, a method for the elimination of inconsistencies in the knowl-
edge is used. This method is described in more detail in the paper [17]. The
method consists in generating one aggregated decision table that is based on the
selected, relevant objects from the decision tables belonging to one coalition. In
this method, parameter m2 occurs, which determines the size of the set of rele-
vant objects. As was described above, the coalitions of classifiers are generated
dynamically. That is, for each new case, another set of coalitions is determined.
Additionally, new aggregated decision tables are generated for each new object.
This is a method that ensures that the aggregated knowledge is relevant to case
currently being considered.

Then, a vector of probabilities is generated based on the aggregated decision
table. This vector reflects the classification that is made by a coalition. The sum
of the probabilities vectors is calculated and the density based algorithm is used
to determine the set of decisions that have obtained the highest probability.
This is done in the following way. The decision with the largest value of the
coordinate of the vector sum is determined and then the set of decisions that is
densely located is calculated using the DBSCAN algorithm. This set is the set
of global decisions. In the DBSCAN algorithm, parameter ε, which determines
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the size of the neighborhood, is very significant. This method was also used in
the papers [17,19,21].

3 Experiments

The aim of the experiments was to compare the structure of the coalitions that
are created using three different methods of conflicts analysis that are based
on Pawlak’s model. The purpose of this comparison was to determine which of
the methods captures the relationships between the classifiers in the best way.
In the paper, some measures to determine the quality of the created coalitions
are proposed. These measures take into account the distances of the vectors of
the ranks that were generated by the agents from one coalition and are defined
below (AvgW , SDW ,MinW ,MaxW ). The relationships between the classifiers
are well reflected in the coalitions if the distances of the vectors of ranks that
were generated by the agents from one coalition are not too large. An additional
objective was to identify some general properties of the considered methods.
All of the experiments were performed on a Dell Inspiron N7110 Intel Core
i7-2670QM with 8 GB RAM and Windows 7. The algorithms were implemented
in C#. For the experiments, the following data from the medical domain, which
are in the UCI repository, were used - the Lymphography data set and the Pri-
mary Tumor data set. Both data sets were created at the University Medical
Centre, Institute of Oncology, Ljubljana, Slovenia. A numerical summary of the
data sets is as follows: Lymphography: # training examples - 104; # test exam-
ples - 44; # conditional attributes - 18; # decisions - 4; Primary Tumor: #
training examples - 237; # test examples - 102; # conditional attributes - 17; #
decisions - 22. In the repository, these data are available in a non-dispersed form
(one decision table). In order to perform the experiments, some transformations
to disperse the data sets were made. These transformations were described in the
paper [18]. As a result of the transformations, five different versions of dispersion
were obtained (with 3, 5, 7, 9 and 11 decision tables). The following designations
are used for these systems: WSDdyn

Ag1 - 3 decision tables; WSDdyn
Ag2 - 5 decision

tables; WSDdyn
Ag3 - 7 decision tables; WSDdyn

Ag4 - 9 decision tables; WSDdyn
Ag5 - 11

decision tables.
To compare of the structure of coalitions that were created using different

methods the following measures were used. To determine the number of coalitions
that were created the following measures are used:

– average number of coalitions created for objects from a test set AvgC
– standard deviation of number of coalitions created for objects from a test set

SDC

– minimum and maximum number of coalitions created for objects from a test
set MinC , MaxC
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To determine the number of agents in coalitions that were created, the mea-
sures are used:

– average number of agents in coalitions created for objects from a test set
AvgA

– standard deviation of the number of agents in coalitions created for objects
from a test set SDA

– minimum and maximum number of agents in coalitions that are created for
objects from a test set MinA, MaxA

In the proposed methods one agent may be included in many coalitions that are
generated for the test object. To determine the number of agents that simulta-
neously belong to more than one coalition, the measures are used:

– total number of times when one agent has been included in many coalitions r
– average number of times when one agent has been included in many coali-

tions r

To determine the distances of vectors of ranks that were generated by agents
from one coalition, the measures are used:

– average value of the Euclidean distances between vectors of ranks generated
by pairs of agents belonging to the same coalition AvgW

– standard deviation of the Euclidean distances between vectors of ranks gen-
erated by pairs of agents belonging to the same coalition SDW

– minimum and maximum value of the Euclidean distances between vectors of
ranks generated by pairs of agents belonging to the same coalition MinW ,
MaxW

Some of these measures are described in more detail in the article [19].
In order to optimize the parameters and to compare the quality of the clas-

sification, the following measures are also used:

– estimator of classification error e in which an object is considered to be prop-
erly classified if the decision class used for the object belonged to the set of
global decisions generated by the system;

– estimator of classification ambiguity error eONE in which object is considered
to be properly classified if only one, correct value of the decision was generated
for this object;

– the average size of the global decisions sets dWSDdyn
Ag

generated for a test set.

In the methods that are used in a dispersed system, certain parameters are
present: m1 - the parameter of the method for generating the vectors of ranks
for classifiers, m2 - the parameter of the method for generating the common
knowledge for the coalition and ε - the parameter of the DBSCAN algorithm.
These parameters were optimized as follows. Firstly, parameters m1 and m2 were
optimized - values m1,m2 ∈ {1, . . . , 10} were examined. Then, the minimum
value of the parameters m1 and m2 were chosen, which resulted in the lowest
value of the estimator of the classification error on a test set to be reached. The
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optimum values for these parameters can be chosen unambiguously. Parameter ε
was optimized by performing a series of experiments with different values of this
parameter that were increased from 0 by the value 0.0001. Then, a graph was
created and the points that indicated the greatest improvement in the efficiency
of inference were selected. For some sets of data, there were many areas on the
graph in which there was a noticeable improvement - a significant decrease in the
value of the estimator of classification error was observed. The Lymphography
data set is an example of such a set. Therefore, in Table 3, two optimal values of
parameter ε are given for each system. It should be noted that the ε parameter
had no effect on the coalition’s structure. In the rest of the paper, the results
that were obtained for the optimal values of the parameter m1, m2 and ε are
presented.

The main results, which are related to the analysis of the structure of the
coalitions are presented in Tables 1 and 2. In the tables, the following informa-
tion is given: the name of the dispersed system (System); the method that was
used to generate the coalitions (Method): 1 - the first proposed method for cre-
ating an information system, 2 - the second proposed method for creating an
information system with the function of the distance between agents, and 3 -
the second proposed method for creating an information system with the conflict
function; the measures that are related to the structure of the coalitions: AvgC ,
SDC , MinC , MaxC , AvgA, SDA, MinA, MaxA, r, r, AvgW , SDW , MinW and
MaxW .

Table 1. Comparison of the coalitions that were generated by Methods 1, 2, and 3
(Lymphography data set)

System Approach # coalitions # agents in
coalitions

# joint agents # distance within
coalition

AvgC/SDC/
MinC/MaxC

AvgA/SDA/
MinA/MaxA

r/r AvgW /SDW /
MinW /MaxW

WSDdyn
Ag1 1 1.32/0.51/1/3 2.38/0.74/1/3 6/0.14 5.97/4.79/0/18

2 1.16/0.37/1/2 2.63/0.66/1/3 2/0.045 5.33/3.39/0/12

3 1.89/0.57/1/3 1.59/0.69/1/3 0/0 0.94/1.53/0/8

WSDdyn
Ag2 1 2.48/0.50/2/3 2.02/1/1/4 0/0 2.82/4.96/0/24

2 1.57/0.65/1/3 3.58/1.31/1/5 27/0.61 15.10/9.92/0/34

3 2.82/0.65/2/4 1.97/0.78/1/4 24/0.55 2.05/3.24/0/15

WSDdyn
Ag3 1 2.61/0.65/2/4 3.15/1.72/1/6 54/1.23 14.83/14.70/0/53

2 1.89/0.86/1/4 5.12/1.52/1/7 117/2.66 24.58/12.85/0/54

3 3.25/0.86/2/5 2.67/1.34/1/6 74/1.68 4.99/7.08/0/29

WSDdyn
Ag4 1 3.34/1.17/2/6 4.86/1.84/1/8 319/7.25 16.71/12.02/0/54

2 2.39/1.07/1/5 6.59/1.45/2/9 296/6.73 33.33/15.41/6/72

3 3.43/1.14/2/7 3.40/1.61/1/8 118/2.68 7.25/8.64/0/36

WSDdyn
Ag5 1 3.61/1.05/2/7 3.85/1.58/1/8 128/2.91 16.46/15.09/0/70

2 4.07/0.94/2/7 3.83/1.82/1/9 201/4.57 15.44/18.25/0/92

3 5.43/1.03/3/8 2.49/1.15/1/6 112/2.55 3.16/3.93/0/26
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Table 2. Comparison of the coalitions that were generated by Methods 1, 2, and 3
(Primary Tumor data set)

System Approach # coalitions # agents in
coalitions

# joint
agents

# distance within
coalition

AvgC/SDC/
MinC/MaxC

AvgA/SDA/
MinA/MaxA

r/r AvgW /SDW /
MinW /MaxW

WSDdyn
Ag1 1 1.16/0.36/1/2 2.70/0.51/1/3 13/0.13 190/150/0/740

2 1.04/0.19/1/2 2.92/0.26/2/3 4/0.04 228/147/11/740

3 1.18/0.38/1/2 2.69/0.48/1/3 17/0.17 681/412/0/1760

WSDdyn
Ag2 1 1.26/0.44/1/2 4.27/1.06/1/5 41/0.40 1671/1188/0/5146

2 1.19/0.39/1/2 4.60/0.68/2/5 46/0.45 1884/1077/163/5146

3 1.39/0.53/1/3 4.33/0.68/3/5 105/1.03 3097/1173/474/6520

WSDdyn
Ag3 1 1.51/0.71/1/4 5.75/1.42/2/7 171/1.68 1934/1407/25/6862

2 1.29/0.53/1/3 6.33/0.93/3/7 121/1.19 4377/199/50/1356

3 2.76/0.96/1/6 4.60/1.11/2/7 582/5.71 3485/2168/157/10084

WSDdyn
Ag4 1 1.96/0.82/1/4 7.25/1.45/3/9 531/5.21 2172/1438/46/8354

2 1.76/0.74/1/4 7.66/1.29/1/9 461/4.52 4396/2748/0/12542

3 6.38/1.37/3/11 3.44/0.95/1/7 1323/12.97 356/371/0/2476

WSDdyn
Ag5 1 1.81/0.74/1/4 8.58/2.41/3/11 466/4.57 2563/1617/146/6104

2 1.17/0.42/1/3 10.47/0.99/7/11 124/1.22 449/101/180/736

3 7.41/1.81/3/12 3.73/1.47/1/9 1698/16.65 343/430/0/4096

Based on the results of the experiments given in Tables 1 and 2, the following
conclusions can be drawn. For the Lymphography data set, Method 2 created
the fewest number of coalitions, but the coalitions were the most numerous.
The exception was the dispersed system with eleven classifiers, for this system
Method 1 demonstrated such behavior. Method 3 created the greatest number
of coalitions, which, however, are the least numerous. When we consider the
diversity of the classifiers within a coalition - the distances of the vectors of ranks
that were generated by the classifiers from one coalition - it can be observed that
the smallest distance was obtained by Method 3, while the largest distance was
obtained by Method 2. This means that Method 3 created the most consistent
coalitions and Method 2 created coalitions that included classifiers that were
the most different from each other. The number of joint agents varied for the
different dispersed systems, it was difficult to find some regularity. However, it
can be concluded that Method 3 generated a smaller number of joint agents than
the other methods.

For the Primary Tumor data set, the differences between the results that
were obtained by Methods 1 and 2 compared to the results that were obtained
by Method 3 are much more noticeable. This time Methods 1 and 2 had a ten-
dency to generate one coalition that consisted of all of the classifiers (the value of
the measure AvgC is very close to 1). This is a very unfavorable situation because
it means that the methods lost the ability to capture the relationships between
the classifiers. The first presumption that comes to mind is that the vectors
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of ranks that were generated by the classifiers had to be very similar. After a
thorough analysis, it was found that this was not true - the vectors were very
diverse. The methods had lost the ability to capture the relationships between
the classifiers because the vectors, for this data set, are very long (22 decision
classes) and only few decisions had a Rank 1 or 2. Thus, for both methods of
generating an information system, the vast majority of the values in the informa-
tion system was equal to −1 (that is, the values in the system were compatible
with each other, even though the vectors were very different). In the first method
for generating the information system, the situation was even worse. The use of
the distance function, which reduces the distance between the neutral agents,
resulted in a loss of the ability to capture the relationships. For this data set,
only Method 3 generated a different result - a larger number of coalitions, which
were less numerous. However, in this method, a large number of joint agents was
obtained. Simply, one classifier was allied with several other and coalitions that
had duplicate classifier were created. It should be noted that despite such a large
number of joint agents, the smallest distance within coalitions was obtained by
Method 3 for the systems with eleven and nine classifiers.

Some general conclusions can be drawn. Method 3 generally generated more
coalitions that are less numerous. Moreover, this method usually produced coali-
tions with a smaller distance within the coalitions. In the case of data sets that
had a large number of decision classes, Methods 1 and 2 did not provide satis-
factory results - they lost their ability to capture the relationships between the
classifiers.

As was mentioned earlier, the quality of the classification was also analyzed
in this study. The results are shown in Tables 3 and 4. In the tables, the follow-
ing information is given: the method that was used to generate the coalitions
(Methods 1, 2 or 3); the name of the dispersed system (System); the optimal
parameters values m1, m2 and ε (Parameters); the measures that were used to
determine the quality of the classifications: e, eONE and dWSDdyn

Ag
; the time t

needed to analyze a test set expressed in minutes. In the tables, the best results
in terms of the measures e and dWSDdyn

Ag
are bolded.

Based on the results of the experiments given in Tables 3 and 4, the follow-
ing conclusions can be drawn. It is difficult to say that one method is the best.
For the Lymphography data set, Methods 2 and 3 achieved better results than
Method 1. For the Primary Tumor data set, the results that were obtained by
various methods are similar. The question arises - why are the results comparable
despite the fact that the structure of the coalitions that were generated by different
methods was so significantly different. The cause lies in the method for generating
global decisions. In this method, the structure of the coalitions was not taken into
account. This means that both large and small coalitions had the same influence
on the final shape of the global decisions. In addition, if one classifier was included
in many coalitions, he had the same impact on global decisions in each of them.
So, in fact, his voice was counted several times. In a future work, it is planned
to use the strength of coalitions in a dispersed system. The ideas proposed in the
paper [20] will be used. In these studies, the aim was to examine the structure of
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Table 3. Comparison of the classification quality (Lymphography data set)

Method 1

System Parameters e eONE d
WSD

dyn
Ag

t

m1/m2/ε

WSDdyn
Ag1 1/1/0.0184 0.091 0.477 1.386 0.01

1/1/0.0019 0.136 0.182 1.045 0.01

WSDdyn
Ag2 9/1/0.0421 0.136 0.682 1.545 0.01

9/1/0.0006 0.227 0.273 1.045 0.01

WSDdyn
Ag3 2/1/0.0291 0.091 0.591 1.500 0.01

2/1/0.0006 0.182 0.295 1.114 0.01

WSDdyn
Ag4 1/1/0.0356 0.114 0.682 1.568 0.01

1/1/0.0006 0.159 0.341 1.182 0.01

WSDdyn
Ag5 2/1/0.0221 0.205 0.545 1.341 0.03

2/1/0.0006 0.250 0.500 1.250 0.03

Method 2

WSDdyn
Ag1 3/1/0.0184 0.045 0.432 1.386 0.01

3/1/0.0019 0.136 0.182 1.045 0.01

WSDdyn
Ag2 2/1/0.022 0.091 0.659 1.568 0.01

2/1/0.0004 0.182 0.273 1.091 0.01

WSDdyn
Ag3 1/1/0.0223 0.114 0.614 1.500 0.01

1/1/0.0004 0.159 0.295 1.136 0.01

WSDdyn
Ag4 1/2/0.0226 0.091 0.591 1.500 0.03

1/2/0.0004 0.159 0.341 1.182 0.03

WSDdyn
Ag5 2/1/0.031 0.159 0.614 1.455 0.02

2/1/0.0004 0.227 0.500 1.272 0.02

Method 3

WSDdyn
Ag1 2/1/0.0321 0.068 0.545 1.477 0.01

2/1/0.0026 0.182 0.227 1.045 0.01

WSDdyn
Ag2 1/1/0.0486 0.091 0.636 1.545 0.01

1/1/0.0006 0.227 0.273 1.045 0.01

WSDdyn
Ag3 1/1/0.0521 0.114 0.545 1.432 0.01

1/1/0.0011 0.159 0.295 1.136 0.01

WSDdyn
Ag4 1/1/0.0625 0.114 0.568 1.455 0.01

1/1/0.0009 0.159 0.318 1.159 0.01

WSDdyn
Ag5 2/1/0.0489 0.159 0.591 1.432 0.06

2/1/0.0009 0.227 0.477 1.250 0.06
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Table 4. Comparison of the classification quality (Primary Tumor data set)

Method 1

System Parameters e eONE d
WSD

dyn
Ag

t

m1/m2/ε

WSDdyn
Ag1 1/2/0.00121 0.392 0.843 2.745 0.01

WSDdyn
Ag2 2/2/0.00121 0.333 0.853 3.206 0.02

WSDdyn
Ag3 2/1/0.00021 0.353 0.922 4.000 0.01

WSDdyn
Ag4 2/3/0.00021 0.353 0.892 3.706 0.12

WSDdyn
Ag5 4/2/0.00021 0.314 0.922 4.294 0.15

Method 2

WSDdyn
Ag1 1/2/0.00121 0.392 0.853 2.755 0.01

WSDdyn
Ag2 2/2/0.00121 0.333 0.853 3.225 0.02

WSDdyn
Ag3 1/1/0.00021 0.343 0.922 4.333 0.01

WSDdyn
Ag4 3/3/0.00021 0.353 0.892 3.755 0.14

WSDdyn
Ag5 1/2/0.00021 0.324 0.922 4.284 0.19

Method 3

WSDdyn
Ag1 2/2/0.00121 0.392 0.843 2.745 0.01

WSDdyn
Ag2 4/2/0.00041 0.343 0.863 3.167 0.03

WSDdyn
Ag3 7/1/0.00021 0.353 0.902 4.049 0.03

WSDdyn
Ag4 2/3/0.00021 0.353 0.892 3.667 0.05

WSDdyn
Ag5 3/1/0.00021 0.314 0.922 4.275 0.06

the coalitions that were generated using different modifications of Pawlak’s model
and to identify some general properties, which are presented above.

As was mentioned earlier, the main aim of this study was to analyze the
structure of the clusters that are created using three methods, rather than com-
paring the quality of the classification. However, in order to set a reference point
for the quality of the classification, experiments were conducted in which no
method for creating coalitions of classifiers was used. When simply based on the
vectors that are generated by the classifiers, the decisions are made by applying
the weighted majority vote method. Weights for the classifiers are determined
based on the error rate of those classifiers that were estimated by the training
set. The results for both sets of data are given in Table 5. In the table, the values
of the analogous measures as in Tables 3 and 4 are given.

As can be seen for the Lymphography data set, better results were obtained
by Methods 1, 2 and 3 than by not creating coalitions. For the Primary Tumor
data set and for some versions of dispersion, better results were obtained with-
out creating coalitions. As was already mentioned, Methods 1 and 2 lost their
ability to capture the relationships between the classifiers for this set of data. In
addition, the cause of such results is probably that the structure of the coalitions
was not taken into account in the method for generating global decisions.
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Table 5. Weighted majority vote of individual classifiers

Lymphography data set Primary Tumor data set

# decision

tables

e eONE Average number

of generated

decisions

t # decision

tables

e eONE Average number

of generated

decisions

t

3 0.182 0.205 1.023 0.01 3 0.392 0.804 2.627 0.01

5 0.205 0.250 1.045 0.01 5 0.314 0.794 3.255 0.01

7 0.205 0.318 1.136 0.01 7 0.373 0.892 3.863 0.01

9 0.159 0.318 1.159 0.01 9 0.333 0.892 3.843 0.02

11 0.227 0.500 1.273 0.01 11 0.294 0.912 4.520 0.02

4 Conclusions

In this paper, three different modifications of the conflict analysis method that
was proposed by Pawlak were considered. These methods were applied to two
medical data sets, which were dispersed in five different ways. The study com-
pared the structure of the coalitions of the classifiers that were obtained using
these methods. It was found that Method 3 had the greatest ability to discover
the relationships between the classifiers. Methods 1 and 2 had a tendency to
generate a small number of coalitions, which consisted of a large number of clas-
sifiers. In addition, for data sets with a large number of decision classes, Methods
1 and 2 lost their ability to capture the relationships between the classifiers.
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Abstract. This paper presents an approach of comprehensive operational con-
trol of the natural and anthropogenic territory safety based on the integration of
Data warehouse, On-line analytical processing and Knowledge engineering
technologies. It looks at the description of data warehouse that provides a united
informational resource of emergency monitoring. There is a description of
OLAP-models that provide a multidimensional analysis and on-line modeling the
state of technosphere objects and environment parameters. The authors suggest
some criteria of emergency risk assessment using expert knowledge about danger
levels. It is demonstrated now some of the proposed solutions could be adopted in
territorial decision making support system. Comprehensive operational control
allows the authorities to detect threat, prevent emergencies and ensure a com-
prehensive safety.

Keywords: Operational control � Comprehensive monitoring � Danger level
assessment � Analytical indicators � Prevention of emergencies � Territory safety

1 Introduction

Early prevention of natural and anthropogenic emergencies is a major factor for
effective territory safety management. To decrease the risk of emergency it has to
provide a comprehensive monitoring of current processes, real-time control of the state
of technosphere and environment objects and adequate assessment of threats [1, 2]. At
present, a lot of control tools are being actively introduced in different areas; a huge
amount of data is collected and processed in industrial automated systems [3, 4].
However, as usual, the monitoring systems provide the observation of basic parameters
using sensors that do not present the user the powerful analysis tools. Moreover, in
many cases the natural and technological processes are considered independently. It
does not allow the analyst to assess the situation comprehensively taking into account
the influence of many risk factors [5]. Rising of efficiency in applying informational
resources and operability of solving analytical tasks require the development of tech-
niques that provide modelling of present conditions and operational assessment of
emergency risk based on monitoring data.
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Towards this end, in the paper, it is suggested to apply the approach of compre-
hensive operational control of the natural and anthropogenic territory safety based on
the integration of Data warehouse, On-line analytical processing and Knowledge
engineering technologies. The Data warehouse provides the data consolidation from
heterogeneous sources and forms a united informational resource for emergency
monitoring. The On-line analytical processing presents a technique for multidimen-
sional in-depth data analysis and modelling the state of technosphere objects and
environment parameters. The Knowledge engineering technology makes it possible to
assess the degree of danger and emergency risks using expert knowledge. The practical
importance of this work lies in the implementation of the proposed solutions in the
territorial decision making support system of Krasnoyarsk region.

2 Comprehensive Monitoring of the Territory Safety

Krasnoyarsk region is the second largest federal subject of Russia and the third largest
subnational governing body by area in the world. Krasnoyarsk region lies in the middle
of Siberia and occupies an area of 2.4 million square kilometres. This territory is
characterised by heightened level of natural and anthropogenic emergencies which is
determined by social-economic aspects, large resource potential, geographical location
and climatic conditions. In the territory there are many accident prone technosphere
objects including radiation-related objects, chemically-dangerous objects and danger-
ously explosive objects; hydraulic facilities; critically important objects; and a lot of
survival objects. Moreover, the territory is located in seven climatic zones. A number of
large-scale natural emergencies, such as flood, forest fire, gale-strength wind and
anomalously low temperature are recorded each year [6].

In order to improve the population and territory safety, local authorities take some
emergency prevention and mitigation actions. A lot of monitoring systems are being
actively introduced within the region. The main core of the regional emergency
management is the Center of Emergency Monitoring and Prediction of Krasnoyarsk
region (CEMP). Estimation of emergency risk and consequences are major functional
tasks of CEMP. One of basic issues that provide early emergency preventing is a
comprehensive operational control of the technosphere and environment parameters.
Comprehensive operational control of the territory safety is based on consolidation and
centralised storage of monitoring data, analytical modelling of the current conditions
and operational assessment of the danger level (Fig. 1).

To monitor technosphere and environment parameters there has been developed the
specialised data warehouse [7]. The data warehouse provides the integration of
information from multiple, distributed and heterogeneous databases and other data
sources. The developed data warehouse accumulates the actual data from territorial
monitoring systems using on-line reports or special informational packages and from
automatic control systems (sensors) directly using export procedures. The compre-
hensive monitoring covers the following areas: meteorological situation, hydrological
situation, snow avalanche situation, seismological situation, radiation situation,
municipal facilities, emergencies and other accidents fixed in the territory.
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For emergency monitoring there has been developed the special structure of cen-
tralised data warehouse which combines historical, operational and reference data.
Depending on the specific features a domain and taking into account the opportunity to
apply the modern data processing techniques the structure of data warehouse includes
three principal layers:

• Layer of stationary storage that contains the main part of monitoring data and
consists of facts tables and dimensions tables.

• Layer of analytical objects that contains the analytical models which are used for
on-line controlling the state of technosphere and environment objects, aggregates
tables with interim results and analytical reports.

• Layer of pre-loading processing that provides loading and preliminary processing of
monitoring data from heterogeneous operational databases and contains data
sources, import and export procedures and temporary tables.

Thus, the centralised data warehouse combines monitoring data from different
sources and makes up a united informational resource for comprehensive data pro-
cessing: analytical modelling and operational assessment of the territory safety.

3 Analytical Modelling of the State of Technosphere
and Environment Objects

Analytical modelling of the state of technosphere and environment objects is based on
OLAP (On-line Analytical Processing) technology that provides an efficient means to
analyse and present data as an easy-to-understand and an easy-to-use data model in
form of multidimensional cubes. For analytical processing of monitoring data the set of
specific OLAP-models has been developed [8]. Description of OLAP-models sample is
represented in Table 1.

Fig. 1. Comprehensive operational control of the territory safety
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Table 1. OLAP-models for modeling of the state of technosphere objects and environment
parameters

Monitoring area OLAP-model characteristic

Controlled events OLAP-model: forest fires
Facts: fatalities, victims, material damage
Dimensions: date, place, type, fire-prevention groups
OLAP-model: municipal accidences
Facts: adult victims, children victims, material damage
Dimensions: date, place, type

Meteorological
situation

OLAP-model: temperature
Facts: temperature
Dimensions: date, place, observation point
OLAP-model: speed and direction of wind
Facts: speed of wind and direction of wind
Dimensions: date, place, observation point
OLAP-model: rainfall
Facts: rainfall
Dimensions: date, place, observation point

Hydrological
situation

OLAP-model: water level of the rivers
Facts: current water level, crucial water level, exceeding of crucial level
Dimensions: date, river, observation point
OLAP-model: water discharge of the hydro power plants
Facts: minimal acceptable level of discharge, maximal acceptable level
of discharge, water discharge level
Dimensions: date, hydro power plant
OLAP-model: ice conditions
Facts: count of ice events, ice event description
Dimensions: date, river, observation point, freezing-over type

Seismological
situation

OLAP-model: seismic events
Facts: depth, magnitude, diameter of the transient cavity, epicenter
Dimensions: date, place, observation point, seismic event type

Radiation
situation

OLAP-model: expose dose of gamma-ray
Facts: exposure dose of gamma-ray
Dimensions: date, place, observation point

Municipal
facilities

OLAP-model: pressure of hot water supply
Facts: current pressure, minimal acceptable pressure, maximal
acceptable pressure, departure from minimum, departure from maximum
Dimensions: date, boiler plants, observation point
OLAP-model: temperature of hot water supply
Facts: current temperature, minimal acceptable temperature, maximal
acceptable temperature, departure from minimum, departure from
maximum.
Dimensions: date, boiler plants, observation point

State of span OLAP-model: level of snow load
Facts: level of snow load, maximal acceptable level of snow load
Dimensions: date, place, observation point
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The developed OLAP-modes can be represented as statistical tables or cross-tables.
A statistical table represents the analytical processing result as a relational table with
data filtration and sorting functions. A cross-table represents the multidimensional cube
and provides the tool for intuitive manipulation of monitoring data by applying the
such analytical functions as table pivoting, aggregation and detailing, “slicing” and
“dicing”. In addition, the result of OLAP-modeling can be visualised as a diagram or a
map [9]. All these facilities provide the opportunity to discover new analytical relations
between parameters and explore the causes of the current conditions.

4 Operational Assessment of the Territory Safety Based
on Analytical Indicators

The assessment of the territory safety is based on forming analytical indicators by
comparing actual monitoring data with their critical values using expert knowledge
about danger levels. The analytical indicator is defined for each OLAP-model
according to values of controlled parameters [10]. In order to form analytical indicator
the knowledge representation model has been developed which contains the collection
of rules with the following construction:

I : M : IF\ðx1 � a11Þ& ðx2 � a21Þ&. . .& ðxi � aijÞ& ðxn � anmÞ THEN \Qi [ ð1Þ

The rule specification is formed by two identifiers: I – is an identifier of unique rule
name in knowledge base; M – is an identifier of effected zone – is a pointer to specific
OLAP-model. The rule nucleus is interpreted as a cause-effect relation; the antecedent
describes the current state and has a logical value: truth or false, the consequent
presents one or more operations. In the rule xi – is a value of i-th parameter of
OLAP-model; aij – is a critical value of i-th parameter for j-th danger level; “*”
symbol is a comparative operation (e.g. >, <, =); Qj – is an operation to designate
analytical indicator value of j-th danger level; i ¼ 1; n, n – is a number of controlled
parameters; j ¼ 1;m, m – is a number of analytical indicator values.

The reasoning procedure is a sequential comparison of antecedent of rule with
actual data and execution of relevant consequent. In knowledge base there are three
values of analytical indicator (danger levels):

• “Green” – the situation is normal – the value of controlled parameter does not
exceed the critical value.

• “Yellow” – the situation requires high attention – the value of controlled parameter
is approaching to critical value, there is an emergency risk.

• “Red” – the situation is dangerous and requires an immediate reaction – the value of
controlled parameter exceeds the critical value.

For each danger level according to geographical and climate specification of the
territory as well as according to characteristics of technosphere objects the critical
values of controlled parameters have been identified by experts. The example of criteria
of emergency risk estimation for Krasnoyarsk region is represented in Table 2.
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The danger level of monitoring area is identified by analytical indicators values of
respective OLAP-models: the monitoring area has the worst danger level among danger
levels of constituent OLAP-models. Thus, assessment of controlled parameters based
on analytical indicators provides the assessment of the current condition for monitoring
areas separately and territory safety as a whole.

Table 2. Criteria of emergency risk estimation

Controlled parameter Condition Danger
level

Emergencies, accidences (E, count) E = 0
E > 0, one or more days ago
E > 0 today

Green
Yellow
Red

Fire hazard class (Class) Class � 3
Class = 4
Class = 5

Green
Yellow
Red

Temperature (T, °C) Else
30 � T < 35 or -40 < T � -35
T � 35 or T � -40

Green
Yellow
Red

Speed of wind (WS, m/s) 0 < WS < 15
15 � WS < 25
WS � 25

Green
Yellow
Red

Water level of the rivers (RL, m) 0 < RL < Crit1−10%
Crit-10% � RL < Crit
RL � Crit

Green
Yellow
Red

Water discharge of the hydro power
plants (HD, m)

Min + 0.5 < HD < Max-0.5
Min < HD � Min + 0.5 or
Max + 0.5 � HD < Max
HD � Min or HD � Max

Green
Yellow
Red

Snow level (SL, m) Min < SL < Max
SL < Min or SL > Max

Green
Red

Earthquake, magnitude (M, level of
Richter scale)

M < 3
3 � M < 5
M � 5

Green
Yellow
Red

Expose dose of gamma-ray (ED,
McR/h)

ED < 20
20 � ED < 40
ED � 40

Green
Yellow
Red

Pressure of hot water supply (hwPr,
atmosphere)

Min < hwPr < Max
hwPr < Min or hwPr > Max

Green
Red

Temperature of hot water supply
(hwT, °C)

Min < hwT < Max
hwT < Min or hwT > Max

Green
Red

Level of snow load (SL, sm) Else
SL � 70

Green
Yellow

Deformation range of supporting
girders (D, mm)

D < 0.4
0.4 � D < 0.6
D � 0.6

Green
Yellow
Red

aCritical values (Crit), minimal (Min) and maximal (Max) acceptable values are identified monthly
by expert committee based on the analysis of the current situation in the particular territory.
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5 Implementation of Operational Control Tools

Proposed approach to operational control of the territory safety has been implemented
in the automated system of on-line control of natural and anthropogenic emergencies
“ESPLA-M”. Figures 2 and 3 show the example of hydrological situation visualisation.
Figure 1 demonstrates the water discharge of the hydro power plants in form of
cross-table. Figure 2 illustrates an overriding of water level in the river on the map. In
additional, the monitoring results are automatically published on website of CEMP
(http://tcmp.krasn.ru) to display the current state and predicted data about emergencies
in region. Developed system is applied successfully in Ministry of Emergency of
Krasnoyarsk region as an effective decision-making support tool.

Fig. 2. Visualization of hydrological situation – water discharge of the hydro power plants

Fig. 3. Visualisation of hydrological situation – water level in the river
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6 Conclusion

This paper presents an approach to comprehensive operational control of the natural
and anthropogenic territory safety based on the integration of Data warehouse, On-line
analytical processing and Knowledge engineering technologies. Unlike in many
existing works, proposed approach considers the natural and technological processes
comprehensively taking into account the influence of many risk factors. The data
warehouse provides a united informational resource through consolidation of moni-
toring data. The OLAP-technique and data visualisation tools provide the modelling
and assessment of the emergency situation and allow us to develop the powerful
analytical system instead of traditional monitoring systems which observe only
sensor-based basic parameters. Operational assessment tools allow the analyst to get
general estimates of the emergency risk and, if it is necessary, to proceed to the
investigation of controlled parameters in detail. Implementation of proposed solutions
allows the authority to prevent emergency and ensure a comprehensive territory safety.

The future research lies in developing a strategic control approach that provides the
assessment of emergency situation by considering the statistical measures of the ter-
ritory safety and formation of the relevant control recommendations.

The reported study was funded by Russian Foundation for Basic Research
according to the research project No. 16-37-00014.
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Abstract. Recent works in metaphor detection highlight the impor-
tance of psychological features such as imageability and concreteness to
identify metaphors in text. However, the aspect of imprecision that is
intrinsic to cognitive concepts is yet to be explored fully. Furthermore,
psychological features give us an approximate indication of whether a
particular textual usage is metaphorical or not. In this paper, we reflect
upon the problem of the inherent vagueness in psychological features and
approximation in classification through the notion of fuzzy rough sets.
We develop a fuzzy-rough rule-based classifier to detect metaphors in
text and evaluate the performance of the proposed model on a dataset of
nominal metaphors. The results indicate the suitability of incorporating
fuzzy-rough sets over SVM and the traditional rough set model.

Keywords: Fuzzy rough sets · Metaphor detection · Conceptual
metaphors · Computational linguistics · Psychological features

1 Introduction

Metaphor is a ubiquitous phenomenon in daily communication. The various
studies on correlation between metaphors and different cognitive aspects such as
sentiment [1] and reasoning [2,3] further highlight the importance of metaphor
processing to achieve a more realistic human computer interaction. In the year
1980, Lakoff and Johnson [4] put forth the idea of conceptual metaphor, a medium
to illustrate an abstract concept in target domain through a relatively concrete,
well-defined source domain. Concepts in the well-defined domain are relatively
more intelligible and thus more familiar and easier to imagine. Let us consider
a simple instance of a nominal metaphor:

An atom is a solar system. (a)

In sentence (a), there is a mapping between the source domain, solar system and
the target domain, atom. To most humans, astronomical phenomena associated
with concepts, sun and planets are more familiar and thereby represent con-
crete concepts. In contrast, sub atomic phenomena associated with nucleus and
electrons appear more abstract. This may result from greater familiarity with
astronomical events as compared with sub-atomic events.

c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 271–279, 2017.
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Taking a cue from this contrast in the perception of concepts in source-
target domains, prior studies underline the usefulness of psychological features
(also known as conceptual features) such as imageability [5] and abstractness
[6] in identifying metaphors. However, the hypothesis that a concrete concept
is used metaphorically to explain a relatively abstract concept is not universal.
It is possible to generate metaphors by mapping a concrete concept from target
domain to a concrete concept in source domain. Examples of this kind of mapping
are <My husband is a gem> and <The banyan tree is an umbrella>. Likewise,
a concept in the target domain may be less imageable than the mapped concept
in the source domain. Another interesting aspect of psychological features is its
dependency on individual’s perception and subjective understanding towards a
concept. Furthermore, all these features give us an approximate indication of
whether a particular usage is metaphorical or not. Thus, we believe that one
needs to tackle the orthogonal dimensions of imprecision and approximation
while identifying metaphors.

Rough sets [7] is a mathematical theory which deals with approximations in
representing concepts while making a decision. In rough set analysis, discretiza-
tion leads to abrupt transition between intervals and ignores the information
to which extent a variable belongs to a certain interval. However, the flow of
information in concepts conveyed by human language is vague and gradual. To
resolve the problem of abrupt transitions, we use the hybridized concept of Fuzzy
rough set [9], which is an amalgamation of Fuzzy sets [8] and Rough sets [7].
It models the impreciseness in data using the concept of approximation like
in rough sets and resolves the problem of information loss and abrupt transi-
tion due to discretization by incorporating degree of membership as in fuzzy
sets. Fuzzy rough sets obviate the need to discretize the data. In this paper,
we build a rule-based metaphor classifier using fuzzy rough sets where decisions
(metaphor or literal) are crisp sets and relations are fuzzy. Feature engineer-
ing is another important aspect of any classification system. We perform feature
selection using fuzzy rough QuickReduct technique proposed by Jensen and Shen
[10] to obtain a subset of informative features called reduct. The availability of
annotated dataset for rule-based and supervised learning is an ongoing process
in the research community. For our experiments, we create a small dataset of
nominal metaphors and make it publicly available1.

The remainder of the paper is organized as follows. We provide a glimpse to
the previous work on metaphor detection using psychological features in Sect. 2.
We elaborate our proposed application to detect metaphors using Fuzzy rough
set theory in Sect. 3. We analyze the applicability of the proposed approach
through experiments on a dataset of nominal metaphors in Sect. 4 which is
followed by the conclusion.

1 Link: https://goo.gl/jXhSnG.

https://goo.gl/jXhSnG
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2 Related Work

In this section, we provide a brief overview of existing work pertinent to the pro-
posed work. Turney et al. [6] showed the utility of psychological feature, abstract-
ness by demonstrating its correlation with the context of usage. Bracewell et al.
[5] proposed a metaphor detection model by employing imageability peaks and
topic modeling. Tsvetkov et al. [12] utilized features such as imageability and
abstractness from MRC Psycholinguistic Database [15]. Gargett and Branden
[14] proposed inclusion of sensory features from Affective Norms for English
Word (ANEW) [22] to improve the process of metaphor detection. Rai et al. [16]
analyzed the usefulness of feature sets namely conceptual, affective and contex-
tual to detect metaphors in an open text.

To the best of our knowledge, there is no existing work which takes into
account uncertainties involved in the process of metaphor detection. The above
methods adopt a deterministic approach where each feature is assigned a fixed
value. The novelty of our approach lies in its ability to capture imprecision in
psychological features and approximation in concepts while detecting metaphors.

3 A Model for Metaphor Detection Using Fuzzy Rough
Sets

In this paper, we restrict the problem of metaphor detection to nominal
metaphors. Nominal metaphors follow the structure of subject-object (S-O) in
sentence to explicitly map the source and target domains. We extract psycholog-
ical features namely imageability, concreteness, familiarity and meaningfulness
for the subject and object using the MRCP database [15]. Usually, a metaphor-
ical sentence becomes incongruous due to the mapping between seemingly unre-
lated source and target domains. To measure the degree of incongruity in sen-
tence, we calculate relatedness between subject and object. It has been shown
that a metaphor is rarely without an emotion [24] thus affectiveness for every
sentence is also computed (refer Sect. 3.2).

3.1 Problem Representation

Let T = (U,A,D) be an information system where U represents a finite,
nonempty set of objects, A is a finite, nonempty set of attributes such that
U −→ Va,∀a ∈ A where Va represents the range for attributes and D =
{d1, d2, d3, ..., dm} represents a set of decision classes. In our case, the objects are
represented as a tuple <subject, object> and D = {M,N} where M represents
a class for metaphorical text and N for literal text. In rough set theory, discerni-
bility relation is used to partition data into equivalence classes based on a subset
of attributes, B ⊆ A. However, this condition is relaxed in fuzzy rough sets and
a similarity relation is used to construct fuzzy tolerance classes as shown in (1)
and (2).

RB(x, y) = Ta∈B {Ra(x, y)}. (1)
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where T is the T-norm. Ra(x, y) is the degree of similarity between x and y with
respect to a feature, a ∈ B. For continuous valued attributes, it is defined as (2):

Ra(x, y) = 1 − |Va(x) − Va(y)|
|Vamax

− Vamin
| . (2)

where Va(x) and Va(y) represent the values of feature, a for x and y respectively.
Vamax

and Vamin
represent the largest and the smallest values of a. For nominal

attributes, the similarity function, Ra(x, y) = 1 if a(x) = a(y) else 0.
Let X ⊆ U be a set of objects. The membership degree of x in the lower

approximation of X is defined as (3) and its membership degree in the upper
approximation of X is defined as (4).

µBX(x) = inf
y∈U

I{RB(x, y), µX(y)}. (3)

µBX(x) = sup
y∈U

T {RB(x, y), µX(y)}. (4)

where I is the implicator function and µX(y) is the degree of membership of
y in X. The tuple < µBX(x), µBX(x) > is called a fuzzy rough set in U. For
metaphor detection, we consider all samples to be labeled as either metaphor
(M ) or non-metaphor(N ). Hence, µX(y) is a crisp set. As we can easily verify,
(3) and (4) degenerate to (5) and (6) respectively under the condition that µX(y)
is crisp.

µBX(x) = inf
y∈U−X

{1 − RB(x, y)}. (5)

µBX(x) = sup
y∈X

{RB(x, y)}. (6)

k-Trimmed Sets. Fuzzy approximations are sensitive to noisy samples and
outliers in the training dataset. In order to tackle this, we use the operator,
k − trimmed on the set of objects while calculating the approximations. This
removes extreme points due to outliers and make the classification robust [17].

Let x be a reference object and S = {u1, u2, u3, ..., un} be a subset of objects
containing few noisy samples. Let R = {RB

1, RB
2, ..., RB

k, ..., RB
n} be the

ordered set of similarity values between x and the objects in S, arranged in
ascending order such that RB

i < RB
j if i < j. Given a number k, let R1 ⊂ R

comprise elements from Rk+1
B to Rn

B and let R2 ⊂ R comprise elements from R1
B

to Rn−k−1
B . Then, the k-trimmed sets for S are defined by (7) and (8):

Smin k−trimmed = {ui|RB(x, ui) ∈ R1}. (7)

Smax k−trimmed = {ui|RB(x, ui) ∈ R2}. (8)

Let Xi be the set of objects labeled with decision, di ∈ D and x ∈ Xi. After
k-trimming, the membership degree of x in approximations of Xi are given by
(9) and (10).

µBXi
(x) = inf

yk∈(U−Xi)min k−trimmed

{1 − RB(x, yk)}. (9)
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µBXi
(x) = sup

yk∈(Xi)max k−trimmed

{RB(x, yk)}. (10)

To illustrate the impact of k-trimmed sets on fuzzy approximations, consider
that x ∈ M , y1 ∈ N is an outlier similar to x with RB(x, y1) = 0.7, and y2 ∈
N is the second nearest sample with RB(x, y2) = 0.4. Without trimming, the
µBXi(x) turns out to be as low as (1−RB(x, y1)) = 0.3. However, after applying
min 1 − trimmed on set (U − Xi), the outlier is eliminated and µBXi(x) =
1 − RB(x, y2) = 0.6. Similarly, for calculating µBXi

(x), we ignore the outlier
yk ∈ Xi which is farthest from x by applying max 1 − trimmed on set Xi. This
makes the approximations of Xi robust against outliers. It may be noted that
outliers themselves have a small membership in the lower approximation of their
decision class.

3.2 Feature Selection

The feature set, A comprises the following features:

1. Conceptual attributes: It includes imageability, concreteness, familiarity
and meaningfulness for S-O.

2. Derived attributes: These comprise the difference between conceptual fea-
tures of S-O, and other linear combinations to represent variations in source
and target domains.

3. relatedness: It is defined as the cosine of the angle between word2vec embed-
dings [13] for subject and object. These word2vec embeddings comprise a set
of 50 elements.

4. affectiveness: It is the degree of how affective a sentence is i.e. capable of
expressing an emotion, sentiment or mood. It is calculated using the ANEW
database [22].

The total number of extracted features including conceptual and derived ones
is 22. Since the dataset is small, having a relatively large feature set may
lead to overfitting. In order to reduce the dimensionality of the feature set,
we perform feature selection by using the QuickReduct technique proposed by
Jensen and Shen [10]. QuickReduct technique is implemented by fuzzyfing a
variable into linguistic variables such as high imageability and low imageability.
Thus, the overlap between two linguistic variables such as high imageability and
medium imageability is modeled by assigning membership values in both vari-
ables. It is necessary to consider the aspect of overlap as it is a region rather than
a point where the meaning of words changes from being relevant to irrelevant
[23].

3.3 Rule Induction

This step involves generation of If-then rules on the basis of fuzzy approximations
derived from instances in training dataset. A rule antecedent is a conjunctive for-
mula comprising an optimized number of attribute assignments. Its consequent
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C denotes the class namely metaphorical or literal on the basis of membership
in a certain class. We induce hybrid fuzzy-rough rules for metaphor detection
system using the QuickRules technique proposed by Jensen et al. [18]. It is to
be noted that feature selection through QuickReduct [10] is executed as a pre-
processing step while inducing fuzzy rough rules through QuickRules.

4 Experiments and Results

We used the R package ‘RoughSets’ V1.3-0 [11] to perform feature selection and
implement a rule based classifier to identify metaphors in text. For our experi-
ments, we created a dataset of 150 sentences with equal number of metaphorical
and literal sentences. The dataset is constructed from the list of Target sen-
tences present under the title Stimulus in [19]. Following pair is one example of
metaphorical sentence (b) and its literal counterpart (c) in the dataset:

Insults are razors. (b)
Insults are hurtful. (c)

We used 66% of the dataset as training data and the remaining as test data.
We selected �Lukasiewicz T − norm by experimental tuning. The �Lukasiewicz
t-norm demonstrated the best results with an accuracy of 86% whereas min and
product T − norm give an accuracy of 72% and 70% respectively. We set the
value of k equal to 1 for k − trimmed operator used in (9) and (10). We com-
pared the proposed FuzzyRoughSet model (FRSM) with an SVM classifier (ker-
nel=polynomial and C=1) available in ‘Kernlab’ V0.9-25 [20] and a rule based
classifier, RoughSet Model (RSM) based on traditional Rough Sets by using AQ
algorithm [21] for rule induction with (confidence = 0.9 and timeCovered = 10)
in RoughSets package. The last method involves an extra discretization step with
five intervals to convert real-valued attributes to nominal attributes.

A total of 88 rules were generated for classifying each textual unit
as metaphorical or literal. Two of these generated rules are shown below.
O conc represents the value for feature concreteness of object. Rule1 sums
up the idea that low relatedness between subject-object and high concrete-
ness indicate metaphorical text whereas the Rule2 assigns high relatedness and
average concreteness to literal class.

Rule1 : IF relatedness is around 0.019 & O conc is around 540 THEN class is M.

Rule2 : IF relatedness is around 0.513 & O conc is around 405 THEN class is N.

The performance metrics are summarized in Table 1. In the top part of Table 1
without feature reduction, FRSM outperforms RSM in terms of recall, F-score
and precision. SVM reports the best results amongst all three, but even for our
small dataset, SVM took the longest execution time.

With feature reduction achieved through Quickreduct, the performance of all
three classifiers improved. The F-score of FRSM increased by 6.03%, that of SVM
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improved by 2.86% and that of RSM showed a minor increase of 0.65%. After
classification with feature reduction, FRSM turns out to be the clear winner.
The recall of FRSM is the highest at 96.3% which is 22.23% higher than the
recall of RSM and 3.71% higher than that of SVM. The precision of RSM model
is slightly higher than the other two models. However, SVM and FRSM show
competitive performance in terms of precision. Overall, the F-score of FRSM is
9.74% higher than that of RSM and 1.97% higher than that of SVM.

Table 1. Performance of classification models

FeatureType Model A P R F1

Without Feature selection SVM 80 75.76 92.59 83.34

RSM 76 77.78 77.78 77.78

FRSM 80 79.31 85.18 82.14

With Feature selection (QuickReduct) SVM 84 80.64 92.59 86.20

RSM 78 83.34 74.07 78.43

FRSM 86 81.25 96.3 88.17

Legends: A-Accuracy; P-Precision; R-Recall; F1-F score

4.1 Discussion

From the reduced feature set, we observed that the difference between concep-
tual features of subject and object is an important criteria while classifying
metaphors. The features, familiarity and meaningfulness of subject and object
are also present in the reduct. So far, these features have received low attention
in existing literature. It is noteworthy that FRSM yields a marked improve-
ment in recall. This clearly indicates that combining rough sets with fuzzy sets
increased the coverage significantly to pick up more metaphors from the corpus.
The experiments in fact, serve as a proof of concept for our idea that metaphor
detection needs to take into account imprecision in representing features and
also their approximation to real world concepts.

5 Conclusion

The assessment of psychological features are dependent on subjective perception
and understanding towards a subject based on one’s personal experiences. In this
paper, we highlighted the need to model imprecision in psychological features and
inclusion of deviations such as mapping between concrete source and concrete
target domains while classifying metaphors. We investigated the applicability
of fuzzy rough sets in modeling these uncertainties to improve the process of
metaphor detection. We employed the k−trimmed sets to reduce approximation
errors that may be caused by outliers and noisy data. The results indicate that
metaphor detection falls well into the paradigm of approximate computation. In
future, we will refine the proposed model to include different kinds of metaphors.
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Abstract. Acronyms are common in Twitter and bring in new chal-
lenges to social media analysis. Distributed representations have achieved
successful applications in natural language processing. An acronym is
different from a single word and is generally defined by several words.
To this end, we present Acr2Vec, an algorithmic framework for learn-
ing continuous representations for acronyms in Twitter. First, a Twitter
ACRonym (TACR) dataset is automatically constructed, in which an
acronym is expressed by one or more definitions. Then, three acronym
embedding models have been proposed: MPDE (Max Pooling Defini-
tion Embedding), APDE (Average Pooling Definition Embedding), and
PLAE (Paragraph-Like Acronym Embedding). The qualitative experi-
mental results (i.e., similarity measure) and quantitative experimental
results (i.e., acronym polarity classification) both show that MPDE and
APDE are superior to PLAE.

Keywords: Social media · Acronym · Representation learning · Word
embeddings

1 Introduction

Twitter, as a microblogging service, provides a public platform for users to share
their opinions towards products, movies, politicians, events and so on. Twitter
sentiment analysis has attracted more and more attention due to the rapidly
increasing number of tweets [1,2]. Tweets are very short and contain massive
misspellings, acronyms and informal words, which brings in new challenges to
sentiment analysis [3].

An acronym is an abbreviation formed from the initial components in a
phrase or a word and these components are individual letters or parts of words,
for example, in most cases “lol” means “laugh out loud” and “yas” means “you
c© Springer International Publishing AG 2017
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are stupid”. The acronyms can usually convey sentiments, “lol” and “yas” are
respectively a positive acronym and a negative one. The labeled training data
may not be sufficient to predict the sentiment polarity for such acronyms and
labeling enough data is costly and time consuming [4]. The online human-edited
definition dictionary for acronyms is an important clue.

Distributed representations for words, phrases and sentences, play an increas-
ingly vital role in building continuous real-valued vectors and these embeddings
can be used to measure their similarities [5–7]. The acronyms can be viewed as
a special linguistic unit, and the related works about acronym embeddings are
seldom reported. Word embeddings can be introduced to address the acronym
disambiguation problem [8], but these acronyms are from the formal scientific
texts.

In this paper, we firstly automatically construct a Twitter ACRonym (TACR)
dataset, then propose three acronym embedding methods for Acr2Vec, and
finally carry out experiments from the perspectives of acronym similarity mea-
sure and acronym polarity classification. Code and data are publicly accessible
at https://github.com/tjflexic/acr2vec.

2 Related Work

Recent works have studied the word embeddings and applied them in represent-
ing acronyms in scientific texts. Polarity classification can be used as a kind of
performance measure for embeddings.

2.1 Word Embeddings

Word2Vec [5] provides two model architectures for learning distributed repre-
sentations of words: continuous bag-of-words model (CBOW) and continuous
skip-gram Model (Skip-gram). CBOW predicts one word from its context words,
while Skip-gram predicts its context words from one word. Glove [6] is a new
global logbilinear regression model that combines the advantages of global matrix
factorization and local context window methods. Paragraph Vector [7] represents
each document by a dense vector which is trained to predict words in the docu-
ment.

2.2 Acronym Embeddings

To address the acronym disambiguation problem, Li et al. [8] propose two mod-
els for acronym embeddings: TF-IDF based embedding (TBE) and surrounding
based embedding (SBE) are proposed. TBE uses the top TF-IDF words’ embed-
dings to represent the topic information of one acronym. SBE represents one
acronym by adding its surrounding words’ embeddings.

https://github.com/tjflexic/acr2vec
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2.3 Polarity Classification

The majority of existing approaches for polarity classification follow Pang et
al. [9] and employ machine learning algorithms with more effective features [10].
Turney and Littman [11] infer the semantic orientation of a word from its sta-
tistical association with a set of positive and negative paradigm words. Gruhl
et al. [12] employ a propagation algorithm that leverages the related word con-
nections to identify the sentiment-bearing slang words from Urban Dictionary.
Mohammad et al. [13] construct a Twitter-specific sentiment lexicon by point-
wise mutual information (PMI) between each phrase and hashtag/emoticon seed
words.

3 Twitter Acronym Dataset

We automatically construct a Twitter ACRonym (TACR) dataset with three
steps: collecting, integrating, and correcting acronyms.

3.1 Resources and Tools

We utilize two resources as the original dataset for Twitter acronyms: NetLingo
Dictionary1 (ND) and Slang Dictionary2 (SD). ND is the largest list of chat
acronyms and text shorthand, and SD collects the slang words and acronyms.
Besides, we implemented two interfaces to access Acronym Finder3 (AF) and
Urban Dictionary4 (UD) and to rectify the original dataset.

3.2 Data Integration

In the original dataset, there are totally 913 acronyms in both ND and SD. Given
one acronym A, its definition expressions in ND and SD are respectively denoted
by DN and DS . When DN is not the same with DS , the following three cases
need to be handled for integrating DN and DS :

– Case 1: DN appears in DS or DS appears in DN , choose a longer one;
e.g., “n2m” (DN : “not to mention -or- not too much”; DS : “not too much”),
we choose the former.

– Case 2: there is a vast majority of repeated words in DN and DS , choose a
longer one or one with less asterisks;
e.g., “figjam” (DN : “f*** i’m good just ask me”; DS : “f**k i’m good, just
ask me”), we choose the later.

– Case 3: there are barely repeated words in DN and DS , choose the both two.

1 http://www.netlingo.com/acronyms.php.
2 http://www.noslang.com/dictionary/.
3 http://www.acronymfinder.com/.
4 http://www.urbandictionary.com/.

http://www.netlingo.com/acronyms.php
http://www.noslang.com/dictionary/
http://www.acronymfinder.com/
http://www.urbandictionary.com/
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Secondly, there exists the one-to-many or many-to-one or many-to-many rela-
tion expressions between an acronym and its definition in ND. We split the
expressions into several parts and get more acronyms or more definitions.

– Case 4: “or” appears in A, split A into A1, A2, · · · ;
e.g., “zmg or zomg” (“oh my god”), we get “zmg” (“oh my god”) and “zomg”
(“oh my god”).

– Case 5: “ -or- ” or “also seen as” appears in DN , split DN into DN1, DN2,
· · · ;
e.g., “n2m” (“not to mention -or- not too much”), we get “n2m” (“not to
mention” and “not too much”).

– Case 6: “or” appears in A and “ -or- ” appears in DN , split (A,DN ) into
(A1,DN1), (A2,DN2), · · · ; e.g. “rtm or rtfm” (“read the manual -or- read the
f***ing manual”), we get “rtm” (“read the manual” and “read the f***ing
manual”).

Finally, we restrict the punctuation marks, i.e., a semicolon is used as the
separator of several definitions, and a comma is used to join several parts in
a single definition, e.g., “nino” is defined as “nothing in, nothing out;no input,
no output”. Moreover, the words masked with asterisks are substituted by their
actual words, e.g., “s**t” is changed to “shit”.

3.3 Data Correction

The pre-trained word vectors for Twitter corpus (2B tweets and 27B tokens)
using Glove algorithm [6] is available5. In order to directly use these word vectors,
the tokens contained in all acronym definitions belong to 27B tokens as much as
possible. However, typos in definition expressions are not included in these 27B
tokens. Thus, AF and UD are used to correct the data. Several examples are
given in Table 1. After correcting, the ratio of the number of definition tokens
belonging to the 27B tokens to the total number of definition tokens changes
from 95.3% to 97.8%.

Table 1. Correct typos in original definitions. “can‘t”, “diliberately”, “csae” are not
in the Twitter 27B tokens.

Acronym Original definition New definition

cw2cu can‘t wait to see you can’t wait to see you

troll person who diliberately stirs up trouble person who deliberately stirs up trouble

icydk in csae you didn’t know in case you didn’t know

5 http://nlp.stanford.edu/projects/glove/.

http://nlp.stanford.edu/projects/glove/
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4 Acr2Vec Framework with Three Acronym Embedding
Models

The definition of an acronym A is denoted as a sequence {T1, T2, · · · , TN}. The
d-dimensional vector for each definition token Ti(1 ≤ i ≤ N) is denoted by
xTi

= (xi1, xi2, · · · , xid).

4.1 Max Pooling Definition Embedding Model (MPDE)

The representation A = (a1, a2, · · · , ad) for the acronym A is obtained by using
max pooling (see Eq. 1) over all the definition token vectors.

aj = max
1≤i≤N

xij , j = 1, 2, ..., d (1)

4.2 Average Pooling Definition Embedding Model (APDE)

The representation A = (a1, a2, · · · , ad) for the acronym A is obtained by using
average pooling (see Eq. 2) over all the definition token vectors.

aj =
1
N

∑

1≤i≤N

xij , j = 1, 2, ..., d (2)

4.3 Paragraph-Like Acronym Embedding Model (PLAE)

In the above two models, the representation of an acronym is obtained by global
pooling, either max pooling or average pooling, over all the definition token
vectors. The paragraph-like acronym embedding model is illustrated in Fig. 1,
which is inspired by Paragraph Vector [7].

More precisely, we concatenate the acronym vector with several definition
token vectors from an acronym and predict the following token in the given
context. Both definition token vectors and acronym vectors are trained by the
stochastic gradient descent and backpropagation.

5 Experimental Results

We carry out the qualitative experiment of acronym similarity measure, and the
quantitative experiment of acronym polarity classification.

5.1 Datasets

Twitter Acronym Dataset. We automatically construct a Twitter ACRonym
(TACR) dataset in Sect. 3. The dataset consists of 7033 acronyms, in which
6717 acronyms have the only one definition.
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Fig. 1. Paragraph-like acronym embedding model.

Acronym Polarity Dataset. We directly construct a sentiment polarity dataset
about definition tokens and acronyms from Sentiment140 lexicon [13] which con-
tains tweet terms with sentiment scores. If one token or acronym from TACR
dataset appears in this lexicon, we assign it the positive polarity only when its
sentiment score is greater than 0.5 and assign it the negative polarity only when
its sentiment score is less than −0.5. The acronym polarity dataset is shown in
Table 2.

Table 2. Acronym polarity dataset consists of 1000 definition tokens as training and
766 acronyms as test.

POS NEG Total

Definition tokens 548 452 1000

Acronyms 405 361 766

5.2 Qualitative Performance on Acr2Vec

A simple way to investigate the learned embeddings is to find the closest words
or acronyms for a user-specified acronym. We list an example (Acronym: alol
(actually laughing out loud)) in Table 3. The dimension of acronym vectors is
d = 25.

Moreover, we take the acronyms containing one specific word (e.g., “good”
and “shit”, their frequencies are approximately equal) as example and plot the
acronym embeddings using t-SNE [14] in Fig. 2. The dimension of acronym vec-
tors is set to be 200. The performances of MPDE and APDE are both better than
PLAE, because there is not enough acronyms for learning acronym embeddings
with PLAE.
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Table 3. Five closest words or acronyms for acronym “alol”. “Sim” measures the
Cosine similarity.

MPDE (Sim) APDE (Sim) PLAE (Sim)

llol (0.991) llol (0.995) bewbs (0.811)

kek (0.988) jklol (0.993) twttr (0.805)

loxen (0.988) lollerskates (0.989) bewbz (0.803)

lolin (0.988) lolin (0.989) twtr (0.801)

lollerskates (0.988) loxxen (0.989) 80085 (0.797)

5.3 Quantitative Performance on Acr2Vec

The dimension of acronym vectors d ∈ {25, 50, 100, 200}. The resulting vectors
can be used as features in polarity classification. We classify acronyms into pos-
itive or negative. The accuracy Accu of acronym polarity classification can be
seen as a quantitative evaluation for acronym embeddings. Four common classi-
fiers, such as KNN (Nearest Neighbors, k = 5), SVM (Support Vector Machines,
γ = 2, C = 1), RF (Random Forest) and NB (Naive Bayes), and PMI (Pointwise
Mutual Information) [11] method are used.

Table 4. Accuracy of Twitter acronym polarity classification. The bold numbers show
the best result under four different dimensions.

Model 25 50 100 200

MPDE PMI 0.5718 0.6332 0.5992 0.6084

MPDE KNN 0.6371 0.7102 0.6997 0.7037

MPDE SVM 0.6645 0.6645 0.6632 0.6632

MPDE RF 0.6488 0.6658 0.6723 0.6423

MPDE NB 0.5940 0.6815 0.6593 0.6893

APDE PMI 0.6305 0.6240 0.6371 0.6097

APDE KNN 0.6593 0.6932 0.7089 0.6984

APDE SVM 0.6697 0.6658 0.6632 0.6632

APDE RF 0.6906 0.6775 0.6475 0.6645

APDE NB 0.6462 0.6580 0.6593 0.6828

PLAE PMI 0.5404 0.5352 0.5379 0.5418

PLAE KNN 0.5170 0.4883 0.5091 0.4948

PLAE SVM 0.5444 0.5379 0.5431 0.5496

PLAE RF 0.5274 0.5078 0.4974 0.5131

PLAE NB 0.5287 0.5431 0.5352 0.5117
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(a) MPDE (b) APDE

(C) PLAE

Fig. 2. Acronym embeddings visualization using t-SNE.

In terms of Twitter acronym polarity classification, MPDE and APDE are
always better than PLAE, because MPDE and APDE are able to capture better
semantics. When the dimension of acronym vectors increases, KNN classifier is
better than others. Moreover, PMI is not satisfactory due to noise when com-
puting similarity measure for more acronyms (Table 4).

6 Conclusions

To the best of our knowledge, this is the first work about acronym embeddings
in Twitter. We automatically construct a Twitter ACRonym (TACR) dataset
and propose an algorithmic framework Acr2Vec with three acronym embedding
models: MPDE (Max Pooling Definition Embeddings), APDE (Average Pooling
Definition Embeddings), and PLAE (Paragraph-Like Acronym Embeddings).
The experimental results show that MPDE and APDE achieve almost equal
performance, but are always superior to PLAE. Our future work will focus on
taking contextual information into account to improve acronym embeddings.

Acknowledgments. This work is partially supported by the National Natural Science
Foundation of China (No. 61673301, No. 61573255) and the Open Research Funds of
State Key Laboratory for Novel Software Technology (No. KFKT2017B22).
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Abstract. Attribute reduction is an important issue in rough set theory.
This paper mainly studies attribute reduction of distributed incomplete
decision information system (DIDIS). Firstly, the definition of rough set
in DIDIS is developed. Next, an algorithm for attribute reduction of
DIDIS is proposed. In the end, two groups of experiments are conducted
to prove the effectiveness of the proposed method. The results show
that our method can remove redundant attributes of DIDIS, and does
not reduce the classification capability of the system. In addition, the
results indicate that the change of data missing rate has weak effect
on attribute reduction with the similarity relation, but strong effect on
attribute reduction with the tolerance relation.

Keywords: Distributed incomplete decision information system ·
Attribute reduction · Tolerance relation · Similarity relation · Data miss-
ing rate

1 Introduction

In an information system, the missing values of attributes, which we do not
know, but exist actually, are ubiquitous. Generally, the data with missing values
require related preprocessing for the follow-up data mining. For the processing of
centralized incomplete decision information system (CIDIS), researchers carried
out extensive researches, and proposed many methods, such as case deletion,
imputation, model extension, etc. [1–5]. However, these methods cause certain
degree of damage to the original information system.

In order to address the attribute reduction of CIDIS and do not change the
original data distribution, many methods have been developed. Meng and Shi
constructed a positive region-based attribute reduction algorithm, which is fast
and efficient, and could be applied to both consistent and inconsistent incom-
plete decision systems [6]. Qian et al. proposed a theoretic framework based on
tolerance relations, and designed a general heuristic incomplete feature selec-
tion algorithm based on this framework, and the algorithm could accelerate
the process of feature selection for incomplete data [7]. Sun et al. introduced

c© Springer International Publishing AG 2017
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rough entropy-based uncertainty measures to evaluate the roughness and accu-
racy of knowledge, and proposed a heuristic feature selection algorithm with low
computational complexity [8]. Dai et al. introduced another conditional entropy
to measure the importance of attributes in incomplete decision system, and
constructed three methods to select important attributes from incomplete deci-
sion system based on three different kinds of search strategies, but two of them
are effective [9]. Zhao and Qin introduced an extended rough set model and
neighborhood-tolerance conditional entropy, which can be used to reduce incom-
plete data with mixed categorical and numerical features [10]. Lu et al. proposed
a boundary region-based feature selection algorithm, which can simplify large
incomplete decision systems, and select an effective feature subset [11]. All the
literatures mentioned above focus on the attribute reduction of incomplete infor-
mation system which is stored in one place.

To cope with the attribute reduction of information system stored in mul-
tiple sites, researchers put forward a lot of methods. For vertically partitioned
multi-decision table, Yang and Yang introduced an approximate reduction algo-
rithm based on conditional entropy [12]. Zhou et al. developed secure sum of
matrices and secure set union, and studied a privacy preserving attribute reduc-
tion algorithm based on discernible matrix for distributed datasets [13]. Ye et al.
presented some SMC protocols into efficient privacy preserving attribute reduc-
tion algorithm for vertically partitioned data based on semi-trusted third party
and commutative encryption [14]. Banerjee and Chakravarty proposed a privacy
preserving feature selection algorithm for distributed data using virtual dimen-
sion [15]. Hu et al. defined rough set in distributed decision information system,
and presented a distributed attribute reduction algorithm [16].

In summary, people have studied attribute reduction of CIDIS and dis-
tributed decision information system respectively, but rarely study attribute
reduction of distributed decision information system with missing values, called
distributed incomplete decision information system (DIDIS). In this paper,
attribute reduction of DIDIS based on the tolerance relation and the similarity
relation is studied, and the influence of different data missing rates on attribute
reduction is illustrated.

This paper is structured as follows: In Sect. 2, some basic concepts of incom-
plete information system are reviewed. In Sect. 3, the definition of rough set in
distributed incomplete decision information system is given. In Sect. 4, we pro-
pose an attribute reduction algorithm for distributed incomplete decision infor-
mation system. In Sect. 5, the experimental results and analysis are presented.
In Sect. 6, some conclusions are given.

2 Preliminaries

An incomplete information system refers to the absence of attribute values in
an information system, as defined below [17].

Definition 1. An information system is defined as IS = (U,A, V, f), U is a
non-empty finite set of objects, called the universe. A is a non-empty finite set
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of attributes. V = ∪a∈AVa, where Va is the value of attribute a. f : U × A → V
is an information function that specifies the value of each object in universe. If
there exist a ∈ A and x ∈ U such that f(x, a) = ∗ (∗ indicates a missing attribute
value), then the information system is incomplete, otherwise it is complete.

If the non-empty attribute set A in an incomplete information system is
divided into condition attribute set C and decision attribute set D, that is, A =
C ∪D, an incomplete decision table IDT = (U,C ∪D,V, f) can be obtained. In
the following, we do not consider the case where the missing values exist in the
decision attribute values.

Kryszkiewicz assumed that the real value of a missing attribute value could
be any one from the attribute domain, and introduced a tolerance relation to
measure the similarity between objects in an incomplete information system.
The tolerance relation is defined as follows [18].

Definition 2. For an incomplete decision table IDT = (U,C ∪ D,V, f) and a
subset of condition attribute set B ⊆ C, the tolerance relation T is defined as

∀x,y∈UT (x, y) ⇔ ∀cj∈B(cj(x) = cj(y) ∨ cj(x) = ∗ ∨ cj(y) = ∗) (1)

The tolerance relation is reflexive and symmetric, but not necessarily tran-
sitive. Let [x]BT denotes a set of individual object y that satisfy the tolerance
relation T (x, y) on B, called the tolerance class of x. Given an arbitrary set
X ⊆ U , the upper and lower approximation sets of X and the positive region of
D with respect to B are defined as follows [18].

Definition 3. For an incomplete decision table IDT = (U,C ∪ D,V, f) and an
arbitrary set X ⊆ U , the upper approximation B−

T (X) and the lower approxima-
tion BT

−(X) of X with respect to B are

B−
T (X) = {x ∈ U |[x]BT ∩ X �= ∅} (2)

BT
−(X) = {x ∈ U |[x]BT ⊆ X} (3)

Let U/D = {d1, d2, ..., dm} be the partition of the universe U defined by D.
Then the positive region of D with respect to B is

POST
B(D) =

m⋃

i=1

BT
−(di) (4)

Stefanowski and Tsoukiàs assumed that the real value of a missing value is
unknown and it is not allowed to compare with missing value, and introduced
a similarity relation to measure the similarity between objects in an incomplete
information system. The similarity relation is defined as follows [19].

Definition 4. For an incomplete decision table IDT = (U,C ∪ D,V, f) and a
subset of condition attribute set B ⊆ C, the similarity relation S is defined as

∀x,y∈US(x, y) ⇔ ∀cj∈B(cj(x) = cj(y) ∨ cj(x) = ∗) (5)
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The similarity relation S is reflexive and transitive, but not necessarily sym-
metric. Given an arbitrary object x ∈ U , one can define two sets as below [19].

Definition 5. The set of objects similar to x and the set of objects to which x
is similar are defined respectively as

[x]B = {y ∈ U |S(y, x)} (6)

[x]−B = {y ∈ U |S(x, y)} (7)

For convenience, we call [x]−B as the similarity class of x in the following.
Based on [x]B and [x]−B , Stefanowski and Tsoukiàs defined the upper and lower
approximation sets of X and the positive region of D with respect to B [19].

Definition 6. For an incomplete decision table IDT = (U,C ∪ D,V, f) and an
arbitrary set X ⊆ U , the upper approximation B−

S (X) and the lower approxima-
tion BS

−(X) of X with respect to B are

B−
S (X) = ∪{[x]B |x ∈ X} (8)

BS
−(X) = {x ∈ U |[x]−B ⊆ X} (9)

Let U/D = {d1, d2, ..., dm} be the partition of the universe U defined by D.
Then the positive region of D with respect to B is

POSS
B(D) =

m⋃

i=1

BS
−(di) (10)

According to the definition above, a positive region is a set of all objects in
the universe that can be classified under a given condition attribute set.

3 Rough Set in Distributed Incomplete Decision
Information System

Hu et al. presented a definition of rough set in distributed decision information
system and proposed an attribute reduction algorithm of distributed decision
information system [16]. However, they did not discuss the absence of missing
values in distributed decision information system, which will be discussed below.

Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision information
system, then there is at least one incomplete decision table Si = (Ui, Ci∪D,V, f).
There are two generic scenarios of DIDIS. One is instance-distributed, and the
other is attribute-distributed. Here we mainly focus on the latter one, where
U1 = U2 = ... = Un and Ci �= Cj(i �= j).

Definition 7. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision
information system. Given an arbitrary set X ⊆ U , an arbitrary attribute set

B ⊆ C where C =
n⋃

i=1

Ci, B =
n⋃

i=1

Bi, Bi ⊆ Ci, two definitions can be obtained

respectively, according to the tolerance relation and the similarity relation.
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Based on tolerance relation T , the upper approximation and the lower
approximation of X with respect to B are

B−
T (X) = {x ∈ U |∀Si∈Δ([x]Bi

T ∩ X �= ∅)} (11)

BT
−(X) = {x ∈ U |∃Si∈Δ([x]Bi

T ⊆ X)} (12)

The positive region of Δ with respect to B is

POST
B(D) = {x ∈ U |∃Si∈Δ∧dj∈U/D([x]Bi

T ⊆ dj)} (13)

where [x]Bi

T is the tolerance class of x produced by the condition attribute set
Bi of Si.

Based on similarity relation S, the upper approximation and the lower
approximation of X with respect to B are

B−
S (X) = ∪{[x]Bi

|x ∈ X,Si ∈ Δ} (14)

BS
−(X) = {x ∈ U |∃Si∈Δ([x]−Bi

⊆ X)} (15)

The positive region of Δ with respect to B is

POSS
B(D) = {x ∈ U |∃Si∈Δ∧dj∈U/D([x]−Bi

⊆ dj)} (16)

where [x]−Bi
is the set of objects to which x is similar produced by the condition

attribute set Bi of Si.

Theorem 1. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision infor-
mation system, T is the tolerance relation, the positive region of D with respect
to Δ is the union of the positive region generated by each incomplete decision

table of Δ. That is, POST
C(D) =

n⋃
i=1

POST
Ci

(D).

Proof. Suppose x ∈ POSΔ(D), there exist Si ∈ Δ and dj ∈ U/D, [x]Ci

T is the
tolerance class of x, such that [x]Ci

T ⊆ dj . That means x ∈ POSCi
(D), thus

x ∈
n⋃

i=1

POSCi
(D). In the contrary, if x ∈

n⋃
i=1

POSCi
(D), x must belong to the

positive region of an incomplete decision table of Δ. Suppose it is Si, then there
exists [x]Ci

T ⊆ dj . Therefore, x ∈ POSΔ(D). Hence the theorem has been proved.

Theorem 2. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision infor-
mation system, S is the similarity relation, the positive region of D with respect
to Δ is the union of the positive region generated by each incomplete decision

table of Δ. That is, POSS
C(D) =

n⋃
i=1

POSS
Ci

(D).

Proof. Suppose x ∈ POSΔ(D), there exist Si ∈ Δ and dj ∈ U/D, [x]−Ci
is the

similarity class of x, such that [x]−Ci
⊆ dj . That means x ∈ POSCi

(D), thus

x ∈
n⋃

i=1

POSCi
(D). In the contrary, if x ∈

n⋃
i=1

POSCi
(D), x must belong to the

positive region of an incomplete decision table of Δ. Suppose it is Si, then there
exists [x]−Ci

⊆ dj . Therefore, x ∈ POSΔ(D). Hence the theorem has been proved.
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From above theorems, we know that the positive region of DIDIS can be
calculated indirectly through the positive region of each incomplete decision
table.

4 Attribute Reduction on Distributed Incomplete
Decision Information System

Attribute reduction can effectively delete redundant attributes, improve data
quality and speed up the subsequent data mining. In this section, we study the
attribute reduction of distributed incomplete decision information system.

Theorem 3. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision infor-
mation system, Φ and Ψ be two subsets of Δ. If Φ ⊆ Ψ , then POSΦ(D) ⊆
POSΨ (D).

Proof. The proof comes directly from Theorems 1 or 2, and hence it is omitted
here.

According to Theorem 3, if we add a new incomplete decision table to a
distributed incomplete decision information system Δ, then the positive region of
Δ increases or remains the same. In contrast, if we delete an incomplete decision
table from Δ, then the positive region of Δ decreases or is left unchanged.

Definition 8. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision
information system, if POSΔ−{Si}(D) = POSΔ(D), then Si is reducible with
respect to D in Δ; otherwise Si is irreducible with respect to D in Δ.

Theorem 4. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision infor-
mation system, if POSCi

(D) ⊆ POSΔ−{Si}(D), then Si is reducible with respect
to D.

Proof. The proof comes directly from Theorems 1 or 2, and hence it is omitted
here.

Theorem 5. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision infor-
mation system, if and only if ∃x∈U (x ∈ POSCi

(D) ∧ x /∈ POSΔ−{Si}(D)), then
Si is irreducible with respect to D.

Proof. The proof comes directly from Theorem 4, and hence it is omitted here.

Definition 9. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision
information system, Ci is the attribute set of Si, for any a ∈ Ci, if the positive
region of Δ with respect to D stays unchanged when a is deleted from Si, that
is, POS

Si−{a}
Δ (D) = POSΔ(D), then a is redundant. Otherwise a is necessary.

Theorem 6. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision infor-
mation system, a is one condition attribute of Si. If a is reducible with respect
to D in Si, then a is reducible with respect to D in Δ.
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Proof. If a is reducible with respect to D in Si, that is, the positive region of Si

remains the same when a is deleted from Si. According to Theorems 1 or 2, the
positive region of Δ stays unchanged. That is, a is reducible with respect to D
in Δ.

However, if a is irreducible with respect to D in Si, it does not mean that a
is irreducible with respect to D in Δ.

Definition 10. Let Δ = {S1, S2, ..., Sn} be a distributed incomplete decision
information system, Θ = {T1, T2, ..., Tm} is a subsystem of Δ, for any Ti ∈ Θ,
there exists Sj ∈ Δ, such that Ti ⊆ Sj. Θ is a reduct of Δ with respect to D if
it satisfies the following two conditions:

(1) POSΘ(D) = POSΔ(D);
(2) ∀a ∈ Ti, POS

Ti−{a}
Θ (D) �= POSΘ(D).

According to the Definition 9 and Definition 10 presented above, a subsys-
tem Θ of a distributed incomplete decision information system Δ has the same
positive region as Δ. If any condition attribute is deleted from Θ, the positive
region of Θ decreases. The attribute reduction algorithm of distributed incom-
plete decision information system is developed as follows.

Algorithm 1. Attribute Reduction of Distributed Incomplete Decision
Information System (ARDIDIS)
1 Input: Δ = {S1, S2, · · · , Sn}
2 Output: a reduct subsystem Θ
3 Let Θ = Δ
4 for each incomplete decision table Si ∈ Θ do
5 for each condition attribute a ∈ Si do

6 if POS
Si−{a}
Θ (D) = POSΘ (D) then

7 delete a from Θ

8 Return Θ

For a distributed incomplete decision information system, using above algo-
rithm, one can get a reducted subsystem. The following example illustrates how
to construct a reduct using ARDIDIS.

As shown in Table 1 is a distributed incomplete decision information system
Δ which has two incomplete decision tables, S1 and S2. S1 has three condition
attributes C1 = {a1, a2, a3}. S2 has three condition attributes C2 = {a4, a5, a6}.

Based on the tolerance relation, attribute reduction for Δ is performed using
ARDIDIS, as described below.

For S1, [x0]C1
T = {x0, x2, x4}, [x1]C1

T = {x1, x3, x5}, [x2]C1
T = {x0, x2, x3, x4},

[x3]C1
T = {x1, x2, x3, x5}, [x4]C1

T = {x0, x2, x4}, [x5]C1
T = {x1, x3, x5}.

U/D = {{x1, x3, x5}, {x0, x2, x4}}.



296 J. Hu et al.

Table 1. A distributed incomplete decision information system

U S1 S2

a1 a2 a3 D a4 a5 a6 D

x0 0 1 0 0 1 ∗ 1 0

x1 1 0 1 1 0 0 1 1

x2 ∗ 1 ∗ 0 ∗ 1 0 0

x3 1 ∗ 1 1 0 0 ∗ 1

x4 ∗ 1 0 0 1 0 0 0

x5 1 0 1 1 ∗ 0 1 1

According to Definition 3, POST
C1

(D) = {x0, x1, x4, x5}.
For S2, [x0]C2

T = {x0, x5}, [x1]C2
T = {x1, x3, x5}, [x2]C2

T = {x2}, [x3]C2
T =

{x1, x3, x5}, [x4]C2
T = {x4}, [x5]C2

T = {x0, x1, x3, x5}.
U/D = {{x1, x3, x5}, {x0, x2, x4}}.
According to Definition 3, POST

C2
(D) = {x1, x2, x3, x4}.

According to Theorem 1, POST
C(D) = POST

C1
(D) ∪ POST

C2
(D) =

{x0, x1, x2, x3, x4, x5}.
We in turn determine which attributes in each incomplete decision table are

reducible.
If a1 is deleted from S1, then

[x0]
C1−{a1}
T = {x0, x2, x4}, [x1]

C1−{a1}
T = {x1, x3, x5}, [x2]

C1−{a1}
T =

{x0, x2, x3, x4}, [x3]
C1−{a1}
T = {x1, x2, x3, x5}, [x4]

C1−{a1}
T = {x0, x2, x4},

[x5]
C1−{a1}
T = {x1, x3, x5}. POST

C1−{a1}(D) = {x0, x1, x4, x5}.
POST

C(D) = {x0, x1, x2, x3, x4, x5} stays unchanged. That is, a1 is reducible.
Using the same method to determine the remaining attributes, we found that

a6 can also be reduced. Finally, we obtain a reduct {a2, a3, a4, a5}.
Based on the similarity relation, attribute reduction for Δ is performed using

ARDIDIS, as described below.
For S1, [x0]−C1

= {x0}, [x1]−C1
= {x1, x5}, [x2]−C1

= {x0, x2, x4}, [x3]−C1
=

{x1, x3, x5}, [x4]−C1
= {x0, x4}, [x5]−C1

= {x1, x5}.
U/D = {{x1, x3, x5}, {x0, x2, x4}}.
According to Definition 6, POSS

C1
(D) = {x0, x1, x2, x3, x4, x5}.

For S2, [x0]−C2
= {x0}, [x1]−C2

= {x1}, [x2]−C2
= {x2}, [x3]−C2

= {x1, x3},
[x4]−C2

= {x4}, [x5]−C2
= {x1, x5}.

U/D = {{x1, x3, x5}, {x0, x2, x4}}.
According to Definition 6, POSS

C2
(D) = {x0, x1, x2, x3, x4, x5}.

According to Theorem 2, POSS
C(D) = POSS

C1
(D) ∪ POSS

C2
(D) =

{x0, x1, x2, x3, x4, x5}.
We in turn determine which attributes are reducible in each incomplete deci-

sion table.
If a1 is deleted from S1, then
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[x0]−C1−{a1} = {x0, x4}, [x1]−C1−{a1} = {x1, x5}, [x2]−C1−{a1} = {x0, x2, x4},
[x3]−C1−{a1} = {x1, x3, x5}, [x4]−C1−{a1} = {x0, x4}, [x5]−C1−{a1} = {x1, x5}.
POSS

C1−{a1}(D) = {x0, x1, x2, x3, x4, x5}.
POSS

C(D) = {x0, x1, x2, x3, x4, x5} stays unchanged, so a1 can be reduced.
For the remaining attributes, we found that a2 and a3 can also be reduced.

Finally, we obtain a reduct {a4, a5, a6}, which is different from the reduct gotten
by the tolerance relation.

5 Experimental Studies

In this section, two groups of experiments were conducted. One is to prove the
effectiveness of the algorithm developed in the last section, and the other is to
analyze the influence of different missing rates on attribute reduction.

S1 Si Sn

Reducted S1 Reducted Si Reducted Sn

1classifier iclassifier nclassifier

Integration

Classification Result

Fig. 1. The experimental framework

To simulate 40 distributed incomplete decision information systems stored in
two or three data sites, an incomplete dataset is divided into two or three parts,
and a total of 40 splits are performed. Based on the tolerance relation and the sim-
ilarity relation, all DIDISs are first reduced by ARDIDIS proposed in this paper,
and then are trained to obtain the corresponding classifiers. Finally, we get the
ensemble result of all classifiers. The experimental framework is shown in Fig. 1.
The reason why we conducted experiments on 40 DIDISs is that we expected a
static result, such as the average attribute numbers, the mean of integrated clas-
sification accuracy, which are showed in the following experimental results.

The classifiers used here are J48 and Naive Bayes (NB) that can handle miss-
ing values in weka, and all classification experiments were run in a 10-fold cross
validation mode. For the sample to be classified, the integration method is to sum
the probability of the same label in different data site, and the predicted label is
the label with the largest probability. The calculation method is as follows.
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predicted label = arg max
i

(
∑

j

xji) (17)

where the label probability xji represents the probability of x belonging to label
i according to classifier j.

Table 2. Information of datasets

Type of datasets Datasets Number of attributes Number of samples

Incomplete datasets house votes 84 16 434

soybean large 35 683

audiology 69 226

Complete datasets zoo 16 101

lymphography 18 148

spect 22 267

promoters 57 106

The seven datasets used in the experiments are downloaded from the UCI
machine learning database, and the information of each dataset is shown in
Table 2.

5.1 The Experiment Result of Group 1

(1) Based on the tolerance relation, 40 distributed incomplete decision informa-
tion systems with two data sites are reduced. The comparison of the average
number of attributes and the mean of integrated classification accuracy are
shown in Figs. 2 and 3, respectively.

Fig. 2. The average attribute numbers before and after reduction
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(a) J48 (b) NB

Fig. 3. The mean of integrated classification accuracy before and after reduction

(2) Based on the tolerance relation, 40 distributed incomplete decision infor-
mation systems with three data sites are reduced. The comparison of the
average number of attributes and the mean of integrated classification accu-
racy are shown in Figs. 4 and 5, respectively.

(3) Based on the similarity relation, 40 distributed incomplete decision informa-
tion systems with two data sites are reduced. The comparison of the average
number of attributes and the mean of integrated classification accuracy are
shown in Figs. 6 and 7, respectively.

(4) Based on the similarity relation, 40 distributed incomplete decision infor-
mation systems with three data sites are reduced. The comparison of the
average number of attributes and the mean of integrated classification accu-
racy are shown in Figs. 8 and 9, respectively.

Fig. 4. The average attribute numbers before and after reduction

It can be seen from Figs. 2, 4, 6 and 8 that the conditional attribute set has
been reduced to varying degrees, when the tolerance relation or the similarity
relation is used. From Figs. 3, 5, 7 and 9, it is found that the integration result
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(a) J48 (b) NB

Fig. 5. The mean of integrated classification accuracy before and after reduction

Fig. 6. The average attribute numbers before and after reduction

(a) J48 (b) NB

Fig. 7. The mean of integrated classification accuracy before and after reduction
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Fig. 8. The average attribute numbers before and after reduction

(a) J48 (b) NB

Fig. 9. The mean of integrated classification accuracy before and after reduction

after reduction has little or no difference as the integration result before reduction
no matter which classifier is used.

5.2 The Experiment Result of Group 2

To find the influence of different random missing rates on attribute reduction, a
complete dataset is randomly deleted at the rates of 5%, 10%, 15%, 20%, 25%,
30%, and then six incomplete datasets can be obtained. Each incomplete dataset
is processed in the same way as before.

(1) For all 40 distributed incomplete decision information systems with two data
sites, the attribute reduction is performed based on the tolerance relation.
The total number of attributes on average after reduction and the total
number of attributes of original DIDISs are shown in Fig. 10. Figure 11 shows
the results gotten by 40 distributed incomplete decision information systems
with three data sites.

From Figs. 10 and 11, we can see that the number of reduced attributes
exhibits several kinds of changes as the missing rate increases. First, when the
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Fig. 10. The average attribute numbers before and after reduction

Fig. 11. The average attribute numbers before and after reduction

missing rate is low, the number of attributes that can be reduced decreases
gradually with the increase of the missing rate. However, when the missing rate
is high, there is no obvious change on the number of attributes that can be
reduced by ARDIDIS. Moreover, when the missing rate exceeds a threshold, the
number of reduced attributes increases sharply.

The reason why we got above results is that the positive region of DIDIS
varies with the increase of the missing rate. When a DIDIS is reduced using the
tolerance relation, the size of tolerance class for each sample tends to monoton-
ically increase with the missing rate increasing. When the missing rate does not
reach a certain threshold, the tolerance class of each sample does not change or
increase, the positive region of DIDIS remains unchanged or does not change
much. That is, the classification ability of DIDIS does not change much, but the
ability of each attribute to discriminate samples is decreased. Therefore, as the
missing rate increases, the number of reduced attributes decreases, and DIDIS
needs to retain more attributes to distinguish the samples, which is conform-
ing to the first result. But when the missing rate exceeds a certain threshold,
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the positive region of DIDIS is reduced a lot due to the fact that the tolerance
classes of some samples become very large. In this case, the classification abil-
ity of DIDIS is reduced, and the ability of distinguishing the samples of each
attribute is also decreased. However, with the increase of the missing rate, the
number of reduced attribute may increase or decrease. This analysis is consis-
tent with the second result. If the missing rate becomes so large that the positive
region of one or more incomplete decision tables become empty, the number of
reduced attributes will increase sharply.

(2) For all 40 distributed incomplete decision information systems with two data
sites, the attribute reduction is performed based on the similarity relation.
The total number of attributes on average after reduction and the total
number of attributes of original DIDISs are shown in Fig. 12. Figure 13 shows
the results gotten by 40 distributed incomplete decision information systems
with three data sites.

Fig. 12. The average attribute numbers before and after reduction

Fig. 13. The average attribute numbers before and after reduction
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From Figs. 12 and 13, there is no obvious change rule on the number of
reduced attributes when the missing rate increases. That is, similarity class of
each sample may increase, decrease or stay unchanged with the increase of the
missing rate. As a result, the change of the positive region of DIDIS cannot
be predicted. Moreover, with the increasing of the missing rate, the ability of
each attribute to distinguish samples may decrease. Compared the attribute
reduction using the tolerance relation with the attribute reduction using the
similarity relation, the influence of the missing rate is stronger on the former.

6 Conclusions

In order to simplify a distributed incomplete decision information system and
keep its classification ability, we proposed an attribute reduction method based
on rough set theory. We first proposed a definition of rough set in distributed
incomplete decision information system, and then developed an attribute reduc-
tion algorithm based on it. The experiment results show that our method is
effective no matter the tolerance relation or the similarity relation is applied. In
addition, we found that the increase of the missing rate may have larger effect
on the attribute reduction when the tolerance relation is used, while less effect
on the attribute reduction when the similarity relation is used.
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Abstract. Knowledge reduction and knowledge discovery in informa-
tion systems are important topics of rough set theory. Based on the rel-
ative indiscernibility relation and relative discernibility relation of deci-
sion systems, the notions of λ reduction and μ reduction are proposed.
The judgement theorems for λ consistent set and μ consistent set are
provided. The discernibility matrices with respect to λ reduction and
μ reduction are obtained and the reduction approaches are presented.
Furthermore, the relationships among λ reduction, μ reduction, positive
region reduction and assignment reduction are analyzed.

Keywords: Rough set · Indiscernibility and discernibility relation ·
Reduction

1 Introduction

Rough set theory is a powerful mathematical tool introduced by Pawlak [1] to
address imprecise, incomplete or vague information. One fundamental aspect of
rough set theory is attribute reduction in information systems, which is selecting
those attributes that provide the same information for classification purposes as
the entire set of available attributes. As a common technique, attribute reduction
has been successfully applied in many fields, such as pattern recognition, machine
learning and data mining [2,3].

There are many types of attribute reductions in the area of rough sets. Pawlak
[4] proposes the classic attribute reduction, which is intended to preserve a
deterministic information with respect to decision attributes of a decision table
and is therefore often applied in extracting deterministic decision rules from
decision tables. For inconsistent decision tables, Kryszkiewicz proposed assign-
ment reduction and distribution reduction [5,6]. Assignment reduction makes
the possible decisions for an arbitrary object in an inconsistent decision table
unchanged. In comparison, distribution reduction is a more complete knowledge
reduction and is characterized by preserving the class membership distribution
for all the objects in an inconsistent decision table. In other words, the dis-
tribution reduction preserves not only the deterministic information but also

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-60837-2 26
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the non-deterministic information of an inconsistent decision table. Yao and
Zhao [7] thinks that the partition based on the membership distribution vector
is a strict requirement, and the decision rules derived from distribution reduc-
tion are usually less compact and more complicated. For this reason, Zhang et al.
have proposed the maximum distribution reduction [8,9]. It maintains the max-
imum decision classes for all objects in a decision table unchanged, which is seen
as a good compromise between the capability of preserving information with
respect to decisions and the compactness of the derived rules. Miao et al. [10]
presented three kinds of reductions for inconsistent complete decision systems:
region preservation reduction, decision preservation reduction, and relationship
preservation reduction. Their main objective was to combine all these reduction
approaches into a unified framework. More recently, a relatively systematic study
of attribution reduction in inconsistent incomplete decision tables is presented
in [11], where five types of discernibility function-based approaches are proposed
to identify a specific type of reduction.

Skowron and Rauszer [12] proposed the classical method of discernibility
matrix and discernibility function and presented the reduction method for pos-
itive region reduction. The discernibility function is a Boolean logical function.
This function is reduced by using the distribution and the absorption laws and the
reductions are found by looking at the prime implicants of the reduced function. To
find other kinds of reductions (assignment reduction, distribution reduction and
maximum distribution reduction), Zhang et al. [8,9] have utilized the discernibil-
ity matrices with respect to those reductions and have obtained the corresponding
discernibility functions. The attribute reduction based on the discernibility matri-
ces has been extensively researched [10,11,13,14]. Although discernibility matrix-
based methods can find all of the reductions, the conversion from conjunction nor-
mal form to disjunction normal form constitutes an NP-hard problem. When the
data set has many attributes, these discernibility matrix-based methods become
not feasible because the matrix contains too many candidates. Therefore, heuristic
methods are desirable and have been extensively investigated [15–18].

Suppose a finite set of objects are described by a finite set of attributes. With
respect to any subset of attributes, one can define a pair of dual indiscernibil-
ity and discernibility relations [19–21]. Two objects are considered to be indis-
cernible or equivalent if and only if they have the same values for all attributes
in the set. As a dual relation to indiscernibility, two objects are considered to
be discernible if and only if they have different values for at least one attribute.
The differences between objects also play a crucial role in data analysis. The
similarities of objects lead naturally to their grouping, and the differences lead
to group division. It is important to extract similarities of objects by ignoring
certain differences in order to form a useful cluster or a high-level concept, and to
identify differences among a set of similar objects in order to form sub-concepts.
Or�lowska [19] investigated the relationships between indiscernibility relation and
discernibility relation are analyzed. The notions of indiscernibility reduction,
discernibility reduction and indiscernibility-and-discernibility reduction are pro-
posed. This paper is devoted to a further study of the relative reductions. The
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paper is organized as follows: In Sect. 2, we recall some notions and properties
of indiscernibility and discernibility relations. In Sect. 3, the notion of λ reduc-
tion for decision tables is proposed. The judgement theorems for λ consistent set
are provided and the reduction approaches for λ reduction are presented. The
relationships among λ reduction, the positive region reduction and assignment
reduction are analyzed. In Sect. 4, μ reduction approach is provided. The paper
is completed with some concluding remarks.

2 Indiscernibility and Discernibility Relations

Knowledge representation in the rough set models is realized via information
systems, where a set of objects are described by a set of attributes.

Definition 1. An information system S is the tuple S = (U,AT, {Va|a ∈ At},
{Ia|a ∈ At}), where U is a finite non-empty set of objects, AT is a finite non-
empty set of attributes, Va is a non-empty set of values for an attribute a ∈ At
and Ia : U → Va is an information function. Ia(x) = v means that the object x
has the value v on the attribute a.

Let S = (U,AT, {Va|a ∈ At}, {Ia|a ∈ At}) be an information system and
A ⊆ At. The indiscernibility relation Ind(A) determined by A is defined by:

Ind(A) = {(x, y) ∈ U × U |∀a ∈ A(Ia(x) = Ia(y))}.

Clearly, Ind(A) is an equivalence relation and induces a partition U/A =
{[x]A|x ∈ U} of U , where [x]A is the equivalence class containing x. Based on the
indiscernibility relation Ind(A), the lower and upper approximation operators
are defined.

Definition 2 [1]. Let S = (U,AT, {Va|a ∈ At}, {Ia|a ∈ At}) be an information
system and A ⊆ At. For any X ⊆ U , the lower approximation A(X) and the
upper approximations A(X) of X are defined by

A(X) = {x ∈ U ; [x]A ⊆ X} (1)

A(X) = {x ∈ U ; [x]A ∩ X �= ∅} (2)

Given an information system, Zhao et al. [22] (see also [19–21]) proposed
the following binary relations to describe the similarity and difference between
objects.

Definition 3. Let S = (U,AT, {Va|a ∈ At}, {Ia|a ∈ At}) be an information
system and A ⊆ At. Three relations on U are defined by:

WInd(A) = {(x, y) ∈ U × U |∃a ∈ A(Ia(x) = Ia(y))};
Dis(A) = {(x, y) ∈ U × U |∀a ∈ A(Ia(x) �= Ia(y))};
WDis(A) = {(x, y) ∈ U × U |∃a ∈ A(Ia(x) �= Ia(y))}.
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WInd(A), Dis(A) and WDis(A) are called weak indiscernibility relation,
strong discernibility relation and weak discernibility relation respectively. It is
noted that WInd(A) = U × U − Dis(A) and WDis(A) = U × U − Ind(A).
Thus, theoretically speaking, it is sufficient to discuss Ind(A) and Dis(A). The
notions of indiscernibility reduction, discernibility reduction and indiscernibility-
discernibility reduction are proposed and the reduction approaches are provided
in [22].

A decision table is an information system S = (U,AT, {Va|a ∈ At}, {Ia|a ∈
At}), where At = C ∪ D, C is a set of conditional attributes, and D is a set of
decision attributes. For simplicity, in this paper, we set D = {d}.

Definition 4. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C.

(1) PosA(d) = ∪X∈U/dA(X) is called the positive region of d with respect to A.
(2) A is called a positive region consistent set if PosA(d) = PosC(d). A is called

a positive region reduction of S if A is a positive region consistent set and
B is not a positive region consistent set for each proper subset B of A.

(3) A is called an assignment consistent set if A(X) = C(X) for each X ∈ U/d.
A is called an assignment reduction of S if A is an assignment consistent
set and B is not an assignment consistent set for each proper subset B of
A.

Positive region reduction and assignment reduction are two typical reductions
of decision systems. The reduction approaches have been provided in [8,9,12].

For a decision table, Zhao et al. [22] proposed the following decision-relative
relations.

Definition 5 [22]. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be
a decision table, and A ⊆ C. Four decision-relative relations on U are defined
by:

Indd(A) = {(x, y) ∈ U × U |∀a ∈ A(Ia(x) = Ia(y)) ∧ Id(x) = Id(y)};
WIndd(A) = {(x, y) ∈ U × U |∃a ∈ A(Ia(x) = Ia(y)) ∧ Id(x) = Id(y)};
Disd(A) = {(x, y) ∈ U × U |∀a ∈ A(Ia(x) �= Ia(y)) ∧ Id(x) �= Id(y)};
WDisd(A) = {(x, y) ∈ U × U |∃a ∈ A(Ia(x) �= Ia(y)) ∧ Id(x) �= Id(y)}.

Definition 6 [22]. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be
a decision table, and A ⊆ C.

(1) A is called a relative indiscernibility reduction of S if Indd(A) = Indd(C)
and Indd(B) �= Indd(C) for each proper subset B of A.

(2) A is called a relative discernibility reduction of S if Disd(A) = Disd(C) and
Disd(B) �= Disd(C) for each proper subset B of A.

Qin and Jing [23] noted that there are some errors in the reduction approaches
presented in [22]. Furthermore, the reduction approaches for the decision-relative
relations Indd(A) and Disd(A) are provided [23]. For any x, y ∈ U , we define:

Dmd(x, y) =
{{a ∈ C; Ia(x) �= Ia(y)}, if Id(x) = Id(y),

∅, otherwise. (3)
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Imd(x, y) =
{{a ∈ C; Ia(x) = Ia(y)}, if Id(x) �= Id(y),

∅, otherwise. (4)

Let FDm = ∧{∨Dmd(x, y);Dmd(x, y) �= ∅}, FIm = ∧{∨Imd(x, y); Imd(x, y)
�= ∅}. FDm and FIm are called the relative indiscernibility function and relative
discernibility function of S respectively.

Theorem 1 [23]. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be
a decision table, and A ⊆ C.

(1) A is a relative indiscernibility reduction of S if and only if ∧A is a prime
implicant of FDm.

(2) A is a relative discernibility reduction of S if and only if ∧A is a prime
implicant of FIm.

Example 1. We consider the decision table S = (U,C ∪ {d}, {Va|a ∈ C ∪
{d}}, {Ia|a ∈ C ∪ {d}}) presented in [22], where U = {oi; 1 ≤ i ≤ 8},
C = {a, b, c, d} is the set of conditional attributes, D is the decision attribute
and the information functions are given by the following Table 1:

Table 1. A decision table

a b c d e f D

o1 1 1 1 1 1 1 +

o2 1 0 1 0 1 1 +

o3 0 0 1 1 0 0 +

o4 1 1 1 0 0 1 −
o5 1 0 1 0 1 1 −
o6 0 0 0 1 1 0 −
o7 1 0 1 1 1 1 −
o8 0 0 0 0 1 1 −
o9 1 0 0 1 0 0 −

It is noted that [23] the relative indiscernibility reductions of S are {a, d, e},
{c, d, e}, {a, b, c, d} and {a, b, d, f}. Thus, it seems that the discernibility matrix
presented in [22] is unreasonable. Actually, they correspond to the reductions
presented in the following two sections.

3 The Reduction Based on λ-Relative Relations

In this section, a kind of decision-relative relation on the universe, called λ-
relative relation, is proposed and the λ-reduction approach is presented.
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Definition 7. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C. The λ-relative relation Indλ

d(A) on U is defined by:
Indλ

d(A) = {(x, y) ∈ U × U |∀a ∈ A(Ia(x) = Ia(y)) ∨ Id(x) = Id(y)}.
Definition 8. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C.

(1) A is called a λ-consistent set of S if Indλ
d(A) = Indλ

d(C).
(2) A is called a λ-reduction of S if A is a λ-consistent set, and for any proper

subset B of A, B is not a λ-consistent set.

For any x, y ∈ U , we define:

Dmλ
d(x, y) =

{{a ∈ C; Ia(x) �= Ia(y)}, if Id(x) �= Id(y),
∅, otherwise. (5)

Theorem 2. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C. A is a λ-consistent set of S if and only if for any
x, y ∈ U , A ∩ Dmλ

d(x, y) �= ∅ whenever Dmλ
d(x, y) �= ∅.

Proof. Suppose that A is a λ-consistent set of S and x, y ∈ U such that
Dmλ

d(x, y) �= ∅. Then Indλ
d(A) = Indλ

d(C). Additionally, Id(x) �= Id(y) and
there exists a ∈ C such that Ia(x) �= Ia(y). Thus (x, y) /∈ Indλ

d(C). It follows
that (x, y) /∈ Indλ

d(A) and thus there exist b ∈ A such that Ib(x) �= Ib(y).
Consequently, b ∈ Dmλ

d(x, y) and hence A ∩ Dmλ
d(x, y) �= ∅.

Conversely, suppose that A ∩ Dmλ
d(x, y) �= ∅ if Dmλ

d(x, y) �= ∅. For any
x, y ∈ U , if (x, y) /∈ Indλ

d(C), then Id(x) �= Id(y) and there exists a ∈ C such
that Ia(x) �= Ia(y). It follows that Dmλ

d(x, y) �= ∅ and hence A∩Dmλ
d(x, y) �= ∅.

Thus there exists b ∈ A such that Ib(x) �= Ib(y). Consequently, we have (x, y) /∈
Indλ

d(A) and thus Indλ
d(A) ⊆ Indλ

d(C). On the other hand, Indλ
d(C) ⊆ Indλ

d(A)
is trivial. It follows that Indλ

d(A) = Indλ
d(C) and A is a λ-consistent set of S as

required.

Let Fλ
Dm = ∧{∨Dmλ

d(x, y);Dmλ
d(x, y) �= ∅}. Fλ

Dm is called the λ-
discernibility function of S. Based on the discernibility function and prime impli-
cant results presented in [12], we have the following corollary.

Corollary 1. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C. A is a λ-reduction of S if and only if ∧A is a prime
implicant of Fλ

Dm.

Theorem 3. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C. If A is a λ-consistent set of S, then A is a positive
region consistent set.

Proof. Suppose that x ∈ U and x /∈ PosA(d). Then [x]A � [x]d. It follows that
there exists y ∈ U such that y ∈ [x]A and y /∈ [x]d. Thus we have Id(x) �= Id(y)
and Ia(x) = Ia(y) for each a ∈ A. Consequently, we have (x, y) ∈ Indλ

d(A).
Because A is a λ-consistent set of S, (x, y) ∈ Indλ

d(C). From Id(x) �= Id(y), it
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follows that Ia(x) = Ia(y) for each a ∈ C, so that [x]C = [y]C . By y /∈ [x]d
and y ∈ [x]C we have [x]C � [x]d and hence x /∈ PosC(d). It follows that
PosC(d) ⊆ PosA(d). On the other hand, PosA(d) ⊆ PosC(d) is trivial. Thus A
is a positive region consistent set.

Theorem 4. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C. If A is a λ-consistent set of S, then A is a assignment
consistent set.

Proof. It is sufficient to prove that A(E) = C(E) for each E ∈ U/d. By A ⊆ C,
it follows that Ind(C) ⊆ Ind(A) and hence [x]C ⊆ [x]A. Consequently, we have
C(E) ⊆ A(E).

On the other hand, if there exists x ∈ U such that x ∈ A(E) and x /∈ C(E),
then [x]A ∩ E �= ∅ and [x]C ∩ E = ∅. It follows that there exists y ∈ U such that
y ∈ [x]A ∩ E. By y ∈ [x]A we can conclude that Ia(x) = Ia(y) for each a ∈ A.
Thus we have (x, y) ∈ Indλ

d(A) = Indλ
d(C). By [x]Ind(C) ∩ E = ∅ and y ∈ E

we have x /∈ E and hence Id(x) �= Id(y). It follows that, by (x, y) ∈ Indλ
d(C),

Ia(x) = Ia(y) for each a ∈ C. Thus y ∈ [x]C ∩ E. This is a contradiction with
[x]C ∩ E = ∅.

Example 2. We consider the decision table S = (U,C∪{d}, {Va|a ∈ C∪{d}}, {Ia|
a ∈ C∪{d}}), where U = {oi; 1 ≤ i ≤ 8}, C = {a, b, c, d} is the set of conditional
attributes, D is the decision attribute and the information functions are given
by the following Table 2:

Table 2. A decision table

a b c d D

o1 0 0 1 1 0

o2 1 0 1 2 0

o3 2 1 2 0 1

o4 2 1 2 0 2

o5 1 2 2 1 2

o6 1 2 2 1 1

o7 0 1 3 2 1

o8 0 1 3 2 0

According to (5), the matrix Dmλ
d is given by the Table 3.

It follows that
Fλ

Dm = ∧{∨Dmλ
d(x, y);Dmλ

d(x, y) �= ∅}
= (a ∧ b) ∨ (a ∧ c) ∨ (a ∧ d) ∨ (b ∧ c) ∨ (b ∧ d) ∨ (c ∧ d).
Consequently, the λ-reductions of S are {a, b}, {a, c}, {a, d}, {b, c}, {b, d}

and {c, d}.
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Table 3. The matrix Dmλ
d

o1 o2 o3 o4 o5 o6 o7 o8

o1 ∅
o2 ∅
o3 abcd abcd ∅
o4 abcd abcd ∅
o5 abc bcd abd ∅
o6 abc bcd abd ∅
o7 bcd abc acd abcd ∅
o8 acd acd abcd abcd ∅

According to [8,9], for assignment reduction, two objects x and y need to
be differentiated if δ(x) �= δ(y) where δ(x) = {Y |Y ∈ U/d ∧ [x]A ∩ Y �= ∅}.
In this example, U/d = {D1,D2,D3}, D1 = {o1, o2, o8}, D2 = {o3, o6, o7},
D3 = {o4, o5}. Additionally, δ(o1) = δ(o2) = {D1}, δ(o3) = δ(o4) = δ(o5) =
δ(o6) = {D2,D3}, δ(o7) = δ(o8) = {D1,D2}. The assignment discernibility
matrix is given by Table 4.

Table 4. Assignment discernibility matrix

o1 o2 o3 o4 o5 o6 o7 o8

o1 ∅
o2 ∅
o3 abcd abcd ∅
o4 abcd abcd ∅
o5 abc bcd ∅
o6 abc bcd ∅
o7 bcd abc acd acd abcd abcd ∅
o8 bcd abc acd acd abcd abcd ∅

The assignment discernibility function is:
Fassign = c ∨ (a ∧ b) ∨ (a ∧ d) ∨ (b ∧ d).
Thus, the assignment reductions are {c}, {a, b}, {a, d} and {b, d}. Similarly,

it can be computed that the positive region reduction of S are {b}, {c} and
{a, d}. It follows that the λ-reduction, assignment reduction and positive region
reduction are different kinds of reductions.
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4 The Reduction Based on μ-Relative Relations

Definition 9. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C. The μ-relative relation Disμ

d (A) on U is defined by:
Disμ

d (A) = {(x, y) ∈ U × U |∀a ∈ A(Ia(x) �= Ia(y)) ∨ Id(x) �= Id(y)}.
Definition 10. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C.

(1) A is called a μ-consistent set of S if Disμ
d (A) = Disμ

d (C).
(2) A is called a μ-reduction of S if A is a μ-consistent set, and for any proper

subset B of A, B is not a μ-consistent set.

For any x, y ∈ U , we define:

Imμ
d (x, y) =

{{a ∈ C; Ia(x) = Ia(y)}, if Id(x) = Id(y),
∅, otherwise. (6)

Theorem 5. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C. A is a μ-consistent set of S if and only if: for any
x, y ∈ U , A ∩ Imμ

d (x, y) �= ∅ if Imμ
d (x, y) �= ∅.

Proof. Suppose that A is a μ-consistent set of S and x, y ∈ U such that
Imμ

d (x, y) �= ∅. It follows that Disμ
d (A) = Disμ

d (C). Additionally, Id(x) = Id(y)
and there exists a ∈ C such that Ia(x) = Ia(y). Thus (x, y) /∈ Disμ

d (C). It fol-
lows that (x, y) /∈ Disμ

d (A) and thus there exist b ∈ A such that Ib(x) = Ib(y).
Consequently, b ∈ Imμ

d (x, y) and hence A ∩ Imμ
d (x, y) �= ∅.

Conversely, suppose that A ∩ Imμ
d (x, y) �= ∅ if Imμ

d (x, y) �= ∅. For any x, y ∈
U , if (x, y) /∈ Disμ

d (C), then Id(x) = Id(y) and there exists a ∈ C such that
Ia(x) = Ia(y). It follows that Imμ

d (x, y) �= ∅ and hence A ∩ Imμ
d (x, y) �= ∅.

Thus there exists b ∈ A such that Ib(x) = Ib(y). Consequently, we have (x, y) /∈
Disμ

d (A) and thus Disμ
d (A) ⊆ Disμ

d (C). On the other hand, Disμ
d (C) ⊆ Disμ

d (A)
is trivial. It follows that Disμ

d (A) = Disμ
d (C) and A is a μ-consistent set of S as

required.

Let Fμ
Im = ∧{∨Imμ

d (x, y); Imμ
d (x, y) �= ∅}. Fμ

Im is called the μ-discernibility
function of S.

Corollary 2. Let S = (U,C ∪ {d}, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}) be a
decision table, and A ⊆ C. A is a μ-reduction of S if and only if ∧A is a prime
implicant of Fμ

Im.

5 Concluding Remarks

This paper is devoted to the discussion of attribute reduction approaches of deci-
sion tables based on relative indiscernibility relation and relative discernibility
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relation. The notions of λ reduction and μ reduction are proposed. The discerni-
bility matrices with respect to λ reduction and μ reduction are presented and
the reduction approaches are provided. The relationships among λ reduction,
μ reduction, positive region reduction and assignment reduction are analyzed.
In further research, we will consider the relationships among λ reduction, μ
reduction and other kinds of attribute reductions, such as maximum distribu-
tion reduction, distribution reduction and relationship preservation reduction.
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Abstract. The modern business environment is full of uncertain and imprecise
circumstances that require decision makers (DMs) to conduct informed and
circumspect decisions. In this regard, rough set theory (RST) has been widely
acknowledged as capable to resolve these complicated problems while relevant
knowledge can be extracted—in the form of rules—for decision aids. By using
those learned rules, an innovative bipolar decision model that comprises the
positive (preferred) and negative (unwanted) rules, can be applied to rank
alternatives based on their similarity to the positive and the dissimilarity to the
negative ones. However, in some business cases (e.g., personal credit loan),
applicants need to provide information (values) on all the attributes, requested
by a bank. Sometimes, experienced evaluators (e.g., senior bank staff) might
question the validity of some values (direct or indirect evidences) provided by
an applicant. In such a case, evaluators may assign additional values to those
attributes (regarded as non-deterministic ones) in a bipolar model, to examine
the stability of a rule that is supported by questionable instances. How to select
those rules with satisfactory stability would be an important issue to enhance the
effectiveness of a bipolar decision model. As a result, the present study adopts
the idea of stability factor, proposed by Sakai et al. [1], to enhance the effec-
tiveness of a bipolar decision model, and a case of credit loan evaluation, with
partially assumed values on several non-deterministic attributes, is illustrated
with the discussions of potential application in practice.
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1 Introduction

Rough set theory (RST), proposed by Pawlak [2], has been a powerful foundation for
modern computational technique on solving vagueness and impreciseness in many real
world problems. Although the classical RST has strength in making classifications under
impreciseness, certain problems require the RST to deal with decisions that have to
consider the preferential characteristic of attributes. Therefore, the eminent dominance-
based rough set approach (DRSA) [3–5] and the subsequent variable-consistency
dominance-based rough set approach (VC-DRSA) [6, 7] were proposed to enhance the
classical RST on decision-making. DRSA or VC-DRSA has been widely adopted for
supporting various practical decisions. Examples are evaluating the financial perfor-
mance (FP) of banks [8], marketing analysis [9], technical analysis for investment aids
[10], and the FP improvement planning of insurance companies [11].

The aforementioned applications are mainly based on historical data, where the
analyzed information values are generally regarded as deterministic ones. Nevertheless,
once the collected data include unknown or unsure values, non-deterministic systems
(NISs) [12, 13] or incomplete information systems (IISs) [14, 15] would be needed to
resolve the issue of missing or uncertain values of attributes. Take the case of credit
loan evaluation for example, most of the information provided by applicants, such as
their salaries or bank savings, could be examined by financial institutions with deter-
ministic results; nevertheless, the seniority (as an attribute), sometimes might require
the supportive judgments by evaluators to add one or two possible values on this
attribute, for some questionable applicants. If one or more extracted decisions rules
include this attribute, how to judge the stability of those rules would be a problem.
Therefore, the present study attempts to adopt the idea from Sakai et al. [1], to evaluate
the stability of the selected rules in a bipolar decision model that involve
un-deterministic information.

Recently, a hybrid bipolar decision approach, was proposed for ranking alternatives
by using the positive and negative decision rules induced from DRSA or VC-DRSA,
which evaluates alternatives based on their similarity to the positive rules and the
dissimilarity to the negative ones for business analytics [16]. This approach has to set a
threshold to select the positive and negative rules to form a bipolar model [17]. The key
criterion for a positive/negative rule to be selected, in a bipolar decision model, is based
on the support numbers of a rule. Once a rule was selected that include some instances
with several questionable values assigned by evaluators, its stability should be
examined to ensure that it meets the required stability by DMs.

A simplified case for the credit loan evaluation problem is illustrated with the
combination of data—real raw data from applicants and several assumed uncertain
attribute values—provided from a branch of Taiwanese bank.

2 Preliminary

This section briefly discusses the two major topics covered in this study: (1) NISs and
(2) DRSA and a stability factor for measuring the possible decision rules from a
NISDRSA.
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2.1 Non-deterministic Information Systems (NISs)

NISs have been proposed to deal with information incompleteness or uncertainty in
deterministic information systems (DISs). A series of research have established a solid
foundation on analyzing NISs in various aspects, such as the definability of sets in NISs
[18, 19], the consistency of objects in NISs [20], and the stability factor analysis of
decision rules in NISs [1]. In this regards, a framework of Rough Non-deterministic
Information System Analysis (RNIA) was proposed [1, 18–22]. For NIS, it usually
yields more than one DISs.

In some types of DISs, such as the one from DRSA, it usually comprises a
four-tuple information system (IS): DISDRSA ¼ ðU;A;V ; f Þ. In this type of DISDRSA, U
is a finite set of instances (also termed as objects or observations). A is a finite set of
attributes; V denotes a set of finite values of the attributes in A, where f is a total
function (i.e., f : U � A ! V) that maps the value of an instance x (for x 2 U) on an
attribute ai (ai 2 A, i ¼ 1; . . .; n) to a specific attribute value in V .

On the other side, if one or more attributes in the aforementioned DISDRSA that

conform another information function (in which, P denotes a power set for g :

U � A� ! P
S

a�2A�
Va�

� �
while all Va� 2 V , A[A� ¼ A� and A\A� ¼ £), then

DISDRSA could be extended into NISDRSA (for NISDRSA ¼ U;A�;V ; gð Þ). Under this
circumstance, f x; a�ð Þ� g x; a�ð Þ, then this DISDRSA could be regarded as a derived one
from NISDRSA. Every set g x; a�ð Þ, according the descriptions from RNIA [1], is inter-
preted as that there is a corresponding value in Va� but the actual value is still unsure or
uncertain. In here, the circumstance of a missing or unknown value is not included.
Furthermore, only one attribute belongs to the set of decision attribute D in a
decision-model-based DIS (Da 2 D�A�); the others the condition attributes (i.e.,
Ca 2 C�A�). Also, C \D ¼ £ and C [ D ¼ A�.

Yielded from a typical DIS, a decision rule s is in the form of “IF condi-
tions_satisfied THEN decision_classified.” Thus, a rule s can be measured by
SuppR sð Þ and AccuR sð Þ, defined in Eqs. (1) and (2) respectively.

SuppR sð Þ ¼ consistent sð Þj j= observationsj j ð1Þ

AccuR sð Þ ¼ consistent sð Þj j� consistent sconditions
� ��� �� ð2Þ

In Eqs. (1) and (2), consistnet sð Þj j denotes the number of instances that conforms
both the conditions (antecedents) and the decision (consequence) of a rule s;
consistnet sconditions

� ��� �� indicates the numbers of objects (instances) that at least conform
the conditions of a rule s.

In the presence of g x; Ca�ð Þ and g x; Da�ð Þ) while Ca� 2 C and Da� 2 D) in NISDRSA,
the previous work [1] further defined a set DD sð Þ, which denotes a set of derived DISs
(or termed as DISsDRSA in here) from a s. And the set of derived DISsDRSA from an
instance x is denoted as DD sxð Þ. All the derived DISsDRSA of NISDRSA are defined as
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DDAll sð Þ. In this study, we discuss a simplified case that most of the attributes Cai 2 C
(for i ¼ 1; . . .; n) are deterministic, except two condition attribute (Ca�k and Ca�l ).

2.2 Stability Factor for Measuring DRSA Decision Rules

In the classical DRSA, for any two objects (or called observations) x and y in U, a
complete outranking relation regarding an attribute a1 can be defined as �a1 or �a1 . If
x�a1y (x; y 2 U) holds, it means that “x is at least as good as y regarding the attribute
a1.” For any attribute that belongs to A, which categorizes the objects in U into a finite
number of classes (e.g., m classes), denoted as Cl ¼ Clt : Cl1;Cl2; . . .;Clmf g. For each
x 2 U, object x belongs to only one CltðClt 2 ClÞ. Each Cl has a predefined preferential
order; thus, a downward union Cl	t and upward union Cl
t of classes can be defined as
Eqs. (3), (4):

Cl	t ¼
[
s	 t

Cls ð3Þ

Cl
t ¼
[
s
 t

Cls ð4Þ

To shorten the descriptions, merely the upward union is discussed; the downward
union could be reasoned similarly or refer the previous works [3–5]. For x; y 2 U, if
x dominates y with respect to a partial condition attribute set P (i.e., P�C), it can be
denoted as xDPy to indicate x P-dominates y. Then, for a set of objects that dominate
x with regard to P, it can be denoted as Dþ

P ðxÞ ¼ y 2 U : yDPxf g, the P-dominating
set. On the other side, a set of objects that are dominated by x with regard to P can be
denoted as D�

P ðxÞ ¼ y 2 U : xDPyf g (i.e., the P-dominated set).
The P-lower and P-upper approximations of an upward union can be defined by

P Cl
t
� � ¼ x 2 U : Dþ

P ðxÞ�Cl
t
� 	

and �PðCl
t Þ ¼ x 2 U : D�
P xð Þ \Cl
t 6¼ £

� 	
. In

the DRSA,P Cl
t
� �

denotes all of the objects x 2 U that should be included in the upward
union Cl
t with certainty; the P-upper approximation �PðCl
t Þ can be interpreted as all of
the objects possibly belong to Cl
t (i.e., uncertainty remains). The boundary region
BnP ¼ �PðCl
t Þ � P Cl
t

� �
can thus be defined. Several famous DRSA algorithms (e.g.,

DomLEM) can generate DRSA decision rules in five types: (1) certain D
 , (2) possible
D
 , (3) certain D	 , (4) possible D	 , and (5) approximate D
 	 decision rules.

In this study, after discussions with two senior staffs who are in charge of the credit
loan operations in the XY bank, we only presume the existence of two non-deterministic
attributes: Ca�k ,

Ca�l ; all the other attributes are deterministic ones. In the case like a
credit loan evaluation problem, a IS collected and organized from applicants will be
regarded as the main IS for generating DRSA decision rules at first; DMs or evaluators
may assign/add possible values to an observation for those non-deterministic attributes
that are questionable. In the next, if a rule s involves more than one Ca� in its con-
ditional parts, then Uini sð Þ is defined as the initial DISDRSA of s that comprises of two
parts: (1) all the conditional parts with deterministic values and (2) the conditional parts
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that involve non-deterministic attributes by using those values provided by applicant as
the deterministic ones at this stage (extended from the definition of [1]).

Then, Uini sð Þ can yield multiple U sð Þ s to become NISDRSA by accepting the
assigned plausible values (by DMs or evaluators) for those covered observations of a

rule s. Each Uex sð Þ 2 DD sð Þ, and ex1; . . .;exj; . . .;exn denote the n supporting DISs of a
possible rule s where uncertain values co-exist for an observation on a
non-deterministic attribute. If s can meet the following two requirements:

(1) SuppR sex
 �

 a and (2) AccuR sex
 �


 b, then s is defined as a; bð Þstable in Uex sð Þ. In
the next, DDAll sð Þ means a set of all derived DISs (or DISsDRSA in here) where the rule s
occurs. Then, Eqs. (5), (6) show how to calculate a stability factor for s.

S s; a; bð Þstable

 �

¼ Uex sð Þ 2 DDAll sð Þ s isj a; bð Þstable inUex sð Þ
n o

ð5Þ

STFðs; a; bÞ ¼ S s; a; bð Þstable

 ���� ���. DDAll sð Þj j ð6Þ

There is one more thing that might need attention in here. Since the rules from
DRSA have to consider the preferential order of values for a non-deterministic attri-
bute, this requirement has to be considered while calculating SuppR �ð Þ and AccuR �ð Þ to
derive a valid stability factor.

3 BipolarDecisionModel Enhancedwith Stable PossibleRules

Recently, a hybrid bipolar decision approach was proposed for solving practical
problems on ranking or selection [16, 17, 23] in decision science; it can be regarded as
a branch of multiple rules-based decision-making (MRDM), which leverages the
rules-induction capability of DRSA. However, the critical difference of a bipolar
decision, compared with the classical DRSA, begins with dividing the decision attri-
bute D into merely three Cls: positive (POS), neutral (NEU), and negative (NEG). The
three Cls have preferential order: ClPOS � ClNEU � ClNEG. The essential goal is to
explore those influential DRSA rules in two groups: the positive and the negative rules.

In the previous work [23], DMs would need to set a threshold (W) to select the
covered rules from the positive and negative groups, to form a bipolar decision model.
The threshold is defined as the minimal or required percentage of instances that satisfy
the dominance relation of DRSA from the two groups of rules.

OPOS
�� ���e
W ð7Þ

ONEG
�� ���g
W ð8Þ

In Eqs. (7), (8), e and g are the total numbers of the instances that are classified as
ClPOS and ClNEG in a DRSA IS; �j j denotes cardinality. OPOS

�� �� and ONEGj j denote the
minimal number of instances that should be covered in the positive and negative rules,
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respectively. DMs would need to rank the two groups of rules, from high to low
supports. Suppose that there are n positive and m negative rules in those two groups,
they can be ranked from high to low supports, denoted as sPOSi (for i = 1,…,i,…n) and
sNEGj (for j = 1,…,j,…m). And the corresponding support numbers for the two groups

of rules are denoted as SPOSi�th and SNEGj�th (SPOS1�st or S
NEG
1�st denotes the rule with the highest

supports in the positive or negative group). Then sPOS1�st to sPOSk�th rules would be included
in the bipolar model if Eq. (9) can be satisfied. Similarly, sNEG1�st to sNEGl�th would be
selected once Eq. (10) can be satisfied.

Xk�th

i¼1

SPOSi�th 
 OPOS
�� �� ð9Þ

Xl�th

j¼1

SNEGj�th 
 ONEG
�� �� ð10Þ

In the previous bipolar model, the support weights of the positive and negative
rules for a bipolar model can be obtained by Eqs. (11), (12):

wPOS
i�th ¼ SPOSi�th

�
OPOS
�� ��þ ONEG

�� ��� � ð11Þ

wNEG
j�th ¼ SNEGj�th

.
OPOS
�� ��þ ONEG

�� ��� � ð12Þ

However, if any rule among sPOS1�st to sPOSk�th (or s
NEG
1�st to s

NEG
l�th ) that involves

Ca�k or
Ca�l

with questionable instances, the rule’s stability factor should be examined to ensure that
rule can be kept in this bipolar model. Take a positive rule for example; if the stability
factor of sPOSk�th is lower than the predefined percentage, then sPOSðkþ 1Þ�th should be

examined, to see if
Pðkþ 1Þ�th

i¼1
SPOSi�th � SPOSk 
 OPOS

�� ��. This idea can be illustrated in Fig. 1

by taking positive rules as an example.

Fig. 1. Conceptual flow of selecting stable (POS) rules for a bipolar model
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In this regard, STFðs; a; bÞ mentioned in Sect. 2 can be used to evaluate those
positive and negative rules while a NISDRSA exists for some decision rules. A simplified
case is illustrated in Sect. 4 with discussions.

4 A Brief Illustration Example of Personal Credit Loan
Evaluation

To illustrate the proposed idea, a partial set of applicants’ data (from a local branch of
the XY bank in Keelung) that only comprises 40 instances were analyzed to demon-
strate the enhanced bipolar model using the stability factor. The two presumed con-
dition attributes are Job (occupation, discretized in four Cls) and Seniority (discretized
in two Cls: 
 2 or \2 years in current job).

Normally, an applicant has to fill-in all the required information for a bank to
approve a credit loan application. Most of the provided information from an applicant
can be checked and examined by a bank staff after receiving the application. However,
some information is difficult to examine their credibility before making an approval.
Take the attribute Job (occupation) for example, the XY bank divides it into four
categories: (1) employees from ordinary companies that do not fit-in the other three
categories, (2) an applicant whose salary account is in the XY bank, (3) employees from
public-listed or top-1500 companies in Taiwan or medical doctors or civil engineering
technicians or electronical engineers, and (4) employees from a national/local agency
of the government or a public school or a government-owned business (i.e., 4 � 3 �
2 � 1 from the bank’s point of view).

Sometimes, it might not be easy to distinguish an applicant from the second and the
fourth categories by the limited information (such as a name card) or indirect evidence
provided by the applicant. The staff in charge of such an application might attach
additional values for an applicant (instance) on this attribute by his/her own judgments.
To illustrate this idea, an IS comprises 40 instances were analyzed using DRSA
algorithm at first; there are 19 condition attributes (required information by the XY
bank) and one decision attribute in three Cls (POS, NEU, NEG; POS indicates
acceptance and NEG rejection, NEU denotes that the bank might consider to approve it
with higher interest rate charges).

4.1 Initial Bipolar Model with Deterministic Values

The 40 instances were induced by DRSA algorithm at first before forming a bipolar
decision model. There are 26 POS, 4 NEU and 10 NEG instances categorized in the
decision attribute. By setting W = 80%, the positive and negative groups have to
include at least 21 and 8 instances, respectively. To illustrate the proposed idea, we did
not conduct N-fold cross validation. Instead, we repeated the rule-induction process for
10 times; the model with the highest re-classification rate 90% (36/40 instances were
correctly classified) was adopted. To cover 21 POS and 8 NEG instances in the
decision rules, 6 positive and 5 negative certain rules were selected, and the supporting
instances for each rule are shown in Table 1.
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4.2 Evaluating Stability Factor of Decision Rules

In this case, only the attribute Job appeared in the initial bipolar model, and the second
one (Seniority) was not included. The instances {#4, #10} in PR_2 and {#10, #26} in
PR_4 were assumed to be questionable; thus, the two positive rules’ certainty might
also be questionable. Therefore, those two rules’ decision attribute was assumed to be
non-deterministic. The newly assumed NISs, exclude the other irrelevant attributes for
the two rules, are in Tables 2 and 3, respectively.

From Table 2, DDAll PR 2ð Þj j ¼ 23 � 3 ¼ 24 (#2, #14, #20, and #22 are all with
deterministic values); by setting a = 0.20 and b = 0.80, then STF PR 2ð Þ ¼ 37:50%. If
DMs may accept lower a (e.g., 0.18) and the same value of b, the new STF PR 2ð Þ
would increase to 87.5%. The 24 pairs a;bð Þ of the rule PR_2 are shown in Fig. 2.

In other words, based on the proposition from [1], the SuppR;AccuRð Þ or a; bð Þ
once located partially in the Max/Min a;bð Þ formed rectangular, it can be regarded as a
possible rule, which needs to satisfy STF a ¼ 0:18; b ¼ 0:8ð Þ = 87.5% (STF < 1). This
idea is illustrated in Fig. 3. Similarly, from Table 3, DDAll PR 4ð Þj j ¼ 24 ¼ 16. If DMs

Table 1. Selected positive and negative rules with their supporting instances

Rules Selected decision rules Supporting
instances

PR_1 IF CreditS
 1 ^ CreditLoan	 1 ^ LendR	 4 then D�POS 5, 9, 10, 11,12, 16
PR_2 IF Gender
 2 ^ Job	 2 ^ DAccount	 1 then D�POS 2, 4, 10, 14, 20,

22
PR_3 IF Age
 2 ^ CreditS
 3 ^ CCuse	 2 then D�POS 6, 8, 17, 18, 20
PR_4 IF Job	 3 ^ CreditS
 2 ^ LendR	 4 then D�POS 2, 3, 10, 19, 26
PR_5 IF CreditS
 1 ^ LendR	 2 then D�POS 3, 5, 21,27
PR_6 IF Salary
 5 ^ CreditS
 2 then D�POS 3, 13, 15
NR_1 IF CreditS	 1 ^ DAccount
 2 then D�NEG 32, 34, 35
NR_2 IF Age	 2 ^ Job
 4 ^ CCuse
 3 then D�NEG 38, 40
NR_3 IF Age	 1 ^ LendR
 7 then D�NEG 31
NR_4 IF Job
 4 ^ Position	 1 then D�NEG 39
NR_5 IF Age	 4 ^ Job
 3 ^ RevolveCredit
 2 ^ LendR
 7 then

D�NEG
37

Table 2. Assumed NIS for the positive rule PR_2

Instances 1Gender Job 2DAccount Decision (Cls)

#4 {2} {2, 4} {1} {POS, NEU}
#10 {2} {2, 4} {1} {POS, NEU,NEG}
1In the attribute Gender, {2} denotes female.
2In the attribute DAccount, {1} denotes that the applicant has a
deposit account in the XY bank.
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set a = 0.18 and b = 0.80, then STF PR 4ð Þ ¼ 43:75%. Once DMs hope to keep stable
rules for STF �ð Þ
 80% while a = 0.18 and b = 0.80, PR_4 would have to be removed
from the bipoar model.

Table 3. Assumed NIS for the positive rule PR_4

Instances Job 1CreditS 2LendR Decision (Cls)

#10 {2, 4} {2} {3} {POS, NEU}
#26 {2, 4} {2} {4} {POS, NEU}
1In the attribute CreditS, {2} denotes a joint credit
information score between 600 to 700.
2In the attribute LendR denotes the amount of loan is a
multiple of his/her monthly salary; {3} denotes 7 to 9
times, and {4} denotes 10 to 11 times. This attribute is
discretized in 7 Cls.

Fig. 2. Plotted 24 pairs of a; bð Þ of PR_2

Fig. 3. Min/Max STF region of PR_2
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The next positive certain rule: “IF Marriage
 2 ^ House	 2 then D�POS,” will
replace the original PR_4 with two supporting instances. Nevertheless, the total cov-
ered instances is still below 21; therefore, the next positive rule should be evaluated
until the requirement of Eq. (9) is satisfied. For brevity, the definitions and the ways of
discretization for the two attributes, Marriage and House, are not explained in here.
After adopting the idea of stability factor for measuring those questionable
instances/rules, the formed bipolar decision model and the weight of each rule would
change accordingly. Thus, in the presence of uncertain/unsure values for
non-deterministic attributes, DMs can have more confidence on judging the stability of
the involved rules of a bipolar model.

5 Concluding Remarks

This study is a preliminary work that attempts to discuss the issue of stable/unstable
decision rules in a bipolar decision model and how to enhance it, while some ques-
tionable observations exist. The idea of NISs [1] has formed a solid theoretical foun-
dation on measuring the stability of uncertain decision rules, which may serve as a
bridge on enhancing the result of rough machine learning by adopting the judgments of
seasoned experts (DMs).

Three issues may be further discussed in the future. First, the practical meaning of
a; bð Þstable should be comprehended by DMs while setting the thresholds for a and b.
How to communicate with DMs on this abstract concept in a bipolar decision model
might not be an easy task in practice. Actually, a denotes the occurrence ratio of a rule.
Which implies that, if a DM intends to include at least five rules in the positive group
(21 observations), the suggested a might be smaller than 23.8% (i.e., 5/21 = 23.8%).
Instead, b denotes the consistency of a rule. Although higher a and b both imply that a
rule should be more reliable, the actual meaning of reliability delivered by the two
thresholds are different.

Second, to begin such a DRSA-based bipolar model by using the information
provided by applicants might not be the ideal approach. If a bank tends to be more
conservative, it may use the inferior values on those non-deterministic attributes to
form the initial bipolar model; it might yield different decision rules. The pros and cons
of the two approaches are worthwhile to discuss with practitioners after experimenting
several sets of data.

Third, while using this bipolar model on evaluating new alternatives, the degree of
fulfillment on each requirement of a new applicant (in those positive/negative rules)
could be measured by the fuzzy set technique. As Dubois and Prade [24] stated, fuzzy
set and RST have their strength in dealing with vagueness and coarseness, respectively.
The credibility or belongingness of the values in those questionable attributes (from an
applicant), could also be handled by measuring their fuzzy degrees; then it would be a
different fuzzy-rough approach, which will require the fuzzy judgments of senior staffs.

Finally, this rough-set-based bipolar decision model could accumulate the experi-
ence on how to judge those questionable instances (observations) by setting a con-
trolling index: STF �ð Þ. Therefore, this enhanced bipolar decision model should be
more capable to measure the degree of risky applicants without losing business
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opportunity; banks could define different charging policies for those somewhat ques-
tionable applicants referring the evaluation result by the proposed model. During the
discussions with the practitioners, they often mentioned that banks incline to be con-
servative on credit loan evaluation. However, banks also hope to earn more clients; a
decision- support model that could control the acceptable risk level of applicants by
setting different charging policies, would be valuable in practice. It is also the hope of
this study to work on this direction.

Acknowledgment. We are grateful for the funding support of the Ministry of Science and
Technology of Taiwan (R.O.C.) under the grant number MOST-105-2410-H-034-019-MY2.
Also, the provided data and opinions from the XY bank are appreciated.

References

1. Sakai, H., Okuma, H., Nakata, M., Ślȩzak, D.: Stable rule extraction and decision making in
rough non-deterministic information analysis. Int. J. Hybrid Intell. Syst. 8(1), 41–57 (2011)

2. Pawlak, Z.: Rough set theory and its applications to data analysis. Cybern. Syst. 29(7), 661–
688 (1998)

3. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision
analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)

4. Greco, S., Matarazzo, B., Słowiński, R.: Rough approximation by dominance relations. Int.
J. Hybrid Intell. Syst. 17(2), 153–171 (2002)

5. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets methodology for sorting problems in
presence of multiple attributes and criteria. Eur. J. Oper. Res. 138(2), 247–259 (2002)

6. Błaszczyński, J., Greco, S., Słowiński, R.: Multi-criteria classification–a new scheme for
application of dominance-based decision rules. Eur. J. Oper. Res. 181(3), 1030–1044 (2007)

7. Inuiguchi, M., Yoshioka, Y., Kusunoki, Y.: Variable-precision dominance-based rough set
approach and attribute reduction. Int. J. Approx. Reason. 50(8), 1199–1214 (2009)

8. Shen, K.Y., Tzeng, G.H.: DRSA-based neuro-fuzzy inference systems for the financial
performance prediction of commercial banks. Int. J. Fuzzy Syst. 16(2), 173–183 (2014)

9. Liou, J.J., Tzeng, G.H.: A dominance-based rough set approach to customer behavior in the
airline market. Inf. Sci. 180(11), 2230–2238 (2010)

10. Shen, K.Y., Tzeng, G.H.: Fuzzy inference-enhanced VC-DRSA model for technical
analysis: Investment decision aid. Int. J. Fuzzy Syst. 17(3), 375–389 (2015)

11. Shen, K.Y., Hu, S.K., Tzeng, G.H.: Financial modeling and improvement planning for the
life insurance industry by using a rough knowledge based hybrid MCDM model. Inf. Sci.
375, 296–313 (2017)

12. Sakai, H., Ishibashi, R., Koba, K., Nakata, M.: Rules and apriori algorithm in
non-deterministic information systems. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.)
Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 328–350. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-89876-4_18

13. Ślęzak, D., Sakai, H.: Automatic extraction of decision rules from non-deterministic data
systems: theoretical foundations and sql-based implementation. In: Ślęzak, D., Kim, T.H.,
Zhang, Y., Ma, J., Chung, K.I. (eds.) DTA 2009. CCIS, vol. 64, pp. 151–162. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10583-8_18

14. Kryszkiewicz, M.: Rough set approach to incomplete information systems. Inf. Sci. 112(1–
4), 39–49 (1998)

Stable Rules Evaluation for a Rough-Set-Based Bipolar Model 327

http://dx.doi.org/10.1007/978-3-540-89876-4_18
http://dx.doi.org/10.1007/978-3-642-10583-8_18


15. Kryszkiewicz, M.: Rules in incomplete information systems. Inf. Sci. 113(3–4), 271–292
(1999)

16. Shen, K.Y., Tzeng, G.H.: Contextual improvement planning by fuzzy-rough machine
learning: A novel bipolar approach for business analytics. Int. J. Fuzzy Syst. 18(6), 940–955
(2016)

17. Shen, K.Y., Tzeng, G.H.: A novel bipolar MCDM model using rough sets and three-way
decisions for decision aids. In: 2016 Joint 8th International Conference on Soft Computing
and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent
Systems, pp. 53–58. IEEE, August 2016

18. Nakata, M., Sakai, H.: Lower and upper approximations in data tables containing
possibilistic information. In: Peters, J.F., Skowron, A., Marek, V.W., Orłowska, E.,
Słowiński, R., Ziarko, W. (eds.) Transactions on Rough Sets VII: Commemorating the Life
and Work of Zdzisław PawlakPart II. LNCS, vol. 4400, pp. 170–189. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71663-1_11

19. Nakata, M., Sakai, H.: Applying rough sets to information tables containing possibilistic
values. In: Gavrilova, M.L., Kenneth Tan, C.J., Wang, Y., Yao, Y., Wang, G. (eds.)
Transactions on Computational Science II. LNCS, vol. 5150, pp. 180–204. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87563-5_11

20. Sakai, H., Okuma, A.: Basic algorithms and tools for rough non-deterministic information
analysis. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B., Świniarski, R.W.,
Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 209–231.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27794-1_10

21. Sakai, H., Wu, M., Nakata, M.: Apriori-based rule generation in incomplete information
databases and non-deterministic information systems. Fundam. Inform. 130(3), 343–376
(2014)

22. Sakai, H.: Software tools for RNIA (Rough Non-Deterministic Information Analysis)
(2016). http://www.mns.kyutech.ac.jp/*sakai/RNIA/

23. Shen, K.Y.: Compromise between short-and long-term financial sustainability a hybrid
model for supporting R&D decisions. Sustainability 9(3), 375 (pp. 1–17) (2017). doi:10.
3390/su9030375

24. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 17(2–3),
191–209 (1990)

328 K.-Y. Shen et al.

http://dx.doi.org/10.1007/978-3-540-71663-1_11
http://dx.doi.org/10.1007/978-3-540-87563-5_11
http://dx.doi.org/10.1007/978-3-540-27794-1_10
http://www.mns.kyutech.ac.jp/%7esakai/RNIA/
http://dx.doi.org/10.3390/su9030375
http://dx.doi.org/10.3390/su9030375


On Combining Discretisation Parameters
and Attribute Ranking

for Selection of Decision Rules
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Abstract. The paper describes research on filtering decision rules with
continuous and discretised condition attributes while combining charac-
teristics of these attributes returned from supervised discretisation with
their ranking. Numbers of intervals required for partitioning of attributes
values imposed their grouping into corresponding categories, and for each
group separately ranking procedures with Relief algorithm were exe-
cuted. Information about numbers of bins combined with ranking posi-
tions were next exploited for selection of rules induced within rough set
approaches. Filtering rules was performed directly by their conditions,
or by calculating defined measures based on attribute weights, return-
ing shortened decision algorithms with at least the same or improved
classification accuracy.

Keywords: Rule filtering · Decision rules · Continuous attributes ·
Supervised discretisation · Attribute ranking · CRSA · DRSA

1 Introduction

Pruning rule sets is one of popular post-processing methodologies with the aim
of such removal of elements from considered decision algorithms that results
in at least the same or possibly increased recognition, but occurring for fewer
constituent rules [19,29]. The paper presents research on rule filtering while
exploiting two approaches, firstly with selection directed by condition attributes
included in rules premises [25], and secondly by evaluation of defined rule quality
measures based on importance of variables [28], learned from supervised discreti-
sation and constructed attribute rankings.

Discretisation allows for transforming input continuous space into discrete by
grouping values of attributes into ranges called bins. The purposes of such trans-
formation include more general descriptions of recognised concepts, enabling
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techniques working only for nominal variables [10], or improved prediction. Unsu-
pervised discretisation ignores class information, while supervised procedures
estimate how loss of knowledge caused by discretisation hurts the ability of recog-
nising classes [18]. Fayyad and Irani’s method [11] follows Minimal Description
Length (MDL) principle to arrive at optimal numbers of intervals for all features
while observing changes of class entropy made by discretisation.

The numbers of bins can be considered as characterisation of attributes with
respect to their importance within a classification task, based on discretisation
criteria. Higher numbers of bins indicate that for some features more attention
is required to study their values in the context of their class labels. On the other
hand, for some variables single bins can be found suggesting that these attributes
are irrelevant for recognition of classes. Thus established numbers of bins impose
grouping of features into corresponding categories. In the research presented
this information was combined with attribute ranking, which also can be used
to estimate relevance of variables. To emphasize the importance of attribute
characterisation by discretisation, for each category of inputs ranking with Relief
algorithm [16] was obtained separately. These local rankings were merged into
one, resulting in the global ranking of features, exploited in selection of rules.

Decision rules were obtained within Dominance-Based Rough Set Approach
(DRSA) [13,24] for continuous attributes, and with Classical Rough Set App-
roach (CRSA) [21,22] for discretised, in the latter case with reduction of fea-
tures to these with at least two bins found in discretisation. For both rough set
approaches exhaustive algorithms [4,12] were induced, and for resulting rule sets
filtering of their elements was executed.

The presented study was devoted to two cases of binary authorship attribut-
ion [15,17], for a pair of male and a pair of female writers, with balanced classes
and stylistic characteristic features. Evaluation of results was obtained by test
sets, which were discretised independently on training sets.

Performed experiments show that selection of decision rules driven by condi-
tion attributes and calculated measures, based on characterisation by bin num-
bers and feature ranking, led to construction of optimised rule classifiers, with
reduced numbers of constituent rules, and in several cases with increased pre-
diction, in continuous and discrete domain as well.

The text of the paper is organised as follows. Section 2 provides the general
research background, and Sect. 3 describes the framework of performed experi-
ments. Section 4 explains executed tests and comments their results, while Sect. 5
gives conclusions and comments on future research.

2 Background Information

The research described in the paper addressed several issues: supervised discreti-
sation and characterisation of continuous characteristic features resulting from
it, ranking of attributes, selection of rules from rule sets inferred within rough set
approaches, and stylometry as application domain, presented with more details
in the following sections.
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2.1 Supervised Discretisation

Concepts to be recognised can be described by numeric or nominal attributes,
yet not all techniques are capable of processing continuous values of variables.
In such situations, either some modifications to methodologies are introduced to
adapt them for this kind of data [9,24], or discretisation needs to be performed.

The primary goal of discretisation is partitioning the continuous input space
into some number of sub-ranges, corresponding to categories of values for fea-
tures, established with disregarding class labels in unsupervised approaches, or
with taking into account class information in supervised methods [10]. In static
algorithms the numbers of intervals are established for all considered attributes
independently, while in dynamic discretisation the search is executed simultane-
ously for all features [18].

Fayyad and Irani’s method [11] starts with a single bin assigned for all values
of attributes, and in recursive procedures the candidates for cut-points (that is
intervals boundaries) for these bins are evaluated by observing class entropy.
The number of resulting bins is controlled by exploiting Minimum Description
Length principle as a stopping criterion for the search. With this processing some
areas of the input continuous space can be partitioned into higher numbers of
smaller bins, while for other areas partitioning is rather sparse and bins large.

Numbers of bins found for features reflect interdependencies between their
values and class labels for samples. Single bins indicate that no distinction of
attribute values is required for undamaged class recognition, thus such features
can be treated as irrelevant. On the other hand, fine partitioning into higher
numbers of bins means that with lower numbers of ranges class entropy was
too degraded and suggests higher importance of some variables, or more com-
plex relationships between these attributes and target concepts. Such reasoning
leads to grouping of features into categories that correspond to numbers of bins
established for them, and assigning proportional significance to these categories.

2.2 Ranking of Attributes

Rankings belong to approaches serving as estimators of attribute relevance [16],
used in feature selection domain to find groups of variables best suited for a
studied task. Ranking functions employ statistical measures and calculations
referring to information theory, machine learning techniques, or some system-
atic specialised procedures such as sequential search. The available features are
analysed and then ordered in descending order basing on given scores, with the
most important variables at the top of the ranking, and the least relevant as the
lowest ranking at its bottom.

Relief is one of instance-based ranking algorithms [26], which can be applied
for nominal as well as continuous input data. In the original version it worked
only for binary classification, but was extended to multiple classes. The pseudo-
code is listed in Algorithm 1. Within the algorithm all variables are assigned
some score reflecting their ability of discerning considered decision classes.
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Algorithm 1. Pseudo-code for Relief
Input: set of learning instances X, set A of all N attributes, set of classes Cl ,

probabilities of classes P (Cl),
number of iterations m,
number k of considered nearest instances from each class;

Output: vector of weights w for all attributes;
begin
for i=1 to N do w(i) = 0 endfor
for i=1 to m do

choose randomly an instance x ∈ X
find k nearest hits Hj

for each class Cl �= class(x) do find k nearest misses Mj(Cl) endfor
for l = 1 to N do

w(l) = w(l) −
k∑

j=1

diff(l,x,Hj)

m×k
+

∑

Cl�=class(x)

P (Cl)
1−P (class(x))

k∑

j=1
diff(l,x,Mj(Cl))

m×k

endfor
endfor
end {algorithm}

The set of examples is iteratively sampled and for each instance so-called
near-hit H is found, which is another sample that is its closest neighbour belong-
ing to the same class, and so-called near-miss M, the closest neighbour in the
other class (or classes if they are multiple). For all tested pairs x1 and x2 of
instances the distances with respect to attribute a are calculated by the func-
tion diff (a, x1, x2). For nominal attributes it returns 1 for distinct values and 0
when they are the same, while for numerical attributes normalised actual differ-
ence is returned. The results are averaged over contributions from m iterations,
with weighting misses by the prior probability of each class.

2.3 Selection of Rules

Rule selection can be performed as pre-processing, when modifications of input
data lead to construction of specific rules. If during induction stage some rules
are chosen while others immediately rejected, then selection is performed within
processing. Filtering in post-processing [19] means discarding rules chosen from
the already available set. The last approach can require more resources than
others, more processing time, yet it provides possibly the widest context for
studying and estimating rule quality, which is the main reason for its popularity.

Analysis of inferred rule sets can be based on inherent rule parameters, such
as length, support, strength, included conditions, or some other characteristics.
Shorter rules, with fewer conditions in their premise parts, usually possess better
generalisation and description properties. Long rules with many conditions often
fit to learning samples so closely that they cannot find matching samples in test
sets, causing overfitting. Since a rule support specifies a number of training
samples for which the rule holds true, rules with high supports describe patterns
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present in many learning examples, which causes higher probability of finding
a match also for unknown samples. While exploiting domain knowledge some
preference can be given to selected attributes over others, indicating significance
of rules referring to them, or an obtained attribute ranking points out rules with
the most relevant features [26].

Yet another way of rule pruning lies in defining and evaluating rule qual-
ity measures, which can be divided into objective and subjective categories [29].
Objective measures reflect quality with respect to a fixed dataset, such as a train-
ing or a test set, while subjective measures are evaluated accordingly to specific
preferences of a user. When estimation of quality is applied to classification rules,
the measures become indicators of rule interestingness or attractiveness [27].

2.4 Rough Set Approaches

Rough set theory, invented by Pawlak [21], is used in data mining approaches in
cases when knowledge about the universe of discourse and its objects is incom-
plete and uncertain [7]. In rough set perspective the universe is partitioned into
granules of equivalence classes of objects that cannot be discerned basing on
values of their attributes. Thus indiscernibility relation plays fundamental part
in Classical Rough Set Approach (CRSA), which enables only nominal classifi-
cation and works only for nominal attributes [20].

Dominance-Based Rough Set Approach (DRSA) is a modification of the clas-
sical notion, substituting indiscernibility with dominance relation [13], for tasks
of multi-criteria decision making [12]. With this approach granules correspond
to dominance cones, constructed as dominating and dominated sets of objects,
used to find approximations of upward and downward unions of decision classes.
DRSA requires definitions of preference orders for all value sets. Allowing for
ordinal properties in sets makes possible both nominal and ordinal classifica-
tion, and application to continuous valued attributes.

When the knowledge about the types of relationships between condition
and decision attributes is incomplete or unavailable, and simple observation
of attributes value sets is insufficient for unambiguous definition of preference
orders, these preferences can either be discovered [5], established by some search
procedures, or arbitrarily assigned. As the former implies additional processing
with multiplied numbers of attributes, in the research presented in this paper
the latter approach was employed.

2.5 Stylometric Analysis of Texts

Authorship attribution is a task from the domain of stylometric analysis of texts
[8], with the fundamental notion of authorial invariants, such groups of char-
acteristic features that allow for unique description and recognition of writing
styles [1]. In textual analysis linguistic characteristics and individual preferences
of authors are studied [6], leading to quantitative definitions of styles by markers,
typically of either lexical or syntactic type [23].
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Since stylistic features are characteristic for writers, there are no universal
sets and the task of establishing importance of available variables is transferred
to the stage of data mining, in which there are employed either some statistical
approaches, or machine learning techniques [15,17]. With this attitude recogni-
tion of authorship is treated as a classification task.

3 Research Framework

The first stage of presented research was dedicated to preparation of input
datasets, for which in the following stages there were executed discretisation and
ranking of features. For continuous and discretised sets exhaustive algorithms
were inferred with rough set approaches [4,12], and the generated rule sets were
then pruned in two ways, by selecting rules with highest ranking attributes, or by
evaluation of measures based on weights assigned to attribute ranking positions,
which is described in the following sections.

3.1 Input Datasets

Writing styles for male and female writers show different characteristics, thus for
experiments two pairs of authors were selected, J. Austen and E. Wharton, and
T. Hardy and H. James, famous for their long novels. Their literary works were
divided into smaller text samples, for which 17 lexical and 8 syntactic markers
were calculated, specifying frequencies of usage for selected function words and
punctuation marks, giving the set of 25 features with continuous values.

With construction of training sets as described, evaluation of a classifica-
tion system by cross-validation would return falsely high results [2]. Therefore,
instead test sets were used, based on separate works of compared writers thus
assuring independence of samples. For female writers respectively in the training
and test sets there were 200 and 90 samples, and for male writers 180 and 60.

3.2 Discretisation Parameters

For all input datasets supervised discretisation by Fayyad and Irani’s method
returned established numbers of bins for all features, grouping them into three
categories, as listed in Table 1 for learning samples. Test samples were discretised
separately to maintain their independence [3] and ensure unbiased processing.

For both female and male writer datasets there were found some variables
with single bins, which after transformation into discrete domain were rejected
as brining zero information. These features in continuous domain were consid-
ered as the least important and had lowest weights but were not excluded from
considerations. On the other hand, variables with 3 bins were treated as the most
important and were assigned the highest positions and weights in the obtained
global ranking, as explained in the next section.
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Table 1. Categories of condition attributes established by discretisation

Number
of
intervals

Condition attributes

Female writer dataset Male writer dataset

1 and in with of what from if . ! on of this . , : (

2 but not at this as that by for to , ? ( – but not in with as to if ? ! ; –

3 on ; : and at that what from by for

3.3 Ranking with Relief

To all categories of attributes established by supervised discretisation, yet still
working in continuous domain, a ranking algorithm was next applied. As a rank-
ing function based on the same concepts as discretisation (that is referring to
entropy) would result in inability to order single bin variables, instead Relief
algorithm was employed separately for each category. To incorporate character-
isation of attributes discovered by supervised discretisation into the obtained
attribute ranking, the results from separate categories of attributes were merged
to form the global ranking, as shown in Table 2.

To all ranking positions two sets of weights were assigned, spanned over the
range of (0,1]. For WR1 the equation is as follows, with N being the number of
considered attributes, and i an attribute ranking position.

∀i∈{1,...,N}WR1i =
1
i

(1)

The highest ranking attribute had the weight of 1, the second in ranking 1/2,
and so on, to the lowest ranking variable with the weight 1/N , thus distances
between subsequent weights were gradually decreasing.

For WR2 set weights were calculated as

∀i∈{1,...,N}WR2i =
N − i + 1

N
, (2)

thus the assigned weights again were decreasing while following down a ranking,
but they were also equidistant, with the range of values divided into N equal
parts. The highest and lowest ranking features for both weight sets had the same
values of weights assigned, but for all others there were differences. Since for dis-
crete domain the sets of considered features were reduced by rejecting attributes
with single bins, thus their weights also differed from those in continuous domain.

3.4 Defined Rule Quality Measures

The first attribute ranking and discretisation-based quality measure QMWR was
calculated for r rule as a product of weights assigned to attributes included in
the premise part of the rule,
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Table 2. Relief ranking of condition attributes in continuous domain. Global ranking
is composed of local rankings within categories of variables established by discretisa-
tion. Columns denote: (a) general position in the attribute ranking, (b) weight WR1
for continuous domain, (c) weight WR2 for continuous domain, (d) weight WR1 for
discrete domain, (e) weight WR2 for discrete domain, (f) number of bins found within
supervised discretisation, (g) local position in the attribute ranking, (h) attribute.

(a) (b) (c) Female writer dataset Male writer dataset

(d) (e) (f) (g) (h) (d) (e) (f) (g) (h)

1 1 1 1 1 3 1 ; 1 1 3 1 and

2 1/2 24/25 1/2 15/16 2 : 1/2 17/18 2 for

3 1/3 23/25 1/3 14/16 3 on 1/3 16/18 3 that

4 1/4 22/25 1/4 13/16 2 1 not 1/4 15/18 4 at

5 1/5 21/25 1/5 12/16 2 , 1/5 14/18 5 by

6 1/6 20/25 1/6 11/16 3 – 1/6 13/18 6 what

7 1/7 19/25 1/7 10/16 4 ( 1/7 12/18 7 from

8 1/8 18/25 1/8 9/16 5 ? 1/8 11/18 2 1 but

9 1/9 17/25 1/9 8/16 6 that 1/9 10/18 2 ;

10 1/10 16/25 1/10 7/16 7 as 1/10 9/18 3 ?

11 1/11 15/25 1/11 6/16 8 but 1/11 8/18 4 –

12 1/12 14/25 1/12 5/16 9 by 1/12 7/18 5 if

13 1/13 13/25 1/13 4/16 10 for 1/13 6/18 6 not

14 1/14 12/25 1/14 3/16 11 this 1/14 5/18 7 with

15 1/15 11/25 1/15 2/16 12 to 1/15 4/18 8 to

16 1/16 10/25 1/16 1/16 13 at 1/16 3/18 9 as

17 1/17 9/25 1 1 . 1/17 2/18 10 !

18 1/18 8/25 2 in 1/18 1/18 11 in

19 1/19 7/25 3 what 1 1 (

20 1/20 6/25 4 if 2 .

21 1/21 5/26 5 of 3 this

22 1/22 4/25 6 with 4 on

23 1/23 3/25 7 and 5 of

24 1/24 2/25 8 from 6 :

25 1/25 1/25 9 ! 7 ,

QMWR(r) =
NrCond∏

i=1

Weight(ai) (3)

QMWRS(r) = QMWR(r) · Support(r).
The weights corresponded to positions in the global feature ranking previously
constructed, either from the set WR1 or WR2, as defined for both continuous and
discrete domains in Sect. 3.3. Their usage led respectively to obtaining QMWR1
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and QMWR2 measures. With such equation for the measure and most (apart
from the highest) weights being fractions, the longer rule, the lower value of
the measure became, which reflected typical behaviour of generalisation proper-
ties, which are decreasing with increase of rule lengths. Multiplication by rule
supports results in QMWR1S and QMWR2S measures.

The second measure QMWR1B explicitly takes into account numbers of bins
established by supervised discretisation for all variables,

QMWR1B(r) =
NrCond∏

i=1

NrBin(ai) · WR1(ai). (4)

The value of this measure also decreased for longer rules, but for short ones
including higher ranking features it can achieve values above 1 even without
multiplication by support of rules. This multiplication by rule supports results
in QMWR1BS measure.

3.5 DRSA Rules

Observation of dominance cones offered by DRSA enables operation on features
with continuous values, only definitions of preference orders, either assigned
arbitrarily or discovered, are required for all attributes. In the research for all
sets preference orders were defined arbitrarily basing on performance of minimal
cover decision algorithms, induced with DOMLEM implemented in 4eMka soft-
ware [12]. For female writers for attributes gain type was selected (the higher
value the higher class), and for male writers cost type was chosen (the lower
value the higher class). Minimal cover decision algorithm for male dataset gave
recognition around 50%, and for female writers it was around 75%. Both these
algorithms provided rather limited space for research on rule pruning.

On the other hand, exhaustive algorithms, comprised of all rules on examples
inferred, for female and male datasets returned very high numbers of rules,
62,383 and 46,191 decision rules respectively. These two algorithms, generated
by ALLRULES algorithm implemented in 4eMka, and referred to in the paper
also as full algorithms, were denoted as FC-FAlg and MC-FAlg.

4eMka returns classification results listing three categories of decisions:
correct—when all matching rules classify to correct classes, incorrect—when all
matching rules classify to incorrect classes, ambiguous—when there are no rules
matching, or there are conflicting classifications. In the research ambiguous deci-
sions were treated as incorrect, thus any results list only correct decisions, which
accounts for lower classification results for continuous than for discrete datasets,
described below, for which conflicts were resolved by simple voting [4]. With all
conflicts and cases of no rules matching treated as incorrect classification, all
considered sets and subsets of rules could be treated as decision algorithms.

For full algorithms, including all rules on examples, the conflicting rules
caused ambiguous decisions, and hard constraints were imposed on support
required of rules to arrive at the best performing algorithms, in female case
correct recognition of 86.67% of test samples by 17 rules with supports equal or
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higher than 66, denoted as FC-BAlg17, and in male case 76.67% of correct deci-
sions by 80 rules with supports at least 41, denoted as MC-BAlg80. These two
algorithms were used as points of reference for all tests executed in continuous
domain.

3.6 CRSA Rules

For reduced numbers of features in discrete domain rules were induced by RSES
System [4], firstly by LEM2 algorithm, but the classification accuracy for female
writers was barely above 20%, and for male writers it was even lower. On the
other hand, exhaustive algorithms induced for both datasets contained 1,210
rules for female writers and 3,267 for male, denoted as FD-FAlg and MD-FAlg,
with recognition without any hard constraints, but with simple voting in case of
conflicts, at the level of 92.22% and 80.00% respectively. Simple voting means
that decision is chosen by counting votes casted in favor of each possibility
(one matching rule—one vote). By imposing constraints on support the best
performing algorithms were found with 58 rules of support equal at least 41
that recognised 98.89% of samples in the female test set, denoted as FD-BAlg58,
and with 2,181 rules with supports equal or higher than 2, correctly classifying
86.67% for male dataset, denoted as MD-BAlg2181.

Comparison of performance of these reference algorithms in continuous and
discrete domains brings conclusions that in both cases male writers proved to be
more difficult in classification, and respective algorithms were significantly longer
than for female writers, providing more space for improvement, and opening for
execution of rule filtering.

4 Performed Experiments

In the first stage of research on rule filtering, rules were selected by condition
attributes included with following previously constructed rankings, while in the
second stage for all rules defined quality measures were calculated and their
ordered values led to weighting of rules.

4.1 Selection of Rules by Their Condition Attributes

When the process of rule filtering is driven by an attribute ranking, in the first
step some subset of features is selected from the ranking, starting with the high-
est positions, which customarily are given to the most important variables. Next
from the set of available rules such elements are chosen that contain conditions
only on attributes present in the subset selected from the ranking. If a rule
includes even one condition for a variable that is absent in the considered sub-
sets, the rule is rejected. The results of this processing for continuous case are
given in Table 3, and for discrete in Table 4.

The procedure started with a single highest ranking variable, to which in the
following steps gradually one by one other, lower and lower ranking, attributes
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Table 3. Characteristics of decision algorithms with pruning of rules by condition
attributes in continuous domain: N indicates the number of considered attributes, (a)
number of bins established in discretisation, (b) number of recalled rules, (c) classifi-
cation accuracy without constraints [%], (d) constraints on rule support, (e) number
of rules satisfying condition on support, (f) maximal classification accuracy [%].

Female N Male

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

3 5 26.67 25 3 26.67 1 3 6 13.33 14 4 13.33

12 30.00 16 6 30.00 2 12 18.33 4 10 18.33

23 34.44 16 7 34.44 3 23 26.67 4 17 26.67

2 60 82.22 31 23 83.33 4 38 40.00 4 28 40.00

111 84.44 55 27 86.67 5 85 61.67 4 61 63.33

128 78.89 55 27 86.67 6 123 63.33 4 82 65.00

157 76.67 55 27 86.67 7 256 70.00 32 31 75.00

202 71.11 55 27 86.67 8 2 319 65.00 32 33 75.00

325 67.78 55 27 86.67 9 395 65.00 32 35 75.00

540 55.56 66 11 86.67 10 539 56.67 32 39 75.00

832 51.11 66 11 86.67 11 675 55.00 32 42 75.00

1415 37.78 66 12 86.67 12 859 43.33 32 46 75.00

2201 35.56 66 14 86.67 13 1388 33.33 32 63 75.00

3038 27.78 66 16 86.67 14 1763 25.00 32 67 75.00

4235 22.22 66 16 86.67 15 2469 16.67 32 67 75.00

5709 17.78 66 16 86.67 16 3214 15.00 32 69 75.00

1 7397 13.33 66 16 86.67 17 4347 13.33 34 67 75.00

10217 5.56 66 16 86.67 18 6314 11.67 35 76 75.00

13034 5.56 66 16 86.67 19 1 7214 10.00 41 60 75.00

16020 5.56 66 16 86.67 20 9683 5.00 41 60 75.00

22227 2.22 66 16 86.67 21 12832 1.67 41 69 76.67

28907 0.00 66 16 86.67 22 18882 1.67 41 70 76.67

38948 0.00 66 16 86.67 23 26965 0.00 41 76 76.67

50159 0.00 66 16 86.67 24 35014 0.00 41 79 76.67

62383 0.00 66 17 86.67 25 46191 0.00 41 80 76.67

were added. The process can be stopped once some criterion is satisfied, for
example obtaining satisfactory classification accuracy, or, with the goal of obser-
vation of occurring trends and general characteristics of constructed algorithms,
it can continue till the sets of available features and rules are exhausted. This
latter approach was applied in the presented research, thus for both continuous
and discrete data tests ended only when all variables were considered and all
decision rules were recalled.
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For continuous valued features for both datasets in the initial steps, when just
few elements were considered, the numbers of rules recalled were relatively low
and corresponding classification accuracies rather poor. For female writers in the
5th step recognition reached its highest level, yet as it happened for support of
at least 55, lower than for the reference best algorithm FC-BAlg17, the number
of rules was higher. At the 10th step from the set of rules there were selected 540
elements, reduced to 11 rules with constraints on support to be at least 66, which
constitutes the best shortened decision algorithm, with degree of reduction of
6/17 = 35.29%. For male writers results were significantly worse, as this dataset
proved generally more difficult in classification. The same level of recognition as
for the reference best algorithm MC-BAlg80 was detected at the 21st step, where
the algorithm was shortened to 12,832 rules, further reduced to 69 by supports
equal at least 41, which meant decreasing the length by 11/80 = 13.75%.

For discretised datasets the numbers of features were lower because of reject-
ing single bin variables from considerations. As can be seen in Table 4, for female
writers the required recognition was achieved at the 13th step, when only few
variables were left for examination, and the algorithm was shortened to 694
rules, for support equal or higher 41 with 44 rules, which meant reduction by
14/58 = 24.14%. For male writer dataset not only very significant reduction of
the algorithm was obtained but also noticeable improvement of recognition was
observed, the highest reaching 98.33 % with just 35 rules with supports equal at
least 22, when only 318 were recalled from the full set, which compared to the
reference number of 2181 rules included in MD-BAlg2181 made quite a contrast.

Thus for both continuous and discrete domains for both datasets rule filter-
ing executed by referring to included condition attributes while following the
constructed ranking, combined with characterisation of features by numbers of
bins found in discretisation, enabled to filter out some algorithms with undam-
aged performance, or even increased, but with appreciable reduction of their
lengths by rejection of some of constituent rules. It was not possible to achieve
this reduction by filtering rules just with respect to their support or length.

4.2 Selection of Rules by Quality Measures

In the second part of performed experiments on rule filtering, the previously
defined quality measures were employed. The measures were calculated for all
inferred rules, then the rule sets were sorted in descending order with respect
to the considered measure, forming in fact rankings of rules. Next, from these
rule rankings gradually increasing subsets of rules were retrieved and their per-
formance evaluated by test sets.

Due to construction of measures, if in each processing step a distinctive value
of a measure was taken as a single indicator of numbers of rules to be recalled,
it would possibly cause unmanageably high numbers of steps. That is why, to
reduce processing time needed, some thresholds for values were introduced and
for each dataset an arbitrarily set number of steps was executed, 20 for continu-
ous datasets which involved more attributes and rules, and 15 for discrete cases,
and only these selected results were presented in the paper. Detailed results for



On Combining Discretisation Parameters and Attribute Ranking 341

Table 4. Characteristics of decision algorithms with pruning of rules by discretised
condition attributes: N indicates the number of considered attributes, (a) number of
bins established in discretisation, (b) number of recalled rules, (c) classification accu-
racy without constraints [%], (d) minimal support required of rules, (e) number of rules
satisfying condition on support, (f) maximal classification accuracy [%].

Female N Male

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

3 0 0.00 0 0 0.00 1 3 0 0.00 0 0 0.00

3 28.89 43 2 28.89 2 4 0.00 9 4 0.00

10 47.78 5 10 47.78 3 9 50.00 28 3 50.00

2 18 66.67 9 15 66.67 4 14 50.00 28 3 50.00

28 91.11 2 28 91.11 5 31 63.33 2 27 66.67

48 86.67 11 33 91.11 6 75 63.33 2 55 63.33

66 92.22 21 31 92.22 7 145 93.33 2 105 93.33

72 92.22 18 49 92.22 8 2 244 81.67 5 107 93.33

112 94.44 2 103 94.44 9 318 91.67 22 35 98.33

183 88.89 35 32 94.44 10 450 91.67 20 55 98.33

287 81.11 35 40 92.22 11 495 80.00 20 62 93.33

435 82.22 41 38 94.44 12 739 78.33 20 80 90.00

694 87.78 41 44 98.89 13 1108 73.33 20 110 85.00

962 86.67 41 51 98.89 14 1627 75.00 3 854 81.67

1122 91.11 41 54 98.89 15 1895 75.00 20 173 81.67

1210 92.22 41 58 98.89 16 2481 78.33 22 165 83.33

17 2903 81.67 2 1944 86.67

18 3267 80.00 2 2181 86.67

QMWR1 measure are listed in Table 5, the top devoted to continuous domain,
and bottom to discrete, and the same convention was used next for Tables 6
and 7, with the results respectively for measures QMWR1BS and QMWR2S.

For the first measure QMWR1, as there was used its version without support
of rules included, more rules were recalled within each step, while for the other
two multiplication by support caused immediate exclusion of rules with low
support and low values of the calculated product of weights. The processing was
stopped when all rules from the reference algorithms were recalled.

It can be observed in Table 5 that for continuous female dataset the required
performance was achieved in the 3rd step, after recalling just 94 rules, yet the
support was lower than for FC-BAlg17, thus the number of rules in constrained
algorithm was higher than in this reference best. Furthermore, in steps 5, 6 and
7 a slight increase of recognition was detected. At the 13th step, in the recalled
537 rules, 11 rules from the best algorithm were present, which was sufficient
to give the expected classification accuracy. The remaining rules from this short
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Table 5. Characteristics of decision algorithms pruned by measure QMWR1: N indi-
cates the processing step, (a) number of recalled rules, (b) classification accuracy with-
out constraints [%], (c) constraints on support, (d) number of rules satisfying condition
on support, (e) maximal classification accuracy [%].

Continuous datasets

Female N Male

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

12 30.00 16 6 30.00 1 30 40.00 4 25 40.00

45 80.00 55 13 81.11 2 51 58.33 4 45 58.33

94 83.33 55 23 86.67 3 151 65.00 7 98 65.00

117 80.00 55 23 86.67 4 243 61.67 13 116 66.67

135 78.89 54 25 87.78 5 318 53.33 13 151 65.00

216 76.67 54 25 87.78 6 698 50.00 32 87 71.67

237 74.44 54 25 87.78 7 911 43.33 32 92 71.67

288 72.22 55 28 85.56 8 1139 43.33 27 140 73.33

363 71.11 55 32 84.44 9 1292 43.33 41 55 73.33

398 67.78 55 34 84.44 10 1374 41.67 41 58 73.33

443 63.33 55 35 84.44 11 1867 33.33 41 59 75.00

503 60.00 55 35 84.44 12 2567 21.67 41 62 75.00

537 55.56 66 11 86.67 13 3233 20.00 41 64 75.00

546 55.56 66 11 86.67 14 3878 18.33 41 68 76.67

600 55.56 66 12 86.67 15 4600 15.00 41 70 76.67

645 54.44 66 14 86.67 16 5539 15.00 41 71 76.67

667 54.44 66 14 86.67 17 6194 15.00 41 74 76.67

731 51.11 66 16 86.67 18 7156 11.67 41 76 76.67

901 46.67 66 16 86.67 19 8964 5.00 41 78 76.67

1142 42.22 66 17 86.67 20 9581 5.00 41 80 76.67

Discrete datasets

Female N Male

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

18 64.44 9 15 64.44 1 73 71.67 5 52 73.33

79 92.22 8 62 92.22 2 144 71.67 2 125 81.67

123 95.56 6 99 96.67 3 213 91.67 1 213 91.67

162 91.11 6 123 93.33 4 344 88.33 7 168 90.00

198 88.89 18 79 91.11 5 567 88.33 2 420 91.67

325 88.89 43 35 92.22 6 664 85.00 2 499 93.33

477 90.00 35 61 96.67 7 856 86.67 2 639 91.67

506 92.22 41 50 98.89 8 944 85.00 26 73 91.67

568 93.33 41 51 98.89 9 1199 85.00 2 890 91.67

624 95.56 41 52 98.89 10 1465 85.00 24 123 88.33

709 94.44 41 53 98.89 11 1707 83.33 24 134 90.00

755 96.67 41 55 98.89 12 1912 85.00 22 168 86.67

782 97.78 41 56 98.89 13 2336 80.00 20 236 85.00

830 94.44 41 57 98.89 14 2973 78.33 2 2011 86.67

917 94.44 41 58 98.89 15 3264 80.00 2 2181 86.67
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algorithm were retrieved in the following steps, with the final 17th recalled in the
set with 1,142 elements. For continuous male dataset the threshold recognition
was obtained at 14th step, where 3,878 filtered rules contained 68 with support
at least 41, which means than one more rule was rejected from MC-BAlg80 than
in case of filtering by attributes.

For discrete female data no increase in performance was observed, which was
not surprising, as it was very high. Filtering by QMWR1 measure enabled to
reject 8 out of 58 rules from the best algorithm FD-BAlg58, as in the 8th step
with the recalled 506 rules there were 50 with support equal or higher than 41,
which made this result worse than for filtering by attributes. The last from 58
rules was filtered with the set of 917 selected elements. For discrete male data
again improvement in performance was observed, but the highest recognition was
93.33%, which was lower than the previously detected for filtering by attributes.
Since the reference algorithm MD-BAlg2181 was rather long, most of subsets
of selected rules contained fewer elements. The last rule from this reference
algorithm was recalled with the set of 3,264 elements, when close to the entire
set of rules was selected.

The measure QMWR1BS, for which the test results are displayed in Table 6,
put emphasis on numbers of bins established in supervised discretisation. Apart
from being a factor in construction of the global attribute rankings, also all
weights were multiplied by these numbers, and multiplication by rule supports
helped to exclude rules with low supports from considerations. Thus at the
beginning of processing there were recalled mainly rules with high support values.

In the continuous female case the reduction of rules was at the same level
as previously observed, to 11 elements and within this group of tests the fewest
rules were selected including all 17 rules from the best reference algorithm FC-
BAlg17, 658 compared to over a thousand or close to two thousands in other two
scenarios. For continuous male, the best algorithm constrained by rule support
included 65 rules, which was better than in filtering by attributes and by QMWR1
measure, as it meant reduction of MC-BAlg80 by 15/80 = 18.75%. For discrete
female writers the highest recognition was encountered when 269 were recalled
at the 7th step, but the shortened algorithm with constraints on support was
the same as for the first measure and contained 50 rules. For discrete male
dataset there was detected both shortening of the algorithm as well as increased
recognition to 93.33%, but results once again were not as good as in case of
filtering by attributes or by QMWR1 measure, in particular with respect to the
length of the algorithm as it contained 546 rules.

With QMWR2S measure equidistant weights were assigned to ranking posi-
tions. Multiplication by support resulted in selection of rules with mainly higher
support values, causing better recognition in the first few steps, which is shown
in Table 7. For continuous datasets, for female writers the best performing algo-
rithm was found at the 3rd step, when 34 rules were recalled from the full set
FC-FAlg. For male writers the same was achieved at the 10th step of selecting
369 rules, which with constraints on support at least 41 left only 60 rules, which
was the best overall reduction by 20/80 = 25%, the highest obtained for this
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Table 6. Characteristics of decision algorithms pruned by measure QMWR1BS: N
indicates the processing step, (a) number of recalled rules, (b) classification accuracy
without constraints [%], (c) constraints on support, (d) number of rules satisfying
condition on support, (e) maximal classification accuracy [%].

Continuous datasets

Female N Male

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

6 60.00 45 1 60.00 1 4 41.67 51 4 41.67

33 78.89 39 28 78.89 2 11 48.33 43 8 48.33

87 84.44 55 28 85.56 3 28 60.00 34 20 60.00

137 83.33 64 13 85.56 4 34 73.33 34 21 73.33

158 83.33 64 13 85.56 5 55 71.67 32 28 75.00

182 83.33 64 13 85.56 6 92 71.67 32 51 73.33

209 82.22 66 11 86.67 7 162 71.67 32 67 71.67

219 80.00 66 11 86.67 8 251 66.67 32 79 71.67

236 80.00 66 11 86.67 9 272 66.67 41 51 73.33

253 81.11 66 12 86.67 10 292 63.33 41 55 73.33

268 81.11 66 15 86.67 11 430 61.67 26 157 75.00

304 74.44 66 16 86.67 12 473 61.67 41 60 75.00

335 73.33 66 16 86.67 13 524 61.67 41 63 75.00

367 72.22 66 16 86.67 14 632 61.67 41 65 76.67

421 70.00 66 16 86.67 15 833 56.67 41 67 76.67

464 65.56 66 16 86.67 16 1234 45.00 41 69 76.67

523 65.56 66 16 86.67 17 1915 31.67 41 74 76.67

551 65.56 66 16 86.67 18 2645 31.67 41 78 76.67

612 63.33 66 16 86.67 19 3606 23.33 41 78 76.67

658 63.33 66 17 86.67 20 3909 23.33 41 80 76.67

Discrete datasets

Female N Male

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

50 91.11 8 48 91.11 1 5 0.00 20 5 0.00

84 93.33 9 73 93.33 2 96 71.67 21 56 73.33

140 92.22 26 59 92.22 3 137 70.00 28 41 71.67

202 91.11 41 41 94.44 4 196 83.33 2 192 83.33

240 91.11 35 60 96.67 5 234 86.67 26 61 86.67

262 91.11 41 49 96.67 6 280 86.67 20 110 88.33

269 94.44 41 50 98.89 7 391 90.00 26 74 91.67

280 93.33 41 51 98.89 8 482 90.00 5 358 90.00

346 92.22 41 52 98.89 9 546 93.33 1 546 93.33

354 92.22 41 53 98.89 10 600 91.67 2 550 91.67

376 92.22 41 54 98.89 11 651 86.67 22 134 90.00

393 93.33 41 55 98.89 12 1091 86.67 2 937 90.00

419 92.22 41 56 98.89 13 1408 83.33 22 185 86.67

507 95.56 41 57 98.89 14 2132 85.00 20 258 85.00

558 94.44 41 58 98.89 15 2927 80.00 2 2047 86.67
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dataset in all tested approaches. Also all 80 rules from the reference algorithm
MC-BAlg80 were included in the smallest retrieved set with 2,623 elements.

For the discretised datasets, for female writers also the best algorithm was
found at the 3rd step. Within 155 rules recalled there were 46 with support at
least 41, which made it second best with respect to reduction of FD-BAlg58
for this dataset. In case of male writers the highest increase in recognition for
all tests with filtering by measures was detected, to 95.00% by 71 rules with
supports at least 19, selected with the set of 90 elements in the 4th processing
step, which also happened to be second best for this dataset.

4.3 Summary of Test Results

Comparison of experimental results for selection of rules by attributes and by
quality measures, brought several conclusions with respect to continuous and
discrete datasets. In continuous case for female writers, the maximum shortening
of the reference algorithm FC-BAlg17 was always the same, by 35.29%, and only
for filtering by QMWR1 measure a slight improvement of accuracy was observed.
For male writers there was no increase of performance with respect to that of
MC-BAlg80, and gains with respect to decreased length varied, with the best
reduction by 25.00% for QMWR2S measure.

In case of discrete datasets, for female writers the highest prediction was
the same as for the reference algorithm FD-BAlg58, but noticeable reduction of
its length was achieved, the highest by 24.13% for filtering by attributes. The
reference male algorithm FD-BAlg2181 was so long that most results offered
very high reductions, thus only for the best case the percentage was calculated,
for the highest increase in prediction to 98.33% with 35 rules, which made it
shortening by 98.39%, again for selection of rules driven by attributes. From all
tests with filtering by measures for discrete female dataset the best reduction
of the algorithm by 20.69% was discovered for QMWR2S measure, which was
also the best for male dataset, where reduction of length by 96.74% gave to the
algorithm with 71 rules the classification accuracy of 95.00%.

Table 8 displays maximal reduction of length for constructed decision algo-
rithms obtained through all tested approaches for both continuous and discrete
domains, for both datasets. The results are given with respect to the reference
algorithms, and assume hard constraints imposed on support in order to achieve
the highest classification accuracy.

Even though in some cases selection of rules by their condition attributes
resulted in better results than filtering by quality measures, in the latter app-
roach several times it was possible to find satisfactory results sooner, at the
earlier processing step, or after recalling fewer rules. Therefore, both ways show
some merit and prove useful in search for optimal rule classifiers while working
in continuous and discrete domains.

5 Conclusions

The paper presents research on rule selection while exploiting characteristics of
attributes obtained by supervised discretisation and ranking. Firstly, all available
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Table 7. Characteristics of decision algorithms pruned by measure QMWR2S: N indi-
cates the processing step, (a) number of recalled rules, (b) classification accuracy with-
out constraints [%], (c) constraints on support, (d) number of rules satisfying condition
on support, (e) maximal classification accuracy [%].

Continuous datasets

Female N Male

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

7 38.89 73 5 38.89 1 5 45.00 51 5 45.00

18 83.33 62 14 83.33 2 23 68.33 43 16 68.33

34 86.67 66 11 86.67 3 43 68.33 43 27 68.33

54 86.67 66 12 86.67 4 70 71.67 32 51 73.33

57 86.67 66 13 86.67 5 106 71.67 32 66 71.67

61 86.67 66 15 86.67 6 183 70.00 32 80 71.67

74 84.44 66 15 86.67 7 216 70.00 41 51 73.33

97 82.22 66 16 86.67 8 257 66.67 41 55 73.33

154 80.00 66 16 86.67 9 299 66.67 41 56 75.00

343 76.67 66 16 86.67 10 369 63.33 41 60 76.67

469 71.11 66 16 86.67 11 467 60.00 41 63 76.67

553 64.44 66 16 86.67 12 607 58.33 41 64 76.67

678 54.44 66 16 86.67 13 702 56.67 41 67 76.67

811 46.67 66 16 86.67 14 814 51.67 41 70 76.67

1030 42.22 66 16 86.67 15 953 45.00 41 72 76.67

1160 42.22 66 16 86.67 16 1182 38.33 41 74 76.67

1226 40.00 66 16 86.67 17 1471 31.67 41 76 76.67

1363 40.00 66 16 86.67 18 1748 28.33 41 77 76.67

1494 36.67 66 16 86.67 19 2019 26.67 41 79 76.67

1763 34.44 66 17 86.67 20 2623 25.00 41 80 76.67

Discrete datasets

Female N Male

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

47 90.00 24 43 90.00 1 12 50.03 28 9 50.03

61 92.22 41 36 94.44 2 48 53.33 27 30 71.67

155 94.44 41 46 98.89 3 67 81.67 20 58 85.00

171 92.22 41 47 98.89 4 90 70.00 19 71 95.00

180 94.44 41 48 98.89 5 124 75.00 19 91 91.67

189 92.22 41 49 98.89 6 215 86.67 5 215 86.67

194 92.22 41 50 98.89 7 308 78.33 26 87 88.33

213 95.56 41 51 98.89 8 395 81.67 24 119 88.33

231 93.33 41 52 98.89 9 601 81.67 26 116 86.67

265 95.56 41 53 98.89 10 820 81.67 20 217 83.33

302 97.78 41 54 98.89 11 1405 81.67 21 220 83.33

317 96.67 41 55 98.89 12 1589 78.33 21 226 85.00

318 96.67 41 56 98.89 13 1834 78.33 20 256 83.33

397 94.44 41 57 98.89 14 2227 80.00 23 196 81.67

416 96.67 41 58 98.89 15 2889 80.00 20 267 83.33
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Table 8. Length reduction of decision algorithms obtained by filtering driven by
condition attributes and measures [%].

Filtering of decision rules by

Condition attributes Quality measures

QMWR1 QMWR1BS QMWR2S

Female Continuous 35.29 35.29 35.29 35.29

Discrete 24.13 13.79 13.79 20.69

Male Continuous 13.75 15.00 18.75 25.00

Discrete 98.39 77.12 74.96 96.74

variables were grouped into categories reflecting numbers of bins found for their
values by Fayyad and Irani’s supervised discretisation algorithm. For each cate-
gory separately rankings with Relief algorithm were obtained, which were next
merged to form the global ranking of features. For two cases of binary author-
ship attribution exhaustive decision algorithms were inferred within Dominance-
Based Rough Set Approach in continuous domain, and with Classical Rough Set
Approach in discrete domain. From resulting rule sets elements were then filtered
in two ways, directly by referring to condition attributes included in rules, or
by evaluation of measures based on attribute rankings and weights assigned to
ranking positions. The experimental results show several cases of optimised solu-
tions, and decision algorithms with reduced numbers of constituent rules with
the same or increased classification accuracies. In the future research analysis
of other ranking strategies for attributes and rules are planned, with filtering of
rules induced not only within rough set approaches but also others.
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Abstract. This paper proposes combination of clustering and rule
induction in order to acquire rules which is close to differential diagnosis
process. First, characterization sets, which are used for exclusive rules are
extracted from a dataset and the similarities among characterization sets
are calculated. Next, based on the similarities, agglomerative clustering is
applied. Then, according to the dendrogram, the classification labels are
reformulated and rules for new labels are obtained. Since the dendrogram
gives hierarchical structure of classes, each rule for a new label gives a
component of hierarchical rules. Finally, combining hierarchical compo-
nents, rules for differential diagnosis are obtained. The proposed method
was evaluated on a medical database and the experimental results show
that induced rules as comparable as previously introduced methods.

1 Introduction

Rule mining has been applied to many domains. However, empirical results
show that interpretation of extracted rules deep understanding for applied
domains [8,9]. One of its reasons is that conventional rule induction methods
such as C4.5 [6] cannot reflect the type of experts’ reasoning. For example,
rule induction methods such as PRIMEROSE [8] induce the following common
rule for muscle contraction headache from databases on differential diagnosis of
headache:

[location = whole] ∧ [Jolt Headache = no] ∧ [Tenderness of M1 = yes]
→ muscle contraction headache.

This rule is shorter than the following rule given by medical experts.

[Jolt Headache = no]
∧([Tenderness of M0 = yes] ∨ [Tenderness of M1 = yes] ∨ [Tenderness of M2 = yes])
∧[Tenderness of B1 = no] ∧ [Tenderness of B2 = no] ∧ [Tenderness of B3 = no]
∧[Tenderness of C1 = no] ∧ [Tenderness of C2 = no] ∧ [Tenderness of C3 = no]
∧[Tenderness of C4 = no]

→ muscle contraction headache
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where [Tenderness of B1 = no] and [Tenderness of C1 = no] are added.
One of the main reasons why rules are short is that these patterns are gen-

erated only by a simple criteria, such as high accuracy or high information gain.
The comparative studies [8,10] suggest that experts should acquire rules not
only by a single criteria but by the usage of several measures. For example, the
classification rule for muscle contraction headache given in Sect. 1 is very similar
to the following classification rule for disease of cervical spine:

[Jolt Headache = no]
∧([Tenderness of M0 = yes] ∨ [Tenderness of M1 = yes] ∨ [Tenderness of M2 = yes])
∧([Tenderness of B1 = yes] ∨ [Tenderness of B2 = yes] ∨ [Tenderness of B3 = yes]

∨[Tenderness of C1 = yes] ∨ [Tenderness of C2 = yes] ∨ [Tenderness of C3 = yes]
∨[Tenderness of C4 = yes])

→ disease of cervical spine

The differences between these two rules are attribute-value pairs, from tenderness
of B1 to C4. Thus, these two rules are composed of the following three blocks:

A1 ∧ A2 ∧ ¬A3 → muscle contraction headache
A1 ∧ A2 ∧ A3 → disease of cervical spine,

where A1, A2 and A3 are given as the following formulae: A1 =
[Jolt Headache = no], A2 = [Tenderness of M0 = yes] ∨ [Tenderness of M1 =
yes] ∨ [Tenderness of M2 = yes], and A3 = [Tenderness of C1 = no] ∧
[Tenderness of C2 = no] ∧ [Tenderness of C3 = no] ∧ [Tenderness of C4 = no].

The first two blocks (A1 and A2) and the third one (A3) represent the dif-
ferent types of differential diagnosis. The first one A1 shows the discrimination
between muscular type and vascular type of headache. Then, the second part
shows that between headache caused by neck and head muscles. Finally, the third
formula A3 is used to make a differential diagnosis between muscle contraction
headache and disease of cervical spine. Thus, medical experts first select several
diagnostic candidates, which are very similar to each other, from many diseases
and then make a final diagnosis from those candidates.

The author previously proposed the solution for this problem in [9,11,12]
where grouping based on characterization sets and rule induction based on char-
acterization introduced. Experimental evaluation showed that the performance
of induced rules are higher than the conventional methods.

However, medical experts pointed out that comprehensibility of induced rules
are not so good, because combination of negative and positive terms are not so
frequently used in clinical context. Thus, in this paper, in order to acquire more
comprehensible rules, we propose combination of clustering and rule induction in
order to acquire rules which is close to differential diagnosis process. First, char-
acterization sets, which are used for exclusive rules are extracted from a dataset
and the similarities among characterization sets are calculated. Next, based on
the similarities, agglomerative clustering is applied. Then, according to the den-
drogram, the classification labels are reformulated and rules for new labels are
obtained. Since the dendrogram gives hierarchical structure of classes, each rule
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for a new label gives a component of hierarchical rules. Finally, combining hier-
archical components, rules for differential diagnosis are obtained. The proposed
method was evaluated on a medical database, the experimental results of which
show that induced rules as comparable as previously introduced methods.

2 Probabilistic Rules

In the following sections, we use the following notations introduced by Grzymala-
Busse and Skowron [7], which are based on rough set theory [5].

Let U denote a nonempty, finite set called the universe and A denote a
nonempty, finite set of attributes, i.e., a : U → Va for a ∈ A, where Va is called
the domain of a, respectively. Then, a decision table is defined as an information
system, A = (U,A ∪ {d}), where d is a decision attribute.

The atomic formulae over B ⊆ A ∪ {d} and V are expressions of the form
[a = v], called descriptors over B, where a ∈ B and v ∈ Va. The set F (B, V ) of
formulas over B is the least set containing all atomic formulas over B and closed
with respect to disjunction, conjunction and negation. For example, [location =
occular] is a descriptor of B. For each f ∈ F (B, V ), fA denote the meaning
of f in A, i.e., the set of all objects in U with property f , defined inductively
as follows: (1) If f is of the form [a = v] then, fA = {s ∈ U |a(s) = v} (2)
(f ∧ g)A = fA ∩ gA; (f ∨ g)A = fA ∨ gA; (¬f)A = U − fa.

By the use of the framework above, classification accuracy and coverage, or
true positive rate is defined as follows.

Definition 1. Let R and D denote a formula in F (B, V ) and a set of objects
which belong to a decision d. Classification accuracy and coverage (true positive
rate) for R → d is defined as:

αR(D) =
|RA ∩ D|

|RA| (= P (D|R)), and κR(D) =
|RA ∩ D|

|D| (= P (R|D)),

where |D|, RA, αR(D), κR(D) and P(S) denote the cardinality of a set D,
a meaning of R (i.e., a set of examples which satisfies R), a classification accu-
racy of R as to classification of D and coverage (a true positive rate of R to D),
and probability of S, respectively.

Also, we define partial order of equivalence as follows:

Definition 2. Let Ri and Rj be the formulae in F (B, V ) and let A(Ri) denote
a set whose elements are the attribute-value pairs of the form [a, v] included in
Ri. If A(Ri) ⊆ A(Rj), then we represent this relation as: Ri 	 Rj .

Finally, according to the above definitions, probabilistic rules with high accu-
racy and coverage are defined as:

R
α,κ→ d s.t. R = ∨iRi = ∨ ∧j [aj = vk], αRi

(D) ≥ δα and κRi
(D) ≥ δκ,

where δα and δκ denote given thresholds for accuracy and coverage, respectively.
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3 Characterization Sets

3.1 Characterization Sets

In order to model medical reasoning, a statistical measure, coverage plays an
important role in modeling. Let us define a characterization set of D, denoted
by L(D) as a set, each element of which is an elementary attribute-value pair R
with coverage being larger than a given threshold, δκ. That is,

Definition 3. Let R denote a formula in F (B, V ). Characterization sets of a
target concept (D) is defined as: Lδκ

(D) = {R|κR(D) ≥ δκ}.
Then, three types of relations between characterization sets can be defined as
follows: (1) Independent type: Lδκ

(Di) ∩ Lδκ
(Dj) = φ, (2) Overlapped type:

Lδκ
(Di) ∩ Lδκ

(Dj) �= φ, and (3) Subcategory type: Lδκ
(Di) ⊆ Lδκ

(Dj). All
three definitions correspond to the negative region, boundary region, and positive
region, respectively, if a set of the whole elementary attribute-value pairs will be
taken as the universe of discourse.

Tsumoto focuses on the subcategory type in [9] because Di and Dj cannot be
differentiated by using the characterization set of Dj , which suggests that Di is
a generalized disease of Dj . Then, Tsumoto generalizes the above rule induction
method into the overlapped type, considering rough inclusion [10]. However, both
studies assumes two-level diagnostic steps: focusing mechanism and differential
diagnosis, where the former selects diagnostic candidates from the whole classes
and the latter makes a differential diagnosis between the focused classes.

The proposed method below extends these methods into multi-level steps.
In this paper, we consider the special case of characterization sets in which the
thresholds of coverage is equal to 1.0: L1.0(D) = {Ri|κRi

(D) = 1.0}. It is notable
that this set has several interesting characteristics.

Theorem 1. Let Ri and Rj two formulae in L1.0(D) such that Ri 	 Rj. Then,
αRi

≤ αRj
.

Theorem 2. Let R be a formula in L1.0(D) such that R = ∨j [ai = vj ]. Then,
R and ¬R gives the coarsest partition for ai, whose R includes D.

Theorem 3. Let A consist of {a1, a2, · · · , an} and Ri be a formula in L1.0(D)
such that Ri = ∨j [ai = vj ]. Then, a sequence of a conjunctive formula F (k) =
∧k

i=1Ri gives a sequence which increases the accuracy.

4 Rule Induction

4.1 Rule Induction Process

Figure 1 shows the proposed rule induction method. First, characterization sets
for rules are generated from a dataset, and similarities between the sets obtained
are calculated. Based on the similarities, agglomerative hierarchical clustering
is applied, where the dendrogram is obtained as a hierarchy of decision classes.
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Based on this hierarchy, the dataset will be decomposed and classification labels
are transformed. For each decomposed dataset, rules for differential diagnosis are
induced. Finally, combining rules for a different hierarchy level, rules for total
diagnostic process are obtained.

Data Decomposition 

Agglomerative 
Hierarchical Clustering

Calculation
Characterization Sets

Similarity Matrix  

Rule Induction for 
Decomposed Data 

Rule Compilation 

Fig. 1. Rule induction process

4.2 Similarity

Single-Valued Similarity. To measure the similarity between two character-
ization sets, we can apply several indices of two-way contigency tables. Table 1
gives a contingency table for two rules, L1.0(Di) and L1.0(Dj). The first cell
a (the intersection of the first row and column) shows the number of matched
attribute-value pairs. From this table, several kinds of similarity measures can be
defined [2,3]. It is notable that these indices satisfies the property on symmetry.

Table 1. Contingency table for similarity

L1.0(Dj) Total

Observed Not observed

L1.0(Di) Observed a b a + b

Not observed c d c + d

Total a + c b + d a + b + c + d
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Table 2. A list of similarity measures

(1) Matching number a

(2) Jaccard’s coefficient a/(a + b + c)

(3) χ2-statistic N(ad − bc)2/M

(4) point correlation coefficient (ad − bc)/
√

M

(5) Kulczynski 1
2
( a
a+b

+ a
a+c

)

(6) Ochiai a√
(a+b)(a+c)

(7) Simpson a
min{(a+b),(a+c)}

(8) Braun a
max{(a+b),(a+c)}

N = a + b + c + d, M = (a + b)(b + c)(c + d)(d + a)

In this paper, we focus on the two similarity measures: one is Simpson’s
measure: a

min{(a+b),(a+c)} and the other is Braun’s measure: a
max{(a+b),(a+c)}

(Table 2).
As discussed in Sect. 4, a single-valued similarity becomes low when

L1.0(Di) ⊂ L1.0(Dj) and |L1.0(Di)| � |L1.0(Dj)|. For example, let us consider
when |L1.0(Di)| = 1. Then, match number is equal to 1.0, which is the lowest
value of this similarity. In the case of Jaccard’s coefficient, the value is 1/(1 + b)
or 1/(1 + c): the similarity is very small when 1 � b or 1 � c. Thus, these
similarities do not reflect the subcategory type. Thus, we should check the dif-
ference between a + b and a + c to consider the subcategory type. One solution
is to take an interval of maximum and minimum as a similarity, which we call
an interval-valued similarity.

For this purpose, we combine Simpson and Braun similarities and define
an interval-valued similarity:

[
a

max{(a+b),(a+c)} , a
min{(a+b),(a+c)}

]
. If the dif-

ference between two values is large, it would be better not to consider
this similarity for grouping in the lower generalization level. For example, when
a + c = 1(a = 1, c = 0), the above value will be:

[
1

1+b , 1
]
. If b � 1, then this

similarity should be kept as the final candidate for the grouping.
The disadvantage is that it is difficult to compare these interval values. In

this paper, the maximum value of a given interval is taken as the representative
of this similarity when the difference between min and max are not so large.
If the maximum values are equal to the other, then the minimum value will
be compared. If the minimum value is larger than the other, the largest one is
selected.

5 Example

Let us consider the case of Table 3 as an example for rule induction. For
a similarity function, we use a matching number [3] which is defined as the
cardinality of the intersection of two the sets. Also, since Table 3 has five classes,
k is set to 6. For extraction of taxonomy, the interval-valued similarity is applied.
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Table 3. A small example of a database

No. loc nat his prod jolt nau M1 M2 class

1 occular per per 0 0 0 1 1 m.c.h.

2 whole per per 0 0 0 1 1 m.c.h.

3 lateral thr par 0 1 1 0 0 common.

4 lateral thr par 1 1 1 0 0 classic.

5 occular per per 0 0 0 1 1 psycho.

6 occular per subacute 0 1 1 0 0 i.m.l.

7 occular per acute 0 1 1 0 0 psycho.

8 whole per chronic 0 0 0 0 0 i.m.l.

9 lateral thr per 0 1 1 0 0 common.

10 whole per per 0 0 0 1 1 m.c.h.

Definitions. loc: location, nat: nature, his: history,
prod: prodrome, nau: nausea, jolt: Jolt headache,
M1, M2: tenderness of M1 and M2, 1: Yes, 0: No, per: persistent,
thr: throbbing, par: paroxysmal, m.c.h.: muscle contraction headache,
psycho.: psychogenic pain, i.m.l.: intracranial mass lesion, common.:
common migraine, and classic.: classical migraine.

5.1 Grouping

From this table, the characterization set for each concept is obtained as shown
in Fig. 2. Then, the intersection between two target concepts are calculated.

L1.0(m.c.h.) = {([loc = occular] ∨ [loc = whole]), [nat = per], [his = per],
[prod = 0], [jolt = 0], [nau = 0], [M1 = 1], [M2 = 1]}

L1.0(common) = {[loc = lateral], [nat = thr], ([his = per] ∨ [his = par]), [prod = 0],
[jolt = 1], [nau = 1], [M1 = 0], [M2 = 0]}

L1.0(classic) = {[loc = lateral], [nat = thr], [his = par], [prod = 1],
[jolt = 1], [nau = 1], [M1 = 0], [M2 = 0]}

L1.0(i.m.l.) = {([loc = occular] ∨ [loc = whole]), [nat = per],
([his = subacute] ∨ [his = chronic]), [prod = 0],
[jolt = 1], [M1 = 0], [M2 = 0]}

L1.0(psycho) = {[loc = occular], [nat = per], ([his = per] ∨ [his = acute]),
[prod = 0]}

Fig. 2. Characterization sets for Table 3

In the first level, the similarity matrix is generated as shown in Fig. 3.
Since common and classic have the maximum matching number, these two
classes are grouped into one category, D6. Then, the characterization of D6 is
obtained as: D6 = {[loc = lateral], [nat = thr], [jolt = 1], [nau = 1], [M1 = 0],
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m.c.h. common classic i.m.l. psycho

m.c.h. − [1/8,1/8] [0,0] [3/8,3/7] [2/8,2/4]
common − − [6/8,6/8] [4/8, 4/7] [1/7,1/4]
classic − − − [3/8, 3/7] 0
i.m.l. − − − − [2/7, 2/4]

Fig. 3. Interval-valued similarity of two characterization sets (step 2)

m.c.h. D6 i.m.l. psycho

m.c.h. − 0 [3/8, 3/7] [2/8,2/4]
D6 − − [3/7,3/6] 0

i.m.l. − − − [2/7,2/4]

Fig. 4. Interval-valued similarity of
two characterization sets after the first
grouping (step 3)

m.c.h. D7 psycho

m.c.h. − [0, 0] [2/8,2/4]
D7 − [0, 0] [0,0]

Fig. 5. Interval-valued similarity of
two characterization sets after the sec-
ond grouping (step 4)
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Fig. 6. Grouping by characterization sets

[M2 = 0]}. In the second iteration, the intersection of D6 and others is consid-
ered and the similarity matrix is obtained: as shown in Fig. 4. From this matrix,
we have to compare three candidates: [2/8, 2/4], [3/7, 3/6] and [2/7, 2/4]. From
the minimum values, the middle one: D6 and i.m.l. is selected as the second
grouping. Thus, D7 = {[jolt = 1], [M1 = 0], [M2 = 0]}. In the third iteration,
the intersection matrix is calculated as Fig. 5 and m.c.h. and psycho are grouped
into D8: D8 = {[nat = per], [prod = 0]}. Finally, the dendrogram is given as Fig. 6.

5.2 Data Decomposition

Since classification labels for the first level in the grouping are D7 and D8, the
original data table is transformed as shown in Table 4.
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Table 4. Reformulated table for the first hierarchical level

No. loc nat his prod jolt nau M1 M2 class

1 occular per per 0 0 0 1 1 D8

2 whole per per 0 0 0 1 1 D8

3 lateral thr par 0 1 1 0 0 D7

4 lateral thr par 1 1 1 0 0 D7

5 occular per per 0 0 0 1 1 D8

6 occular per subacute 0 1 1 0 0 D7

7 occular per acute 0 1 1 0 0 D8

8 whole per chronic 0 0 0 0 0 D7

9 lateral thr per 0 1 1 0 0 D7

10 whole per per 0 0 0 1 1 D8

In the same way, for the second to the fourth levels, decomposed tables are
obtained as Tables 5, 6 and 7.

Table 5. Reformulated table for the second hierarchical level (D8)

No. loc nat his prod jolt nau M1 M2 class

1 occular per per 0 0 0 1 1 m.c.h.

2 whole per per 0 0 0 1 1 m.c.h.

5 occular per per 0 0 0 1 1 psycho.

7 occular per acute 0 1 1 0 0 psycho.

10 whole per per 0 0 0 1 1 m.c.h.

5.3 Rule Induction

Rule Induction for D6. First, rule induction is applied to Table 7 and the
following rule will be obtained.

[prod = 0] → common

[prod = 1] → classic

Rule Induction for D7. Second, rule induction is applied to Table 6 and the
following rule will be obtained.

[loc = lateral] → D6

[his = par] → D6

[nat = per] → i.m.l.
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Table 6. Reformulated table for the third hierarchical level (D7)

No. loc nat his prod jolt nau M1 M2 class

3 lateral thr par 0 1 1 0 0 D6

4 lateral thr par 1 1 1 0 0 D6

6 occular per subacute 0 1 1 0 0 i.m.l.

8 whole per chronic 0 0 0 0 0 i.m.l.

9 lateral thr per 0 1 1 0 0 D6

Table 7. Reformulated table for the fourth hierarchical level (D6)

No. loc nat his prod jolt nau M1 M2 class

3 lateral thr par 0 1 1 0 0 common.

4 lateral thr par 1 1 1 0 0 classic.

9 lateral thr per 0 1 1 0 0 common.

Rule Induction for D8. Third, rule induction is applied to Table 5 and the
following rule will be obtained.

[M1 = 1] → m.c.h. α = 3/4, κ = 1.0
[M2 = 1] → m.c.h. α = 3/4, κ = 1.0

It is notable that the above two rules are not deterministic and unless the thresh-
old of accuracy is smaller than 0.5, no rule for psycho is obtained.

Differentiation between D7 and D8. Third, rule induction is applied to
Table 4 and the following rule will be obtained.

[jol1 = 1] → D7 α = 1.0, κ = 1.0
[jol1 = 0] → D8 α = 1.0, κ = 1.0
[nau = 1] → D7 α = 0.8, κ = 0.8
[nau = 0] → D8 α = 1.0, κ = 0.8

Rule Compilation. Rules for each disease is obtained by tracing the hierarchy
as follows. After compilation, accuracy and coverage are recalculated.

[jolt = 0] ∧ [M1 = 1] → m.c.h. α = 3/4, κ = 1.0
[jolt = 0] ∧ [M2 = 1] → m.c.h. α = 3/4, κ = 1.0

[jolt = 1] ∧ [nat = per] → m.c.h. α = 1.0, κ = 1.0
[jolt = 1] ∧ ([his = per] ∨ [loc = lateral]) ∧ [prod = 0]

→ common α = 1.0, κ = 1.0
[jolt = 1] ∧ ([his = per] ∨ [loc = lateral]) ∧ [prod = 1]

→ classic α = 1.0, κ = 1.0
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The above results can be compared with rules obtained by previously proposed
methods. By using methods shown in [12], the following rules will be obtained.

¬([loc = occular] ∨ [loc = whole]) ∨ ¬[nat = per]
∨ ¬([his = subacute] ∨ [his = chronic])

∨ ¬[prod = 0] → ¬i.m.l.

[nat = thr] ∧ ([loc = lateral] ∨ ¬([his = subacute] ∨ [his = chronic]))
∧ [prod = 0] → common.

6 Experimental Results

The above rule induction algorithm is implemented in PRIMEROSE6.0 (Prob-
abilistic Rule Induction Method based on Rough Sets Ver 6.0), and was applied
to databases on differential diagnosis of headache, which includes 52119 exam-
ples with 45 classes and 147 attributes. In these experiments, δα and δκ were
set to 0.75 and 0.5, respectively. Also, the threshold for grouping is set to 0.8.1

This system was compared with PRIMEROSE5.0 [12] PRIMEROSE4.5 [10],
PRIMEROSE [8] C4.5 [6], CN2 [1], AQ15 [4] with respect to the following points:
length of rules, similarities between induced rules and expert’s rules and perfor-
mance of rules.

In this experiment, the length was measured by the number of attribute-value
pairs used in an induced rule and Jaccard’s coefficient was adopted as a similarity
measure [3]. Concerning the performance of rules, ten-fold cross-validation was
applied to estimate classification accuracy.

Table 8. Experimental results

Method Length Similarity Accuracy

Headache

PRIMEROSE6.0 6.5 ± 0.45 0.70 ± 0.15 89.1 ± 3.5%

PRIMEROSE5.0 8.8 ± 0.27 0.95 ± 0.08 95.2 ± 2.7%

PRIMEROSE4.5 7.3 ± 0.35 0.74 ± 0.05 88.3 ± 3.6%

Experts 9.1 ± 0.33 1.00 ± 0.00 98.0 ± 1.9%

PRIMEROSE 5.3 ± 0.35 0.54 ± 0.05 88.3 ± 3.6%

C4.5 4.9 ± 0.39 0.53 ± 0.10 85.8 ± 1.9%

CN2 4.8 ± 0.34 0.51 ± 0.08 87.0 ± 3.1%

AQ15 4.7 ± 0.35 0.51 ± 0.09 86.2 ± 2.9%

1 These values are given by medical experts as good thresholds for rules in these three
domains.
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Table 8 shows the experimental results, which suggest that the performance
of PRIMEROSE6 is less than PRIMEROSE5 but outperforms PRIMEROSE4.5
(two-level) and the other four rule induction methods and induces rules very
similar to medical experts’ ones.

7 Conclusion

In this paper, the characteristics of experts’ rules are closely examined, whose
empirical results suggest that grouping of diseases is very important to realize
automated acquisition of medical knowledge from clinical databases. Thus, we
focus on the role of coverage in focusing mechanisms and propose an algorithm
for grouping of diseases by using this measure. The above example shows that
rule induction with this grouping generates rules, which are similar to medical
experts’ rules and they suggest that our proposed method should capture medical
experts’ reasoning. This research is a preliminary study on a rule induction
method with grouping and it will be a basis for a future work to compare the
proposed method with other rule induction methods by using real-world datasets.
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Abstract. In rough set theory, the heuristic strategy for computing
reducts does not take the stability of the selected attributes into account.
An unstable reduct may imply the lower adaption to data variations. To
fill such a gap, an ensemble strategy is embedded in heuristic algorithm
for achieving stable reducts of variable precision fuzzy rough sets. Given
an admissible error β, for each looping in the algorithm, a set of attributes
will be chosen through considering several admissible errors around the
given β, instead of choosing only one attribute by β itself. The main
purpose of this replacement is to simulate the sample variations through
slight changing of admissible errors over the fixed data. Consequently,
the voting ensemble can be used to select an attribute with the maximal
frequency of occurrences. The experimental results on eight UCI data
sets demonstrate that our ensemble strategy based heuristic approach
will improve the stabilities of reducts effectively, while it is unnecessary
to add too many attributes for constructing the reducts. This study
suggests new trends for considering robust problems in the framework of
rough set.

Keywords: Attribute reduction · Ensemble strategy · Stability · Vari-
able precision fuzzy rough sets

1 Introduction

Attribute reduction is one of the most important and fundamental topics in
rough set theory. By reducing the number of irrelevant and redundant attributes,
attribute reduction can greatly improve the performance of classification learning
and effectively decrease the computational complexity in classification tasks. In
recent years, attribute reduction has achieved a great success in the fields of
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machine learning [20,22,24], pattern recognition [1,4], decision support [12] and
granular computing [21], etc.

Presently, most of the studies on attribute reduction are focused on the fol-
lowing two aspects:

1. Construction of evaluation criteria. The evaluation criterion of attributes
can be used to measure the qualities of candidate attributes, which has an
important influence on finding the results of attribute reduction. To describe
the relevance between the decision and condition attributes, a great num-
ber of evaluation criteria, such as information entropy [18], consistency [5],
and distance [9], have been investigated to select the most optimal candidate
attributes. Moreover, aiming at different requirements of practical applica-
tions, some combinational and classification-based evaluation criteria are also
proposed. For example, in cost-sensitive rough sets and decision-theoretic
rough sets, Ju et al. [10,11] designed the evaluation criterion of cost combi-
nation which considers decision-cost and test-cost simultaneously, and per-
formed the minimal cost based attribute reduction by decreasing the eval-
uation criterion of cost combination. In the classification tasks containing
discrete and continuous attributes, Hu et al. [7] presented the evaluation cri-
terion of neighborhood decision error rate, and obtained the reduct which can
lead to a better classification performance with neighborhood decision error
minimization. All the above show that we should construct a reasonable eval-
uation criterion of attribute reduction to solve some specific problems.

2. Determination of searching strategies. The searching strategy of
attribute reduction can be used to find a better attribute subset with a certain
evaluation criterion. The mainstream searching strategies contain exhaustive
algorithms, forward and backward greedy algorithms [8,23,26,27], genetic
algorithms [15], etc. Following the above basic strategies, a lot of improved
approaches have also been proposed. For example, considering different deci-
sion labels may have distinct characteristics of their own, Chen et al. [2,3]
introduced the local perspectives into attribute reduction, and obtained a
serial of attribute subsets which are most closely related to the specific deci-
sion labels. Facing frequent changes in the sample numbers and attribute
values, Liu et al. [13,14] presented several incremental searching strategies
for decreasing the time consumption in finding attribute subsets. To increase
the size of data which can be processed with existing algorithms for attribute
reduction, Xu et al. [25] selected the boundary samples which have the larger
uncertainty to compute reducts by clustering analysis.

From discussions above, we can see that though a lot of the results about
attribute reduction have been obtained, fewer researchers pay much attention to
the stability of reduct in rough set theory. In this paper, the stability indicates
the variation degree of reduct when data variations happen, i.e., few samples are
deleted from the original sample set, and then few new samples are added into
the updated sample set. If slight changes of samples will lead to a significant
variation of reduct, then the obtained reduct can be considered as an unstable
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reduct. Obviously, an unstable reduct may bring us unstable learning results and
the poor robustness with facing data noise.

Up to now, it has been demonstrated that ensemble strategy is a widely
used approach to improve the stability of feature selection. Nevertheless, to the
best of our knowledge, how to employ the ensemble strategy to improve the
stability of reduct in rough set is still rarely reported. For this purpose, we will
simulate sample variations through several slight changes of approximate set in
parameterized rough set model. In term of each changed approximate set, we
will attempt to add the attribute with maximal significance into the collection of
attributes, and then introduce an ensemble voting strategy to select the attribute
with the maximal frequency of occurrences in the collection of attributes. In
this paper, we adopt variable precision fuzzy rough sets (VPFRS), which can
be regarded as the most representative and simplest parameterized rough set
model, to verify the effectiveness of our ensemble strategy.

The rest of this paper is organized as follows. Section 2 provides some back-
ground materials on VPRS and VPFRS; Sect. 3 introduces the concept of
attribute reduction, and then presents the details of our ensemble heuristic algo-
rithm for attribute reduction in VPFRS; Sect. 4 analyzes the effectiveness of
our algorithm on 8 UCI data sets from the viewpoints of stabilities and lengths
of reducts; Finally, we summarize and set up several issues for future work in
Sect. 5.

2 Preliminary Knowledge

In this section, some background materials about variable precision rough sets
and variable precision fuzzy rough sets will be provided.

2.1 Variable Precision Rough Sets

In rough set theory, a knowledge representation system can be considered as the
4-tuple < U,A, V, f >, in which U = {x1, x2, . . . , xn} is a nonempty finite set
of n samples, i.e., the universe of discourse; A = {a1, a2, . . . , am} is a nonempty
finite set of attributes aimed to characterize the samples; Va is the value domain
of attribute a; f : U × A → V is an information function. To be more specific,
< U,A, V, f > can also be called a decision system (DS) if A = AT ∪ D, where
AT is the set of condition attributes and D is the decision.

Definition 1. Given a decision system DS =< U,AT ∪ D,V, f >, an indis-
cernibility relation induced by A ⊆ AT is defined as

IND(A) = {(xi, xj) ∈ U × U : ∀a ∈ A, a(xi) = a(xj)}, (1)

where a(xi) is considered as the attribute value of xi holds on a.

Obviously, IND(A) satisfies reflexive, symmetry and transitivity, and it is
an equivalence relation essentially.
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Definition 2. Given a decision system DS =< U,AT ∪ D,V, f >, IND(A) is
an indiscernibility relation induced by A ⊆ AT , ∀X ⊆ U , ∀xi ∈ U , the rough
inclusion degree of xi to X in terms of IND(A) is defined as

ψ
IND(A)
X (xi) =

|[xi]A ∩ X|
|[xi]A| , (2)

where [xi]A = {xj ∈ U : (xi, xj) ∈ IND(A)} is the set of samples in U which
satisfy the indiscernibility relation IND(A) with xi, i.e., the equivalence class
generated by xi, and |X| is the cardinality of a set X.

Definition 3. Given a decision system DS =< U,AT ∪ D,V, f >, IND(A)
is an indiscernibility relation induced by A ⊆ AT , ∀X ⊆ U , β ∈ [0, 0.5), the
variable precision lower and upper approximations of X in terms of IND(A)
are respectively defined as

IND(A)β(X) = {xi ∈ U : 1 − ψ
IND(A)
X (xi) ≤ β}; (3)

IND(A)
β
(X) = {xi ∈ U : 1 − ψ

IND(A)
X (xi) < 1 − β}, (4)

where ψ
IND(A)
X (xi) is the rough inclusion degree of xi to X in terms of IND(A).

The pair [IND(A)β(X), IND(A)
β
(X)] is referred to as the variable precision

rough sets of X with respect to the attributes A.

2.2 Variable Precision Fuzzy Rough Sets

Let U 	= ∅ be a universe of discourse. F : U → [0, 1] is a fuzzy set [6] on U .
∀xi ∈ U , F (xi) is the membership degree of xi to F . F (U) is the set of all fuzzy
sets on U . R is a fuzzy binary relation, ∀xi, xj , xk ∈ U , R is reflexive if and
only if R(xi, xi) = 1; R is symmetric if and only if R(xi, xj) = R(xj , xi); R is
transitive if and only if minj(R(xi, xj), R(xj , xk)) ≤ R(xi, xk). In this paper, the
fuzzy binary relation R is constructed by the similarity measure.

Definition 4. Given a decision system DS =< U,AT ∪D,V, f >, RA is a fuzzy
binary relation induced by A ⊆ AT , ∀F ∈ F (U), ∀xi ∈ U , the rough membership
degree of xi to F in terms of RA is defined as

ψRA

F (xi) = 1 − |RA(xi) ∩ (¬F )|
|RA(xi)| , (5)

where RA(xi) is the fuzzy set such that ∀xj ∈ U , RA(xi)(xj) = RA(xi, xj), and
|F | =

∑
xi∈U F (xi) is the cardinality of a fuzzy set F .

Definition 5. Given a decision system DS =< U,AT ∪D,V, f >, RA is a fuzzy
binary relation induced by A ⊆ AT , ∀F ∈ F (U), β ∈ [0, 0.5), the variable preci-
sion fuzzy lower and upper approximations of F in terms of RA are respectively
defined as

RA
β(F ) = {xi ∈ U : 1 − ψRA

F (xi) ≤ β}; (6)

RA
β
(F ) = {xi ∈ U : 1 − ψRA

F (xi) < 1 − β}, (7)
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where ψRA

F (xi) is the rough membership degree of xi to F in terms of RA.

The pair [RA
β(F ), RA

β
(F )] is referred to as the variable precision fuzzy rough

sets of F with respect to the attributes A.

3 Attribute Reduction

In this section, we will introduce the concept of attribute reduction, and then
present the details of the traditional heuristic algorithm and our proposed ensem-
ble heuristic algorithm.

3.1 Heuristic Algorithm

Definition 6. Given a decision system DS =< U,AT ∪ D,V, f >, RA is a
fuzzy binary relation induced by A ⊆ AT , U/IND(D) = {d1, d2, . . . , dp} is
the partition induced by the decision D, β ∈ [0, 0.5), the approximate quality of
U/IND(D) is defined as

γβ(A,D) =

∣
∣
⋃p

i=1 RA
β(di)

∣
∣

|U | , (8)

where |X| is the cardinality of a set X, ∀di ∈ U/IND(D), di is a decision class.

γβ(A,D) reflects the approximation abilities of the granulated space induced
by the attributes A to characterize the decision D, and it is obvious that 0 ≤
γβ(A,D) ≤ 1 holds.

Definition 7. Given a decision system DS =< U,AT ∪ D,V, f >, ∀A ⊆ AT ,
A is referred to as a reduct of AT if and only if

1. γβ(A,D) = γβ(AT,D);
2. ∀A′ ⊂ A, γβ(A′,D) 	= γβ(AT,D).

By Definition 7, we can see that a reduct of AT is a minimal subset of AT ,
which preserves the unchange of approximate quality. However, in practice, the
criteria of reduct are much too strict in Definition 7. To expand the application
scope of attribute reduction, some researchers [7,8,17,24] have introduced the
threshold ε to control the change of approximate quality for relaxing the criteria
of reduct, and considered A as an ε-approximate reduct of AT with the following
conditions:

1. γβ(A,D) ≥ (1 − ε) · γβ(AT,D);
2. ∀A′ ⊂ A, γβ(A′,D) < (1 − ε) · γβ(AT,D).
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The above conditions show that ε is aimed at eliminating redundant
attributes as much as possible, while maintaining the change of approximate
quality in a smaller range. In general, ε is recommended to be [0, 0.1]. Specif-
ically, if ε = 0, then ε-approximate reduct is actually the traditional defini-
tion of attribute reduction in Definition 7, from which we can conclude that
ε-approximate reduct is a generalization of attribute reduction.

Let DS =< U,AT ∪ D,V, f > be a decision system, suppose that A ⊆ AT ,
∀ai ∈ A, we define a coefficient

Sigβ
in(ai, A,D) = γβ(A,D) − γβ(A\{ai},D) (9)

as the significance of ai in A relative to decision D. Sigβ
in(ai, A,D) reflects the

change of approximate quality if ai is eliminated from A. Accordingly, we can
also define

Sigβ
out(ai, A,D) = γβ(A ∪ {ai},D) − γβ(A,D), (10)

where ai ∈ AT\A, Sigβ
out(ai, A,D) measures the change of approximate quality

if ai is introduced into A. By Sigβ
in(ai, A,D) and Sigβ

out(ai, A,D), a forward
heuristic attribute reduction algorithm can be designed as follows.

Algorithm 1. Heuristic Algorithm (HA)

Inputs: DS =< U,AT ∪ D,V, f >, admissible error β,

approximate quality threshold ε.

Outputs: An ε-approximate reduct A.

1. A ← ∅;

2. For each ai ∈ AT , compute Sigβ
in(ai, AT,D);

3. A ← aj , where Sigβ
in(aj , AT,D) = max{Sigβ

in(ai, AT,D) : ∀ai ∈ AT},

compute γβ(A,D);

4. While γβ(A,D) < (1 − ε) · γβ(AT,D)

(1) For each ai ∈ AT\A, compute Sigβ
out(ai, A,D);

(2) A ← A ∪ {aj}, where Sigβ
out(aj , A,D) = max{Sigβ

out(ai, A,D) :

∀ai ∈ AT\A};

(3) Compute γβ(A,D);

End While

5. For each ai ∈ A, if γβ(A\{ai},D) ≥ (1−ε)·γβ(AT,D), then A ← A\{ai};

6. Return A.

In Algorithm 1, Step 3 is used to find the first attribute with maximal approx-
imate quality, that is to say, the approximate quality of first selected attribute
should be closest to the raw approximate quality γβ(AT,D). For each looping in
Step 4, the aim is also to find an attribute with maximal significance and then
add this attribute into reduct.
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3.2 Ensemble Heuristic Algorithm

For Algorithm 1, the key is to find the attribute with maximal significance. By
Eqs. (9) and (10), we can see that the computation of such significance is based
on the given admissible error β. Nevertheless, if samples in data vary, then the
attribute with maximal significance may also be changed. Such case tells us that
the criterion used in Algorithm 1 may not be suitable for data variations. The
ensemble mechanism [16] is a feasible way to improve the stability of feature sub-
set in feature selection. It attempts to find a set of candidate attributes through
different varied data, and then adopts voting strategy to select an attribute with
the maximal frequency of occurrences. However, in real-world applications, the
changing trend of data is impossible to know in advance. Therefore, we will
use the slight changes of admissible error β to simulate data variations, and
the changes of admissible error β will cause the changes of approximate set in
VPFRS, that is to say, several admissible errors which are close to the given
β will be used to obtain a set of candidate attributes, and then we will make
voting mechanism applicable.

By the proposed ensemble criterion for selecting attributes, our ensemble
heuristic algorithm to compute reduct can be designed as follows.

Algorithm 2. Ensemble Heuristic Algorithm (EHA)

Inputs: DS =< U,AT ∪ D,V, f >, admissible error β,

approximate quality threshold ε, margin α, stepsize ω.

Outputs: An ε-approximate reduct A.

1. A ← ∅, T ← ∅;

2. For k = −α to α

(1) β′ = β + ω · k;

(2) For each ai ∈ AT , compute Sigβ′
in(ai, AT,D);

(3) T ← T ∪ {aj}, where Sigβ′
in(aj , AT,D) = max{Sigβ′

in(ai, AT,D) :

∀ai ∈ AT};

End For

3. Find attribute vi with the maximal frequency of occurrences in T ;

4. A ← vi, compute γβ(A,D);

5. While γβ(A,D) < (1 − ε) · γβ(AT,D)

(1) T ← ∅;

(2) For k = −α to α

[1] β′ = β + ω · k;

[2] For each ai ∈ AT\A, compute Sigβ′
out(ai, A,D);

[3] T ← T ∪ {aj}, where Sigβ′
out(aj , A,D) = max{Sigβ′

out(ai, A,D) :

∀ai ∈ AT\A};
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End For

(3) Find attribute vi with the maximal frequency of occurrences in T ;

(4) A ← A ∪ {vi}, compute γβ(A,D);

End While

6. For each ai ∈ A, if γβ(A\{ai},D) ≥ (1−ε)·γβ(AT,D), then A ← A\{ai};

7. Return A.

4 Experiments

In this section, we will analyze the effectiveness of our ensemble heuristic algo-
rithm on 8 UCI data sets, and the stabilities and lengths of reducts will be
compared.

4.1 Data Sets

To evaluate the performances of our EHA, 8 real-world data sets from UCI
machine learning repository [19] have been employed in this paper. Table 1 sum-
marizes some detailed statistics of these data sets used in our experiments.

Table 1. Characteristics of the experimental data sets

ID Data sets Samples Attributes Decision classes

1 Climate Model Simulation Crashes 540 20 2
2 Forest Fires 523 27 4
3 Glass 214 9 6
4 Lymphography 98 18 3
5 Parkinsons 195 23 7
6 Seeds 210 7 3
7 Wdbc 569 30 2
8 Wine 178 13 3

4.2 Configuration

In this paper, the reducts obtained by Algorithms 1 and 2 will be com-
pared. For a given data set, we will compare two attribute reduction algo-
rithms (HA and EHA) on 6 different admissible errors β of VPFRS such that
β = {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}. In Algorithm 2, margin α and stepsize ω
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are set to be 2 and 0.01, respectively. That is to say, to release the influence gen-
erated by data variations, through considering 5 admissible errors (i.e., β−0.01·2
to β + 0.01 · 2) around the original given β, we iteratively select the most sig-
nificant attributes with a voting strategy. Note that, to our best knowledge, no
theoretical bases have been reported to specify the threshold ε for controlling
the change of approximate quality. Therefore, we conducted some experiments
to determine ε = 0.1 for achieving the more reasonable length of reduct.

Furthermore, all the experiments have been carried out on a workstation
equipped with a Intel Core i3-3240 CPU (3.40 GHz) and 4.00 GB memory. The
programming language is Matlab R2014b.

4.3 Experimental Results and Discussions

To describe the stability of reduct when data is changed, we break all samples
into t groups with the same size, denoted by U1, U2, . . . , Ut, and then combine t−1
groups of them in turn to compute reducts. For example, firstly, U2∪U3∪ . . .∪Ut

is used to compute reduct A1, and then U1 ∪ U3 ∪ . . . ∪ Ut is used to compute
reduct A2, . . . , finally, U1 ∪ U2 ∪ U3 ∪ Ut−1 is used to compute reduct At. From
the above, we can see that the degree of data variations is 1 − |{U\Ui}∩{U\Uj}|

|{U\Ui}| ,
where 1 ≤ i, j ≤ t and i 	= j. The stability of reduct can be defined as

ReductStability =
2

t · (t − 1)

t−1∑

i=1

t∑

j=i+1

|Ai ∩ Aj |
|Ai ∪ Aj | , (11)

where Ai is the reduct on U\Ui. The bigger the value of ReductStability, the
better the stability. Specially, the stability is perfect when ReductStability = 1.
For each data set in Table 1, t is set to be 5, and the degree of data variations is
25%. Meanwhile, the above process of data partition will be repeated randomly
5 times, and the mean value of 5 experimental results is recorded.

Tables 2, 3, 4, 5, 6, 7, 8 and 9 demonstrate the comparisons of reduct stabil-
ities between Algorithms 1 and 2 in terms of the 8 UCI data sets, respectively.
The better performance is highlighted in boldface, and the similar performance
is marked with boldface and underline. From Tables 2, 3, 4, 5, 6, 7, 8 and 9,
it is not difficult to observe that the stabilities of reducts generated by our
Algorithm 2 (EHA) are bigger than the stabilities of reducts generated by Algo-
rithm 1 (HA) in the majority of admissible errors β of VPFRS. In all the 48
stability comparisons (8 data sets × 6 admissible errors), the performance of
our Algorithm 2 is better than that of Algorithm 1 at 60.42% cases, and Algo-
rithm 2 achieves roughly equivalent performance with Algorithm 1 at 31.25%
cases. Moreover, there are only 8.33% cases that, compared with the traditional
heuristic attribute reduction algorithm, our ensemble heuristic attribute reduc-
tion algorithm is a decline in the stabilities of reducts.

From Tables 10, 11, 12, 13, 14, 15, 16 and 17, we can see that the difference
between the lengths of reducts generated by Algorithm 1 and those generated by
Algorithm 2 is little. For some admissible errors in the given data set, the lengths
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Table 2. Stability of reduct on Climate Model Simulation Crashes

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 0.5610 0.7288 0.5180 0.2376 1.0000 1.0000

Algorithm 2 0.6352 0.7783 0.6834 0.3009 1.0000 1.0000

Table 3. Stability of reduct on Forest Fires

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 0.8035 0.6684 0.6180 0.5320 0.4794 0.4113
Algorithm 2 0.8272 0.7176 0.6302 0.5786 0.5586 0.4557

Table 4. Stability of reduct on Glass

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 0.5180 0.6786 0.6619 0.6135 0.7127 0.6796

Algorithm 2 0.5320 0.6776 0.6623 0.6458 0.7356 0.6835

Table 5. Stability of reduct on Lymphography

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 0.4833 0.4967 0.4348 0.3351 0.3277 0.2825

Algorithm 2 0.4833 0.4967 0.4394 0.3830 0.3486 0.2744

Table 6. Stability of reduct on Parkinsons

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 0.7699 0.7995 0.7274 0.6390 0.6950 0.7313
Algorithm 2 0.7789 0.8022 0.7234 0.6737 0.6796 0.7448

Table 7. Stability of reduct on Seeds

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 0.6283 0.6417 0.6393 0.5437 0.6320 0.5927

Algorithm 2 0.5907 0.6653 0.6570 0.5710 0.6820 0.5863

of reducts generated by Algorithm 2 are even shorter than those of Algorithm 1.
Therefore, we can conclude that our ensemble strategy based heuristic algorithm
is effective in improving the stability of reduct when facing sample variations,
and compared with the traditional heuristic algorithm, it will not add large
numbers of attributes into reduct.
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Table 8. Stability of reduct on Wdbc

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 0.5969 0.4629 0.4083 0.4857 0.4690 0.2900

Algorithm 2 0.6177 0.5146 0.4947 0.4695 0.4957 0.2767

Table 9. Stability of reduct on Wine

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 0.4705 0.4517 0.5252 0.4560 0.5120 0.3970

Algorithm 2 0.5355 0.4639 0.5437 0.4788 0.5150 0.4010

Table 10. Length of reduct on Climate Model Simulation Crashes

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 5.0000 4.6800 4.2800 2.7200 1.0000 1.0000
Algorithm 2 5.0000 4.6800 4.1600 2.9200 1.0000 1.0000

Table 11. Length of reduct on Forest Fires

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 18.3200 15.9600 14.3600 12.3200 10.3200 8.4000
Algorithm 2 18.2400 16.0000 14.4400 12.4000 10.2000 8.2400

Table 12. Length of reduct on Glass

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 5.0800 5.2400 5.8000 5.6000 5.1200 5.0000
Algorithm 2 5.0800 5.2400 5.8000 5.6400 5.1200 5.0000

Table 13. Length of reduct on Lymphography

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 4.9200 4.8800 4.9200 4.9600 4.8000 3.8000
Algorithm 2 4.9200 4.8800 5.0400 5.1600 4.8000 3.9200
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Table 14. Length of reduct on Parkinsons

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 13.4000 14.0400 12.4000 11.5600 11.0800 10.6800
Algorithm 2 13.5600 14.1600 12.3200 11.5600 10.9200 10.5600

Table 15. Length of reduct on Seeds

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 4.7200 4.0400 3.6800 3.4000 3.0800 2.8400
Algorithm 2 4.6800 4.0400 3.7200 3.4800 3.1200 2.8800

Table 16. Length of reduct on Wdbc

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 11.0400 8.2400 6.2000 4.2800 3.1200 2.6000
Algorithm 2 11.1600 8.2800 6.3200 4.3600 3.1600 2.6400

Table 17. Length of reduct on Wine

Admissible error β 0.05 0.10 0.15 0.20 0.25 0.30

Algorithm 1 5.3600 4.9200 4.0400 3.9600 3.3600 2.9600
Algorithm 2 5.4400 4.9200 4.0800 3.9600 3.3600 2.9600

5 Conclusions

Traditional heuristic algorithm ignores the stability of selected attributes in
attribute reduction, which may cause the lower adaption to data variations
and the unstable classification performances. To remedy this deficiency, we have
developed an ensemble voting strategy based heuristic algorithm for obtaining
stable reducts in variable precision fuzzy rough sets. Such voting is based on a set
of candidate attributes obtained by several admissible errors instead of only one.
The experimental results demonstrate that our ensemble heuristic algorithm is
effective in improving the stabilities of reducts without adding large numbers of
attributes in reducts.

The following topics deserve our further investigations.

1. We have only studied approximate quality based attribute reduction in this
paper, and some other measures, such as conditional entropy, combination
entropy, classification error rate, etc., will be further applied to our ensemble
heuristic approach.
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2. Attribute reduction or feature selection can be considered as the first step of
data processing, and classification performances of different classifiers based
on our stable reducts will be further explored.
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Abstract. In this paper, we propose a method for the evaluation of
importance of rows for decision tables. It is based on indirect information
about changes in the set of reducts after removing the considered row
from the table. We also discuss results of computer experiments with
decision tables from UCI Machine Learning Repository.
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teristic function

1 Introduction

In this paper, we discuss a way to evaluate the importance of rows for deci-
sion tables (importance of objects for datasets) which is based on the study of
changes in the set of reducts [3,4] if we remove the considered row from the deci-
sion table. Unfortunately, the problem of constructing the set of reducts for a
given decision table is too complicated: the number of reducts can grow exponen-
tially depending on the size of the decision table. However, we can obtain useful
indirect information about the set of reducts in polynomial time depending on
the size of the input decision table.

We associate a given decision table T with n conditional attributes a charac-
teristic function fT with n variables that describes the set of tests (superreducts)
for T [2]. This is a monotone Boolean function for which the set of lower units
correspond to the set of reducts for T . This function can be described not only
by the set of lower units but also by the set of upper zeros UT which can be
constructed for T in polynomial time depending on the size of the input deci-
sion table. Note that upper zeros correspond to maximal subsets of attributes
which are not tests. For a given row r of the table T , we construct the table
T (r) obtained from T by the removal of the row r. We find the cardinality of
the symmetric difference of the sets UT and UT (r), |(UT ∪ UT (r)) \ (UT ∩ UT (r))|,
which is considered as the importance of the row r for the table T .

In [2], a way to find the set of upper zeros UT for the characteristic function fT

was proposed for decision tables with binary attributes. It was used in creation of
classifiers. In this paper, we extend it to arbitrary decision tables with categorical
attributes, and use it in the evaluation of the importance of rows.
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 376–383, 2017.
DOI: 10.1007/978-3-319-60837-2 31
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The created technique can be useful for analysis of decision tables with cate-
gorical attributes. It will allow us to point to rows (objects) that have the greatest
influence on the formation of the set of reducts. We apply this technique to a
number of decision tables from the UCI Machine Learning Repository [1] and
find the importance of rows for these tables.

The paper consists of fours sections. In Sect. 2, we consider the main notions,
and discuss a way to find the set of upper zeros of the characteristic function
and to calculate the importance of rows. Section 3 discusses the experimental
results, and Sect. 4 contains short conclusions.

2 Main Notions and Tools

In this section, we consider the main notions, and discuss how to construct the
set of upper zeros of the characteristic function for a decision table and how to
evaluate the importance of a row.

2.1 Decision Tables, Tests and Reducts

A decision table is a rectangular table T whose elements belong to the set
ω = {0, 1, 2, . . .} of nonnegative integers. Columns of this table are labeled with
attributes f1, . . . , fn. Rows of the table are pairwise different, and each row is
labeled with a number from ω (a decision).

A test for T is a subset of attributes (columns) such that at the intersection
with these columns any two rows with different decisions are different. A reduct
for T is a test for T for which each proper subset is not a test. It is clear that
each test has a reduct as a subset.

2.2 Characteristic Functions

Let T be a decision table with n columns labeled with attributes f1, . . . , fn.
There exists a one-to-one correspondence between En

2 , where E2 = {0, 1}, and
the set of subsets of attributes from T . Let ᾱ ∈ En

2 and i1, . . . , im be indices of
elements from ᾱ which are equal to 1. Then the set {fi1 , . . . , fim} corresponds
to the tuple ᾱ.

Let us associate a characteristic function fT : En
2 → E2 with the table T .

For α ∈ En
2 we have fT (ᾱ) = 1 if and only if the set of attributes corresponding

to ᾱ is a test for T .
We consider now some notions related to monotone Boolean functions. We

define a partial order ≤ on the set En
2 where n is a natural number. Let ᾱ =

(α1, . . . , αn), β̄ = (β1, . . . , βn) ∈ En
2 . Then ᾱ ≤ β̄ if and only if αi ≤ βi for

i = 1, . . . , n. The inequality ᾱ < β̄ means that ᾱ ≤ β̄ and ᾱ �= β̄. Two tuples
ᾱ and β̄ are incomparable if both relations ᾱ ≤ β̄ and β̄ ≤ ᾱ do not hold.
A function f : En

2 → E2 is called a monotone Boolean function if, for every
tuples ᾱ, β̄ ∈ En

2 , if ᾱ ≤ β̄ then f(ᾱ) ≤ f(β̄).
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A tuple ᾱ ∈ En
2 is called an upper zero of the monotone Boolean function f

if f(ᾱ) = 0 and, for any tuple β̄ such that ᾱ < β̄, we have f(β̄) = 1. For any
ᾱ ∈ En

2 , the equality f(ᾱ) = 0 holds if and only if there exists an upper zero β̄
of f such that ᾱ ≤ β̄. A tuple ᾱ ∈ En

2 is called a lower unit of the monotone
Boolean function f if f(ᾱ) = 1 and f(β̄) = 0 for any tuple β̄ such that β̄ < ᾱ.
For any ᾱ ∈ En

2 , the equality f(ᾱ) = 1 holds if and only if there exists a lower
unit β̄ of f such that β̄ ≤ ᾱ. So the set of upper zeros allows us to describe
completely the set of lower units of a monotone Boolean function.

We omit the proof of the following simple statement.

Lemma 1. For any decision table T , the characteristic function fT is a
monotone Boolean function which does not equal to 0 identically and for which
the set of lower units coincides with the set of tuples corresponding to reducts
for the table T .

2.3 Canonical Forms of Decision Tables

Let us associate a decision table τ(T ) with the decision table T . The table τ(T )
has n columns labeled with attributes f1, . . . , fn. The first row of τ(T ) is filled by
1. The set of all other rows coincides with the set of all rows of the kind l(δ̄1, δ̄2)
where δ̄1 and δ̄2 are arbitrary rows of T labeled with different decisions, and
l(δ̄1, δ̄2) is the row containing at the intersection with the column fi, i = 1, . . . , n,
the number 0 if δ̄1 and δ̄2 have different numbers at the intersection with the
column fi, and the number 1 otherwise. The first row of τ(T ) is labeled with
the decision 1 . All other rows are labeled with the decision 2.

We denote by C(T ) the decision table obtained from τ(T ) by the removing all
rows σ̄ for each of which there exists a row δ̄ of the table τ(T ) that is different
from the first row and satisfies the inequality σ̄ < δ̄. The table C(T ) will be
called the canonical form of the table T .

Lemma 2. For any decision table T , fT = fC(T ).

Proof. One can show that fT = fτ(T ). Let us prove that fτ(T ) = fC(T ). It is not
difficult to check that fC(T )(ᾱ) = 0 if and only if there exists a row δ̄ of C(T )
labeled with the decision 2 for which ᾱ ≤ δ̄. Similar statement is true for the
table τ(T ).

It is clear that each row of C(T ) is also a row in τ(T ), and equal rows in
these tables are labeled with equal decisions. Therefore if fτ(T )(ᾱ) = 1 then
fC(T )(ᾱ) = 1.

Let fC(T )(ᾱ) = 1. We will show that fτ(T )(α) = 1. Let us assume the con-
trary. Then there exists a row σ̄ from τ(T ) which is labeled with the decision 2
and for which ᾱ ≤ σ̄. From the description of C(T ) it follows that there exists a
row δ̄ from C(T ) which is labeled with the decision 2 and for which σ̄ ≤ δ̄. But
in this case ᾱ ≤ δ̄ which is impossible. Hence fτ(T )(α) = 1 and fτ(T ) = fC(T ).�	
Proposition 1. For any decision table T , the set of rows of the table C(T )
with the exception of the first row coincides with the set of upper zeros of the
function fT .
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Proof. Let ᾱ be an upper zero of the function fT . Using Lemma 2 we obtain
fC(T )(ᾱ) = 0. Therefore there exists a row δ̄ in C(T ) which is labeled with the
decision 2 and for which ᾱ ≤ δ̄. Evidently, fC(T )(δ̄) = 0. Therefore fT (δ̄) = 0.
Taking into account that ᾱ is an upper zero of the function fT we conclude that
the inequality ᾱ < δ̄ does not hold. Hence ᾱ = δ̄ and ᾱ is a row of C(T ) which
is labeled with the decision 2.

Let δ̄ be a row of C(T ) different from the first row. Then fC(T )(δ̄) = 0, and
by Lemma 2, fT (δ̄) = 0. Let δ̄ < σ̄. We will show that fT (σ̄) = 1. Let us assume
the contrary. Then by Lemma 2, fC(T )(σ̄) = 0. Therefore there exists a row γ̄ of
C(T ) which is labeled with the decision 2 and for which σ̄ ≤ γ̄ and δ̄ < γ̄. But
this is impossible since any two different rows of C(T ) which are labeled with 2
are incomparable. Hence fT (σ̄) = 1, and δ̄ is an upper zero of fT . �	

This proposition gives us an efficient way to construct the set UT of upper
zeros of the function fT . We construct in polynomial time depending on the size
of T the canonical form C(T ) of T . By Proposition 1, the set UT coincides with
the set of rows of the table C(T ) with the exception of the first row.

2.4 Importance of Rows

The idea of evaluation of row importance is the following. We construct the
canonical form C(T ) of the table T and the set UT of upper zeros of the charac-
teristic function fT corresponding to the table T . We remove a row r from the
decision table T . As a result, we obtain new decision table T (r). We construct
the canonical form C(T (r)) of the table T (r) and the set UT (r) of upper zeros of
the characteristic function fT (r) corresponding to the table T (r). The cardinality
|(UT ∪UT (r))\ (UT ∩UT (r))| of the symmetric difference of the sets UT and UT (r)

will be considered as the importance of the row r for the table T .

Example 1. Let T be the decision table depicted in Fig. 1 and r4 be the fourth
row of T . We construct tables C(T ) , T (r4), and C(T (r4)) (see Fig. 1)

As a result, we have UT = {(0, 0, 1), (1, 1, 0)} and UT (r4) = {(0, 0, 1), (0, 1, 0)}.
The symmetric difference of the sets UT and UT (r4) is equal to {(0, 1, 0), (1, 1, 0)}.
Therefore the importance of the row r4 for the table T is equal to 2.

Of course, it would be better to compare the sets of reducts of the tables
T and T (r) directly. Unfortunately, there are no efficient algorithms for the
construction of the set of reducts. So instead of the comparison of the sets of
reducts directly, we compare the sets UT and UT (r) which describe completely
the sets of reducts for the tables T and T (r), respectively. In particular, the
importance of the row r for the table T is equal to 0 if and only if the tables T
and T (r) have the same sets of reducts.

3 Experimental Results

We did experiments with 10 decision tables from UCI ML Repository [1]. Some
preprocessing steps were done before the actual experiments. We removed con-
ditional attributes which have unique value for each row. Each group of identical



380 H. AbouEisha et al.

f1 f2 f3
1 1 1 0

T= 1 0 0 0
0 0 1 1
0 0 0 0

C(T ) =

f1 f2 f3
1 1 1 1
0 0 1 2
1 1 0 2

T (r4) =

f1 f2 f3
1 1 1 0
1 0 0 0
0 0 1 1

C(T (r4)) =

f1 f2 f3
1 1 1 1
0 0 1 2
0 1 0 2

Fig. 1. Decision table T and tables C(T ), T (r4), and C(T (r4))

rows was replaced with a single row labeled with the most common decision for
this group. Missing values for an attribute were replaced with a most common
value for this attribute. Table 1 contains information about the considered deci-
sion tables including the number of rows, the number of conditional attributes,
and the existence of important rows – rows for which the importance is greater
than zero.

Table 1. Characteristics of decision tables

Decisiontable Rows Attrs Has important rows?

balance-scale 625 4 No

breast-cancer 266 9 Yes

cars 1728 6 No

hayes-roth-data 69 4 No

house-votes-84 279 16 Yes

lymphography 148 18 Yes

soybean-small 47 35 Yes

spect-test 169 22 Yes

tic-tac-toe 958 9 No

zoo-data 59 16 Yes

For the decision tables breast-cancer, house-votes-84, spect-test, and
zoo-data, we show the results of experiments in the form of range of importance
in the left column and the number of rows with importance in this range in the
right column.

The decision tables lymphography and soybean-small were not changed
during the preprocessing steps. For these tables, for each row with non-zero
importance, we show the number of row and its importance.

For the decision table house-votes-84, we have 15 rows with non-zero
importance and 264 rows with zero importance (see Table 2).
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Table 2. Importance of rows for house-votes-84

Range of importance No. of rows

0 264

1 to 5 14

14 1

For the decision table spect-test, there are 18 rows with non-zero impor-
tance and 151 rows with zero importance (see Table 3).

Table 3. Importance of rows for spect-test

Range of importance No. of rows

0 151

1 to 5 14

6 to 10 3

34 1

For the decision table zoo-data, there are 44 rows with zero importance and
15 rows with non-zero importance (see Table 4).

Table 4. Importance of rows for zoo-data

Range of importance No. of rows

0 44

1 to 5 11

9 1

12 1

13 1

20 1

For the decision table breast-cancer, there are 262 rows with zero impor-
tance and 4 rows with non-zero importance (see Table 5).

For the decision table lymphography, there are 41 rows with zero impor-
tance and 107 rows with non-zero importance (see Table 6).

For the decision table soybean-small, there are 3 rows with zero importance
and 44 rows with non-zero importance (see Table 7).

Each of the considered tables has rows that are not important (rows with
zero importance). If a row is not important, it does not mean that it does not
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Table 5. Importance of rows for breast-cancer

Range of importance No. of rows

0 262

1 to 5 4

Table 6. Importance of rows for lymphography

Row No. Importance
of row

Row No. Importance
of row

Row No. Importance
of row

Row No. Importance
of row

146 29 32 7 144 3 21 1

46 26 35 7 7 2 25 1

113 22 41 7 11 2 28 1

75 21 71 7 13 2 34 1

60 17 94 6 18 2 40 1

88 17 131 6 31 2 42 1

10 14 6 5 33 2 43 1

39 14 90 5 45 2 52 1

69 14 97 5 53 2 58 1

9 12 118 5 57 2 67 1

89 12 121 5 63 2 77 1

147 12 17 4 73 2 82 1

81 11 24 4 79 2 83 1

12 10 78 4 98 2 84 1

122 10 107 4 99 2 85 1

16 9 111 4 102 2 91 1

29 9 128 4 103 2 104 1

72 9 138 4 117 2 108 1

96 9 142 4 127 2 112 1

105 9 5 3 129 2 115 1

114 9 27 3 135 2 126 1

116 9 48 3 141 2 133 1

30 8 51 3 143 2 134 1

50 8 92 3 145 2 136 1

56 8 110 3 1 1 139 1

86 8 120 3 19 1 148 1

26 7 124 3 20 1



On Importance of Rows for Decision Tables 383

Table 7. Importance of rows for soybean-small

Row No. Importance
of row

Row No. Importance
of row

Row No. Importance
of row

Row No. Importance
of row

4 20 42 11 45 7 18 3

17 17 1 9 3 6 23 3

25 17 7 9 14 5 31 3

26 17 9 9 38 5 43 3

12 15 24 9 44 5 19 2

30 13 34 9 47 5 21 2

41 13 5 8 8 4 37 2

2 11 27 7 11 4 15 1

22 11 29 7 16 4 20 1

28 11 32 7 33 4 36 1

39 11 35 7 10 3 46 1

contain important information: the information contained in the row is “covered”
by the information of other rows. If row is important, it means that it contains
some unique information relative to other rows, and it deserves special attention,
especially if its importance is relatively high (as for the row No. 146 in the
decision table lymphography which importance is equal to 29).

4 Conclusions

In this paper, we proposed a method for the evaluation of importance of rows
for decision tables. This allows us to understand how a given row affects the
formation of the set of reducts. In the future, we are planning to consider not
only the cardinality of the symmetric difference of the sets UT and UT (r) but
also other measures of difference of these sets.
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Abstract. Assignment reduction is a special reduction type of attribute
reduction. It is first studied in decision tables and the reduction
approaches are then extended to ordered decision systems. This paper
continues to consider such a reduction type in relation decision sys-
tems. We propose a new discernibility matrix. Based on the matrix, we
give the corresponding reduction algorithm. As special case, we derive
respectively the assignment reduction algorithms for decision tables and
ordered decision systems.

Keywords: Assignment reduction · Discernibility matrix · Relation
decision system · Relative set · Ordered decision system

1 Introduction

Attribute reduction has long been an active research topic with machine learn-
ing, pattern recognition and data mining. Rough sets [12,13] have been used to
develop attribute reduction algorithms by finding condition attribute reduction
in decision tables. In fact, the attribute reduction of decision tables is one of the
most important applications of rough sets in databases. Now much work [1,7,9–
11,19] has been done on attribute reduction for decision tables.

Pawlak was the first to study attribute reduction for decision tables. Skowron
and Rauszer [14,15] first proposed the discernibility matrix based attribute
reduction approaches for decision tables. In order to obtain reduction sets, they
transform the discernibility function from its conjunctive normal form (CNF)
into the disjunctive normal form (DNF), the minimal reduction set of attributes
can then be obtained. Now the discernibility matrix based attribute reduction
becomes one of the most important attribute reduction methods.

Zhang et al. [20] were the first to study assignment reduction in decision
tables. Xu and Zhang [18] extended their research work and proposed an assign-
ment reduction algorithm in ordered information systems. This paper continues
to consider such a reduction type and gives an assignment reduction algorithm
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in relation decision systems. Since the concept of relation decision systems is a
common generalization of decision tables and ordered information systems. Our
algorithm is also a common extension of their algorithms. In the process of the
discernibility matrix based reduction, a difficult step is to find a discernibility
matrix, this paper proposes a new discernibility matrix for assignment reduction.

The remainder of the paper is organized as follows. In Sect. 2, we briefly recall
some basic concepts and notations of binary relations, relation decision systems
and ordered decision systems. Section 3 studies the assignment reduction for
relation decision systems and gives a corresponding algorithm. In Sect. 4, as an
application of our algorithm, we give an assignment reduction algorithm for
decision tables. Section 5 obtains an assignment reduction algorithm for ordered
decision systems. Finally, Sect. 6 concludes the paper.

2 Preliminaries

This section reviews briefly the fundamental notation and notions of relations
and relation decision systems.

Let U be a universal set and P (U) be the power set of U . Suppose that R is
an arbitrary relation on U , the left and right R-relative sets for an element x in
U are defined as [2,5,6]

lR(x) = {y|y ∈ U, yRx} and rR(x) = {y|y ∈ U, xRy},

respectively. Recall the following terminology [8]: (1) R is reflexive if x ∈ rR(x)
for each x ∈ U ; (2) R is symmetric if lR(x) = rR(x) for each x ∈ U ; (3) R is
transitive if x ∈ rR(y) implies that rR(x) ⊆ rR(y); and (4) R is an equivalence
relation if R is reflexive, symmetric and transitive.

Definition 2.1 [3,4,16,17]. Let U be a universal set and A be a family of arbi-
trary binary relations on U , then (U,A) is called a relation system. In addition,
if A = C ∪D, and C ∩D = ∅, then (U,C ∪D) is called a relation decision system,
C is called a condition attribute set, and D is called the decision attribute set.
If RC = ∩R∈CR ⊆ RD = ∩d∈Dd, then (U,C ∪D) is called consistent; otherwise,
(U,C ∪ D) is called inconsistent.

If both C and D consist of equivalence relations, then (U,C ∪ D) is just a
decision table. In fact, a decision table is one of the most important examples
of relation decision systems. Thus a relation decision system is a significant
generalization of decision tables.

Definition 2.2 [18]. Let (U,A) be a relation system.

(1) If the domain of a ∈ A is ordered according to a decreasing or increasing
preference, then a is called a criterion.

(2) If each attribute a ∈ A is a criterion, then (U,A) is called an ordered infor-
mation system(OIS).
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(3) If (U,A) is an ordered information system, A = C ∪D and C ∩D = ∅. Then
(U,A) is called an ordered decision system.

For ordered decision systems, we always assume that the domain of each a ∈
A is ordered according to an increasing preference, for a decreasing preference,
we have similar results.

Let (U,C ∪ D) be a relation decision system, from now on, we always
assume that U = {x1, x2, · · · , xn} is a non-empty finite universal set, A =
{a1, a2, · · · , am} is a non-empty finite condition attribute set and D is a non-
empty finite decision attribute set. For the sake of simplicity, we always assume
D = {d} in the sequel. With every ∅ �= B ⊆ A, we associate a relation
RB = {(x, y)|x, y ∈ U, (x, y) ∈ R for each R ∈ B}.

3 An Assignment Reduction Algorithm for Relation
Decision Systems

This section studies an assignment reduction algorithm for relation decision sys-
tems. Let (U,C ∪ D) be a relation decision system, denote

δC(x) = {rRD
(y)|rRD

(y) ∩ rRC
(x) �= ∅}.

Proposition 3.1. Let (U,C ∪ D) be a relation decision system.

(1) If rRD
(y) ∈ δC(x), then rRD

(y) �= ∅ and rRC
(x) �= ∅.

(2) If B ⊆ C and rRB
(x) ⊆ rRB

(y), then δB(x) ⊆ δB(y) for x, y ∈ U .
(3) If E ⊆ F ⊆ C, then δF (x) ⊆ δE(x) for each x ∈ U .

Proof. Straightforward.

Zhang et al. [20] studied the assignment reduction for decision tables, Xu
and Zhang [18] extended their approaches to the ordered decision systems. Now
we begin to consider this reduction type in relation decision systems. We first
give the definition of the assignment reduction for relation decision systems.

Definition 3.1. Let (U,C ∪ D) be a relation decision system with B ⊆ C. B is
called an assignment reduction of C if B satisfies the following conditions:

(1) δC(x) = δB(x) for each x ∈ U .
(2) For any ∅ �= B′ ⊂ B, δC(x) �= δB′(x) for some x ∈ U .

In order to obtain an assignment reduction algorithm for a relation deci-
sion system (U,C ∪ D), we define the corresponding discernibility matrix M =
(mij)n×n as follows.

mij =
{{R|R ∈ C, (xi, xj) /∈ R}, rRD

(y) /∈ δC(xi), xj ∈ rRD
(y) for some y ∈ U.

∅, otherwise

We have the following lemma.
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Lemma 3.1. Let (U,C ∪ D) be a relation decision system. If rRD
(y) /∈ δC(xi)

and xj ∈ rRD
(y) for some y ∈ U , then mij �= ∅.

Proof. If mij = ∅, then (xi, xj) ∈ R for each R ∈ C, that is, xiRCxj . Since
rRD

(y) /∈ δC(xi), we have rRC
(xi)∩rRD

(y) = ∅, however, xj ∈ rRC
(xi)∩rRD

(y),
this is a contradiction. 	

Theorem 3.1. Let (U,C ∪ D) be a relation decision system with ∅ �= B ⊆ C.
Then the following conditions are equivalent.

(1) δC(x) = δB(x) for each x ∈ U .
(2) If mij �= ∅, then B ∩ mij �= ∅.

Proof. (1) ⇒ (2): Suppose that mij �= ∅ and mij ∩ B = ∅, by the definition of
the discernibility matrix, we assume rRD

(y) /∈ δC(xi) and xj ∈ rRD
(y). Note that

B ∩ mij = ∅ implies xiRBxj , that is, xj ∈ rRB
(xi). By condition (1), rD(y) /∈

δB(xi), so rRD
(y)∩rRB

(xi) = ∅. This is a contradiction to xj ∈ rRD
(y)∩rRB

(xi).
(2) ⇒ (1): Since B ⊆ C, we have RC ⊆ RB, thus δC(xi) ⊆ δB(xi) for each

xi ∈ U . Now we need to show δB(xi) ⊆ δC(xi).
Suppose that rRD

(y) /∈ δC(xi), then rRC
(xi) ∩ rRD

(y) = ∅. If xj ∈ rRD
(y),

by Lemma 3.1, mij �= ∅, using condition (3), mij ∩ B �= ∅, that is, (xi, xj) /∈ RB,
so xj /∈ rRB

(xi) and rRB
(xi) ∩ rRD

(y) = ∅. Hence, rRD
(y) /∈ δB(xi), this proves

δB(xi) ⊆ δC(xi) and δB(xi) = δC(xi). 	

By using Theorem 3.1, we have the following corollary.

Corollary 3.1. Let (U,C ∪ D) be a relation decision system with ∅ �= B ⊆ C,
then B is an assignment reduction of C if and only if it is a minimal subset
satisfying mij ∩ B �= ∅ for any mij �= ∅.

According to Corollary 3.1, we propose an assignment reduction algorithm
for a relation decision system (U,C ∪ D) as follows.

(1) Compute a discernibility matrix M = (mij)n×n.
(2) Transform the discernibility function f from its CNF f =

∏
(
∑

mij) into a
DNF f =

∑s
t=1(

∏
Bt), (Bt ⊆ C).

(3) Red(C) = {B1, B2, · · · , Bs} and Core(C) = ∩s
t=1Bt.

End the algorithm.
We illustrate the algorithm introduced previously with a simple example

Example 3.1. Let (U,C ∪ D) be a relation decision system, U = {1, 2, 3,
4, 5}, C = {R1, R2, R3, R4}, and D = {d} , where R1 = {(2, 1), (2, 3), (2, 4),
(3, 2), (4, 2), (4, 5), (5, 2), (5, 5)}, R2 = {(1, 4), (2, 1), (2, 3), (2, 4), (4, 1), (4, 2), (4,
5), (5, 2), (5, 4)}, R3 = {(2, 1), (2, 3), (4, 2), (4, 5), (5, 2), (5, 3), (5, 5)}, R4 = {(2,
1), (2, 3), (2, 4), (4, 2), (4, 5), (5, 2), (5, 5)}, and d = {(1, 2), (2, 1), (2, 3), (2, 4),
(3, 1), (3, 5), (4, 4), (4, 5), (5, 1), (5, 3), (5, 4)}.

By direct computation, all relative sets are shown in Table 1.
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Table 1. Relative sets

i 1 2 3 4 5

rD(i) {2} {1, 3, 4} {1, 5} {4, 5} {1, 3, 4}
rC(i) ∅ {1, 3} ∅ {2, 5} {2}
δC(i) ∅ {rRD (2), rRD (3), rRD (5)} ∅ {rRD (1), rRD (3), rRD (4)} {rRD (1)}

(1) We first compute the 5 × 5 discernibility matrix M = (mij)5×5

M =

⎛
⎜⎜⎜⎜⎝

C C C C C
∅ C ∅ {R3} C
C {R2, R3, R4} C C C

{R1, R3, R4} ∅ C C ∅
C ∅ {R1, R2, R4} {R1, R3, R4} {R2}

⎞
⎟⎟⎟⎟⎠ .

(2) We then transform the discernibility function

f = (R1+R3+R4)R3(R2+R3+R4)(R1+R3+R4)(R1+R2+R4)(R1+R3+R4)R2

from its CNF into a DNF
f = R2R3.

(3) Thus {R2, R3} is a unique assignment reduction of C.

4 An Application to Decision Tables

In this section, we consider the assignment reduction algorithm for decision
tables as a special case. Let (U,C ∪ D) be a decision table, then both C and D
consist of equivalence relations on U , thus rC(x) = lC(x) = [x]C is an equivalent
class of x ∈ U . The following definition comes from Zhang et al. [20].

Definition 4.1. Let (U,C ∪D) be a decision table with ∅ �= B ⊆ C. B is called
an assignment reduction of C if B satisfies the following conditions:

(1) δC(x) = δB(x) for each x ∈ U .
(2) For any ∅ �= B′ ⊂ B, δC(x) �= δB′(x) for some x ∈ U .

The corresponding discernibility matrix M = (mij)n×n becomes as follows.

mij =
{{a|a ∈ C, a(xi) �= a(xj)}, [y]D /∈ δC(xi),D(xj) = D(y) for some y ∈ U

∅, otherwise

The following example illustrates our algorithm.

Example 4.1. Let (U,C ∪ D) be a decision table as shown in Table 2. Where
U = {x1, x2, x3, x4, x5, x6}, C = {a1, a2, a3, a4, a5} and D = {d}.
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Table 2. A decision table

U a1 a2 a3 a4 a5 d

x1 1 0 1 1 1 1

x2 1 0 1 1 1 2

x3 0 0 0 0 1 1

x4 1 1 1 0 1 1

x5 2 1 2 0 1 2

x6 0 1 2 0 0 2

(1) We first compute the 6 × 6 discernibility matrix M = (mij)6×6

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ {a1, a3, a4} ∅ ∅ {a1, a2, a3} {a2, a3, a5}
∅ {a2, a4} ∅ ∅ {a1, a3} {a1, a3, a5}

{a1, a2, a3, a4} ∅ {a1, a2, a3} {a1, a3} ∅ ∅
C ∅ {a2, a3, a5} {a1, a3, a5} ∅ ∅

⎞
⎟⎟⎟⎟⎟⎟⎠

(2) We then transform the discernibility function

f = (a2 + a4)(a1 + a3)(a2 + a3 + a5)

from its CNF into a DNF

f = a1a2 + a2a3 + a3a4 + a1a4a5.

(3) Thus, {a1, a2}, {a2, a3}, {a3, a4} and {a1, a4, a5} are the four assignment
reduction sets.

5 An Application to Ordered Information Systems

This section will give an assignment reduction algorithm for ordered decision
systems. Since an ordered decision system is a special case of relation decision
systems, we can apply the previous result to an ordered decision system.

Let (U,C ∪ D) be an ordered decision system with B ⊆ C, we denote RB =
{(x, y)|a(xi) ≤ a(y),∀a ∈ B} and RD = {(x, y)|a(xi) ≤ a(y),∀a ∈ D}. Clearly,
RB and RD are dominance relations on U .

Definition 4.2. Let (U,C ∪ D) be an ordered decision system with B ⊆ C. B
is called an assignment reduction of C if B satisfies the following conditions:

(1) δC(x) = δB(x) for each x ∈ U .
(2) For any ∅ �= B′ ⊂ B, δC(x) �= δB′(x) for some x ∈ U .

We present its assignment reduction algorithm via the following example.
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Table 3. An ordered decision system

U a1 a2 a3 a4 d

x1 3 2 2 2 3

x2 1 2 1 3 2

x3 3 1 2 2 3

x4 2 0 1 1 0

x5 0 1 2 0 2

Example 5.1. Let (U,C∪D) be an ordered decision system as shown in Table 3.
Where U = {x1, x2, x3, x4, x5}, C = {a1, a2, a3, a4} and D = {d}. We note that
each attribute can be viewed as a dominance relation on U via

(xi, xj) ∈ R if and only if R(xi) ≤ r(xj) for R ∈ {a1, a2, a3, a4, d}.

Thus (U,C ∪ D) is a relation decision system. The algorithm of Sect. 3 can be
used to compute the assignment reduction.

(1) We first compute the 6 × 6 discernibility matrix M = (mij)5×5

M =

⎛
⎜⎜⎜⎜⎝

∅ ∅ ∅ ∅ ∅
{a4} ∅ {a2, a4} ∅ ∅

∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅

⎞
⎟⎟⎟⎟⎠ .

(2) We then transform the discernibility function f = a4(a2 +a4) from its CNF
into a DNF f = a4.

(3) Thus {a4} is a unique assignment reduction of C.

6 Conclusions

A relation decision system is a natural and important extension of decision
tables. In this paper, the assignment reduction theory based on general binary
relations has been established. We obtained an assignment reduction algorithm
for relation decision systems. The algorithm can find all reduction sets for a rela-
tion decision system. As special cases, we derived the corresponding assignment
reduction algorithms for decision tables and ordered information systems. That
is, we provide a unified assignment reduction algorithm for decision tables and
ordered information systems. Our future work will concentrate on real applica-
tions of the proposed algorithms.
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Abstract. The purpose of this paper is to identify a connection, if such a
connection exists, between the sequence of sounds and the lyrics of a melody
and its popularity with the help of machine learning techniques. The melody
popularity will be quantified as the number of views and number of “like” votes
on the YouTube platform, where users can upload, view and vote videos. This
analysis will reveal whether the two indicators from the YouTube platform are
more influenced by the words or sounds of the songs. This work may help the
producers from the music industry since the popularity of a melody (determined
by analyzing a large set of songs) might be a very important aspect to be
considered when deciding whether to make and launch a musical product or not.

Keywords: Machine learning � Data mining � Songs’ popularity � SVM �
KNN � Logistic regression � Fourier transform � YouTube

1 Introduction

Nowadays, music is part of people’s lives and is present in various actions that we do:
from relaxation, to learning, to promoting various products to attract buyers, and to
many others. Socially, the music manages to bring together people who share the same
musical preferences, through the existence of concerts where listeners gather, com-
municate and have the pleasant feeling of belonging to a group. However, even when
one listens music in solitude, the effect is similar, because unconsciously, the feeling of
loneliness fades away due to the feeling that someone is present through the song.

It is not clear when or why music appeared, but there is evidence of its presence
since Paleolithic, when our ancestors were building whistles from animal bones. What
makes music different from other sounds that we hear in nature is the organization of
sounds in a certain form and the expression of attitudes and feelings through it.

What makes a song pleasant or not to a person is related to a complex combination
of micro-emotions related to the history of his/her personal experiences. Neurology
highlights the influence that music has on people: “During periods of intense perceptual
engagement, such as being enraptured by music, activity in the prefrontal cortex, which
generally focuses on introspection, shuts down” [1]. Therefore, it happens that the
person listening to music to feel in a parallel universe during these intense moments,
this condition being rarely achieved and being similar to a state of deep meditation.

© Springer International Publishing AG 2017
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Another study [2] in which the neuroscientists monitored muscle movement and the
physical states of the people who made effort while listening to music, led to the
conclusion that music distracts the brain from the sensation of pain felt because of
doing exercises, so the body becomes more resistant to effort under the action of music.
Thus, this study has contributed to the therapeutic effect of music: “music makes
strenuous physical activities less exhausting” [2].

Different studies have shown what happens to the human brain when a melody is
liked by that person and what are the levels of relaxation and concentration that are
reached during listening to music, but why a song is perceived as pleasant remains
unknown and thus it attracts the curiosity and interest of researchers on this topic.

The current paper aims to identify a connection between a song’s lyrics and music
and its popularity to establish, using machine learning methods, if the two evident
elements of a melody determine people appreciate a melody. In this context, the
popularity will be evaluated using the YouTube platform through the number of views
and number of “like” votes associated to each melody by users.

The study from this paper may help the producers from the music industry, the
popularity of a melody, determined by analyzing a large set of songs from the same
genre, representing an index to consider before launching a musical product.

The musical genres are very different in terms of sounds that compose the songs’
lyrics and melody, but also the groups of listeners have their own characteristics: age,
education level, social environment, etc. To reduce the variability, we restricted our
analysis to a single musical genre: the pop-dance music. We chose this genre because
its songs are more common, and artists are promoted on radio, television, these songs
easily reaching the listeners.

The pop music has its origins in the 1950s in UK and US and derives mainly from
the “rock and roll” music genre. It is a music genre that encourages the dance due to the
energetic rhythm and melodic line that are produced by the electric guitar, piano or
organ and drums. The favorite subjects of this genre are love, freedom, sorrow and
success.

An element that explains the popularity of this genre is that the public can easily
remember the melody and the lyrics, as they have a simple and repeatable structure. It
is a music genre that is constantly changing in an attempt to satisfy a constantly wider
audience so that to give possibility to people to express and find themselves through
pop songs. Because this music is trying to cover general preferences of the masses of
people, this kind of music sells very well and is a reference for the affective mood and
trends of the population, especially young people, to whom it is directed to.

Another characteristic of the pop music refers to the fact that the use of technology
and songs recording is preferred at the expense of live music. This way, they can be
easily played on commercial radios to attract large audiences, making it a higher
probability the listener’s personality to be reflected to some extent in the atmosphere
created by song, which further stirs psychologically reactions.

As already mentioned, the popularity of songs is evaluated starting from the
YouTube platform. YouTube has become a social network for sharing videos of var-
ious types: tutorials, commercials, music, shows, movies, etc., having over a billion
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unique users and daily displaying hundreds of millions of hours of video1. The
resources loaded on the platform receive an almost immediate reaction of users and
thus, an important indicator in determining the popularity of a song is the success it
enjoys on YouTube.

The next section will present a brief description of similar applications, to highlight
the existing approaches and to set the expectation regarding the results accuracy. In
Sect. 3 we will describe how we gathered the data required for this experiment and how
we extracted the sounds frequencies of the songs. The next section explains the
algorithms used to create the models for predicting songs popularity, while Sect. 5
shows the results of these algorithms. The paper will end with our final conclusions and
with the next steps that can be undertaken to extend the presented research.

2 Similar Applications

A similar application for establishing if a song will become popular amongs listeners is
“ScoreAHit”2, developed by the member of the MIR team of the University of Bristol.
The project aimed to predict which songs will be part of the weekly list of the most
popular songs in the UK. The prediction is based only on information extracted from
the melody of the songs, and to determine whether a song will become a hit or not are
considered 23 predictors including: the loudness of the song, the state that the song
induces, if the song may be danced or not, how energetic it is, the length, the time
signature and the tempo of the song [3].

De Bie and his colleagues extracted all the songs from the official UK top 40
singles charts over the past 50 years, computed the predictors weights based on the
success that the songs had, and finally, for a new song they could compute a score
using the learnt weights that was used to classify it as being a hit or not.

The application had an accuracy of 60%, being applied on pop songs from 1960 to
2010, without considering the artist popularity, the lyrics, the song advertising, or other
social factors.

Another project having the same purpose was “Hit Song Science” (HSS)3, which
was an application from Polyphonic HMI, a subsidiary of a Spanish company spe-
cialized in the analysis of mathematic and physics as a means for solving complex
business problems.HSS appeared in 2002 and tried to find out a mathematical model
for each song which became popular, and based on these models to build clusters of
songs. Thus, the application computes for new songs how close they are to different
clusters using statistics, providing a score on the scale from 1 to 10 of how popular the
song will become.

The authors did not provide information about the product’s accuracy and sug-
gested that their product should be used together with the advertising plan of the music
producers to successfully predict the songs’ popularity. However, in 2008, their article

1 https://www.youtube.com/yt/press/en-GB/statistics.html [accessed: February 2nd, 2017].
2 http://www.scoreahit.com [accessed: February 2nd, 2017].
3 http://polyphonichmi.blogspot.ro/p/about-company.html [accessed: February 2nd, 2017].
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[4] presented an experiment realized on 32,000 songs from various musical genre,
using three different kinds of predictors: a generic one using information from the song
melody extracted in the form of bag-of-frames; aspecific acoustic predictor developed
by Sony for the successful songs; and a human predictor based on manually annotated
songs, using a set of 632 labels, out of which 3 contained information about the song
popularity and thus receiving higher weights.

The purpose of the experiment was the classification of the song in one of three
classes of popularity (low, medium and high), this information being extracted from hit
charts and records of music history. For classification were used two different algo-
rithms: a random one and the Support Vector Machines (SVM) algorithm using the
Radial-Basis Function (RBF) kernel. Since the data was unbalanced, the authors used
F-score instead of accuracy and reported values in the range of 40–50%: for the human
data, the results had an F-score of 41% for low popularity, 37% for medium one and
3% for high popularity. For the acoustic predictors, the F-score varied from 0 to 74% in
the case of generic predictors and to 76% for the specific ones.

When comparing the accuracy of SVM and the random algorithms, the results were
not satisfactory. Thus, Pachet and Roy [4] concluded that the principle on which the
previously built application was based was not correct and that the predictors that were
considered were not enough to categorize the songs based on their popularity.

3 Data Acquisition

The prediction of the success of different songs with the help of machine learning
algorithms requires a large data set for determining whether there is any connection
between the song’s popularity and its melody and lyrics. The results provided by the
machine learning algorithms depend entirely on the chosen data set and its diversity.
Therefore, in this section, we will detail the process of obtaining the data set by
extracting the song lyrics and melody, along with the mechanism of extracting the
information related to the sounds of the melody.

The first step in obtaining the data was to identify the names of dance-pop music
artists, both famous and less renown, having a list of songs that have enjoyed different
degrees of popularity. These names were extracted from the Wikipedia list of
dance-pop artists4. The next step consisted in extracting the list of songs belonging to
each artist and afterwards were retrieved the lyrics and melody for each song. Finally,
we extracted the main frequencies from the melody of each song.

3.1 Lyrics Retrieval

Since we were unable to find an open-source database containing songs lyrics, we
identified the LyricsMania5 platform that can be easily browsed using a web crawler for
retrieving the songs and their lyrics for the previously extracted artists. The structure

4 https://en.wikipedia.org/wiki/List_of_dance-pop_artists [accessed: February 2nd, 2017].
5 http://www.lyricsmania.com/ [accessed: February 2nd, 2017].
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of the website is very friendly, having a page for each artist, where one can find the list
of songs of that artist, along with links to web pages containing the lyrics of each
song.

Using a Python crawler and considering the above structure, we managed to build a
set of documents, each containing the lyrics of a single song. However, the data about
artists and lyrics that are available on the LyricsMania platform are input by the users
of the site and therefore the obtained set of lyrics required a cleaning step to eliminate
errors, such as: incomplete lyrics, duplicate lyrics or lyrics of several songs grouped
under a single song. Moreover, using the Python package PyEnchant6 to detect words
that are not in English, we filtered out the songs that didn’t have English lyrics, in order
not to influence the accuracy of the algorithms.

3.2 Extraction of the Main Frequencies from the Songs’ Melody

Before explaining how we extracted the frequencies from the songs’ melody, we need
to introduce a couple of concepts from the domain of signal and sounds processing.
A signal represents a quantity of information (called amplitude) that varies in time or
space, such as: the phone signal, the light wave, the audio of a song, etc. The sound is a
variation in air pressure over time and it is called acoustic or musical signal when it
comes to music. The human ear perceives only the sounds having frequencies between
20 Hz–20 kHz [5]. The sampling frequency is the number of discrete signal values
(samples) per second of the sound and is measured in hertz.

After obtaining the lyrics corpus, we extracted the frequencies with the highest
amplitude from every analysed song using the Time Fourier Transform. To obtain this
information, we used audio files in the Waveform Audio File Format (WAV) format,
having a sampling frequency of 44.1 kHz7, the frequency generally used for high-
quality audio files to allow the reconstruction of the continuous signal from the discreet
one with very high fidelity. According to the Nyquist–Shannon sampling theorem [6],
for this sampling frequency, the musical sounds have a frequency up to 22 kHz, and
cover the entire range of frequencies that the human ear can hear. A second from the
signal extracted from a WAV file is presented in Fig. 1.

The Fourier transform is a function for decomposing a signal into a sum of simple
sinusoidal functions (sine and cosine functions). For sound waves, Fourier transform
gives the frequencies of the sounds that make up that wave. In this research, we applied
discrete Fourier transform signal (DFT) as the sound signal requiring decomposition
was sampled in the WAV file. DFT transforms the representation of the original signal
from the domain of discrete time to the one of discrete frequencies. According to [7], if
the sampling frequency is fs, then the domain of the definition for the signal repre-
sentation obtained after DFT is [0, fs].

6 https://pythonhosted.org/pyenchant/ [accessed: February 2nd, 2017].
7 http://www.fon.hum.uva.nl/praat/manual/sampling_frequency.html [accessed: February 2nd, 2017].
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In this research, we used the C libraries libsndfile8, for reading the WAV files, and
fftw9, for applying the Fast Fourier Transform which is the faster way of computing the
DFT.

After applying DFT we obtained the chart of sound intensity depending on the
frequency, which is symmetrical to the central point - 0.5 * fs (see Fig. 2). The first half
of the graph, corresponding to the frequencies from the [0, 0.5 * fs] interval, represents
the frequency spectrum for the sampled signal for which the DFT was applied, and the
second half of the graph is the mirror on the X axis of the first half, adding redundant
information [7].

Since the magnitude represents the sound intensity, we extracted, for every second
of every song, the frequency with the maximum magnitude, this frequency having the
largest weight of all sounds frequencies that are heard in a second. If multiple such
frequencies where detected (having the maximum magnitude), only the one with the
highest frequency was retained, as the human ear perceives louder the sounds with
higher frequencies than the ones with lower frequencies. For example, for the signal
from Figs. 1 and 2, the predominant sound frequency was identified to be the one of
344 Hz (see Fig. 3).

Fig. 1. A second from the original signal from the WAV file, before applying discrete Fourier
transform

8 http://www.mega-nerd.com/libsndfile/ [accessed: February 2nd, 2017].
9 http://www.fftw.org [accessed: February 2nd, 2017].
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Fig. 2. The frequency spectrum obtained after applying DFT on the sound from Fig. 1

Fig. 3. Predominant sound frequency
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3.3 Extracting the Number of Views and Number of “Like” Votes
on the YouTube Platform

The next thing to do, after extracting the frequencies from the melody of the songs, was
to obtain the data that reflects the degree of popularity of each song from the YouTube
platform. To extract this information, we used the available YouTube API for visu-
alizing, adding, deleting or modifying the content from the platform. With the help of
this API, we searched the analysed songs on the YouTube platform and from the list of
results we selected the first video, along with its ID. Next, we used this ID to obtain the
number of views and number of “like” votes. We also interrogated the duration of each
song and eliminated the ones having more than five minutes, as these might have been
different mixes of multiple songs.

We have chosen to consider the first video from the list returned by the API because
this list was ordered by the songs popularity on the YouTube platform, and by
choosing it, we hoped to obtain the official version of the analysed song. However, we
are aware that the popular songs might be uploaded to YouTube multiple times (dif-
ferent versions from different concerts or even by different singers) which might lead to
some errors when the official version of the song is not the most popular one.

A different approach that we investigated was to consider all the versions of a song
and to average the results among them. We didn’t choose this option from two different
reasons: on one hand this would introduce a source of errors, since there might be
different singers (or even wannabe singers) who upload their version of the song,
leading to a large deviation in terms of number of views and number of “like” votes of
the different versions of the analysed song, and thus to less precise results. On the other
hand, analysing all the versions of a song would greatly increase the required com-
putation of the application, thus leading to a very large running time.

After extracting the information from YouTube, the data had to be cleaned to
eliminate the answers that were returned in the case that no video was available for a
given song.

4 Used Algorithms

In this section, we will present the algorithms that were used to determine the influence
of lyrics and melody of a song on its popularity.

Machine learning algorithms are applied in more and more areas as they are able to
learn from the examples that they see in many activities such as: scientific experiments,
fraud detection, medical diagnostics, business processes, etc. The purpose of these
algorithms is to identify a pattern or different connections between the characteristics
(features) of the training examples, which are called predictors, to classify, diagnose or
estimate a value for a new case whose value is unknown.

Two main tasks can be seen in the context of machine learning: classification,
where the predictors are combined to generate a binary value (positive/negative) of the
target function; and regression, where a continuous function is required as the output of
the algorithm. Even though the output of the two task is different, their purpose is
similar: to find a model able to map the training example so that to predict the value of
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the target for a new example. For this task, two kinds of algorithm may be used:
parametric and non-parametric [8]. The parametric models are trying to detect a set of
weights (wi) for the available predictors (xi), as in (1), so that to minimize the error (J
(w)), usually computed as the root-mean-square error, between the estimated value (f(x,
w)) and the real one (y), as shown in (2).

f x;wð Þ ¼ w0 þw1x1 þ . . .þwdxd ¼ w0 þ xTw ð1Þ

J wð Þ ¼ 1
n

Xn

i¼1
ðyi � f xi;wð ÞÞ2 ð2Þ

The non-parametric approaches require storing and computing with the entire data
set. They are based on the locality assumption, considering that examples having similar
values for the predictors should have similar values for the target also. Due to this fact, the
non-parametric methods are more flexible, as they do not imply anything about the
distribution of the data that is modelled in comparison to the parametric models which are
restricted to specific forms that are chosen before actually seing the data. On the other
hand, once fitted the parametric models are much more efficient in terms of storage and
computation, as they do not require the data anymore, as opposed to the non-parametric
methods that have to use all the data all the time to do the required computation.

In the current research, we decided to use algorithms from both categories, and thus
we ended upwith Logistic Regression and SVM from the category of parametric methods
and with K-Nearest Neighbors (KNN) from the class of non-parametric approaches.

4.1 Logistic Regression

Logistic Regression is a model that uses the probabilistic function from (3) to model the
transition of the training example from one class to another. In this formula, w0 is
called the bias, while w represents a set of weights that are applied on the different
dimensions of the input vector (one weight per dimension). During training, the best
values of w0 and w are computed based on the evidence from the labeled samples.

p xð Þ ¼ 1
1þ e�ðw0 þ xT�wÞ ð3Þ

Logistic Regression is mostly used for classification and thus, for a new example
(x), it computes the probability of this example to belong to one of the two classes. To
decide to which class the example belongs, its computed probability is compared to
0.5: if p(x) < 0.5, then x belongs to the negative class; otherwise it belongs to the
positive one. This model is very used in practice, as it is very simple and, based on the
probability function that it uses, gives very good results in practice [9].

If the logistic regression has to chose between multiple classes, then the “one versus
all” technique may be used in order to do the discrimination. In the case of regression,
as for the current research, the logistic function maps the training examples as good as
possible and for a new test example it outputs the value of the logistic function in that
point.
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4.2 Support Vector Machines (SVM)

SVM, developed by Vapnik [10], was initially designed to solve classification prob-
lems and afterwards it was successfully extended for regression problems. In the case
of classification with two classes, if the data is linearly separable, SVM finds a
hyperplane that divides the training examples in the two classes. From the infinity of
available hyperplanes, SVM chooses the one which maximizes the distance to any of
the examples from the two classes. However, most of the times, the data is not linearly
separable and thus it has to be translated from the initial space in a different one, with
the help of kernels, so that in the new space to be linearly separable.

Kernels are special functions that compute the distance between two vectors as their
product in the new space, but using their coordinates from the initial space. These
distances are afterwards used as weights to obtain the class of a new instance by
determining to which degree the samples from the training set should contribute to the
classification of this new instance.

This way, kernels optimize the computation and allow the data to become linearly
separable. Themost popular kernel functions are polinomials, sigmoid andGaussian, also
called RBF. In this paper, we used the RBF kernels, having the formula presented in (4),
where w and y represent two multi-dimensional vectors, ||x−y||2 represents the squared
Euclidean distance between them, while c is a parameter that is chosen by the user.

K x; yð Þ ¼ e�c x�yk k2 ð4Þ

In the case of regression, the algorithm is called Support Vector Machines
Regression. Being given the training data D ¼ fðyi; tiÞji ¼ 1; 2; ::; ng, where yi are the
training points and ti are the targets for yi, the purpose of SVM Regression is to find a
function g(y) which approximates the relation that exists between the data from the
training set and to use this function to compute the target t for a new testing point y. For
finding g(y), the algorithm defines a loss function L(t, g(y)) that is minimized. An
example of such a loss function is the Vapnik function (5) that is called
“epsilon-insensitive loss function” [11], where e > 0 is a constant controlling the
acceptable noise for the regression.

L t; g yð Þð Þ ¼ 0; if jt � g yð Þj � e
t � g yð Þj j � e; otherwise

�
ð5Þ

The regression algorithm ignores the errors, as long as they are lower than e but
penalizes larger errors with the help of the loss function.

4.3 K-Nearest Neighbors (KNN)

In the case of classification, the KNN algorithm identifies the closest neighbors of the
test example, and then, using the “majority” voting, it identifies the predominant class
and attributes this class to the new instance. Fir regression, the algorithms determines
the closest k neighbors and computes the mean of their values. The obtained value is
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the value of the testing point. This method may be improved starting from the idea that
the influence of the neighbors is not equal. Thus, the influence of the neighbors may be
weighted by the distance to the testing point. To compute the distance between different
points, different metrics may be used [12]: Euclidian Distance, Manhattan Distance,
Minkowski Distance, Chebyshev Distance, etc.

Since the classic version of this algorithm (to iterate through all the training set and
compute all the distances) is very slow and computational intense, some improvements
were developed. One possible option is to use kd-tree and binary search [13]. Another
option is to use an approximation of the KNN algorithm, called Locality-sensitive
hashing [14] that uses hash functions to probabilistically group similar examples.

The key element of the KNN algorithm is the parameter K that establishes the
number of neighbors that are analysed in order to predict the class/value of the new
sample. The alue of this parameter highly influences the prediction quality and thus it
should be carefully chosen. One method for determining the value of K is through
cross-validation.

5 Obtained Results

In this section, we will present the results that we obtained by applying the previously
described algorithms on the extracted data set of songs for determining their popularity
based on the number of views and the number of “like” votes. For this, we used the
available algorithms implementation from the Python scikit-learn library10.

For SVM, the regression is not penalizing points which have an error smaller than
an imposed value, epsilon, and for this research we set the value of epsilon at 100
views. In the case of the KNN algorithm, we considered 10 neighbours (K = 10) and
averaged their values to predict the value of the test case, as this proved to lead to the
best results.

Since we wanted to predict the number of views and the number of “like” votes
based on the lyrics and the main frequency from the songs’ melody, we did in total six
different experiments, trying to predict each thing (views or “like” votes) using each
predictor on its own and also their combination.

5.1 Predicting the Number of Views

Before applying the learning algorithms, we analysed the songs distribution based on
their number of views. Since the interval of views was very large – from 20 views to
0.4 billion – we decided to eliminate the extremes and only consider the songs having
between 1000 and 0.15 billion (around 7,500 songs). For this dataset, we extracted the
words from the lyrics, in a bag-of-words fashion, along with their frequencies of
appearance, and the main frequency from the melody of the songs. These were the
features used for all the machine learning algorithms. Furthermore, we divided the

10 http://scikit-learn.org/ [accessed: February 2nd, 2017].
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dataset in two classes: popular songs, with more than 1 million views, and unpopular
songs, having less than 1 million views.

To evaluate the accuracy of the used algorithms, we used 10-folds cross-validation,
along with the “Root Mean Squared Error” (RMSE) as in (6), where y represents the
real value of the number of views, y’ is its estimation and n is the number of testing
examples.

Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
ðyi � y0

iÞ2
r

ð6Þ

The results of applying SVM (using both linear regression and RBF kernels) and
KNN for predicting the songs’ number of views are presented in Table 1. In these
experiments, Logistic Regression obtained results that were much worse than the ones
presented in Table 1 and thus they were ignored.

The errors presented in Table 1 had values of millions. However, to compute the
real average error, one should divide the value of the error by the available range of the
interval. For example, in the case of popular songs, the best results were obtained using
SVM with RBF kernel considering only the songs’ lyrics as predictors. In this case, the
average error was 28.29 million. In order to compute the real error, we should divide
this value by 0.1 billion, obtaining an error rate of 28.29%. The best results for
unpopular songs were obtained using SVM with RBF kernel and considering only the
main frequency from the songs’ melody as predictor.

As it can be seen in Table 1, the best results were obtained using SVM with RBF
kernel. Furthermore, the melody line has a higher weight in estimating the number of
views for the unpopular songs, while the lyrics are more important for the popular songs.

Table 1. The average error of the learning algorithms for predicting the songs’ number of views
in million of views

Predictors Average error for SVM
using Liniar regression

Average error for SVM
using RBF kernels

Average error for KNN

Unpopular
songs ( < 1
million
views)

Popular
songs
( > 1
million
views)

Unpopular
songs ( < 1
million
views)

Popular
songs
( > 1
million
views)

Unpopular
songs ( < 1
million
views)

Popular
songs
( > 1
million
views)

The frequencies
of the words
from the songs’
lyrics

9.46 28.35 9.79 28.29 5.22 30.78

The main
frequency from
the songs’
melody

0.90 31.77 0.88 31.78 5.89 30.38

Both predictors 1.61 31.57 0.89 31.78 5.57 30.46
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When combining the two predictors, the results did not improve. In the case of the KNN
algorithm, the results were similar, worse than for SVM, no matter what combination of
predictors was used (only lyrics, only melody’s main frequency, or both).

However, the large error obtained for unpopular songs led to the conclusion that
estimating the number of views cannot be done only using these two predictors. Other
important factors for determining the number of views of a song could be the artist
popularity or the advertising campaign of that song, which might make listeners curious
andwilling to visit YouTube to hear the song, even though afterwards theywill not like it.

5.2 Predicting the Number of “Like” Votes

In this section, we will present the results of applying the same methodology for
estimating the number of “like” votes of songs on the YouTube platform. In this case,
we selected for analysis the songs having between 100 and 100,000 “like” votes,
representing about 6,000 songs. Again, we divided the dataset in two classes: popular,
having over 10,000 votes and unpopular, with less than 10,000 votes. As in the pre-
vious experiment, we used 10-fold cross-validation and RMSE to estimate the quality
of the estimation.

The obtained results are presented in Table 2, where the error is given in thousands
votes. Again, to compute the real error rate, one should divide the value from the table
to the maximum value of the interval (10,000 in the case of unpopular songs, and
100,000 for the popular ones).

Table 2 shows that for the popular songs the results obtained by the SVM with
RBF kernels are the best, while the ones obtained by the Logistic Sigmoid are the
worst. From the two predictors, the one having more importance seems to be the songs’
lyrics. However, when combined with the main frequency of the song’s melody, it led
to the best result obtained in the current research, having an error of 16.16 *
1,000/100,000 = 16.16%. In other words, SVM with RBF kernels achieve an 83.84%
accuracy in predicting the number of “like” votes of popular songs, when using as
predictors both the song’s lyrics and main frequency from its melody.

Table 2. The average error of the learning algorithms for predicting the number of “like” votes
in thousands of votes

Predictors Average error for
SVM using Liniar
regression

Average error for
SVM using RBF
kernels

Average error for KNN Average error for logistic
regression

Unpopular
songs
( < 10,000
likes)

Popular
songs
( > 10,000
likes)

Unpopular
songs
( < 10,000
likes)

Popular
songs
( > 10,000
likes)

Unpopular
songs
( < 10,000
likes)

Popular
songs
( > 10,000
likes)

Unpopular
songs
( < 10,000
likes)

Popular
songs
( > 10,000
likes)

Words
freq. from
the lyrics

5.47 17.44 3.85 16.58 2.03 19.63 7.54 22.58

Main
freq.

3.80 17.57 3.88 17.57 3.05 18.40 7.10 24.17

Both 6.41 17.11 3.88 16.16 2.87 18.37 5.83 20.26
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In the case of unpopular songs, KNN obtained the best results, with an error rate of
2.03* 1,000/10,000 = 20.3%. Thus, the best accuracy in the case of unpopular songs is
of almost 80% and is obtained by KNN when using only the lyrics of the song as
predictor. Again, the results obtained by the Logistic Regression proved to be the worst.

In conclusion, we may say that the song’s lyrics are the most useful features in
identifying whether a song will be successful or not. However, in the case of popular
songs, the quality of the results may be improved if the main frequency of the song’s
melody is also used. In this case, the algorithm that worked best was SVM with RBF
kernels. For unpopular songs, KNN had the biggest accuracy.

Compared to the results reported by the similar applications presented in Sect. 2 (at
most 60% accuracy), the errors obtained when estimating the number of “like” votes
that will be received by songs is considered to be small enough to be acceptable in
predicting the success of such songs using the presented algorithms.

6 Conclusions and Further Development

The use of machine learning algorithms for building models for predicting the popu-
larity of songs highlighted an important issue: the song popularity, measured as the
number of views on YouTube, does not depend only on the lyrics and the melody of
the song, but also on the artist popularity, on the advertise for promoting the song
through means that arouse people’s curiosity to listen the song at least once, and on
other social aspects.

Considering the number of “like” votes on this platform, both the lyrics and the
melody of a song contribute to its success. The accuracy of estimating this success was
higher when considering both predictors in the case of popular songs, while for
non-popular ones, the lyrics alone proved to give the best estimation.The minimum
value of accuracy is achieved at the boundary between popular and unpopular songs,
because the algorithms can not establish a fixed boundary between the degrees of
popularity.

The best predictions were made by the SVM algorithm using the RBF kernel and
estimating the error based on the magnitude order of the data. The only exception was
made by the KNN algorithm that generated the best estimations for the number of
“like” votes received by unpopular songs.

In this paper, we only considered the English songs belonging to the pop music. We
intend to extend this research by also considering other musical genres, as well as
analysing songs written in other languages.

During this research, we have seen that the popularity of the artist is very important
for estimating the success of a song and thus, in the future, we will also consider this
aspect as a predictor. Other possible predictors that might be used in the next version of
the current application include how the song is advertised and the musical instruments
that are used in the song. In the same time, not all the words from the songs’ lyrics are
relevant for the estimation and thus we plan to use feature selection for eliminating
some of these useless words. Also, we plan on investigating the influence of the mood
(s) triggered by the song on the number of views and the number of “like” votes by
estimating the emotions expressed in the song’s lyrics.
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Finally, another issue that we intend to address in a future study is the comparison
of the lyrics of songs that are popular in different languages, as this may facilitate the
identification of feelings and sentiments that are common among different civilizations,
using methods based on machine learning and data mining.
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Abstract. We present a 3D face modeling approach under uncontrolled
conditions. In the heart of this work is an efficient and accurate facial
landmark depth estimation algorithm. The objective function is formu-
lated by similarity transformation among face images. In this method,
pose parameters and depth values are optimized iteratively. The esti-
mated 3D landmarks then are taken as control points to deform a generic
3D face shape into a specific face shape. Test results on synthesized
images show that the proposed methods can obtain landmarks depth
both effectively and efficiently. Whats’ more, the 3D faces generated
from real-world photos are rather realistic based on a set of landmarks.

Keywords: 3D face reconstruction · Depth estimation · Pose estimation

1 Introduction

3D face reconstruction from images has dawn increasing attentions in virtual
reality and natural human-computer interaction areas. Considerable methods
have been developed. Such as Shape-from-Shading (SFS), 3D Morphable Mod-
els (3DMM) [1], Structure-from-Motion (SFM) [2], etc. Most existing 3D face
modeling methods from one image depend heavily on prior models, e.g., 3DMM
suffers from three limitations: limited range, limited scale and cant run auto-
matically [3]. Recently, Kemelmacher et al. build a shape basis directly from
the photos [3] and create a entire head based on it [4]. And another impressive
work is an unconstrained 3D face reconstruction algorithm proposed by Roth
et al. [5].

The problem of extracting the shape and motion parameters from a 2D image
sequence is known as a Structure-from-Motion (SFM) problem. A similarity
transform based method is proposed to derive the 3D structure of a human face
from a group of face images under the framework of SFM [6]. Sun et al. [7]
proposed Nonlinear Least-Squares (NLS) model-based methods for estimation.

c© Springer International Publishing AG 2017
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SFMs performance degrades drastically when tracking errors caused by self-
occlusion or image noise. Yang et al. [8] propose a reliable point selection method
to evaluate the reliability of corresponding points obtained by optical flow.

Our previous research [9] reveals that we can get a more accurate 3D face
reconstruction with more precise depth information of facial landmarks. So this
paper mainly focuses on depth estimation under the framework of SFM. Land-
marks Quasi-3D (Q-3D, named as their real 3D coordinates are unattainable)
coordinates are formed by combining the known 2D coordinates with estimated
depth value. Compared to the existing depth estimation methods [6,7], main
contributions of this paper can be summarized as follows:

(1) We propose an iterative pose and depth optimization method (iPDO) which
can ensure a precise depth estimation of face landmark.

(2) We provide an integration strategy for features’ depth estimation from mul-
tiple non-frontal-view images.

2 Face Surface Reconstruction

Like some conventional methods [8,10], our method also works in a coarse-to-fine
way. Based on a set of salient landmarks on 2D images, their corresponding 3D
positions are computed at first. These estimated 3D landmarks are then taken
as control points to create a specific facial shape. The problem of iPDO can
be formulated as: given one near-frontal face image I0 and n non-frontal-view
images (I1, · · · , In), compute a sparse 3D-face shape from the input images by
estimating the depth value of all landmarks.

2.1 A Generic Framework of Depth Estimation from Two Images

First of all, we discuss how to compute the landmarks depth from two images.
One is a near-frontal image I0 while the other Ii is non-frontal view, 1 ≤ i ≤ n.
This is a problem of minimizing the sum of the distances between a translated
shape and a shape on Ii. Let s0 and si denote the 2D shape containing k land-
marks on these two images, respectively, hence

s0 =
(
pT
0 · · ·pT

t · · ·pT
k

)T ∈ �2k, 1 ≤ t ≤ k. (1)

si =
(
qT
0 · · · qT

t · · · qT
k

)T ∈ �2k, 1 ≤ t ≤ k. (2)

And pt, q t, (1 ≤ t ≤ k) are the 2D coordinates of the t-th feature point on I0
and Ii respectively. s0 can be transformed into a shape s′

0 that is close to si.
With a scalar factor σ, a rotation matrix R(α, β, γ) and a translation vector
t = [Δx,Δy]T , under scaled-orthographic camera model we have

s′
0 =

(
p ′T

0 · · ·p ′T
t · · ·p ′T

k

)T

∈ �2k, (3)
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[
p ′

t

z′
t

]
= σ · [

R t
] · [

pT
t , zt, 1

]T
, (4)

with zt the Z -coordinate of the t-th landmark on the frontal image I0, and z′
t

is the Z -coordinate on s ′
0. Obviously, zt is unknown. Hence, in total, there are

k + 5 unsolved parameters(α, β, γ,Δx,Δy, z1, · · · , zk) which can be solved by:

min(d(s ′
0, si)) = min

∥
∥s ′

0 − si
∥
∥
2
. (5)

For simplicity, let w denotes the rotation angles α, β, γ in the following sec-
tions. Given an initial value of depth value of all landmarks z 0 =

{
z01 , · · · , z0k

}
,

Particle Swarm Optimization algorithm (PSO) [11] is adopted to optimize all
unknown parameters. Generally, scholars are willing to use the corresponding
Z -coordinates on a generic face model as the initial value z′

0 [7].
The initial values always play an important role. Differ from existing methods

[6,7], we use a linear model SLMO (a sparse linear model combining with an
optimization) [12] to estimate z ′

0 from the frontal face image I0 at first. The
feature positions obtained by SLMO are far more accurate than values on a
generic face. Without any iteration, SLMO can run quickly in a single step. A
Two-Stage Estimation (TSE) method is outlined as Algorithm1.

Algorithm 1. A Two-Stage Estimation (TSE) method
Input:

two sets of 2D landmarks s0 and si

Output:
The estimated Z -coordinate z =

{
z1, · · · , zk

}
of all landmarks.

1: Obtain an initial value z0 of the landmarks depth by SLMO algorithm, which
estimates depth from s0.

2: Step 1 : Fix the depth value z0, optimize w and z by solving (5), then get w0 and
z0.
Step 2 : Fix the pose & translation parameters, i.e.,w0 and t0, then compute Z -
coordinate of all landmarks by optimizing (5) again.

The main difference of TSE from existing methods, obviously, is the use of
depth value z 0 that estimated by SLMO as an initialization.

2.2 Basic Idea of iPDO

As aforementioned, in order to get accurate estimation for both pose parameters
w and the depth values z , TSE computes these values separately. From the
scaled-orthographic camera model in (4), we can see clearly that pose estimation
and depth estimation have mutual effect.

To assess the effect influence of w to z , we conduct a simulation as a guide
of algorithm design (details of test settings can refer to Sect. 3). During this
simulation, we project a 3D face to 2D plane to create two face images, one is
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frontal and the other is with 20◦ yaw and 20◦ pitch angles. On the one hand,
we use sub-step step 1, stage 2 of TSE to estimate the pose angles. And on the
other hand the known angles ( 20◦, 20◦, 0◦) are input directly to sub-step step
2, stage 2 of TSE. Besides TSE, NLS [7] is also tested. Test results are shown
in Fig. 1, where ‘Avg. Face‘ means the error of use the landmark vertexes of
a 3D generic face, and ‘*-r’ means input the real angles (20◦, 20◦, 0◦) to the
estimation algorithms while ‘*-e’ means using the estimated angles. ‘*-mid’ is
the middle value between ‘*-r’ and ‘*-e’. So, in a sense, NLS-r is the ground-
truth to NLS-e while TSE-r is the ground-truth to TSE-e. Test result shown in
Fig. 1 tells us that we can get a more accurate depth estimation result by more
accurate pose angles. We may not reach to the ground-truth due to the existence
of pose estimation errors, but compromised performance might be achievable.

A feasible way to improve the accuracy of w is to input relative accurate
depth values. Hence, we intuitively propose to reform Algorithm2 into an iter-
ative version, i.e., an iterative pose and depth optimization method:

Fig. 1. Depth estimation error of different strategies, using real pose angles or the
estimated pose angles.

Algorithm 2. An Iterative Pose and Depth Optimization (iPDO) method
Input:

two sets of 2D landmarks s0 and si, maximum iteration number N , convergence
threshold τ .

Output:
Quasi-3D (Q-3D) of all landmarks, which is formed by concatenating the known
s0 and their estimated depth values zi.

1: Obtain an initial value of the landmarks depth by SLMO based on s0, denoted as
z0. Set an indicator i = 0.

2: Step 1 : Fix zi, optimize w and t by solving (5), then get wi, ti.
Step 2 : Fix wi and ti, update Z -coordinate of all landmarks by optimizing (5)
again, then get zi. Set i = i + 1.

3: If i > N or
∥∥zi − zi−1

∥∥
2

< τ , then exit. Otherwise, go to Stage 2.
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2.3 Depth Fusion and Dense 3D Face Modeling

When n non-frontal-view face image of a subject are available, then n depth
values of each landmark can be obtained via iPDO. Therefore, an integration
method is needed to fuse these values into a reasonable one. Here, we propose to
use a normal distribution model to exclude the outliers. For the t-th landmark,
we get a Z -coordinate set Ω =

{
zt,1, · · · , zt,n

}
, from which we can extracted a

new set with n elements:

Σ =
{
zt,i ∈ Ω : z̄t − 3σt < zt,i < z̄t + 3σt

}
, 1 ≤ i ≤ n (6)

where, z̄t, σt are the mean and standard deviation of the Z -coordinate of the
t-th landmark. z̄t and σt are computed from a training 3D face set. Then, with
Σ, we can get the final integrated Z -coordinate of the t-th landmark:

zt =
{

mean(Σ), ifΣ �= φ
z0t , ifΣ = φ

(7)

where, ‘mean’ is the mean function while z0t is the depth value of the t-th land-
mark estimated by SLMO.

With the Q-3D coordinates of the key landmarks, we can deform a generic
3D facial shape to make a specific 3D face for input images. Here, we adopt
the commonly used Radial Basis Functions (RBFs) as a global tool for defor-
mation. RBFs builds a smooth interpolation function f(v) based on offsets of
the landmarks. And for the rest ten thousands of non-feature vertices v i on the
generic face mesh, their displacement d i can be computed by f(v) straightly.
More details please refer to literature [13].

3 Experiments and Analysis

We conduct experiments on two 3D face databases, one is the Bosphorus data-
base [14] that is also adopted by Sun [7] and the other is SWJTU 3D face
database (shorted as SWJTU-3D) collected by ourselves.

3.1 Experiment Configuration

Bosphorus database (shorted as BS) consists of 105 subjects with up to 54 face
scans per subject. Each scan has been manually labelled for 22 facial landmark
points. The training set is composed of 115 3D face scans with neutral pose &
expression while a testing set is composed of five non-frontal-view face images
(P R D, P R SD, P R SU, P R U, Y R R10) and one corresponding frontal-view
face image.

SWJTU-3D consists of 450 persons with 6 models per subject, where 76
facial landmarks are manually labeled. This database is split into a testing and
a training set of 225 models each. For SWJTU-3D, we synthesize images by
projecting 3D faces of testing set under different views: (10,10,0), (10,20,0),
(10,30,0), (20,10,0), (20,20,0), (30,30,0).
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For quantitative comparison, we use the mean error e(z e, z g) to measure the
error between estimated depth value and its ground-truth, i.e.,

e(z e, z g) =
1
k

k∑

t=1

|zet − zgt | , (8)

with the real depth values z g on a 3D face, which is deemed as the ground-
truth, and the estimated depth values z e. We also use the correlation coefficient
c(z e, z g), i.e., the correlation coefficient of two depth vectors:

c(z e, z g) =
1

k − 1

k∑

t=1

(
zgt − z̄g

σg

)(
zet − z̄e

σe

)
(9)

where, z̄g and σg are the mean and standard deviation of z g. z̄e and σe are the
mean and standard deviation of z e.

3.2 Experimental Results

(1) Depth Estimation Evaluation. In order to investigate the generalization
of our algorithm for face images of different poses, methods are evaluated by a
frontal image and one synthesized image under various angles (SWJTU-3D data-
base is used). GA (Genetic Algorithm) [6] and NLS (Nonlinear Least-Squares)
[7] are also tested for comparing purposes.

To give a comparable test according to the relative literatures [7], we evaluate
depth accuracy on BS database. Data of GA and NLS come from the original
studies. As shown in Table 1, we know that the proposed TSE and iPDO outper-
forms GA (Genetic Algorithm) [6], NLS (Nonlinear Least-Squares) [7] under dif-
ferent profile images. Test on simulated images in Fig. 2 shows that the Euclidean
distance between the estimated Z -coordinate of iPDO and their ground-truth
are as close as to 1.3 mm.

Fig. 2. Depth estimation error of different methods (on SWJTU-3D). The non-frontal
images used are in different viewpoint. The numbers in the parentheses are the angles
around X, Y, Z axis, respectively.
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Table 1. Depth value estimation comparison under the BS database.

GA [6] NLS1 SR [7] TSE iPDO

PR D 0.1962 0.8916 0.9685 0.9686

PR SD 0.2787 0.8655 0.9673 0.9674

PR SU 0.5568 0.8454 0.9656 0.9657

PR U 0.7283 0.8573 0.9675 0.9677

YR R10 0.5128 0.9016 0.9674 0.9674

μ + std 0.4546 0.8723 0.9671 0.9672

μ − std ±0.2408 ±0.0236 ±0.0011 ±0.0011

The effectiveness of using multiple images is validated in Fig. 3. We can see
that, iPDO can perform better with more images. Running time of these algo-
rithms is listed in Table 2. Without any coding optimization, iPDO costs 1.72 s
on a MacBook Pro. with a 2.7 GHz CPU and 4G of RAM.

Fig. 3. Depth estimation error of using multiple images. 3 different methods are tested.

Table 2. Time costs of different methods.

Methods GA NLS1 SR NLS2 SLMO TSE iPDO

Time (s) 50.09 0.10 3.0 0.03 0.53 1.72

(2) Pose Estimation Evaluation. As pose estimation is an important step
for both NLS-like and our TSE algorithm. In this test, with simulated images of
SWJTU-3D, we will investigate carefully how the pose estimation performance
would affect the depth estimation. The non-frontal image we used here is (20◦,
20◦, 0◦) around X and Y axis respectively.

The mean error e(z e, z g) and c(z g, z e) of the estimated depth with different
strategies are listed in Table 3 where ‘-r’ means input the real angles (20◦, 20◦,
0◦) to the estimation algorithm. While ‘-e’ means using the estimated angles w.
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So NLS-like-r is the ground-truth of NLS-like-e while TSE-r is the ground-truth
of TSE-e. We can see that depth error of TSE-r is lower than TSE-e and the
mean error is close to 1 mm while the correlation coefficient is up to 1.0. This
result tells us that the proposed iPDO is reasonable since it can improve the
estimation results by further updating the pose angles.

Table 3. Depth estimation accuracy comparison of different strategies, using real
angles or the estimated ones

Avg. face NLS-like-r NLS-like-e TSE-r TSE-e

e(z e, z g) 2.5988 1.3719 1.6899 1.1140 1.4511

σ(z e, z g) 0.8118 0.0297 0.1451 0.0241 0.1369

c(z g, z e) 0.9688 0.9999 0.9982 1.0000 0.9985

Fig. 4. Angle estimation errors of TSE and iPDO.

Then, we compare the errors of the estimated angle by the proposed TSE
and iPDO, respectively. As shown in Fig. 4, the rotation anlges estimated by
iPDO is evidently more accurate than that of TSE.

(3) 3D Face Reconstruction Evaluation. With the estimated Q3D land-
marks, now we can evaluate our 3D face modeling method described in Sect. 2.3.
At first, we create synthesized images by rendering each 3D face of the
SWJTU3D database into two images, one is frontal and the other is non-frontal
of (20◦, 20◦, 0◦). The captured 3D models in the database can be regarded as the
ground-truth. For quantity evaluation, we map the 3D faces into range images
[15] and use correlation coefficient c(I e, I g)ε[0, 1] to measure the similarity of
two range images (I e and I g).

The Q-3D obtained by iPDO & TSE has been substantiated by the previous
results, i.e., Q-3D coordinates obtained by iPDO are much closer to the real val-
ues than other methods. Here, 3 tests are contrived: (a) only use 2D coordinates
(x, y) of landmarks on synthesized images; (b) use 3D coordinates (x, y, z) of
landmarks directly on the testing 3D faces; (c) use estimated Q-3D landmarks.
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Test (b) can be regarded as the ideal results. A sparse morphable model SRSD
[16] is also compared. The results shown in Fig. 5 reveal that the use of Q-3D
reduces the error in face modeling considerably.

Fig. 5. A comparison of different reconstruction accuracy using the similarities of range
image.

Three reconstructed 3D faces from real-word images are demonstrated in
Fig. 6. Two subject is from the IMM database [17] and the last one is our group
member. We can see that Q-3D features indeed are helpful to accurately recover
the shape in Z-axis direction. Note that here we use 3 images for reconstruction.
We also can use just 2 uncontrolled images as inputs.

Fig. 6. 3D face reconstructed from 2 images. The left are the inputted images while
the right is different views of the 3D models.

4 Conclusions

Pose estimation and depth estimation have mutual effect in 3D face reconstruc-
tion. However, most existing methods handle them simultaneously. We put for-
ward a pose and depth optimization method, which optimizes pose parameters
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and depth values separately and iteratively. In order to handle multiple images,
we also propose an integrated method. There are a number of potential improve-
ments and challenges going forward. In the next work, it would be interesting
to exploit other cues such as knowledge of pose and profile contours to resolve
metric ambiguity.
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ment Plan (No. 2016YFC0802209) and Chongqing Key Laboratory of Computational
Intelligence (CQ-LCI-2013-06).

References

1. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: The
26th Annual Conference on Computer Graphics and Interactive Techniques, pp.
187–194. ACM Press/Addison-Wesley Publishing Co., Los Angeles (1999)

2. Torresani, L., Hertzmann, A., Bregler, C.: Non-rigid structure-from-motion: esti-
mating shape and motion with hierarchical priors. IEEE Trans. Pattern Anal.
Mach. Intell. 30(5), 878–892 (2008)

3. Shu, L., Linda, S., Ira, K.: Internet-based morphable model. In: IEEE International
Conference on Computer Vision, pp. 3256–3263. IEEE Computer Society (2015)

4. Liang, S., Shapiro, L.G., Kemelmacher-Shlizerman, I.: Head reconstruction from
internet photos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9906, pp. 360–374. Springer, Cham (2016). doi:10.1007/
978-3-319-46475-6 23

5. Roth, J., Tong, Y., Liu, X.: Unconstrained 3D face reconstruction. In: IEEE Com-
puter Vision and Pattern Recognition, pp. 2606–2615. IEEE Computer Society
(2015)

6. Koo, H., Lam, K.: Recovering the 3D shape and poses of face images based on the
similarity transform. Pattern Recogn. Lett. 29(6), 712–723 (2008)

7. Sun, Z., Lam, K., Gao, Q.: Depth estimation of face images using the nonlinear
least-squares model. IEEE Trans. Image Process. 22(1), 17–30 (2013)

8. Yang, C., Chen, J., Xia, C., et al.: A SFM-based sparse to dense 3D face recon-
struction method robust to feature tracking errors. In: 20th IEEE International
Conference on Image Processing (ICIP 2013), pp. 3617–3621 (2013)

9. Gong, X., Wang, G., Li, X., et al.: A statistical two-step method for 3D face
reconstruction from single image. Chin. J. Electron. 20(4), 671–675 (2011)

10. Le, V., Tang, H., Cao, L., et al.: Accurate and efficient reconstruction of 3D faces
from stereo images. In: 17th IEEE International Conference on Image Processing
(ICIP 2010), pp. 4265–4268 (2010)

11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks, Perth, WA, pp. 1942–1948 (1995)

12. Gong, X., Wang, G.: Example-based learning for depth estimation of facial land-
marks and its application in face modeling. Chin. J. Electron. 19(4), 676–680
(2010)

13. Gong, X., Wang, G.: Realistic face modeling based on multiple deformations. J.
Chin. Univ. Posts Telecommun. 14(4), 110–117 (2007)

http://dx.doi.org/10.1007/978-3-319-46475-6_23
http://dx.doi.org/10.1007/978-3-319-46475-6_23


iPDO: An Effective Feature Depth Estimation Method 417
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Abstract. The conventional rough sets theory is used for inducing if-
then rules hidden behind a dataset called the decision table which has
some condition attributes and a decision attribute. Each attribute is
considered in principle as a nominal scale. The conventional rough sets
theory also extends its method in order to apply to the table with an
ordinal scale which is used for rating the preference of users, and proposes
a dominance-based rough set approach (DRSA) for the conventional rule
induction methods. This paper also proposes a DRSA by STRIM named
DOMSTRIM with a consistency index of dominance, applies it to a real-
world dataset of a questionnaire survey and confirms the usefulness of
DOMSTRIM by comparing with the conventional method DOMLEM.

1 Introduction

The Rough Sets theory was introduced by Pawlak [1] and used for inducing if-
then rules from a dataset called the decision table. Each data in the decision
table is a sample consisting of the tuple of condition attributes’ values and the
decision attribute value and each attribute of the sample in principle takes val-
ues on a nominal scale with a finite set. The induced if-then rules simply and
clearly express the structure of rating and/or knowledge hiding behind the deci-
sion table. Such rule induction methods are needed for disease diagnosis systems,
discrimination problems, decision problems, and other aspects, and consequently,
many effective methods and algorithms for the rule induction by rough sets have
been reported [2–6]. Among the conventional methods for inducing if-then rules,
VPRS (Variable Precision Rough Set) [4] and the methods developing VPRS [6]
are best used although many methods have been proposed. We also proposed a
rule induction method named STRIM (Statistical Test Rule Induction Method)
[7–12] by expanding and developing the notion of VPRS into a statistical model
since the attributes and the sample data in the decision table should be recog-
nized as random variables and their outcomes from the population of interest
respectively.

The conventional rough sets theory also expanded and developed its methods
in order to deal with the dataset on ordinal scales since there were many cases
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gathered from questionnaire surveys which rated objects from the population,
for example, by the degree of preference, satisfaction and so on, that is, by ordi-
nal scales. Such expansions were called Dominance-based Rough Set Approach
(DRSA) [13] and DRSA developed the algorithm LEM2 [3] into DOMLEM [14]
and VC-DRSA (Variable Consistency DRSA) [15], which can be utilized in a
free software named jMAF [16].

In this paper, we also present the proposal of DRSA by STRIM named DOM-
STRIM. Specifically, we apply STRIM to a real-world dataset with regard to
Rakuten Travel presented by Rakuten Inc. [17] and analyze the dataset on the
nominal scales. From this analysis, we first extract the principal variables and
structures constructing the degree of satisfaction obtained from rating the leisure
facility. Based on this knowledge obtained, we construct the model of DRSA by
STRIM, that is, DOMSTRIM, conduct the rule induction by DOMSTRIM and
not only show the results reasonable coordinating with our common sense but
also confirm the preprocessing by STRIM to be useful. Furthermore, we pro-
pose a consistency index of dominance which confirms the order relation of the
induced if-then rule set. At last, we analyze the same dataset by applying it to
jMAF [16] and show the results difficult to understand the meanings of them
comparing with those by DOMLEM.

2 Conventional Rough Sets and DRSA

In this section, we briefly summarize the conventional rough sets theory [1–6] and
its Dominance-based Rough Set Approach (DRSA) [13–15]. Rough Sets theory
is used for inducing if-then rules from a decision table S. S is conventionally
denoted S = (U,A = C ∪ {D}, V, ρ). Here, U = {u(i)|i = 1, ..., N} is a sample
set, A is an attribute set, C = {C(j)|j = 1, ...,MC} is a condition attribute set,
C(j) is a member of C and a condition attribute, and D is a decision attribute.
V is a set of attribute values denoted by V =

⋃
a∈A Va and is characterized by

an information function ρ: U × A → V (see Table 1).

Table 1. An example of a decision table S.

U C(1) . . . C(j) . . . C(MC) D

u(1) . . . . . . ρ(u(1), C(j)) . . . . . . ρ(u(1), D)

. . . . . . . . . . . . . . . . . . . . .

u(i) . . . . . . ρ(u(i), C(j)) . . . . . . ρ(u(i), D)

. . . . . . . . . . . . . . . . . . . . .

u(N) . . . . . . ρ(u(N), C(j)) . . . . . . ρ(u(N), D)

Rough Sets theory focuses on the following equivalence relation and
equivalence set of indiscernibility: IC = {(u(i), u(j)) ∈ U2|ρ(u(i), a) =
ρ(u(j), a),∀a ∈ C}. IC is an equivalence relation in U and derives the quotient set
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U/IC = {[ui]C |i = 1, 2, ..., |U | = N}. Here, [ui]C = {u(j) ∈ U |(u(j), ui) ∈
IC , ui ∈ U}. [ui]C is an equivalence set with the representative element ui.

Let X be any subset of U then X can be approximated like C∗(X) ⊆ X ⊆
C∗(X) by use of the equivalence set. Here,

C∗(X) = {ui ∈ U |[ui]C ⊆ X}, (1)
C∗(X) = {ui ∈ U |[ui]C ∩ X �= ∅}. (2)

C∗(X) and C∗(X) are called the lower and upper approximations of X by C
respectively. The pair of (C∗(X), C∗(X)) is usually called a rough set of X by
C.

Specifically, we let X = Dd = {u(i)|ρ(u(i),D) = d} and define a set of
u(i) as U(CP ) = {u(i)|uC=CP (i)}, meaning that the condition part of u(i)
denoted by uC(i) satisfies CP =

∧
j(C(jk) = vC(jk)), where

∧
is conjunction.

If U(CP ) ⊆ Dd, then CP can be used as the condition part of the if-then rule
of D = d, with necessity. That is, the following expression of if-then rules with
necessity is obtained:

Rule(d, k) : if CP (d, k) =
∧

j

(C(j) = vjk) then D = d, (k = 1, 2, ...). (3)

In the same way, C∗(X) derives the condition part CP of the if-then rule of
D = d with possibility.

The conventional rough sets theory in principle handles attributes of nominal
scales. However, when questionnaire surveys rating objects are executed, ordinal
scales, for example, {“Dissatisfied(DS),” “Somewhat dissatisfied(SD),” “Nei-
ther satisfied nor dissatisfied(NN),” “Satisfied(ST ),” and “Very Satisfied(V S)”}
are often used. Here, there is an ordinal relation DS < SD < NN < ST < V S
with regard to the degree of satisfaction to the object. The conventional meth-
ods studying such cases where the condition and decision attributes consist of an
ordinal scale are called Dominance-based Rough Set Approach (DRSA) [13–15].

Specifically, DRSA replaces the above equivalence relation with a dominance
relation denoted by yDPx meaning that for ∀a ∈ P ⊆ C, ρ(y, a) ≥ ρ(x, a),
that is, that y dominates x with respect to a set of attributes P ⊆ C. This
dominance relation derives the following two sets: D+

P (x) = {y ∈ U |yDPx} and
D−

P (x) = {y ∈ U |xDP y}. Here, D+
P (x) is a set of objects (samples) dominating

x and D−
P (x) is a set of objects (samples) dominated by x. By use of those

expressions, the lower approximation by (1) can be replaced with the following
two expressions:

P∗(D
≥
d ) = {x ∈ U |D+

P (x) ⊆ D≥
d }, (4)

P∗(D
≤
d ) = {x ∈ U |D−

P (x) ⊆ D≤
d }, (5)

where

D≥
d = {y ∈ U |ρ(y,D) ≥ d}, (6)

D≤
d = {y ∈ U |ρ(y,D) ≤ d}. (7)
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The expressions (4) and (5) derive if-then rules with necessity corresponding to
(3) as follows:

Rule≥(d, k) : if CP≥(d, k) =
∧

j

(C(j) ≥ vjk) then D ≥ d, (8)

Rule≤(d, k) : if CP≤(d, k) =
∧

j

(C(j) ≤ vjk) then D ≤ d. (9)

Let us call (8) and (9) at-least rules and at-most rules by lower approximations
respectively.

In the same way, the upper approximation by (2) can be replaced the follow-
ing two expressions:

P ∗(D≥
d ) = {x ∈ U |D+

P (x)
⋂

D≥
d �= ∅}, (10)

P ∗(D≤
d ) = {x ∈ U |D+

P (x)
⋂

D≤
d �= ∅}. (11)

The expressions (10) and (11) analogously derive if-then rules with possibility
corresponding to (8) and (9).

3 Conventional STRIM

In this section, we briefly summarize STRIM (Statistical Test Rule Induction
Method) [7–12]. STRIM considers the decision table shown in Table 1 to be a
sample dataset obtained from an input-output system including a rule box, as
shown in Fig. 1, and hypotheses regarding the decision attribute values, as shown
Table 2. A sample u(i) consists of its condition attributes values uC(i) and its
decision attribute uD(i). uC(i) is the input into the rule box, and is transformed
into the output uD(i) using the rules (generally unknown) contained in the rule
box and the hypotheses. In contrast, u(i) = (uC(i), uD(i)) is measured by an
observer, as shown in Fig. 1. The existence of NoiseC and NoiseD makes missing
values in uC(i), and changes uD(i) to create another value of uD(i), respectively.
Those noises bring the system closer to a real-world system. One of the features
of STRIM is to have the data generation model shown in Fig. 1 though the
conventional rough sets methods do not.

Rule Box &
Hypothesis

Input:

u (i)

Output:

u (i)C D

Observer
NoiseC NoiseD

Fig. 1. Rough sets system contaminated with noise. Rule box contains if-then rules
Rule(d, k): if CP (d, k) then D = d (d = 1, 2, ...).
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Table 2. Hypotheses with regard to the decision attribute value.

Hypothesis 1 uC(i) coincides with CP (d, k), and uD(i) is uniquely determined
as D = d (uniquely determined data)

Hypothesis 2 uC(i) does not coincide with any CP (d, k), and uD(i) can only
be determined randomly (indifferent data)

Hypothesis 3 uC(i) coincides with several CP (d, k) (d = d1, d2, ...), and their
outputs of uC(i) conflict with each other. Accordingly, the
output of uC(i) must be randomly determined from the
conflicted outputs (conflicted data)

Line
No.

Algorithm to induce if-then rules by STRIM with a reduct function

1 int main(void) {
2 int rdct max[|CV|]={0,. . . ,0}; //initialize maximum value of C(j)
3 int rdct[|CV|]={0,. . . ,0}; //initialize reduct results by D=l
4 int rule[|C|]={0,...,0}; //initialize trying rules
5 int tail=-1; // initial vale set
6 input data; // set decision table
7 for (di=1; di<=|D|; di++) {// induce rule candidates every D=l
8 attribute reduct(rdct max)
9 set rdct[ck] ; // if (rdct max[ck]==0) {rdct[ck]=0; }else {rdct[ck]=1; }

10 rule check(rcdct, redct max, tail, rule); // the first stage process
11 }// end of di
12 arrange rule candidates // the second stage
13 }// end of main
14 int attribute reduct(int rdct max[]) {
15 make contingency table for D=l vs. C(j)
16 Test H0(j,l);
17 if H0(j,l) is rejexted then set rdct max[j,l]=jmax else rdct max[j,l]=0; //

jmax:the attribute vale of the maximum frequency
18 }// end of attribute reduct
19 int rule check(int rdct[], int rdct max[], int tail,int rule[]) {// the first stage

process
20 for (ci=tail+1; cj<|C|; ci++) {
21 for (cj=1; cj<=rdct[ci]; cj++) {
22 rule[ci]=rdct max[cj]; // a trying rule sets for test
23 count frequency of the trying rule; // count n1, n2,. . .
24 if (frequency>=N0) {//sufficient frequency ?
25 if (|z|>3.0) {//sufficient evidence ?
26 add the trying rule as a rule candidate
27 }// end of if |z|
28 rule check(ci,rule)
29 }// end of if frequency
30 }// end of for cj
31 rule[ci]=0; // trying rules reset
32 }// end of for ci
33 }// end of rule check

Fig. 2. An algorithm for STRIM including a reduct function.

Based on the data generation model, STRIM (1) extracted significant pairs
of a condition attribute and its value like C(j) = vjk for rules of D = d by
the local reduct [11], (2) constructed a trying condition part of the rules like
CP (d, k) =

∧
j(C(jk) = vj) by use of the reduct results, and (3) investigated

whether CP (d, k) caused a bias at nd in the frequency f = (n1, n2, ..., nMD
) or
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not, where nm = |U(CP (d, k)) ∩ U(m)| (m = 1, ..., |VD| = MD), U(CP (d, k)) =
{u(i)|uC=CP (d,k)(i)} and U(m) = {u(i)|uD=m(i), which means satisfying
uD(i) = m }. Specifically, STRIM used a statistical test method specifying a
null hypothesis H0: f does not have any bias and its alternative hypothesis H1:
f has a bias, and a proper significance level, and tested H0 by use of the sample
dataset, that is, the decision table and the proper test statistics, for example,

z =
(nd + 0.5 − npd)
(npd(1 − pd))0.5

, (12)

where pd = P (D = d), n =
MD∑

j=1

nj . z obeys the standard normal distribution

under a proper condition [18] and is considered to be an index of the bias of f .
(4) If H0 is rejected, and then the assumed CP (d, k) becomes a candidate for
the rules in the rule box. (5) After repeating the processes from (1) to (4) and
obtaining the set of rule candidates, STRIM arranged their rule candidates and
induced the final results (see literatures [7–12] for details).

Figure 2 shows an algorithm for STRIM including a reduct function. Line
No. (LN) 8 and 9 are the reduct part of the above (1), and (2) is executed at
LN 10 and the dimension rule[] is used for the trying condition part of rules,
(3) is executed at LN 25 in the function rule check(), (4) is executed at LN 26
and (5) is from LN 7 to LN 11 and LN12.

4 Example of STRIM Applying to a Real-World Dataset

Rakuten Inc. presents an open dataset of Rakuten Travel [17]. This dataset con-
tains about 6,200,000 questionnaire surveys of rating A = { C(1) = “Location,”
C(2) = “Room,” C(3) = “Meal,” C(4) = “Bath (Hot Spring),” C(5) = “Ser-
vice,” C(6) = “Amenity,” D = “Overall” } of about 130,000 travel facilities by
use of a set of categorical values Va = { DS(1), SD(2), NN(3), ST (4), V S(5)
}, ∀a ∈ A, that is, |Va=D| = MD = |Va=C(j)| = MC(j) = 5. We constructed a
decision table of N = 10,000 questionnaire surveys by randomly selecting 2,000
samples, each of D = m (m = 1, ..., 5) from about 400,000 surveys of the 2013–
2014 dataset since there were heavily biases with respect to the frequency of
D = m. We applied the STRIM summarized in Sect. 3 to this decision table and
obtained Table 3. This table, for example, means the following:

(1) CP (d = 5, k = 1) stands for the rule stating that if C(3) = V S(5)
∧

C(5) =
V S(5) then D = V S(5), and its accuracy and coverage are 0.876 and 0.639
respectively.

(2) This rule causes the frequency f = (11, 12, 9, 146, 1258) and the bias at
D = 5 is z = 64.08 calculated by (12) corresponding to the p-value = 0.0.

From Table 3 we can see, for example, the following:

(1) In order to gain the high evaluation at “Overall(D),” “Meal(C(3))” must
be rated V S(5) and then “Service(C(5))” or “Amenity(C(6))” can be V S(5)
(see CP (5, 1) and CP (5, 2)).
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Table 3. Rule induction results for Rakuten Travel dataset by STRIM.

CP (d, k) C(1)C(2)
...C(6)

D p-value(z) Accuracy Coverage f = (n1, n2, n3, n4, n5)

(5,1) 005050 5 0.0 (64.08) 0.876 0.629 (11, 12, 9, 146, 1258)

(5,2) 005005 5 0.0 (58.31) 0.915 0.486 (17, 6, 5, 62, 972)

(1,1) 000010 1 0.0 (57.78) 0.766 0.639 (1277, 346, 40, 4, 1)

(4,1) 040040 4 0.0 (40.37) 0.719 0.348 (16, 37, 90, 695, 129)

(3,1) 030030 3 0.0 (38.12) 0.633 0.392 (73, 203, 784, 170, 9)

(2,1) 020000 2 3.0E-168 (27.62) 0.494 0.348 (303, 695, 351, 51, 6)

(2) Reversely, if “Service(C(5))” = DS(1) then “Overall(D)” = DS(1) (see
CP (1, 1)).

Table 3 gives us information of the rating structure of users and/or strategies for
improving the facilities.

5 Studies from an Ordinal Scale and Proposal
of DOMSTRIM

In Sect. 4, the rule induction by STRIM was once executed for the Rakuen Travel
dataset regarding their attribute as a nominal scale. In this section, we study the
same dataset taking an ordinal scale of DS(1) < SD(2) < NN(3) < ST (4) <
V S(5) into account and propose a DOMSTRIM which develops STRIM into a
dominance-based rough set approach (DRSA). Specifically, for example, let a
dataset satisfying the condition part of (8) denote with U(CP≥(d, k)) = {x ∈
U |CP≥(d, k) =

∧
j(ρ(x,C(j)) ≥ vjk}. Then the dataset can be rewritten by the

decomposition of those satisfying (3) as follows:

U(CP≥(d, k)) =
∑

i≥d

U(CP (i, ki)). (13)

In the same way,

D≥
d =

∑

i≥d

Di. (14)

On the other hand, STRIM induced if-then rules satisfying U(CP (i, k)) ⊆ Di

within proper errors corresponding to (3) of the lower approximation. Accord-
ingly, U(CP (i, k)) ⊆ Di induced by STRIM satisfies

∑
i=d U(CP (i, ki)) ⊆∑

i=d Di within proper errors and also constructs one of the if-then rules satis-
fying (8) within proper errors, which shows STRIM handling a nominal scale to
be easily developed into a model of DRSA.

Taking the above consideration and Table 3 showing the results: if CP (d, k) =
∧j(C(j) = d) then D = d (d = 1, ..., 5) into account, it is proper for Rakuten
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Table 4. Part of rule candidates for Rakuten Travel dataset by DOMSTRIM: at-least
rule candidates.

Trying
CP ≥(d, k)

C(1)C(2)
...C(6)

D≥ p-value(z) Accuracy Coverage f = (n<, n≥)

(5,1) 005050 5 0.0(64.1) 0.876 0.629 (178, 1258)

(5,2) 000050 5 0.0(64.0) 0.764 0.788 (488, 1576)

(5,3) 050050 5 0.0(63.7) 0.889 0.608 (152, 1215)

(4,1) 040040 4 0.0(61.8) 0.931 0.756 (224, 3024)

(4,2) 044040 4 0.0(61.3) 0.970 0.674 (83, 2694)

(5,4) 055050 5 0.0(60.8) 0.942 0.505 (62, 1009)

(5,5) 000055 5 0.0(60.0) 0.881 0.547 (148, 1093)

(4,3) 400044 4 0.0(58.5) 0.933 0.674 (193, 2695)

(3,1) 033033 3 0.0(52.0) 0.967 0.775 (159, 4650)

(3,2) 033333 3 0.0(51.8) 0.978 0.732 (98, 4394)

(3,3) 033330 3 0.0(51.7) 0.968 0.763 (151, 4575)

(3,4) 333033 3 0.0(51.6) 0.970 0.754 (140, 4522)

(3,5) 333030 3 0.0(51.1) 0.956 0.789 (220, 4731)

(2,1) 022222 2 0.0(37.7) 0.987 0.801 (87, 6410)

(2,2) 022022 2 1.1E-299(37.0) 0.980 0.826 (134, 6606)

(2,3) 020000 2 1.16E-78(18.7) 0.880 0.942 (1018, 7536)

. . . . . . . . . . . . . . . . . . . . .

dataset to specify the following model for (8): if CP≥(d, k) =
∧

j(C(j) ≥ d)
then D ≥ d. Moreover, in the case D ≥ 2 (the case of D ≥ 1 is self-evident),
Table 3 shows that the condition part of trying rules should be constructed
by combinations of C(j) ≥ d (j = 2, 3, 5, and 6) (the constructing strategy
for rule candidates). However, we constructed the condition of trying rules
by all the combinations of C(j) ≥ d (j = 1, ..., 6) to extensively search for
the condition part. Table 4 corresponding to Table 3 shows part of the candi-
dates by the searching procedures. For example, trying CP≥(5, 1) shows that if
CP≥(5, 1) = C(3) ≥ 5

∧
C(5) ≥ 5 then D ≥ 5, and that the accuracy can be

calculated as 1, 258/(178 + 1, 258) = 0.876, the coverage is 0.629 and the bias
of the rule is 64.1 calculated by use of the expression corresponding to (12). We
can further see the following:

(1) U(CP≥(5, 1)) ⊆ U(CP≥(5, 2))
(2) U(CP≥(5, 3)) ⊆ U(CP≥(5, 2))
(3) The z of CP≥(5, 1) is the greatest among those of CP≥(5, 1), CP≥(5, 2)

and CP≥(5, 3). Accordingly CP≥(5, 1) should represent their candidates.

This kind of procedure for inducing dominance rules is called DOMSTRIM
named after DOMLEM [14].
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Table 5. Results for Rakuten Travel dataset by DOMSTRIM: (a) at-least rules:
CP ≥(d, k), (b) at-most rules: CP ≤(d, k).

(a)

CP ≥(d, k) C(1)C(2)
...C(6)

D≥ p-value(z) accuracy coverage f = (n<, n≥)

(2,1) 022222 2 1.05E-299(37.6) 0.987 0.801 (87, 6410)

(3,1) 033033 3 0.00(52.0) 0.967 0.775 (159, 4650)

(4,1) 040040 4 0.0(61.8) 0.931 0.756 (224, 3024)

(5,1) 005050 5 0.0(64.1) 0.876 0.628 (178, 1258)

(5,2) 005005 5 0.0(58.3.) 0.915 0.486 (90, 972)

(b)

CP ≤(d, k) C(1)C(2)
...C(6)

D≤ p-value(z) accuracy coverage f = (n≤, n>)

(4,1) 044040 4 0.0(38.2) 0.987 0.826 (6607, 90)

(4,2) 040044 4 0.0(37.9) 0.984 0.835 (6681, 108)

(3,1) 030030 3 0.0(49.1) 0.956 0.729 (4371, 202)

(3,1) 003030 3 0.00(47.9) 0.950 0.711 (4268, 223)

(2,1) 000020 2 0.0(54.7) 0.867 0.653 (2610, 301)

(2,2) 020000 2 0.0(47.5) 0.836 0.596 (2384, 468)

(1,1) 000010 1 0.0(58.3) 0.915 0.486 (90, 972)

Table 5(a) shows the end arrangement of Table 4. CP≥(2, 1) = “022222” is
seen in Table 5(a) and Table 4. It should be noted that CP≥(2, 2) = “022022” in
Table 4 was constructed by the above constructing strategy for rule candidates
(C(j) ≥ d (j = 2, 3, 5, and 6)) and the z of CP≥(2, 2) was just less than that
of CP≥(2, 1). As another example, there is CP≥(2, 3) = “020000” in Table 4
which can be easily derived from CP (2, 1) = “020000” in Table 3 by use of
the principle of DRSA. DOMSTRIM selected CP≥(2, 1) = “022222” as their
representative in Table 5 based on the principle of selecting one of the most
biased among their inclusion relation. The above mentioned strategy for rule
candidates is proved to be sufficiently proper. The same circumstances happened
with regard to CP≥(3, 1) in Table 5(a). CP≥(5, 1), CP≥(5, 2) and CP≥(4, 1)
in Table 5(a), however, coincide with those derived from Table 3 by use of the
principle of DRSA. Table 5(b) also shows the results of the at-most rules without
the self-evident case of D ≤ 5 corresponding to (9) by use of the same inducing
procedures of the at-least rules corresponding to (8). Furthermore, we have the
same consideration as those in the case of Table 5(a).

Table 5 (a) (b) including the knowledge from Table 3, for example, indicates
the following:
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(1) In order to get more than “Satisfied (ST )” at D = “Overall,” we should get
more than “Satisfied (ST )” at C(2) = “Room” and C(5) = “Service” (see
CP≥(4, 1)).

(2) The reason why D = “Overall” stays less than “Somewhat dissatisfied
(SD)” shows that it is highly possibly that C(5) = “Service” or C(2) =
“Room” stay less than “Somewhat dissatisfied (SD)” (see CP≤(2, 1) and
CP≤(2, 2)).

From the above considerations, DOMSTRIM which at first analyzes the deci-
sion table recognizing its attributes as a nominal scale and then reuses the results
for inducing if-then rules based on DRSA recognizing them an ordinal scale, is
found to be very effective for the rule induction and useful for marketing strate-
gies.

6 Proposal of Consistency Index for Dominance

The rules induced by DOMSTRIM satisfy the relation: D≥
r ⊃ D≥

s for r <
s,∀r, s ∈ TT = {1, ...,MD}, and U(CP≥(r, k)) ⊆ D≥

r and U(CP≥(s, k)) ⊆
D≥

s are held within admissible errors. Accordingly, the inclusion relation:
U(CP≥(r, kr)) ⊃ U(CP≥(s, ks)) should be held within some proper errors. One
of the degrees holding this condition named Consistency Index of at-least Dom-
inance denoted with CID≥ is formulated as follows:

CID≥ =
|U(CP≥(r, k)) ∩ U(CP≥(s, k))|

|U(CP≥(s, k))| . (15)

Table 6(a) shows each CID≥ calculated by (15) for Table 5(a). For example,
U(CP≥(2, 1)) includes U(CP≥(3, 1)) and U(CP≥(4, 1)) by 99.7 [%] and 99.8

Table 6. Consistency Index for Dominance (CID) against results of Rakuten Travel
dataset by DOMSTRIM: (a) Consistency Index of at-least Dominance (CID≥), (b)
Consistency Index of at-most Dominance (CID≤).

(a)

CP≥(d, k) (2,1) (3,1) (4,1) (5,1) (5,2)

(2,1) 1 0.997 0.998 1 1
(3,1) – 1 0.992 0.999 1
(4,1) – – 1 0.997 0.999

(b)

CP≤(d, k) (4,1) (4,2) (3,1) (3,2) (2,1) (2,2) (1,1)

(4,1) 1 0.967 0.986 0.989 0.982 0.989 0.993
(4,2) – 1 0.990 0.980 0.983 0.992 0.993
(3,1) – – 1 0.938 0.960 0.983 0.982
(3,2) – – – 1 0.960 0.952 0.984
(2,1) – – – – 1 0.915 1
(2,2) – – – – – 1 0.951
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[%] respectively. Figure 3(a) illustrates the inclusion relations for Table 6(a) to
easily see their relations by the values in the figure which corresponds to those
in italic in the table. In the same way, Consistency Index of at-most Dominance
denoted with CID≤ is formulated as follows:

CID≤ =
|U(CP≤(r, k)) ∩ U(CP≤(s, k))|

|U(CP≤(r, k))| , (16)

and each CID≤ is shown in Table 6(b) for Table 5(b) and illustrated in Fig. 3(b).

U(CP  (5,1))>=

U(CP  (4,1))>=

U(CP  (3,1))>=

U(CP  (2,1))>=

U

U(CP  (5,2))>=

0.997 0.999

0.992

0.997

1.000

(a)

U

U(CP  (4,1))

U(CP  (3,1))

U(CP  (2,1))

<=

<=

<=

(b)

U(CP  (4,2))

U(CP  (3,2))

U(CP  (2,2))

<=

<=

<=

U(CP  (1,1))<=

1.000 1.000

0.980

0.952

0.9511.000

0.960

0.989 0.990

0.983

0.986

0.960

Fig. 3. CID for Rakuten Travel dataset by DOLSTRIM: (a) at-least rules, (b) at-most
rules.

Each CID≥ and CID≤ shown in Table 6 shows high degrees of inclusion rela-
tions. Table 6 confirms not only the validity of the results for the rule induction
by DOMSTRIM in Table 5 but also the consistency of Rakuten Travel dataset
rated by the ordinal scale since the consistent rule set with high degrees of Con-
sistency Index of Dominance (CID) is never derived from inappropriate rule
induction methods and/or the inconsistent dataset.

7 Examinations by DOMLEM

The open and free software jMAF [16] implementing DOMLEM [14,15] was
applied for the Rakuten Travel dataset specifying the condition to induce the
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at-least rules of CP≥(d, k) and the at-most rules of CP≤(d, k) with accuracy
(consistency level) of more than 0.8. The software induced 119 CP≥(d, k)s con-
sisting of those of the number of 42, 39, 29 and 9 for d = 5, 4, 3 and 2 respectively.
The parts of rules are shown in Table 7 which presents us with rules of long rule
lengths of five or six, while CP≥(5, 1) and CP≥(5, 2) in Table 5(a) induced by
DOMSTRIM are two. In the same way, the software induced 94 CP≤(d, k)s
consisting of the numbers 56, 20, 17 and 1 for d = 1, 2, 3 and 4 respectively.
The software seemed to induce CP≥(d, k)s or CP≤(d, k)s satisfying the speci-
fied accuracy of (8) or (9) by just changing the condition part of the rules. As a
result, the software seemed to induce a large number of rules without the arrange-
ment like DOMSTRIM and the index like CID proposed by DOMSTRIM, and
had difficulty presenting any knowledge and/or information for the dataset and
any strategies for the marketing to compare with those by DOMSTRIM.

Table 7. Examples of results against Rakuten Travel dataset by jMAF in the case of
at-least rules with accuracy of more than 0.8.

No. Induced rules

1 (C1 >= 4) & (C2 >= 2) & (C3 >= 4) & (C5 >= 5) & (C6 >= 5)
=>(D >= 5) |CERTAIN, AT LEAST, 5|

2 (C1 >= 5) & (C2 >= 5) & (C3 >= 4) & (C4 >= 5) & (C6 >= 5)
=>(D >= 5) |CERTAIN, AT LEAST, 5|

3 (C1 >= 4) & (C2 >= 5) & (C3 >= 2) & (C4 >= 3) & (C5 >= 4) &
(C6 >= 5) =>(D >= 5) |CERTAIN, AT LEAST,5|

4 (C1 >= 5) & (C2 >= 5) & (C4 >= 4) & (C5 >= 2) & (C6 >= 5)
=>(D >= 5) |CERTAIN, AT LEAST, 5|

5 (C1 >= 4) & (C2 >= 4) & (C3 >= 4) & (C4 >= 4) & (C5 >= 4) &
(C6 >= 5) =>(D >= 5) |CERTAIN, AT LEAST, 5|

6 (C2 >= 5) & (C3 >= 3) & (C4 >= 5) & (C5 >= 5) & (C6 >= 3)
=>(D >= 5) |CERTAIN, AT LEAST, 5|

7 (C2 >= 2) & (C3 >= 5) & (C4 >= 5) & (C5 >= 5) & (C6 >= 2)
=>(D >= 5) |CERTAIN, AT LEAST, 5|

8 (C1 >= 5) & (C2 >= 4) & (C3 >= 4) & (C5 >= 5) & (C6 >= 2)
=>(D >= 5) |CERTAIN, AT LEAST, 5|

9 (C1 >= 5) & (C2 >= 4) & (C4 >= 2) & (C5 >= 5) & (C6 >= 4)
=>(D >= 5) |CERTAIN, AT LEAST, 5|

. . . . . .

8 Conclusions

The conventional rough sets theory is used for inducing if-then rules from a
dataset called the decision table which is assumed, in principle, to consist of
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attributes of a nominal scale, and has developed various kinds of methods and
algorithms for it [1–6]. The theory also has expanded the methods and algorithms
to be able to handle a dataset of an ordinal scale, which is called DRSA, and
DOMLEM and jMAF implementing DOMLEM are well known [13–16].

We also proposed STRIM for inducing if-then rules statistically expanding
VPRS [4] of the conventional method and confirmed its validity and usefulness
by a simulation experiment [7–12]. In this paper, we also expanded STRIM to
be able to handle such a dataset of an ordinal scale through the rule induction
process from Rakuten Travel dataset which was a typical real-world dataset of an
ordinal scale. Specifically, we first induced rules from the dataset recognizing its
attributes as a nominal scale and extracted their pairs of the condition attribute
and its value connecting to each decision attribute value of their rules. This
process was a kind of reduct process for DRSA. We then decided the form of the
at-least and/or at-most rules based on the results from the first step and applied
STRIM expanded for handing such ordinal datasets. We called this expanded
method DOMSTRIM named after DOMLEM. Furthermore, we proposed a Con-
sistency Index of Dominance (CID (CID≥ and CID≤)) to confirm the validity
of rules induced by DRSA. Lastly, we confirmed that the induced rule set was
found to be reasonable coordinating with our common sense and useful for the
marketing strategy comparing with those by jMAF.

Acknowledgements. We truly thank Rakuten Inc. for presenting Rakuten Travel
dataset [17].
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Abstract. The modern technology has enabled very high dimensional
multimodal data streams to be routinely acquired, which results in very
high dimensional feature spaces (p) as compared to number of training
samples (n). In this regard, the paper presents a new feature extraction
algorithm to address the ‘small n and large p’ problem associated with
multimodal data sets. It judiciously integrates both regularization and
shrinkage with canonical correlation analysis (CCA). While the diagonal
elements of covariance matrices are increased using regularization para-
meters, the off-diagonal elements are decreased by shrinkage parameters.
The theory of rough sets is used to find out the optimum regularization
parameters of CCA. The effectiveness of the proposed method, along
with a comparison with other methods, is demonstrated on three pairs
of modalities of two real life data sets.

1 Introduction

Simultaneous analysis of different omics data may provide a better understanding
of the biological systems. Such an analysis enables a true understanding on the
relationships between these different types of variables. Multimodal data such as
transcriptomics, proteomics or metabolomics data contain more information and
help to create linkages between attributes within each type of data. There exist
many approaches to deal with these high throughput data [10,16,17,29,30].

Canonical correlation analysis (CCA) [12] is a popular exploratory statistical
method, which allows the analysis of the relationships that exist between two sets
of variables. The best linear transformation for two multidimensional data sets,
which gives the maximum correlation between them can be achieved by using
CCA. CCA has been successfully applied to many important fields of biomedical
sciences [10,16,17,25,29,30]. It extracts those relevant features from both data
types, which provide more insight into biological experimental hypotheses.

Let p and q be the number of features of two multivariate data sets X and
Y respectively, where the number of samples in both X and Y is n. The modern
technology has enabled more directions on data streams, which ensues in very
high dimensional feature spaces p and q . On the other hand, the number of
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training samples n is usually limited. When n << (p, q), the features in X and
Y tend to be highly collinear, which leads to ill-conditioned of the covariance
matrices Cxx and Cyy of X and Y , respectively. In effect, their inverses are no
longer reliable, resulting in an invalid computation of CCA [8].

There are two ways to overcome this problem. The first possible approach has
been introduced in [7], which is a regularized version of CCA. In regularized CCA
(RCCA) [6,28], the diagonal elements of Cxx and Cyy have to be increased using
a grid search optimization. On the other hand, off-diagonal elements remain
constant. This method is computationally expensive and the results depend on
the range of regularization parameters provided by the user. The second alter-
native method of regularization algorithm is based on the optimal estimates of
the correlation matrices [1]. This algorithm is known as fast RCCA (FRCCA),
because it is computationally inexpensive and relatively fast to estimate the
results. In FRCCA, shrinkage coefficients [24] are estimated to invert the Cxx
and Cyy . The procedure used to obtain the minimum mean squared error esti-
mator of a correlation matrix [24] can be applied to estimate any correlation
matrix. It is not limited to intra-set correlation matrices such as Cxx and Cyy ; it
can also be applied to find the minimum mean squared error estimator of Cxy [1].
These shrinkage coefficients reduce the values of off-diagonal elements of Cxx and
Cyy , where the values of diagonal elements remain same. However, CCA, RCCA
and FRCCA all are unsupervised in nature and fail to take complete advantage
of available class label information [1,5]. To incorporate the class information,
some supervised version of RCCA have been introduced, termed as supervised
RCCA (SRCCA) [5,15,20]. It includes available class label information to select
maximally correlated features.

One of the main problems in omics data analysis is uncertainty. Rough set
theory [23] is an effective paradigm to deal with uncertainty, vagueness, and
incompleteness. It provides a mathematical framework to capture uncertainties
associated with the data [2]. In this context, a feature extraction algorithm,
termed as CuRSaR [19], has been introduced, which judiciously integrates the
merits of SRCCA and rough sets. It extracts the maximally correlated features
from two multidimensional data sets. To compute the relevance and significance
of the extracted features, rough hypercuboid approach of [18] is used. However,
the CuRSaR fails to produce the optimal set of relevant and significant features.

To deal with the singularity issue of covariance matrices, RCCA increases
the diagonal elements, whereas FRCCA decreases the off-diagonal elements of
covariance matrices. If both can be done concurrently, it is expected to give
better results. In this regard, the paper presents a new feature extraction algo-
rithm, which integrates the advantages of both RCCA and FRCCA to handle
the ill-conditioned of the covariance matrices. The diagonal elements of covari-
ance matrices are increased by using regularization parameters, whereas the off-
diagonal elements are decreased by using shrinkage parameters. It also integrates
the merits of rough hypercuboid approach to extract maximally correlated and
most relevant and significant features. The effectiveness of the proposed method,
along with a comparison with other methods, is demonstrated on several real
life data sets.
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2 Basics of Canonical Correlation Analysis, Rough Sets
and Rough Hypercuboid Approach

This section presents the basic concepts in the theories of CCA, rough sets and
rough hypercuboid approach.

2.1 Canonical Correlation Analysis

CCA [12] is used to extract latent features, which are maximally correlated
between two multidimensional variables X ∈ R

p×n and Y ∈ R
q×n. Here n is the

number of samples, p and q are the number of features of X and Y , respectively.
CCA obtains two directional basis vectors wx ∈ R

p and wy ∈ R
q such that the

correlation between XTwx and Y Twy is maximum. The correlation coefficient ρ
is given as

ρ = max
wx ,wy

wx
T Cxywy√

wx
T Cxx wx wy

T Cyywy

(1)

where Cxy ∈ R
p×q is the cross-covariance matrix of X and Y , while Cxx ∈ R

p×p

and Cyy ∈ R
q×q are covariance matrices of X and Y , respectively. To calculate

the basis vectors wx and wy , eigenvectors of ΣΣT and ΣTΣ are needed, where
matrix Σ ∈ R

p×q is given as follows:

Σ = C−1/2
xx CxyC−1/2

yy . (2)

The t -th pair of basis vectors is given by

wxt = C−1/2
xx ξxt ; and wyt = C−1/2

yy ξyt ; (3)

and the t -th pair of canonical variables is as follows:

Ut = wT
xt X ; and Vt = wT

yt Y . (4)

where ξxt and ξyt are the orthonormalized eigenvectors of ΣΣT and ΣTΣ, respec-
tively with corresponding eigenvalue ρt .

2.2 Rough Sets

An approximation space or information system is a pair <U,A> [23], where the
universe of discourse U = {O1, · · · ,Ot , · · · ,On} be a non-empty set, and A is
a family of attributes known as knowledge in the universe. <U,A> is called a
decision table if the set A = C ∪ D, where C = {A1, · · · ,At , · · · ,Am} and D are
condition and decision attribute sets, respectively. V is the value domain of A
and f is an information function f : U × A → V. Any subset R of knowledge A

defines an equivalence or indiscernibility relation IND(R) on U

IND(R) = {(Oi ,Oj ) ∈ U × U|∀a ∈ R, f(Oi , a) = f(Oj , a)}. (5)
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If (Oi ,Oj ) ∈ IND(R), then Oi and Oj are indiscernible by attributes from R.
The partition of U generated by IND(R) is denoted as

U/IND(R) = {[Oi ]R : Oi ∈ U} (6)

where [Oi ]R is the equivalence class containing Oi . The elements in [Oi ]R are
indiscernible or equivalent with respect to knowledge R. Equivalence classes,
also termed as information granules, are used to characterize arbitrary subsets
of U. The equivalence classes of IND(R) and the empty set ∅ are the elementary
sets in the approximation space <U,A>.

Given an arbitrary set β ⊆ U, in general, it may not be possible to describe
β precisely in <U,A>. One may characterize β by a pair of lower and upper
approximations, defined as follows [23]:

R(β) =
⋃

{[Oi ]R | [Oi ]R ⊆ β}; and (7)

R(β) =
⋃

{[Oi ]R | [Oi ]R ∩ β 	= ∅}. (8)

Hence, the lower approximation R(β) is the union of all the elementary sets
which are subsets of β, and the upper approximation R(β) is the union of all
the elementary sets which have a non-empty intersection with β. The tuple
<R(β),R(β)> is the representation of an ordinary set β in the approximation
space <U,A> or simply called the rough set of β. The lower (respectively, upper)
approximation R(β) (respectively, R(β)) is interpreted as the collection of those
elements of U that definitely (respectively, possibly) belong to β. A set β is said
to be definable or exact in <U,A> iff R(β) = R(β). Otherwise β is indefinable
and termed as a rough set. BNDR(β) = R(β) \ R(β) is called a boundary set.

Definition 1. An information system <U,A> is called a decision table if the set
A = C∪D, where C and D are condition and decision attribute sets, respectively.
The dependency between C and D can be defined as [23]

γC(D) =
|POSC(D)|

|U| (9)

where POSC(D) =
⋃
C(βi ) is termed as positive region of D with respect to C,

βi is the i th equivalence class induced by D and | · | denotes the cardinality of a
set.

Definition 2. Given C,D and an attribute A ∈ C, the significance of the
attribute A is defined as [23]:

σC(D,A) = γC(D) − γC−{A}(D). (10)

2.3 Rough Hypercuboid Approach

Let U/D = {β1, · · · , βi , · · · , βc} be c equivalence classes or information granules
of U generated by the equivalence relation induced from the decision attribute
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set D. The hypercuboid equivalence partition matrix of the condition attribute
At is denoted by H(At ) = [hij (At )]c×n [18,22], where c and n are the number of
classes and total number of samples, respectively and

hij (At ) =
{

1 if Li ≤ Oj (At ) ≤ Ui

0 otherwise. (11)

The tuple [Li ,Ui ] represents the interval of the ith class βi according to the deci-
sion attribute set D. The set βi ⊆ U can be approximated using only the infor-
mation contained within At by constructing the R-lower and R-upper approxi-
mations of βi [18]:

R(βi ) = {Oj | hij (At ) = 1 and vj (At ) = 0}; (12)

R(βi ) = {Oj | hij (At ) = 1}; (13)

where vj (At ) = min{1,

c∑
i=1

hij (At ) − 1} (14)

and equivalence relation R is induced from attribute At. The boundary region
of βi is then defined as

BNDR(βi ) = R(βi ) \ R(βi ) = {Oj | hij (At ) = 1 and vj (At ) = 1}. (15)

Hence, the dependency between condition attribute At and decision attribute D,
which is the relevance of At , can be determined as follows [18]:

γAt (D) = 1 − 1
n

n∑
j=1

vj (At ) (16)

whereas the significance of the attribute At with respect to the condition
attribute set C is given by [18]:

σC(D,At ) =
1
n

n∑
j=1

[
vj (C − {At}) − vj (C)

]
. (17)

3 Proposed Method

This section presents a new feature extraction algorithm, integrating judiciously
the advantages of both RCCA and FRCCA to take care of the singularity prob-
lem of covariance matrices. The proposed method also incorporates the available
class label information to make it supervised. Prior to describing the proposed
method for multimodal data analysis, some important analytical formulations
are reported next.

Suppose X ∈ R
p×n and Y ∈ R

q×n be two multidimensional variables with
n unique samples. The number of features p and q of X and Y , respectively,
are larger than n, that is, n << (p, q), which make the covariance matrices Cxx
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and Cyy ill-conditioned. That means, the inverses of Cxx and Cyy do not make any
sense [8]. To overcome this problem, RCCA [6,28] has been introduced, where
regularization is done by a grid search optimization [9]. This is done by adding
small positive quantities, also called regularization parameters, to the diagonals
of Cxx and Cyy , which make them invertible [11]. The regularization parameters,
rx and ry , vary within a range [rmin , rmax ], where rmin � rx , ry � rmax . The optimal
parameter set of rx and ry is selected for which the Pearson’s correlation is
maximum, that is

max
rx ,ry

wx
T Cxywy√

wx
T [Cxx + rx I ]wxwy

T [Cyy + ry I ]wy

. (18)

In [1], another alternative method, named FRCCA, has been proposed to
make covariance matrix invertible. Here, shrinkage parameters sx and sy are used
to handle the singularity problem of covariance matrices Cxx and Cyy , respectively.
The shrinkage parameter sxy is also used to find the minimum mean squared error
estimator of cross-covariance matrix Cxy . So,

[C̃xx ]ij = (1 − sx )[Cxx ]ij ; [C̃yy ]ij = (1 − sy)[Cyy ]ij ; where i 	=j

and [C̃xy ]ij = (1 − sxy)[Cxy ]ij . ∀ i , j (19)

The best estimator of the shrinkage parameters sx , sy and sxy , which minimize
the risk function of the mean squared error, are denoted by

sx =

∑
i �=j

V̂([Cxx ]ij )

∑
i �=j

[C2
xx ]ij

; sy =

∑
i �=j

V̂([Cyy ]ij )

∑
i �=j

[C2
yy ]ij

; and sxy =

∑
i

∑
j

V̂([Cxy ]ij )
∑
i

∑
j

[C2
xy ]ij

; (20)

where V̂([Cxx ]ij ), V̂([Cyy ]ij ) and V̂([Cxy ]ij ) are the unbiased empirical variance of
[Cxx ]ij , [Cyy ]ij and [Cxy ]ij , respectively. On the other hand, (2) can be rewritten as,

Σ = C̃xx
−1/2C̃xy C̃yy

−1/2
. (21)

However, CCA, RCCA and FRCCA all are unsupervised in nature, that is,
they do not incorporate the information of class label even if it is given. In this
context, a new method, named SRCCA, has been proposed in [5], which is a
supervised version of CCA. SRCCA chooses the optimal regularization parame-
ters rx and ry by using grid search optimization and some feature evaluation
measures such as t-test [14], Wilcoxon rank sum test [26], and Wilk’s lambda
test [13].

To make both Cxx and Cyy invertible, RCCA adds regularization parame-
ters to the diagonal elements of these matrices. On the other hand, FRCCA
reduces the values of off-diagonal elements of these matrices using shrinkage
parameters to take care of this singularity issue. In the proposed method, both
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of these are done simultaneously to deal with the singularity problem. Here, reg-
ularization parameters rx and ry vary within a range [rmin , rmax ], where common
differences are dx and dy for rx and ry , respectively and rmin � rx , ry � rmax . And
the shrinkage parameters sx , sy and sxy can be computed by using (20). Hence, to
address this singularity issue, the covariance and cross-covariance matrices can be
formulated as

[C̃xx ]ij =

{
(1 − sx )[Cxx ]ij ; where i 	=j

[Cxx ]ij + (rx + kdx ); where i=j
(22)

[C̃yy ]ij =

{
(1 − sy)[Cyy ]ij ; where i 	=j

[Cyy ]ij + (ry + ldy); where i=j
(23)

and [C̃xy ]ij = (1 − sxy)[Cxy ]ij ; ∀ i , j (24)

where ∀k ∈ {1, 2, · · · , tx } and ∀l ∈ {1, 2, · · · , ty}. The parameters tx and ty
denote the number of possible values of rx and ry , respectively. As rx and ry
vary within a range with arithmetic progression, there exists a relation between
the first and the k -th and l -th eigenvalues of C̃xx and C̃yy , respectively [19]. Let
us assume that, Λx and Λy be the diagonal matrices, where diagonal elements
are the eigenvalues of C̃xx and C̃yy , respectively and the corresponding orthonor-
mal eigenvectors are in the columns of Ψx and Ψy , respectively. The theoretical
analysis, reported in [19], gives assistance to compute Σkl as follows:

Σkl = Ψx (Λx + (k − 1)dx I )−1/2ΨT
x C̃xyΨy(Λy + (l − 1)dyI )−1/2ΨT

y . (25)

As non-zero eigenvalues of Σkl Σ
T
kl are same as non-zero eigenvalues of ΣT

kl Σkl [4],
one of the matrices is enough to compute the eigenvector of Σkl Σ

T
kl or ΣT

kl Σkl [19].
Hence, the t -th pair of basis vectors and canonical variables can be determined
using (3) and (4), where ∀t ∈ {1, 2, · · · ,D} and D = min(p, q).

The concept of hypercuboid equivalence partition matrix of rough hyper-
cuboid approach [18] is used to compute both the relevance and significance
of an extracted feature. The regularization parameters are optimized through
computing the relevance and significance measures [19]. To solve this problem,
the following greedy algorithm is used. At first, covariance matrices and cross-
covariance matrix have to be computed. Then, determine the values of C̃xx , C̃yy
and C̃xy using (22), (23) and (24), respectively. The eigenvalue-eigenvector pairs
of covariance matrices have to be computed next. Then, the basis vectors and
canonical variables have to be calculated for (k , l )-th regularization parame-
ters of rx and ry where ∀k ∈ {1, 2, · · · , tx } and ∀l ∈ {1, 2, · · · , ty}. D number
of features {Akl } corresponding to (k , l )-th pair of regularization parameters
can be extracted next as follows: At = Ut + Vt , where ∀t ∈ {1, 2, · · · ,D} and
D = min(p, q). Then the relevance of all features for (k , l )-th regularization
parameters of rx and ry have to be calculated by using
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R(k , l ) =
∑
At kl ∈S

γAt kl
(D) (26)

and the significance among these features is as follows

S(k , l ) =
∑

At kl �=At̃ kl ∈S

σ{At kl ,At̃ kl }(D,At kl )+σ{At kl ,At̃ kl }(D,At̃ kl ). (27)

where γAt (D) is the relevance of a feature or condition attribute At with respect
to the class labels or decision attribute D and σ{At ,At̃}(D,At ) is the significance of
the feature At with respect to the feature set {At ,At̃} [19]. Finally, the objective
function J(k , l ) is calculated using

J(k , l ) =
R(k , l )

D
+

S(k , l )
D(D − 1)

. (28)

The regularization pair, for which the objective function gives maximum value,
has to be selected as optimal pair.

4 Experimental Results and Discussion

This section compares the performance of the proposed feature extraction algo-
rithm with that of some existing CCA based algorithms, namely, principal com-
ponent analysis (PCA), CCA, RCCA, FRCCA, several variants of SRCCA using
t-test (SRCCATT) [5], Wilcoxon rank sum test (SRCCAWR) [5], and Wilks’s
lambda test (SRCCAWL) [5] and CuRSaR [19]. The regularization parameters
rx and ry are varied within [0.0, 1.0] with 0.1 as common difference.

In the current research work, the multimodal data sets, named BRCA and
OV, are used with three different modalities, namely, gene expression, protein
expression, and DNA methylation. The data sets are downloaded from TCGA.
The BRCA data set contains a total number of 204 breast invasive carcinoma
samples, whereas, OV data set has 379 ovarian serous cystadenocarcinoma sam-
ples. Both BRCA and OV data set grouped into two categories: 189 samples of
infiltrating ductal carcinoma and 15 samples of infiltrating lobular carcinoma
for BRCA data and 51 samples of grade 2 and 328 samples of grade 3 ovarian
serous cystadenocarcinoma. Both data sets contain expressions of 17 814 genes
and β values of 27 578 methylated DNAs. While BRCA data has expression of
142 proteins, OV data has expression of 222 proteins. 2000 top-ranked features,
based on their variances, are taken from both gene and methylation data in the
current study.

To evaluate the performance of different algorithms, both support vector
machine (SVM) [27] and nearest neighbor algorithm (NNA) [3] are used. To
compute the classification accuracy and F1 score of different approaches 10-fold
cross-validation [3] is performed. The classification accuracy is defined as [3]

accuracy =
TP+TN

TP+FP+TN+FN
; (29)
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(b) Nearest Neighbor Algorithm

Fig. 1. Box and whisker plots for classification accuracy on BRCA (top: gene-DNA
methylation; middle: gene-protein; and bottom: protein-DNA methylation)
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(b) Nearest Neighbor Algorithm

Fig. 2. Box and whisker plots for classification accuracy on OV (top: gene-DNA methy-
lation; middle: gene-protein; and bottom: protein-DNA methylation)

where TP, FP, TN, and FN represent the number of true positive, false positive,
true negative, and false negative samples, respectively. Similarly, the F1 score is
defined as follows:

F1 score =
2 × precision × recall

precision+recall
; (30)

where precision and recall (sensitivity) are given by

precision =
TP

TP+FP
; and recall =

TP
TP+FN

. (31)
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(b) Nearest Neighbor Algorithm

Fig. 3. Box and whisker plots for F1 score on BRCA (top: gene-DNA methylation;
middle: gene-protein; and bottom: protein-DNA methylation)
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(b) Nearest Neighbor Algorithm

Fig. 4. Box and whisker plots for F1 score on OV (top: gene-DNA methylation; middle:
gene-protein; and bottom: protein-DNA methylation)

For each training set, a set of correlated features is first generated and then
both SVM and NNA are trained with this feature set. The correlated features
which are selected for the training set are used to generate test set. Finally, the
class label of the test sample is predicted using the SVM and NNA. Twenty five
top-ranked correlated features are selected for the analysis.

The box and whisker plots, tables of means, standard deviations, and p-value
computed through paired-t (one-tailed) test are used to study the performance
of different algorithms and the proposed algorithm. Figures 1, 2 and 3, 4 show
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Table 1. Classification accuracy of the SVM for proposed and other methods

Data sets Different

algorithms

Gene-protein Protein-DNA Methy. Gene-DNA Methy.

Mean StdDev p-value Mean StdDev p-value Mean StdDev p-value

BRCA PCA 0.676 0.030 1.29E-08 0.710 0.079 1.61E-05 0.686 0.060 3.01E-06

CCA 0.624 0.082 1.20E-06 0.748 0.039 1.48E-07 0.786 0.162 1.56E-02

RCCA 0.752 0.165 9.15E-04 0.790 0.033 2.67E-05 0.814 0.132 1.41E-02

FRCCA 0.914 0.054 1.84E-02 0.910 0.069 8.39E-02 0.900 0.073 3.31E-02

SRCCATT 0.900 0.106 8.88E-02 0.900 0.035 6.03E-02 0.705 0.105 3.55E-05

SRCCAWL 0.900 0.035 1.59E-02 0.810 0.140 1.22E-02 0.833 0.113 9.56E-03

SRCCAWR 0.876 0.075 8.06E-03 0.852 0.163 6.06E-02 0.852 0.109 2.43E-02

CuRSaR 0.919 0.039 5.54E-02 0.929 0.064 3.39E-01 0.867 0.160 3.31E-02

Proposed 0.952 0.050 0.938 0.055 0.933 0.046

OV PCA 0.677 0.149 1.93E-03 0.595 0.080 4.58E-07 0.654 0.171 8.00E-04

CCA 0.715 0.050 5.56E-05 0.695 0.055 4.00E-05 0.515 0.046 2.51E-09

RCCA 0.787 0.068 4.55E-03 0.774 0.052 5.53E-03 0.667 0.164 1.13E-03

FRCCA 0.792 0.059 4.30E-05 0.828 0.032 3.84E-02 0.823 0.044 2.28E-03

SRCCATT 0.821 0.034 5.81E-03 0.813 0.042 2.46E-02 0.792 0.126 7.27E-02

SRCCAWL 0.823 0.046 2.28E-03 0.828 0.051 1.66E-02 0.787 0.146 8.55E-02

SRCCAWR 0.813 0.042 9.38E-03 0.828 0.062 6.70E-02 0.797 0.092 2.64E-02

CuRSaR 0.851 0.026 6.91E-02 0.859 0.054 4.61E-01 0.851 0.026 1.99E-01

Proposed 0.864 0.036 0.862 0.049 0.864 0.051

Table 2. Classification accuracy of the NNA for proposed and other methods

Data sets Different

algorithms

Gene-protein Protein-DNA Methy. Gene-DNA Methy.

Mean StdDev p-value Mean StdDev p-value Mean StdDev p-value

BRCA PCA 0.771 0.074 3.22E-05 0.810 0.081 2.67E-05 0.810 0.074 8.09E-04

CCA 0.833 0.144 3.69E-02 0.814 0.132 3.93E-03 0.771 0.105 4.70E-04

RCCA 0.857 0.045 7.48E-03 0.852 0.061 1.00E-03 0.838 0.088 1.89E-02

FRCCA 0.914 0.054 2.60E-01 0.938 0.045 8.39E-02 0.905 0.084 4.79E-02

SRCCATT 0.900 0.052 8.39E-02 0.910 0.042 7.48E-03 0.890 0.045 7.63E-02

SRCCAWL 0.890 0.055 6.03E-02 0.857 0.081 1.98E-03 0.905 0.063 2.61E-02

SRCCAWR 0.905 0.055 1.06E-01 0.905 0.074 1.21E-02 0.914 0.070 2.60E-01

CuRSaR 0.910 0.061 1.35E-01 0.948 0.042 1.72E-01 0.924 0.060 4.79E-02

Proposed 0.929 0.046 0.957 0.035 0.929 0.064

OV PCA 0.677 0.149 3.41E-03 0.692 0.075 1.31E-03 0.759 0.090 3.97E-02

CCA 0.726 0.050 2.46E-04 0.772 0.053 1.36E-02 0.726 0.072 1.71E-04

RCCA 0.808 0.068 1.16E-01 0.782 0.083 4.72E-02 0.782 0.083 9.97E-02

FRCCA 0.797 0.070 5.49E-04 0.805 0.061 4.06E-02 0.808 0.092 7.31E-02

SRCCATT 0.841 0.050 1.90E-01 0.759 0.216 1.65E-01 0.797 0.082 1.87E-01

SRCCAWL 0.810 0.065 2.99E-02 0.813 0.051 7.72E-02 0.790 0.091 2.61E-02

SRCCAWR 0.797 0.060 4.77E-02 0.818 0.052 1.22E-01 0.762 0.057 7.25E-03

CuRSaR 0.854 0.050 5.00E-01 0.821 0.065 2.04E-01 0.838 0.055 4.65E-01

Proposed 0.854 0.073 0.844 0.074 0.841 0.092



Regularization and Shrinkage in Rough Set 443

Table 3. F1 score of the SVM for proposed and other methods

Data sets Different

algorithms

Gene-protein Protein-DNA Methy. Gene-DNA Methy.

Mean StdDev p-value Mean StdDev p-value Mean StdDev p-value

BRCA PCA 0.806 0.018 5.57E-09 0.828 0.051 2.04E-05 0.812 0.038 3.33E-06

CCA 0.753 0.063 2.10E-06 0.855 0.025 2.10E-07 0.867 0.113 2.03E-02

RCCA 0.840 0.119 1.72E-03 0.883 0.021 4.17E-05 0.885 0.094 1.98E-02

FRCCA 0.952 0.030 1.99E-02 0.949 0.039 8.72E-02 0.944 0.041 3.38E-02

SRCCATT 0.941 0.070 9.40E-02 0.947 0.020 8.74E-02 0.813 0.076 5.90E-05

SRCCAWL 0.946 0.020 2.03E-02 0.887 0.098 1.91E-02 0.902 0.071 1.30E-02

SRCCAWR 0.931 0.045 9.22E-03 0.909 0.115 7.49E-02 0.914 0.070 3.14E-02

CuRSaR 0.956 0.022 5.93E-02 0.960 0.036 3.41E-01 0.919 0.115 3.38E-02

Proposed 0.974 0.027 0.965 0.032 0.962 0.027

OV PCA 0.793 0.110 2.36E-03 0.731 0.057 4.92E-07 0.765 0.139 1.83E-03

CCA 0.823 0.035 3.43E-05 0.814 0.034 1.34E-05 0.679 0.039 2.66E-09

RCCA 0.878 0.045 5.04E-03 0.871 0.034 6.05E-03 0.776 0.130 1.91E-03

FRCCA 0.882 0.038 1.00E-04 0.904 0.021 4.75E-02 0.901 0.026 3.02E-03

SRCCATT 0.898 0.019 4.27E-03 0.895 0.027 2.82E-02 0.876 0.100 9.75E-02

SRCCAWL 0.899 0.025 1.20E-03 0.902 0.029 1.26E-02 0.860 0.131 9.61E-02

SRCCAWR 0.895 0.025 9.70E-03 0.901 0.037 5.31E-02 0.881 0.069 3.90E-02

CuRSaR 0.918 0.014 9.02E-02 0.923 0.030 5.03E-01 0.918 0.016 2.70E-01

Proposed 0.925 0.020 0.922 0.027 0.923 0.029

Table 4. F1 score of the NNA for proposed and other methods

Data sets Different

algorithms

Gene-protein Protein-DNA Methy. Gene-DNA Methy.

Mean StdDev p-value Mean StdDev p-value Mean StdDev p-value

BRCA PCA 0.861 0.051 4.85E-05 0.890 0.050 3.75E-05 0.886 0.053 1.25E-03

CCA 0.900 0.099 4.73E-02 0.891 0.087 6.97E-03 0.863 0.070 6.64E-04

RCCA 0.922 0.026 9.08E-03 0.918 0.036 1.59E-03 0.909 0.056 2.96E-02

FRCCA 0.952 0.031 2.51E-01 0.966 0.025 1.00E-01 0.944 0.050 4.49E-02

SRCCATT 0.945 0.029 9.05E-02 0.949 0.023 9.07E-03 0.939 0.026 1.10E-01

SRCCAWL 0.940 0.031 6.70E-02 0.918 0.050 2.79E-03 0.947 0.037 3.41E-02

SRCCAWR 0.947 0.030 1.14E-01 0.947 0.042 1.35E-02 0.952 0.040 3.03E-01

CuRSaR 0.950 0.034 1.40E-01 0.970 0.025 1.72E-01 0.958 0.034 4.49E-02

Proposed 0.960 0.026 0.975 0.020 0.959 0.039

OV PCA 0.793 0.110 3.63E-03 0.806 0.052 1.10E-03 0.853 0.057 4.00E-02

CCA 0.838 0.035 3.56E-04 0.867 0.035 1.97E-02 0.837 0.046 2.54E-04

RCCA 0.891 0.044 1.66E-01 0.870 0.056 5.37E-02 0.867 0.069 1.27E-01

FRCCA 0.879 0.040 6.24E-04 0.885 0.035 4.78E-02 0.884 0.057 6.36E-02

SRCCATT 0.908 0.027 2.33E-01 0.814 0.269 1.73E-01 0.878 0.070 2.22E-01

SRCCAWL 0.887 0.037 3.32E-02 0.889 0.028 7.46E-02 0.874 0.056 2.34E-02

SRCCAWR 0.881 0.036 5.08E-02 0.893 0.030 1.43E-01 0.856 0.037 8.62E-03

CuRSaR 0.913 0.029 4.68E-01 0.892 0.040 1.94E-01 0.908 0.031 5.77E-01

Proposed 0.914 0.043 0.907 0.042 0.905 0.054
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the box and whisker plots for classification accuracy and F1 score, respectively
for both data sets. On the other hand, the means and standard deviations and
p-values of accuracy and F1 score for all the methods are reported in Tables 1,
2, 3, and 4. The best mean values are marked in bold in these tables. The
experimental results are presented on three pairs of modalities, namely, gene-
protein, gene-DNA methylation, and protein-DNA methylation. All the results,
presented in Figures 1, 2, 3 and 4 and Tables 1, 2, 3, and 4, establish the fact
that the proposed method attains the best mean classification accuracy in all
the cases, irrespective of the pairs of modalities of both data sets, and classifiers
used. On the other hand, the proposed method achieves best mean F1 score in
4 cases out of total 6 cases on OV data. Whereas, the proposed method attains
the best mean F1 score in all the cases of BRCA data, irrespective of the pairs
of modalities, and classifiers used. The results reported in Figs. 1, 2, 3 and 4,
and Tables 1, 2, 3, and 4, demonstrate that the proposed algorithm performs
significantly better than other algorithms in 60 cases out of total 96 cases on
OV data set, considering 0.05 as the level of significance. In remaining 34 cases,
it is better but not significant. There are only 2 cases where CuRSaR performs
better than the proposed algorithm. On the other hand, the proposed algorithm
performs significantly better than other algorithms in 66 cases on BRCA data
and remaining 30 cases it is better but not significant.

5 Conclusion and Future Directions

This paper presents a new feature extraction algorithm, which takes care of small
n large p problem associated with multimodal data analysis. Now-a-days, this
small n large p problem becomes a common issue in genetics research, medical
studies, risk management, and other fields. When n << p, the features become
highly collinear, which leads to ill-conditioned of the covariance matrix. The pro-
posed method deals with this singularity issue and performs better than all other
existing methods. The effectiveness of the proposed algorithm, along with a com-
parison with other algorithms, has been demonstrated considering three different
modalities, namely, gene expression, protein expression, and DNA methylation
on both data sets. Recently, a new supervised RCCA, termed as FaRoC [21], has
been proposed, where only required number of relevant, significant, and nonre-
dundant features are extracted sequentially. In effect, it is computationally less
expensive. Hence, in near feature, the current framework will be combined with
this new sequential feature generation technique.
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Abstract. Design anti-patterns are common wrong solutions in soft-
ware, whose frequency has been proven to be correlated with poor sys-
tem quality. This paper investigates temporal relations between differ-
ent types of anti-patters, i.e. how the appearance of one type of anti-
pattern in the source code increases the probability that different anti-
pattern will appear shortly after in its neighbourhood. The notion of
rough anti-pattern used to model the vagueness of anti-patterns allows
us to reformulate the question and establish if certain rough patterns tend
to be temporally correlated. The proposed framework was used to build
a classifier, which can be employed to predict the appearance of some
anti-patterns by looking at the temporal relations between other anti-
patterns. The experiments conducted on two large open-source projects
suggest that a few common anti-patterns tend to be temporally depen-
dent on others, whereas a few others do not.

Keywords: Spatio-temporal patterns · Software design anti-patterns ·
Mining software repositories · Rough sets · Pattern recognition

1 Introduction

Recently a lot of research has been aimed at the analysis of the structure and
evolution of software systems. There are journals and conferences dedicated to
the matter, such as [2–4], to name a few. The variety of specific research goals
includes identification of certain a-priori defined sub-structures (generally called
software patterns) in the system construction or design [13]. These may be fre-
quently occurring good or bad solutions for some matter, named respectively:
design patterns and anti-patterns [10,18]. Both have important practical appli-
cations: e.g. reverse engineering or software quality analysis [27,45].

The second popular research topic is software evolution, which covers the
attempts to understand temporal phenomena that happen during long-term soft-
ware development and maintenance. Specifically, it may refer to the evolution of
certain design patterns and anti-patterns along with the software in which they
appear.

One area poorly explored in to-date research is the phenomena of the co-
occurrence of various types of design patterns and anti-patterns, which can be
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 447–464, 2017.
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formulated as a research question if certain groups of patterns appear statisti-
cally more often “close” to one another in the system structure. The notion of
closeness can be understood in many ways e.g. by overlapping [22] or presence
in a common file [29]. In this paper an attempt is made to combine the topics
of software evolution and software patterns co-existence by looking at the mat-
ter of co-evolution of different patterns along with the system development and
maintenance. Conceptually it entails an investigation how the “lives” of two pat-
terns are correlated to each another. Formal definition of this research question
is given in Sect. 3.4.

The formal graph-based models are frequently used to represent the structure
of the software system under analysis as well as the sub-structures. The methods
of their construction may vary and include reconstruction by static code analysis
(SCA) [9,27,40], tracing the execution of the program while it is running [23,33]
and other methods [17,28,43]. Given that the structure of a software system as
well as the structure of the searched software pattern is represented in the form
of a graph, a naive approach of identifying all occurrences of the pattern can
be based on classical sub-graph isomorphism problem. One of the issues is the
fact that software patterns are not always formally defined strict structures, but
rather vague concepts. To tackle that matter a notion of rough software pattern
is used. It is conceptually based on the notion of a rough set (see [37]). Formal
definitions are given in Sect. 3.

This allows us to reformulate the previously mentioned research question
and analyze how often the structures that fall under the rough software pattern
definition co-evolve during the development of the software system.

1.1 Remainder of This Paper

Section 2 describes the domain of software development and conceptually
describes the goal of this research. Section 3 provides a formal definition of all
concepts and describes the proposed method for finding co-evolution patterns in
the software development process. Section 4 describes the experiments that were
conducted to validate the method proposed in this paper and provides a brief
summary of the results. Section 6 contains concluding remarks and outlines a
possible application of this research and its potential further extensions. Related
work is discussed in Sect. 5.

1.2 Contributions of This Paper

This paper introduces a simple framework for the identification of spatio-
temporal patterns in the software that is being developed. The proposed method
allows one to identify temporal relations between occurrences of pre-defined sta-
tic patterns in software. The solution has been experimentally validated on data
gathered from two popular open-source projects: it was applied to the identi-
fication of temporal dependencies between a few common anti-patterns. Since
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anti-patterns are vague concepts, this paper uses a novel approach to their defi-
nition, inspired by the rough-set theory. It introduces the notion of rough design
pattern in the domain of software analysis.

2 Software Development

2.1 Software Structure

The development of software system is a process in which software developers
modify the source code files that all together constitute the source code of the
system. The contents of the files have certain semantics that represent a formal
structure of a program in a particular programming language. In this research
we will assume that the structure of a software is a labeled multi-graph, where
nodes represent implemented logical elements of the source code and edges rep-
resent different dependencies between them. The elements will be called software
entities. Since this research is based on programs written in Java, the software
entities are packages, classes and methods and the types of dependencies are
calling, returning, declaring, containing or extending. The formal definition of
the dependencies is given in the following list:

– Entity e1 is calling e2 (equivalently: e1 is dependent on e2 by calling) iff either
e2 is method and the source code of the body of e1 contains a direct invocation
of e2 or e2 is a class and the body of e1 contains a direct invocation of some
method defined in e2.

– Entity e1 is returning entity e2 (e1 is dependent on e2 by returning) iff e1 is
a method with the return type e2.

– Entity e1 is declaring entity e2 (e1 is dependent on e2 by declaring) iff either
e2 is class and the body of e1 contains a variable of type e2 or e1 is method
and its header contains a formal parameter of type represented by e2.

– Entity e1 is containing entity e2 (e1 is dependent on e2 by containing) iff the
complete source code of e2 is contained in the source code of e1.

– Entity e1 is extending e2 (e1 is dependent on e2 by extending) iff both e1 and
e2 are classes and e1 is a direct subclass of e2.

The comments in code excerpt from Listing 1.1 explains the concept of soft-
ware entity and inter-entity relations.

Listing 1.1. Code excerpt with exemplary software entities and their inter-relations

1 //Entity pkg

2 package pkg;
3 //Entity SuperClass contained in pkg

4 class SuperClass {
5 //SuperClass contains superMethod

6 //superMethod returns String

7 public String superMethod() { return null;}
8 }
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9
10 // SubClass extends SuperClass

11 class SubClass extends SuperClass {
12 //SubClass contains InnerClass

13 class InnerClass {
14
15 //InnerClass declares SuperClass

16 private SuperClass field;
17
18 //InnerClass contains innerMethod

19 //InnerClass#innerMethod calls SuperClass#superMethod()

20 public String innerMethod() { return field.superMethod()}
21 }

The unique identification of software entities is important because during
software evolution the structure of the source code changes and, when look-
ing at it at two different points in time, we need to know what fragments of
it were changed and what remained intact. In this research, software entities
are uniquely identified by their local name and the identifier of the software
entity they are contained in. That is: 1. The packages are identified by their
name, 2. non-nested classes are identified by their name and the name of the
package they belong to, 3. nested classes are identified by their name and the
identifier of the class they belong to, 4. methods are identified by their name
and the identifier of the class they belong to1. For example, in the code excerpt
Listing 1.1 the method innerMethod in InnerClass is technically identified by
‘(pkg, Subclass, SuperClass, innerMethod)’.

2.2 Software Metrics

Source code metrics are well-known tools for static code analysis. They measure
the complexity of source code units and thus provide the information about
potentially ill-structured parts of the code, which may be error-prone or hard to
maintain [32]. Formally, each metric is a real-valued function defined on the set
of all possible source code units of some kind. NCSS (Non-Commenting Source
Statements) is a good example here. This metric is applicable to any source code
entity and the value of it is defined as the number of the lines of the code that
define the entity, excluding the lines that are empty or commented out. In this
research we will formally define the function Metr that encodes the values of
many metrics on all software entities present in the analyzed software source
code: Let M be the set of source code metrics and V the set of entities of the
system. Metr : V × M → � ∪ {⊥} is given by:

1 Please note that one consequence of such an assumption is that overloaded methods
are not discerned from each other. The motivation for this simplification comes from
the fact that typically, if a class contains overloaded methods, they functionally
represent the same operation but, due to technical reasons, depend on different
arguments (see [8]).



Temporal Relations of Rough Anti-patterns in Software Development 451

Metr(e,m) =

{
m(e) if m is applicable to e,

⊥ otherwise.
(1)

2.3 Software Snapshot

Let DT = {calling, declaring, returning, containing, extending} denote the set
of all possible types of inter-software-entity dependencies, Metr be defined as
above on some fixed set of software metrics M , V denote the set of software
entities present in the software source code. Let E ⊆ V ×V ×DT denote the set
of actual inter-software-entity dependencies, such that (e1, e2, t) ∈ E iff entity
e1 depends on entity e2 by t as defined above in this section. The triple

SSN = (V,E,Metr) (2)

is called software snapshot and it represents the structure and the properties
of the source code of the system. Please note that (V,E) can be treated as
an edge-labeled multi-graph and Metr can be technically treated as a vertex
labeling, with the labels in the form of vectors built from the values of metrics.
This allows us to treat SSN as a multi-graph with labeled edges and nodes and,
consequently, use graph-theoretical concepts such as sub-graph or sub-graph-
isomorphism in further deliberations. Most notions introduced later in this paper
will be based on such an understanding of SSN .

2.4 Software Evolution

During the software development process, engineers perform modifications to
the source code, usually with use of Source Code Management System (SCM). It
usually is a central server which stores the current version of all the source code
files and all past modifications. It allows the developers to apply their changes
to a common source code base in a transactional manner. Such modifications
are called commits. A commit has a unique identifier, called revision, which
might be just a subsequent number in a sequence. Moreover, it contains the
information about time-stamp, the information about the author, a short textual
message entered by him/her and a list of modifications applied to many files
managed by the SCM. Technically, the commit also contains information about
the commit(s) it directly follows, so it is possible to arrange the commits into
partial order. According to common practice [14], the main line of development
contains commits that can be linearly-ordered in such a way. Therefore we can
look at the software evolution as a sequence of states of the system source code
indexed by revisions.

Until now we only considered the structure of a software system at a given
point in time and defined the SSN to represent it. Given the sequence of revisions
R = (r1, . . . , rn) we can define a sequence of software snapshots (SSNr)r∈R such
that SSNri = (V ri , Eri ,Metrri) represents the structure of the software system
at revision ri. With R representing the revisions in the main development line
of a system, (SSNr)r∈R will be called software evolution.
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2.5 Design Patterns and Anti-patterns

As already stated in Sect. 1, in software engineering, a design pattern is a fre-
quently used, universal resolution of commonly occurring problems in software
design [18]. This concept is not strictly formalized - it is rather an idea how to
approach certain problems. A Factory method is an exemplary design pattern
that moves the operation of creating an object to a dedicated, separated method
to be used instead of the constructor. As regards programs written in Java, one
could expect that a factory method FM of class C has the following proper-
ties: 1. The method returns type C and calls the constructor of C, 2. No other
methods call any constructor of C. This trivial heuristic can be further enhanced
to apply to more sophisticated situations when e.g. C has many constructors,
there are more factory methods, etc. Please note that these properties can be
expressed within the software snapshot structure described above. Therefore a
straight-forward method for finding the occurrences of factory method patterns
for class C represented by SSN vertex c, can be formulated as finding all such
sub-graphs of SSN that: 1. Have a single vertex fm that represents the factory
method. 2. For any vertex con, that represents a C constructor (i.e.: c is con-
taining con, con does not have a return type in header, c and con have the same
name), if some entity m is calling con, then m = fm.

A design anti-pattern is a dual concept to the design pattern. It is a frequently
used, wrong resolution of certain types of problems in software design, which
has well-known disadvantages [10,11]. God Class can be given as an example:
it is a practice of implementing too much unrelated functionality in a single
class, which violates a good principle in object oriented programming that a
class should have single responsibility [31]. Similarly, this vague concept can be
heuristically modeled within SSN , for example as a sub-graph which represents
a class with many methods contained in it, such that many other entities are
calling them.

Software patterns are introduced to the source code during software evolu-
tion. Since all changes are tracked by SCM, we can precisely identify when each
particular occurrence of the pattern was introduced, and how it was modified.
Conceptually, we can assign each pattern the time when it was present. This
allows us to state the research question of this paper: If appearance of certain
software patterns indicates that some other patterns will appear closely in the
future.

3 Finding Anti-patterns

This section describes the process of finding the software patterns in the SSN ,
finding their temporal existence in the software evolution and analyzing the
spatio-temporal relations between them.

3.1 Raw Data Fetching

The process of building SSN for the system is done according to the following
procedure: source code files are firstly parsed and translated into the forest of
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abstract syntax tree (AST). Secondly the ASTs are traversed and the logical
structure of (V,E) is built. Lastly the values of the source code metrics for each
elements of V are evaluated by the source code analysis tool. The metrics used
in this research are: Boolean expression complexity, Data abstraction, Fan out,
Cyclomatic complexity and NPath Complexity, NCSS - Non Commenting Source
Statements and their formal definition of can be found in [1].

The process of extracting V and E from the ASTs just follows the definition
of this structure outlined in Sect. 2.1.

3.2 Software Pattern Matching

Let P(SSN) denote the set of all sub-graphs2 of SSN . C ⊆ P(SSN) is a
definable pattern iff there is a reference graph RC = (VRC

, ERC
) and a function3

MetrC : VRC
× M → P (� ∪ {⊥}), such that for any sub-graph S = (VS , ES)

the following conditions are equivalent:

– (VS , ES) is isomorphic to RC where the isomorphism is given by i : VRC
→

VS and the following condition holds: ∀v ∈ VRC
,m ∈ MMetr(i(v),m) ∈

MetrC(v,m),
– graph induced by S by adding vertex-labeling from Metr is an element of C.

Conceptually it means that the properties of C can be expressed by inter-
software-entity relations and the values of their software metrics.

Not all patterns are definable, but for each pattern C there is a maximal
definable pattern C and a minimal definable pattern C such that the former is a
subset and the latter is a super-set of C. The fact that C and C exist is straight-
forward, based on the following observations: 1. An empty set is clearly definable
by an empty graph and an arbitrary function MetrC . 2. A complete P(SSN)
is clearly definable by a reference graph (V, {∅}) and a MetrC function with a
constant value � ∪ {⊥}. 3. P(SSN) is finite and all its elements are ordered by
set-theoretical inclusion.

We will call C the upper bound, C the lower bound of C and C \ C will be
called the boundary region of C. The pair (C,C) will be called the rough pattern
for C.

Software patterns are examples of non-definable concepts. Therefore instead
of fine-tuning existing algorithms for software pattern identification (see [16])
against different source code repositories, this paper proposes to formally define
more universal and less accurate upper and lower bounds of software patterns
and use them to mine knowledge about software structure and evolution. Such
an approach is closer to the actual expertise of software engineers who are not
always certain if a given structure is or is not a software (anti-)pattern. In the
proposed method, such cases should be considered as an element in the boundary
region.
2 Please recall from Sect. 2.3 that we can treat SSN as a labeled multi-graph.
3 Please note different symbols: P(X) denotes the set of sub-graphs of X, while P (Y )

denotes the power-set of Y .
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In the experimental validation a rough patterns have been defined for a few
simple design anti-patterns and tuned by an expert against the source code of
two open-source projects: Struts 1.3, one of the most popular web framework
10 years ago and Wildfly 10 - a currently popular web application server. The
proposed very simple definitions of upper and lower bound were correlated with
expert classification of the identified instances, so that: 1. All instances identified
by expert were part of the upper bound of the respective pattern (1.0 recall),
2. the lower bound of the respective pattern contain only instances identified by
the expert (1.0 precision).

3.3 Pattern Instance

We will discern two notions considered in the context of SSN: the pattern and
the pattern instance. The former is a concept described by some specification,
whereas the latter is the occurrence of this pattern in SSN . For example,
the pattern is a concept ‘a class with cyclomatic complexity over 100 calls a
method with less than 2 lines of code’, whereas its instance in SSN is each sub-
graph PI = (VPI , EPI ,MetrPI) of SSN such that: 1. VPI = {c,m} where
c, m are class and method respectively. 2. Metr(c, Cyclomatic) > 100 and
Metr(m,NCSS) < 2 3. (c,m, calling) ∈ E, 4. EPI and MetrPI are respective
subsets of E and Metr induced by VPI . Formally, the pattern is an arbitrary
subset of the set of sub-graphs of SSN and each element of it is the pattern’s
instance.

Please note that the notion of a rough pattern is defined for the pattern
and not for the pattern instance. In fact, in the context of some SSN we can
associate the lower bound of the pattern P with some subset of instances of
P . The upper bound is more problematic to grasp, but we can conceptually
associate it with the set of substructures of SSN that in terms of definable
patterns are indiscernible from instances of P .

3.4 Overlapping and Distance Between Patterns

Given two instances of patterns we will define two notions that enable to answer
a question how “close” they are one to each other in the software structure. Let
PI1 = (V1, E1,Metr1), P I2 = (V2, E2,Metr2) be two instances of some patterns.
Let D ⊆ DT be a subset of dependencies. The overlapping of and the distance
between PI1 and PI2 are respectively given by:

Ov(PI1, P I2) =
|V1 ∩ V2|
|V1 ∪ V2| (3)

d(PI1, P I2,D) = minv1∈V1,v2∈V2dist(v1, v2, (V,E ∩ (V × V × D))) (4)

where dist(a, b,G) is the distance between vertices a and b measured as the
shortest path between them in the multi-graph G.



Temporal Relations of Rough Anti-patterns in Software Development 455

Conceptually the overlapping measures how much two pattern instances
share common vertices and the distance measures the shortest path between
some two vertices from both instances, such that the path can only be con-
structed with edges with labels from D.

Please note that the definition of distance relies on the sets of vertices of
SSN . Theoretically it means that we can evaluate the formula at any revision
r as long as SSNr contains all vertices from both pattern instances. This yields
a notion of distance at revision r:

dr(PI1, P I2,D) = minv1∈V1,v2∈V2dist(v1, v2, (V
r, Er ∩ (V r × V r × D))) (5)

This enables us to tell how “close” two pattern instances are in the entire
software evolution, even if they never appear together in a single revision.
Analogous statement also applies to the overlapping: Since Ov function can be
evaluated at any revision in which all entities from PI1 and PI2 are present
(in fact it is constant), the overlapping can be defined for two pattern instances
which are present in different revisions in a similar fashion. These important
observations enable us to describe a spatio-temporal relation between software
patterns. The formal definition is explained in the following paragraphs.

3.5 Closeness of Pattern Instances

We will consider the closeness of two pattern instances in two alternative vari-
ants: we will say that two pattern instances PI1, P I2 are close:

– if their overlapping is greater than 0.4 or
– if their distance is at most 2 at the maximum revision r such that

dr(PI1, P I2,DT ) is defined.

The threshold values given in the above definition are just parameters that were
tuned during the experimental validation of the proposed framework (results
presented in Sect. 4.3). The former definition will be called overlapping-closeness
whereas the latter - the distance-closeness.

3.6 Pattern Instance Lifespan

Again, the above considerations define the pattern instance in a single software
snapshot. We will now define the temporal aspect of it: Let P be a pattern,
PI be its instance present in some SSNr. If for some other r′ SSNr′

contains
a sub-graph PI ′ isomorphic to PI, such that PI ′ satisfies P then we say that
r′ belongs to the lifespan of PI. The set of all revisions that belong to the
lifespan of PI will be denoted by L(PI). Conceptually the lifespan is the time
in which particular pattern instance, built from specific, named software entities,
was present in the system. The specificity of the entities is guaranteed by the
isomorphism condition and the fact that all software entities in the SSN are
uniquely identified by their name and the identifier of the containing software
entity (refer back to Sect. 2.1 for details).
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Clearly, each lifespan can be expressed as a set-theoretical sum of maximum
continuous intervals of revisions from R, where R is the linearly-ordered set of
all revisions in the evolution of the observed software. For a given pattern P , the
set of all such intervals in all distinct instances of P will be called the occurrences
of P and denoted by Occ(P ).

3.7 Temporal Pattern Relations

Given two such intervals l1(PI1) and l2(PI2) of two different pattern instances
of two different patterns P1 and P2, we can name a temporal relation between
them in the Allen algebra [6] and define the relative occurrences of pattern: for a
fixed interval l1(PI1) from the lifespan of a fixed pattern P1 and a fixed Allen’s
algebra relation A, Occl1(PI1),A(P2) denotes the set of such maximum revision
intervals l2(PI2) in a lifespan of some instance of P2 which satisfy the following
condition: PI1 is close to PI2 and l1(PI1) is related to l2(PI2) by relation A.
The set Occl1(PI1),A(P2) will be called occurrences of P2 relative to l1(PI1) by
A. The example depicted in Fig. 1 shows two pattern instances PI and PI ′ that
are in < (takes place before) temporal relation, since PI can only be observed
in revision Revn and PI ′ can be observed not later than in revision Rev1 which
takes place before Revn. The software entities denoted with squares in the dia-
gram are uniquely identified, therefore we can map the neighbourhood of PI,
which is observed only in Revn, to past revision as well, because the software
entities that constitute the neighborhood are partially present in them.

Fig. 1. The concept of spatio-temporal relation between pattern instances

3.8 Classification of Temporal Pattern Relations

The above definitions allow us to describe a method of construction of the deci-
sion table that encodes the facts about temporal relations between different
instances of predefined software patterns. Conceptually, each row in this table
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corresponds to a single continuous interval for some pattern P related to some
instance PI, the decision for it is marked as P and the remaining attributes
encode the temporal Allen’s relation to some other interval of some other pat-
tern. Each attribute is denoted by a pair (A,P ), where A is some Allen’s relation
and P is a pattern. Therefore the number of attributes is the half the number of
Allen’s algebra relations multiplied by the number of studied software patterns.
The half comes from the fact that each of Allen’s relation has its inverse. The
formal construction of the decision table is described in the following procedure:

Let PT be a finite set of pre-defined known software patterns.
Let A = {<,m, o, s, d, f} denote the subset of non-inversed Allen’s algebra

relations.

– For each P ∈ PT create a row for each element l(PI) ∈ Occ(P )
– Set the symbolic decision of the row to ‘P ’
– For each A ∈ A and P1 ∈ PT set the value of attribute (A,P1) to the power

of Occl(PI),A(P1)

Please note that A does not contain equality relation. Therefore, there is no
such attribute that expresses the relation between l(PI) and itself. This guaran-
tees that the condition attributes and the decision are not trivially dependent.
Conceptually each condition attribute represents the “strength” of a particu-
lar spatio-temporal relation observed in the analyzed software evolution (the
“strength“ is related to the number of such observed relations to l(PI)). There-
fore, the fact that we can construct a good-quality classifier on such a table
can be interpreted as a proof for the existence of actual spatio-temporal rela-
tions. A more detailed analysis of the results can lead to further statements: e.g.
that certain types of patterns (decision classes in the table) do not tend to be
spatio-temporally related to others.

4 Experimental Validation

The framework of modeling and identifying co-evolution of design anti-patterns
described in the previous sections has been experimentally validated in two con-
figurations, derived from the rough pattern concept: based on the lower bound
and upper bound definitions respectively. The following paragraphs describe par-
ticular definitions of the two and their application to the data-sets built from
the evolution of Struts and Wildfly mentioned in Sect. 3.2. The data was gath-
ered from the software development process done on the main branch which
lasted at least one year and consisted of respectively 953 and 1641 significant
commits. The source code of the analyzed systems had approximately 2500 and
4500 classes respectively. The number of different anti-pattern instances found
in these systems is given in Table 1.

4.1 Definition of Anti-patterns

Here are some of the examples of design anti-patterns experimentally validated
in this research. The YoYo anti-pattern is present in the source code when a
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logic is spread over excessively large inheritance structure. The lower bound of
YoYo consist of substructures with at least a 7-element set of classes in a common
inheritance hierarchy with more than 10 calls between different inheritance levels.
For the upper bound the threshold values were set to 6 and 8 respectively.

Anemic entity is a class that does not implement any logic and only stores
excessive portion of information. The lower bound of it contains classes with more
than 8 attributes no non-trivial methods, such as accessors. The definition of
upper bound required the class to have at least 7 attributes and allowed at most
one non-trivial method. A Circular dependency pattern is a situation when there
is a cycle of method calls between classes from different packages. We will say that
class c1 implicitly calls class c2 (denoted by c1 �→ c2) iff E ∩ (V ×V ×{calling})
contains an element that represents a call from c1 or some entity transitively
contained in c1 to a method of c2. The lower bound of circular dependency was
defined as a structure with three nodes representing classes (c1, c2, c3), such that
c1 �→ c2 ∧ c2 �→ c3 ∧ c3 �→ c1 ∧ c2 �→ c1. The upper bound consisted of class pairs
(c1, c2) such that c1 �→ c2 ∧ c2 �→ c1.

Similar definitions have been given for BaseBean, Dependency hell, God class
(see [10]).

4.2 Occurrences and Co-occurrences of Patterns

The Table 1 presents the power of Occ(P ) for particular patterns for both lower-
bound-based and upper-bound-based definitions.

Table 1. Power of Occ(P ) sets for the data used in the experimental validation

Pattern Struts Wildlfly

Upper bound Lower bound Upper bound Lower bound

AnemicEntity 3 1 13 7

BaseBean 51 38 65 41

Blob 36 25 52 22

CircularDependency 4 0 22 11

DependencyHell 13 7 114 80

GodClass 34 25 40 22

YoYo 19 15 23 10

The data about the evolution of these patterns was encoded in the decision
table according to the procedure described in Sect. 3.8. A C4.5 tree classifier
was then trained and tested on disjoint sets of data acquired in this way. Please
note that such a classifier applied in the ongoing software development process
can output the prediction of appearance of some anti-pattern instances. In other
words it can warn about a high chance of appearance of some anti-patterns in
some areas in the source code in the near future. The results presented in the
following section can be read in such a manner.
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4.3 Results

This section provides an excerpt of experimental results conducted in this
research.

Temporally Unrelated Patterns. The first observation is that certain types
of anti-patterns appear not to be temporally related to others. Table 2 shows the
best classification quality factors for such patterns achieved in all configurations
of the experiment.

Table 2. Patterns that were poorly temporally correlated with others.

Precision Recall

AnemicEntity 0.0 0.0

Blob 0.32 0.68

GodClass 0.42 0.28

Temporally Related Patterns. The second observation is that some pat-
terns tend to have strong-to-moderate temporal correlation with others. Specific
results are shown in Table 3.

Table 3. Patterns that were strongly or moderately temporally correlated with others.

Precision Recall

DependecyHell 0.93 0.88

YoYo 0.72 0.85

BaseBean 0.54 0.77

CircularDependency 0.69 0.51

Difference Between Upper and Lower Bound. The third observation is
related to the use of rough pattern definition. It concerns the question how
the change of the lower-bound definition of the patterns to the upper-bound
influences prediction quality. Since the upper bound of any pattern can con-
tain more elements, the number of pattern instances that are close one to each
other can increase and, consequently, a greater number of temporal relations
can be observed. Table 4 shows the actual comparison. In general, precision
slightly improves, while recall may worsen insignificantly for the patterns that
are strongly or moderately temporally correlated with others.
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Table 4. Difference in prediction quality for upper and lower bound of rough pattern.

Lower-bound Upper-bound

Precision Recall Precision Recall

DependecyHell 0.93 0.88 0.94 0.92

YoYo 0.72 0.85 0.87 0.89

BaseBean 0.54 0.77 0.54 0.77

CircularDependency 0.69 0.51 0.82 0.48

5 Related Work

Software Pattern Mining Techniques. Arguably most existing methods
for this matter fall under a common scheme: software structure is represented
in some formalized model that reduces the search space, the specification of a
pattern is expressed in terms of this model, so that some kind of search scan
is possible. The models used for representations include: untransformed AST
directly parsed from the source code [23,24], a collection of logic predicates
[7,24,26], various graphs, most similar to the model used in this research [35,36,
39,42] or traces of execution of the running program [23,24]. Some of the models
also contain information about software metric values [20,30].

Vague Software Patterns. The majority of the research to-date treats soft-
ware patterns as crisp concepts. Still little effort was put to represent them as
vague notions. In [40], later extended in [44], the patterns are described in first-
order-logic predicates and the method allows to relax predefined descriptions of
patterns in order to detect their “variants”. [34] suggests a method for coping
with the vagueness of the pattern which is based on two ideas: 1. Having mul-
tiple formal descriptions of a single pattern and 2. Assigning a fuzzy value to
each individual description, which measures the accuracy of a match. In such an
approach the individual matches can then be aggregated into a single “global”
match. [20] uses a machine learning algorithm to find descriptions of certain
patterns based on the values of the software metrics of its constituents.

Software entities that form an instance of design pattern may also be related
to other elements that should be irrelevant for the pattern (e.g. additional meth-
ods in the class that do not play any role for a particular pattern). [15] uses such
additional information to build a machine-learning classifier that allows to dis-
cern false-positives in a set of potential instances of design patterns on the basis
of such additional structures. [12,42] suggest an algorithm in which structure of
the software and the patterns are given as graphs and the method of approxi-
mate finding instances of the patterns is based on the graph similarity measures
(see [5]).

A method for modeling vagueness of a software pattern proposed in this paper
is based on the concept of a rough set. To author’s best knowledge only a very
few similar approaches have been published to date. In [38] the authors introduce
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a similar approximate model which can be used to match design documentation
with the actual source code. Yet, it is not applied to mine temporal patterns in
software evolution.

[9,13] provide a survey of existing design pattern mining techniques.

Temporal Patterns in Software Evolution. In [19] the authors propose the
use of a formal model to describe static patterns in the object oriented software
and apply a temporal logic to extend it so that it is also capable of describing
temporal patterns in software evolution. The expressive power of the proposed
language is shown on a few examples of temporal phenomena that can be useful
in the software engineering. Similar languages, also built on the basis of the
temporal logic, can be found in [25,41]. Yet, none of them is used to build a
predictor of spatio-temporal patterns similar to the one described in this paper.

6 Conclusions and Future Work

6.1 Spatio-Temporal Patterns in Software Development

The paper has presented a formal framework for definition and reasoning about
spatio-temporal patterns in software development process. The spatial aspects
concern the definition and the detection of static software patterns, whereas
the temporal - the relation between static patterns lifespan defined by Allen’s
algebra relations. The experiments identified that certain common anti-patterns
can be put into three categories: 1. the ones that tend to be highly temporally
related to other patterns (Dependency hell and YoYo), 2. the ones that are only
moderately temporally related (Base bean, Circular dependency) and 3. the ones
that do not appear to be temporally related to others (Anemic entity, Blob, God
class).

6.2 Rough Software Patterns

The work defines the software snapshot - a simple multi-graph-based model
to represent the structure of the software system. In order to cope with the
vagueness of software design (anti-)patterns and actual expert uncertainty, the
notion of rough design pattern has been proposed. It allows to define the lower
and upper bound of a software pattern, such that both are definable in terms
of the software snapshot structure. The experimental validation has shown that:
1. The model is sufficient to resemble the classification of instances of a few
popular anti-patterns provided by a software engineering expert. 2. The method
of anti-pattern prediction described in Sect. 3.8 used with upper-bound definition
pattern tends to have a higher precision and almost a constant recall, all together
having a better accuracy.
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6.3 Future Work

The proposed method for the prediction of the appearance of future anti-patterns
described in this paper can be applied in he ongoing software development
process: it can indicate the chance of appearance of anti-patterns in certain
areas of the source code (see Sect. 3.8). To author’s best knowledge no other
method of this kind has been published to date, but the experimental results
appear to show much better classification quality than state-of-the-art solutions
for a similar problem of defect prediction (see [21]).

This paper presents preliminary work on identifying spatio-temporal relations
between vague software patterns. The temporal aspect is modeled by a few
Allen’s algebra relations, but further extension of the proposed framework can
include simple sequential patterns or generalized temporal patterns. As regards
the spatial aspects, a pre-defined set of definitions of patterns provided by an
expert used in this work, can be replaced by a set of frequently occurring software
structures which can be mined by a machine-learning algorithm.
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Abstract. Prediction of information propagation is an important issue
in research of social network. Recent researches can be divided into graph
or non-graph approaches. Most of non-graph approaches use regres-
sion analysis and probability model, seldomly considering clustering
features of social time series. In clustering-based temporal prediction
model, every cluster center is treated as a propagation pattern, and so
that the prediction can be realized through classification to find out
the nearest-neighbor pattern. Prediction performance may be influenced
by clustering performance based on clustering approaches. This paper
proposes a new model Scaling Clustering based Temporal Prediction
Model (SCTPM), which is applicable for predicting propagation pattern
of social information. Through 10-fold cross-validation experiments on
twitter and phrase datasets, SCTPM obtains lower prediction bias and
variance than the existing clustering-based models.

Keywords: Prediction model · Time series · Clustering · Propagation
pattern · Social information

1 Introduction

In Web2.0, social network provides convenient way for users to post and access
information. In September 2016, twitter users produce about 58 million tweets
and twitter search engine conducts 2.1 billion queries everyday [1]. Social network
is a platform for information exchange and sharing, the information on which
owns flu-like propagation characteristic [2]. Information attention is a measure
of heat of social information, which can be visually described as information
propagation trend over time. Figure 1 shows an example of time series of infor-
mation propagation trend (twitter tag). On June 11, 2009, on the eve of Iran
Election, the tag IranElection appeared on the twitter and caused wide attention
and discussion of campaign results. Attention of IranElection reached the peak
on June 21 at 2:00, and then follows slow decline [21].
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Fig. 1. Temporal propagation trend of IranElection during 128 h starting from 7:00
June 19, 2009.

Prediction of social information propagation is an important issue, which has
practical significance such as better placing of content to maximize click-through
rates of media content [3] and beforehand determining bandwidth reservation
[4]. Traditional predictive models can be divided into graph and non-graph
approaches [5]. These approaches’ target is to predict how a specific informa-
tion propagation would expand in a given social network. Some recent works
use clustering-based methods to predict propagation trend. The main idea of
these works is that propagation trends may be classified into a few number of
patterns, so that we can use clustering methods to find out these patterns and
then predict the propagation trend according to the nearest-neighbor pattern.
Note that the clustering patterns vary with different clustering methods, which
are determined by distance measures. As a result, the first goal of this paper is
to explore how the distance measure affects prediction performance.

In this paper, we firstly compare clustering performance between KSC [6]
and Kmeans. KSC outperforms Kmeans as a good clustering method for social
time series, because KSC uses the scaling distance to measure distance between
different time series. Secondly, we propose a new model SCTPM including 3
steps: KSC clustering, nearest-neighbor classification and scaling the nearest-
neighbor cluster center. Thirdly, we evaluate prediction performance on twitter
and phrase datasets, and the results show SCTPM outperforms the existing
algorithms by achieving lower prediction bias and prediction variance.

The rest of paper is organized as follows. Section 2 discusses related works.
SCTPM and some related definitions are introduced in Sect. 3. Section 4 validates
the model on 2 social datasets and analyzes the experiment results. Section 5
concludes this study and presents prospects towards information propagation
prediction.
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2 Related Work

Recent researches of information propagation prediction can be divided into
graph or non-graph approaches [5,7–9]. These approaches use regression analysis,
probability model and classification to predict how the information propagation
process would expand in social network.

The paper mainly focus on non-graph prediction approaches. Non-graph pre-
diction approaches depend on information propagation characteristics like influ-
ence of information publishers [10–12], user forwarding behaviors [13,14] and
information popularity. Research of predicting information popularity is a impor-
tant target because information popularity can be visually represented by social
time series like Fig. 1. Based on both the intrinsic attractiveness of a video and
the influence from the underlying propagation structure, Li et al. [15] presents
SoVP model to predict video views. Kong and Mao [16] analyze dynamic evolu-
tion process of previous forum posts and then present a multiple dynamic factors
based model to predict popularity of posts. Mazloom et al. [17] propose engage-
ment parameters based model to predict brand-related user post popularity and
obtain better prediction accuracy than using visual and textual features.

These researches of predicting information popularity above seldomly con-
sider clustering features of social time series. Taking every cluster center as a
propagation pattern, Zhou et al. [18] present a clustering-based temporal predic-
tion model (CTPM) to predict propagation patterns for predictive objects. But
Zhou et al. lack the analysis on the relationship between clustering methods and
prediction performance. The goal of the paper is to explore how prediction per-
formance is influenced by clustering methods, which are based on distance mea-
sures. Yang and Leskovec [6] present KSC or IKSC (Incremental KSC) clustering
method based on distance invariant to scaling and translation of time series [19].
KSC is a proper clustering method for social time series and attracts several
researchers to do related researches. Han et al. [20] present WKSC to reduce
time complexity of KSC based on Discrete Haar Wavelet Transform (DHWT).
Combined with KSC and hierarchical clustering, Zhou et al. [18] presents TSC
to address the problem of clustering number setting. The paper adopts KSC
clustering method, because KSC produces a unique cluster center by scaling for
every cluster member, which may be helpful to obtain fine-grained prediction
results.

3 Scaling Clustering Based Temporal Prediction Model

This section firstly gives several related terms and then introduces CTPM and
SCTPM. Finally, we analyze time complexity of CTPM using Kmeans and
SCTPM using KSC.

Given A(1,n) = [x1, x2, · · · , xn] is a social time series where xi represents
mentioned volume during ith hour, so n continuous volumes build a propagation
trend.
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Temporal variation of attention of social information can be classified into
a few number of propagation patterns. These patterns can be represented as
cluster centers using clustering methods.

Introduction to CTPM. CTPM represents Clustering based Temporal Prediction
Model. Clustering for social time series observes that propagation pattern before
time t is associated with that after t, demonstrated by CTPM [18]. As shown in
Algorithm 1, the model includes 2 steps: clustering and nearest-neighbor classifi-
cation. Firstly the model conducts clustering to acquire cluster centers and every
center represents a propagation pattern. Secondly taking propagation pattern as
an individual class, the model proceeds with nearest-neighbor classification for
predictive objects. Finally, the subsequence of nearest-neighbor propagation pat-
tern is treated as the prediction result.

Algorithm 1. Clustering based Temporal Prediction Model (CTPM)
Input: time series set items, cluster number K, predictive object x(1,β) with known

length β, predictive length γ, clustering algorithm clusteringAlg
Output: the final prediction result μi∗(β,β+γ)

1: {μ1(1,β+γ), . . . , μK(1,β+γ)} ← clusteringAlg(items, K, β + γ)
2: for i = 1 to K do
3: ti ← d1(x(1,β), μi(1,β))
4: end for
5: i∗ ← argmini=1,...,Kti

6: return μi∗(β+1,β+γ)

Analysis of Time Complexity for CTPM Using Kmeans. In clustering step, time
complexity of every iteration of Kmeans is O(NKL) where N denotes the num-
ber of clustering samples, K denotes the number of cluster centers and L = β+γ.
In classification step, the complexity of computing d1(item1, item2) is O(β),
where d1 is Euclidean distance, so the complexity of complete classification is
O(Kβ) for every predictive object. Conclusively the complexity of CTPM using
Kmeans is O(TNKL), where T denotes iteration times.

Introduction to SCTPM. SCTPM denotes Scaling Clustering based Temporal
Prediction Model. Based on CTPM, we propose SCTPM using KSC by adding
a process of scaling the prediction result. As shown in Fig. 2, the model con-
tains 3 flows: KSC clustering, nearest-neighbor classification and scaling the
nearest-neighbor cluster center. First, KSC clustering can produce clustering cen-
ters as propagation patterns. Next, nearest-neighbor classification can find out
the nearest-neighbor propagation pattern for predictive objects. Finally, scaling
process can restore prediction results from cluster centers because KSC cluster
centers are eigenvectors.

Based on 3 flows above, we develop detailed steps of SCTPM in Algorithm2.
First, the model conducts KSC clustering to obtain cluster centers {μ1, · · · , μK}.
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Fig. 2. The flow chart of SCTPM.

Next, the model computes scaling factor αi and distance ti between predictive
object x(1,β) and μi(1,β), where β is propagation length. Then, the model pro-
ceeds with nearest-neighbor classification for x(1,β) to acquire class id i∗. After
that, the model scales the prediction result μi∗ by scaling factor αi∗ to obtain
the final prediction result sμi∗ . μi∗ and sμi∗ are a cluster center and a scaled
cluster center respectively, both identified as i∗. Finally, as the subsequence of
sμi∗ , sμi∗(β+1,β+γ) can be considered as propagation pattern of x(1,β) during γ
hours after time β.

Analysis of Time Complexity for SCTPM. In clustering step, time complexity
of every iteration of KSC is O(max(NL2,KL3)) where N denotes the number
of clustering samples, K denotes the number of cluster centers and L = β +
γ [6]. In classification step, the complexity of computing d2(item1, item2) is
O(β), where d2 is defined in Eq. 3, so the complexity of complete classification
is O(Kβ) for every predictive object. Conclusively the complexity of SCTPM is
O(T ∗ max(NL2,KL3), where T denotes iteration times.
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Algorithm 2. Scaling Clustering based Temporal Prediction Model (SCTPM)
Input: time series set items, cluster number K, predictive object x(1,β) with known

length β, predictive length γ
Output: the final prediction result sμi∗(β,β+γ)

1: {μ1(1,β+γ), . . . , μK(1,β+γ)} ← KSC(items, K, β + γ)
2: for i = 1 to K do
3: αi ← x(1,β) ∗ μT

i(1,β)/||μi(1,β)||2
4: ti ← d2(x(1,β), μi(1,β))
5: end for
6: i∗ ← argmini=1,...,Kti

7: sμi∗ ← μi∗ ∗ αi∗

8: return sμi∗(β+1,β+γ)

4 Experiments

This section firstly analyzes clustering performance between different clustering
methods and find out propagation characteristics of datasets. Then we intro-
duce the experiment method and parameter settings in prediction experiments.
Finally we present detailed analysis of experiment results.

4.1 Clustering Analysis

The experiments are carried on 2 open datasets: 1000 phrases and 1000 twitter
tags, both from Stanford University. Every item exhibits a propagation pattern
during 128 h, whose highest peak appears at 43-th hour [21].

The clustering performance may impact prediction performance. The silhou-
ette value is a measure of how similar an object is to its own cluster (cohesion)
compared to other clusters (separation). The higher the value, the better the
clustering model. KSC clustering performance is appropriate. In Table 1, twitter
items with silhouette > 0 occupy about 88.3% and phrase items occupy about
92.2%. Every item’s silhouette is shown in Fig. 3. Besides that, KSC can lessen
clustering error of 95.6% phrase items and 97.6% twitter items respectively, com-
pared with Kmeans. The experiment results exactly is consistent with the con-
clusion that KSC is a better clustering algorithm for social temporal datasets [6].

Propagation characteristics of dataset may be another factor influencing the
final prediction result. Twitter presents propagation patterns with richer varia-
tion characteristics than phrase items. Combined with Table 1 and Fig. 5, nearly
34% twitter items and 8.1% phrase items exhibit rich propagation patterns with
several peaks. About 66% twitter items and 91.9% phrases show monotonous
propagation patterns with just only single peak. Besides that, variation trend of
variance of dataset attention is consistent with variation trend of dataset atten-
tion. As shown in Fig. 4, the variance of dataset attention is highest on time 43
and then follows decline. The attention of twitter dataset is more discrete than
that of phrase dataset, because the variance of twitter attention is much higher
than that of phrase attention.
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Table 1. KSC clustering statistics. nc: number of cluster members, p1: percentage
between nc and Total, ns: number of items with silhouette > 0, p2: percentage between
ns and nc.

Cluster C1 C2 C3 C4 C5 C6 Total

Phrase nc 284 208 167 141 119 81 1000

p1 28.4% 20.8% 16.7% 14.1% 11.9% 8.1% 100.0%

ns 284 202 167 132 90 47 922

p2 100% 97.1% 100% 93.6% 75.6% 58% 92.2%

Twitter nc 361 164 136 135 109 95 1000

p1 36.1% 16.4% 13.6% 13.5% 10.9% 9.5% 100.0%

ns 361 140 85 123 87 87 883

p2 100% 85.37% 62.5% 91.11% 79.82% 91.58% 88.3%

Fig. 3. Silhouettes of phrase and twitter items.

Fig. 4. Variance of phrase and twitter attention.
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Fig. 5. Cluster centers of KSC on twitter and phrase items.
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4.2 SCTPM Experiments

10-fold Cross-validation Experiments. To maintain reliability of experimental
results under lower quantity of samples, we adopt 10-fold cross-validation exper-
iments. We firstly split original dataset into 10 subsamples and next select single
subsample with 100 items as test set and others with 900 items as training set.
We then conduct 10 times of cross-validation experiments and each subsample
can be treated as test set one time.

Parameter Settings. β is assigned from {43, 64} while γ is assigned from
{12, 24, 48}. Because peak appears at time 43 and time 64 is half of whole (128)
propagation length. Prediction performance may be influenced by the predic-
tive length, so we assign successively 12, 24 and 48 to γ to conduct comparison
experiments.

Prediction performance is measured by prediction accuracy and precision.
Accuracy is how close a measured value is to the actual value. Precision is how
close the measured values are to each other.

Given prediction difference PD denotes difference between the predictive
propagation pattern and the real pattern. PDCTPM and PDSCTPM represent
PD from CTPM and SCTPM, based on Euclidean distance (d1) and scaling
distance (d2) [19] respectively (See Eqs. 1, 2 and 3).

Given prediction bias PB denotes PD average of every hour and the lower the
PB, the higher the prediction accuracy. Given prediction variance PV denotes
PD variance average of every hour and the lower the PV , the higher the pre-
diction precision.

Both PB and PV are defined in Eq. 4, where n is the items’ number (1000
in this paper), γ is the predictive length.

PDCTPM = d1(x(β+1,β+γ), μi∗(β+1,β+γ)). (1)

PDSCTPM = d2(x(β+1,β+γ), sμi∗(β+1,β+γ))∗ ‖ x(β+1,β+γ) ‖ . (2)

d2 (x, y) = min
α,q

‖ x − αy(q) ‖
‖ x ‖ , α =

xyT

‖ y ‖2 . (3)

PB =
∑n

i=1 PDi

n ∗ γ
, PV =

∑n
i=1 (PDi − PD)2

n ∗ γ
(4)

Comparison Experiments. We conduct SCTPM using KSC and CTPM using
Kmeans respectively to compare prediction performance by counting PB and
PV . The experiment is associated with 2 prediction models, 2 datasets, β with
2 candidates, γ with 3 candidates and 10-fold cross-validation. Therefore there
are 120 groups of experiments for SCTPM and CTPM respectively.
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4.3 Analysis of PB and PV

There are 4 factors affecting PB or PV like β, γ, dataset and prediction model,
as shown in Figs. 6 and 7. The coordinates of horizontal axis are represented by
Dataset β γ and P denotes phrase dataset while T denotes twitter dataset.

(1) Taking β as the variable. PB or PV is higher under β = 43 than that under
β = 64 when γ is fixed. Combined with variance of dataset attention in
Fig. 4, attention variance after time 43 is higher than that after time 64 and
higher attention variance can increase PB or PV .

(2) Taking γ as thse variable. PB follows decline trend as γ increases. The
variance of dataset attention mainly presents descending trend after time 43
or 64 and lower attention variance can reduce PB.

(3) Taking dataset as the variable. PB or PV from sst twitter is higher than
that from phrase. Because twitter exhibits rich propagation patterns with
several peaks while phrase presents monotonous ones with just one peak.
The more the peaks, the higher the attention variance.

(4) Taking prediction model as the variable. SCTPM using KSC outperforms
CTPM using Kmeans in terms of PB or PV , observing that PB or PV
from SCTPM is lower than that from CTPM. Because KSC produces a
unique prediction pattern for every predictive object by scaling process while
Kmeans without scaling just only outputs fixed K(number of cluster) pre-
diction patterns for all predictive objects. Thus SCTPM obtains fine-grained
prediction results while CTPM represents coarse-grained ones.

In summary, CTPM can obtain poor prediction performance especially for
social propagation trend with rapid dynamics while SCTPM is suitable for pre-
dicting trend with rapid or monotonous changes.

Fig. 6. PB statistics of SCTPM and CTPM
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Fig. 7. PV statistics of SCTPM and CTPM

5 Conclusion

This paper studies a clustering-based temporal prediction model to predict the
propagation of social time series. We firstly compare clustering performance
between KSC and Kmeans because prediction performance can be influenced
by clustering methods depending on distance measures. Secondly we propose
a new model SCTPM including 3 steps: KSC clustering, nearest-neighbor clas-
sification and scaling the nearest-neighbor cluster center. KSC clustering can
produce cluster centers as propagation patterns and then nearest-neighbor clas-
sification can find out the nearest-neighbor propagation pattern for predictive
objects. Finally scaling process can restore prediction results from cluster cen-
ters because KSC cluster centers are eigenvectors. After 10-fold cross-validation
experiments on CTPM using Kmeans and SCTPM using KSC, results show that
SCTPM obtains lower prediction bias and prediction variance than CTPM. The
superiority of SCTPM comes from the fact that KSC produces a unique pre-
diction pattern for every predictive object while Kmeans only outputs fixed K
prediction patterns for all predictive objects. In future, we would like to present
upper and lower limits of time series of prediction results.
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Abstract. Mining incomplete data using approximations based on char-
acteristic sets is a well-established technique. It is applicable to incom-
plete data sets with a few interpretations of missing attribute values, e.g.,
lost values and “do not care” conditions. Typically, probabilistic approx-
imations are used in the process. On the other hand, maximal consistent
blocks were introduced for incomplete data sets with only “do not care”
conditions, using only lower and upper approximations. In this paper we
introduce an extension of the maximal consistent blocks to incomplete
data sets with any interpretation of missing attribute values and with
probabilistic approximations. Additionally, we present results of experi-
ments on mining incomplete data using both characteristic sets and max-
imal consistent blocks, using lost values and “do not care” conditions.
We show that there is a small difference in quality of rule sets induced
either way. However, characteristic sets can be computed in polynomial
time while computing maximal consistent blocks is associated with expo-
nential time complexity.

Keywords: Incomplete data · Lost values · “Do not care” conditions ·
Characteristic sets · Maximal consistent blocks · MLEM2 rule induction
algorithm · Probabilistic approximations

1 Introduction

We report results of experiments on incomplete data sets, using two interpreta-
tions of missing attribute values: lost values and “do not care” conditions [3].
A lost value, denoted by “?”, is interpreted as a value that we do not know
since it was erased or not inserted into the data set. Rules are induced from
existing, specified attribute values. “Do not care” conditions are interpreted as
any attribute value. For example, if an attribute is the hair color, and possible
values are blond, dark and red, a “do not care” condition is interpreted as any
of these three colors.
c© Springer International Publishing AG 2017
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For incomplete data sets special kinds of approximations: singleton, subset
and concept should be used [3]. In this paper we consider probabilistic approxi-
mations, an extension of lower and upper approximations. Such approximations
are defined using a probability denoted by α. If α = 1, the probabilistic approx-
imation is lower, if α is a positive number, slightly greater than 0, the proba-
bilistic approximation is upper. Such approximations were usually used for com-
pletely specified data sets [8,10–17]. Probabilistic approximations were extended
to incomplete data sets in [5]. First experimental results on such approximations
were reported in [1,2].

Maximal consistent blocks were introduced for incomplete data sets with only
“do not care” conditions, using only lower and upper approximations [9]. The
main objective of this paper is to extend the definition of maximal consistent
blocks to arbitrary interpretation of missing attribute values. Additionally, the
obvious question is what a better choice for data mining is: characteristic sets
or maximal consistent blocks. We conducted experiments on data sets with two
interpretations of missing attribute values, lost values and “do not care” con-
ditions. As a result, we show that there is a small difference in quality of rule
sets induced from approximations based on characteristic sets or on maximal
consistent blocks. However, characteristic sets can be computed in polynomial
time while computing maximal consistent blocks is associated with exponential
time complexity.

2 Incomplete Data Sets

An example of incomplete data set is presented in Table 1. A concept is a set of
all cases with the same decision value. In Table 1 there are two concepts, the set
{1, 2, 3, 4} of all cases with flu and the other set {5, 6, 7, 8}.

Table 1. An incomplete data set

Attributes Decision

Case Temperature Headache Cough Flu

1 Normal ? Yes Yes

2 * Yes No Yes

3 * No * Yes

4 High ? Yes Yes

5 High No No No

6 * No Yes No

7 High * ? No

8 Normal * No No

We use notation a(x) = v if an attribute a has the value v for the case x.
The set of all cases will be denoted by U . In Table 1, U = {1, 2, 3, 4, 5, 6, 7, 8}.
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For complete data sets, for an attribute-value pair (a, v), a block of (a, v),
denoted by [(a, v)], is the following set

[(a, v)] = {x|x ∈ U, a(x) = v}.

For incomplete decision tables the definition of a block of an attribute-value
pair must be modified in the following way [3,4]:

– If for an attribute a and a case x, a(x) = ?, then the case x should not be
included in any blocks [(a, v)] for all values v of attribute a,

– If for an attribute a and a case x, a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

For the data set from Table 1, all of blocks of attribute-value pairs are
[(Temperature, normal)] = {1, 2, 3, 6, 8},
[(Temperature, high)] = {2, 3, 4, 5, 6, 7},
[(Headache, no)] = {3, 5, 6, 7, 8},
[(Headache, yes)] = {2, 7, 8},
[(Cough, no)] = {2, 3, 5, 8},
[(Cough, yes)] = {1, 3, 4, 6}.

3 Characteristic Sets and Maximal Consistent Blocks

For a case x ∈ U the characteristic set KB(x) is defined as the intersection of
the sets K(x, a), for all a ∈ B, where B is a subset of the set A of all attributes
and the set K(x, a) is defined in the following way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) = ? or a(x) = ∗, then K(x, a) = U .

For the data set from Table 1, the characteristic sets are
KA(1) = {1, 3, 6},
KA(2) = {2, 8},
KA(3) = {3, 5, 6, 7, 8},
KA(4) = {3, 4, 6},
KA(5) = {3, 5},
KA(6) = {3, 6},
KA(7) = {2, 3, 4, 5, 6, 7},
KA(8) = {2, 3, 8}.

The B-characteristic relation R(B) is a relation on U defined for x, y ∈ U as
follows:

(x, y) ∈ R(B) if and only if y ∈ KB(x).



480 P.G. Clark et al.

We say that R(B) is implied by its B-characteristic sets KB(x), x ∈ U . The
B-characteristic relation R(B) is reflexive but—in general—does not need to be
symmetric or transitive. For the data set from Table 1, R(A) = {(1, 1), (1, 3),
(1, 6), (2, 2), (2, 8), (3, 3), (3, 5), (3, 6), (3, 7), (3, 8), (4, 3), (4, 4), (4, 6), (5,
3), (5, 5), (6, 3), (6, 6), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7), (8, 2), (8, 3),
(8, 8)}.

Let X be a subset of U . The set X is consistent with respect to B if (x, y) ∈
R(B) for any x, y ∈ X. If there does not exist a consistent subset Y of U
such that X is a proper subset of Y , the set X is called a maximal consistent
block of B. For data sets in which all missing attribute values are “do not care”
conditions, an idea of a maximal consistent block of B was defined in [9]. Note
that in our definition the maximal consistent blocks of B are defined for arbitrary
interpretations of missing attribute values. Following [9], we will denote the set
of all maximal consistent blocks of B by C (B). For Table 1, the set of all maximal
consistent blocks of A is C (A) = {{1}, {2, 8}, {3, 5} {3, 6}, {3, 7}, {3, 8}, {4}}.

4 Probabilistic Approximations

For incomplete data sets there exist a number of different definitions of
approximations [3]. In this paper we will use only concept approximations.

4.1 Probabilistic Approximations Based on Characteristic Sets

Let B be a subset of the set A of all attributes. A B-probabilistic approximation
of the set X with the threshold α, 0 < α ≤ 1, based on characteristic sets and
denoted by B-apprCS

α (X), is defined as follows

∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α},

where Pr(X|KB(x)) = |X∩KB(x)|
|KB(x)| is the conditional probability of X given

KB(x) [5]. A-probabilistic approximations of X with the threshold α will be
denoted by apprCS

α (X).

Table 2. Conditional probabilities Pr([(Flu, yes)]|KA(x))

x 1 2 3 4

KA(x) {1, 3, 6} {2, 8} {3, 5, 6, 7, 8} {3, 4, 6}
P ({1, 2, 3, 4} | KA(x)) 0.667 0.5 0.2 0.667

For Table 1 and both concepts, all conditional probabilities P (X|KA(x)) are
presented in Tables 2 and 3. All distinct probabilistic approximations based on
characteristic sets are
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Table 3. Conditional probabilities Pr([(Flu, no)]|KA(x))

x 5 6 7 8

KA(x) {3, 5} {3, 6} {2, 3, 4, 5, 6, 7} {2, 3, 8}
P ({5, 6, 7, 8} | KA(x)) 0.5 0.5 0.5 0.333

apprCS
0.2 ({1, 2, 3, 4}) = U,

apprCS
0.5 ({1, 2, 3, 4}) = {1, 2, 3, 4, 6, 8},

apprCS
0.667({1, 2, 3, 4}) = {1, 3, 4, 6},

apprCS
1 ({1, 2, 3, 4}) = ∅,

apprCS
0.333({5, 6, 7, 8}) = {2, 3, 4, 5, 6, 7, 8},

apprCS
0.5 ({5, 6, 7, 8}) = {2, 3, 4, 5, 6, 7},

apprCS
1 ({5, 6, 7, 8}) = ∅.

If for some β, 0 < β ≤ 1, a probabilistic approximation apprCS
β (X) is not

listed above, it is equal to the probabilistic approximation apprCS
α (X) with the

closest α to β, α ≥ β. For example, apprCS
0.4 ({1, 2, 3, 4}) = apprCS

0.5 ({1, 2, 3, 4}).

4.2 Probabilistic Approximations Based on Maximal Consistent
Blocks

By analogy with the definition of a B-probabilistic approximation based on char-
acteristic sets, a B-probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, based on maximal consistent blocks and denoted by B-apprMCB

α (X),
is defined as follows

∪{Y | Y ∈ C (B), P r(X|Y ) ≥ α},

where Pr(X|Y ) = |X∩Y |
|Y | is the conditional probability of X given Y . A-prob-

abilistic approximations of X, based on maximal consistent blocks, with the
threshold α will be denoted by apprMCB

α (X).
For Table 1 and the concept [(Flu, yes)], all conditional probabilities

Pr([(Flu, yes)]|Y ), where Y ∈ C (A), are presented in Table 4. Conditional prob-
abilities Pr([(Flu, no)]|Y ), where Y ∈ C (A), may be computed in an analo-
gous way. All distinct probabilistic approximations based on maximal consistent
blocks are

apprMCB
0.5 ({1, 2, 3, 4}) = U,
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Table 4. Conditional probabilities Pr([(Flu, yes)]|Y )

Y {1} {2, 8} {3, 5} {3, 6} {3, 7} {3, 8} {4}
P ({1, 2, 3, 4} | Y ) 1 0.5 0.5 0.5 0.5 0.5 1

apprMCB
1 ({1, 2, 3, 4}) = {1, 4},

apprMCB
0.5 ({5, 6, 7, 8}) = {2, 3, 5, 6, 7, 8},

apprMCB
1 ({5, 6, 7, 8}) = ∅.

5 Definability

Any union of characteristic sets KB(x) is called B-globally definable [7]. An A-
globally definable set is called globally definable. Let T be a set of attribute-value
pairs, where all involved attributes are distinct and are members of a set B. Such
set T is called B-complex. A block of a B-complex T , denoted by [T ], is the set
∩{[t]|t ∈ T}. Any union of blocks of B-complexes is called B-locally definable
[7]. A-locally definable set is called locally definable.

Rules are expressed by attribute-value pairs, so any set X may be described
by rules if it is locally definable, as was explained in [6]. As follows from [6],
maximal consistent blocks for incomplete data sets with only “do not care” con-
ditions are locally definable, so corresponding approximations are also locally
definable. However, in general, for arbitrary incomplete data sets, maximal con-
sistent blocks are not locally definable. For example, for the data set from Table 1,
sets {1} and {4}, maximal consistent blocks, are not locally definable. Indeed,
case 1 occurs in only two blocks: [(Temperature, normal)] and [(Cough, yes)],
and the intersection of these two sets is {1, 3, 6}. Similarly, case 4 occurs also
in only two blocks: [(Temperature, high)] and [(Cough, yes)], while the inter-
section of these two sets is {3, 4, 6}. Thus none of the sets: {1}, {4} and {1,
4} can be expressed by rules. From the point of rule induction the set {1, 4} =
apprMCB

1 ({1, 2, 3, 4}) is useless.

6 Experiments

Our experiments were conducted on nine data sets obtained from the University
of California at Irvine Machine Learning Repository. For any data set, a corre-
sponding incomplete data set was created by a random replacement of specified
values by question marks (lost values), until an entire row of a data set was full
of “?”s. Such a data set was removed from experiments, we used only data sets
with at least one specified value for any row. For any incomplete data set with
“?”s, another incomplete data set was created by replacing all “?”s by “*”s (“do
not care” conditions).
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Fig. 1. Number of rules for the breast
cancer data set

Fig. 2. Error rate for the echocar-
diogram data set with lost values

Fig. 3. Error rate for the global climate
data set with lost values

Fig. 4. Error rate for the hepatitis
data set with lost values

Fig. 5. Error rate for the image seg-
mentation data set with lost values

Fig. 6. Error rate for the iris data
set with lost values

Our main objective was to compare the quality of two approaches to rule
induction, based on characteristic sets and maximal consistent blocks, respec-
tively, in terms of an error rate. Note that due to computational complexity, our
experiments were restricted to only some percentage of missing attribute values
and to some type of incomplete data sets. Results of our experiments, presented
in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, are restricted to only three data
sets with “do not care” conditions, due to excessive computational complexity.
In Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, “Lower” means a lower approxima-
tion (α = 1), “Middle” means a middle probabilistic approximation (α = 0.5),
and “Upper” means an upper approximation (α = 0.001). Additionally, “CS”
means a characteristic set and “MCB” means a maximal consistent block.
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Fig. 7. Error rate for the lymphography
data set with lost values

Fig. 8. Error rate for the postopera-
tive patient data set with lost values

Fig. 9. Error rate for the small soybean
data set with lost values

Fig. 10. Error rate for the global
climate data set with “do not care”
conditions

Fig. 11. Error rate for the echocardio-
gram data set with “do not care” con-
ditions

Fig. 12. Error rate for the lymphog-
raphy data set with “do not care”
conditions

For a comparison of the two approaches to rule induction, based on char-
acteristic sets and maximal consistent blocks, we used the Friedman rank sum
test combined with multiple comparisons, with a 5% level of significance. For
all twelve possibilities, presented in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12,
for only one possibility (presented in Fig. 8 for postoperative patient with lost
values) the null hypothesis of nonsignificant differences between the six methods
is rejected: methods based on characteristic sets combined with middle approxi-
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mations are better than methods based on maximal consistent blocks with upper
approximations.

Thus, we may conclude that there is a small difference in quality of rule
sets induced by characteristic sets and maximal consistent blocks. Taking into
account computational complexity, it is better to apply data mining to charac-
teristic sets than to maximal consistent blocks.

Originally, maximal consistent blocks were introduced for incomplete data
sets with “do not care” conditions [9]. For such data sets rule induction is much
more time consuming than for data sets with lost values.

7 Conclusions

In experiments reported in this paper, we compared quality of rule sets induced
from characteristic sets and maximal consistent blocks. Results of our experi-
ments show that there is a small difference in quality of rule sets induced using
both approaches. Taking into account computational complexity, it is better to
apply data mining to characteristic sets than to maximal consistent blocks.
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Abstract. Rough sets and rule induction based on them are described
in incomplete information tables where attribute values are ordered. We
apply possible world semantics to an incomplete information table, as
Lipski did in incomplete databases. The set of possible tables on a set
of attributes is derived from the original incomplete information table.
Rough sets, a pair of lower and upper approximations, are obtained from
every possible table. An object is certainly included in an approximation
when it is in the approximation in all possible tables, while an object is
possibly included in an approximation when it is in the approximation in
some possible tables. From this, we obtain certain and possible approx-
imations. The actual approximation is greater than the certain one and
less than the possible one. Finally, we obtain the approximation in the
form of interval sets. There exists a gap between rough sets and rule
induction from them. To bridge rough sets and rule induction, we give
expressions that correspond to certain and possible approximations. The
expressions consist of a pair of an object and a rule that the object sup-
ports. Consequently, four types of rule supports: certain and consistent,
certain and inconsistent, possible and consistent, and possible and incon-
sistent supports, are obtained from the expressions. The formulae can be
applied to the case where not only attributes used to approximate but
also attributes approximated have a value with incomplete information.
The results give a correctness criterion of rough sets and rule induction
based on them in incomplete ordered information systems, as the results
of Lipski’s work are so in incomplete databases.
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1 Introduction

Rough sets, proposed by Pawlak [21], give successful results as a tool for data
analysis. The rough sets are defined by using classes obtained from an indis-
cernibility relation. The indiscernibility relation is derived from two objects
being indiscernible when data values characterizing them are symbolically equal.
The essential elements are lower and upper approximations that correspond to
inclusion and intersection, respectively. These approximations are defined under
obtaining complete information for objects and existing no order between values
specifying the objects. As a matter of fact, it is common that data from the real
world contains incomplete information [19,20]. Also, data values are used align-
ing in some order; for example, in ascending or descending order, in dominance
order, in preference order, in alphabetical order, and so on. For example, suppose
that data values 17, around 30, 22, and 40 are obtained as ages of four persons.
These data values are aligned in ascending order like 17, 22, around 30, and 40
from the viewpoint of youngness and “around 30” is not a value with complete
information. Such a situation frequently occurs in the real data. So, we describe
rough sets and how rules are derived from them in incomplete information tables
with ordered domains.

For existing order between data values, Greco et al. proposed rough sets
based on dominance relations [7]. And also Greco et al. dealt with incomplete
information by fixing indiscernibility of a missing value with another one [6],
as Kryszkiewicz dealt with the missing value in incomplete information systems
without ordered domains [11]. Lots of authors adopt a similar treatment for
the missing value [4,15,22,28,31,33]. Qian et al. fix the order of a value having
incomplete information with another value by comparing possible minimum and
maximum that the values can take [23], which is used by some authors [3,14,30].
Yang and Dou fix a degree with which a missing value is indiscernible with
another value [32].

Fixing indiscernibility or order of a value having incomplete information with
another value is questionable. This is because we cannot definitely know whether
it may be actually equal to another one or not without additional information.
There exist two possibilities for a value with incomplete information. One pos-
sibility is that it may be equal to another value; namely the values may be
indiscernible. The other possibility is that the two values may be not equal to
each other; namely, they may be discernible. Fixing indiscernibility means to
take into account only one possibility, but to neglect the other possibility. This
treatment generates information loss and creates poor results [16,29].

Such a situation also occurs for fixing order of a value having incomplete
information with another value. For example, suppose we have two values x
with complete information and y with incomplete information where x is 5 and
the actual value of y is one in {2, 4, 5, 7, 9}. There exists two possibilities for
order of x and y, If the actual value of y is 7 or 9, we obtain x < y, otherwise
x ≥ y. We cannot know which possibility is true without additional information.
Two possibilities should be taken into account. Therefore, fixing order of a value
having incomplete information with another value generates loss of information
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and creates poor results, as is shown in incomplete information systems with no
ordered domains [16,29].

Lipski proposed an approach dealing with incomplete information [12,13].
Lipski’s approach is based on possible world semantics and deals with all possi-
bilities that a value with incomplete information has. The approach does not fix
both indiscernibility and order of a value having incomplete information with
another value, although it seems to have difficulty of computational complexity.
This is because the number of possibilities grows exponentially, as the number
of values with incomplete information increases. However, we can undoubtedly
know properties of operations to incomplete information under Lipski’s app-
roach. From this, results of Lipski’s approach are used as a correctness criterion
of handling incomplete information in the field of databases [1,2,5,9,10,18,34].
Therefore, we describe properties of rough sets and rule induction from them
under Lipski’s approach. The results of this paper give a correctness criterion of
rough sets and rule induction based on them in incomplete information tables
with ordered domains.

The paper is organized as follows. In Sect. 2, an approach based on classes
obtained from order relations is briefly addressed in complete information tables
with ordered domains, called complete ordered information systems. The descrip-
tions are based on Greco et al. [7]. In Sect. 3, we describe an approach based on
possible world semantics in incomplete information tables with ordered domains,
called incomplete ordered information systems. Rough sets are formulated from
the viewpoint of both certainty and possibility, as Lipski dealt with incomplete
information. To induce rules from lower and upper approximations, we gives
expressions whose element is a pair of an object and a rule that the object sup-
ports. By using the expressions, we clarify what rules objects support and how
they do the rules. In Sect. 4, we give conclusion and future work.

2 Rough Sets by Classes from Order Relations
in Complete Ordered Information Systems

A data set obtained from some observations is represented as a table, called
an information table. In the information table each row represents an object
and each column an attribute with an ordered domain. When information is
complete, a mathematical model of an information table with ordered domains is
called a complete ordered information system. The complete ordered information
system is a quardple expressed by (U,AT, {Dom(ai) | ai ∈ AT}, {Iai

| ai ∈ AT})
where Dom(ai) is the set of values that attribute ai can have; namely, the
domain of ai, and Iai

is the order relation imposed on ai. A non-empty finite
set of objects, called the universe, is denoted by U . A non-empty finite set of
attributes is denoted by AT . The relationship of U and AT is such that for every
ai ∈ AT ai : U → Dom(ai) with order relation Iai

.
Greco et al. proposed expressions of rough sets in complete information sys-

tems with ordered domains [7]. Suppose order of any two values in Dom(ai) is
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derived from order relation Iai
that is equal to ascending order relation I≥

ai
or

descending order relation I≤
ai

whose element is pair (o, o′) of objects o and o′:

I≥
ai

= {(o, o′) ∈ U × U : ai(o) ≥ ai(o′)}, (1)

I≤
ai

= {(o, o′) ∈ U × U : ai(o) ≤ ai(o′)}, (2)

where ai(o) denotes the value of object o for attribute ai. From I≥
ai

and I≤
ai

, we
obtain ascending classe C≥

ai,yj
and descending class C≤

ai,yj
where C≥

ai,yk
is the

set of objects with ai(o) ≥ yk and C≤
ai,yk

is the set of objects with ai(o) ≤ yk,
respectively, where yk is in Vai

with |Vai
| = n where Vai

⊆ Dom(ai) is the set
of values that actually occur for attribute ai.

C≥
ai,yk

= {o ∈ U : (o, o′) ∈ I≥
ai

∧ ai(o′) = yk}, (3)

C≤
ai,yk

= {o ∈ U : (o, o′) ∈ I≤
ai

∧ ai(o′) = yk}. (4)

Formula (3) means that objects with ai(o) ≥ yk belong to the same class C≥
ai,yk

;
namely, they are indiscernible in being greater than or equal to yk for ai. Formula
(4) means that objects with ai(o) ≤ yk belong to the same class C≤

ai,yk
; namely,

they are indiscernible in being less than or equal to yk for ai. When elements in
Vai

are linearly ordered; namely, for y1 ≤ y2 ≤ · · · ≤ yn, U = C≥
ai,y1

⊇ C≥
ai,y2

⊇
· · · ⊇ C≥

ai,yn
and C≤

ai,y1
⊆ C≤

ai,y2
⊆ · · · ⊆ C≤

ai,yn
= U .

Lower approximation aj(C≥
ai,yk

) and upper approximation aj(C≥
ai,yk

) of
C≥

ai,yk
by aj ∈ AT are:

aj(C≥
ai,yk

) = {o ∈ U : C≥
aj ,aj(o)

⊆ C≥
ai,yk

}, (5)

aj(C≥
ai,yk

) = {o ∈ U : C≤
aj ,aj(o)

∩ C≥
ai,yk


= ∅}, (6)

Lower approximation aj(C≤
ai,yk

) and upper approximation aj(C≤
ai,yk

) of C≤
ai,yk

by aj ∈ AT are:

aj(C≤
ai,yk

) = {o ∈ U : C≤
aj ,aj(o)

⊆ C≤
ai,yk

}, (7)

aj(C≤
ai,yk

) = {o ∈ U : C≥
aj ,aj(o)

∩ C≤
ai,yk


= ∅}. (8)

The following properties hold [6]:

aj(C≥
ai,yk

) ⊆ C≥
ai,yk

⊆ aj(C≥
ai,yk

), (9)

aj(C
≤
ai,yk

) ⊆ C≤
ai,yk

⊆ aj(C≤
ai,yk

). (10)

Also, complementarity holds [6]:

aj(C≥
ai,xk

) = U − aj(C≤
ai,yk−1

), k = 2, . . . , n, (11)

aj(C≤
ai,xk

) = U − aj(C≥
ai,yk+1

), k = 1, . . . , n − 1, (12)

aj(C≥
ai,xk

) = U − aj(C≤
ai,yk−1

), k = 2, . . . , n, (13)

aj(C≤
ai,xk

) = U − aj(C≥
ai,yk+1

), k = 1, . . . , n − 1. (14)
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We induce rules from lower and upper approximations. When an object is
included in an approximation, the object consistently or inconsistently supports
a rule.

– When o ∈ aj(C≥
ai,yk

), o consistently supports a rule “If aj ≥ aj(o), then
ai ≥ yk” where k = 2, . . . , n.

– When o ∈ aj(C≥
ai,yk

) \ aj(C≥
ai,yk

), o inconsistently supports a rule “If aj ≥
aj(o), then ai ≥ yk” where k = 2, . . . , n. The degree of consistency, called the
accuracy of the rule, is |C≥

aj ,aj(o)
∩ C≥

ai,yk
|/|C≥

aj ,aj(o)
|.

– When o ∈ aj(C≤
ai,yk

), o consistently supports a rule “If aj ≤ aj(o), then
ai ≤ yk” where k = 1, . . . , n − 1.

– When o ∈ aj(C≤
ai,yk

) \ aj(C≤
ai,yk

), o inconsistently supports a rule “If aj ≤
aj(o), then ai ≤ yk” where k = 1, . . . , n − 1. The degree of consistency is
|C≤

aj ,aj(o)
∩ C≤

ai,yk
|/|C≤

aj ,aj(o)
|.

Thus far, the formulae are described for a single attribute. We express for-
mulae for a set of attributes. Order relations on set A of attributes are:

I≥
A = {(o, o′) ∈ U × U : A(o) ≥ A(o′)} = ∩a∈AI

≥
a ,

I≤
A = {(o, o′) ∈ U × U : A(o) ≤ A(o′)} = ∩a∈AI

≤
a ,

where A(o) ≥ A(o′) and A(o) ≤ A(o′) are equal to ∧a∈A(a(o) ≥ a(o′)) and
∧a∈A(a(o) ≤ a(o′)), respectively. Classes derived from I≥

A and I≤
A are:

C≥
A,Yk

= {o ∈ U : (o, o′) ∈ I≥
A ∧ A(o′) = Yk} = ∩h=1,mC≥

ah,yh,k
,

C≤
A,Yk

= {o ∈ U : (o, o′) ∈ I≤
A ∧ A(o′) = Yk} = ∩h=1,mC≤

ah,yh,k
,

where A = {a1, . . . am} with m ≤ |AT |, Yk = {y1,k, . . . , ym,k}, and A(o) = Yk

is equal to ∧h=1,m(ah(o) = yh,k). Lower approximation B(C≥
A,Yk

) and upper
approximation B(C≥

A,Yk
) of C≥

A,Yk
by B ⊆ AT are:

B(C≥
A,Yk

) = {o ∈ U : C≥
B,B(o) ⊆ C≥

A,Yk
} = ∩h=1,mB(C≥

ah,yh,k
),

B(C≥
A,Yk

) = {o ∈ U : C≤
B,B(o) ∩ C≥

A,Yk

= ∅} = ∩h=1,mB(C≥

ah,yh,k
),

Lower approximation B(C≤
A,Yk

) and upper approximation B(C≤
A,Yk

) of C≤
A,Yk

by
B are:

B(C≤
A,Yk

) = {o ∈ U : C≤
B,B(o) ⊆ C≤

A,Yk
} = ∩h=1,mB(C≤

ah,yh,k
),

B(C≤
A,Yk

) = {o ∈ U : C≥
B,B(o) ∩ C≤

A,Yk

= ∅} = ∩h=1,mB(C≤

ah,yh,k
).

Note that complementarity holds for these approximations if |A| = 1; namely, a
single attribute, otherwise it does not hold.
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3 Rough Sets Based on Possible World Semantics
in Incomplete Ordered Information Systems

Incomplete information is expressed by a set of values that an object can take
for an attribute. A missing value that means existing but unknown at present
is expressed by the set of all elements in the domain. Therefore, for ai ∈ AT
ai : U → 2Dom(ai). We describe rough sets on the basis of Lipski’s work using
possible world semantics [12]. Suppose we focus on set A of attributes. The set of
possible tables on A is obtained from the original incomplete ordered information
table. A possible table is a candidate on A of the actual table. In a possible table,
the value that an object has for each attribute in A is one of possible values that
the object has for the attribute in the original incomplete ordered information
table. Set ptA of possible tables on A is:

ptA = {t : ∀o ∈ U ∀ai ∈ A ai(o)t = e ∧ e ∈ ai(o)}, (15)

where ai(o)t and ai(o) are values of attribute ai for object o in possible table t and
in the original incomplete ordered information table, respectively. Every possible
table has complete information on A, called a complete information table on A.
The formulae in complete information systems can be applied to every possible
table on A. Therefore, rough sets, lower and upper approximations, are derived
for each possible table by using the formulae described in the previous section.

Example 1. Let an information table be as follows:

U a1 a2 a3
1 {x} {1, 2, 4} {a, c}
2 {y, z} {1, 3} {c}
3 {x, y} {1} {a}
4 {y} {1} {b}
5 {y} {3} {c}
6 {z} {2} {c}

Order relations: z > y > x, 3 > 2 > 1, and c > b > a are imposed on a1, a2
and a3, respectively. When we focus on attributes a1 and a3, the following eight
possible tables are obtained on {a1, a3}:

t1
U a1 a2 a3
1 {x} {1, 2, 4} {a}
2 {y} {1, 3} {c}
3 {x} {1} {a}
4 {y} {1} {b}
5 {y} {3} {c}
6 {z} {2} {c}

t2
U a1 a2 a3
1 {x} {1, 2, 4} {c}
2 {y} {1, 3} {c}
3 {x} {1} {a}
4 {y} {1} {b}
5 {y} {3} {c}
6 {z} {2} {c}

t3
U a1 a2 a3
1 {x} {1, 2, 4} {a}
2 {y} {1, 3} {c}
3 {y} {1} {a}
4 {y} {1} {b}
5 {y} {3} {c}
6 {z} {2} {c}
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t4
U a1 a2 a3
1 {x} {1, 2, 4} {c}
2 {y} {1, 3} {c}
3 {y} {1} {a}
4 {y} {1} {b}
5 {y} {3} {c}
6 {z} {2} {c}

t5
U a1 a2 a3
1 {x} {1, 2, 4} {a}
2 {z} {1, 3} {c}
3 {x} {1} {a}
4 {y} {1} {b}
5 {y} {3} {c}
6 {z} {2} {c}

t6
U a1 a2 a3
1 {x} {1, 2, 4} {c}
2 {z} {1, 3} {c}
3 {x} {1} {a}
4 {y} {1} {b}
5 {y} {3} {c}
6 {z} {2} {c}

t7
U a1 a2 a3
1 {x} {1, 2, 4} {a}
2 {z} {1, 3} {c}
3 {y} {1} {a}
4 {y} {1} {b}
5 {y} {3} {c}
6 {z} {2} {c}

t8
U a1 a2 a3
1 {x} {1, 2, 4} {c}
2 {z} {1, 3} {c}
3 {y} {1} {a}
4 {y} {1} {b}
5 {y} {3} {c}
6 {z} {2} {c}

Set pt{a1,a3} of possible tables on {a1, a3} is:

pt{a1,a3} = {t1, · · · , t8}.

Lower a1(C
≥
a3,b

)ti and upper approximation a1(C
≥
a3,b

)ti of C≥
a3,b

for a1 are:

a1(C
≥
a3,b

)t1 = {o2, o4, o5, o6},
a1(C

≥
a3,b

)t1 = {o2, o4, o5, o6},
a1(C

≥
a3,b

)t2 = {o2, o4, o5, o6},
a1(C

≥
a3,b

)t2 = {o1, o2, o3, o4, o5, o6},
a1(C

≥
a3,b

)t3 = {o6},
a1(C

≥
a3,b

)t3 = {o2, o3, o4, o5, o6},
a1(C

≥
a3,b

)t4 = {o6},
a1(C

≥
a3,b

)t4 = {o1, o2, o3, o4, o5, o6},
a1(C

≥
a3,b

)t5 = {o2, o4, o5, o6},
a1(C

≥
a3,b

)t5 = {o2, o4, o5, o6},
a1(C

≥
a3,b

)t6 = {o2, o4, o5, o6},
a1(C

≥
a3,b

)t6 = {o1, o2, o3, o4, o5, o6},
a1(C

≥
a3,b

)t7 = {o2, o6},
a1(C

≥
a3,b

)t7 = {o2, o3, o4, o5, o6},
a1(C

≥
a3,b

)t8 = {o2, o6},
a1(C

≥
a3,b

)t8 = {o1, o2, o3, o4, o5, o6},
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where C≥
a3,b

= {o2, o4, o5, o6} for possible tables t1, t3, t5, and t7, and C≥
a3,b

=
{o1, o2, o4, o5, o6} for the other possible tables.

a1(C
≤
a3,b

)t1 = {o1, o3},
a1(C

≤
a3,b

)t1 = {o1, o2, o3, o4, o5},
a1(C

≤
a3,b

)t2 = ∅,
a1(C

≤
a3,b

)t2 = {o1, o2, o3, o4, o5},
a1(C

≤
a3,b

)t3 = {o1},
a1(C

≤
a3,b

)t3 = {o1, o2, o3, o4, o5},
a1(C

≤
a3,b

)t4 = ∅,
a1(C

≤
a3,b

)t4 = {o1, o2, o3, o4, o5},
a1(C

≤
a3,b

)t5 = {o1, o3},
a1(C

≤
a3,b

)t5 = {o1, o3, o4, o5},
a1(C

≤
a3,b

)t6 = ∅,
a1(C

≤
a3,b

)t6 = {o1, o3, o4, o5},
a1(C

≤
a3,b

)t7 = {o1},
a1(C

≤
a3,b

)t7 = {o1, o3, o4, o5},
a1(C

≤
a3,b

)t8 = ∅,
a1(C

≤
a3,b

)t8 = {o1, o3, o4, o5},

where C≤
a3,b

= {o1, o3, o4} for possible tables t1, t3, t5, and t7, and C≥
a3,b

= {o3, o4}
for the other possible tables.

There may exist an object that is included in an approximation in all possible
tables. The object is certainly an element of the approximation. The set of
such objects is called the certain approximation. Certain approximations, sets
of objects that certainly belong to approximations, are:

Caj(C≥
ai,yk

) = {o ∈ U : ∀t ∈ pt{ai,aj} o ∈ aj(C≥
ai,yk

)t}, (16)

Caj(C≥
ai,yk

) = {o ∈ U : ∀t ∈ pt{ai,aj} o ∈ aj(C≥
ai,yk

)t}, (17)

Caj(C≤
ai,yk

) = {o ∈ U : ∀t ∈ pt{ai,aj} o ∈ aj(C≤
ai,yk

)t}, (18)

Caj(C≤
ai,yk

) = {o ∈ U : ∀t ∈ pt{ai,aj} o ∈ aj(C≤
ai,yk

)t}, (19)

where aj(C≥
ai,yk

)t, aj(C≥
ai,yk

)t, aj(C≤
ai,yk

)t, and aj(C≤
ai,yk

)t are approximations
in possible table t.

There may exist an object that is included in an approximation in some
possible tables. The object is possibly an element of the approximation. The set
of such objects is called the possible approximation. Possible approximations,



Rough Sets in Incomplete Information Systems with Order Relations 495

sets of objects that possibly belong to approximations, are:

Paj(C≥
ai,yk

) = {o ∈ U : ∃t ∈ pt{ai,aj} o ∈ aj(C≥
ai,yk

)t}, (20)

Paj(C≥
ai,yk

) = {o ∈ U : ∃t ∈ pt{ai,aj} o ∈ aj(C≥
ai,yk

)t}, (21)

Paj(C≤
ai,yk

) = {o ∈ U : ∃t ∈ pt{ai,aj} o ∈ aj(C≤
ai,yk

)t}, (22)

Paj(C≤
ai,yk

) = {o ∈ U : ∃t ∈ pt{ai,aj} o ∈ aj(C≤
ai,yk

)t}. (23)

Proposition 1

Caj(C≥
ai,yk

) ⊆ C≥
ai,yk

⊆ Caj(C≥
ai,yk

),

Paj(C≥
ai,yk

) ⊆ C≥
ai,yk

⊆ Paj(C≥
ai,yk

),

Caj(C≤
ai,yk

) ⊆ C≤
ai,yk

⊆ Caj(C≤
ai,yk

),

Paj(C≤
ai,yk

) ⊆ C≤
ai,yk

⊆ Paj(C≤
ai,yk

).

Proposition 2

Caj(C≥
ai,yk

) ⊆ Paj(C≥
ai,yk

),

Caj(C≥
ai,yk

) ⊆ Paj(C≥
ai,yk

),

Caj(C≤
ai,yk

) ⊆ Paj(C≤
ai,yk

),

Caj(C≤
ai,yk

) ⊆ Paj(C≤
ai,yk

).

From Propositions 1 and 2,

Caj(C≥
ai,yk

) ⊆ Paj(C≥
ai,yk

) ⊆ C≥
ai,yk

⊆ Caj(C≥
ai,yk

) ⊆ Paj(C≥
ai,yk

),

Caj(C≤
ai,yk

) ⊆ Paj(C≤
ai,yk

) ⊆ C≤
ai,yk

⊆ Caj(C≤
ai,yk

) ⊆ Paj(C≤
ai,yk

).

Example 2. In information table T of Example 1, certain lower and upper
approximations of C≥

a3,b
are:

Ca1(C
≥
a3,b

) = {o6},
Ca1(C

≥
a3,b

) = {o2, o4, o5, o6},
Ca1(C

≤
a3,b

) = ∅,
Ca1(C

≤
a3,b

) = {o1, o3, o4, o5}.
Possible lower and upper approximations are:

Pa1(C
≥
a3,b

) = {o2, o4, o5, o6},
Pa1(C

≥
a3,b

) = {o1, o2, o3, o4, o5, o6},
Pa1(C

≤
a3,b

) = {o1, o3},
Pa1(C

≤
a3,b

) = {o1, o2, o3, o4, o5}.
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The following relationships between approximations hold:

Proposition 3

Caj(C≥
ai,yk

) = U − Paj(C≤
ai,yk−1

), k = 2, . . . , n,

Paj(C≥
ai,yk

) = U − Caj(C≤
ai,yk−1

), k = 2, . . . , n,

Caj(C≤
ai,yk

) = U − Paj(C≥
ai,yk+1

), k = 1, . . . , n − 1,

Paj(C≤
ai,yk

) = U − Caj(C≥
ai,yk+1

), k = 1, . . . , n − 1,

Caj(C≥
ai,yk

) = U − Paj(C≤
ai,yk−1

), k = 2, . . . , n,

Paj(C≥
ai,yk

) = U − Caj(C≤
ai,yk−1

), k = 2, . . . , n,

Caj(C≤
ai,yk

) = U − Paj(C≥
ai,yk+1

), k = 1, . . . , n − 1,

Paj(C≤
ai,yk

) = U − Caj(C≥
ai,yk+1

), k = 1, . . . , n − 1.

By using certain and possible approximations, lower and upper approximations
are:

aj
•(C≥

ai,yk
) = [Caj(C≥

ai,yk
), Paj(C≥

ai,yk
)], (24)

aj
•(C≥

ai,yk
) = [Caj(C≥

ai,yk
), Paj(C≥

ai,yk
)], (25)

aj
•(C≤

ai,yk
) = [Caj(C≤

ai,yk
), Paj(C≥

ai,yk
)], (26)

aj
•(C≤

ai,yk
) = [Caj(C≤

ai,yk
), Paj(C≤

ai,yk
)]. (27)

As is shown in these formulae, approximations are expressed by interval sets.
The lower bound of an approximation is a set of objects that certainly belongs
to the approximation. The upper bound of an approximation is a set of objects
that possibly belongs to the approximation.

Proposition 4

aj
•(C≥

ai,yk
) ⊆ aj

•(C≥
ai,yk

),

aj
•(C≤

ai,yk
) ⊆ aj

•(C≤
ai,yk

).

Example 3. By using approximations that are described in Example 2, lower and
upper approximations of C≥

a3,b
and C≤

a3,b
by a1 are:

a1
•(C≥

a3,b
) = [{o6}, {o2, o4, o5, o6}],

a1
•(C≥

a3,b
) = [{o2, o4, o5, o6}, {o1, o2, o3, o4, o5, o6}],

a1
•(C≤

a3,b
) = [∅, {o1, o3}],

a1
•(C≤

a3,b
) = [{o1, o3, o4, o5}, {o1, o2, o3, o4, o5}].
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Proposition 5

aj
•(C≥

ai,yk
) = U − aj

•(C≤
ai,yk−1

), k = 2, . . . , n,

aj
•(C≤

ai,yk
) = U − aj

•(C≥
ai,yk+1

), k = 1, . . . , n − 1,

aj
•(C≥

ai,yk
) = U − aj

•(C≤
ai,yk−1

), k = 2, . . . , n,

aj
•(C≤

ai,yk
) = U − aj

•(C≥
ai,yk+1

), k = 1, . . . , n − 1.

This proposition shows that the complementarity holds in incomplete ordered
information systems, as it holds in complete ordered information systems in the
previous section.

There exists a gap between rule induction and approximations. For example,
o2 ∈ Ca1(C

≥
a3,b

), but a1(o2) = {y, z}; namely, o2 supports a rule with a1 ≥ y
or a1 ≥ z. We cannot know from the approximations which rule and how o2
supports. Considering such a situation, we use the expressions whose element is
a pair of an object and the rule that the object supports.

First, in the case of possible table t that is a complete ordered information
table on {ai, aj}, we describe the expressions as follows:

raj
(C≥

ai,yk
)t = {(o ∈ U, aj ≥ aj(o) → ai ≥ yk) : C≥

aj ,aj(o)
⊆ C≥

ai,yk
}, (28)

raj
(C≥

ai,yk
)t = {(o ∈ U, aj ≥ aj(o) → ai ≥ yk) : C≤

aj ,aj(o)
∩ C≥

ai,yk

= ∅}, (29)

raj
(C≤

ai,yk
)t = {(o ∈ U, aj ≤ aj(o) → ai ≤ yk) : C≤

aj ,aj(o)
⊆ C≤

ai,yk
}, (30)

raj
(C≤

ai,yk
)t = {(o ∈ U, aj ≤ aj(o) → ai ≤ yk) : C≥

aj ,aj(o)
∩ C≤

ai,yk

= ∅}. (31)

We apply the expressions to every possible table.

Example 4. In each possible tables obtained in Example 1, we derive pairs of an
object and the rule that it supports by using the above formulae (28) and (29).

ra1(C
≥
a3,b

)t1 = {(o2, a1 ≥ y → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t1 = {(o2, a1 ≥ y → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t2 = {(o2, a1 ≥ y → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t2 = {(o1, a1 ≥ x → a3 ≥ b), (o2, a1 ≥ y → a3 ≥ b),
(o3, a1 ≥ x → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t3 = {(o6, a1 ≥ z → a3 ≥ b)},
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ra1(C
≥
a3,b

)t3 = {(o2, a1 ≥ y → a3 ≥ b), (o3, a1 ≥ y → a3 ≥ b),
(o4, a1 ≥ y → a3 ≥ b), (o5, a1 ≥ y → a3 ≥ b),
(o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t4 = {(o6, a1 ≥ z → a3 ≥ b)},
ra1(C

≥
a3,b

)t4 = {(o1, a1 ≥ x → a3 ≥ b), (o2, a1 ≥ y → a3 ≥ b),
(o3, a1 ≥ y → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t5 = {(o2, a1 ≥ z → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t5 = {(o2, a1 ≥ z → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t6 = {(o2, a1 ≥ z → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t6 = {(o1, a1 ≥ x → a3 ≥ b), (o2, a1 ≥ z → a3 ≥ b),
(o3, a1 ≥ x → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t7 = {(o2, a1 ≥ z → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},
ra1(C

≥
a3,b

)t7 = {(o2, a1 ≥ z → a3 ≥ b), (o3, a1 ≥ y → a3 ≥ b),
{(o4, a1 ≥ y → a3 ≥ b), (o5, a1 ≥ y → a3 ≥ b),
{(o6, a1 ≥ z → a3 ≥ b)},

ra1(C
≥
a3,b

)t8 = {(o2, a1 ≥ z → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},
ra1(C

≥
a3,b

)t8 = {(o1, a1 ≥ x → a3 ≥ b), (o2, a1 ≥ z → a3 ≥ b),
(o3, a1 ≥ y → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)}.

By using the above formulae (30) and (31).

ra1(C
≤
a3,b

)t1 = {(o1, a1 ≤ x → a3 ≤ b), (o3, a1 ≤ x → a3 ≤ b)},
ra1(C

≤
a3,b

)t1 = {(o1, a1 ≤ x → a3 ≤ b), (o2, a1 ≤ y → a3 ≤ b),
(o3, a1 ≤ x → a3 ≤ b), (o4, a1 ≤ y → a3 ≤ b)},
(o5, a1 ≤ y → a3 ≤ b)},

ra1(C
≤
a3,b

)t2 = ∅,
ra1(C

≤
a3,b

)t2 = {(o1, a1 ≤ x → a3 ≤ b), (o2, a1 ≤ y → a3 ≤ b),
(o3, a1 ≤ x → a3 ≤ b), (o4, a1 ≤ y → a3 ≤ b)},
(o5, a1 ≤ y → a3 ≥ b)},

ra1(C
≤
a3,b

)t3 = {(o1, a1 ≤ x → a3 ≤ b)},



Rough Sets in Incomplete Information Systems with Order Relations 499

ra1(C
≤
a3,b

)t3 = {(o1, a1 ≤ x → a3 ≤ b), (o2, a1 ≤ y → a3 ≥ b),
(o3, a1 ≤ y → a3 ≤ b), (o4, a1 ≤ y → a3 ≤ b)},
(o5, a1 ≤ y → a3 ≥ b)},

ra1(C
≤
a3,b

)t4 = ∅,
ra1(C

≤
a3,b

)t4 = {(o1, a1 ≤ x → a3 ≤ b), (o2, a1 ≤ y → a3 ≤ b),
(o3, a1 ≤ y → a3 ≤ b), (o4, a1 ≤ y → a3 ≤ b)},
(o5, a1 ≤ y → a3 ≤ b)},

ra1(C
≤
a3,b

)t5 = {(o1, a1 ≤ x → a3 ≤ b), (o3, a1 ≤ x → a3 ≤ b)},
ra1(C

≤
a3,b

)t5 = {(o1, a1 ≤ x → a3 ≤ b), (o3, a1 ≤ x → a3 ≤ b),
(o4, a1 ≤ y → a3 ≤ b), (o5, a1 ≤ y → a3 ≤ b)},

ra1(C
≤
a3,b

)t6 = ∅,
ra1(C

≤
a3,b

)t6 = {(o1, a1 ≤ x → a3 ≤ b), (o3, a1 ≤ x → a3 ≤ b),
(o4, a1 ≤ y → a3 ≤ b), (o5, a1 ≤ y → a3 ≤ b)},

ra1(C
≤
a3,b

)t7 = {(o1, a1 ≤ x → a3 ≤ b)},
ra1(C

≤
a3,b

)t7 = {(o1, a1 ≤ x → a3 ≤ b), (o3, a1 ≤ y → a3 ≤ b),
(o4, a1 ≤ y → a3 ≤ b), (o5, a1 ≤ y → a3 ≤ b)},

ra1(C
≤
a3,b

)t8 = ∅,
ra1(C

≤
a3,b

)t8 = {(o1, a1 ≤ x → a3 ≤ b), (o3, a1 ≤ y → a3 ≤ b),
(o4, a1 ≤ y → a3 ≤ b), (o5, a1 ≤ y → a3 ≤ b)}.

Second, in the case of incomplete ordered information tables, expressions
whose element is a pair of an object and the rule that it supports are:

Craj
(C≥

ai,yk
) = {(o ∈ U, aj ≥ aj(o) → ai ≥ yk) :

(∃t ∈ pt{ai,aj} (o, aj ≥ aj(o) → ai ≥ yk) ∈ raj
(C≥

ai,yk
)t) ∧

(∀t ∈ pt{ai,aj} (o, aj ≥ aj(o) → ai ≥ yk) ∈ raj
(C≥

ai,yk
)t ∨

(∃x ∈ Vaj
x ≤ aj(o) ∧ (o, aj ≥ x → ai ≥ yk) ∈ raj

(C≥
ai,yk

)t))}, (32)

Craj
(C≥

ai,yk
) = {(o ∈ U, aj ≥ aj(o) → ai ≥ yk) :

(∃t ∈ pt{ai,aj} (o, aj ≥ aj(o) → ai ≥ yk) ∈ raj
(C≥

ai,yk
)t) ∧

(∀t ∈ pt{ai,aj} (o, aj ≥ aj(o) → ai ≥ yk) ∈ raj
(C≥

ai,yk
)t ∨

(∃x ∈ Vaj
x ≤ aj(o) ∧ (o, aj ≥ x → ai ≥ yk) ∈ raj

(C≥
ai,yk

)t))}, (33)

Craj
(C≤

ai,yk
) = {(o ∈ U, aj ≤ aj(o) → ai ≤ yk) :

(∃t ∈ pt{ai,aj} (o, aj ≤ aj(o) → ai ≤ yk) ∈ raj
(C≤

ai,yk
)t) ∧

(∀t ∈ pt{ai,aj} (o, aj ≤ aj(o) → ai ≤ yk) ∈ raj
(C≤

ai,yk
)t ∨

(∃x ∈ Vaj
x ≥ aj(o) ∧ (o, aj ≤ x → ai ≤ yk) ∈ raj

(C≤
ai,yk

)t))}, (34)
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Craj
(C≤

ai,yk
) = {(o ∈ U, aj ≤ aj(o) → ai ≤ yk) :

(∃t ∈ pt{ai,aj} (o, aj ≤ aj(o) → ai ≤ yk) ∈ raj
(C≤

ai,yk
)t) ∧

(∀t ∈ pt{ai,aj} (o, aj ≤ aj(o) → ai ≤ yk) ∈ raj
(C≤

ai,yk
)t ∨

(∃x ∈ Vaj
x ≥ aj(o) ∧ (o, aj ≤ x → ai ≤ yk) ∈ raj

(C≤
ai,yk

)t))}, (35)

Praj
(C≥

ai,yk
) = {(o, aj ≥ aj(o) → ai ≥ yk) :

∃t ∈ pt{ai,aj} (o, aj ≥ aj(o) → ai ≥ yk) ∈ raj
(C≥

ai,yk
)t}, (36)

Praj
(C≥

ai,yk
) = {(o, aj ≥ aj(o) → ai ≥ yk) :

∃t ∈ pt{ai,aj} (o, aj ≥ aj(o) → ai ≥ yk) ∈ raj
(C≥

ai,yk
)t}, (37)

Praj
(C≤

ai,yk
) = {(o, aj ≤ aj(o) → ai ≤ yk) :

∃t ∈ pt{ai,aj} (o, aj ≤ aj(o) → ai ≤ yk) ∈ raj
(C≤

ai,yk
)t}, (38)

Praj
(C≤

ai,yk
) = {(o, aj ≤ aj(o) → ai ≤ yk) :

∃t ∈ pt{ai,aj} (o, aj ≤ aj(o) → ai ≤ yk) ∈ raj
(C≤

ai,yk
)t}, (39)

where it is taken into account that for Craj
(C≥

ai,yk
)t and Craj

(C≥
ai,yk

)t, if (o, aj ≥
u → ai ≥ yk) is an element and v ≥ u with u ∈ Vaj

and v ∈ Vaj
, then

(o, aj ≥ v → ai ≥ yk) can be regarded as an element, while for Craj
(C≤

ai,yk
)t

and Craj
(C≤

ai,yk
)t, if (o, aj ≤ u → ai ≤ yk) is an element and v ≤ u, then

(o, aj ≤ v → ai ≤ yk) can be regarded as an element.

Proposition 6

Craj
(C≥

ai,yk
) ⊆ Craj

(C≥
ai,yk

),

P raj
(C≥

ai,yk
) ⊆ Praj

(C≥
ai,yk

),

Craj
(C≥

ai,yk
) ⊆ Praj

(C≥
ai,yk

),

Craj
(C≥

ai,yk
) ⊆ Praj

(C≥
ai,yk

),

Craj
(C≤

ai,yk
) ⊆ Craj

(C≤
ai,yk

),

P raj
(C≤

ai,yk
) ⊆ Praj

(C≤
ai,yk

),

Craj
(C≤

ai,yk
) ⊆ Praj

(C≤
ai,yk

),

Craj
(C≤

ai,yk
) ⊆ Praj

(C≤
ai,yk

).

Example 5. Results in Example 4 are replaced by using the above formulae (32)–
(35). From expressions that correspond to certain approximations of C≥

a3,b
and

C≤
a3,b

,

Cra1(C
≥
a3,b

) = {(o6, a1 ≥ z → a3 ≥ b)},
Cra1(C

≥
a3,b

) = {(o2, a1 ≥ z → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)}.
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Cra1(C
≤
a3,b

) = ∅,
Cra1(C

≤
a3,b

) = {(o1, a1 ≤ x → a3 ≤ b), (o3, a1 ≤ x → a3 ≤ b),
(o4, a1 ≤ y → a3 ≤ b), (o5, a1 ≤ y → a3 ≤ b)}.

By using the above formulae (36)–(39), from expressions that correspond to
possible approximations of C≥

a3,b
and C≥

a3,b
,

Pra1(C
≥
a3,b

) = {(o2, a1 ≥ y → a3 ≥ b), (o2, a1 ≥ z → a3 ≥ b),
(o4, a1 ≥ y → a3 ≥ b), (o5, a1 ≥ y → a3 ≥ b),
(o6, a1 ≥ z → a3 ≥ b)},

P ra1(C
≥
a3,b

) = {(o1, a1 ≥ x → a3 ≥ b), (o2, a1 ≥ y → a3 ≥ b),
(o2, a1 ≥ z → a3 ≥ b), (o3, a1 ≥ x → a3 ≥ b),
(o3, a1 ≥ y → a3 ≥ b), (o4, a1 ≥ y → a3 ≥ b),
(o5, a1 ≥ y → a3 ≥ b), (o6, a1 ≥ z → a3 ≥ b)},

P ra1(C
≤
a3,b

) = {(o1, a1 ≤ x → a3 ≤ b), (o3, a1 ≤ x → a3 ≤ b)},
P ra1(C

≤
a3,b

) = {(o1, a1 ≤ x → a3 ≤ b), (o2, a1 ≤ y → a3 ≤ b),
(o3, a1 ≤ x → a3 ≤ b), (o3, a1 ≤ y → a3 ≤ b),
(o4, a1 ≤ y → a3 ≤ b), (o5, a1 ≤ y → a3 ≤ b)}.

How do objects support rules? This is classified into four types: certain and
consistent, certain and inconsistent, possible and consistent, and possible and
inconsistent supports.

– When (o, aj ≥ aj(o) → ai ≥ yk) belongs to Craj
(C≥

ai,yk
), object o certainly

and consistently supports rule aj ≥ aj(o) → ai ≥ yk.
– When (o, aj ≥ aj(o) → ai ≥ yk) belongs to Craj

(C≥
ai,yk

)\Craj
(C≥

ai,yk
), object

o certainly and inconsistently supports rule aj ≥ aj(o) → ai ≥ yk.
– When (o, aj ≥ aj(o) → ai ≥ yk) belongs to Praj

(C≥
ai,yk

)\Craj
(C≥

ai,yk
), object

o possibly and consistently supports rule aj ≥ aj(o) → ai ≥ yk.
– When (o, aj ≥ aj(o) → ai ≥ yk) belongs to Praj

(C≥
ai,yk

) \ Paj(C≥
ai,yk

) \
Craj

(C≥
ai,yk

), object o possibly and inconsistently supports rule aj ≥ aj(o) →
ai ≥ yk.

– When (o, aj ≤ aj(o) → ai ≤ yk) belongs to Craj
(C≤

ai,yk
), object o certainly

and consistently supports rule aj ≤ aj(o) → ai ≤ yk.
– When (o, aj ≤ aj(o) → ai ≤ yk) belongs to Craj

(C≤
ai,yk

)\Craj
(C≤

ai,yk
), object

o certainly and inconsistently supports rule aj ≤ aj(o) → ai ≤ yk.
– When (o, aj ≤ aj(o) → ai ≤ yk) belongs to Praj

(C≤
ai,yk

)\Craj
(C≤

ai,yk
), object

o possibly and consistently supports rule aj ≤ aj(o) → ai ≤ yk.
– When (o, aj ≤ aj(o) → ai ≤ yk) belongs to Praj

(C≤
ai,yk

) \ Paj(C≤
ai,yk

) \
Craj

(C≤
ai,yk

), object o possibly and inconsistently supports rule aj ≤ aj(o) →
ai ≤ yk.
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Note that an object has more than one types of rule supports.

Example 6. From the results of Example 5, we obtain four types of rule supports.
From the expressions for C≥

a3,b
rule supports are as follows:

– From Cra1(C
≥
a3,b

), object o6 certainly and consistently supports rule a1 ≥
z → a3 ≥ b.

– From Cra1(C
≥
a3,b

) \ Cra1(C
≥
a3,b

), object o2 certainly and inconsistently sup-
ports rule a1 ≥ z → a3 ≥ b, and also o4 and o5 do a1 ≥ y → a3 ≥ b.

– From Pra1(C
≥
a3,b

)\Cra1(C
≥
a3,b

), o2, o4, and o5 possibly and consistently a1 ≥
y → a3 ≥ b, where a1 ≥ y → a3 ≥ b includes a1 ≥ z → a3 ≥ b.

– From Pra1(C
≥
a3,b

) \ Pra1(C
≥
a3,b

) \ Cra1(C
≥
a3,b

), o1 and o3 possibly and incon-
sistently rule a1 ≥ x → a3 ≥ b, where a1 ≥ x → a3 ≥ b includes
a1 ≥ y → a3 ≥ b.

From the expressions for C≤
a3,b

rule supports are as follows:

– From Cra1(C
≤
a3,b

), there is no object that certainly and consistently supports
a rule.

– From Cra1(C
≤
a3,b

)\Cra1(C
≤
a3,b

), objects o1 and o3 certainly and inconsistently
support rule a1 ≤ x → a3 ≤ b, and also o4 and o5 certainly and inconsistently
support rule a1 ≤ y → a3 ≤ b.

– From Pra1(C
≤
a3,b

) \ Cra1(C
≤
a3,b

), o1 and o3 possibly and consistently support
rule a1 ≤ x → a3 ≤ b.

– From Pra1(C
≤
a3,b

) \ Pra1(C
≤
a3,b

) \ Cra1(C
≤
a3,b

), o2 and o3 possibly and incon-
sistently support rules a1 ≤ y → a3 ≤ b.

Thus far, the formulae are described for a single attribute. Formulae for sets
A and B of attributes can be expressed as follows. Certain approximations are:

CB(C≥
A,Yk

) = {o ∈ U : ∀t ∈ ptA∪B o ∈ B(C≥
A,Yk

)t},
CB(C≥

A,Yk
) = {o ∈ U : ∀t ∈ ptA∪B o ∈ B(C≥

A,Yk
)t},

CB(C≤
A,Yk

) = {o ∈ U : ∀t ∈ ptA∪B o ∈ B(C≤
A,Yk

)t},
CB(C≤

A,Yk
) = {o ∈ U : ∀t ∈ ptA∪B o ∈ B(C≤

A,Yk
)t}.

Possible approximations are:

PB(C≥
A,Yk

) = {o ∈ U : ∃t ∈ ptA∪B o ∈ B(C≥
A,Yk

)t},
PB(C≥

A,Yk
) = {o ∈ U : ∃t ∈ ptA∪B o ∈ B(C≥

A,Yk
)t},

PB(C≤
A,Yk

) = {o ∈ U : ∃t ∈ ptA∪B o ∈ B(C≤
A,Yk

)t},
PB(C≤

A,Yk
) = {o ∈ U : ∃t ∈ ptA∪B o ∈ B(C≤

A,Yk
)t}.

Lower and upper approximations are:

B•(C≥
A,Yk

) = [CB(C≥
A,Yk

), PB(C≥
A,Yk

)],
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B
•
(C≥

A,Yk
) = [CB(C≥

A,Yk
), PB(C≥

A,Yk
)],

B•(C≤
A,Yk

) = [CB(C≤
A,Yk

), PB(C≥
A,Yk

)],

B
•
(C≤

A,Yk
) = [CB(C≤

A,Yk
), PB(C≤

A,Yk
)].

Expressions whose element is a pair of an object and the rule that it supports
are:

CrB(C≥
A,Yk

) = {(o ∈ U,B ≥ B(o) → A ≥ Yk) :

(∃t ∈ ptA∪B (o,B ≥ B(o) → A ≥ Yk) ∈ rB(C≥
A,Yk

)t) ∧
(∀t ∈ ptA∪B (o,B ≥ B(o) → A ≥ Yk) ∈ rB(C≥

A,Yk
)t ∨

(∃X ∈ VB X ≤ B(o) ∧ (o,B ≥ X → A ≥ Yk) ∈ rB(C≥
A,Yk

)t))},
CrB(C≥

A,Yk
) = {(o ∈ U,B ≥ B(o) → A ≥ Yk) :

(∃t ∈ ptA∪B (o,B ≥ B(o) → A ≥ Yk) ∈ rB(C≥
A,Yk

)t) ∧
(∀t ∈ ptA∪B (o,B ≥ B(o) → A ≥ Yk) ∈ rB(C≥

A,Yk
)t ∨

(∃X ∈ VB X ≤ B(o) ∧ (o,B ≥ X → A ≥ Yk) ∈ rB(C≥
A,Yk

)t))},
CrB(C≤

A,Yk
) = {(o ∈ U,B ≤ B(o) → A ≤ Yk) :

(∃t ∈ ptA∪B (o,B ≤ B(o) → A ≤ Yk) ∈ rB(C≤
A,Yk

)t) ∧
(∀t ∈ ptA∪B (o,B ≤ B(o) → A ≤ Yk) ∈ rB(C≤

A,Yk
)t ∨

(∃X ∈ VB X ≥ B(o) ∧ (o,B ≤ X → A ≤ Yk) ∈ rB(C≤
A,Yk

)t))},
CrB(C≤

A,Yk
) = {(o ∈ U,B ≤ B(o) → A ≤ Yk) :

(∃t ∈ ptA∪B (o,B ≤ B(o) → A ≤ Yk) ∈ rB(C≤
A,Yk

)t) ∧
(∀t ∈ ptA∪B (o,B ≤ B(o) → A ≤ Yk) ∈ rB(C≤

A,Yk
)t ∨

(∃X ∈ VB X ≥ B(o) ∧ (o,B ≤ X → A ≤ Yk) ∈ rB(C≤
A,Yk

)t))},
P rB(C≥

A,Yk
) = {(o,B ≥ B(o) → A ≥ Yk) :

∃t ∈ ptA∪B (o,B ≥ B(o) → A ≥ Yk) ∈ rB(C≥
A,Yk

)t},
P rB(C≥

A,Yk
) = {(o,B ≥ B(o) → A ≥ Yk) :

∃t ∈ ptA∪B (o,B ≥ B(o) → A ≥ Yk) ∈ rB(C≥
A,Yk

)t},
P rB(C≤

A,Yk
) = {(o,B ≤ B(o) → Y ≤ Yk) :

∃t ∈ ptA∪B (o,B ≤ B(o) → A ≤ Yk) ∈ rB(C≤
A,Yk

)t},
P rB(C≤

A,Yk
) = {(o,B ≤ B(o) → A ≤ Yk) :

∃t ∈ ptA∪B (o,B ≤ B(o) → A ≤ Yk) ∈ rB(C≤
A,Yk

)t}.
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4 Conclusion and Future Work

On the basis of possible world semantics, we have described rough sets and
rule induction based on them in incomplete information systems with ordered
domains. Incomplete information are expressed by a set of possible values, which
contains a missing value as a special case. The set of possible tables on a set
of attributes is derived from an incomplete ordered information table, as Lip-
ski dealt with it on the whole set of attributes on the basis of possible world
semantics. A possible table on a set of attributes is a complete table on the set.
Therefore, rough sets, a pair of lower and upper approximations, in each possi-
ble table are derived by applying formulae used in complete ordered information
tables.

When an object belongs to a certain approximation, the object belongs to
the approximation in all possible tables. When an object belongs to a possible
approximation, the object belongs to the approximation in some possible tables.
The certain approximation is the lower bound of the approximation. The possible
approximation is the upper bound of the approximation. The approximations are
expressed by an interval set. In the approximations, complementarity holds, as
is so in complete ordered information systems.

There is a gap between approximations and rule induction. To bridge the
gap, we have introduced expressions whose element is a pair of an object and a
rule that it supports. Supports of rules induced from the expressions are clas-
sified in four types: certain and consistent, certain and inconsistent, possible
and consistent, and possible and inconsistent supports. We do not impose any
restriction on attributes for occurrence of incomplete information. Therefore,
formulae described in this paper have the generality that not only attributes
used in approximations but also those approximated have a value with incom-
plete information. These results should be used as a correctness criterion in rule
induction based on rough sets from incomplete ordered information tables, as is
so in the field of incomplete database.

In Lipski’s approach the number of possible tables grows exponentially, as
the number of values with incomplete information increases. However, some work
reports that Lipski’s approach is released from the exponential order problem in
incomplete information tables without order relations [25–27]. One of future work
is to examine the exponential order problem of Lipski’s approach in incomplete
ordered information systems.

Another topic is definability problem. We have two types of definability in
incomplete information systems without order relations [17,24]. One is certain
definability. A set of objects is certainly definable, if the set is definable in all
possible tables. The other is possible definability. A set of objects is possibly
definable, if the set is definable in some possible tables. The two types of defin-
ability can be also obtained by using possible classes [17]. These definitions are
valid in incomplete ordered information systems. Furthermore, the definability
problem of interval sets is pointed out by Hu and Yao [8], because approxima-
tions are expressed by interval sets. This is another future work.
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Abstract. Rough sets are an appropriate tool to deal with rough
(ambiguous, imprecise) concepts in the universe of discourse. A general
idea of rough sets is to approximate a given set of objects of interest
by other sets of objects, called elementary sets, forming basic knowledge
granules. Approximation can be either exact or rough. In the paper,
we show that adding information on semantic relations between deci-
sion attribute values in a form of an ontological graph enables us to
make a quantitative assessment of basic knowledge granules approxi-
mating a given set of objects. We focus on semantic relations funda-
mental in linguistics, called paradigmatic semantic relations. Based on
approximation, the whole universe of objects can be divided into three
disjoint regions, the positive region, the negative region, and the bound-
ary region. The assessment measure has a fuzzy character, i.e., 0 for
granules included in the negative region, 1 for granules included in the
positive region, and between 0 and 1 for granules included in the bound-
ary region. It is a measure of inconsistencies existing in simple decision
systems over ontological graphs.

Keywords: Rough sets · Knowledge granules · Decision systems over
ontological graphs · Semantic relations

1 Introduction

Effective data mining requires incorporating background (domain) knowledge
connected with data semantics into the mining processes [28]. This background
knowledge is useful in case of both nominal and numeric attribute values. The
background knowledge delivers important information about different aspects
of data. Some of the significant aspects are relations between attribute values,
especially, semantic relations. Data mining with background knowledge has been
extensively studied in the past. Over time, different forms of the background
knowledge have been used, for example:

– preference order of attribute values (cf. [8]),
– concept hierarchies like attribute value taxonomies (cf. [32,33]), attribute

value ontology (cf. [11]),
– ontologies and semantic nets (cf. [2,24]).
c© Springer International Publishing AG 2017
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In case of attribute value ontology, the partial order of concepts generated by
the narrower/broader meaning of concepts is only considered. In case of ontolo-
gies, the background knowledge is expressed as a set of concepts together with
relationships defined among them comprising the vocabulary from a given area
(cf. [17]) and these relationships may lead to non-hierarchical structures with
concepts.

In [18], we proposed to incorporate ontologies into information systems
(understood as Pawlak’s knowledge representation systems [21]). In the clas-
sic information systems, there is a lack of semantics explaining the meaning
of data, i.e., with each attribute describing objects of interest, only a set of
its values is associated. In order to cover the meaning of data, simple infor-
mation systems over ontological graphs were defined. In this case, values of a
given attribute are concepts from the domain described by this attribute. The
domain is modeled using an ontology. The ontology is represented by means of
the graph structure, called the ontological graph. In such a graph, each node
represents one concept from the ontology, whereas each edge represents a rela-
tion between two concepts. It is assumed that the ontological graph represents
the whole domain of a given attribute, i.e., only concepts present in the ontolog-
ical graph can become attribute values. In the next papers, e.g. [19,20], simple
decision systems over ontological graphs were also considered. It is worth noting
that we can consider some hybrid information/decision systems, where onto-
logical graphs are associated with selected attributes only, for example, either
condition attributes or a decision attribute. In general, ontology can model var-
ious semantic relations between concepts. At the beginning, our attention is
focused on those fundamental relations considered in linguistics, called para-
digmatic semantic relations (or paradigmatic relations shortly), i.e., synonymy,
antonymy, hyponymy, hyperonymy, meronymy, and holonymy (cf. [14]). Such
relations are, among others, distinguished in WordNet [6] - a large lexical data-
base of English as well as in the project called Wikisaurus [1] aiming at creating
a thesaurus of semantically related terms. Synonymy concerns concepts with the
meaning that is the same as, or very similar to, the meaning of other concepts.
Antonymy concerns concepts which have the opposite meaning to the other ones.
Hyponymy/hyperonymy determines the narrower/broader meaning of concepts.
Hyponymy concerns more specific concepts than the other ones. Hyperonymy
concerns more general concepts than the other ones. Meronymy and holonymy
define part/whole relations. Meronymy concerns concepts that denote parts of
the wholes that are denoted by other concepts. Holonymy concerns concepts
that denote the wholes whose parts are denoted by other concepts. However,
research in knowledge engineering, linguistics, logic, cognitive psychology has
recognized a variety of taxonomies of different types of semantic relations, e.g.
[3,4,13,26,27]. A comprehensive review of the literature concerning semantic
relations is given in [16]. As the authors noticed, almost every new attempt to
analyze semantic relations leads to a new list of relations.



A Measure of Inconsistency for Simple Decision Systems 509

Rough sets are an appropriate tool to deal with rough (ambiguous, imprecise)
concepts in the universe of discourse. A general idea of rough sets is to approxi-
mate a given set of objects of interest by other sets of objects, called elementary
sets, forming basic granules of knowledge. In the original Pawlak’s rough sets,
basic granules are induced by an indiscernibility relation on attribute values (cf.
[21]). However, the notion of rough sets can be generalized using an arbitrary
binary relation on attribute values (cf. [29]). Approximation can be either exact
or rough. Rough set methods were also supported by the background knowledge,
for example, Dominance-Based Rough Set Approach (DRSA) [7], DAG-Decision
Systems [12], knowledge reduction for decision tables with attribute value tax-
onomies [30].

Several examples indicating problems of applying rough sets to decision sys-
tems over ontological graphs were considered in [19]. An influence of taking into
consideration both semantics of condition attribute values and semantics of deci-
sion attribute values on defining rough sets was shown. As it was noticed, dealing
with semantic relations enriches our look at approximations (lower and upper)
of sets defined in decision systems. In [20], we showed that adding informa-
tion on semantics of decision attribute values (expressed in ontological graphs)
enables us to determine qualitatively the accuracy of approximation. The qual-
itative assessment of approximation is treated as some additional characteristic
of rough sets. According to Pawlak and Skowron, each rough set can be char-
acterized numerically (quantitatively) by the coefficient called the accuracy of
approximation (see, for example, [22]).

In this paper, we propose another approach taking benefit from adding infor-
mation on semantics of decision attribute values. We use information on semantic
relations between decision attribute values in the form of ontological graphs to
make a quantitative assessment of basic knowledge granules approximating a
given set X of objects in the whole universe U of objects. The proposed measure
is a kind of degree to which the assessed granule belongs to the set X. Based
on approximation of the set X, the whole universe U can be divided into three
disjoint regions, the positive region POS(X), the negative region NEG(X), and
the boundary region BND(X). POS(X) encompasses granules entirely included
in X, NEG(X) encompasses granules not included in X at all, and BND(X)
encompasses granules only partially included in X. The existence of the bound-
ary region is a sign of inconsistency in a simple decision system over ontological
graphs. Therefore, the proposed assessment enables us to measure inconsisten-
cies existing in simple decision systems over ontological graphs. The measure
has a fuzzy character, i.e., 0 for granules included in NEG(X), 1 for granules
included in POS(X), and between 0 and 1 for granules included in BND(X).

On the one hand, the presented approach differs from the approach based
on a rough membership function proposed by Pawlak and Skowron (cf. [22]).
The Pawlak’s rough membership function is a kind of conditional probability. It
does not depend on decision attribute values adopted by the objects included
in a given basic knowledge granule. The value of the membership function is
interpreted as degree to which the basic knowledge granule is included in the set



510 K. Pancerz

X. On the other hand, the presented approach is strictly connected with one of
the fundamental notions of rough sets, namely a generalized decision function
(cf. [22,25]) that is used to define measures for inconsistent decision systems.

In our approach, the value of the measure for granules covered by the bound-
ary region depends on decision attribute values adopted by the objects included
in granules as well as on semantic distances between these values. The more
dispersion of decision attribute values for a given granule, according to seman-
tic distances between them, the lower the degree to which the assessed granule
belongs to the set X.

The rest of the paper is organized as follows. Theoretical background for the
proposed approach is presented in Sect. 2. Section 3 describes a new approach for
assessment of basic knowledge granules describing rough sets in simple decision
systems over ontological graphs. Finally, Sect. 4 consists of some conclusions and
directions for the further work.

2 Theoretical Background

Theoretical background for the proposed approach is given in this section. A
series of notions is recalled.

2.1 Binary Relations, Basic Knowledge Granules and Rough Sets

Let U be a non-empty set of objects. U is called a universe. Any subset R ⊆ U×U
is called a binary relation on U . A binary relation R ⊆ U × U is an equivalence
relation if and only if it is reflexive, symmetric, and transitive.

Let a non-empty set U and a family Π = {G1, G2, . . . , Gk} of non-empty
subsets of U , i.e., Gi ⊆ U and Gi �= ∅ for i = 1, 2, . . . , k, be given. The family Π
is called:

– a partition of U if and only if Gi ∩Gj = ∅ for any i, j = 1, 2, . . . , k, i �= j, and
k⋃

i=1

Gi = U ,

– a covering of U if and only if
k⋃

i=1

Gi = U .

A given equivalence relation defines uniquely some partition of U , whereas, in
general case, any binary relation defines uniquely some covering of U . It is worth
noting that every partition is a covering but not every covering is a partition.

From a practical point of view, it is better to describe objects from the
universe using a data structure called a decision system. A decision system
is a data table containing rows labeled by objects of interest (from the uni-
verse), columns labeled by attributes (features of objects) and entries of the
table representing attribute values. A set of attributes is partitioned into two
classes of attributes, called condition and decision attributes, respectively. Con-
dition attributes describe the objects in terms of available information. Decision
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attributes (in many cases, one decision attribute) partition these objects into
groups (the so-called decision classes). Formally, a decision system DS is a tuple

DS = (U,C,D, {Va}a∈C∪D, finf , fdec),

where:

– U is the nonempty, finite set of objects,
– C is the nonempty, finite set of condition attributes,
– D is the nonempty, finite set of decision attributes,
– {Va}a∈C∪D is the family of sets of condition and decision attribute values,
– finf : C × U → ⋃

c∈C

Vc is the information function such that finf (c, u) ∈ Vc

for each c ∈ C and u ∈ U .
– fdec : D × U → ⋃

d∈D

Vd is the decision function such that fdec(d, u) ∈ Vd for

each d ∈ D and u ∈ U .

Let DS = (U,C,D, {Va}a∈C∪D, finf , fdec) be a decision system and Π =
{G1, G2, . . . , Gk} be a finite covering of U . The elements of Π are called ele-
mentary sets. Each elementary set forms a basic granule of knowledge about
U . The elements of Π will be further called basic knowledge granules. Let
Π = {G1, G2, . . . , Gk} be a fixed covering of U , and X ⊆ U . We define the
lower approximation of X as follows

Π(X) =
⋃

i=1,2,...,k,Gi⊆X

Gi.

The lower approximation Π(X) is the union of all basic knowledge granules from
Π which are subsets of X. The lower approximation Π(X) is called the positive
region POSΠ(X) of X. Hence,

POSΠ(X) = Π(X).

We define the upper approximation of X as follows

Π(X) =
⋃

i=1,2,...,k,Gi∩X �=∅
Gi.

The boundary region BNDΠ(X) of X is defined as:

BNDΠ(X) = Π(X) − Π(X).

The negative region NEGΠ(X) of X is defined as:

NEGΠ(X) = U − Π(X).

One can see that basic knowledge granules can be divided into three disjoint
groups:
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– basic knowledge granules included in the positive region POSΠ(X), called
positive basic knowledge granules,

– basic knowledge granules included in the boundary region BNDΠ(X), called
boundary basic knowledge granules,

– basic knowledge granules included in the negative region NEGΠ(X), called
negative basic knowledge granules.

In general, the notion of rough sets can be considered using an arbitrary
binary relation on attribute values (cf. [29]). A special case is an equiva-
lence relation considered in the original Pawlak’s definition of rough sets. Let
DS = (U,C,D, {Va}a∈C∪D, finf , fdec) be a decision system. Each subset B ⊆ C
of condition attributes determines an equivalence relation on U , called an indis-
cernibility relation IRB, defined as

IRB = {(u, v) ∈ U × U : ∀
a∈B

finf (a, u) = finf (a, v)}.

The indiscernibility relation IRB defines a covering (partition) ΠIRB
(U) =

{G1, G2, . . . , Gk} including basic knowledge granules which are equivalence
classes of IRB.

2.2 Decision Systems over Ontological Graphs

We introduced simple information systems over ontological graphs in [18].
Next, simple decision systems over ontological graphs were considered (see, for
example, [19,20]).

An ontology specifies the concepts and relationships among them comprising
the vocabulary from a given area (cf. [17]). Formally, an ontology can be rep-
resented by means of graph structures. In our approach, a graph representing
the ontology O is called an ontological graph. Let O be a given ontology. An
ontological graph is defined as

OG = (C, E,R, ρ),

where:

– C is the nonempty, finite set of nodes representing concepts in the ontology
O,

– E ⊆ C × C is the finite set of edges representing semantic relations between
concepts from C,

– R is the family of semantic descriptions (in a natural language) of types of
relations (represented by edges) between concepts,

– ρ : E → R is the function assigning a semantic description of the relation to
each edge.

Let OG = (C, E,R, ρ) be an ontological graph. We will use the following
notation:
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– [ci, cj ] - a simple path in OG between ci, cj ∈ C,
– E([ci, cj ]) - a set of edges from E belonging to the simple path [ci, cj ],
– P(OG) - a set of all simple paths in OG.

In ontological graphs used by us, semantic relations are paradigmatic rela-
tions which hold between concepts belonging to the same grammatical category.
WordNet and Wikisaurus, mentioned in Sect. 1, distinguish the following paradig-
matic relations between concepts: synonymy, antonymy, hyponymy/hyperonymy,
meronymy/holonymy. For simplicity, we use the following labels of paradigmatic
relations:

– R∼ - synonymy, (u, v) ∈ R∼ is read “u is a synonym of v”,
– R↔ - antonymy, (u, v) ∈ R↔ is read “u is an antonym of v”,
– R� - hyponymy, (u, v) ∈ R� is read “u is a hyponym of v”,
– R� - hyperonymy, (u, v) ∈ R� is read “u is a hyperonym of v”,
– R⊂ - meronymy, (u, v) ∈ R⊂ is read “u is a meronym of v”,
– R⊃ - holonymy, (u, v) ∈ R⊃ is read “u is a holonym of v”.

A simple decision system over ontological graphs is a tuple

SDSOG = (U,C,D, {OGa}a∈C∪D, finf , fdec),

where:

– U is the nonempty, finite set of objects,
– C is the nonempty, finite set of condition attributes,
– D is the nonempty, finite set of decision attributes,
– {OGa}a∈C∪D is the family of ontological graphs associated with condition

and decision attributes,
– finf : C × U → ⋃

c∈C

Cc is the information function such that finf (c, u) ∈ Cc

for each c ∈ C and u ∈ U , Cc is the set of concepts from the graph OGc

– fdec : D × U → ⋃

d∈D

Cd is the decision function such that fdec(d, u) ∈ Cd for

each d ∈ D and u ∈ U , Cd is the set of concepts from the graph OGd.

Binary relations over the set U of objects in a simple decision system over
ontological graphs can be defined on the basis of relations over value sets of
attributes determined for each attribute separately. Let OGa = (Ca, Ea,R, ρa)
be an ontological graph associated with the attribute a, and τ1, τ2 be two fixed
positive integer values, where τ1 < τ2. If we consider semantic relations, like
synonymy, antonymy, hyponymy/hyperonymy, then the relations over the value
set of a can be as follows (cf. [18–20]):

– An exact meaning relation

EMRa = {(v1, v2) ∈ Ca × Ca : v1 = v2}.

– A synonymous meaning relation

SMRa = {(v1, v2) ∈ Ca × Ca : (v1, v2) ∈ Ea and ρa((v1, v2)) = R∼}.
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– An antonymous meaning relation

AMRa = {(v1, v2) ∈ Ca × Ca : (v1, v2) ∈ Ea and ρa((v1, v2)) = R↔}.

– A hyperonymous meaning relation HprMRa is a set of all pairs (v1, v2) ∈
Ca × Ca for which there exists v3 ∈ Ca such that:

∃
[v1,v3]∈P(OGa)

∀
e∈E([v1,v3])

ρa(e) ∈ {R∼, R�}.

and
∃

[v2,v3]∈P(OGa)
∀

e∈E([v2,v3])
ρa(e) ∈ {R∼, R�}

Moreover, let d1 = card({e′ ∈ E([v1, v3]) : ρa(e′) = R�}) and d2 = card({e′ ∈
E([v2, v3]) : ρa(e′) = R�}). We distinguish three types of a hyperonymous
meaning relation:

• A far hyperonymous meaning relation FHprMRa if

max(d1, d2) > τ2.

• A middle-far hyperonymous meaning relation MHprMRa if

τ1 < max(d1, d2) ≤ τ2

• A close hyperonymous meaning relation CHprMRa, otherwise.

It is worth noting that the values of τ1 and τ2 can be chosen according to the size
of the graph OGa (especially, according to the depth of the hierarchy generated
by the hyponymy/hyperonymy relations).

2.3 Fuzzy Sets

Fuzzy sets were introduced by Zadeh [31]. A fuzzy set F in a universe of discourse
X is defined as a set of pairs (μF (x), x), where μF : X → [0, 1] is a membership
function of F and μF (x) ∈ [0, 1] is the grade of membership of x ∈ X in F .

3 Assessment of Basic Knowledge Granules

In this section, we propose to use some measure to assess basic knowledge gran-
ules describing rough sets in simple decision systems over ontological graphs
according to values of a decision attribute. The assessment measure has a fuzzy
character. It enables us to characterize inconsistencies existing in simple decision
systems over ontological graphs.

Let SDSOG = (U,C,D, {OGa}a∈C∪D, finf , fdec), be a simple decision sys-
tem over ontological graphs and ΠR = {G1, G2, . . . , Gk} be a covering of U (a
family of basic knowledge granules induced by the binary relation R). For a basic
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knowledge granule G ∈ ΠR, we define the set Decd(G) of all decision attribute
values adopted by the objects included in G as

Decd(G) = {fdec(d, u) : u ∈ G}.

Let us assume that the approximated set is a set Xv
d of objects such that the

decision attribute d has a distinguished value v, i.e.:

Xv
d = {u ∈ U : fdec(d, u) = v}.

A fuzzy set F (Xv
d ) in ΠR is defined as:

μF (Xv
d )(G) =

⎧
⎪⎨

⎪⎩

1 if G ∈ POSΠR
(Xv

d ),
Op
u∈G

sem(v, fdec(d, u)) if G ∈ BNDΠR
(Xv

d ),

0 if G ∈ NEGΠR
(Xv

d ).

where Op is an aggregation operator (e.g., minimum, arithmetic average, maxi-
mum, etc.), and

– sem(v, fdec(d, u)) = 1 if and only if (v, fdec(d, u)) ∈ EMRd or (v, fdec(d, u)) ∈
SMRd,

– sem(v, fdec(d, u)) = 0.9 if and only if (v, fdec(d, u)) ∈ CHprMRd,
– sem(v, fdec(d, u)) = 0.5 if and only if (v, fdec(d, u)) ∈ MHprMRd,
– sem(v, fdec(d, u)) = 0.1 if and only if (v, fdec(d, u)) ∈ FHprMRd,
– sem(v, fdec(d, u)) = 0 if and only if (v, fdec(d, u)) ∈ AMRd.

Instead of a minimum, one can use a t-norm and instead of a maximum, an s-
norm. They are more general cases (cf. [9]). It is worth noting that the selection
of fuzzy values for a semantic distance sem is arbitrary. One can use another
strategy.

It was mentioned in Sect. 1 that we can deal with hybrid decision systems
(see Example 1) such that only some of their attributes have ontological graphs
associated with them. To focus on the presented approach, we will consider in
Example 1, a simple decision system over ontological graphs in the form

SDSOG = (U,C,D, {Vc}c∈C , {OGd}d∈D, finf , fdec),

where:

– U is the nonempty, finite set of objects,
– C is the nonempty, finite set of condition attributes,
– D is the nonempty, finite set of decision attributes,
– {Vc}c∈C is the family of sets of condition attribute values,
– {OGd}d∈D is the family of ontological graphs associated with decision

attributes,
– finf : C × U → ⋃

c∈C

Vc is the information function such that finf (c, u) ∈ Vc

for each c ∈ C and u ∈ U .
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– fdec : D × U → ⋃

d∈D

Cd is the decision function such that fdec(d, u) ∈ Cd for

each d ∈ D and u ∈ U , Cd is the set of concepts from the graph OGd.

Example 1. Let us consider the simple decision system over ontological graphs

SDSOG = (U,C,D, {Vc}c∈C , {OGd}d∈D, finf , fdec)

describing students, where:

– U = {u1, u2, . . . , u12},
– C = {cg, cmp, cbc, ch},
– D = {d},
– the ontological graph associated with the decision attribute d is shown in

Fig. 1,
– the condition attribute value sets, as well as both the information function

finf and the decision function fdec, can be obtained from Table 1.

The meaning of attributes (condition and decision) is as follows:

– cg - gender,
– cmp - abilities in mathematics and physics,
– cbc - abilities in biology and chemistry,
– ch - abilities in humanities,
– d - field of study.

Table 1. The simple decision system over ontological graphs describing students

U /A cg cmp cbc ch d

Description Gender Abilities in
mathematics and
physics

Abilities in
biology and
chemistry

Abilities in
humanities

Field of study

u1 Male Good Medium Low Physics

u2 Male Good Medium Low Astronomy

u3 Female Medium Good Medium Astronomy

u4 Male Medium Medium Good Finance

u5 Female Medium Good Medium Chemistry

u6 Male Good Medium Low Physics

u7 Female Medium Good Medium Biochemistry

u8 Female Medium Good Medium Law

u9 Male Low Medium Good Law

u10 Female Medium Medium Good Law

u11 Female Medium Medium Good Administration

u12 Male Medium Medium Good Economy
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The field of study is depicted as a consequence of a gender as well as selected
abilities of students. We have the following relationship:

conditions(gender, selectedabilities) → decision(fieldofstudy).

As it is expected, there are some inconsistencies in this relationship.
The ontological graph OGd associated with the decision attribute d describes

fields of studies (see Fig. 1). For simplicity, it is a small part of a real ontological
graph describing fields of studies and it is depicted as a hierarchy of classes in
Protege. Protege [15] is a free, open source, platform-independent environment
for creating and editing ontologies and knowledge bases. A covering (partition)
including basic knowledge granules induced by the indiscernibility relation IRC

has the form ΠIRC
= {G1, G2, G3, G4, G5}, where:

– G1 = {u1, u2, u6},
– G2 = {u3, u5, u7, u8},
– G3 = {u4, u12},
– G4 = {u9},
– G5 = {u10, u11}.

For simplicity, we assume τ1 = 1 and τ2 = 2 to determine the kind of a hyper-
onymous meaning relation HprMRa (see Sect. 2.2).

Fig. 1. The ontological graph describing fields of studies (a hierarchy of classes in
Protege) associated with the decision attribute

One can see that the decision system describing students is inconsistent with
respect to the partition ΠIRC

. Let us use a measure defined by us to assess
inconsistencies. Two sets of objects, XLaw

d and XPhysics
d , for approximation by

basic knowledge granules, will be considered as examples. Assignment of basic
knowledge granules from ΠIRC

to regions on account of approximated sets of
objects is shown in Table 2.
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Table 2. Assignment of basic knowledge granules to regions on account of approxi-
mated sets of objects

X POSΠIRC
(X) BNDΠIRC

(X) NEGΠIRC
(X)

XLaw
d G4 G2 ∪ G5 G1 ∪ G3

XPhysics
d ∅ G1 G2 ∪ G3 ∪ G4 ∪ G5

For granules from boundary regions, we have:

– Decd(G1) = {Physics,Astronomy},
– Decd(G2) = {Astronomy,Chemistry,Biochemistry, Law},
– Decd(G5) = {Law,Administration}.

In case of the set XLaw
d and the granule G2, we obtain:

– for u3, (Law,Astronomy) ∈ FHprMRd, hence

sem(Law,Astronomy) = 0.1,

– for u5, (Law,Chemistry) ∈ FHprMRd, hence

sem(Law,Chemistry) = 0.1,

– for u7, (Law,Biochemistry) ∈ FHprMRd, hence

sem(Law,Biochemistry) = 0.1,

– for u8, (Law,Law) ∈ EMRd, hence

sem(Law,Law) = 1.

In case of the set XLaw
d and the granule G5, we obtain:

– for u10, (Law,Law) ∈ EMRd, hence

sem(Law,Law) = 1,

– for u11, (Law,Administration) ∈ CHprMRd, hence

sem(Law,Administration) = 0.9.

In case of the set XPhysics
d and the granule G1, we obtain:

– for u1, (Physics, Physics) ∈ EMRd, hence

sem(Physics, Physics) = 1,

– for u2, (Physics,Astronomy) ∈ CHprMRd, hence

sem(Physics,Astronomy) = 0.9,
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– for u6, (Physics, Physics) ∈ EMRd, hence

sem(Physics, Physics) = 1.

If we take a minimum (one of the worst cases) as an aggregation operator, we
obtain assessment of basic knowledge granules on account of approximated sets
of objects as in Table 3. If we take an arithmetic average (some of average cases)
as an aggregation operator, we obtain assessment of basic knowledge granules
on account of approximated sets of objects as in Table 4.

Table 3. Assessment of basic knowledge granules on account of approximated sets of
objects in case of a minimum operator

X G1 G2 G3 G4 G5

XLaw
d 0.00 0.10 0.00 1.00 0.90

XPhysics
d 0.90 0.00 0.00 0.00 0.00

Table 4. Assessment of basic knowledge granules on account of approximated sets of
objects in case of an arithmetic average operator

X G1 G2 G3 G4 G5

XLaw
d 0.00 0.33 0.00 1.00 0.95

XPhysics
d 0.97 0.00 0.00 0.00 0.00

In our approach, we can also adopt other measures. Several similarity mea-
sures between two concepts have been proposed, especially for semantic nets
organized hierarchically (see, for example, [10,23]). The measure defined in [10]
utilizes information from the hierarchical net, in our case, ontological graph. Con-
cepts at upper levels of the hierarchy have more general semantics and less simi-
larity between them, while concepts at lower levels have more concrete semantics
and stronger similarity. The similarity between two concepts v and v′ is consid-
ered to be governed by the length of the shortest path as well as the depth of
the subsumer (cf. [10]):

s(v, v′) = f1(l)f2(h),

where l is the length of the shortest path between v and v′ in the ontological
graph and h is the depth of the subsumer in the hierarchy.

In general, functions f1 and f2 are nonlinear. For the function f1:

– if the path length decreases to zero, the similarity will monotically increase
toward 1,

– if the path length increases infinitely, the similarity will monotically decrease
toward 0.
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The depth is measured by counting the closest level from subsumers to the top
of hierarchy (the root concept). The function f2 should be selected to satisfy
the fact that concepts at lower levels of the hierarchy are more similar than at
higher levels.

In [10], the following component functions have been defined:

– f1(l) = e−αl,
– f2(h) = eβh−e−βh

eβh+e−βh ,

where α is a constant and β is a smoothing factor.

4 Conclusions

We have shown how to measure inconsistencies in simple decision systems over
ontological graphs if the ontological graphs include paradigmatic relations funda-
mental in linguistics (i.e., synonymy, antonymy, hyponymy, hyperonymy). One of
the challenging problems is to define measures enabling us to make a quantitative
assessment of basic knowledge granules in case of other paradigmatic semantic
relations (e.g., meronymy/holonymy) or any other semantic relations, especially
those non-hierarchical. Meronymy/holonymy relations are also hierarchical ones.
The proposed measure can be helpful to consider decision systems over ontolog-
ical graphs in terms of the Variable Precision Rough Set Model (VPRSM) [34].
Moreover, we plan to consider simple decision systems over ontological graphs in
the context of generalized decision functions, especially for the decision reduct
and decision rule generation.
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7. Greco, S., Matarazzo, B., S�lowiński, R.: Rough sets theory for multicriteria decision
analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)

8. Greco, S., Matarazzo, B., Slowinski, R.: The use of rough sets and fuzzy sets in
MCDM. In: Gal, T., Stewart, T.J., Hanne, T. (eds.) Multicriteria Decision Making:
Advances in MCDM Models, Algorithms, Theory, and Applications, pp. 397–455.
Springer, Boston (1999). doi:10.1007/978-1-4615-5025-9 14

http://en.wiktionary.org/wiki/Wiktionary
http://dx.doi.org/10.1007/978-1-4615-5025-9_14


A Measure of Inconsistency for Simple Decision Systems 521

9. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publish-
ers, Dordrecht (2000)

10. Li, Y., Bandar, Z., Mclean, D.: An approach for measuring semantic similarity
between words using multiple information sources. IEEE Trans. Knowl. Data Eng.
15(4), 871–882 (2003)
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Abstract. In both game theory and in rough sets, the management of
missing and contradicting information is regarded as one of the biggest
challenges with significant practical relevance. In game theory, a dis-
tinction is made between imperfect and incomplete information. Imper-
fect information is defined when a player cannot identify the decision
node it is presently at. Incomplete information refers to a lack of knowl-
edge about the future actions of one’s opponent, e.g., due to missing
information about its payoffs. In rough set theory, missing and contra-
dicting information in decision tables has been extensively researched
and has led to the definition of lower and upper approximations of sets.
Although game theory and rough sets have already addressed missing
and contradicting information thoroughly little attention has been given
to their relationship. In the paper, we present an example how games
with imperfect information can be interpreted in the context of rough
sets. In particular, we further detail Peters’ recently proposed mapping
of a game with incomplete information on a rough decision table.

Keywords: Missing and contradicting information · Incomplete infor-
mation · Game theory · Rough set theory

1 Introduction

Motivation. In game theory [3] as well as in rough set theory [12] the role
of information, in particular missing and contracting information, is of crucial
importance. Therefore, extensive research has been directed at the role of infor-
mation in both areas. While game theory deals with two or more players who
develop strategies competing and striving for their individual maximum payoffs,
in rough set theory a classic decision table is assumed. This table consists of a
set of records of actions. Each record is defined by its attributes and their values
and leads to a certain result. Such a decision table can be interpreted as one
player who has a portfolio of actions; it plays ‘nature’ that comprises of a set of
attributes. Although both, game theory and rough sets, face similar challenges
regarding the management of information, little attention has been given to a
discussion of their relationship to each other so far.
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Due to a high number of applications and models in economics [10,15], game
theory is often associated with economic analysis. However, game theory is also
applied in a diverse range of further areas, including, e.g., in biology [6], com-
puter science [2,5] or political science [11] besides many others. In connection
with rough sets, Herbert and Yao [8,9] proposed game-theoretic rough sets. In
game-theoretic rough sets game theory is applied to rough sets to optimize the
distribution of objects in the lower approximations and boundaries. Hence, game
theory is used as an optimization method in game-theoretic rough sets like in
several other domains. In contrast to this, Xu and Yao [18], for example, inte-
grate rough concepts into game theory by proposing a two-person games with
rough payoffs.

Recently, Peters [14] outlined an introductory perspective from rough sets on
games with imperfect and incomplete information. He also proposed to distin-
guish between irrelevant, weak and strong boundaries depending on their impact
on missing information in games. However, a detailed and extensive discussion
about the relationship of game theory and rough set theory, especially with
respect to information, would be much desirable but is still missing. It could
possible enrich both fields in many ways. First, new perspectives from game the-
ory on rough sets may enrich rough sets. Second, established methods to manage
information developed in game theory may possibly be applied to rough sets.
Of course, the same applies vice versa, i.e., a rough perspective and respective
rough methods could possibly enrich game theory.

Objective. Therefore, as a next step towards this directions, the objective of the
paper is to further discuss and detail the relationship of games and rough sets.
In particular, we focus on incomplete information in extensive-form games and
rough sets by presenting an illustrate example.

Structure. The remainder of the paper is organized as follows. In the next section,
we provide some introductional and notational remarks and then briefly discuss
missing information in games. In Sect. 3, we transform a game with incomplete
information into a rough decision table. Subsequently, we discuss an example
how games can be interpreted from a rough set perspective. In Sect. 4 we show
how the concept of roughness can be used as an indicator for the degree of
incomplete information in games. The paper ends with a conclusion in Sect. 5.

2 Missing Information in Games

In this section, we provide some introductional and notational remarks on games
and rough sets first. Then we review imperfect and incomplete information and
their relationship to each other.

2.1 Introductional and Notational Remarks

Games. For the sake of simplicity, but without loss of generality, we assume a
two player game with the players R and S. Furthermore, we limit ourselves in
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our example to two-way decisions at any decision node of a player. The decision
nodes are numbered sequentially for player R (DR1, . . .) and player S (DS1, . . .);
the attributes at the nodes are denoted by R1, . . . and S1, . . ., respectively. At
each decision node, a player can decide to go ‘up’ or ‘down’ the decision tree. To
illustratively symbolize these two possibilities we represent the strategies by up
arrows (↑) and down arrows (↓) as depicted in Fig. 1. A star (∗) indicates that
it is irrelevant which decision a player takes since all lead to the same payoff.
The strategies of the players are indicated by lower cases of the corresponding
letters of the player R (r1, . . .) and S (s1, . . .), respectively. They consist of the
single actions taken at each decision node. E.g., assuming player S has two
decision nodes one strategy would be s1 = {↑, ↑}. This means that the player
moves up at both nodes, DS1 and DS2. The payoffs for the players R and S are
denominated as Ci = (cRi, cSi). Missing information, e.g., about the payoff an
opponent receives and its strategy, is denoted by a question mark (?).

Decision 
Node DR1

Fig. 1. Notational remarks

Rough Sets. For a rough decision table, we use the notations as presented by
Grzymala-Busse [4]: U is the set of all cases, A the set of all attributes and B a
nonempty subset of A. The set of all attribute values is denoted by V while the
mapping ρ: U × A → V represents an information function.

2.2 Imperfect and Incomplete Information

Missing and contradicting information is one of the biggest challenges in deci-
sion theory as well as in game theory. For example, Akerlof [1] pointed out
the important role and significant implications of asymmetric information for
markets. Furthermore, in particular in games theory, imperfect information and
incomplete information are distinguished while these terms seems to be often
used more vaguely in some other areas.

Imperfect Information. Imperfect information is related to the indistinguisha-
bility of decision nodes for a player. For example in Fig. 2, player S cannot
distinguish between its decision nodes DS1 and DS2 (indicated by the vertical
fine dashed line in the figure). Both nodes form a single information set I for
the player: IS1 = {DS1,DS2}. Obviously, imperfect information is related to a
past decision of its player’s opponent; the player has no information how the
opponent decided at a former node (in our case, whether player R moved up or
down at node DR1).
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Player R Imperfect  
Player S Information 

C1 

C2 

C3 

C4 

C5 

DR1

DR2

DS1

DS2

Fig. 2. Imperfect and incomplete information

Incomplete Information. In contrast to imperfect information, incomplete infor-
mation is related to a future decision of a player’s opponent. To illustrate this,
we consider the subgame in Fig. 2 staring at node DS1. Let us assume that player
S knows that it is at DS1 (perfect information) and that its payoffs are as fol-
lows: cS1 > cS3 > cS2. Let us further assume that player S knows the payoffs
of player R, i.e., player S has complete information. Obviously, player S would
decide to go up when player R decided to go up at DR2. This is the case for
cR1 > cR2. However, for cR1 < cR2 player R would go down at node DR2 and
player S would receive a payoff of cS2. To avoid this, player S would decide to
move down at DS2 and obtain the higher payoff cS3 instead.

Now consider the case that the payoffs of player R are unknown for player
S. Apparently, an evaluation as discussed above is no longer possible for player
S. It cannot select a sure strategy that will optimize its payoff since it faces
incomplete information.

Harsanyi Transformation. Harsanyi [7] showed that, under some assumptions, a
game with incomplete information can be transformed into a game with imper-
fect information. He proposed to interpret the original game as several subgames
where each subgame represents a different possible payoff structure. Therefore,
each subgame has complete information. To determine which subgame is played
Harsanyi introduced a new player ‘nature’, which selects the particular subgame
that will be played.
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3 Relationship of Incomplete Information in Games
and Rough Sets

In this section, we concentrate on games with incomplete information and trans-
form such games into a rough decision tables. We also show how rough methods,
in particular the roughness observed in a rough decision table, can be inter-
preted as an indicator for the degree of incomplete information in the original
extensive-form game.

3.1 Transforming a Game with Incomplete Information
into a Rough Decision Table

To illustrate the representation of a game with incomplete information as rough
decision table let us consider the extensive-form game of the players R and S as
depicted in Fig. 3.

Player R                  Player S 

C1 

C2 

C3 

C4 

C5 

C6 

DR1

DR2

DR3

DS1

DS2

Fig. 3. Game of players R and S in extensive form

The corresponding game in strategic form is given in Table 1. The table
shows the entire set of strategies of player R in the left subtable (indicted by
a superscript EG for entire game: rEG) and its minimum representation in the
right subtable (indicted by a superscript MG for minimum game: rMG).

Let us consider the entire game first. When player R selects one of the strate-
gies rEG

5 − rEG
8 it moves down at node DR1 and faces no further own decision.
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Therefore, its decisions prepared for the nodes DR2 and DR3 are irrelevant for
the outcome of the game in this case. Hence, the game can be reduced. In the
minimum game, the original strategies rEG

5 − rEG
8 melt down to one strategy

rMG
5 . In this strategy, the corresponding decisions at the nodes DR2 and DR3

are marked by stars (∗) indicating that they irrelevant.

Table 1. Game of players R and S in strategic form

s1 s2 s3 s4 s1 s2 s3 s4
↑↑ ↑↓ ↓↑ ↓↓ ↑↑ ↑↓ ↓↑ ↓↓

rEG
1 ↑↑↑ C1 C1 C3 C3 rMG

1 ↑↑↑ C1 C1 C3 C3

rEG
2 ↑↑↓ C1 C1 C4 C4 rMG

2 ↑↑↓ C1 C1 C4 C4

rEG
3 ↑↓↑ C2 C2 C3 C3 ⇒ rMG

3 ↑↓↑ C2 C2 C3 C3

rEG
4 ↑↓↓ C2 C2 C4 C4 rMG

4 ↑↓↓ C2 C2 C4 C4

rEG
5 ↓↑↑ C5 C6 C5 C6 rMG

5 ↓ ∗∗ C5 C6 C5 C6

rEG
6 ↓↑↓ C5 C6 C5 C6

rEG
7 ↓↓↑ C5 C6 C5 C6

rEG
8 ↓↓↓ C5 C6 C5 C6

To discuss the relationship between a game in strategic form and a rough
decision table we convert the game into a decision table first. Our motivation
for this transformation is to present the game in a way that is common in rough
sets and, therefore, make it more illustrative and accessible for the reader.

The game in strategic form can be transformed into a decision table for one
of the players, in our case player R, as follows. The nodes of its opponent, in
our case player S, are considered to be its own nodes, i.e., the nodes of player R.
Therefore, each strategy rMG

i of player R is multiplied four times. Then, each of
the four obtained strategies is complemented by one of the four strategies sj of
player S. The resulting decision table of player R consists of its original set of
three nodes (DR1, DR2 and DR3) as well as of the two nodes (DS1 and DS2) of
player S and the appropriate decisions. The nodes represent attributes in a rough
decision table. The set of attributes is AR = {BR, BS} = {R1, R2, R3, S1, S2}
consisting of the two subsets BR and BS of the original attributes of the players
R and S, respectively. The possible actions (move up (↑) or down (↓)) in the
game are attribute values in the rough decision table with the set of attribute
values V = {↑, ↓}. Note, that the subset of attributes BS consist of the original
actions of player S. However, these actions are treated as part of the attribute
set of player R in the obtained decision table now (see Table 2).

In real life applications games can get big which possibly leads to decision
tables with large numbers of attributes. In such cases, like, e.g., often observed
in bioinformatics, one would possibly face dimensionality scalability, i.e., the
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challenge of dealing with many attributes [16]. However, a detailed discussion,
including an examination if rough sets could be applied to reduce the number
of attributes (see, e.g., Wang and Miao [17]), would go beyond the focus of our
paper.

Table 2. Entire decision tables (ET) of player R

Player � Complete information Incomplete information Payoff
Partial Partial Total

ET1 ET2 ET3 ET4

R S R S R S R S

rET
1 ↑↑↑ ↑↑ ↑↑↑ ↑? ↑↑↑ ?↑ ↑↑↑ ?? C1

rET
2 ↑↑↑ ↑↓ ↑↑↑ ↑? ↑↑↑ ?↓ ↑↑↑ ?? C1

rET
3 ↑↑↑ ↓↑ ↑↑↑ ↓? ↑↑↑ ?↑ ↑↑↑ ?? C3

rET
4 ↑↑↑ ↓↓ ↑↑↑ ↓? ↑↑↑ ?↓ ↑↑↑ ?? C3

rET
5 ↑↑↓ ↑↑ ↑↑↓ ↑? ↑↑↓ ?↑ ↑↑↓ ?? C1

rET
6 ↑↑↓ ↑↓ ↑↑↓ ↑? ↑↑↓ ?↓ ↑↑↓ ?? C1

rET
7 ↑↑↓ ↓↑ ↑↑↓ ↓? ↑↑↓ ?↑ ↑↑↓ ?? C4

rET
8 ↑↑↓ ↓↓ ↑↑↓ ↓? ↑↑↓ ?↓ ↑↑↓ ?? C4

rET
9 ↑↓↑ ↑↑ ↑↓↑ ↑? ↑↓↑ ?↑ ↑↓↑ ?? C2

rET
10 ↑↓↑ ↑↓ ↑↓↑ ↑? ↑↓↑ ?↓ ↑↓↑ ?? C2

rET
11 ↑↓↑ ↓↑ ↑↓↑ ↓? ↑↓↑ ?↑ ↑↓↑ ?? C3

rET
12 ↑↓↑ ↓↓ ↑↓↑ ↓? ↑↓↑ ?↓ ↑↓↑ ?? C3

rET
13 ↑↓↓ ↑↑ ↑↓↓ ↑? ↑↓↓ ?↑ ↑↓↓ ?? C2

rET
14 ↑↓↓ ↑↓ ↑↓↓ ↑? ↑↓↓ ?↓ ↑↓↓ ?? C2

rET
15 ↑↓↓ ↓↑ ↑↓↓ ↓? ↑↓↓ ?↑ ↑↓↓ ?? C4

rET
16 ↑↓↓ ↓↓ ↑↓↓ ↓? ↑↓↓ ?↓ ↑↓↓ ?? C4

rET
17 ↓ ∗∗ ↑↑ ↓ ∗∗ ↑? ↓ ∗∗ ?↑ ↓ ∗∗ ?? C5

rET
18 ↓ ∗∗ ↑↓ ↓ ∗∗ ↑? ↓ ∗∗ ?↓ ↓ ∗∗ ?? C6

rET
19 ↓ ∗∗ ↓↑ ↓ ∗∗ ↓? ↓ ∗∗ ?↑ ↓ ∗∗ ?? C5

rET
20 ↓ ∗∗ ↓↓ ↓ ∗∗ ↓? ↓ ∗∗ ?↓ ↓ ∗∗ ?? C6

Table 2 consists of four different subtables. Each of these subtables is an
entire1 decision tables (ET for entire decision table) representing a different
degree of incomplete information. Table ET1 shows the strategies of player R
when it has complete information about the payoffs and, therefore, the actions of

1 ‘Entire’ in a sense of the minimum game as depicted in Table 1.
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player S. The tables ET2 − ET4 contain R’s strategies when it faces incomplete
information. This lack of knowledge of player R is indicated by question marks
(?) in Table 2. In table ET2 player R has no knowledge about the decision of
player S at node DS1. In ET3 no information is given about the moves of player
S at node DS1 and in table ET4 player R does not know anything about the
decisions of player S at any of its nodes, i.e., at the nodes DS1 and DS2.

Table 3. Minimum decision tables (MT) of player R

Player � Complete information Incomplete information Payoff
Partial Partial Total

MTmin,1 MTmin,2 MTmin,3 MTmin,4

R S R S R S R S

rMT
1 ↑↑ ∗ ↑ ∗ ↑↑ ∗ ↑ ∗ ↑↑ ∗ ?∗ ↑↑ ∗ ?∗ C1

rMT
2 ↑↓ ∗ ↑ ∗ ↑↓ ∗ ↑ ∗ ↑↓ ∗ ?∗ ↑↓ ∗ ?∗ C2

rMT
3 ↑ ∗ ↑ ↓ ∗ ↑ ∗ ↑ ↓ ∗ ↑ ∗ ↑ ?∗ ↑ ∗ ↑ ?∗ C3

rMT
4 ↑ ∗ ↓ ↓ ∗ ↑ ∗ ↓ ↓ ∗ ↑ ∗ ↓ ?∗ ↑ ∗ ↓ ?∗ C4

rMT
5 ↓ ∗∗ ∗ ↑ ↓ ∗∗ ∗? ↓ ∗∗ ∗ ↑ ↓ ∗∗ ∗? C5

rMT
6 ↓ ∗∗ ∗ ↑ ↓ ∗∗ ∗? ↓ ∗∗ ∗ ↓ ↓ ∗∗ ∗? C6

The number of strategies shown in Table 2 can be reduced. The corresponding
reduced set of strategies is depicted in Table 3 (MT for minimum decision table).
Note, that player R overwrites unknown actions of player S, i.e., decisions that
are marked by a question mark (?) in case they are irrelevant from its perspective
(indicated by a star (∗)). For example, rMT

1 in MT4 is ↑↑ ∗?∗. Although player
R does not know the decision of player S at node DS2 it is indicated by a star
(∗) since it is irrelevant for player R whatever decision player S makes at this
node.

4 Roughness of Games

In the subsequent sections, we discuss the concept of the roughness of a game.
This could be applied to the entire decision tables as depicted in Table 2 as well
as to the minimum decision tables as shown in Table 3. However, for the sake of
simplicity we only apply it to the entire decision tables as shown in Table 2. We
think that this table is easier and more intuitive to understand as an introductory
example.

4.1 Rough Analyses of the Game with Imperfect Information

The decision tables ET1 −ET4 in Table 2 can be treated like normal rough deci-
sion tables, i.e., the methods developed for rough decision tables can be directly
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applied to the tables. For example, we can determine lower approximations and
the boundaries of the corresponding sets. Note, in our case, the sets equal the
payoffs of the players (Ci = (cRi, cSi)). We obtain for the subtable ET1 − ET4:

– Table ET1 represents the case where player R has complete information. From
a rough set perspective, this is indicated by the non-existence of any boundary.
All strategies of player R, rET

1 − rET
20 , are assigned to lower approximations

of the payoffs C1 − C6 (in rough set terms these are the sets C1 − C6).
– In table ET2, the strategies rET

17 and rET
18 are indiscernible since they have

identical attribute values of ↓ ∗∗ ↑. However, they lead to different payoffs.
In the case of rET

17 , the payoff C5 is obtained and the strategy rET
18 leads to a

payoff of C6. Hence, the strategies rET
17 and rET

18 belong to the boundaries of
C5 and C6. The same applies to rET

19 and rET
20 . They have identical attribute

values, but the payoffs are different (C5 and C6, respectively). So, they also
belong to the boundaries of C5 and C6. The remaining indiscernible strategies
lead to identical payoffs. Therefore, they do not contradict each other and
consequently belong to the lower approximations of the corresponding payoffs.
E.g., the strategies rET

1 and rET
2 are indiscernible but lead to the same payoff

of C1. Hence, they are assigned to the lower approximation of the set C1.
– Like in the case of ET2, in table ET3 we observe several indiscernible strategies

that lead to different payoffs. The strategies rET
1 and rET

3 are indiscernible
but lead to payoffs of C1 and C3; rET

2 and rET
4 are indiscernible but lead to C1

and C3; rET
5 and rET

7 are indiscernible but lead to C1 and C4; rET
6 and rET

8

are indiscernible but lead to C1 and C4; rET
9 and rET

11 are indiscernible but
lead to C2 and C3; rET

10 and rET
12 are indiscernible but lead to C2 and C3; rET

13

and rET
15 are indiscernible but lead to C2 and C4; and finally, rET

14 and rET
16

are indiscernible but lead to C2 and C4. Only the four remaining strategies,
rET
17 − rET

20 belong to lower approximations: rET
17 and rET

19 are indiscernible
but lead to the same payoff C5 and rET

18 and rET
20 are indiscernible and also

lead to a same payoff, in this case C6. Hence, they are non-contradictory and,
therefore, assigned to the lower approximations of the corresponding sets.

– In the case of totally incomplete information in table ET4, all strategies belong
to boundaries: rET

1 − rET
4 to the boundaries of C1 and C2; rET

5 − rET
8 to the

boundaries of C1 and C4; rET
9 −rET

12 to the boundaries of C2 and C3; rET
13 −rET

16

to the boundaries of C2 and C4; rET
17 − rET

20 to the boundaries of C5 and C6.

The memberships to the lower approximations (indicated by an underline Ci)
and boundaries (indicated by a hat ̂Ci) of C1−C6 of the strategies for ET1−ET4

are summarized in Table 4.
As we can see from Table 4, the number of boundary objects is minimal for

ET1 which represents complete information and maximal in the case of totally
incomplete information. As we discuss in the next section, this leads to the
interpretation of the roughness of a set as indicator for the degree of incomplete
information in a game.
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Table 4. Lower approximations and boundaries

Lower approximation Boundary

ET1

C1 = {rET
1 , rET

2 , rET
5 , rET

6 } ̂C1 = ∅
C2 = {rET

9 , rET
10 , rET

13 , rET
14 } ̂C2 = ∅

C3 = {rET
3 , rET

4 , rET
11 , rET

12 } ̂C3 = ∅
C4 = {rET

7 , rET
8 , rET

15 , rET
16 } ̂C4 = ∅

C5 = {rET
17 , rET

19 } ̂C5 = ∅
C6 = {rET

18 , rET
20 } ̂C6 = ∅

ET2

C1 = {rET
1 , rET

2 , rET
5 , rET

6 } ̂C1 = ∅
C2 = {rET

9 , rET
10 , rET

13 , rET
14 } ̂C2 = ∅

C3 = {rET
3 , rET

4 , rET
11 , rET

12 } ̂C3 = ∅
C4 = {rET

7 , rET
8 , rET

15 , rET
16 } ̂C4 = ∅

C5 = ∅ ̂C5 = {rET
17 , rET

19 }
C6 = ∅ ̂C6 = {rET

18 , rET
20 }

ET3

C1 = ∅ ̂C1 = {rET
1 , rET

2 , rET
5 , rET

6 }
C2 = ∅ ̂C2 = {rET

9 , rET
10 , rET

13 , rET
14 }

C3 = ∅ ̂C3 = {rET
3 , rET

4 , rET
11 , rET

12 }
C4 = ∅ ̂C4 = {rET

7 , rET
8 , rET

15 , rET
16 }

C5 = {rET
17 , rET

19 } ̂C5 = ∅
C6 = {rET

18 , rET
20 } ̂C6 = ∅

ET4

C1 = ∅ ̂C1 = {rET
1 , rET

2 , rET
5 , rET

6 }
C2 = ∅ ̂C2 = {rET

9 , rET
10 , rET

13 , rET
14 }

C3 = ∅ ̂C3 = {rET
3 , rET

4 , rET
11 , rET

12 }
C4 = ∅ ̂C4 = {rET

7 , rET
8 , rET

15 , rET
16 }

C5 = ∅ ̂C5 = {rET
17 , rET

19 }
C6 = ∅ ̂C6 = {rET

18 , rET
20 }

4.2 Roughness with Respect to Incomplete Information

In rough sets, the ratio of the cardinalities of the lower and upper approxima-
tions was originally defined as roughness [13]. We use a small common variation
of the definition of the roughness ρ and take the quotient of the numbers of
objects in boundaries to all objects as indicator for the roughness. When we
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apply roughness to the transformed game as depicted in the Tables 2 and 4 we
obtain results as shown in Table 5.

Note, that we apply the concept of roughness to the minimal game as depicted
in Table 1. Alternatively, we could also use the entire game (see Table 1). How-
ever, the entire game consists of four strategies rEG

5 −rEG
8 that can be considered

as one strategy rMG
5 with two irrelevant decisions. Therefore, we think that, gen-

erally, the minimal game should be taken. However, as discussed above, we do
not strictly follow this rule in all places of our paper: we take Table 2 instead
of Table 3 since we think that, in this particular case, taking Table 2 is more
illustrative and easier to understand than an example based on Table 3.

Table 5. Roughness with respect to incomplete information

ET1 ET2 ET3 ET4

Number of boundary strategies 0 4 16 20
Number of strategies 20 20 20 20
Incomplete information roughness ρ 0.0 0.2 0.8 1.0

The roughness observed in table ET1 is ρ = 0.0 which indicates that informa-
tion is complete for player R. In contrast to this, the roughness recorded in table
ET4 equals ρ = 1.0 revealing totally incomplete information from the perspective
of player R. Of particular interest are the tables ET2 and ET3 which both rep-
resent games with partly incomplete information for player R. The roughnesses
differ significantly with ρ = 0.2 for ET2 and ρ = 0.8 for ET3. These differences
can be comprehended when we take a look on the original game in Fig. 3. Table
ET2 represents a game with missing information for player R about the payoffs
C5 and C5 of player S, i.e., player R has no information about the decision of
player S at node DS2. Table ET3 is related to missing information at node DS1,
i.e., player R does not know how player S decides at this node.

Obviously, the remaining subtree starting at DS1 is more complex in com-
parison to the subtree beginning at DS2. While the latter subtree directly leads
to two consequences (C5 and C6), the subtree starting at DS1 requires a further
decision of player R either at DR1 or at DR2 depending on the decision taken by
player S. Therefore, with respect to information, ET2 is superior to ET3 which
is also observed in a lower roughness in subtable ET2 in comparison to ET3.

5 Conclusion

In the paper, we presented an example how an extensive-form game with incom-
plete information can be transformed into a rough decision table. Thus, it is
possible to directly apply well-established methods from rough sets to this table,
and, therefore, also to the underlying game. In our example, we illustrated this
for the roughness. We showed that the observed roughness is an indicator for
the degree of incomplete information in the original game. Obviously, further
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methods from rough set theory could also be applied to the rough decision table
and interpreted in the context of the original game. However, also, vice versa,
rough sets could possibly draw from the rich portfolio, in particular with respect
to information, that has been developed in game theory. Therefore, it would
be desirable to discuss the relationship of game theory and rough sets more
intensively, including a more formal comparison that goes beyond the presented
example. Both fields could possibly mutually benefit from each other.
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Abstract. A logical framework on Machine Learning by Rule Gener-
ation (MLRG) from tables with non-deterministic information is pro-
posed, and its prototype system in SQL is implemented. In MLRG, the
certain rules defined in Rough Non-deterministic Information Analysis
(RNIA) are obtained at first, and each uncertain attribute value is esti-
mated so as to cause the certain rules as many as possible, because the
certain rules show us the most reliable information. This strategy is sim-
ilar to the maximum likelihood estimation in statistics. By repeating
this process, a standard table and the rules in its table are learned (or
estimated) from a given table with non-deterministic information. Even
though it will be hard to know the actual unknown values, MLRG will
give a plausible estimation value.

Keywords: Machine learning by rule generation · Uncertainty ·
NIS-Apriori algorithm · SQL · Prototype

1 Introduction

The management of information incompleteness in tables [3,5,7–13,20] is still a
very important issue in rough sets, data mining, machine learning, and soft com-
puting. We followed Nondeterministic Information Systems (NISs) [9,10] and
the missing values [5], and proposed the framework of Rough Non-deterministic
Information Analysis (RNIA) [12,13]. Table 1 is an exemplary NIS Φsalary, where
each attribute value is given as a set or a missing value ?. We see that there is an
actual value in each set but we do not know which is the actual value. We have
characterized the rules in such NISs, and we are applying them to the several
issues connected with information incompleteness.
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Table 1. An exemplary NIS Φsalary.

Object Age Depart(ment) Smoke Salary

x1 {young} {first} {yes} {low}
x2 {young, senior} {first, second, third} {yes} {low}
x3 {senior} {second} {yes, no} {high}
x4 {young, senior} {second} {no} {high}
x5 {young} ? {yes, no} {high}
x6 {senior} {third} {no} {high}

Fig. 1. A research map with respect to RNIA.

In RNIA, the Apriori algorithm [1] is extended to the NIS-Apriori algorithm
[12,13], and it generates the certain rules and the possible rules. These rules with
modality are defined by using all possible tables derived from NIS [12,13], and
there may be a huge number of possible tables. For example, there are more than
10100 possible tables in the Mammographic data set in UCI machine learning
repository [4]. Even though the definition of the certain rules and the possible
rules is natural, it seemed hard to realize a rule generator for these rules due to
the huge number of possible tables.

However, the NIS-Apriori algorithm affords a solution to this problem. Since
it employs the mathematical property shown in [12,13], it does not depend upon
the number of all possible tables. Furthermore, the NIS-Apriori algorithm is
sound and complete [14] for the certain rules and the possible rules. Recently,
we are considering a software tool in SQL [16] in order to handle the large size
data sets. Some actual execution logs including the Mammographic data set are
in the web page [17].

Figure 1 shows the research map, where the block with the broken lines shows
previous research and the block with the solid line does the purpose in this paper.
We are applying the NIS-Apriori algorithm to machine learning (or estimating
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Fig. 2. A chart on machine learning by rule generation [15].

the actual attribute values) from NIS. The idea is the following: We obtain the
certain rules in NIS Φi by using the NIS-Apriori algorithm, and we change Φi

to NIS Φi+1 so as to cause the obtained certain rules as many as possible [15].
By repeating this procedure, we finally obtain a standard table Deterministic
Information System (DIS). Figure 2 shows a chart on Machine Learning by Rule
Generation (MLRG).

As far as we know, the system based on the NIS-Apriori algorithm is unique,
so a software tool on MLRG is also unique. Of course, it will be hard to know
the unknown actual values, but MLRG will give a plausible estimation value.
This paper is organized as follows: Sect. 2 surveys the framework of RNIA, and
Sect. 3 proposes MLRG. Section 4 presents an experimental example, and Sect. 5
investigates some procedures in SQL. Section 6 concludes this paper.

2 Background of Rules in NISs and NIS-Apriori Based
Rule Generation

This section briefly reviews RNIA, and describes how NIS-Apriori algorithm
solves the computational problem for handling non-deterministic information.

2.1 RNIA and Rule Generation

At first, we clarify the rules in DIS. A pair [A, valA] of an attribute A and an
attribute value valA is called a descriptor. For a fixed decision attribute Dec
and a set CON of attributes, an implication τ : ∧A∈CON [A, valA] ⇒ [Dec, val]
is (a candidate of) a rule, if τ satisfies the next two constraints for two given
threshold values 0 < α, β ≤ 1.0.

(1) support(τ) (=N(τ)/|OB|) ≥ α,
(2) accuracy(τ) (=N(τ)/N(∧A∈CON [A, valA])) ≥ β.

Here, N(∗) means the number of the objects satisfying the formula ∗, and OB
means a set of all objects.
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In NIS Φ, we replace each non-deterministic information or a missing value
? with a possible value, and we obtain one DIS. We named it a derived DIS
from NIS. Let DD(Φ) be a set of all derived DISs from Φ. We see an actual DIS
ψactual exists in DD(Φ). For Φsalary, DD(Φsalary) consists of 144 (=32 × 24)
derived DISs. Based on DD(Φ), we proposed the certain and the possible rules
below:

Definition 1 [12,13].

(1) τ is a certain rule, if τ is a rule in each ψ ∈ DD(Φ),
(2) τ is a possible rule, if τ is a rule at least one ψ ∈ DD(Φ).

The above two types of rules follow the modal concepts [8] by Lipski. Since a
certain rule τ is also a rule in an actual DIS ψactual, this τ is the most reliable.
Every certain rule is not influenced by the information incompleteness. On the
other hand, a possible rule may be a rule in an actual DIS ψactual. These two
types of rules will be one example of three way decision [20] by Yao.

Even though the definition of rules seems natural, we need to handle a huge
number of DISs. For this computational problem, we defined two sets for a
descriptor [A, val] below:

inf([A, val]) = {x : object | the value of x for A is a singleton set {val}},
sup([A, val]) = {x : object | the value of x for A is a set including val},

inf(∧A∈CON [A, valA]) = ∩A∈CON inf([A, valA]),
sup(∧A∈CON [A, valA]) = ∩A∈CONsup([A, valA]).

For example, inf([age, young]) = {x1, x5} and sup([age, young]) = {x1, x2,
x4, x5} hold in Φsalary. The actual equivalence class is between two sets. For
minsupp(τ) (=minψ∈DD(Φ){support(τ) by ψ}) and minacc(τ) (=minψ∈DD(Φ)

{accuracy(τ) by ψ}), we have the following which do not depend upon the num-
ber of DD(Φ).

τ : ∧A∈CON [A, valA] ⇒ [Dec, val],
minsupp(τ) = |inf(∧A∈CON [A, valA]) ∩ inf([Dec, val])|/|OB|,
minacc(τ) = |inf(∧A∈CON [A,valA])∩inf([Dec,val])|

|inf(∧A∈CON [A,valA])|+|OUTACC| ,

OUTACC = {sup(∧A∈CON [A, valA]) \ inf(∧A∈CON [A, valA])}
\inf([Dec, val]).

(1)

The OUTACC means a set of objects, from which we can obtain an implication
τ ′ : ∧A∈CON [A, valA] ⇒ [Dec, val′] (val 	= val′, the same condition part and the
different decision). Similarly, we can calculate maxsupp(τ) and maxacc(τ). We
can also prove that there exists ψmin ∈ DD(Φ) which makes both support(τ)
and accuracy(τ) the minimum. There exists ψmax ∈ DD(Φ) which makes both
support(τ) and accuracy(τ) the maximum. Based on these results, we have the
chart in Fig. 3 and Theorem 1.
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Fig. 3. For every implication τ , each point (support(τ), accuracy(τ)) by ψ ∈ DD(Φ)
is located in a rectangle area.

Theorem 1 [12,13]. For an implication τ , we have the following.

(1) τ is a certain rule, if and only if minsupp(τ) ≥ α and minacc(τ) ≥ β.
(2) τ is a possible rule, if and only if maxsupp(τ) ≥ α and maxacc(τ) ≥ β.

Even though the certain rules and the possible rules depend upon DD(Φ), it
is enough to examine two points ψmin and ψmax. Based on Theorem 1, we can
escape from the exponential order problem. Without Theorem1, it will be hard
to handle rules in NISs like Mammographic data set, which has more than 10100

derived DISs.

2.2 NIS-Apriori Algorithm and Its Implementation

In order to handle the certain rules and the possible rules in NISs, we adjusted
Apriori algorithm [1] to NISs, and named it NIS-Apriori algorithm [13]. NIS-
Apriori algorithm consists of two phases, namely the certain rule generation
phase and the possible rule generation phase. We employ minsupp and minacc
values in certain rule generation, and we do maxsupp and maxacc values in
possible rule generation. Since we can calculate minsupp, minacc, maxsupp,
and maxacc by using inf and sup information, the NIS-Apriori algorithm is
independent from the number of derived DISs.

Recently, we implemented the NIS-Apriori algorithm in SQL [16], and opened
the execution logs [17], for example Lenses, Car Evaluation, Mammographic,
Credit Card Approval, Congressional Voting data sets in UCI machine learning
repository [4].

The analysis on the computational complexity of the NIS-Apriori algorithm
is still in progress. This algorithm consists of two phases, and the Apriori algo-
rithm is applied to each phase. Therefore, we figure out that the computational
complexity of the NIS-Apriori algorithm is more than twice the complexity of
the Apriori algorithm.

3 Machine Learning by Rule Generation in NISs

This section proposes the framework of MLRG including two strategies for learn-
ing by rule generation, and applies RNIA to realizing the MLRG process.
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3.1 Motivation and Purpose

The chart of the proposing MLRG process is in Fig. 2. Since the environment
for NIS-Apriori based rule generation is getting better, we can easily obtain the
sets CR(i) (i = 1, 2, 3, · · · ) of the certain rules in Fig. 2. If we recognize them as
reliable information, it seems natural that we fix a value so as to cause the reliable
rules as many as possible. We think that this concept is similar to the maximum
likelihood estimation [2] and MLRG will be a new approach for estimating one
DIS from NIS. In this paper, we propose this framework and realize a software
tool for MLRG.

3.2 Some Properties on CR(i) and PR(i)

Let us consider Fig. 2, then we easily have the properties in the following.

Proposition 1. In Fig. 2, CR(i) ⊂ PR(i) holds in every Φi.

Proof. In Φi, τ ∈ CR(i) is a rule in each ψ ∈ DD(Φi). So, τ satisfies the condition
of the possible rule, namely τ ∈ PR(i).

Proposition 2. In Fig. 2, CR(i) ⊂ CR(i + 1) holds.

Proof. In Φi and Φi+1 in Fig. 2, DD(Φi+1) ⊂ DD(Φi) holds, because some
unfixed attribute values in DD(Φi) are fixed in DD(Φi+1). Let minsupp(τ, i) be
minsupp(τ) and minacc(τ, i) be minacc(τ) in Φi. Since minsupp(τ, i) is the min-
imum value in DD(Φi) and minsupp(τ, i+1) is the minimum value in DD(Φi+1),
clearly minsupp(τ, i) ≤ minsupp(τ, i + 1) and minacc(τ, i) ≤ minacc(τ, i + 1)
hold. So, if τ is a certain rule in Φi, we have α≤minsupp(τ, i) ≤ minsupp(τ, i+1)
and β ≤ minacc(τ, i) ≤ minacc(τ, i + 1). This means τ is also a certain rule in
Φi+1, namely CR(i) ⊂ CR(i + 1).

Proposition 3. In Fig. 2, PR(i + 1) ⊂ PR(i) holds.

Proof. In Φi and Φi+1 in Fig. 2, DD(Φi+1) ⊂ DD(Φi) holds. Let maxsupp(τ, i)
and maxacc(τ, i) be maxsupp(τ) and maxacc(τ) in Φi, respectively. Then,
clearly maxsupp(τ, i + 1) ≤ maxsupp(τ, i) and maxacc(τ, i + 1) ≤ maxacc(τ, i)
hold. Therefore, if τ is a possible rule in Φi+1, we have α ≤ maxsupp(τ, i + 1) ≤
maxsupp(τ, i) and β ≤ maxacc(τ, i + 1) ≤ maxacc(τ, i). This means τ is also a
possible rule in Φi, namely PR(i + 1) ⊂ PR(i).

Therefore, for the fixed threshold values α and β, we have the following
inclusion relation in Fig. 2. The uncertainty is sequentially reduced, and finally
we have one DIS ψk.

CR(1) ⊂ CR(2) ⊂ · · · ⊂ CR(k) = PR(k) ⊂ · · · ⊂ PR(2) ⊂ PR(1). (2)
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3.3 The Framework of MLRG and Two Strategies

In NIS Φi, we fix some attribute values, and have a new NIS Φi+1. Since there is
the inclusion relations in formula (2), we finally have the rules CR(k) (= PR(k))
in DIS ψk. We named this process MLRG. So, the most important issue on
MLRG is how we fix some attribute values.

For this issue, we employ the certain rules in Φi. Let τ1, τ2, · · · , τm be the
certain rules in CR(i). The order of each τi is defined such that the first priority
is minacc (descending order) and the second priority is minsupp (descending
order). By using the ordered certain rules, we propose the next two strategies.

(Strategy 1) (Positive Unification) In an object x, a value is assigned to the
unfixed value so as to cause a higher ordered certain rule.
(Strategy 2) (Contradiction Prevention) In an object x, a value is assigned so
as not to contradict a higher ordered certain rule.

Two strategies try to support the obtained certain rules in Φi much more. We
may see this strategy as that we locally find a functional dependency between
attributes and we reinforce its dependency much more. These strategies will also
take the similar role of the maximum likelihood estimation in statistics. Each
parameter is estimated so as to cause the likelihood function to the maximum
in statistics, and each value is estimated so as to support the higher ordered
certain rules in MLRG.

Remark 1. In the prototype system based on two strategies, we use only the
certain rules with one condition, namely the certain rules in the form of
[A, valA] ⇒ [Dec, val] for simplicity. We do not consider the certain rules in
the form of p1 ∧ p2 ⇒ q and p1 ∧ p2 ∧ p3 ⇒ q. (The current system by NIS-
Apriori algorithm generates rules with maximally three conditions.)

Remark 2. Two strategies employ the certain rules with one condition in Φi.
Without the background of certain rule generation in RNIA, we can consider
neither two strategies nor MLRG.

4 An Example of MLRG

For simplicity, we present an example of MLRG, and we describe the details of
the prototype system in the next section.

We employ NIS Φsalary in Fig. 4 in this section. This Φsalary consists of 6
objects, 4 attributes, age: {young, senior}, depart(ment): {first, second, third},
smoke: {yes, no}, and salary: {low, high}. Non-deterministic information is
expressed by a list like {young, senior}. The decision attribute is ‘salary’. There
are 144 (=24 × 32) derived DISs in Φsalary.

Figure 5 shows CR(1) (support(τ) ≥ 0.3 and accuracy(τ) ≥ 0.6) in Fig. 2,
and Fig. 6 does PR(1) (support(τ) ≥ 0.3 and accuracy(τ) ≥ 0.6) in Fig. 2. In
this case, each rule occasionally consists of one condition, however generally
NIS-Apriori algorithm generates the rules with maximally three conditions.
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Fig. 4. The original data set of Φsalary.

Fig. 5. CR(1): three certain rules satisfying support(τ) ≥ 0.3 and accuracy(τ) ≥ 0.6
in each of 144 derived DISs.

Fig. 6. PR(1): eight possible rules satisfying support(τ) ≥ 0.3 and accuracy(τ) ≥ 0.6
in at least one derived DIS.

The set of rules in DIS ψactual is a superset of CR(1) and a subset of PR(1).
By using MLRG, we estimate ψactual and the rules in ψactual. Let us see Fig. 7.
The step1 (‘salary’, 6, 0.3, 0.6) command (the decision attribute is ‘salary’, the
number of objects is 6, minsupp ≥ 0.3, and minacc ≥ 0.6) generates 3 certain
rules in Fig. 5, then fixes some attribute values based on two strategies. The step2
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Fig. 7. An execution of machine learning by rule generation and an estimated DIS.

Fig. 8. The estimated rules (CR(3) = PR(3)) satisfying support(τ) ≥ 0.3 and
accuracy(τ) ≥ 0.6 in the estimated DIS ψactual.

(‘salary’, 6, 0.1, 0.3) command (the decision attribute is ‘salary’, the number of
objects is 6, minsupp ≥ 0.1, and minacc ≥ 0.3) does the similar procedure. In
order to find more certain rules, we loosened the constraints to support(τ) ≥ 0.1
and accuracy(τ) ≥ 0.3. After the step1 and step2 commands, one DIS (a table
estimated dis in Fig. 7) is estimated from Φsalary with 144 derived DISs. In this
case, the MLRG process terminates in the three steps below, and 6 rules in Fig. 8
are estimated.

CR(1) ⊂ CR(2) ⊂ CR(3) = PR(3) ⊂ PR(2) ⊂ PR(1). (3)
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In CR(1), there are three certain rules in Fig. 5, and new three rules are learned
by the process in Fig. 7. On the other hand, in PR(1) there are eight possible
rules in Fig. 6, and two possible rules are removed by the process in Fig. 7.

5 SQL Procedures in MLRG

We have implemented SQL procedures, step1, step2, step3, pstep, apri, and other
translation procedures. The arguments in each procedure except the translation
are (‘decision attribute’, number of objects, support, accuracy).

5.1 NRDF Format

In data sets, we usually have the csv format. This is very familiar, however the
name of the attribute and the number of all attributes may be different in each
data set. For handling various types of data sets uniquely, it is useful to employ
another unified format. Otherwise, the program is depending upon the number
of the attributes and the name of the attribute.

Fig. 9. The NRDF format of the object 5.

We employ the NRDF format [18], which is the extended RDF (resource
description framework) format. The RDF format may be called as the EAV
(entity-attribute-value) format [6,19]. The NRDF format employs 4 attributes,
object, attrib, value, and det. Figure 9 shows a part of the NRDF format of
Φsalary. In order to specify non-deterministic information, we added the 4th
column det. The value of det means the number of possible values. If det = 1,
this means that the value is deterministic. Otherwise, we know the value is non-
deterministic, and see the number of values by det.

(Merit 1 of using the NRDF format) Even though we need to prepare a trans-
lation program to each csv file, we can handle any data set uniformly after
this translation.
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This NRDF format is useful for managing MLRG process in Fig. 2. Namely,
we at first prepare a table nrdf1 in the NRDF format, and we sequentially revise
the tables to nrdf2, nrdf3, · · · in each step. If det = 1 holds for each tuple, each
value for non-deterministic information is estimated, and we stop the process of
MLRG.

(Merit 2 of using the NRDF format) By using the tables nrdfi in the NRDF
format, we can control the process of MLRG.

5.2 SQL Procedure step1

The role of step1 is below:

(step1-1) An execution of certain rule generation by using the table nrdf1,
and a generation of some data tables.
(step1-2) A generation of the table nrdf2 from the table nrdf1.

After certain rule generation in step1-1, we have some tables. The step1
command copies nrdf1 to nrdf2, and employs two strategies, namely the positive
unification strategy and the contradiction prevention strategy, for revising nrdf2.

Fig. 10. Some tables generated by the step1 command and the revised table nrdf2.
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Fig. 11. The revision of the object 2 in the table nrdf2.

We focus on the revision on the object 5 in Fig. 10. This is an example of
Strategy 1, which tries to cause the higher ordered certain rules as many as
possible. There are two certain rules with one condition related to the object 5
(a table c11 revise). As for [smoke, no] in the object 5, the attribute value is not
fixed, since det1 = 2. So, the step1 command removes the tuples (5, smoke, yes,
2) and (5, smoke, no, 2) from nrdf2, and newly adds (5, smoke, no, 1) to nrdf2.
As for [depart, second], the step1 command does the same procedure. Each value
of the object 5 is fixed in the table nrdf2 in Fig. 10.

Then, we show an example of Strategy 2, which tries to reduce the contra-
diction to the higher ordered certain rules. This Strategy 2 is applied after the
application of the procedure on Strategy 1. In an object x, if the condition part
in x matches a certain rule τ and det > 1, we know the tuple of x contradicts τ ,
because the revision by Strategy 1 is finished. (If Strategy 1 was applied, every
det is changed to det = 1.) In this case, we fix the attribute values so as not
to contradict τ . In Figs. 5 and 11, the certain rule with one condition [depart,
second] ⇒ [salary, high] in CR(1) contradicts [depart, second] ⇒ [salary, low] in
the object 2. So, the step1 command removes (2, depart, second, 3) from nrdf2,
and revises other two tuples to (2, depart, first, 2) and (2, depart, third, 2). Sim-
ilarly, since the certain rule [age, senior] ⇒ [salary, high] in CR(1) contradicts
the implication [age, senior] ⇒ [salary, low] in the object 2, the step1 command
adds (2, age, young, 1) to nrdf2 after removing (2, age, young, 2) and (2, age,
senior, 2).
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5.3 SQL Procedure pstep

In MLRG, we sequentially reduce the threshold values for obtaining new certain
rules with one condition, and we change the table nrdfn to the next table nrdfn+1.
However, each certain rule is defined as an implication of a definite object [12,13],
so some parts of non-deterministic information may not be changed, even if
we employ the lower threshold values. For solving this problem, we define a
procedure pstep. The role of the procedure pstep is below:

(pstep-1) An execution of possible rule generation in RNIA, and a generation
of some data tables.
(pstep-2) A generation of the table pnrdf from the current table nrdfn.

Since a possible rule is defined as an implication of any object [12,13], we
usually have the table nrdfn+1, where det = 1 for any object, after executing
the pstep procedure. For example, the step1 command employs three certain
rules in Fig. 5 for revising the table nrdf1. On the other hand, the pstep com-
mand does eight possible rules in Fig. 6 for revising the table nrdf1. Actually,
the estimated dis in Fig. 7 was obtained after applying the pstep command in
the first step. So, we can intentionally terminate MLRG process by using the
procedure pstep. However, the application of the pstep command means the use
of possible information from NIS. There will be the volatility risk of the possible
rules. We may have inconsistent possible rules like p ⇒ q1 and p ⇒ q2. Thus, we
should consider the application of the procedure pstep after the procedure step2
or step3.

5.4 SQL Procedure apri

The procedure apri simulates the Apriori algorithm in DISs. The following is the
overview of the series of the SQL procedures in the implemented procedure apri.

delimiter //

create procedure apri

begin

create table condi(); /* Generate a table of the specified conditions,

decision attribute, objects, α, β */

create table deci(); /* Generate a table of the decision */

create table con1(); /* Generate a table of the condition */

create table rule1(); /* Generate a table of the rules satisfying

support ≥ α and accuracy ≥ β */

create table rest1(); /* Generate a table of the rules satisfying

support ≥ α and accuracy < β */

create table con20(),create table con21(),create table con2();

/* Generate a table of the condition part,

whose element is p1 ∧ p2 from rest1 */

create table con2 infc0(),create table con2 infc();

/* Generate a table of inf (=sup) information */
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create table rule21(),create table rule2(); /* Generate a table of

rule2 satisfying support ≥ α and accuracy ≥ β */

create table rest2(); /* Generate a table of rest2 satisfying

support ≥ α and accuracy < β */

create table con30(),create table con31(),create table con3();

/* Generate a table of the condition part,

whose element is p1 ∧ p2 ∧ p3 from rest2 */

create table con3 inf0(),create table con3 infc();

/* Generate a table of inf (=sup) information */

create table rule31(),create table rule3(); /* Generate a table of

rule3 satisfying support ≥ α and accuracy ≥ β */

end //

The procedure apri generates rules in the forms of p1 ⇒ q, p1 ∧ p2 ⇒ q, and
p1 ∧ p2 ∧ p3 ⇒ q. The details of this apri are in the web page [17]. In Fig. 8, the
procedure apri generated 6 rules in the form of p1 ⇒ q from the estimated DIS
ψactual.

Fig. 12. The MLRG process of the Congressional Voting data set.
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5.5 Implementation of MLRG Procedures in SQL

Since each procedure is implemented as a stored procedure in SQL, each proce-
dure will be applicable to any SQL system. The text file size of all procedures is
about 53 KB, and we employed windows desktop PC (3.30 GHz).

Figure 12 shows the MLRG process on the Congressional Voting data set
in UCI machine learning repository. It consists of 435 objects, the decision
attribute ‘a1’, 16 condition attributes, and 392 missing values ?. The decision
attribute value is either democrat or republic. Each attribute value for other
attribute is either yes or no, so we replaced each missing values with a set
{democrat, republic} or a set {yes, no}, and generated NIS Φcongress. The num-
ber of DD(Φcongress) is 2392 � 10100.

The step1 command at first generated CR(1) satisfying support(τ) ≥ 0.3 and
accuracy(τ) ≥ 0.6 in each of about 10100 derived DISs. In this step, about a half
of the unfixed values are fixed. The number of the unfixed values is 199 (=398/2)
in the middle of Fig. 12. Then, the step2 command generated certain rules with
one condition satisfying support(τ) ≥ 0.1 and accuracy(τ) ≥ 0.3 in each of all
derived DISs. In this step, each missing value is fixed, and one DIS ψactual is
estimated. The details of the execution logs including the logs of Mammographic
data set are in [17].

6 Concluding Remarks and Discussion

This paper briefly described the framework of MLGR. In real life, if we recog-
nize the proper and attractive property (namely, certain rules), we will take
an action (namely, the recovery of non-deterministic information) to support
the recognized proper and attractive property as much as possible. Intuitively,
MLRG takes such a strategy, and we see the estimated DIS ψactual and the rules
in ψactual will be reasonable.

We have also implemented a software tool on NIS-Apriori based rule gener-
ation in SQL, and applied it to MLGR. We know data recovery by using the
functional dependency in a standard table. In a table with uncertainty, we gen-
erate the ordered certain rules by the minacc value and the minsupp value, and
make use of the concept on the maximum likelihood estimation in statistics.
Then, the plausible value for non-deterministic information is estimated.

As for this prototype, we have the following consideration.

(1) Since SQL has the high versatility, NIS-Apriori in SQL and MLRG in SQL
will offer the useful environment for analyzing tables with uncertainty.

(2) It is necessary to clarify the relation between the threshold values and the
estimated DIS. If we specify the higher threshold values in the procedure
step1, we have less certain rules with one condition and we may need several
steps for terminating MLRG process. On the other hand, if we specify the
lower threshold values, we have lots of certain rules with one condition and
MLRG process will easily terminate. We need to consider what is the proper



550 H. Sakai et al.

threshold values for MLRG process. Furthermore, if we employ the proce-
dure pstep with the lower threshold values, MLRG process will terminate in
the first step. Each non-deterministic information is estimated by using the
ordered possible rules. However in possible rule generation, we consider only
one DIS from several possible tables, so there is a very big volatility. We may
have two contradictory rules like p⇒ q1 and p⇒ q2. So, there is a tradeoff
between the steps of the termination and the quality of the estimated DIS.
We have not touched this issue yet.

(3) In this prototype, we faithfully simulated the MLRG process, so the proce-
dures in SQL may have meaningless parts. It is necessary to brush up this
software tool.

Acknowledgment. The authors would be grateful to the anonymous referees for their
useful comments. This work is supported by JSPS (Japan Society for the Promotion
of Science) KAKENHI Grant Number 26330277.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of VLDB 1994, pp. 487–499. Morgan Kaufmann (1994)

2. Aldrich, J.: R.A. Fisher and the making of maximum likelihood 1912–1922. Stat.
Sci. 12(3), 162–176 (1997)

3. Clark, P., Grzymala-Busse, J.: Mining incomplete data with many attribute-
concept values and “do not care” conditions. In: Proceedings of IEEE Big Data
2015, pp. 1597–1602 (2015)

4. Frank, A., Asuncion, A.: UCI machine learning repository. School of Information
and Computer Science, University of California, Irvine (2010). http://mlearn.ics.
uci.edu/MLRepository.html

5. Grzymala-Busse, J.: Data with missing attribute values: generalization of indis-
cernibility relation and rule induction. Trans. Rough Sets 1, 78–95 (2004)

6. Kowalski, M., Stawicki, S.: SQL-based heuristics for selected KDD tasks over large
data sets. In: Proceedings of FedCSIS 2012, pp. 303–310 (2012)

7. Kryszkiewicz, M.: Rules in incomplete information systems. Inf. Sci. 113(3–4),
271–292 (1999)

8. Lipski, W.: On databases with incomplete information. J. ACM 28(1), 41–70 (1981)
9. Or�lowska, E., Pawlak, Z.: Representation of nondeterministic information. Theor.

Comput. Sci. 29(1–2), 27–39 (1984)
10. Pawlak, Z.: Systemy Informacyjne: Podstawy Teoretyczne (in Polish) WNT (1983)
11. Sahri, Z., Yusof, R., Watada, J.: FINNIM: iterative imputation of missing values in

dissolved gas analysis dataset. IEEE Trans. Ind. Inform. 10(4), 2093–2102 (2014)
12. Sakai, H., et al.: Rules and apriori algorithm in non-deterministic information

systems. Trans. Rough Sets 9, 328–350 (2008)
13. Sakai, H., Wu, M., Nakata, M.: Apriori-based rule generation in incomplete infor-

mation databases and non-deterministic information systems. Fundam. Inform.
130(3), 343–376 (2014)

14. Sakai, H., Wu, M.: The completeness of NIS-Apriori algorithm and a software tool
getRNIA. In: Mori, M. (ed.) Proceedings of International Conference on AAI 2014,
pp. 115–121. IEEE (2014)

http://mlearn.ics.uci.edu/MLRepository.html
http://mlearn.ics.uci.edu/MLRepository.html


A Proposal of MLRG from Tables with Non-deterministic Information 551

15. Sakai, H., Liu, C.: A consideration on learning by rule generation from tables with
missing values. In: Mine, T. (ed.) Proceedings of International Conference on AAI
2015, pp. 183–188. IEEE (2015)

16. Sakai, H., Liu, C., Zhu, X., Nakata, M.: On NIS-Apriori based data mining in
SQL. In: Flores, V., et al. (eds.) IJCRS 2016. LNCS (LNAI), vol. 9920, pp. 514–
524. Springer, Cham (2016). doi:10.1007/978-3-319-47160-0 47

17. Sakai, H.: Execution logs by RNIA software tools (2016). http://www.mns.kyutech.
ac.jp/∼sakai/RNIA
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Abstract. In this paper, we consider a rough set analysis of non-ordinal
and ordinal classification data with missing attribute values. We show
how this problem can be addressed by several variants of Indiscernibility-
based Rough Set Approach (IRSA) and Dominance-based Rough Set
Approach (DRSA). We propose some desirable properties that a rough
set approach being able to handle missing attribute values should possess.
Then, we analyze which of these properties are satisfied by the considered
variants of IRSA and DRSA.

Keywords: Rough set · Indiscernibility-based rough set approach ·
Dominance-based rough set approach · Missing values

1 Introduction

In data mining concerning classification problems, it is quite common to have
missing values for attributes describing objects [12]. To cope with the problem
of missing values, several approaches have been proposed. The usual approach
is to assume that some value(s) can represent correctly the missing one. Then,
the missing values are replaced in some way by so-called representative values.
In this case, the question is how to avoid data distortion [12].

Rough set approach to handling missing values avoids making changes in the
data. The problem is addressed by a proper definition of the relation employed
to form granules of knowledge.

In this work, we consider both Indiscernibility-based Rough Set Approach
(IRSA), in which value sets of attributes describing objects are not supposed to
be ordered, and Dominance-based Rough Set Approach (DRSA), which takes
into account an order in the value sets of attributes, monotonically related with
the order of decision classes. We focus on the following types of IRSA:

– classical rough set approach (CRSA) proposed by Pawlak [16],
– Variable Consistency Indiscernibility-based Rough Set Approach (VC-IRSA)

proposed by B�laszczyński et al. [2,3],

and on the following types of DRSA:
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 552–565, 2017.
DOI: 10.1007/978-3-319-60837-2 44
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– classical Dominance-based Rough Set Approach (CDRSA) proposed by Greco
et al. [8,9,17],

– Variable Consistency Dominance-based Rough Set Approach (VC-DRSA)
proposed by B�laszczyński et al. [2,3].

Adaptations of the classical rough set model [16] to handling missing val-
ues, were presented in [6,7,10,11,14,19]. Proposals of handling missing values
in dominance-based rough set approaches were given in [1,5–7,13,15,20]. We
review all these approaches and analyze their properties, refining and extending
the research results presented in [1,4].

The rest of this paper is structured as follows. Section 2 reminds basics of
IRSA and DRSA. In Sect. 3, we present ways of handling missing values in IRSA
and DRSA. We also propose a list of desirable properties that IRSA and DRSA
adapted to handle missing values should possess. After characterizing variants of
IRSA and DRSA coping with missing values, we discover non-dominated variants
with respect to these properties. Section 4 concludes the paper.

2 Basics of IRSA and DRSA

Classification data analyzed by IRSA and DRSA concern a finite universe U of
objects described by attributes from a finite set A. Moreover, A is divided into
disjoint sets of condition attributes C and decision attributes Dec. The value set
of q ∈ C ∪ Dec is denoted by Vq, q(x) ∈ Vq denotes evaluation of object x ∈ U

on attribute q, and VC =
|C|∏

q=1
Vq is called C-evaluation space. For simplicity, we

assume that Dec = {d}. Values of attribute d are class labels.
Decision attribute d makes a partition of set U into n disjoint sets of objects,

called decision classes. We denote this partition by X = {X1, . . . , Xn}.

2.1 Basics of IRSA

In IRSA, the value sets of attributes are not considered to be ordered, and thus
indiscernibility relation is employed. Object y is considered to be indiscernible
with object x (denoted by yIx) if and only if (iff) q(y) = q(x) for each q ∈ C.
Given an object x ∈ U ,

I(x) = {y ∈ U : yIx} (1)

denotes a set (granule) of objects indiscernible with referent x.
Given a non-ordinal classification problem, two objects x, y ∈ U are said

to be inconsistent with respect to (w.r.t.) indiscernibility relation, if they are
indiscernible but they are assigned to different decision classes. In order to handle
such inconsistency, one calculates lower approximations of considered classes.



554 M. Szel ↪ag et al.

CRSA. In CRSA [16], lower approximation of class Xi ∈ X is defined as

Xi = {x ∈ U : I(x) ⊆ Xi}, (2)

and upper approximation of class Xi ∈ X is defined as

Xi = {x ∈ U : I(x) ∩ Xi �= ∅}. (3)

VC-IRSA. In VC-IRSA [2,3], probabilistic lower approximation of class Xi ∈ X
is defined using an object consistency measure. We employ cost-type measure εXi

:

εXi
(x) =

|I(x) ∩ ¬Xi|
|¬Xi| , (4)

where ¬Xi = U \ Xi. Then,

Xi = {x ∈ Xi : εXi
(x) ≤ θXi

}, (5)

where threshold θXi
∈ [0, 1]. In the following, we will denote this version of

VC-IRSA by ε-VC-IRSA.
In [3], we introduced some monotonicity properties required from an object

consistency measure. For IRSA, relevant properties are: (m1) – monotonicity
w.r.t. growing set of attributes, and (m2) – monotonicity w.r.t. growing set of
objects (class). As proved in [3], εXi

has both property (m1) and property (m2).

2.2 Basics of DRSA

In DRSA, it is supposed that value sets of condition attributes, as well as deci-
sion classes, are ordered. Then, it is often meaningful to consider monotonicity
constraints (monotonic relationships) between ordered class labels and values of
attributes expressed on ordinal or cardinal (numerical) scales [8,9,17]. In order
to make a meaningful representation of classification decisions, one has to con-
sider the dominance relation D in the C-evaluation space. Let us denote by 	q

the weak preference relation over U confined to single attribute q ∈ C:

y 	q x ⇔
⎧
⎨

⎩

q(y) is not missing,
q(x) is not missing,
q(y) is at least as good as q(x).

(6)

Then, classically (i.e., when there are no missing attribute values), given x, y ∈ U ,
object y is said to dominate object x, denoted by yDx, iff y 	q x for each q ∈ C.
Moreover, y is said to be dominated by x, denoted by y

D

x, iff x 	q y for each
q ∈ C. Let us observe that, classically, yDx iff x

D

y.
Dominance relations D and

D

are partial preorders, i.e., they are reflexive,
transitive, and not necessarily complete. For any object x ∈ U , two types of
dominance cones can be defined in the C-evaluation space. Positive dominance
cone with the origin in x w.r.t. relation D:

D+(x) = {y ∈ U : yDx}, (7)
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and negative dominance cone with the origin in x w.r.t. relation D:

D−(x) = {y ∈ U : xDy}. (8)

In DRSA, if 1 ≤ i < j ≤ n, then class Xi is considered to be worse than
Xj . Moreover, rough approximations concern unions of classes: upward unions
X≥

i =
⋃

t≥i Xt, and downward unions X≤
i =

⋃
t≤i Xt, where i = 1, . . . , n.

CDRSA. In CDRSA [8,9,17], lower approximations of unions of classes X≥
i ,

X≤
i , i = 1, . . . , n, are defined using strict inclusion relation:

X≥
i = {x ∈ U : D+(x) ⊆ X≥

i }, X≤
i = {x ∈ U : D−(x) ⊆ X≤

i }. (9)

Moreover, upper approximations of unions of classes X≥
i , X≤

i are defined as

X≥
i = {x ∈ U : D−(x) ∩ X≥

i �= ∅}, X≤
i = {x ∈ U : D+(x) ∩ X≤

i �= ∅}. (10)

VC-DRSA. Definition (9) appears to be too restrictive in practical applications.
This explains the interest in VC-DRSA [2,3] which is a probabilistic extension of
CDRSA. We use object consistency measures ε

X
≥
i

: U → [0, 1], ε
X

≤
i

: U → [0, 1],
introduced in [2,3]:

ε
X

≥
i

(x) =
|D+(x) ∩ ¬X≥

i |
|¬X≥

i | , ε
X

≤
i

(x) =
|D−(x) ∩ ¬X≤

i |
|¬X≤

i | . (11)

Then, probabilistic lower approximations of X≥
i , X≤

i , i = 1, . . . , n, are defined as

X≥
i = {x ∈ X≥

i : ε
X

≥
i

(x) ≤ θ
X

≥
i

}, X≤
i = {x ∈ X≤

i : ε
X

≤
i

(x) ≤ θ
X

≤
i

}, (12)

where θ
X

≥
i

, θ
X

≤
i

∈ [0, 1). In the following, we will denote this version of VC-
DRSA by ε-VC-DRSA.

As proved in [3], ε
X

≥
i

, ε
X

≤
i

have monotonicity properties (m1), (m2), and
(m4) (monotonicity w.r.t. dominance relation), sufficient in practical applica-
tions.

3 Different Ways of Handling Missing Values in IRSA
and DRSA

In the following, a missing attribute value is denoted by ∗. We assume that each
object x ∈ U has at least one known value, i.e., for each x ∈ U there exists q ∈ C
such that q(x) �= ∗. Moreover, we use symbol X to denote an approximated set of
objects. In IRSA, X denotes a single decision class Xi ∈ X . In DRSA, X denotes
a union of decision classes X≥

i or X≤
i , i ∈ {1, . . . , n}.
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3.1 Adaptations of IRSA to Handle Missing Values

Handling of missing attribute values requires a proper adaptation of IRSA by
redefinition of the indiscernibility relation I. Once we fix this definition, we
can proceed by calculating rough approximations of decision classes, and then
inducing decision rules from data structured in the rough set way.

The approaches resulting from different definitions of the indiscernibility rela-
tion are denoted by CRSA-mvj and ε-VC-IRSA-mvj , and the respective indis-
cernibility relations are denoted by Ij , where j stands for the version id. When
these approaches are described jointly, we use denotation IRSA-mvj .

It is important to underline that due to missing values, considered indiscerni-
bility relation Ij may miss some properties, like symmetry or transitivity. For
this reason, in the following, we employ generalized definitions of rough approx-
imations proposed in [18], where indiscernibility relation is only assumed to be
reflexive (so it may be not symmetric and/or not transitive). According to [18],

I−1
j (x) = {y ∈ U : xIjy} (13)

denotes the set (granule) of objects with which x is indiscernible (to which x is
similar). Then, in CRSA-mvj , generalized lower approximation of class Xi ∈ X
is defined as

Xi = {x ∈ U : I−1
j (x) ⊆ Xi}. (14)

Generalized upper approximation of class Xi ∈ X is defined as

Xi =
⋃

x∈Xi

Ij(x). (15)

Let us remark that if Ij is symmetric, then I−1
j (x) = Ij(x), and then, defin-

itions (14) and (2) are equivalent [18].
Analogously, ε-VC-IRSA is adjusted to the case of Ij , possibly being not

symmetric, by redefining object consistency measure εXi
, given by (4), in the

following way:

εXi
(x) =

|I−1
j (x) ∩ ¬Xi|

|¬Xi| . (16)

IRSA-mv1 employs the indiscernibility relation defined in [6,7], which we
denote by I1. This relation is considered as a directional statement where a sub-
ject is compared to a referent which cannot have missing values. Subject y is
considered to be indiscernible with referent x iff for each q ∈ C, q(x) �= ∗, and
either q(y) = q(x) or q(y) = ∗. Thus, it is not true that xI1x when object
x ∈ U has some missing attribute values (i.e., I1 is, in general, not reflexive).
Nevertheless, it is still interesting to see consequences of adapting IRSA by using
relation I1.

Note that in [6,7], lower approximation of class Xi was not defined using (14),
and moreover, some properties considered in these papers (like rough inclusion
or complementarity), were defined with respect to subset UC of the universe U ,
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where UC is composed of all objects from U which have no missing value. Thus,
we have to verify if these properties hold also for U .

IRSA-mv1.5 [19] can be considered as an improvement over IRSA-mv1. It
defines a reflexive and transitive similarity relation without imposing that a ref-
erent cannot have missing values. In this approach, subject y is considered to be
indiscernible with referent x iff q(y) = q(x) for each q ∈ C such that q(y) �= ∗.
Let us remark that this approach is treating missing values as “lost” ones (see,
e.g., [10,11]).

IRSA-mv2 [6,7,14,19] employs a reflexive and symmetric tolerance relation.
In this approach, subject y is considered to be indiscernible with referent x iff
for each q ∈ C there is q(y) = q(x), or q(y) = ∗, or q(x) = ∗. Note that this
approach is treating missing values as “do not care” ones (see, e.g., [10,11]).

IRSA-mv3 is a new approach which is an indiscernibility-based counterpart
of DRSA-mv3 proposed in [1]. In this approach, subject y is considered to be
indiscernible with referent x iff q(y) = q(x) for each q ∈ C such that q(x) �= ∗.

3.2 Desirable Properties of IRSA Adapted to Handle Missing
Values

We consider the following desirable properties of IRSA-mvj , j = 1, 1.5, 2, 3:

1. Property S (reflecting symmetry of indiscernibility relation): IRSA-mvj has
property S iff yIjx ⇔ xIjy, for any x, y ∈ U .

2. Property R (reflecting reflexivity of indiscernibility relation): IRSA-mvj has
property R iff xIjx, for any x ∈ U .

3. Property T (reflecting transitivity of indiscernibility relation): IRSA-mvj

has property T iff yIjx ∧ xIjz ⇒ yIjz, for any x, y, z ∈ U .
4. Property B (robustness): given x ∈ U , let Cx = {q ∈ C : q(x) �= ∗}; IRSA-

mvj has property B iff for each x ∈ X, I−1′
j (x) ∩ ¬X ⊆ I−1

j (x) ∩ ¬X,
where I−1′

j (x) is a set of objects such that in Cx-evaluation space, object x
is indiscernible with them.

5. Property P (reflecting precisiation of data): IRSA-mvj has property P iff
the lower approximation of any X ⊆ U does not shrink when any missing
attribute value is replaced by some non-missing value.

6. Property RI (rough inclusion): IRSA-mvj has property RI iff
X ⊆ X ⊆ X, for any X ⊆ U .

7. Property C (complementarity): IRSA-mvj has property C iff
X = U \ ¬X, for any X ⊆ U .

8. Property M1 (monotonicity w.r.t. growing set of attributes): IRSA-mvj has
property M1 iff the lower approximation of any X ⊆ U does not shrink
when set P is extended by new attributes.

9. Property M2 (monotonicity w.r.t. growing set of objects): IRSA-mvj has
property M2 iff the lower approximation of any X ⊆ U does not shrink
when this set is augmented by new objects.

10. Property MT (transitivity of membership to lower approximation): IRSA-
mvj has property MT iff for any X ⊆ U and for any x, y ∈ U it is true that
x ∈ X ∧ y ∈ X ∧ xIjy ⇒ y ∈ X.
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Comparing to the list of desirable properties introduced in [4], we propose new
property B which postulates that an object x, belonging to the lower approxima-
tion of class Xi when considering all condition attributes, should also belong to
this approximation when considering only these attributes, for which evaluation
of x is not missing. Moreover, we modify definition of property MT to reflect
definition of generalized lower approximation given by (14) (for CRSA-mvj),
and by (5), (16) (for ε-VC-IRSA-mvj).

The properties of IRSA-mvj , j = 1, 1.5, 2, 3, are summarized in Table 1, where
T and F denote presence and absence of a given property, respectively. Moreover,
in case of two symbols ·/·, the first (resp. the second) one concerns only CRSA
(resp. only ε-VC-IRSA).

Table 1. Properties of IRSA-mvj , j = 1, 1.5, 2, 3

Property/Approach IRSA-mv1 IRSA-mv1.5 IRSA-mv2 IRSA-mv3

S F F T F

R F T T T

T T T F T

B F T T F

P F F T F

RI F T T T

C F/T T T T

M1 T T T T

M2 T T T T

MT T T F T

According to Table 1, IRSA-mv1.5 and IRSA-mv3 dominate IRSA-mv1, which
has the least number of desirable properties; IRSA-mv3 is dominated by IRSA-
mv1.5. Thus, taking into account the considered properties, we can conclude that
there are two non-dominated approaches: IRSA-mv1.5 and IRSA-mv2.

3.3 Adaptations of DRSA to Handle Missing Values

Handling of missing attribute values requires a proper adaptation of DRSA by
redefinition of the dominance relations D and

D

. Once we fix these definitions,
we can proceed by calculating rough approximations of unions of decision classes,
and then inducing decision rules from data structured in the rough set way.

In this sub-section, we review several ways of adapting DRSA to missing
values known from the literature, and we propose some new adaptations. All of
them are based on specific definitions of dominance relations.

The approaches, resulting from different definitions of the dominance rela-
tions, are denoted by CDRSA-mvj and ε-VC-DRSA-mvj , and the respective
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dominance relations are denoted by Dj and

D

j , where j stands for the version
id. When these approaches are described jointly, we use denotation DRSA-mvj .

It is important to underline that due to missing values, an approach employ-
ing dominance relation Dj may miss some properties, like transitivity. Moreover,
it may be the case that yDjx while not x

D

j y (lack of a specific kind of sym-
metry). For this reason, in the following, we employ generalized definitions of
rough approximations formulated in [20], related to generalized definitions of
rough approximations proposed for IRSA in [18]. These generalized definitions
are valid for the case when considered relations Dj and

D

j are reflexive (regard-
less of their being transitive or satisfying yDjx ⇔ x

D

j y).
According to [20], for any object x ∈ U , apart from dominance cones D+

j (x)
and D−

j (x), two more types of dominance cones in the C-evaluation space should
be considered. Positive dominance cone with the origin in x w.r.t. relation

D

j :

D+
j (x) = {y ∈ U : x

D

j y}, (17)

and negative dominance cone with the origin in x w.r.t. relation

D

j :

D−
j (x) = {y ∈ U : y

D

j x}. (18)

Let us observe that, when the description of objects has no missing values,

D+
j (x) = D+

j (x) and

D−
j (x) = D−

j (x). Then, according to [20], in CDRSA-mvj :

– generalized lower approximation of X≥
i , i ∈ {1, . . . , n}, is defined as

X≥
i = {x ∈ U :

D+
j (x) ⊆ X≥

i }, (19)

where

D+
j (x) is read as “the set of objects that x is dominated by”;

– generalized upper approximation of X≥
i , i ∈ {1, . . . , n}, is defined as

X≥
i = {x ∈ U : D−

j (x) ∩ X≥
i �= ∅}, (20)

where D−
j (x) is read as “the set of objects that x dominates”;

– generalized lower approximation of X≤
i , i ∈ {1, . . . , n}, is defined as

X≤
i = {x ∈ U : D−

j (x) ⊆ X≤
i }, (21)

where D−
j (x) is read as “the set of objects that x dominates”;

– generalized upper approximation of X≤
i , i ∈ {1, . . . , n}, is defined as

X≤
i = {x ∈ U :

D+
j (x) ∩ X≤

i �= ∅}, (22)

where

D+
j (x) is read as “the set of objects that x is dominated by”.

Note that when yDjx implies x

D

j y, and vice versa (presence of a specific
kind of symmetry), then:
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– the lower approximation of a union of classes X≥
i defined by (19) is identical

to the lower approximation of the same union defined by (9);
– the upper approximation of a union of classes X≤

i defined by (22) is identical
to the upper approximation of the same union defined by (10).

Analogously, ε-VC-DRSA is generalized by redefining object consistency mea-
sures ε

X
≥
i

, ε
X

≤
i

, given by (11), in the following way:

ε
X

≥
i

(x) =
| D+

j (x) ∩ ¬X≥
i |

|¬X≥
i | , ε

X
≤
i

(x) =
|D−

j (x) ∩ ¬X≤
i |

|¬X≤
i | . (23)

DRSA-mv1 employs two dominance relations defined in [6,7], which we
denote by D1 and

D

1. These relations are considered as directional statements
where subject y is compared to referent x which cannot have missing values:

– subject y dominates referent x (denoted by yD1x) iff for each q ∈ C, q(x) �= ∗,
and either y 	q x or q(y) = ∗;

– subject y is dominated by referent x (denoted by y

D

1 x) iff for each q ∈ C,
q(x) �= ∗, and either x 	q y or q(y) = ∗.

In view of the above definitions of D1 and

D

1, neither xD1x nor x

D

1 x (i.e.,
D1,

D

1 are not reflexive), in general. Nevertheless, it is still interesting to see
consequences of adapting DRSA to handle missing values by using relations D1

and

D

1. Note that in [6,7], lower approximations of unions of classes X≥
i and X≤

i

were not defined using (19) and (21), and moreover, some properties considered
in these papers (like rough inclusion or complementarity), were defined with
respect to UC ⊆ U , where UC is composed of all objects from U which have no
missing value. Thus, we have to verify if these properties hold also for U .

DRSA-mv1.5 [20] can be considered as an improvement over DRSA-mv1.
In this approach, the authors propose two relations (called in [20] similarity
dominance relations), which we denote by D1.5 and

D

1.5:

– subject y dominates referent x (denoted by yD1.5x) iff y 	q x for each q ∈ C
such that q(y) �= ∗;

– subject y is dominated by referent x (denoted by y

D

1.5 x) iff x 	q y for each
q ∈ C such that q(y) �= ∗.

Taking into account the semantics of missing values considered in [10,11], it can
be said that DRSA-mv1.5 treats missing values as “lost” values.

DRSA-mv2 was first proposed in [6,7], and extended in [5] to handle impre-
cise evaluations on attributes and imprecise assignments to decision classes,
both modeled by intervals. When considering missing values only, each object
is assigned to a single class, and each missing attribute value corresponds to an
interval spanning over entire value set of this attribute. This implies the following
definitions of so-called possible dominance relations, denoted by D2 and

D

2:

– subject y dominates referent x (denoted by yD2x) iff for each q ∈ C, y 	q x,
or q(y) = ∗, or q(x) = ∗;
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– subject y is dominated by referent x (denoted by y

D

2 x) iff for each q ∈ C,
x 	q y, or q(y) = ∗, or q(x) = ∗.

Taking into account the semantics of missing values considered in [10,11], it can
be said that DRSA-mv2 treats missing values as “do not care” values.

In DRSA-mv2.5 [13], two dominance relations (called in [13] generalized
extended dominance relations) are defined as in DRSA-mv2, only with additional
condition that the ratio of the number of “common” attributes (i.e., attributes
for which both x and y have simultaneously a non-missing value) and the number
of all attributes in set C is not less than a given user-defined threshold λ ∈ [0, 1].
We denote these relations by D2.5 and

D

2.5. The additional condition was intro-
duced to restrict the dominance relations used in DRSA-mv2 to pairs of objects
that have at least one, or more, “common” attribute(s).

In DRSA-mv3 [1], we employ dominance relations D3 and

D

3, defined as:

– subject y dominates referent x (denoted by yD3x) iff y 	q x for each q ∈ C
such that q(x) �= ∗;

– subject y is dominated by referent x (denoted by y

D

3 x) iff x 	q y for each
q ∈ C such that q(x) �= ∗.

DRSA-mv4 uses the concept of a lower-end dominance relation introduced
in [5]. Resulting dominance relations D4 and

D

4 are defined as:

– subject y dominates referent x (denoted by yD4x) iff for each q ∈ C, y 	q x,
or q(x) = ∗, or q(x) = inf(Vq);

– subject y is dominated by referent x (denoted by y

D

4 x) iff for each q ∈ C,
x 	q y, or q(y) = ∗, or q(y) = inf(Vq),

where inf(Vq) denotes the worst value in Vq (if no such value exists, inf(Vq) =
−∞).

DRSA-mv5 uses the concept of an upper-end dominance relation introduced
in [5]. Resulting dominance relations D5 and

D

5 are defined as:

– subject y dominates referent x (denoted by yD5x) iff for each q ∈ C, y 	q x,
or q(y) = ∗, or q(y) = sup(Vq);

– subject y is dominated by referent x (denoted by y

D

5 x) iff for each q ∈ C,
x 	q y, or q(x) = ∗, or q(x) = sup(Vq),

where sup(Vq) denotes the best value in Vq (if there is no such value, sup(Vq) =
∞).

In DRSA-mv6 [15], the authors define so-called new extended dominance
relation, which we denote by D6. It is an α-cut of fuzzy dominance relation D̃,
such that D̃(y, x) reflects a possibility of yDx, for y, x ∈ U . Threshold α ∈ [0, 1]
is a parameter estimated using decision-theoretic rough set model. This approach
assumes that the value set of each attribute is discrete. Relation D̃ is defined as

D̃(y, x) =
∏

q∈C

	̃q(y, x), (24)
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where fuzzy weak preference relation over U confined to single attribute q ∈ C

	̃q(y, x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if q(y) �= ∗, q(x) �= ∗,not y 	q x
1, if q(y) �= ∗, q(x) �= ∗, y 	q x
|{v:v∈Vq,v is not worse than q(x)|

|Vq| , if q(y) = ∗, q(x) �= ∗
|{v:v∈Vq,q(y) is not worse than v|

|Vq| , if q(y) �= ∗, q(x) = ∗
1
2 + 1

2|Vq| , if q(y) = ∗, q(x) = ∗

.

(25)
Then,

D6 = {(y, x) ∈ U × U : D̃(y, x) ≥ α} ∪ {(x, x) : x ∈ U}, (26)

where threshold α ∈ [0, 1]. Moreover, once can define dominance relation

D

6 as

D

6 = {(y, x) ∈ U × U : ˜D

(y, x) ≥ α} ∪ {(x, x) : x ∈ U}, (27)

where fuzzy dominance relation ˜D

, reflecting for a pair (y, x) ∈ U × U the
possibility of y

D

x, is defined as

˜D

(y, x) =
∏

q∈C

	̃q(x, y). (28)

3.4 Desirable Properties of DRSA Adapted to Handle Missing
Values

We consider the following desirable properties of DRSA-mvj , where j = 1, 1.5, 2,
2.5, 3, . . . , 6:

1. Property S (reflecting a specific kind of symmetry): DRSA-mvj has prop-
erty S iff yDjx ⇔ x

D

j y, for any x, y ∈ U .
2. Property R (reflecting reflexivity of dominance relations): DRSA-mvj has

property R iff xDjx and x

D

j x, for any x ∈ U .
3. Property T (reflecting transitivity of dominance relations): DRSA-mvj has

property T iff yDjx ∧ xDjz ⇒ yDjz, and y

D

j x ∧ x

D

j z ⇒ y

D

j z, for any
x, y, z ∈ U .

4. Property B (robustness): let Cx = {q ∈ C : q(x) �= ∗}; DRSA-mvj has
property B iff the following two conditions hold simultaneously:

– for each x ∈ X≥
i ,

D+′
j (x) ∩ ¬X≥

i ⊆ D+
j (x) ∩ ¬X≥

i , where

D+′
j (x) is a

positive dominance cone with the origin in x w.r.t. relation

D

j , defined
in the Cx-evaluation space,

– for each x ∈ X≤
i , D−′

j (x) ∩ ¬X≤
i ⊆ D−

j (x) ∩ ¬X≤
i , where D−′

j (x) is a
negative dominance cone with the origin in x w.r.t. relation Dj , defined
in the Cx-evaluation space.

5. Property P (reflecting precisiation of data): DRSA-mvj has property P iff
the lower approximation of any X ⊆ U does not shrink when any missing
attribute value is replaced by some non-missing value.

6. Property RI (rough inclusion): DRSA-mvj has property RI iff
X ⊆ X ⊆ X, for any X ⊆ U .
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7. Property C (complementarity): DRSA-mvj has property C iff
X = U \ ¬X, for any X ⊆ U .

8. Property M1 (monotonicity w.r.t. growing set of attributes): DRSA-mvj has
property M1 iff the lower approximation any X ⊆ U does not shrink when
set P is extended by new attributes.

9. Property M2 (monotonicity w.r.t. growing union of classes): DRSA-mvj has
property M2 iff for any X ⊆ U , the lower approximation of X does not shrink
when this set is augmented by new objects.

10. Property M3 (monotonicity w.r.t. super-union of classes): DRSA-mvj has
property M3 iff given any two upward unions of classes X≥

i ,X≥
k , with 1 ≤

i < k ≤ n, there is X≥
i ⊇ X≥

k , and, moreover, given any two downward unions

of classes X≤
i ,X≤

k , with 1 ≤ i < k ≤ n, there is X≤
i ⊆ X≤

k .
11. Property M4 (monotonicity w.r.t. dominance relation): DRSA-mvj has prop-

erty M4 iff the following two conditions hold simultaneously:
– for any X≥

i ⊆ U , with i ∈ {1, . . . , n}, and for any x, y ∈ U such that
x

D

j y, it is true that (x ∈ X≥
i ∧ y ∈ X≥

i ⇒ y ∈ X≥
i );

– for any X≤
i ⊆ U , with i ∈ {1, . . . , n}, and for any x, y ∈ U such that

xDjy, it is true that (x ∈ X≤
i ∧ y ∈ X≤

i ⇒ y ∈ X≤
i ).

Comparing to the list of desirable properties introduced in [1], we propose
new property B which postulates that an object x, belonging to the lower approx-
imation of any union of classes when considering all condition attributes, should
also belong to this approximation when considering only these attributes, for
which evaluation of x is not missing. Moreover, we modify definition of property
M4 to reflect definitions of generalized lower approximations.

Note that there is a correspondence between the above properties M1,
M2, M3, and M4, and monotonicity properties (m1), (m2), (m3), and (m4),
introduced in [3]. However, in VC-DRSA-mvj , it may happen that for some
k ∈ {1, . . . , 4}, (mk) is satisfied while Mk is not satisfied.

The properties of DRSA-mvj , j = 1, 1.5, 2, 2.5, 3, . . . , 6, are summarized in
Table 2, where T and F denote presence and absence of a given property, respec-
tively. Moreover, in case of two symbols ·/·, the first one reflects only CDRSA-
mvj while the second one reflects only ε-VC-DRSA-mvj .

According to Table 2, DRSA-mv2.5 is the least attractive due to lack of
many important properties (R, T , P , RI, M1, and M4). DRSA-mv1 is dom-
inated by: DRSA-mv1.5, DRSA-mv3, DRSA-mv4, and DRSA-mv5. DRSA-mv3
is dominated by: DRSA-mv1.5, DRSA-mv4, and DRSA-mv5. DRSA-mv6 is dom-
inated by: DRSA-mv2, DRSA-mv4, and DRSA-mv5. The only non-dominated
approaches are DRSA-mv1.5, DRSA-mv2, DRSA-mv4, and DRSA-mv5.

4 Conclusions

We considered different ways of dealing with missing attribute values in ordinal
and non-ordinal classification data when analyzed using Indiscernibility-based
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Table 2. Properties of DRSA-mvj , j = 1, 1.5, 2, 2.5, 3, . . . , 6

Prop./ApproachDRSA-mv1DRSA-mv1.5DRSA-mv2DRSA-mv2.5DRSA-mv3DRSA-mv4DRSA-mv5DRSA-mv6

S F F T T F T T T

R F T T F T T T T

T T T F F T T T F

B F T T T F F F F

P F F T F F F F F

RI F T T F T T T T

C T T T T T T T T

M1 T T T F T T T T

M2 T T T T T T T T

M3 T/F T/F T/F T/F T/F T/F T/F T/F

M4 T T F F T T T F

Rough Set Approach (IRSA) or Dominance-based Rough Set Approach (DRSA).
Moreover, we proposed some desirable properties for IRSA and DRSA that
a rough set approach capable of dealing with missing attribute values should
possess. We analyzed which of these properties are satisfied by the considered
rough set approaches resulting from different definitions of indiscernibility or
dominance relations, suitable for the case of missing values. Based on this analy-
sis, we uncovered some non-dominated, with respect to desirable properties,
indiscernibility-based and dominance-based rough set approaches. These are:

– in IRSA: IRSA-mv1.5 and IRSA-mv2,
– in DRSA: DRSA-mv1.5, DRSA-mv2, DRSA-mv4, and DRSA-mv5.

Our future work will focus on experimental comparison of non-dominated vari-
ants uncovered in this paper. One of them, called DRSA-mv2, was already com-
pared with respect to classification performance against some other ordinal and
non-ordinal classifiers. The results reported in [1] show that DRSA-mv2-based
rule classifier performs better than other well known methods like: Naive Bayes,
SVM, Ripper, or C4.5 when the share of missing values in a data set is below 20%.

Acknowledgment. The first author acknowledges financial support from the Poznań
University of Technology, grant no. 09/91/DSMK/0609.
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Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS (LNAI), vol. 7413, pp. 56–65.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32115-3 6
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Abstract. The fuzziness parameter m is an extra parameter that facili-
tates the iterative formulas of Fuzzy c-means (FCM). However, the para-
meter m, commonly set to be 2.0, is an important factor that effects the
effectiveness of FCM. In literatures, the statistical study of m is so far
not available. Viewing m as a random variable, we propose a novel idea
to optimize the fuzziness parameter m. For the model selection, a mod-
ified cluster validity index is defined as the optimal function of m and
improve the effectiveness of FCM. Then the simulated annealing algo-
rithm is applied to approximate its estimate.

Keywords: Fuzzy c-means · Xie-Beni index · Simulated annealing ·
Markov chain

1 Introduction

Clustering methods [3] can be roughly divided into two groups: hierarchical
and classification methods. Classification method aims to find the best partition
of data into c clusters in such a way that one criterion is optimized. Here we
consider the fuzzy classification and use the Fuzzy C-Means (FCM) algorithm
[1,2,6,7]. In addition to the specification of the number c of clusters in the data
set, FCM method requires to choose the fuzziness parameter m, an important
factor that influences the effectiveness of FCM. Note that the study of m has
not been completely investigated in literatures. Pal and Bezdek [4] suggested
m ∈ [1.5, 2.5], and Yu et al. [10] proposed a theoretical upper bound for m to
prevent the sample mean from being the unique optimizer of an FCM objective
function. Wu [8] showed that the parameter m influenced the robustness of
FCM and m ∈ [1.5, 4]. For a large theoretical upper bound, they suggested the
implementation of the FCM with a suitable large m value. Also, the value m = 4
is recommended for FCM when the data contains noise and outliers. In practical
use purpose, m is commonly fixed to 2. This choice allows an easy computation
of the membership values.

c© Springer International Publishing AG 2017
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2 Methodology

2.1 The FCM Algorithm

For a given number of c clusters and the fuzzifier m > 1, the FCM algorithm is
an iterative procedure that minimizes the objective function

J(c) =
c∑

k=1

N∑

i=1

um
ki d

2(xi, ak), (1)

where d(xi, ak) is the distance (dissimilarity) between the cluster center ak,
k = 1, 2, · · · , c and the data xi, i = 1, 2, · · · , N(number of sample size), and uki

denotes the fuzzy membership value of object xi to the cluster k that satisfies
the following conditions

0 ≤ uki ≤ 1 and
c∑

k=1

uik = 1 (2)

FCM algorithm is then minimized (1) by the following iterative equations.

ak =
∑N

i=1 um
kixi∑N

i=1 um
ki

(3)

uki =
1

∑c
j=1

(
d(xi,ak)
d(xi,aj)

) 1
m−1

(4)

Fuzzy partitioning is carried out through an iterative optimization (minimizing)
of the objective function J(c) by alternatively updating the membership μij and
the cluster center ak.

2.2 The XB Index

Among the existing validity indices to evaluate the goodness of clustering accord-
ing to a given number of clusters, the Xie–Beni (XB) index [9] is a credible
fuzzy-validity criterion based on a validity function which identifies overall com-
pact and separate fuzzy c-partitions. This function depends upon the data set,
geometric distance measure, and distance between cluster centroids and fuzzy
partition, irrespective of any fuzzy algorithm used. For evaluating the good-
ness of the data partition, both cluster compactness and intercluster separation
should be taken into account. For FCM algorithm with m = 2.0, the XB index
can be shown to be

XB(c) =
J(c)

Ndmin
(5)

where dmin is the minimum distance between cluster centroids. The more sepa-
rate the clusters are, the larger dmin and the smaller XB(c).
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2.3 The Parameter m as a Random Variable

The following numerical example shows that different values of m yield to dif-
ferent models according to XB index. To demonstrate the class clustering, we
generate a pseudo dataset from 4 clusters centered at (5, 5), (5,−5), (−5, 5) and
(−5, −5), each has 12 observations and they follow the two dimensional inde-
pendent normal distribution. A realization of simulated data, denoted by D1, is
shown in Fig. 1. Each elements of the same cluster are marked with the same
color points. Visually, the number of clusters are likely to be 4 and possibly 3.

−10 −5 0 5 10

−
10

−
5

0
5

10

x

y

Fig. 1. The scatter plot of data set D1

Table 1 lists the summary of the model suggested by XB indices.
We see, when m = 6.0, the suggested cluster number by XB index is c = 3.

But it is incorrect. This implies that XB index is somehow not perfect since it
depends on m.

Different from the classical analysis, our novel idea is to view the fuzziness
parameter m as a random variable in the XB index. That is, given the data, XB
index consists of two parameter m and c.

XB(c,m) =
J(c)

Ndmin
(6)

Next, we apply the simulated annealing algorithm to find the maximum
likelihood estimator of m.
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Table 1. Different values of m yield to different models.

m c (suggested by XB) Correct or not

2.0 4 Yes

3.0 4 Yes

4.0 4 Yes

5.0 4 Yes

6.0 3 No

7.0 3 No

2.4 Simulated Annealing Algorithm

The simulated annealing algorithm (SA) [5] which employs a probabilistic pro-
cedure can approximate the minimizer m of an optimal function. It originally
simulates the process of slow cooling of molten metal to achieve the minimum
function value in a minimization problem. The cooling phenomenon of the molten
metal is simulated by introducing a temperature like parameter and cooling
it down using the concept of Boltzmann’s probability distribution. The Boltz-
mann’s probability distribution implies that the energy E of a system in thermal
equilibrium at temperature T is distributed probabilistically according to the
relation P (E) = e−E/kT , where P (E) denotes the probability of achieving the
energy level E, and k is called the Boltzmann’s constant [5]. SA’s major advan-
tage over other methods is an ability to avoid becoming trapped at local minima.
The algorithm employs a random search for which not only accepts changes that
decrease objective function but also some changes that increase it. The latter are
accepted with probability p = e−�F/tn , where �F = Fn − Fn−1 is the increase
or the decrease in objective function value and Fn is a control parameter, which
by analogy with the original application is known as the system “temperature”
irrespective of the objective function involved.

3 The Estimation of m

The theoretical distribution of m is so far not available since m depends on
the data and the corresponding objective functions. For example, if the optimal
function is to minimize J(c,m) = J(c) in (1), we consider m as a random variable
that has the probability density function f(m|c) of the form

m ∼ f(m|c) ∝ e−J(c,m)

We see that the estimate, so called maximum likelihood estimate in statistics,
of maximizing a probability density function with kernel e−J(c,m) is equivalent
the optimal estimate of minimizing J(c,m).

We define the cluster validity function as the objective function of m in our
analysis.

G(k) =
XB(k,m)

mini�=k{XB(k,m)} (7)
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In determining the number of clusters c, the model with minimum XB(c,m) is
preferred. However, It’s difficult to optimize both the number of cluster c and
the fuzziness parameter m together in the same procedure since the problem of
choosing best c has been a hard problem in classification. Given a likely c, the
new validity function G(k) in (7) can differentiates the best model between other
clusters.

With vague information when m = 2.0 in dataset D1, the preferred model
can be identified to be 4. We emphasize the difference between the best and
the second best models in terms of XB index by taking the ratio of them. Since
small XB(c,m) indicates a better number of cluster c, the minimum of G(c,m)
is desired. And SA, the general procedure in optimizing an objective function
with different initial values of cluster center ak and μij , can approximate the
fuzziness parameter m as a sequence of Markov chain that ultimately converges
to its minimizer.

3.1 Simulation Study

Using the data used in the numerical example, we see the correct model c =
4, and we wish to estimate m given the data and possible clusters (2, 3, 4, 5).
According to XB index, the best model c∗ = 4. Then the minimizer m∗ of
objective function G4(m) is the estimate.

G4(m) =
XB(4,m)

min{XB(2,m),XB(3,m),XB(5,m)} (8)

We propose the following algorithm: start from m = 2.0. The number of
clusters is firstly determined by the one, say c∗, with minimum XB index among
possible clusters. Note that ĉ is a ball park figure. Next, SA is applied to locate
the estimate of m̂ of the cluster validity function G4(m). That is,

G4(m̂) = min
m>1

G4(m, c∗).

Finally, set m = m̂, proceed FCM and double check XB indices for possible
models to ensure c∗ is the cluster with smallest XB index. If not, run the above
procedure again until the estimate m̂ agrees with the indicator XB.

FCM algorithm

(a) Pre-set the cluster number c and the fuzziness parameter m.
(b) Set initial values of cluster center ak and fuzziness membership uki, i =

1, 2, · · · , N(number of sample size), k = 1, 2, · · · , c.
(c) uki = 1

∑c
j=1

(
d(xi,ak)
d(xi,aj)

) 1
m−1

(d) ak =
∑N

i=1 um
kixi∑N

i=1 um
ki

(e) J(c) =
∑c

k=1

∑N
i=1 um

ki d
2(xi, ak) < ε = 10−4, stop;

else, go to Step (b).
SA algorithm
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1 Set the starting values of m(0) = 2.0.
2 Calculate XB(k, m(0)), k = 1, 2, · · · , c, by FCM algorithm and XB(c,m) in

(6) and determine the one with smallest XB index as the preferred number
of clusters, say c∗.

3 At state j, propose a candidate m∗ ∼ N(m(j), 0.052).
4 Let u follow uniform distribution(0, 1).
5 Accept the candidate m∗ as the next state value of Markov chain

{m(j)}j=1,2,··· with probability

α1 = e
(−1)
Tj

(G(m∗)−G(m(j−1))
.

That is

m(j+1) =

{
m∗ if u < α

m(j) otherwise.

where Tj =
100

j log(j)
, G(m) = G(m, c∗) is defined in (7).

6 If j < n2, say n2 = 20, 000, then go to Step 3.
7 Calculate XB(2,m̂), XB(3, m̂), XB(4, m̂) and XB(5,m̂). If c∗ is the one

with smallest XB index, then STOP; otherwise set j = 0 and m(0) and go
to Step 2.

m̂ = m(n2)is the minimier of G(m)

ĉ = c∗is the number of clusters.

8 The cluster center ak, k = 1, 2, · · · , ĉ can be obtained by FCM with m =
m̂, c = ĉ.

4 The Numerical Experiment

We apply our proposed method to the data with obvious clusters and see how
well it performs. To make comparisons, we simulate data based on the statistical
distribution of data set D1 in Sect. 2.3.

The Data Scheme (I): Standard Derivation σ = 1.5

Three data sets, D2,D3,D4, are simulated from the same target distribution
as D1 in Fig. 1, each has 12 observations and they follow the 2 dimensional
independent normal distribution with same standard deviation σ = 1.5, N2(μi =
(5, 5), (−5,−5), (5,−5), (−5, 5),σ). Together with the time series plots of m in
applying SA algorithm, the scatter plots of the three data sets are shown in
Fig. 2.
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Fig. 2. .

The Data Scheme (II): σ = 1.0, 1.0, 1.2, 1.8

Four data sets, D5,D6,D7,D8, are simulated from 4 clusters, the same mean
points as D1, each has 12 observations and they follow the 2 dimensional
independent normal distribution with standard deviations σ = 1.0, 1.0, 1.2, 1.8
N2(μi = (5, 5), (−5,−5), (5,−5), (−5, 5), σ ). The scatter plots and the time
series plots of m given by SA algorithm using the data sets are shown in Fig. 3.

The Data Scheme (III): c = 2, 3

Two data sets, D9,D10, are simulated from 2 and 3 clusters, each has 12 obser-
vations and they follows the 2 dimensional independent normal distributions
with same standard deviation σ = 1.5, N2(μi = (5, 5), (−5,5), σ = 1.5) and
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N2(μi = (5, 5),(−5, −5), (−5,5), σ = 1.5), respectively. The scatter plots of the
data sets and the time series plots of m are shown in Fig. 4.

4.1 Concluding Remarks

As seen the the time series plots of m given by SA algorithm, their Markov chains
converge. For example in D1, starting from m = 2.0, the last 10 realizations of
m

(j)
j=1,2,··· ,1500 are

2.7847 2.7912 2.7912 2.7644 2.7832
2.8023 2.7930 2.7930 2.8007 2.7822

The sequence of Markov chains of m given by SA algorithm using the data set
D1 are getting close to a fixed point =̂2.7822. And the suggested number of
clusters indicates the correct model is c = 4 with cluster centers (5.91, 5.09),
(4.92,−6.12), (−4.69, 5.17), (−5.04,−5.41).

Repeated numerical experiments using data sets Di, i = 1, 2, · · · , 10, show
that our proposed work well. The suggested clusters ĉ by XB indices are as good
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Data c ĉ m̂

D1 4 4 2.7822

D2 4 4 3.0219

D3 4 4 2.5896

D4 4 4 2.6703

D5 4 4 2.6221

D6 4 4 2.5525

D7 4 4 2.4842

D8 4 4 2.4221

D9 2 2 2.2946

D10 3 3 2.5525
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as expected. The SA estimates of m are eventually convergent. The estimates m̂
range from 2.1 to 3.0. See the following table for the summary.

Since the optimal estimates of m are not far from the commonly used value,
2.0, the cluster centers computed by FCM are about the same.

5 Conclusion

Fuzzy c-means is a common, fast and useful method of clustering classification.
In applying FCM algorithm, the fuzziness parameter m, originally designed to
facilitate the iterative formulas of FCM, is usually set to be 2.

In this paper, we first show that m indeed an important factor in determin-
ing the cluster validity. We then view m as a random variable and apply SA
algorithm to approximate the optimal estimate of m based on the modified XB
index.

Even though the results of our numerical experiments are not surprising, our
approach is novel. We successfully delete the effect due to the extra parameter m
by finding its minimizer and thus guarantee the effectiveness of FCM. Further-
more, the statistical distribution of m can be possibly available by the Markov
chain Monte Carlo in the future.
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Abstract. We present a new method for cluster analysis that finds a
composite “supercluster” consisting of two non-overlapping parts: a tight
core and a less connected shell. We expand this approach to data that
changes over time by assuming that the core is unchangeable, while the
shell depends on the time period. We define a data recovery approxima-
tion model of a dynamic supercluster, and present a suboptimal algo-
rithm for finding superclusters.

Keywords: Supercluster · Rough sets · Dynamic clusters · Approxima-
tion model

1 Introduction

The idea that a cluster as a set of similar objects is not necessarily quite homo-
geneous is not uncommon in data analysis. A most explicit expression of that
is the concept of fuzzy cluster [1]. Next come less arbitrary membership func-
tions formalising the idea that a cluster should have a deep-down core and shell
around it, differently expressed in concepts of rough set cluster [2,3], shadowed
set [4,5] and layered cluster [6]. Of these by far most popular is the concept
of rough cluster and rough k-means partition [7,8]. According to the original
message of the rough set theory [9], a rough cluster’s core is referred to as lower
approximation, whereas the shell as boundary. A rough k-means partition must
satisfy the following conditions [8]:

– An object cannot be simultaneously member of a cluster’s lower approxima-
tion and the same cluster’s boundary region.

– If an object is member of a cluster’s lower approximation it cannot belong
to any other cluster, neither to its lower approximation nor to its boundary
region.

– If an object is not a member of any lower approximation it must belong to
the boundary regions of at least two clusters.

This paper relates to a less restrictive concept of a single rough cluster rather
than rough partition so that the last condition in this list is not applicable

c© Springer International Publishing AG 2017
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anymore. Another difference comes from a different type of input data involved
in the definition. We consider rough clusters in networks rather than entity-to-
feature tables. One more feature of our approach is that we focus on dynamic
data rather than static ones. This latter feature leads us to consider a special
type of rough cluster, what we call a supercluster. A dynamic supercluster has its
core unvaried over time while its shell can change according to temporal nature
of the data.

The next section defines and analyzes the concept of supercluster within
a data-recovery framework [10]. A local optimization algorithm for building a
supercluster and supercluster set is given in Sect. 3. Section 4 describes results of
application of the algorithm to two dynamic network datasets that we derived
ourselves: (a) interrelations between main characters of a modern saga novel [11],
(b) intercitations between a circle of specialists in cluster analysis, participants
to an IFCS biennial conference series.

2 Dynamic Supercluster Model

2.1 Static Data

Let I be a set of elements and A = {aij} a given similarity index matrix over I.
Our goal is to define a subset U ⊆ I, consisting of two disjoint parts U = R ∪ S,
where S represented by a 1/0 vector si is the shell, with intensity λ, R represented
by 1/0 vector ri is the core with intensity λ + μ where λ, μ > 0. As usual, si = 1,
or ri = 1, if and only if i ∈ S, or i ∈ R. A data-recovery model of supercluster is:

aij = λsisj + (λ + μ)rirj + eij (1)

where residuals eij are small. The products sisj and rirj correspond to binary
matrices showing whether elements belong to core/shell or not. Then a most
approximate supercluster U = R ∪ S can be found as that minimizing the sum-
mary square error eij :

Δ =
N∑

i,j=1

e2ij =
∑

i,j=1..N

[aij − λsisj − (λ + μ)rirj ]
2 → min (2)

Remark 1: Hereinafter we consider symmetric a(i, j) matrix. If original matrix
A is asymmetric, we can symmetrize it: A → (A + AT )/2. As shown in [10]
this transformation does not change the minimum of function Δ. All diagonal
elements are set to be equal to zero.

Consider the first order necessary conditions of minimality of function Δ:

∂Δ

∂λ
= −2

∑

i,j

(aij − λsisj − (λ + μ)rirj)[−sisj − rirj ] = 0 (3)

and
∂Δ

∂μ
= −2

∑

i,j

(aij − λsisj − (λ + μ)rirj)rirj = 0 (4)
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Equations (3) and (4) imply that the intensities are just average within core
and shell similarities:

λ + μ =

∑
i,j aijrirj∑

i,j rirj
(5)

λ =

∑
i,j aijsisj∑

i,j sisj
(6)

The condition that S and R do not intersect, so that siri = 0, is taken into
account when deriving the above.

Substituting these into 2, we obtain

Δ =
∑

i,j

[
(aij)2 − 2aij(λsisj − (λ + μ)rirj) + λ2sisj + (λ + μ)2rirj

]

+ 2λ(λ + μ)rirjsisj

= C − 2(λ + μ)
∑

i,j

(
aij − λ + μ

2

)
risj − 2λ

∑

i,j

(
aij − λ

2

)
sisj = C − g2 (7)

Here C =
∑

i,j a2
ij is the similarity data scatter and g2 the contribution of

the supercluster to the data scatter that should be maximized to minimize the
square error criterion.

2.2 Supercluster at Dynamic Data

Let us consider the case at which the similarity matrix at
ij changes over time

t = 1..T . We define a dynamic supercluster Ut = R∪St so that its core R = (ri)
does not change over time, whereas its shells St = (st

i) may vary at different
time periods.

Consider the least squares approximation criterion for obtaining the best
dynamic supercluster:

Δ =
T∑

t=1

N∑

i,j=1

et
ij =

T∑

t=1

N∑

i,j=1

[
at

ij − λtst
is

t
j − (λt + μt)rirj

]2 → min (8)

We suppose that average values of core and shell intensities may change
depending on time period. Indeed, the fact that the average link between core
elements may change over time is compatible with the assumption that the core
is constant. The changes in core intensity λt + μt may follow corresponding
changes in similarities at

ij over time.
Consider again the first order optimality conditions – this time for the crite-

rion (8):

∂Δ

∂λt
= −2

∑

i,j

(at
ij − λst

is
t
j − (λt + μt)rirj)[−st

is
t
j − rirj ] = 0 (9)
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∂Δ

∂μt
= −2

∑

i,j

(at
ij − λtst

is
t
j − (λt + μt)rirj)rirj = 0 (10)

It is easy to see, that these equations are similar to Eq. (9)–(10) for the static
case. This means that the optimal λt and μt for a single period t satisfy similar
equations:

λt + μt =

∑
i,j at

ijrij
∑t

i,j rij

(11)

λt =

∑
i,j at

ijs
t
is

t
j∑

i,j st
is

t
j

(12)

Equations (11)–(12) refer to the average intensities in core and shell parts
in period t (t = 1, 2, ..., T ). For derivation of other parameters, let us return to
Eq. (8). We denote the constant summary data scatter by C =

∑
t

∑
i,j(a

t
ij)

2.
Therefore,

Δ

=
∑

t

∑

i,j

[
(at

ij)
2 − 2at

ij(λ
tst

is
t
j − (λt + μt)rirj) + (λt)2st

is
t
j + (λt + (μt)2)rirj

]

+ 2λt(λt + μt)rirjs
t
is

t
j

= C − 2
∑

t

(λt + μt)
∑

i,j

(
at

ij − λt + μt

2

)
rirj − 2

∑

t

λt
∑

i,j

(
at

ij − λt

2

)
st

is
t
j

(13)

Equation (13) can be represented in a shorter form:

Δ =
∑

t

∑

i,j

at
ij − g2 = C − g2 (14)

where data scatter C is constant and g2 the contribution of the supercluster to
the data scatter:

g2 = 2
∑

t

(λt +μt)
∑

i,j

(
at

ij − λt + μt

2

)
rirj +2

∑

t

λt
∑

i,j

(
at

ij − λt

2

)
st

is
t
j (15)

Equations (11)–(12) lead us to the following equations relating the opti-
mal intensity values: (a) (λt + μt)

∑t
i,j rirj =

∑
i,j at

ijrirj ; (b) λt
∑N

i,j st
is

t
j =∑

i,j at
ijs

t
is

t
j . We will use these formulas to simplify (15):

g2 =
∑

t

[
(λt + μt)2|R|2 + (λt)2|St|2] (16)

This formula shows how the approximate supercluster relates to the optimal
intensities λt, μt, and to core and shell sizes |R| and |St|. Minimizing the least-
squares criterion is equivalent to maximizing g2.
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3 Building Superclusters

Our method for finding dynamic superclusters is based on AddRemAdd(j) algo-
rithm from [10], that finds an approximate cluster which is homogeneous, that
is, has no explicitly defined core and shell parts.

AddRemAdd(j) involves the following quantities: the average similarity
between any i ∈ I and a cluster S ⊂ I defined as a(i, S) =

∑
j∈S aij/|S| and the

average within-cluster similarity defined by a(S) =
∑

i∈S a(i, S)/|S|. These are
easily computed for the starting singleton cluster S = {j} and easily updated
as the S changes with entities being added to or removed from S. One more
parameter usually applied with this algorithm is the similarity shift, a real sub-
tracted from each entry of similarity matrix A as part of data preprocessing.
The greater the shift value, the smaller the number of positive entries in A after
the preprocessing stage. In the absence of other information, the similarity shift
value is usually taken as the average of all entries in A. As mentioned above, we
make all the diagonal entries equal to 0 as a result of preprocessing.

A pseudocode for AddRemAdd(j) is as follows.

Algorithm 1. AddRemAdd(j)
Input : Similarity matrix A = (aij) and initial singleton cluster S = {j}.
Output: Cluster S containing j, its intensity equal to the average within-cluster similarity

λ, and contribution to the data scatter g2

1 Initialization Set N-dimensional vector z to have all its elements equal to −1, except for
zj = 1; the number of elements in cluster n = 1; the average within-cluster similarity

λ = 0, the contribution g2 = 0, and define a(i, S) = aij for each element i ∈ I.
2 Selection Find i∗ maximizing a(i, S).
3 Test

4 if
(
zi∗a(i, S) < zi∗ λ

2

)
then

5 zi∗ ← −1 · zi∗
6 n ← n + zi∗

7 λ ← (n − zi∗(n − zi∗ − 1)λ + 2zi∗a(i∗, S)(n − zi∗))
n(n − 1)

8 a(i, S) = [(n − zi∗a(i, S) + zi∗aii∗)] /n

9 g2 = λ2n2

10 Go to 2.

11 end
12 else
13 Output: S, λ, g2
14 end

After applying AddRemAdd(j) for all j ∈ I, we take, as the final output,
the result corresponding to the maximum g2. We refer to the AddRemAdd(j)
with this postprocessing step as ARA algorithm. This algorithm utilizes no ad
hoc parameters, except for the similarity shift value, so the cluster sizes are
determined by the process of clustering itself.

Our algorithm for building a dynamic supercluster involves 3 main steps:

1. Base supercluster construction. At this step we build an initial approximation
of the core R. For each period we find a single cluster with ARA algorithm.
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Thus obtained T clusters then are averaged according to the α-majority rule.
Any item i belongs to the α-majority if it is present in αT sets or more. The
greater the α threshold, the less elements will be present in the core. The α
value is given by the user. By default we set α = 2/3, gradually decreasing it
if there are no elements in the α-majority set. After thus defining initial R,
we define the initial shells at each period t as the set-theoretic differences of
the single clusters found in the beginning, and the R. We extract basic shell
as a set of elements which presented in basic single cluster and which are
not included in core. Then initial values of parameters λt and μt are found
according to Eq. (11)–(12).

2. Core optimization. We calculate an aggregate similarity matrix as the
weighted sum of matrices At with weights taken from (13). We define the
similarity shift as

∑
t(0.5λt + 0.5μt) and then apply the ARA algorithm to

obtain the final version of supercluster’s core.
3. Shells optimization. At this step we assume that the core is found so that

shells are looked at by using the ARA algorithm applied on the set I\R.

After extracting a dynamic supercluster, its absolute and relative contributions
to the data scatter are found: g2 and g2/

∑
t,i,j(a

t
ij)

2, respectively.

Algorithm 2. Building a dynamic supercluster
Input : Similarity matrices At = (at

ij), majority threshold α

Output: Core R, the average similarity between its elements λt + μt, shells St, the average
similarity values λt, contribution of the model to the original data scatter g2

1 I. Build a base dynamic supercluster:
2 for t = 1..T do

3 Build a single cluster Ut by using ARA(I, At, λt

2 ) ⇒ Ut

4 end

5 Define τ(i) — the number of periods t at which i is included in Ut

6 if τ(i) ≥ αT then
7 R → R ∪ {i}
8 end
9 for t = 1..T do

10 St = Ut\R

11 λt =

∑
i,j at

ijst
ij

∑
i,j st

ij

12 μt =

∑
i,j at

ijrij∑
i,j rij

− λt

13 end
14 II. Core optimization:
15 Calculate the weighted similarity matrix:

B = 2
∑

t(λ
t + μt)

(
At − λt+μt

2

)
+ 2
∑

t λt
(

At − λt

2

)

16 Updated core: ARA(I, B,
∑

t
λt+μt

2 ) ⇒ R

17 II. Shells optimization:
18 for t = 1..T do

19 ARA(I\R, At, λt

2 ) ⇒ St

20 end
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After a dynamic supercluster is found, one can apply the same procedure for
finding one more supercluster by restricting its core to be part of the residual
set I − R. This process of sequential supercluster extraction can be repeated as
many times as necessary.

4 Application

We apply the dynamic supercluster algorithm to two self-developed dynamic
network data, as described in the follow-up sections.

4.1 IFCS Network Superclusters

We have taken names of 42 researchers who have been active at the biennial
meetings of the International Federation of Classification Societies for a two-
decade period from 1997 to 2016. And used Google Scholar query system to find
intercitation data. For example, a query Murtagh author: “Mirkin” returns a list
of publications (co)-authored by Boris Mirkin, in which F. Murtagh was referred
to. The matrix of intercitations is available from the authors upon a personal
request.

Then we divide data in 10 biennial periods from 1997 to 2016 and form an
intercitation matrix for each of the periods. These ten similarity matrices have
been taken as the input to our Superclustering algorithm.

Results are presented in the table below Table 1.

Table 1. Superclusters found at the IFCS intercitation subnetwork.

n Core Number of shell
participants

Contribution, %

1 P. Groenen, J. Meulman,
R. Tibshirani, T. Hastie,
G. McLachlan

10 10.0

2 F. de Carvalho, C. Hennig,
B. Mirkin, F. Murtagh,
V. Makarenkov

13 2.7

3 V. Batagelj, A. Ferligoj, H. Kiers,
I. Van Mechelen

9 2.8

4 W. Gaul, A. Geyer-Schulz 11 1.7

5 E. Diday, A. Raftery, R. Rocci,
M. Vichi

12 1.4
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4.2 The Structure of a Novel’s Plot

In order to provide another example, we created an English language corpus
based on first four books from a series of popular epic fantasy novels “A Song
of Ice and Fire” [11]. To construct our network data, we divided each chapter in
2 to 7 equally-sized parts, depending on the size of the chapter. Each part was
then taken to the corpus as a single document. Then, the set of all documents
was divided into groups of 50 sequential documents, forming 14 time periods.

We take the list of characters of that novel as a set of objects and score
the co-occurence of characters on the book pages. Let Dτ (wi) be a set of doc-
uments in period τ where character wi appears. Then we say that concept
wi “refers” to concept wj in time period τ with confidence Cτ (wi, wj), where
Cτ (wi, wj) = |Dτ (wi)∩ Dτ (wj)|

|Dτ (wi)| ∈ [0; 1]. In other words, confidence Cτ (wi, wj)
shows the conditional probability of occurrence of concept wj in document where
wi occurred. After calculating all possible Dτ (wi) and Cτ (wi, wj) we can build
a dynamic reference graph as described in [12]. The work also provides visual-
ization of such graphs (Fig. 1).

Fig. 1. Visualization of ASOIAF reference graph for 11-th period (end of third book)

For this dataset we present only one supercluster, as other superclusters
appeared to be less interpretable, which probably correctly reflects the structure
of a literary work.
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The core of this dynamic supercluster has a contribution of 8.97% and con-
sists of 6 characters—four of them are members of the House Lannister which rule
the kingdom during all four books (Cersei, Joffrey, Tommen, Tyrion), another 2
characters are from the House Tyrell, the second powerful family in the kingdom
after the second book (Margaery, Loras). The core of supercluster really shows
strong connection between the two houses and their exceptional significance for
the plot.

Shells for each period also show groups of strongly-connected characters:
in 10 periods out of 14 all characters from the shell are located in the same
geographical area and mutually interact between each other (Table 2).

List of all entities from both datasets is presented in (Table 3).

Table 2. Shells for ASOIAF supercluster

# Shell g2, % # Shell g2, % # Shell g2, %

1 Jorah
Dany
Viserys
Drogo

8.89 6 Sansa
Hound

5.38 11 Sansa
Lancel
Olenna

5.41

2 Jorah
Dany
Viserys
Drogo

8.57 7 Ned
Catelyn
Lysa
Hoster
Edmure

15.42 12 Theon
Asha
Balon
Euron
Victarion

18.62

3 Ned
Robert
Renly
Varys
Pycelle
Barristan

10.15 8 Varys
Pycelle
Balon
Lancel

5.12 13 Jaime
Lancel
Olenna

11.16

4 Ned
Catelyn
Robb
Theon
Petyr
Hoster
Edmure

11.34 9 Bronn
Doran
Podrick

5.92 14 Pycelle
High Sparrow

17.49

5 Catelyn
Renly
Brienne

3.28 10 Theon
Balon
Euron
Victarion

7.09
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Table 3. List of entities used in work:

IFCS-Citations: Batagelj, Vladimir; Bertrand, Patrice Bodjanova, Slavka;
Braak, Cajo ter; De Carvalho, Francisco De Assis
Tenhorio; Ferligoj, Anuška; Geyer-Schulz, Andreas;
Gorban, Alexander N; Groenen, Patrick J.F.; Hastie,
Trevor; Hennig, Christian; Hruschka, Harald; Jajuga,
Krzysztof; Kiers, Henk; Kuntz, Pascale; Lausen, Berthold;
Leisch, Friedrich; Makarenkov, Vladimir; McLachlan,
Geoff; Meulman, Jacqueline; Mirkin, Boris; Murtagh,
Fionn; Palumbo, Francesco; Riani, Marco; Rocci, Roberto;
Steinley, Doug; Tibshirani, Robert; Van Mechelen, Iven;
Paula Brito; Gilles Celeux; Renato Coppi; Frank Klawonn;
Rudolf Kruse; Verde, Rosanna; Vermunt, Jeroen; Vichi,
Maurizio; Wolfgang A. Gaul; Wojtek J Krzanowski;
Gilbert Saporta; Edvin Diday; Adrian Raftery

ASOIAF-RefGraph: Ned Catelyn Robb Jon Sansa Bran Arya Hodor Theon
Roose Ramsay Tywin Cersei Jaime Joffrey Myrcella
Tommen Tyrion Lancel Hound Bronn Dany Viserys Jorah
Missandei Daario Lysa Robert Stannis Selyse Shireen
Melisandre Davos Renly Brienne Asha Balon Victarion
Euron

5 Conclusions and Future Work

The approximation model of cluster structure imitating static and dynamic
rough sets was presented in the paper. We have retrieved parameters of the
model and proposed an suboptimal iterative algorithm for building superclus-
ters. We have verified our approach on two dynamic network data sets. The
proposed algorithm finds satisfactory superclusters with core elements that are
strongly connected within all time periods and shells showing local trends of
each period.

Although the presented approach showed its effectiveness on our data sets,
much work remains to be done. First it is necessary to test the scalability of
the algorithm—our approach needs to be verified on the larger amounts of data.
Another open question is the question of algorithm’s applicability to other types
of data. One of possible areas of research is the analysis of images, in particular,
changes in temperature maps. In this scope superclusters may find its applica-
tions for the analysis and detection of upwellings. Finally, we are also planning
to integrate the algorithm for finding superclusters with our dynamic network
visualization software.
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Abstract. Clustering functionally similar genes helps in understanding
the mechanism of a biological pathway. It also provides information of
those genes whose biological importance is previously not known. Clus-
tering of genes is highly dependent on the similarity or dissimilarity cri-
terion. Usually, microarray gene expression data is used to cluster genes.
However, a microarray data may contain noise that may lead to unde-
sired results. Therefore, incorporating gene ontology information may
improve the clustering solutions. In this regard, an integrated dissimi-
larity measure is introduced for grouping functionally similar genes. It
is comprised of city block distance and gene ontology based semantic
dissimilarity. While, the city block distance is used to compute distance
between two gene expression vectors, gene ontology based semantic dis-
similarity measure is used for incorporating biological knowledge. The
importance of the integrated dissimilarity measure is shown by incorpo-
rating it in different c-means clustering algorithms including rough-fuzzy
clustering algorithms. In this work it has been shown that incorporation
of integrated dissimilarity measure increases the functional similarity of
cluster of genes as compared to the methods that are based on either
type of dissimilarity measure. It is also observed that the rough-fuzzy
clustering algorithm performs better with the new dissimilarity measure
compared to different c-means clustering algorithms.

Keywords: Genes · Co-expressed genes · Rough sets · Gene ontology ·
Functionally similar genes · City-block distance

1 Introduction

Clustering functionally similar genes is important to understand the role of
individual gene in a pathway. It also reveals about the co-expression and co-
regulation patterns of genes. A lot of insight can be gained for the genes whose
information is previously unknown. Functionally similar genes often are orga-
nized in clusters in the genome. Expression analyses showed strong positive
correlations among the closely located genes, indicating that they may be con-
trolled by common regulatory element(s). In fact, experimental evidence demon-
strated that clustered gene loci form an operon-like gene structure and that they
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 587–598, 2017.
DOI: 10.1007/978-3-319-60837-2 47
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are transcribed from common promoter. Existence of co-expressed genes is also
demonstrated using expression profiling analysis in [10]. Several gene clusters
have been experimentally shown by RT-PCR [4]. These findings suggest that
members of a gene cluster, which are at a close proximity on a chromosome, are
highly likely to be processed as co-transcribed units. Expression data of genes
can be used to detect clusters of genes as it is suggested that co-expressed genes
are co-transcribed, so they should have similar expression pattern. However, a
microarray gene expression data may contain noise that may lead to misleading
results.

It has been demonstrated in [15] that the quality of generated clusters is
always relative to a certain distance measure. Different distance measures may
lead to different clustering results. Several similarity or dissimilarity measures
such as Euclidean distance, Jaccard index, Pearson correlation coefficient, and
city block distance (CBD) are used in various clustering algorithms based on
expression vector of genes. To avoid the problem of noise in microarray gene
expression data one may integrate prior biological knowledge information so
that more functionally relevant genes get grouped. In this regard, several studies
have developed or used microarray gene expression data and gene ontology (GO)
based semantic dissimilarity. In those works Pearson correlation distance [9]
is computed using microarray expression data and it is integrated with GO
based semantic dissimilarity. However, the Pearson correlation only measures
linear relationship. This integrated dissimilarity measure is used with different
c-means clustering algorithms but not with rough-fuzzy clustering algorithms. It
has been shown that rough-fuzzy clustering algorithm can perform better than
K-means [8], fuzzy c-means algorithms [5] as they can handle the issue of noise
as well as overlapping boundary [13]. However, no work has been conducted
using integrated dissimilarity measure in rough-fuzzy clustering algorithm.

In this regard, this paper presents a new integrated dissimilarity measure
for grouping functionally similar genes. It is developed by integrating city block
distance (CBD) and gene ontology (GO) semantic dissimilarity. While, the CBD
measure is used in this paper for computing gene expression vector based dissim-
ilarity, GO based dissimilarity measure is used to incorporate biological knowl-
edge in the clustering algorithm. It has been shown that rough-fuzzy cluster-
ing algorithm can overcome the issues of noise and overlapping boundaries but
no work has demonstrated the impact of integrated dissimilarity measure with
rough-fuzzy c-means algorithms. The effectiveness of integrated approach along
with different types of c-means clustering algorithms is shown on several gene
expression microarray data. It has been observed that the rough-fuzzy c-means
algorithm along with proposed integrated dissimilarity measure generates more
clusters of functionally related genes.

2 Proposed Dissimilarity Measure

This section describes the proposed integrated dissimilarity measure. It is devel-
oped by integrating microarray gene expression data and gene ontology (GO)
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based semantic dissimilarity. The distance between two gene expression vectors
is calculated using city block distance (CBD). While, Du et al. [6] GO based
semantic dissimilarity is used for incorporating biological knowledge.

City Block Distance. The CBD, also known as the Manhattan distance or
taxi distance, is closely related to the Euclidean distance. Whereas the Euclidean
distance corresponds to the length of the shortest path between two points, the
CBD is the sum of distances along each dimension. The distance between two
objects xi and xj is defined as follows:

CBD(xi, xj) =
m∑

k=1

|xik − xjk| (1)

where m is the number of features of the objects xi and xj . As for the Euclid-
ean distance, the expression data are subtracted directly from each other, and
therefore should be made sure that they are properly normalized. There are
many variants of the CBD. The normalized range-normalized CBD (NRNCBD)
is defined as follows:

N (xi, xj) =
1
m

×
m∑

k=1

[ |xik − xjk|
|kmax − kmin|

]
, (2)

where kmax and kmin denote the maximum and minimum values along the kth
feature, respectively.

Gene Ontology Based Semantic Dissimilarity. The gene ontology (GO)
project aims to build tree structures and controlled vocabularies, also called
ontologies, which describe gene products in terms of their associated biological
processes (BPs), molecular functions (MFs), or cellular components (CCs).

When biological entities are described using a common schema such as an
ontology, they can be compared by means of their annotations. This type of
comparison is called semantic similarity since it assesses the degree of related-
ness between two entities by the similarity in meaning of their annotations. To
quantify similarity between two genes, many information content-based mea-
sures have been developed [11,17]. In the present work, the Du et al. semantic
similarity measure [6] is used to measure the functional dissimilarity between a
pair of genes. The functional similarity between a pair of genes based on gene
annotation information from heterogeneous data sources is computed as follows.

Definition 1. Given two genes x1 and x2, and their annotated GO terms
GO1 = {go11, go12, · · · , go1m} and GO2 = {go21, go22, · · · , go2ḿ}, respectively,
for the ontology O, the functional similarity between x1 and x2 is defined as
follows:

Sim(x1, x2) =

m∑

i=1

Sim(go1i, GO2) +
ḿ∑

j=1

Sim(go2j , GO1)

m + ḿ
.
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The value of similarity Sim(x1, x2) ranges from zero to one, nearer the value
to one higher the functional similarity between the pair of genes.

In this work, functional dissimilarity is computed as follows: DISSim(x1, x2) =
1−Sim(x1, x2). Nearer the value to zero higher the functional similarity between
the pair of genes. Whereas, if its one that means no similarity between the genes.

Integrated Dissimilarity Measure. To generate group of functionally similar
genes average of both distance measures is computed. The integrated distance
between two genes xi and xj can be calculated as follows:

d(xi, xj) = N (xi, xj) + DISSim(xi, xj) (3)

The following properties can be derived for the proposed dissimilarity mea-
sure:

1. 0 ≤ d(xi, xj) ≤ 1.
2. d(xi, xj) = d(xj , xi).
3. d(xi, xi) = 0.
4. d(xi, xj) ≤ d(xi, xk) + d(xk, xj).

The proposed integrated dissimilarity measure is incorporated into different
c-means clustering algorithm including rough-fuzzy clustering algorithm.

2.1 Selection of Initial Cluster Prototypes

A limitation of any c-means algorithm is that it can only achieve a local opti-
mum solution that depends on the initial choice of the cluster prototypes. Con-
sequently, computing resources may be wasted in that some initial centers get
stuck in regions of the input space with a scarcity of data points and may there-
fore never have the chance to move to new locations where they are needed. To
overcome this limitation, the proposed study begins with the selection of c dis-
tinct genes from the given gene expression data set using the NRNCBD, which
enables the algorithm to converge to an optimum or near optimum solutions
[15].

The main steps for selection of initial genes as mentioned in [15] are as follows:

1. For each gene xi, calculate N (xi, xj) between itself and the gene xj , ∀n
j=1.

2. Calculate similarity score between two genes xi and xj as follows:

S(xi, xj) =
{

1 if N (xi, xj) ≤ λ
0 otherwise. (4)

3. For each gene xi, calculate total number of similar genes of xi as

N(xi) =
n∑

j=1

S(xi, xj). (5)
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4. Sort n genes according to their values of N(xi) such that N(x1) > N(x2) >
· · · > N(xn).

5. If N(xi) > N(xj) and N (xi, xj) ≤ λ, then xj cannot be considered as an initial
cluster center, resulting in a reduced set of genes to be considered for c initial
cluster centers vi, i = 1, 2, · · · , c. Also, the λ is a user defined parameter.

6. Stop.

3 Gene Expression Data Sets Used

In this work, publicly available three gene expression data sets are used to com-
pare the performance of different clustering methods along with proposed dis-
similarity measure. This section gives a brief description of the following three
gene expression data sets, two of which are downloaded from Gene Expression
Omnibus (www.ncbi.nlm.nih.gov/geo/).

1. Cho Data Set: This data set contains gene expression profile of yeast genome
during mitotic cell cycle. The number of genes and time points of this data
are 5575 and 17, respectively [2].

2. GDS759: This data set is related to analysis of gene expression in temper-
ature sensitive pre-mRNA splicing factor mutants prp17 null, prp17-1, and
prp22-1 at various time points following a shift from the permissive temper-
ature of 23 ◦C to the restrictive temperature of 37 ◦C. The number of genes
and time points of this data are 6350 and 24, respectively [18].

3. GDS2347: It contains the analysis of wild type W303 cells across two cell
cycles, a length of 2 h after synchronization with alpha factor. The number
of genes and time points are 6228 and 13, respectively [16].

4 Results and Discussions

In this section, the performance of the proposed dissimilarity measure is demon-
strated. The dissimilarity measure is incorporated with hard c-means (HCM)
[8], fuzzy c-means (FCM) [5], rough-fuzzy c-means (RFCM) [12], and robust
rough-fuzzy c-means (rRFC-M) [13], The performance of the proposed dissim-
ilarity measure over only normalized range normalized city block distance or
Gene ontology based dissimilarity measure is also presented. The results are
reported on three microarray gene expression data sets, namely, Cho data set,
GDS759, and GDS2347. Gene expression vectors are used for only those genes
whose gene ontology information is also available. For each data set, the number
of clusters c is decided by using the CLICK [19] algorithm. Each gene data set
is pre-processed by standardizing each feature or time point to zero mean and
unit variance. The values of two fuzzifiers are set to 2.0, that is, ḿ1 = 2.0 and
ḿ2 = 2.0. All the results are reported using gene ontology based functional anno-
tation ratio. This evaluation criterion quantify the functional similarity among
a set of genes.

www.ncbi.nlm.nih.gov/geo/
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4.1 Optimum Clustering Solutions

The threshold λ [15] plays an important role to generate the initial cluster cen-
ters. It controls the degree of dissimilarity among the genes present in microarray
data. In effect, it has a direct influence on the performance of the initialization
method used. Also, the performance of the rough-fuzzy clustering algorithm
depends on the weight parameter ω [12,13].

Let Φ = {λ, ω} be the set of parameters and Φ� = {λ�, ω�} is the set of
optimal parameters. To find out the optimum set Φ�, containing optimum values
of λ� and ω�, the Davies-Bouldin (DB) cluster validity index [3] is used here.
DB index [3] is designed to identify sets of clusters that are compact and well
separated. DB index minimizes

DB =
1
c

c∑

i=1

max
i�=k

{
S(vi) + S(vk)

d(vi, vk)

}
(6)

for 1 ≤ i, k ≤ c. The DB index minimizes the within-cluster distance S(vi)
and maximizes the between-cluster separation d(vi, vk). Therefore, for a given
data set and c value, the higher the similarity values within the clusters and
the between-cluster separation, the lower would be the DB index value. A good
clustering procedure should make the value of DB index as low as possible.

For three gene microarray data sets, the value of λ is varied from 0.0 to 0.15,
while the value of ω is varied from 0.51 to 0.99. The optimum values of λ� and
ω� for each microarray data set and for two rough-fuzzy clustering algorithms
[12,13] are obtained using the following relation:

Φ� = arg min
Φ

{DB}. (7)

While for HCM and FCM only λ parameter is considered. The optimum
values of λ and ω for the rough-fuzzy clustering algorithms [12,13] as well as
HCM and FCM with NRNCBD distance for three data sets, namely, Cho data
set, GDS759, and GDS2347 are mentioned in Table 1.

Table 1. Optimum parameter values of different clustering algorithms

Methods algorithm Cho data set GDS759 GDS2347

λ ω λ ω λ ω

HCM 1.00 - 0.92 - 0.93 -

FCM 0.96 - 0.91 - 0.85 -

RFCM 1.00 0.99 0.98 0.51 0.98 0.75

rRFCM 1.00 0.95 0.97 0.99 0.98 0.55
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4.2 Importance of Integrated Dissimilarity Measure

This section describes about the importance of the integrated dissimilarity mea-
sure in terms of functional consistency of a gene cluster. In order to evaluate the
functional consistency of the gene clusters produced by different algorithms, the
biological annotations of the gene clusters are considered in terms of the GO.
The annotation ratios of each gene cluster in three GO ontologies are calculated
using the GO Term Finder [1]. The GO term is searched in which most of the
genes of a particular cluster are enriched. The annotation ratio, also termed as
cluster frequency, of a gene cluster is defined as the number of genes in both the
assigned GO term and the cluster divided by the number of genes in that cluster.
A higher value of annotation ratio indicates that the majority of genes in the
cluster are functionally more closer to each other, while a lower value signifies
that the cluster contains much more noises or irrelevant genes. After computing
the annotation ratios of all gene clusters for a particular ontology, the sum of
all annotation ratios is treated as the final annotation ratio. A higher value of
final annotation ratio represents that the corresponding clustering result is bet-
ter than other, that is, the genes are better clustered by function, indicating a
more functionally consistent clustering result [20].

Here, the importance of proposed integrated dissimilarity measure is shown
over dissimilarity measure based on only either type of dissimilarity measure.
Table 2 presents the comparative results of different types of dissimilarity mea-
sures, in term of final annotation ratio or cluster frequency, for the MF, BP, and

Table 2. Comparative performance of different c-means algorithms and distance
measures

Methods
algorithm

Distance
measure

Cho data set GDS759 GDS2347

MF BP CC MF BP CC MF BP CC

HCM NRNCBD 6.062 7.329 11.322 1.812 4.462 6.826 0.857 0.995 1.530

Integrated 15.682 23.380 11.380 7.938 14.404 10.056 2.036 2.666 1.632

GO
distance

12.692 23.193 14.035 8.256 15.174 9.599 1.639 2.210 2.656

FCM NRNCBD 4.511 5.542 8.076 1.953 2.333 5.090 0.123 0.778 1.386

Integrated 16.798 19.770 14.053 11.946 13.628 6.455 1.986 2.465 1.678

GO
distance

- - - 7.274 15.211 11.161 1.649 2.387 2.548

RFCM NRNCBD 2.958 5.979 5.360 2.214 2.566 4.631 0.272 0.556 1.140

Integrated 9.598 23.230 12.397 2.144 2.841 4.296 1.644 1.972 1.712

GO
distance

- - - 7.274 15.211 11.161 1.649 2.387 2.548

rRFCM NRNCBD 4.868 6.050 6.487 1.149 2.858 4.558 0.433 0.783 1.472

Integrated 13.460 25.130 17.283 17.069 21.179 9.801 1.477 2.697 2.371

GO

distance

- - - - - - 1.220 1.999 1.871
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CC ontologies on three data sets. From the table it is seen that the integrated
dissimilarity measure performs better than city block distance alone and gene
ontology based distance alone. The dissimilarity measures are incorporated in to
different c-means clustering algorithms. Out of 36 cases the integrated dissim-
ilarity measure performs better in 24 cases. On the other hand, the HCM and
FCM algorithms generates more functionally consistent clustering results with
integrated dissimilarity measure in most of the cases. Only in three cases in
each of the HCM and FCM algorithms the ontology based dissimilarity measure
performs better. The RFCM algorithm performs better with GO based dissim-
ilarity measure in most of the cases. The sign ‘-’ indicates that the algorithm
could not generate desired number of clusters. Using only GO based distance in
few cases the clustering algorithms generate co-incident clusters. Therefore, they
are not further studied. The rRFCM algorithm always generates better result
with integrated dissimilarity measure. From the results it is seen that incorpo-
ration of integrated dissimilarity measure drastically improves the performance
of clustering algorithms.

4.3 Comparative Performance Analysis of Different Clustering
Algorithms

In this section performance of different c-means clustering algorithm is shown in
terms of annotation ratio or cluster frequency. Table 3 represents the performance
of different clustering algorithms along with integrated dissimilarity measure.
From the table it is seen that the rRFCM generates more number of functionally
consistent clusters. Out of nine cases the rRFCM algorithm along with integrated
dissimilarity measure performs better than other clustering algorithms in six
cases. Only in one case and two cases the FCM and HCM, respectively performs
better.

Table 3. Performance of different clustering algorithms

Methods/
algorithms

Cho data set GDS759 GDS2347

MF BP CC MF BP CC MF BP CC

HCM 15.682 23.380 11.380 7.938 14.404 10.056 2.036 2.666 1.632

FCM 16.798 19.770 14.053 11.946 13.628 6.455 1.986 2.465 1.678

RFCM 9.598 23.230 12.397 2.144 2.841 4.296 1.644 1.972 1.712

rRFCM 13.460 25.13 17.283 17.069 21.179 9.801 1.477 2.697 2.371

4.4 Qualitative Performance Analysis

The Eisen plot gives a visual representation of the clustering result. In Eisen
plot [7], the expression value of a gene at a specific time point is represented



Integration of Gene Expression and Ontology 595

rRFCM

RFCM

FCM

HCM

Fig. 1. Eisen plots of different clusters for Cho yeast data set generated by HCM,
FCM, RFCM, and rRFCM

by coloring the corresponding cell of the data matrix with a color similar to the
original color of its spot on the microarray. The shades of red color represent
higher expression level, the shades of green color represent low expression level
and the colors towards black represent absence of differential expression values.
In the present representation, the genes are ordered before plotting so that the
genes that belong to the same cluster are placed one after another. The cluster
boundaries are identified by white colored blank rows.

The gene clusters produced by the HCM, FCM, RFCM, SOM, and rRFCM
algorithms on Cho yeast data set are visualized by TreeView software, which is
available at http://rana.lbl.gov/EisenSoftware and the plots for one data sets
are reported in Fig. 1 as examples. From the Eisen plots presented in Fig. 1,
it is evident that the expression profiles of the genes in a cluster are similar
to each other and they produce similar color pattern, whereas the genes from
different clusters differ in color patterns. Also, the results obtained by both
RFCM and rRFCM algorithms are more promising than that by both HCM and
FCM algorithms.

4.5 Performance of Clustering Algorithms in Terms of Cluster
Validity Indices

The expression data of clustering solutions is used to evaluate the performance of
different clustering algorithms in terms of some standard cluster validity indices.
Table 4 presents the performance of different c-means algorithms for optimum
values of λ and ω in terms of Davies Bouldin Index [3] and β Index [14].

The β index [14] is defined as the ratio of total variation and within-cluster
variation, and is given by

β =
N
M

; where N =
c∑

i=1

ni∑

j=1

||xij − v||2;

http://rana.lbl.gov/EisenSoftware
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Table 4. Performance of different clustering algorithms in terms of DB and β index

Methods/algorithms DB index β index

Cho Data GDS759 GDS2347 Cho Data GDS759 GDS2347

HCM 6.0862 1.0004 1.0000 0.000002 0.000003 0.000001

FCM 12.9881 1.0003 0.9999 0.000001 0.000001 0.000004

RFCM 4.8820 1.0004 0.9999 0.000001 0.000002 0.000003

rRFCM 4.3548 1.0003 0.9999 0.000022 0.000011 0.000007

M =
c∑

i=1

ni∑

j=1

||xij − vi||2; and
c∑

i=1

ni = n; (8)

ni is the number of objects in the ith cluster (i = 1, 2, · · · , c), n is the total
number of objects, xij is the jth object in cluster i, vi is the mean or centroid
of ith cluster, and v is the mean of n objects. For a given data set and c value,
the higher the homogeneity within the clusters, the higher would be the β value.
The value of β also increases with c.

The results and subsequent discussions are presented with respect to DB
index and Beta index. The results establish the fact that the rRFCM algorithm
performs equal or better than other c-means clustering algorithms.

5 Conclusion

In this paper importance of dissimilarity measure in a clustering algorithm
has been demonstrated. Application of only one type of distance measure may
not generate desired results as that of integrated dissimilarity measure. Here,
microarray gene expression data based distance as well as Gene Ontology based
distance measures are integrated and their importance over individual type of
distance measure is shown. It has been observed that integrated dissimilarity
measure generates more functionally similar gene clusters. The effectiveness of
the integrated dissimilarity measure is shown on different gene expression data
sets. It has been observed that the integrated dissimilarity measure along with
rRFCM algorithm performs better than any other clustering algorithm.

Acknowledgements. The author wants to acknowledge Dr. Pradipta Maji of Indian
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Abstract. Compared with Single-view clustering, Multi-view cluster-
ing analysis exploits more hidden information. Multiple kernel learning
(MKL) performs its superiority in heterogeneous sources and solves the
problem of selection of kernel functions. Many existing multi-view liter-
atures based on MKL consider instances in each view equally and over-
look the difference among them. In this paper, a multi-view clustering
algorithm based on variable weight and MKL (called MVMKC) is pro-
posed. MVMKC improves clustering quality with more-refined analyses
on data. To be specific, it uses an improved weighted Gaussian kernel
rather than the traditional combined kernel function. Meanwhile, vari-
able weights are introduced to measure the contribution of instance in
different views. Experimental results on real-world datasets demonstrate
the effectiveness of the proposed approach.

Keywords: Multi-view clustering · Variable weight · Multiple Kernel
Learning (MKL) · Weighted Gaussian kernel

1 Introduction

Multi-view data appears in various fields and increases at a rapid rate. It
describes observation from different perspectives and consists of multiple feature
sets. However, single view dataset regards the collection of all feature sets as a
whole. The traditional clustering algorithms cannot handle dataset with more
than one views. Therefore, multi-view clustering is put forward to deal with this
kind of data, which aims at obtaining a better cluster results by analyzing the
multi-view information and studying the similarities and dissimilarities between
different views.

Although there are a lot of clustering methods, the traditional clustering
algorithms could not solve the clustering problem of multi-view data well.
Commonly multi-view clustering algorithms are divided into three categories:
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(1) Clustering after combining the views [1,2]: it combines the information from
different views and clusters it. (2) Clustering based on common subspace [3]:
this method projects data to a subspace and an algorithm is applied on this
subspace. (3) Clustering based on ensemble learning [4]: every view is clustered
to get a cluster result and combine those results to be a matrix, and an ensemble
method is used on this matrix. (4) Clustering based on MKL.

For multi-view datasets, each variable is described in multiple views at the
same time but the contribution of each view is different. Therefore, it is effective
to take the differences among the views into consideration in the clustering
process. But the traditional algorithms treat every view as a whole and ignore
the differences among the variables in this view. Taking this into account, we
weight the variables in different views to extract the effective information about
the variables more effectively.

With the development of Support Vector Machine(SVM), the kernel
technique [5] has obtained wide applications. Kernel function transforms the
inner product of the high-dimensional space into the kernel function calculation
of the low-dimensional space, which subtly solves the problem of “dimension
disaster” in the high-dimensional feature space. However, different kernel func-
tions have their unique characteristics; moreover some multi-view datasets are
constituted by multiple sources or heterogeneous data. Single kernel function
does not accurately represent all the charactistics. Hence, MKL (Multiple Kernel
Learning) [6] is put forward, which intergrates multiple base kernels instead of
single kernel. For multi-view data, the general method is a linear combination
of kernel matrixes obtained by kernel transformation on every view. It enhances
the interpretability of the decision function and improve the performance.

The rest of this paper is organized as follows. Section 2 reviews related work.
In Sect. 3 we propose MVMKC algorithm, while Sect. 4 gives experimental results
and analysis. Finally, we draw a conclusion in Sect. 5.

2 Related Work

In recent publications, many cluster methods have been introduced to learn the
multi-view data. Bickel and Scheffer first proposed the concept of multi-view
clustering [7] in 2004. Then many well-known algorithms have been utilized to
cluster multi-view data. A variety of multi-view clustering methods based on co-
training have been developed in succession. Such as co-training was combined
with spectral clustering for multi-view data [2]. In 2007, a non-redundant multi-
view clustering algorithm [8] is adopted to emphasize the difference between
different views and reduced the redundant information. A method based on
Canonical Correlation Analysis (CCA) [9] was introduced by Chaudhuri et al.
in 2009, which extracted the common information of the two views by CCA
before cluster. He et al. applied Non-negative Matrix Factorization (NMF) to
learn latent features for multi-view clustering [10].

In order to effectively combine the information of those different views, MKL
technology was introduced in multi-view clustering algorithms. Tzortzis and
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Likas published a kernel-based weighted multi-view clustering [11] in 2012. In
2014, Guo et al. developed an improved MKL and combined it with multi-view
spectral clustering [12]. MKL [13] was utilized by Nazarpour and Adibi to reduce
the input dimensionality and improve the classification accuracy. Fu et al. pre-
sented a group based non-sparse Localized MKL algorithm [14] to make the best
of useful kernels in 2016.

Variable weighting clustering is an important part of cluster analysis, and it
focus on the study that how to update the weights automatically. Huang et al.
proposed a W-k-means clustering algorithm [15] that can automatically update
weight values during the K-means clustering process. Locally Adaptive Cluster-
ing (LAC) algorithm [16] was presented that it weighted variables of each cluster.
An entropy weighting K-means (EWKM) [17] is adopted to automatically com-
pute the weights of all dimensions in each cluster. A constrained locally weighted
scheme [18] was utilized to capture the local correlation structures.

3 Multi-view Clustering Algorithm Based on Variable
Weight and MKL (MVMKC)

Inspired by the MVKKM algorithm [11], this paper presents MVMKC algorithm
and the detailed description is as follows.

3.1 Kernel Function

The core idea of the kernel function is to map the variables from low dimensional
space to high-dimensional space through an inner product. It is not difficult to
determine the kernel function by satisfying the Mercer theorem.

Theorem 1. Mercer kernel.
Suppose X is a set of samples in the input space: xk ∈ R

N (k = 1, 2, . . . ,K),
and by using a non-linear mapping φ to map X, a set of vectors φ(x1), φ(x2),
φ(xk), · · · , φ(xK) in high-dimensional space (also called feature space) H could
be obtained. Thus the dot product form of input space could be represented by
Mercer in feature space [19]:

K(xi, xj) = φ(xi) · φ(xj). (1)

All of these samples are represented by a kernel matrix: Kij = K(xi, xj),
which is the basic SVM technology.

The commonly used kernel functions are shown as follow:

Linear kernel. The linear kernel is the simplest kernel function. It is given by a
sum of inner product and an optional constant.

K(xi, xj) = xi · xj + c. (2)



602 P. Zhang et al.

Polynomial kernel. The Polynomial kernel is a non-stationary kernel. Polynomial
kernels are well suited for problems where all the training data is normalized.

K(xi, xj) = (xi · xj + 1)d. (3)

Gaussian kernel. The Gaussian kernel is an example of radial basis function
kernel.

K(xi, xj) = exp

(
−‖xi − xj‖2

2σ2

)
(4)

here σ > 0 is the width of the Gaussian kernel function.
These different kernels may correspond to different datasets come from mul-

tiple sources, such as they have different representations or different feature
subsets, or they contains a lot of heterogeneous information. So only a single
kernel function can’t achieve ideal result. For instance, the input space is com-
posed of two vector spaces: the first vector follows Gaussian distribution, while
the second vector is subject to polynomial distribution. In this case, only one
kernel function becomes inadequate. If we mix the two kinds of kernel functions,
the effect would be better than a single one.

3.2 Weighted Gaussian Kernel

Most combination kernel functions are summed by many independent kernel
functions, information in different views are different. In order to describe this
difference and extract as much useful messages as possible, here designs a
weighted Gaussian kernel [20], which integrates the advantage of Gaussian kernel
and Polynomial kernel. The formula is as follow:

K(x, y) =
[
exp

(
−‖x − y‖2

2σ2

)
+ R

]d

∀R ≥ 0, d ≥ 0, d ∈ N. (5)

According to the binomial theorem, the above formula is expanded as follow:

K(x, y) =
[
exp

(
−‖x − y‖2

2σ2

)
+ R

]d

=
d∑

s=0

(
d

s

)
Rd−sexp

(
−s ‖x − y‖2

2σ2

)

= Rd +
d∑

s=1

(
d

s

)
Rd−sexp

(
−‖x − y‖2

2σ2/s

)
. (6)

It is obvious that weighted Gaussian kernel is a combination of d Gaussian
kernels with different widths, that the widths are changed from σ2 to σ2/s.
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Weight Rd−s is used to reflect the importance of the d − s kernel and enlarge
the linear translation of distance between points. In this way, we expand the
difference between points so instances of nuance could be clustered preferably.

3.3 MVMKC Algorithm

Different with traditional Gaussian kernel function, we develop weighted
Gaussian kernel to calculate the distance and update objective function. It
adapts for different datasets by adjusting parameters and increases the distance
between variables so as to separate them easily. In addition, we introduce the
weight of each variable in different views to measure the importance of them.

Firstly, Kernel Principal Component Analysis (KPCA) is used to reduce
dimension and the datasets are normalized. Then MVMKC is imported. Finally
clustering centroids and variable weight matrix are updated. The algorithm flow
is shown in the following Fig. 1:

Fig. 1. The flow chart of MVMKC

Now given a multi-view dataset with V views and N samples: X = {xi}Ni=1,
xi = {x

(v)
i }Vv=1, xi is the ith sample, and xi ∈ R

d(v) prensents the ith sam-
ple in the vth view. The dataset would be partitioned into K disjoint clusters
C1, C2, . . . , CK and {mk}Kk=1 is the kth cluster centroid. δik is the indicator vari-
able with δik = 1 if xi ∈ mk and otherwise δik = 0 . The objective function
based on K-means and kernel is as follow:

min J(w,mk) =
V∑

v=1

N∑
i=1

wi,v

K∑
k=1

δik

∥∥∥φ(v)(x(v)
i ) − φ(v)(m(v)

k )
∥∥∥2

s.t.wi,v ≥ 0,

V∏
v=1

wi,v = 1 (7)
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where wi,v(i = 1, 2, . . . , N ; v = 1, 2, . . . , V ) is a vector of variable weights, in
which rows represent all variables and columns represent weight values of one
variable in different views. i.e.

∏V
v=1 wi,v = 1(i = 1, 2, . . . , N).

And Euclidean distance in the feature space is expanded as follow [21]:

∥∥∥φ(v)(x(v)
i ) − φ(v)(m(v)

k )
∥∥∥2

= (φ(v)(x(v)
i ) − φ(v)(m(v)

k )) · (φ(v)(x(v)
i ) − φ(v)(m(v)

k ))

= φ(v)(x(v)
i ) · φ(v)(x(v)

i ) + φ(v)(m(v)
k ) · φ(v)(m(v)

k ) − 2φ(v)(x(v)
i ) · φ(v)(m(v)

k ).
(8)

As K(xi, xj) = φ(xi) · φ(xj), the above equation is converted to:

J(w,mk) =
V∑

v=1

N∑
i=1

wi,v

K∑
k=1

δik

[
K(x(v)

i , x
(v)
i ) + K(m(v)

k ,m
(v)
k )

− 2K(x(v)
i ,m

(v)
k )

]
. (9)

According to literature [20], the objective is written as:

min J(w,mk) =
V∑

v=1

N∑
i=1

wi,v

K∑
k=1

2δik

[
(1 + R)d − Rd

−
d∑

s=1

(
d

s

)
Rd−sexp

⎛
⎜⎝−

∥∥∥x
(v)
i − m

(v)
k

∥∥∥2

2σ2/s

⎞
⎟⎠

]
.

s.t.wi,v ≥ 0,
V∏

v=1

wi,v = 1. (10)

3.4 Algorithm Derivation

An iterative algorithm is advanced to update the cluster center mk and weight
value wi,v.

Before making a calculation, we define that:

Hv
i =

K∑
k=1

2δik

[
(1 + R)d − Rd −

d∑
s=1

(
d

s

)
Rd−sexp

⎛
⎜⎝−

∥∥∥x
(v)
i − m

(v)
k

∥∥∥2

2σ2/s

⎞
⎟⎠

]
. (11)

Dv = exp

⎛
⎜⎝−

∥∥∥x
(v)
i − m

(v)
k

∥∥∥2

2σ2

⎞
⎟⎠ . (12)
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The first step is to update mk, when wi,v is fixed, according to [22], cluster
center mk is calculated as follow:

mk =
∑V

v=1

∑N
i=1 wi,vδik(Dv + R)d ∗ Dv ∗ x

(v)
i∑V

v=1

∑N
i=1 wi,vδik(Dv + R)d ∗ Dv

. (13)

The most important step is to calculate weight wi,v. We incorporate the
constraints into objective function and construct the Lagrangian expression:

L =
V∑

v=1

N∑
i=1

wi,vH
v
i + λ(

V∏
v=1

wi,v − 1). (14)

Setting the derivative of the Lagrangian to zero yields, the wi,v can be
obtained as follow:

wi,v =
(
∏V

v′=1 Hv′
i )

1
V

Hv
i

. (15)

Determining the clustering center mk and weight wi,v, the sample is divided
into the nearest cluster by comparing the distance between it to all clusters:

if
V∑

v=1

wi,v

∥∥∥φ(v)(x(v)
i ) − φ(v)(m(v)

k )
∥∥∥2

<

V∑
v=1

wi,v

∥∥∥φ(v)(x(v)
i ) − φ(v)(m(v)

l )
∥∥∥2

.

∀l �= k, then xi ∈ Ck.

(16)

The above two formulas (14) and (15) are worked cyclically, until objective
function converges. The specific process of algorithm MVMKC is as shown below.

Algorithm 1. (MVMKC Algorithm)

Input:
Multi-view dataset X; The number of views V ; The number of clusters K;
The parameters R, d

Output:
Clustering centroids M , cluster labels C, variable weights W

Initial The cluster centroids M , wi,v = 1;
Obtain a new dataset by using KPCA and normalization;

Repeat
1) Fix W and C, update M according formula (13)
2) Fix M and C, update W according formula (15)
3) Fix W and M , update C according formula (16)

Untill eq.(10) convergence
End
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4 Experiment

In order to demonstrate the performance of MVMKC algorithm, we conducted
a comparative experiment on several data sets.

4.1 Experiment Setting

Data Sets. In this experiment, seven real world datasets are used to test the
effect of algorithm. They are Digits, Animal, SenseIT, CiteSeer, Texas, Wiscon-
sin, and Washington. The information aggregation of the six multi-view cluster-
ing datasets used in the experiment is as Table 1 shown.

Table 1. Detail information of datasets

Dataset Digits Animal SenseIT CiteSeer Texas Wisconsin Washington

Instances 2000 2594 1000 3312 187 265 230

Views 6 3 2 2 2 2 2

Clusters 10 6 3 6 5 5 5

Digits is a multi-view dataset that consists of features of handwritten numer-
als (′0′ −′ 9′) corresponding to 200 samples.

Animal is constituted by 2594 samples selected from 30475 samples, mainly
divided into 6 types, and three views are RGSIFT, SURF and LSS separately.

SenseIT describes a wireless sensor network, which consists of two different
types of sensors to send three types of vehicle signals to intelligent transportation
systems.

CiteSeer is a link dataset with 3312 scientific publications. Each publication
is described by a 0/1-valued word vector indicating the absence/presence of the
corresponding word from the dictionary.

Texas, Washington and Wisconsin are three sub datasets of WebKB dataset.
And each item is described by web text and web link.

Baseline Algorithms. In addition, five methods are taken as baseline algo-
rithms. They are RMKMC [23], MVKKM and MVSPec [11], RMSC [24] and
TWkmeans [25]. RMKMC is a robust clustering method aims on large-scale
data with heterogeneous representations. MVKKM and MVSpec are multi-view
kernel K-means and spectral clustering methods. TWkmeans is a multi-view
clustering method based on two-level variable weighting automatically.

Evaluating Indicators. We adopt two metrics as standard evaluation: RI
(Rand Index) [26] and F-measure [27].
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RI (Rand Index) evaluates the fitting degree of two partition and is
defined by:

RI =
Na + NB

N
. (17)

Na is the number of object pairs that co-occur in a cluster and co-occur in a
class. Nb is the number of object pairs that do not co-occur in a cluster and do
not co-occur in a class. And N is the total number of object pairs.

F-measure is commonly used in information retrieval. And its formula is as
follows:

F =
2 ∗ p ∗ r

p + r
(18)

where, p is precision and r is recall rate.

4.2 Results

In the experiment, we set the parameters d = 4, R = 0.6, and maximum iteration
number is set to 50 empirically. Considering influence of the initial clustering
centroids and parameters setting, all algorithms are run 30 times and took the
average. And the comparison results of 5 baseline algorithms and MVMKC are
shown in the following tables. Tables 2 and 3 are the results of F-measure and
RI respectively.

Table 2. F-measure of 6 algorithms on 7 datasets

Dataset RMKMC MVKKM MVSpec RMSC TWkmeans MVMKC

digits 0.5032 0.3873 0.3811 0.679 0.7449 0.4818

Animal 0.2811 0.2556 0.2556 0.2314 0.2395 0.3477

SenseIT 0.4391 0.4515 0.4466 0.5078 0.4501 0.5955

CiteSeer 0.3193 0.2825 0.3445 0.2686 0.2535 0.4801

Texas 0.4478 0.4747 0.4191 0.369 0.5535 0.8919

Wisconsin 0.5013 0.4018 0.3675 0.2969 0.5146 0.6009

Washington 0.4856 0.5701 0.4757 0.3613 0.514 0.7149

In this part, MVMKC algorithm is compared with the other 5 algorithms in
order to prove the effectiveness of MVMKC algorithm. The closer the evaluation
index values to 1, the better the clustering effect. This is due to MVMKC weights
variables respectively and lower the intersection between different variables. One
the other hand, the advantage of MKL technique is embedded in the comparison
of MVKKM and MVSpec.

In order to analyze the convergence of the MVMKC algorithm, F-measure,
RI and objective function value is recorded during the iterative process. Figure 2
displays the change course over iteration times on 3Source dataset. It is noted
that MVMKC algorithm achieves convergence through about 10 iterations.
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Table 3. RI of 6 algorithms on 7 datasets

Dataset RMKMC MVKKM MVSpec RMSC TWkmeans MVMKC

digits 0.8863 0.8659 0.6752 0.9353 0.9448 0.5995

Animal 0.6688 0.687 0.7174 0.7205 0.414 0.7406

SenseIT 0.5936 0.5865 0.5914 0.6467 0.5421 0.6047

CiteSeer 0.751 0.384 0.7605 0.7301 0.7092 0.7981

Texas 0.6559 0.6364 0.6513 0.6261 0.4716 0.6577

Wisconsin 0.7271 0.5098 0.6665 0.6157 0.5206 0.7322

Washington 0.714 0.655 0.7062 0.6519 0.5022 0.7235

Fig. 2. Proof of convergence of MVMKC

5 Conclusion

This paper presents MVMKC, an innovative multi-view clustering algorithm
based on variable weights and MKL. It uses a weighted Gaussian kernel func-
tion and forms a new kernel function to calculate the distance. Meanwhile, it
computes weights of variables and updates them automatically. So it achieves a
superior clustering effect by reducing the influence between variables.

Experiment on seven datasets shows that MVMKC outperforms the other
five algorithms significantly on F-measure and RI. But MVMKC is not good
at processing data with high number views. We will devote ourselves to this
problem.
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Abstract. Overlapping clustering works on the hypothesis that one
object belongs to one or more clusters. It tolerates intersection among
clusters and discovers overlapping information hidden in observed data
as well. Most overlapping clustering methods dedicate to studying the
strategy of discovering overlapping observations, and ignore the corre-
lation of overlapping observation and different clusters. In this paper,
an Overlapping Clustering approach with Correlation Weight (called
OCCW) is proposed. Correlation weights are assigned to those clusters
that one observation belongs to along with the multi-assignment pro-
cedure in our approach. Experiments on multi-label datasets, subsets
of movie recommendation dataset and text dataset demonstrate that
the proposed algorithm has a better performance compared with several
existing approaches.

Keywords: Overlapping clustering · Correlation weight · Multi-
assignment

1 Introduction

Clustering is a process of detecting structures hidden in observed data, so that
observations within one cluster are similar to each other but are dissimilar to
objects in other clusters. Clustering plays an important role in various fields,
including data mining, machine learning and statistics. Almost all kinds of clus-
tering methods assume that each observation should belong to one cluster exactly
and finally make a clear distinction among different clusters.

In practice, however, overlapping data is ubiquitous in many application
domains, ranging from information retrieval to disease diagnosis, market analysis
and personalized recommendation. With the evolution of Internet and informa-
tion technology, overlapping phenomena are especially apparent in topic detec-
tion, recommended system and social network. For example, in topic detection,
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a fair number of news and articles are related to several subjects. In social net-
works, one person may participate in several social hubs. In this case, clustering
analysis with conventional algorithms may result in some deviation with the real-
ity. For this reason, overlapping clustering, which allows overlaps among clusters,
becomes a research hotspot and makes a lot of sense and practicability.

The relationship of overlapping observation to multiple clusters is distinct and
exerts different influence on the evolution of clusters. Most existing approaches
dedicate to studying the strategy of discovering overlapping observation and
ignore the correlation of overlapping observation and different clusters.

In this paper, we propose a new Overlapping Clustering approach with Cor-
relation Weight (called OCCW). Here weight is used to indicate the closeness
degree of one observation and those overlapping clusters that it belongs to. And
its influence could be reflected by the image of the observation in overlapping
region. Experiments on Multi-label datasets, subsets of movie recommendation
dataset and text dataset illustrate the effectiveness of our approach.

The rest of this paper is organized as follows: Sect. 2 provides some major
works relevant to overlapping clusters. Section 3 presents the overlapping cluster-
ing approach with correlation weight we propose. Section 4 describes comparative
experiments and results on overlapping datasets and thereafter conclusions are
shown.

2 Related Work

In this section, we give a brief introduction to literatures on overlapping
clustering.

2.1 Overlapping Clustering

The first overlapping partition method is proposed by Jardine and Sibson early
in 1971, which introduces the idea of overlapping to mathematical taxonomy
[1]. Shepard and Arabie put forward a famous additive clustering model leading
to overlapping clusters [2]. Thereafter researches on overlapping clustering are
mostly on the basis of hierarchical model [3,4] and graph theory [5,6]. With the
evolution of Internet and information technology, overlapping clustering has set
off a research boom in academia once again. One category method among is gen-
erative model based, conducting EM-type alternating optimization procedure.
Banerjee et al. addressed MOC (Model-based Overlapping Clustering) under
the inspiration of probabilistic relational models applied in the gene microar-
ray data [7]. Fu and Banerjee provided a MMMs (Multiplicative Mixture Mod-
els) in the view of additive mixture models and further illustrate kernelized
MMMs as a general model [8]. One kind approach to identify non-disjoint clus-
ters is partitioning-based, in which Cleuziou has made great contributions [9–11].
Baadel et al. developed an overlapping algorithm having a good adaptation to
different datasets, which uses the maximum distance allowed in K-means to
assign objects to a given cluster as the global threshold [12]. Besides, Another
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category is rough set based. Yu provided a three-way decision strategy for over-
lapping clustering based on the decision-theoretic rough set model [13].

2.2 Partitioning Overlapping Clustering

The simplest and most fundamental method of cluster analysis is partitioning,
which organizes the objects of a set into several groups or clusters. Partitional
methods are the most widely used and even in many complex methods. Hence, it
makes a lot of sense and has better practicability to extend partitional method to
overlapping clustering. If we regard center of the cluster that observation belongs
to as its image, clustering analysis is to find the best image for each observation
in the dataset. From this viewpoint, Cleuziou proposed a new objective crite-
rion and extended an overlapping version of classical K-means algorithm (called
OKM) [9]. To optimize the framework, Cleuziou puts forward a weighted overlap-
ping K-means algorithm (called WOKM) by importing local feature weight [10].

3 Overlapping Clustering with Correlation Weight

In this section, we discribe overlapping clustering approach with correlation
weight on defects of partitioning overlapping clustering.

3.1 Motivation

Let X be a set of n observations represented by n-dimensional feature vectors
xi = {xi1, xi2, · · · , xid} where X = {x1, x2, · · · , xn}. The aim of overlapping
clustering is to find a coverage {πj}k

j =1 of k non-disjoint covers centering on vj ,
j = 1, 2, · · · , k respectively.

First, OKM [9] proceeds optimization process by minimizing the sum of dis-
tances between observation xi and its corresponding image x∗

i . The image of
observation xi is acquired by the gravity center of clusters representatives to
which it belongs to:

x∗
i =

∑
vj∈Ai

vj

| Ai | . (1)

In formula (1), Ai is the cluster set of observation xi belongs to. Obviously,
this formulation treats those clusters that one object belongs to equally , and
ignores the distinction of correlation degree, which is not in accordance with
actual situations. This is the first motivation of OCCW algorithm.

More generally, WOKM [10] imports local feature weight ωjp which denotes
the important of the pth attribute in cover πj . Then ωjp is transferred to sample
feature weight λip to guide multi-assignment. The optimization of WOKM is
performed by multi-assignment, representative updating and weight updating in
turn, which results in a high time complexity O(t ·n·d ·k lg k), where t denotes
the number of iterations. This is the other motivation of OCCW algorithm.
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3.2 OCCW Algorithm

Considering different effect of clusters that one observation is assigned to, we
propose an overlapping clustering approach with correlation weight. The quality
of OCCW approach is measured by the sum of squared error between all obser-
vations in dataset and its corresponding image, which can be expressed by the
following formula:

J({πj}k
j=1) =

n∑

i=1

‖ xi − φ(xi) ‖2 . (2)

Here, φ(xi) indicates the image of observation xi. For the above analysis, we
introduce membership weight ωij to indicate the correlation degree of observa-
tion xi and cover πj . Hence, the image of observation xi could be viewed as the
weighted gravity center of clusters it belongs to.

φ(xi) =
∑

vj∈Ai

ωijvj , s.t.
∑

vj∈Ai

ωij = 1. (3)

First of all, we illustrate the update of the image by combining multi-
assignment procedure.

1. Find the nearest cluster representative

h = arg minj;j=1,2,··· ,k ‖ xi − vj ‖2,

and set Ai = {h}, φ(xi) = vh, ωih = 1.
2. Find the next nearest cluster representative

h
′
= arg minj;j=1,2,··· ,k\{Ai} ‖ xi − vj ‖2,

set A
′
i = Ai ∪ {h′}, compute correlation weight between observation xi and

cluster πj

ωih′ =
1/ ‖ xi − v

′
h ‖2

∑
l∈A

′
i
(1/ ‖ xi − vl ‖2) ,

and the latent image

φ
′
(xi) = ωih′ (φ(xi) − v

′
h) + v

′
h.

3. If ‖ xi −φ
′
(xi) ‖2<‖ xi −φ(xi) ‖2, update correlation weight of clusters in Ai

in proportion, set Ai = A
′
i, φ(xi) = φ

′
(xi), and continue to step 2; otherwise

output Ai and ωi.

The update formula of φ(xi) during multi-assignment is derived based on
vector space model. With the limitation of space, the derivation process is omit-
ted.

Different with membership degree in FCM algorithm [14], membership weight
in OCCW is assigned from the nearest cluster to the farthest, and the process is
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terminated when ‖ xi − x∗
i ‖2 is larger than the present assignment. This tech-

nique provides two advantages including: (a) Ignore the influence of clusters that
have a small correlation degree with observation xi; (b) In this way, membership
weight could be calculated along with multi-assignment procedure, so the time
complexity of OCCW algorithm is O(t · n · k lg k).

Next, with k covers and correlation information obtained by multi-assignment
procedure, the update of cluster representative, which is similar to that of K-
means algorithm is a convex optimization problem. According to formula (2)
and (3), it is convenient to obtain

vj =
1

∑
xi∈πj

ω2
ij

∑

xi∈πj

ωij(xi −
∑

vl∈Ai\{vj}
ωilvl). (4)

That is to say, cluster representative is the weighted average belonging to the
cluster with the consideration of correlation.

It is noted that, in the final of OCCW, a post-processing is necessary to
convert weight matrix to label matrix. The procedure of OCCW algorithm is
shown as Table 1.

Table 1. Algorithm OCCW discription

Algorithm OCCW

Input: Dataset X; Number of Clusters k; Convergence threshold ε;

Output: A non-disjoint coverage {πj}k
j=1.

Method:
1) Choose k observations in X as the initial cluster representatives;
2) Repeat;

3) Calculate the image for each xi ∈ X starting from the nearest to the farthest
according to formula (3) and assign it to the cluster while gaining a better i-
mage;

4) Update cluster representatives according to formula (4);
5) Until convergence;
6) Convert weight matrix to label matrix.

4 Experiments

To illustrate the performance of OCCW approach, we conduct comparison exper-
iments with MOC [7], OKM [9] and WOKM [10].

4.1 Datasets and Evaluation Standard

Three types of datasets are used: multi-label datasets [15], movie recommenda-
tion dataset [16] and text dataset [17].



616 Y. Xu et al.

For multi-label datasets, the emotions dataset classifies songs by 6 kinds
of emotions: happy, sad, calm, surprised, quiet and angry ; the scene dataset is
categorized by image scene: beach, sunset, fallfoliage, field, mountain and urban.

For movie recommendation data, MovieLens dataset contains 100,000 ratings
(1–5) from 943 users on 1682 movies [18]. And each movie could be denoted as
a vector of 943 user ratings. Based on the user ratings, we can cluster movies
in terms of their genres. The corresponding genre information of these movies is
extracted from the Internet Movie Database (IMDB) collection. We create two
subsets of rating matrix from MovieLens dataset: movie taa: 517 movies contain-
ing thriller, action and adventure; movie afc: 526 movies containing animation,
family and comedy.

For text data, 3source is a multi-view dataset which collects 948 news articles
covering 416 distinct news stories by three well-known online news sources: BBC,
Reuters and The Guardian. Each story was manually annotated with one or
more of the six topical labels: business, entertainment, health, politics, sport and
technology. Here we only use the 169 news data reported by all three sources.

Table 2 gives statistics of the mentioned datasets. The quantity cardinality is
the average number of labels one instance has in the dataset.

Table 2. Detail information of datasets

Dataset Instances dimensions Clssses Cardinality

Emotions 593 72 6 1.87

Scene 2407 294 6 1.07

Movie taa 517 943 3 1.44

Movie afc 526 943 3 1.16

3source 169 9944 6 1.12

To measure the clustering performance, we take F-measure and Rand Index
as evaluation standard. F-measure is the harmonic mean of precision and recall.

P =
Number of Correctly IdentifiedPairs

Number of IdentifiedPairs
. (5)

R =
Number of Correctly IdentifiedPairs

Number of TruePairs
. (6)

Fβ =
(β2 + 1)P ∗ R

β2P + R
. (7)

In above formula, P is precision rate, R is recall rate and β is a weight
parameter to balance the two. β > 1 means giving more weight to recall, whereas
β < 1 means giving more weight to precision. Here, excessive or lacking overlaps
both are not what we expect, so we define β = 1 weighting precision and recall
equally.
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4.2 Experiment Results

Table 3 lists the results including: precision (P ), recall (R), F-measure (F1), Rand
Index (RI) and CPU time (T ). In order to evaluate the clustering result better,
we conduct repeated experiments 10 times and take the average as final results.
It’s worth mentioning that Euclidean distance is used for multi-label datasets
and I-divergence with Laplace smoothing [19] is used for movie recommendation
dataset and text dataset in our experiments.

Table 3. Experiment results of four algorithms

Dataset Emotions Scene Movie taa Movie afc 3source

P MOC 0.5021 0.4438 0.6452 0.8129 0.2789

OKM 0.4850 0.2155 0.6479 0.8119 0.2897

WOKM 0.4932 0.2289 0.6515 0.8137 0.2833

OCCW 0.5091 0.3191 0.6541 0.8163 0.3233

R MOC 0.2110 0.4132 0.6946 0.5284 0.8910

OKM 0.5129 0.9415 0.8489 0.9038 0.9573

WOKM 0.5076 0.8333 0.8523 0.9112 0.9282

OCCW 0.3957 0.8087 0.8739 0.9418 0.9455

F1 MOC 0.3972 0.4280 0.6690 0.6405 0.4248

OKM 0.4986 0.3507 0.7349 0.8554 0.4448

WOKM 0.5002 0.3591 0.7384 0.8597 0.4363

OCCW 0.4453 0.4576 0.7482 0.8746 0.4819

RI MOC 0.5294 0.7866 0.5539 0.5228 0.3230

OKM 0.5136 0.3264 0.6026 0.7542 0.3295

WOKM 0.5217 0.4532 0.6301 0.7686 0.3476

OCCW 0.5352 0.6295 0.6182 0.7828 0.4295

T MOC 10 3493 93 46 12

OKM 4 366 5 10 17

WOKM 25 894 36 49 672

OCCW 2 25 4 14 74

Firstly, it is noted that OCCW gains the best F-measure on five datasets and
the best Rand Index on three datasets. That is to say, our OCCW approach can
detect structure hidden in overlapping data more precisely.

From the result of scene dataset, MOC approach fails to find overlapping
observations therein and gets a good ranking.

The last measure in Table 3, CPU time, shows the running time of the four
algorithms under the same experimental conditions. Compared with OKM and
WOKM, our OCCW approach achieves convergence in a relatively short time.
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5 Conclusions

In overlapping clustering, it is possible that one observation is close to several
clusters at the same time but in different extents. This paper proposes a new
overlapping clustering approach called OCCW. It imports a correlation weight
to distinguish the closeness degree of clusters that one observation belongs to.
It is a trade off between crisp and fuzzy clustering. Experiments on several
overlapping datasets illustrate its better performance. In our Experiment, we
find that OCCW approach is sensitive to initial cluster representatives. And as
it takes a rough treatment on correlation weight, in the future we may consider
the scale of clusters into overlapped weight to develop more robust methods.
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Abstract. This paper refers to a new database engine that acquires and
utilizes granulated data summaries for the purposes of fast approximate
execution of analytical SQL statements. We focus on the task of creation
of a relational metadata repository which enables the engine developers
and users to investigate the collected data summaries independently from
the engine itself. We discuss how the design of the considered repository
evolved over time from both conceptual and software engineering per-
spectives, addressing the challenges of conversion and accessibility of the
internal engine contents that can represent hundreds of terabytes of the
original data. We show some scenarios of a usage of the obtained meta-
data repository for both diagnostic and analytical purposes. We pay a
particular attention to the relationships of the discussed scenarios with
the principles of rough sets – one of the theories that hugely influenced
the presented solutions. We also report some empirical results obtained
for relatively small fragments (100 × 216 rows each) of data sets coming
from two organizations that use the considered new engine.

Keywords: Big data · Approximate query · Data granulation ·
Metadata · Data visualization · Software tools · Business analytics

1 Introduction

There is a growing need to explore big data sets. Most companies address this
challenge by scaling out resources. However, this strategy is increasingly cost-
prohibitive and inefficient for large and distributed data. On the other hand,
people are realizing that the tasks of data exploration could be successfully per-
formed in at least partially approximate fashion. This way of thinking opens new
opportunities to seek for a balance between the speed, resource consumption and
accuracy of computations. This is particularly true for the case of an approach
referred in this paper – a new engine that produces high value approximate
answers to SQL statements by using the summaries of the input data.
c© Springer International Publishing AG 2017
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The considered new engine captures knowledge in a form of single- and multi-
column data summaries. It collects chunks of data and builds summaries for each
chunk separately. Unlike in standard databases, the query execution mechanisms
do not assume any access to the original chunks. For a given query received from
an external tool, each subsequent data operation scheduled within the execution
plan is performed as a transformation of summaries representing its input into
summaries representing its output. It has been already shown in the market
that the engine allows its users to achieve approximate – yet accurate enough –
analytical insights 100–1000 times faster than other solutions1.

The aim of this paper is to introduce an analytical diagnostic framework that
lets the engine users and developers understand its behavior and set up expecta-
tions with respect to its efficiency in practical usage scenarios. The fundamental
assumption is that these goals can be achieved by providing the analysts with
sufficiently convenient way to work with the contents of data summary structures
captured by the engine. Thus, we focus on the task of creation of a relational
metadata repository which makes it possible to easily access and investigate the
collected data summaries independently from the engine itself.

The layout of the designed repository needs to reflect two important aspects:
(1) modularity of the captured knowledge structures with respect to their par-
ticular focuses (e.g.: modeling domains of single columns, modeling frequen-
cies of column values and ranges, modeling data-driven dependencies and co-
occurrences of values of different columns, etc.) and (2) modularity of the cap-
tured knowledge structures with respect to granularity of ingestion of the orig-
inal data (i.e.: making sure that the contents of knowledge structures collected
independently for different chunks of data can be flexibly queried together).

The developed relational metadata schema satisfies the above requirements
and, actually, goes beyond our original expectations. It has become a great means
for elucidation to the customers who use the considered new engine within their
complex applications. It can be helpful for the users to better understand the
quality and performance characteristics of query execution processes. Moreover,
one may wish to explore the metadata tables directly to do basic analytics, e.g.,
approximately visualize demographics of particular data columns. Finally, one
can also work with data summaries in their relational form while prototyping
new algorithms, before implementing them within the engine.

The paper is organized as follows. In Sect. 2, we outline the architecture of
the considered engine, referring also to our earlier developments and to some
inspirations taken from the theory of rough sets. In Sect. 3, we discuss how our
vision of a metadata repository evolved over time. In Sect. 4, we show how one
can work with the proposed metadata model, for the purposes of fast data visu-
alization, prototyping machine learning algorithms running on summaries and
diagnosing whether the captured structures are enough to approximate column
domains. In Sect. 5, we conclude the paper with final remarks.

1 One of the current deployments of the considered new engine assumes working with
30-day periods, wherein there are over 10 billions of new data rows coming every
day and ad-hoc analytical queries are required to execute in 2 s.
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2 The New Approximate Query Engine

There are several ways to develop approximate SQL solutions. In most
approaches, the results are estimated by executing queries on data samples
[1]. One of advantages of such approaches is their ability to adapt statistical
apparatus to deliver confidence intervals for approximate outcomes of simple
queries. However, for truly big data sets, good-quality samples need to be large
too which limits query acceleration possibilities. Moreover, the complexity of
producing reliable confidence intervals grows quite quickly for more complicated
select statements. The second category of approximate query methods is based
on summaries (histograms, sketches, etc.) [2]. The approach considered in this
paper drops into the latter category, as it forms granulated data summaries
expressed by means of enhanced histograms. There is a long tradition of using
histograms within standard database optimizers. In the literature, a lot of effort
has been also spent on the task of updating histogram structures while load-
ing new data. This is one of the aspects where the considered new engine is
different. This is because it builds separate summaries for each subsequently
collected chunks of table rows – so called packrows. Therefore, summaries of the
newly buffered packrows do not interfere with the previously captured knowledge
structures.

The foundations of the engine considered in this paper partially relate to
our earlier relational database software, currently available in the market as
Infobright DB2. During load, Infobright DB clusters the incoming data into 216-
row packrows, additionally decomposing each packrow onto data packs gathering
values of particular columns. The contents of data packs are described by simple
summaries accessible independently from the underlying data packs. Infobright
DB combines the ideas taken from modern database technologies and the theory
of rough sets [3], by means of using summaries to classify data packs as irrelevant,
relevant or partially relevant to particular queries. All together, the loaded data
tables are processed according to the four following principles: storing data in
data packs, creating approximate summaries for each of data packs, conducting
approximate computations on summaries, and, whenever there is no other way to
finish query execution, iteratively accessing the contents of some of data packs.
As it was summarized in [4], Infobright DB is known as the first successful
rough-set-based commercial development in the database industry.

When compared to Infobright DB, the solution considered in this paper oper-
ates with the data at the same level of packrow/data pack granulation but it
captures their slightly richer summaries and – what is the fundamental difference
– it does not need to access the actual data at all during the query execution. For
each original data pack, its histogram contains information about dynamically
derived range-based bars and special values that differ from neighboring values
of the corresponding column by means of their frequencies in the corresponding
packrow. Another stored structures include information about the most signifi-
cant gaps, i.e., the areas where there are no values occurring. Finally, the engine

2 Formerly known as Brighthouse and Infobright Community/Enterprise Edition.
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summarizes packrow-specific co-occurrences of values belonging to bars repre-
senting pairs of columns. The engine intelligently decides what to store based on
the algorithms that rank the significance of detected co-occurrences.

Figure 1 illustrates the components of one-dimensional representation of the
ingested data chunks. Besides histogram ranges, special values and gaps, there
is also stored basic domain information including the greatest common divisor
(gcd) and the dictionary with distinct values occurring for a given column within
a given packrow (stored only if the number of distinct values is low enough).
The way of deriving ranges has a lot in common with the task of data discretiza-
tion/quantization [5]. As the captured granular representations should be as
compact as possible to achieve fast query execution, the number of ranges needs
to be significantly lower than the number of original distinct values. Algorithm
1 combines two standard discretization approaches that, up to now, yield the
best quality of approximate queries executed in the considered engine.

Fig. 1. Types of knowledge captured by the engine for a single original data pack.

For the same reason as above, the engine can store information only about a
limited number of special values, gaps and co-occurrence ratios (also referred to
as tau-ratios) which reflect local column interdependencies. Every ratio τt(x, y)
is defined as the data-derived probability pt(x, y) of the occurrence of a pair of
values or ranges x and y over two columns in a packrow t, divided by the product
of marginal probabilities pt(x) and pt(y). The ranking functions identify the pairs
of values/ranges with tau-ratios that maximally differ from the unity. The tau-
ratios are used in approximate data operations such as, e.g., the where-related
filtering which is implemented by following the methods of belief propagation
in graphical models [6]. However, those methods need to refer also to tau-ratios
that were not selected to be stored. Such ratios are represented as the averaged
defaults calculated at the three hierarchy levels (one level for not stored pairs of
ranges and two specific levels for not stored pairs of special values).
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Algorithm 1. Histogram construction method
Input: list : sorted list of values v of column c in packrow t of table T ;
max no of buckets : maximum number of equal-length buckets (8 by default);
max no of bars : maximum number of resulting histogram bars (64 by default);
Output: cuts : the list of cut-points between bars describing c in packrow t;

1: begin
2: if the number of distinct values in the list ≤ max no of bars then
3: add to cuts all elements of list except max(list);
4: else
5: split [min(list),max(list)] onto max no of buckets intervals of equal length;
6: remove intervals which do not contain any elements of list;
7: shift intervals’ right and left sides to their closest leftmost elements of list;
8: add all intervals’ right sides except max(list) to cuts;
9: no of waiting buckets ← the number of intervals;

10: no of undefined bars ← max no of bars;
11: for all intervals sorted by the number of elements of list that they contain do
12: # ← the number of elements of list contained in the considered interval;
13: if # ≤ �no of undefined bars / no of waiting buckets� then
14: add to cuts all elements of list contained in the considered interval;
15: else
16: # ← �no of undefined bars / no of waiting buckets�;
17: split the considered interval onto # bars with roughly uniform supports;
18: and cut-points between the obtained bars to cuts;
19: end if
20: no of waiting buckets ← no of waiting buckets − 1;
21: no of undefined bars ← no of undefined bars − #;
22: end for
23: end if
24: end

As mentioned in Sect. 1, the considered new approximate query mechanisms
do not access the original packrows. For a given query, each consecutive oper-
ation scheduled within the execution plan (such as filtering, joining, grouping,
etc.) is performed as a transformation of histograms/special values/gaps/tau-
ratios representing its input into the analogous structures that are estimated to
represent its output. Once this kind of representation of the final query outcome
is reached, the engine translates it into the standard SQL statement result format.
Prior to that stage, information being transformed throughout query execution
stages is highly condensed and therefore it requires only a fraction of resources
of traditional database solutions to produce the results.

Among further directions for improving the considered new engine, it is worth
investigating relationships between the accuracy of captured knowledge struc-
tures and the accuracy of SQL query results that can be produced using those
structures [7]. Yet another source of inspiration refers to the area of granular
computing. If one interprets data ingestion as information granulation, then the
final stage of translating the query result summaries into the final approximate
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results can be interpreted as a kind of information degranulation. The literature
contains a number of useful approaches that can be potentially adapted within
the engine for both granulation and degranulation purposes [3].

3 Towards the Design of Metadata Repository

In this section, we discuss how to provide the users with a possibility to work
directly with granulated data summaries captured by the considered approxi-
mate query engine. We show the evolution of our ideas with this respect, starting
from converting internal engine’s files into CSV format, then to XML and finally
to the contents of a relational metadata model. We also refer to a tool – called
metaviewer – which was developed in order to visualize descriptions of partic-
ular packrows basing on their XML versions and which, after all, turned out not
flexible enough to conduct all useful aspects of metadata analytics.

3.1 Extracting Metadata from the Engine

The considered engine stores granulated data summaries in files accessible by
approximate query execution methods via internal interfaces. In order to follow
the modularity design principles, different aspects of the captured knowledge
are collected within their dedicated structures and stored separately. Histogram
ranges and special values that approximate the actual data distributions are
stored in separation from gaps that model the domain itself. Co-occurrence ratios
are stored in yet another units, as they are potentially used in different parts of
query execution processes. This modularity makes it possible to use, replace or
disable each of summary types without affecting the other ones.

The I/O operations are always an important issue in the high performance
systems and may influence the execution speed significantly. Thus, the discussed
granulated data summaries are stored in concise binary formats. Although the
unit and functional Q&A tests were prepared to check the correctness of each
data summary type, one could not avoid situations when the access to the stored
structures is required to debug or trace their influence to the other parts of the
approximate query execution path. Therefore, it was necessary to prepare a kind
of diagnostic tool facilitating the access to the stored structures independently
from the engine operations. In its first design, the tool aimed at translating a
single data summary structure from its binary format to a more readable CSV-like
format. Examples of such translation are presented in Table 1.

3.2 Initial Designs for Metadata Visualization

Conversion of binary contents to CSV significantly simplified the tasks of access-
ing summaries stored on disk for debugging purposes. However, to examine the
issues reported during the new engine production tests, a more general view
was needed, e.g., to combine the actual data distributions (histogram ranges
and special values) with information about the column domains (gaps). To meet
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Table 1. A fragment of raw information captured for a single original chunk of rows
(packrow). Each table refers to its different aspect stored as a separate unit, i.e.: (a)
bars and special values, (b) gaps, (c) tau-ratios.

such needs, a higher level diagnostic tool was prepared. First, the set of avail-
able output formats was extended with XML to allow portability and flexibility
in using data summary structures by external visualization tools. Examples of
translation of the binary format to XML are shown in Table 2. Second, the XML
summary representations were used as an input to a new metaviewer tool in
order to support visualization of packrow representations.

One-dimensional charts produced by metaviewer for single data packs take
a form analogous to Fig. 1. Multi-dimensional interdependencies between two
selected columns, over a single packrow, are visualized as in Fig. 2. The areas
marked with rectangles of different brightness represent strengths of stored co-
occurrences of values dropping into pairs of histogram ranges. (In particular,
white rectangles denote tau-ratios equal to 0 which means that the corresponding
combinations of values did not occur together in the considered packrow.) The
background area corresponds to pairs for which tau-ratios are not captured. The
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Table 2. The same information as in Table 1, now transformed into XML.

stored co-occurrences of pairs of special values are marked with circles. This
kind of visualization can help to understand the collected knowledge and, to
some extent, simulate the specifics of query execution.

The visualization layer was implemented in Python, with a use of package
matplotlib3 allowing to explore and save the plots using a mouse or keyboard.
We consider Python a good choice for prototyping and creating general purpose
scripts. It would not be a good decision to use it while developing the core
approximate query engine (which was written entirely in C/C++). However, it
is perfect for diagnostic methods discussed in this paper.

3.3 Relational Schema for Metadata Contents

The metaviewer tool described briefly in Subsect. 3.2 was intended to visualize
the combined data from low level summary chunks for one-dimensional and two-
dimensional dependencies inferred during the load process. However, its focus
3 https://pypi.python.org/pypi/matplotlib.

https://pypi.python.org/pypi/matplotlib
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Fig. 2. An example of the output from metaviewer for two columns over a single
packrow. Each of the axis corresponds to a single column.

was limited only to single packrows. In order to enable the developers and ana-
lysts a more flexible access to the gathered knowledge structures, we designed a
relational metadata repository that stores particular aspects of granulated sum-
maries in separate – but well-integrated – tables. Figure 3 illustrates complete
layout of the proposed metadata model. The descriptions of the most important
tables in the proposed metadata schema can be found in Table 3. Let us also
refer to Table 4 for some examples of the metadata table contents.

In Sect. 4, we show some examples of practical SQL-based usage of metadata
tables. Herein, let us concentrate on technical aspects of filling them with appro-
priate contents using a publicly available free software. We have already outlined
that our metaviewer tool simplifies the access to the engine’s data summaries
that correspond to a single packrow. A single storage unit contains a summary
that can be further successfully represented in a relational form. Metaviewer
gives us a choice between CSV and XML formats. The latter one seems to be more
flexible to convert to the contents of relational metadata tables because of its
structure and description of the contained information.

As already mentioned, metaviewer was created using Python. We use this
language also to populate the proposed metadata tables. Most of Python’s imple-
mentations contain a read-eval-print loop (REPL) which lets use it as a command
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Fig. 3. Relational schema of the designed granulated data summary tables.

interpreter making it easier to prepare final solution for a given task. For the
purpose of XML parsing we chose lxml4 – a feature-rich binding for C libraries
libxml2 and libxslt. We used ElementTree API to access summaries in their
form prepared by metaviewer and transform them to a kind of preliminary rela-
tional form. Then, we employed package Pandas5 which supports expressive data
structures designed to work with tabular/relational data. Separate metaviewer-
specific summary units corresponding to different columns and packrows were
parsed from XML and loaded to table-like structures. The features of Pandas,
including SQL-like filtering operations, facilitated the overall process of combin-
ing and joining information from single storage units to produce the final form of
CSV files containing an integrated metadata representation of the whole original
data, ready to be loaded into the proposed metadata tables.

As a result, we reach a framework complying the fundamental ideas devel-
oped for databases over 50 years ago. Namely, we provide the granular-summary-
related metadata of a relational database in a relational form itself. This kind
of approach has been promoted particularly in the area of data warehousing,
wherein metadata information is maintained at every step of system manage-
ment, including conceptual models, ETL parameters, OLAP cube specifications,
etc. [8]. In practice, every new solution aimed at enhancing standard database
methodology implies a need of collecting new aspects of metadata [9].

4 https://pypi.python.org/pypi/lxml.
5 https://pypi.python.org/pypi/pandas.

https://pypi.python.org/pypi/lxml
https://pypi.python.org/pypi/pandas
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Table 3. Description of the contents of the proposed metadata tables and their
columns. Columns in the category all tables are included into all considered metadata
tables in order to easily specify particular packrows.

Table/Column Description of contents

All tables Columns identifying specific packrows in all considered metadata tables

database name Database name

table name Table name

packrow code Packrow identifier

table packrow Basic information about specific packrows

packrow count The number of original rows collected within the packrow (216 by default)

table pack Information about values in data packs

column name Column name

min value Minimum value occurring in the data pack

max value Maximum value occurring in the data pack

gcd Greatest common divisor for all values in the data pack

hist type Histogram type

table bar Information about particular bars

column name Column name

code Bar identifier (unique in the data pack)

left Minimum value in the bar

right Maximum value in the bar

freq Number of rows with values contained within the bar’s range

special values freq Number of rows with special values in the bar

special values no Number of special values in the bar

cumulative gaps len Cumulative length of gaps in the bar

modeled values no Number of unique values which can be generated

table special Information about special values

column name Column name

code Special value identifier (unique in the data pack)

value Value

freq Number of rows with the special value

bar code Identifier of the bar containing the special value

table gap Information about gaps

column name Column name

code Gap identifier (unique in the data pack)

left Left border of the gap

right Right border of the gap

bar code Identifier of the bar which contains the gap

table pack pack Co-occurrence ratios not present in tables bar bar and special special

column name 1 The first column in the pair

column name 2 The second column in the pair

default bar bar tau Default ratio for pairs of bars not present in table bar bar

default not covered special special tau Default ratio for pairs of special values not present in table special special and
whose “parents” (bars they belong to) are not present in table bar bar

table bar bar Information about co-occurrence ratios at the level of pairs of bars

column name 1 The first column in the pair

code 1 First column’s bar identifier

column name 2 The second column in the pair

code 2 Second column’s bar identifier

tau Ratio for the pair of bars

default special special tau Default ratio for pairs of special values belonging to the considered pair of bars
that are not present in table special special

table special special Information about co-occurrence ratios for pairs of special values

column name 1 The first column in the pair

code 1 First column’s special value identifier

column name 2 The second column in the pair

code 2 Second column’s special value identifier

tau Ratio for the pair of special values

is covered Does the pair of special values belong to a pair of bars in table bar bar
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Table 4. Example of the contents loaded into the relational metadata repository.
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4 Working with Metadata Tables

In this section, we discuss several examples of the usage of the developed meta-
data repository. From a logical viewpoint, the contents of the original binary
files, as well as their CSV, XML and relational metadata formats are equivalent to
each other. The binary files are surely the best input to automatized approxi-
mate query processes. On the other hand, the metadata tables provide the users
with the most flexible means for accessing and analyzing granulated represen-
tations of the original data independently from the considered engine. One can
use, e.g., standard PostgreSQL environment to work with histogram frequencies
and ranges, special values, gaps, as well as bar-to-bar and value-to-value co-
occurrences, per each database, table, column and packrow. Using simple SQL,
one can check which pairs of columns are most correlated by means of their
tau-ratios (by querying tables bar bar and special special), what is the degree
of repeatability of special values in different data packs of the same column (by
querying table special), whether values of particular data columns evolve from
packrow to packrow (by querying tables pack and gap), etc.

4.1 Data Demographics

Let us start with examples of simple operations displaying the data in a sum-
marized form. One can realize that the outcomes of such operations can be used
both by the approximate query engine users and developers – as an independent
diagnostic/verification methodology – or by data analysts who basically want to
explore the data fully independently from the engine.

The discussed examples of SQL statements will contain the following section
that allows to focus on metadata contents corresponding to a given column (over
its all data pack granular summaries aggregated together):

[condition identifying a single column]
database_name = ’database_name’
and table_name = ’table_name’
and column_name = ’column_name’

For instance, the following query sums frequencies of special values:

select value, sum(freq) sum_freq, count(*) pack_cnt
from special
where [condition identifying a single column]
group by value
order by value;

When combined with a similar query over histograms, one can obtain a high-
level visualization of the overall domain of a given column. Figure 4 illustrates
a plot of the tabular output from the appropriate select statement. Needless
to say, such output can be produced hundreds times faster than in the case of
analogous queries executed over the original data table.
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Fig. 4. Column characteristics obtained using SQL over metadata tables.

The next two examples refer to use cases mentioned at the beginning of
Sect. 4. The following query verifies how often the ranking algorithms identify the
same special values within different chunks of the ingested data. Figure 5 shows
a typical result for a foreign key column, over a small data subset (100 × 216

rows) obtained from one of customers using the considered engine.

select value, count(*) packrow_count
from special
where [condition identifying a single column]
group by value
order by value;

Figure 6 illustrates the result of the following query for the same column.

select right_value + 1, left_bound,
coalesce(lead(left_value, 1)
over (partition by packrow_code order by code) - 1,
(select max(max_value) from pack
where [condition identifying a single column]
and packrow_code = gap.packrow_code)) right_bound,

packrow_code
from gap
where [condition identifying a single column]
union
select min_value, left_value, gap.packrow_code
from
(select min_value, packrow_code from pack
where [condition identifying a single column)) pack
inner join
(select min(left_value) -1 left_value, packrow_code
from gap
where [condition identifying a single column]
group by packrow_code) gap
on gap.packrow_code = pack.packrow_code
order by packrow_code, left_bound;
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Fig. 5. Re-occurrence of the same special values in different data packs.

Fig. 6. Evolution of column values occurring in subsequent data packs.

From the perspective of data analysts, the above metadata queries reflect the
repeatability of particular column values for data rows ingested by the considered
engine over time. From the perspective of the engine developers and adminis-
trators, the outcomes of such “meta-queries” provide useful hints with regards
to the credibility of the results of potential approximate SQL statements over
the most meaningful values (represented as special values in Fig. 5), as well as,
e.g., potential selectivity of approximate statements with filters over particular
columns (whereby selectivity grows proportionally with the growth of empty
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areas visible in Fig. 6). However, the most important observation is that every-
one can think about his/her own queries that can quickly derive completely new
kinds of insights from the proposed metadata repository.

4.2 Towards Granular Machine Learning

In this subsection, we refer to our experiments reported in [10], where we used
SQL over metadata tables to prototype an approximate approach to the minimum
redundancy maximum relevance (mRMR) feature selection [11]. We did it for two
reasons: (1) to extend the current functionality of the considered approximate
query engine with some elements of scalable granular-style machine learning and
(2) to extend the current engine’s testing environment by comparing the outputs
of standard and granular versions of machine learning algorithms.

Before going into the details, let us recall that feature selection is one of
the most well-known areas of rough set applications. Thus, it is our intension
to develop granular versions of rough set feature selection techniques too. It is
also worth considering analogous re-implementations of rough-set-based machine
learning approaches, e.g., in the field of decision tree induction [5], as well as
many other methods of knowledge discovery and representation [12]. Neverthe-
less, in this paper we restrict ourselves to an example of mRMR.

The considered feature selection algorithm is based on the measure of mutual
information. For packrow t and data columns a and b, such measure could
be defined as It(a, b) =

∑
x,y pt(x, y) log pt(x,y)

pt(x)pt(y)
, for x and y denoting the

ranges/values occurring on a and b, respectively. However, as the engine stores
only a limited number of tau-ratios of the form τt(x, y) = pt(x,y)

pt(x)pt(y)
, for some

combinations of x and y we need to rely on default ratios available in meta-
data tables. There are three possibilities with this respect: (1) default ratios
gathered in column default bar bar tau (table pack pack) for the case of pairs of
histogram ranges whose ratios are not stored by the engine, (2) default ratios
in column default not covered special special tau (table pack pack) for the case
of pairs of special values whose tau-ratios are not stored neither for themselves
nor for their “parents” (histogram ranges that they belong to) and (3) default
ratios in column default special special tau (table bar bar) for the case of pairs
of special values whose tau-ratios are not stored but the corresponding ratios for
their “parents” are stored by the engine. Further, the overall mutual information
is approximated as the average of the quantities It(a, b) derived over particular
packrows of the given data table. Certainly, such approximations are not guar-
anteed to be equal to the actual values of mutual information that would be
computed from the original data. However, in our experiments, we were mainly
interested in observing whether such quickly approximated measures could drive
the feature selection process similarly to thorough computations.

In mRMR, attributes are added to the resulting set iteratively by exam-
ining their mutual information relationships with both the decision attribute
and conditional attributes that were added in previous steps. Table 5 shows the
results of one of our experiments conducted over the already-mentioned data set
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of 100 × 216 network events, wherein the decision attribute corresponds to the
number of bytes transmitted in every event and the stopping criterion is turned
off, so all attributes are added step by step. The first column reports an order of
selecting attributes according to the exact computations over the original data.
The second column corresponds to calculations over a random sample consisting
of 15% of data rows. The third column shows how mRMR behaves when fed
with mutual information approximations derived from metadata tables. In this
case, the sample-based approach seems to yield an order that is slightly closer
to that obtained over the original data. However, the differences are minor and
– most importantly – granular calculations have a huge advantage with regards
to their speed when compared to both standard and sampled runs.

Table 5. mRMR attribute rankings for a data table describing network events.

Rank Standard Sampled Approximated

1 p element p element p element

2 trans type trans type Service

3 s address s address trans type

4 Service d class d address

5 d address Service s vrf

6 s port s port s port

7 Server d port s address

8 d port Server d port

9 Protocol s class Protocol

10 s class d address Monitor

11 d class Protocol d class

12 s vrf s vrf s class

13 Monitor d interface d interface

14 d interface Monitor s interface

15 s interface s interface m address

16 m address m address Server

4.3 Approximating Column Domains

As outlined in Sect. 2, the engine conducts query execution as a chain of trans-
formations of granulated data summaries that aim at modeling characteristics
of intermediate results corresponding to subsequent execution stages. Once the
summary of a query output is calculated, the engine translates it into the stan-
dard SQL result format which – as already discussed – could be interpreted as
a stage of degranulation. This stage is particularly difficult for high-cardinality
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columns, e.g., in the case of involving them into group by operations. Then, at
the end, the engine needs to replace the codes of histogram ranges with their
actual values. This is quite problematic because information about the actual
values is only partial, so there is a risk that the final result will include non-
existing values or will omit some values that should be included.

Let us recall that the engine stores the most significant gaps and the great-
est common divisors of values observed in the original data packs. Referring to
the theory of rough sets again, we can say that special values whose frequen-
cies were not pushed down to zero during query execution constitute a kind
of domain’s positive region, i.e., these are values that should contribute to the
query result. On the other hand, gaps, greatest common divisors, dictionaries
(if available) and zeroed frequencies can be used to define the domain’s nega-
tive region, i.e., values that should not contribute to the result. For every data
pack, our metadata repository actually encodes one more type of information –
the cardinality of upper approximation (derivable as the sum of values of column
modeled values no over all histogram bars describing a given data pack), i.e., the
number of column values (including those potentially not existing) that might be
potentially generated from the given data pack during the degranulation process.

The metadata-related case study discussed in this subsection refers to a
slightly modified interpretation of lower approximation of the column domains.
Thanks to the analysis of approximate query results, it turned out that there
are two kinds of values that should not be included: (1) values existing in the
original data that do not satisfy the query conditions and (2) values that did not
exist in the original data at all but were produced from histogram ranges under
the assumption of locally uniform distributions. As the first category seems to
be less harmful for the user perception of final query results, the considered
diagnostic task is to compute lower approximations as the sets of column values
– gathered from all data packs – which occurred for sure in the original data
and, then, compare them with the actual sets of all distinct column values.

The following query shows how to derive the above-discussed cardinality of
lower approximation of the column domain from the metadata tables. It is based
on observation that, besides special values, the original data must have included
also the borders of histogram ranges and gaps. (This is how the knowledge
capture algorithms work during the phase of original data ingestion.)

select count(distinct v) cnt from
(select database_name, table_name, column_name, min_value v
from pack
where [condition identifying a single column]
union
select database_name, table_name, column_name, right_value v
from bar
where [condition identifying a single column]
union
select database_name, table_name, column_name, left_value - 1 v
from gap
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where [condition identifying a single column]
union
select database_name, table_name, column_name, right_value + 1 v
from gap
where [condition identifying a single column]
union
select database_name, table_name, column_name, value v
from special
where [condition identifying a single column]);

Table 6. Cardinalities of lower and upper approximations of column domains.

Database Column Lower
approximation

Upper
approximation

Real count
distinct

database 1 s port 13121 62648 40945

database 1 d port 9298 64184 43001

database 1 s address 5155 ∼4000000000 19035

database 1 d address 3409 ∼4000000000 17072

database 1 load time 15989 36277 17568

database 1 real time 14199 1̃400000000 20376

database 1 monitor 1026 1050 1050

database 1 d name 883 1788 1788

database 2 d port 8622 65270 64844

database 2 s port 9273 65356 64855

database 2 s address 6461 ∼4000000000 173989

database 2 d address 6158 ∼4000000000 191293

database 2 p element 1016 11093 1214

database 2 packets 6772 191208 7166

database 2 d class 2091 9212 5747

database 2 s class 1990 9267 5524

Table 6 shows the results obtained for the already-referred 100 × 216 fragments
of data sets coming from two companies (labeled as database 1 and database 2 ),
whereby columns lower approximation and real count distinct report the results
of the above query and the actual number of distinct values in the original data,
respectively. One can see that for many cases these outcomes are quite similar
to each other (e.g.: 1026 versus 1050 for data column monitor in database 1 ), or
at least of the same order of magnitude (e.g.: 2091 versus 5747 for data column
d class in database 2 ). This means that if the engine – during query processing
– could dynamically gather together the borders of gaps and histogram ranges
corresponding to all data packs (of course excluding those data fragments which
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are filtered out during the previous query execution stages) and then pick the
elements of such constructed sets while generating the final outcomes, then the
overall approximate query accuracy may be significantly improved.

Moreover, for those of data columns for which the differences between real
count distinct scores and their lower approximations are bigger, it seems to be
important to estimate the real scores, so at least the cardinalities of distinct val-
ues (though not necessarily particular values) are produced in a correct way. This
is because otherwise those cardinalities might be over-generated, potentially at
the level reported in column upper approximation in Table 6. Such observations
– achieved by the analysis conducted over the proposed metadata tables – can
be very useful for further enhancements of the considered engine.

5 Conclusions

We designed and developed a relational metadata repository enabling the devel-
opers and users of a new approximate database engine to investigate the collected
granulated data summaries independently from the engine itself. We discussed
how the proposed repository characteristics evolved over time from both con-
ceptual and software engineering perspectives. We showed several scenarios of
a usage of the repository for both diagnostic and analytical purposes. We also
reported empirical results obtained for relatively small fragments (100×216 rows
each) of data sets coming from companies using the considered engine.
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Abstract. Discretization of numerical (continuous) attributes is one of
the most important data preprocessing tasks in knowledge discovery and
data mining. Some of data mining techniques require discretized data.
The article aim is to demonstrate that discretization methods based on
the discernibility measure to evaluate cuts can be parallelized in Big Data
platform Apache Spark. We thus propose a distributed implementation of
one of the most well-known discretizers based on rough set methodology.
The experimental results in terms of scalability, speedup and sizeup are
quite promising.

Keywords: Discretization of attributes · Rough sets · Apache Spark

1 Introduction

Data in all domains is getting bigger. The growth of capacity of data storage
systems, reduction of their prices and usage of computers in almost every sphere
of life has caused an increase in amount of data that are collected [4]. Since the
massive data can be stored in cloud platforms, mining large datasets so called
Big Data is a hot topic. Big Data creates many new challenges, like data storage,
data preprocessing, analysis and visualization.

Objects can be described by continuous or discrete attributes. Some of data
mining techniques require discretized data. The goal of the discretization process
is to reduce continuous-valued attribute into a smaller set of nominal values.
Other phases of data mining depend on this operation, e.g., removing superfluous
attributes or decision rules generation. Clearly, we can see that discretization is
one of the most important tasks of data preprocessing. Unfortunately, standard
discretization techniques are not prepared to deal with big datasets, because of its
volume and variety. In [17] a parallel Chi2-based algorithm based on MapReduce
model was proposed. Experiments have been done by using different size of data
sets on the different nodes. In [9] an implementation of Fayyads’s and Irani’s
discretizer using computation engine Apache Spark was presented. Nevertheless,
the set of cuts isn’t optimal because discretization of every attribute is considered
separately.
c© Springer International Publishing AG 2017
L. Polkowski et al. (Eds.): IJCRS 2017, Part I, LNAI 10313, pp. 644–654, 2017.
DOI: 10.1007/978-3-319-60837-2 51
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Rough set theory was introduced by Pawlak in early 1980’s as a method-
ology to deal with incomplete and uncertain information (for more details see
e.g. [8,11]). In [7]an approach based on rough sets and approximate Boolean
reasoning to discretization was proposed. In [6] an incremental global merging
algorithm of discretization attributes - SDMNS based on counting sort was pro-
posed. They used some parameters to achieve balance between number of cuts
and classification accuracy.

Apache Spark [1] improves over MapReduce model in several key dimensions:
it is much faster, it offers much more operations on data and it provides multiple
types of computations, e.g., SQL queries, text processing, and machine learn-
ing, data streaming. Application programming interface is centered on a data
structure called the resilient distributed dataset (RDD), representing a collection
of data distributed across many computing nodes that can be manipulated in
parallel. RDD API offers two types of operations: transformations and actions.
Transformations build a new RDD from a previous one and actions compute a
result based on an RDD.

In recent years there has been research work combining MapReduce and
rough set theory but only a few works which used computing engine Apache
Spark. In [15] parallel method for computing rough set approximations was pro-
posed. The authors continued their work and proposed in [16] three strategies
based on MapReduce to compute approximations in incomplete information sys-
tems. In [13] method for computing core based on finding positive region was
proposed. They also presented a parallel algorithm for attribute reduction in
[14]. However, authors used MapReduce model only for splitting data set and
parallelization of computation using one of traditional reduction algorithm.

This paper is organized as follows. Problem of optimal discretization of con-
tinuous attributes is presented in Sect. 2. A distributed implementation of the
discretizers based on discernibility measure is proposed in Sect. 3. Results of
experiments and analysis are presented in Sect. 4. Conclusions and future work
are discussed in Sect. 5.

2 Optimal Discretization of Continuous Attributes

In this section we discuss the optimal discretization problem (see e.g. [7]).
Let DT = (U,A∪{d}) be a decision table, where U is a set of objects, A is a

set of condition attributes and d is a decision attribute and {va1 , ..., van, } is a list
of sorted values of attribute a, where va1 < . . . < van. The set Ca of all potential
cuts on attribute a can be computed as:

Ca =
{(

a,
va1 + va2

2

)
, ...,

(
a,

van−1 + van
2

)}
(1)

Value of potential cut is middle value between two values which discerns objects
from different classes. More precisely only so called boundary cuts are used.
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Definition 1. The cut
(
a,

va
i−1+va

i

2

)
, where 1 < i < n+1, is called the boundary

cut if and only if there are at least two objects x, y ∈ U such that a(x) = vai−1,
a(y) = vai and d(x) �= d(y).

The set of cuts C =
⋃

a∈A Ca determines a global discretization of the whole
decision table.

Definition 2. Two objects x, y ∈ U are discernible by A if and only if there is
an attribute a ∈ A such that a(x) �= a(y).
Two objects x, y ∈ U are discernible by C if and only if there is an attribute
a ∈ A and a cut (a, c) ∈ Ca such that (a(x) − c)(a(y) − c) < 0.

Definition 3. A set of cuts C is consistent with DT = (U,A∪ {d}) if and only
if for any pair of objects x, y ∈ U such that d(x) �= d(y), the following condition
holds: IF x, y are discernible by A THEN x, y are discernible by C.

Definition 4. A consistent set C of cuts is DT -optimal if and only if C contains
a smallest number of cuts among DT -consistent sets of cuts.

Definition 5 [7]. The optimal discretization problem is defined as follows:
Input: A decision table DT.
Find: DT -optimal set of cuts.

Theorem 1. The problem of optimal discretization (finding minimal and con-
sistent set of cuts) is NP-hard.

Let us recall, that the class P consists of all polynomial-time solvable decision
problems and NP is the class of all nondeterministic polynomial-time solvable
decision problems. The result from Theorem 1 means that we can not expect
a polynomial time searching algorithm for optimal discretization, unless P =
NP. Thus, we can only propose approximation algorithms as a tool for coping
with the intractable problem of optimal discretization (especially for Big Data).
Approximation algorithm based on maximal discernibility heuristic is discussed
in the next section.

3 Apache Spark Implementation

The standard algorithm for discretization consists of four main steps: sorting
data for an attribute a, selection of values for cuts, evaluating cuts and split-
ting/merging objects. Process of discretization was shown in Fig. 1. All of those
phases are repeated for each of the subsets until condition for stop is not fulfilled.
One of the critical operations is sorting. It has to be done in the optimal way in
order to reduce cost of the computations e.g. using counting sort [6].

Internal conflict [7] of the set X ⊂ U can be defined as:

conflict(X) =
1
2
card({(x, y) ∈ X × X : d(x) �= d(y)}) (2)
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Fig. 1. Process of discretization

Discernibility measure of the cut (a, c) according to the subset X which splits
the set of objects X into XL = {x ∈ X : a(x) < c} and XR = {x ∈ X : a(x) > c}
can be computed by:

disc((a, c),X) = conflict(X) − conflict(XL) − conflict(XR) (3)

The discernibility measure can be also computed by [7]:

disc((a, c),X) =
∑
i�=j

card({x ∈ XL : d(x) = i}) · card({x ∈ XR : d(x) = j}),

(4)
where the summation is over all the different pairs (i, j) of decision classes.

Our approach is based on the MD heuristics using DTree structure. [7].
In every iteration the cut that separates the maximal number of objects from
different decision classes is selected. Then, the decision table is split according to
the chosen cut and in every decision subtable cuts are searched separately. These
steps are repeated until all objects with the different decisions will be discerned.
Memory complexity of this method is O(card(U) · card(A)).

The main concept of the proposed algorithm rests in cumulating the infor-
mation about class distribution using shared variables. Spark provides two types
of those variables: broadcast variables and accumulators.

Broadcast variables allow to keep on every node read-only variable necessary
to realize tasks. Creating broadcast variables is useful when tasks across mul-
tiple stages need the same data. Using broadcast variables can reduce cost of
communication between nodes. The broadcasted data cannot be modified during
computations.

The second type of shared variables available in Spark - accumulators allow
to raise partial computation from every node. They can be numeric types but
also collections.

Using both of these shared variables made it possible to implement the
MD-discretization algorithm for a Big Data.

BigData MD-Discretization
Input: decision table - DT = (U,A ∪ d)
Output: Set of pairs <attribute, cut> as the semi-optimal solution
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1: Cuts ← ∅
2: stack.push(DT)
3: while not stack.empty() do
4: DT ′ ← stack.pop()
5: b classDistribution ← getClassDistribution(DT ′)
6: attrV al ← DT ′.f latmap{
7: for u ∈ DT ′ do
8: for a ∈ A do
9: vc[d(u)] ← 1

10: emit<< a, a(u) >, vc >
11: end for
12: end for
13: }
14: unique ← attrV al.reduceByKey(){emit(<< a, a(u) >,

∑
vc >}

15: sorted ← unique.sortByKey()
16: b first ← unique.firstElemPart()
17: bc ← sorted.getBoundaryCuts()
18: attr ← bc.map(){<< attr, cut >, vc >=>< attr,< cut, vc >>}
19: bestCut ← attr.getBestCut()
20: Cuts ← Cuts ∪ {bestCut.max()}
21: (DT ′

L,DT ′
R) ← split(DT, bestCut)

22: if isCut(DT ′
L) then

23: stack.push(DT ′
L)

24: else if isCut(DT ′
R) then

25: stack.push(DT ′
R)

26: end if
27: end while

Input to the algorithm is a decision table DT and the output is the set of
semi-optimal cuts - Cuts. Sample decision table was shown in Table 1. In the
beginning, a set of cuts Cuts is initialized as an empty set and whole decision
table is pushed on ancillary stack. Lines 4–26 are repeated until stack is not
empty.

Table 1. Sample decision table

U a b d

x1 0.8 2 0

x2 1 0.5 1

x3 1.3 3 1

x4 1.4 1 0

x5 1.4 2 1

x6 1.6 3 1

x7 1.3 1 0
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In line 4 the decision subtable DT ′ is taken for computation. In the broadcast
variable b classDistribution the class distribution in the DT ′ which is needed
later to calculate the number of pairs of objects with different decisions discerned
by cut is stored. Next in lines 7–13 pairs <key, value> are emitted where key is
a pair (the attribute, its value for the object u) and value is a vector vc. Length
of the vector vc is equal to the number of decisions in whole dataset. First,
each element of this vector is initialized to the value 0 and then value on index
represented the decision value is set as 1. The pair <key, value> represents the
value of continuous attribute according to the decision for the object.

Next step is to reduce the number of pairs <key, value> by aggregating them
by key in the line 14 of the algorithm. The new set contains pairs <key, value>
where key is the same like before the operation, but

∑
vc is a sum of vectors

vc corresponding to the key. Pair <key, value> represents now the decision
distribution according to value of the continuous attribute. In the line 15 pairs are
sorted by the key. To avoid loss of potential cuts on borders of data partitions in
the broadcast variable b first are stored first pairs from every partition. Output
of those operations for the sample decision Table 1 was shown in the first line
of Fig. 2. Data is split on partitions which are process on computing nodes. In
every partition first column represents continuous attribute, second - value of
this attribute, and third class distribution for the value of this attribute.

Thereafter in line 17, the set of potential cuts is generated. Output from this
procedure are pairs <key, value> where key is a pair (the attribute, the value
of the potential cut) and value is the decision distribution to the left of the
cut. Similar approach to capture the class distribution was proposed in decision-
tree-based algorithm, called SPRINT [10]. The boundary cut is generated if
it separates objects from the different classes according to the Definition 1. To
generate all potential cuts in this operation broadcast variable b first is used.
Additionally, accumulators are used to store the number of the objects according
to attribute on each partition. The final result is stored in the broadcast variable.
Sample process of generating boundary cuts was shown in the first two lines in
Fig. 2.

To begin the evaluation of each potential cut, we change the mapping of
pairs <key, value> in line 18 of the algorithm. The key is an attribute and a
value is a pair: the cut and decision class distribution on the left of the cut.
In operation of computing the number of pairs discern by the cut, addition-
ally stored in broadcast variables are used: number of the objects according to
attribute on each partition (accumLeft) and class distribution in decision sub-
table (bClassDistr) Process of evaluation of cuts using discernibility measure
was shown in Fig. 2 in the second and third lines.

In lines 19–20 the best cut is chosen which discerns the biggest number of
pairs of objects with different decisions. For the sample decision table in first
iteration will be chosen cut (b, 1.5) because it discerns 7 pairs of objects with
different decision classes. After this operation decision subtable DT ′ is split
correspondingly to chosen cut on subtables DT ′

L and DT ′
R. If in this subtables

are potential cuts, they are pushed on the stack.
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Fig. 2. Generating boundary cuts and process of evaluation

In implementation of this algorithm we used Apache Spark but it can be
implemented on any parallel computation system with available shared memory
or communications between nodes.

4 Experimental Results

The proposed algorithm of discretization was running on the Apache Spark com-
putation engine [1] connected to YARN-based system for parallel processing of
big datasets. In the experiments, Apache Spark 2.0.1 version was used. All the
computing nodes have eight 3.4 GHz cores processors and 16 GB of memory.
All files were stored in HDFS. Each file was merged on blocks and each of those
blocks was replicated three times. A limitation of the proposed method is the size
of the available free disk space in distributed file system for files and temporary
data.

In this paper, we present the results of the conducted experiments using
datasets epsilon created for Pascal Large Scale Learning Challenge in 2008 [2] and
KDDCup-99 from the machine learning data repository, University of California
at Irvine [3].

The dataset epsilon consists of five hundred thousand objects. Each object
is described by two thousand conditional attributes and one decision attribute.
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All conditional attributes are continuous. Epsilon is artificial dataset created
for competitions included in LibSVM repository. This database was used for
generating datasets consisting of 62.5 · 105 to 1 · 106 of objects.

The data set KDDCup-99 consists of almost five million objects. Each object
is described by forty one conditional attributes and one decision attribute. There
are 23 decisions in this highly imbalanced dataset. Seven nominal conditional
attributes were removed from dataset. Information gathered in this dataset can
be used to build a network intrusion detector. This database was used for gen-
erating datasets consisting approximately of 625 · 105 to 10 · 106 of objects.

New datasets were created by randomly choosing rows from whole dataset
with preservation of original decision class proportion.

4.1 Scalability

Scalability is the capability of the system to handle growing work by its enlarging.
For example, if amount data to process is growing, additional computing nodes
are added to distributed system.

Scaleup analysis studies the stability of the system when the system and
dataset size grow in each step of experiment. The scaleup coefficient is defined
as follows [12]:

Scaleup(DT, n) =
tDT1,1

tDTn,n

(5)

where tDT1,1 is the computational time for dataset DT on one node, and tDTn,n
is

the computational time for n times larger dataset DT on n nodes. If we achieve
value near 1 we can say the system is scalable. In fact there is always additional
cost for e.g. communication between nodes or sending data.

Figure 3 shows that the scalability of algorithm for KDDCup-99 dataset can
depend on the number of decision classes. The least numerous class in this set
has only two objects. Scalability of algorithm for this dataset stabilizes on value
about 0.6. For the epsilon dataset scalability of the proposed parallel algorithm
stabilizes when the number of the nodes is equal 6. We can say the proposed
algorithm is scalable as an iterative method.

4.2 Speedup

In speedup tests, the dataset size is constant and the number of nodes grows in
each step of experiment. To measure speedup we used one fourth of KDDCup-99
and epsilon datasets in each step of this experiment. The speedup given by the
n-times larger system is measured as [12]:

Speedup(n) =
tn
t1

(6)

where n is the number of computing nodes in cluster, t1 is the computation time
on one node, and tn is the computation time on n nodes.
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Fig. 3. Scaleup

Fig. 4. Speedup

The ideal parallel system with n nodes provides n times speedup (Fig. 4).
Figure 3 shows that with the growth of the number of nodes, the speed per-

forms better.

4.3 Sizeup

In sizeup tests, the number of nodes is constant, and the dataset size grows in
each step of experiment. Sizeup measures how much time is needed for calcula-
tions when the size of dataset is n times larger than the original dataset. Sizeup
is defined as follows [12]:
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Sizeup(DT ) =
tDTn

tDT1

(7)

where tDT1 is execution time for a given dataset DT , and tDTn
is execution time

n times larger dataset than DT .

Fig. 5. Sizeup

Figure 5 shows the sizeup experiments results on twenty nodes. Results shows
that the proposed algorithm copes well with the growing amount of data.

5 Conclusions and Future Research

In this paper, discretization of continuous attributes for large datasets based
on rough set theory is studied. A parallel multivariate attribute discretization
algorithm is proposed, which used the distributed computational engine Apache
Spark and the discernibility measure of a cut. It is worth noting that a interesting
element of the paper is concurrent searching optimal cuts on every conditional
attribute. It can guarantee to find semi-optimal, consistent and minimal set of
cuts. The results of the experiments show that the proposed method is efficient
for large data, and it is a useful method for data preprocessing for big datasets.
Our future research work will focus on applications of distributed in-memory
computing for decision rule induction.
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Abstract. In this paper we propose a combination of capabilities of
the Field Programmable Gate Arrays based device and PC computer
for data processing resulting in classification using previously generated
decision rules. Solution is focused on big datasets. Presented architecture
has been tested in programmable unit on real datasets. Obtained results
confirm the significant acceleration of the computation time using hard-
ware supported operations in comparison to software implementation.

Keywords: Rough sets · FPGA · Hardware · Decision rules

1 Introduction

The rough sets’ theory was developed in the eighties of the twentieth century by
Prof. Z. Pawlak and is an useful tool for data analysis. A lot of rough sets algo-
rithms were implemented in scientific and commercial tools for data processing.

Data processing efficiency problem is arising with increase of the amount of
data. Commonly used term is Big Data processing. Unfortunately, there is no
precise definition for Big Data. In [14] can be found, that “Big Data usually
includes data sets with sizes beyond the ability of commonly used software tools
to capture, curate, manage, and process data within a tolerable elapsed time”.
In this paper, datasets that are called big are these, which cannot be processed
in tolerable time by existing scientific software tools, such as RSES package.
Existing software limitations in both commercial and scientific areas lead to the
search for new possibilities.

Field Programmable Gate Arrays (FPGAs) are the digital integrated circuits
which function is not determined during the manufacturing process, but can be
programmed by engineers any time. One of the main features of FPGAs is the
possibility of evaluating any boolean function. That’s why they can be used for
supporting rough sets calculations.

At the moment there are some hardware implementation of specific rough set
methods. The idea of sample processor generating decision rules from decision
tables was described in [13]. In [10] authors presented architecture of rough set
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processor based on cellular networks described in [12]. In [3] a concept of hard-
ware device capable of minimizing the large logic functions created on the basis
of discernibility matrix was developed. More detailed summary of the existing
ideas and hardware implementations of rough set methods can be found in [4].

None of the above solutions is complete, i.e. creates a system making it pos-
sible to solve each problem from a wider class of basic problems related to rough
sets. Our aim is to create such a system. Authors are working on fully operational
System-on-Chip (SoC) including central processing unit based on Altera NIOS
II core implemented in Stratix III FPGA and co-processor for rough sets cal-
culations. Authors have been working on hardware rough sets implementations
since 2013. Authors’ ideas related to hardware implementations of basic rough
sets operations can be found in [17]. Preliminary works related to design con-
cepts of first solutions devoted to reducts and cores calculation can be found in
[1]. Implementation of sequential hardware units performing reduct calculation
for small datasets (around 100 object with dozen of attributes) was presented in
[5]. Paper [6] contains description of different hardware approaches to core cal-
culation. These solutions were still focused on small datasets. In [7] redesign of
previously introduced core calculation unit was presented. Modified design can
process datasets consisting of millions of objects. Papers [8,9] introduce hard-
ware supported implementation of LEM2 rules generation algorithm. Described
solution is able to process datasets that contain millions of object.

2 Introductory Information

Below are the descriptions of the algorithm for hardware supported classification,
data preprocessing algorithm for hardware unit, as well as datasets used for
experiments.

2.1 Algorithm for Hardware Supported Classification

This section describes pseudocode for rule-based data classification algorithm
called HC (Hardware Classification).

Let DTtraining = (Utraining, A ∪ {d}) be a decision table, where Utraining is
a non-empty training set of objects, A is a set of condition attributes and d is a
decision attribute. Let GR be a set of decision rules generated from DTtraining.

Example 1. Let A = {a, b, c} and Vd = {0, 1}. For example, GR = {r1, . . . , r7},
where:

r1 : if a = 1 & b = 1 then d = 1, r2 : if b = 1 & c = 0 then d = 1,
r3 : if a = 0 & b = 2 then d = 1, r4 : if b = 2 & c = 0 then d = 1,
r5 : if a = 0 & b = 1 then d = 1, r6 : if a = 1 & b = 0 then d = 0,
r7 : if a = 1 & c = 0 then d = 0.

In this paper, in experiments we used decision rules generated by LEM2
algorithm (Learning from Examples Module - version 2). LEM2 was presented
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by Grzymala-Busse in [2]. Authors’ previous papers focused on hardware imple-
mentation of LEM2 can be found in [8,9]. HC algorithm uses input dataset
decomposition that allows for processing fixed-size data parts by hardware mod-
ules. Further details on system architecture are presented in Sect. 3. Algorithm
part supported by hardware module is prefixed with [H] in pseudocode. This is
module for creating set of objects fulfilling conditional part of the rule. Authors
avoided diving into hardware details, because pseudocode would become hardly
understandable. Details are included in Sect. 3.2.

HC Algorithm (Hardware Classification Algorithm)
INPUT: dataset DT = (U,A), precomputed rules set GR
OUTPUT: classification result CR
1: for x ∈ U do
2: CR[x] ← ∅
3: end for
4: for x ∈ U do
5: for vd ∈ every value of d do
6: RCA[x][vd] ← 0
7: end for
8: end for
9: for x ∈ U do

10: for r ∈ GR do
11: if [H] r satisfies x then
12: RCA[x][d(r)] = RCA[x][d(r)] + 1
13: end if
14: end for
15: end for
16: for x ∈ U do
17: CR[x] ← find vd with maximum value in RCA[x]
18: end for

Input of the algorithm is dataset DT and precomputed decision rules set GR.
Output is classification result vector CR. First loop in line 1 prepares vector
CR by fulfilling it by empty values for every object contained in DT . Loops in
lines 4 and 5 initialize rules counting array RCA with 0 values. Each row of
this array corresponds to given object in DT , while each column is mapped to
subsequent decision class. Loops in lines 9 and 10 are main loops iterating over
all objects (denoted as x) and all rules (denoted as r). If conditional part of
processed rule r satisfies conditional attributes of selected object x, then given
cell (decision part of rule d(r))) of RCA array is incremented by 1 in line 12.
Rule satisfaction checking is supported by hardware module in line 11. Last loop
of the algorithm in line 16 is responsible for final assignment of decision class
for every object in input dataset. Result is stored in CR. Assignment is based of
finding decision class that has highest value in RCA in terms of satisfied rules for
given object x.
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Figure 1 presents idea of HC algorithm. Possible ties in classification are
broken by choosing first decision, that comes from matching rule. This fact is
true for both types of implementation.

Fig. 1. Idea of HC algorithm

Description of subsequent dataset processing performed by hardware unit is
shown in Sect. 2.2.

2.2 Hardware Dataset Processing in Proposed Algorithm

Input dataset for classification is divided by control software into fixed-size parts
which are subsequently processed by calculations supporting hardware unit. Gen-
eral pseudocode for such processing is shown below:

HC Algorithm dataset processing
INPUT: dataset DT = (U,A), precomputed rules set GR
OUTPUT: rules counting array RCA
1: for cnt ← 0 to m − 1 do
2: RAMset ← {x ∈ U : xcnt·n to x(cnt+1)·n−1}
3: RCA ← store rules satisfaction on objects in RAMset

4: end for
Input of the hardware control algorithm is dataset DT and precomputed

rules set GR. Output is corresponding part of rules counting array RCA. Loop
in lines 1 to 4 is responsible for choosing parts of input dataset DT . Dataset
is divided into m parts, where each of them have the fixed size of n objects.
Selected part denoted as RAMset, is loaded into internal FPGA’s RAM memory
(more details in Sect. 3.1) in line 2. Line 3 is responsible for storing partial results
RCA.
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2.3 Data to Conduct Experimental Research

In this paper, we present the results of the conducted experiments using two
datasets: Poker Hand Dataset (created by Robert Cattral and Franz Oppacher)
and data about children with insulin-dependent diabetes mellitus type 1 (created
by Jaros�law Stepaniuk).

First dataset was obtained from UCI Machine Learning Repository [11]. Each
of 1 000 000 records is an example of a hand consisting of five playing cards drawn
from a standard deck of 52. Each card is described using two attributes (suit
and rank), for a total of 10 conditional attributes. There is one decision attribute
that describes the “Poker Hand”. Decision attribute describes 10 possible com-
binations of cards in descending probability in the dataset: nothing in hand, one
pair, two pairs, three of a kind, straight, flush, full house, four of a kind, straight
flush, royal flush.

Diabetes mellitus is a chronic disease of the body’s metabolism character-
ized by an inability to produce enough insulin to process carbohydrates, fat,
and protein efficiently. Twelve conditional (physical examination results) and
one decision attribute (microalbuminuria) describe the database. The database
consisting of 107 objects is shown at the end of the paper [15]. An analysis can
be found in Chap. 6 of the book [16].

The Poker Hand database was used for creating smaller datasets consisting
of 1 000 to 1 000 000 of objects by selecting given number of first rows of original
dataset. Diabetes database was used for generating bigger datasets consisting of
1 000 to 1 000 000 of objects. New datasets were created by multiplying the rows
of original dataset. Numerical values were discretized and each attributes value
was encoded using four bits for both datasets. Every single object was described
on 44 bits for Poker Hand and 52 bits for Diabetes. To fit to memory boundaries
in both cases, objects descriptions had to be extended to 64 bits words by filling
unused attributes with 0’s. Thus prepared hardware units doesn’t have to be
reconfigured for different datasets until these datasets fit into configured and
compiled unit.

3 System Architecture and Hardware Realization

Startix III FPGA contains processor control unit implemented as NIOS II
embedded core. Softcore processor supports hardware block responsible for data
classification. Hardware calculation block is synthesized together with NIOS II
inside the FPGA chip. Development board provides other necessary for SoC ele-
ments like memories for storing data and programs or communication interfaces
to exchange data and transmit calculation results.

3.1 Softcore Control Unit

Hardware modules are controlled by software executed in softcore processor.
Main goal of this implementation is:
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– read and write data to hardware module,
– prepare input dataset,
– perform operations on binary sets,
– control overall operation.

Initially preprocessed on PC dataset as well as precomputed rules are stored
on Secure Digital card in binary version. In the first step of operation, dataset
and rules are copied from SD card to DDR2 RAM module on development board.
Results of subsequent operations and currently processed parts of dataset are
stored in FPGA built-in RAM memories (MLAB, M9k and M144k).

MLAB blocks are synchronous, dual-port memories with configurable orga-
nization 32× 20 or 64× 10. Dual-port memories can be read and written simul-
taneously what makes operations faster. M9k and M144k are also synchronous,
dual-port memory blocks with many possible configurable organizations. These
blocks give a wide possibility of preparing memories capable of storing almost
every type of the objects (words) – from small ones to big ones.

3.2 Hardware Implementation

Hardware implementation, created after analysis of the HC algorithm described
in Sect. 2.1, was focused on assigning objects fulfilling conditional part of
processed rule to decision class related to rule. Hardware block was implemented
as combinational unit, what means that all calculations are performed in one
clock cycle. Nature of performed operation gives possibility of using them for
parallel computing systems.

Prepared hardware unit was called rComparator. It’s purpose is to check if
conditional part of rule fulfills conditional attributes of processed objects. This
operation is performed on many objects at one time. Results in terms of decision
class is stored in register corresponding to each processed object. Below is the
description of prepared module.

Diagram of rComparator module is shown on Fig. 2. Inputs of this module
are:

– PDATR (Part of DATa Register) - contains fixed-size part of dataset for
processing,

– CPRDR (Conditional Part of Rule Defined Register) - defines which con-
ditional part of the rule is defined on input,

– CPRVR (Conditional Part of Rule Value Register) - contains values of
conditional parts of the rule,

Outputs of the module is OSRR (Object Satisfied by Rule Register) that
describes which objects fulfill conditional part of processed rule.

Single comparator block (CB) for rComparator module is shown on Fig. 3.
This block is used to compare the values from CPRVR register with selected
object from dataset.

rComparator is designed as a combinational circuit and thus does not need
a clock signal for proper work. Amount of time needed to obtain correct results
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Fig. 2. rComparator module

Fig. 3. rComparator primary building block, where M is a number of conditional
attributes

depends only on propagation time of logic blocks inside the FPGA. This property
allows to significantly increase the speed of calculations because the time of
propagation in contemporary FPGAs usually do not exceed 10 ns. However, for
the proper cooperation with external control blocks, as well as to perform other
parts of the HC algorithm, hardware module must be controlled by the clock.

Main design principle of presented solution assumes, that each of described
modules process fixed-size part of dataset. Results of calculations are stored using
software implemented inside NIOSII softcore processor. Biggest impact on time
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of calculation is due to the parallel processing of many objects and all attributes
in single clock cycle. Module is configured to process 64 objects described by
maximum 16 attributes (conditional and decision). Extending possibilities of this
module needs simple reconfiguration in VHDL source code and recompilation of
hardware unit. The same applies to control software.

4 Experimental Results

Software implementation on PC was prepared in C language and the source
code was compiled using the GNU GCC 4.8.1 compiler. Results were obtained
using a PC equipped with an 16 GB RAM and 2-core Intel Core i5 4210U with
maximum 2.4 GHz in Turbo mode clock speed running Windows 10 Professional
operational system. Software for NIOS II softcore processor was implemented in
C language using NIOS II Software Build Tools for Eclipse IDE.

Quartus II 13.1 was used for design and implementation of the hardware
using VHDL language. Synthesized hardware blocks were tested on TeraSIC
DE-3 development board equipped with Stratix III EP3SL150F1152C2N FPGA
chip. FPGA clock running at 50 MHz for the sequential parts of the project was
derived from development board oscillator.

Timing results were obtained using LeCroy waveSurfer 104MXs-B (1 GHz
bandwidth, 10 GS/s) oscilloscope for small datasets. Hardware time counter
was introduced for bigger datasets.

It should be noticed, that PCs clock is clkPC

clkFPGA
= 48 times faster than devel-

opment boards clock source.
Algorithm HC described in Sect. 2.1 was used for hardware implementation.

Software implementation used small modification of HC algorithm, which differs
from above in lack of dividing data into parts - all data is stored in PC’s memory.
In both cases, authors used rule sets which were precomputed on PC. Time
needed for this operation was not taken into consideration in both types of
implementation. Details about time needed for calculating rules using software
and hardware implementations can be found in [8,9]. Presented results show
the times for data classification using pure software implementation (tS) and
hardware supported classification (tH). Results are shown in Table 1 for Diabetes
and in Table 2 for Poker Hand datasets. Calculations were carried out on two
sizes of rule sets. For Diabetes it were 33 and 66 rules, while for Poker Hand
it were 222 and 444 rules. 33 rules for Diabetes dataset were generated using
107 objects (original size of set) using LEM2 algorithm. 66 rules set was created
by simple duplication of rules. 222 rules for Poker Hand dataset were generated
using first 500 objects from original dataset, while 444 rules set was created,
similar to Diabetes, by duplication of rules. Last two columns in both tables
describe the speed-up factor without (C) and with (Cclk) taking clock speed
difference between PC and FPGA into consideration. k denotes thousands and
M stands for millions.

In this case, one hardware execution unit was used, that consumed 19 335
of 113 600 Logical Elements (LEs) total available. This number includes also
resources used by NIOS II softcore processor.
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Table 1. Comparison of execution time between hardware and software implementa-
tion for Diabetes dataset using HC algorithm

Objects — Software - tS [ms] Hardware - tH [ms] C = tS
tH

— Cclk = 48 tS
tH

—

33 rules

1k 2.24 1.02 2.20 105.50

2k 3.72 1.73 2.16 103.45

5k 8.63 3.65 2.36 113.37

10k 17.11 7.50 2.28 109.50

20k 33.48 15.77 2.12 101.92

50k 84.39 42.17 2.00 96.05

100k 162.64 74.23 2.19 105.16

200k 329.14 156.35 2.11 101.05

500k 818.78 385.63 2.12 101.92

1M 1 640.48 775.32 2.12 101.56

66 rules

1k 4.69 2.10 2.23 107.12

2k 7.73 3.50 2.21 106.15

5k 17.92 8.69 2.06 98.97

10k 34.90 16.65 2.10 100.58

20k 69.72 29.67 2.35 112.80

50k 176.34 75.13 2.35 112.66

100k 326.62 144.74 2.26 108.32

200k 682.81 321.20 2.13 102.04

500k 1 682.33 821.65 2.05 98.28

1M 3 344.27 1 548.64 2.16 103.66

Figures 4 and 5 present graphs showing the relationship between the number
of objects and execution time for hardware and software solution for respectively
Diabetes and Poker Hand datasets. Both axes on graphs use logarithmic scale.

Presented results show increase in the speed of data processing. Hardware
module execution time compared to the software implementation is about 2.2
times faster for Diabetes dataset and 2 for Poker Hand dataset. If we take clock
speed difference between PC and FPGA under consideration, these results are
much better - speed-up factor is about 100 for Diabetes dataset and about 90
for Poker Hand dataset.

Speed-up factors are slightly different for two datasets. The reason for this is
difference in number of attributes (12 conditional for Diabetes and 10 for Poker
Hand) for processing data by software solution. It is worth to notice, that for
hardware module it doesn’t matter what is the width in bits of single object
from dataset, unless it fits in assumed memory boundary. Hardware processing



664 M. Kopczynski et al.

Fig. 4. Relation between number of objects and calculation time for hardware and
software implementation using HC algorithm for Diabetes dataset

Fig. 5. Relation between number of objects and calculation time for hardware and
software implementation using HC algorithm for Poker Hand dataset
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Table 2. Comparison of execution time between hardware and software implementa-
tion for Poker Hand dataset using HC algorithm

Objects — Software - tS [ms] Hardware - tH [ms] C = tS
tH

— Cclk = 48 tS
tH

—

222 rules

1k 17.86 9.79 1.82 87.53

2k 34.53 18.89 1.83 87.75

5k 86.06 44.29 1.94 93.27

10k 179.19 95.90 1.87 89.69

20k 374.31 190.03 1.97 94.55

50k 894.84 434.73 2.06 98.80

100k 1 802.77 826.75 2.18 104.67

200k 3 671.71 1 878.11 1.96 93.84

500k 8 971.25 4 824.35 1.86 89.26

1M 17 299.41 9 397.91 1.84 88.36

444 rules

1k 37.47 17.82 2.10 100.92

2k 70.90 39.22 1.81 86.77

5k 172.97 94.86 1.82 87.52

10k 367.85 167.50 2.20 105.41

20k 780.79 406.09 1.92 92.29

50k 1 842.87 875.34 2.11 101.05

100k 3 776.56 1 960.15 1.93 92.48

200k 7 417.72 3 545.18 2.09 100.43

500k 18 695.86 9 150.04 2.04 98.08

1M 35 873.84 19 736.88 1.82 87.24

unit takes the same time to finish the calculation for every object size, because
it always performs the same type of operation. Differences between hardware
solutions comes from the nature of data and number of loops iterations.

Let comparison of attribute’s value between two objects or iterating over
dynamic list of elements be an elementary operation. k denotes number of con-
ditional attributes, n is the number of objects in dataset and m is the number
of rules. Computational complexity of software implementation of the classifica-
tion operation is Θ(knm) according to HC algorithm shown in Sect. 2.1. Using
hardware implementation, complexity of rules generation is Θ(nm). The k is
missing, because our solution performs comparison between all attributes in
Θ(1) - all values on attributes in object and rule are compared in single clock
cycle. Additionally, rComparator module performs comparisons between single
rule and many objects at a time.



666 M. Kopczynski et al.

Many real datasets are built of tens or hundreds of attributes, so it is
impossible to create a single hardware structure capacious enough to process
all attributes at once. In such case decomposition must be done in terms of
attributes, thus the computational complexity of software and hardware imple-
mentation will be almost the same, but in terms of time needed for data process-
ing, hardware implementation will be still much faster than software implemen-
tation. The reason for this is that most comparison and counting operations are
performed by the hardware block in parallel in terms of objects and attributes.

5 Conclusions

The hardware implementation is the main direction of using data processing
methods in real time solutions. As it was presented, performing classification
using hardware implementations gives us an acceleration in comparison to soft-
ware solution, what is very important in case of big datasets. It can be noticed,
that speed-up factor remains constant with growing datasets. Number of rules
has linear impact on execution time for both hardware and software implemen-
tations.

Presented solution deals with the problem of massive data classification. In
contrast to most of “big data papers”, that deal with the problem of learning
decision models from big training data sets, this paper is more related to big
testing data sets. This type of problem is very important in practice. One of the
examples are cases of real-time monitoring systems that must classify massive
amounts of constantly incoming new cases. Of course, way to using presented in
this paper solution in industrial environment is long, but it was shown, that this
direction of development is very promising.

Hardware classification unit was not optimized for performance in this paper.
Processing time can be substantially reduced by increasing FPGA clock fre-
quency, modifying control unit and introducing triggering on both edges of clock
signal. Big impact on increasing processing speed can be achieved by redesigning
hardware module for processing multiple rules at a time (similar to objects).

Future research will be focused on optimization of presented solution: dif-
ferent sizes of hardware classification unit will be checked, as well as results
related to performing the calculations in parallel by multiplying hardware mod-
ules. Using FPGA-based solutions it is relatively easy, because multiplication of
execution modules needs only few changes in VHDL source code. Most time-
consuming part will be design and implementation of parallel execution control
unit.

It is worth noticing that current solution is focused only on data processing
aspect in terms of classification. Reader should be aware, that possible bottle-
necks could be related to sending data for processing and retrieving its results
between hardware module and data source. This is also aspect that should be
examined in further research plans.
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1. Grześ, T., Kopczyński, M., Stepaniuk, J.: FPGA in rough set based core and reduct
computation. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P.
(eds.) RSKT 2013. LNCS (LNAI), vol. 8171, pp. 263–270. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-41299-8 25

2. Grzymala-Busse, J.W.: Rule Induction, Data Mining and Knowledge Discovery
Handbook, pp. 249-265. Springer, New York (2010)

3. Kanasugi, A., Yokoyama, A.: A basic design for rough set processor. In: The 15th
Annual Conference of Japanese Society for Artificial Intelligence (2001)
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17. Stepaniuk, J., Kopczyński, M., Grześ, T.: The first step toward processor for rough
set methods. Fundam. Inform. 127, 429–443 (2013)



Introducing NRough Framework
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Abstract. In this article we present the new machine learning frame-
work called NRough. It is focused on rough set based algorithms for fea-
ture selection and classification i.e. computation of various types of deci-
sion reducts, bireducts, decision reduct ensembles and rough set inspired
decision rule induction. Moreover, the framework contains other routines
and algorithms for supervised and unsupervised learning. NRough is writ-
ten in C# and compliant with .NET Common Language Specification
(CLS). Its architecture allows easy extendability and integration.

Keywords: Rough sets · Approximate decision reducts · Bireducts ·
.NET · C#

1 Introduction

Interest in machine learning tools and algorithms has been huge in recent years
and is still growing. There is a wide range of applications on the market that
use various machine learning routines. There is however still only a few solu-
tions compatible with the Microsoft .NET framework that can provide machine
learning algorithms. Those that exist are rather focused on numerical rather
than symbolic methods and so far none of these has included rough set [1] based
algorithms.

Machine learning models that are based on mathematically sophisticated
methods may achieve high accuracy but they are hardly understandable by users
who expect not only accurate results but also easy yet meaningful explanation
how these results were obtained. Models relaying on symbolic, e.g., rule based
methods may be less accurate but more intuitive and understandable for humans
[2]. In both cases, feature subset selection leads to an increase of interpretability
and practical usefulness of machine learning models.

Symbolic methods focus on finding relationships in data, typically reported
in a form of rules in a feature-value language. The rules are built with a use
of basic logical operators. Examples include the rule induction methods such as
learning if-then rules [3] or decision trees [4].

Rough sets have proven to be a successful tool in feature selection (see e.g.
[5]). The rough set approach is based on decision reducts – irreducible sub-
sets of features, which determine specified decision classes in (almost) the same

c© Springer International Publishing AG 2017
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degree as the original set of features. Determining decisions can be interpreted
analogously to, e.g., functional or multi-valued dependencies in relational data-
bases. Subsets of features providing exactly the same degree of determination
as the original set are often referred as crisp decision reducts, in opposite to
approximate decision reducts [6] where some controlled decrease of determina-
tion is allowed. By specifying a threshold for allowed decrease of determination,
one can address the balance between decision model’s simplicity and accuracy.
Indeed, it is easier to search for smaller subsets of features yielding simpler sub-
models under loosened constraints for decision determination, although too weak
constraints may also cause poorer accuracy. However, even relatively less accu-
rate sub-models may lead towards very accurate final model, if the processes of
sub-models’ design are appropriately synchronized.

NRough is a set of libraries written in C# programming language focusing
on rough sets and other symbolic machine learning methods. It contains a num-
ber of algorithms for searching approximate decision reducts and constructing
decision models. All presented algorithms has been successfully used in our pre-
vious research and proven their value. The framework is aimed to be used by
researchers who can extend it and test their methods against already imple-
mented models. The second user group are developers and system integrators
who can include described routines in their applications.

NRough can be downloaded from GitHub Repository [7] as well as from its
dedicated website [8] in a form of a Microsoft Visual Studio solution containing
source code for all described libraries. The sources include unit test code that
presents use case examples as well as unit testing procedures.

We present the framework’s key features as well as formal definitions behind
implemented algorithms in Sect. 2. We describe data representation, approximate
decision reducts and decision reduct classifier ensembles in this section. More-
over, we list other supervised and unsupervised machine learning algorithms
included in NRough. Finally, we list included features related to model eval-
uation. Next, in Sect. 3 we describe the architecture of our solution. We put
licensing information in Sect. 4. In Sect. 5 we describe other rough set based
frameworks. The last Sect. 6 concludes this paper and includes draft of a road
map as well as a direction in which we would like the framework to evolve.

2 Key Features

NRough framework contains a number of algorithms for searching approximate
decision reducts and constructing decision models based on the rough set the-
ory. Moreover, we added a number of decision rule based classifiers known from
machine learning. Last but not least, the framework contains routines for classi-
fier validation and results presentation. Below, we present the list of implemented
features starting with data representation description.



Introducing NRough Framework 671

2.1 Data Representation

We follow data representation in a form of a decision table which is a well known
structure in the rough sets domain. Decision table is a tuple A = (U,A ∪ {d}),
where U is a finite set of objects, A is a finite set of attributes and d /∈ A is a
distinguished decision attribute. We refer to elements of U using their ordinal
numbers i = 0, ..., |U | − 1 as well as by unique record identifier (if such exists
in the data set). We treat attributes a ∈ A as functions a : U → Va, where Va

denotes the set of values of a. Values vd ∈ Vd correspond to decision classes that
we want to describe using the values of attributes in A. The framework inter-
nally encodes attribute values using signed long base type which allows generic
approach for data access and avoiding boxing/unboxing from origin types i.e.
faster computations. Internal values can be however converted to their original
typed values using a dictionary lookup methods. There are no restrictions about
input types, that are automatically recognized during data loading.

Decision tables can be loaded from text files (including comma delimited
files and RSES 1.0 format [9]) as well as from the System.Data.DataTable
instance which is often used in .NET to store SQL query results. The frame-
work includes a number of filters to manipulate the data such as removal of
selected attributes or records based on a given user criteria. Filter concept is
also used to define more sophisticated data manipulations such as numeric value
discretization.

One of the key concepts in rough sets theory is the definition of indiscerni-
bility relation. For any subset of attributes B ⊆ A and the universe of objects
x ∈ U we are able to define an information vector B(x) = [ai1(x), . . . , ai|B|(x)]
where aij (x) are values of attributes aij ∈ B and j = 1, . . . , |B|. We can also
denote the set of all B-information vectors, which will then occur in A, as
VB = {B(x) : x ∈ U}. Each subset B ⊆ A partitions the space U onto so
called equivalence classes that can be enumerated as v1, . . . , v|VB |. For such divi-
sion we get the partition space denoted as U/B = {E1, . . . , Et} where Et ⊆ U for
t = 1, . . . , |VB |. Each equivalence class is defined as Et = {x ∈ U : B(x) = vt}.
NRough utilizes this concept in a form of a dedicated data structure which is
used in many scenarios like calculating functions information entropy, majority
or relative gain functions to name a few. The majority function is used in many
ways by framework algorithms e.g. for approximate decision reducts computation
as well as for decision tree pre-pruning or branch split calculation.

Last but not least, the library contains a number of benchmark data sets
taken from UCI repository [10]. These data can be accessed with a predefined
methods loading the data into memory including their meta data.

2.2 Approximate Decision Reducts

Attribute selection plays an important role in knowledge discovery. It establishes
the basis for more efficient classification, prediction and approximation models.
Attribute selection methods originating from the theory of rough sets aim at
searching for so called decision reducts – irreducible subsets of attributes that
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satisfy predefined criteria for keeping enough information about decision classes.
NRough contains a number of algorithms for computing approximate decision
reducts (as well as crisp decision reducts when approximation threshold is set
to 0). All reduct computation algorithms are based on heuristic approach and
many utilize parallel computing.

We define an (F, ε)-approximate decision reduct [11] where F is a measure
F (d|·) : 2|A| → � which evaluates the degree of influence F (d|B) of subset B ⊆ A
in d. Below we present the definition as well as the general routine for computing
(F, ε)-approximate decision reducts as Algorithm 1 called (F, ε)-REDORD [11]).

Definition 1. Let ε ∈ [0, 1) and A = (U,A∪{d}) be given. We say that B ⊆ A is
an (F, ε)-approximate decision reduct, iff it is an irreducible subset of attributes
satisfying the following condition:

F (B) ≥ (1 − ε)F (A) (1)

Algorithm 1. Modified (F, ε)-REDORD using Reach and Reduce operations
Input: ε ∈ [0, 1), A = (U, A ∪ {d}), σ : {1, ..., n} → {1, ..., n}, n = |A|
Output: B ⊆ A

1: B ← ∅
2: for i = 1 → n do //Reach
3: if F (B ∪ {aσ(i)}) < (1 − ε)F (A) then
4: B ← B ∪ {aσ(i)}
5: else
6: break
7: end if
8: end for
9: for j = |B| → 1 do //Reduce

10: if F (B \ {aσ(i)}) ≥ (1 − ε)F (A) then
11: B ← B \ {aσ(i)}
12: end if
13: end for
14: return B

The framework defines three types of F measures: γ(B) [1] which is based on
so called positive region, Majority M(B) [11] and Relative Gain R(B) [12]. Other
user defined measures can be used with (F, ε)-approximate reduct computation
algorithm.

M(B) =
1

|U |
∑

E∈U/B

max
k∈Vd

|Xk ∩ E| (2)

R(B) =
1

|Vd|
∑

E∈U/B

max
X∈U/{d}

|X ∩ E|
|X| (3)
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γ(B) =
1

|U | |POS(B)| =
1

|U |
∑

E∈U/B:P (X|E)=1

|E| (4)

In [13] it was shown how to compute approximate decision reducts over a
universe of weighted objects and that two different weighting schemes lead to an
unified way of computing M(B) and R(B) measures that is for 1 : U → {1} we
have M1(B) = M(B) and for r(u) = 1

|{x∈U :d(x)=d(u)}| we obtain Mr(B) = R(B).

Definition 2. Let ε ∈ [0, 1), A = (U,A∪{d}) and ω : U → [0,+∞) be given. We
say that B ⊆ A is an (ω, ε)-approximate decision reduct, iff it is an irreducible
subset of attributes satisfying the following condition:

Mω(B) ≥ (1 − ε)Mω(A) (5)

Mω(B) =
1

|U |ω
∑

E∈U/B

max
k∈Vd

|Xk ∩ E|ω (6)

|Y |ω =
∑

u∈Y

ω(u) (7)

Moreover the framework contains algorithms for computing decision
bireducts and their derivatives γ-bireducts and relative-bireducts [14]. Below
we present definitions as well as pseudo code as Algorithm 2. In [15] we showed
relationships between (F, ε)-approximate decision reducts and different types of
bireducts.

Definition 3. Let A = (U,A ∪ {d}) be a decision system. A pair (B,X), where
B ⊆ A and X ⊆ U , is called a decision bireduct, iff B discerns all pairs i, j ∈ X
where d(i) 
= d(j), and the following properties hold:

1. There is no C � B such that C discerns all pairs i, j ∈ X where d(i) 
= d(j);
2. There is no Y � X such that B discerns all pairs i, j ∈ Y where d(i) 
= d(j).

Definition 4. Let A = (U,A ∪ {d}) be a decision system. A pair (B,X), where
B ⊆ A and X ⊆ U , is called a decision γ-bireduct, iff B discerns all pairs
i ∈ X, j ∈ U where d(i) 
= d(j), and the following properties hold:

1. There is no C � B such that C discerns all pairs i ∈ X, j ∈ U where d(i) 
=
d(j);

2. There is no Y � X such that B discerns all pairs i ∈ Y, j ∈ U where d(i) 
=
d(j).

In [16] we presented the new definition of so called generalized majority
decision function, which can be treated as an extension to well known general-
ized decision function. We also showed the definition of generalized approximate
majority decision reducts. The pseudo code is presented as Algorithm 3. An inter-
esting extension in to use so called exceptions which on one hand allow further
feature reduction in the main model and on the other hand store details about
outlayers. Both definitions are implemented in NRough.
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Algorithm 2. Decision bireduct calculation for a decision system A = (U,A ∪
{d})
Input: A = (U, A ∪ {d}), σ : {1, ..., n + m} → {1, ..., n + m}, m = |A|, n = |U |
Output: (B ⊆ A, X ⊆ U)

1: B ← A; X ← ∅
2: for i = 1 → n + m do
3: if σ(i) ≤ n then
4: if B \ {aσ(i)} �X d then
5: B ← B \ {aσ(i)}
6: end if
7: else
8: if B �X∪{σ(i)−n} d then
9: X ← X ∪ {σ(i) − n}

10: end if
11: end if
12: end for
13: return (B, X)

Definition 5. For any decision table A = (U,A ∪ {d}) and approximation
threshold ε ∈ [0, 1) one can consider generalized approximate majority decision
function mε

d : 2U → 2Vd that is taking the following form:

mε
d(E) = {k : |Xk ∩ E| ≥ (1 − ε)max

j
|Xj ∩ E|} (8)

Definition 6. Let A = (U,A ∪ {d}) be given. We say that B ⊆ A is a mε
d-

decision superreduct, if and only if the following condition holds:

∀
x,y∈U

mε
d([x]A) 
= mε

d([y]A) ⇒ ∃
a∈B

a(x) 
= a(y) (9)

We say that B is a mε
d-decision reduct, if and only if it is a mε

d-superreduct and
none of it proper subsets satisfy the above condition.

2.3 Approximate Decision Reduct Classifier Ensembles

Approximate decision reducts usually include less attributes than classical
reducts. On the other hand, they may generate if-then rules that make mis-
takes even within the training samples. For noisy data sets it is to some extent
desirable. Nevertheless, some methods for controlling those mistakes should be
considered. For example, if the goal is to construct a classification model based
on several approximate decision reducts, then – by following ideas taken from
machine learning [17] – one may wish to assure that if-then rules generated by
different reducts do not repeat the same mistakes on the training data. For this
purpose, we can consider a mechanism aiming at diversification of importance of
particular objects while searching for different approximate reducts. The same
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Algorithm 3. Generalized Majority Decision Reduct
Input: A = (U, A ∪ {d}), ε ∈ [0, 1), σ : {1, ..., n} → {1, ..., n}, n = |A|
Output: B ⊆ A

1: for all EA ∈ U/A do
2: d(x) ← mε

d(EA)
3: end for
4: B ← A
5: for i = 1 → n do
6: B ← B \ {aσ(i)}
7: stop ← 0
8: for all EB ∈ U/B do
9: for all (x1, x2) ∈ EB do

10: if d(x1) ∩ d(x2) = ∅ then
11: stop ← 1
12: break
13: else
14: d(x1) ← d(x1) ∩ d(x2)
15: d(x2) ← d(x1)
16: end if
17: end for
18: if stop = 1 then
19: B ← B ∪ {aσ(i)}
20: break
21: end if
22: end for
23: end for
24: return B

mechanisms are used in classifier ensemble methods. These methods perform
usually better than their components used independently [18,19]. Combining
classifiers is efficient especially if they are substantially different from each other.
In fact, the feature subsets applied in ensembles can be relatively smaller than
in case of a single feature subset approach, if we can guarantee that combination
of less accurate classifier components (further referred as weak classifiers) will
lead back to satisfactory level of determining decision or preserving information
about decision.

NRough includes several mechanisms for approximate decision reduct classi-
fier ensembles learning. One method is based on well known Adaptive Boosting
algorithm [20]. In NRough we introduced an AdaBoost version which use deci-
sion rules derived from approximate decision reducts [21] - the pseudo code is
presented in Algorithm 5.

When a reduct ensemble is used to create decision rules one can consider
a weak classifier output combination method. We implemented several voting
mechanisms described in [22]. We present different voting options in Table 1 in
the way compliant with (ω, ε)-approximate decision reducts. The voting weights
are presented in a slightly changed form where
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Xω
E = argmax

X∈U/{d}
|X ∩ E|ω (10)

Algorithm 4. Generalized Majority Decision Reduct with exceptions
Input: A = (U, A ∪ {d}), φ ∈ [0, 1), ε ∈ [0, 1), σ : {1, ..., n} → {1, ..., n}, n = |A|
Output: B ⊆ A

1: for all EA ∈ U/A do
2: d(x) ← mφ,0

d (EA)
3: end for
4: B ← A, c ← |U |
5: for i = 1 → n do
6: B ← B \ {aσ(i)}
7: stop ← 0
8: Shuffle(EB)
9: for all EB ∈ U/B do

10: for all (x1, x2) ∈ EB do
11: if d(x1) ∩ d(x2) = ∅ then
12: c ← c − |EB |
13: if c < (1 − φ) ∗ |U | then
14: stop ← 1
15: break
16: else
17: SaveExceptionRule(EB)
18: end if
19: else
20: d(x1) ← d(x2) ← d(x1) ∩ d(x2)
21: end if
22: end for
23: if stop = 1 then
24: B ← B ∪ {aσ(i)}
25: break
26: end if
27: end for
28: end for
29: return B

Table 1. Six options of weighting decisions by if-then rules, corresponding to the con-
sequent coefficient types plain, ω-confidence and ω-coverage, and antecedent coefficient
types single and ω-support. |E|ω denotes the support of a rule’s left side. Xω

E is defined
by formula (10).

Single ω-support

Plain 1 |E|ω/|U |ω
ω-confidence |Xω

E ∩ E|ω/|E|ω |Xω
E ∩ E|ω/|U |ω

ω-coverage (|Xω
E ∩ E|ω/|Xω

E |ω)/(|E|ω/|U |ω) |Xω
E ∩ E|ω/|Xω

E |ω
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Algorithm 5. AdaBoost with (ω, ε)-Approximate Reducts as Weak Classifier
Input: A = (U, A ∪ {d}), n = |A|, ε ∈ [0, 1), integer T specifying number of iterations
Output: Approximate Reduct Ensemble S = {r1, ..., rs}, s ≤ T
Initialize: ωi = 1/n for i = 1, 2, 3, ..., n

1: Calculate error threshold ε0 = 1 − Mω(∅);
2: for t = 1 → T do
3: Generate permutation σ
4: Create (ω, ε)-approximate decision reduct rt based on permutation σ
5: Generate decision rules based on conditional attributes from reduct rt

6: Classify training examples
7: Calculate the error εt

8: if εt > ε0 or εt = 0 then
9: Break

10: end if
11: Calculate weak classifier confidence αt

12: Update and normalize object weights ω
13: end for
14: Normalize α
15: return S

Another introduced method for decision reduct diversification is based on
decision reduct hierarchical clustering where a distance between reducts is based
on binary vectors created according to Formula 11. Figure 1 presents an example
of a dendrogram created based on hierarchical clustering of approximate decision
reducts. By choosing a cut level we create a number of reducts groups. From each
group a single reduct is selected and used as a base for creating a weak classifier.
Weak classifiers together form a classifier ensemble.

−→vB[k] =

⎧
⎨

⎩
1, if d(xk) = argmax

X∈U/{d}
|X ∩ E|

0, otherwise
(11)

The framework also includes selection mechanisms which allow to select from
a reduct pool those reducts that meet a user defines criteria e.g. contain least
number of features, generate least number of decision rules etc.

2.4 Other Machine Learning Algorithms

Except rough sets inspired classifiers the framework includes a number of deci-
sion rule induction algorithms. These algorithms can be combined with rough
set based feature selection methods defined in the previous section. Current
implementation includes the following routines:

Decision lists generation routine based on feature subsets and a given decision
table.

Majority voting based on a feature subset and a given decision table [23].
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Fig. 1. Dendrogram created based on hierarchical clustering of 18 approximate decision
reducts.

Decision trees (C4.5 [24], ID3 [25]) implementation supporting numerical
and nominal attributes types. The impurity functions can be easily exchanged
with one another and include information entropy, gini index, majority func-
tion or other user defined methods. Decision tree base class include pruning
option - current implementation includes an error based pruning and a reduced
error pruning [26]. We also introduce a new pre-pruning method based on the
majority function.

Random forest implementation with option to select ensemble size, base deci-
sion tree type and data sampling method.

1R rule inducer which, as suggested in [27], could be used to calculate data
set baseline accuracy.

Constant decision classifier which classifies all object as majority decision
from training data set.

The framework includes a set of unsupervised algorithms based on Hierar-
chical clustering [28] with different linkage and distance methods. Model con-
struction algorithms that work only with nominal data can utilize a number of
numerical attribute discretization methods, both supervised and unsupervised.
Supervised include hierarchical methods based on information entropy [29,30]
and majority function. Unsupervised include equal width and equal frequency
binning. Most of implemented algorithms can work with weighted instances.

2.5 Model Evaluation

Proper evaluation and error estimation is crucial in constructing and comparing
decision models. One of the key features in NRough is decision model evaluation.
Currently the framework provides the following evaluation methods [31]: k-fold
n-repeated cross validation (CV), leave-one-out CV, bootstrap with out-of-the-bag
testing and finally n-repeated hold out.
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Each evaluation test can return detailed information about experiment
results in a form of a formatted table which can be saved as a .CSV or .TEX
file. Additionally, results can be presented in a graphical form using an inter-
face to R environment [32] - the graphical presentation as well as the latex
tabular output are still under development but the working code is available in
the repository and can be customized according to your need. The classifica-
tion result class interface contains information such as error and accuracy rates,
balanced accuracy (useful for testing imbalanced data sets), error standard devi-
ation, confidence, coverage, f-score, recall and precision as well as classification
confusion table. If model definition allows it, there is possibility to include infor-
mation about complexity e.g. size of a decision tree, number of rules, average
length of rules, etc.

3 Architecture

NRough is a Microsoft .NET based framework written in C# programming lan-
guage. The source code is CLS compliant which enables to use it in other .NET
languages. Currently the framework is provided as a set of libraries targeting
.NET 4.6.1 and 64 bit architecture.

The libraries have the following structure:

NRough.Core Contains generic data structures and extensions methods.
NRough.Data Responsible for data handling. It defines the decision table

interface and equivalence class collection as well as routines for providing
meta data and interface to data filtering.

NRough.MachineLearning Contains approximate decision reduct computa-
tion algorithms as well as other described machine learning models and rou-
tines.

NRough.Math Contains special functions used across other modules e.g. sta-
tistical functions or distance metrics used in clustering.

NRough.Tests.* Contains a set of test fixtures which except unit testing pur-
pose serve as a code sample repository. Each of the above listed libraries has its
own unit test library e.g. NRough.Data is tested by NRough.Tests.Data.

The framework is currently dependent on the following external libraries
(except standard .NET): Math.NET.Numerics [33], NUnit [34] and R.NET
[35].

4 License

NRough libraries are provided under GNU Lesser General Public License ver.
3 (GNU LGPLv3). This means that provided source can be used for research,
commercial and non-commercial purposes without any charges as long as GNU
LGPLv3 restrictions are satisfied. Copyright and license notices must be pre-
served. Contributors provide an express grant of patent rights. However, a larger
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work using the licensed work through interfaces provided by the licensed work
may be distributed under different terms and without source code for the larger
work. The source code is provided “as is” without warranty of any kind, express
or implied. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability. Complete license can be found in [36].

5 Other Frameworks

Let us focus on other rough set related frameworks developed by various
researches. First of all, let us mention LERS - a system for Learning from Exam-
ples based on Rough Sets [37]. LERS contained two rules’ induction algorithms
(LEM1 and LEM2) that could cope with inconsistent data. LERS contained
also a number of algorithms for handling missing data and numerical attribute
discretization. Its performance was comparable with AQ15 and C4.5 algorithms.

Secondly let us mention more complete GUI-based systems: Rough Set Explo-
ration System (RSES) [9] and ROSETTA [38] (a toolkit for analyzing tabular
data within a framework of rough sets). Both solutions shared the same com-
putational kernel developed at the Group of Logic, Institute of Mathematics,
University of Warsaw, Poland and finally ROSE2 (Rough Sets Data Explorer)
[39] which is a software implementing basic elements of the rough set theory and
rule discovery techniques. It was created at the Laboratory of Intelligent Deci-
sion Support Systems of the Institute of Computing Science in Poznan, Poland.
RSES, ROSETTA as well as ROSE2 contained many different algorithms ranging
from data preprocessing, filtering, discretization, rule induction, to classification
and feature selection.

All mentioned above solutions are according to authors knowledge no longer
maintained. These solutions were based on Java or C++ and its source code was
not open. More recently, there were several attempts to revive RSES in a form
of an open source Java based library distributed under GNU GPL license called
RSESLib [40].

Last but not least we need to mention RoughSets [41] and RapidRoughSets
[42] packages as a most recent development in rough sets domain. The former
package contains the core computational methods for rough and fuzzy sets based
on already mentioned R statistical software. The latter package is the GUI exten-
sion based on RapidMiner software.

In .NET domain there were so far, according to authors knowledge, no
attempts to publish a machine learning framework containing rough set based
algorithms. We would like to mention Microsoft Azure Machine Learning [43]
which is a cloud based service integrating many different solutions resulting in a
platform worth considering for system integrators. Its is however a commercial
solution. We also would like to mention Accord.NET framework [44] which is an
open source machine learning framework focusing on numerical methods as well
as on machine vision. This framework could complement some general machine
learning routines not yet implemented in NRough.
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6 Conclusions and Future Work

We have created NRough framework based on our experience and research
focused on approximate decision reducts done over past few years. In the begin-
ning presented methods had been developed separately, but recently the whole
source code went through major refactoring process resulting in presented solu-
tion. We have added other machine learning routines to the framework for two
reasons: First to combine well known proven machine learning algorithms with
rough sets, secondly, in order to be able to compare their performance against
rough set inspired classifiers.

The whole framework was so far developed by a single person and there is
still much to be done. First of all the framework needs strong API documen-
tation and more examples. We are planning to add this in the nearest future
and publish it on-line Secondly, we would like to add more rough set related
algorithms in order to create a comprehensive library of different decision reduct
computation routines. Thirdly, we are planning to extend the approximate deci-
sion reduct selection and diversification criteria. Last but not least, there are
some development tasks to complete like graphical presentation methods using
R interface. Moreover the framework is currently targeting .NET version 4.6.1
which allows to compile it only on Windows platform. We plan to extend its
compatibility .NET Core to be able to use it on Linux and OSX platforms, but
so far .NET Core lacks some important functionality so we are waiting for its
new releases.

Appendix NRough Code Samples
Sample 1: 10-fold cross validation of C4.5 decision tree

1 //load data
2 var data = DecisionTable.Load("data.txt", FileFormat.CSV);
3

4 //create 10-fold 25-repeated cross validation
5 var cv = new CrossValidation(data, 10, 25);
6

7 //create C4.5 decision tree and run cv evaluation
8 var c45 = new DecisionTreeC45();
9 var result = cv.Run<DecisionTreeC45>(c45);

10

11 //output result
12 Console.WriteLine("Train Error: {0}", result.Error);

Sample 2: Random forest based on C4.5 decision trees

1 //load data from a CSV file
2 var data = DecisionTable.Load("german.data", FileFormat.CSV);
3 DecisionTable train, test;
4 var splitter = new DataSplitterRatio(data, 0.8);
5 splitter.Split(out train, out test);
6 //Initialize and Learn Random Forest
7 var forest = new DecisionForestRandom<DecisionTreeC45>();
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8 forest.Size = 500;
9 forest.Learn(train, train

10 .SelectAttributeIds(a => a.IsStandard).ToArray());
11 //Validate on test data set
12 var result = Classifier.Default.Classify(forest, test);
13 //Output the results
14 Console.WriteLine(result);

Sample 3: Generate (F, ε)-approximate decision reducts using reduct factory

1 //load data
2 var data = Data.Benchmark.Factory.Golf();
3 //set parameters for reduct factory
4 var parm = new Args();
5 parm.SetParameter(ReductFactoryOptions.DecisionTable, data);
6 parm.SetParameter(ReductFactoryOptions.ReductType,
7 ReductTypes.ApproximateDecisionReduct);
8 parm.SetParameter(ReductFactoryOptions.FMeasure,
9 (FMeasure) FMeasures.Majority);

10 parm.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
11 //compute reducts
12 var reducts =
13 ReductFactory.GetReductGenerator(parm).GetReducts();
14 //output reducts and attributes
15 foreach (IReduct reduct in reducts)
16 Console.WriteLine(reduct.Attributes.ToArray().ToStr());

Sample 4: Generate (ω, ε)-decision reducts using reduct factory

1 //load benchmark data
2 var data = Data.Benchmark.Factory.Zoo();
3

4 //set object weights using r(u) weighting scheme
5 data.SetWeights(new WeightGeneratorRelative(data).Weights);
6

7 //split data into training and testing sets
8 DecisionTable train, test;
9 var splitter = new DataSplitterRatio(data, 0.8);

10 splitter.Split(out train, out test);
11

12 //set parameters for reduct factory
13 var parm = new Args();
14 parm.SetParameter(ReductFactoryOptions.DecisionTable, train);
15 parm.SetParameter(ReductFactoryOptions.ReductType,
16 ReductTypes.ApproximateDecisionReduct);
17 parm.SetParameter(ReductFactoryOptions.FMeasure,
18 (FMeasure)FMeasures.MajorityWeighted);
19 parm.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
20

21 //compute reducts
22 var reductGenerator = ReductFactory.GetReductGenerator(parm);
23 var reducts = reductGenerator.GetReducts();
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24

25 //select 10 reducts with least number of attributes
26 var bestReduct = reducts
27 .OrderBy(r => r.Attributes.Count).Take(10);
28

29 //create decision rules based on reducts
30 var decisionRules = new ReductDecisionRules(bestReducts);
31

32 //when test instance is not recognized
33 //set output as unclassified
34 decisionRules.DefaultOutput = null;
35

36 //classify test data
37 var result = Classifier.DefaultClassifer
38 .Classify(decisionRules, test);
39

40 //output accuracy and coverage
41 Console.WriteLine("Accuracy: {0}", result.Accuracy);

Sample 3: Boosting (ω, ε)-decision reduct based classifier

1 //load training and testing DNA (spieces) data sets
2 var train = Data.Benchmark.Factory.Dna();
3 var test = Data.Benchmark.Factory.DnaTest();
4

5 //set weights
6 var weightGen = new WeightGeneratorConstant(train,
7 1.0 / (double)train.NumberOfRecords);
8 train.SetWeights(weightGen.Weights);
9

10 //create parameters for reduct factory
11 var parm = new Args();
12 parm.SetParameter(ReductFactoryOptions.ReductType,
13 ReductTypes.ApproximateDecisionReduct);
14 parm.SetParameter(ReductFactoryOptions.FMeasure,
15 (FMeasure)FMeasures.MajorityWeighted);
16 parm.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
17 parm.SetParameter(ReductFactoryOptions.NumberOfReducts, 100);
18 parm.SetParameter(ReductFactoryOptions.ReductComparer,
19 ReductRuleNumberComparer.Default);
20 parm.SetParameter(ReductFactoryOptions.SelectTopReducts, 1);
21

22 //create weak classifier prototype
23 var prototype = new ReductDecisionRules();
24 prototype.ReductGeneratorArgs = parm;
25

26 //create ada boost ensemble
27 var adaBoost = new AdaBoost<ReductDecisionRules>(prototype);
28 adaBoost.Learn(train,
29 train.SelectAttributeIds(a => a.IsStandard).ToArray());
30
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31 //classify test data set
32 var result = Classifier.Default.Classify(adaBoost, test);
33

34 //print result header & result
35 Console.WriteLine(ClassificationResult.TableHeader());
36 Console.WriteLine(result);

Sample 4: (F, ε)-decision reduct ensemble using hierarchical clustering diversification

1 //load training and testing DNA (spieces) data sets
2 var train = Data.Benchmark.Factory.Dna();
3 var test = Data.Benchmark.Factory.DnaTest();
4

5 //create reduct diversification
6 var reductDiversifier
7 = new HierarchicalClusterReductDiversifier();
8 reductDiversifier.Data = train;
9 reductDiversifier.Distance = ReductDistance.Hamming;

10 reductDiversifier.Linkage = ClusteringLinkage.Average;
11 reductDiversifier.NumberOfReducts = 10;
12

13 //create parameters for reduct factory
14 var parm = new Args();
15 parm.SetParameter(ReductFactoryOptions.ReductType,
16 ReductTypes.ApproximateDecisionReduct);
17 parm.SetParameter(ReductFactoryOptions.FMeasure,
18 (FMeasure)FMeasures.MajorityWeighted);
19 parm.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
20 parm.SetParameter(ReductFactoryOptions.NumberOfReducts, 100);
21 parm.SetParameter(ReductFactoryOptions.Diversify,
22 reductDiversifier);
23

24 var rules = new ReductDecisionRules();
25 rules.ReductGeneratorArgs = parm;
26 rules.DecisionIdentificationMethod
27 = RuleQualityMethods.Confidence;
28 rules.RuleVotingMethod = RuleQualityMethods.Coverage;
29

30 //classify test data set and show results
31 var result = Classifier.Default.Classify(rules, test);
32 Console.WriteLine(result);

Sample 5: Generate bireducts using class hierarchy

1 //load training data set
2 var train = Data.Benchmark.Factory.Dna();
3

4 //generate 100 permutations based on attributes and objects
5 var permGenerator =
6 new PermutationGeneratorAttributeObject(train, 0.5);
7 var permutations = permGenerator.Generate(100);
8
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9 //setup gamma-bireduct generator
10 //generate bireducts based on permutations
11 var bireductGammaGenerator = new BireductGammaGenerator();
12 bireductGammaGenerator.DecisionTable = train;
13 bireductGammaGenerator.Permutations = permutations;
14 var bireducts = bireductGammaGenerator.GetReducts();
15

16 //for each bireduct show its attributes and supported objects
17 foreach (var bireduct in bireducts)
18 {
19 Console.WriteLine(
20 bireduct.Attributes.ToArray().ToStr());
21

22 Console.WriteLine(
23 bireduct.SupportedObjects.ToArray().ToStr());
24 }

Sample 8: Compute Generalized Majority Decision Reducts

1 //load training data set
2 var train = Data.Benchmark.Factory.Dna();
3

4 //setup reduct factory parameters
5 Args parms = new Args();
6 parms.SetParameter(ReductFactoryOptions.DecisionTable, train);
7 parms.SetParameter(ReductFactoryOptions.ReductType,
8 ReductTypes.GeneralizedMajorityDecision);
9 parms.SetParameter(ReductFactoryOptions.WeightGenerator,

10 new WeightGeneratorMajority(train));
11 parms.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
12 parms.SetParameter(ReductFactoryOptions.PermutationCollection,
13 new PermutationCollection(10,
14 train.SelectAttributeIds(a => a.IsStandard)
15 .ToArray()));
16

17 //generate reducts
18 var reductGenerator = ReductFactory.GetReductGenerator(parms);
19 var reducts = reductGenerator.GetReducts();

Sample 9: Compute Generalized Majority Decision Reducts with exceptions

1 //load training and test data sets
2 var train = Data.Benchmark.Factory.Dna();
3 var test = Data.Benchmark.Factory.DnaTest();
4

5 //setup reduct factory parameters
6 Args parms = new Args();
7 parms.SetParameter(ReductFactoryOptions.DecisionTable, train);
8 parms.SetParameter(ReductFactoryOptions.ReductType,
9 ReductTypes.GeneralizedMajorityDecision);

10 parms.SetParameter(ReductFactoryOptions.WeightGenerator,
11 new WeightGeneratorMajority(train));
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12 parms.SetParameter(ReductFactoryOptions.Epsilon, 0.05);
13 parms.SetParameter(ReductFactoryOptions.PermutationCollection,
14 new PermutationCollection(10,
15 train.SelectAttributeIds(a => a.IsStandard)
16 .ToArray()));
17 parms.SetParameter(ReductFactoryOptions.UseExceptionRules,
18 true);
19

20 //generate reducts with exceptions
21 var reductGenerator = ReductFactory.GetReductGenerator(parms);
22 var reducts = reductGenerator.GetReducts();
23

24 foreach (var reduct in reducts) {
25 var r = reduct as ReductWithExceptions;
26 foreach (var exception in r.Exceptions) {
27 Console.WriteLine(exception.Attributes
28 .ToArray().ToStr());
29 Console.WriteLine(exception.SupportedObjects
30 .ToArray().ToStr());
31 }
32 }
33

34 var rules = new ReductDecisionRules(reducts);
35 rules.DecisionIdentificationMethod
36 = RuleQualityMethods.Confidence;
37 rules.RuleVotingMethod = RuleQualityMethods.SingleVote;
38 rules.Learn(train, null);
39

40 //classify test data set
41 var result = Classifier.Default.Classify(rules, test);
42

43 //show results
44 Console.WriteLine(result);

Sample 10: Decision table discretization

1 var data = Data.Benchmark.Factory.Vehicle();
2

3 DecisionTable train, test;
4 var splitter = new DataSplitterRatio(data, 0.8);
5 splitter.Split(out train, out test);
6

7 var tableDiscretizer = new TableDiscretizer(
8 new IDiscretizer[]
9 {

10 //try to discretize using Fayyad MDL Criterion
11 new DiscretizeFayyad(),
12

13 //in case Fayyad MDL is to strict
14 //use standard entropy and 5 buckets
15 new DiscretizeEntropy(5)
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16 });
17

18 tableDiscretizer.FieldsToDiscretize = train
19 .SelectAttributeIds(a => a.IsStandard && a.CanDiscretize());
20

21 var filter = new DiscretizeFilter();
22 filter.TableDiscretizer = tableDiscretizer;
23 filter.Compute(train);
24

25 foreach(int attributeId in tableDiscretizer.FieldsToDiscretize)
26 {
27 var fieldDiscretizer = filter
28 .GetAttributeDiscretizer(attributeId);
29

30 Console.WriteLine("Attribute {0} was discretized with {1}",
31 attributeId, fieldDiscretizer.GetType().Name);
32 Console.WriteLine("Computed Cuts: {0}",
33 fieldDiscretizer.Cuts.ToStr());
34 }
35

36 var trainDisc = filter.Apply(train);
37 var testDisc = filter.Apply(test);
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pp. 129–148 (2015)
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J.M., et al.: Implementing algorithms of rough set theory and fuzzy rough set
theory in the R package “roughsets”. Inf. Sci. 287, 68–89 (2014)

42. Janusz, A., Stawicki, S., Szczuka, M., Śl ↪ezak, D.: Rough set tools for prac-
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