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Abstract. Referential compression is one of the fundamental operations
for storing and analyzing DNA data. The models that incorporate rel-
ative compression, a special case of referential compression, are being
steadily improved, namely those which are based on Markov models. In
this paper, we propose a new model, the substitutional tolerant Markov
model (STMM), which can be used in cooperation with regular Markov
models to improve compression efficiency. We assessed its impact on syn-
thetic and real DNA sequences, showing a substantial improvement in
compression, while only slightly increasing the computation time. In par-
ticular, it shows high efficiency in modeling species that have split less
than 40 million years ago.
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1 Introduction

Several applications in bioinformatics require the compression of a string, x,
given other string, y. This is the case when one needs to analyze or store com-
pactly as possible the data [1–6]. The information in y can be used together
with that on x or alone. In the so called conditional approach [7,8], the com-
pressor can explore the information that is contained in y, as well as that from
x (assuming causality), according to

C(x|y) =
|x|∑

i=1

− log2 P (xi|xi−1
1 , y), (1)

where |x| is the size of x and xi is ith element of x. So, for example, x5
3 is a

substring of x composed by x3, x4 and x5.
The relative approach [6,9–14], C(x‖y), assumes that information comes

exclusively from y, according to

C(x‖y) =
|x|∑

i=1

− log2 P (xi|xi−1
i−π, y), (2)
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where i − π is the allowed size of elements from x that can be used in order to
search for regularities in y. For i ≤ π we assume a uniform distribution.

In order to calculate the probabilities of Eq. 2, we need data models that
describe y efficiently. Both Ziv-Merhav dictionary-based models [9,13,15] and
Markov models [5,14,16,17] have been successfully used in diverse data type
applications. However, for DNA sequences, Markov models proved to be more
efficient [6].

Markov models (MMs), also known as finite-context models (FCMs), are
statistical models. A MM of an information source assigns probability estimates
to the symbols of an alphabet, Θ, according to a conditioning context computed
over a finite and fixed number, k, of past outcomes (order-k MM) [18]. At element
i, these conditioning outcomes are represented by xi−1

i−k+1 = xi−k+1, . . . , xi−1. A
non relative MM can store each outcome of the past in memory, while a MM
working in relative mode can only store the outcomes seen in y. The number
of conditioning states of the model in DNA sequences is 4k. The cooperation
between MM of different orders has proved to be a more efficient solution for
representing DNA sequences, instead of competition [19].

High order MM, typically with k ≥ 13, proved to be one of the most impor-
tant models for DNA sequence representation [20], as well as to address other
applications [21–23]. However, when substitutional mutations occur between two
identical sequences, high order MM fall short to represent the data. This happens
because, if, for example, we use an order-20 MM and we have a probability of
one random substitution for each 20 bases, the probability that the same context
is seen again is low. The DNA data between close species is frequently of this
nature, because they share a common ancestral. Moreover, the distinct majority
of the editions in the DNA sequences are of substitutional nature.

Aware of these characteristics, we have recently proposed a preliminary app-
roach to deal with substitutional mutations in DNA sequences [6]. In this paper,
we consolidate the concept of substitutional tolerant Markov models (STMM)
and we apply them to the relative compression case. After, we measure its impact
on synthetic genomic data, exploring some characteristics of compressing the ele-
ments from a reverse order, as well as some combinations between both. Finally,
we show some comparative results between whole genomes.

2 Substitutional Tolerant Markov Model (STMM)

A substitutional tolerant Markov model (STMM) is a probabilistic-algorithmic
finite-context model. It assigns probabilities according to a conditioning context
that considers the last symbol, from the sequence to occur, as the most probable,
given the occurrences stored in the memory, such as those from y, instead of the
true occurring symbol.

For a symbol s ∈ Θ, the estimator of a STMM, working in relative mode, is
given by

P (s|x′i−1
i−k, y) =

N(s|x′i−1
i−k, y) + α

N(x′i−1
i−k, y) + α|Θ| , (3)
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where function N accounts for the memory counts regarding the model and x′

is a copy of x, edited according to

x′
i = argmax

∀s∈Θ
P (s|x′i−1

i−k, y). (4)

The parameter α allows balancing between the maximum likelihood estima-
tor and a uniform distribution. For deeper orders, α should be generally lower
than one.

When a STMM (relative or non-relative model) is cooperating with any other
model, besides being probabilistic, can also be algorithmic, because they can be
switched on or off given its performance, according to a threshold, t, defined
before the computation.

Both relative and non-relative modes work with a threshold, t, that enables
or disables the model according to the number of times that the context has
been seen. Listing 1.1. describes the process for enabling or disabling a STMM.

Listing 1.1. Algorithm of a STMM, described in C language, with comments.

1: int GetBestId(int *array){
2: int x, best = 0, maximum = array [0];
3: for(x = 1 ; x < N_SYMBOLS ; ++x) // N_SYMBOLS = 4 (bases)
4: if(array[x] > maximum ){
5: maximum = array[x];
6: best = x;
7: }
8: return best; // RETURN THE HIGHEST ELEMENT POSITION OF AN ARRAY
9: }

10:
11: void Fail(Model *M){ // ACTION FOR FAIL
12: int x, fails = 0;
13: for(x = 0 ; x < M->k ; ++x) // USING HISTORY COUNT
14: if(M->history[x] != 0) // THE NUMBER OF FAILS
15: ++fails;
16: if(fails > M->threshold) // FAILS MORE THAN THRESHOLD ?
17: M->on = 0; // SET STMM OFF
18: else // OTHERWISE
19: ShiftBuffer(M->history , M->k, 1); // ADD ONE FAIL
20: }
21:
22: void Hit(Model *M){ // ACTION FOR HIT (SUCCESS)
23: ShiftBuffer(M->history , M->k, 0); // ADD ONE HIT
24: }
25:
26: void CorrectSTMM(Model *M, PModel *P, int sym){
27: int best = 0;
28: if(M->on == 0){ // IF IS OFF
29: M->on = 1; // TURNS STMM ON
30: memset(M->history , 0, M->k);
31: }
32: else{ // ELSE IF IS ON
33: if((best = GetBestId(P->freqs) == sym){ // IF BEST ID = SYM
34: Hit(M); // CALL HIT FUNCTION
35: }
36: else{ // OTHERWISE
37: Fail(M); // CALL FAIL FUNCTION
38: M->seq ->buf[M->seq ->idx] = best; // UPDATE NEW SYMBOL
39: }
40: }
41: UpdateCBuffer(M->seq); // UPDATE SEQUENCE BUFFER
42: }
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The threshold, t, is set at the beginning of the computation. We also
need a Boolean cache-array (history) to store the past k hits/fails. For exam-
ple, consider that k = 7 and that c0 = CACGTCA is the current context.
Also, consider that the number of past symbol occurrences following c0 was
A = 1,C = 0,G = 0,T = 0. If the symbol that is being compressed is
G (contradicting the probabilistic model), a MM would have as next context
c1 = ACGTCAG. However, the STMM would use a c′

1, taking into account the
most probable outcome and, hence, c′

1 = ACGTCAA. Therefore, the next prob-
abilistic model would be dependent on the past context assumed to be seen and,
hence, it assumes that the symbol that was compressed is A.

3 Results

For producing the results, we have used synthetic and real data. The synthetic
data made available a controlled comprehension of the STMMs, while the real
data shown the characteristics that are also not controlled. The materials to
replicate both results on synthetic and real data are available, under GPL v3
license, at the repository https://github.com/pratas/STMM. All experiments
were run on Ubuntu Linux v16.04 LTS, with gcc v5.3.1, using only one Intel
Core i7-6700K 3.4 GHz CPU, 32 GB of RAM and a solid-state hard drive.

3.1 Synthetic Data

In Fig. 1 we have simulated a sequence y with 200 bases, copied y to x and
inserted edits in several positions of x, specifically at positions 50, 100, 102, 150,
152 and 154. Then we have compressed x relatively to y, assuming the order
of each element of x as x1, x2, ..., x|x| as right direction, x|x|, ..., x2, x1 as left
direction and the minimum complexities of both directions as min.

As it can be seen, the cooperation between MMs and STMMs led to a much
better approximation of the data. While the MMs can not address efficiently the
data after a substitution occurs, between a period of time that seems related with
the k-size, the cooperation between MMs and STMMs address them efficiently,
having an almost strict decay to a low complexity value.

In Fig. 2 we have simulated a sequence y. Then, we have made 12 copies,
for each one applied some degree of random substitutional mutations, and con-
catenated all into a final sequence, called x. Then we have compressed, using
C(xi‖y), and plotted it. As it can be seen, with 7.5% of substitutional muta-
tions the cooperation of only MMs reaches the average of 1 BPB (bits per base),
while the cooperation between MMs and STMMs reaches the same BPB only at
15% of substitutional mutations.

3.2 Real Data

We have used two eagle whole genomes in non-assembled mode, namely White-
tailed eagle (Haliaeetus albicilla, 1.14 GB, 26X) and Bald eagle (Haliaeetus leu-
cocephalus, 1.26 GB, 88X), from [24]. We have also used the reference genomes of

https://github.com/pratas/STMM
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Fig. 1. Relative compression using a cooperative set of MMs (left plot) and a cooper-
ative set of MMs and STMMs (right plot). The compression direction is included for
right and left, as well as the minimum (min) between both for each elements. The data
is synthetic. The length is in bytes (B). The experiment can be replicated using the
script runSmallBidirection.sh, from the repository described in this paper.

Fig. 2. Relative compression using a cooperative set of MMs (left plot) and a cooper-
ative set of MMs and STMMs (right plot). The synthetic data has been copied from
y, creating multiple concatenated x’s. For each 100k of data (bottom axis), a substi-
tution mutation rate has been applied (top axis). Besides normal, the legend shows
the computation of min and max. These are the minimum (min) and maximum (max)
functions of each element processed in left and right directions. The length is in mega
bytes (M). The experiment can be replicated using the script runRelativeBidirection.sh,
from the repository described in this paper.

human, chimpanzee, gorilla, orangutan, and marmoset from the NCBI. We have
used a setup of 4 MMs in cooperation with order-k of {4, 6, 13, 20} and the α of,
respectively, {1, 1, 0.5, 0.005}. Only one STMM was used with k = 20, α = 0.5
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Fig. 3. Compression improvement and compression time added between the relative
compression using a cooperative set of MMs and a cooperative set of MMs and STMMs.
Percentages are given by STMMbytes/MMbytes×100 for compression improvement and
MMminutes/STMMminutes × 100 for time added.

and t = 5. The experiment can be replicated using the script runBirds.sh and
runPrimates.sh.

As can be seen in Fig. 3, to compress the Bald eagle relatively to White-
tailed eagle, using only a cooperation between MMs, we needed 31, 561, 247
bytes. Adding the cooperation of the STMMs, we reached 34, 864, 683 bytes,
which is around 10% of improvement, using the same RAM memory (13.8 GB)
and around 10% more computational time. These species are believed to have
diverged ≈1 million years ago (mya) [25].

As can be seen in Fig. 3, to compress a chimpanzee relatively to a human
genome, using only a cooperation between MMs, we needed 274, 450, 972 bytes
and near 80 min. Adding the cooperation of the STMMs we were able to spend
only 210, 691, 987 bytes, which is around 23% of improvement, using the same
RAM memory (26.3 GB) and around more 22.5% of computational time. The
human and chimpanzee lineages are believed to have diverged ≈3–4.5 mya [26].

To compress a gorilla relatively to a human genome, using only a cooper-
ation between MMs, we needed 262, 271, 376 bytes. Adding the cooperation of
the STMMs we were able to spend only 199, 204, 749 bytes, which is around 24%
of improvement, using the same RAM memory (26.3 GB) and around 19.8%
more computational time. The human and gorilla lineages are believed to have
diverged before ≈5–9 mya [26].

To compress a orangutan relatively to a human genome, using only a coopera-
tion between MMs, we needed 418, 481, 411 bytes. Adding the cooperation of the
STMMs we were able to spend only 299, 316, 387 bytes, which is around 28.5% of
improvement, using the same RAM memory (26.3 GB) and around 19.2% more
computational time. The human and orangutan lineages are believed to have
diverged before 10 mya [26].
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Finally, to compress a marmoset relatively to a human genome, using only
a cooperation between MMs, we needed 562, 916, 901 bytes. Adding the coop-
eration of the STMMs we were able to spend only 488, 238, 361 bytes, which
is around 13.3% of improvement, using the same RAM memory (26.3 GB) and
around 18.8% more computational time. The human and marmoset lineages are
believed to have diverged around ≈40 mya [27].

4 Conclusions

In this paper, we have proposed a new model for relative compression of DNA
sequences—the substitutional tolerant Markov model (STMM). We have shown
that it addresses efficiently some degree of substitutional mutations, being a
model efficient to use between species that divergence less than 40 million years
ago, such as between some primates or eagles. The time added by the model to
the compressor is affordable, given the compression improvement—for example,
between human and orangutan is around 28.5%. This model is, therefore, a
strong candidate to be used in ancient DNA analysis, namely because of the
high substitutional mutation rates of the data.
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