
Chapter 9
The Importance of Scale in Land Use
Models: Experiments in Data Conversion,
Data Resampling, Resolution
and Neighborhood Extent

J. Díaz-Pacheco, H. van Delden and R. Hewitt

Abstract The investigation and modeling of land use dynamics can be conducted
at different scales based on the objective of the study. However, few studies have
looked at comparing various scale aspects, such as spatial resolution and the related
neighborhood effect, for practical case study applications. In this chapter, we
contribute to this under-explored area with a detailed study of how changes in the
data preparation procedures and the scale decisions made in setting up a land use
model can affect its performance. For these purposes we used a Cellular Automata
(CA) based land use model, which we applied to the Madrid region in Spain. In
order to discover the most appropriate method for preparing input data, different
vector-to-raster conversion and resampling strategies were tested with reference to 4
statistics. For vector-to-raster conversion, the cell center method was found to give
the best results across all of the statistics. Furthermore, direct conversion from the
original vector map to raster format at the desired cell size was found to give better
results than resampling to the desired cell size from a different cell size. We also
tested the effect of changing spatial resolution and cell neighborhood distance on a
model’s goodness-of-fit to real data using a range of location and pattern metrics.
Although differences were noted in the simulations, all the applications fitted the
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data satisfactorily. Nevertheless, the 50 � 50 m cell resolution applications were
visually much more realistic, perhaps because this resolution was used in the initial
calibration of the model. The results indicate that data conversion issues have a
major effect on the quality of the input data. Additionally, models of this type
appear to be much less sensitive to scale changes, either through cell resolution
changes, neighborhood changes, or both, than is usually suggested by the literature.

Keywords Land use models � Land use change � Scale � Cellular automata � Data
conversion

1 Introduction

Researchers in land use/land cover change (hereafter LUCC) modeling approach
their research with different objectives for different regions, and as a result work at
different cartographic spatial scales. The observation and modeling of spatial
phenomena should be carried out at a scale appropriate to the phenomena in
question (Woodcock and Strahler 1987). However, the same phenomenon can be
modelled at various scales depending on the spatial context of the analysis. When
investigating the urbanization processes in a specific city, a high level of spatial
detail might be required, because urban land use units (facilities, parks, residential
areas, etc.) are small in size and specific local information about socio-economic
and physical characteristics and planning regulations can play a key role in
understanding dynamics. However, for modeling the urban growth of Europe, the
analysis should not be too detailed or the generality of the process at the continental
scale could be missed. The geographical scale of models depends therefore on both
the phenomenon to be modelled and the spatial scale (local, regional, national,
global…) of the analysis. From a geographical point of view, variability of scale
can be regarded as both a strength and a weakness of the discipline (Lam and
Quattrochi 1992). LUCC models, as geographical tools to understand phenomena
(Longley and Batty 2003 p. 5) and provide policy support (Van Delden et al. 2010),
are clearly subject to the same considerations. In fact, the results of dynamic spatial
models are strongly influenced by scale, and results derived from a model devel-
oped for one spatial scale may not be applicable at another. When moving from one
scale to another, land use patterns may disappear or emerge (de Koning et al. 1998),
significant processes may lose their significance, and rates of change may vary
(Kok and Veldkamp 2001). The Modifiable Areal Unit Problem (MAUP), a con-
cept which describes ‘the variation in results that can often be obtained when data
for one set of areal units are progressively aggregated into fewer and larger units
for analysis’ (Openshaw and Taylor 1979; Openshaw 1983) helps to understand
some of these key issues. On the other hand, variability of scale could be considered
an advantage since data and information can be adapted to suit the context in which
the analyzed process are occurring (i.e. operational scale), or to take into account
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the way humans may perceive different spaces at differing levels of detail in a
hierarchical fashion according to their proximity (Van Vliet et al. 2009).

Although the importance of scale in LUCC models is recognized by many
researchers (e.g. Jenerette and Wu 2001; Theobald and Hobbs 1998; Ménard and
Marceau 2005; van Delden et al. 2011), experimental studies in which the impli-
cations of different scale options are directly compared, are generally lacking (Jantz
and Goetz 2005). In this paper, we contribute to this under-explored topic. We
assess the accuracy and quality of the data when they are converted from vector to
raster or resampled by different methods, to be used on spatially-explicit land use
models. In particular, we explore the data conversion and rasterization options, and
the impact of spatial resolution on the calibration of a land use model for Madrid.

The paper is organized as follows. First, we present the background and the
method applied for each of the two components of this study, data preparation and
model resolution, followed by details of the application including the GIS and the
land use model used in this study. Finally we present and discuss the results, draw
the relevant conclusions and make recommendations for further research.

2 Finding the Right Scale

2.1 Background

Although several authors have proposed ways to find the best scale for setting up
raster-based LUCC models (e.g. Tobler 1988; Lam and Quattrochi 1992), no single
widely-agreed method has emerged, and the final decision is usually taken on the
basis of the researcher’s own specialist knowledge. Such a decision may not always
be the result of a rigorous procedure, but is not usually arbitrary. For example, in
policy-relevant LUCC models, the decision about which scale to use is often a
trade-off between the scale required by intended users, the scale at which processes
are best represented, and practical considerations like data availability or compu-
tational resources (van Delden et al. 2011).

The scale decisions a LUCC modeler needs to make include the spatial and
temporal extent, the spatial level(s) and the hierarchy by which they are ordered,
and the amount of detail incorporated. Levels refer to locations along a scale
(Gibson et al. 2000) and detail relates to the spatial, temporal and thematic reso-
lution(s) and the complexity by which processes are represented (van Delden et al.
2011). When focusing on CA based land use models, other important factors related
to spatial resolution, such as neighborhood size and type, must also be taken into
account (Ménard and Marceau 2005).

Previous work on the effect of changing scale in a LUCC model for Central
America by Kok and Veldkamp (2001) found that coarsening the resolution from
15 � 15 km to 75 � 75 km led to improved model explanatory power (r2), but did
not significantly affect the explanatory variables (i.e. land change drivers identified
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were broadly the same at both resolutions tested). However, changing the extent of
the model produced a strong variation in performance (poorer fit for all Central
America, better fit for individual countries). Though these authors do not say so
explicitly, this is an excellent example of the scale problem (Openshaw 1983) in a
land use model, since the land change dynamics modelled by these authors relate to
national, not supra-national drivers, and are not generalizable across borders.
Though it is common practice in land use models to work at larger spatial extents,
the findings of these authors are a clear warning of the perils that this may entail.
However, various modeling approaches overcome this issue by dividing the
modelled area into smaller subdivisions, as for example in the case of the regional
model incorporated into the Metronamica Modeling framework (RIKS 2014).

Jantz and Goetz (2005) investigated the behavior of different types of urban
growth rules at different cell sizes in the popular SLEUTH model, concluding that
cell resolution was a major determinant in model performance and that some types
of urban growth rule produced much more growth at coarser resolutions than at
finer ones. Though their findings are quite specific to the SLEUTH model, the
implication is that neighborhood effects for urban land, which are fundamental in all
CA models, may vary non-linearly across scales.

Ménard and Marceau (2005) observed how changing the size of the neighbor-
hood radius and the resolution produced a non-linear relationship between the
spatial scale and the simulation results. Their work was based on a dataset derived
from remote-sensing images for two time periods and focused on land cover
change. The study area was dominated by forest and agriculture, so the phe-
nomenon of urban expansion was not considered (Ménard and Marceau 2005).
Samat (2006) undertook sensitivity analysis of a CA-based urban model with the
aim of finding the appropriate scale for the modelled region (Seberang Perai,
Malaysia). The study found that the model performed well at 30, 90, and 270 m cell
resolution, but at coarser resolutions (810, 2430 m), accuracy declined rapidly.
These findings appear to contradict the findings of Kok and Veldkamp. However,
these studies are difficult to compare for a number of reasons. Firstly, Kok and
Veldkamp compared only two resolutions, while Samat investigated five. Secondly,
the studies do not compare the same cell resolutions and address different spatial
extents. Thirdly, the statistical comparison methods used were quite different (Kok
and Veldcamp used the coefficient of determination (R2) of a regression model,
whereas Samat used cell-by-cell map comparison techniques). Finally, Samat
employed standard Kappa for comparing real and simulated maps, an approach
which has since been found to be inadequate (Pontius and Millones 2011; Van Vliet
et al. 2011).

As an aid to determining the appropriate spatial scale for the general case,
Samat’s work (2006) has some limitations. On the one hand, the analysis comprised
only two land use classes (urban and non-urban), so the type of urban land use was
not a determining factor for selecting the scales for the tests. Moreover, the land use
dataset employed was drawn from different sources for each of the two time periods
(1990 and 1998). In addition, the cartographic scale chosen for the smallest cell
resolution tested (30 � 30 m) does not seem to respect, at least for 1990, the
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general rules for transformation of a scaled vector map (1:75,000) to a raster map
(see Tobler 1988).

The various studies show that the choice of scale, and, in particular, of the spatial
resolution, is key in setting up a land use model, as these can have a large impact on
the model results. With limited work being carried out in urban environments, this
paper aims to contribute to an enhanced understanding in this area by exploring the
effects of spatial resolution and neighborhood extents on a land use model’s
capacity to simulate land use change.

3 Approach

3.1 Scale in Geography and Remote Sensing

Three techniques of land use data conversion from vector to raster, and two tech-
niques of aggregation by resampling from a high cell resolution to a lower one are
tested. The data conversion and resampling techniques used are those implemented
inside the popular ArcGIS 10.0 software. ArcGIS was chosen because it is widely
used and provides a detailed description of the procedures in the user manual.
Testing was undertaken by developing a series of land use maps as input data for a
LUCC model generated by each technique and then comparing the results using
statistical map comparison algorithms. In the following section we describe the data
conversion and cell aggregation methods used to obtain the most appropriate data
for use in the LUCC applications at different resolutions, together with the metrics
used to evaluate the maps generated by the various techniques.

3.1.1 Vector-to-Raster Conversion

In the vector-to-raster conversion, some loss of accuracy is unavoidable, due to
classification errors where the irregular polygon boundary coincides with a regular
grid (Carver and Brunsdon 1994). Three techniques implemented in ArcGIS 10.0
for direct conversion from a vector polygon coverage to a regular grid were ana-
lyzed, namely Cell Center, Maximum Area and Maximum Combined Area (the
names used in the software) (Fig. 1).

Using the cell center (Cc) algorithm the final categorical value of every cell in
the grid is the attribute value which coincides with the center of the cell. In the case
of the maximum area algorithm (Ma) the final value of the cell is established by
assigning the value of the largest polygon coincident with the cell. The maximum
combined area algorithm (Mca) works in a similar way to the Cc algorithm, except
that the value of the cell is taken from the total area of different polygons with the
same attributes coincident with the cell.
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Vector-to-raster conversions were performed from an original land use vector
dataset to a grid of 25 � 25 m, 50 � 50 m, 100 � 100 m resolution successively.
We considered that at lower resolution the general land use structure is missed
(Fig. 2).

The most detailed resolution (25 � 25 m) was selected following recommen-
dations given by Switzer (1975) in which 50% of the area of the cell should be

Fig. 1 Vector polygon to raster. (1) Mca. Maximum Combined Area; (2) Ma. Maximum Area;
(3) Cc. Cell center. Source Adapted from ESRI (2010)

Fig. 2 Variation on urban land patches after conversion vector information and resample up to a
resolution of 500 � 500 m
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larger than the smallest mapped polygon. In the MLU geodatabase the smallest
mapped polygon is 30.4 m2 and 50% of a 25 � 25 m cell is 312.5 m2, which
complies with the requirements of this rule.

3.1.2 Resampling

In the same way as for the vector-to-raster conversion analysis, for the resampling
of grid maps, two techniques, Nearest Neighborhood Assignment and Majority,
implemented in the software ArcGIS 10.0 were applied consecutively. The former
assigns the categorical value to the new cell according to the value of the cell
closest to the center of the new cell and the latter assigns the most popular values of
the cells in the input map that fall inside the new cell in the output map. A simple
example of both algorithms is shown in Fig. 3.

For the nearest neighborhood assignment method, the maximum spatial error
must be one-half of the cell size, while for the majority method the results of the
resampling tend to create higher compactness (ESRI 2010).

The techniques were applied to the 25 � 25 m raster map obtained from the
vector polygon land use map using the vector to raster method that provided the
best results. Aggregations were carried out into grids with 50 � 50 m and
100 � 100 m cell sizes, each one from the 25 � 25 m raster map.

3.1.3 Assessment Procedure for Vector to Raster Conversion
and Resampling

Comparisons of the maps resulting from application of the various shape-to-raster
and aggregation techniques were carried out at 25 m, 50 m and 100 m resolution.
In order to compare 50 m and 100 m resolution maps, all the resulting maps were
disaggregated to a 25 m resolution.

Fig. 3 Different techniques for resampling. Nearest Neighbour and Majority. Source Adapted
from ESRI (2010)
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The similarity of the land use maps resulting from the different conversion and
resampling methods was analyzed using metrics to assess the similarity in location
and the similarity in the resulting landscape pattern.

3.2 Assessing the Impact of Spatial Resolution
and Neighborhood Extent on the LUCC Model

In order to evaluate the effects of the spatial resolution and the size of the neigh-
borhood, a set of applications was developed, in which the cell size and neigh-
borhood were varied while the extent remained constant. To keep the work
manageable, it was decided to apply the model at three different spatial resolutions.
Resolutions of 25 � 25 m, 50 � 50 m, and 100 � 100 m were selected based on
the urban context and the authors’ interest in investigating whether higher spatial
resolutions, possible due to the availability of detailed land use data sets, would also
result in improved model calibration and validation results.

We began by developing an application at 50 m, with a neighborhood of 8 cells
(400 m). This application was calibrated over a first historic time period and val-
idated over a second. Once this application was considered suitable for reproducing
the (historic) land use dynamics, some of its scale characteristics were modified in
order to evaluate their effects on the model results. To this end, two applications
were developed with a modified resolution of the cells (25 m and 100 m), using the
most appropriate methods found for data preparation, while maintaining the cell
radius for the neighborhood effect at 8 cells. Next, two additional applications at
25 m and 100 m cell-resolution applications were created with respectively larger
(16 cells) and smaller (4 cells) radii, so as to maintain the equivalent cell neigh-
borhood distance as in the original 50 m application. All the applications were run
using the same parameter settings employed in the original 50 m application
(Table 1).

As with the assessment of the different conversion and resampling methods, the
results of the calibration and validation have been analyzed using metrics for
assessing similarity in location and in the resulting landscape pattern.

4 Applications

4.1 Study Area

The area selected for analysis is the Madrid region (Fig. 4), an area of around 6
million inhabitants. This region was chosen because of the large increase in urban
development that it has experienced over recent decades (until the beginning of the
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current economic crisis around 2008) and because a highly detailed land use
database documenting this change has recently become available (Díaz-Pacheco
and García Palomares 2014).

The expansion of urban land use in the Madrid metropolitan area during the
1990s was extraordinary, at least by European standards. According to CORINE
land cover (EEA 2014), artificial land cover increased by more than 30,000 ha, an
annual growth rate of 4.77%, while over the same period, the population of around
6 million grew by only 0.8% a year. Furthermore, over this decade the area under
construction (mines, dumps, and construction sites) grew by 200% (Rocha et al.
2009; Hewitt and Escobar 2011). This growth in urban land, in a situation of
demographic stability, produced a notable increase in the amount of artificial land
per person, which in only 5 years (1996–2001) shot up from 153 to 179 m2 per
inhabitant (de Lucio 2011).

Table 1 Scale changes on neighborhood for each application

Resolution 100 � 100
Doubled
resolution

100 � 100
Doubled
resolution

50 � 50
Original

25 � 25
Halved
resolution

25 � 25
Halved
resolution

Feature of
changes

Doubled
resolution
Equal radius in
cells
Unequal radius
in meters

Doubled
resolution
Unequal radius
in cells
Equal radius in
meters

Halved
resolution
Unequal
radius in cells
Equal radius
in meters

Halved
resolution
Equal radius
in cells
Unequal
radius in
meters

Cell radius 8 4 8 16 8

Meter
radius

800 400 400 400 200

Number
of cells

196 48 196 796 196

Area in m2 1,960,000 480,000 490,000 497,500 122,500
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4.2 Land Use Data Set

Madrid Land Use (MLU) is a cartographic database with land use and land cover
information for the Madrid Region, covering the time periods 2000, 2006 and 2009.
The MLU dataset comprises 22 land use classes of which 7 are urban. Mapping was
undertaken at a highly detailed basic reference scale of 1:10,000. The technical
process did not include automatic or computer-assisted classification tasks, and the
mapping work was undertaken entirely by photo-interpretation of high resolution
(0.5 m) aerial orthophotographs, supported by large scale cartographic and cadas-
tral information (1:5,000 and 1:1,000, respectively). Identical criteria were used for
the digitization and thematic classification for each of the land use dataset periods.
MLU clearly represents an excellent cartographic dataset for assessing urban land
use in Madrid and outperforms CORINE land cover in this area in a number of
respects (see Díaz-Pacheco and Gutiérrez 2013).

4.3 Land Use Model

The LUCC model applications were built using the well-known “Metronamica”
framework, developed by RIKS (e.g. White and Engelen 1993, 2000; Van Delden
and Hurkens 2011) and widely used around the world for simulating urban land
transformation (Barredo et al. 2004; van Delden et al. 2005; Lajoie and
Hagen-Zanker 2007).

Fig. 4 Location of Madrid Region. Source Díaz-Pacheco and Gutiérrez (2013)
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In this model, the distribution of land use in a given area is represented as a raster
map in which each cell has a value that represents a land use. Not all land uses are
modelled in the same way and individual land use classes must be assigned to one
of three land use states. They may be either active (dynamic, changing as a result of
external demands), passive (dynamic, without an external demand), or static (inert
throughout the model runtime).

Metronamica calculates land use changes over time according to a set of tran-
sition rules computed by simple equations in which the geographic effect of a cell
over its neighbors (attraction or repulsion between land use cells, representing
economic and political power to obtain locations of interest, inertia and ease of
conversion) is the main driving force of change in the system. Three additional
factors are included to reflect the heterogeneity of the area: accessibility and suit-
ability drivers are introduced to align the model with the characteristics of the study
region and zoning is included to incorporate the influence of policies or planning.
The model includes a stochastic component to reflect uncertainty in the allocation
process. Cells are allocated at each step of the model on the basis of the transition
potential until cell demand (determined exogenously) is exhausted or all suitable
and available cell space is used up (see the Metronamica documentation (RIKS
2014) for more information).

For the application to Madrid, we combined some of the MLU land use classes
to create a set of 12 land use classes of which 7 are urban and 6 are actively
simulated (Fig. 5). This permits the observation of the effects of the change of scale

Fig. 5 Characteristics of the Madrid Model
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on the model (cell size and neighborhood) for different urban land uses with dis-
similar spatial behavior and dissimilar clustering.

The application for the Madrid region used in this research does not incorporate
zoning so as to give the system much greater freedom. The only suitability factor
included is the slope of the terrain, as this was found to be the only physical factor
affecting urban land change in this region. Infrastructure networks and nodes
(highways, roads, train stations and metro stations) are included and accessibility is
empirically calibrated for each simulated land use through a distance decay func-
tion. The amount of randomness was set by trial-and-error during calibration.

A manual calibration was also performed on the 50 m resolution application
using the common Metronamica calibration procedure (Van Delden et al. 2010,
2012). The transition rules were determined by trial-and-error, informed by pre-
vious analysis of land change processes, and by comparing the resulting simulations
with historical data, until they achieved an acceptable goodness of fit (according to
plausible parameters and map statistics).

The accessibility values were introduced in a similar way for each application,
but in this case the values between the nearest and the furthest distance considered
to the network (roads, rail, highway, metro stations…) were automatically com-
puted by the software through a distance decay function. The only change made in
this case was doubling or halving the distances in order to adapt the function for
each application, e.g. if in the 50 � 50 m application a value for the road influence
at 200 m to the residential land cells was considered, in the 100 � 100 m appli-
cation this value was doubled to 400 m to respect the proportionality demanded by
the size of the cell.

Following common practice, the transition rules thus obtained were tested for
validation purposes by running the model over a different historical period than that
over which the calibration was performed.

4.3.1 Metrics

Calibration and validation results were assessed through visual inspection of result
maps and temporal dynamics, assessment of the plausibility of the parameters
(structural validation) and a number of objective metrics to assess similarity
between result maps and historic data (tf data and tf simulated).

The map comparison methods and techniques used during the calibration and
validation processes are currently implemented in the software Map Comparison
Kit (MCK), initially created by RIKS for the Netherland Environment Assessment
Agency (Visser and De Nijs 2006). Three statistical tests were used to determine
model accuracy, namely Kappa simulation (Ksim), clumpiness, and mass fractal
dimension. The first of these, Ksim, is useful for determining the number of cells
that have been correctly simulated, while the remaining two measures are used for
determining the degree of spatial similarity between elements in the simulated map
and the real map (White 2006). The extent (in cells) occupied by every land use on
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each map is also measured. In addition, a previous qualitative visual assessment
based on the research criteria is generally included in the examination.

The Kappa coefficient of agreement (Cohen 1960) is a widely used index to
calculate the rate of agreement between two images or two maps (categorical
datasets). The Kappa simulation (Ksim) is a modification of the traditional Kappa
coefficient, which is useful for evaluating simulations over short time periods (van
Vliet et al. 2011). Most land use models usually simulate changes over years or
decades during which time many locations do not undergo any land use change.
Unfortunately, under standard Kappa, locations which do not change are also
included in the calculation, which means that very high Kappa scores can be
obtained regardless of the degree of accuracy of the simulation (Pontius and
Millones 2011). Standard Kappa is therefore not a useful measure of the goodness
of fit of simulations produced by land use models. Ksim takes values from −1,
meaning total disagreement, to 1, for total agreement. The value 0 represents a
special situation where the agreement is as good as can be expected by chance
given a random distribution of the given class transitions (see van Vliet et al. 2011).

Clumpiness and mass fractal dimension are often employed in landscape ecol-
ogy to analyze landscape structure. In this research, these metrics allow the pattern
similarity of the simulated map and reference map to be assessed. Clumpiness is a
measure of the degree of dispersion/aggregation of the patches in an image
according to their type (McGarigal 1994). Mass fractal dimension measures the
degree of “linearity” of elements in the map in which plane filling objects like
circles or squares will have a value of 2.0 and a line will have a value of 1.0
(Gardner et al. 1987).

5 Results and Discussions

5.1 Results of Resample/Conversion Comparison

To examine the results (Table 2), five land use classes selected from the land use
map for the year 2000 were analyzed. These classes were chosen in order to provide
the greatest possible diversity of patch size for the experiment. The crops category
has a very large mean patch size (107.70 ha) compared to the facilities category
(3.07 ha). Residential multi-household (10.89 ha), industrial (7.56 ha) and urban
green (5.57 ha) were selected to provide intermediate patch sizes between the two
extremes.

Results of the vector to raster conversion and resampling tests are given in
Table 2. It can be rapidly appreciated that the CELL CENTER METHOD gives the
best results for direct conversion and the NEAREST NEIGHBORHOOD METHOD
gives the best results for resampling. However, for the Crops and Urban Green
category, the MAXIMUM AREA and MAXIMUM COMBINED AREA direct con-
version methods give acceptable results, at least on the basis of the fractal
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dimension index, and the area difference in hectares. This could be related to the
larger clusters found in this category (the mean patch size is 107.7 ha), but this
argument does not apply to Urban Green land. The could be because Madrid
contains unusually large, non-parcelled green areas such as the ‘Casa de Campo’ or
‘Dehesa de la Villa’, whose geometry is more like agricultural or natural areas than
classical urban green land (parks, squares, gardens…).

For the resampling operations, the MAJORITY METHOD produces the lowest
degree of similarity with the original data. As this method is widely used by
researchers, this is a key finding.

For both clumpiness and mass fractal dimension, the calibrated application
achieved similar values to the validated application and both outperformed a ran-
dom land use map used as a benchmark (Table 3).

5.2 Results of Calibration and Validation of the Initial
50 � 50 m Application

Calibration was considered to be complete once values of 0.144 had been obtained
for Ksim. The values considerably outperform a null model. The model was con-
sidered to have been acceptably validated at 0.113 (Table 3). These values are
comparable with published values considered acceptable in other applications of the
model (e.g. Hewitt et al. 2014).

5.3 Results of Testing the Changes on the Scale
of the Applications

The results of the comparison of data for 2006 with simulations for the same year
are shown in Table 4. According to the map comparison indices in use, the sim-
ulation results from all the different applications (apps) for 2006 (2000–2006) could
be considered acceptable. Both the 25 m app with the 8 cell neighborhood radius
and the 100 m app with the 4 cell neighborhood radius actually improve on the
original 50 m, 8 cell neighborhood radius app (Table 4). If we look at the values for
clumpiness, the difference between the clumpiness of the data and the clumpiness of
the simulations is comparable across all the applications, and better than the random
simulation used as a benchmark. The same is true for the fractal dimension index.
In some cases, the scale-modified apps achieve slightly better values than the
initial 50 m app (e.g. AP100-N4 clumpiness for multi-household and facilities
classes). However, better performance of some categories tends to be compensated
by poorer performance of others. Taken overall, the differences between the
scale-modified apps and the original app are not large enough to be able to claim

9 The Importance of Scale in Land Use Models … 179



T
ab

le
3

V
al
ue
s
of

th
e
us
ed

in
di
ce
s
fo
r
ca
lib

ra
tio

n
an
d
va
lid

at
io
n
of

th
e
50

m
.a
pp

lic
at
io
n

In
de
x

A
P5

0
00

-0
6

R
A
M
D
50

00
-0
6

A
P5

0
06

-0
9

R
A
M
D
50

06
-0
9

K
ap
pa

si
m
ul
at
io
n

0.
14

4
–

0.
11

3
–

R
.
M
ul
ti
-h
ou

se
ho

ld
C
lu
m
pi
ne
ss

di
ff
er
en
ce

−
0.
02

26
−
0.
08

11
−
0.
00

23
−
0.
05

09

R
.
Si
ng

le
-h
ou

se
ho

ld
C
lu
m
pi
ne
ss

di
ff
er
en
ce

−
0.
00

18
−
0.
07

54
0.
00

71
−
0.
02

81

In
du

st
ri
al

C
lu
m
pi
ne
ss

di
ff
er
en
ce

0.
02

35
0.
11

96
0.
00

29
−
0.
03

82

F
ac
ili
ti
es

C
lu
m
pi
ne
ss

di
ff
er
en
ce

−
0.
01

83
−
0.
08

56
−
0.
00

93
−
0.
03

31

O
ffi
ce

an
d
R
ea
ti
l
C
lu
m
pi
ne
ss

di
ff
er
en
ce

0.
01

12
−
0.
25

93
0.
00

81
−
01

27
1

U
rb
an

G
re
en

C
lu
m
pi
ne
ss

di
ff
er
en
ce

−
0.
03

61
−
11

15
−
0.
00

81
−
0.
03

52

F
ra
ct
al

D
im

en
si
on

di
ff
er
en
ce

0.
00

70
−
0.
02

68
0.
00

13
0.
00

40

C
A
L
IB
R
A
T
IO

N
D
at
a0
6-
Si
m
06

B
E
N
C
H
M
A
R
K

V
A
L
ID

A
T
IO

N
D
at
a0
9-
Si
m
09

B
E
N
C
H
M
A
R
K

A
P
=
ap
pl
ic
at
io
n;

50
=
50

m
.;
00
–
06

=
20

00
–
20

06
;
06
–
09

=
20

06
–
20

09
;
R
A
M
D

=
ra
nd

om
si
m
ul
at
ed

m
ap

180 J. Díaz-Pacheco et al.



that any of the modified applications are significantly worse or better than the
original 50 m app.

If we visually compare the land use data maps for 2006 and the simulations
produced by the different applications, there are obvious differences that can be
quickly detected, even though it is not really possible to specify the precise degree
of similarity between the maps using this method. Figure 6 shows simulated (right)
and real (left) land use for an enlargement of a highly urbanized (mainly residential)
area in 2006. It is clear that the visual appearance of the maps reinforces the results
of the statistical comparisons, i.e., none of the scale-modified apps looks signifi-
cantly better or worse than any other for the land use changes simulated for the year
2006, despite the modifications in the scale. The middle column of Fig. 6 shows the
apps with different resolutions (25, 50 and 100 m) and the same neighborhood
radius in cells (N8). In these cases, despite the difference in resolution, all three
simulations are quite alike, something that can be confirmed by consulting the
results of the statistical indices (Table 4). Some classes, e.g. Residential
Multi-household are not simulated very successfully in any application. This is
probably because all locations in this residential area were equally favorable, being
close to existing urban areas, on suitable land and close to transport networks. In
such cases, identification of the “real” location tends to be difficult and is effectively
made at random. Further discussion of this interesting topic is, however, beyond the
scope of this paper.

The relationship between cell-size and the size of the land parcels is also clearly
shown. Nonetheless, as the statistics do not show remarkable differences between
the results of the apps at different resolution, a visual analysis of the 50 m resolution
simulation seems to provide more realistic-looking results than the 25 m and 100 m
resolution simulations, probably because the cell size is a closer match to the actual
size of the land parcels, although the fact that the original calibration focused on this
resolution could also be a factor. This emphasizes the importance of visual
inspection when choosing the right resolution for a given application. It also sug-
gests that pattern-based map comparison measures like clumpiness and fractal
dimension have their limitations, as do all statistical measures.

This is a rather surprising result. Since the scale modifications were only applied
to the maps themselves, and not to the neighborhood rules, neighborhood influence
is different in all three applications. The maximum cell neighborhood of 8 cells
corresponds to a distance of 400 m (8 � 50) away from the central cell in the
original 50 m app, 200 m away from the central cell in the 25 m app, and 800 m
away from the central cell in the 100 m app. Three possible explanations can be
provided for this; (1) the cell neighborhood is not the key change driver (contrary to
most known studies of urban change); (2) the neighborhood influence declines very
steeply and all important interactions take place at close distances, or (3) the dis-
tance in cells is more important than the actual distance (in meters) in the calcu-
lation of the neighborhood effect. Further experimental work (see, e.g. Hewitt and
Díaz-Pacheco 2017) would be needed to confirm or reject these hypotheses.

9 The Importance of Scale in Land Use Models … 181



T
ab

le
4

4.
M
ap

co
m
pa
ri
so
n
re
su
lts

fo
r
ap
pl
ic
at
io
ns
.
A
bb

re
vi
at
io
ns
:
A
P5

0-
25

-1
00

:
ap
pl
ic
at
io
ns

an
d
re
so
lu
tio

ns
;
N
8-
4:

ne
ig
hb

or
ho

od
an
d
ra
di
us

in
ce
lls
;

R
A
M
D
50

-1
00

-2
5:

ra
nd

om
si
m
ul
at
io
ns

an
d
re
so
lu
tio

ns

A
pp

lic
at
io
ns

B
en
ch
m
ar
ks

In
de
x

A
P5

0-
N
8

A
P2

5-
N
8

A
P1

00
-N

8
A
P2

5-
N
16

A
P1

00
-N

4
R
A
M
D
50

R
A
M
D
10

0
R
A
M
D
25

K
ap

pa
si
m
ul
at
io
n

0.
14

4
0.
14

9
0.
11

6
0.
14

6
0.
15

8
–

–
–

R
.
M
ul
ti
-h
ou

se
ho

ld
C
lu
m
pi
ne
ss

di
ff
er
en
ce

0.
02

26
0.
04

30

0.
00

50
0.
04

00
0.
00

07

0.
08

11
0.
06

02
0.
10

17

R
.
Si
ng

le
-h
ou

se
ho

ld
C
lu
m
pi
ne
ss

di
ff
er
en
ce

0.
00

18
0.
00

79

0.
01

11
0.
01

92
0.
02

50

0.
07

54
0.
06

43
0.
08

67

In
du

st
ri
al

C
lu
m
pi
ne
ss

di
ff
er
en
ce

0.
02

35
0.
00

20

0.
04

09
0.
01

11
0.
04

09

0.
11

96
0.
09

91
0.
13

52

F
ac
ili
ti
es

C
lu
m
pi
ne
s

D
iff
er
en
ce

0.
01

83
0.
02

90

0.
00

65
0.
05

67
0.
00

44

0.
08

56
0.
06

09
0.
10

54

O
ffi
ce

an
d
R
ea
ti
l

C
lu
m
pi
ne
ss

di
ff
er
en
ce

0.
01

12
0.
01

56

0.
07

31
0.
02

84
0.
08

35

0.
25

93
0.
19

81
0.
30

07

U
rb
an

G
re
en

C
lu
m
pi
ne
ss

di
ff
er
en
ce

0.
03

61
0.
06

42

0.
01

08
0.
08

49

0.
00

99
0.
11

15
0.
07

52
0.
15

50

F
ra
ct
al

D
im

en
si
on

di
ff
er
en
ce

0.
00

70
0.
01

08

0.
00

53
0.
01

57
0.
00

03

0.
02

68
0.
01

82
0.
02

99

182 J. Díaz-Pacheco et al.



Fig. 6 Comparison of data 2006 and simulations for 2006 from the different apps. Abbreviations:
SIM: simulation; APP25-50-100: application and resolution; N4-8: neighborhood and radius
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6 Conclusions and Outlook

Standard GIS operations like vector-to-raster conversion and raster resampling have
considerable influence on scale in models of land use and land cover change, and the
MAUP (Openshaw 1983) would seem to be relevant. In CA models, which are
highly dependent on the cell neighborhood for simulating land use conversions, both
operations have a significant effect on the initial land use map and hence the cell
neighborhood. The work presented in this paper has examined the influence of these
operations, the first referred to the resolution transformation of the input data and the
second to the land use model’s capacity to simulate land use change for a case study
application based on a large and detailed land use database for Madrid, Spain. Some
important conclusions can be drawn that are likely to be extremely useful for
researchers working with cell-based land use models. It is clear from this work that
the use of one particular data preparation method over another can produce quite
different results, both for vector to raster conversion operations and for raster
resampling from one resolution to another. In the underlying research, for urban
patch types (smaller mean patch sizes), better results (a closer match to the original
land use dataset) are obtained by converting directly from the original vector cov-
erage to a raster with the desired resolution than by converting to a scale equivalent
to the original vector coverage and subsequently resampling up or down to obtain the
desired resolution. Amongst the resampling methods themselves, the nearest
neighbor technique gives improved agreement with regard to the original land use
dataset than most other procedures. Future research could try to discover whether
similar results would be found if the same methods were applied to different datasets.

Regarding the effects of changing the scale of a dynamic CA land use model, as
reflected by the cell resolution and neighborhood radius, no significant variation
was obtained in the accuracy of the final simulations measured by the metrics
applied, at least in the urban context considered and for the range of resolutions
tested (25, 50, and 100 m). A calibrated and validated land use model based on a
50 m resolution raster gave very similar results to applications with identical
transition parameter settings but mapped at higher (25 m) and lower (100 m)
resolutions.

The goodness-of-fit evaluation techniques (cell statistics, pattern comparison,
visual inspection) showed that all of the applications acceptably reproduced the
relevant land use change patterns. Despite this result, the 50 m resolution model
looked more realistic than 25 m or 100 m resolution applications. This is likely to
be because the 50 m cell size is a better fit to the size of the real land parcels,
although the fact that the original calibration focused on this resolution may also be
a factor.

The most surprising discovery is that doubling or halving the neighborhood
distance radius did not produce any significant variation in the model’s performance
over the validation period. This indicates that for the applications we investigated
the transition rules are rather insensitive to neighborhood distance effects. For future
research it would be useful to investigate whether similar results are obtained for
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applications to different regions and datasets and if so, whether the following
possible hypotheses could be confirmed or denied: the cell neighborhood is not the
key driver for change, neighborhood effects all occur at close distances, the distance
in cells is more important than the actual distance (in meters) in the calculation of
the neighborhood effect.
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