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Foreword

Alexander von Humboldt, the great scientist and proto-geographer of the early
nineteenth century, wrote about the physiognomy of nature—the face that nature
presents to us in any particular region. For Humboldt, physiognomy was the
essential appearance of the landscape. It was important to him because he was
deeply attracted to the beauty of the landscape in all its variety, but even more so
because the landscape is the visible manifestation of all the complex interactions
of the natural and human processes that interested him as a scientist (von Humboldt
1975). As science became increasingly specialized and reductionist during the
nineteenth and twentieth centuries, it avoided systems that were highly integrated
and inherently complex. Thus, landscapes were left to artists and poets, and to
descriptive geographers. And it must be admitted that even von Humboldt did not
quite know how to make the physiognomy of nature a science. He imagined a
discipline that would combine the efforts of natural scientists and visual artists. This
was a vision echoed in the mid-twentieth century by the mathematician and
physicist Lewis Fry Richardson, who imagined an orchestra of mathematicians
being conducted by a maestro of integration in order to make numerical predictions
of the behaviour of complex systems like the weather. But now we have computers,
and with computers, we can begin to understand complex systems not just
descriptively or intuitively, but formally. We can do more than describe landscapes:
we can, increasingly, generate them computationally, as predictive LUCC models
do. But to develop good models of landscape—that is, models of complex spatial
systems—still requires the vision and intuition of an artist or a maestro.

The modern scientific treatment of complex spatial systems has several roots. On
the human side, the Chicago school of sociology in the middle third of the twentieth
century developed an approach known as human ecology, which was imported into
geography and combined with spatial economic models, ultimately to give rise to
the field of regional science. Parallel to these developments, transportation engi-
neers developed mathematical and computational models of travel behaviour and
traffic flows. On the natural science side, ecologists made intensive studies of local
ecosystems to produce data on species composition and species interactions, with
space usually treated only implicitly. At the same time, these systems were
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modelled mathematically, usually in a highly simplified way, using techniques such
as Lotka–Volterra equations. Until recently, these models were almost never
explicitly spatial. Other fields such as hydrology, climatology, soil science,
agronomy, and forestry also developed mathematical and computational models
of the phenomena they dealt with.

All of these fields were dealing with phenomena that are inherently spatial, yet
until recently the spatial aspect was either ignored or treated in a highly simplified
manner—for example by reducing space to a single dimension, or by representing it
as a small set of regions, as is done in much of urban and economic geography.
There were two reasons for this. The first was that, for mathematical models, the
introduction of space makes most sets of equations impossible to solve analytically;
consequently, however plausible a model might seem as a representation of a
system, it would be difficult or impossible to know what it was saying about that
system. The second reason that space tended to be neglected was that there was
very little spatial data available. If detailed data was required, laborious survey or
field work was required to get it.

Computers solved the first problem. Computational models—simulations—ob-
viate the need to solve the equations mathematically. Once the equations are
embedded in an iterative loop, we can see how the variables of interest change their
values from one time step to the next, so we can follow the evolution of the system.
Frequently, we are not even interested in the mathematical solution, as the solution
state may lie far in the future, or the system may be continually perturbed, or may
even transform itself, before the solution state is reached. The change from math-
ematical to computational modelling not only avoids the technical problem of how
to solve the equations, but also allows us to treat the system more realistically, and
more in line with our practical reasons for wanting to understand its behaviour: we
want to know what changes to expect in the coming years so that we can develop
relevant plans, policies, and strategies.

Satellites solved the second problem. Once high-resolution remote sensing data
became available, the problem was no longer how to get spatial data, but rather
what to do with it all. Of course this data covers only a very limited set of phe-
nomena, with land use/land cover being the most important one from our point of
view, but it is nevertheless extremely useful for geographers, planners, agronomists,
foresters, and others. This is especially so because scientists are great opportunists.
If new types of data become available, we will find a use for it. So now the
computational models can tell us not only what is happening every year, but also
what is happening every year everywhere in the area we are modelling.

Computers and satellites, and more recently all sorts of geo-referenced data,
have made possible the kind of work presented in this volume. But in doing so they
have led us into a realm where the phenomena to be studied do not quite conform to
the assumptions that are the basis of traditional scientific methodology. As a con-
sequence, we are left to find our way in a new scientific country. At first, this land
seems familiar, but then we realize that it is largely unknown. We are in the land
of the poet Antonio Machado, the land where,
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Traveller, there is no path to follow.

The path is made by walking.

Nevertheless, a rough map of the country is emerging. It is a land of three types of
systems. The first are those that are simply complex self-organizing systems. These
are physical and chemical systems that are driven far from their (thermodynamic)
equilibrium state by a constant inflow of energy. The atmosphere provides a good
example, with its highly organized but complex structure characterized by such
features as cyclones and jet streams. These types of systems are the best understood,
due to the work of Prigogine and his group (e.g. Prigogine and Stengers 1984), as
well as scientists associated with the Santa Fe Institute such as Stuart Kauffman (e.g
Kauffman 1993) and Christopher Langton (e.g. Langton 1992). Next are the living
systems—what the mathematical biologist Rosen has called anticipatory systems
(Rosen 1999). Whereas in non-living systems entities are simply themselves
(atoms, molecules, rocks) and interact according to the laws of physics and
chemistry, living systems all include models of themselves and their environment,
and act, in part, on the basis of those models. The models can be anything from a
DNA molecule to a LUCC model. These are information-based systems, although
they are necessarily also complex self-organizing systems—the information is
operationalised by means of the complex dynamics. Finally, the third class consists
of complicated systems. These are systems that are integrated aggregates of sys-
tems, and have only recently been explicitly recognized as a discrete class of
systems with their own issues. Most of the systems dealt with in this book, like
most geographical systems, are complicated systems, composed of a variety of
natural and human systems; i.e. they are functional complexes of self-organizing
and anticipatory systems.

It is relatively straightforward to build and run models of these systems and that
tends to obscure the fact that in terms of scientific methodology we are in unknown
territory. For the most part, therefore, for lack of better alternatives, we continue to
use methods that are not entirely adequate or appropriate. At the same time, we
develop and experiment with new approaches, looking for better results. We are
making our path by walking. While the research presented in this book is interesting
and important on its own terms, placing it in this wider scientific and methodological
context shows that it also raises deeper questions that are otherwise only implicit.

Complexity

The kinds of systems being modelled in this book are all complex,
far-from-thermodynamic-equilibrium systems. Geosystems, both natural (e.g.
atmospheric, hydrological, ecological) and human, exist by virtue of the continual
inputs of energy that keep them far from their equilibrium state. (For a more
complete discussion of the complex systems approach, see White et al. 2015.)
These systems pose difficulties for orthodox science. As Prigogine showed
(Prigogine and Stengers 1984), the dynamics of far-from-equilibrium systems are
characterized by bifurcations—that is, the systems have multiple possible futures.
In other words, even when the underlying process is deterministic (which often it is
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not) and characterized by stationarity, the outcome of the process is not completely
determined: there may be a number of quite different possible outcomes. If this is
the nature of the system to be modelled, then any good model of it must also be able
to generate bifurcations. In other words, for a given set of initial conditions and
parameter values, the model must be able to generate multiple outcomes.

This clearly raises a number of methodological problems when it comes to cali-
bration and validation, since these essential modelling steps rely on comparing a
model outcome—a prediction—with an actual data set. The problem is that while the
model will be able to predict multiple outcomes for a particular time, we can only have
one reality for that time, because the other possible ones did not happen. If we calibrate
to get the best match to the observed data set, then as by Brown et al. (2005) showed,
we will almost certainly eliminate the ability of the model to generate the bifurcations
that represent possible alternatives to the observed data. In other words, the apparently
optimal calibration will mean that the model fundamentally misrepresents the nature
of the process. Because of the bifurcation phenomenon and the open futures nature of
reality, the risk of over-calibration is inherent in modelling complex systems. It can
never be eliminated, but it can be reduced by using more than one measure during
calibration and validation—for example kappa as well as several landscapemetrics. It
is especially useful to use measures that are known to have high stationarity, such as
some fractal dimensions; if an over-calibratedmodel is run for a long period, it is likely
that it will lose its fractal nature.

Another trade-off in calibration that has no clear solution is that between expert
judgment (e.g. of what are reasonable parameter values or realistic land-use pat-
terns) and quantitative, automatic approaches. Partly this is a practical matter: using
statistical techniques to extract parameter values from data, or automatic approaches
(e.g. genetic algorithms) to optimize values is usually faster and easier, a point
emphasized by Clarke in Chap. 8. But it also has the advantage of being objective,
so if the same techniques are used in multiple applications of a model, the results
are comparable. The OSDD technique proposed by Páez and Escobar in Chap. 18
should prove valuable in this respect. Multiple comparable validated applications
constitute a sort of meta-validation which strengthens confidence that the model is
capturing a general process, and thus can be relied on when used to perform what-if
experiments for planning and policy purposes. Multiple applications also help
overcome the problem of multiple possible outcomes of which only one can be
observed: if the multiple applications are analogous, in effect several of the possible
outcomes may be observed. These methodological problems in calibration and
validation are examples of the problems which arise when dealing with complex
systems. We are at the beginning of the evolution of new scientific methodologies.

In general, unlike the situation in traditional science, in the science of complex
systems there are no certainties. The implication for model design is clear: a good
model should be both dynamic and spatial, so that it can generate bifurcations.
Since bifurcations appear in time, they can only occur in dynamic models. It is
possible for them to occur in a-spatial models, but they appear much more naturally
and frequently in spatial models. Since all the models presented in this volume are
spatial—indeed most of them are cellular automata based, and thus inherently both
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dynamic and spatial—they almost certainly have the potential for generating
bifurcations, even if this is not discussed explicitly. In principle, there must be some
element of stochasticity in order for the bifurcations to become manifest (Prigogine
speaks of the emergence of order through fluctuations). This can be introduced
explicitly by means of a random term, as in several of the models used in this book
(e.g. Metronamica, APoLUS, and SLEUTH) or implicitly by means of running the
model multiple times with slight variations in the parameter values or initial con-
ditions (e.g. the initial land-use map); this can be done with any of the models.

The fact that a single model predicts multiple, different, futures also somewhat
alters the distinction frequently made between predictions and scenarios. For
example, in Chap. 17, Maestripieri, Paegelow, and Selleron characterize prediction
as “belonging to the world of rationality and accuracy”, while scenarios “transcribe
the uncertain nature of the studied process”. But in the case of bifurcating systems,
it is the “world of rationality and accuracy”, i.e. the predictive model, that generates
the uncertain nature of the process. The various predicted futures may be treated as
scenarios, and the model may be used to explore what parameter values might be
changed to make a particular possible future more likely, with the aim of devel-
oping policies that would have that effect. But it is actually the models with the
experimentally altered parameters that are the scenarios, rather than the initial set of
predicted possible futures.

Anticipatory Systems

Many of the processes that are important in LUCC modelling are the result of
information-driven anticipatory systems—companies seeking a profit, environ-
mental agencies trying to protect a natural area, or planners locating sites for
industrial zones. In many LUCC models—for example most Markov-based tran-
sition models—these systems are not treated explicitly, and if the underlying pro-
cesses are stationary during the relevant applications, then this is a legitimate
simplification of the model. But frequently, an adequate representation of the sit-
uation requires a model that treats the anticipatory system explicitly. This may be
something as simple as parameters representing human or institutional behaviour—
an example would be the CA transition rules with their parameters representing the
neighbourhood influence—or as elaborate as an explicit model of agent behaviour.
An excellent example of the latter is the actor interaction process, based on either
contextual interaction theory or participatory action research, included in the CA
transition mechanism of the APoLUS model, described by Hewitt in Part V.
Another example is the use of cognitive mapping by local stakeholders to derive
human and social factors underlying land-use change, together with the use of an
econometric model to determine land-use demands in the model of LUCC in a
region of Jalisco, Mexico, developed by Kolb, Gerritsen, Garduño, Lazos Chavero,
Quijas, Balvanera, Álvarez, and Solís (Chap. 12).

Complicated Systems

One of the findings of complexity theory is that highly complex outcomes, for
example fractal patterns, can be generated by simple processes. Thus, almost all
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work in this area focuses on simple models that can produce elaborate outcomes.
Modellers in applied fields, however, especially those dealing with geographical
and ecological systems, have always known that the relevant processes are not
simple. They are complicated. In particular, these systems are always composed of
a number of closely connected but often quite different subsystems, and many
of these subsystems (which are often, individually, just complex systems) cannot be
fully understood in isolation. Thus, modellers working in areas like LUCC have
long felt the need to build integrated models, whether models that integrate a variety
of phenomena in a single framework, or models that consist of a set of submodels
linked more or less closely, either sequentially or dynamically. The Jalisco model of
Kolb et al. (Chap. 12) is again a good example, as is the LUCC model of the
Cerrado biome in Brazil by Carvalho Lima, Carvalho Ribeiro, and Soares-Filho
(Chap. 19) which links a CA land change model with an econometric model.
Linking models of various phenomena to produce a single integrated model of a
complicated phenomenon like a city or a rural region is an excellent way to achieve
effective multi-disciplinarity, because the individual models can be developed by
domain experts in the various relevant fields. For that reason, integrated modelling
is an approach that is likely to become increasingly important.

The field of complex systems theory has revealed a number of fundamental
methodological issues. At present, there is no understanding of how to handle these
issues, but it is becoming increasingly apparent that dealing with them will require
both new methods (e.g. new statistical techniques) and new standards and criteria as
to what constitutes good science. So at present, those of us working in the area of
complex, anticipatory, and complicated systems are left to deal with these problems
on our own, devising ad hoc solutions as we can. Some of these will work and
others will turn out not to, and in this way, the methodology will evolve and
become more appropriate, powerful, and useful. The work in this book is an
example of this progress. Every project mentions problems that arise and the
attempts, more or less satisfactory, to deal with them. Frequently, these problems
are manifestations of the basic nature of complex, complicated systems, and the
solutions and work-arounds that are adopted are small evolutionary steps towards a
more appropriate methodology for these systems.

While the heart of Geomatic Approaches for Modeling Land Change Scenarios
is a series of papers concerned with LUCC modelling applications, the book is
much more than the usual collection of papers only loosely connected by a common
theme. The first four chapters (Part I) collectively give an overview of general
issues in LUCC modelling—specifically, approaches in calibration, simulation,
validation, and the use of scenarios. These are valuable in orienting the reader to the
general themes that arise in all the papers of the next section, especially in that they
provide an explicit comparison of the various simulation models that are used in the
application chapters of that section. The chapter on scenarios by Escobar, van
Delden, and Hewitt is useful as it not only provides an historical overview of the
subject, but also clarifies a number of issues, both definitional and methodological,
that pervade the use of scenarios in LUCC. Since scenario use is a major theme
of the book, this discussion is particularly appropriate. Parts II and III are focused
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on applications. It begins with seven chapters that address modelling techniques—
for example the use of multiple training dates for Markov-based models discussed
by Paegelow (Chap. 7), the genetic algorithm-based automatic calibration technique
proposed by Clarke (Chap. 8), or the examination of the effect of scale in land-use
models by Díaz-Pacheco, van Delden, and Hewitt (Chap. 9). Following these are
seven chapters focused on case studies, although most of these also include one or
more modelling innovations, which adds to their interest. Finally, Part IV provides
concise descriptions of essential techniques underlying LUCC modeling, such as
cellular automata, multi-layer perceptrons, Markov chains, multi-criteria evaluation,
and receiver operating characteristic analysis and following those, each one of the
simulation models that appear in the book are presented shortly in Part V. The book
thus provides foundations as well as examples and innovations. This is a real
strength.

The variety of approaches and applications encompassed in this book might
suggest that it lacks focus, but that is not the case. The historian Sweeny (2015)
describes the process of uncovering historical truth as akin to painting a cubist
portrait by creating a composition from the use of multiple, partly contradictory,
and always partial sightings. The final portrait reveals the multiplicity of partial
truths to be a complex but coherent whole. The same is true when picturing the
future of geographical systems. Geomatic Approaches for Modeling Land Change
Scenarios gives us a fine cubist portrait of this field.

Roger White
Department of Geography

Memorial University of Newfoundland
St. John’s

Canada
e-mail: roger@mun.ca
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Chapter 1
Geomatic Approaches for Modeling Land
Change Scenarios. An Introduction

M.T. Camacho Olmedo, M. Paegelow, J.F. Mas and F. Escobar

Abstract Land change models can help scientists and users to understand change
processes and design policies to reduce the negative impact of human activities on
the earth system at scales ranging from global to local. With the development of
increasingly large computing capacities, multiple computer-based models have
been created, with the result that the specific domain covered by the umbrella term
“modeling” has become rather vague. Even within the context of the spatiotemporal
modeling of land use and cover changes (LUCC), the term “modeling” can have
many different meanings. There is also an increasing interest in the literature in
comparing the different land change models. One of the aims of this book is to
contribute to these processes. We focus on geomatic modeling approaches applied
in this context to land change, a term that has been used synonymously for a
number of years with LUCC and seems to be overtaking it as the generally used
term for this phenomenon. The objective of this book is also clear to see from the
methods we have chosen and the subjects we address. This book deals first and
foremost with spatially explicit data that can be mapped. However, its additional
focus on land change and land change scenarios in the wider field of environmental
and social dynamics give it a certain consistency with a view to practical
applications.
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Keywords Land change � Land use and cover changes � Modeling � Geomatics �
Scenarios

1 General Context

Planet Earth is being altered at an increasingly rapid pace by human activities such as
fossil fuel combustion and CO2 emissions, the increase in agricultural land at the
expense of forests, the alteration of the water cycle and weather patterns, and the
release of large amounts of nitrogen, phosphorus, plastic and black carbon into the
biosphere. The effects of these human activities are being exacerbated by long term
global geological processes. To emphasize the enormous impact of human activities
on the earth and the atmosphere, Crutzen and Stoermer (2000) proposed the term
“anthropocene” for the current geological epoch. Seen by many as a state-change in
the earth system, the anthropocene concept bridges the gap between social and natural
sciences in open systems of knowledge production. It covers the cumulative history
of local and regional social changes and its connections to global processes. These
changes have been linked to the development of extractive resource chains, resource
use systems, urbanization and infrastructure, and technological diffusion, all of which
show path dependency and emergent patterns visible in the landscape (Brondizio
et al. 2016). New types of connectivity are still emerging, while the existing networks
that underlie the changes continue to transform the landscapes (Lambin and
Meyfroidt 2011; Brondizio et al. 2009). Meyfroidt et al. (2013) point out how local
processes of land change can affect distant areas and how the influence of demand and
policy often be felt in different regions. These authors use the term ‘telecoupling’ to
describe this kind of relationship and propose combining place-based research and
global modeling to evaluate the links between flows of products and services and land
change. In this context, land change models can help scientists and users to under-
stand change processes and design policies to reduce the negative impact of human
activities on the earth system at scales ranging from global to local.

With the development of increasingly large computing capacities, multiple
computer-based models have been created, with the result that the specific domain
covered by the umbrella term “modeling” has become rather vague. Even within the
context of the spatiotemporal modeling of land use and cover changes (LUCC), the
term “modeling” can have many different meanings. There is a degree of confusion,
for example, between modeling and simulation. Strictly speaking, modeling relates
to understanding and expressing system behavior; in other words, modeling implies
a simplified description of reality. By contrast, simulation refers to applying a
model to a particular case study over a period of time. Many authors use modeling
as a synonym for simulation. However, even if we agree that simulation is modeling
a future state of a system, this definition is still extraordinarily ambiguous.
A simulation may predict or prospectively model what will probably happen, but it
may also be used to develop a scenario to support decision-making processes based
on specific hypotheses or simple extrapolations.

2 M.T. Camacho Olmedo et al.



Several books on land change modeling have been published in the last few
years. These include among others, and in chronological order, the review by
Verburg et al. (2006) of land-use and land-cover change modeling concepts and
approaches, published in Lambin and Geist (2006). Koomen and Stillwell (2007)
advanced the field of land use change modeling with contributions about
explanatory, optimization, operational and new models. Paegelow and Camacho
Olmedo (2008) introduced modeling approaches based on environmental dynamics,
followed by a set of case studies. Murayama and Thapa (2011) and Murayama
(2012), centering more on spatial analysis than modeling, analyzed the different
GIS-based applications in land change models. Deng (2011) explored different
models used in research into land system change. Heppenstall et al. (2012) and
Arsanjani (2012) investigated agent and multi-based modeling. Lambin (2013)
offered a general overview about modeling land use change in relation to envi-
ronmental modeling in Wainwright and Mulligan (2013). The US National
Research Council (2014), with a large number of contributors, published an out-
standing report about the current state of land change modeling and the different
approaches to it. The report also presented proposals regarding possible improve-
ments. In their book on the monitoring and modeling of global changes, Li and
Yang (2015) included among others a theoretical chapter about challenges in land
change modeling. Cities and urban regions were at the heart of the theory and
modeling approaches presented by White et al. (2015).

2 Our Perspective

The wide range of land change models can be classified according to their theo-
retical basis and their purpose. As with GIS, which can be divided into raster and
vector approaches, land change models can be classified from a conceptual point of
view into those based on spatial patterns (pattern-based models, PBM) and those
based on the decisions and interactions of economic agents (agent-based models,
ABM). The classification of available modeling software is complicated by the fact
that most programs are based on hybrid approaches and offer a wide range of
options. Models can also be classified on the basis of the techniques they incor-
porate, such as Markov chains, suitability maps, pattern based indices, neighbor-
hood relationships like Cellular Automata (CA), etc. Other authors group models
together on the basis of their purpose, dividing them into models that produce
predictions, projections and normative or exploratory scenarios. Other authors
distinguish models by focusing on the way they relate simulation to present and
past land use/cover (LUC), splitting them into two main categories: path-dependent
scenarios (also called trend or business-as-usual (BAU) scenarios) and contrasting
scenarios. Several reviews about land change modeling approaches and their
classifications can be found in the literature (Baker 1989; Lambin 1997; Irwin and
Geoghegan 2001; Agarwal et al. 2002; Parker et al. 2003; Brown et al. 2004;
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Verburg et al. 2006; Koomen and Stillwell 2007; Murayama and Thapa 2011; Kelly
et al. 2013; Li and Yang 2015).

The result is that it is impossible to propose one single method for classifying
models that meets all the needs and takes into account all the different situations.
For practical purposes, we therefore decided to choose an existing classification,
which is widely accepted by the international researchers in the literature, i.e. the
classification proposed by the US National Research Council (2014). The NRC
groups the models into five main categories, plus a hybrid category, which includes
models that combine different approaches into a single modeling framework:

1. Inductive pattern-based models (PBM). Land change is modeled empirically
using statistical and machine learning methods and observations of past land
change to calibrate functions which describe the relationship between these
changes and the set of drivers.

2. Cellular approach which integrates maps for suitability for land use/cover with
neighborhood effects and information about the expected quantity of change.

3. Sector-based economic models based on the supply and demand for land
according to economic sectors and activities and trade between regions.

4. Spatially disaggregate economic approach. Models designed to identify the
causal economic relationships impacting the spatial equilibrium within land
systems.

5. Agent-based models (ABM) which simulate the decisions regarding land change
taken by actors that interact with each other and with their environment to make
changes in the land system.

The land change models presented in this book are orientated more towards
PBM than ABM and according to the NRC classification can be divided into two
groups of PBM and constraint CA based models.

There is an increasing interest in the literature in comparing the different land
change models (Pontius et al. 2008; Kelly et al. 2013; Mas et al. 2014; van Vliet
et al. 2016; Prestele et al. 2016). One of the aims of this book is to contribute to this
process. As the title of this book suggests, we focus on geomatic modeling
approaches applied in this context to land change, a term that has been used
synonymously for a number of years with LUCC and seems to be overtaking it as
the generally used term for this phenomenon. The objective of this book is also
clear to see from the methods we have chosen and the subjects we address. This
book deals first and foremost with spatially explicit data that can be mapped.
However its additional focus on land change and land change scenarios in the wider
field of environmental and social dynamics give it a certain consistency with a view
to practical application.
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3 Structure of the Book

This book is divided into five parts: Part I Concepts and tools, Part II
Methodological developments, Part III Case studies, Part IV Technical notes and
Part V Modeling software.

Part I is composed of four chapters each of which focuses on a specific stage in
modeling: calibration, simulation, validation and scenarios, authored by the book’s
editors and collaborators. The aim is to present the basic ideas and to offer a general
overview of the concepts, methods and techniques used in land change modeling.
Although there are no clearly defined boundaries between calibration and simula-
tion, and despite the fact that calibration and validation share several tools, the
authors try to set out a clear position regarding the concepts and stages in land
change modeling. The chapters on calibration, simulation and validation are
therefore all presented in the same way. A theoretical and methodological review
analyzes the approaches used to set the parameters in the different steps in the
calibration and simulation processes; while the chapter on validation describes the
set of concepts and tools used in this process. The first three chapters also contain
coordinated flowcharts and diagrams to explain the procedures in graphic form. The
different approaches for estimating parameters are complemented by a table with a
comparative analysis of the selected LUCC models. These models are practically
applied in the chapters in Parts II and III of this book and described and explained
in Parts IV and V. The chapter about scenarios aims to provide an insight into the
intricate world of scenario planning and serve as a guide to the scenario modeling
process. The chapter seeks to clarify the definition of inter-related and often
mixed-up terms such as scenario, prediction, forecast and storyline. Given the
extraordinary amount of scenario planning techniques and models found in the
literature, the chapter content has been structured in such a way as to alleviate what
some authors have described as methodological chaos.

Parts II and III are a collection of fourteen chapters written by researchers from
Brazil, Colombia, France, Mexico, Spain, the United Kingdom and the United
States. A first group of seven chapters (Part II) focuses on recently proposed
methodological developments that have enhanced modeling procedures and results.
The first chapter assesses the impact of using one or two time points in the cali-
bration process and the second chapter discusses the impact of using multiple
training dates in Markov chain models. The next chapter discusses the possibility of
including genetic algorithms in the calibration phase as a means of improving it.
The group of methodological developments also includes two chapters about the
influence of spatial scale in land change modeling, focusing in one chapter on
different experiments in data and parameters, and in the second on the comparison
between different land use and cover maps. The last two chapters present and
discuss the benefits encountered in participatory-based modeling in two very dif-
ferent areas, one in Spain and the other in Mexico.

A second group of chapters (Part III) has been labeled as case studies although
they also offer interesting and innovative methodological proposals. The first
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chapter tackles the extremely complex case of land dynamics in the Gaza Strip. This
is followed by a chapter focusing on land-use modeling in a cross-border region at
the heart of Europe (formed by the city of Strasbourg in France and the city of Kehl
in Germany). Issues and pressures suffered by natural protected areas within or near
large metropolitan areas are analyzed in a chapter about the Madrid region and its
recently declared Sierra de Guadarrama National Park. From this point, we cross the
Atlantic to present three case studies in North and South America. The first deals
with the challenges faced when modeling an area under redevelopment (in this case
a former air base in California) as opposed to the more common modeling studies of
urban expansion processes. This is followed by research from Chile which high-
lights the importance of its timber sector and explores various issues related to its
future and the difficulties in modeling it. This part ends with a chapter dedicated to
future intra-urban transport alternatives for the city of Bogota, Colombia. As is the
case in most big cities in the developing world, Bogota faces extraordinary chal-
lenges when it comes to balancing growth and sustainability, in which public
transport can tip the scales in favor of a desirable future or on the contrary towards
an unsustainable horizon.

All these chapters deal with spatiotemporal data and use some of the best-known
software packages for LUCC modeling. Each contribution follows a similar
structure, even if the modeled object, methods, kind of model and purpose vary a
great deal.

The book finished with two parts about Technical Notes and Modeling Software.
Both parts have been written by a large number of scientists each contributing with
their respective expertise in each of the technical notes and software presented. The
Technical Notes section (Part IV) aims to describe in a simple and intuitive way
some of the most frequently used methods in the calibration, simulation and vali-
dation stages in selected LUCC models. In each technical note, a short description
of the method is followed by technical details with highlighted illustrations and, in
some cases, with a complementary example or application.

The chapters on Modeling Software in Part V offer a compilation of short
presentations of the packages presented in this book, authored by their designers.
These include some of the best-known LUCC models: CA_MARKOV, Land
Change Modeler (LCM) (both in TerrSet), Dinamica EGO and CLUMondo, as
pattern-based models (PBM); and Metronamica, APoLUS, SLEUTH and LucSim
as constraint cellular automata-based models (CCAM). The short presentations all
follow the same structure. After the introduction, there is a description of the
methods implemented in the model, followed by some examples of applications, a
final consideration and a technical summary.

Acknowledgments The editors would like to acknowledge support provided by the
BIA2013-43462-P project funded by the Spanish Ministry of Economy and Competitiveness and
by the FEDER European Regional Fund.
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Chapter 2
LUCC Modeling Approaches
to Calibration

J.F. Mas, M. Paegelow and M.T. Camacho Olmedo

Abstract In land change modeling, calibration enables the modeler to establish the
parameters for the model in order to produce expected outcomes, similar to those
observed for the study area over a period in the past or consistent with a given
scenario. Depending on the modeling approach, the parameters are set using maps
which describe past change or information obtained from experts or stakeholders.
These parameters will control the behavior of the model during the simulation with
regard to aspects such as the quantity and the spatiotemporal patterns of modeled
change. This chapter focuses on different aspects of calibration, such as the
selection and transformation of input variables and the different approaches for
estimating the parameters of the most common pattern-based models (PBM) and
constraint cellular automata-based models (CCAM).
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1 Introduction

Calibration is the process whereby the modeler sets the parameters of the model so
as to enable it to reproduce outcomes similar to those observed for the study area.
The information used for calibration should be at or before the date at which the
predictive extrapolation begins (Pontius and Malanson 2005). Calibration is dif-
ferent from verification (also called “internal validation”) which refers to the pro-
cess of certifying the correct internal operation of a model, including debugging and
at times sensitivity analysis.

The source of the information used to calibrate the model will depend on the
modeling approach. In data-driven models, the modeler carries out an analysis of
the data, which typically describes land change over a previous period, in order to
obtain the expected pattern of change for the simulation period from this analysis.
In knowledge-based models, the information about change patterns is obtained from
experts or directly from the agents of change (Fig. 1).

Fig. 1 Flowchart of the general procedure in the calibration stage in LUCC modeling approaches
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One of the most important tasks in calibration is the selection and transformation
of variables which can explain future changes and the fine tuning of the parameters
that control the transition rules. In this chapter, we will review the approaches used
to set the parameters used to determine the quantity of modeled change, the rela-
tionship between change and its drivers, and the spatial and temporal patterns of
change. We will then highlight the related topics and the sources of uncertainty
which can affect the process of calibration and the calibration assessment. Authors
also describe calibration steps according to LUCC models.1 Some of them, such as
CA_MARKOV, Land Change Modeler (LCM) (both in TerrSet), Dinamica EGO
and CLUMondo, are pattern-based models (PBM). By contrast, Metronamica,
APoLUS, SLEUTH and LucSim are considered constraint cellular automata-based
models (CCAM).

2 Selection of Variables

2.1 LUC Transitions

First, the modeler should choose the land-use change he/she wants to model, the
level of detail required in the characterization of the change, the main changes
occurring in the study area and the characteristics of the input data. For example,
when multi-date maps or classified remotely sensed images are used, the number of
map categories will affect the number of mapped transitions. A broad transition
(e.g. deforestation) is likely to be mapped more accurately than more detailed
transitions such as “pine forest to crop cash agriculture” or “dry forest to temporal
agriculture” because most of the confusion between mapped categories occurs
between similar land use/cover (forest categories, agriculture categories). In fact, it
might be easier to model these two types of deforestation process in a separate way
because they respond to different agents, motivations and conditions. The choice of
the modeled transitions can also be guided by information from interviews (Voinov
et al. 2016). As pointed out by Hewitt (2015), modeled LUC transitions need to be
carefully chosen, and a reclassification of LUC categories available in existing
cartography should eventually be carried out. Models based on a land systems
approach allow us to simulate both LUC conversions and changes in land use
intensity (van Asselen and Verburg 2013).

Finally, it is often difficult to model just the few specific transitions that interest
the modeler if other transitions also play an important role in the land change
dynamic of the entire system. For instance, if a modeler is interested in

1See the short presentations in Part V of this book about (in alphabetical order) APoLUS,
CA_MARKOV, CLUMondo, Dinamica EGO, Land Change Modeler (LCM), LucSim,
Metronamica and SLEUTH. The authors are also grateful to all contributors who helped us
understand the different software packages.
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deforestation caused by agricultural expansion in a region where important areas of
cropland are also being lost to urban expansion, he should also consider the latter
transition because it is likely to increase the pressure on forest as a source of land to
replace the lost agricultural areas.

Analysis of changes based on LUCC-budget (Pontius et al. 2004, see Technical
Notes in Part IV of this book) or intensity analysis (Aldwaik and Pontius 2012) can
give useful insights to help the modeler choose the transitions to consider in the
model.

2.2 Explanatory Variables of Change

The modeler should select the drivers, or explanatory variables that play a role in
the land changes. Even in automated approaches, the selection of initial input
variables is based on expert knowledge although data availability is often a major
limitation. These variables are diverse and describe different aspects of the study
area and its context such as accessibility (distance from human settlements, roads,
markets…), suitability of the terrain for diverse human activities (slope, elevation,
rainfall, soils…), human activities (agriculture, sawmills and human pressure
indices such as population density, marginalization), public policies (protected
areas, subsidies for cattle ranching or agriculture). It is worth noting that
pattern-based models can produce quite accurate prospective maps using only
variables, such as slope and distances that do not explain the causes of the change
and focus only on its location. By contrast, process-based approach models will
concentrate on variables closer to the causes of the change because they seek to
simulate the process of change.

Variables can be divided into static and dynamic variables. Static variables do
not change over the course of a simulation. Dynamic variables, which value change
during the simulation, include distance to roads that will be built according to a
schedule or whose construction is simulated in the model. Such models, called
¨road constructor¨ in some software packages are calibrated by identifying zones of
attraction, such as valuable timber areas, and zones of resistance to the path of roads
such as flooded or rugged terrains. Other dynamic variables are distances to specific
LUC areas, to settlement projects or to conservation units and are usually calibrated
using the first date of the calibration period, based on the assumption that the
changes observed during the calibration period are explained by the landscape
configuration at the beginning of the period.

During the last decade, the amount of available information increased dramati-
cally. Many government agencies have made their information available online,
often in a digital GIS compatible format. Remote sensing data is also increasingly,
often freely, available. The quality of the imagery has also improved greatly: high
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spatial resolution images are now common and recently launched satellite con-
stellations enable space agencies to produce images with both high spatial and
temporal resolution. Another challenging new source of information is volunteered
geographic information which produces a large amount of firsthand information
(Goodchild 2007; Jokar Arsanjani et al. 2013).

When selecting the variables to be integrated into the model, different strategies
are often carried out in which the drivers are analyzed using statistical indices,
expert knowledge, reviews of the literature and workshops with stakeholders.
Step-by-step regression models help select the variables with the highest explana-
tory power. Many other indices are used to evaluate the strength of the relationship
between two variables such as for example the average of the absolute value of the
weights of evidence (Mendoza Ponce et al. 2017) or the importance of weight
(Sangermano et al. 2012). In some models based on the assumption of the inde-
pendence of the explanatory variables, indices such the Cramer index, chi square,
correlation index, Kappa index and joint information uncertainty are used to detect
correlated explanatory variables (Mas et al. 2014). Based on these analyses, one or
various variables among the correlated variables are discarded from further analysis
to reduce correlation. For example, Almeida et al. (2005) used the criterion pro-
posed by Bonham-Carter (1994) and considered two variables as correlated when
they had Cramer’s Coefficient and Joint Information Uncertainty values of over 0.5.

2.3 Variable Transformation

Variables often have to be adapted into a suitable format for the analysis procedure.
For instance, some statistical methods, such as weights of evidence (see Technical
Notes in Part IV of this book), require categorical input variables. Thus, continuous
variables such as distances should be transformed into bins. By contrast, when
using methods such as logistic regression or multilayer perceptron (see Technical
Notes in Part IV of this book), modelers try to avoid categorical variables because
each category is managed as a dummy binary variable, increasing the dimension-
ality of the model. Categorical variables can be transformed into continuous ones
using the Evidence Likelihood transformation based on the relative frequency of
cells belonging to the different categories within areas of change. In logistic
regression, the transformation of explanatory variables through algebraic operations
such as exponential, quadratic, logarithmic or power, can be done to achieve linear
relationships with the logit of the dependent variable. The creation of suitability
maps using fuzzy transformation and weighting can also be considered as variables
transformation.
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3 Parameters to Calibrate

3.1 Quantity of Changes

The main objectives of a land change model generally include the prediction of the
quantity of change that may occur in the future.

In past trend-based models, the rate of change is obtained from the analysis of
change which occurred during a previous period, the “calibration period”. As
pointed out by Chen and Pontius (2011), the selection of the calibration period often
depends on data availability and can have an important influence on the predictive
performance of the model. Broadly speaking, in short period calibration there is a
risk of extrapolating change quantity in exceptional moments, while if trends are
analyzed over longer intervals, the extreme tendencies tend to be averaged out. For
example, Fig. 2 illustrates annual deforested area in the Brazilian Amazon between
1989 and 2015 and average rate computed for periods of three and five years. The
rates calculated over longer periods do not present the large fluctuations observed in
yearly data. However, there is no fixed rule as to the appropriate calibration period
when the rate of change seems erratic. Temporal resolution includes the number of
available dates and time intervals. As the most commonly used approaches include
only two training dates, the choice of training dates is crucial. The dataset showing
the annual deforested area in the Brazilian Amazon (Fig. 2) offers the possibility of
computing many rates of change using two training dates. Model output will vary
greatly depending on the pair of training dates selected, due to the large fluctuations
in the rate of deforestation over time. Paegelow et al. (2014) highlighted the impact
of different training dates on the accuracy of a model based on a dataset like this. In
this book, Paegelow examines the potential errors resulting from only considering
two past dates in Markov projections.

Fig. 2 Deforested area in the Brazilian Amazon (1989–2015). Source INPE, Brazil
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Many LUCC models are based on Markov chains. As detailed in the technical
note in Part IV of this book, a transition matrix for the calibration period can be
obtained by overlaying two LUC maps and transforming them into an annual
Markov chain probability matrix. This matrix indicates the probability of transition
from one category to another over one year and allows us to project the estimated
areas of each LUCC transition. There are several methods for obtaining the annual
matrix. The method based on the eigenvector and eigenvalues of the original matrix
(see equation in Takada et al. 2010 or Mas et al. 2014) can prove problematic: (1) if
they produce one or several matrices with complex or negative numbers and
(2) when there are two matrices in the results (even if they do not contain complex
or negative numbers). These matrices cannot be interpreted as probabilities (Takada
et al. 2010).

To overcome the limitations of Markov projection due to the assumption of
stationarity of the transition probabilities over the calibration and simulation peri-
ods, Collins et al. (1974) calculated dynamic transition probabilities by using dif-
ferent transition matrices at certain time intervals or computing dynamic transition
probabilities by postulating rules of behavior for LUC categories.

Markov chains are used in population projection: Population is divided by age
and the transition matrix indicates death and birth rates for each group (Shryock and
Siegel 1976). It seems logical that the number of births and deaths will depend on
the size of the population in each age group and their corresponding birth and death
rates. A large population will have more births than a small population with the
same birth rate. However, the application of this logic to LUCC rates is far from
straightforward. Suppose that there is a large forest region with an annual defor-
estation rate of 5%. A Markov projection will project a decrease in the total
deforested area each year, because the 5% rate will be applied to a diminishing
forest area. Nevertheless, the area deforested annually will probably depend on
many others factors (e.g. market or population-related) and not on the area of
remaining forest, as least until remaining forest areas are very small and confined to
inaccessible areas.

Moreover, the Markov assumption that a constant proportion of a given category
will present a certain transition at each time step will result in extrapolations
reaching a state of equilibrium in terms of the area of each category (Petit et al.
2001), an equilibrium that is rarely observed in true situations. Runfola and Pontius
(2013) proposed the Flow matrix, which expresses the sizes of the transitions
among categories between two dates as an alternative to the Markov matrix.

If the past-trend-based projection seems to be a risky option due to the large
fluctuations in change over time, the modeler can try to model the quantity of
change. This can be done by external models using exogenous variables. For
example, Barni et al. (2015) calculated the rate of deforestation in a non-spatial
numerical model which takes into account planned road building and a migration
factor that simulated increased deforestation by expected migrants to the region
after road building. This model was calibrated using observed past trends.
Vieilledent et al. (2013) also modeled deforestation including the effect of popu-
lation density.
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Models such as CLUMondo represent land-use change in a different way from
area-based demand. Input for this model comes in the form of exogenous demands
for goods and services, which can be supplied by different land systems charac-
terized by their land cover and their land management intensity. This means that
increasing demand for crop products can lead to a combination of expansion in
agricultural area and intensification of existing cropland.

Table 1 shows the approaches used by eight popular software packages to
estimate the quantity of change. Markov chain is the most common approach,
particularly in pattern-based models.

3.2 Function Describing the Relationship Between
Change and Drivers

In many pattern-based models, the allocation of change is generally based on maps
of change potential which indicate, for each transition, the propensity of change
(see Chap. 3 about simulation). This map is usually based on a data-driven analysis
of past patterns of change with respect to the explanatory variables. In this way, the
map of change potential reflects the changes in the distribution of land-use that
occurred during the calibration period. There are many methods used to establish
the relationship between the change observed during the calibration period and the
variables. The most commonly used are brute force, logistic regression, weights of
evidence, decision tree, multilayer perceptron and genetic algorithm (for some of
these methods see Technical Notes in Part IV of this book). Some authors combine
various methods such as weights of evidence and genetic algorithms (Soares et al.
2013). These methods can be distinguished by their ability to fit non-linear rela-
tionships. High flexibility is not always an advantage due to overfitting. When the
model is overfitted to specific conditions of the calibration period it is unable to
predict the next period (simulation step) correctly. These methods are mainly
data-driven. However, the map of change potential can also be partially or totally
based on expert knowledge as in Overmars et al. (2007) who drew up their map on
the basis of expert advice from agronomists. Some of the methods, such as the
weights of evidence in Dinamica EGO, enable users to adjust the importance
attributed to expert knowledge from a totally statistical, data driven approach (no
modification of the computed values of the weights) to an exclusively expert
knowledge approach (complete edition by the expert). A hybrid approach, com-
bining data-driven and expert knowledge, can be obtained with a partial modifi-
cation of the weights (Mas et al. 2014).

One alternative to the change potential map is a suitability map that expresses the
appropriateness of a location for each type of LUC. This map is frequently created
using a multi-criteria analysis (see Technical Note in Part IV of this book). The
chapter on simulation (see Chap. 3) provides a complete discussion of both the
change potential and suitability approaches.
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In CA constrained-based models, calibration involves parameter values for the
neighborhood (van Vliet et al. 2013). For instance, models such as Metronamica
and APoLUS compute a total transition potential combining the neighborhood
effect, accessibility, suitability and zoning (see the technical note about the NASZ
model in Part IV of this book). Usually, calibration proceeds systematically by
fitting the simulated and the real maps for the calibration period as well as possible
for each of the parameters. The procedure for evaluating goodness of fit involves
visual inspection, cell-by-cell comparison measures such as Ksim (van Vliet et al.
2011) and spatial pattern indices such as fractal dimension or clumpiness.

The LucSim model uses a decision tree algorithm to determine a set of transition
rules. Calibration data is split into training and testing data to avoid overfitting (see
the short presentation about LucSim in Part V of this book). When calibrating the
SLEUTH model, the model simulates a map of land-use at the end of the calibration
period, carrying out a large number of simulations to assess its consistency.
Thirteen performance metrics are used to assess the coefficient values. The best five

Table 1 Approaches used to estimate the quantity of change in eight software packages

Pattern-based models (PBM) Constraint CA-based models (CCAM)

CA_Markov
TerrSet

LCM
TerrSet

Dinamica
EGO

CLUMondo Metronamica
and APoLUS

SLEUTH LucSim

LUC/
continuous
variable

LUC LUC LUC LUC LUC LUC and
Urban
Growth

LUC/
Continuous
variables

Time points 1 or 2 2 2 1 2 Min 4, no
maximum

1 or 2

Estimation
of change
quantity

Markov Markov,
external

Markov,
external

Exogeneous
demand for
goods and
services

External CA
growth
rule
parameters

Markov

Table 2 Main approaches used for the analysis of drivers. Additionally, models may use tools to
help understanding LUC and setting model´s parameters

Pattern-based models (PBM) Constraint CA-based models (CCAM)

CA_Markov
TerrSet

LCM
TerrSet

Dinamica
EGO

CLUMondo Metronamica
and APoLUS

SLEUTH LucSim

Data driven
statistical
approach

Logistic
regression

Weight of
evidence

Logistic
regresion

Cellular
automata

Data driven
machine
learning

Multiplayer
perceptron
sim weight

Genetic
algorithm

May be used to
generate
suitability map
external to model

Brute
force,
Genetic
algorithm

Decision
trees

Knowledge
driven
approach

Multicriteria
evaluation

Weight
edition

Expert based
parameterization
several
parameters

Empirical,
trial and error
tested against
benchmarks.

CA rules
are hard
coded,
but
adjust

No
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coefficients are selected using brute force or a genetic algorithm (Silva and Clarke
2002, Clarke in this book) (Table 2).

3.3 Spatial Patterns

Spatial patterns involve the distribution, shape and size of the change patches in the
landscape. Cellular automata (CA) are often used to enable the creation of small
groups of cells which underwent change, simulating spatial patterns such as agri-
culture extension and urban growth (see Technical Notes in Part IV of this book).
CA is a popular spatial simulation tool due to its simplicity, its ability to reproduce
complex emergent dynamics and its affinity with raster GIS format (Torrens and
O’Sullivan 2001). Calibration involves identifying the parameters which control the
CA behavior based on training data. Torrens and O’Sullivan (2001) pointed out the
need for stronger calibration techniques for CA because they are often calibrated by
manual tuning.

A few studies incorporate landscape pattern metrics into the calibration proce-
dure to establish the parameters for CA. For instance, Silva and Clarke (2002)
determined the parameters of SLEUTH model CA by brute force, trying many
combinations of the control parameters and computing measures of the goodness of
fit between the simulated pattern and the real one. Soares-Filho et al. (2002) used a
trial-and-error method to calibrate CA using landscape indices. Due to the large
number of simulations involved, these methods are computation intensive. Li et al.
(2013) proposed a pattern-calibrated method based on landscape metrics for cali-
brating CA using genetic algorithms. Liu et al. (2014) proposed an index called
landscape expansion index (LEI) to calibrate a CA able to simulate infilling,
edge-expansion and outlying urban growth patterns. Certain models such as
Dinamica EGO have a mechanism for controlling the distribution of change with
respect to the change potential and avoid restricting the simulated change to the
highest change potential cells. This mechanism is controlled by a parameter which
should be determined during calibration. Mas et al. (2015) used a genetic algorithm
to calibrate this parameter along with CA parameters.

Finally, some models are based on objects rather than on cells. For example,
Houet et al. (2014) carried out landscape simulations at fine resolution, based on
elementary units (agricultural parcels) represented by vector-based objects.

Spatial patterns also involve the identification of zoning effects related with
incentives or constraints in land-use regulation policies such as subsidies for cattle
ranching or conservation. The zoning effect is often controlled by a coefficient to
adjust the change potential in these areas. Highly restrictive zoning may result in a
deterministic and unrealistic model. These patterns are also identified and quantified
during calibration.

At another level, the spatial pattern may involve the identification of sub-regions,
which present different processes and patterns of change. For instance, when a
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study area includes both mountainous and flood plain areas, different rates and
patterns of change can be expected even for the same transition. In such cases, it
may be useful to split the study area into various sub-regions in which independent
calibration processes are carried out. For instance, Mas (2016) used a
Geographically Weighted Regression model to identify sub-regions with different
patterns of deforestation and carried out an independent calibration in each region.

3.4 Temporal Patterns

Temporal patterns include the sequence of land-use observed in the landscape. For
example, when Houet et al. (2014) simulated LUCC they took into account farming
practices such as crop successions. Chang and Mas (2017) develop a model of a
slash and burn agriculture landscape in which a fallow period is necessary after a
few years of cropping. This temporal behavior is generally calibrated using infor-
mation from the literature or interviews, as a multi-date database with a high
temporal resolution (e.g. yearly map) is often not available.

4 Calibration Evaluation

Calibration can be evaluated using the same methods as used to validate the model
(see Chap. 4 about validation). For instance, for the past-trend pattern model, the
change potential map can be compared with the changes that took place during the
calibration period. Change can also be simulated from the beginning of the cali-
bration period to create a simulated map for the end of this period. The simulated
and observed (true) maps can then be compared. However, this evaluation only
provides information about the goodness-of-fit of the calibration procedure. As we
will see in the next section, this goodness-of-fit is not always a good indication of
the predictive power of the model.

5 Source of Uncertainty

There are many sources of uncertainty that can obstruct the calibration of the model.
First, difficulties may arise in identifying the causal relationships between the

land change processes and the explanatory variables used during calibration. In
certain cases, the true drivers of land change are not identified or are not available.
However, it is often impossible to establish a strong relationship between the land
change and a particular set of variables due to the complexity of land change. Land
change is related with environmental, socio-economic, historical and cultural dri-
vers and acts as a complex system. Brown et al. (2004) argue that the failure to
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incorporate detailed information (e.g. survey-based) about household or community
structures can create a specification bias because LUCC processes may be different
for different types of households or communities. Additionally, in a large or
heterogeneous area, different drivers may be active in different places, which makes
finding causal explanations difficult (Walker et al. 2000).

Data inputs can also be a serious source of uncertainty. Land-use changes are
often obtained from remote sensing data and accuracy assessments show that image
processing often produces a large number of errors due to spectral confusion and
other limitations. Consequently, the estimated rate of change and its spatial dis-
tribution can show a large amount of error that will propagate in subsequent pro-
cessing. Change obtained from other sources such as interviews or volunteered
geographical information can also show many errors or bias (Foody et al. 2013).
Similarly, the explanatory variables used in the model may also have errors or be
outdated. When using aggregated data such as census data, models can suffer from
the modifiable areal unit problem where the shape and size of data aggregation (e.g.
municipalities) affects the results of statistical analysis (Openshaw 1984).

Another source of uncertainty is the non-stationarity of the land change pro-
cesses. As shown in Fig. 2, the rate of change can present large fluctuations over
time. This lack of consistency can make the change patterns during the calibration
and simulation periods very different. The non-stationarity of the land change
process involves not only the rate of change but also the nature and the spatial
distribution of the changes. For instance, agriculture can undergo drastic changes in
response to demand for new crops. It is possible that the new crops may be grown
on land with adverse environmental conditions where previously no crops could be
planted, so rendering the change potential map obsolete. For instance, Mas et al.
(2004) reported that the variation in the relative importance of the explanatory
variables of deforestation in a tropical region of Mexico between the calibration
period, dominated by cattle ranching, and the simulation period, when rice culti-
vation was introduced, led to errors in predicting the location of deforestation.

Finally, uncertainty can be the result of the design of the model itself. The model
ignores important exogenous dynamics (e.g. price fluctuations, new market emer-
gency) and oversimplifies certain relationships. For example, logistic regression can
only model an S-shaped relationship between land change occurrence and an
explanatory variable, when the true relationship may be an optimal range.

6 Concluding Remarks

Calibration enables modelers to set the model parameters that will control the
behavior of the simulation with respect to aspects such as the quantity of change, its
spatial distribution and spatio-temporal patterns such as the size and shape of
patches and the succession of land-use categories over time. Many approaches are
used to calibrate land change models including statistical analysis (mainly regres-
sion models and weights of evidence), machine learning (neural networks and
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genetic algorithms) and expert knowledge. Van Vliet et al. (2016) carried out a
review of calibration approaches reported in recently published applications of land
change models. They found that statistical analyses and automated procedures are
the most common approaches, while expert knowledge and manual calibration are
less frequently used.

Houet et al. (2016) distinguish two contrasting modeling approaches: (1) a
path-dependent approach aimed at mimicking past changes into the future by
applying the calibration procedure to a past period. In this first approach, the
amount of change can be modified and incentives or constraints maps can be
incorporated to produce different scenarios. These models enable researchers to
simulate trend-based scenarios and explore various alternative land management
scenarios when the quantity and the processes of change do not differ significantly
from observed past changes. (2) A non path-dependent approach which assumes
that LUCC models are used to spatially represent pre-defined contrasted scenarios.
In this case, the parameterization of the future quantity of change does not depend
on input maps which represent past changes. However, the parameterization of the
allocation of future changes is usually defined by change potential maps obtained
by observing past changes. In both modeling approaches, calibration is therefore a
critical step. Success in calibrating the model will depend on the stationarity of
change, especially in the path-dependent approach.

New applications of land change models involving the evaluation of land-based
policies will require increasingly process-based models, able to model complex
processes with feedbacks within and between the socioeconomic and biophysical
systems across scales (National Research Council 2014). The improvement of land
change models is likely to draw on multidisciplinary and interdisciplinary devel-
opments and drastically change the way models are calibrated.
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Chapter 3
The Simulation Stage in LUCC Modeling

M.T. Camacho Olmedo, J.F. Mas and M. Paegelow

Abstract In land change modeling, the simulation stage uses parameters and
processes to allocate changes by resolving competition between transitions. They
are also used to reproduce spatiotemporal patterns of modeled change. There are
also several advanced options that try to improve the simulation outputs. This
chapter focuses on these simulation steps and on the different types of simulated
maps (soft and hard outputs). A theoretical presentation of concepts and methods
for each simulation step and simulation output is followed by a comparative
analysis of the different approaches for estimating the parameters for the most
common pattern-based models (PBM) and constraint cellular automata-based
models (CCAM).
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1 Introduction

One of the greatest challenges in land change models is to find effective ways of
simulating spatiotemporal changes. Simulation outputs may reflect the real situation
quite well, but the objective is more to design possible lines of development, than to
forecast real future development. Several terms are used to identify the different
kinds of land change model outputs, such as simulation, projection, prediction,
forecast or scenario. Sometimes the difference between these terms is not clear
(Paegelow and Camacho Olmedo 2008; Brown et al. 2013; Kelly et al. 2013).

The most generalized term used to designate the result of a time projection
model is simulation, which is also used to describe the process involved.
“Simulation consists to make evolving a system abstraction over time so as to
understand the functioning and the behavior of the system and to grasp some of its
dynamic characteristics with the aim to evaluate different decisions” (Coquillard
and Hill 1997). Simulations can be obtained for a current situation (in order to
compare with the real situation and to validate the model), a past situation (to
understand how land-use has evolved) (Gonçalves and Dentinho 2007; Camacho
et al. 2008; Chang-Martínez et al. 2015) or, and most frequently, to assess future
change. This kind of simulation is known as a projection. A projection is a
description of a future land system and the pathway leading to it.

Prediction and forecast are time extrapolations and the—predicted—result
shows what is most likely to happen at an unknown moment in the future
(prospective simulation). Kelly et al. (2013) differentiate between prediction, when
estimating the value “… of a system variable in a specified time period given
knowledge of other system variables in the same time period”, and forecasting,
which “… refers to predicting the value of a system variable in future time peri-
ods… without knowledge of the values of other system variables in those peri-
ods…”. Prediction therefore seeks to achieve some degree of accuracy and needs
data for calibration and validation. Forecasting is more uncertain and can include
likely scenarios. Scenario is “a coherent, internally consistent, and plausible
description of a possible future state of the world” (Houghton 1995). It shows us
what could happen. Modelers frequently apply different underlying conditions
(such as macroeconomic parameters) or dynamic variables (that are changing
during the simulation) so that the simulations produce different results that describe
a framework of possibilities providing predictive answers (see Chap. 5 about
scenarios).

In order to produce the most appropriate land change model output, the cali-
bration stage (see Chap. 2 about calibration) integrates all the necessary parameters
and processes required to enable the model to evaluate potential change and esti-
mate the quantities of change that will take place. Later, although the two stages
may sometimes overlap, we embark on the simulation stage, which provides
parameters and processes to allocate changes and reproduce spatiotemporal pat-
terns, in addition to several advanced options (Fig. 1).
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In this chapter wewill focus on these simulation steps.Wewill begin by presenting
the different types of simulationmaps,whichmust later be validated using the relevant
methods and tools (see Chap. 4 about validation, Paegelow et al. 2014). A theoretical
presentation of concepts and methods for each simulation step and simulation output
is followed by a comparative analysis of the most common land use and cover change
(LUCC) models.1 Some of them, such as CA_MARKOV, Land Change Modeler
(LCM) (both in TerrSet), Dinamica EGO and CLUMondo, are pattern-based models
(PBM), while Metronamica, APoLUS, SLEUTH and LucSim are constraint cellular
automata-based models (CCAM).

Fig. 1 Flowchart of the general procedure in the simulation stage in LUCC modeling approaches

1See the short presentations in Part V of this book about (in alphabetical order) APoLUS,
CA_MARKOV, CLUMondo, Dinamica EGO, Land Change Modeler (LCM), LucSim,
Metronamica and SLEUTH. The authors are also grateful to all the contributors who helped us
understand the different software packages.
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2 Simulation Outputs

2.1 Soft Outputs

The first product of an LUCC modeling process is a soft output (soft-classified map)
(Mas et al. 2014), where each pixel shows the potential or the likelihood of a
specific transition or category occurring, or the probability of belonging to one or
more classes. Several expressions have been used to describe soft outputs in the
literature: change potential (Mas et al. 2011, 2014; Pérez-Vega et al. 2012), sus-
ceptibility to land change (Silva and Tagliani 2012), propensity to change (Mas
et al. 2014), transition potential (Bonham-Carter et al. 1989), transition probability
(Soares-Filho et al. 2001) and suitability (Steiner et al. 2000). While several of these
terms are intended to be generic (such as change potential), others describe a
specific type of soft result.

One of the most important characteristics that define and classify soft outputs is
their temporal reference. Soft outputs are obtained from a calibration period (from two
time points t0-t1, or from just one time point t1) and, while some soft outputs are not
related to a specific subsequent date, i.e. they have no temporal reference, other soft
outputs are related to a subsequent date (t2), attempting to estimate the quantity of
changes/demands and their allocation in space. The former are called intermediate
soft-classified maps (Camacho Olmedo et al. 2013) and the latter soft-classified maps.

In the wide body of research on output validation, only a few contributions focus
exclusively on soft simulation results (Pontius and Cheuk 2006; Conway andWellen
2011; Wang and Mountrakis 2011; Pérez-Vega et al. 2012; Kolb et al. 2013).

2.1.1 Intermediate Soft-Classified Maps

Intermediate soft-classified maps are used as rank-order indices and do not refer to a
specific date in the future. They do not assess the probability of change, because
they do not include the information about how many pixels will be affected by
estimated transitions. Mas et al. (2014) argued that, when using neural networks or
other machine learning tools, the values cannot be considered as probabilities in a
strict sense, even if they are interpreted in the same manner, i.e. as values ranking
the potential for change. This means that these maps are difficult to compare
because a higher value (ranking) does not necessarily imply a higher anticipated
quantity of change than a lower value. The simulated amount of changes will
depend on how the model estimates these amounts, how it allocates changes after
conflict resolution, and how model parameters produce variations in both quantity
and allocation (Camacho Olmedo et al. 2015).

We identified two main, slightly different approaches for intermediate soft-
classified maps: suitability maps and transition potential maps, that is, the
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suitability of a location for a given land use and cover (LUC) versus the potential of
this transition occurring (Camacho Olmedo et al. 2013; Kolb et al. 2013). The
distinction between suitability (i.e. the LUC state) and transition potential (i.e. the
LUC transitions) is a major issue when comparing the application of modeling tools
because it lies at their conceptual core. Using different terms, Koomen and Stilwell
(2007) discuss allocation models, which allocate land use to a particular location
based on its characteristics, or transformation models, which begin with one type of
land use and simulate its possible conversion into a different type.

A transition potential map is “…an index on a scale from 0 to 1, where higher
numbers indicate pixels that have a combination of explanatory values that are more
similar to places where the particular transition occurred during the calibration
interval compared to places where the transition did not occur…” (NRC 2014). We
can therefore assume that a suitability map is also an index on a scale from 0 to 1,
where the higher numbers indicate pixels that have a combination of explanatory
values that are more similar to places where the particular LUC category is located
in the calibration period/date than to the places where the LUC category is not
located (Fig. 2). The combination of values corresponding to explanatory variables
is determined in different ways and is one of the most important challenges in land
change models (see Chap. 2 about calibration).

One of the main differences between the suitability-based approach and the
transition potential maps approach is in how changes over time are considered. The
suitability-based approach does not explicitly consider past changes. It does not
necessarily pay attention to past history. Moreover, a suitability map may be con-
sidered either a static map or a global evaluation of the state of each land use and
cover (LUC). A suitability map expresses the most appropriate use of a parcel of land
according to a subjective decision based on knowledge or opinion, in this way
determining to what extent a given piece of land is suitable for a specific use (Steiner
et al. 2000), or assessing its potential for a specific use (Littleboy et al. 1996).
Suitability is not designed necessarily for prediction, since humans frequently use
land for purposes for which it is not suitable. In cellular models based on von Thünen
(1966) and Alonso (1964), land suitability depends on the cost of renting land for
different uses. Starting from the premise that land users aim to maximize profit, each
parcel is converted to the use with the highest land rent at that location (NRC 2014).
In some constraint cellular automata-based models suitability has a more limited
meaning and is related specifically to the biophysical conditions (e.g. slope, etc.) that
can influence the likely LUC category (Van Delden et al. 2007).

Suitability maps are obtained more frequently in up to one time step (generally,
the last step t1); however, several land change models based on suitability maps
(Conway and Wellen 2011; Yu et al. 2011, 2015) incorporate information from a
previous time period as past changes (e.g., gains, losses or no change) that can be
introduced as a factor or as a constraint to enhance the approach (Paegelow and
Camacho Olmedo 2005; Villa et al. 2007). The inclusion of this information from
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the calibration period or from the last date does not produce a pure suitability map
but one that pays partial attention to previously implemented human land-uses that
are not suitable but are common.

In contrast, the modeling tool based on transition potential evaluates the change
potential for each possible transition, where the future potential of space is split into
specific transitions across a finite number of LUC categories. This approach indi-
cates that the transition potential maps are derived explicitly from past changes
(from two known LUC time steps t0– t1 from the calibration period), and thus, the
reference map for creating the factor must be a real transition from t0 to t1.
A transition potential map expresses a researcher’s knowledge of the relative
likelihood of transition of one parcel relative to another (Bonham-Carter et al. 1989;
Sklar and Costanza 1991; Eastman et al. 2005; Sangermano et al. 2010; Wang and
Mountrakis 2011; Mozumder et al. 2016), that is, it communicates the likely future
based on an extrapolation from the observed past period.

Comparing both approaches, suitability-based models are more stable and pro-
vide better results for simulations over a long period with non-stationarity change
patterns, while models based on transition potential are more appropriate for sim-
ulations over a short period and stationarity change patterns. Suitability maps reflect
the changes accumulated throughout the human history of a region and do not
specify the candidates for LUC change. This means they are made up of all the
different processes that can occur to and from the different LUC categories.

Fig. 2 Examples of intermediate soft-classified maps: suitability for urban areas (left) and
transition potential maps from irrigated crops to urban areas (right)
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However, transition potential maps focus on changes that occur during the cali-
bration period and are specific to each LUC candidate transition. Suitability maps
could offer larger statistical significance, because they cover all historical changes
and stability, while transition potential maps could be less representative because
they refer to a short, well-defined, recent period. These two types of intermediate
soft-classified maps are compared in other papers (Camacho Olmedo et al. 2013;
Kolb et al. 2013; Mas et al. 2014; Ozturk 2015).

2.1.2 Soft-Classified Maps

Depending on the models, soft-classified maps are maps where each pixel has a
partial membership of several categories simultaneously. They can be considered as
probabilities because they are projected to a specific date taking into account the
estimated quantities during the simulation interval (Hsieh and Juang 2009; NRC
2014). These maps can therefore be effectively compared because a higher value in
these maps does imply a higher anticipated quantity of change than a lower value.
They refer to a specific future date, estimating the quantity of land changes/
demands and their allocation in space. Nevertheless, the soft output does not show
the areas that will change, but rather their vulnerability to change or their likelihood
to precipitate change (Eastman 2015) (Fig. 3).

The soft-classified map or set of soft-classified maps (one for each category or
class or for each transition between them) can have values in an interval of 0-1,
indicating the probability that the class exists within the pixel, which is derived
from the uncertainty. As Pontius and Cheuk (2006) state “…many classes may exist
within the pixel, but the scientist may be uncertain concerning where the specific
classes are located within the pixel; therefore, the scientist assumes a random spatial
distribution of the classes within the pixel. The membership to each class is the
probability that the class exists at a randomly selected point within the pixel. This
probability equals the proportion of the pixel that the class constitutes…”.

In recent research, there is an increasing interest in these types of map, which are
not limited to a single discrete LUC per pixel, but provide continuous fields that can
consider LUC as quantitative data or fractional cover of different categories (NRC
2014). Although until recently soft-classified maps tended to be disregarded in the
results, they are now drawing more and more attention in the literature because they
can offer a better picture of the true proportion of each category within the study
area (Fisher and Pathirana 1990; Settle and Drake 1993; Foody and Cox 1994;
Zhang and Foody 1998; Pontius and Cheuk 2006).
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2.2 Hard Outputs

The hard output (hard-classified map), also known as an allocation map, is gen-
erally accepted as one of the most important results in the simulation stage. It is
viewed as simulation sensu stricto. In a hard-classified map, each pixel is allocated
the same categories as those used in the calibration step and each pixel belongs to
exactly one category. This form of simulation is subject to two main conditions.
Firstly that the modeled variable has a discrete number of states (categories or
classes), which are the same at any time step, unlike soft outputs, and secondly that
the state can only change at discrete time steps (Legendre and Legendre 1984).

In this last sense, hard outputs are usually referred to as static representation,
even if some models can produce successive hard outputs relating to each time
step. Therefore, a descriptive model alone cannot cover the system’s dynamics and
complex processes (Batty 2003). As Bregt et al. (2002) explain “…Combinations of
data, representing the initial status, and some rules or models describing the change
of the environment over time, are needed. These rules range from relatively simple
expert tables describing change in discrete intervals over time to complex dynamic
simulation models describing change at continuous time intervals…”.

Hard outputs are commonly obtained in prospective modeling, i.e. for future
dates. Nevertheless, examples of hard outputs from retrospective simulations can
also be found in Camacho Olmedo et al. (2007, 2008), Fuchs et al. (2015),
Gonçalves and Dentinho (2007) and Chang-Martínez et al. (2015).

Fig. 3 Example of a
soft-classified map created by
combining maps of areas with
transition potential to urban
areas, irrigated crops and
natural vegetation
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A hard-classified map varies depending on the decisions taken during simula-
tion, regarding allocation type, the spatial and temporal patterns and procedures and
the advanced options chosen for each model approach (Fig. 4) (cf. Sect. 3). As
Pontius and Malanson (2005) demonstrate, the choice of the parameters within a
single model produces greater variation in accuracy than the choice between
alternative models. Most hard output assessment methods try to gauge their accu-
racy with respect to real data. The comparison and assessment of hard outputs using
different simulation parameters and models is of increasing interest in land change
modeling literature (Villa et al. 2007; Pontius et al. 2008; Fuller et al. 2011; Mas
et al. 2011, 2014; Wang and Mountrakis 2011; Arsanjani 2012; Sinha and Kumar
2013; Camacho Olmedo et al. 2015).

2.3 Comparing the Simulation Outputs of Different LUCC
Models

If we compare the simulation outputs of the different LUCC models (Table 1) with
regard to intermediate soft-classified maps, CA_MARKOV and CLUMondo use
maps of the suitability of a location for each of the LUC categories, while
Dinamica EGO, LCM, Metronamica and LucSim use transition potential maps. In
APoLUS, by default the outputs only allocate land use, but the model can be
modified to output the intermediate map, i.e. transition potential. In SLEUTH, the
intermediate soft-classified maps are expressed as land use uncertainty and the
probability of urban growth.

LCM TerrSet, Metronamica, APoLUS and SLEUTH provide soft-classified
maps. LCM TerrSet can obtain the soft-classified map for each stage in the sim-
ulation period. Users can choose specific transitions to aggregate their

Fig. 4 Examples of hard outputs using different simulation parameters and models
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corresponding transition potentials. The aggregation type by default is logical OR,
where if a pixel presents transition potential for more than one claimant class, it will
be more likely to change than a pixel that shows transition potential for a single
claimant class (Eastman 2015). Metronamica and APoLUS provide a new transition
potential map at any time within the modeling period, a dynamic output.
In SLEUTH, land use uncertainty is given at the same time as hard output, and the
urban class can be both hard and soft.

All models offer a simulation sensu stricto, that is, a hard-classified map. LCM
TerrSet, Metronamica and APoLUS produce yearly time steps and these time steps
can be saved as independent LUC maps.

3 Simulation Steps

3.1 Allocation Step

The allocation step is a decision process that selects from the intermediate soft-
classified maps (transition potential maps, suitability maps, etc.) the pixels that are
most likely to change from one category to another or the pixels that are most likely
to be a category. These pixels are likely to be those with the highest potential for
change or the highest suitability for the “destination” LUC category. The allocation
of these changes in space finally gives rise to soft-classified maps, and, more usually,
to hard classified maps. Both are related to estimated quantities in the calibration
stage. In this section we will be referring exclusively to the hard output maps.

This procedure can vary greatly depending on several parameters. For example,
the modeling of binary maps, the most basic procedure, is based on a simple cutoff
of the change potential map. The cutoff value can be determined when the quantity
of each land use to be allocated is reached (Pontius et al. 2001). Values over the
cutoff value are then assigned to the desired class.

However, multiple land use transitions in the same model create what is known
as the Multiple Classifications (MC) problem (Ho 2000; Tayyebi and Pijanowski
2014). In these cases, models use maps with several classes and transitions and MC
can be solved by a simple hierarchical approach, in which for example urban use is
considered the top priority use (Letourneau et al. 2012; NRC 2014), or by a
competitive approach in land allocation.

Competition and conflicts between different transitions are resolved by iterative
processes which take into account the change potential and the quantity of change
during the simulation, according to the estimated quantities based on a Markov
chain (see Technical Notes in Part IV of this book) or an external chain, or by
normalizing the probabilities of the possible transitions during the calibration stage.
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Claims for land uses in bottom-up approaches are determined by allocation rules
and in top-down approaches by driving factors, while hybrid approaches use
feedback between the two (Verburg et al. 2006). Tayyebi and Pijanowski (2014)
propose a simple method for solving the conflicts for multiple land-use transitions
by eliminating ambiguous predictions using non-linear tools. A stochastic selection
algorithm can also resolve incompatibilities.

Users’ choices can also affect the general procedure in the allocation step. Users
generally prefer to model just some of the transitions rather than all of them. This is
due to various factors i.e. the rigid method and other reasons relating to erroneous
data, non-probable changes, very small transitions and their corresponding very
small reference maps for obtaining factors and the specific objectives of each user.

The set of algorithms and their parameters in the allocation step have important
consequences in simulations. As Prestele et al. (2016) reveal, in land change
models, a high uncertainty is related to “…allocation of projected changes, which
can severely impact the results of environmental assessments…” Camacho Olmedo
et al. (2015) demonstrated that the parameters used in the allocation procedure can
affect the simulated quantities of change, because some parameters force the model
to disregard the estimated quantities. The assessment of variation in the allocation
of land change and persistence can throw up important conclusions as to how
models work.

3.1.1 Comparing the Allocation Process in the Different LUCCModels

The allocation process involves various steps. In the first step, all models are based
on ranking the intermediate maps. For both CA_MARKOV and LCM TerrSet
models (Table 2), concurrences between different uses or transitions are solved
using a Multi-Objective Land Allocation (MOLA) algorithm, which uses an
approximation procedure based on a minimum-distance-to-ideal-point rule using
the weighted ranks from the change potential maps (Eastman et al. 1995). In

Table 1 Comparing the simulation outputs of LUCC models

Pattern-based models (PBM) Constraint CA-based models (CCAM)

CA_Markov
TerrSet

LCM
TerrSet

Dinamica
EGO

CLUMondo Metronamica
and APoLUS

SLEUTH LucSim

Intermediate
soft-classified

Suitability Transition
potential

Transition
potential

Suitability Transition
potential

Land use
uncertainty/
probability
of urban
growth

Transition
potential

Soft-classified No Yes No No Yes Yes No

Hard-classified Yes Yes Yes Yes Yes Yes Yes
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CA_MARKOV the user must also incorporate the number of iterations, i.e., the
number of time units in the simulation period, the last iteration being the prediction
for the later date (see the technical note about Multi-Objective Land Allocation in
Part IV of this book).

In Dinamica EGO, a stochastic selection algorithm resolves the competition
between transitions ranking the pixels with respect to their change potential maps,
which are previously normalized. To avoid restricting the simulated change to the
highest change potential cells, Dinamica EGO selects a large amount of candidate
cells and carries out a lottery-type process, which enables a small number of cells
with lower change potential to present the transition. This behavior is controlled by
a parameter called the pruning factor. If the chosen pruning factor is one, it pro-
duces a deterministic result, while a high pruning factor allows simulated changes
to occur in less likely areas (Mas et al. 2014). In LucSim, the allocation step is also
based on ranking the pixels with greatest potential and a stochastic algorithm to
resolve incompatibilities.

The CLUMondo model consists of a non-spatial demand module and a spatially
explicit allocation module (Liu and Yang 2015). CLUMondo ranks the most
suitable land use, and uses an allocation process based on competitive advantage
with respect to goods and services. Competitiveness is updated during a dynamic
iterative process to match the allocation and land demand.

In Metronamica and APoLUS, the allocation step is a dynamic process based on
ranking the intermediate maps produced for each time unit. In both models a
random factor is added to represent the stochastic uncertainty of the land allocation
process. In SLEUTH the competition between transitions is resolved in the
Deltatron model, based on slope (Candau et al. 2000).

3.2 Spatial and Temporal Patterns

In land change models there is a growing interest in producing realistic simulations.
The simulation of spatial pattern involves a realistic distribution of the simulated
change in the landscape and should consider the competition between different

Table 2 Comparing the allocation process in LUCC models

Pattern-based models (PBM) Constraint CA-based
models (CCAM)

CA_Markov
TerrSet

LCM TerrSet Dinamica
EGO

CLUMondo Metronamica
and APoLUS

SLEUTH LucSim

Competition
between
transitions

Ranking/
multi-
objective
land
allocation

Ranking/
multi-objective
land allocation

Ranking/
stochastic
selection
algorithm

Ranking/dynamic
(iterative), based
on competitive
advantage

Dynamic
ranking/
stochastic

Deltatron
model,
based on
slope

Ranking/
stochastic
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transitions for the same locations. Ideally the model will be able to simulate patches
of land change with realistic shape and size. Depending on the objective of the
model, this aspect can be crucial or merely cosmetic. For instance, a model that can
predict a deforestation pattern in which small agricultural plots perforate forest can
be very useful for biodiversity conservation issues.

Spatially explicit land use/land cover change (LUCC) models aim to simulate the
patterns of change—spatial and temporal patterns—on the landscape (Paegelow
et al. 2013). This interest is evident in models such as machine learning, data
mining, statistical methods, cellular automata (CA), pattern-based models
(PBM) and other spatially explicit models. These kinds of models are focused on
identifying patterns, as “descriptions of observed phenomena over some time
interval or spatial area”, as opposed to models focusing on processes, “the mech-
anisms that generate observed patterns” (NRC 2014). Other concepts such as
equifinality, i.e. when two processes produce the same pattern, and multifinality,
when one process produces different patterns, are also of interest for assessment
methods (Brown et al. 2005, 2006).

Spatial and temporal patterns are closely related in land change models; nev-
ertheless there are some processes that focus more on one than the other.

In previous research, models tried to generate realistic spatial patterns using
different spatial units. Koomen and Stillwell (2007) differentiate, in relation to the
spatial level of detail, between models based on grids—regular raster patterns, cell,
element or pixel-based analysis—which is the basic unit in land change modeling,
and models based on zones—relatively homogeneous, irregularly shaped areas or
vector polygons. Still few in number, some researchers prefer vector-based repre-
sentation (Schaldach and Alcamo 2006; Rasmussen and Hamilton 2012) as refer-
enced by Kelly et al. (2013).

Landscape metrics or spatial metrics are related to a group of pixels or to an
object-based analysis (Murayama and Thappa 2011; Chen et al. 2012) and vali-
dation methods are increasing focused on using landscape metrics instead of spatial
coincidence (Mas et al. 2010; Aguilera et al. 2011; Bradley et al. 2016). Several
characteristics must be considered: size, shape, neighborhood, distribution, con-
nectivity or continuity of LUC, which can identify significant impacts on landscape
and human-environment systems (McGarigal et al. 2012). Neighborhood analysis is
one of the most highly developed parameters for spatial patterns modeling. It can be
a simple algorithm of surrounding cells, i.e. it simulates that the pixels that are
contiguous to existing LUC pixels in a particular category are likely to belong to or
to change to this category. This kind of algorithm is included in some PBM models.

Neighborhood analysis can also be conducted using complex algorithms based
on network analysis or predefined regions or in the form of cellular automata
(CA) (Gardner 1970; Couclelis 1985; Batty and Xie 1994; White et al. 1997; Zhao
and Murayama 2011; van Vliet et al. 2013). The success of CA models can be
partly attributed to their simple data format, discrete spatial units—pixels, that
match the format of the LUC data derived from remote sensing. Nevertheless, the
algorithm affects spatial units that are more like real objects such as parcels, regions
or other land units, so creating a much more complex structure (Lazrak et al. 2010).
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In brief, a cellular automata approach is made up of the following elements: cell
space, cell states, time steps and transition rules (White and Engelen 2000). Some
constraint cellular automata-based models also integrate four parameters:
Neighborhood (N), Accessibility (A), Suitability (S) and Zoning (Z) (see the
technical note about the NASZ model in Part IV of this book).

Linked to spatial patterns, time analysis and reproducing temporal patterns are
amongst the most important challenges in land change models. There is an
increasing interest in temporal patterns in the literature (Liu and Anderson 2004;
Mas et al. 2011; Runfola and Pontius 2013), despite which they are still rarely
implemented (NRC 2014). Changes in LUC are often non-linear and LUCC often
shows high degrees of temporal complexity and feedback mechanisms (Verburg
2006; Verburg et al. 2006). Moreover, as Paegelow and Camacho (2008) pointed
out, LUC dynamics can be progressive or regressive, slow or fast. Time can be
short, medium or long, continuous or split into discrete time steps and temporal
resolution depends on databases and modeling methods (some models need more
dates to work correctly than others).

Concepts such as non-stationarity, the opposite of stationarity, or stability in two
subsequent periods lie at the heart of this research. The relation between
non-stationary processes and predictability needs to be explored (Müller et al. 2014)
and uncertainty in land change models can increase with the length of simulation
(Chaudhuri and Clarke 2013; van Kliet et al. 2016), which can be an important
limitation. Most applied models produce reasonable projections for short simulation
periods (around 20 years), because temporal fluctuations and feedbacks are easy to
implement. However, projections for longer periods are not really capable of
including complex change rates and feedbacks, because of modifications to the
conversion rules and changing decision-making strategies by the agents involved
(NRC 2014; Meyfroidt 2013).

With respect to types of models, PBM are more useful for stationarity and short
simulation periods extrapolating past patterns, but are of limited use for proposing
large projections involving structural changes and non-stationarity processes, where
process-based models seem to be more appropriate. Because the assumption is that
past and present trends will continue into the future, PBM, machine learning and
statistical models “…tend to oversimplify the temporal complexity of land change
processes…” (Liu and Yang 2015) With respect to CA models, they forecast land
cover patterns by evaluating “changes in spatial controls without market feedbacks”
(NRC 2014).

Some parameters try to reproduce temporal patterns in order to achieve realistic
simulations in land change models. Some researchers introduce spatial and tem-
poral non-stationarity into the transition probabilities (Brown et al. 2000). Rosa
et al. (2014) suggest that “…the next generation of LCC models may need to
incorporate temporal variability in the parameters associated to the drivers of
changes in order to allow the processes determining LCC to change through time
and exert their influence on model predictions…” Intensity analysis (Aldwaik and
Pontius 2012; Pontius et al. 2013) quantifies the behavior of a categorical variable
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across several time intervals to measure the degree to which changes are
non-uniform.

In some models, spatial and temporal parameters such as fluctuations in change
rates can be applied in the simulation stage. They refer to the sojourn time for
certain transitions that are deterministic and depend on particular processes, and to
saturation effect, the fact that certain transitions stop when the amount of change
has reached a given level. For instance, a deforestation front will move forward,
resulting in a certain number of remaining forest fragments (Mas et al. 2014).

3.2.1 Comparing LUCC Models in Spatial and Temporal Patterns

Inductive pattern-based models (PBM) and constraint cellular automata-based
models (CCAM) work very differently in the simulation step for reproducing spatial
and temporal patterns (Table 3).

The parameters in several models try to reproduce spatial patterns in
hard-classified maps. These include for example the use of cellular automata and
emergent patterns for landscape patterns simulation and the inclusion of areas of
exclusion (Pas) constraints or incentives.

To simulate landscape patterns, the PBM CA_MARKOV and Dinamica EGO
use a cellular automata (CA) approach to obtain a proximity effect that causes
changes to occur in the form of patches. Nevertheless, the procedures are quite
different in these two models. The Cellular Automata (CA) incorporated by default
in CA_MARKOV, reduces the suitability away from existing areas of each LUC,
giving more chance to pixels that are both suitable and close to the existing LUC,
producing a dilation effect around existing patches and partially avoiding the
“salt-and-pepper” effect (see technical note about Cellular Automata in
CA_MARKOV in Part IV of this book). Dinamica EGO uses two complementary
CA: the Expander, that expands or contracts previous patches, and the Patcher, that

Table 3 Comparing LUCC models in spatial and temporal patterns

Pattern-based models (PBM) Constraint CA-based models (CCAM)

CA_Markov
TerrSet

LCM
TerrSet

Dinamica
EGO

CLUMondo Metronamica
and APoLUS

SLEUTH LucSim

Landscape
patterns

CA:
Contiguity
5 � 5 filter

No CA:
Expander &
Patcher

Optional CA:
Neighborhood

Implicit CA:
NASZ
In APoLUS:
NASZD

Two implicit
CA

Implicit CA:
Neighborhood

Constraints or
incentives

In suitability
maps

Yes Yes Yes Yes Yes In transition
potential
maps

Fluctuations
in change
rates (Sojourn
time,
saturation)

Could be
implemented

No Easily
implemented

Sojourn time;
saturation
easily
implemented

Could be
implemented

Integral part
of model
(self-
modification)

Saturation
easily
implemented
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generates new patches through a seeding mechanism. Users can set several
parameters such as patch size, variance, etc. (see technical note about Cellular
Automaton in Part IV of this book). CLUMondo can include neighborhood inter-
action and influences the suitability maps through spatial filters (Verburg et al.
2004). It allows a user-defined neighborhood with positive or negative values that
can produce attraction and repulsion between land uses. LCM does not apply a CA
procedure.

Constraint cellular automata-based models, such as Metronamica, APoLUS,
SLEUTH and LucSIM, apply an implicit CA based on neighborhood interactions.
Metronamica and APolUS are based on the NASZ model and APoLUS adds Actor
Dynamics (D). SLEUTH consists of two coupled cellular automata models: the
Urban Growth Model and the Deltatron land use change model. LucSim is a
cellular automata model based on Torrens’s definition (Torrens 2011) and one of
the two models it integrates, the potential model, is based on spatial interaction and
neighborhood parameters.

Constraints or incentives limit the simulated maps to particular areas or to apply
spatial policies. LCM and Dinamica EGO use them at a certain time step of sim-
ulation. They also include an implicit constraint because only modeled transitions
such as transition potential maps are simulated. Therefore, LCM and
Dinamica EGO simulate transitions by excluding some origin LUC that users in the
study areas consider illogical or unlikely to be changed to another LUC. In
CLUMondo, a hard constraint can be implemented by supplying a map with pixel
values between 0 and 1, and these maps can be considered as a soft incentive or
constraint.

In CA_MARKOV and LucSim, constraint and incentive areas can only be
considered through the suitability or transition potential maps, respectively. In
CA_MARKOV, a script can be written to simulate an effect that will occur at a
certain time, and constraints with specific LUC that users consider inappropriate for
the destination LUC can be included in the multi-criteria evaluation (MCE).

In Metronamica and APoLUS constraints and incentives are possible in suit-
ability, accessibility and more specifically in zoning (NASZ), which is applied at
each simulation step. In SLEUTH, a separate excluded layer can be included, acting
as a constraint during simulation.

SLEUTH incorporates fluctuations in change rates for reproducing spatial and
temporal patterns as part of the model (self-modification). CLUMondo is the only
model that explicitly includes a sojourn time for each transition. In this model, the
saturation effect can be included and it also uses the elasticity values to manage the
amount of change from one LUC to another necessary to fulfill the established
change rules (Mas et al. 2014). This elasticity allows some categories to be more
resistant to change than others (Verburg et al. 2006). In LucSim, the saturation
effect is easy to control. In Dinamica EGO, both saturation effect and sojourn time
are easy to implement. In order to simulate the saturation effect in deforestation
processes and establish a minimum remaining forest area, the probability of a
transition can be reduced taking into account the cell neighborhood by means of a
kernel window. In CA_MARKOV, Metronamica and APoLUS these options could
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be implemented. In LCM it is not possible to include any kind of fluctuations in
change rates.

3.3 Comparing LUCC Models in Advanced Options

Region-based, compartmental spatial models (Kelly et al. 2013) are one of the
advanced options in modeling for integrated environmental management. Complex
models include splitting the study areas into subregions (Mas et al. 2014). Outputs
are generated for homogeneous subareas of the total area. Different dynamics can
be produced by different rates of change, transitions, explanatory variables and their
effects. As an advanced option, subregions analysis can be incorporated into the
models. Dinamica EGO and LucSim (Table 4) can divide the study area into
regions using certain particular parameters. For example, interactions between the
subregions enable certain variables to have an effect on certain subregions, and
variables based on distance to affect the entire study. In Metronamica, subregion
analysis is based on interconnected models and APoLUS includes the regional
layer, but only related to actor behavior. SLEUTH does not incorporate regions in
simulation, as it is a pixel-based model at any extent or scale. In CLUMondo, LCM
and CA_MARKOV, it is possible to run independent models to obtain subregions
and, then to mosaic the simulated maps, but these results will not interact.
Consequently, incompatibilities could happen on the boundaries between regions.

Dynamic variables are another advanced option in simulation as they are
updated at each time step. This enables events in previous steps to have an effect on
subsequent steps. Some models can include a temporally lagged variable to take
into account the fact that there are lags between causes and consequences in land
change processes (Agarwal et al. 2002; Liu and Yang 2015). Almost all models can
handle dynamic variables in the simulation step. In SLEUTH, most of the variables
are dynamic. In Metronamica and APoLUS, the neighborhood parameter changes at
any time step, and accessibility, suitability and zoning can change if required. In
CA_MARKOV, users decide the number of CA iterations (time steps) and therefore
their contiguity effect. CA_MARKOV does not consider more dynamic variables,
although TerrSet’s macro modeler can develop this option. For its part, LCM allows
us to change some variables such as infrastructure and spatial constraints/incentives
in the simulation stage. Dinamica EGO allows explanatory variables to be substi-
tuted at certain time-steps in the simulation. In CLUMondo, the explanatory vari-
ables can be changed in given time steps. LucSim also allows some dynamic
variables.

Dynamic change rates show generic variations or trends over time that must be
included in the model. These options complement a more linear or more stationary
estimation of quantities, the most commonly used matrix in the calibration stage
(see Chap. 2 about calibration). Feedback mechanisms are also included in several
dynamic models, for example, via the interaction between different processes that
can produce different results in each run of the model (Claessens et al. 2009; van
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Vliet et al. 2016). Other models can represent time lags in land change decisions
(Irwin and Bockstael 2002).

Dynamic change rates or different amounts of change over time are possible in
the PBM LCM, CLUMondo and Dinamica EGO from internal or external transi-
tions and sub-models. All these models allow us to use matrices other than the
Markov matrix. LCM allows us to use an external transition matrix. In CLUMondo,
demand can be incorporated from external models, but the trade-off between
expansion and intensification is endogenous. Dinamica EGO is the most flexible: it
can replace the Markov matrix at specific steps of the simulation and it can be
coupled with an external model that calculates dynamic transition rates and passes
them on to the model. Moreover, simulation can be performed if conditional exe-
cution functions (“if then”, “while”) are used. In CA_MARKOV, dynamic change
rates are not included, although some transition dynamics and concatenate models
could run if TerrSet’s macro modeler were used.

With respect to Cellular automata approaches, Metronamica incorporates
dynamic change rates from external or internal sub-models, while in APoLUS the
exogenous rates can be affected by the stakeholders. In SLEUTH, dynamic change
rates are self-generated from bottom-up change. The SLEUTH model simulates
change and changes feedback at each time increment. LucSim does not include
dynamic change rates.

Some models can incorporate dynamic change rates by concatenating models, so
that one model’s output is the next model’s input, and splitting the simulation
horizon into several periods (Eastman 2016).

Other options for simulating change processes are for example the inclusion of
road network as a predictor of the LUCC spatial patterns, because it is easy to
simulate the effect of a new road in the simulation period, as in Dinamica EGO and
LCM. New road end-points are stochastically selected in the areas with the highest
change potential. They are then connected to the existing road network using
friction maps (e.g. related to topography) in order to create the least-cost path and/or
to link various areas with high change potential. Expected infrastructure changes
can also be included in LCM simulations. Metronamica also allows for additional
components such as a transport model and a population model. In a future version
of APoLUS (APoLUS-SD) dynamic actor behavior will be available.
CA_MARKOV, SLEUTH, CLUMondo and LucSim do not incorporate other
options to simulate processes of change, except for those integrated into the
intermediate soft-classified maps by Multicriteria Evaluation in the two first models,
logistic regression in CLUMondo and in the potential model in LucSim.

LCM provides tools to assess the impact of change for ecological sustainability
and conservation planning. These include tools for species-specific habitat assess-
ment and change studies, gap analysis, landscape pattern evaluation, biodiversity
analysis and CO2 emission assessment. Dinamica EGO provides some additional
tools to model wood harvest volumes processed by sawmills and carbon pool
mapping. Metronamica produces indicators of the impact of change such as soil
sealing. CA_MARKOV, CLUMondo, LucSim, SLEUTH and APoLUS do not
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incorporate additional tools for assessing the impact of change, but some of them,
such as APoLUS, are flexible enough to incorporate them easily.

4 Concluding Remarks

Land change modeling processes integrate different, albeit interwoven steps. After
calibrating the models, setting all the necessary parameters for the evaluation of
change potential and the estimated quantities of change, the simulation stage offers
a large variety of parameters for modelers to choose from. Some of these reproduce
the spatiotemporal patterns and other advanced options are shared between the
calibration and simulation stages or act as a dynamic and iterative process. Other
parameters, such as the allocation of changes, belong exclusively to the simulation
stage. As Pontius and Malanson (2005) make clear choosing which parameters to
use in a model from the large panoply available is one of the most important and
critical decisions, because it produces greater variations in accuracy than the
choices between alternative models. Variety is also related to simulation outputs.
Even though hard output is considered as simulation sensu stricto, and is the
principal focus of the validation methods and tools, there is increasing interest in the
intermediate and soft outputs that represent the change potential and the true pro-
portion of change. As a result various specific assessment methods have been
developed to contribute to their evaluation. Moreover, the LUCC models we ana-
lyzed work differently depending on their particular nature as either pattern-based
models (PBM) or constraint cellular automata-based models (CCAM) and conse-
quently their parameters and outputs must be contextualized. Current and future
lines of development, incorporating process-based models and agent-based models,
will help expand the knowledge base to allow modelers to improve land change
modeling results.
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Chapter 4
Techniques for the Validation of LUCC
Modeling Outputs

M. Paegelow, M.T. Camacho Olmedo and J.F. Mas

Abstract Validation is the third stage in the modeling process, after calibration and
simulation, and also applies to scenarios. It is an essential part of the process in that
the credibility of a model depends on the accuracy of its output. A large range of
validation approaches and tools exist, many of which can also be used during the
calibration stage. In this chapter we distinguish between purely quantitative vali-
dation techniques and those that also consider the spatial allocation of simulated
land use/cover changes (LUCC). According to model outputs and objectives,
simulation maps can be either hard-classified or soft-classified. While some vali-
dation techniques apply to both types of map (cross tabulation matrices and indices,
congruence of model outputs), others are specific to one. Techniques such as LUCC
indicators, feature and pattern recognition and error analysis are used to validate
hard-classified simulation maps, while ROC is used to test soft-classified maps. We
then look at a second validation approach based on LUCC dynamics such as LUCC
components, intensity analysis, data uncertainty and the impact of spatial and
temporal scales. Finally, we compare a group of the most common model software
programs (those used by the contributors to parts II and III of this book), in order to
list their validation capabilities.

Keywords Validation � Error analysis � Land use and cover changes �Modeling �
Simulation assessment

M. Paegelow (&)
Département de Géographie, Aménagement et Environnement,
Université de Toulouse Jean Jaurès, Toulouse, France
e-mail: paegelow@univ-tlse2.fr

M.T. Camacho Olmedo
Departamento de Análisis Geográfico Regional y Geografía Física,
Universidad de Granada, Granada, Spain
e-mail: camacho@ugr.es

J.F. Mas
Centro de Investigaciones en Geografía Ambiental, Universidad Nacional
Autónoma de México (UNAM), Morelia, Michoacán, Mexico
e-mail: jfmas@ciga.unam.mx

© Springer International Publishing AG 2018
M.T. Camacho Olmedo et al. (eds.), Geomatic Approaches for Modeling
Land Change Scenarios, Lecture Notes in Geoinformation and Cartography,
https://doi.org/10.1007/978-3-319-60801-3_4

53



1 Introduction

“Despite its apparently scientific nature, modeling is a matter of judgement”
(Abdou et al. 2012). “However, the validity of a model should not be thought of as
a binary event… model can have a certain degree of validity” (Croks and
Heppenstall 2012). “Until more guidance is provided in the literature, calibration
and validation will remain a key challenge” (Ngo and See 2012). Rykiel (1996)
noted that there is no universal agreement as to how to evaluate the goodness-of-fit
of validation. “Depending on their position on this spectrum, models may have
different calibration and validation requirements… Models can be calibrated with
vast quantities of detailed data, and using sophisticated procedures. They can be
validated for historical time periods with high degrees of success. However, a
model is only as good as the rules that drive its behavior. Good rules require good
theory” (Torrens 2011). Spatial models cannot be validated in a rigorous way
(Oreskes et al. 1994).

These quotations from the literature give us some idea both of the difficulty of
designing a model that closely reflects future reality and the ambiguity or debate as
to what validation actually means. Model validation becomes crucial in a world that
produces an ever-increasing number of simulations and scenarios over a large
thematic range. In order to give credit to the output of a model, we need information
about its robustness and accuracy.

1.1 What Is Validated in Land Change Models?

In this chapter we begin by outlining that the validation techniques discussed here
focus on path-dependent models, although there are others that are not
path-dependent. Also known as the SAS (story and simulation) approach (Alcamo
2008), these models try to render contrasted, spatially explicit scenarios defined by
experts or in a participatory manner: narratives which are then translated into
quantitative scenarios (Houet et al. 2016). For their part, the path-dependent models
produce scenarios known as trend scenarios or BAU (business as usual) scenarios.

Over the last decade, there has been an important and increasing interest in the
validation of simulation models that predict changes over time, particularly from an
initial time in the past to a subsequent time in the future (Pontius and Petrova 2010),
with a focus on land use and cover change (LUCC), often simplified as land change
(Jansen and Veldkamp 2011).

A model’s credibility depends on its validation, and this general concept
includes three stages, which have been widely endorsed: Verification, Calibration
and Validation (Coquillard and Hill 1997; Torrens 2011; Croks and Heppenstall
2012; Ngo and See 2012). Verification refers to the entire process of certifying the
correct internal operation of a model (including Face Validation and Sensitivity
Analysis); during calibration (see Chap. 2 about calibration), the model is tested

54 M. Paegelow et al.



using several specific parameters and context-like training periods or dates; while
validation involves evaluating the accuracy of the results produced by the model
during the simulation stage (see Chap. 3 about simulation), including scenarios (see
Chap. 5 about scenarios). North and Macal (2007) also state that “Verification is the
process of making sure that an implemented model matches its design, validation is
the process of making sure than an implemented model matches the real-world”
(cited by Croks and Heppenstall 2012).

Calibration and validation are individually and separately defined, and the period
used for calibration purposes may be different from or unknown in the validation
period. While the first step refers to a date (t1) and/or a period prior to it (t0−t1), the
second step is focused on simulations after t1, which is the point in time for which
the predictive extrapolation with the horizon T (t1–T) begins. Pontius and
Malanson (2005) highlight this difference, referring specifically to the confusion
detected in several studies regarding the goodness-of-fit of the calibration stage for
quantifying the predictive power of a model rather than using the goodness-of-fit of
the validation stage. In fact, a good fit for calibration does not necessarily imply a
good fit for validation or that the latter is an appropriate indicator of a model’s
predictive power (Pontius and Pacheco 2004). Following White et al. (2012), the
time periods for calibration and validation must be sufficiently long to minimize the
impact of unrepresentative details during the training period. Calibration and val-
idation over short time periods are notoriously unreliable. Even an empirically
excellent calibration may be fundamentally in error either because over-calibration
tunes the model to idiosyncratic details of the particular data set or more funda-
mentally because the data set may be unrepresentative of the range of possibilities
present in the system being modeled (Brown et al. 2005; Engelen and White 2007).

1.2 How to Validate Land Change Models?

Modeling land use/land cover changes (LUCC) can help us understand complex
social and ecological interactions and provides useful information for
decision-makers such as planners (Paegelow et al. 2013). The usefulness of LUCC
models can be measured by the accuracy of their output.

According to Torrens (2011), validation evaluates the correctness of a model
while Croks and Heppenstall (2012) described it this way: “Verification is the
process of making sure that an implemented model matches its design, validation is
the process of making sure that an implemented model matches the real world”.
Coquillard and Hill (1997) proposed that model validation should consist of three
progressive steps: verification, (Does the model run correctly?), calibration (Does
the model correctly simulate a known state?) and validation (Does the model
correctly predict an unknown state?). “To improve the robustness and the accep-
tance of a model, the data at the validation date must be model unknown, in other
words data that has not been used in the building and calibration of the model”
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(Paegelow and Camacho Olmedo 2008). If not, simulation must be considered as a
step in the calibration process.

Rykiel (1996) distinguishes between “conceptual” and “operational” validation.
Conceptual validation warrants that the assumptions underlying the conceptual
model are correct or plausible. Operational validations measure the accuracy of
model output. When modeling the future, the model can be partially validated by
comparing the results with expert knowledge, by assessing its robustness by
measuring the constancy of model outputs during iterative model runs.
A complementary technique is gauging the degree of congruence between the
outputs of different software programs that use the same data set and parameters.
Gómez Delgado and Tarantola (2006) tested model stability using sensitivity
analysis. To this end they developed several indices to measure the variability of
model outputs when input parameters are changed. In this context, Gomez Delgado
and Barredo (2005) describe techniques to assess risk when using model outputs
and Jokar Arsanjani (2012) focuses on model data and drivers of uncertainty.

There is a large range of statistical tools for measuring the accuracy of hard and
soft predictions. Hard predictions can be validated by comparing between simulated
and observed LUCs. However, a soft prediction is evaluated by comparing potential
changes or LUC suitability with observed LUC or LUCC. This is often done by
measuring the area under the ROC (Relative Operating Characteristics) curve
(Pontius and Schneider 2001). Eastman et al. (2005) and Pérez-Vega et al. (2012)
focused on the potential for change. With this in mind, they compared dynamic
areas relative to persistent ones and developed a measure called DiP (Difference in
Change Potential). Of the two forms of model output—hard or soft prediction—the
validation of hard maps is more common and there is a larger spectrum of statistical
tools. These tools focus on different aspects: accuracy of quantity and allocation,
correctness of LUCC components, similarity of the landscape pattern, model
congruence and error analysis.

As regards quantitative agreement, modelers distinguish between matching the
sum total of the LUC area and the pixel-by-pixel comparison, which also evaluates
matching in allocation (Torrens 2011). As a first step, an overall agreement may be
obtained by calculating statistical indices, such as Chi-square or Kappa (Pontius
2002). However, Pontius and Millones (2011) indicate that the KIA (Kappa Index
of Agreement) is not suitable for LUCC model validation because it assumes
randomness. The sample matrix must therefore be converted into an estimated
population matrix. The Chi-square index has the same drawback, as pixels cannot
be considered as independent observations. For map comparison we recommend
easier indices such as quantity and allocation disagreement. Various validation
techniques that consider changes have been developed. For example, Pontius
(2000) and Pontius et al. (2004a, b, 2008) propose a technique that splits the
LUCC-budget into gain, loss, net change and swap (see Technical Notes in Part IV
of this book). Pontius et al. (2008) also developed several statistical LUCC indices
for determining accuracy, including a figure of merit (see Technical Notes in
Part IV of this book), a ratio between correct predicted changes and the sum total of
observed and predicted changes.
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Further validation techniques focus on fuzzy allocation agreement, with indices
(Hagen 2003; Hagen-Zanker et al. 2005; Rodrigues et al. 2007) that measure the
relative allocation agreement and overcome the limitations produced by exclusive
cell state and exact allocation (see Technical Notes in Part IV of this book). In the
same way Procrustes analysis (Jackson 1995) performs pixel-by-pixel comparison
by linearly transforming one grid as rotation, translation or scaling to achieve the
best fit with the reference grid. Furthermore, Kuhnert et al. (2005) describe algo-
rithms that test the similarity of raster matrices by using different weights and by
varying the window size.

Spatial analysis measurements consider the distribution and shapes of land
patterns (White et al. 1997) at multiple scales (Gaucherel 2007; Gaucherel et al.
2008) and are mainly inspired by landscape ecology metrics (Forman 1995;
McGarigal and Marks 1995; Botequilha et al. 2006). In addition, error analysis
highlights conceptual and model parameter inaccuracy by measuring errors in
simulated LUC categories or transitions and their allocation (Pontius 2000; Pontius
and Petrova 2010).

There are several studies that provide a comprehensive review of the validation
techniques designed for spatial models (Turner et al. 1989; Pontius et al. 2004a;
Paegelow and Camacho Olmedo 2008; Shirley and Battaglia 2008; Sargent 2009),
while van Vliet et al. (2016) provide the results of a large study about calibration
and validation techniques applied in recent land change modeling papers.

These few lines of introduction are intended to outline the importance of setting
objectives for LUCC modeling. Do we care about the entire space or should we
focus only on changing land? Do we want to achieve quantitative accuracy or a
realistic landscape or urban pattern? Evaluating the accuracy of a model is clearly a
matter of assessing its true purpose: do we want a model that makes predictions or
one that presents a range of plausible futures?

In this chapter, we will be focusing on three aspects of validation. We will begin
by presenting validation methods and tools according to model outputs and
objectives (Fig. 1). Model outputs may be hard (maps with the same legend as
training LUC maps), or soft (simulation maps expressing the potential of places to
become a particular land cover or land use). Modeling objectives may be different:
focusing on accuracy in terms of quantity, of allocation, of realistic landscape
patterns. A second aspect is that validation depends on LUCC dynamics, as
manifested in the intensity or rate of land change and also in the impact of the
particular spatial and temporal scales used. Thirdly we describe validation
according to LUCC models.1 A presentation of selected software validation tools is
completed with a table comparing them.

1See the short presentations in Part V of this book about (in alphabetical order) APoLUS,
CA_MARKOV, CLUMondo, Dinamica EGO, Land Change Modeler (LCM), LucSim,
Metronamica and SLEUTH. The authors are also grateful to all contributors who helped us
understand the different software packages.
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2 Validation in Terms of Model Outputs and Objectives

Simulation Output Forms: Hard Versus Soft
As mentioned in the chapter in this book about simulation (see Chap. 3), model

outputs can be split into two categories: hard outputs, in which each pixel in a raster
map is assigned to exactly one category of land use or cover (LUC) (hard-classified
map) and soft outputs, in which each pixel has a partial membership of several
classes simultaneously (soft-classified maps). During the validation step, soft
simulation results show the partial membership of a specific land use category or
land transition and the level of membership indicates the degree of uncertainty.
Most spatial land-change models focus on hard simulation results and their vali-
dation. In several cases, a quick reference to soft simulation is made, but only a few

Fig. 1 General overview of validation techniques
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contributions focus exclusively on soft simulation results and their validation
(Pérez-Vega et al. 2012; Wang and Mountrakis 2011; Conway and Wellen 2011).

2.1 Validation in Terms of Quantity Estimation

Modeling over time and space typically produces results about the quantity of
land-use change (quantity) and where it takes place (allocation). Validation can
focus on one or both of these output components (Fig. 2). Generally, both com-
ponents are evaluated together. This is the domain of map comparison techniques
using matrices to compute correct predictions as quantities correctly allocated. The
spatial component does not only refer to prediction at the correct place. Validation
focusing on allocation can also evaluate spatial shapes and patterns.

Evaluating only predicted quantities (cumulated area) without considering cor-
rect allocation is much easier than predicting the correct amount of land change at
the correct place (Paegelow and Camacho Olmedo 2005; Paegelow et al. 2014).

The amount of expected land change may be predicted or given. The latter
choice is made by “what happens if” scenarios that design a range of plausible
futures. Quantitative prediction often uses a probabilistic approach such as Markov
chains (see Technical Notes in part IV of this book). In this context, we will be
specifically focusing on Markov chains and their implications on accurate

Fig. 2 Validation of cumulated surface (above) versus pixel-by-pixel matrix validation of
quantity and allocation (below)
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prediction. Two important aspects will therefore be analyzed: the impact of the
software (Mas et al. 2011, 2014) and its algorithms and the assumed or specified
level of confidence in training data.

When focusing exclusively on the quantitative aspect of model output, it is
important to put the comparison between observed and simulated LUC at t2 into
perspective by also indicating former LUC quantities at t1 (end of calibration—
model known—period). This enables us to compare observed and modeled land
change. We will come back to this point in more detail when discussing map
comparison techniques in the next paragraph. As for integrating dynamics into
quantitative validation, error analysis will be discussed further by taking into
account the allocation aspect too.

2.2 Hard Classified Maps

The initial validation may be visual or qualitative (Torrens 2011), a more intuitive
means of assessing the resemblance between model output and the validation data,
e.g. simulated land use and observed land use. However, visual inspection only
provides an initial impression and model accuracy has to be tested in other ways,
generally statistically.

2.2.1 Pixel-by-Pixel Matrices and Comparison with the Null Model

For hard-classified maps, a full validation is the most common method, where
comparisons between simulated and observed LUC referring to the same data are
possible, i.e. both documents have the same nomenclature and temporal reference.
The model’s accuracy is evaluated by comparing simulated LUC with its reference
image to a null, no change model (Pontius and Malanson 2005). In a relative
minority of cases, researchers have compared different models or individual runs of
the same model in different places and times (Pontius Jr. et al. 2008, cited by
Torrens 2011). A large range of statistical tools may be used to assess the cor-
rectness of model output. The range of tools for comparing observed and simulated
results or various different simulations, include the following pixel-matching
techniques (performed on a pixel-by-pixel basis):

LUCC Indicators

Sohl et al. (2012) used this pixel-by-pixel technique (Fig. 3) to compare various
LUCC scenarios by measuring the disagreement in quantity and allocation.

Prediction errors may be split into omission errors and commission errors for
each class (Fig. 4). Omission refers to areas observed as change but not predicted as
such. Commission error means the part of predicted change that, in fact, did not
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change. Commission is sometimes also referred to as consumer’s accuracy and
omission as producer’s accuracy such as in cross tabulation techniques in remote
sensing. In Fig. 4 omission is the total per line minus correct predicted (diagonal
matrix cell), while commission is equal to the total per column minus correct
predicted (diagonal matrix cell).

When introducing a third map into the comparison, e.g. observed LUC at the
beginning of the simulation period (generally the last known date for the model is
the end of the calibration period), it will be possible to compare observed and
predicted change and to distinguish between hits (observed persistence or change
predicted as such) and errors due to observed change predicted as persistence
(omission), observed persistence predicted as change (commission) and observed
change predicted as such, but with incorrect LUC categories.

Some software programs provide tools for cross validation between t1 observed,
t2 observed and t2 predicted by differentiating between ‘Hits’ (correctly predicted
changes), ‘misses’ (omission errors) and ‘false alarms’ (commission errors).

These validation techniques rely on a technique of land change analysis. Pontius
(2000) and Pontius et al. (2004a, b) established a comprehensive way of analyzing
LUCC and measuring the accuracy of the model outputs based on LUC persistence
and changes. They called this technique LUCC- budget (see the technical note
about LUCC budget in Part IV of this book).

Fig. 3 LUC matrix comparing observed and predicted LUC. Accurate prediction (hits) are
located on the matrix diagonal (dark cells), errors in the rest of the matrix (light cells)

Fig. 4 Omission and commission errors
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On the basis of previous research by Klug et al. (1992) and Perica and
Foufoula-Georgiou (1996), Pontius et al. (2008) calculated various LUCC indices
by splitting map comparison between the observed and predicted LUCs into percent
correct and percent error distinguishing the following components:

A = Observed change predicted as persistence: error
B = Observed change predicted as such with correct LUC categories: correct
C = Observed change predicted as such but with incorrect LUC categories: error
D = Observed persistence predicted as change: error

These components allowed the following three derived measurements to be
calculated:

• Figure of Merit—the ratio of B/(A + B + C + D) which expresses the overlap
between observed and predicted change. This value ranges from 0 (no overlap)
to 100% (perfect overlap).

• Producer’s Accuracy—the ratio of B/(A + B + C) which expresses “the pro-
portion of pixels that the model predicts accurately as change, given that the
reference maps indicate observed change” (Pontius et al. 2008).

• User’s Accuracy—the ratio of B/(B + C + D) which expresses the part of the
pixels accurately predicted as change compared to all model-predicted changes.

2.2.2 Disagreement Indices Based on Cross Tabulation

Krüger and Lakes (2015) present an innovative method for quantifying disagree-
ment between different simulations using cross-tabulation techniques applied to
binary maps (e.g. deforestation or not). Their disagreement index also includes
quantity as allocation matching and may be used for hard classified maps as con-
tinuous probability simulations. They started with a well-known cross-tabulation
matrix (Hagen-Zanker 2009; Mas et al. 2013) as shown in Fig. 5. “The diagonal
from upper left to lower right represents agreement while the diagonal from lower
left to upper right represents disagreement” (Krüger and Lakes op. cit.). By con-
sidering soft-classified maps as original simulation output and following Pontius
and Milliones (2011), Krüger and Lakes considered the two disagreement cells of

Fig. 5 Cross-tabulation
between two binary
simulation maps showing the
four possible combinations
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the matrix as a base to split the disagreement between different simulations into
their quantity and allocation components. Their method allowed us to quantify the
distance between two maps from the diagonal (perfect fit) in an orthogonal diagram
whose two axes express quantity and allocation.

As the authors themselves make clear, their method is established for compar-
ison between binary maps but can be extended to multi-categorical maps by
splitting them into monothematic maps. However, we must bear in mind that when
doing so, we lose the relations between LUC categories. This means for example
that we cannot measure how wrong a simulation is by comparing simulated and
observed LUC. Some errors could be considered more important than others, e.g.
simulating woodland instead of shrubs could be a more important disagreement
than simulating urban.

2.2.3 Fuzzy Logic Indices

There are various alternative techniques to hard pixel-by-pixel comparison. Indices
based on fuzzy logic (Hagen 2003; Hagen-Zanker et al. 2005, 2009) (see Technical
Notes in Part IV of this book) measure the agreement of location and overcome the
limitations due to exclusive cell state and exact allocation. Some popular modeling
software programs incorporate vicinity-based comparison tools measuring the
fuzziness of location (Rodrigues et al. 2007), allowing a more gradual and flexible
method than the classic cell-to-cell comparisons.

2.2.4 Procrustes Analysis

Jackson (1995) described the usefulness of Procrustes analysis. He compared the fit
between different matrices by linear transformation (rotation, translation, scaling) of
one grid to achieve the best fit with the reference grid. Pontius et al. (2004b) chose
multiple resolutions to analyze the nature of allocation errors (cf. Sect. 2). More
recently, Pontius et al. (2007) proposed a validation method that considered a
nested stratification structure.

2.2.5 Feature and Pattern Recognition

Spatial analysis measurements take into account spatial pattern, its distribution and
shapes (White el al. 1997). Many metrics were derived from landscape ecology
such as shape, compactness, diversity and fragmentation (Forman 1995; McGarigal
and Marks 1995; Botequilha et al. 2006). White et al. (2012) analyzed cluster
size-frequency distributions. In addition to quantitative accuracy measurements,
landscape pattern agreement offers a useful, supplementary validation approach.
The simplest indicators are the size and shape of the patches. Dinamica EGO
software allows us to model these parameters by average and standard deviation of
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patch size and the degree of compactness as a ratio between surface area and
perimeter. Validation may be done by map comparison techniques that focus on the
number, size and compactness of observed and simulated patches.

2.2.6 Error Analysis

Error analysis provides useful information about model logic and underlying
conceptual approaches, so giving the modeler a better understanding of the model.
In addition, the previously presented techniques can be completed by analyzing the
possible origins of error. Seen from this point of view, LUCC analysis and
Figure of Merit (see Technical Notes in part IV of this book) can be considered
alongside validation techniques such as error analysis. Error analysis tries to answer
the question ‘how wrong is the prediction?’ To do so, it generally focusses on two
components: categorical or transitional errors and error in allocation.

LUC Category Errors

Various techniques measure disagreement between observed and simulated LUC.
While quantitative data (e.g., percent of tree cover) enable us to measure the
magnitude of inaccuracy, categorical data generally needs to be transformed into
quantitative data or ordered on a scale before being analyzed. Ahlqvist (2008) offers
a technique of fuzzy change estimation about the closeness between observed and
simulated LUC categories. Paegelow et al. (2014) measured the magnitude of error
between simulated and observed LUC expressed as categories. However, if LUC
legends form a ranking order that reflects spontaneous vegetation succession from
bare soil to woodland, land use intensity or other criteria that enable us to place
LUC categories in an ordered scale, we can measure the parametric distance
between observed and simulated LUC. Prediction error is measured by the absolute
categorical distance between observed and simulated LUC. In many situations,
modelers will probably have difficulties quantifying the exact distance between
different LUC on an ordered scale. A possible coarse approach is to use equal
distance between original categories. Paegelow et al. (2014) did so to rank LUC by
the covering rate from bare soil to woodland.

Allocation Error

A large number of metrics can be calculated. Paegelow et al. (2014) created a
distance map for each LUC category for which the considered LUC was the origin.
The distance map was then crossed with simulation errors (omissions, commissions
and prediction of false gaining categories). For each wrongly predicted patch of a
given LUC category, these authors measured the minimum distance to the nearest
correct location and then calculated the average for each LUC category.
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2.2.7 Congruence of Model Outputs

Another form of validation consists of using the same data set to simulate LUCC
with different models (Figs. 6 and 7). The closeness of the resulting simulation
maps is measured and the degree of congruence is considered as an indicator of the
stability of the model and the plausibility of the simulations (Paegelow et al. 2014).
The same procedure also provides useful information about model robustness
(Camacho Olmedo et al. 2015). Sohl et al. (2012) applied the same approach to
multiple LUCC scenarios computed for the Great Plains in the United States, a
procedure they described as “scenario diversity”.

2.2.8 Other Approaches

Torrens (2011) proposed running models exhaustively (specifically in stochastic or
probabilistic models). Several other authors use histograms (Conway and Wellen
2011) with several choices (equal weights, difference…) (Bone et al. 2011;
Kamusoko et al. 2009), while Li et al. (2011) proposed a geographical simulation

Fig. 6 Different congruence levels of simulation maps computed by three different models:
a perfect intersection, which means total congruence of correctly predicted land use, b congruence
of two models, c only one model gives correct prediction, d no model predicts correctly
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and optimization system to model the reciprocal relationships between simulation
and spatial optimization, including future simulations.

2.3 Soft-Classified Maps

2.3.1 Soft-Classified Maps

Of the various methods for assessing the accuracy of simulation maps, the first,
most intuitive comparison method is usually visual or qualitative validation. This is
also used in soft results (Torrens 2011) and in different types of superposition
between soft-classified and real maps (observed and non-observed transition or land
use) and in the analysis of frequency distributions (Yu et al. 2011; Alcamo et al.
2011; Camacho et al. 2013; Wang and Mountrakis 2011). Paegelow and Camacho

Fig. 7 Congruence of three simulations computed by (A) CA_MARKOV model, (B) Multi Layer
Perceptron, (C) Statistical regression model, applied to Garrotxes catchment (Eastern Pyrenees,
France)

66 M. Paegelow et al.



Olmedo (2005) compared the performance average and the standard deviation
suitability scores for each candidate land cover with all of the other categories.

2.3.2 ROC

While hard prediction leads to cells being classified within one specific LUC cat-
egory, some modeling programs provide soft prediction maps expressing the vul-
nerability of the land to change or suitability maps for each LUC category, which
are computed by multi-criteria evaluation (MCE) (Eastman et al. 1995) (see
Technical Notes in Part IV of this book).

In this context, Relative Operating Characteristic (ROC) (Hanley and McNeil
1982; Pontius and Schneider 2001) (see Technical Notes in Part IV of this book) is
a measure of the spatial likelihood between a reference map and a suitability
map. The reference is binary and shows the spatial distribution of a specific LUC
category or transition, while the suitability map expresses the potential for this
category or the propensity to change in the case of analyzing transitions. The
procedure consists in ranking these suitability or vulnerability-to-change scores into
n classes and computes the proportion of true (presence on reference map) and false
(absence) positives. ROC assumes that the high scores in the comparison map are
more likely to be truly positive. Pontius and Schneider (2001) provide a graphic
illustration for this technique. Various other researchers have applied ROC in land
change models (Wang and Mountrakis 2011; Alcamo et al. 2011; Lin et al. 2011;
Jokar Arsanjani 2012; Ngo and See 2012), comparing different study areas
(Paegelow and Camacho Olmedo 2005), calibration and validation periods
(Conway and Wellen 2011) or different results after a number of drivers had been
considered (Huang et al. 2012). Eastman et al. (2005) and Pérez-Vega et al. (2012)
applied ROC and DiP to compare modeling approaches. Conway and Wellen
(2011) compared ROC between the calibration and validation period. Pontius and
Si (2013) introduced a variant of ROC: TOC—the Total Operating Characteristic,
which enables the user to calculate the AUC, while also showing all the information
in the contingency table for each threshold.

2.3.3 Cross Tabulation Matrices and Indices

This type of validation compares two or more types of soft-classified maps. All of
the maps are likelihood maps. Nevertheless, overlay maps based on pixel matching
(performed on a pixel-by-pixel basis) can be applied after reducing soft maps to
several classes or binary maps, and this method can reach conclusions regarding the
convergence of the results. This transformation makes it possible to use the most
common validation techniques (Paegelow and Camacho Olmedo 2008). For
example, Syphard et al. (2011) overlaid binary maps of urban predictions (only
including land with a high-probability of development) for several future scenarios,
in order to map and quantify where urban growth predictions converged over time.
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They also carried out a data reduction by placing the probability images in classes.
Another technique known as soft cross-tabulation involves a process of
cross-tabulation on soft-classified maps, which preserves continuous values without
reducing them into classes, performing a pixel-by-pixel comparison between two
maps in which the pixel values have simultaneous memberships of more than one
category (also called fuzzy classification). Pontius and Cheuk (2006) compared this
method to existing techniques, and proposed that it should be applied to both
hard-classified and soft-classified data at any scale. A cross-tabulation tool of this
kind for soft-classified maps in which the spatial resolution can be varied is
implemented in TerrSet software. The potential of ROC statistics within the
framework of land change modeling is analyzed in detail in Mas et al. (2013).

Assessment methods developed for hard-classified maps that focus on the
similarity or correspondence between them can also be used for soft-classified
maps. The most commonly used tools are Spearman and Pearson correlation
indices: similarity can be tested at ordinal and quantitative data level. Using the
Spearman rank correlation, Conway and Wellen (2011) evaluated two suitability
maps using histograms showing the degree of similarity between the two maps.

2.3.4 DIP—Difference in Change Potential

Difference in Change Potential (DiP) is an assessment technique measuring the
difference between the mean potential in the areas of change and the mean potential
in the areas of no change, as manifested in the form of hits (correct forecast of
change) and false alarms (incorrect forecast of change) (Eastman et al. 2005;
Pérez-Vega et al. 2012).

DiP is based on the Peirce Skill Score (PSS) defined as:

PSS ¼ H� F

where H is the mean potential in the areas of change and F is the mean potential in
the areas of no change respectively, and PSS is the difference between them.
A value of 1.0 indicates perfect agreement, while a value close to 0 shows random
behavior (Pérez-Vega et al. 2012).

2.3.5 Other Validation Techniques/Crossing Techniques

A large number of studies combine various validation techniques. Wang and
Mountrakis (2011) compared three models at both per-pixel and neighborhood
levels. In the first, they included the confusion matrix, KIA, the receiver operating
characteristic (ROC) curve, and multi-scale summary accuracy. The same authors
recommended that the results obtained by binary comparison (accurate or not), the
probability of change and the spatial accuracy of predicted change be compared.
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Lin et al. (2011) use ROC, KIA, multiple resolution validation and landscape
metrics to analyze the accuracy of model outputs.

3 Validation According to LUCC Dynamics

The relative importance of the validation techniques presented here also depends on
the objective of the model. If the model aims to predict land change, the accuracy of
the estimated amount of change is just as important as its allocation. By contrast, if
the objective is to design plausible, contrasted, scenarios, the modeler implements
quantitative targets with regard to the expected LUC area or changes. From this
perspective, validation techniques focus more on spatial pattern and error analysis.
Furthermore, the map comparison techniques presented above (particularly the
Figure of Merit when computed for outputs of various models) provide useful
information about the performance of the models in predicting persistence and
change, change components such as net change and swap, and the realism of the
landscape. They also allow the modeler to choose the most appropriate model
according to the objectives.

Tests with various training dates used for Markov chains show that quantitative
accuracy depends on the choice of these dates (see Chap. 7 in part II of this book).
This finding shows why it is so important for the modeler to have the key dates at
his/her disposal because the Markov chain is strongly dependent on previous trends.
If relatively few LUC dates are available, this increases random chance because the
Markov chain determines the overall accuracy of the model. If available LUC maps
do not allow us to trace past trends or if these trends are not informative for future
evolution, it is advisable to support trend-based simulation, also known as the
baseline scenario, with various scenarios that deliberately break with Markovian
conditional transitions calculated on a basis that is incomplete or becoming obso-
lete. By varying quantitative assumptions, this geoprospective model (Houet and
Gourmelin 2014) implements the allocation of these hypotheses and designs
plausible futures.

3.1 Intensity of Dynamics

3.1.1 Splitting Dynamics into Components of Interest:
Persistence, Net Change and Swap

LUCC allows us to analyze observed and simulated land change at different levels.
The first level is obtained by cross-tabulation of the whole area (Fig. 8). An
example from a study of dynamics in a typical European mountain region first
shows: persistence (sum of diagonal cells) which amounts to about 97.09%. This
means that land use has changed in less than 3% of the study area. Having said this,
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some LUC categories underwent important changes. Expressed as a percentage of
the surface area in 2000 (start date), most LUC components remained stable. For
example, all land changes from and to coniferous forest (gains and losses) totaled
only 1.2% of its extent in 2000. At the other end of the scale, changes in the “wood
recolonization” category amounted to 13.9% of the land it occupied in 2000. This
means that global or dominant persistence can mask important individual
transitions.

Validations may be performed at individual LUC category or transition level or
at a global level by considering the overall change potential map (superposition of
all the maps) (Pérez-Vega et al. 2012). If we set persistence aside to focus exclu-
sively on change, the accuracy of predicted land change is considerably lower
(Brown et al. 2005).

3.1.2 Intensity Analysis

Another means of analyzing model accuracy is to put it into perspective with the
intensity of land change (Pontius et al. 2013). Intensity is the amount of land
change per time unit (e.g. the annual rate). Land change intensity may be analyzed
by comparing the amount of change over the study period in several LUC cate-
gories (Fig. 9) or by comparing their rate of change over different time periods
(Fig. 10). Figure 9 shows that three LUC categories (coniferous and deciduous
forest, crops) were more persistent, while broom land and wood recolonization
underwent more significant changes over the study period.

For the extent 1942–2009, Fig. 10 shows two intervals in which there was a
slow rate of change (1980–1989; 2000–2009), one interval that was close to the
average (1942–1962) and two intervals characterized by fast dynamics (1962–1980;
1989–2000). This shows that model accuracy is highly dependent on the com-
parison interval selected.

Runfola and Pontius (2013) proposed a number of indices based on the differ-
ence between individual change rates and the average annual rate of change. For
their part, Aldwaik and Pontius (2012) developed tools to measure the intensity of
land change at three levels: interval, category and transition. They created indices

Fig. 8 LUCC 2000–2009 in Garrotxes (French Pyrenees); data in percent of study area (8750 ha)

70 M. Paegelow et al.



based on cross-tabulation matrices and distinguished between slow and fast
intensities of change with respect to average annual change over different intervals
within the whole time extent. They also explored the relative importance of changes
(Fig. 8) by unraveling the annual rate of change, expressed in area units or percent,
as a proportion of the study area and the amount of annual change expressed in
percent of the total area covered by each LUC category. This is important for
measuring changes affecting small areas involving relatively less significant (in
terms of area) LUC categories. Huang et al. (2012) applied these intensity measures
to a coastal watershed in south-eastern China and qualified the categories in which
total change was below or above the average as “dormant” versus “active” cate-
gories, which respectively “avoid” or “target” transitions.

Fig. 9 Total change (expressed in % of the entire study area) per LUC category, Garrotxes 2000–
2009. The dotted line shows the average LUCC rate

Fig. 10 Annual rate of change in ha (all categories) over the different time periods, Garrotxes.
The dotted line is the average rate of change over the extent 1942–2009

4 Techniques for the Validation of LUCC Modeling Outputs 71



3.1.3 Data Uncertainty

Pontius et al. (2006); Pontius and Lippitt (2006) proposed a way of using model
accuracy measurements to extrapolate predictive uncertainty. Pontius and Petrova
(2010) considered the question of whether map error can explain the differences
between LUC maps from two points in time. This paper is unique in that it was the
first in this series to consider how the level of accuracy in the reference maps
influences the interpretation of model validation, and it examines the results for each
entry in several cross-tabulation matrices, rather than just overall agreement (Pontius
and Millones 2011). This alternative approach had a major impact because most
LUCC simulations rely on category data to calibrate and validate the model, and
these data often do not have a clear level of accuracy or error structure. The issue of
data misclassification within LUCC models has only recently been explored, as have
the procedures to follow when the available error information is incomplete. For
example, Pontius and Petrova (2010) developed a method for evaluating predicted
results when the level of accuracy of the reference data is unknown (Conway and
Wellen 2011). Uncertainty in the data is often related to the statistical level of LUC
data. This is because most studies are based on qualitative data, which means that
LUC is described by categories. The coarser the legend, the higher the uncertainty of
the data due to intra-category variance (Paegelow et al. 2014).

3.2 Impact of Spatial and Temporal Scales (Resolution)

Jansen (2006) distinguish three dimensions of scale: (1) space, (2) time and (3) the
organizational hierarchy as constructed by the observer. This organizational hier-
archy is synonymous with the variation in the semantic contents of data expressed
as differences in categorization (Feng and Flewelling 2004). Of these three
dimensions, scientists paid little attention to the latter. In fact, so little that this
dimension was not even included in the definition of scale cited above (Jansen and
Veldkamp 2011). The organization of the data which is finally expressed in the
legends of LUC maps is also a critical point, as mentioned above, about which we
feel we must insist.

3.2.1 Impact of Spatial Resolution

The concept of scale and resolution is closely linked to the level of detail available
in geographic data. Scale refers to printed maps and the level of detail for a given
scale is expressed by the minimum mapping unit. The notion of resolution is closely
linked to numerical data, especially in raster format and is expressed by the pixel
size.

Pontius et al. (2004b) showed that spatial resolution impacts on LUCC com-
ponents as net change and swap. Using an example of LUC maps for several towns
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in central Massachusetts, they discovered that the swap component in LUCC
budgets is related to spatial scale. The coarser the spatial resolution, the lower the
swap. Varying resolution may have different effects when it comes to validating
hard-classified land change simulation. We performed pixel-by-pixel cross tabu-
lation between LUC simulated by three models and observed (model unknown)
LUC on pasture land in the Eastern Pyrenees by varying the spatial resolution
(geometric sequence) and the method of calculating pixel values (pixel thinning and
majority). As Fig. 11 shows, the prediction score remains almost stable with coarser
resolution when the pixel-thinning technique is applied, while it falls with coarser
resolution when the majority rule is applied.

3.2.2 Impact of Temporal Resolution

The influence of scale or resolution—in our case the duration of the time interval—
is well known in various disciplines (Allen and Starr 1982; Kim 2013). Several
recent studies have formalized the impact of time intervals on the amount of change
(Burnicki et al. 2007; Lee et al. 2009; Liu and Deng 2010).

Using various data sources and resolutions, Colas (2016) observed that, as in the
case of spatial resolution, short time intervals generate a high rate of change while
change intensity decreases with longer intervals. Figure 12 underlines this finding

Fig. 11 Varying spatial
resolution (geometric
sequence) in cross-tabulation
between observed LUC and
LUC simulated by three land
change model tools:
CA_MARKOV, LCM and
Dinamica Ego applied to
pasture land in Eastern
Pyrenees. The abscissa shows
the spatial resolution in
meters while the Y-axis is the
percentage of correctly
simulated LUC. The top
figure shows the accuracy rate
by pixel thinning and the
bottom one shows the impact
of applying the majority rule
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by using MODIS 250 m MCDQ21 data with a type-1 legend for France. The
available data are for 2001–2012. The figure shows that the intensity of change
decreases exponentially with increasing length of time intervals.

4 Validation According to LUCC Models

The modeling software packages discussed here use either internal validation tools
implemented within the modeling program, or external techniques such as parent
software, GIS or specific raster tools such as Map Comparison Kit (Visser and de
Nijs 2006), especially recommended for CLUMondo (Table 1).

As regards those with built-in validation techniques, all the software packages
we considered except for CLUMondo offer cross tabulation to compare hard pre-
dictions to observed data. The majority of programs also do this for soft prediction
maps, while only TerrSet and Dinamica EGO allow a validation of this kind with
multiple resolutions. For their part, Dinamica EGO and APoLUS allow a spatial
validation by fuzzy allocation.

With the exception of LucSim and CLUMondo all programs offer various
similarity indices for comparing maps. The situation varies more with regard to
comparison tools, in that they do not all have tools that offer omissions and
commissions and pattern analysis. All of the software packages we considered do
however perform a quantitative validation and most of them use ROC statistics.

Fig. 12 Annual rate of change (%) depending on the length of the time interval (years). Applied
to MODIS MCDQ21 type 1 data for France, 2001–2012
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5 Concluding Remarks

Everyone agrees on the importance of model validation. The credibility of the
model depends on it. However, the specific nature of each land change model
software program and its various options make detailed comparisons impossible.
On the other hand, the efforts undertaken by the scientific community in recent
years are beginning to bear fruit. Modelers—and critical model users—have never
had as many tools at their disposal for assessing the credibility of a simulation or
that enable them to focus on particular aspects such as quantitative accuracy, in
particular the accuracy of LUCC components, or to pay more attention to landscape
pattern similarity. Nevertheless, the impressive array of techniques for calculating

Table 1 Comparing LUCC models in the validation stage

Pattern-based models (PBM) Constraint CA-based models (CCAM)

CA_Markov
TerrSet

LCM
TerrSet

Dinamica
EGO

CLU-
Mondo

Metronamica APoLUS SLEUTH LucSim

Cross-
tabulation
for hard
classified
maps

Yes Yes Yes No,
external

Yes Implemented
in parent
software(R)

Model creates
transition and
contingency
matrices

Yes

Cross
tabulation
for soft
classified
maps

Yes Yes Yes:
DIP

No Yes Implemented
in parent
software(R)

No No

Cross
tabulation
for multiple
resolutions

Yes Yes YES No,
external

No Implemented
in parent
software(R)

Multi-resolution
can be used in
calibration

No

Fuzzy
coincidence

No No Yes No,
external

No although
available
in MCK1

Implemented
in parent
software(R)

No No

Map
comparison
similarity
indexes

Cramer’s V,
KIA, KIA
multiple
resolutions

Yes Yes No,
external

Yes, mainly
through
accom-
panying
MCK

Ksim, KsimF
(MCK,
currently
working on
native R
solution)

Model uses 13
statistics based
on data
matching. Post
comparison must
be performed
independently

No

Map
comparison
showing
correctly
predicted
changes,
omissions,
commissions

Yes Yes Yes No,
external

Yes, mainly
through
accom-
panying
MCK

No. Per
category map
or Ksim

Post comparison
must be
performed
independently

Confusion
matrix

Pattern
analysis

Compactness
ratio,
landscape
metrics

Yes Yes,
various

No,
external

Yes, mainly
through
accom-
panying
MCK

Various
pattern based
(SDMTools,
Fragstats,
MCK)

Post comparison
must be
performed
independently.

No

Quantity Yes Yes Yes Yes Yes Yes YES Yes

ROC
statistics

Yes Yes Yes Yes Yes No No No
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validation indices should not make us forget certain limitations. Firstly, the fact that
in this chapter we have focused on path-dependent modeling approaches (Houet
et al. 2016), while the validation of non trend-based scenarios (also known as
contrasted scenarios) is even more difficult. Secondly, we centered on pattern-based
models (PBM) while the large panoply of agent-based models (ABM) require their
own particular tools, especially when we go beyond purely operational validation to
consider conceptual realism as well (Rykiel 1996). Finally, model output accuracy
depends above all on the quality of data and its conscientious use, as countless
studies have proved.

Acknowledgements This work was supported by the BIA2013-43462-P project funded by the
Spanish Ministry of Economy and Competitiveness and by the Regional European Fund FEDER.
This study was also supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT) and
the Secretaría de Educación Pública through the project ¿Puede la modelación espacial ayudarnos a
entender los procesos de cambio de cobertura/uso del suelo y de degradación ambiental? Fondos
SEP-CONACyT 178816.

References

Abdou M, Hamill L, Gilbert N (2012) Designing and Building an Agent-Based Model. In:
Heppenstall et al (eds) Agent-based models of geographical systems. Springer, pp 141–166

Ahlqvist O (2008) Extending post-classification change detection using semantic similarity metrics
to overcome class heterogeneity: a study of 1992 and 2001 US National Land Cover Database
changes. Remote Sens Environ 112(3):1226–1241

Aldwaik SZ, Pontius RG Jr (2012) Intensity analysis to unify measurements of size and stationaity
of land changes by interval, category, and transition. Landsc Urban Plann 106:103–114

Alcamo J (2008) Environmental futures: the practice of environmental scenario analysis.
Developments in integrated environmental assessment, vol 2. Elsevier, Amsterdam

Alcamo J, Schaldach R, Koch J, Kölking C, Lapola D, Priess J (2011) Evaluation of an integrated
land use change model including a scenario analysis of land use change for continental Africa.
Environ Model Softw 26(8):1017–1027. doi:10.1016/j.envsoft.2011.03.002

Allen THF, Starr B (1982) Hierarchy: Perspectives for ecological complexity. University of
Chicago Press, Chicago 310 p

Burnicki AC, Brown DG, Goovaerts P (2007) Simulating error propagation in land-cover change
analysis: The implications of temporal dependence. Comput Environ Urban Syst 31:282–302

Bone C, Dragicevic S, White R (2011) Modeling-in-the middle: bridging the gap between
agent-based modeling and multi-objective decision-making for land use change. Int J Geogr Inf
Sci 25(5):717–737. doi:10.1080/13658816.2010.495076

Botequilha A, Miller J, Ahern J, McGarigal K (2006) Measuring landscapes. A planner´s
handbook. Island Press, Washington

Brown D et al (2005) Path dependence and the validation of agent-based spatial models of land
use. Int J Geogr Inf Sci 19:153–174

Camacho Olmedo MT, Paegelow M, Mas JF (2013) Interest in intermediate soft-classified maps in
land change model validation: suitability versus transition potential. Int J Geogr Inf Sci
27(12):2343–2361

Camacho Olmedo MT, Pontius RG Jr, Paegelow M, Mas JF (2015) Comparison of simulation
models in terms of quantity and allocation of land change. Environ Modell Softw 69:214–221
(Elsevier)

76 M. Paegelow et al.

http://dx.doi.org/10.1016/j.envsoft.2011.03.002
http://dx.doi.org/10.1080/13658816.2010.495076


Colas R (2016) Comprendre les changements d’utilisation des terres en France pour mieux estimer
leurs impacts sur les émissions à effet de serre. De l’observation à la modélisation. PhD thesis,
University Paris 7, 530 p

Conway TM, Wellen CC (2011) Not developed yet? Alternative ways to include locations without
changes in land use change models. Int J Geogr Inf Sci 25(10):1613–1631. doi:10.1080/
13658816.2010.534738

Coquillard P, Hill DRC (1997) Modélisation et simulation d’écosystèmes. Des modèles
déterministes aux simulations à événements discrets, Paris, Masson

Croks AT, Heppenstall AJ (2012) Introduction to Agent-based modelling. In: Heppenstall et al
(eds) Agent-based models of geographical systems. Springer, pp 85–108

Eastman JR, Jin W, Kyem PAK, Toleando J (1995) Raster procedures for multi-
criteria/multi-objective decisions. Photogramm Eng Remote Sens 61(5):539–547

Eastman JR, Solorzano LA, Van Fossen ME (2005) Transition potential modeling for landcover
change. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modeling.
ESRI, Redland CA, pp 357–385

Eastman JR (2009) Idrisi Taiga, Guide to GIS and Image Processing, manual version 16.02, Clark
University 342 pp

Engelen G, White R (2007) Validating and calibrating integrated cellular automata based models
of land use change. In: Albeverio S et al (eds) The dynamics of complex urban systems. An
interdisciplinary approach, Physica, pp 185–211

Forman RTT (1995) Land Mosaics: the ecology of landscapes and regions. EEUU, Cambridge
Gaucherel C (2007) Multiscale heterogeneity map and associated scaling profile for landscape

analysis. Landsc Urban Plann 82(3):95–102
Gaucherel C, Alleaume S, Hély C (2008) The Comparison Map Profile method: a strategy for

multiscale comparison of quantitative and qualitative images. IEEE Trans Geosci Remote Sens
46(9):2708–2719

Gómez Delgado M, Barredo JI (2005) Sistemas de Información Geográfica y evaluación
multicriterio en la ordenación del territorio (GIS and multicriteria evaluation for urban and
regional planning). Ra-Ma, Madrid

Gómez Delgado M, Tarantola S (2006) Global sensitivity analysis, GIS and multi-criteria
evaluation for a sustainable planning of hazardous waste disposal site in Spain. Int J Geogr Inf
Sci 20:449–466

Hagen A (2003) Fuzzy set approach to assessing similarity of categorical maps. Int J Geogr Inf Sci
17(3):235–249

Hagen-Zanker A, Straatman B, Uljee I (2005) Further developments of a fuzzy set map
comparison approach. Int J Geogr Inf Sci 19:769–785

Hagen-Zanker A (2009) An improved Fuzzy Kappa statistic that accounts for spatial
autocorrelation. Int J Geogr Inf Sci 23(1):61–73. doi:10.1080/13658810802570317

Houet T, Gourmelon F (2014) La géoprospective—Apport de la dimension spatiale aux approches
prospectives. Cybergéo 8 pp. http://cybergeo.revues.org/26194

Houet T, Aguejdad R, Doukari O, Battaia G, Clarke K (2016) Description and validation of a “non
path-dependent” model for projecting contrasting urban growth futures. Cybergeo, document
759, 6 Jan 2016. http://cybergeo.revues.org/27397

Huang J, Pontius RG Jr, Li Q, Zhang Y (2012) Use of intensity analysis to link patterns with
process of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl
Geogr 34:371–384

Jansen LJM (2006) Harmonisation of land-use class sets to facilitate compatibility and
comparability of data across space and time. In: 12th CEReS international symposium,
13–14 Dec 2005, Japan 29 pp

Jackson DA (1995) PROTEST: a procrustean randomization test of community environment
concordance. Ecoscience 2:297–303

Jokar Arsanjani J (2012) Dynamic land-use/cover change simulation: geosimulation and multi
agent-based modelling. Springer, Springer Theses

4 Techniques for the Validation of LUCC Modeling Outputs 77

http://dx.doi.org/10.1080/13658816.2010.534738
http://dx.doi.org/10.1080/13658816.2010.534738
http://dx.doi.org/10.1080/13658810802570317
http://cybergeo.revues.org/26194
http://cybergeo.revues.org/27397


Jansen LJM, Veldkamp TA (2011) Evaluation of the variation in semantic contents of class sets on
modelling dynamics of land-use changes. Int J Geogr Inf Sci. doi:10.1080/13658816.2011.
609989

Kamusoko C, Aniya M, Adi B, Manjoro M (2009) Rural sustainability under threat in
Zimbabwe-Simulation of future land use/cover changes in the Bindura district based on the
Markov-cellular automata model. Appl Geogr 29:435–447. doi:10.1016/j.apgeog.2008.10.002

Kim JH (2013) Spatiotemporal scale dependency and other sensitivities in dynamic land-use
change simulations. Int J Geogr Inf Sci 27:1782–1803

Klug W, Graziani G, Grippa G, Pierce D, Tassone C (eds) (1992) Evaluation of long range
atmospheric transport models using environmental radioactivity data from the Chernobyl
accident: the ATMES report. Elsevier, London

Krüger C, Lakes T (2015) Revealing uncertainties in land change modeling using probabilities.
Trans GIS 20(4):526–546

Kuhnert M, Voinov A, Seppelt R (2005) Comparing raster map comparison algorithms for spatial
modelling and analysis. Photogramm Eng Remote Sens 71(8):975–984

Lee YJ, Lee JW, Chai DJ, Hwang BH, Ryu KH (2009) Mining temporal interval relational rules
from temporal data. J Syst Softw 82:155–167

Li X, Chen Y, Liu X, Li D, He J (2011) Concepts, methodologies and tools of an integrated
geographical simulation and optimization system. Int J GIS 25(4):633–655

Lin YP, Chu HJ, Wu CF, Verburg PH (2011) Predictive ability of logistic regression, auto-logistic
regression and neural network models in empirical land-use change modeling—a case study.
Int J Geogr Inf Sci 25(1):65–87. doi:10.1080/13658811003752332

Liu J, Deng X (2010) Progress of the research methodologies on the temporal and spatial process
of LUCC. Chin Sci Bull 55:1354–1362

Mas JF, Kolb M, Houet T, Paegelow M, Camacho Olmedo MT (2011) Eclairer le choix de
modèles de simulation des changements des modes d’occupation et d’usages des sols. Revue
Internationale de Géomatique 21(3):405–430

Mas JF, Soares Filho B, Pontius RG Jr, Farfan Gutierrez M, Rodrigues H (2013) A suite of tools
for ROC analysis of spatial models. ISPRS Int J Geo-Inf 2(3):869–887. doi:10.3390/
ijgi2030869

Mas JF, Kolb M, Paegelow M, Camacho Olmedo MT, Houet T (2014) Inductive pattern-based
land use/cover change models: a comparison of four software packages. Environ Model Softw
51:94–111

McGarigal K, Marks BJ (1995) FRAGSTATS: spatial pattern analysis program for quantifying
landscape structure. USDA For Serv Gen Tech Rep

Mobaied S, Riera B, Lalanne A, Baguette M, Machon N (2011) The use of diachronic spatial
approaches and predictive modelling to study the vegetation dynamics of a managed heathland.
Biodivers Conserv 20:73–88. doi:10.1007/s10531-010-9947-1

Ngo TA, See L (2012) Calibration and validation of agent-based models of land cover change. In:
Heppenstall et al (eds) Agent-based models of geographical systems. Springer, pp 181–198

North MJ, Macal CM (2007) Managing business complexity: Discovering strategic solutions with
agent-based modelling and simulation. Oxford University Press, New York

Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation and confirmation of
numerical-models in the earth-sciences. Science 263:641–646

Paegelow M, Camacho Olmedo MT (2005) Possibilities and limits of prospective GIS land cover
modelling—a compared case study: Garrotxes (France) and Alta Alpujarra Granadina (Spain).
Int J Geogr Inf Sci 19(6):697–722

Paegelow M, Camacho Olmedo MT (eds) (2008) Modelling environmental dynamics. Advances
in geomatic solutions. Springer, series: Environmental science and engineering

Paegelow M, Camacho Olmedo MT, Mas JF, Houet T, Pontius RG Jr (2013) Land change
modelling: moving beyond projections. Int J Geogr Inf Sci 27(9):1691–1695

Paegelow M, Camacho Olmedo MT, Mas JF, Houet T (2014) Benchmarking of LUCC modelling
tools by various validation techniques and error analysis. Cybergeo 701, 22 Dec 2014. http://
cybergeo.revues.org

78 M. Paegelow et al.

http://dx.doi.org/10.1080/13658816.2011.609989
http://dx.doi.org/10.1080/13658816.2011.609989
http://dx.doi.org/10.1016/j.apgeog.2008.10.002
http://dx.doi.org/10.1080/13658811003752332
http://dx.doi.org/10.3390/ijgi2030869
http://dx.doi.org/10.3390/ijgi2030869
http://dx.doi.org/10.1007/s10531-010-9947-1
http://cybergeo.revues.org
http://cybergeo.revues.org


Perica S, Foufoula-Georgiou E (1996) Model for multiscale disaggregation of spatial rainfall based
on coupling meteorological and scaling descriptions. J Geophys Res 101(D21):26347–26361

Pérez-Vega A, Mas JF, Ligmann-Zielinska A (2012) Comparing two approaches to land use/cover
change modelling and their implications for the assessment of biodiversity loss in a deciduous
tropical forest. Environ Model Softw 29(1):11–23

Pontius RG Jr (2000) Quantification error versus location error in comparison of categorical maps.
Photogramm Eng Remote Sens 66(8):1011–1016

Pontius RG Jr (2002) Statistical methods to partition effects of quantity and location during
comparison of categorical maps at multiple resolutions. Photogramm Eng Remote Sens
68:1041–1049

Pontius RG Jr, Pacheco P (2004) Calibration and validation of a model of forest disturbance in the
Western Ghats, India 1920–1990. GeoJournal 61:325–334

Pontius RG Jr, Schneider LC (2001) Land-cover change model validation by an ROC method for
the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85:239–248

Pontius RG Jr, Huffaker D, Denman K (2004a) Useful techniques of validation for spatially
explicit land-change models. Ecol Model 179(4):445–461

Pontius RG Jr, Shusas E, McEachern M (2004b) Detecting important categorical land changes
while accounting for persistence. Agric Ecosyst Environ 101:251–268

Pontius RG Jr, Malanson J (2005) Comparison of the structure and accuracy of two land change
models. Int J Geogr Inf Sci 19:243–265

Pontius RG Jr, Cheuk ML (2006) A generalized cross-tabulation matrix to compare soft-classified
maps at multiple resolutions. Int J Geogr Inf Sci 20(1):1–30. doi:10.1080/13658810500391024

Pontius RG Jr, Lippitt CD (2006) Can error explain map differences over time? Cartogr Geogr Inf
Sci 33(2):159–171

Pontius RG Jr, Verluis AJ, Malizia NR (2006) Visualizing certainty of extrapolations from models
of land change. Landsc Ecol 21(7):1151–1166

Pontius RG Jr, Walker RT, Yao-Kumar R, Arima E, Aldrich S, Caldas M, Vergara D (2007)
Accuracy assessment for a simulation model of Amazonian deforestation. Ann Assoc Am
Geogr 97:677–695

Pontius Jr RG, LI X (2010) Land transition estimates from erroneous maps. J Land Use Sci 5
(1):31–44

Pontius RG Jr, Petrova SH (2010) Assessing a predictive model on land change using uncertain
data. Environ Model Softw 25:299–309

Pontius RG Jr, Boersma W, Castella JC, Clarke K, de Nijs T, Dietzel C, Duan Z, Fotsing E,
Goldstein N, Kok K, Koomen E, Lippitt CD, McConnell W, Sood AM, Pijankowski B,
Pidhadia S, Sweeney S, Trung TN, Veldkamp AT, Verburg PH (2008) Comparing the input,
output, and validation maps for several models of land change. Anna Region Sci 42(1):11–27

Pontius RG Jr, Millones M (2011) Death to kappa and to some of my previous work: a better
alternative. Int J Remote Sens 32(15):4407–4429

Pontius RG Jr, Gao Y, Giner NM, Kohyama T, Osaki M, Hirose K (2013) Design and
interpretation of intensity analysis illustrated by land change in Central Kalimantan, Indonesia.
Land 2(3):351–369. doi:10.3390/land2030351

Pontius Jr RG, Si K (2013) The total operating characteristic to measure diagnostic ability for
multiple thresholds. Int J Geogr Inf Sci

Rodrigues HO, Soares Filho BS, de Souza Costa WL (2007) Dinamica EGO, uma plataforma para
modelagem de sistemas ambientais. Anais XIII Simposio Brasileiro de Sensoriamento Remoto,
INPE 3089–3096

Runfola DM, Pontius RG Jr (2013) Measuring the temporal instability of land change using the
flow matrix. Int J Geogr Inf Sci 26(9):1696–1716

Rykiel EJJ (1996) Testing ecological models: the meaning of validation. Ecol Model 90:229–244
Sargent RG (2009) Verification and validation of simulation models. In: Rosetti MDD, Hill RR,

Johansson B, Dunkin A, Ingalls RG (eds) Proceedings of the 2009 winter simulation
conference. IEEE, Syracuse, NY, pp 162–176

4 Techniques for the Validation of LUCC Modeling Outputs 79

http://dx.doi.org/10.1080/13658810500391024
http://dx.doi.org/10.3390/land2030351


Schneider LC, Pontius RG Jr (2001) Modeling land-use change in the Ipswich watershed,
Massachusetts, USA. Agric Ecosyst Environ 85:83–94

Shirley LJ, Battaglia LL (2008) Projecting fine resolution land cover dynamics for a rapidly
changing terrestrial-aquatic transition in Terrebone basin, Louisiana, USA. J Coastal Res
246:1545–1554

Silva TS, Tagliani PRA (2012) Environmental planning in the medium littoral of the Rio Grande
do Sul coastal plain—Southern Brazil: elements for coastal management. Ocean Coast Manag
59:20–30

Soares-Filho BS, Pennachin CL, Cerqueira G (2002) DINAMICA—a stochastic cellular automata
model designed to simulate the landscape dynamics in an Amazonian colonization frontier.
Ecol Model 154(3):217–235

Sohl TL et al (2012) Spatially explicit land-use and land-cover scenarios for the Great Plains of the
United States. Agric Ecosyst Environ 153:1–15. doi:10.1016/j.agee.2012.02.019

Steiner F, McSherry L, Cohen J (2000) Land suitability analysis for the upper Gila River
watershed. Landsc Urban Plann 50(4):199–214

Syphard AD, Clarke KC, Franklin J, Regan HM, Mcginnis M (2011) Forecasts of habitat loss and
fragmentation due to urban growth are sensitive to source of input data. J Environ Manage
92:1882–1893

Takada T, Miyamoto A, Hasegawa SF (2010) Derivation of a yearly transition probability matrix
for land-use dynamics and its applications. Landsc Ecol 25(4):561–572

Torrens PM (2011) Calibrating and validating cellular automata models of urbanization. In:
Yang X (ed) Urban remote sensing. Monitoring, synthesis and modelling in the urban
environment. Wiley, New York, pp 335–345

Turner MG, Constanza R, Sklar FH (1989) Methods to evaluate the performance of spatial
simulation models. Ecol Model 48:1–18

Villa N, Paegelow M, Camacho Olmedo MT, Cornez L, Ferraty F, Ferré L, Sarda P (2006)
Various approaches for predicting land cover in Mediterranean mountains. Commun Stat 36
(1):73–86

Visser H, de Nijs T (2006) The map comparison kit. Environ Model Softw 21:346–358
van Vliet J, Bregt AK, Brown DG, van Delden H, Heckbert S, Verburg PH (2016) A review of

current calibration and validation practices in land change modelling. EMS 82:174–182
Wang J, Mountrakis G (2011) Developing a multi-network urbanization model: A case study of

urban growth in Denver, Colorado. Int J Geogr Inf Sci 25(2):229–253. doi:10.1080/
13658810903473213

White R, Uljee I, Engelen G (2012) Integrated modelling of population, employment, and land use
change with a multiple activity based variable grid cellular automaton. Int J GIS 26:1251–1280

White R, Engelen G, Uljee I (1997) The use of constrained cellular automata for high resolution
modelling of urban land use dynamics. Environ Plan 24:323–343

Yu J, Chen Y, Wu J, Khan S (2011) Cellular automata-based spatial multi-criteria land suitability
simulation for irrigated agriculture. Int J Geogr Inf Sci 25(1):131–148. doi:10.1080/
13658811003785571

80 M. Paegelow et al.

http://dx.doi.org/10.1016/j.agee.2012.02.019
http://dx.doi.org/10.1080/13658810903473213
http://dx.doi.org/10.1080/13658810903473213
http://dx.doi.org/10.1080/13658811003785571
http://dx.doi.org/10.1080/13658811003785571


Chapter 5
LUCC Scenarios

F. Escobar, H. van Delden and R. Hewitt

Abstract Since ancient times people have been curious to know more about how
the future could unfold, and have proposed different scenarios as a tool for
exploring the future of their societies. Examples abound, from Plato’s description of
his ideal Republic to Orwell’s vision of 1984 in 1948. As a strategic planning tool,
scenario techniques originated as a means of enhancing military strategies, first
appearing in the form of war games. Today’s scenario techniques emerged after
World War 2 and have a wide range of industrial and government applications.
Concerns about the possible impacts of climate and global change have boosted
studies in which scenarios play a key role as an analytical technique. Current
development of modeling techniques within Geographic Information Systems
(GIS) and the increasing availability of geospatial information have enabled the
implementation of spatially-explicit scenarios of various kinds, including those on
land-use cover change (LUCC) studied in this book. Such is the current popularity
of scenario techniques in terms of the number of applications and users that the
relevant literature reveals a wide array of different and often contradictory defini-
tions and ideas about scenarios. These are accompanied by a large number of
scenario planning techniques and models, leading some authors to describe the
situation as “methodological chaos”. This chapter has two main objectives: firstly,
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to offer insights into the topic and to clarify some definitions of scenario-related
terms and techniques, and secondly to serve as a guide for LUCC scenario planning
and modeling.

Keywords Scenario � LUCC � Modeling � Validation

1 Introduction

The Oxford English Dictionary defines scenario as “a postulated or projected sit-
uation or sequence of potential future events; (also) a hypothetical course of events
in the past, intended to account for an existing situation, set of facts, etc. Also more
generally: a set of circumstances; a pattern of events” (OED 2017). Although these
definitions seem clear and easy to understand, literature on scenario planning and
applications, particularly in land-use studies, shows a confusing array of definitions
and interrelations with similar, albeit not identical, terms. For instance, in land-use
modeling literature, scenarios refer sometimes to the storylines that the modeling
exercise attempts to reproduce in the form of a hypothetical future land-use
map. On other occasions, however, the scenario is the future land-use map itself.
And what is more worrying, scenarios are often considered as predictions. The
concept of ‘scenario’ is therefore one of the most basic, and at the same time one of
the most disputed concepts in the field of futures studies (Börjeson et al. 2006). It
therefore seems necessary to begin this chapter by defining the term scenario and
positioning ourselves within the large variety of meanings and interpretations of the
term.

Herman Kahn, who is considered the father of scenario planning, defined it as “a
set of hypothetical events set in the future constructed to clarify a possible chain of
causal events as well as their decision points” (Bradfield et al. 2005). In his defi-
nition, Kahn highlights the existing causal relationship between events leading to a
hypothetical future and the key points in time (drivers) that make that future
possible.

As early as 1994, the International Permanent Committee on Climate Change
(IPCC) defined scenario as “a coherent, internally consistent, and plausible
description of a possible future state of the world” (IPCC 1994) and added that
scenarios are not forecasts. The IPCC views scenario as an alternative image of how
the future could unfold. Later on, in 2000 the IPCC redefined scenarios as “alter-
native images of how the future might unfold” and “an appropriate tool with which
to analyze how driving forces may influence future emission outcomes and to assess
the associated uncertainties” (IPCC 2000). The interest of this definition lies in the
fact that it has been adapted to climate change (future emissions) and, more
importantly, scenario is considered not only as a hypothetical future but as a valid
tool for assessing the uncertainties associated with it.
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Also considering future impacts of climate change, Carter et al. opted for almost
the same definition as that provided by the IPCC in 1994 and stated that a scenario
is “a coherent, internally consistent, and plausible description of a possible future
state of the World”. Scenarios are commonly required in climate change impact,
adaptation, and vulnerability assessments to provide alternative views of future
conditions considered likely to influence a given system or activity (Carter et al.
2001). Characteristics such as coherent, consistent and plausible are also typical
conditions in the validation of scenarios, as we will see later on in this chapter.

Although the above definitions are slightly different, they are coherent and evoke
a fairly clear image of what is commonly understood by the word “scenario”.
However, serious confusion arises when other terms with different meanings are
used as synonyms. For instance, the term “storyline” is often used in the literature
as a synonym for scenario. Although they are closely related, our understanding is
that a storyline provides a description of a scenario, in a similar way to other
descriptive methods, such as figures, diagrams and maps. In other words, scenarios
are images or descriptions of the future, while storylines are materializations of
these images, in the form of literal explanations. Storylines may take the form of
narrative descriptions which are later “realized” in the form of visual images of the
future territory (see e.g. Volkery et al. 2008). Similarly, a map representing a future
land-use scenario is not a scenario itself but its cartographic image or
representation.

As made clear by the IPCC (1994), scenarios are not forecasts. Neither are they
projections or predictions. A projection can be regarded as any description of the
future and the pathway leading to it and can serve as basic information for building
a scenario. Since projections are by nature uncertain, scenarios can be used to
reflect the different implications of these uncertainties. For its part, a forecast is
defined as the most likely projection, i.e. the projection with least uncertainties.
Prediction and forecast are synonymous. Despite these differences it is not
uncommon to find examples in the literature where land-use scenario modeling is
presented as a predictive model, even in models where the level of uncertainty is
very high as in Yuan et al. (2013) where the simulation period runs as far as 2100.

In line with the IPCC, Wack (1985a, 1985b) notes that a scenario does not
predict the future, but “it explores multiple plausible future situations with the
purpose of extending the sphere of thinking of the participants in the scenario
development process”. Scenarios differ from forecasts as in the former, a range of
possible outcomes resulting from uncertainty can be explored, whereas the purpose
of forecasts is to identify the most likely pathway to that outcome and from there
estimate the uncertainties.

Since scenarios do not predict the future one could ask why we need them. Amer
et al. (2013) cite multiple previous works to conclude that “consideration of mul-
tiple possible future alternatives helps to conduct future planning in a holistic
manner and significantly enhance the ability to deal with uncertainty”. The scenario
planning process helps to make the desirable future real, stimulates strategic
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thinking and helps to overcome thinking limitations by creating multiple futures
(Saliba 2009). From the decision-making point of view, scenarios are considered a
valuable tool that helps organizations to prepare for possible eventualities (Amer
et al. 2013).

ESPON (2015) states that scenarios can be used to communicate insights and
discuss potential territorial developments, the effects of policies with territorial
impact, and the political choices to be made.

In view of these definitions and the fact that, according to the IPCC, scenarios
are considered as a tool for assessing uncertainties about the future, it is necessary
to differentiate between its two meanings. Scenarios offer images of a plausible
future, whether in the form of storylines, maps, graphs or figures, and they are also
considered as tools that can reveal peculiarities and uncertainties, and make dis-
coveries, about a possible future. This is of particular interest in spatially-explicit
scenarios such as land-use cover change (LUCC) scenarios where the models (the
maps) representing the scenarios also provide information about where change is
taking place.

After clarifying the definition of this concept, in the following sections we
provide an overview of the various applications of scenarios, their history and the
techniques used to develop them. This is followed by a review of the scenarios used
in LUCC and their validation techniques.

2 The Advent of LUCC Scenario Planning

As pointed out by Bradfield et al. (2005), the concept of scenarios has been around
since ancient times and has been used as a way of exploring the future of societies
and institutions. However, as a strategic planning tool, scenario techniques first
appeared within the military in the form of war game simulations. The first doc-
uments describing what today we regard as scenarios, appeared in the 19th century
in the writings of two Prussian military strategists also credited with having ‘first
formulated the principles of strategic planning’ (Bradfield et al. 2005). Modern day
scenario techniques emerged in the 1950s in the US at the RAND (from “Research
and Development”) Corporation. After being used by the US Department of
Defense as a method for military planning, the same scenario methodology was
extensively used for social forecasting, public policy analysis and decision making
in the 1960s.

Despite these developments, scenario planning was not widely used until the
1973 oil crisis, after which the number of users of scenario planning almost dou-
bled. Given that interest in scenario studies seemed to increase in times of social
and economic crisis, Malaska et al. concluded that the adoption of scenario plan-
ning was associated with the increasing unpredictability of the corporate environ-
ment in the 1970s (Malaska et al. 1984).
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Linneman and Klein (1983) estimate that in the early 1980s, almost half of the
top 1000 industrial firms in the US, half of the top 300 non-industrial firms and half
of the top 500 foreign industrial firms were actively using scenario planning.

The Centre d’Etudes Prospectives, also known as La Prospective, appeared
around the same time in France. Founded by the philosopher Gaston Berger, it
developed a scenario approach to long-term planning (Amer et al. 2013). The main
idea behind La Prospective was that the future is not part of a “predetermined
temporal continuity” but something which is to be created and which can be “con-
sciously modeled to be humanly beneficial”. La Prospective was materialized in the
creation of DATAR (Délégation interministérielle à l’Aménagement du Territoire et
à l’Attractivité Régionale or Delegation for Planning and Regional Action) in 1963.
DATAR is still operational today and is controlled directly by the Prime Minister. It
has funded numerous interesting studies on for example the implementation of the
high speed train system in France and its impact on the territory (Cauvin et al. 1992).

During the first years of RAND Corporation and La Prospective the lack of
appropriate tools made it very difficult, or virtually impossible, to develop
spatially-explicit models to represent the scenarios they were constructing. The
appearance and diffusion of Geographic Information Systems (GIS) in the 1970s
and the later increasing availability of spatial information, enabled the production of
the first static cartographic models on land-use change. Simultaneously, in the late
1970s, the geographer Waldo Tobler developed his “cellular geography” and
proved that the cellular automata (CA) theory could be adopted in land-use mod-
eling (Tobler 1979). However, it was not until the 1990s that the first CA-based
models were run in a computing environment with real land-use data (White and
Engelen 1993, 1994, 1997).

Once LUCC models had become dynamic, i.e. they could simulate changes
occurring over time, a natural step forward was to use them in scenario planning
studies. This together with increasing social concern about global warming and cli-
mate change gave rise to an increasing number of LUCC projects in which different
scenarios were tested and implemented with the newCA-basedmodels. Examples are
the national/regional level scenarios of the PRELUDE study which are modelled with
the Metronamica land use modeling framework (Van Delden and Hagen-Zanker
2009), and the MedAction and LUMOCAP scenarios (Kok and Van Delden 2009;
Van Delden et al. 2010) modelled with an integrated policy support system that
incorporates the Metronamica land use model (Van Delden and Hurkens 2011).

3 Scenario Typologies and Developing Techniques

3.1 Scenario Typologies

As noted by Börjeson and others (2006), there is no agreement as to what
typologies of scenario can be established or as to which would be most useful to
users. In Table 1 there is a summary of the typologies outlined by these authors.
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As reflected in Table 1, the typologies focus either on user’s needs or on the
function that the generated knowledge may play. The latter is a philosophical view
commonly found in futures studies, while the former, although also part of futures
studies, is more closely related to what this book is about; namely, exploring what
the future may look like in order to increase preparedness and decision-making
leading to a desirable future.

We are particularly interested in the typology proposed by Börjeson et al. in
2006 as it tackles the three different (and often intermixed) views of scenarios found
in LUCC literature; predictive, exploratory and normative.

As outlined above, scenarios are not predictions. However, in LUCC modeling
literature we often find the expression “what-if” referring to what these models are
able to produce, i.e. hypothetical outcomes based on answering questions like
“what might happen if we act in a certain way?”. Börjeson et al. however relate
“what-if” questions to predictive scenarios while LUCC modelers tend to relate
them to an exploration of the future. Of course, this does not help clarify the already
confusing terminology.

In line with Börjeson et al., we believe that LUCC scenarios, in the way they are
currently being developed within the land use simulation community, are on a
spectrum from rather predictive (mostly what-if) to exploratory, depending on their
scope. However, we feel that LUCC depends on so many different factors (natural
conditions, legislation, economy, demography…) and is so complex in nature
(number of land-use categories, area occupied by each one, patterns of distribution
among the categories, interrelations between them…) that predictive exercises have
strong limitations and exploratory scenarios are therefore preferred. The latter helps
to better understand the different ways the future might unfold and by obtaining a
better appreciation for this assist in developing robust and/or adaptive plans to
move towards a desired future.

3.2 Scenario Developing Techniques

Börjeson et al. (2006) state that there are three main tasks in scenario development:
(1) generation of ideas and gathering of data, (2) integration of the data and
(3) assessing the consistency of scenarios created. They outline a number of valid
techniques for each of these tasks: surveys, workshops and Delphi methods for
Task 1; time series analysis, explanatory modeling and optimizing modeling for
Task 2; and morphological field analysis and cross impact analysis for Task 3. To a
greater or lesser extent these techniques have been applied in most LUCC and other
spatially-explicit scenario development techniques.

As acknowledged by Amer et al. (2013), there is such a large number of per-
spectives and techniques for developing scenarios and related models that some
authors have dubbed it “methodological chaos”.
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One of the first questions to answer when attempting to design scenarios is how
many of them to consider. This depends enormously on the type of scenario
method: if we want to build normative scenarios then there should be as many
scenarios as there are normative possibilities. If we are exploring future situations
with limited alternatives or a narrow scope (i.e. alternative transport systems) then
there should be as many scenarios as there are transport alternatives (see chapter on
transport scenario planning for Bogota). The decision depends on how many
uncertainties about the future are considered. Obviously, the shorter the period
being simulated, the lesser the number of uncertainties and inversely, the longer the
period considered, the greater the number of uncertainties to consider within the
scenario.

Dator (2002) proposes four types; (1) continued growth, assuming that current
conditions will improve, (2) collapse, current conditions do not improve and do not
sustain growth, revealing deep contradictions, (3) steady state, where growth
decelerates to find a better balance between economy and environment, envisaging
a softer, fairer society; and (4) transformation, depicting a dramatic change in
society caused by either technological or spiritual changes. All the papers reviewed
in Amer et al. (2013) recommended between two and six scenarios and most of
them suggested four. There was a simple explanation for this choice; most of them
were based on a 2 � 2 matrix. For instance, Schwarth (2009) designed a matrix in
which the number of businesses, higher versus lower, was contrasted with the speed
of change, slow versus quick. In Piorr et al. (2011) the four scenarios analyzed
come from relating on one side, private enterprise economic values versus public
community and ecological values, and on the other global-macro top down
dynamics versus regional-local bottom up dynamics. These four archetypes are
found with slight variations in most scenario planning projects under different
names. Thus, in the PLUREL project (Piorr et al. 2011) the four scenarios are
referred to as “hypertech”, “peak-oil”, “extreme water” and “walls and enclaves”, a
direct adaptation of the A1, A2, B1 and B2 scenario families established by the
IPCC in their special report on emissions scenarios (SRES) (Nakicenovik and Svart
2000).

Given the number of projects and modeling scenario exercises based on the
IPCC SRES scenario families, we believe it is useful to summarize them here:

“The A1 family describes a world of very rapid economic growth, global pop-
ulation that peaks in mid-century and declines thereafter, and the rapid introduction
of new and more efficient technologies. Major underlying themes are convergence
among regions, capacity building, and increased cultural and social interactions.

A2 describes a very heterogeneous world. The underlying theme is self-reliance
and preservation of local identities. Fertility patterns across regions converge very
slowly, which results in continuously increasing global population. Economic
development is primarily regionally oriented and per capita economic growth and
technological change are more fragmented and slower than in other scenarios.
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B1 describes a convergent world with the same global population that peaks in
mid-century and declines thereafter, as in A, but with rapid changes in economic
structures toward a service and information economy, with reductions in material
intensity, and the introduction of clean and resource-efficient technologies. The
emphasis is on global solutions to economic, social, and environmental sustain-
ability, including improved equity, but without additional climate initiatives.

B2 describes a world in which the emphasis is on local solutions to economic,
social, and environmental sustainability. It is a world with continuously increasing
global population at a rate lower than A2, intermediate levels of economic devel-
opment, and less rapid and more diverse technological change than in the B1 and
A1. While the scenario is also oriented toward environmental protection and social
equity, it focuses on local and regional levels” (IPCC 2000).

These four scenarios are frequently complemented by a fifth scenario named
“more of the same” (Hicks et al. 1995) or “business as usual” (Masini 2006). This
scenario assumes that trends observed in the past will continue along the same path
towards the future, and that no dominant drivers will divert them from their course.
Issues arise when deciding how far back in the past we should go to observe these
trends. Since ups and downs have probably been observed in the past, the business
as usual path will have to be described by averaging the whole period under
consideration. In addition to this and as noted in the ESPON report (2014), in
periods of economic and political crises, turbulence and uncertainty make defining
consistent enough baseline trends difficult. In this report, the methodology used to
define the baseline scenario was based on a mixture of qualitative and quantitative
techniques and was divided into the following phases:

• Internal expert consultation and debates
• Analysis by sectors and macro-regions
• Analysis of the present state and trend
• Analysis of ongoing debates on policy reforms in Europe
• Identification of critical points of bifurcation (alternative pathways)
• Comparative analysis of existing baseline scenarios at both European and World

levels
• Definition of baseline assumptions
• Quantitative analysis that provided relevant indicators at EU level
• Quantitative modeling using forecast models, and
• Analysis of territorial differences as a means of explaining territorial dynamics.

Within the phase in which critical points of bifurcation are identified, the
ESPON report analyzed, among others the possibility of land-use becoming more
hybrid due to ineffective planning.

Finally, the IPCC SRES scenarios themselves are in the process of replacement
by a new generation of scenarios, the Representative Concentration Pathways
(RCP) Scenarios (Moss et al. 2010). Since these have not yet been widely adopted
by land use modelers, we do not discuss them here. However, we observe that the
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RCPs do attempt to address many of the limitations found in the SRES scenarios, so
their incorporation more broadly into land use change studies is to be encouraged.

Once the number of scenarios to be modeled has been established, it is time to
choose which scenario planning method to use. A wide range of options are
available.

Quantitative methods include INTERAX or Interactive Cross Impact Simulation
(Enzer 1980) in which a detailed multidisciplinary database containing important
information on a broad range of long-term strategic issues and future trends and
events was developed through a Delphi study by a large group of experts. Using a
similar approach, Interactive Future Simulations (IFS) identifies novel and diverse
ideas, encourages contingency planning and provides an early warning system for
major changes. Jetter and Schweinfort (2011) stand out for their use of the Fuzzy
Cognitive Map (FCM) to represent social scientific information as an intercon-
nected collection of causal graphs. The visual nature of these graphs facilitates
understanding of the dependencies and contingencies between concepts.

For their part, qualitative methods focus on workshops and discussion group
sessions, surveys, interviews and other participatory activities such as photovoice
and brainstorming.

Ideally, scenario planning has to be supported by both quantitative and quali-
tative techniques. The latter facilitate the construction of storylines that help depict
the scenario in a narrative and realistic manner, while the former provide figures to
support all the assumptions included in the storyline.

4 LUCC Scenario Planning Examples

Within general scenarios, territory-based scenarios have become increasingly
popular in the European context as a tool for investigating territorial cohesion issues
and the impact of EU regional policies on member states.

One particular kind of territorial scenario is the land-use scenario. As stated by
Veldkamp and Fresco (1997), land-use scenarios should be able to describe
land-use as a result of changing biophysical and socioeconomic conditions, and
should also trace the pathways for possible developments including feedbacks
between land-use change and its drivers. Instead of exploratory scenarios, they
present the CLUE model in which scenarios are made by changing, extrapolating
and adjusting the relationship of land-use/cover drivers and related land use sys-
tems. They model six future scenarios: abolition of national parks, extension of
national parks, urbanization, soil erosion and soil fertility depletion, crop disease in
permanent crops below 300 m and a volcanic eruption.

Fischer et al. (2010) applied a ‘‘food first’’ paradigm in their estimations of the
land potentially available for the production of biofuel feedstocks, without putting
food supply or nature conservation at risk. Three land conversion scenarios were
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formulated: A base scenario that reflects developments under current policy settings
and respects current trends in nature conservation and organic farming practices, by
assuming moderate overall yield increases; an environment oriented scenario with
higher emphasis on sustainable farming practices and maintenance of biodiversity;
and an energy oriented scenario considering more substantial land use conversions
including the use of pasture land.

Münier et al. (2004) combined ecological and economic modeling in four
agricultural land use scenarios. Their research deals with the consequences for
ecology, the environment and the economy of changes in agricultural production.
They also seek to link vegetation ecology and farm economy.

In order to address various agricultural issues, Ewert et al. (2005) explored
changes in crop productivity by means of scenarios that represent alternative eco-
nomic and environmental pathways to future development. The scenarios modeled
were based on changing conditions in the climate, atmospheric CO2 concentration
and technology development.

Eickhout et al. (2007) investigated the economic and ecological consequences of
four European land-use scenarios, dealing with the complex interaction between
agricultural trade, production, land-use change and the environment. In their sce-
narios, they focused on the major uncertainties likely to be experienced by regional
trade blocks as a result of trade liberalization. They found that although these
liberalizing scenarios did result in economic growth, the environmental threats
posed by climate change and fertilizers for the sustainability of global agricultural
practices produced new challenges for future food production.

These four scenarios were developed on the basis of four corresponding narra-
tives or storylines. These narratives were an adaptation of those developed for the
Special Report on Emission Scenarios (SRES) issued by the IPCC.

Also based on the IPCC report, Rounsevell et al. (2006) presented a range of
future, spatially explicit, land-use change scenarios for the EU15, Norway and
Switzerland. They discussed the technical and conceptual difficulties inherent in
developing future land use change scenarios. These included the problems of the
subjective nature of qualitative interpretations, the land-use change models used in
scenario development, the problem of validating future change scenarios, the
quality of the observed baseline, and statistical downscaling techniques.

In addition to these applications in agriculture, other studies have focused on the
impact of LUCC on landscapes. Thus Hawkins and Selman (2002) modeled
alternative land use scenarios based on landscape ecology.

Examples in developing countries are not as common as in Europe or North
America. In this book we present a study of the city of Bogota in which two
different transport scenarios were modelled (see chapter by Páez and Escobar).
Some interesting work has also been done in Costa Rica where Stoorvogel (1995)
integrated models and scenario tools to evaluate alternative land-use in agriculture,
while Barredo et al. (2004) explored alternative scenarios for urban growth in
Lagos, Nigeria.
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In the European context the ESPON program has been proactive in developing
spatially-explicit land-use scenarios and models (ESPON 2013, 2014). They have
set three scenarios: (1) Europe of the Flows, which provides an image of European
territory in which economic and population growth as well as public investments
are mainly stimulated along the main corridors that structure the European conti-
nent; (2) Europe of the Cities where growth takes place in cities and (3) Europe of
the Regions where the recipients of growth and investments are the regions. These
scenarios have formed the basis of multiple modeling exercises conducted in
Europe.

There are an impressive number of modeling exercises that offer a cartographic
view of LUCC scenarios in different European settings. Numerous examples can be
found in The Netherlands (De Nijs et al. 2004; Kok et al. 2001), probably the most
modeled country in the world, in Spain (Hewitt et al. 2014; Escobar et al. 2015;
Aguilera et al. 2011, Camacho et al. 2015; Gallardo and Martínez-Vega 2016; Plata
et al. 2009), Portugal (Petrov et al. 2009), and a long list including the most
important urban centers in Europe.

5 Scenario Validation

Since scenarios are by definition unrealized visions of the future, they cannot be
validated by contrasting them with reality. Chermack et al. (2001) highlight the
importance of establishing appropriate criteria for validation and state that scenarios
must be checked for validity to ensure that they provide a solid reliable basis for
making important decisions.

Amer et al. (2013) summarized scenario validation criteria found in the literature
into seven groups; plausibility, consistency/coherence, creativity/novelty,
relevance/pertinence, importance, transparency and completeness/correctness.
Plausibility refers to the capacity of the scenarios to be capable of happening.
Consistency guarantees that there is no built-in internal inconsistency or contra-
diction. Relevance indicates that the scenario should contribute specific insights
into the future that help to make the decision. Novelty applies to the capacity of the
scenario to challenge conventional thinking about the future and correctness to the
credibility of the scenario.

Of all of these criteria, the only ones unanimously accepted by all authors are the
first two. Importance is only mentioned by Durance and Godet (2010) and trans-
parency by these authors and by De Brandere and Iny (2010) and Kosow and
Gassner (2008).

Other authors propose different criteria for scenario validation. Van der Heijden
(1996) states that at least two scenarios are needed to reflect uncertainty, each
scenario must be plausible, all scenarios must be internally consistent, each scenario
must be relevant to the client’s concerns and all of them must produce a new and
original perspective on the issues.
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In addition to the criteria already mentioned, Durance and Godet (2010) argue
that scenarios should also present a degree of likelihood. However this would
partially or totally contradict the criteria of novelty and more visionary scenarios
would not be proposed if they are considered likely to occur.

We believe that the additional criteria outlined by De Brandere and Iny (2010)
are more useful. They suggest “easy to recount and illustrate” as a final criterion to
complement those mentioned above. Indeed, a scenario that is not easy to recount
or to illustrate is not worth being analyzed and will have difficulties in finding
supporters. On similar lines, the research presented by Sheppard et al. (2011)
successfully tested realistic visualization tools for community engagement and
planning with scenarios.

Based on Amer et al. (2013) the methods commonly used to select and validate
scenarios include: (1) A minimal approach in which scenarios are defined by two
factors: the most important and the most uncertain; (2) The Wilson matrix that helps
to evaluate and prioritize the scenario drivers against their potential impact and
uncertainty (probability of developing into a significant issue in the future);
(3) Morphological analysis which develops raw scenarios/input vectors and access
plausibility; (4) Cross impact analysis to identify the strongest scenario drivers with
the highest shaping potential; and (5) Consistency analysis to verify the internal
consistency of scenarios.

In order to conduct consistency analysis, Pillkahn (2008, cited in Amer et al.
2013) suggested assigning a score on a scale of 1–5 to evaluate the consistency of
the different scenarios. The scores are presented in a matrix containing all the
scenario drivers in order. A score of 1 is assigned if there is total inconsistency
(impossible combination) while a score of 5 is awarded if both factors/drivers are
closely linked and positively impact on each other or are mutually dependent.

6 Concluding Remarks

Amer et al. (2013) insist on the importance of the internal consistency of the
scenarios as emphasized in the literature on scenario planning. Consistency analysis
is used to check the compatibility of combined variations of various scenario dri-
vers and can also be used for reducing the number of scenarios to a manageable
number. They conclude that the best scenario planning approaches offer a combi-
nation of qualitative and quantitative techniques through which they can generate
robust scenarios, adding that the most appropriate number of scenarios to be
modelled is between three and five.

Some researchers argue that preference for the scenario planning approach has
declined slightly. They consider that scenario methods have evolved into a set of
very complex sub-techniques which as they are difficult to implement discourage
possible users from trying.
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This undoubtedly applies to LUCC modeling software. On the positive side it
has enabled researchers to put spatially-explicit scenarios into practice, to recreate
them in the form of maps of the future. These maps are analyzed in the same way as
we analyze maps of the present or the past and allow us to compute indicators and
other metrics that help us characterize the future and reach conclusions about it.
However, at the same time, their level of sophistication and the fact that they are
difficult to use (substantial training is still needed) means that they tend to be most
popular with experts or scientists, who often have little relation with real practi-
tioners and users.

A vision for future land-use scenario modeling must include easy to use soft-
ware, well-trained and experienced GIS land-use practitioners and up-to-date, high
quality data.

Another possible reason for the decline of scenario-based research lies in the
impact of fast changes in society and the environment which makes forecasting and
visions for the future quickly obsolete. But perhaps for this very reason scenario
analysis is more urgently required and more easily justified. Despite this decline,
LUCC models remain popular in scientific literature probably due to social concern
about climate change and the availability of geo-referenced databases, as outlined
above in this chapter.
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Part II
Methodological Developments and Case
Studies: Methodological Developments



Chapter 6
Obtaining and Comparing Factors
in Land Change Models Using One or Two
Time Points Based Calibration

M.T. Camacho Olmedo

Abstract A land change model can be calibrated with the state at one time point or
with the difference between two time points. For a case study in Spain we obtained
the collections of factors for two calibration periods at one time point (dates 2000
and 2006) and the collections of factors for two calibration periods between two
time points (periods 1990–2000 and 2000–2006). We used evidence likelihood to
transform the explanatory variables into factors. We then compared these four
collections of factors to show: how the choice of reference maps influences the
factors, how these factors highlight the change patterns in two different calibration
periods and how these factors highlight the change patterns in the calibration of two
models. We ended by analyzing the detailed results for the different factors and
LUC categories.

Keywords Land use and cover change � Land change models � Calibration �
Factors

1 Introduction

Land Change Models are useful tools for environmental and geomatic research into
land use and cover change (LUCC) (Turner et al. 1994; Paegelow et Camacho
Olmedo 2008; Paegelow et al. 2013; NRC 2014). The simulation maps obtained
from LUCC models help us to understand, forecast and anticipate the future evo-
lution of a variety of applied environmental problems.

One of the most important challenges is to verify and clarify the validity of the
model and its outputs (Paegelow et al. 2014). Pontius and Malanson (2005)
demonstrate that output varies more as a result of the choice of model parameters
than as a result of the choice of the model itself. One of these parameters relates to
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how changes over time and space are considered in the model, for the purpose of
describing land use and cover (LUC) state patterns, i.e. one time point calibration,
or LUC transition patterns, i.e. two time points calibration (Camacho Olmedo et al.
2013; Kolb et al. 2013).

A model that is calibrated with the state at one time point has certain advantages
and disadvantages compared to a model that is calibrated with the difference
between two time points. The first approach does not explicitly consider the dis-
tribution of land cover resulting from recent past changes and instead assesses the
results of all the changes that have taken place since human activity in the area
began (Paegelow and Camacho Olmedo 2005; Villa et al. 2007; Conway and
Wellen 2011; Yu et al. 2011). By contrast, the second approach evaluates the
change potential for each possible transition, where the future potential of the space
is split into specific transitions across a finite number of LUC categories (Eastman
et al. 2005; Sangermano et al. 2010; Wang and Mountrakis 2011).

When calibrating the model, the patterns of change (or change behavior) are
analyzed by a collection of variables explaining LUC states and/or LUC transitions.
From these variables, a collection of factors can be created with a large variety of
methods and analyses, as described in previous research into land change modeling
(Mas and Flamenco 2011; Pérez-Vega et al. 2012; Camacho Olmedo et al. 2013;
Kolb et al. 2013; Soares-Filho et al. 2013; Mas et al. 2014; Osorio et al. 2015;
Abuelaish and Camacho Olmedo 2016). Factors can be created without the need for
specific data about LUC locations, either states or transitions, using several trans-
formation methods (natural logarithm, fuzzy, etc.).

Alternatively, a collection of factors can be made on the basis of information
about LUC locations. We chose this option because land change models describing
LUC states or transitions must include LUC locations. This is possible if methods
such as evidence likelihood are used to create the factors, using the LUC states as
the reference areas in one time point calibration, and the LUC transitions in two time
points calibration.

Several hypotheses can be proposed. First, in one time point calibration, the
reference areas in one calibration period may be included in the reference areas in
the next period (i.e. simulation period), so highlighting areas of land use persis-
tence. However, in two time points calibration, the reference areas in the first
calibration period are excluded from the reference areas in the next period, because
areas affected by a specific transition in the past, e.g. natural to urban, cannot be
affected by the same specific transition (although it may be affected by others) in the
future in a discrete based model calibration. This could affect the similarity or
dissimilarity of extracted factors.

Second, if change patterns are maintained in two consecutive periods, then
modeling LUC transitions (two time points) could be an appropriate choice; how-
ever, if change patterns vary from one period to the next, then modeling the LUC
state (one time point), i.e. the most recent period, could produce more realistic
results. Previous authors found that if the changes during the calibration interval are
not stationary with the changes during the validation interval, then an extrapolation
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from the calibration interval to the validation interval will probably have systematic
errors (Pontius and Neeti 2010; Camacho Olmedo et al. 2015).

Third, if the patterns in the LUC state, i.e. destination category, are not the same
as the patterns in the LUC transition, i.e. origin category to destination category,
then the factors could be quite different.

Finally, if the sizes of the reference areas vary considerably, this can produce a
different pattern in the extracted factors. On the contrary, if the transitions between
land categories affect only a small portion of the study area, it will be difficult to
predict changes accurately, especially when there are errors in the data (Pontius
et al. 2008; Pontius and Petrova 2010).

Our goals are therefore to obtain and compare factors in order to show: (1) how
the choice of LUC reference maps influences the factors, (2) how these factors
represent the change patterns in two different calibration periods, (3) how these
factors represent the change patterns in the two models calibrated in different ways,
and, finally (4) the specific behavior of the different LUC categories and factors.

We illustrate the concepts using the TerrSet software (Clark Labs 2016). For a
case study in Spain, we obtained the collections of factors for two calibration
periods at one time point (dates 2000 and 2006) and the collections of factors for
two calibration periods between two time points (periods 1990–2000 and 2000–
2006). Evidence likelihood is used to transform the explanatory variables into
factors. We then compared these four collections of factors so as to gain a better
understanding of what we expected a priori to be different change patterns.

2 Test Area and Data Sets

The two types of calibration are based on land use and cover data for the different
time periods and the related explanatory variables. Figure 1 shows the specific
study area, which covers 2,300 km2 in the province of Murcia (southern Spain).
The maps of land use and cover (LUC) have four categories from the Corine Land
Cover (CoORdination of INformation of the Environment, Instituto Geográfico
Nacional, Spain) dataset: urban, industrial and transport uses; natural vegetation,
unproductive land and water; irrigated crops; rainfed crops. In the rest of this article
we refer to these categories as: urban, natural, irrigated and rainfed. Corine maps at
1990 (t0), 2000 (t1) and 2006 (t2) are used for model calibration. The explanatory
variables are topographic variables, protected areas, territorial accessibility (roads
diversity and quality), distance to roads and distance to hydrographic network
(Gómez and Grindlay 2008).

The study area has undergone profound territorial and economic transformations
in the recent past. The most important change has been the transition from rainfed
crops to irrigated crops, due to the development of water-related infrastructures and
the increase in the water supply (Gómez Espín et al. 2011). Urban growth is a
secondary change driven by the development of transportation and communication
infrastructures.
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3 Methodology and Practical Application to the Data Sets

3.1 Components of Models: Obtaining Factors

We used evidence likelihood to transform the explanatory variables into factors.
This procedure analyzes the relative frequency of the different categories of a given
variable within the areas of LUC states or LUC transitions. It is an efficient means
of introducing categorical variables into the analysis, and it accepts continuous
variables that have been binned into categories.

The reference areas represented in binary maps are therefore different for model
calibration based on one time point or two time points. For one time point, the
reference area is the most recent land use category, i.e. the LUC state. For two time
points, the reference area is a map showing the changes that have taken place
between two points in time, i.e. LUC transitions. This option aims to preserve the
nature of the state of the categories and the nature of the changing categories. From
now on, we refer to areas corresponding to an LUC state or an LUC transition as
‘reference maps’.

We obtained four reference maps for each LUC category. In the first calibration
period t0–t1, the reference map for one time point is a set of binary categorical LUC
maps (one for each category) at t1, and for two time points is a set of binary
categorical LUC maps (one for each transition) between t0–t1. In the second
calibration period t1–t2, the reference map for one time point is every LUC state at
t2 and for two time points is every LUC transition between t1–t2 (Table 1).
Figure 2 shows the reference maps for irrigated crops as an example.

Fig. 1 LUC in 1990 (left), 2000 (middle) and 2006 (right) in the Murcia region in southern Spain.
Source Corine Land Cover
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Table 1 Components of model: Reference maps for evidence likelihood in one time point and
two time points based calibration in both calibration periods

First calibration period Second calibration period

One time point 2000 (t1) 2006 (t2)

LUC state LUC state

Two time points 1990 (t0)–2000 (t1) 2000 (t1)–2006 (t2)

LUC transitions LUC transitions

Fig. 2 Example of irrigated crops: Reference maps for evidence likelihood of the LUC state of
irrigated crops in 2000 and in 2006 (above) and of the LUC transition to irrigated crops over the
periods 1990–2000 and 2000–2006 (below)
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As is standard procedure in transition modeling, not all the transitions were used.
We chose those affecting large surface areas and also on the basis of their homo-
geneity in dynamic behavior to the LUC destination. This procedure excludes very
small transitions from the model due to the risk of errors in the data sets and/or
strongly heterogeneous dynamics. For this reason, we established the degree of
equivalence between each LUC state and the general dynamics to which the LUC
transitions refer (Table 2). Various transitions involving the same explanatory
variables were grouped together such that in the practical application only the
following transitions are modeled: natural/irrigated/rainfed to urban; rainfed to
natural; natural/rainfed to irrigated; natural to rainfed. By far the most important
change in the area we studied is the transition to irrigated crops, which is followed
some way behind by urban growth.

Using these reference maps we obtained four collections of factors for each LUC
category: for one time point and for two time points, and both of these for two
calibration periods. Figures 3 and 4 show the original elevation and slope values
(variable) from the reference maps for irrigated crops. Evidence likelihood will
compute the relative frequency in the elevation and slope categories within the LUC
state and LUC transition areas.

3.2 Assessment Methods

A classical method for assessing the congruence of quantitative data, the Pearson
correlation, was used for comparing factors. Instead of looking for a causality
relationship between pairs of data, the Pearson correlation tries to establish whether
there is a relationship between them. Values range from −1 to +1. High
positive/negative Pearson values indicate a direct/indirect relationship between two
data. Low positive/negative values indicate a lack of relationship.

The Pearson correlation was calculated between all pairs of factors for the one
and two time points based models and for the two calibration periods. Factors are
quantitative data from 0.0 to 1.0. The higher the Pearson coefficient, the stronger the
correlation of factors. We consider values of over 0.8 to be very strong correlations.

Table 2 Equivalence between each LUC state in columns and the general dynamics to which the
LUC transitions refer in rows

Urban Natural Irrigated Rainfed

Natural to urban
Irrigated to urban
Rainfed to urban

Urban gain

Rainfed to natural Natural gain

Natural to irrigated
Rainfed to irrigated

Irrigation gain

Natural to rainfed Rainfed gain
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As commented earlier, in this study we discarded the transitions affecting small
surface areas, and grouped together the transitions we selected according to their
homogeneity, the normal procedure in transitions modeling. It is important to
remember therefore that we are comparing LUC states with almost all, but not all,
the LUC transitions.

Fig. 3 Elevation variable (meters asl) in LUC state for irrigated crops in 2000 and 2006 (above)
and in LUC transition to irrigated crops for 1990–2000 and 2000–2006 (below)
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4 Results and Discussion

4.1 Collection of Factors

Four collections of factors were obtained for each LUC category: for one time point
and for two time points, and for each of the two calibration periods. Figures 5 and 6
show the collection of factors derived from the elevation variable and from the slope
variable in the reference maps for irrigated crops.

Fig. 4 Slope variable (degrees) in LUC state for irrigated crops in 2000 and 2006 (above) and in
LUC transition to irrigated crops for 1990–2000 and 2000–2006 (below)
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4.2 Comparison of the Collections of Factors Obtained
in Two Different Calibration Periods

We calculated the Pearson correlation values for every pair of factors for the dif-
ferent LUC categories between the first calibration period t0–t1 and the second
calibration period t1–t2. (Table 3).

Behavior can be analyzed by time point based models and LUC categories, and
by factors.

All correlation values for factors obtained in one time point exceed 0.96 and the
majority of them are over 0.99. The average values are over 0.98 for all LUC

Fig. 5 Irrigated crops and elevation: Evidence likelihood of the LUC state for irrigated crops in
2000 and 2006 derived from the elevation variable (above) and of the LUC transition to irrigated
crops over the periods 1990–2000 and 2000–2006 derived from the elevation variable (below).
Values from 0.0 to 1.0
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categories. That means that factors obtained in the first calibration period are very
similar to factors obtained in the second calibration period, which suggests a high
degree of continuity in land use over time.

The correlation values for the factors obtained from two time points vary much
more from negative (−0.13) and low positive values to high positive values (exceed
0.99). This means that some factors obtained in the first calibration period are
different from those obtained in the second calibration period while others are
similar. The LUC transitions in the first calibration period are not included in the
LUC transitions in the second calibration period. If the transitions in the two
calibration periods show similar patterns, factors are similar; if the transitions show

Fig. 6 Irrigated crops and slope: Evidence likelihood of the LUC state for irrigated crops in 2000
and 2006 derived from the slope variable (above) and of the LUC transition to irrigated crops over
the periods 1990–2000 and 2000–2006 derived from the slope variable (below). Values from 0.0 to
1.0
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different patterns, factors are unrelated. If we look at the different LUC categories,
urban scores the highest values, with an average of 0.8588, indicating that for this
category the pattern in the first calibration period is very similar to that in the
second calibration period. This similarity does not occur in the remaining LUC
categories. The lowest average correlation values belong to rainfed crops with
0.3782, which means that the LUC transitions in the first calibration period show
different patterns to those in the second calibration period (underlined values).
Natural vegetation and irrigated crops have average correlation values of 0.6097
and 0.6271 respectively, showing a moderate degree of similarity between the two
calibration periods. These average values mask a highly varied situation in which
some factors show very high values and others very low ones (underlined values).
This issue will be discussed in greater detail below in 4.4.

If we look at the different factors, even if the average values are all over 0.6, the
specific behavior varies a great deal. Focusing only on common factors (used by at
least two categories), the slope factor shows very high Pearson values for all
categories and time based models (over 0.79); distance to a secondary road also
scores high values except in rainfed crops in the two time points based model. Other

Table 3 Pearson correlation values for every pair of factors for the different LUC categories
between the first calibration period t0–t1 and the second calibration period t1–t2

Urban Natural Irrigated Rainfed

Factors One
time
point

Two
time
points

One
time
point

Two
time
points

One
time
point

Two
time
points

One
time
point

Two
time
points

Average

Elevation 0.9861 0.7033 0.9947 0.3026 0.9813 0.4205 0.9697 0.3708 0.7161

Slope 0.9997 0.9937 0.9998 0.9739 0.9927 0.7972 0.9998 0.9089 0.9582

Aspect 0.9858 0.6716 0.9968 0.5528 0.9959 0.9015 0.9931 0.3635 0.8076

Accessibility to
main road

0.9991 0.9176 0.9584

Accessibility to
human settlements

0.9983 0.8464 0.9224

Distance to
secondary road

0.9998 0.9939 0.9981 0.9517 0.9998 0.3820 0.8876

Distance to main
irrigation channel

0.9970 0.8854 0.9894 0.1688 0.9607 -0.1341 0.6445

Distance to
secondary irrigation
channels

0.9846 0.2219 0.6033

Distance to network
of rivers and streams

0.9991 0.9823 0.9907

Distance to network
of ditches

0.9926 0.2394 0.6160

Distance to water
catchments

0.9973 0.9606 0.9790

Average 0.9951 0.8588 0.9971 0.6097 0.9923 0.6271 0.9846 0.3782

For the one time point based model, the calibration dates are 2000 and 2006; for the two time points based model, the
calibration periods are 1990–2000 and 2000–2006. Averages for the different factors are in rows; averages for the
different LUC/time point based models are in columns. Values below 0.6 are underlined
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factors, such as elevation and aspect, have widely varying scores by categories and
specifically in the two time points based model.

4.3 Comparison of the Collections of Factors Obtained
in One Time Point and Two Time Points Calibration

The Pearson correlation was calculated for every pair of factors for the different
LUC categories between the one time point and two time points calibration meth-
ods. Table 4 shows the results for the first calibration period t0–t1 (Camacho
Olmedo et al. 2013) and for the second calibration period t1–t2. For the one time
point based model, the calibration dates are 2000 and 2006; for the two time points
based model, the calibration periods are 1990–2000 and 2000–2006.

Table 4 Pearson correlation values for every pair of factors for the different LUC categories
between the one time point and two time points calibration methods

Urban Natural Irrigated Rainfed

Factors First
period

Second
period

First
period

Second
period

First
period

Second
period

First
period

Second
period

Average

Elevation 0.9047 0.7907 0.4127 0.9472 0.9263 0.5613 0.1596 0.3764 0.6349

Slope 0.9988 0.9961 0.9746 0.9410 0.9959 0.8646 0.8637 0.9603 0.9494

Aspect 0.9131 0.8657 0.8028 0.2707 0.9235 0.9650 0.7378 0.6333 0.7640

Accessibility to
main road

0.9620 0.9810 0.9715

Accessibility to
human
settlements

0.9703 0.9536 0.9620

Distance to
secondary road

0.9851 0.9964 0.9992 0.9617 0.4663 0.9512 0.8933

Distance to main
irrigation channel

0.9830 0.9392 0.9562 0.1431 0.2149 0.7211 0.6596

Distance to
secondary
irrigation
channels

0.8174 0.7170 0.7672

Distance to
network of rivers
and streams

0.9850 0.9954 0.9902

Distance to
network of
ditches

0.9821 0.3936 0.6879

Distance to water
catchments

0.9966 0.9705 0.9836

Average 0.9596 0.9318 0.7300 0.7196 0.9536 0.7302 0.4885 0.7285

First calibration period is t0–t1 and second calibration period is t1–t2. For the one time point based model, the
calibration dates are 2000 and 2006; for the two time points based model, the calibration periods are 1990–2000 and
2000–2006. Averages per factors are in rows; averages per LUC/time point based model are in columns. Values below
0.6 are underlined

112 M.T. Camacho Olmedo



These results can be analyzed by time point based models in two calibration
periods and LUC categories, and by factors.

The average Pearson values for every pair of factors for the different LUC
categories between the one time point and two time points calibration methods are
higher in the first calibration period (1990–2000) than in the second calibration
period (2000–2006) in all LUC categories except rainfed crops. This means that the
transitions in the first calibration period are more similar to the states than in the
second period. Urban category scores the highest values (over 0.93) in both cali-
bration periods, which means that transition patterns are constant and close to the
state patterns for this category. The natural category has average values of around
0.7, but with a greatly varying situation in which some factors show very high
values and others very low ones (underlined values). With respect to irrigated crops,
the average Pearson values show that transitions to this category in the first cali-
bration period had the same pattern as the LUC state (over 0.95). In the second
calibration period, however, the transitions showed different patterns to the state
(underlined values). The lowest average Pearson value (under 0.5) in the first
calibration period is for rainfed crops, i.e. transitions to this category occurred in
different patterns from the state (underlined values). In the second calibration
period, the Pearson value is medium-high.

If we look at the different factors, even if the average values are all over 0.6, the
specific behavior varies widely, as commented also for Table 3. If we focus only on
common factors (used by at least two categories), it is the slope factor that shows
the highest scores and the most homogeneous behavior (average of 0.9494 and all
Pearson values over 0.86). Distance to a secondary road obtained high values
except in the first calibration period in rainfed crops. Aspect scored medium or high
values except in the second period in natural category. Elevation and distance to
irrigation channel show widely varying behavior in the different categories and in
both calibration periods.

4.4 Comparison of Four Collections of Factors

Figures 7 and 8 show the Pearson correlation values for every pair of factors (each
square corresponds to one comparison) also presented in Tables 3 and 4. Each cross
tabulation matrix is composed of one column per variable grouped by LUC cate-
gory (Fig. 7) or per LUC category grouped by variable (Fig. 8) and by four rows:
One time point based model (first and second calibration period), Two time points
based model (first and second calibration period), First calibration period (one and
two time points based model), Second calibration period (one and two time points
based model). In Fig. 8 only variables common to at least two LUC categories are
shown.

Figure 7 confirmed the comments from Sects. 4.2 and 4.3, grouped by LUC
categories. The collections of factors for the urban category are all very similar.
This means that transitions patterns to this category are very close to the state
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pattern for this category in both calibration periods. The only exceptions are the
elevation and aspect factors. As an example, if we focus on the Pearson correlation
values for elevation factors related to the urban category, we can see that for 2000
and 2006 the situations are almost identical (first row); the transitions between
1990–2000 and 2000–2006 are not so close (second row); the state in 2000 is very
similar to the transitions over the period 1990–2000 (third row); and the state in
2006 is less similar to the transitions that took place over the period 2000–2006
(fourth row).

The factors for the natural category and the factors for irrigated crops vary more
sharply: transition patterns in the first calibration period are not similar to those in
the second. Transitions are not very close to the state pattern in either period. With

Fig. 7 Representation of Pearson correlation values for each pair of factors (each square
corresponds to one comparison). Each cross tabulation matrix is composed of one column per
variables grouped by LUC, and of four rows: One time point based model (first and second
calibration period), Two time points based model (first and second calibration period), First
calibration period (one and two time points based model), Second calibration period (one and two
time points based model). Variables legend: elevation (a), slope (b), aspect (c), accessibility to
main road (d), accessibility to human settlements (e), distance to secondary road (f), distance to
main irrigation channel (g), distance to secondary irrigation channels (h), distance to network of
rivers and streams (i), distance to network of ditches (j), distance to water catchments (k)

Fig. 8 Representation of Pearson correlation values for each pair of factors (each square
corresponds to one comparison). Each cross tabulation matrix is composed by one column per
LUC grouped by variables, and by four rows: One time point based model (first and second
calibration period), Two time points based model (first and second calibration period), First
calibration period (one and two time points based model), Second calibration period (one and two
time points based model). LUC legend: urban (U), natural (N), irrigated (I), rainfed (R)
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respect to irrigated crops, in the second calibration period the transitions patterns are
quite different from the state pattern. This is due to elevation, distance to a main
irrigation channel and distance to a network of ditches. Finally, for the collection of
factors for rainfed crops, a high dissimilarity is present in transition patterns for both
calibration periods and with respect to the state pattern, particularly in the first
calibration period. However, it is also important to emphasize that the state patterns
are stable for all categories (first row in Fig. 7, one time point based model).

In brief, if we compare the two calibration methods, there is a medium to high
linear relationship between LUC transitions and LUC states, which is higher in the
first calibration period in all the categories except for one. Looking at each cate-
gory, the urban patterns are very stable while at the opposite extreme, the patterns
for rainfed crops show high variation. The situation also varies a great deal in the
natural category and in irrigated crops: the transition patterns are not very stable and
are not very similar to the state pattern.

In Fig. 8, the Pearson values are grouped by variables. A quick overview con-
firms that the state patterns are stable for all categories (first row, one time point
based model). Aspect is the variable with the highest values in both calibration
periods and both models, followed by distance to secondary road, except in the
rainfed crops category. Elevation and aspect seem to be the most sensitive vari-
ables. They show widely varying behavior, with high, medium and low Pearson
values, which means that transition patterns and state patterns are not regular with
respect to these variables. As regards distance to main irrigation channel, the
transition patterns for irrigated crops are not regular, although the most irregular are
those for rainfed crops. In brief, when looking at the different factors, the homo-
geneity or heterogeneity of LUC locations can lead to widely varying behavior.
Previous researchers observed a relationship between environmental and accessi-
bility factors and the initial conditions in which LUC changes are carried out
(Lambin et al. 2001; Yu et al. 2011; Osorio et al. 2015).

For a better understanding of these patterns, we focused on the collection of factors
for irrigated crops. Figure 9 and 10 present the histograms (ha) for the LUC state for
irrigated crops in 2000 and 2006 and for the LUC transition to irrigated crops over the
periods 1990–2000 and 2000–2006, by elevation intervals and by slope intervals.

If we compare these two variables, we can conclude that irrigated crops behave
in a more homogenous manner with respect to slope (only some slope intervals are
affected) than to elevation, which explains the different Pearson values commented
above. Figure 9 shows that irrigated crops were located at lower elevations in the
first calibration period, 1990–2000, and that the new irrigated fields planted from
2000 to 2006, went up to higher elevations, in other words, transitions occurred at
different altitudes. However, we do not know if this is a general dynamic or if it is
due to the particular behavior of one of the LUC origin categories, in other words,
natural or rainfed. We must remember that, in this study, we grouped some tran-
sitions (natural/irrigated/rainfed to urban; natural/rainfed to irrigated) together.
Although this is a common procedure in modeling, it does not allow us to distin-
guish between the categories that have been grouped together.
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These histograms show absolute surface area values (ha), which means that
comments must also be relativized with respect to the surface areas of the reference
maps. We assume that an LUC state or an LUC transition with a larger area offers
more robust statistical representativeness. This means that the factors that are cre-
ated and their patterns should be more stable. On the other hand, if the surface areas
of the reference maps of LUC states and of LUC transitions are similar in size, the

Fig. 9 Histograms (ha) for the LUC state for irrigated crops in 2000 and 2006 and for the LUC
transition to irrigated crops over the periods 1990–2000 and 2000–2006, by elevation intervals

Fig. 10 Histograms (ha) for the LUC state for irrigated crops in 2000 and 2006 and for the LUC
transition to irrigated crops over the periods 1990–2000 and 2000–2006, by slope intervals

116 M.T. Camacho Olmedo



patterns should also be more similar, because the LUC transitions are included in
the LUC state for the same calibration period.

Figure 11 presents the surface area (ha) for the reference maps for all the LUC
categories. As commented earlier, we decided not to model very small transitions or
grouped heterogeneous transitions. For the natural category and the rainfed cate-
gory, the surface areas of LUC states and LUC transitions vary greatly and may
therefore show a different pattern in the extracted factors. Besides, LUC transitions
to these categories in both calibration periods affect only a small proportion of the
study area (<900 ha in the natural category, <400 ha in the rainfed crops category).
In fact, LUC transitions to the natural category correspond to less than 2% of the
natural LUC state, and LUC transitions to the rainfed category correspond to less
than 1% of the rainfed LUC state. Therefore, modeling LUC transitions may not be
statistically representative.

For irrigated crops, even if the surface areas of LUC state and LUC transitions
vary greatly, they still correspond to 26,386 and 26,026 ha or 36% and 27% of the
LUC state for irrigated crops in the two calibration periods respectively. The total
surface area covered by urban areas is lower than the other categories, but LUC
transitions, with 4,513 and 2,969 ha in the two calibration periods, correspond to
38% and 20% of urban LUC states respectively. This means that modeling LUC
transitions for these categories can be statistically representative.

Valuable additional information can be obtained by assessing the coincidence
between the reference maps for the two calibration periods. As commented in
Sect. 3.1, there is no coincidence between the areas of the reference maps in the two
time points based model. In the one time point based model, the coincidence
between the area in the first calibration period with respect to the area in the second
calibration period is 100% for urban areas, 97.71% for the natural category, 97.51%
for irrigated crops and 63.86% for rainfed crops. However, the coincidence between
the areas in the second calibration period with respect to the area in the first

Fig. 11 Surface area (ha) of reference maps for the different LUC categories
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calibration period is 79.97% for urban areas, 98.66% for the natural category,
73.20% for irrigated crops and 98.84% for rainfed crops.

This study can be continued by comparing and assessing the soft-classified maps
obtained by the different calibration based models. Camacho Olmedo et al. (2013)
compared suitability maps (one time point based model) and transition potential
maps (two time point based model) in one calibration period. The applied assess-
ment method showed moderate-to-high correlation values between them,
inchange-prone areas, for all categories except one. They assessed the predictive
ability of soft-classified maps with respect to real maps, and confirmed that a two
time points based model outperformed a one time point based model in the case of
modeling urban growth because the transition potential map for urban growth
captured urban change more accurately than the suitability map did, while the
opposite was true for the other categories.

Current research into land change models tends to range from pattern-based
models, which are calibrated on the basis of trends observed in the past, to models
that try to simulate general processes of change by integrating expert knowledge
(NRC 2014; Mas et al. 2014; Osorio et al. 2015).

5 Conclusion and Outlook

A land change model can be calibrated with the state at one time point or with the
difference between two time points. These approaches therefore involve modeling
either LUC states or LUC transitions. The first approach implicitly includes all past
changes, while the second considers past changes that occurred during a recent
period. The calibration of land change models by one time point or two time points,
i.e. states or transitions, gives different results. The choice of reference maps affects
the similarity or dissimilarity of factors.

Factors obtained from the LUC state (one time point based model) in two
calibration periods show a high linear relationship. The state pattern is therefore
stable. The one time point based calibration model could therefore be accurate at
modeling categories in which transitions affect a proportionally small area and also
when patterns of change vary in recent periods. This “total past trend” based
calibration is more likely to capture historic patterns of change and simulations over
longer time.

Factors obtained from LUC transitions (two time points based model) in two
calibration periods show highly varied values, from non-linear to highly linear
relationships between them. Modeling LUC transitions can be statistically repre-
sentative when they correspond to a proportionally larger area and when patterns of
change are maintained over two successive periods. This “two past trend” based
calibration is more likely to capture recent patterns of change and simulations over
shorter periods.

A multi-temporal approach, integrating data about more than two training dates,
could resolve potential errors resulting from only considering two past dates or by
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considering the total past, and would be more appropriate for creating forecasting
scenarios. However, a choice must be made between using states or transitional data
in the calibration of the models. Depending on multiple parameters, including form
and intensity of dynamics, the two approaches may be complementary.
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Chapter 7
Impact and Integration of Multiple
Training Dates for Markov Based Land
Change Modeling

M. Paegelow

Abstract Most geomatic land use/cover (LUC) simulation tools use two LUC
maps as training dates, particularly prediction models based on Markov chains. In
this paper we begin by listing the potential errors resulting from only considering
two past dates. We then illustrate the consequences of this approach on quantitative
model calibration using a dataset encompassing six LUC maps. This offers multiple
Markovian combinations for input matrices generating a wide range of Markovian
probability transitions. An even larger spectrum can be achieved by introducing
limited confidence in data. The comparison of LUCC budgets and possible Markov
chains offers a broad spectrum of results and randomness in the choice of only two
dates. We propose two techniques for integrating the knowledge obtained from
more than two training dates into forecasting scenarios. First we calculate an annual
rate of change, which is weighted according to time distance from the present in
order to fix expected total change in the simulation step and at the category level.
We then produce alternatives to Markov chains at a transitional level. In this way
we integrate all available LUCC-budgets and propose different methods for
weighting observed transitions, so as to produce transition matrices that could act as
alternatives to Markov chains based on just two dates.

Keywords Land change modeling � Training dates � Validation

1 Introduction

Land Use/Cover Change (LUCC) modeling simulates land use change in terms of
quantity and category (Camacho et al. 2015). The quantitative aspect of simulation
depends on the modeling objective. If the purpose is to design plausible scenarios,
modelers simulate different hypotheses (e.g. a business-as-usual scenario, a massive
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deforestation scenario, a sustainable development scenario) and then introduce
various quantities of LUC in order to answer the question ‘What will be the spatial
impact if…?’ If the objective is prediction or forecasting, we can calculate the
expected quantities of overall LUC or transition between categories. Quantity
prediction is mostly based on probabilistic approaches such as Markov chains.
Various geomatic LUCC modeling software programs such as CA-MARKOV,
Land Change Modeler (both implemented in Terrset) and Dinamica EGO (Mas
et al. 2014) can be used to calculate Markovian conditional transitions. They per-
form this extrapolation in time using only two training dates. This is a risky pro-
cedure because model training depends on only two time points in the past. These
two dates have to match key points in the time series. What happens if at least one
of the two training dates is not representative of the considered training period, if
they represent atypical, unusual points in time (e.g. before/after fire, timber
extraction)? Data error due to classification or photo interpretation is more serious
when working with just two maps than with a long time series. Numerous studies
have underlined the influence of temporal data resolution (Allen and Starr 1982;
Kim 2013) and analyzed the impact of time intervals on the amount of change
(Burnicki et al. 2007; Lee et al. 2009; Liu and Deng 2010).

After the presentation of test areas and data sets including time series for six
LUC maps, we first illustrate randomness using just two training maps before
considering alternative techniques to introduce multi-temporal knowledge into
predictive models. This is done at global, category and transition level. In this way
we present alternatives to Markov-chain-predicted transitions. Both proposed
alternatives (coupling different training dates and confidence levels within a
Markov chain process) involve more than two training dates, and may inform the
modeler when looking for the best choices to anticipate a future LUC situation.

2 Test Areas and Dataset

Garrotxes is an 8750 ha catchment area in the western part of the Pyrénées
Orientales, a département in southern France (Fig. 1). “The lowest area in this
region is located in the SE and varies from 650 m at the confluence of the Têt River
to 1000 m. A Mediterranean climate dominates this low area. By contrast, the upper
region reaches 2400 m and is influenced by a mountain climate. The western area
of this region is characterized by a ponderous geomorphological relief on granite.
This area is composed of early terrace cultivation and coniferous forests (Pinus
uncinata and P. sylvestris). The east bank forms a large, steep, south-facing area
that overlies schist and is used as a pasture. The demographic maximum, which
occurred during the 1820s, corresponds with intensive use of all natural resources in
this area. According to the Napoleonic cadastre, a quarter of the Garrotxes catch-
ment was terraced for crops in 1826. Today, the crops have entirely disappeared.
The population fell from 1832 inhabitants in 1826 to 94 inhabitants in 2008. Crop
terraces were transformed into pastures prior to becoming shrub or forest areas.
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Currently, the crops grown in this area are marginal. In addition, the near future
likely depends on the intensity of pastoral activity and management, which will
determine how far the forest spreads” (Paegelow et al. 2014).

The data set we used is a collection of six LUC maps for different years (1942,
1962, 1980, 1989, 2000 and 2009). LUC maps are produced by image segmenta-
tion and supervised classification of orthophotographs and visual post validation.

3 Methodology and Practical Application to the Data Sets

3.1 Use of/Impact of Multiple Calibration LUC

We used the LUCC budgets technique (Pontius et al. 2004b, 2008) to characterize
land change and its components such as gain, loss, total change, net change and
swap for the five training periods in the LUC maps time series. For comparison
purposes, we converted coarse time-interval dependent indicators into mean annual
rates.

Most quantity prediction in business-as-usual (BAU) simulation scenarios is
performed using Markov chains (MC) based on only two training LUC maps (first
order Markov chain), where t1 and t2 are training dates and T the simulation date.
We noted that n-order Markov chains are frequently employed in a spatially
non-explicit context. Generally, these n-order MCs are based on a rather eventful
multi-temporal database (Hu et al. 2003). Nevertheless, n-order MCs are more
complex to handle and are therefore not included in popular GIS software. In this
study, we used a series of six LUC maps to test: (i) various combinations of two
training dates to calculate MC transition matrices and (ii) the confidence level in

Fig. 1 The Garrotxes study area is in the Département of Pyrénées Orientales (map of France, top
right) and is composed of five municipalities (map of municipalities bottom right). LUC in 1942
(left) and 2009 (middle)
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these training data. We began by forming all possible pairs of training dates except
the last one (2009). For each of these pairs we computed MC expected transitions
for T (2009, model unknown). Various comparisons between observed and MC
predicted change and persistence were analyzed. This was done with limited con-
fidence in the data by using a confidence level of 90% (proportional error of 0.1),
whilst bearing in mind that a confidence level of 100% (proportional error 0.0) is
the default option in many software programs and sometimes the only available
option for computing Markov chains (as with LCM).

In order to integrate more than two LUC maps into techniques for predicting
expected LUC quantities or transition quantities, we considered two approaches.
First we computed the annual change rates per period on two levels: total rate of
change and category level. Second, on the transitional level, we integrated all the
available LUC maps into transition matrices and weighted them to compute
expected transition rates as alternatives to MC-predicted transitions based on only
two training dates.

3.2 Integration of Multiple Training Dates to Compute
the Expected Annual Amount of Change

First we calculate the mean amount of change (%) per period by dividing total
change for the period by its number of years.

This enabled us to compute the overall and LUC specific annual change rates (%).

3.3 Computing Transition Rates as an Alternative
to Markov Chain Transitional Predictions

Markov chains are the most common way to model the expected amount of LUC
change. As mentioned earlier, the most popular software programs only integrate
two training dates as a basis for simulating expected conditional transitions. Using a
dataset encompassing six LUC maps, we propose a series of alternative techniques
to simulate future LUC by computing transition matrices between 2009 (last known
date) and 2020 (simulated LUC) using all known LUC maps. This means that our
approach includes five training periods (six training dates). The only difference
between these techniques is in the way they weight the impact of individual training
periods. The starting point was observed for annual transition rates by period.

Weighting of multiple transition periods:

• Average: the sum of the transition rates divided by the number of periods
considered. This was done for each cell in the transition matrix.

• Average weighted according to its closeness to the present: the impact of a
period increases proportionally with its closeness to the present. For a series of n
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time intervals, the weight of the oldest time interval = 1, the weight of the most
recent time interval = n. Annual rates are multiplied by weights and summed
together. The resulting sum is divided by the sum of weights. We are aware that
this weighting scale could be enhanced either by considering equal time inter-
vals or by varying individual weights by the corresponding length of interval.

where the sum of weights:

Xn

n¼1

¼ 1þ nð Þ � n=2

• Linear trend: here we use the best linear fit (linear regression)
• Exponential trend: weights are obtained by the geometric exponential trend.

Each weighting technique is applied to each transition, except persistence (di-
agonal cells). To compute cross-tabulation for expected changes, we:

• Fix a simulation date: 2020. 2020 means the situation in 2009 (last known LUC)
with 11 times the expected annual rate of change. An exception will be made for
the LUC category crops (5th row and column in the table), which disappeared
completely between 1980 and 1989. We set the 5th column and the bottom row
to zero by reporting proportionally missing pixels on the rest of the table.

• At this stage, persistence (diagonal cells) is not included in the transition matrix.
We fill each diagonal cell by the number of cells in the relevant category in 2009
(starting date) minus the sum of transitions from this category to other
categories.

To evaluate these alternatives to the MC transition matrix, we decided to test and
compare them. The problem arises when, as in our case, you have a database with
six dates, and you have to select just two of them for use as training dates. We
tested two options: i) the most recent dates (i.e. 2000–2009 to simulate expected
changes for 2020) and ii) a recent period with a change rate that is close to the
average for all periods (i.e. 1989–2009).

4 Results

4.1 Use of/Impact of Multiple Calibration LUC T

4.1.1 LUCC Budgets

LUCC budgets were calculated for each period. In order to make comparable
LUCC indicators for periods of different lengths, we divided the total change by the
number of years for the period in question. As shown in Fig. 2, the mean annual
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rate of total change varies from less than 20 ha/year during the 1980s to more than
40 ha/year during the periods 1962–1980 and 1989–2000. The amount of land
change is not linear. The proportion of net change varies from less than 50%
(1980s) up to 90% during the last period. In most cases, the proportion of net
change was about 75% of total change.

4.1.2 Markov Chains and Variation in the Confidence Level

Table 1 shows all possible MC (Markov chain) combinations of two training dates,
using the penultimate date (2000) as the last training date for extrapolation to the
model unknown date (2009), so enabling comparison. For instance, if we take 1942
as the first training date, we have four possibilities (1962, 1980, 1989 or 2000) as
the second training date for the Markov chain prediction, while if we use 1989 as
the starting point the only possible second training date is 2000. The numbering of
the ten possibilities for the dataset is purely arbitrary and is solely for indicating the
total number of possibilities. There are 10 possible combinations. For each of the 10
Markov chains, Table 2 summarizes the corresponding lengths of the training
period (TP) and simulation period (SP); both are summarized as a ratio SP/TP.

All the Markov chains were performed twice: first with a 100% confidence level
and then with a 10% proportional error. We compared MC-predicted LUC with
observed LUC for 2009 and for each category we summed up the absolute dif-
ference between predicted and observed LUC (both expressed as a percentage of
area). Figure 3 shows the sums of these absolute differences. If we assume a 100%
confidence level in the LUC maps, the quantitative prediction error may vary
greatly from around 5% (choosing 1980 and 2000) to almost four times higher
(1942 and 1962) depending on the pair of dates selected.

Fig. 2 LUCC budget indicators—mean annual rate of change (km2) and percentage of net change
—for each of the five periods in the data set
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Table 1 Possible MC
(Markov chain) combinations
when excluding the last
known date 2009, which is
used as the (model unknown)
simulation date (T)

1942 1962 1980 1989 2000

1942 1 5 8 10

1962 2 6 9

1980 3 7

1989 4

2000

Table 2 Duration of training
periods, simulation periods
and ratio of
training/simulation period
resulting from different MC
(Markov chain) combinations
for T (simulation date) 2009

1st 2nd TP SP ST/TP

t – t + 1 1 1942 1962 20 47 2.35

2 1962 1980 18 29 1.61

3 1980 1989 9 20 2.22

4 1989 2000 11 9 0.82

t – t + 2 5 1942 1980 38 29 0.76

6 1962 1989 27 20 0.74

7 1980 2000 20 9 0.45

t – t + 3 8 1942 1989 47 20 0.43

9 1962 2000 38 9 0.24

t – t + 4 10 1942 2000 58 9 0.16

1st—first training date 2nd—second
training date

TP—training period in years SP—simulation
period in years

TP/SP—ratio of duration simulation period/training period

Fig. 3 Absolute differences between observed and MC predicted (proportional error 0.0 and 0.1)
LUC for 2009
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Centering on observed and MC predicted persistence assuming full confidence
(100%) in data, Table 3 (left) shows that half of the Markov chains predict too
much persistence (negative values) while the other half predict too much change
(positive values). When assuming full confidence, the MC-predicted LUC results
that were closest to the real levels we observed were obtained when the last known
date (2000) was used as the second training date (right column, left table). MCs
based on an earlier second training date generally underestimate expected change.
Assuming a confidence level of 90% (Table 3, right-hand table), all MCs predict
more change than observed. In contrast to 100% confidence, MCs based on the
most recent training dates (last column 2000–2009) produce more change than
earlier training dates.

4.2 Integration of Multiple Training Dates to Compute
the Expected Annual Amount of Change

Figures 4 and 5 show average annual rates of change for each period. These rates
vary, showing low rates of change over two of the last three periods, one period that
was close to the average rate of change for all the periods (0.42%), and two periods
with high rates of change.

If we split change rates by LUC categories, the graph obtained (Fig. 5) presents a
more contrasting situation. First, the most dynamic periods (1962–1980; 1989–
2000) for all the LUCC categories mixed together (Fig. 4) were only the most
dynamic for coniferous forest. The other LUC categories show different trends:
broom land becomes more dynamic with time while grassland becomes less so.
Deciduous forest had two more dynamic periods: 1942–1962 and 1989–2000, while
the crops graph is difficult to interpret because they disappeared as a LUC category
between 1980 and 1989. Second, Fig. 5 shows rates of change for the different LUC
categories. If we look at the average change rates, wood recolonization is the most
dynamic category, while coniferous and deciduous forests are more stable.

4.3 Computing Transition Rates as an Alternative
to Markov Chain Transitional Predictions

Table 4 shows the four alternative (average, time-distance weighted average, linear
and exponential trend) simulated transition rates for 2020 and, below, Markov chain
matrices for expected changes to 2020 based on the 1989–2009 training period
(left) and the 2000–2009 training period (right).

Global persistence is uniformly high (varying from 95.06 to 96.71%).
In order to evaluate the alternative techniques for 2020 simulated transition rates,

we compare them to MC-simulated transition matrices as shown in Fig. 6.
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The graphics in Fig. 7 show the difference between the MC-predicted transition
rates (%) and those predicted in other ways. A positive number means that the
Markov chain simulated a larger area of land use change than the alternative
method. A negative number means that the Markov chain predicted a smaller area
of change. Figure 7 shows that at the individual transition level:

• Differences do not exceed more than 2% of total area.
• Differences are greatest when using the 2000–2009 training period (right

column).
• Of the four average-based integration techniques the greatest differences were

obtained when using the trend formula (especially the linear trend).
• The LUC categories are affected in different ways: wood recolonization (third

row) in particular is a ‘gaining category’. This means that the Markov chain
predicts a higher amount of change than alternative calculation methods. On the

Fig. 4 Annual rates of change (%) by period. The black line is the average rate of change for all
the periods

Fig. 5 Annual rates of change (%) for each LUC by period
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other hand, transitions from grassland to other LUC (fifth column) are generally
negative (i.e. alternatively computed transition rates are higher than those cal-
culated using the Markov chain) while persistence (bottom right cell) balances
this.

5 Discussion

Many LUC modeling approaches analyze land change in the recent past as a means
of simulating what might occur in the future. The wide range of techniques used to
describe dynamics such as LUCC include budget (Pontius 2000; Pontius et al.
2004a, b) and intensity analysis (Aldwaik and Pontius 2012; Pontius et al. 2013).
Other methods such as sensitivity analysis (Gómez Delgado and Tarantola 2006;
Jokar Arsanjani 2012) test the robustness of model outputs by analyzing, among
other aspects, the significance of the data used, including the training dates.

Fig. 6 Schema of Fig. 7 and overall sums of absolute differences between transition rates. The
calculation is the MC-computed transition rate for 2020 minus the transition rate for 2020
integrating all LUC maps (alternatively computed by average, time-distance weighting, linear or
exponential trend). Each cell expresses the transition rates obtained by MC minus the alternatively
obtained transition rates: The left column shows the differences between the two transition rates
based on a Markov chain from 1989–2009 to 2020 while the right column expresses differences
based on the Markov chain for the 2000–2009 training period. The number inside the windows is
the sum of the absolute differences
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5.1 Use of/Impact of Multiple Calibration LUC

The analysis of previous land change using the LUCC budgets technique reveals
that land change is not a linear process and neither is its composition. It is important
to notice that the LUCC budget indicators shown in Fig. 2 are quite average land
change indicators. Individual LUC shows much more variety, as illustrated by the

Fig. 7 Differences between
the transition rates for 2020
predicted by the Markov
chain technique and those
calculated in other ways, laid
out as explained in Fig. 6.
Each square presents one
comparison. Because crops
were excluded, each cross
tabulation matrix is composed
of only five columns and five
rows. From left to right/top to
bottom: coniferous forest (1),
deciduous forest (2), wood
recolonization (3), broom
land (4) and grassland (5), cf.
schema on the right
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mean annual net gain in coniferous forest (expressed in hectares—Fig. 8). If the
modeler chooses 2000 and 2009 as training dates for a BAU scenario, a smaller
amount of land change will be simulated and specific net gain for coniferous forest
will be near zero. However, over the period 2000–2009 land use change tended
towards forest. The average net gain for wood recolonization was the highest of all
the different categories for this period (cf. Fig. 5). At the opposite extreme, if the
modeler chooses 1962 and 1980 as the training dates, the BAU scenario will be
very dynamic, while wood recolonization registers an average net loss of about
9.6 ha/year.

This example shows that the most recent data are not representative and that
changes in LUC categories cannot be understood separately.

Computed Markov chains (MC) and comparison with observed land change
indicate that the most recent training dates are not per se the most realistic. At the
opposite extreme, this data set shows that the use of the last available training date
(2000) reduces the absolute difference between observed and MC-predicted LUC
(MC 4, 7, 9 and 10) even though the training periods vary greatly in duration (from
11 to 58 years).

The choice of training dates for MC prediction affects the quantitative accuracy
of BAU scenarios. Given that land change is not linear, using only two training
dates may be pure lottery. In addition to Fig. 2 representing the average annual rate
of change and showing differences ranging from single to double figures depending
on the period being considered, Fig. 8 shows the average annual rate for one
category, coniferous forest. The reader can easily see that variations are magnified
at this level and that the choice of training dates is crucial for the accuracy of the
model. The assumed level of data error is also an important factor. Using this data
set, assuming a 10% error increases the amount of predicted change in comparison
to 100% confidence in data.

Fig. 8 Average annual net gain in coniferous forest per period (in hectares)
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5.2 Integration of Multiple Training Dates to Compute
the Expected Annual Amount of Change

The comparison of average annual transition rates (%) at global level (all LUC
categories mixed together) and category level (Figs. 4 and 5) illustrates the
heterogeneity of change speed and tendencies. The choice of accurate training dates
is more complex and selecting only two training dates may inordinately impoverish
the real dynamics. To overcome this problem, we propose alternative methods
involving the integration of multi-temporal data as a basis for quantitative
simulation.

5.3 Computing Transition Rates as an Alternative
to Markov Chain Transitional Predictions

The technique used to integrate multiple training dates demonstrates the possibility
of overcoming the two-date restriction of commonly used Markov chains to predict
quantities of land change. The results obtained depend on the weighting of the
impact of individual dates, close to the MC generated transition matrices. This
attempt to compare them underlines the methodological difficulty of relating a
2-dates-based approach to one with 2 + n dates. The choice of a pair of dates for the
Markov chain unavoidably results in data reduction, whereas the proposed alter-
natives allow historical information to be taken into account in the simulation
process, and are therefore, theoretically at least, an improvement. On the other
hand, a process using all the available LUC maps must be supervised to avoid
illogical transitions. Crops were used as a category in the original data set, although
they disappeared completely during the third period. It seems unlikely that locals
will begin planting them again, so unless there is a paradigm shift, their future
presence may be excluded. This means that if we want to take all the dates into
account, adjustments have to be made and the process must be supervised.

The weighting techniques we applied are still just a small sample amongst a
wide range of possibilities, and lie somewhere between path-dependent land change
prediction and forecasting scenarios that break with the observed trend.

6 Conclusion and Outlook

Generally, land change models undertake only two tasks: computing expected
quantities and allocating them on the map. The first task is often accomplished
using Markov chain simulated transitions based on only two training dates. This
paper shows first the randomness of picking out two of a wider set of training dates,
the uncertainty this produces and its consequences on Markov chain predicted land
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change. The complexity of LUCC is illustrated by computing annual transition rates
on three levels: global, category and transitional. In an attempt to overcome the
limitations of Markov chains that analyze the LUC dynamics in a single training
period, we describe alternative methods that use all the available dates and weight
them differently. There are two difficulties to this approach. First, modelers have to
supervise and, if necessary adjust, the generation of transition matrices to avoid
illogical transitions. Second, it seems difficult to evaluate the simulated land change
transitions generated in this way by comparing them with those computed by
Markov chains based on just two dates.

The range of results shows that both modelers and possible recipients (planners
and other more general users) of this data must be cautious when interpreting a
simulation that is never more than a plausible future. This means that we have a
duty to act with the greatest possible transparency, indicating the available data, the
data we used and the methodological choices we made.
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Chapter 8
Land Use Change Modeling
with SLEUTH: Improving Calibration
with a Genetic Algorithm

K.C. Clarke

Abstract SLEUTH is a cellular automaton computer simulation model that uses
historical land use and other data to project growth and land use change into the
future. The model has seen over 100 applications worldwide, and has been among
the leading cellular automaton (CA) models applied in simulating land use change
at many different spatial scales. The model is highly dependent on the use of
historical data to derive the behavioral parameters that best capture the structure and
dynamics of the location-specific growth history. While several improvements have
been made to the model to increase calibration speed, the current brute force
calibration technique has proven popular, in spite of it requiring a multi-phase
process and hundreds of CPU hours. This chapter reports on the use of a new
alternative calibration method, in which the brute force method is replaced with a
genetic algorithm (GA). A version of the model code that executes the GA cali-
bration has been written and made public. The GA calibration process populates a
“chromosome” with a set of parameter combinations (genes), of which five are
required by the model, each with ranges from 0 to 100. These combinations are then
used for model calibration runs, and the most successful (as measured by the
Optimal SLEUTH metric) are selected for mutation (recombination of their values),
while the least successful are replaced with new randomly selected values. Critical
values that must be provided are the population size of the chromosome, the
number of iterations or generations over which evolution will continue, the evo-
lution mutation rate, and the number of offspring and replacements in each gen-
eration. To select suitable default values for these rates, two SLEUTH applications
were used at the extremes of the model’s calibration performance success. These
were for San Diego, California where the model fit was very strong, and Andijan,
Uzbekistan, where the model was most hard pressed to capture the complex growth
process. In both cases, full model calibrations were completed using brute force
calibration, followed by calibrations using the GA. It was found necessary to hold
the GA parameters constant while repeatedly recalibrating the model using different
values for the GA settings. In all cases, the GA model performed as well as the
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brute force method, but used vastly less computation time. There were also subtle
but minor differences in the best SLEUTH forecasts that were explored by mapping
the differences among results. The optimal values for GA calibration are given and
set as the defaults for SLEUTH-GA, a new version of the SLEUTH model.

Keywords Land use change �Model � SLEUTH � Calibration � Genetic algorithm

1 The Purpose of Modeling

A model is an abstraction that embodies a simplification of reality, such that
information can be gleaned about reality from the formalization inherent in the
model. Models can simply represent, they can codify relations, they can simulate
structure and form, or they can hypothesize the development of specific time-space
relations. Models should be as simple as possible yet not so simple that they fail to
capture the complexity of the system in question (Clarke 2004; Batty and Torrens
2001). A good model is accurate, accountable, explanatory, predictive, useful and
simple (Benenson and Torrens 2004). Among the most complex of systems sub-
jected to modeling is the geographical landscape of changing land uses over time.
Land use change is the slow but persistent human modification of Earth’s terrestrial
surface. As humankind has gradually occupied much of the Earth’s surface, the
environmental consequences of such changes have become inescapable. Models of
urbanization and land use change have been struggling to simplify the complexity
of land use change using contrasting modeling methods and paradigms for decades
(Verburg et al. 2004). Recently, calls have been made, and prototype systems
designed, to integrate both time and space in a more dynamic modeling framework
for land change science (An and Brown 2008).

The contemporary magnitude of land use change faced by the inhabitants of
Planet Earth is unprecedented in history. Few places on Earth are untouched by
human forces, and the number of places left where a photograph taken 100 years
ago would be identical to one taken today is diminishing rapidly. Land use change
is primarily driven by the conversion of natural lands to agriculture to feed the
billions of humans, but also increasingly by the expansion of built-up land. Cities
expand their extent of impervious surface outward and inward, and the evolution
from village to town to city continues unabated. Land use and land cover change
modeling asks what causes these changes, but far more importantly it also asks how
they can be modified, diverted or prevented so as to ensure that future cities are
more sustainable.

There are four purposes in modeling. First it can help us gain an understanding
of a process, usually as revealed by its consequent spatial forms (Clarke 2014a).
Secondly we can try to forecast the process by modeling, and so predict where and
when changes will actually occur (NRC 2014). Thirdly, we can explore alternative
futures by varying the forecasts to reflect anticipated changed circumstances (Xiang
and Clarke 2003; Houet et al. 2016). Fourthly, we can use the model itself to help
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others understand the process, its outcomes and its consequences, using it as a
vehicle to raise awareness and to educate. It is notable that all four of these purposes
are highly dependent on the accuracy, reliability and effectiveness of the model.

A model whose behavior and properties have been mined from facts and data
may be predictive, but fails to explain the how and why of modeling, just as its
forecasts have little educational value. Good models make their assumptions about
a process explicit, using facts and data as inputs, and then create accurate renditions
of future system states. Such accurate models must use real data to fine-tune the
constants and variables that determine model behavior. This happens in two ways:
first the model design should incorporate knowledge or testing into the choices of
constants and variables; and second, the model should use hindcasting, that is, be
applied to historical data to effectively replicate the present. Accuracy can then be
measured as the level of agreement between the forecasted present and the actual
present (Pontius et al. 2007). It is this stage of modeling that assures the model’s
level of accuracy, reliability and effectiveness by expressing them as measurements,
and attempting to maximize them. This process is called model calibration, and
calibration remains the most critical phase of model design and application.

2 The Need for Calibration

Calibration of models covers the two steps above, but extends to include a vast
array of tools and techniques to attempt the optimization of model performance. In
all cases, calibration seeks to determine the impact of changes in a particular
constant or variable in terms of the model outputs. Constants are the values that will
remain internal to the model, and may be choices of particular values (such as the
greatest topographic slope that can be built upon) or more structural elements of the
model (such as the choice of Moore vs. Von Neumann neighborhoods). The
determination of these constants is the first stage of calibration because it happens
during model design. Methods used include visual inspection of the correspondence
of outputs, simple match statistics and the computation of all outputs across a range
of constant values. Critical in the latter case is determining the threshold values, that
is, points at which a small change in the constant produces large differences in the
output–what Houet et al. (2016) term “non path-dependent” and
contrasted/breaking trends. Simple models generally seek to avoid these values,
while complex systems models seek to exploit them. Crossing these thresholds is
termed phase change in complexity theory, and often leads to emergence (Holland
1998).

The second type of calibration involves repeated application of the model, the
measurement of model performance, degree of fit, or accuracy, and the adjustment
of input variables and data until performance is maximized. This may involve
accuracy of the model outputs as measured using historical data, or achievement of
some other goal, such as tractability (Clarke 2003). Usually a model is started at
some point in the past, and executed without further input until the last period of
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known data (the present), periodically matching its numerical and spatially dis-
tributed outputs with real data.

A third approach is to automate the calibration process. Given the matches
described in the last paragraph, one or more measures can be compiled that rep-
resent the performance of a suite of parameters. Changing the parameters and
repeating the process allows retention of the best performing settings. An easy way
to optimize is to repeat the parameter changes for all possible combinations and
permutations of their values, the so-called brute force method. Models now
increasingly use machine-learning algorithms to achieve this maximization. For
example, weights assigned in agent-based models can be selected using support
vector machines, or cellular automata behavior rules selected using genetic algo-
rithms (Clarke 2014b). The development of automated calibration methods is dis-
cussed in the following section. Needless to say, good calibrations derive the best
set of input parameters that determine the model’s performance, accuracy and
behavior. Good models are almost always well calibrated.

The complete set of models of land use and land cover change is spread across a
vast literature, including periodical reviews and surveys of the models and their
applications (NRC 2014). All such models require calibration, but these calibrations
depend on the model type and its intended purpose. A subset of land use change
models is cellular automata (CA) models. These have been discussed at length
(Torrens and O’Sullivan 2001) and even divided into types (Sante et al. 2010).
A review of the calibration methods for all land use and land cover change models
would be prohibitive, so in the remainder of this chapter we will focus on CA
models only, then discuss a particular model and its improvement using a genetic
algorithm to replace its current brute force calibration method. An advantage of this
approach is that it removes human interaction entirely from the calibration process
(Jafarnezhad et al. 2015).

3 Developments in CA Model Calibration

CA models are complex system models consisting of: (1) a set of mutually
exclusive and non-overlapping states; (2) a framework of points, cells or a grid in
which each element is in one and only one state; (3) a defined neighborhood,
consisting of a set of cells usually surrounding or adjacent to a cell; (4) a set of rules
that govern state changes as a function of the other states within the neighborhood;
(5) a relation to discrete time, such that all cells are evaluated in each time step; and
(6) an initial arrangement of the states within each of the cells. In land use change
models, the states are the standard land use classes, such as forest, agriculture,
urban and wetlands; the framework is a map, consisting of a grid of raster cells
usually within a GIS; the neighborhood is the set of cells forming the Moore, Von
Neumann or other neighborhood around each cell; the time steps are annual
increments from a start time to a stop time, either in the past, the present or the
future; and the initial arrangements reflect actual mapped distributions at some point
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in time. This leaves the rules to be determined during the model design stage. Rules
can be created by following those of other models, by using some a priori
assumption about system behavior, derived statistically using probabilities or from
exogenous quotas, or derived from data mining past land use changes as functions
of location, type and quantity.

The rule sets associated with land use and land cover change are often chosen to
reflect the driving factors of land use change. For example, actual changes can be
analyzed using logistic regression as being “caused” by environmental constraints
such as the topographic slope, the distance from a city center, the distance from a
road, or the zoning at that point. The factors that prove significant are then prior-
itized and assigned weights. Modeling then consists of taking an input model,
combining the weighed input factors, deciding probabilistically whether a change
from type A to type B could occur, then enacting the change at the most probable
locations. Such models can be highly data dependent, and may not be transferable
from one place to another, even though the methods can be reapplied if the rules are
derived anew. Other models use rules determined by trial and error and by applying
theoretical knowledge, such as the SLEUTH model (Clarke et al. 1998).

The use of two land use maps as inputs to derive a rule set for CA by data
mining has led to numerous attempts to calibrate CA models with data reduction
methods. These include multi-criterion evaluation (MCE) (Wu and Webster 1998;
Wu 1998), multiobjective optimization (Cao et al. 2014), logistic regression (Wu
2002) and decision trees (Li and Yeh 2004). Most successful among these methods
have been neural networks (Yang and Li 2007). A neural network uses a training
subset of the data to compute the weights that map inputs to one or more model
layers of hidden neurons, and then on to the outputs. The success of neural net-
works lies in the fact that no assumptions are made about the underlying distri-
bution. Logistic regression, for example, assumes independence among the input
variables. Some models use neural networks as the entire basis for land use change
modeling (e.g. ANN-CA by Li and Gar-On Yeh 2002 and LTM by Pijanowski
et al. 2002).

Other machine-learning algorithms have been used to help calibrate (and derive
CA rules for) CA models on land use and land cover change. Long et al. (2009); Hu
and Lo (2007) and Liu and Phinn (2003) used logistic regression to evaluate and
select CA transition rules in the model design stage. Guan et al. (2005) used
artificial neural networks for the same purpose. Another favored method is the
support vector machine, a discriminative classifier defined by a hyperplane that
divides the data in multidimensional space. The method uses supervised learning to
output an optimal hyperplane which can be used to forecast future states (Yang
et al. 2008). Others have used neural networks to optimize CA control parameters
(Li and Yeh 2004). More recently, methods such as particle swarm optimization
(Feng et al. 2011) and ensemble learning strategies (multiple methods combined in
parallel) have also been introduced (Gong et al. 2012).

One of the most successful machine-learning methods to be used in both con-
texts (CA rules selection and parameterization) is genetic algorithms. A genetic
algorithm (GA) is a method for solving optimization problems based on a process
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of natural selection that mimics evolution in plants and animals. The algorithm
starts with an approximate initial set of solutions, and then repeatedly modifies the
population of genes while assessing fitness. In each iteration, changes are made to
create better solutions (evolution and mutation) and to allow the entry of random
solutions that may outperform the current best “gene.” Studies that have used GA to
calibrate CA include Colonna et al. (1998), Goldstein (2004), Yang and Li (2007),
Yang et al. (2008), Shan et al. (2008), Cao et al. (2011), Feng and Liu (2012),
Clarke-Lauer and Clarke (2011), Garcia et al. (2013) and Jafarnezhad et al. (2015).

Genetic algorithms use the concept of fitness to determine evolution toward a
best outcome. There are many possible measures of goodness of fit between a real
map and a modeled map, and these include producer and user accuracy, the various
Kappa measures, matching of landscape metrics, correlation, the Receiver
Operating Characteristics curve and others. Many calibrations simply use the per-
cent correct as a measure. As an example, the SLEUTH model produces 13
regression-based fit measures, which in the past were combined by multiplication,
although many studies have used the Lee-Sallee metric alone (Silva and Clarke
2002). Current practice uses the Optimal SLEUTH Metric (Dietzel and Clarke
2007). This measure uses a subset of 7 of the 13 metrics, also combined by
multiplication, selected to reduce interdependencies among the 13 metrics. The
current study used the OSM as the fitness measure for calibrating the SLEUTH
model.

Use of GA implies creation of the equivalent of a chromosome, with individual
genes reflecting traits of an individual. In biology, typical traits include eye color,
height, etc., but for this application the genome consisted of a set of feasible control
parameters for a SLEUTH model run. SLEUTH has five control parameters, each of
which varies from 0 to 100, with 0 meaning the absence of a behavior and 100
meaning unrestricted behavior. These parameters are termed diffusion, breed,
spread, slope and road growth. Diffusion controls the amount of scatter displayed
by new urban pixels. Zero means that no new growth can occur other than at urban
edges, while 100 allows urban growth anywhere. Breed determines which newly
urbanized pixel can immediately start spreading. A value of 0 leaves each new pixel
isolated, while 100 turns every newly urbanized pixel into a growing cluster. Spread
determines the rate of outward organic growth or infill. Zero permits no outward
spread, while 100 spreads the edges of all urban pixels in each time period. Slope is
a factor that controls the response of urbanization to topographic slope. At zero,
there is no evaluation of the slope of a pixel before its urbanization; approaching
100, higher slopes are increasingly penalized up to a critical value at which
development is impossible, termed the critical slope. Road growth emulates the
attraction power of roads for new growth. At 0, roads have no impact on growth
while at 100, all new development within a buffer distance is attracted to the roads.

A single run is then controlled by the five values {diffusion, breed, spread, slope,
roads} within the integer range from {0,0,0,0,0} to {100,100,100,100,100}. The
single set of five values forms a gene, and a population of P such sets is the
chromosome. Each gene is evaluated, i.e. the model is run and the fitness (here the
Optimal SLEUTH Metric or OSM) calculated. The genes are then sorted by OSM,
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so that those that performed best rise to the top. This is termed a generation.
Between generations, new genes are created by combining the values of the best
performing genes, after having pairs of genes “compete” to reproduce, and so share
their gene. Combining parts of one gene with another is called crossover, and is an
important part of biological evolution, determining the traits of the offspring pro-
duced by a particular mating pair. Next some of the genes in the chromosome are
mutated, by altering their values. Mutation is applied at the mutation rate, in this
case the proportion of the genome subjected to change. If 10 out of 100 genes in a
chromosome are subjected to mutation, the rate would be 10/100 = 0.1. Mutation
can be done by switching values, or by replacing one or more values with random
numbers in the range 0–100. There are two levels of fitness associated with each
generation: the total fitness of the chromosome and the specific fitness of an
individual gene. In our case, we are interested in maximizing both total fitness to
move the training process forward, and the fitness of the best performing gene,
which is the best model fit at that generation. Evolution ends when a maximum
number of generations is reached, or when successive generations have no better
total fitness than their parents.

Blecic et al. (2010) performed a comparison of genetic algorithms to select the
best for the automatic calibration of a constrained CA. Various strategies for gene
selection were tested, such as generational genetics, elitist selection, steady state,
and choice of the fitness metric. The chief variables in a GA include choosing the
size of the population (number of genes in the chromosome), the maximum number
of generations (or minimum improvement in fitness to continue evolution), the
mutation rate, number of crossovers, the number of offspring, and the number of
replacements. A second stopping criterion is the maximum number of evaluations
of genes for possible inclusion as replacements. The GA populates the initial gene
with chromosomes using random numbers within the individual chromosomes
range, usually standardizing values between zero and one, or zero and one hundred.
In one generation, each of the genes is used as model input, and the fitness criterion
calculated. In the study by Blecic et al., the fitness values used were the Kappa
coefficient and the Lee-Sallee metric (Silva and Clarke 2005), while others have
used the Optimal SLEUTH Metric (Dietzel and Clarke 2007). This is repeated for
all genes in the chromosome, and the results ranked. Elitism determines how many
genes will survive to the next generation. Some proportion of the genes are crossed
over, that is their values are switched by breaking a sequence and combining it with
that from another gene in the chromosome. For example a set of SLEUTH input
parameters may be {10, 20, 30, 40, 50}. After mutation, it may be {10, 20, 50, 40,
30} with 2 values switched and 3 remaining. Another form of mutation simply
randomly or incrementally changes one or more gene values. Lastly, the lowest
performing genes in terms of fitness are replaced, or “killed off” and replaced with
new random values. Such a choice increases the number of evaluations, when a
maximum number is reached or a maximum number of generations pass, the
winning genome is selected.
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This final replacement stage is important because there is always a possibility
that the chromosome with the highest total fitness is not a global but only a local
maximum. Both mutation and replacement ensure that a superior value either
evolves or arrives by chance. The altered chromosome is then subjected to the next
generation, and the process is repeated either until no further gain in fitness is
achieved, or a maximum number of generations is exceeded. Blecic et al. (2010)
compared two variations of a constrained cellular automaton growth model, one
with 14 parameters and the other with 27. Note that the GA optimizes in two ways,
firstly by seeking a chromosome with the highest total fitness, and secondly by
seeking a gene with the highest individual fitness.

Veerbeek et al. (2015) noted that although GAs are successful as optimization
algorithms for a large range of problems they generally demand “a large population
of candidate solutions and a large number of iterations to reach a global optimum
within a search space.” They stated that GAs excel at quickly identifying good
solutions but are often less ideal for finding the optimum. In their study, they used a
memetic algorithm in which the standard GA is extended with a local search
algorithm that slightly increases or decreases chromosome values toward locally
better solutions, a modified form of mutation. Their test implementation for Beijing
used a Dinamica-EGO-based LULC change model in a 2-stage modeling approach
which separates the calculation of the urban-area growth from the extension into
urban LULC classes. Their fitness measure was obtained by performing a
cell-by-cell fuzzy set intersection, a method similar to using the Lee-Sallee value.
One conclusion of the study is that “the choice and implementation of
machine-learning algorithms for calibrating LULC models often seem arbitrary and
are too often based on standard ‘off-the-shelf’ tools.”

Another variation is the adaptive genetic algorithm (Srinivas and Patnaik 1994),
in which crossovers and the mutation probability are automatically adjusted
according to the individual and total gene fitness. The authors noted that this is an
alternative way to ensure the solution does not remain a local maximum. Lastly, Li
et al. (2013) focused on the calibration metric, using a pattern-calibrated method
which is based on multiple landscape metrics. They used a pattern-calibrated GA–
CA that incorporated the percentage of landscape, patch metric and landscape
division into the fitness function of the GA. Many CA studies use landscape metrics
after simulation to compute the similarity among outcomes, such as simulations
using different future scenarios, but this method incorporates them into the model
calibration itself.

While research continues on using GA as a means to calibrate CA models,
relatively few studies have examined how the specifics of the GA affect the per-
formance, accuracy and tractability of model calibrations. For example, what
impact is there on the spatial and quantitative characteristics of forecasts when GAs
are used for calibration? Obviously such a question can only be answered in the
context of a single model. SLEUTH will be used for this purpose because it is one
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of the few instances where both brute force and GA calibration options are available
in open source code.

4 Calibrating SLEUTH

SLEUTH is a land use and land cover change model based on two tightly coupled
CA models: the Urban Growth Model that simulates how urban areas expand and
change; and the Deltatron model that propagates urban changes into other land use
types. The model was originally developed and applied to the San Francisco Bay
area (Kirtland et al. 1994; Clarke et al. 1997) and then to the Washington-Baltimore
area (Clarke et al. 1998). SLEUTH’s initial calibration was by monolooping (trying
all possible settings for a single parameter, holding the others constant), but this was
replaced by brute force calibration (Clarke et al. 1996). The calibration methods
were systematically improved over a long period (Clarke et al. 2007, 2008a, b;
Chaudhuri and Clarke 2013). Successive improvements were made in the code, in
the choices during sequencing of the brute force process, and in the choice of
resolution paralleled improvements in the speed of calibration as CPUs became
faster, and as the model moved into geocomputational and high performance
computing solutions (Clarke 2003). Recently, research has examined the goodness
of fit between SLEUTH simulations and actual data, usually using hindcasting and
spatial metrics of various kinds (Wu et al. 2009; Rienow and Goetzke 2014; Sakieh
2013).

Noah Goldstein was the first to experiment with GAs to calibrate SLEUTH
(Goldstein 2004). Others tried the same approach with more sophisticated tools
(Clarke-Lauer and Clarke 2011; Jafarnezhad et al. 2015). Clarke-Lauer and Clarke
used the Optimal SLEUTH Metric as the fitness criterion and replaced the brute
force module in SLEUTH with a new code routine that employed a GA that was
posted to SourceForge. Values that could be varied included choices on encoding,
fitness evaluation, crossover, mutation and survival selection. Coding involved a
random number between 0 and 4 to index the five SLEUTH control parameters
(diffusion, breed, spread, slope and road growth) and to decide how many elements
from the parent were to be reproduced in the offspring. Remaining elements were
selected from the second parent, with the second offspring using the opposite genes
used for the first. Parents were selected by tournament selection, with a random set
selected and the parents chosen with the highest fitness. Each generation replaces
the weakest genes in the old population with the strongest in the new. The
SLEUTH-GA was tested using the demo city sample data set available on the
SLEUTH website, with a population size of 25. The paper concluded that the GA
produced a speed up by a factor of 5 over brute force calibration. This means that
the model calibrated in 20% of the time taken by brute force.
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Jafarnezhad et al. (2015) used the SLEUTH-GA code to apply SLEUTH to 3
cities in Golestan Province, Iran. They calibrated SLEUTH first using the standard
brute force procedure, and then used GA with the fitness metric as the OSM. They
coded their own GA procedures based on Goldstein’s method (Goldstein 2004).
Model outputs were then compared using the Receiving Operator Statistic (ROC),
landscape metrics and two Kappa coefficients (Khisto) and Klocation). They concluded
that GA produced better results as evaluated by OSM, landscape metrics, and Khisto,
while brute force produced slightly better values for Klocation, with the methods
equal for the ROC statistic. They used population sizes from 20 to 30, mutations
rates of 0.1, and the GA required 71–133 generations. The highest OSM’s attained
were 0.8195 for Azadshahr, 0.5861 for Gonbadekavoos and 0.9213 for Gorgan.
The equivalent best OSM values for the three cities from brute force calibration
were 0.5346, 0.3664 and 0.7740. Speed up was 4–5 times, and the authors noted
that the results could be improved by “testing different values for mutation rate and
decreasing model tendency to elitism.” This chapter responds to this challenge by
seeking the best parameter settings for calibrating SLEUTH with a genetic
algorithm.

5 Methods

To conduct such an experiment, data were extracted from the SLEUTH model
archive on the SLEUTH website (www.ncgia.ucsb.edu/projects/gig/) for San Diego
and Andijan, Uzbekistan. The San Diego dataset produced by Mark McGinnis was
among those that produced the most successful brute force calibrations according to
the OSM (Syphard et al. 2011). Conversely, the Andijan data set (compiled by Lola
Gulyamova of Tashkent State University, Uzbekistan) produced the lowest OSM
fits achieved by SLEUTH. In both cases these were the best model calibrations, but
they varied substantially in predictive power. This is believed to be because of
Andijan’s extraordinary urban growth history. During WWII, Andijan received
large numbers of Soviet citizens, including Jewish refugees from Poland. After a
period of Soviet managed growth with rapid construction of housing, during the
1990s Andijan and the surrounding agricultural Fergana Valley became politically
unstable, with border closures and Islamic fundamentalism depleting the economy,
leading to widespread poverty. The result was an end to population growth, which
until then had been high. The halting of growth and deurbanization of land are
known problems for SLEUTH modeling, so the poor measures of fit are hardly
surprising. Table 1 shows the SLEUTH modeling results for the two cities, while
Fig. 1 shows two comparative versions of the most recent data sets, modeled and
actual. Note that some results differ from the earlier published research due to the
recalibration, and do not reflect the averaging conducted before forecasting.
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The two cities shown in Fig. 1 give an indication of the degree of model fit. In
this figure, the cities are shown in the year prior to the last date of the calibration,
i.e. SLEUTH has guided the growth starting from just the 1934 image for Andijan
and 1960 for San Diego. In the Andijan modeled image, the modeled urban area is
of low certainty (green, 50–90%) and almost entirely centered on the existing
settlement in 1934 (yellow). The model overestimates uncertain growth, and
underestimates the actual extent, which explains the poor model fit. In San Diego,
the modeled certainties are higher (red > 90%) but the growth areas are almost all
surrounding the existing urban class, and some roads. Growth in the flat parts of the
interior valleys is overestimated, but generally the model fit is good.

6 Results

Both cities were then used with identical inputs in the SLEUTH-GA version of the
model code. The SourceForge version was adjusted slightly to take six parameters
from the shell to be passed to the code. These were the population size (genes in the

Fig. 1 Spatial extent of SLEUTH forecasts and actual urban growth during the calibration period
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chromosome), the maximum number of generations, the mutation rate, the maxi-
mum number of evaluations per gene, the number of offspring, and the maximum
replacement number. Population size, mutation rate, number of offspring, the
replacement number and the maximum number of evaluations were varied, while
the other values were held constant. The maximum number of generations was set
to 100, but in fact the GA rarely used more than 20 generations in the calibration,
contrary to the higher numbers determined by Jafarnezhad et al. (2015). The
maximum number of evaluations for substitution per chromosome was found to
give peak fitness at about 900, and this did not affect the calibration process, other
than increasing the number of generations and CPU time. Figure 2 shows how the
coefficients and fitness parameters adjusted during a single calibration. Specific
chromosomes can be seen to persist, before eventually being dropped from the elite
set as evolution continues.

The first experiments examined the best population size for the gene. Graphs in
Fig. 3 show the results for the two cities. For Andijan the fitness was very low, with
a slight peak at a population size of 70. For San Diego, the peak fitness occurred at
a population size of 55, so this value was used for the next monoloops. Similarly for
mutation rates, the peak fitness for both San Diego and Andijan was at a rate of
0.13, so this value was used for all further calibrations.

The information on calibration fine tuning for the GA was rather limited for the
Andijan case, so testing of the ranges of the number of offspring and the

Fig. 2 Values during test GA calibration runs for San Diego and Andijan, showing coefficient
evolution and fitness improvement
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replacement number were restricted to the San Diego data. Their best fitness values
were 55 and 50 respectively (Fig. 4).

Testing of the most suitable ranges for the GA parameters produced the final set
of input parameters, shown in Table 2. The graphs of the values tested to select
these values are shown in Figs. 5, 6 and 7. In particular, the maximum number of
evaluations sets the computation cost for the run, and there appears to be a fine
balance between too many generations versus achieving a good fit. A best value of
900 was selected, which creates about 10–12 generations of evolution.

It is hoped that this set of GA control parameters will enable universal
application of SLEUTH-GA modeling. The values have been integrated into the
SLEUTH-GA code as defaults, selected whenever the number of input parameters

Fig. 4 Monolooping results for San Diego for the Mutation Rate

Fig. 3 Monolooping results for the two cities for the gene size, i.e. population of chromosomes
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is not that expected to reset all of the values (i.e. the program execution mode is
“evolve” and the parameter count is not 9). This goes a long way toward the fully
automated and objective calibration of SLEUTH, without user intervention
(Straatman et al. 2004). However, what range of parameters is there within the
gene that might still be improved by brute force calibration over a smaller range,
and what is the spatial impact of this difference on the actual forecasts? The
ranges of parameters in the first subpopulation (highest performing individuals of
the 8 most fit parents) for the best GA derived parameters are shown in Table 3.

Fig. 5 Monolooping results for Andijan and San Diego for the gene replacement rate

Fig. 6 Monolooping results for San Diego for the Number of Offspring
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Note that the maximum, average and total fitness of a genome tend to peak
simultaneously, indicating that the best performing chromosome is led by the
most fit gene.

To investigate the spatial impact of the differences in calibration mode, maps of
forecast urbanization with a likelihood of over 50% were created for the two cities
and shown for both methods of calibration (Fig. 8). It is evident that as in the
calibrations, both cities are forecast with higher uncertainty and greater spread using
brute force calibration, while the forecasts for both cities are more constrained but
with greater certainty using GA. This appears to be the case for both high and low
model fit, and may be a robust way of providing better forecasts.

Fig. 7 Monolooping results
for San Diego for the
maximum number of
evaluations and the
corresponding clock based
CPU time
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7 Conclusion

Santé et al. (2010) pointed out the “need of making urban CA more flexible while
keeping their simplicity by developing better calibration methods.” This study has
been in response to this challenge. Models of complex systems need to be complex,
but not too complicated (Clarke 2004). An important move, as suggested by
Jafarnezhad et al. (2015) is to eliminate human choices and judgements during the
calibration process, replacing the subjective with the objective, or in Goldstein’s
terms, replacing brawn with brain (Goldstein 2004). On the surface, replacing the
brute force calibration method for SLEUTH calibration just introduces a new set of
calibration problems, i.e. dealing with the characteristics of the gene and deter-
mining how the evolutionary process yields the best results. Confirming prior
research cited above, this study shows that GA leads to at least as good and often
better calibration results. The results here indicate lower modeling uncertainty. The
differences in the calibration parameter sets are small, and the differences among
model forecasts are also small. The two advantages are the objectivity and the

Fig. 8 Spatial Extent of SLEUTH forecasts to 2030 for the two cities using both calibration
methods
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obvious benefits of speed-up, and therefore tractability. At the very least, GA can
provide a convergent set of chromosomes that can be further optimized by brute
force over a much more limited parameter set, such as the range over the top 8
genes listed in Table 2.

This study set out to review the importance of calibration for CA modeling in
land use change models. Calibration performs important functions for models
because it ensures their accuracy, integrity, reliability and trustworthiness.
Well-calibrated models are defensible and objective, and use real world data instead
of assumptions in their properties, constants, variables and behavior types. When
these values are derived from data and by machine-learning methods, there is an
obligation to perform sensitivity analyses and to run controls. Only when objec-
tivity and accuracy can be assumed to coexist within a model can the model’s
forecasts, experiments and predictions be believable. By moving SLEUTH cali-
bration from brute force to GA, the level of objectivity is further improved. As a
bonus, the amount of CPU time that must be devoted to calibration was reduced by
about a factor of 3 for San Diego and 22 for Andijan. This goes a long way toward
solving the issue of the amount of raw CPU time required for SLEUTH application,
which in turn should enable new applications and new cities to be modeled and
simulated. The final version of the SLEUTHGA software is posted on the SLEUTH
website at: www.ncgia.ucsb.edu/projects/gig/Dnload/download.htm and is avail-
able as open source code for modelers.
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Chapter 9
The Importance of Scale in Land Use
Models: Experiments in Data Conversion,
Data Resampling, Resolution
and Neighborhood Extent

J. Díaz-Pacheco, H. van Delden and R. Hewitt

Abstract The investigation and modeling of land use dynamics can be conducted
at different scales based on the objective of the study. However, few studies have
looked at comparing various scale aspects, such as spatial resolution and the related
neighborhood effect, for practical case study applications. In this chapter, we
contribute to this under-explored area with a detailed study of how changes in the
data preparation procedures and the scale decisions made in setting up a land use
model can affect its performance. For these purposes we used a Cellular Automata
(CA) based land use model, which we applied to the Madrid region in Spain. In
order to discover the most appropriate method for preparing input data, different
vector-to-raster conversion and resampling strategies were tested with reference to 4
statistics. For vector-to-raster conversion, the cell center method was found to give
the best results across all of the statistics. Furthermore, direct conversion from the
original vector map to raster format at the desired cell size was found to give better
results than resampling to the desired cell size from a different cell size. We also
tested the effect of changing spatial resolution and cell neighborhood distance on a
model’s goodness-of-fit to real data using a range of location and pattern metrics.
Although differences were noted in the simulations, all the applications fitted the
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data satisfactorily. Nevertheless, the 50 � 50 m cell resolution applications were
visually much more realistic, perhaps because this resolution was used in the initial
calibration of the model. The results indicate that data conversion issues have a
major effect on the quality of the input data. Additionally, models of this type
appear to be much less sensitive to scale changes, either through cell resolution
changes, neighborhood changes, or both, than is usually suggested by the literature.

Keywords Land use models � Land use change � Scale � Cellular automata � Data
conversion

1 Introduction

Researchers in land use/land cover change (hereafter LUCC) modeling approach
their research with different objectives for different regions, and as a result work at
different cartographic spatial scales. The observation and modeling of spatial
phenomena should be carried out at a scale appropriate to the phenomena in
question (Woodcock and Strahler 1987). However, the same phenomenon can be
modelled at various scales depending on the spatial context of the analysis. When
investigating the urbanization processes in a specific city, a high level of spatial
detail might be required, because urban land use units (facilities, parks, residential
areas, etc.) are small in size and specific local information about socio-economic
and physical characteristics and planning regulations can play a key role in
understanding dynamics. However, for modeling the urban growth of Europe, the
analysis should not be too detailed or the generality of the process at the continental
scale could be missed. The geographical scale of models depends therefore on both
the phenomenon to be modelled and the spatial scale (local, regional, national,
global…) of the analysis. From a geographical point of view, variability of scale
can be regarded as both a strength and a weakness of the discipline (Lam and
Quattrochi 1992). LUCC models, as geographical tools to understand phenomena
(Longley and Batty 2003 p. 5) and provide policy support (Van Delden et al. 2010),
are clearly subject to the same considerations. In fact, the results of dynamic spatial
models are strongly influenced by scale, and results derived from a model devel-
oped for one spatial scale may not be applicable at another. When moving from one
scale to another, land use patterns may disappear or emerge (de Koning et al. 1998),
significant processes may lose their significance, and rates of change may vary
(Kok and Veldkamp 2001). The Modifiable Areal Unit Problem (MAUP), a con-
cept which describes ‘the variation in results that can often be obtained when data
for one set of areal units are progressively aggregated into fewer and larger units
for analysis’ (Openshaw and Taylor 1979; Openshaw 1983) helps to understand
some of these key issues. On the other hand, variability of scale could be considered
an advantage since data and information can be adapted to suit the context in which
the analyzed process are occurring (i.e. operational scale), or to take into account

164 J. Díaz-Pacheco et al.



the way humans may perceive different spaces at differing levels of detail in a
hierarchical fashion according to their proximity (Van Vliet et al. 2009).

Although the importance of scale in LUCC models is recognized by many
researchers (e.g. Jenerette and Wu 2001; Theobald and Hobbs 1998; Ménard and
Marceau 2005; van Delden et al. 2011), experimental studies in which the impli-
cations of different scale options are directly compared, are generally lacking (Jantz
and Goetz 2005). In this paper, we contribute to this under-explored topic. We
assess the accuracy and quality of the data when they are converted from vector to
raster or resampled by different methods, to be used on spatially-explicit land use
models. In particular, we explore the data conversion and rasterization options, and
the impact of spatial resolution on the calibration of a land use model for Madrid.

The paper is organized as follows. First, we present the background and the
method applied for each of the two components of this study, data preparation and
model resolution, followed by details of the application including the GIS and the
land use model used in this study. Finally we present and discuss the results, draw
the relevant conclusions and make recommendations for further research.

2 Finding the Right Scale

2.1 Background

Although several authors have proposed ways to find the best scale for setting up
raster-based LUCC models (e.g. Tobler 1988; Lam and Quattrochi 1992), no single
widely-agreed method has emerged, and the final decision is usually taken on the
basis of the researcher’s own specialist knowledge. Such a decision may not always
be the result of a rigorous procedure, but is not usually arbitrary. For example, in
policy-relevant LUCC models, the decision about which scale to use is often a
trade-off between the scale required by intended users, the scale at which processes
are best represented, and practical considerations like data availability or compu-
tational resources (van Delden et al. 2011).

The scale decisions a LUCC modeler needs to make include the spatial and
temporal extent, the spatial level(s) and the hierarchy by which they are ordered,
and the amount of detail incorporated. Levels refer to locations along a scale
(Gibson et al. 2000) and detail relates to the spatial, temporal and thematic reso-
lution(s) and the complexity by which processes are represented (van Delden et al.
2011). When focusing on CA based land use models, other important factors related
to spatial resolution, such as neighborhood size and type, must also be taken into
account (Ménard and Marceau 2005).

Previous work on the effect of changing scale in a LUCC model for Central
America by Kok and Veldkamp (2001) found that coarsening the resolution from
15 � 15 km to 75 � 75 km led to improved model explanatory power (r2), but did
not significantly affect the explanatory variables (i.e. land change drivers identified
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were broadly the same at both resolutions tested). However, changing the extent of
the model produced a strong variation in performance (poorer fit for all Central
America, better fit for individual countries). Though these authors do not say so
explicitly, this is an excellent example of the scale problem (Openshaw 1983) in a
land use model, since the land change dynamics modelled by these authors relate to
national, not supra-national drivers, and are not generalizable across borders.
Though it is common practice in land use models to work at larger spatial extents,
the findings of these authors are a clear warning of the perils that this may entail.
However, various modeling approaches overcome this issue by dividing the
modelled area into smaller subdivisions, as for example in the case of the regional
model incorporated into the Metronamica Modeling framework (RIKS 2014).

Jantz and Goetz (2005) investigated the behavior of different types of urban
growth rules at different cell sizes in the popular SLEUTH model, concluding that
cell resolution was a major determinant in model performance and that some types
of urban growth rule produced much more growth at coarser resolutions than at
finer ones. Though their findings are quite specific to the SLEUTH model, the
implication is that neighborhood effects for urban land, which are fundamental in all
CA models, may vary non-linearly across scales.

Ménard and Marceau (2005) observed how changing the size of the neighbor-
hood radius and the resolution produced a non-linear relationship between the
spatial scale and the simulation results. Their work was based on a dataset derived
from remote-sensing images for two time periods and focused on land cover
change. The study area was dominated by forest and agriculture, so the phe-
nomenon of urban expansion was not considered (Ménard and Marceau 2005).
Samat (2006) undertook sensitivity analysis of a CA-based urban model with the
aim of finding the appropriate scale for the modelled region (Seberang Perai,
Malaysia). The study found that the model performed well at 30, 90, and 270 m cell
resolution, but at coarser resolutions (810, 2430 m), accuracy declined rapidly.
These findings appear to contradict the findings of Kok and Veldkamp. However,
these studies are difficult to compare for a number of reasons. Firstly, Kok and
Veldkamp compared only two resolutions, while Samat investigated five. Secondly,
the studies do not compare the same cell resolutions and address different spatial
extents. Thirdly, the statistical comparison methods used were quite different (Kok
and Veldcamp used the coefficient of determination (R2) of a regression model,
whereas Samat used cell-by-cell map comparison techniques). Finally, Samat
employed standard Kappa for comparing real and simulated maps, an approach
which has since been found to be inadequate (Pontius and Millones 2011; Van Vliet
et al. 2011).

As an aid to determining the appropriate spatial scale for the general case,
Samat’s work (2006) has some limitations. On the one hand, the analysis comprised
only two land use classes (urban and non-urban), so the type of urban land use was
not a determining factor for selecting the scales for the tests. Moreover, the land use
dataset employed was drawn from different sources for each of the two time periods
(1990 and 1998). In addition, the cartographic scale chosen for the smallest cell
resolution tested (30 � 30 m) does not seem to respect, at least for 1990, the
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general rules for transformation of a scaled vector map (1:75,000) to a raster map
(see Tobler 1988).

The various studies show that the choice of scale, and, in particular, of the spatial
resolution, is key in setting up a land use model, as these can have a large impact on
the model results. With limited work being carried out in urban environments, this
paper aims to contribute to an enhanced understanding in this area by exploring the
effects of spatial resolution and neighborhood extents on a land use model’s
capacity to simulate land use change.

3 Approach

3.1 Scale in Geography and Remote Sensing

Three techniques of land use data conversion from vector to raster, and two tech-
niques of aggregation by resampling from a high cell resolution to a lower one are
tested. The data conversion and resampling techniques used are those implemented
inside the popular ArcGIS 10.0 software. ArcGIS was chosen because it is widely
used and provides a detailed description of the procedures in the user manual.
Testing was undertaken by developing a series of land use maps as input data for a
LUCC model generated by each technique and then comparing the results using
statistical map comparison algorithms. In the following section we describe the data
conversion and cell aggregation methods used to obtain the most appropriate data
for use in the LUCC applications at different resolutions, together with the metrics
used to evaluate the maps generated by the various techniques.

3.1.1 Vector-to-Raster Conversion

In the vector-to-raster conversion, some loss of accuracy is unavoidable, due to
classification errors where the irregular polygon boundary coincides with a regular
grid (Carver and Brunsdon 1994). Three techniques implemented in ArcGIS 10.0
for direct conversion from a vector polygon coverage to a regular grid were ana-
lyzed, namely Cell Center, Maximum Area and Maximum Combined Area (the
names used in the software) (Fig. 1).

Using the cell center (Cc) algorithm the final categorical value of every cell in
the grid is the attribute value which coincides with the center of the cell. In the case
of the maximum area algorithm (Ma) the final value of the cell is established by
assigning the value of the largest polygon coincident with the cell. The maximum
combined area algorithm (Mca) works in a similar way to the Cc algorithm, except
that the value of the cell is taken from the total area of different polygons with the
same attributes coincident with the cell.
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Vector-to-raster conversions were performed from an original land use vector
dataset to a grid of 25 � 25 m, 50 � 50 m, 100 � 100 m resolution successively.
We considered that at lower resolution the general land use structure is missed
(Fig. 2).

The most detailed resolution (25 � 25 m) was selected following recommen-
dations given by Switzer (1975) in which 50% of the area of the cell should be

Fig. 1 Vector polygon to raster. (1) Mca. Maximum Combined Area; (2) Ma. Maximum Area;
(3) Cc. Cell center. Source Adapted from ESRI (2010)

Fig. 2 Variation on urban land patches after conversion vector information and resample up to a
resolution of 500 � 500 m
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larger than the smallest mapped polygon. In the MLU geodatabase the smallest
mapped polygon is 30.4 m2 and 50% of a 25 � 25 m cell is 312.5 m2, which
complies with the requirements of this rule.

3.1.2 Resampling

In the same way as for the vector-to-raster conversion analysis, for the resampling
of grid maps, two techniques, Nearest Neighborhood Assignment and Majority,
implemented in the software ArcGIS 10.0 were applied consecutively. The former
assigns the categorical value to the new cell according to the value of the cell
closest to the center of the new cell and the latter assigns the most popular values of
the cells in the input map that fall inside the new cell in the output map. A simple
example of both algorithms is shown in Fig. 3.

For the nearest neighborhood assignment method, the maximum spatial error
must be one-half of the cell size, while for the majority method the results of the
resampling tend to create higher compactness (ESRI 2010).

The techniques were applied to the 25 � 25 m raster map obtained from the
vector polygon land use map using the vector to raster method that provided the
best results. Aggregations were carried out into grids with 50 � 50 m and
100 � 100 m cell sizes, each one from the 25 � 25 m raster map.

3.1.3 Assessment Procedure for Vector to Raster Conversion
and Resampling

Comparisons of the maps resulting from application of the various shape-to-raster
and aggregation techniques were carried out at 25 m, 50 m and 100 m resolution.
In order to compare 50 m and 100 m resolution maps, all the resulting maps were
disaggregated to a 25 m resolution.

Fig. 3 Different techniques for resampling. Nearest Neighbour and Majority. Source Adapted
from ESRI (2010)
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The similarity of the land use maps resulting from the different conversion and
resampling methods was analyzed using metrics to assess the similarity in location
and the similarity in the resulting landscape pattern.

3.2 Assessing the Impact of Spatial Resolution
and Neighborhood Extent on the LUCC Model

In order to evaluate the effects of the spatial resolution and the size of the neigh-
borhood, a set of applications was developed, in which the cell size and neigh-
borhood were varied while the extent remained constant. To keep the work
manageable, it was decided to apply the model at three different spatial resolutions.
Resolutions of 25 � 25 m, 50 � 50 m, and 100 � 100 m were selected based on
the urban context and the authors’ interest in investigating whether higher spatial
resolutions, possible due to the availability of detailed land use data sets, would also
result in improved model calibration and validation results.

We began by developing an application at 50 m, with a neighborhood of 8 cells
(400 m). This application was calibrated over a first historic time period and val-
idated over a second. Once this application was considered suitable for reproducing
the (historic) land use dynamics, some of its scale characteristics were modified in
order to evaluate their effects on the model results. To this end, two applications
were developed with a modified resolution of the cells (25 m and 100 m), using the
most appropriate methods found for data preparation, while maintaining the cell
radius for the neighborhood effect at 8 cells. Next, two additional applications at
25 m and 100 m cell-resolution applications were created with respectively larger
(16 cells) and smaller (4 cells) radii, so as to maintain the equivalent cell neigh-
borhood distance as in the original 50 m application. All the applications were run
using the same parameter settings employed in the original 50 m application
(Table 1).

As with the assessment of the different conversion and resampling methods, the
results of the calibration and validation have been analyzed using metrics for
assessing similarity in location and in the resulting landscape pattern.

4 Applications

4.1 Study Area

The area selected for analysis is the Madrid region (Fig. 4), an area of around 6
million inhabitants. This region was chosen because of the large increase in urban
development that it has experienced over recent decades (until the beginning of the
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current economic crisis around 2008) and because a highly detailed land use
database documenting this change has recently become available (Díaz-Pacheco
and García Palomares 2014).

The expansion of urban land use in the Madrid metropolitan area during the
1990s was extraordinary, at least by European standards. According to CORINE
land cover (EEA 2014), artificial land cover increased by more than 30,000 ha, an
annual growth rate of 4.77%, while over the same period, the population of around
6 million grew by only 0.8% a year. Furthermore, over this decade the area under
construction (mines, dumps, and construction sites) grew by 200% (Rocha et al.
2009; Hewitt and Escobar 2011). This growth in urban land, in a situation of
demographic stability, produced a notable increase in the amount of artificial land
per person, which in only 5 years (1996–2001) shot up from 153 to 179 m2 per
inhabitant (de Lucio 2011).

Table 1 Scale changes on neighborhood for each application

Resolution 100 � 100
Doubled
resolution

100 � 100
Doubled
resolution

50 � 50
Original

25 � 25
Halved
resolution

25 � 25
Halved
resolution

Feature of
changes

Doubled
resolution
Equal radius in
cells
Unequal radius
in meters

Doubled
resolution
Unequal radius
in cells
Equal radius in
meters

Halved
resolution
Unequal
radius in cells
Equal radius
in meters

Halved
resolution
Equal radius
in cells
Unequal
radius in
meters

Cell radius 8 4 8 16 8

Meter
radius

800 400 400 400 200

Number
of cells

196 48 196 796 196

Area in m2 1,960,000 480,000 490,000 497,500 122,500
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4.2 Land Use Data Set

Madrid Land Use (MLU) is a cartographic database with land use and land cover
information for the Madrid Region, covering the time periods 2000, 2006 and 2009.
The MLU dataset comprises 22 land use classes of which 7 are urban. Mapping was
undertaken at a highly detailed basic reference scale of 1:10,000. The technical
process did not include automatic or computer-assisted classification tasks, and the
mapping work was undertaken entirely by photo-interpretation of high resolution
(0.5 m) aerial orthophotographs, supported by large scale cartographic and cadas-
tral information (1:5,000 and 1:1,000, respectively). Identical criteria were used for
the digitization and thematic classification for each of the land use dataset periods.
MLU clearly represents an excellent cartographic dataset for assessing urban land
use in Madrid and outperforms CORINE land cover in this area in a number of
respects (see Díaz-Pacheco and Gutiérrez 2013).

4.3 Land Use Model

The LUCC model applications were built using the well-known “Metronamica”
framework, developed by RIKS (e.g. White and Engelen 1993, 2000; Van Delden
and Hurkens 2011) and widely used around the world for simulating urban land
transformation (Barredo et al. 2004; van Delden et al. 2005; Lajoie and
Hagen-Zanker 2007).

Fig. 4 Location of Madrid Region. Source Díaz-Pacheco and Gutiérrez (2013)
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In this model, the distribution of land use in a given area is represented as a raster
map in which each cell has a value that represents a land use. Not all land uses are
modelled in the same way and individual land use classes must be assigned to one
of three land use states. They may be either active (dynamic, changing as a result of
external demands), passive (dynamic, without an external demand), or static (inert
throughout the model runtime).

Metronamica calculates land use changes over time according to a set of tran-
sition rules computed by simple equations in which the geographic effect of a cell
over its neighbors (attraction or repulsion between land use cells, representing
economic and political power to obtain locations of interest, inertia and ease of
conversion) is the main driving force of change in the system. Three additional
factors are included to reflect the heterogeneity of the area: accessibility and suit-
ability drivers are introduced to align the model with the characteristics of the study
region and zoning is included to incorporate the influence of policies or planning.
The model includes a stochastic component to reflect uncertainty in the allocation
process. Cells are allocated at each step of the model on the basis of the transition
potential until cell demand (determined exogenously) is exhausted or all suitable
and available cell space is used up (see the Metronamica documentation (RIKS
2014) for more information).

For the application to Madrid, we combined some of the MLU land use classes
to create a set of 12 land use classes of which 7 are urban and 6 are actively
simulated (Fig. 5). This permits the observation of the effects of the change of scale

Fig. 5 Characteristics of the Madrid Model
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on the model (cell size and neighborhood) for different urban land uses with dis-
similar spatial behavior and dissimilar clustering.

The application for the Madrid region used in this research does not incorporate
zoning so as to give the system much greater freedom. The only suitability factor
included is the slope of the terrain, as this was found to be the only physical factor
affecting urban land change in this region. Infrastructure networks and nodes
(highways, roads, train stations and metro stations) are included and accessibility is
empirically calibrated for each simulated land use through a distance decay func-
tion. The amount of randomness was set by trial-and-error during calibration.

A manual calibration was also performed on the 50 m resolution application
using the common Metronamica calibration procedure (Van Delden et al. 2010,
2012). The transition rules were determined by trial-and-error, informed by pre-
vious analysis of land change processes, and by comparing the resulting simulations
with historical data, until they achieved an acceptable goodness of fit (according to
plausible parameters and map statistics).

The accessibility values were introduced in a similar way for each application,
but in this case the values between the nearest and the furthest distance considered
to the network (roads, rail, highway, metro stations…) were automatically com-
puted by the software through a distance decay function. The only change made in
this case was doubling or halving the distances in order to adapt the function for
each application, e.g. if in the 50 � 50 m application a value for the road influence
at 200 m to the residential land cells was considered, in the 100 � 100 m appli-
cation this value was doubled to 400 m to respect the proportionality demanded by
the size of the cell.

Following common practice, the transition rules thus obtained were tested for
validation purposes by running the model over a different historical period than that
over which the calibration was performed.

4.3.1 Metrics

Calibration and validation results were assessed through visual inspection of result
maps and temporal dynamics, assessment of the plausibility of the parameters
(structural validation) and a number of objective metrics to assess similarity
between result maps and historic data (tf data and tf simulated).

The map comparison methods and techniques used during the calibration and
validation processes are currently implemented in the software Map Comparison
Kit (MCK), initially created by RIKS for the Netherland Environment Assessment
Agency (Visser and De Nijs 2006). Three statistical tests were used to determine
model accuracy, namely Kappa simulation (Ksim), clumpiness, and mass fractal
dimension. The first of these, Ksim, is useful for determining the number of cells
that have been correctly simulated, while the remaining two measures are used for
determining the degree of spatial similarity between elements in the simulated map
and the real map (White 2006). The extent (in cells) occupied by every land use on
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each map is also measured. In addition, a previous qualitative visual assessment
based on the research criteria is generally included in the examination.

The Kappa coefficient of agreement (Cohen 1960) is a widely used index to
calculate the rate of agreement between two images or two maps (categorical
datasets). The Kappa simulation (Ksim) is a modification of the traditional Kappa
coefficient, which is useful for evaluating simulations over short time periods (van
Vliet et al. 2011). Most land use models usually simulate changes over years or
decades during which time many locations do not undergo any land use change.
Unfortunately, under standard Kappa, locations which do not change are also
included in the calculation, which means that very high Kappa scores can be
obtained regardless of the degree of accuracy of the simulation (Pontius and
Millones 2011). Standard Kappa is therefore not a useful measure of the goodness
of fit of simulations produced by land use models. Ksim takes values from −1,
meaning total disagreement, to 1, for total agreement. The value 0 represents a
special situation where the agreement is as good as can be expected by chance
given a random distribution of the given class transitions (see van Vliet et al. 2011).

Clumpiness and mass fractal dimension are often employed in landscape ecol-
ogy to analyze landscape structure. In this research, these metrics allow the pattern
similarity of the simulated map and reference map to be assessed. Clumpiness is a
measure of the degree of dispersion/aggregation of the patches in an image
according to their type (McGarigal 1994). Mass fractal dimension measures the
degree of “linearity” of elements in the map in which plane filling objects like
circles or squares will have a value of 2.0 and a line will have a value of 1.0
(Gardner et al. 1987).

5 Results and Discussions

5.1 Results of Resample/Conversion Comparison

To examine the results (Table 2), five land use classes selected from the land use
map for the year 2000 were analyzed. These classes were chosen in order to provide
the greatest possible diversity of patch size for the experiment. The crops category
has a very large mean patch size (107.70 ha) compared to the facilities category
(3.07 ha). Residential multi-household (10.89 ha), industrial (7.56 ha) and urban
green (5.57 ha) were selected to provide intermediate patch sizes between the two
extremes.

Results of the vector to raster conversion and resampling tests are given in
Table 2. It can be rapidly appreciated that the CELL CENTER METHOD gives the
best results for direct conversion and the NEAREST NEIGHBORHOOD METHOD
gives the best results for resampling. However, for the Crops and Urban Green
category, the MAXIMUM AREA and MAXIMUM COMBINED AREA direct con-
version methods give acceptable results, at least on the basis of the fractal
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dimension index, and the area difference in hectares. This could be related to the
larger clusters found in this category (the mean patch size is 107.7 ha), but this
argument does not apply to Urban Green land. The could be because Madrid
contains unusually large, non-parcelled green areas such as the ‘Casa de Campo’ or
‘Dehesa de la Villa’, whose geometry is more like agricultural or natural areas than
classical urban green land (parks, squares, gardens…).

For the resampling operations, the MAJORITY METHOD produces the lowest
degree of similarity with the original data. As this method is widely used by
researchers, this is a key finding.

For both clumpiness and mass fractal dimension, the calibrated application
achieved similar values to the validated application and both outperformed a ran-
dom land use map used as a benchmark (Table 3).

5.2 Results of Calibration and Validation of the Initial
50 � 50 m Application

Calibration was considered to be complete once values of 0.144 had been obtained
for Ksim. The values considerably outperform a null model. The model was con-
sidered to have been acceptably validated at 0.113 (Table 3). These values are
comparable with published values considered acceptable in other applications of the
model (e.g. Hewitt et al. 2014).

5.3 Results of Testing the Changes on the Scale
of the Applications

The results of the comparison of data for 2006 with simulations for the same year
are shown in Table 4. According to the map comparison indices in use, the sim-
ulation results from all the different applications (apps) for 2006 (2000–2006) could
be considered acceptable. Both the 25 m app with the 8 cell neighborhood radius
and the 100 m app with the 4 cell neighborhood radius actually improve on the
original 50 m, 8 cell neighborhood radius app (Table 4). If we look at the values for
clumpiness, the difference between the clumpiness of the data and the clumpiness of
the simulations is comparable across all the applications, and better than the random
simulation used as a benchmark. The same is true for the fractal dimension index.
In some cases, the scale-modified apps achieve slightly better values than the
initial 50 m app (e.g. AP100-N4 clumpiness for multi-household and facilities
classes). However, better performance of some categories tends to be compensated
by poorer performance of others. Taken overall, the differences between the
scale-modified apps and the original app are not large enough to be able to claim
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that any of the modified applications are significantly worse or better than the
original 50 m app.

If we visually compare the land use data maps for 2006 and the simulations
produced by the different applications, there are obvious differences that can be
quickly detected, even though it is not really possible to specify the precise degree
of similarity between the maps using this method. Figure 6 shows simulated (right)
and real (left) land use for an enlargement of a highly urbanized (mainly residential)
area in 2006. It is clear that the visual appearance of the maps reinforces the results
of the statistical comparisons, i.e., none of the scale-modified apps looks signifi-
cantly better or worse than any other for the land use changes simulated for the year
2006, despite the modifications in the scale. The middle column of Fig. 6 shows the
apps with different resolutions (25, 50 and 100 m) and the same neighborhood
radius in cells (N8). In these cases, despite the difference in resolution, all three
simulations are quite alike, something that can be confirmed by consulting the
results of the statistical indices (Table 4). Some classes, e.g. Residential
Multi-household are not simulated very successfully in any application. This is
probably because all locations in this residential area were equally favorable, being
close to existing urban areas, on suitable land and close to transport networks. In
such cases, identification of the “real” location tends to be difficult and is effectively
made at random. Further discussion of this interesting topic is, however, beyond the
scope of this paper.

The relationship between cell-size and the size of the land parcels is also clearly
shown. Nonetheless, as the statistics do not show remarkable differences between
the results of the apps at different resolution, a visual analysis of the 50 m resolution
simulation seems to provide more realistic-looking results than the 25 m and 100 m
resolution simulations, probably because the cell size is a closer match to the actual
size of the land parcels, although the fact that the original calibration focused on this
resolution could also be a factor. This emphasizes the importance of visual
inspection when choosing the right resolution for a given application. It also sug-
gests that pattern-based map comparison measures like clumpiness and fractal
dimension have their limitations, as do all statistical measures.

This is a rather surprising result. Since the scale modifications were only applied
to the maps themselves, and not to the neighborhood rules, neighborhood influence
is different in all three applications. The maximum cell neighborhood of 8 cells
corresponds to a distance of 400 m (8 � 50) away from the central cell in the
original 50 m app, 200 m away from the central cell in the 25 m app, and 800 m
away from the central cell in the 100 m app. Three possible explanations can be
provided for this; (1) the cell neighborhood is not the key change driver (contrary to
most known studies of urban change); (2) the neighborhood influence declines very
steeply and all important interactions take place at close distances, or (3) the dis-
tance in cells is more important than the actual distance (in meters) in the calcu-
lation of the neighborhood effect. Further experimental work (see, e.g. Hewitt and
Díaz-Pacheco 2017) would be needed to confirm or reject these hypotheses.
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Fig. 6 Comparison of data 2006 and simulations for 2006 from the different apps. Abbreviations:
SIM: simulation; APP25-50-100: application and resolution; N4-8: neighborhood and radius
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6 Conclusions and Outlook

Standard GIS operations like vector-to-raster conversion and raster resampling have
considerable influence on scale in models of land use and land cover change, and the
MAUP (Openshaw 1983) would seem to be relevant. In CA models, which are
highly dependent on the cell neighborhood for simulating land use conversions, both
operations have a significant effect on the initial land use map and hence the cell
neighborhood. The work presented in this paper has examined the influence of these
operations, the first referred to the resolution transformation of the input data and the
second to the land use model’s capacity to simulate land use change for a case study
application based on a large and detailed land use database for Madrid, Spain. Some
important conclusions can be drawn that are likely to be extremely useful for
researchers working with cell-based land use models. It is clear from this work that
the use of one particular data preparation method over another can produce quite
different results, both for vector to raster conversion operations and for raster
resampling from one resolution to another. In the underlying research, for urban
patch types (smaller mean patch sizes), better results (a closer match to the original
land use dataset) are obtained by converting directly from the original vector cov-
erage to a raster with the desired resolution than by converting to a scale equivalent
to the original vector coverage and subsequently resampling up or down to obtain the
desired resolution. Amongst the resampling methods themselves, the nearest
neighbor technique gives improved agreement with regard to the original land use
dataset than most other procedures. Future research could try to discover whether
similar results would be found if the same methods were applied to different datasets.

Regarding the effects of changing the scale of a dynamic CA land use model, as
reflected by the cell resolution and neighborhood radius, no significant variation
was obtained in the accuracy of the final simulations measured by the metrics
applied, at least in the urban context considered and for the range of resolutions
tested (25, 50, and 100 m). A calibrated and validated land use model based on a
50 m resolution raster gave very similar results to applications with identical
transition parameter settings but mapped at higher (25 m) and lower (100 m)
resolutions.

The goodness-of-fit evaluation techniques (cell statistics, pattern comparison,
visual inspection) showed that all of the applications acceptably reproduced the
relevant land use change patterns. Despite this result, the 50 m resolution model
looked more realistic than 25 m or 100 m resolution applications. This is likely to
be because the 50 m cell size is a better fit to the size of the real land parcels,
although the fact that the original calibration focused on this resolution may also be
a factor.

The most surprising discovery is that doubling or halving the neighborhood
distance radius did not produce any significant variation in the model’s performance
over the validation period. This indicates that for the applications we investigated
the transition rules are rather insensitive to neighborhood distance effects. For future
research it would be useful to investigate whether similar results are obtained for
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applications to different regions and datasets and if so, whether the following
possible hypotheses could be confirmed or denied: the cell neighborhood is not the
key driver for change, neighborhood effects all occur at close distances, the distance
in cells is more important than the actual distance (in meters) in the calculation of
the neighborhood effect.
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Chapter 10
The Influence of Scale in LULC Modeling.
A Comparison Between Two
Different LULC Maps (SIOSE
and CORINE)

D. García-Álvarez

Abstract Scale is one of the most interesting issues in land change science.
Although much research has been done on this topic, our understanding of its
effects on data and models is still sketchy. We therefore decided to investigate how
cartographic scale and minimum mapping unit (MMU) influence modeling results,
for which purpose we chose a heterogeneous, dynamic study area in central
Asturias (Spain). As opposed to most of the literature on this subject, which focuses
on the grain component of scale comparing the same map resampled at different
spatial resolutions, we used two different land use and land cover (LULC) maps
(SIOSE and CORINE) at different resolutions (12.5 and 50 m) and with minimum
mapping units of 0.5–2 and 25 ha respectively. We compared the input and sim-
ulated maps using spatial metrics and the matrix proposed by Pontius and Millones
to find out the quantity and allocation disagreement. The results can provide a better
understanding of the implications of the choice of input maps in LULC modeling.

Keywords Scale � LULC modeling � CORINE � SIOSE �Minimum mapping unit

1 Introduction

Scale has been described as a priority topic of research in relation to spatial
information analysis and representation (Turner et al. 1989; Quattrochi and
Goodchild 1997b; Castilla et al. 2009) and in modeling issues (Ménard and
Marceau 2005; Lesschen et al. 2005; Houet et al. 2010; van Delden et al. 2011;
Committee on Needs and Research Requirements for Land Change Modeling et al.
2014). Mike Goodchild (2001) even went so far as to say that “scale is perhaps the
most important topic of geographical information science”, and to view scale as a
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science in itself (Quattrochi and Goodchild 1997a; Wu and Qi 2000; Quattrochi
et al. 2001).

Scale can be understood in a wide variety of ways (Lam and Quattrochi 1992;
Wu 2004; Ménard and Marceau 2005), such as cartographic scale (ratio), obser-
vational or geographical scale (map size or study area size) or operational scale
(scale at which certain processes operate in the environment). When we talk about
scale we may also be referring to the level of detail represented in a map (Agarwal
et al. 2002; Verburg et al. 2004). There is also the relation between scale and
spatial, temporal and thematic resolution. Some researchers refer to this as spatial
scale (spatial resolution) or temporal scale (temporal resolution) (O’Sullivan and
Perry 2013).

When assessing the relation between scale and spatial resolution, a key concept
is the minimum mapping unit (MMU), i.e. the minimum area of the smallest unit in
a map. This will be smaller at fine scales and bigger at coarse scales. Castilla et al.
(2009) considered the MMU to be an important parameter, which should be
included in the concept of scale together with thematic resolution, while Saura
(2002) stressed its importance in the variance of spatial data representation.

The main objective of this chapter is to analyse how the scale of the selected
LULC (Land Use Land Cover) maps can affect modeling. This involves analysing
how scale can cause maps to show different information and studying the ways in
which model behaviour varies depending on the data detail (MMU). In order to
achieve these objectives, we compared two LULC maps (SIOSE and CORINE)
with different cartographic scales (1:25,000 vs. 1.100,000) and different MMU
(0.2–2 ha vs. 25 ha).

The chapter is divided into five main sections. After an initial introduction, the
second section describes the study area and data sets. Section 3 explains how we
adjusted the LULC maps to obtain two comparable sources and then goes on to
describe the model we used and how it was calibrated. It also has a short intro-
duction to the methods we used in the analysis and assessment of data. In section
four we present the results and in section five we discuss the main findings of the
research.

2 Test Area and Data Sets

2.1 Test Area

Our chosen study area was the Asturias Central Area, which as its name suggests, is
in the centre of the Asturias region, in northern Spain (Fig. 1). Although from a
geographical point of view it is not a coherent homogeneous space that is clearly
differentiated from its surroundings, there is a functional link between its different
component parts (Fernández García et al. 2007; Carrero de Roa 2012) and as a
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result it has been declared a special planning area within the Asturias Territorial
Plan (Directrices Regionales de Ordenación del Territorio).

Most of the LULC (Land Use Land Cover) changes taking place in Asturias are
represented in this Central Area. These changes are essentially rural-urban and
rural-industrial, and take place in the main centres of economic activity. Within the
study area there are several sub-areas with a specific economic profile (Rodríguez
Gutiérrez et al. 2009), which are therefore affected by specific LULC dynamics. For
the whole study area, transport infrastructures, and above all roads, are the main
drivers of change.

2.2 Data Sets

We selected CORINE and SIOSE as our two data sets (Fig. 2). CORINE
(Coordination of Information on the Environment) is a well-known LULC resource
that has often been used in modeling studies (Verburg and Overmars 2009;
Camacho Olmedo et al. 2013; Renwick et al. 2013). It is updated every six years
and covers most European Union countries. This standardized approach allows

Fig. 1 Map showing the location of the Asturias Central Area (2015). Source National
Topographic Map 1:200,000, DEM 25 m (National Geographic Institute)

10 The Influence of Scale in LULC Modeling … 189



users to make comparison studies across the EU. Nevertheless, some authors have
noted that each member state has its own CORINE team applying slightly different
criteria, each of which has produced a CORINE map with a different validity rate
(Waser and Schwarz 2006).

The CORINE scale of reference is 1:100,000. It has a minimum mapping unit
(MMU) of 25 ha and a minimum polygon width (MPW) (minimum distance
between two polygon sides) of 100 m. As a general rule, only changes affecting
areas of over 5 ha are drawn. The final product is a map made by photointerpre-
tation in which each polygon is assigned to a single category (classification system)
(Hernández 2016).

CORINE is very useful for studies at regional and national levels. However,
when studying urban land covers with complex patterns and a heterogeneous
nature, this scale may be insufficient (Antrop 2004; Herold et al. 2005). This is also
true for studies which require more detailed analysis (Chas-amil and Touza 2015),
especially those focusing on local or sub-regional areas.

SIOSE (Sistema de Información sobre Ocupación del Suelo de España—
Information System about Land Cover in Spain) is an LULC map made at a scale of

Fig. 2 LULC for an example area (Lugones-Llanera) as represented by SIOSE (left) and
CORINE (right). This area is one of the most dynamic spaces in the study area
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1:25,000. This allows for more detail, with a MMU of between 0.5 and 2 ha
depending on the particular land cover (e.g. 0.5 ha for wetlands, 1 ha for urban
areas and 2 ha for forests). The MPW in SIOSE is 15 m. Nevertheless, in certain
cases SIOSE accepts even lower widths and areas below the specified minimum.
This is very important because it makes a big difference in the spatial representation
of the terrain, allowing infrastructures such as roads to be represented on the
map. These infrastructures create barriers that produce additional divisions of the
covers that cannot be seen on maps at smaller scales. When updating SIOSE maps,
small changes affecting areas of less than 0.4 ha are not included.

The SIOSE data set has two different parts. Firstly, a polygon map which marks
out homogeneous areas with similar characteristics (either single categories or
mosaics of various different categories) and secondly, a database which compiles all
the land cover information for each polygon without scale restrictions, i.e. each
polygon has a log in the database where the different land covers that make up the
polygon and their proportions are registered. This database model is called
Application Schema (ISO 19101) (ISO/IEC 2014) and this way of gathering
information is known as a description system (Hernández 2016).

One of the main advantages of the SIOSE database model is the enormous detail
it provides about the earth’s surface. Nevertheless, this wealth of detailed infor-
mation must be generalized in order to produce a map in which each polygon is
allocated to a single class or category, i.e. to move from a description system to a
classification system. The resulting map will vary according to the thresholds we
use in the generalization process. This introduces uncertainty in the analysis that
must be addressed in further research.

Since 2012 the Spanish CORINE has been obtained from a generalization of
SIOSE. The new CORINE production method has caused important changes in the
CORINE map, which has many striking differences from the previous version
(2006). Every time CORINE is updated, the previous map is reviewed. Hence with
the updating of CORINE in 2012, the National Geographic Institute of Spain
produced a new version of CORINE 2006 that is coherent with CORINE 2012, so
enabling comparisons to be made. However, as SIOSE only started in 2005, this
retroactive adjustment of CORINE cannot be performed for earlier versions,
making it impossible to analyse change over longer periods (from 1990 to 2012).

Both data sets are vector data, which must be rasterized to be used as input in the
chosen model (Dinamica EGO). Vector data allows for more precise feature allo-
cation, but modeling is more difficult in this structure because each spatial entity has
a different shape and form; e.g. computing neighbourhood interactions is much
more complex than with rasters, characterized by a simple, regular shape (Burrough
et al. 2015).

In our case study, we have selected the two dates for which both maps were
available: 2005–2006 and 2011–2012. As CORINE has been generalized from
SIOSE for both these dates, the baseline information is the same for both maps.
This enables us to compare the two maps and analyse the changes in Land Use
Cover over this period.
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Summarizing, the uncertainty arising from the use of diverse data sets is
dependent on the following variables: cartographic scale, minimum mapping unit,
generalization process and dates.

3 Methodology

We began by adjusting the two data sets (SIOSE and CORINE) to produce two
comparable LULC maps with the same legend (see Fig. 3). These maps were then
compared to identify any differences between them. Once we had obtained the
model inputs, one model was calibrated for each input map using criteria based on
expert knowledge. Finally, both models were run to obtain a simulation for the year
2020. Differences between the two simulations were analysed and compared with
real changes over the calibration period (2005–2011).

3.1 Data Set Processing

SIOSE and CORINE were adjusted to make them comparable (same legend). The
legend we chose is a slight modification of the Level 3 CORINE legend, which we
simplified in order to focus on the most important types of cover in the study area.

As SIOSE was designed to serve as a basis for the production of CORINE by
generalization, there are no significant problems in the equivalence between the two
legends; each SIOSE category fits well with the meaning of broader categories in
CORINE. The associations between the categories on the two maps were made in
accordance with similar category meanings. The definitions of the categories were
obtained from the technical guide.

Fig. 3 Flowchart of the methodological procedure we followed to produce two calibrated models,
one for each input map (SIOSE and CORINE)
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The most crucial step in the processing of the data sets was the generation of a
SIOSE map from the numerical information provided in the SIOSE database, that
is, the respective proportions of each of the categories that make up each polygon.
We have established a set of rules which, for each land cover, establish the
thresholds above which a specific proportion of land cover or an association of
several land covers with different proportions can be given an individual label (e.g.
when three quarters of a polygon is occupied by a particular LULC category, the
entire polygon will be allocated to this category).

The final step in the data set treatment was the rasterization of the maps, given
that modeling software requires raster data. We chose the resolution following the
method established by Tomislav Hengl (2006). Bearing in mind the cartographic
scales of the reference maps (1:25,000 and 1:100,000) we opted for a resolution of
12.5 m for SIOSE and 50 m for CORINE.

All this data set processing inevitably introduces uncertainty into the analysis.
Even the choice of legend can affect the results of the model (Dietzel and Clarke
2006; Conway 2009). However, this question would be best addressed in additional
future research. We have tried to maintain the maximum thematic detail by
avoiding introducing external factors (such as thematic resolution) into the analysis.

The vector to raster conversion has also introduced new uncertainty. Comparison
of the final raster maps with the vector data has shown a maximum difference per
category of 7.6 ha for SIOSE and 22 ha for CORINE, with a mean difference of
3.9 and 1.3 ha respectively. This uncertainty is minimal, although some studies
have also noted the important influence of rasterization in the analysed pattern
(Dendoncker et al. 2008). Finally, the way we processed the SIOSE maps (gen-
eralization) also introduced additional uncertainties.

It is therefore necessary to compare the two input maps in order to distinguish
their initial differences from the simulations, differences caused by the fact that the
model behaves differently depending on the specific data set being modelled. This
analysis was carried out for maps for 2011–12 according to methods explained at
the end of this section (Data analysis and assessment).

3.2 Modeling

3.2.1 Modeling Framework

We used the DINAMICA EGO software, which has been widely tried and tested in
recent modeling research (Maeda et al. 2011; Ahmed and Bramley 2015).
Furthermore, several model comparison studies praised DINAMICA’s architecture
and flexibility (Mas et al. 2011; Pérez-Vega et al. 2012; Mas et al. 2014).

It is a stochastic cellular automata model that models transitions through two
different functions: expander and patcher. The expander function models new pixels
as an expansion of previous patches, whereas the patcher function models one or
several new pixels as a new patch for the category. In addition, the model uses the
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weights of evidence method to produce a probability map of occurrence for each
transition. More information about the components of the model and its charac-
teristics can be found in Soares et al. (2002). It is compared with other models in
Follador et al. (2008) and in the technical notes at the end of this book.

3.2.2 Model Calibration and Simulation

We set up two models (Fig. 3), one for each of the LULC maps we compared
(SIOSE and CORINE). These maps were calibrated against real data for the period
2005-06 – 2011-12, the only available dates. The model then ran a simulation up to
the year 2020, which fits well with the short calibration period (six years).

The land covers modelled were the most dynamic artificial (soil-sealing) covers
in the study area. We selected the most significant transitions (i.e. those affecting
the largest areas of land) during the calibration period (2005-06 – 2011-2012).
Usually, a threshold of 10 ha was applied. Different transitions were selected for
each model because of the different input maps (SIOSE and CORINE). These
measure a different amount of change between categories.

Transition rates were computed by Dinamica Ego using a Markov matrix, which
was obtained by comparing LULC maps for the selected dates (2005-06 –

2011-12). Since each pair of LULC maps measure a different amount of change, the
transition rates are also dissimilar.

For each transition, we chose a set of driving forces according to information
collected in interviews with experts in this field together with information provided
by academic studies about the study area (Fernández García et al. 2007; Rodríguez
Gutiérrez et al. 2009; Alonso Ibáñez and Pérez Fernández 2012). The selection of
explanatory variables was based on expert knowledge, methodological orientation
(Pontius Jr. et al. 2008) and the availability of data. Although the drivers were the
same for both models, when the source offered the same data at different scales we
created separate variables according to the input data scale (Table 1). Therefore,
there are slight differences between the two models because of the different scale
used in these separate variables.

The models were calibrated using the Weights of Evidence method according to
the knowledge provided by the experts we interviewed and information from
previous research. When strange or incorrect behaviour was detected, we corrected
it manually. Variables with a correlation (Cramer’s Coefficient) greater than 0.5
were discarded according to thresholds established by similar studies (Quiroz
Ortuño 2009; Maeda et al. 2011).

The flexibility of the Dinamica modeling framework, which allows the user to
manually modify the calculated weights of evidence, enabled us to adjust the model
parameters in order to obtain the maximum similarity between the two simulations.
Thus, both models were run with the same weights of evidence, according to the
expert criteria.
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The patcher and expander function parameters (proportion of changes simulated
as expansion, patch isometry and patch mean and variance) were established
according to the pattern of real changes in the calibration period.

Transition rates for the simulation year (2020) were modified (Table 2) in
accordance with the different trends of change forecast for the coming years
(economic crisis) in the study area by the experts we interviewed.

Summing up, the two models differ because of the transitions selected, the
transition rates (quantity of change), the input data (SIOSE and CORINE maps and
driving forces maps) and the expander and patcher parametrization (proportion of
changes simulated as expansion, patch isometry and patch mean and variance).
However, the land use change logic is the same for both models in that they follow
the same methodological procedure with the same drivers of change.

3.3 Data Analysis and Assessment

There is a great deal of academic research about scale and its influence on data. The
most frequently used methods include fractal analysis, local variance method,
variograms, wavelets or texture analysis methods (Cao and Siu-Ngan Lam 1997;

Table 1 List of drivers used in the two models

Source

Drivers SIOSE CORINE Year

Euclidean distance to regional roads NTN 1:25,000 NTM 1:100,000 2011

Euclidean distance to highways NTM 1:25,000 NTM 1:100,000 2011

Euclidean distance to train stations NTM 1:25,000 NTM 1:100,000 2011

Euclidean distance to residential buildings NTM 1:25,000 NTM 1:100,000 2011

Euclidean distance to industrial buildings NTM 1:25,000 NTM 1:100,000 2011

Euclidean distance to coastline NTM 1:25,000 NTM 1:25,000 2015

Euclidean distance to leisure facilities SIOSE CORINE 2011

Population density Basic geographical name index of
Spain

2011

Slopes DEM 5 m DEM 25 m 2015

Future road development NTM 1:100,000 NTM 1:100,000 2015

Rural settlements limits Asturias planning maps 2015

Urban settlements limits Asturias planning maps 2015

Building land Asturias planning maps 2015

Protected areas Asturias planning maps 2015

Mining area restructuring plans Asturias planning maps 2015

Substratum Geology Map 1:50,000 2015

Industrial ports NTM 1:100,000 2011

*NTM: National Topographic Map; DEM: Digital Elevation Model
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Zong-Guo and Clarke 1997; Oliver 2001). Several studies have also used spatial
metrics (Saura 2002; Wu 2004; Uuemaa et al. 2005), which allow us to analyse the
effects of the scale of the input maps on the patterns being modelled. Numerous
validation techniques have also been created in modeling research (Paegelow et al.
2014). They usually compare simulated maps with real maps in order to assess the
fitness of the model. However, they can also be used to compare two maps and
highlight their differences. The method proposed by Pontius and Millones (2011) to
evaluate quantity and allocation disagreement is a good validation tool to analyse
the differences between two maps. It shows two types of error: quantity and allo-
cation (omission and commission) errors.

We compared the input maps (SIOSE and CORINE) and real (2005-6 – 2011-12
cross tabulation) and simulated changes (2011-12 – 2020-21 cross tabulation).
When comparing the input maps, we only analysed the land covers that took part in
the modelled transitions. When comparing the changes, we only analysed the land
covers that are actively modelled (i.e. the categories allocated by the model).

Spatial metrics were calculated using FRAGSTATS 4.2 for the evaluation of the
pattern difference between input maps (SIOSE and CORINE maps) as well as for
the analysis of the pattern difference between real (2005-6 – 2011-12) and simu-
lated changes (2011-12 – 2020-21). The metrics were selected according to the
information that they provided, that is, according to the variability of their results.
These metrics are: Total Area, Number of Patches, Largest Patch Index, Weighted
Mean Patch Area, Area Coefficient of Variation, Mean Fractal Dimension,
Proportion of Like Adjacencies and Patch Cohesion Index. A detailed description
of each metric can be found in the FRAGSTATS help guide (McGarigal et al. 2015)
and in Leitão et al. (2012).

The matrix proposed by Pontius and Millones was applied for the comparison of
input maps and simulated changes. The results highlight the differences between
simulations in terms of quantity and allocation disagreement compared with the
same disagreements between the SIOSE and CORINE maps.

4 Results

4.1 Quantity Disagreement

4.1.1 Input Maps

There is an important quantity disagreement between the input maps. This dis-
agreement varies from one category to the next, as shown in Fig. 4, where confusion
bars represent the confusion of one input map with regard to the other for each
category. Each confusion bar is divided into various sections, one for each category on
the map. Each section of the bar represents the proportion of pixels that are allocated
to a different category on the other map. When the section for any particular category
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(e.g. arable land) is larger on one confusion bar than on the other, this means that there
is a quantity disagreement, which is equal to the difference between the two sections
for that category. The rest of the disagreement is allocation disagreement.

These differences in quantities result from the fact that different minimum
mapping units (MMU) were used in the two input maps. When cartographic scale is
reduced and the MMU is bigger, the polygons that do not meet the mapping criteria
(MMU) must be absorbed by others with similar definitions (generalization process).

Categories with flexible definitions incorporate polygons from other categories
and increase their area (e.g. discontinuous urban fabric, forests) whereas categories
with rigid definitions lose polygons and their total area diminishes (e.g. areas with
sparse vegetation, dump sites). João (2001) called this process “competition for
map space”. It results in a disproportionately high representation of categories with
flexible definitions and a low representation of categories with rigid definitions in
maps at smaller scales with bigger MMU.

The categories that absorb other categories during the generalization process are
different for the two input maps (e.g. arable land for CORINE and pastures for
SIOSE). This results in large quantity disagreements and allocation disagreements
between the maps. This disagreement can be attributed to the use of different criteria
in the generalization process for SIOSE (conducted by the author, as explained in
Sect. 3.1) and for CORINE (conducted by the National Geographic Institute of
Spain, as explained in Sect. 2.2).

Fig. 4 Agreement bars for input maps. The first bar depicts the overall components of agreement
between the two maps. The second bar depicts the SIOSE disagreements with regard to CORINE,
and the third bar depicts the CORINE disagreements with regard to SIOSE
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4.1.2 Simulated Changes

The simulated changes for the period 2011-12 – 2020-21 show a high degree of
quantity confusion as illustrated in the bar chart below (Fig. 5). The simulated
changes are greater in SIOSE than in CORINE because when the two calibration
maps (2005–2006 and 2011–2012) were compared, there was a larger amount of
change in SIOSE than in CORINE. The MMU for SIOSE allows us to detect small
changes, in addition to the changes it also detects for CORINE. In consequence, the
transition rates (Markov matrix obtained through comparison of the input maps) are
greater for SIOSE than for CORINE.

Fig. 5 Agreement bars for simulated changes. The first bar depicts the overall components of
agreement between the two maps. The second bar depicts the CORINE simulation disagreements
with regard to the SIOSE simulation, and the third bar depicts the SIOSE simulation
disagreements with regard to the CORINE simulation
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4.2 Allocation Disagreement

4.2.1 Input Maps

There is also a significant level of allocation disagreement between the input maps
that varies from one category to the next. Mixed categories (complex cultivation
patterns and land principally occupied by agriculture) show a high degree of error
(Fig. 6). Because of the vague definition of these categories, real covers labelled as
such are very different in the two input maps.

Allocation disagreement analysis also provides information about which cate-
gories are confused with the quantity disagreement of other categories. We
observed for example a relation in the error between pastures and arable lands and
between continuous and discontinuous urban fabric. Visual comparison of the two
LULC maps have proved this relation: some locations labelled as pastures in one
map are classified as arable lands in the other. The same relation can be observed
for continuous and discontinuous urban fabric. Therefore, the same covers are
assigned to different categories on each map.

The model was set up on the basis of the definitions of the categories and expert
knowledge. Same category definitions were considered independent of the model and
the same criteria were applied to them. Since the same categories do not represent the
same covers in both models, different results were expected in the simulations. e.g. we
used the same drivers for the transition from pastures to continuous urban fabric.
However, the land allocated to these two categories is different in the two input maps
(allocation disagreement in Fig. 6).

Fig. 6 Agreement, quantity and allocation disagreement for categories in input maps (SIOSE and
CORINE)
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4.2.2 Simulated Changes

The agreement between changes in the two simulations is minimum (Fig. 7) and
can be attributed purely to chance (Fig. 5). Most of the pixels allocated by the two
calibrated models are in different positions.

The disagreement is mostly (94% of total disagreement) related to persistence
(i.e. areas with no change) on the other map: 62% of the confusion in the SIOSE
simulation is with areas that do not change in the CORINE simulation, whereas
32% of the confusion in the CORINE simulation is with areas that do not change in
the SIOSE simulation (Fig. 5). This is because of the allocation disagreement
between input maps due to different category definitions, as pointed out in the
previous section. The candidate areas (i.e. those in which transition is possible) are
different in both models, whereas the drivers of change and therefore the candidate
areas in which change is most likely, are very similar.

4.3 Pattern Disagreement

4.3.1 Input Maps

As expected, fragmentation (the number of patches or polygons) is greater in
SIOSE than in CORINE (Table 3). The smaller the MMU, the higher the number of

Fig. 7 Agreement bars per category for changes in SIOSE and CORINE simulations. SIOSE and
CORINE disagreements refer to changes simulated by each model that do not correspond to the
same change in the other model
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patches. And the higher the number of patches, the smaller the weighted mean area
(mean area corrected according to polygon size).

Therefore, SIOSE maps have more polygons and smaller polygons than
CORINE maps. In consequence, SIOSE has more potential pixels to be modelled as
an expansion of previous patches, whereas CORINE is more sensitive to the patcher
function. Any new patch modelled in CORINE should meet the MMU criteria. If
not, the simulation would result in a more fragmented landscape.

In short, in the case of input maps, more fragmented and complex patterns are
expected at larger scales. At these scales the land cover information resembles the
real situation more closely. This means that the SIOSE maps are more realistic, but
also more complex and there is no relation between complexity and the
good performance of the model (Clarke 2004; Wainwright and Mulligan 2013).

4.3.2 Simulated and Real Changes

Real changes (2005–6—2011–12) and simulated changes (2011–12—2020–21)
show a different pattern. While the effect of MMU is evident in real changes (fewer
and larger changing patches for CORINE), it is practically non-existent in the
simulations. The number of CORINE patches increases with the simulation whereas
the number of SIOSE patches falls (Table 4).

The proportion of like adjacencies and patch cohesion index, which measure the
grouping of patches that belong to the same class (McGarigal et al. 2015), also
show different results. Simulated changes are more disaggregated than real changes,
especially in the CORINE simulation.

These different patterns between simulated and real changes are a consequence of
the logic of the model. The pixel is the essential unit of work of any raster LULC
model, such that the location of the first change simulated will be the most suitable
pixel for each specific transition. The pixel area is much smaller than the MMU
(156 m2 vs. 0.2–0.5 ha in SIOSE and 0.25 ha vs. 25 ha in CORINE). The simulated
changes will therefore be characterized by smaller (area-weighted mean patch area),
more poorly connected patches (proportion of like adjacencies and patch cohesion
index), when compared with the real changes, which are affected by the MMU rules.

The bigger the contrast between the MMU and the spatial resolution (pixel size),
the more evident the fragmentation in the simulation. This means that compact
input maps are more sensitive to model allocation change than fragmented input
maps.

As regards the total area, in both cases, the proportion of modelled changes
compared to real changes (Table 4) is higher than the proportion of selected tran-
sition rates with regard to original rates (Table 2). This is due to the transition rates
function, which estimates the real changes through a Markov Matrix. This intro-
duces a new source of uncertainty into the model. The estimated changes are
different depending on the model and method used (Mas et al. 2011).
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5 Discussion

5.1 Data Sets Uncertainty

The study area can be displayed in very different ways depending on the carto-
graphic source used, even though they are apparently similar. Previous studies have
proved this by analysing several data sets for the same area (Waser and Schwarz
2006; Schmit et al. 2006; Chasamil and Touza 2015).

In our study case, SIOSE and CORINE showed big dissimilarities despite the
fact that one map was obtained from the other by generalization. The only differ-
ences between the input maps are the cartographic scale, minimum mapping unit
(MMU), minimum polygon width (MPW) and generalization criteria. It is these
factors therefore that cause the maps to provide dissimilar information.

More transparency is required with regard to the generalization process used in
CORINE. Although we have based our SIOSE generalization on CORINE class
definitions, as described in its technical specifications, important disagreements
appear due to the different generalization criteria. More information about how
CORINE was obtained from SIOSE would result in more correspondence between
the two maps.

Uncertainty analysis of the input data should be a critical step in modeling
research, as shown by Verburg et al. (2011) and Pai and Saraswat (2013).
Nevertheless, when addressing this problem of uncertainty, researchers usually
present accuracy rates obtained by error analysis based on data gathered in the field.
These general rates can vary widely across local areas and categories. This means
that the extent and the thematic resolution of the analysis must be chosen carefully.

In our study case, most of the errors come from confusion between the following
classes: scrub and grasslands; pastures and agricultural areas; and continuous and
discontinuous urban fabric. A simplified legend which grouped these categories
together into larger, more broadly-defined classes would remove these errors. This
confirms the ideas of Verstegen et al. (2012), who pointed out that uncertainty is
usually lower at coarser scales since local changes are omitted. Given that some
level of generalization is always needed because of the impossibility of representing
the real situation exactly on a scale map, it is sometimes better for input maps to
ensure greater accuracy even if this means less detail. Hence, smaller scales and
bigger MMU are sometimes preferable.

5.2 Model Parameters

Maps at finer scales (smaller MMU) provide more detailed information and, ergo,
show more changes. Consequently, different rates of change and potential transi-
tions are obtained. Similar results have been noted for the analysis of other
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components of scale such as extent (Bhatti et al. 2015) or thematic resolution
(Pontius Jr and Malizia 2004; Conway 2009).

Fine scale maps can be useful for local studies, because they provide essential
detailed information about local dynamics (Wang and Marceau 2013; Zhao 2013).
However, the probability of error as noise in maps at finer scales is higher. The
probability of introducing this noise into the model is also greater (Blanchard et al.
2015).

At finer scales, transitions rarely occur alone and different processes or transi-
tions happen simultaneously (Wang and Marceau 2013). The patterns of change are
also more complex. This makes calibration of the model more challenging and
errors more likely. Sometimes simpler models work better (Clarke 2004;
Wainwright and Mulligan 2015). In fact, if the drivers of change are simple and we
cannot explain the local changes, as in SIOSE, input maps at coarser scales and
with bigger MMU are advisable.

Applying the same criteria to the two calibrated models results in different
simulated changes because the models do not show the same dynamics. More
detailed knowledge is required to enable the model to be properly calibrated with
SIOSE data since the experts only considered the main dynamics in the study area
and, therefore, ignored most of the small changes. However, CORINE mapping
rules do not fit well with the size of most of the changes in the area. Neither system
offers a perfect data set and consequently the modeller must try to strike a balance
between generality, precision and realism (O’Sullivan and Perry 2013).

Explanatory drivers of change vary with the scale (Verburg et al. 2003; Moreira
et al. 2009; Bhatti et al. 2015). However, in this case the two scales of analysis
(both local-regional) are too similar to be affected by contrasting driving forces.
Nonetheless, additional driving forces could be included in the model with SIOSE
as input maps because of the additional local processes involved in this model.

Explanatory factors were the same for both models and the maps were very
similar: same source but different scale. The variations resulting from these different
scales are essentially a question of the degree of precision in the location of attri-
butes. Consequently, the areas with the greatest transition potential for each land
cover are similar in both models despite the substantial differences in land cover
information. As a result, an area with high transition potential could be located
under a particular land cover in one model and under a different one in the other.
This results in significant incoherence between LULC maps and driving forces.
Making driver maps from LULC maps is an alternative way to achieve coherence in
the datasets that define the model. However, this would limit the variety of drivers.

5.3 Modelled Pattern

The changes in the LULC pattern are similar in both models, regardless of the
MMU. The simulated pattern is always more fragmented than the initial pattern and
this is more obvious when the pattern of the initial map is more compact.
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As explained in Sect. 4.3.2, model allocation function allocates changes as
pixels whereas input maps only measure changing polygons that meet the MMU
criteria. Input map resolutions do not fit the MMU rules. Consequently, the sim-
ulated landscape is more fragmented than the real one and this is clearer for the
CORINE simulation because of its larger MMU.

The patcher and expander functions of DINAMICA can be parametrized (mean
area and variance of simulated polygons) to achieve the simulation pattern we want.
Although some studies have proved effective (Soares-Filho et al. 2003), this did not
work in our study area. The transitions modelled are only possible when there is a
suitable area (obtained from the drivers) inside the polygons of the destination
category for the transition. If this happens, the model then considers the user’s
parameters. Suitable areas for specific transitions are going to be smaller in models
at large scales (smaller MMU) than in models at coarse scales (bigger MMU)
because of the respective size of the polygons in each model. It is therefore more
difficult to vary the modelled patterns in models with fine scales.

Finer resolution models show problems in the allocation process because real
changes tend to take place in a group of pixels. Models at coarser resolutions are
more suited to deal with these problems (Kocabas and Dragicevic 2006; Blanchard
et al. 2015). Thus, there is a relation between the behaviour we observed in our
models and their spatial resolution, which is related to the cartographic scale and
MMU of the input data. Although the rasterization method we followed (Hengl
2006) links the chosen spatial resolution with the cartographic scale and the MMU,
there is still an inconsistency between the two in the model. Some authors have
proposed patch-based models to solve this problem (Wang and Marceau 2013).
There is also a wide body of literature about spatial resolution influence in LULC
modeling (mainly CA-based models), which reaches similar conclusions (Marceau
et al. 2005; Pan et al. 2010; Blanchard et al. 2015).

5.4 Allocation Differences

Although one might imagine that the higher quantity of change detected by input
maps would result in a simulation that was closer to the true situation, this is not
always the case. The transition rates could result from changes caused by different
processes. However, the driving forces defining the most likely transition areas were
the same for both models. As a result, the model at finer scale (SIOSE) could
extrapolate changes from one process to changes from other processes, e.g. both
simulations allocated changes in ‘Dump sites’ in the area around the central dump in
Asturias, forecasting expansion of this dump. Over the calibration period CORINE
only detected changes in this area, while SIOSE also detected changes in other parts
of the study area, resulting from other processes such as road building works.

Regarding the spatial resolution, models at finer spatial resolutions simulate
more pixels than models at coarser spatial resolutions. This means that the possi-
bility of error in the two models is different. The larger the quantity of pixels to
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allocate, the more likely the model is to make a mistake. Validation is therefore
dependent on the spatial resolution of the model. We must not compare errors in
models with different spatial resolutions.

Finally, the difference between pixel-based modeling and MMU rules must also
be borne in mind in the validation step. Many models are validated by LULC maps
that follow MMU rules (Paegelow and Olmedo 2005; Pontius Jr. and Malanson
2005; Pérez-Vega et al. 2012). Changes that do not obey these rules do not appear
on the map. However, changes simulated by the model will be located in the most
suitable area, regardless of the minimum area of these changes. This means that real
changes could be considered as errors in validation analysis.

6 Conclusion and Outlook

Model results can vary greatly depending on the cartographic scale and minimum
mapping unit of the input data.

Most of the uncertainty comes from the differences between the input maps. The
choice of a suitable cartographic source is therefore crucial. In-depth research must
be done on this issue, comparing different cartographic sources and their influence
on land cover representation. Great care must also be taken with the generalization
of LULC maps, since most of their dissimilarities result from different general-
ization criteria.

Minimum mapping unit affects the quantities of change obtained and selected
transitions since maps with smaller MMU measure more changes and more varied
ones. This makes the resulting model more complex. If the user cannot manage this
complexity properly, it will produce more uncertainty, because most of the analysed
change is not interpreted in the model. Thus, the modeller must strike a balance
between model complexity and its explanatory power.

Modelled patterns are also dependent on spatial resolution. This is linked with
the minimum mapping unit: small MMU imply finer spatial resolution than larger
units. Big differences between pixel size and MMU result in more fragmented
scenarios. Patch-based models can be a solution to this problem.

Other components of scale, such as extent or thematic resolution, also influence
modeling results and changes in these components could help resolve some of the
problems we encountered, such as LULC input map disagreement. Therefore,
in-depth research must focus on the influence of scale in modeling and, especially,
on the relation between the different meanings of scale and their general influence
on modeling.
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Chapter 11
Who Knows Best? The Role
of Stakeholder Knowledge in Land Use
Models—An Example from Doñana,
SW Spain

R.J. Hewitt, V. Hernández Jiménez, L. Román Bermejo
and F. Escobar

Abstract Participatory processes are increasingly used for understanding
human-environment interaction problems and for developing common strategies for
land resource management. These approaches are particularly important in areas
where resources are shared by many stakeholders and yet there is no general
agreement about how these resources should be managed. In many of these cases,
detailed quantitative information about human-environment interaction problems
(e.g. land degradation, erosion, water contamination etc.) is available to scientific
institutions and land managers, but not easily accessible to other stakeholders.
Conversely, key information, such as historical evolution of the landscape in the
locality or the probable drivers of historic land change is often embedded infor-
mally in stakeholder communities but may not be accessible via conventional
knowledge sharing pathways (scientific literature, reports, directives, policy briefs
etc.). Land use models, in which qualitative and quantitative data can be combined
at multiple levels and scales, provide an ideal bridge between highly detailed
quantitative knowledge available from scientific stakeholders, and informal or
unstructured knowledge about dynamics, evolution and change held by other parts
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of the stakeholder community. Many essential land use modeling activities, tradi-
tionally carried out by a single scientist in front of a computer, such as map
comparison and subdivision or aggregation of land use categories, may in fact be
better accomplished by working in groups with key stakeholders. Involvement of
stakeholders in basic model decisions not only makes for a better model, it may also
increase stakeholder confidence in the model and makes it more likely that the
results of the model will be applied. We argue, with reference to the recent par-
ticipatory modeling work undertaken in Doñana, south-west Spain, that stakeholder
information can be incorporated into land use models by engaging stakeholders as
model co-developers, and structuring activities, where possible, so as to include
their knowledge directly as parameters and variables. A participatory land use
model is thus conceived as a cycle of alternating analytical and discursive activities
from which useful results may be obtained, but which does not presuppose an
optimum or “right answer”, or prioritize scientists’ knowledge above other kinds of
knowledge available to the community.

Keywords Participatory modeling � Land use change � Stakeholder � Knowledge
co-generation � Doñana

1 Introduction

The Doñana natural area is an internationally renowned coastal dune and marshland
ecosystem of outstanding importance for biodiversity at the mouth of the
Guadalquivir River in South West Spain (Fig. 1). Intensive agriculture and tourism
have transformed the economy of the area over the last 60 years but have led to
severe degradation of ecosystems and habitats, including the loss of large areas of
wetland. In response to these serious threats, Doñana has been the subject of major
conservation efforts since the 1960s, and today enjoys diverse statutes of protection
(National Park, Natural Park, UNESCO world natural heritage site, amongst oth-
ers). These conservation efforts have undoubtedly been highly successful in pre-
venting, for example, further wetland habitat loss, expansion of invasive species
such as eucalyptus and urban development along the coast. The natural area
remains, nonetheless, highly threatened, and continues to decay. This is principally
because the highly intensive land uses in the watershed of the Guadiamar River,
which supplies the Doñana marshes, are incompatible with the maintenance of
pristine natural habitat downstream. However, since the wider watershed is not
included in the protected area, land use is not subject to strict controls. Yet while
many stakeholders might be unwilling to suspend business-as-usual in the water-
shed, few would regard the loss of Doñana as an acceptable price to pay. For this
reason, there is a strong case for dialogue about land use in the watershed involving
all the relevant actors (policy makers, farmers, conservationists, tourism represen-
tatives etc.), with a view to securing a more sustainable future.
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Fig. 1 Location of study area
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This chapter presents the results of a participatory scenario modeling cycle in
which a range of land use futures were explored for Doñana for the year 2035. The
aim of the modeling process was threefold:

(1) To bring together key stakeholders from different sectors with different and
(sometimes opposing) perspectives and engage them in a shared discussion
about Doñana’s future.

(2) To enable knowledge co-generation and social learning between stakeholders
about land use changes to facilitate transition to a more sustainable model of
development for the area.

(3) To push the boundaries of participatory modeling by increasing model trans-
parency and inclusiveness and reducing the model’s dependence on research-
ers’ decisions.

To achieve these aims, detailed input from key stakeholders obtained through a
series of workshops was used to parameterize, calibrate and critically evaluate a
Cellular Automata (CA) model of land use change in the Guadiamar river water-
shed. Despite the strong emphasis on social learning and knowledge co-generation,
as opposed to enhancing the accuracy of model simulations, the model meets all
commonly accepted metrics for assessment of goodness-of-fit. Nonetheless, we
argue that integration of qualitative and quantitative data through a participatory
process leads to a better model, and that acceptance by stakeholders should be
considered a valid criterion for determining a “successful model”.

2 Test Areas and Data Sets

The study area corresponds approximately to the watershed of the Guadiamar River
(Fig. 1). The principal data sets used in the work were the 1:25,000 scale vegetation
cover and land use map series developed by the Government of Andalusia and
freely available for download from the website of the regional government envi-
ronmental information service, REDIAM. Other information necessary for model
calibration included topographic relief, municipal boundaries, rivers and water-
courses, and natural protected areas, all downloaded from the REDIAM website.
For detailed information regarding these datasets, see:

http://www.juntadeandalucia.es/medioambiente/site/rediam/.

3 Methodology and Practical Application to the Data Sets

3.1 Cellular Automata Models of Land Use Change

The model employed in this research is a Cellular Automata (CA) based land use
model. CA models integrate mathematical theories of self-reproduction in automata
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(Von Neumann and Birks 1966) and stochasticity (Ulam 1952) with the 2
dimensional cellular-grid or raster cartographic space familiar to present-day users
of Geographical Information Systems (GIS). The concept of a dynamic geo-
graphical cellular automata was proposed by Tobler (1979) and developed during
the 1990s by researchers interested in modeling urban growth and change (e.g.
White and Engelen 1993; Batty and Xie 1994; Clarke et al. 1997; Phipps and
Langlois 1997). Well-known examples of CA modeling frameworks include
SLEUTH (Clarke et al. 1997) and members of the Metronamica family such as
SimLucia (White et al. 2000) and Xplorah (Van Delden et al. 2008). CA modeling
systems aim to simulate the aggregate behaviour of multiple change agents by
developing land use transition rules and testing these rules against data. For this
application, we used the well-known modeling software Metronamica, developed
by White and collaborators (e.g. White and Engelen 1993; White et al. 2000).
Detailed methodological description of the functioning of the model is published in
the user guide (RIKS 2012) and will not be repeated here.

When using the model, the first step is to introduce a GIS raster map representing
land use at a given moment in time (tn). Cells can change from one land use to
another over the course of a time sequence (t1, t2, t3… tn) on the basis of the
relationship between their own land use and the land use of the cells that are
immediately adjacent or in proximity, known as the cell neighbourhood (N).
However, the potential of each cell to transition is not determined exclusively by its
neighbourhood, and Accessibility (A) (i.e. the influence of lines of communication
such as transport, irrigation, and electricity network) must also be taken into account.
A cell’s transition potential also takes into account Suitability (S) or the biophysical
eligibility (e.g. rainfall, slope) of each land area for a particular use, and Zoning (Z),
the current legislative and planning restrictions (for example, protected areas, urban
spatial plans). Finally, since human activity in the landscape is not purely deter-
ministic, a stochastic parameter is added (v). This type of model is referred to as an
N,A,S,Z Cellular Automata model or NASZCA (Hewitt et al. 2014).

To calibrate the model, parameter values for the N, A, S, and Z blocks are set
and the model is run from an initial map t1 (1956 in this case) to a second date
n time steps (i.e. years) forward for which a map is available for comparison (1999
in this case).This second map is referred to as t2. The number of cells which are to
be allocated for each land use at each time step tn is known as the demand. Once the
total number of cells corresponding to land use demand has been allocated to all
suitable locations at model time step tn, the next step (tn + 1) is computed from tn
and so on until time t2 is reached. The time period between t1 and t2 is known as the
calibration period. If data are available, the use of a third period t3 known as the
validation period, subsequent to t2, is recommended. In this case, the most recent
available land use map, the map for 2007, was used for validation.

To validate the land use model, the rules developed to simulate land change
evolution between t1 and t2 (the calibration period) were applied to t3. Successful
replication of land-change tendencies at both t2 and t3 against accepted benchmarks
reinforces the main assumption of the model, i.e. that the past change processes
being modelled will hold true in the future. Once calibration and validation have
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been carried out successfully, the model is considered to be ready to generate
simulation for future dates. Calibration and assessment of the quality of the cali-
bration was a continuous and iterative process managed around a series of mile-
stones relating to the determination of parameters for the key model drivers, N,A,S,
Z. Attaining a calibration milestone required experimentation with different
parameter settings, major adjustments were recorded with a unique simulation
number (Table 1).

Assessment of the model’s goodness-of-fit was undertaken using three types of
assessment: (1) visual inspection, in which stakeholders played a key part (see
results of Workshop 2); (2) cell-by-cell comparison measures using the kappa
simulation statistic Ksim (van Vliet et al. 2011); and (3) map pattern and structure
evaluation through the clumpiness statistic, derived from the Fragstats package
(McGarigal et al. 2002) and implemented in the Map Comparison Kit
(MCK) software, developed by Alex Hagen-Zanker for the Netherlands
Environment Assessment Agency (Visser and De Nijs 2006).

3.2 The Participatory Modeling Process

A geographical land use model is a useful tool for integrating qualitative and
quantitative data (Fig. 2).

Land use models are sometimes thought of as purely quantitative tools, in that
they are based on numerical inputs and outputs. However, they also contain
abundant qualitative information (e.g. land use category decisions, study area
decisions, transition rules etc.) that is essential to their successful operation. Often
these qualitative inputs are decided in a subjective or arbitrary way by the
researcher, who may not always have detailed knowledge of the study area at hand,
and, in many cases, it may be more appropriate to consult with, and directly elicit
information from, the appropriate stakeholder, especially if the model is intended
for use outside the scientific community. However stakeholder contributions to

Table 1 Calibration milestones and their relationship to individual simulations evaluated by
stakeholders (Workshop 2, Activity 1) in bold

Milestone number: Simulation run: Calibrationsub-step

1 1 Simple neighbourhood rules only (benchmark model)

2 5 Calibrate neighbourhood rules

3 11 Add Accessibility
4 15 Adjust Accessibility Parameters
5 21 Add Suitability

6 23 Add Zoning
7 34 Adjust Suitability Parameters
8 35 Adjust Neighbourhood parameters
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models need not be limited to qualitative data, but can also include approximate or
estimated quantitative data. For example, in the modeling case study presented
here, stakeholders estimated suitability of terrain for each land use through a
scoring procedure linked to a numerical value. While such approaches are clearly
subjective, they can be surprisingly accurate, especially if the task is carefully
matched to areas of stakeholder knowledge. Farmers, for example, are likely to be
adept at accurately valuing terrain suitability or estimating areal quantities for crop
types.

On the one hand it is likely that the successful incorporation of local stake-
holders’ knowledge will improve the model. For example, in this case, analysis of
land use dynamics by stakeholders allowed researchers to differentiate between land
use change due to the degradation of natural areas and land use change as a result of
deliberate policy. One example was the elimination of eucalyptus plantations, the
cause of which was not evident prior to the participatory process (Hewitt et al.
2014). By including stakeholders in the modeling procedure as co-developers, the
applicability, utility and validity of the model is likely to be enhanced by promoting
a sense of ownership and developing trust in the modeling procedure and model
outputs among the stakeholder community as a whole (Voinov et al. 2016). In the
model presented here, stakeholders were involved in model development from the
very beginning of the process through three one-day workshops held in the study
area between February 2012 and September 2013, during the key phases of model
development; workshop 1; parameterisation, workshop 2: calibration; workshop 3;
evaluation. The stakeholders who participated in the workshops are listed in
Table 2. With respect to the process of stakeholder identification, we were very
fortunate in that a team of researchers from the socio-ecosystems laboratory of the
Madrid Autonomous University were already active in the area, and kindly shared
their extensive list of contacts with us.

Fig. 2 A land use model as the intersection of quantitative and qualitative knowledge domains
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Through these three workshops, the stakeholder community undertook a wide
range of model co-development tasks at each major stage of the modeling process
(Table 3). They helped to define the study area, the database and land use categories
to use in the model, and they reclassified the land use data set to determine the most
important land use dynamics for modeling their region. They provided information
about the effect of the different biophysical factors on each land use category,
evaluated the goodness-of-fit of simulations during the model calibration phase and
estimated land use demand for the model scenarios. Finally, they explored the
model results, developed a prioritized list of indicators for environmental moni-
toring on the basis of the model outputs and evaluated the applicability and utility

Table 2 Workshop participants by sector. In addition 3–4 researchers attended each workshop in
the capacity of workshop coordinators

Stakeholder, by sector WS1 WS2 WS3

Science

Researcher, Autonomous University of Madrid Yes Yes Yes

Researcher and University Lecturer, University of Seville Yes Yes Yes

Researcher, Doñana Biological Station (National Scientific Institute) Yes Yes Yes

Agriculture

Director, federation of rice farmers, Seville Yes Yes Yes

Representative, young farmers agricultural association (ASAJA) Yes Yes Yes

Representative, Andalusian Farmers and Livestock keepers union,
Huelva division

No Yes Yes

Tourism

Tourism representative, Doñana natural area No Yes Yes

Local policy makers

Moguer Municipal council, Environment technician Yes No Yes

Representative Doñana 21 Foundation Yes Yes Yes

Almonte Municipal council, Environment technician No No Yes

Regional policy makers

Regional administration, environmental research division No Yes Yes

Regional administration, environmental research division No Yes Yes

Natural area managers

Autonomous Body for National parks, head of project monitoring Yes Yes No

Director, Doñana Natural Area Yes Yes yes

Sub-director, Doñana Natural Area Yes No No

Director of Conservation, Doñana Natural Area Yes No No

Director of Public Use, Doñana Natural Area Yes Yes Yes

Guide, Doñana Natural Area No No Yes

Monitoring division, Doñana Natural Area Yes Yes Yes

Environmentalists

Ex- Ecologistas en acción (Environmental group) Yes No Yes

World Wildlife Fund No No Yes
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of the model as well as the overall success of the participatory process. Note that,
while “stakeholders” have been treated as separate to “researchers” in the preceding
text in order to emphasize their participation in modeling decisions usually carried
out by researchers alone, the researcher is of course a stakeholder. Although it is
evident that the researchers, as organisers of the process, have greater power over
the information than other stakeholders, we attempted to balance this by presenting,
in detail, prior to each workshop, the way in which the information we obtained had
been used. This is important in order to establish a relationship of trust and to allow
the researcher to become properly embedded in the stakeholder community. In
addition, while researchers led the process, the physical results of workshop
activities (ideas written on post-it-notes and wall charts, completed activity sheets)
always came directly from the participants themselves. At the writing up stage, the
extensive video material recorded during the workshops helped to reduce bias
caused by researchers’ unintentional interpretation of the primary data—where
possible we actually transcribed verbatim the dialogue recorded on video before
interpretation.

The participatory modeling process was developed through a chain of iterating
participatory/non-participatory activities in which 9 separate steps were identified
(Table 3).

4 Results

Results of the participatory modeling process developed through the three stake-
holder workshops are summarized as follows. For more detailed description of all
the workshop activities and the results obtained see Hewitt et al. (2012, 2014),
Escobar et al. (2015) and Hewitt et al. (2016). Full descriptions of the Workshops
can also be found on the project webpage.1

Table 3 details the key modeling stages and the input received at each stage from
the participatory process and the corresponding non-participatory (analytical-
technical) activity subsequently undertaken by the research team.

4.1 Workshop 1—22nd February 2012

The aim of the first workshop, at which 14 stakeholders were present, was to inform
participants about the DUSPANAC project and the proposed modeling activities,
and to collect information from them directly in order to parameterize the model. In
the first activity (discussion and reclassification of land use categories in groups) the
most relevant land use categories for explaining the dynamics of change in Doñana

1http://www.geogra.uah.es/duspanac/taller.html.
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Table 3 Step-by-step model procedure, together with the relevant participatory and
analytical-technical tasks

Modeling
step#

Modeling step Sub-step Participatory
method

Analytical-technical
method

1 Decisions on
setting up an
application

Delineation of
modelled region

Workshop 1:
stakeholder
assessment of
most suitable
study area to
reflect dynamics

Researchers’
decision based on
dynamics observed
and own
understanding

Selection of
land use classes
for modeling

Workshop 1:
stakeholders
select and
reclassify land
use categories
based on their
understanding of
land use in the
natural area

Selection of land use
classes according to
land change
dynamics observed
in cross-tab analysis,
process
understanding and
expected model use

Assign land use
classes to
behaviour types:
dynamic vs.
static

Workshop 1:
stakeholder
evaluation of
dynamics
(drivers of LUC)
stakeholder
responses help to
understand
which classes are
most important
for dynamic
modeling

Assignation of land
use classes to types
according to land
change dynamics
observed in
cross-tab analysis

Choose spatial
resolution

No consultation Chosen by
researchers on the
basis of own
knowledge and
available datasets

2 Analysis of
dynamics of land
use change in the
territory to be
modelled

Workshop 1:
stakeholder
evaluation of
dynamics
(drivers of LUC,
category losses
and gains,
assessment of
map quality)

Cross-tabulation
analysis of LUC,
neighbourhood
analysis and
landscape
pattern analysis

3 Data preparation
and setting up the
model for the
calibration period

Input land use
maps
Prepare
accessibility,
suitability and
zoning layers

No consultation
until parameters
need to be
defined (stage 4,
below)

Data preparation and
incorporation of
above defined
parameters into
modeling
environment

(continued)
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were defined. Prior to the workshop, the research team had undertaken a prelimi-
nary reclassification of the Andalusian Regional Government land use and vege-
tation cover database (Moreira 2007), reducing 107 land use categories to 48. This
was still too many for a workable land use model, but further aggregation clearly
required local knowledge. To undertake this task, participants were divided into 3

Table 3 (continued)

Modeling
step#

Modeling step Sub-step Participatory
method

Analytical-technical
method

4 Calibration Set
neighbourhood
rules
Set random
parameter
Set accessibility
parameters, Set
suitability
parameters

Parameters
defined by
stakeholders
from information
gathered in
Workshop 1

Model manipulation
and data handling,
statistical testing
(kappa sim,
clumpiness, visual
inspection)

5 Analytical
testing/evaluation
of calibration

Workshop 2:
participatory
visual
inspection of
cell-by-cell
accuracy &
spatial
patterning

Statistical testing
of model
goodness of fit
(cell-by-cell
accuracy &
spatial
patterning)

6 Fine-tune
calibration

Adjust
parameter set in
step 4

Apply results of
participatory
model evaluation
to reconfigure
model

Re-configure model
with new datasets or
parameters

7 Scenario
development

Workshop 2:
participatory
estimation of
demand for land
uses

Input
stakeholder
demand and run
scenarios

8 Evaluation Workshop 3:
Explore model
in workshop
session, evaluate
model and
modeling
process

9 Indicator
development

Workshop 3:
Brainstorming
of indicators

Development of
prioritised
indicators in GIS
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groups of 4/5 and each group was tasked with building a new, simpler land use
categorisation to represent synthetically and as realistically as possible key land use
dynamics from the 48 initial categories. A set of cards illustrating and describing
the 48 initial categories was handed out to each group to support the group dis-
cussion. Each group chose a spokesperson who presented their categorisation to all
participants. Finally, a common and representative “consensus” classification was
obtained through general discussion with all participants (Fig. 3). The tangible
result of this first activity was the definition of the final 23 land use categories to be
introduced into the model.

In the next activity, stakeholders were asked to analyse land use changes that
have been observed in Doñana on the basis of previous studies. As in the previous
activity, participants worked in groups and later shared their conclusions with the
whole group. This activity gave the research team a much better understanding of
the land use dynamics of the study area, and enabled us to set the model transition
rules (neighbourhood, zoning and suitability) (Table 1), allowing model calibration
to begin. In the final activity, participants evaluated the influence of particular
suitability factors (rainfall, slope, temperature etc.), on each land use class in the
study area through a simple qualitative scoring system—strong (mucho), weak
(poco), or no influence at all (nada). On the basis of this information, an agreement

Fig. 3 Workshop 1 activities; a example of land use cards used in activity 1; b stakeholders debating
the land use classification in groups; c Stakeholder analysis of land use dynamics on post -it notes;
d Results of stakeholder analysis of land use dynamics in digital form
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or confidence index (C) was calculated by allocating a value of 0 where all three
groups disagreed, a value of 1 where two groups disagreed with the third group, and
2 where all groups agreed. These values were then added together to create a total
agreement index for each suitability factor. The categorical responses (strong, weak
and no influence) given by the stakeholders for each land use regarding the influ-
ence of a given factor were translated into a simple scoring system of 2 (strong), 1
(little) and 0 (no influence) to create what we called the influence index (I). Finally,
the confidence index (C) was multiplied by the influence index (I) to give a total
overall score by land use for each suitability factor. Thus, for example, in assessing
the PLASTIC (intensive crops grown under plastic) land use, all three groups felt
slope to be important and responded strong, a score of 2 for each group, giving
(2 + 2 + 2) = 6. Since all groups agreed about the importance of slope for this land
use, the highest confidence score (2) was allocated. Thus the total score for the
slope factor for the PLASTIC land use category was 12 (6 � 2), indicating that the
stakeholders felt, with a high degree of confidence, that slope was influential in
determining the location of crops under plastic, for which flat and slightly-sloping
land was preferred. Suitability parameter settings inside the model were estimated
on the basis of this information. For example, in the case of the Industrial (IND),
Rice (RICE), Intensive crops under plastic (PLASTIC) and Intensive woody crops
(INTWOOD) categories, high suitability parameter values were given to areas with
slopes of less than 5%. These values were subsequently modified using an iterative
trial-and-error approach which involved experimenting with various different
suitability values for different slope categories in relation to these land use classes
until some improvement could be seen in the location and spatial pattern according
to the analytical assessment methods used.

4.2 Workshop 2—11th December 2012

The second participatory workshop was held on December 11, 2012. Its main
objective was to assist in model calibration through three main participatory
activities; (1) visual assessment of the quality of model simulations at different
phases of calibration; (2) estimation of land use demand for 4 model scenarios
adapted from the Doñana Eco-Futures (Palomo et al. 2011), and; (3) estimation of
new land use location through a participatory cartography exercise. For the first
activity, after a brief explanation and introduction, participants were tasked with
evaluating model goodness-of-fit (Fig. 4a, b). To do this, participants were divided
into 3 groups and given four simulations representing different stages of the cali-
bration process (Table 1), though only 2 simulations (11 and 35) were successfully
evaluated by all participants in the time available. Simulations were provided both
on screen and as paper printouts. Participants explored the simulations and then
debated the merits of each one in groups (Fig. 4a). Subsequently they rated the
similarity of location and degree of clustering of simulated land use categories
compared to real land use categories on a pro-forma worksheet. This activity aimed,
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first of all, to better acquaint the stakeholders with the detailed process of creating
land use simulations and to remove a little of the mystery surrounding the operation
of the model. It also sought to enhance the validity of the process of visual
inspection of calibrations, a job researchers normally do themselves. Clearly, while
evaluation of goodness-of-fit with the human eye is highly subjective, subjectivity
decreases when simulations are evaluated by many people. Taken together,
stakeholder goodness-of-fit evaluation broadly agrees with the results of the sta-
tistical tests (Fig. 5).

The second activity of the workshop was intended to link the CA land use model
with the Doñana Eco-Future scenarios. The Doñana Eco-Futures were developed
prior to our research team’s work by stakeholders working with a group of
researchers in socio-ecosystems. Full details about the scenario development pro-
cess can be found in Palomo et al. (2011). Though the research team was very
fortunate in being able to work with existing scenarios, these were not suitable, in
their existing form, for direct inclusion in the model, since the land use categories
selected by stakeholders in Workshop 1, and later used to build the model, were not
explicitly present in the scenario narratives. To address this, stakeholders first

Fig. 4 Workshop 2 activities; a Stakeholders evaluating simulation goodness-of-fit on the
computer; b Simulations 11 and 35 which were evaluated by stakeholders; c Land use demand
with example of modified tendency curve and demand estimated by stakeholders; d Paper wall
chart with land change tendencies from open discussion of land use demand; e Stakeholder using
counters to locate land use demand on a paper map
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analysed the scenario narratives looking for references to land use change which
they then related to a category. On the basis of this qualitative information for each
of the 4 Eco-Future scenarios (1. Doñana globalized knowledge; 2. Trademark
Doñana; 3. Arid Doñana; 4. Adaptive Doñana: wet and wild), stakeholders were
able to estimate land use demand for the model for each category under each
scenario (Fig. 4c, d). In the final activity of the workshop, participatory mapping,
stakeholders located the land use demand they had previously estimated using
coloured buttons representing different quantities of land (e.g. large button, 50 ha,
small button 10 ha) on a A0 paper plot of the 2007 land use map (Fig. 4e). Results
were recorded photographically.

Fig. 5 Results of statistical tests (top) and stakeholder evaluation (bottom) for two calibration
phase simulations, 11 and 35
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4.3 Workshop 3—25th September 2013

The final workshop was dedicated to evaluation of the model and the participatory
process and participatory indicator development from the land use simulations. In
the first activity, participants explored the future land use simulations that had been
generated for each of the 5 scenarios (Business as Usual, a linear extrapolation of
past land use tendencies, plus the four Eco-Future scenarios discussed previously).
Their comments were recorded and discussed with the whole group. The second
activity in this workshop involved developing the indicators that stakeholders
considered necessary to support land use planning and environmental management
of the area. This activity was carried out in two phases: (a) definition of a set of
indicators to be extracted from the model simulation results, and (b) prioritizing
these indicators in order of importance according to the stakeholders’ preference.
Identification of indicators was carried out in groups, and a final list of prioritized
indicators was then agreed through a process of open discussion. The final activity
in this workshop was dedicated to evaluating the participatory process through three
linked activities. In the first, stakeholders responded to two questions; (1) Has your
knowledge about change in the Doñana natural area increased through participation
in the workshops? (2) Have you had any new reflections about the future of the
Doñana natural area as a result of your participation in the workshops? In the case
of affirmative responses, participants wrote their new knowledge/new reflections on
post-it notes and added them to the wall chart (Table 4). In the second and third
parts of the evaluation activity, participants were asked to rate the individual
activities of the participatory process through the dartboard technique (see, e.g.
WAC 2003; O’Brien and Moules 2007; Herás Lopez 2015), by identifying which
activities produced most new ideas (Dartboard 1) and which were found to be most
difficult (Dartboard 2). The dartboard was divided into 6 wedges, with each wedge

Table 4 Stakeholders’ own evaluation (verbatim transcript in translation) of new knowledge and
new reflections acquired as a result of the process

Utility of new knowledge acquired from the
process

New reflections arising as a result of the
process

To apply the data to reports and studies which
were not previously available

Land change drivers

Training/learning Importance of prioritizing sustainable use
of water in general

Awareness of the complexity of the factors that
influence the predictability of the new scenarios

Coastal erosion will endanger urban
developments

To improve my everyday work activities Rice and intensive crops would be reduced
under climate change

To prevent situations of environmental
degradation

Consequences arising from soil sealing

I feel that I participate in the future but I do
not think that others feel the same way

The trends in most cases indicate a difficult
future for the natural area
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corresponding to an activity to be evaluated (Fig. 6c). This exercise was carried out
individually, with each participant scoring the activities on the dartboards on the basis
of their personal opinion. The land use classification exercise (Ws 1, Activity 1) and
the participatory analysis of land use dynamics (Ws 1, Activity 2) were highly rated
by participants for group reflection and discussion in the dartboard exercise (Fig. 6c).
Stakeholders regarded the participatory evaluation of model goodness-of-fit
(Ws 2, Activity 1) as the most difficult of the activities undertaken.

Finally, working in groups once again, participants located the participatory
modeling process on the “participation stairway” (Fig. 7). Groups 1 and 2 located
the process on the third stair from the top, while Group 3 located the process a step
below, since they felt that they had not had sufficient time to fully learn how to use
the model outputs.

5 Discussion

5.1 Benefits of the Participatory Modeling Process

In light of the fact that participatory processes have become so fashionable, in the
work presented in this chapter a conscious effort has been made to move beyond
what we see as a worrying tendency to dress up simple dissemination activities or

Fig. 6 Workshop 3 activities; a Participatory indicators to be developed for model scenarios;
b Stakeholders evaluating new knowledge and reflections on the wall chart; c results of the
dartboard evaluation activity for “best group reflection”

11 Who Knows Best? The Role of Stakeholder Knowledge … 231



informative workshops as “participatory processes”. Our approach is different for
the following reasons:

Real information elicitation takes place. Specific information is provided to
researchers by other stakeholders for a specific purpose. Researchers return this
information to stakeholders in its processed form, and invite discussion and criti-
cism, which is then used to improve the model. Knowledge is thus co-generated by
all stakeholders.

The participatory activities have given rise to genuine changes in the way the
work was carried out. Had researchers simply developed the model unaided and
presented the results to stakeholders, the model would have been completely dif-
ferent, with different land use categories, different drivers, different scenarios and
different indicators.

The participatory process and its most visible output, the land use model, have
been subjected to a rigorous process of evaluation using a range of methods. All
stakeholders have been given the opportunity both to contribute information and to
criticise the process and its outcomes. Not all of this information is presented here,
for reasons of space, but it is provided in full on the website (http://www.geogra.
uah.es/duspanac/taller.html).

The participatory modeling approach presented here has a number of important
benefits with respect to non-participatory modeling approaches, particularly where,
as in this case, the aim is to influence decisions about the management of natural
resources. Firstly, the participatory process is likely to lead to a better model.
Researchers obtained a large quantity of useful information that was used directly
for model development, for example, advice about the most important land use
changes to represent in the model, group assessment of model calibration
goodness-of-fit, and the most useful indicators that the model should try to produce.

Fig. 7 Results of the “participation stairway” exercise
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Secondly, workshop participants clearly felt the process to be an enriching and
worthwhile experience, as can be seen from their responses to the evaluation
activities. The land use categorisation and land use dynamics activities were highly
rated by participants, who said that they had learned a great deal, especially about
the concept of drivers of land use change.

The participatory evaluation of model simulations was found to be very useful as
a goodness-of-fit testing procedure. Though visual inspection is clearly a subjective
process, incorporating multiple opinions increases the degree of confidence in the
results, and in any case, the model also performs adequately with respect to
comparable studies (e.g. Van Vliet 2013) for two widely accepted metrics, Ksim and
clumpiness, for both calibration and validation periods.

The participatory indicator development exercise, discussed in detail in a sep-
arate paper (Hewitt et al. 2016), was highly successful since it focussed stake-
holders’ attention on model outputs and possible future utility of the model. We
recommend that there should be at least one output-focussed model activity in order
to establish a link between the development process and the model’s potential use.

There were two activities (Ws 2, Activity 2, and Ws 3, Activity 1) in which
participants worked directly with model simulations on the computer. Though these
activities were perceived to be the most difficult, they were very useful to com-
municate the way the model actually worked, much more useful in fact than lec-
turing stakeholders on model design and operation. In general, the very visual
nature of the model makes it attractive for hands-on learning and information
sharing.

One of the most interesting reflections emerged during the scenario-based
activities in Workshop 2. These activities generated some revealing discussions,
predominantly centred around the level of realism that should be represented in the
scenarios. Two clear positions emerged, one, which we might call “fantasising
about paradise is not the solution”, was highly critical of the strongly environmental
scenario 4—adaptive Doñana: wet and wild—which this group saw as unhelpfully
idealistic. The opposing position, which we might call “dare to dream”, strongly
emphasised the need for “outside the box” thinking that transcended currently
accepted possibilities in order to look for new, sustainable, alternatives. It is pos-
sible that the strongest proponents of these positions, in the first case, a regional
government employee, and in the second case, a researcher, may be broadly rep-
resentative of the attitude of their peer groups in society. However, this is not
simply a clash between idealism and realism, since actively searching for new,
creative options is probably a more realistic approach to finding solutions to the
alarming degradation of the natural area than continuing with business as usual. It
may be that the regional government representative was not prepared to consider
that the extensive environmental measures taken by their organisation could be
insufficient or unsuccessful. This is understandable, since these measures, compared
with many other areas, are exemplary. Unfortunately, they are unlikely to be suc-
cessful in the long term, unless an effective alternative to the reigning ideology of
“growth without limits” can be found. The incoherence of this position is starkly
illustrated by the recent decision of the regional government to push for the
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reopening of the Aznalcóllar mine, upstream from the Doñana wetlands, in which a
disastrous industrial accident occurred in 1998.2 As a consequence of this decision,
during the preparation of this chapter, Doñana was added to the World Wildlife
Fund’s list of UNESCO world heritage properties threatened by industrial devel-
opment (El País 2016). Unless we blindly accept that “all development is good
development”, this decision is hard to understand. In the words of one workshop
participant (Table 4, new reflections) “The trends in most cases indicate a difficult
future for the natural area”.

5.2 The Role of Participation in Land Use Models

Even a participatory process like the one described above, with various in-depth
workshops, does not really allow time for the detailed workings of the model to be
completely assimilated. It is therefore important to find out to what extent the
stakeholders had come to understand the model by the end of the participatory
process. Unfortunately, this is difficult to measure without a specific test, and
developing such a test was not felt to be a priority in this research given the
pressures of time and the fact that quite extensive participatory evaluation proce-
dures had been carried out anyway. However, despite the numerous activities aimed
at improving participants understanding, it seems highly likely that most stake-
holders probably had an incomplete picture of the model and its capabilities. This is
important, because some sources caution that poorly understood models are useless
and can even be dangerous, in the sense that they may lead to significant misun-
derstandings about important issues (see, for example, http://www.fund-model.org/).
However, the extent to which this is a significant problem depends very much on the
individual case, and the experiences that have been shared in this chapter lead us to
think otherwise, for the following reasons:

• The model does not actually make decisions itself, and can instead be used to
support policies over the long term. In the short and medium term, the modeling
and embedded participatory process is used to inform discussion and share
knowledge about a particular issue. Clearly, while a poorly understood
decision-making robot might be dangerous, a poorly understood discussion
support tool is simply less useful than a well understood one. For our purposes,
an incomplete understanding of the model is a significant improvement on no
knowledge at all.

2On April 25, 1998, the collapse of part of a tailings dam flooded the Agrio and Guadiamar Rivers
with high pyrite content mine tailings and acid water containing dissolved heavy metals. The spill
affected a branch of the Guadiamar river basin measuring 62 km long with a width of between 500
and 1000 m between the village of Aznalcóllar and the border of the Doñana National Park, with
catastrophic effects on flora and fauna (Hernández et al. 2004).

234 R.J. Hewitt et al.

http://www.fund-model.org/


• Though misunderstandings of the model are frequent, they rarely have serious
consequences. The commonest misconception among stakeholders was a ten-
dency to attribute to the model capabilities it does not have. This is, in itself, a
constructive process, since it can lead participants to come up with interesting
and useful hypotheses. For example, in the Business as Usual (BAU) scenario
one group of participants noted the disappearance of areas of crops under plastic
in the municipality of Lucena, even though the BAU scenario shows an overall
increase of this crop type. This was interpreted as an attempt to change the
strong economic dependence of the municipalities in this area on these crops, by
searching for substitute crops with less environmental impact or refocussing the
economy towards other services. However, this explanation does not explain the
behaviour of the model, which did not include these factors (in fact, other model
areas are simply more attractive, so this crop type moves location). Nonetheless,
the interaction of the participants with the model simulation has allowed an
interesting real world dynamic to emerge that could be used to inform future
policy in this area. This is a nice example of what Cartledge et al. (2009) call
“constructive ambiguity”, very useful for developing new policies or expanding
the “option spaces” in which policy actions can take place (Oxley et al. 2002). In
practical terms, this is also useful for improving the modeling tools and
approaches themselves, e.g. the software, since stakeholders will typically have
preconceptions about what a model can or cannot do which will differ sub-
stantively from the modeller’s or software developer’s vision of the way the
model should work.

• Involving stakeholders in building and using the model may indeed lead to
misconceptions, but it also reduces them, as well as informing more widely
about what models are and what they do. We argue that the “danger” lies in the
uncritical acceptance of scientific data, whether from models or from other
sources, and that our aim as researchers is to reduce this danger by encouraging
participation in, and critical reflection on, the scientific process.

• Human societies are already in serious danger from an economic model that
makes the planet’s life support systems subservient to the accumulation of
monetary capital and consumer goods. Given the urgent need to secure sus-
tainable future for threatened ecosystems like Doñana, risks that may arise from
misunderstanding a land use model are outweighed by the benefits that the
participatory model development process brings, e.g. uniting stakeholders with
different or opposing views to discuss the future of shared territory, transparent
dissemination of the inner workings of a scientific process, building confidence
in cross sector collaboration on environmental issues etc.

• Ideas about models being “dangerous” in the “wrong hands” carry with them
some questionable assumptions that risk reinforcing the persistent myth of
scientists as objectively separate from society as a whole. In fact, scientists are
an inseparable part of the society in which they operate and bring to their work
many conscious and unconscious biases that mean they are unlikely to be more
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objective than any other stakeholder (see, for example, Marshall 2015). In
addition, while scientists can provide many tools and approaches, they are likely
to lack specific local knowledge. The assumption that scientists are somehow
omniscient is rarely intentional or conscious, but it is important to challenge it,
nonetheless. Much information, especially relating to land and natural resources,
is informal and unwritten, and is not easily accessible to outsiders without
formal knowledge sharing procedures of the kind discussed in this chapter.

6 Conclusions and Outlook

6.1 Limitations of the Study and Future Work

As with any such study, some limitations can be identified, leading to questions for
future research.

Although the scenarios were constructed by stakeholders as part of a prior
participatory process (Palomo et al. 2011), not all of the participants from this
earlier process attended the participatory modeling workshops. In future, it would
be interesting to try to seamlessly integrate the whole scenario modeling chain,
from narrative construction to scenario building through to land allocation for the
scenarios as they appeared in the model, ending with participatory scenario
evaluation.

Stakeholders (Table 2) represented a wide variety of sectors and professional
skills, but did not specifically include local people, park visitors or religious tourists
(an important group due to Doñana’s importance as the site of a famous local
pilgrimage). There is no doubt that the inclusion of these other stakeholders would
have brought to light new and different perspectives that did not emerge here.
Additionally, although the organizers aimed to strike a balance in terms of the
stakeholders contacted, when it came to the stakeholders that actually attended,
policy makers were over-represented. This was almost certainly because of the
choice of venue for the workshops (national park offices). In future, choosing a
more neutral venue might help to even out the balance.

Finally, it is clear that the participatory process could be enriched to include a
role-playing game, with stakeholders encouraged to play roles that have nothing to
do with their professional responsibilities (e.g. farmer as policy maker, scientist as
religious tourist etc.).

6.2 Who Knows Best?

This paper presents a land use model for the Doñana natural area which was
co-developed through a series of participatory workshops held with key
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stakeholders from a variety of sectors. Fundamental decisions about model set up
and calibration were made consensually by the whole group. The participatory
modeling process was extremely useful to the research team, but also clearly
beneficial to all stakeholders, as evidenced from the results of the stakeholders’ own
evaluation.

The answer to the question “Who knows best?” posed in the title of this chapter,
is probably “it depends”, i.e. it depends on the context of the modeling exercise to
be undertaken. Clearly there are many situations in which a researcher with the
relevant training and experience is the best person to undertake a scientific task. But
for the insights obtained from a scientific approach, such as a land use change
modeling process, to be properly integrated into decision-making, it is insufficient
for scientists to carry out the task alone, and then baldly state that “the results are
likely to be of interest to land use planners and resources managers”. Even stake-
holders with similar perspectives, such as environmental researchers and protected
area managers, are often unable to communicate effectively through standard
information sharing channels. When, as is normally the case, the stakeholder
community is much more diverse than this, these problems are compounded. For
example, while the agricultural sector has the potential to be well-informed about
relevant scientific developments e.g. through trade periodicals, we are not aware of
any standard procedures that ensure that knowledge flows the other way—e.g. that
farmers’ own knowledge is routinely available to scientists. This is no doubt
because of the implicit presumption that farmers are not generators of “useful”
knowledge. If these preconceptions are not challenged, it is likely that misunder-
standings between stakeholder communities will persist and environmental prob-
lems will continue to resist long-term solutions.

A participatory modeling process is a very useful way to bridge the significant
differences between these different stakeholder communities and spark a genuine
process of social learning, in which the importance of stakeholders’ knowledge
depends on its relevance to the question, rather than on conventional social struc-
tures or traditional knowledge hierarchies.
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Chapter 12
Land Use and Cover Change Modeling
as an Integration Framework: A Mixed
Methods Approach for the Southern Coast
of Jalisco (Western Mexico)

M. Kolb, P.R.W. Gerritsen, G. Garduño, E. Lazos Chavero, S. Quijas,
P. Balvanera, N. Álvarez and J. Solís

Abstract The rapid loss of forests with negative consequences for biodiversity and
ecosystem services has drawn the attention of scientists and decision makers to
deforestation and land use change. Over the last two decades, a broad range of
models of land use and cover change (LUCC) have been developed to assist in land
management and to better understand, evaluate and project the future role of LUCC.
Pattern-based LUCC models are empirical approaches based on the observation of
past LUCC, including the spatial dimension of change patterns from which the
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underlying behavior can be inferred, through the statistical relationships of model
parameters. Even though these models present a number of drawbacks such as data
intensity and limited capacity to connect to other driver scales, they offer a
framework to integrate data from multiple disciplines. In this chapter, we present a
case study that shows land use and cover change modeling as an integrative
framework for cross-referencing among different data sources. Spatial information
on LUCC, econometric models and stakeholder perceptions were generated in an
interdisciplinary working group in order to obtain insights into LUCC at the
regional level. Land use and cover (LUC) maps were the starting point for the
spatial analyses of historic changes, which together with ancillary data were used to
establish change probabilities for the main change processes. Econometric models
showed historic tendencies of agricultural production and a panel analysis clarified
the relation between variables. Local stakeholder perception gave the historic
background and participatory fuzzy cognitive maps shed light on the underlying
drivers of change. By cross-referencing the different data sources, we show that for
this particular region the official LUC maps do capture the main change processes.
Both local stakeholder perceptions and econometric models confirm deforestation
and agricultural expansion, especially livestock farming, as the main processes. The
econometric models confirm the difference in magnitude between the large growth
in areas for livestock farming and much more restricted growth of agricultural areas
and show that beef production and pasture for cattle ranching is displacing the
production of maize and beans. As regards the drivers of change, the different data
sources complement each other quite well as they cover different scales: the
stakeholder elicitations revealed a set of indirect drivers related to the direct drivers
identified in the spatial analysis of historic change. The indirect drivers included the
political, social, cultural and economic forces behind agricultural expansion,
especially cattle ranching. The analysis of the spatial factors related to change
showed that a large array of variables play a role in LUCC. The mixed method
approach is helpful in unravelling the different levels of connection between
drivers.

Keywords Mixed methods approach � LUCC � Drivers � Data-driven �
Perceptions � Participatory models � Mexico

1 Introduction

Deforestation and the resulting land use change have negative consequences for
biodiversity and ecosystem services. Scientists and decision makers have therefore
become increasingly concerned about the rapid loss of forests in recent decades
(Vitousek et al. 1997; Lepers et al. 2005; UNEP 2012). In the Neotropics, there
were high rates of deforestation and environmental degradation throughout the
second half of the twentieth century (Lambin et al. 2003), leading to important
habitat loss and depletion of natural resources in tropical and temperate forests
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(CBD 2006). Deforestation in Mexico is ranked ninth in the world (Bradshaw et al.
2010), and in Latin America is exceeded only by Brazil, with large regional dis-
parities in LUCC and its drivers.

Over the last two decades, a broad range of land use and cover change (LUCC)
models have been developed to assist in land management and to better understand,
evaluate and project the future role of LUCC (Mas et al. 2014). In order to model
human-induced land-use change using pattern-based modeling frameworks, it is
necessary to have reliable historic data on land use and cover change (LUCC), plus
a large array of ancillary variables that can be used to fit the model. One of the
problems of parameterizing simulation models for prospective analysis has been the
lack of sufficient, locally specific data that could inform modelers about the par-
ticular settings of the study area that influence the different situations in the pro-
posed qualitative scenario information.

Pattern-based LUCC models are empirical approaches based on the observation
of past LUCC, including the spatial dimension of change patterns from which the
underlying behavior can be inferred through the statistical relationships of model
parameters. Their functioning has been strongly influenced by development in
geographic information science and while they can use a wide array of data and
information, from remotely sensed data sets to socio-economic variables and field
surveys, the focus is usually on biophysical and landscape structure aspects
(Cheong et al. 2012). Usually an analysis of historic changes helps determine the
types and magnitude of LUCC, as part of model calibration. The fact that these
models are based on historic spatial patterns makes them scale dependent, both
temporally and spatially. This means that the LUCC dynamics to be modeled are
determined by the spatial resolution, the extent of the study area and the time period
being considered. It cannot be assumed that the same patterns can be explained by
the same processes in different spatial and temporal settings.

The strong dependency of LUCC dynamics on the historic land use and cover
(LUC) information used in model calibration can also be seen as a drawback, since
LUCC is normally detected by comparing two LUC maps. There has been sub-
stantial discussion about how map accuracy affects the detection of change pro-
cesses, since the base maps often come with thematic and positional errors (Pontius
2000; Mas 2005; Pontius and Petrova 2010). These map errors can lead to spurious
or incorrect evaluation of LUCC (Pontius and Lippitt 2006). Since the official land
use and cover maps for Mexico have not been officially validated, there is a
question mark regarding their quality and usefulness for change detection, despite
their widespread use. In this context, a combination of different data sources (such
as stakeholder perceptions and econometric models) can be used to validate LUCC
information based on map comparison.

Another limitation of pattern-based models has been the evaluation of drivers.
These models rely on ancillary spatial data to establish rules for change probabil-
ities or suitability. However, these data represent biogeophysical constraints or
direct drivers of LUCC, making it very hard to identify underlying drivers. By
generating complementary information and analysis, such as stakeholder elicita-
tions, we can shed light on the connections between underlying and direct drivers.
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Participatory research in the social sciences has traditionally been developed for
specific local contexts and thus represents phenomena that often cannot be visu-
alized on a map. The result is that only very limited spatial modeling of LUCC has
been carried out within the social sciences (Goeghegan et al. 2004). Nevertheless,
their focus on human-environment interactions offers an excellent opportunity to
advance the understanding of human effects on ecosystems and the implication of
changes. For their part, econometric models have been extensively used in LUCC
modeling, since economic factors are directly related to land use dynamics and
some data, e.g. agricultural production figures, can be used directly to infer LUCC
tendencies. While these models have been extended to include spatial information
(spatial econometrics), the level of spatial information is usually limited because of
the inherent aggregation of input data usually reported for administrative units (e.g.
census, Brady and Irwin 2011). Interdisciplinary studies can help fill this gap to
generate relevant spatial information that can be used for local and regional
policy-making (Gerritsen 2012).

Even though pattern-based models present a number of drawbacks, such as data
intensity and a limited capacity to connect to other driver scales, they offer an
effective framework for integrating data from multiple disciplines. Despite the
widely recognized potential of integration in a land use change model, successful
integration is difficult to achieve (Cheong et al. 2012). In this chapter, a case study
shows land use and cover change modeling as an integrative framework for
cross-referencing among different data sources. We explore ways of using a mixed
methods approach at the interface between land science, social science and par-
ticipatory stakeholder work to remedy the lack of information about map accuracy.
We started out with historic land use and cover maps to analyse change dynamics in
a GIS, with which a conceptual LUCC model is established to generate probability
maps of change. Model calibration data were then cross-referenced with econo-
metric models (LUCC tendencies and direct drivers). The last ingredient that makes
this study truly multi-disciplinary is the analysis of stakeholder perceptions and a
participatory process model that aims to validate historic change processes and
dynamics and to provide complementary information, especially on underlying
drivers. With this mixed methods approach we intend to enhance the understanding
of LUCC processes in the region.

2 Test Area

The Southern Coast of Jalisco comprises a set of municipalities located along a
300 km strip of the Pacific coastline of Western central Mexico, with elevations of
up to 2800 m (Maass et al. 2005). The study area includes the important
Long-Term Ecological Research (LTER) site of Río Armería, Río Cutzmala, Río
San Nicolás (also known as Chamela). This LTER site was established because of
the importance of these tropical dry forests in terms of their biological, topographic
and cultural diversity. The LTER research studies are being carried out in the basins
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of three rivers: Río Armería, Río Cutzmala and Río San Nicolás. In this case, the
study area was defined by selecting a set of watersheds that connect the three river
basins in order to fill a coherent geographic space (Río Marabasco, Río
Purificación, Arroyo Maderos, Arroyo El Pedregal).

To make sure that the study area is meaningful for all types of analyses in the
ROBIN project, it was extended to include all of the municipalities located inside
the 26 watersheds. In this way we established a study area of 21659.11 km2, which
was divided into two blocks of municipalities: the ones where the stakeholder
research was carried out (Villa Purificación, La Huerta, Cihuatlán, Casimiro
Castillo) and the rest, to which the models were extrapolated (Fig. 1). LUCC
analysis and modeling was done for the whole study area.

The main vegetation types are distributed following a topographic and climatic
gradient ranging from coastal ecosystems at sea level up to temperate forests (TF,
oak and pine forests) in the upper part of the watersheds (above 1000 m). Tropical
dry forest (TDF) is dominant in the region between 0 and 300 m on hilly terrain
(max. height 700 m). Tropical semi-deciduous forest (TSF) is found on the alluvial
terraces along the channels of ephemeral and permanent streams, and in more

Fig. 1 Study area with municipalities that participated in stakeholder elicitations
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elevated, more humid areas above the TDF. These TDF and TSF are the most
diverse dry forest in the Neotropics, and 40% of their plant and 10% of their bird
and mammal species are endemic to Mexico (Lott 1993; Ceballos and García 1995;
Gentry 1995; Arizmendi et al. 2002).

Precipitation is strongly seasonal, which restricts the length of the productive
season. The climate in this region ranges from warm (coast) to temperate (higher
elevations), and annual precipitation from 800 to 2100 mm, most of which falls
between June and October. Rainfall patterns vary greatly due to tropical cyclones
and the occurrence of El Niño and La Niña events but there are usually three
months of severe drought (February−April, Maass et al. 2005).

Main land uses include pasture for extensive cattle ranching on hill slopes and
agriculture on the alluvial plains. Most of the TSF in the alluvial areas have been
converted into agricultural lands. In some cases, the size of fields allows for
intensive agriculture using heavy machinery, irrigation, and fertilization. Rain-fed
agriculture and pasture face a high probability of failure because of frequent
droughts. The deep fertile soils, which are close to the water table and suitable for
agriculture (e.g., phaeozems and fluvisols), are only found at lower altitudes along
the few streams and rivers. Most of the area is dominated by young, shallow, rocky,
nutrient-poor soils (e.g., regosols) found on predominantly sloping land (moder-
ately to extremely steep) and is not suitable for nutrient –and water– demanding
agro-pastoral activities (Maass et al. 2005).

Human presence in the region remained low until the end of the 19th century and
the first transformations of ecosystems occurred when “Haciendas” were consoli-
dated during the 1850s. In 1950, a federal government initiative to colonize the
coastal areas of Mexico began. This policy, together with the land reforms that
distributed land to landless peasants led to the immigration of landless peasants
between 1950 and 1970 into this, for them, unfamiliar environment with low
agricultural potential, no public services and no job opportunities. In the subsequent
years, road and communication infrastructure was built to improve accessibility.
Nowadays, population is distributed in mainly small settlements (<1000 inhab.) all
over the study area. General income levels are low, unemployment is high but
disguised by informal activities, marginalization is medium-high, living conditions
are poor and migration is common.

Land ownership varies a great deal in the different municipalities with Ejidos
(communal lands) and private estates. The Ejidos are generally used for basic grain
and cattle.

As in other parts of Mexico, rural areas in the study region face a prolonged
crisis that has persisted for almost 50 years resulting in widespread poverty and
degradation of natural resources (Bray et al. 2006; Morales 2011). The rural pop-
ulation is forced to supplement their income with other activities, and many migrate
to the United States (Magaña 2003). Conflicts over land and resources are very
common between the ejido members, and are often related to external pressures on
resources, such as mines, beaches and fresh water (Bray et al. 2007; Tetrault et al.
2012; Gerritsen et al. 2015).
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3 Methodology and Practical Application to the Data Sets

Here we use a suite of data, i.e. all the available data sets for the region, in order to
explore the possibility of advancing towards a mixed method approach. Each data
source gives an independent account of LUCC at regional level from a different
point of view and focus; together, they were used to cross-reference and validate
spatial LUCC information and to complement aspects that were impossible to infer
from pure spatial data. An LUCC analysis based on several time steps provided
spatially detailed information, which was used to establish historic change pro-
cesses and their magnitude. The official LUC maps for Mexico have been exten-
sively used for different purposes, despite the fact that their accuracy has not been
assessed (Couturier et al. 2012) and questions about map quality have led to severe
criticism of many LUCC studies. In this case, economic data was used to
cross-reference spatial results, while stakeholder perceptions were used to validate
general tendencies. Direct spatial drivers were analyzed in a spatial LUCC model
and probability maps of change were generated, while underlying drivers were
evaluated in a participatory process model. As such, our study was based upon three
methodological approaches to explore LUCC processes in the region, before
mixing the methods to reach integration in the discussion section.

3.1 LUCC Dynamics and Direct Drivers—LUCC Analysis
and Modeling

A spatial analysis of land use and cover change was carried out in order to char-
acterize the main processes in land use change in the study area and to derive basic
parameters for the land use change model. After a preliminary analysis of change by
comparing official land use and cover maps produced by National Institute of
Statistics and Geography (INEGI), LUC classes for the analyses were defined by
grouping the original classes into meaningful categories. Since there were differ-
ences in the dynamics regarding forest degradation for temperate and tropical dry
forests, the final categories maintain this division between temperate and tropical
forests and their conservation state (Table 1). The data sets did not include any
forest plantations and urbanization was excluded from the analysis. The base maps
form a 1:250 000 series from 1993, 2002, 2008 and 2011 INEGI (2001, 2005,
2008, 2013, see Kolb and Galicia 2012 for details). These maps were converted into
rasters with a cell size of 100 m for geo-processing. Spurious changes were par-
tially corrected by re-assigning the categories (e.g. all natural vegetation categories
other than the analyzed one were assumed to be false changes: a change from
coniferous to broad leaf forest was considered as a false change and the amount of
broad leaf forest was added to the amount of coniferous forest).

Based on the quantity of changes for each LUC category, several statistical
measures and dominant change processes were established. Deforestation rates and
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change rates were calculated using the following formula which expresses the
proportion of change with respect to the initial area for each year (FAO 1996):

R ¼ 1� A1� A2ð Þ=Að Þ1=tÞ � 1ÞÞ � 100

where R is the annual change rate in percentage, A1 is the area at t1, A2 the area at
t2 and t the number of years in the period. For deforestation rates, primary and
secondary forest classes were aggregated and the results were multiplied by –1 to
obtain positive numbers for negative change rates.

In addition, change matrices (change probabilities) were generated using
DINAMICA-EGO to establish the main change processes and change was mapped
to capture the patterns of change and permanence.

In order to generate maps of the areas with the highest probability of change, an
LUCC model was established. Spatial model calibration was done using
DINAMICA-EGO by comparing land cover maps for 4 time steps over 18 years so
as to obtain information on the temporal behavior of change dynamics and to
establish potential non-stationary scenario tendencies. The aggregated LUC classes

Table 1 Land use and cover change modeling legend and the original types of vegetation in each
class

Original land use and cover classes (INEGI) Modelled land use and cover
classes

Code

Oak forest Temperate forest 1

Fir forest

Pine-oak forest

Mountain cloud forest

Low tropical dry forest and low tropical spiny
forest

Tropical dry forest 2

Medium tropical semi-dry forest

Rain-fed agriculture Agriculture 5

Permanent crops

Irrigation agriculture

Pasture Pasture 6

Secondary oak forest Secondary temperate forest 3

Secondary fir forest

Secondary pine-oak forest

Secondary low tropical dry forest Secondary tropical dry forest 4

Secondary medium tropical semi-dry forest

Urban areas Other 7

Mangroves

Palms

Coastal dune vegetation

Without vegetation

Water bodies
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from the LUCC analysis were maintained, so enabling the model to take into
account different physiological constraints to LUCC (temperate broad leaf and
tropical dry forests types), distinguishing between primary and secondary forest
types, in order to consider forest degradation, as well as deforestation. As the
analysis of LUCC showed, agriculture and pasture for livestock were the main
agents of deforestation and were therefore also included in the modeling legend. We
then determined the quantity of change and the change probabilities for each
transition by Markov chain matrices.

In order to generate change probability maps, a set of explanatory variables
(predictors) related to biophysical, topographic, demographic and socio-economic
characteristics was compiled. The selection of explanatory variables and the
derivation of testable hypotheses of land use change are also based on social science
theories, such as accessibility (von Thuenen) and land quality (Ricardian model).
Findings reported in the scientific literature and in governmental studies
(SEMADET 2015) were considered together with the results of stakeholder
research. After compiling all 40 data sets, measures for each variable were estab-
lished (Table 2).

Using spatial statistics we identified those variables that determine the highest
probability of change. We began by conducting an exploratory correlation analysis
in ArcGIS 10.2 (ESRI), based on which water bodies, total population 1995 and
2010 and very high marginalization 1995 were excluded from further analyses.
Between two highly correlated variables describing the risk of deforestation on a
national scale, the original version (INECC 2015) was excluded in favor of a
modified version (CONABIO 2012) that showed higher correlation to observed
changes. Finally, in DINAMICA-EGO the Weight of Evidence (WoE) approach
was used to establish the relationships between variables and observed changes,
which included the editing of WoE categories with irregular behavior. In a last step,
the correlation between maps was reviewed using the Cramer test before probability
maps were generated using DINAMICA-EGO.

3.2 LUCC Tendencies—Econometric Model

Econometric models were generated to investigate trends in agricultural and live-
stock production, to see if stakeholder perceptions and trends derived by map
comparison can be validated with official statistics. In particular, data on the pro-
duction of beef in carcasses, planted area for beans, planted area for maize, planted
area for grazing, and the total planted area were used to run the econometric
models. Datasets were taken from the INEGI (2016) and comprise the period from
2002 to 2011. Models were run in Stata (StataCorp 2013). The following regression
model was applied to estimate the coefficients for the trends in agricultural pro-
duction or growth rates, once the variables were defined for each case:
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Table 12.2 Spatial factors analyzed for their relationship with observed changes

Environmental and biophysical variables Unit/measure Original
scale/resolution

Source

Topography Altitude m 90 m INEGI (1998)

Slope ° 90 m INEGI (1998)

Hydro1 k topo wetness
index (cti)

1000 m USGS (1999)

Altimetric zone/basin Categorical 1:250 000

Climate Evapotranspiration mm 1:4 000 000 Maderey
(1990)

Bio 5, 7, 9 °C/mm 1000 m http://www.
worldclim.org/

Hydrology Rivers Distance 1:250 000 CONABIO
(2008)

Permanent rivers Distance 1:250 000 CONABIO
(2008)

Intermittent rivers

Water bodies Distance 1:250 000 CONABIO
(2009)

Geomorphology Geomorphology Categorical 1:250 000 INE,
SEMARNAT,
IG-UNAM
(2003)

Edaphology Soil texture Categorical 1:250 000 INIFAP,
CONABIO
(1995)

Soil erosion Categorical 1:250 000 INIFAP,
CONABIO
(1995)

Ecosystem
productivity

NDVI (HANTS) 250 m Kooistra et al.
(2015)

Biomass map for woody
vegetation (above
ground)

t∙C/ha Alianza
MREDD+
(2013)

Human impact variables

Human impact MEXBIO 1995 0–1 1:1 000 000 Kolb (2009)

MEXBIO 2011 0–1 1:1 000 000 Kolb (2009)

Fragmentation: entropy
1993

Entropy 30/100 m Kolb and
Morales Luque
(2016a)

Fragmentation: entropy
2010

Entropy 30/100 m Kolb and
Morales Luque
(2016b)

Fragmentation: MSPA
1993

Categorical 30/100 m Kolb and
Morales Luque
(2016c)

(continued)
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Table 12.2 (continued)

Environmental and biophysical variables Unit/measure Original
scale/resolution

Source

Topography Altitude m 90 m INEGI (1998)

Fragmentation: MSPA
2010

Categorical 30/100 m Kolb and
Morales Luque
(2016d)

Contagion Temperate forest Distance 1:250 000 INEGI (2001,
2013)

Tropical forest Distance 1:250 000 INEGI (2001,
2013)

Secondary temperate
forest

Distance 1:250 000 INEGI (2001,
2013)

Secondary tropical
forest

Distance 1:250 000 INEGI (2001,
2013)

Agriculture Distance 1:250 000 INEGI (2001,
2013)

Pasture Distance 1:250 000 INEGI (2001,
2013)

Deforestation
risk

IRDef Categorical 300 m INECC (2015)

IRDef modified Categorical 300 m CONABIO
(2012)

Infrastructure All roads Distance 1:1 IMT (2007)

Paved roads Distance 1:2 IMT (2007)

Unpaved roads Distance 1:3 IMT (2001)

Socio-economic variables

Political factors Tenure Distance

Agricultural
production

Cattle t INEGI 2016

Marginalization Marginalization 1995 Categorical

Marginalization 2010 Categorical

Demography Population growth
1995–2015

no. census data/
interpolated

INEGI (1995,
2010)

Ethnicity Population density of
indigenous language
speakers (1995, 2010)

no. census data/
interpolated

INEGI (1995,
2010)

Protected areas Federal PA Distance CONANP
(2010)

Management units for
wild life conservation

Distance SEMARNAT
(2010)
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ln yt ¼ b0 þ b1tþ ut:

where (ln y) is the natural logarithm of the selected variables, t is the time (the years
from 2002–2011), ut is the error term, b1t is the regression coefficient and (b1t)
times 100 gives the growth rate in y.

Once the model coefficients were estimated for all the selected variables, a
growth forecast was done for the period 2011 to 2030 for each study case. The
study area was stratified into three sections: all the municipalities (case 1); only
municipalities that were part of the workshops (case 2); and all the other munici-
palities (case 3). This stratification was used to explore and compare the tendencies
in the coastal area with the municipalities where stakeholder work had been carried
out and the rest. This was done to make sure that no sub-regional disparities existed
and that the stakeholder elicitations could be extrapolated to the rest of the study
area. We therefore defined the value for the selected variables as the average value
over the total number of municipalities for each case. For instance, to obtain the
value for the total planted area for year t for case 1, all the values of this variable at
year t were summed over the municipalities that belong to case 1. This value was
then divided by the total number of municipalities to obtain the final value.

In order to test whether the behavior of the area used for grazing could explain
the trends in the other variables, a panel data model was used for the three cases
stated above:

Yit ¼ b1i þ b2X2it þ b3X3it þ b4X4it þ b5X5it þ uit:

where i represents the municipalities, t the time (years from 2002 to 2011), yit the
planted area for grazing; Xit represents the other variables—e.g., the total planted
area and planted area for beans, maize and grazing—and uit is the error term.

Projections of trends were used to provide quantitative estimations of future
demands for the main land uses and these were later used to set the parameters of
the LUCC model.

3.3 LUCC Tendencies and Indirect Drivers—Local
Stakeholder Perceptions and Participatory Process
Model

Data on stakeholder perceptions on land-use and cover change and the elaboration
of participatory scenarios were obtained in a series of six workshops that were held
from October, 2012 to February, 2015. The regional actors that took part in these
workshops were selected on the basis of previous socioecological research per-
formed by the authors and social capital existing in the region.
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The methodology of the workshops consisted of group discussions, using the
Metaplan technique, combined with participatory mapping (Schnelle 1979;
Gerritsen 2016).

The following general questions were asked:

• What changes have you observed over the last 50 years?
• What were the drivers related to those changes?
• Who are the main actors in these changes and what roles do they play?
• Who benefitted from the changes?
• What would be needed to build sustainability?

The workshops not only served to reconstruct land use trans-formations and its
drivers, but also to assess the relative importance of the different factors involved.
This was done by drawing up Fuzzy Cognitive Maps, which consist of collectively
constructed flow diagrams, diagrams, indicating the relative importance of direct
and indirect drivers.

4 Results

4.1 LUCC Dynamics and Direct Drivers—LUCC Analysis
and Modeling

LUCC in the Southern Coast of Jalisco is dominated by agricultural expansion. The
main change processes were deforestation (defined as the transition of any forest
category to any agricultural category), forest degradation (defined as the transition
of primary to secondary forests) and natural regeneration (defined as the transition
of any agricultural category to any forest type). Deforestation can be detected for all
forest types, but is biggest for tropical dry forests, especially in their primary state.
In general, a loss of primary vegetation and an increase in secondary vegetation can
be observed (Fig. 2).

LUCC dynamics generally decreased over time: The nineties were clearly the
period with most LUCC resulting in an important loss of primary vegetation from
42% to 28.5% of the study area, while the lowest LUCC was observed from 2007 to
2011. Since 2002, the area of primary vegetation has been stable, but there has been
a decrease in secondary vegetation. Overall, the increase in pastures has been
stronger than the increase in agriculture. The most widespread change during the
earliest period was forest degradation (1993–2002: 1.76, 2002–2007: 1.98, 2007–
2011: 0.86 times the deforested area), with deforestation in second place. The
decrease in forest degradation was less pronounced for temperate forests, while
deforestation has decreased most in temperate primary forests.

Among the different LUCC transitions, deforestation of tropical forests (espe-
cially primary tropical semi-dry, dry and oak forests) for pasture is the main
deforestation process in all the different periods. Expansion of agriculture was also
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important, especially from 2002 to 2007. Forest degradation is strongest for oak and
pine-oak forests, in the case of the latter an ongoing process. The strongest decrease
in the magnitude of change can be observed for regeneration, especially from
pasture to secondary tropical forests. Since the first period is the one with the
highest LUCC rates, it dominates the general picture of decreasing primary vege-
tation and increasing secondary vegetation. In the later periods deforestation was
much more intense in secondary vegetation than in primary (most pronounced in
secondary tropical semi-dry forests). In the last period deforestation rates are
generally low. Mangroves, cloud forests and hydrophilic vegetation are more or less
stable over time.

The transition potential maps generated with weights of evidence represent the
probabilities of change for each set of main transitions, namely deforestation, forest
degradation and regeneration (considering temperate and tropical forests, Fig. 3).
The transition potentials express the statistical relationship of a set of spatial factors
and observed transitions. These relationships are defined by the direction (positive
or negative), are not necessarily linear and show the importance of the factors for

Fig. 2 Area (ha) of transitions for the period 1993–2011
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each transition (Table 3). Bioclimatic variables prove to be important; annual
temperature range positively correlates with temperate forest degradation, defor-
estation of secondary forests for pasture and regeneration of temperate forests from
agriculture. Maximum temperature of the warmest month and mean temperature of
the driest quarter are related to deforestation, degradation and regeneration of
tropical forests. Topographic factors show the expected relation of less deforesta-
tion and forest degradation in higher and steeper areas, while regeneration shows
the opposite tendency. Areas closer to permanent rivers suffer more deforestation
and forest degradation. Areas with volcanic relief are prone to deforestation of
secondary temperate forests for agriculture and regeneration of secondary forests
from pasture; areas within lacustrine and alluvial plains are prone to deforestation,
especially for agriculture and show little regeneration in general. Fine soil texture
favors deforestation for agriculture. Biomass is an important factor with mainly
negative correlations for most deforestation and forest degradation transitions. In
tropical forests, regeneration is generally favored in areas with high biomass. The
amplitude of phenology follows this pattern in many cases (both deforestation and
regeneration of secondary forests occur in areas with a high amplitude).
Fragmentation shows the classic tendency in which more fragmented areas (en-
tropy) with patches of vegetation (MSPA) are at greater risk of deforestation and
forest degradation, while regeneration is more likely in less fragmented areas.
Distance to roads in general shows that areas closer to roads are prone to defor-
estation and forest degradation. The opposite is true for regeneration, except for
regeneration of tropical forests from pasture. Distance from paved roads is
important for deforestation of secondary forests for agriculture (in temperate forests,
there is a higher probability of deforestation in areas close to paved roads, while in
tropical forests deforestation is less likely in these areas) and for regeneration of
secondary forests from agriculture (in both cases positive correlation). The level of
cattle production is especially important for tropical deforestation and forest
degradation, but is also related to the deforestation of temperate forest for agri-
culture and the deforestation of secondary forests for pasture. Medium to high
levels of marginalization relate to the deforestation of tropical forests for agriculture
and temperate forest degradation, while lower levels of marginalization are nega-
tively related to deforestation for agriculture, but positively related to deforestation
of secondary tropical forests for pasture and the regeneration of secondary tem-
perate forest from pasture. Population growth is negatively related to deforestation
and forest degradation of temperate forests (except for secondary temperate forest to
pasture), but positively related to the deforestation of tropical forests (except for
secondary tropical forest to pasture). The probability of deforestation and forest

JFig. 3 The figure shows transition probabilities for selected transitions*: (1) temperate forest
degradation, (2) tropical forest degradation, (3) deforestation of temperate forest for pasture, (4)
deforestation of temperate forest for agriculture, (5) deforestation of secondary tropical forest for
pasture, (6) deforestation of secondary tropical forest for agriculture, (7) regeneration of secondary
tropical forests from pasture and (8) regeneration of secondary tropical forests from agriculture.
*Transitions have been selected based on their extent
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Table 3 Importance of spatial factors for the modelled LUCC transitions. Signs indicate direction
of correlation (+: positively correlated, –: negatively correlated), background signs details indicate
importance levels (white: weak relations, light grey: moderately strong relations, dark grey: strong
relations). See Table 1 for the codes used to describe the transitions. * indicates that the variable
has been analyzed as a distance surface

1 to 3 1 to 5 1 to 6 2 to 4 2 to 5 2 to 6 3 to 5 3 to 6 4 to 5 4 to 6 5 to 3 5 to 4 6 to 3 6 to 4
Altitude – + – + – – – – – + – – – + – – + – – + –
Slope – – – – – – – – – – + + + + –
Hydro1k topo wetness index (cti) – – + – – – + – – + + – –
Altimetric zone of the basin (high) – – – – – + + – + + – + –
Altimetric zone of the basin (intermediate) + + + + – – – – – – – + – +
Altimetric zone of the basin (low) + + – – + + + + – – –
Bio 5 (max temperature of warmest month) + – + + – + – + + + – + +
Bio 7 ( temperature annual range) + – + – + – – + – + – + – – + – + – + – –
Bio 9 (mean temperature of driest quarter) + – + + – + + + – + +
Permanent rivers* – – – – – – – – + – –
Geomorphology (aclinal/table structure) + + + + + + – + – – – –
Geomorphology (coast) – + – + – – –
Geomorphology (volcanic relief) – – – + – + – – – + +
Geomorphology (low elevations) + + + – – + + – + – +
Geomorphology (lava flow) – + – + + + – + – + –
Geomorphology (modelled slope) – + – – – – + + – – + + + –
Geomorphology (lacustrine plain) – + + + + + + – + – – – – –
Geomorphology (mountain range) + – + – – – – – – + + + – +
Geomorphology (foothills) – + – + + + – – + + – – – +
Geomorphology (karst relief) + – – – – – – – – – + + + +
Geomorphology (alluvial plain/valley) + + + + + + + + + + – – – –
Soil texture (fine) – + + + + + – + – – – + –
Soil texture (medium) – – – + – – – – + + + –
Soil texture (coarse) + – + – – – + – + – +
Biomass – – – – + – – – – – + – + + + – + + + – +
NDVI (HANTS) – – – – + – – + – + – + – – + – + + +
Fragmentation 1993 (entropy) + + + + + + – + + + + – – – –
Fragmentation 1993 (branch) + + + + + + + + + + + – – –
Fragmentation 1993 (edge) + + + + + + + + + + – + – –
Fragmentation 1993 (perforation) + + + + + + + + + + + + – –
Fragmentation 1993 (islet) + + + + + + + + + + + – – –
Fragmentation 1993 (core) – – – – – – – – – + + + +
Fragmentation 1993 (bridge) + + + + + + + + + + – – – –
Fragmentation 1993 (loop) + + + + + + + + + + – + – –
Temperate forest 1993* – + + + – +
Tropical forest 1993* + – – + – + – + + – +
Temperate secondary forest 1993* – – + – + – + – + – – + +
Tropical secondary forest 1993* + – – – + – + – + – + –
Agriculture 1993* + – + – – – – + – + – + +
Pasture 1993* – – – – + + – – – – – –
Roads* – – – – – – – – – – + + + –
Paved roads* – + – + – – – – – + – + – + – – + + + + +
Not paved roads* – – – + – + – + – + – – + – – – + –
Ejido* + + + – – + – + – + – +
Comunidad* – + + + + – + + – –
Private property* – + – – – + – – – + + – + – + +
Cattle production + + + + – + + – + + + + – + – –
Marginalization 1995 (very low) – – – + – + – – – – + – + + –
Marginalization 1995 (low) – – – + – + – – + – + +
Marginalization 1995 (medium) + – – + – + – + – – – – – + + +
Marginalization 1995 (high) – + – – – + – – – – – + +
Population growth 1995-2005 – – – – + + – + – + – –
Federal PA* + + + – + – + – + – + – + – – – +
Environmental friendly managed unit* + + + + – + + + – – – – –

12 Land Use and Cover Change Modeling as an Integration … 257



degradation increases with the distance from protected areas and environmental
friendly managed areas (Table 3). Together, these spatial factors lead to the general
pattern, both for temperate and tropical forests that the probability for deforestation
for pasture is high in the western part of the study area on the Pacific slope, while
the probability of deforestation for agriculture is elevated on the eastern or inland
side of the study area (Fig. 3). The highest probabilities for temperate forest
degradation are in the northern half of the study area (Fig. 3).

4.2 LUCC Tendencies—Econometric Model

The econometric models highlight a negative growth rate for the planted area for
beans and maize and a positive growth rate for the production of beef, the planted
area for grazing and the total planted area (Table 4). Stratification of the study area
into blocks of municipalities to check for sub-regional differences confirmed that
these tendencies for traditional crops and beef production are consistent all over the
study area.

The area of cultivated pastures for cattle ranching is positively related to the
production of beef in carcasses (not significant for the random effects model) and
the total cultivated area, but negatively related with the planted area for maize
(Table 5), as shown by the panel data analysis. The increase in grazing area was
thus associated with the expansion of the total cultivated area and the reduction of
the cultivated area for maize, indicating that pastures expanded at the expense of
beans and maize.

The random effects model indicates that the planted area for grazing is statisti-
cally significant but negatively related to the production of beef in carcasses which
is opposite to the results for the other models.

Table 4 Growth rates of beef in carcasses, area for maize, area for beans, area for grazing and the
total cultivated area for 2002 to 2012

Cultivated area maize Cultivated area beans Total cultivated

a b c a b c a b c

−0.0188* −0.022 −0.0180* −0.127** −0.134** −0.116** 0.00443+ 0.0104+ −0.004

(−3.03) (−1.09) (−3.06) (−9.78) (−6.44) (−9.85) −1.86 −2.15 (−0.90)

Cultivated area pasture Beef production

0.0168** 0.0116* 0.0383** 0.0271** 0.0409** 0.0114**

−5.88 −2.52 −5.63 −7.05 −5.58 −4.28

(a) For all municipalities, (b) all the municipalities that participated in the workshops and (c) all the other. T statistics in
parentheses, +p < 0.10, * < 0.05, **p < 0.01, number of observations in all cases was 10

258 M. Kolb et al.



4.3 Local Stakeholder Perceptions and Participatory
Scenarios

The workshops we organized revealed that those taking part had detailed knowl-
edge of the socioenvironmental changes in their region. This knowledge is of an
observational nature and has been nurtured through oral history. When asked about
the changes they had observed over the last 50 years, workshop participants said
that forest had decreased in both area and quality and there had also been a
reduction in total rainfall, water availability and water quality. The number of wild
fauna was also reported to have fallen.

Farmers described how they had stopped growing maize for subsistence and had
begun to grow commercial crops. Yet, they considered that the use of agrochem-
icals led to reduced yields and increases in pest frequency and abundance. The most
frequently mentioned commercial crops included rice and sugar cane. Rice was said
to have high yields because it is grown in areas with rich soils and high water
quality.

Deforestation occurred mainly because of the establishment of agricultural
fields, and especially because of pasture for livestock: a third, less important factor
was mining projects. Other factors mentioned were wood extraction and intentional
forest fires. Over time, the traditional life style of the rancherías (small rural
communities) has been lost and nowadays few people cultivate maize because of
the high cost of external inputs.

Several political and social drivers were mentioned. Governmental programs
fostered the colonization of the coastal areas (1950s) and led to the initial LUCC.
The construction of a sugar processing facility resulted in a widespread monocul-
ture of sugar cane (1960s). Road construction in the 1970s onset major LUCC in
the region. Large landowners, external actors and governmental incentives pro-
moted deforestation for livestock farming.

Table 5 Results of the panel data model

Fixed effects Random effects

a b c a b c

Beef production 0.166+ −0.0323 0.897** 0.106 −0.335* 0.758**

−1.72 (−0.34) −3.27 −1.11 (−2.45) −2.93

Beans 0.573 1.419 −6.444** 0.638 1.831 −6.848**

−0.69 −1.62 (−4.34) −0.76 −1.25 (−4.69)

Maize −0.934** −0.842** −0.556** −0.949** −0.936** −0.540**

(−17.53) (−8.05) (−9.69) (−18.13) (−5.60) (−9.80)

Total cultivated area 0.852** 0.884** 0.490** 0.867** 0.962** 0.475**

−64.49 −66.52 −12.58 −70.04 −51.39 −13

N° of observations 290 60 230 290 60 230

(a) For all municipalities, (b) all the municipalities that participated in the workshops and (c) all the
other municipalities. T statistics in parentheses, +p<0.10, *<0.05, **p<0.01
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Cultural aspects such as the change of lifestyle towards profit seeking and
consumerism were also deemed important. The implementation of a neoliberal
economic system by the federal government in the 1980s and 1990s through the
North American Free Trade Agreement (1994) led to a shift in the supply and
demand for agricultural products and farmers’ incomes were squeezed because
regional producers had to compete with international agro-business. Furthermore,
corruption at all levels of government was mentioned as an important factor, as well
as a general lack of education and agronomical expertise (Gerritsen et al. in press,
Lazos and Gerritsen in press).

The different drivers, their outcomes and their interrelations were visualized by
constructing a fuzzy cognitive map of the present (Fig. 4). It shows that the main
drivers of deforestation and expansion of conventional agriculture are: a lack of
(formal) education and information on sustainable agricultural innovations, market
driven demands, prices of inputs, long commercial chains, natural phenomena,
tourist development and land and resource privatization. Other secondary drivers
included policy design and implementation, lack of sustainable agricultural alter-
natives, farmers’ incomes, water pollution and decreased supply and the privati-
zation of land and other resources.

Fig. 4 Fuzzy cognitive map produced by local stakeholders from the Southern Coast of Jalisco
for the present. Main drivers are shown in medium grey, related (secondary) drivers in light gray
and main problems in dark grey. The numbers indicate the relative importance of the drivers
ranging from low (1) to high (4) (in Lazos and Gerritsen in press)
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5 Validation and/or Discussion of Results

Deforestation can be effectively managed only through a thorough understanding of
its principal ecological, socio-cultural, and economic driving forces. This has
stimulated research that focuses on the social causes and consequences of land use
change and land degradation. Improving the management of complex environ-
mental problems through land use planning has resulted in policy makers becoming
increasingly aware of the need to analyze these problems. This has led to a call for
the widening of the decision-making community to include actors not normally
considered as ‘experts’, but who possess equally valid and valuable knowledge and
perspectives of the problems affecting their region. Active involvement of the wider
stakeholder community can play a crucial role in improving the assessment and
solution of problems by identifying different stakeholder perspectives. It can also
provide an active learning arena for all those involved, and an interactive platform
for producing joined-up thinking. The case study clearly shows that in order to
make decision-making information more useful for policy makers, it is important
not only to clearly state the problem, but also to analyze the different related factors
and drivers. In this sense, as the case study also illustrates, stakeholder elicitations
can provide locally-specific feedback on policy making that is very hard to obtain
from other data sources, as well as helping to validate statistical findings.

Pattern-based models are popular in the LUCC modeling community as they
enable researchers to assess the historic legacy of LUCC processes and their per-
manence over time. They have an intermediate level of complexity and focus on
modeling the main change processes on the basis of empirical analysis of historic
spatial patterns of change. Normally the quality of a model is assessed by com-
paring its output to a known LUC map that has not been used in the model
calibration process (Pontius and Petrova 2010; Aspinall 2004). This procedure is
based on the notion of stationarity of LUCC processes, i.e., their magnitude and
tendencies remain constant over time. Nevertheless, the LUCC analysis for different
time steps and stakeholder perceptions clearly show that in the study area
non-stationarity is predominant. This case study shows that in a situation where
model validation per se is impossible, it is especially important to assess the
veracity of the historical tendencies used for calibrating the model with alternative
data sources.

With this case study we have shown that for this particular region the official
LUC maps do capture the main change processes, since both local stakeholder
perceptions and econometric models based on agricultural production statistics
confirm the LUCC tendencies of deforestation and agricultural expansion, espe-
cially in livestock farming, as the main change processes. Deforestation for agri-
culture has also taken place, but is much less important in extension, as has also
been reported in the literature (Maas et al. 2005; Farfán et al. 2016). The econo-
metric models confirm this difference in magnitude and show that beef production
and pasture for cattle ranching is clearly displacing the production of maize and
beans, the traditional staple crops. According to Ricardo’s agrarian model, this
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indicates that the land is being allocated to the activity that creates most profit at the
margin, in this case pasture for livestock. Another point mentioned by the local
stakeholders is the displacement of traditional agriculture and subsistence crops by
industrialized agricultural practices and commercial crops. This tendency cannot be
clearly observed solely by analyzing LUC maps, but an increase in irrigation
agriculture (as a proxy for industrialized agricultural practices) can be noted. Forest
degradation is one of the main change processes and has been clearly identified by
local stakeholders. Since no statistics are available regarding the extraction of wood
and other forest products in this region, in the case of forest degradation only LUC
maps and stakeholder perceptions can be used to compare tendencies, and although
stakeholders mentioned a decrease in forest quality, the huge extent of this process
discovered in the spatial analysis of LUC maps is not represented in local
perceptions.

As regards the drivers of change, the different data sources complement each
other quite well as they account for different scales, but also show some interesting
cross-referencing aspects. The stakeholder elicitations revealed a set of indirect
drivers underlying the direct drivers identified in the spatial analysis of historic
change. The combination of data sources reveals indirect drivers which are very
hard to consider in a spatial-only setting, since spatial information on distant drivers
is often not available and the relationships between these distant drivers and change
are difficult to detect. The lack of mentioned direct drivers could be attributed to the
separation in the local perceptions of the changes from the agents of change, i.e. the
local stakeholders themselves. This apparent disjunction arises because the actions
that lead to change are part of their daily lives. Demography (population increase)
and technology (industrialized agriculture) were not mentioned for similar reasons.
The indirect drivers included political, social, cultural and economic aspects, which
promoted agricultural expansion, especially cattle ranching. The spatial analysis of
the direct drivers of change showed that a large array of variables play a role in
LUCC. These include biophysical (bioclimate, topography, geomorphology,
hydrology, edaphology, ecosystem productivity), socio-economic (marginalization,
population growth, protected areas) and human impact (fragmentation, deforesta-
tion risk, roads) factors. The LUCC probability maps make use of these spatial
direct drivers that influence spatial patterns of land use, in order to account for
spatial variation in the biophysical and socio-economic environment. The differ-
ences between the locations with the highest probabilities of change for agriculture
and pasture could be further explained by the differences in remoteness and market
incorporation. The areas belonging to the Pacific slope are not completely inte-
grated into the market and the mountain chain that separates this region from the
more populated and developed inland regions is a major obstacle to cross. The
econometric models showed that pasture for cattle and beef production is a sig-
nificant driver of change, since the traditional crops are being replaced with pasture
for cattle. When these models are combined, a detailed picture of regional LUCC
drivers emerges in its historical context.

In general, different data sources are quite consistent, which could be attributed
to the strong and steady tendencies of the main change processes over the last
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decades. This meant that even the temporal differences between the data sources did
not prevent cross-referencing. Stakeholder perceptions of what happened in the
earlier period for which there is no LUCC data provides a historic context for the
changes observed in the last two decades in the other data sets. Unfortunately,
agricultural production data in Mexico only started being collected in 2002 and thus
only shares one decade with the other data sets. Nevertheless, this decade is suf-
ficient to capture LUCC tendencies based on econometric data. LUCC is a
long-term broad-scale disturbance related to public politics, which determines
regional landscape dynamics that were validated by cross referencing the different
data sources.

Data sources also provide different views of change. One of the most basic
differences was the temporal dynamics of change. While only mentioned very
generally in the local elicitations, the spatial analysis is very explicit about changes
in the magnitude of change processes over time. Elicitations about these temporal
changes could be included in future work with stakeholders to discuss the direct and
indirect drivers behind the observed decrease in LUCC. A possibility for data based
cross-referencing could be the temporal analysis of various measures implemented
for environmental conservation (protected areas and payment for ecosystem ser-
vices) and compare those with subsidies from the agricultural sector on a regional
level.

Studies at a national scale are necessary for certain objectives and are infor-
mative in general terms, but those at a sub-national regional scale offer interesting
insights into specific change processes, their magnitude and relative importance.
For this region, several local scale LUCC studies have been conducted, but this is
the first time that regional scale analysis has been carried out. Most studies focus on
a small watershed (Cuitzmala) and evaluate the effects (such as functional disrup-
tion and soil erosion) of LUCC on ecosystems and their biotic and abiotic com-
ponents (Maass et al. 2005; Cotler y Ortega-Larrocea 2006). Burgos and Maass
(2004) analyzed LUCC by establishing transitions validated by local perceptions
and reported forest-agriculture transitions in flatlands, forest-pasture on slopes and
wood extraction on hilltops as the main pathways. Natural regeneration is reported
to start one to three years after abandonment and to remain in a successional phase
dominated by Acacia and Mimosa spp for at least 20 years. Farfán et al. (2016)
analyzed LUCC in the Manantlán Biosphere reserve and found that temperate
forests are more stable than tropical forests, which are mainly converted into
pastures.

Even though overall deforestation rates are not so high as to qualify the region as
a deforestation hot spot (defined as more than 2% annual deforestation of total
forest area), primary tropical dry forests, oak forests and pine-oak forests suffered
very high deforestation rates at the beginning of the study period (1993–2002). The
forest type with most relative losses was the tropical semi-dry forest. Deforestation
rates plummeted in subsequent years and only oak and tropical dry forests continue
to undergo considerable deforestation. If besides deforestation the successional state
and forest degradation are taken into account, a much more severe picture of LUCC
emerges: Primary vegetation cover decreased from 42% in 1993 to 28% in 2011.
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Even though not all of this loss is due to deforestation, the increase of secondary
vegetation from 26 to 38% of the same period indicates an important loss of
ecological integrity. In the study area, the coastal zone where the stakeholder
workshops took place has been the main focus of attention from the academic
sector, and there is also a wealth of information on tropical dry forests. However
little research has been done on the temperate forests covering a large section of the
study area. It would be a good idea to widen the research approach to include
the higher sections of the study area, because of their ecological connectivity with
the low-lying tropical regions (e.g. watershed management). One of the options to
encourage the maintenance of these temperate forests could be a sustainable for-
estry plan, allowing the forests to be partially used for timber and non-timber
products, as opposed to tropical dry forests, which are not suitable for commercial
forestry because of their high species diversity and patchy distribution (Maass et al.
2005). This could also be combined with poverty alleviation programs, since the
most marginalized settlements are located in the higher mountainous part of the
study area. Nowadays, the majority of the population living in these settlements are
engaged in agricultural activities, which puts a lot of pressure on natural vegetation
(Gerritsen 2012).

6 Conclusion and Outlook

In this case study LUCC modeling has been used as an integration tool for local and
landscape scale data sources, spatial and non-spatial data, qualitative
socio-economic and quantitative biogeophysical data. The subdivision of the study
area in the econometric models showed that the main processes are consistent all
over the region and that the information for the municipalities participating in the
stakeholder elicitations can be used to indicate regional scale tendencies. This
congruence of sources implies that LUCC probability maps are based on validated
LUCC dynamics, so diminishing doubts about map accuracy and the resulting
effects for LUCC modeling. This also means that the outcomes of this study can be
used by the research team and the local stakeholders in subsequent steps towards
spatial participatory scenarios for decision-making. Besides the cross-referencing
and validation effect, a consequence of the interdisciplinary working group and the
integration of otherwise disconnected data is that the information is enriched via
complementarities among data sources.
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Chapter 13
Urban Land Use Change Analysis
and Modeling: A Case Study
of the Gaza Strip

B. Abuelaish

Abstract Analysis of land use and land cover change is of prime importance for
understanding the ecological dynamics resulting from natural and human activities,
and for the assessment and prediction of environmental change. The population of
the Gaza Strip will have grown to more than 2.4 million by 2023 all of whom are
forced to live within an area of some 365 km2. This growth in population will lead
to an increase in land demand, and will far exceed the sustainable land use capacity.
The Gaza Strip is a relatively small area in which land use planning has not kept up
with land development. Continued urban expansion and population growth in the
future will place additional stress on land cover, unless appropriate integrated
planning and management decisions are taken immediately. Decision-makers need
further statistics and estimation tools to achieve their vision for the future of the
Gaza Strip based on sound, accurate information. This study combines the use of
satellite remote sensing with geographic information systems (GISs). The spatial
database was developed by using six Landsat images taken in 1972, 1982, 1990,
2002, 2013 and 2014, together with different geodatabases for those years. Five past
trend scenarios were selected for simulation to be completed by the year 2023 using
the Land Change Modeler in the Idrisi Terrset software. These different scenarios,
one of which takes into account the damage incurred during the 2014 War, try to
cover the possible variations in areas and spatial distribution resulting from changes
in land use. As an average over the five scenarios, by 2023 the projected urban area
will have increased to 206.24 km2 or 57.13% of the Gaza Strip.
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1 Introduction

Understanding, predicting and analyzing land use and cover change is enormously
important for future planning. One of the major factors affecting land use in the
Gaza Strip is rapid population growth, one of the most significant issues in
Palestinian society today. According to the Palestinian Central Bureau of Statistics
(PCBS), with the recent growth rates of 3.44% in mid-2013, and 3.41% in mid
2014 (PCBS 2014) the population of the Gaza Strip will have grown to over 2.4
million by 2023. This area already has one of the highest population densities in the
world with an estimated 3,956 persons/km2 in 2006. This figure is even higher in
the Gaza governorate (around 6,834 persons/km2) where most of the population is
concentrated. Another serious problem in Gaza is urban sprawl. The number of
housing units in the Gaza Strip increased from 116,445 in 1997 to 147,437 in 2007
(PCBS 2012). Many human and natural factors have increased pressure on land use
in this region, resulting in deteriorating quality and quantity of land (Abuelaish and
Camacho 2016). Urbanization leads to increasing pressure on natural ecosystems
(Taubenbock et al. 2012; Haas and Ban 2014) and brings with it soil, water and air
pollution (Duh et al. 2006; Ren et al. 2003).

The Gaza Strip has been a theatre of conflict for decades. Each of these conflicts
has left its mark, and a significant environmental footprint has developed in the
Gaza Strip over time (UNEP 2009). The population growth rate and the urban
expansion it drives affect the whole region. In general people prefer to live close to
the urban facilities and infrastructures, usually found in the center of the residential
areas, and to avoid the dangerous areas. The Gaza Strip has been directly involved
in many wars, most recently in 2008, 2012 and 2014. The 2014 war was the most
destructive in terms of buildings and infrastructure. The Israeli offensive against the
Gaza Strip was launched on 8th July and continued until 26th August 2014. It left
devastation all across this region, ranging from damage to complete destruction of
thousands of homes. Post-war reconstruction is likely to exacerbate the normal
urban growth rate, so adding a greater burden on this already congested country.

Several monitoring techniques, such as Remote Sensing, are very useful for
gathering the data required for land use change assessment, urban planning, urban
sprawl and other environmental issues. Land use changes must be monitored at
suitable intervals in order to update the knowledge required to support decision
making. Monitoring of land use and land cover requires the support of two
parameters: spatial resolution and temporal frequencies (Curran 1985; Janssen
1993; Hualou et al. 2007). Modeling can be defined within the context of geo-
graphic information systems (GISs) as occurs whenever GIS operations attempt to
emulate processing in the real world, at one point in time or over an extended period
(Goodchild 2005; Paegelow et al. 2013). GIS models go beyond simply evaluating
the future and are used to assess different scenarios, on the basis of the historical
data retrieved from multiple resources. Scenarios have emerged as useful tools to
explore uncertain futures in ecological and anthropogenic systems (Sleeter et al.
2012). Scenarios typically lack quantified probabilities (Nakicenovic and Swart 2000;
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Swart et al. 2004), functioning instead as alternative narratives or storylines that
capture important elements about the future (Nakicenovic and Swart 2000; Peterson
et al. 2003; Swart et al. 2004). Alcamo et al. (2008) define scenarios as “descrip-
tions of how the future may unfold based on ‘if-then’ propositions.” Scenarios
provide a structured framework for the exploration of alternative future pathways,
and are used to assist in the understanding of possible future developments in
complex systems that typically have high levels of scientific uncertainty
(Nakicenovic and Swart 2000; Raskin et al. 1998). Plausible scenarios generally
require knowledge of how drivers of change have acted to influence historical and
current conditions (Sleeter et al. 2012).

This study aimed to analyze urban growth and monitor the spatial and temporal
changes from 1972 to 2014 within five past trend scenarios using a model based on
GIS techniques and remote sensing data. One of these scenarios takes into account
the damage caused by the 2014 war. Scenarios are proposed to 2023, which can be
helpful for planning decisions to be taken in the Gaza Strip within this timeframe.
These decisions will be have an enormous impact on the future of environmental
issues and urban development.

This paper begins by presenting the study area of the Gaza Strip. We then
explain the methodology, including data processing, land change analysis, simu-
lation and modeling of the study area before and after the 2014 war in the Gaza
Strip. Finally, we present the results, discussion and conclusions.

2 Study Area and Dataset

2.1 Study Area

The Gaza Strip is a narrow area on the Mediterranean coastal plain. It is approxi-
mately 41 km long, and from 6 to 12 km wide, with a total area of 365 km2. It
shares a 12 km border with Egypt to the southwest and is surrounded by Israel to
the east and north (the rest of the Strip—51 km of borders), as shown in Fig. 1. The
Gaza Strip has a temperate climate, with mild winters (about 13 °C) and hot
summers with frequent droughts (high 20 s °C). Average rainfall is about 300 mm a
year (MOAg 2013). The terrain is flat or rolling, with dunes near the coast. In terms
of topography the Gaza Strip slopes gradually downwards from east to west with
the land surface elevation varying between 10 m above sea level in the west to
110 m above sea level in the east.

In 1948, the Gaza Strip had a population of less than 100,000 people (Ennab
1994), however by 2007, it had risen sharply to around 1.4 million (Census 2007).
The total population in 2014 was estimated to be in excess of 1.79 million and, at
the end of 2015, about 1.82 million inhabitants, distributed across five Governorates
(PCBS 2015), of whom almost 1.3 million were UN-registered refugees. Gaza City,
which is the biggest governorate, has some 625,824 inhabitants. The other two
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main governorates are Khan Younis and Rafah in the southern part of the Gaza
Strip, which have 341,393 and 225,538 inhabitants, respectively. There is also the
Northern Governorate, with a population of about 362,772, and the Middle
Governorate, which has 264,455 inhabitants. The smallest governorate in terms of
area is the Middle Governorate, with 55.19 km2. This is followed by Rafah
(60.19 km2), the Northern Governorate (60.66 km2), and Gaza (72.44 km2). The
largest governorate is Khan Younis with an area of 111.61 km2, as shown in Fig. 1.

Agriculture is the economic mainstay of the employed population, and nearly
three quarters of the land area is under cultivation. On the Gaza coastal plain the
original Saharo-Sindian flora has been almost completely replaced by farmland and
buildings. Gaza has six main vegetation zones: the littoral zone along the coast, the
stabilized dunes and blown-out dune valleys, the Kurkar, alluvial and grumosolic
soils in the northern part, the loessial plains in the east, and three wadi (valley) areas
(UNEP 2006).

Fig. 1 Location on the Gaza Strip
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2.2 Dataset

The spatial database has been produced using the historical Landsat images from
1972, 1982, 1990, 2002, 2013 and 2014, as shown in Table 1. The images were
rectified from the aerial photos for 2007 using Erdas Imagine 2013. Generalized
digitalization was used to build the urban GIS database using ArcGIS 10.2; inter-
pretation was mainly visual, and both supervised and unsupervised classifications
were used for more control and interpretation. The cell size of the entire dataset was
converted to 15 � 15 meters. The database was validated before starting the
analysis by tracking data with high resolution aerial photographs taken before and
after a particular year. As no aerial photographs were available for the last year, we
validated some points that were in doubt using the UNITAR database.

For the purposes of this research, we considered the whole Gaza Strip area as
suitable for agriculture and classified the land into two classes: urban and agri-
cultural areas (non-urban areas). Some other land uses and land covers in the study
area were also considered as agricultural in this study.

On 20th November 2014, the UNRWA, UNDP and the Ministry of Public Works
and Housing (MOPWH) announced the conclusion of their assessment of the
damage caused to housing during the 2014 War, which they had conducted jointly
over a two month period. 6,761 residential buildings were totally destroyed
(including more than 11,000 housing units), 3,565 were severely damaged and 4,938
units were moderately damaged, as shown in Table 2. The UNITAR/UNOSAT

Table 1 Landsat data used in this study

Sensor Row Data type

Landsat MSS 188/38 22/10/1972

Landsat 3 TM 188/38 13/08/1982

Landsat 5 TM 174/38 11/06/1990

Landsat 7 ETM+ 175/38 05/07/2002

Landsat 8 175/38 25/06/2013

Landsat 7 ETM+ 175/38 24/09/2014

GIS dataset of UNOSAT/UNITAR Geodatabase Field Survey, October/2014

Table 2 Buildings damaged during the 2014 War

Destroyed Severely
Damaged

Moderately
Damaged

Total Structures
Affected

Crater
Impact

North 1,253 761 1,000 3,014 1,702

Gaza 1,963 1,127 1,378 4,468 1,765

Middle 809 406 683 1,898 553

KhanYounis 1,749 898 1,379 4,026 1,549

Rafah 987 373 498 1,858 1,904

TOTAL 6,761 3,565 4,938 15,264 7,473

Source UNITAR/UNOSAT (2014)
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created geodatabases based on field work and high resolution satellite images. All
images used to analyze the conflict were taken by the Pleiades satellites operated by
Airbus Defense and Space, which provide 50 cm resolution images
(UNITAR/UNOSAT 2014). The UNITAR/UNOSAT Geodatabase contains a total
of 22,745 sites with crater impacts or some form of damage to housing after attacks
during the war.

3 Methodology and Practical Application to the Datasets

The flow chart in Fig. 2 shows the methods used in the research reported in this
paper, including the definition and creation of a database using remote sensing and
GIS, land changes analysis, proposal and testing of explanatory variables, modeling
and scenarios development of scenarios in the Gaza Strip.

3.1 Land Use Model and Data

3.1.1 Land Change Analysis

The chronological series of LUC maps was analyzed to detect changes.
A quantitative assessment of category-wise land use changes in terms of net
changes, swap, gains, losses and total changes (Eastman 2012) was extracted from
several pairs of data, and the results are shown in maps and statistics. The change
analysis was performed specifically between two images from 1972, 1982, 1990,
2002, 2013 and 2014 to understand the transitions in land-use classes over the
years. A multiple regression line was created to predict the future urban area, and
statistical values for the changes occurred in the area were represented on a scatter
diagram.

3.1.2 Proposal and Testing of Explanatory Variables

Five static drivers were selected to simulate and predict the future urban area in
2023. The first driver is the distance from the main and regional roads in 2013,
given that the population prefers to buy and live in houses overlooking the roads,
which are also considered good investments. The second driver is elevation,
because people prefer high locations which are considered to be safe from floods
during rainfalls and have a more temperate climate in summer. The third driver is
the distance from the urban area in 2013, since people prefer to live close to
well-established urban areas with better infrastructure and services, which are safer
during Israeli military attacks. The fourth driver is the 1 km wide buffer zone along
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the border between the Gaza Strip and Israel. This is a restricted area which people
are forbidden to enter. The fifth driver is the buildings destroyed during the 2014
War. It is only used in the 2002–2014 scenario.

Fig. 2 Methodology flow chart of land-change analysis, potential and simulation
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The quantitative measure of the influence of the variables can be obtained using
Cramer’s V. A high Cramer’s V value indicates that the variable has good
explanatory potential, but does not guarantee a strong performance since it cannot
take into account the mathematical requirements of the modeling approach or the
complexity of the relationship. However, a very low Cramer’s V value is a good
indication that a variable can be discarded (Eastman 2012). The Cramer’s V values
for these drivers for all the calibrated periods were Elevation 0.142, Roads 0.169,
Distance to built-up areas 0.707 and Border buffer zone 0.230.

We noticed that the Cramer’s V values were similar for all the calibrated periods
using the same latest land cover map (2013). Cramer’s V values for the calibrated
period (2002–2014) were also very similar, and its fifth key driver of “buildings
destroyed during the war” obtained a value of 0.0294.

Even though the “buildings destroyed during the war” variable could be dis-
carded because it has a very low Cramer’s V value of 0.0294, we decided to
include it because it is a key driver for reconstruction.

The results from the categories revealed that the distance to built-up areas and
away from the border buffer zone were the main drivers for all predictions.

3.2 Methodology for Modeling and Scenario Development

In order to project the urban area in 2023, we selected a GIS model in Idrisi Terrset
software called the Land Change Model (LCM). This model is used to analyze land
cover change, empirically modeling its relationship to explanatory variables and
projecting future changes (Eastman 2012).

3.2.1 Land Change Potential: Transition Potential Maps

To predict the change, each land use transition must be modeled empirically on
maps called transition potential maps. These maps are used together with driver
maps. A collection of factors are obtained from these drivers by the Natural Log
Transformation. The Natural Log Transformation is effective in linearizing distance
decay variables (e.g., proximity to roads) (Eastman 2012).

The transition potential maps are in essence potential maps for each transition in
LCM. A collection of transition potential maps is organized within an empirically
evaluated transition sub-model that has the same underlying driver variables.
A transition sub-model can consist of a single land cover transition or a group of
transitions that are thought to have the same underlying driver variables. These
driver variables are used to model the historical change process. The transition
potential maps are obtained by Multilayer Perceptron (MLP) in LCM. The MLP
option can run multiple transitions and undertakes the classification of
remotely-sensed imagery through the artificial neural network multi-layer percep-
tron technique. It uses an algorithm to set the number of hidden layer nodes.
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MLP automatically evaluates and weights each factor and implicitly takes into
account the cor-relations between the explanatory maps (Eastman 2012).

3.2.2 Land Change Simulation: The Estimated Quantities

The Markov transition area matrix is based on land-use changes without drivers that
are produced within the Markov chain from two different dates. This matrix results
from the multiplication of each column in the transition probability matrix by the
number of cells for the corresponding land use in the last image for the year 2013 or
2014.

Markov chain analysis is used to calculate the estimated quantities in 2023
within the urban data for all the scenarios (1972–2013), (1982–2013), (1990–2013),
(2002–2013) and (2002–2014) up to 2023.

The MARKOV module computes the transition areas matrix and the transition
probability matrix by cross tabulation between LUC categories from two maps (t0
to t1), which reflect data from the calibration stage, to project the estimated changes
and persistence at the simulation stage (t1 to T). The estimation to T is based on the
number of time periods between t0 and t1 and the number of time periods between
t1 and T, respecting in any case the same time units. A more detailed description of
the MARKOV matrix can be found in the Idrisi Terrset Help System and also in
Mas et al. (2014). The Markov chain analysis is one of the most widely used
stochastic approaches in ecological and environmental modeling (Paegelow and
Camacho 2008).

Linear regression was used to compare the results of the Markov chain data, i.e.
an approach which uses the historical relationship between a dependent variable
and one or more independent variables (the year and the population) to predict the
future values of the dependent variable, in this case urban areas. The multiple linear
statistical regression was used for simulation of the built-up area using the Enter
method to enter all variables for the year 2023 at the same time on the basis of the
urban area in 1972, 1982, 1990, 2002, 2013 and 2014. The growth rate and other
statistics were calculated using Microsoft Excel.

3.2.3 Land Change Simulation: The Scenario

The five scenarios are simulated in a single model to predict the likely urban area in
2023. The LCM model uses an a priori identical Multi-Objective Land Allocation
(MOLA) to solve the concurrences between different uses or transitions, in which
the MOLA works only once. This process is based on the choice of the most
suitable pixels, i.e., those with the greatest change potential in the change potential
maps (ranked from high to low). Through the Markov matrix, the MOLA creates a
list of host classes (categories that will lose area, in rows) and claimant classes
(categories that will gain area, in columns) for each host. The land allocation
process is conducted for all the claimant classes in each host class. In this way it
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solves the conflicts based on a minimum-distance-to-ideal-point rule using the
weighted ranks, and the final result is the overlay of each host class reallocation
(Eastman et al. 1995; Mas et al. 2014).

4 Results

4.1 Land Change Analysis of Chronological Series
of LUC Maps

The results showed a drastic change in land cover and the growth of the urban area
between 1972 and 2014, as shown in Fig. 3, when many agricultural areas were
urbanized. This has happened in a largely unplanned, somewhat chaotic fashion, so
revealing the need for land-use managers and city planners to understand future
growth and plan further developments. Over this period urban areas have grown
continuously, whereas non-urban (agricultural) areas have shrunk at similar rates, as
shown in Table 3.

Fig. 3 Urban areas from 1972 to 2014
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4.2 Transition Potential Maps

The MLP Neural network was used to obtain the transition potential map for the
transition from Non-Urban to Urban area, as shown in Fig. 4a to Fig. 4e, based on
the real transition over the various calibration periods (1972, 1982, 1990, and 2002)
to 2013, and (2002) to 2014. The high transition potential values are located around
the built-up area with the biggest population density (low distance). Figure 4 shows
the transition potential maps for the five scenarios.

Table 3 Urban and non-urban areas from 1972 to 2014

Year Urban, km2 Urban, % Non-urban km2 Non-urban, %

1972 10.94 3.00 349.06 96.96

1982 25.29 7.00 334.71 92.98

1990 46.88 12.80 313.12 86.98

2002 100.23 27.40 259.77 72.16

2013 166.29 46.20 193.71 53.81

2014 164.80 45.78 195.20 54.22

Fig. 4 MLP transition potential map from non-urban to urban area for LCM for a (1972–2013),
b (1982–2013), c (1990–2013), d (2002–2013), e (2002–2014)
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4.3 The Estimated Quantities

The Markov transition area matrix (Fig. 5) shows areas (km2) in which a transition
between two classes will have taken place by 2023. Rows represent land use in the
calibration period in 2013 or 2014 and columns represent land use in the simulation
year 2023, based on the five scenarios.

A multiple regression analysis shows the historical relationship between the
urban area, the year and the population (independent variables) to project the future
of the urban area for the year 2023, i.e. 240.79 km2, using the Enter method. The
results of the stepwise method show that population growth has had a direct effect
on urban expansion. The significant number is around zero and the urban area is
246.5 km2.

Fig. 5 Transition area matrix for the estimation of urban areas in the five scenarios by the year
2023, and 1972, 1982, 1990, 2002, 2013 and 2014 in area (km2)
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The adjusted R2 is therefore 0.98, meaning that predicted values statistically
demonstrate a high ‘goodness of fit’. The stepwise regression equation can be
expressed as follows:

Y ¼ �1; 016:667þ 0:501X1 þ 9:985 � 10�5X2

The diagram in Fig. 6 shows a comparison between six past trend scenarios.
The first five scenarios are the Markov chains from (1972–2013), (1982–2013),
(1990–2013), (2002–2013) and (2002–2014) to 2023; and the sixth one is the
regression line to 2023 depending on the basic data using the Enter method, which
gave areas of 202.35, 204.89, 206.95, 212.32, 204.70 and 240.79 km2, respectively.

The diagram in Fig. 6 shows a comparison between six past trend scenarios. The
first five scenarios are the Markov chains from (1972–2013), (1982–2013), (1990–
2013), (2002–2013) and (2002–2014) to 2023; and the sixth one is the regression
line to 2023 depending on the basic data using the Enter method, which gave areas
of 202.35, 204.89, 206.95, 212.32, 204.70 and 240.79 km2, respectively.

4.4 Simulation Maps: Scenario to 2023

The results of the simulation in the five scenarios varied according to the Markov
chains, i.e. (1972–2013), (1982–2013), (1990–2013), (2002–2013) and
(2002–2014) were 202.35, 204.89, 206.95, 212.32 and 204.70 km2, respectively, as
shown in Fig. 7.

Fig. 6 The plot lines for urban area in km2 from 1972 to 2023, Markov chain (1972–2013),
Markov chain (1982–2013), Markov chain (1990–2013), Markov chain (2002–2013), Markov
chain (2002–2014), and regression analysis
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The results of the simulation (individual results for each scenario and the average
of all five) are presented in Fig. 8 and Table 4, which show an increase in urban
areas and a decrease in non-urban areas between 1972 and 2014. The predicted
urban and non-urban areas for 2023 for the periods (1972–2013), (1982–2013),
(1990–2013), (2002–2013), and (2002–2014 after the war) are presented in
Table 4.

Fig. 7 a Real map 2013 and simulated maps for the year 2023 as results of b Scenario (1972–
2013), c Scenario (1982–2013), and d Scenario (1990–2013), e Scenario (2002–2013), f Scenario
(2002–2014)

284 B. Abuelaish



5 Discussion

The overall results of the five LCM scenarios analyze and simulate land-use
changes in the Gaza Strip. The results of the past trend scenarios for spatial dis-
tribution per area in 2023 presented both differences and similarities in the allo-
cation of urban area. We discovered an inverse relationship between the predicted
area by 2023 and the length of the calibration period, in that the longer the cali-
bration period the smaller the growth in urban area predicted. The urban areas for
2023 predicted by the calibration periods (1972–2013), (1982–2013), (1990–2013)
and (2002–2013) were 202.35, 204.89, 206.95 and 212.32 km2. The calibration
period (2002–2014), which showed an increase in urban area to 204.7 km2 by
2023, is slightly exceptional due to the fact that it includes the 2014 War.

The results for calibration periods 2002–2013 and 2002–2014 have a high
“goodness of fit”, because they both obtained values close to the regression analysis

Fig. 8 Increase in urban areas and decrease in non-urban areas from 1972 to 2023

Table 4 Area and percentage of urban and non-urban areas in all scenarios

Scenario Year Urban, km2 Urban, % Non-urban, km2 Non-urban, %

1972–2013 2023 (1) 202.37 56.21 157.63 43.79

1982–2013 2023 (2) 204.89 56.91 155.11 43.09

1990–2013 2023 (3) 206.95 57.49 153.05 42.51

2002–2013 2023 (4) 212.34 58.98 147.66 41.02

2002–2014 2023 (5) 204.70 56.86 155.30 43.14

Average 2023 (avg.) 206.25 57.29 153.75 42.71
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value (240.79) used to measure statistical best fit values, while the values for the
other scenarios were substantially further away from the regression analysis value.

As a percentage of the total area of the Gaza Strip, the scenarios predict that
between 56.21 and 58.98% will be urbanized by 2023. The data analysis shows an
increase in the urban area from 10.9 (1972) to 25.3 (1982), 46.9 (1990), 100.2
(2002), 166.3 (2013) and 206.24 km2 in 2023, the average area predicted by the
various simulations for the whole Gaza Strip (i.e. around 57.13% of the total).
While the decrease in Agricultural areas (Non-Urban Area) was caused by an
increase in population growth rate and a lack of management and future planning.

Figure 9 illustrates the increase in the rate of growth in urban area as a per-
centage of the total area of the Gaza Strip for each time period (1972–1982), (1983–
1990), (1991–2002), (2003–2013), 2014 and (2015–2023), with rates of 0.40,
0.7584, 1.35, 1.83, −0.39 and 1.44% from 1972 to 2023, which implies a positive
relationship with the rate of population growth.

The population density for the whole of the Gaza Strip will therefore have
in-creased from 4,661.5 inhabitants per km2 in 2013 to 6,704.3 inhabitants per km2

in 2023. However, in the urban areas the increase will be from 10,231.1 inhabitants
per km2 in 2013 to 11,865.1 inhabitants per km2 in 2023. Table 5 shows that urban
expansion is positively correlated with population growth in the Gaza Strip, which
already has one of the highest population densities in the world.

The Palestinian economy in the Gaza strip grew in line with the Israeli economy
over the period from 1972 to 2000. There was a dramatic rise in the Palestinian
standard of living from 1972 until the eruption of the first Intifada (uprising) in
1987. The main reason for improved living standards was the opening of the rapidly
expanding Israeli job market to Palestinian workers (Swirski 2008). The situation
continued until the signing of the 1993 Oslo Accords. From 1994 to 2000 there
were huge urban projects and a great deal of investment leading to urban expansion
(Abuelaish and Camacho 2016).

Fig. 9 Population and urban
growth rates for the different
periods, from 1972 to 2023
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Many of the Palestinian workers in Israel, considered the mainstay of the
Palestinian economy have been unemployed since the conflicts in 2000. In 2007 an
economic blockade was started around the Gaza Strip, which for a short period
prevented urban expansion from continuing at the same rate as before. From 1972
to 1994 urbanization was more vertical than horizontal, a situation that was reversed
thereafter (Abuelaish and Camacho 2016).
Effects of the 2104 War

According to the Ministry of Public Works and Housing (MOPWH), an esti-
mated 2,000 tons of cement for residential construction purposes enter the Gaza
Strip daily. This would give a monthly figure of around 44,000 tons. Ground floors
require about 0.54 tons of cement per m2, while all other floors require 0.21 ton/m2;
the average area of buildings in the Gaza Strip is 150 m2. Of the 11,000 housing
units destroyed during the war, 5,990 had ground floors, and there were 5,189 on
other floors. Hence, 648,643.5 tons of cement would be required for reconstructing
all the destroyed housing units. At the current supply rate of 44,000 tons a month,
reconstruction would therefore take 15 months. This is an ideal scenario in which
allowing cement to enter the country and receiving funds to rebuild the residential
housing units are essential factors.

According to the temporary agreement for the Gaza Reconstruction Mechanism
(GRM) in Shelter Cluster Palestine (February, 2016), 1,107,519 tons of cement
have entered the Gaza Strip since October 2014. Around 44% has been used for
residential purposes, i.e. 487,308.36 tons. This is enough cement to rebuild 6,016
ground-floor apartments or 15,470 apartments above ground-floor level.

Table 6 shows the completed housing units, those in progress, funded, and
awaiting funds from donors as of February 2016, according to Shelter Cluster
Palestine. Around 83% of the destroyed housing units are still awaiting funds from
donors, which means that a significant amount of the cement must be being used to
build new housing units in different places. These construction materials are not
only being used to reconstruct destroyed buildings but also to cover normal urban
growth and supply building companies everywhere. The black market is playing a
major role in selling cement outside the GRM as a result of shortages in the system.
This has allowed people to build new houses without a license. Since the war,
people prefer to buy housing units in the center of urban areas and to live in

Table 5 Increase in urban area, population number and population density from 1972 to 2023

Year Population
No.

Area
(km2)

%
Area

Population Density
No./area

Actual
Pop. Density

1972 393,800 10.9 3 1,078.9 36,128.4

1982 511,115 25.3 7 1,400.3 20,202.2

1990 642,814 46.9 12.8 1,761.1 13,706.1

2002 1,182,908 100.2 27.4 3,240.8 11,805.5

2013 1,701,437 166.3 46.2 4661.5 10231.1

2014 1,760,037 164.80 45.78 4822.0 10679.84

2023 2,447,054 206.24 57.13 6704.3 11865.1
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apartment buildings. This is because town centers are considered safer and new
building on urban land with planning permission tends to be very expensive.

According to the 2007 Census, there were 241,873 housing units in the Gaza
Strip, and according to the projected number of households and housing units in the
Gaza Strip using the hypothesis of average number of households per year (PCBS
2009), about 15,529 housing units were required in 2015 and 16,284 in 2016. The
amount of cement that entered the Gaza Strip in the previous period was enough for
normal urban growth but there were problems for reconstructing the destroyed
buildings due to a shortage of donor finance. Around 10–15% of the destroyed
housing units were reconstructed in the 15 months between September 2014 and
February 2016. International donors at the Cairo Donor Conference on 12th
October 2014 pledged over USD 5.4 billion to support the plan to rebuild the Gaza
Strip.

Reconstruction of the Gaza Strip is a priority for the Palestinian Authority, and
all the destroyed buildings during war 2014 are entitled to financial support. The
reconstruction efforts however depend on financial support from the donors, and
also on Israel allowing construction materials to enter the Gaza Strip. Since the
shortage of building materials due to the blockade affects both reconstruction efforts
and natural urban growth, if the blockade ended, the Gaza Strip would return to its
previous natural urban growth rate. The fact is however that there is no guarantee
that Israel will not repeat past behavior and launch new wars on the Gaza Strip, and
there is no expectation of the economic blockade coming to an end soon.

This study tries to answer questions about the future of the Gaza Strip and the
impacts on its environment. This information is useful for decision-makers and
politicians, who are regularly faced with questions about the complicated situation
in the Gaza Strip as a result of its weak economic resources, and the lack of donor
support from countries concerned by other conflicts such as in Syria. Most of the
houses destroyed during the war belong to poor people who are waiting for
financial support to rebuild their houses. Many urban areas were destroyed during
the war and their reconstruction would be harder without modeling exercises such
as the one presented here.

Table 6 Repairs and reconstruction of the housing units damaged and destroyed during the 2014
War

# Units* Completed In progress Funded Gap

Totally destroyed 11,000 937 591 3,479 5,993

Severe damage 6,800 2,034 3,027 1,097 642

Major damage 5,700 119 1,075 1,747 2,759

Minor damage 147,500 69,428 9,936 10,060 58,076

Source Shelter Cluster Palestine (February, 2016)
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6 Conclusions

This paper presents, analyses, evaluates, and simulates urban expansion for the
years 1972 to 2014 to 2023, using the historical free Landsat data and the free
UNITAR/UNOSAT Geodatabase for the areas attacked during the 2014 war. These
simulations are based on the continuity of observed past trends and are not exact
predictions. Instead they are plausible scenarios of a future state assuming the
maintenance of macro-political and social conditions.

The following conclusions were drawn from the results of this research in which
we performed a simulation of urban growth in the Gaza Strip for the year 2023
using five scenarios and the Land Change Modeler:

• Around 57.13% of the Gaza Strip will be urban land.
• Around 10–15% of the buildings and infrastructure damaged during the war had

been rebuilt and returned to their previous state of natural growth by February
2016.

• The amount of building materials entering the Gaza Strip must be increased and
additional support must be given to the people who lost their houses during the
2014 War.

• There is an inverse relationship between the predicted urban area for 2023 and
the length of the calibration period.

• Urbanization in the Gaza Strip is increasing dramatically because of natural
population growth. This is placing more stress on agricultural areas, causing soil
erosion and impairing water quality and quantity.

• Urban planners should take into account that in the near future the three main
urban areas will merge into one.

• Urban sprawl increases over time at the expense of agricultural land, above all
due to an increase in population.

• The reduction in agricultural land in the Gaza Strip and the pressure placed on
natural resources will contribute to local and global climate change.
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Chapter 14
Constraint Cellular Automata for Urban
Development Simulation: An Application
to the Strasbourg-Kehl Cross-Border Area

J.P. Antoni, V. Judge, G. Vuidel and O. Klein

Abstract Urban sprawl and space consumption have become key issues in sus-
tainable territorial development. Traditional planning approaches are often insuffi-
cient to anticipate their complex spatial consequences, especially in cross-border
areas. Such complexity requires the use of dynamic spatial simulations and the
development of adapted tools like LucSim, a CA-based tool offering solutions for
sharing spatial data and simulations among scientists, technicians and stakeholders.
Methodologically, this tool allows us to simulate future land use change by first
quantifying and then locating the changes. Quantification is based on Markov
chains and location on transition rules. The proposed approach is implemented on
the Strasbourg-Kehl cross-border area and calibrated with three contrasting
prospective scenarios to try to predict cross-border territorial development.
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1 Context and Research Objectives

In the current context of increasing urbanization and daily mobility, urban sprawl and
space consumption have become crucial issues for achieving sustainable territorial
development (European Environment Agency 2006). This problem is further com-
plicated in the case of cross-border areas where operational procedures on each side of
the frontier differ from an administrative, legal and cultural point of view (Stoklosa
and Besier 2014). Moreover, open border areas are currently undergoing particular
growth dynamics which have given rise to numerous cross-border spatial planning
issues (Coplan 2012; Kaiser 2012; Kolossov 2012). In this context, the
Strasbourg-Ortenau Eurodistrict Project (French-German cross-border territory) is
promoting the development of cross-border initiatives inwhat is a pilot scheme for the
EU. This project is currently supported by local political actions (Antoni 2009) and is
widely backed by the European Union. Within this pilot region, we will be focusing
specifically on the Strasbourg-Kehl cross-border Area (SKA). SKA is located on the
banks of the upper Rhine and covers parts of South-West Germany and North-East
France. The area is physically composed of a large plain that is symmetrically orga-
nized and delimited by the Vosges and the Black Forest mountains (graben). The
River Rhine is not only a major fluvial axis running through the middle of the region,
but also forms the border between France and Germany, which are linked by bridges
with high levels of traffic (Durr and Kayali 2014). Despite its geomorphological
consistency, SKA has two different geographic configurations (Fig. 2). The French
side is currently highly urbanized around the agglomeration of Strasbourg, while the
German part remains predominantly rural. Despite this, people on both sides of the
border suffer similar residential housing issues such as urban sprawl, air pollution and
congestion. SKA is an interesting case to study for three main reasons that make it
quite unique. Firstly, because there is no strong cross-border differential like that
between France and Luxembourg or between France and Switzerland (job market,
taxes). Secondly, because there is a genuine political will to create a Eurodistrict
(defined by the UE as a cross-border administrative and planning institution) and
finally because residential mobility from Strasbourg to Kehl and from Germany to
France (northern part of the case study) is becoming more and more important.

Nevertheless, despite the cooperation at local and European level, cross-border
planning issues remain difficult to manage because many different disciplines (e.g.
urban planning, transport, housing, labour market, industrial and commercial
investment etc.) and stakeholders are involved. Moreover, trans-national territorial
analyses are constrained by the problem of geographical information and data
harmonization (i.e. scale, temporality, accuracy of data). Classical planning
approaches and methods are therefore often incapable of addressing the complexity
of these situations and predicting their spatial implications. This means that spatial
planning must look for more collaborative solutions that integrate dynamic and
complex spatial analyses in a prospective way. Any strategy to implement sus-
tainability and planning with the available regulatory tools requires planners to
imagine the future layout of their territory. Predictions of this kind are however very
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difficult to make and numerous experiments have shown that a simple trend pro-
jection often provides poor spatial extrapolations, disconnected from territorial
realities. In this context, spatial simulations are widely viewed as an appropriate
tool to help planner stake decisions. Such simulations rely on several kinds of
simulations models, among which Cellular Automata (CA) are particularly well
designed for managing spatial planning issues.

CA are considered useful tools for modeling and simulating urban development
because they allow us to implement simple spatial rules based on empirical
knowledge that take into account the role of neighborhood in urban growth pro-
cesses. They have been widely used to simulate land use changes and scenarios for
future urban development in different contexts. The seminal work of Couclelis
(1985; 1987), White and Engelen (1993), Batty and Xie (1994) and later Clarke
et al. (1997) paved the way for CA to be considered a powerful tool for modeling
and simulating spatial phenomena of various types. The research on CA gathered
new momentum during the 2000s in a surge in research that coincided with a
second wave of faster and cheaper computational capacities (Torrens 2000;
Benenson and Torrens 2004; Couclelis 2005; Koomen et al. 2011).

The aim of this paper is to present prospective urban development scenarios for
the Strasbourg-Kehl area in the medium term. The methodology (argued in
Sect. 2.2) was used to select the year 2038 as a suitable target date for these
predictions. This provides a sufficiently long period of time for prospective antic-
ipation and decision making in the field of land planning and regulation policies.
Simulations are provided by LucSim (Land Use Change Simulation), an
open-source operational CA dedicated to geographical analysis and simulations
(Antoni 2006). This CA has been developed from scratch to offer comprehensive
and user-friendly cartographic and mathematical solutions, but also to harmonize
and share spatial data and simulations among scientists, territorial and adminis-
trative technicians, elected representatives and stakeholders. We use it to construct
and simulate cross-border scenarios showing how residential growth in border areas
can be planned and controlled by means of comprehensive rules and regulations.
We begin by presenting the main assumptions of the CA model, based both on the
Markov chains process and the creation of transition rules (Sect. 2), before going on
to calibrate three contrasted scenarios for predicting future urban changes (Sect. 3).
Results are then presented and discussed in the Conclusion (Sect. 4).

2 Methodology

From a methodological point of view, LucSim can be defined as a constrained
cellular automata designed to aid decision-making in urban and land planning. Its
main original feature (compared to similar geographical CA) is to simplify the
land-use evolution processes into two “fundamental” steps, namely the quantifi-
cation and location of future land use changes. Land use is assessed within a cellular
grid space obtained from the European Corine Land Cover classification.
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2.1 Data and Material

As the Strasbourg-Kehl case study takes place on a cross-border field, it is essential
to use harmonized data. Indeed, to avoid any mismatch problem between data from
France and data from Germany, all aspects of the objects being studied must be
defined in exactly the same way on both sides of the border at temporal (collection
date), spatial (spatial accuracy and resolution) and thematic levels (the different land
use categories). The best way to tackle this issue is to use data created at a higher
level within the framework of international cooperation. Corine Land Cover
(CLC) is a database designed to that effect. It is a European biophysical land
occupation database provided by the European Environment Agency at several
dates. With a resolution of 100 m, the database classifies land use into 44 items or
categories (Fig. 1) and is used above all to analyze land use change and measure the
artificialization of land. For the research presented in this chapter, we reduced the
land use classification to 8 main categories, focusing mainly on artificial occupation
of land for human activities for two dates: 1990 and 2006 (Fig. 2).

In the cellular space obtained from CLC, each date corresponds to a system
defined by N cells in a grid. Cells are associated to one, and only one, land use
category. The specific land use of any given cell Ni at time t is referred to as k and
the land use of any given cell Ni at time t + 1 is called l.

Fig. 1 Corine land cover reclassification in 8 classes
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In the SKA, the quantitative analysis of Ni,k and Ni,l (1990 and 2006) shows that
urbanized cells (UR) expanded by 5.9% between 1990–2006, while natural and
agricultural soils (FI) decreased by 1.5%. Land use cover can be summarized more
precisely for each date within vectors indicating the proportion of each land use
category (Table 1).

Fig. 2 Land use in the Strasbourg-Kehl area in 1990 and 2006

Table 1 Past land-use vectors

UR IN TR EQ FI VI FO WA
P

1990
(cells)

42,143 10,163 2,628 1,747 242,397 24,410 20,232 6,850 532,659

1990 (%) 8.59 2.07 0.54 0.36 49.42 4.98 41.25 1.40 100

2006
(cells)

44,612 11,977 2,634 2,078 238,826 23,556 202,237 6,739 532,659

2006 (%) 9.14 2.45 0.54 0.43 48.94 4.83 41.44 1.38 100
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2.2 Quantification of Land Use Changes

Our first step was to quantify the land use change process. Comparing two static
land use images or vectors (1990, 2006) is of little interest in the context of a
dynamic simulation, but finding out what happens between each image can enable
us to formulate a transition process. By comparing the land use categories date by
date and cell by cell, it is possible to determine cellular changes between t and t + 1,
and identify the land use dynamics. Theoretically, each cell can move from one land
use category to another, or remain in the same category. The dynamics of the model
can therefore be presented as a series of possible transitions from one land use
category k at time t to another land use category l at t + 1. For a given cell Ni, a
transition D can be written as:

DNi;kl ¼ 1 if Ni;k tð Þ ¼ 1 andNi;l t + 1ð Þ ¼ 1

To simplify the complexity resulting from the high number of cells and possible
transitions, changes can be aggregated by land cover categories. The aggregate
transition for the complete system is then:

DNkl ¼
Xn

i¼l

DNi;kl

This formulation allows us to build a contingency matrix indicating the number
of cell transitions from a category k to a category l between t and t + 1 (i.e. between
1990 and 2006). When associated with the previous vectors, this matrix provides all
the elements needed for the construction of a Markov chain (MC). In the literature,
a Markov chain is defined as a mathematical process where transition probabilities
are conditional on the past, and express the state of a variable at a time t as a
function of observations of this variable at t − 1 (Feller 1968, Berchtold 1998). It
relies on the connection of three items: (i) the description of the relative values
associated to an initial state (land occupation visualized as a vector for example);
(ii) a transition matrix expressing the transition probabilities of different groups of

Table 2 1990–2006 transition matrix

UR IN TR EQ FI VI FO WA
P

UR 0.9893 0.0063 0.0001 0.0038 0.0003 0.0001 1

IN 0.0093 0.9539 0.0006 0.0076 0.0120 0.0100 0.0066 1

TR 0.0030 0.9844 0.0118 0.0008 1

EQ 0.0074 0.0137 0.9788 1

FI 0.0104 0.0069 0.0001 0.0011 0.9794 0.0005 0.0010 0.0006 1

VI 0.0106 0.0016 0.0274 0.9593 0.0011 1

FO 0.0001 0.0013 0.0018 0.0001 0.9962 0.0005 1

WA 0.0028 0.0001 0.0159 0.0441 0.9371 1
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observations from one category to another; and (iii) a diachronic transformation by
an operator in the form of a matrix multiplication iteration.

If we follow this procedure, land use at time t + 1 can be simulated by multi-
plying the corresponding vector at time t by the corresponding contingency matrix,
after the transformation of the latter into transition probabilities from a land use
category k to another l. To transform observed contingencies into transition prob-
abilities, we use the following:

pkl tð Þ ¼ DNkl

Nk tð Þ and
Xm

k¼1

pkl tð Þ ¼ 1

We then consider the Markov chain as follows:

Ni t + 1ð Þ ¼
Xm

k¼1

pkl:Nk tð Þ

where pkl ¼ DNkl

Nk tð Þ ¼
DNklP
l DNkl

and
X

l

pkl ¼ 1

According to this formulation, the Markov chain process gives us the chance to
prospectively calculate future states from known past states, based on observation
of past trends and probabilities. According to the method, this calculation is based
on the assumption that future changes will follow the trend of past changes, but as it
is based on a matrix calculation, this trend is not necessarily linear. Moreover, the
values of the transition matrix can also be modified by users of the model to
integrate different parameters for the quantification of future land use changes. In
our case, LucSim uses the original transition matrix to calculate the number of cells
in each land use category in 2022, 2038, 2054, etc., from 1990 and 2006 land uses
(same interval of 16 years between each date). This system gives us a better picture
of urban dynamics by calculating land use vectors for each future date, as presented
in Table 3.

This table also indicates that the total number of cells that should be urbanized
(including UR, IN and EQ categories) by 2038 is:

Table 3 Expected future land-use vectors

UR IN TR EQ FI VI FO WA
P

2022
(cells)

47,027 13,700 2,640 2,411 235,334 22,735 202,162 6,644 532,653

2022 (%) 9.68 2.82 0.54 0.50 48.46 4.68 41.63 1.37 100

2038
(cells)

49,391 15,339 2,648 2,748 231,921 21,948 202,096 6,566 532,657

2038 (%) 10.22 3.17 0.55 0.57 47.99 4.54 41.82 1.36 100
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Nk¼UR t + 1ð Þ + Nk¼IN t + 1ð Þ + Nk¼EQ t + 1ð Þ½ �
� Nk¼UR tð Þ + Nk¼IN tð Þ + Nk¼EQ tð Þ½ �

8; 811

2.3 Location of Land Use Changes

The second step was to try to identify the location of land use changes with a
method based on Cellular Automata. Developed as a result of the progress of
artificial intelligence in computer science, Cellular Automata have the double
advantage of being able to determine the land use category of cells according to
their neighborhood, and also to integrate the previous Markovian process. By
definition, CA are based on the assumption that the class of each cell is determined
by its neighborhood, or in our case, by the land use categories of surrounding cells
within a given radius:

8i 2 E,Vi;kl = f Vi;k tð Þ;Xi tð Þ
� �

where

Xi = f Vr
k¼1;V

r
k¼2; . . .;V

r
k¼n

� �
and r 2 0; . . .;1f g

where E is a set of cells that can undergo a transition (non locked), Vi is the land use
of the cell i, Xi is the neighborhood of the cell i within a radius r (at time t), and Cr

n
is the number of cells with a land use S within a radius r at time t.

CA can then be constrained with the results of the Markov chain to produce a
model for land use change simulations. This means that the CA transition process
from one given category to another is automatically halted when the number of cells
given by the MC for each date is reached. This CA transition process is based on
transition rules that allow us to consider different configurations. The main problem
is then to define relevant rules to simulate realistic scenarios of spatial development,
a generalized problem in all modeling and especially in model calibration.

3 Spatial Development Scenarios

After analyzing past transitions (Table 2), we decided to base all our scenarios on
the general assumption that new built-up areas can only be developed on agricul-
tural fields (FI). These scenarios present three contrasted configurations for land use
changes in 2038: urban sprawl, urban densification and cross-border development
based on the bridge connections available on the SKA specific test-field. Although
results are calculated at the original 100 meters resolution of the land use cells,
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they are aggregated and mapped within a larger grid with a resolution of 4,000
meters to improve visualization of the changes.

3.1 Landscape Sprawl

The main idea of the “Landscape Sprawl” (LS) scenario is that future residential
preferences will favor natural landscapes and rural amenities, as well as relative
proximity to slightly dense urban areas (villages). This means that residential
development of new built-up areas is determined by the following transition rules:

– The proportion of UR in a radius of 200 meters must be over 30%.
– The proportion of FI in a radius of 500 meters must be over 50%.
– There must be at least 1 VI cell in a radius of 5 km.
– There must be at least 1 FO cell in a radius of 5 km.
– The total number of new built-up cells is less than 8,811.

The LS scenario (Fig. 3) leads to a gain of 8,976 cells in only 2 CA iterations.
This result can be explained by considering spatial configurations that are very
generic and numerous in the case of the rules created above. LucSim therefore
quickly spots the cells that meet the requirements to be transformed into urban land.
A typical example of this process of urbanization can be seen between the
“Piémont” area and the high density urban area of Strasbourg. We can also observe
a generalized expansion of areas with low urban density (max 200) and a high
dispersion of the cells that become urbanized. Nevertheless, this general dispersion
is quite homogenous except for a slight concentration around small cities. The
urban expansion on the German side appears to be more linear than in France,
which is probably due to the topographic features in that area.

Fig. 3 “Landscape sprawl” scenario: land use changes simulation in 2038
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3.2 Urban Densification

The main idea of the “Urban Densification” (UD) scenario is that future residential
preferences will favor dense urban areas, close to urban amenities (e.g. parks, sport
and leisure facilities), but relatively far away from industry and related nuisances.
Consequently, residential development of new built-up areas will be determined by
the following transition rules:

– The proportion of UR in a radius of 200 meters must be over 30%.
– There must be at least 1 EQ cell in a radius of 2 km.
– There must be no IN cells in a radius of 1 km.
– There must be at least 1 IN cell in a radius of 2 km.
– The total number of new built-up cells is less than 8,811.

The UD scenario (Fig. 4) produces a gain of 9,391 cells in 9 iterations. A much
higher number of iterations is needed because the rules for this configuration make
the transition less likely to happen. Moreover the Markov constraint can only be
achieved when newly urbanized cells are taken into account. This explains why the
process is slower and more iterations are required to converge toward the solution
provided by the set of rules for the UD scenario. In this case new urbanization is
concentrated around the bigger cities and expands on the existing urban structure
rather than following the area’s physical geography features. The fact that the
existing urban area is already much larger on the French side favors further
urbanization on this side. The urban density is clearly higher than in the LS scenario
(max 408).

Fig. 4 “Urban densification” scenario: land use changes simulation in 2038
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3.3 Bridge Transbordering

The main idea of the “Bridge Transbordering” (BT) scenario is that future resi-
dential preferences will favor mixed residential areas (with both LS and UD sce-
narios), located in quite heavily urbanized areas near the border crossing points.
Consequently, residential development of new built-up areas is determined by the
following transition rules:

– The proportion of UR in a radius of 200 meters must be over 30%.
– The proportion of FI in a radius of 500 meters must be over 25%.
– There must be at least 1 IN or 1 EQ cell respectively in a radius of 1.5 and 1 km.
– There must be at least one bridge in a radius of 7.5 km.
– The total number of new built-up cells is less than 8,811.

The BT scenario (Fig. 5) leads to gains of 8,852 cells in 10 iterations, roughly
the same number as the UD scenario. As in the previous scenario, few spatial
configurations are adapted to the transition towards urban land use categories. This
situation leads to urban development being highly concentrated in certain places in
the study area (max 450), most of which are close to the River Rhine and its
crossing points (bridges, ferry). New high density urban development is also pre-
dicted around the big cities. Urban development will be essentially linear and more
intensive on the French side (especially around the southern part of Strasbourg city,
and close to the Gambsheim dam). The three places most affected in the German
part are: Lahr, Kehl and around Baden-Baden.

Fig. 5 ‘Bridge Transbordering’ scenarios: simulation of land use changes in 2038
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4 Discussion

The three residential development scenarios presented above in succinct form were
developed on the basis of expert judgment. Rather than attempting to justify these
expert opinions, our aim is to use CA to highlight the compatibility of the language
used by experts, decision makers and modelers. To this end the scenarios are
expressed verbally and in the form of simple rules that are easy to implement in
cellular automata. From a thematic point of view, we have also shown that the
scenarios are initially very contrasting and that the resulting CA rules naturally lead
to very different configurations in terms of land use changes. However, the results
produced by the CA also show some similarities. For example some areas are
urbanized whatever the scenario. This convergence clearly shows the areas where
the main challenges for future urbanization will lie. It also demonstrates the utility
of the tool when taking planning decisions and when debating future regulation
policies.

From a scientific point of view, our results have not been validated. Forecasting
the future in a complex context is difficult and in the absence of a crystal ball, there
is no known technique for validating future urban development results at such a fine
scale. Nevertheless the various scenarios involve realistic processes and rules based
on accurate expert knowledge to provide images of the future that can be used in
debate and decision-making about desirable urban development and land-use
changes. The method presents a CA-based tool that, according to its structure and
data-feeding, can be widely used on both sides of the border by institutions that aim
to merge at some time in the future to form a Euro district. In this context, the
objective of the model is not to separate France from Germany by offering inde-
pendent analyses or forecasts for each one, but to reflect on scenarios for their
common future development.

Another way to construct prospective scenarios and define CA rules could involve
using a Decision Tree (Judge et al. 2015) or Artificial Neural Networks (Basse et al.
2014). Artificial intelligence helps to automatically determine transition rules based
on the analysis of past processes (e.g. 1990–2000–2016). However, such artificial
intelligence based solutions only produce a continuation of past trends. In a move to
more sustainable forms of development, this should not necessarily be exclusive and
other trends and directions that mix these approaches should be included in the
simulations. However, forecasting the future in a complex context remains difficult,
even if supported by geographic cellular automata models, or indeed any other
intelligent methodology for planning and decision making. Anyway, even if they can
provide convincing answers that anticipate land use changes, CA remain totally silent
on mobility issues (Timmermans 2003). CA can however be combined with resi-
dential mobility models, daily mobility or traffic models to simulate the flows gen-
erated by land use changes. In this context, a possible extension of this work could
involve coupling different models together to propose a more complex LUTI (Land
Use and Transport Integrated) model (Wegener and Fürst 1999), in which a CA
approach can make an important contribution.

304 J.P. Antoni et al.



5 Conclusion

If we combine the results of the three simulations, areas with differing potential for
urbanization emerge. Two specific areas (in black on Fig. 6) systematically appear
in all the scenarios; this suggests that these areas have a particularly complex spatial
configuration in that they are near the border, close to cities and suburban.
Development is therefore likely in these areas irrespective of the preferences
associated with each scenario. Some other areas result from the combinations of
two of the three scenarios: (i) in green, the “border sprawl”, namely a suburban-
ization along the border but outside the main urban centers; (ii) in red, a densifi-
cation around the border crossing points in the north of the study area and around
Strasbourg; (iii) and finally in blue, a dispersed suburban area away from both large
cities and the border area.

By comparing these different scenarios, we can see that this model can assess the
impact of single neighborhood rules on urban development. This global modeling
enables us to study urban changes easily and efficiently. Breaking down the process
into two steps (MC+CA) makes it sufficiently straightforward to be simultaneously
understood by all the stakeholders involved in urban planning. LucSim therefore
allows a wide range of different points of view to be considered and specific actions
to be imagined for territorial development and innovation, within the perspective of
more sustainable land and urban planning.
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Fig. 6 Land use changes in 2038: combination of the results of the simulated scenarios
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Chapter 15
Modeling Land-Use Scenarios in Protected
Areas of an Urban Region in Spain

M. Gallardo and J. Martínez-Vega

Abstract Land use change due to human activity can have serious, often irre-
versible effects on the environment. It affects ecosystem functions and the sus-
tainability of protected natural areas. Problems such as fragmentation, low habitat
connectivity or a decline in a territory’s ability to capture carbon are some of its
consequences. By studying past land use trends we can simulate future land uses,
and modeling such trends is essential if a preventive approach to the management of
protected areas is to be adopted. The aim of this chapter is to simulate different
change scenarios in protected natural areas in the urban region of Madrid, from
National and Nature Parks to Special Areas of Conservation and Special Protection
Areas. To this end we study land use changes both inside and around these pro-
tected areas. CORINE Land Cover maps from 1990, 2000 and 2006 are used.
Cross-tabulation techniques are applied in order to study trends in land use change.
Three scenarios are designed: a baseline or trend scenario, an economic crisis
scenario and a green scenario. The CLUE model (based on logistic regression) is
used. LCM (based on neural networks) is also used but only in the trend scenario.
Biophysical, socio-economic and accessibility factors and incentives and restric-
tions are considered. FRAGSTATS and GUIDOS are used to analyse the effect of
infrastructure and built-up land growth on connectivity and fragmentation. In recent
decades, the region of Madrid has experienced intense urban and infrastructure
development (48,332 ha). Protected areas have been affected by this urbanization
process. Built-up areas have grown at an average annual rate of 5.52% in protected
areas and around them. According to the trend scenario, the built-up area will
increase by 28,000 ha over the period 2006–2025 to 7.6% of the study area. No
fragmentation processes are expected in the National Park. However, fragmentation
of agricultural and natural habitats around protected areas is expected to increase by
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7.2% during this period. These findings should alert land use planners and the
managers of protected areas to the potential threats.

Keywords Simulations � Land use scenarios � Protected areas � Region of
Madrid � Spain

1 Introduction

According to the World Database on Protected Areas, from 2003 to 2014 the
number of protected sites increased from 84,577 to 217,294. In 1990, protected
areas covered 8.6% of the land area. Since 2012, these areas have grown by 1.6
million km2 as a result of new declarations. Today, they occupy 15.4% of the land
area and of continental and inland waters, 3.4% of the global ocean area, 8.4% of
marine areas covered by national jurisdictions and 10.9% of coastal waters
(Juffe-Bignoli et al. 2014). In order to reach Aichi Target 11 (Strategic Plan for
Biodiversity 2020), the Convention on Biological Diversity recommends that by
2020 at least 17% of terrestrial and inland water surfaces and 10% of coastal and
marine areas be protected. In Europe, protected areas occupy 13.6% of the land
mass and of continental waters (Deguignet et al. 2014). In Spain, from 1990 to 2013
the number of protected natural areas multiplied by 7 and their surface area tripled
(EUROPARC-España 2014). In the world and European contexts, Spain has an
important role to play in the conservation of biological diversity. Today, over 27%
of the surface occupied by terrestrial ecosystems are protected by national,
European or worldwide networks. Within the EU, Spain is the largest contributor to
the Natura 2000 network.

In spite of their importance, Protected Areas (PAs) are increasingly under threat
from factors such as climate change (Ruiz-Mallén et al. 2015), land use changes
(Martínez-Fernández et al. 2015), deforestation (FRA 2010), forest fires (Chuvieco
et al. 2013), habitat fragmentation (Dantas de Paula et al. 2015), loss of biodiversity
(Sastre et al. 2002), propagation of invasive species (Lei et al. 2014), urban pressure
(McDonald 2013) and public use (López Lambas and Ricci 2014).

Land-use change is a matter of concern for the scientific community.
Spatio-temporal analysis can be used for a number of purposes (Lambin et al. 2001;
Moreira et al. 2001; Améztegui et al. 2010; Viedma et al. 2015): (1) to observe land
use changes in the past and explore the factors explaining them, (2) to simulate
possible environmental and socio-economic impacts, and (3) to assess the influence
of political alternatives in order to improve planning.

A vast number of studies and projects related to Land Use and Cover Change
(LUCC) have been carried out. Of importance at a global level is the Land-Use and
Land-Cover Change Science/Research Plan (Turner et al. 1995), a core project of
the International Geosphere-Biosphere Programme (IGBP) and the International
Human Dimension Programme on Global Environmental Change (IHDP). In
Europe, one of the most interesting programmes is CORINE Land Cover, CLC
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(Feranec et al. 2007). The results of these projects and studies can help managers
take decisions and enable the objectives of the aforementioned strategic plan to be
achieved.

However, little is known about LUCC trends at different protection levels.
Recent studies have focused on analysing changes in protected areas of differing
importance and in the unprotected areas around them (Sastre et al. 2002;
Romero-Calcerrada and Perry 2004; Ruiz Benito et al. 2010; Hewitt and Escobar
2011; Martínez-Fernández et al. 2015; Martinuzzi et al. 2015). It is important to
simulate future land-use scenarios so that a dual approach can be adopted in pre-
ventive planning for protected areas and their surroundings (Martinuzzi et al. 2015).
Such scenarios are important firstly for predicting threats associated with increased
built-up land and the risk of forest fires stemming from growth in the
Wildland-Urban Interface. They may also be a source of opportunities. New nat-
uralised areas resulting from the abandonment of agricultural land might be
included in buffer zones or ecological corridors that would improve connectivity
among PA cores.

In short, although the perceptions of scientists and manager differ
(Rodríguez-Rodríguez and Martínez-Vega 2016), LUCC would seem to be a basic
component for evaluating the efficiency of PAs (Rodríguez-Rodríguez and
Martínez-Vega 2012).

Our research is in line with previous approaches. The simulated scenarios and
initial knowledge of their consequences for landscape structure could be a good
starting-point for discussion and for reaching agreements between local commu-
nities and managers of protected areas.

The main goal of this research is to simulate land use in 2025 in PAs and their
surrounding areas in the region of Madrid using two simulators, one based on
logistic regression and the other on artificial neural networks. A secondary goal is to
analyse the LUCC that took place between 1990 and 2006 and the changes
expected by 2025 in order to determine trends and threats arising inside and around
PAs. A third goal is to analyse the changes that have taken place or are expected in
landscape structure and in a selection of landscape ecology indices.

2 Test Area and Data Sets

The Madrid region covers an area of 8,027 km2 and in 2015 had a population of
6,436,996 inhabitants.1 It is the most densely populated region in Spain with about
800 inhabitants/km2. The region has a continental Mediterranean climate. Forest
and semi-natural areas occupy about 48% of the total area, agricultural land 37%,
built-up areas 14% and wetlands and water bodies 0.84%, according to CORINE
Land Cover 2006 (CLC06).

1http://www.madrid.org/iestadis (last accessed March 3, 2016).
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In the region of Madrid, PAs occupy 329,164 ha, equivalent to 41% of the
region’s total surface area (Fig. 1). Table 1 shows their main characteristics, listing
them in order of protection—from greatest to least. 15% of the Madrid Region is
protected in SACs (Special Areas of Conservation), 12% in Regional Parks (RP),
10% in an SPA (Special Protection Area), about 3% belongs to a National Park
(NP) and the remaining 1% is occupied by the Peripheral Protection Zone
(PPZ) around this National Park and by a Nature Reserve (NR). All the PAs studied
contain terrestrial ecosystems typical of the Mediterranean biogeographic region.

We also took into account a 5 km buffer zone around all the PAs in the region,
which has no protection from the point of view of biodiversity. It occupies 372,865
km2 equivalent to 46% of the region’s area. Its aim is to mitigate threats to the PAs
and as such it plays a strategic role in the conservation of biodiversity. About 13%
of the region’s land surface falls outside the scope of the study. Most of it is
occupied by the city of Madrid and by other towns within the metropolitan area.

Fig. 1 Test area: Madrid region, Spain
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Table 1 Main characteristics of the protected areas considered in the study

Protected
area

Designation
year

Designation target Main ecosystems

El Regajal-Mar
de Ontígola
Nature Reserve

1994 Fauna (Lepidoptera;
birds), botanical

Scrub; semi-natural wetland
(dam)

Sierra de
Guadarrama
National Park

2013 Ecological,
geomorphology,
landscape, scientific,
cultural, education

Montane scrub and alpine
grasslands; pine forests
(P. sylvestris); deciduous
forests (Q. pyrenaica);
wetlands; peatlands

Cuenca Alta del
Manzanares
Regional Park

1985 Environmental, cultural,
agricultural and
landscape,
ecologicalcorridor

Montane; deciduous forests
(Q. pyrenaica); evergreen
forests (Q. rotundifolia,
P. sylvestris); pasturelands

Sureste Regional
Park

1994 Ecological,
palaeontological and
archaeological

Unirrigated cropland; pine
forests (P. halepensis); riparian
forests; artificial wetlands;
scrub

Curso medio del
río Guadarrama
Regional Park

1999 Natural and cultural,
water ecosystems,
landscape, ecological
corridor, tourism

Evergreen forests
(Q. rotundifolia, P. pinea);
riparian forests; scrub;
unirrigated cropland

Cuenca del río
Lozoya y Sierra
Norte SAC

1998/
2014a

Ecological, habitats Montane; deciduous forests
(Q. pyrenaica); evergreen
forests (T. baccata); scrub
(G. purgans)

Cuenca del río
Manzanares SAC

1998/
2014a

Ecological, fauna,
hábitats

Evergreen forests (Q. ilex,
Q. rotundifolia); riparian
forests (Salix and Populus
alba); Sclerophillous grazed
forests (dehesas); substeppes
(Thero-Brachypodietea)

Cuenca del río
Guadalix SAC

1998/
2014a

Ecological, fauna,
hábitats

Evergreen forests (Q. ilex,
Q. rotundifolia); Arborescent
matorral with Juniperusspp;
riparian forests (Salix and
Populus alba); Sclerophillous
grazed forests (dehesas);
substeppes

Cuencas de los
ríos Jarama y
Henares SAC

1998/
2011a

Ecological, fauna,
hábitats

Cereal steppes; riparian forests
(Salix and Populus alba);
Arborescentmatorral with
Juniperus spp.

Vegas, Cuestas y
Páramos del
Sureste de
Madrid SAC

1998/
2014a

Ecological, fauna,
hábitats

Wetlands; salt and gypsum
inland steppes; riparian forests
(Salix and Populus alba)

(continued)
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We have selected two sets of geographical data. First, we downloaded all the
updated perimeters and their corresponding attributes for the Nationally Designated
Protected areas (NDP) in the Madrid region.2 We also downloaded the Natura 2000
Network areas (Nn2000).3

This information comes from the Nature Data Bank of the Spanish Ministry for
the Environment, the national contact point. In order to find the dates for final
approval of the SACs, we linked the cartography with the Common Database on
Designated Areas (CDDA) of the European Environment Agency.4 We then
downloaded land use/land cover maps from the CLC project for the years 1990,
2000 and 2006.5 We did not consider the most recent map (CLC 2012) because it is
still under review.

Finally, we took into account a collection of auxiliary geographic data in order to
map the driving factors and the restrictive and incentive factors during design of
future land use scenarios. We considered roads, rivers and railway stations
(Numerical Cartographic Base 1:100,000, obtained from the Spanish National
Geographical Institute) when drawing up accessibility maps that take into account
the cost of transport and distances to the city of Madrid, to other cities, to the airport
and to the roads themselves. We used a Digital Elevation Model (raster 30 m
GMES RDA, EU-DEM) to generate altitude and slope maps, the lithological map

Table 1 (continued)

Protected
area

Designation
year

Designation target Main ecosystems

Encinares de los
ríos Alberche y
Cofio SPA

1990 Ecological, fauna,
hábitats

Evergreen forests (Q. ilex,
Q. rotundifolia, P. pinea,
P. pinaster); Sclerophillous
grazed forests (dehesas); scrub

Peripheral
Protection Zone
Guadarrama
National Park

2013 Ecological Montane; pine forests
(P. sylvestris); pasturelands

aFor the SACs, two dates are given in the “Designation year” field. The first refers to the year when
the regional government proposed to the EU that the area be declared an SAC. This marked the
beginning of their commitment to preventive protection in order to conserve the biodiversity of the
area’s habitats. The second date is the actual date of the declaration, after which the corresponding
management plans were approved

2http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-
disponible/cartografia_informacion_disp.aspx (last accessed March 21, 2016).
3http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-
disponible/red_natura_2000_inf_disp.aspx (last accessed March 21, 2016).
4http://www.eea.europa.eu/data-and-maps/data/natura-6#tab-european-data (last accessed March
21, 2016).
5http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=02113 (last
accessed March 21, 2016).
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of Madrid, the map of public-utility forest areas (Regional Government of Madrid),
PA zoning in the region (Autonomous Body for National Parks) and specific leg-
islation on land and territorial planning (General Urban Land Plan for Madrid for
1997, Law 9/2001 of 17 July on land in the Region of Madrid, Law 9/1995 of 28
March on measures for territorial policy, land and planning, and Law 3/1991 of 7
March on roads in the Region of Madrid).

3 Methodology and Practical Application to the Data Sets

Our research follows the workflow shown in Fig. 2. We used ArcGIS v10.3 (ESRI
Inc.) for vector processing of the downloaded data and to draw up the buffer.
For LUCC analyses, we used IDRISI-Selva (Eastman 2012). We also used CLUE
(Verburg and Overmars 2007) and the IDRISI-Selva Land Change Modeller
(LCM) for designing the scenarios. Finally, we used GUIDOS-MSPA (Soille and
Vogt 2009) to analyse the spatial landscape pattern, and FRAGSTATS 4.0
(McGarigal et al. 2002) to evaluate trends in landscape metrics depending on the
type of PA and trends in their surrounding areas.

Firstly, we selected the PAs to be considered in the study. Areas where several
types of protection overlap are classified as areas of greatest protection. In
descending order, the level of priority is as follows: (1) Nature Reserve,

Fig. 2 Framework
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(2) National Park, (3) Regional Park, (4) SAC, (5) SPA, (6) Peripheral Protection
Zone in Sierra de Guadarrama National Park.

We then established an unprotected area around each PA, joining up areas that
are adjacent to each other. From this buffer we excluded land that might be pro-
tected for other reasons (public-utility forest, public waters, roads, etc.). In line with
the literature, we began using a 10-km buffer (Martínez-Fernández et al. 2015;
Martinuzzi et al. 2015). However, in the end we opted for a 5-km buffer which is
more appropriate for the characteristics of this triangular urban region. This means
that 13% of the region is outside the PAs and the buffers analyzed. Their ecosys-
tems are very different to those inside the PAs.

Second, we transformed the CLC vector maps to a raster format with a 50 �
50 m pixel size. From the CLC legend we made three different groupings. The first
is a simplification of level 3 in seven categories: (1) urban fabric, (2) industrial and
commercial, (3) arable land and permanent crops, (4) heterogeneous agricultural
areas, (5) forests, (6) shrubs and herbaceous vegetation, and (7) others (open spaces
with little vegetation, wetlands and water bodies). We used this grouping to sim-
ulate future scenarios and to analyse temporal trends in landscape metrics. In the
second we grouped land uses into three types: (1) built-up surfaces, (2) agricultural
areas and (3) natural areas. This classification (Martinuzzi et al. 2015) was used to
evaluate land-use changes according to the type of PA and in their surrounding
areas. Finally, in order to assess the dynamics of landscape structure we took level 1
of the CLC legend into account. We reclassified the maps in binary format. We
considered class 1 as background, and combined classes 2, 3, 4 and 5 into a single
target category (agricultural and natural areas) linked to the habitats represented in
PAs in the region of Madrid.

Third, using CLUE we simulated land use in 2025 in three different scenarios:
(a) trend scenario, (b) economic crisis scenario and (c) green scenario. The first one,
the trend scenario or “business as usual” shows what would happen if the past trend in
1990–2000–2006 were to continue until 2025. The crisis scenario shows what would
happen if the economic crisis in Spain and the region ofMadrid were to continue until
2025. To draw up this scenario, we carried out 117 surveys with experts (scientists,
land and protected area managers, ecologists and representatives of
non-governmental organisations, neighbourhood associations, etc.); they were asked
about how much the different land use types could grow or decrease under an eco-
nomic crisis scenario andwhere these land use changes could preferentially be located
(see Gallardo 2014; Gallardo et al. 2016). Finally, the green scenario shows what
would happen if there were more active reforestation policies and if greater impor-
tance were placed on the natural environment. It does, however, take into account that
Madrid is an urban region and that built-up areas will continue to grow. Thismeans on
the one hand, that greater protection is offered to natural uses than in the past and, on
the other, that greater growth is assigned to built-up land.We used LCM to design the
trend scenario in order to compare its results with those of CLUE.

In the models drawn up with CLUE, we related land use and driving factors by
means of logistic regressions (LR). In the model simulated with LCM, we used a
multi-layer perceptron neural network (MLP). Previously, we performed a
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Pearson’s correlation analysis to observe the correlations between the selected
variables. We eliminated highly correlated variables as they did not make a sig-
nificant contribution (see Gallardo 2014; Gallardo et al. 2016). In CLUE, we
assigned the demand for each land use specifying the number of hectares for each
land use in 2025, based on what had happened in previous years. In LCM, this was
determined by a transition matrix indicating the probability of change from one use
to another (see Gallardo 2014).

We calibrated the model in order to improve the scenario results. Taking the
sequence of maps 1990–2000 as a base, we simulated a land-use model in 2006 and
compared it with the real map for 2006. We varied the amount of land-use change,
the driving factors used and/or the size or weight of the neighbourhood in order to
obtain a better result. For validation, we carried out comparisons in terms of
quantity and location; the former considered the proportion of each category of land
use appearing on one map and whether this was similar to the proportion for that
same category on the other; the latter compared the position of each category on the
two maps. We used Kappa statistics, K Location (location) and K Histogram
(quantity) (Pontius 2000; Van Vliet 2009) and we compared them with a null model
and a random model. We obtained values and maps of hits, misses and false alarms
(Eastman 2012; Sangermano et al. 2012).

Fourth, we drew up cross-tabulation matrices (Pontius et al. 2004) to obtain
values and maps of changes between 1990–2006 and 2006–2025. We then com-
pared the results with the protected areas depending on their level of priority and
with the 5-km buffer. The aim was to find some of the main processes of land-use
change that had already taken place and that could be expected in different sce-
narios: urbanisation, naturalisation and disturbances and exchanges in natural areas
(Stellmes et al. 2013; Martínez-Fernández et al. 2015).

Fifth, we calculated an index for fragmentation of agricultural and natural
habitats and for temporal variations in terms of their size and spatial pattern.
The MSPA algorithm in the GUIDOS software (Soille and Vogt 2009) classified
each pixel by its geometric position on the matrix being analysed, distinguishing
between seven entities: (1) cores, (2) islets, (3) perforations, (4) edges, (5) loops,
(6) bridges and (7) branches. We took into account the following parameters:
analysis of pixel connectivity in 8 directions (cardinal and diagonal) = 1; transition
pixels = 1; distinction between external and internal edges (perforations) in the core
class. We calculated a Habitat Fragmentation Index (Chuvieco et al. 2013), in our
case the sum of agricultural and natural habitats (HFI) in each type of PA and in its
corresponding buffer. This goes from 1 (greatest fragmentation) to 2 (least frag-
mentation). It assigns a different weight to each of the entities mapped in terms of
the relations between resilience and spatial coherence (Opdam et al. 2003, 2006).
There is a constant gradation from the core (greatest weight) to the islets (least
weight). The index relates the number of pixels in each category or fragmentation
entity to their weights.

Finally, we calculated temporal variations in some landscape metrics. Following
the recommendations of Aguilera and Botequilha-Leitão (2012) for a
Mediterranean region with similar processes to those of Madrid, we selected six
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FRAGSTATS indices that give us an estimate of fragmentation (NP) of the land-
scape patches, their size (LPI and AREA_CV), the complexity of their shape
(FRAC_AM), their closeness (CONTIG_AM) and their isolation (ENN_AM).

4 Results

Table 2 shows the LUCC that took place between 1990 and 2006 by zone (types of
PA and their surroundings), a period of intense change. Globally, the built-up
surface expanded by 41,000 ha, equivalent to 11.23% of the total study area. Over
these 16 years, more than 9% of the buffer land and 2% of PAs were sealed. There
are large differences depending on the degree of protection enjoyed by the different
PAs. The Nature Reserve and Regional Parks were the most affected by land-use
changes. In general, agricultural areas contributed most to the growth of urban
areas. Although in relative terms persistence is very high inside the PAs, the
increase in built-up area is a worrying process from an ecological point of view. In
short, almost half the surface area that changed its use inside the PAs in the region
was urbanized. Naturalisation of abandoned agricultural land is less worrying from
the ecological and surface area points of view. Revegetation affected over
10,000 ha, about 3% of the area studied. Both processes occurred with greater
intensity in the areas around the PAs.

Map CLC06, reclassified in 7 categories, and the three scenarios are represented
in Fig. 3. The result obtained with LCM for the trend scenario is not shown because
the result was fairly similar to that obtained with CLUE.

The trend scenario (Fig. 3b) shows that extensive growth of urban, industrial and
commercial areas can be expected in the region. In both CLUE and LCM, these
areas will grow by more than 30% compared to 2006 levels. Urban areas will
spread in a compact way around the metropolis, especially to the south and
south-east along the main transport routes. Industrial and commercial areas will
spread towards the south and south-east of the capital. Heterogeneous agricultural
areas and forests will remain stable, with slight gains of less than 0.1% over 2006.

Table 2 Land use cover change that took place between 1990 and 2006 in protected areas and in
their surroundings

LUCC CLC90-CLC06

NR NP RP SAC SPA PPZ BUFFER

LUCC ha % ha % ha % Ha % ha % ha % ha %

FBA 36 5.8 0 0 1,486 1.54 440 0.4 678 0.8 3 0.1 11,156 3.0

ABA 10 1.6 0 0 1,775 1.84 1,460 1.2 533 0.6 21 0.4 23,502 6.3

AFA 1 0.2 0 0 1,870 1.93 1,124 0.9 789 0.9 4 0.1 6,291 1.7

NR Nature Reserve, NP National Park, RP Regional Park, SAC Special Area of Conservation, SPA
Special Protection Area, PPZ Peripheral Protection Zone, FBA Forest to built-up areas, ABA
Agricultural to built-up areas, AFA Agricultural to forest areas
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The greatest losses will be in arable land and permanent crops. In short, the current
processes will be reinforced, that is, anthropization of natural habitats and to a lesser
extent naturalisation of agricultural habitats.

In the economic crisis scenario (Fig. 3c), growth in built-up areas will be much
more restrained, 6 times less than in the trend scenario. It would be located to the
south-east of Madrid, where the large urban patch would spread in a compact way.
Forests, shrubs, and herbaceous vegetation will remain stable.

In the green scenario (Fig. 3d), growth in built-up areas will be half that forecast
in the trend scenario. While in the previous scenarios, shrub and pastures record
losses, here there will be a slight gain. Following the same trend, forests will see
marked growth compared to 2006 (+13.72%).

Fig. 3 LUCC trend in the region of Madrid between 2006 and 2025: a CLC map for 2006; the
other quadrants show the scenarios modelled using CLUE in 2025: b trend scenario, c economic
crisis scenario, d green scenario
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Table 3 summarises the projected change between 2006 and 2025 by scenario
and zone (types of PA and their surroundings). Although in the region as a whole a
growing trend in soil sealing will continue, this will be slightly mitigated in
comparison with the first period. Overall, in the trend scenario the built-up area will
grow by 28,000 ha (7.6% of the study area). The buffer will increase its built-up
land by 7.29%, and PAs by 0.36%.

The latter result is to some extent the product of the design of the three scenarios
and takes into account the restrictions set out in the management plans for the
different natural areas. The Regional Parks and the Nature Reserve will continue to
be the most affected by this process. In the economic crisis scenario, the expansion
of new urban zones will drop sharply in the buffer (+1.19%) and inside PAs
(+0.16%). In the green scenario the built-up area will increase in the buffer (+4%)
but only very slightly in the PAs (+0.16%). As in the first period, most of the new
urban zones will be developed on abandoned agricultural land. The process of
naturalisation will take place in the SW of the region, in the Encinares de los ríos
Alberche y Cofio SPA. In this scenario, 60% of the area affected by land use change
in PAs will be naturalised.

Figure 4 shows a representative window of what will happen in the centre-south
of the region, around the city of Madrid and its metropolitan area. It represents the
processes of urbanisation and naturalisation that will affect the PAs and the buffer,
in the three scenarios. If restrictions on the construction of new urban and industrial
buildings and of new infrastructure are complied with, most of the PAs will be
unaffected by urbanisation.

Table 3 Projected Change 2006–2025 in protected areas and their buffers

NR NP RP SAC SPA PPZ BUFFER

LUCC CLC06-SCEN25 TREND

LUCC ha % ha % ha % ha % ha % ha % ha %

FBA 3 0.5 0 0 820 0.9 53 0.1 14 0.1 0 0 6,341 1.7

ABA 5 0.8 0 0 218 0.2 88 0.1 1 0.0 0 0 20,828 5.6

AFA 0 0 0 0 1 0.0 55 0.1 4,372 5.3 0 0 169 0.1

LUCC CLC06-SCEN25 CRISIS

LUCC ha % ha % ha % ha % ha % ha % ha %

FBA 3 0.5 0 0 364 0.4 21 0.0 13 0.0 0 0 2,417 0.7

ABA 5 0.8 0 0 120 0.1 24 0.0 0 0 0 0 2,021 0.5

AFA 0 0 0 0 2 0.0 60 0.1 2,050 2.5 1 0.0 63 0.0

LUCC CLC06-SCEN25 GREEN

LUCC ha % ha % ha % ha % ha % ha % ha %

FBA 3 0.5 0 0 193 0.2 26 0.0 14 0.0 0 0 2,897 0.8

ABA 5 0.8 0 0 211 0.2 106 0.1 0 0 0 0 11,283 3.0

AFA 0 0 0 0 1,788 1.9 455 0.4 5,656 6.8 9 0.2 5,914 1.6

NR Nature Reserve, NP National Park, RP Regional Park, SAC Special Area of Conservation, SPA
Special Protection Area, PPZ Peripheral Protection Zone. FBA Forest to built-up areas, ABA
Agricultural to built-up areas, AFA Agricultural to forest areas
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Fig. 4 Processes of urbanisation and naturalisation that took place in the centre-south sector of the
region of Madrid during the period 1990–2006 (light colours) and projected changes 2006–2025
(dark colours), for a the trend scenario, b the economic crisis scenario and c the green scenario
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All the same, in the trend scenario (Fig. 4a), medium and small residential areas
will be built in the Cuenca Alta del Manzanares Regional Park along the A6 and
M607 motorways. This is one of the protected areas that suffered most from urban
sprawl during the first period. Most of the new urban developments will take place
in the unprotected territorial matrix outside the buffer zone and, especially, in the
buffer zones around the three regional parks and the SACs in the east and south of
the region.

In the crisis scenario (Fig. 4b), the threat of urban development will be much
more moderate as a result of the economic situation that has affected Spain since
2008. The green scenario (Fig. 4c) shows an intermediate situation. Soil sealing
will be mitigated in the buffers of PAs, and new urban development inside protected
areas will be insignificant. Forestation of agricultural land will be more extensive
and will affect the Encinares de los ríos Alberche y Cofío SPA and the three
regional parks. This will be the response to the incentives for revegetation included
in the PA management plans.

Regarding validation, we obtained Kappa values of 0.868 and 0.892 for the trend
scenarios designed using CLUE and LCM, respectively, and K Location and K
Histogram values of 0.869 and 0.998 for CLUE and of 0.927 and 0.962 for LCM.
Values for the null model were 0.879 and K Location and K Histogram values of
0.951 and 0.925.

Table 4 shows trends in landscape fragmentation categories in each type of PA
and in their respective buffers, in two periods (1990–2006 and 2006–2025) and
taking the trend scenario designed using CLUE. A clear difference exists between
the National Park and its PPZ in comparison with the other types of protection. The
National Park has remained intact and there has been no change. Its HFI was still
2.00 in 2006. The forest habitats survive today and will persist in their current
condition bearing in mind the severe restrictions imposed by the land management
plans to be approved this year. Habitat fragmentation in the buffer zone increased
by 0.40% during the first period. Very minor changes are expected in the future.

There has been little fragmentation in the agricultural and natural habitats in the
Natura 2000 Network areas. In 1990, the SACs and SPAs studied had an HFI of
1.98. During the first period, their fragmentation increased by 2.34 and 1.39%
respectively, and these figures are expected to reach 2.51 and 2.01% by 2025.

Although quantitatively there have not been great changes, there has been a
striking loss of core zones of high ecological value because of the construction of
roads and new associated urban areas. Ecologists are especially worried about the
case of the Encinares de los ríos Alberche y Cofio SPA. 26 years after its decla-
ration, it is still not covered by any plan that clearly and specifically regulates land
use.

The Regional Parks are also a source of worry. Although they are covered by
plans, management has not been as efficient as expected. In 2006, the fragmentation
index was 1.89, almost 5% greater than 16 years before, and 1.6% lower than the
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expected figure for 2025. The Sureste and Curso medio del río Guadarrama
Regional Parks have been crossed by new motorways and occupied by new urban
zones, which have increased the background category and the edges associated with
perforations.

The Nature Reserve is a particularly striking case. Even though it falls under the
category for maximum protection, in 1990 it was the most fragmented zone in the
region (HFI of 1.81). Between 1990 and 2006, its fragmentation index grew by
5.6% and is expected to reach an accumulated figure of 10% by 2025. A new
motorway (R4), crosses the reserve parallel to a previous one (A4) so encouraging
urban growth around the historic town of Aranjuez. It is true, however, that this is a
small protected area covering less than 0.2% of the total PAs in the region.

Table 4 Trend over time of the spatial landscape pattern of PAs in and around Madrid

CLC90

Backgr Core Islet Perfor Edge Loop Bridge Branch Total HFI90

NR 45 466 0 2 89 0 18 0 620 1.81

NP 2 21,572 0 0 32 0 0 0 21,606 2.00

RP 3571 89,576 1514 1434 294 90 183 96,662 1.94

SAC 1542 117,988 2 1258 626 91 37 44 121,588 1.98

SPA 1095 80,406 0 1026 45 18 0 39 82,629 1.98

PPZ 20 5461 0 60 0 1 0 4 5546 1.99

Buffer 39,024 313,985 27 8725 7874 1577 447 1080 372,739 1.86

CLC06

Backgr Core Islet Perfor Edge Loop Bridge Branch Total HFI06

NR 66 430 0 19 102 0 3 0 620 1.75

NP 2 21,571 0 1 32 0 0 0 21,606 2.00

RP 6767 84,077 8 1853 3106 248 261 342 96,662 1.89

SAC 3429 114,758 14 1916 1153 159 34 125 121,588 1.95

SPA 1860 79,095 0 1524 45 36 0 69 82,629 1.96

PPZ 23 5431 0 85 0 3 0 4 5546 1.98

Buffer 72,045 274,367 131 9349 12,411 1598 830 2008 372,739 1.76

SCEN25-TREND

Backgr Core Islet Perfor Edge Loop Bridge Branch Total HFI25

NR 95 401 0 0 110 2 10 2 0 1.71

NP 3 21,582 0 4 33 0 3 0 125 2.00

RP 8158 82,446 51 1564 3635 134 250 428 28 1.87

SAC 3524 114,486 8 1792 1383 155 88 141 442 1.95

SPA 2264 78,584 1 1644 61 21 0 93 115 1.96

PPZ 44 5370 99 0 4 0 15 14 1.98

Buffer 99,525 246,424 995 9011 10,425 2162 1215 2695 645 1.68
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Unexpectedly, there are no great differences between this nature reserve and the
extensive buffer (46% of the regional surface area) around all the protected areas in
the Madrid Region. This area is the second most affected by the general process of
built-up land growth over this short period (average annual increase of 0.63% in the
fragmentation index). In 2006, its HFI was 1.76 and this process of landscape
fragmentation is expected to reach 1.67 by 2025.

Comparison of the left and right parts of Fig. 5 shows an increase in the
background and in perforation in the core of agricultural and forest habitats in the
region of Madrid during the period of most intensive growth in built-up land (1990–
2006). The urban areas and new corridors opened up by motorways and railway
lines are perfectly visible. At the other extreme and as already stated, there has been
revegetation associated with the abandonment of agricultural lands in the Encinares
de los ríos Alberche y Cofio SPA. However, this phenomenon does not compensate
for the loss of habitats in the buffer, the nature reserve and the regional parks that
are closest to the capital.

The landscape metrics reinforce the key ideas expressed above. In the buffer the
number of urban patches (NP) increased by 26% between 1990 and 2006, and is
expected to rise over the base year by 142% by 2025. The percentage occupied by
the largest urban patches is also increasing. During the first period, the largest patch
index (LPI) doubled and is expected to quadruple by 2025. With the increase in the
number and surface area of urban patches, their contiguity is almost at maximum
level (ENN_AM = 0.93). A similar, albeit less intensive, process has taken place in
industrial and commercial uses.

In the Nature Reserve, the increase in the number and surface area of built-up
patches stems from the widening of roads, as stated above, and from new urban and
industrial developments linked to improved accessibility. A similar progression is
expected up to 2025 which will be reflected in increased contiguity of patches with
this type of land use.

In the Regional Parks, the number of urban patches grew by 60% between 1990
and 2006, and additional growth of 36% is expected by 2025. The index for the
largest patch within this category is very low but it doubled during the first period
and quadrupled during the second. The average distance between urban patches
(ENN_AM) has also grown. This may indicate the isolation of such zones among
large forest patches in the search for more scenic landscape. This has already
happened in the Manzanares and Guadarrama Regional Parks. Great changes are
not apparent in the metrics of other categories, probably because of internal
exchanges between the forest and agricultural classes.

Nor are there great changes in forest areas within SACs. In the SPA there is an
incipient process of regeneration of arboreal vegetation. In 2025 the number of
forest patches will be three times greater than in 1990. Built-up land growth has had
no effect on the National Park and its PPZ, with no appreciable change in indices.
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Fig. 5 Trends in fragmentation of agricultural and natural habitats in the region of Madrid since
1990 (left) and 2006 (right). Expanded view of a window of the southern part of the city of Madrid
and its metropolitan area
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5 Discussion of Results

We consider CLC to be a valid source of information for this research. This car-
tography is available throughout Europe, so the study could be replicated in other
areas. The scale 1:100,000 is appropriate for studying regional and national PA
networks. In order to update our study, it would be very useful to have access to
CLC 2012 but, as already stated, it will be some months before the errors detected
in it can be corrected. In fact, in our study site errors were also found in the previous
CLC, especially in CLC00 (Catalá Mateo et al. 2008) and CLC06 (Hewitt and
Escobar 2011; Díaz-Pacheco and Gutiérrez 2013; Martínez-Fernández et al. 2015;
Gallardo et al. 2016). A lot of effort was made to correct these errors to avoid
generating false land use change values.

A more detailed scale could be used for this type of study at the level of PAs or
of specific ecosystems. The Information System on Land Cover in Spain (SIOSE),
on a scale of 1:25,000, might be a good alternative. However, its complex legend
including mixed classes and the lack of a historical series make it inappropriate for
this research. Another good alternative might be the Spanish Forest Map
(MFE2012) on a scale of 1:50,000. It combines with the SIGPAC covering the
agricultural surface area and is updated using photointerpretation of SPOT images
and with support from the National Plan for Aerial Orthophotography (PNOA).
However, the coverage for 1990 does not have the same level of detail to enable us
to analyse changes in land use.

Going further back in time, an effort needs to be made to interpret the aerial
photographs made in 1956–57 and build an earlier land use map to start the time
series. However, experts in the simulation of future use scenarios recommend that
the initial and final maps be built on data from similar sources and using the same
methods. In addition, such a long series would include some very different and even
opposing trends. For all these reasons, it is advisable to use a more recent, shorter
time period (Candau et al. 2000).

Another topic for discussion is the size of the buffer. A width of 10 km is often
used in the literature, (Bruner et al. 2001; Figueroa and Sánchez-Cordero 2008;
Martinuzzi et al. 2015). In the USA, Mexico and other countries this might be
suitable because of the smaller size of protected areas. But a 10 km buffer would
include 94% of Spain (Martínez-Fernández et al. 2015). We must remember that
Spain plays an important role in biodiversity conservation and that 27% of its
territory is protected. In the case of the region of Madrid, a 10 km buffer would be a
complex solution because, with the territorial distribution of its PAs, much of the
regional surface area would be within that buffer and it would include ecosystems
that are very different to those represented in the PAs that were urbanised many
decades ago. The buffer would therefore no longer be an effective means of con-
trolling what happens inside and outside the PAs.

Regarding the design of future scenarios, in spite of the variety of simulation
techniques, we opted for logistic regression because it is easy to use. And although
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there are technical differences between CLUE and LCM, the results obtained in the
trend scenarios with both models are fairly similar.

Regarding validation of the results, the goodness of fit of the models depends on
whether these values are due to good prediction or to the fact that there is high
persistence in the study area (Pontius and Millones 2011). This phenomenon occurs
with the K Histogram in CLUE. Its fit is almost perfect because real values for land
use demand are taken.

The results obtained in our research are in line with the findings of previous
studies on land use change in similar or nearby areas (Ruiz Benito et al. 2010,
Hewitt and Escobar 2011; Díaz-Pacheco and Gutiérrez 2013; Díaz-Pacheco and
García-Palomares 2014; Gallardo and Martínez-Vega 2016). They are also in line
with the results of future scenarios in protected areas and their surroundings in the
region of Madrid (Ruiz-Benito et al. 2010) and in the USA (Martinuzzi et al. 2015).
The results on habitat fragmentation in regional parks and in the nature reserve are
also in line with the findings of Rodríguez-Rodríguez and Martínez-Vega (2013).

Finally, although new episodes of built-up land growth are not expected inside
Madrid’s protected areas, threats to their peripheral zones are still a matter of
concern. Those in charge of preserving biodiversity should remain on the alert for
breaches of management plans or land use changes inside PAs approved on the
basis of, for example, considerations of general interest. This type of reasoning and
the impotence of managers were behind the high rates of built-up land growth and
the increase in habitat fragmentation that took place in the period 1990–2006. We
propose an exercise in collective reflection, comparing the results of the three
scenarios proposed with a new trend scenario in which there are no restrictions on
use changes in PAs and no incentives. The graphic and statistical results indicate
clearly what might happen if the authorities were to sit back and allow economic
agents to adopt an aggressive attitude.

6 Conclusion

Clearly land use changes linked to processes of anthropization and soil sealing are
amongst the main threats to biodiversity, the preservation of natural resources and
the production of environmental goods and services. For this reason, the analysis of
land use changes during recent periods and the simulation of future scenarios can
facilitate effective preventive planning for protected areas. Sustainable development
can only be achieved when we understand the full implications of land use changes.

In urban areas such as the Madrid region the spill-over effect of protected areas
should be monitored. It is clear that they attract urban developments to less pro-
tected areas around them. Transformation of their agricultural and natural habitats
may have irreversible effects on biodiversity. Fragmentation brings with it longer
exterior and interior edges. It can also create external threats for protected areas
such as invasion by exotic species or the propagation of forest fires. These threats
increase the potential ecological vulnerability of these spaces.
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Chapter 16
Navigating the Future: Land
Redevelopment Scenarios and Broader
Impact Assessment in Southern California

J.H. Kim, J.R. Hipp and V. Basolo

Abstract While land use and cover change (LUCC) modeling and simulation
technologies have been widely disseminated in urban planning and other public
decision-making domains, their application to site redevelopment is still limited.
This chapter presents a case study in which land use change simulation and impact
assessment models are employed to facilitate public dialogue for reuse of a
decommissioned air force base site (known as the Orange County Great Park) in
Southern California. Emphasis is on the uniqueness of site renewal in an urban
context that requires special attention in modeling, impact assessment and decision
support. It is also suggested that both relevance and coherence are crucial to the
success of LUCC applications.

Keywords Site renewal � Land use change simulation � Impact assessment �
Southern california

1 Introduction

Land use decisions often become the subject of public deliberation. The presence of
externalities–either negative or positive–makes it implausible to allow individual
property owners to make these decisions purely out of personal interest even in a
static world. In reality, land use may also need to be aligned with community
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visions or to be managed from a long-term perspective. This is especially true in a
highly urbanized area where potential land use conflicts can emerge in a compli-
cated, dynamic fashion, and the demand for systematic land management is high
(see e.g. Plotkin 1987; Kaiser et al. 1995; Taleai et al. 2007; Kim 2011).

Public interest can be taken into account in many forms, and there is no single
ideal way to accomplish this important task. While some claim that expert
knowledge is essential, others argue for a more participatory approach to attain
“efficiency and effectiveness, currency, relevance, responsiveness and their sup-
posed low cost… [and to] foster a sense of ownership of a plan and commitment to
its implementation” (McCall and Dunn 2012, p. 81). Moreover, it is debatable to
what extent price signals and other attributes of a market mechanism need to be
employed in determining an appropriate use of land rather than relying on a
political process (see e.g. Lee 1981; Pennington 1999; Cheshire and Sheppard
2005).

In any case, land use decisions do require analytical support to enable us to
navigate the future with careful consideration of the tradeoffs associated with the
decisions. What is likely to happen? What if we implement an alternative action to
modify the trajectory? Will it lead to a better future (from social, economic, and/or
environmental perspectives)? Who gains, who loses?

This chapter provides a case study using land use and cover change (LUCC)
simulation and impact assessment models to provide the analytical support for a
land use decision. Specifically, we consider the reuse of a decommissioned air force
base site, known as the Orange County Great Park area, located in Southern
California. LUCC simulation techniques have been increasingly employed in
spatial planning and other public decision-making domains (see e.g., Koomen et al.
2008; Koomen and Borsboom-van Beurden 2011). However, their real-world
applications have typically focused on cases of urban growth and physical
expansion. Relatively little attention has been paid to urban decline and/or renewal,
while the demand for decision support systems for these issues has been growing
rapidly (Zheng et al. 2015). Our case study seeks to fill this gap in the literature and
provide some meaningful lessons on ways of using LUCC simulation and associ-
ated tools for a broader scope of community and regional planning tasks.

The remainder of this chapter is structured as follows. Section 2 provides a
description of the study area and discusses some unique characteristics of site
renewal projects which need to be considered carefully in devising an analytical
framework for decision making. Section 3 presents our methodologies, namely the
land use change and impact assessment models, while the results and validation
outcomes are reported in Sects. 4 and 5, respectively. We conclude with a dis-
cussion of our case study findings in Sect. 6.
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2 Test Area and Data Sets

Our study area covers the former Marine Corps Air Station (MCAS) El Toro and
surrounding land parcels, located in Orange County, California (Fig. 1). Over the
second half of the twentieth century, the site was an air station that served “as a
training facility in peacetime and a staging area for support of overseas military
missions in times of conflict” (Orange County Great Park, n.d.). However, as a
result of the 1993 Defense Base Closure and Realignment decision, the MCAS El
Toro was closed in 1999, and reuse of the site (approximately five thousand acres of
land) became an important item on the planning agenda for the City of Irvine,
which annexed the site in 2003, and for nearby communities within the county.

At the very beginning, “[i]n November 1994, … Measure A was passed by
Orange County voters, designating MCAS El Toro for commercial aviation use.
The Orange County Board of Supervisors, supported by the John Wayne Airport
neighbors [i.e., those living around an existing airport in the area], hoped to

Fig. 1 Study area–aerial view in 2003
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develop a large commercial airport that would serve 38 million passengers
annually, and eventually replace John Wayne as Orange County’s airport. As plans
for the El Toro airport project were made public, the communities surrounding El
Toro organized to oppose it and developed a competing plan, the Orange County
Central Park and Nature Initiative. The initiative supported the development of a
1,300 acre public space that would include a sports park, botanical garden, and
cultural terrace. After an intense grass-roots campaign, the initiative was placed on
the ballot as Measure W and passed by a 58 percent to 42 percent vote on March 5,
2002. The next day, the U.S. Navy and the City of Irvine announced plans for the
development of the Orange County Great Park” (Lamb 2009–Guide to the UCI’s
special collection on the development of the El Toro Airport, 1992–2003). But, the
detailed plan/layout of the site reuse was not finalized immediately. Rather, it has
been the subject of lengthy analyses, plan revisions, and debates among various
groups of local stakeholders (Kranser 2005; Stockstill 2014). Recently, a modified
project plan, which incorporates the ideas of mixed-use community creation and
transit oriented development, has gone through a comprehensive impact analysis to
meet the California Environmental Quality Act requirements (City of Irvine 2012).
In its current general plan, the City of Irvine creates a separate land use category,
called “Orange County Great Park” with the following definition: “The develop-
ment of regionally significant conservation and open space, parks and recreation,
educational facilities, and other public-oriented land uses, integrated with privately
developed multi-use, residential, commercial, and industrial properties, at the
former MCAS El Toro site.”

Although unique in many respects, our study area presents some key attributes
of site renewal projects that require special considerations in modeling/simulation,
impact assessment, and decision support. Among others, given that site renewal
opportunities often arise in highly urbanized areas, the land use decision is likely to
involve tensions among various community groups affected (either positively or
negatively) by the detailed renewal plan. It is not unusual for local politics to come
into play. Sometimes, consideration has to be given to the interests of nearby
jurisdictions.1 Existing policies in and outside of the jurisdiction can be a barrier to
renewal, and thus may need to be modified through systematic cooperation among
policy authorities. Furthermore, to be successful, large-scale site renewal projects
often require strong public support, which can be gained from consensus building
or other forms of collaborative planning.

To deal with this complicated situation effectively, a comprehensive impact
assessment needs to be conducted, covering not only immediate traffic and envi-
ronmental impacts but also long-term socioeconomic consequences. Multiple rel-
evant scenarios may also need to be explored in a coherent manner for
communication and informed decision-making. When a LUCC modeling/
simulation approach is employed, the models need to be designed in a way that

1Our study site, although annexed into the City of Irvine in 2003, is surrounded by multiple
jurisdictions, such as Lake Forest and Laguna Hills.
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can reflect the detailed site reuse pattern at an appropriate scale. In other words, a
binary or crude land use/cover classification is less likely to be precise. A detailed
urban land use categorization based on land parcels is more likely to be appropriate
for this purpose, while a grid cell-based technique can also provide meaningful
decision support.

For our study site and other parts of the metropolitan area, the Southern
California Association of Governments (SCAG) provides detailed parcel-level land
use information, dating back to 1990. The parcel data file is based upon SCAG’s
land use coding system with over 100 categories, ranging from low-density
single-family to duplexes, low-rise, medium-rise, and high-rise apartments as well
as detailed commercial, industrial, institutional and open space designations. This
dataset enables us to investigate the dynamics of land use change within the region
at a finer scale, as it reveals the evolution of land use over the last fifteen years
(1990–2005) in a consistent format.

In addition to the parcel-level land use, we combine a variety of spatially-explicit
data, needed for the investigation of causes and consequences of land use change.
These include elevation/slope, transportation infrastructure, and locations of key
attractors (including the shoreline) within the Southern California metropolitan
area, made up of Los Angeles, Orange, Riverside, San Bernardino, and Ventura
counties. We also use a range of neighborhood-level socioeconomic data, derived
from Census products and other sources of information. For instance, to investigate
how land use changes can influence surrounding neighborhoods, we gather Zipcode
Business Patterns data provided by the US Census Bureau and the data on average
loan values and average household income of in-movers coming from the Federal
Financial Institutions Examination Council (FFIEC), which collects the information
under the Home Mortgage Disclosure Act (HMDA).

3 Methodology and Practical Application to the Data Sets

In an attempt to support more informed decision making, we conduct a baseline
land use change simulation and scenario-based impact assessment. For the baseline
simulation, we employ a multinomial logit model, which has been widely used for
empirical investigations of urban land use change (see e.g., Zhou and Kockelman
2008; Fragkias and Geoghegan 2010; Kim et al. 2017) and can be briefly expressed
as follows

pij ¼
expðXbijÞP
m expðXbimÞ

where pij indicates the probability of parcel-level land use conversion from i to j; X
and bij represent land use change factors and the estimable coefficients, designed to
capture their effects on the i-to-j probability, respectively.
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More specifically, our model is constructed with the following 10 land use
categories, obtained through an aggregation of the SCAG’s coding system, to avoid
certain drawbacks of a highly disaggregated scheme that can emerge in multinomial
logistic regression (particularly due to an insufficient number of land parcels for a
certain category of land use transition in the dataset)—0: No development, 1:
Single-family residential, 2: Multi-family residential, 3: Other residential, 4:
Commercial & Services, 5: Industrial, 6: Transportation, Communication, &
Utilities, 7: Public facilities, 8: Mixed use, and 9: Open space & Recreational (see
Table 1). The model is calibrated using the region-wide data (all parcel observa-
tions with valid land use information within the Southern California metropolitan
area, including unincorporated areas) for 1990–2005 with consideration of a range
of potential land use change factors, including each parcel’s physical/ecological
attributes (e.g., parcel size, shape, slope), accessibility measures (e.g., proximity to
employment centers and transportation infrastructure), and neighborhood charac-
teristics (e.g., socio-demographic variables and surrounding land uses).

Our main focus in the baseline simulation is to reveal how (in terms of land use)
the decommissioned MCAS El Toro site will be transformed in the future, if no
specific action is taken. In other words, we attempt to use a calibrated model, based
on past development patterns in the larger region, to generate a baseline reference
about what is likely to occur in this particular site, if the parcels in this site follow
the past trend (or market forces) in the metropolitan area. The simulation outcomes
are expected to inform the stakeholders involved, particularly to help them
understand the gap between their desires and the probable future with no specific
actions beyond the status quo. The outcomes, when presented and delivered
effectively, can also contribute to building consensus about the need for actions
toward a more desirable future.

Although useful, the baseline simulation alone does not enable us to determine
what actions are needed or how the site needs to be redeveloped. Therefore, to
provide decision support and facilitate planning dialogue more effectively, we
develop a set of alternative site reuse scenarios and conduct an impact assessment
for each of the scenarios. More specifically, we consider the following five possible
ways of reusing the site (for each scenario, we set the percentage park area to 20%
where the existing Great Park is located).

• Housing-heavy development: housing at 80%, others at 0%
• Industrial-heavy development: housing at 50%, industrial at 30%
• Retail-heavy development: housing at 50%, retail at 30%
• Office-heavy development: housing at 50%, office at 30%
• Mixed development: 50% housing, combined with 30% industrial, retail, and

offices (i.e., 10% each)

These scenarios acknowledge the desire to use this site to accommodate the
increasing need for housing within the City of Irvine (in each scenario, at least 50%
of the site is allocated to housing–single-family, multi-family, and other residential
combined). More importantly, this set of scenarios roughly represents stakeholders’
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(conflicting) aspirations to have more space for diverse commercial/industrial
purposes, although they do not articulate the detailed configuration within the site.
The scenarios can also enable stakeholders to easily comprehend the impacts of an
increase in a certain type of land use within the site and the associated tradeoffs

Table 1 Land use classification scheme

No. Category Detailed land uses Remark

0 No development Vacant; Agricultural

1 Single-family
residential

Low density and high density single-family
residential units

2 Multi-family
residential

Duplexes; Triplexes; 2- or 3-unit
condominiums and townhouses; Low-rise,
medium-rise, and high-rise apartments

3 Other residential Trailer parks; Mobile home courts; Mixed
residential

4 Commercial &
Services

Low-rise, medium-rise, and high-rise office
buildings; Skyscrapers; Shopping centers;
Modern and older strip development;
Commercial storage; Hotels and motels

Attended pay
public parking
facilities are
included in this
category

5 Industrial Manufacturing, assembly, and industrial
space; Motion picture and television studio
lots; Packing houses and grain elevators;
Petroleum refining and processing; Open
storage; Metal and chemical processing;
Mineral extraction facilities; Wholesaling
and warehousing units

6 Transportation,
Communication, &
Utilities

Airports; Railroads; Freeways and major
roads; Park-and-ride lots; Bus and truck
terminals; Harbor facilities;
Communication facilities; Electrical power
and other energy generation facilities;
Solid/liquid waste disposal sites; Water,
natural gas, petroleum facilities and
maintenance yards

7 Public facilities Government offices; Police and sheriff
stations; Fire stations; Public health care
facilities; Religious facilities; Correctional
facilities; Special care facilities;
Educational institutions ranging from
pre-schools and day care centers to colleges
and universities

Non-attended
public parking
facilities are
included in this
category.

8 Mixed use Various types of mixed urban uses

9 Open space &
Recreational

Golf courses; Local/regional parks;
Cemeteries; Wildlife preserves; Specimen
gardens and arboreta; Beach parks
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(e.g., what if we decide to reuse more space for housing rather than industrial, retail,
or office uses).

With these scenarios, we conduct an impact assessment that focuses on the
following key socio-economic indicators: (1) average home sales price, (2) unem-
ployment rate, (3) change in three types of jobs (white collar; blue collar; retail),
(4) average household income of in-movers, and (5) average home loan values.2

Although these indicators are considered important in the decision-making process,
they have not been systematically analyzed. Our impact assessment focuses on
these variables to fill the information gaps left behind by the previous impact
analyses which mainly focused on the environmental and transportation implica-
tions of the proposed redevelopment plans.

More specifically, for these variables, we estimate neighborhood change models
in which measures at one point in time are used to project the level of the measure
of interest during the subsequent years, having the following general form.

Dyk;t ¼ aþ b � yk;t�1 þ h � Xk;t�1 þ q �WXk;t�1 þ s � T þ ek;t

where Dyk;t represents the change in a socio-economic variable of interest in
neighborhood k between year t-1 and t; Xk;t�1 and WXk;t�1 indicate a set of
covariates, including land use variables, and their spatial lags, respectively; T
represents a collection of binary variables included to capture the fixed effects for
years; ek;t is an error term assumed to have a normal distribution; a; b; h; q and s are
the parameters to be estimated.3

For instance, to account for the (spatio-temporal) complex nature of job growth,
we include a broad range of potential predictors as well as land use composition
metrics in each job change model. Specifically, to explain the annual increase or
decrease in jobs at a zip code area scale, we consider several measures of the
number of jobs in the spatial area around a zip code area, such as the number of jobs
of the same type within 1 mile, from 1–5 miles, and from 5–10 miles and similar
spatial measures showing how the number of such jobs changed in the previous

2Given the data availability, the first three variables are analyzed at the zipcode area level, while
our analysis of the remaining two are carried out at the census tract level. Census tracts have
certain advantages over zipcode areas in that they are smaller and typically considered more
representative of “neighborhoods”, even though tracts do not always work perfectly in delineating
neighborhoods (Chaskin 1998; Hipp 2007). However, loan amounts may not be an ideal measure
of home prices in a neighborhood, and therefore we use data aggregated to zipcode areas that
captures sales price information obtained from the RAND Corporation’s statistics service as well
as the tract-level average home loan values. Analyzing these two variables—i.e., zipcode
area-level sales price and tract-level loan amounts—enables us to check the possible scale sen-
sitivity of the analysis outcomes.
3For the job projection models we also include the change in jobs in the previous year in the
models as this adds significantly to the model fit. This measure is not included in the other models.
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two years.4 These are meant to capture both potential agglomeration economies and
diseconomies (i.e., centripetal and centrifugal forces that can largely shape business
location patterns). To assess the possible cross-sectoral effects, in modeling the
growth in one type of job, we include both neighborhood and nearby measures of
other jobs (e.g., blue-collar and retail jobs considered in the white-collar job change
model).

The neighborhood change models are estimated using the annual data from 1990
to the most recent year for the outcome variables. We use the coefficient estimates
from those models for our forward simulations. We then substitute various values
for the land use measures in the key zipcode areas or tracts of interest in the Great
Park based on the five scenarios. We then project forward in time based on the
models to compute predicted probabilities of home prices, unemployment, jobs, and
income in the area.

4 Results

We present our baseline land use change simulation results in the following two
ways: (1) the most likely development of the parcels if no restrictions are enforced
(Fig. 2, left) and (2) the most likely development of the parcels, when “no
development” is not an option (Fig. 2, right). The first presentation shows what is
likely to happen over the next fifteen years using our land use change model
calibrated with the data for 1990–2005, if the parcels simply follow the region-wide
trend of parcel-level land use change. In other words, it provides an answer for
“what will happen if no conscious plans or actions are implemented?” Basically, the
second presentation also assumes that no specific actions will be taken, but it
reflects the possibility of high demand for redevelopment in this area and shows the
most likely development of individual parcels within the site. It should be made
clear that the model estimates are contingent upon the assumption that the Great
Park parcel characteristics are given. Changing the size and shape, as well as the
grade, of the parcels would affect the model results.

As shown in the Fig. 2 (left), when no specific actions are taken, our simulation
indicates that no development would be the most likely outcome for a majority of
the parcels. Under this baseline scenario, a handful of large land parcels are pro-
jected to be reused for urban open space and recreational purposes. It is also
expected that approximately 22 acres of the land, mostly small parcels, will be
transformed into single-family residential units.

If we assume that all of the parcels are to be reused for urban purposes, open
space and recreational uses would occupy over 85% of the site (in terms of land

4For all of these spatial buffers, we compute the measures with an inverse distance decay function.
This essentially means that neighborhoods closer to the neighborhood of interest have a stronger
effect than neighborhoods further away.
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area), as demonstrated in Fig. 2 (right). Single-family residential units could also
expand, while no multi-family units are expected to be built. In this case, some
parcels near the interstate highway (I–5) would be developed into commercial or
industrial space. This is because their large size and proximity to the freeway
significantly increase the probability of development for such purposes.

These presentations of the baseline simulation are useful in the sense that they
show what is likely to happen in the future if no specific actions are taken and help
to figure out to what extent the outcome meets the community’s expectations.
However, these two presentations are not enough to facilitate the dialogue for
devising a better land use layout with careful consideration of the forces behind the
outcome. The detailed probability patterns provide a basis for a more fruitful
conversation in which we can discuss ways of achieving the objective of reusing the
site more intensively for a variety of urban purposes. Figures 3, 4, and 5 present the
probability distributions for each type of possible development.

Figure 3 demonstrates that small parcels tend to have a higher score for resi-
dential development, particularly single-family residential purposes, as our land use
change model captures a negative association between parcel size and the proba-
bility of this type of development. Non-residential development shows quite distinct
patterns, as small parcel areas would not be appropriate for these purposes, unless
they were combined. For instance, there is a higher probability of commercial and
service development (Fig. 4) in medium-sized parcels next to arterial roads.

Fig. 2 Baseline simulation
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Industrial development, transportation, communications and utilities are more likely
in large parcels, especially those close to the interstate highway and exiting
industrial lands. Public facilities (Fig. 5) have a high score in the areas where open
space and recreational purposes are found to be feasible, suggesting that these two
land uses are likely to compete with each other.

Fig. 3 Development probability distribution—Part 1
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As explained in the previous section, for our impact assessment, we test five land
use scenarios that roughly reflect stakeholders’ varying desires: (1) Housing-heavy
development, (2) Industrial-heavy development, (3) Retail-heavy development,
(4) Office-heavy development, and (5) Mixed development. The results for each of
the scenario impact analyses are summarized in Table 2. We take Scenario 1

Fig. 4 Development probability distribution—Part 2
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(housing-heavy development) as the benchmark with which to compare the other
scenarios. The results set out in the table therefore compare the expected change in
the various measures for each scenario compared to the change under this initial
scenario of 80% housing and 20% land for the park area.

Fig. 5 Development probability distribution—Part 3
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In the first scenario, a housing-dominant development is generally expected to
result in a relatively slower pace of job growth in the area. For instance, this
scenario would generate a much smaller number of white-collar jobs compared to
Scenarios 4 and 5, while the growth rate for white-collar jobs is even lower under
the third scenario (i.e., retail-heavy development). The growth rate for blue-collar
jobs would also be lower in this scenario than in most of the other scenarios.
However, it appears that the housing-heavy development would reduce unem-
ployment in the area, even though its contribution to job creation in the broader
region is questionable.

Scenarios 2 through 4 suggest that job creation can be achieved more effectively
by devoting a certain proportion of the land to non-residential uses. This does not
mean that all types of jobs can be equally generated through the provision of
non-residential space. In fact, we find the mechanism to be quite complex, since
each type of non-residential land use has not only direct effects on white-collar,
retail, and blue-collar jobs but also indirect effects via the linkages between job
types (e.g., a negative effect of white-collar job change on retail job growth).
Industrial development (Scenario 2), for example, would induce a large increase in
blue-collar jobs and a moderate increase in white-collar jobs, while retail job
growth could be dampened. The office-heavy development scenario (Scenario 4)
could create an even larger number of white-collar jobs, but again at the expense of
retail job opportunities.

A mixed development of housing, retail, offices, and industrial sites (Scenario 5)
could reduce the conflicts among the three types of jobs. It is projected that this mix
of land use could increase white-collar and blue-collar jobs by +29% and +18%

Table 2 Impact assessment summary

Category Items Scenario1.
Housing-heavy

Scenario 2.
Industrial-heavy

Scenario 3.
Retail-
heavy

Scenario 4.
Office-
heavy

Scenario 5.
Mixed
development

Land use
mix

Housing 80% 50% 50% 50% 50%

Industrial 0% 30% 0% 0% 10%

Retail 0% 0% 30% 0% 10%

Office 0% 0% 0% 30% 10%

Park 20% 20% 20% 20% 20%

Impacts Avg. home
sales price

– +5.5% +12.3% −15.3% +1.2%

Unemp. rate – +0.32 +0.50 +0.45 +0.34

White collar
jobs

– +7.8% −1.7% +74.5% +29.2%

Retail. jobs – −14.5% +20.2% −28.7% −9.5%

Blue collar
jobs

– +33.3% −6.8% +23.7% +18.0%

Avg. hh.
income

– +2.0% −0.1% +3.1% −3.0%

Avg. home
loan values

– +1.9% +1.2% −3.9% −3.1%
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respectively, while the retail job growth rate is not as high as that for housing-heavy
development. It is important to note that this mixed development scenario had both
the lowest average household income of new residents and the lowest average home
loan values.

In sum, we see complex tradeoffs that need to be taken into account in the
collective land use decision-making process. One of the tradeoffs is the tension
between job growth (considered important from a regional perspective) and the
creation of a residential community that can attract residents with a lower level of
unemployment (often supported by local stakeholders). The impact assessment also
reveals that the land use decision is closely associated with detailed job change
patterns in the area and that tradeoffs exist between white/blue-collar and retail jobs.

5 Model Validation

We validate our statistical models through the following steps. First, we estimate
the model for the entire region from 1990 to 2001 and obtain the coefficient esti-
mates. Second, we compute the land use change that actually occurred in census
tracts or zipcode areas from 2001–2005. Third, we multiply those land use changes
by the coefficients from the model. We also multiply the values of the other
exogenous variables in the model by the estimated coefficients and compute the
predicted value of the outcome variable of interest in 2005. We then compute
the predicted values for each subsequent year by multiplying the coefficients by the
values of the exogenous variables and the predicted value of the outcome variable
of interest from the previous year.

This approach may cause our model projections to diverge from real values
further into the future. For example, whereas the correlation between the value
predicted by the model and the actual sales price ranges from 0.92 to 0.97 from
1992–2001 (when real data are being used to estimate the model), the correlations
fall to 0.64 to 0.67 during 2002–2006 (when the data are outside the range of the
model, but we do not use the predicted values for the previous year sales price to
compute new predicted values, and use real values instead).5 The key question then
is how the model does when projecting time points beyond the data (after 2006,
when we are using the predicted values for the sales price for the previous year to
compute new predicted values).

5For the unemployment models in zip code areas, the correlations in the earlier years are above
0.98 from 1992–2001, and from 0.87 to 0.99 from 2002–2006. For the models for average loan
values using data aggregated to tracts, the earlier year correlations range from 0.57 to 0.92 from
1991–2001 and about 0.91 to 0.92 during 2002–2006. For the average income level of new
residents the earlier year correlations range from 0.34 to 0.91 from 1991–2001, and about 0.86 to
0.89 during 2002–2006.
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Our validation checks suggest that for the average sales price models, the cor-
relations between our predicted values and actual values are 0.51 in 2007, 0.45 in
2008, 0.43 in 2009, 0.41 in 2010, 0.40 in 2011 and 0.40 in 2012. The validation
checks for the unemployment models using data aggregated to zipcode areas show
correlations of 0.66 in 2007, 0.53 in 2008, 0.46 in 2009, 0.39 in 2010, 0.35 in 2011,
and 0.31 in 2012. For the models predicting types of jobs, validation checks show
correlations for each type of job are found to be over 0.95 from 2007 to 2010. For
the models for average loan values using data aggregated to tracts, the validation
checks show correlations of 0.82 or 0.83. Similarly, for the average income level of
new residents in tracts, the correlations range from 0.75 to 0.82.

These validation checks assess how well our model does in explaining the
neighborhood change trajectories compared to what actually occurred and indicate
that our models produce good projections for the future number of jobs, the average
loan values and the average income of new residents. The models are basically
satisfactory, although less effective, in projecting average sales prices and unem-
ployment rates in zip code areas. It may be that these larger units negatively affect
the performance of the models, although we cannot be certain without a more
rigorous investigation beyond the scope of this study.

6 Conclusion and Outlook

Urban site renewal has huge potential as a means of curbing unchecked urban
expansion (generating serious social, fiscal, and environmental problems–see e.g.,
Ewing 1996; Johnson 2001; Burchell et al. 2005) and preventing abandonment of
core areas, thus enabling more sustainable urban development. However, in reality,
site renewal projects in urban areas have often been impeded not only by real estate
market uncertainties but also by many regulatory and political barriers (Farris
2001). Difficulties also exist in building consensus and garnering public support,
particularly when the projects are expected to produce large impacts on nearby
areas.

In this chapter, we provide a way to utilize LUCC simulation and impact
assessment models to support site renewal and associated decision-making pro-
cesses. As discussed above, these tools can help us understand what is likely to
happen and test various alternative scenarios in a coherent manner. Moreover, they
can provide an opportunity to complement traditional environmental or trans-
portation impact analysis techniques and fill the information gaps in a way that can
facilitate dialogue among various stakeholders as well as planning professionals.
Ideas for the future of the site can be effectively explained to the public through
land use visualization, land use-based scenario development, and relevant
socio-economic projections or by bringing stakeholders into the process of LUCC
modeling and simulation (Voinov and Bousquet 2010; Pettit et al. 2011; Voinov
et al. 2016). However, LUCC simulation technology does not always guarantee
success. Intrinsic nonlinearities, scale dependency and other sensitivities in LUCC
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simulation are challenging problems that must be overcome (Kim 2013).
Stakeholders also often fail to understand various assumptions behind simulation
models and differentiate the model results from reality (Becu et al. 2008).
Understanding how to convey the model information (including the model speci-
fication, assumptions, inputs and outputs) is crucial to realizing the great potential
of LUCC simulation and impact assessment models.

It is also important to put model results into context. While this type of
model-generated information is generally valuable in the planning process, it must
be tempered with an understanding of the effects of land use decisions over time on
communities situated in a particular planning context. Land use decisions can have
a cumulative effect on a community, often with unintended consequences. For
example, in our case, years of undersupply in the residential market has resulted in
high rents and home purchase prices. In fact, the Orange County Business Council,
in its 2015 Housing Scorecard, asserts that “Insufficient planning for, and provision
of, workforce housing supply will impede Orange County’s growth potential and
continue to perpetuate the region as ‘desirable but unattainable’ for recent gradu-
ates, many new families, and workforce talent that might otherwise move to the
county” (Orange County Business Council, 2015, p. 43). Land use distributions,
therefore, must be assessed, not merely on the basis of high job creation in the past
and high future housing values, but also on whether past growth has laid the
foundations for a healthy economy and vibrant communities in the future.
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Chapter 17
Modeling the Future Evolution of Chilean
Forests to Guide Current Practices. Native
Forest and Industrial Timber Plantations
in Southern Chile

N. Maestripieri, M. Paegelow and G. Selleron

Abstract Scientific research builds projects and seeks to achieve specific goals that
refer to the principles of scientific inference: deduction, induction and abduction.
These inferences correspond to the time path of the prediction—which belongs to
the world of rationality and accuracy—and scenarios—which transcribe the
uncertain nature of the studied process and can describe, in some cases, a probable
future, desirable or not. Because the conclusion of deductive inference stems from
premises, predictive simulation must be the result of past observations.
Optimization of these results requires a rigorous calibration of the model, in order to
reproduce a known situation (past or present). Scenarios are not predictions. For
exploratory scenarios (forecasting), plausible hypotheses are built from observed
processes and can only be verified a posteriori. The scenario begins with a given
situation in the present and moves forward into the future, responding to the
question “What may happen if …?” The normative scenario (inductive inference)
describes a probable or desirable (or undesirable) future and then moves backwards
to the present, i.e. retrospectively. The attitude is proactive towards the future and
responds to the question “How can a specific target be reached?”. These inferences
give rise to specific approaches in terms of modeling and simulation. By focusing
on forest dynamics in the south of Chile, this paper presents an expert approach
(multi-criteria evaluation with Markovian chains) to map predictive and exploratory
scenarios. The results open up various interesting lines of discussion in terms of
resource management and clearly show the importance of model calibration (choice
of data and configuration) upstream of the simulation process.
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Keywords Modeling � Prediction � Exploratory scenarios � Multi-criteria
evaluation � Southern chile

1 Introduction

Southern Chile has witnessed severe change in its landscape over the past 40 years.
The application of Decree Law 701 by the military government of Augusto
Pinochet in 1974 intensified forestry activity in many parts of the region, by
encouraging the planting of forests on suitable land, devoid of tree cover and in
most cases heavily eroded. It offered subsidies of between 75 and 90% of the costs
of planting the trees on land classified as suitable for forest, which was declared
exempt from taxation (Barrué Pastor 2004). Business production criteria quickly
supplanted what was initially a soil protection strategy. Between 1975 and 2007 an
average of 95,141 hectares of timber forest (afforestation and reforestation) were
planted each year nationwide, reaching a total of 2.2 M hectares in 2007 (infor
2008). By 2011 this area had reached 2.8 M according to the update of the Cadastre
of Native Vegetation Resources of 2011.1 The “conquest” of new spaces and the
concentration /monopolization of land holdings in the hands of a small group of
actors has created a complex set of relationships between different components of
the biophysical and human worlds. The spatiotemporal dynamics of industrial
timber forest plantations (pine and eucalyptus) is a multifaceted process with major
environmental and socioeconomic consequences (Donoso and Otero 2005;
Altamirano and Lara 2010; Zamorano-Elgueta et al. 2015). In addition, the medium
and long term vision necessary for the sustainable management of forest resources
has been negatively affected by an excessively short-term approach.

The stakeholders (direct and indirect) in the Chilean forestry sector face a lack of
clarity (in terms of land availability) regarding the future evolution of timber
plantations. There is an essential need for a long-term vision of land use, to opti-
mize the definition of a sustainable forestry policy and overcome the problems at
local level. This gives rise to two main tasks. The first, based on a retrospective
approach (Maestripieri and Paegelow 2013; Maestripieri et al. 2015), involves
assessing how the industrial timber plantations evolved (rhythmicity and underlying
factors) and their spatial trajectories and the second requires the use of prospective
modeling to determine their spatiotemporal dynamics in the medium term.
Prospective modeling can provide a useful framework for analysis as it embraces
spatial concepts, temporality (past-present-future) and the intentionality of the
stakeholders. It therefore focuses on the complexity of the interactions that affect or
are affected by the landscape.

The main goal is to develop a dynamic and spatially explicit model based on an
exploratory time path in order to simulate exploratory prospective and predictive

1http://www.conaf.cl/nuestros-bosques/plantaciones-forestales/.
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scenarios. Models like these are reflexive support tools which by understanding and
acting on the spatiotemporal dynamics of the different types of land use can miti-
gate their impacts on the environment, the economy and society in general.

2 Test Areas and Data Sets

We modeled land use change in the municipality of San Juan de la Costa in the Los
Lagos Region of southern Chile (Fig. 1) (latitude 40°14–40°44S and longitude 73°
18–73°48 W). The municipality covers an area of approximately 1520 km2 and has
two of the characteristic landscape units of southern Chile. The pre-coastal range
(east) with an average altitude of 300 m.a.s.l., and the Coastal Range (west) with
peaks that reach 800 m.a.s.l. and receive abundant rainfall (3500 mm /year). With
more than 96,000 ha in 2008, the native forest covers almost all of the Coastal
Range and fragmented parts of the pre-coastal range, although its area has
decreased by 13% since 1986. Industrial timber plantations however are located
exclusively in the pre-coastal range and have followed a quite different growth
trajectory, increasing quickly from a mere 387 ha in 1986 to 9888 ha in 2008
(+2455%).

According to the latest census (INE 2002), the population of San Juan de la
Costa is 8831 inhabitants, a high proportion of whom live in rural areas (7929
inhabitants or 90%). Ethnically speaking, most of the people are of
Mapuche-Huilliche origin (60% of the total population), and of the 62 indigenous
communities identified in 2000, 44 were located on the pre-coastal range
(Maestripieri and Paegelow 2013).

In order to understand the past dynamics of land-use and cover changes (LUCC)
at multiple scales, we used thirteen Landsat and Spot satellite images, although only
three Landsat images were used for the calibration and simulation of our models
(Thematic Mapper from 1986 and 2008; Enhanced Thematic Mapper from 1999).
The vesting period for the Landsat images corresponds to the months of September
and December, the spring season in the southern hemisphere. The temporal cov-
erage is interesting because it began two years after the promulgation of the DL 701
and ended with the first field surveys in 2008. The spatial resolution of all the
images is 30 m.

Additional digitized data were also collected. These data (shapefile) are from
several state agencies (Department of Prospección Sectorial of the Corporación
Nacional Forestal (CONAF), the Instituto Geográfico Militar (IGM), and the
Corporación Nacional de Desarrollo Indígena (CONADI) and are combined in a
Geographic Information System.

Digital cadastral data from 1999 (generated by the CIREN) were obtained by a
forest engineer from the CONADI. This information was initially provided by the
Servicio de Impuestos Internos (SII), and considers all changes in property
boundaries—including subdivision and/or merger of various properties.

17 Modeling the Future Evolution of Chilean Forests… 349



The information includes the name of the town, the name of the property and of the
owner, the ROL SII (the property’s identification number) and the total area.

We completed our study using Google Earth, a free application with a 3D
Geographical Information System accessible online. It consists of satellite images
and high (and very high) resolution aerial photographs (Quickbird). This system
covers our entire study area although the spatial resolution varies from one part to
the next. The application allows us to integrate various georeferenced pieces of

Fig. 1 Municipality of San Juan de la Costa
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information, such as raw and processed satellite images (MODIS-Landsat).
Browsing is made easier with a Time Slider, which enables the user to estimate the
evolution of the vegetation.

3 Methodology and Practical Application to the Data Sets

Before choosing the right model, we have to present the hypothesis on which each
scenario is based.

3.1 Prospective Scenarios

Two exploratory scenarios are developed. The first is a business-as-usual scenario
(the time horizon is 2017). This scenario is a prediction and not a prospective
model, even if we used scenario-building techniques. The second is a ‘sustainable
development’ scenario (the time horizon is 2035). Both are non-participatory
models and are added to two normative scenarios (eco-centric and intensive)
(Fig. 2) that were presented in previous research (Maestripieri et al. 2015).

Fig. 2 Representation and evolution of scenarios between 2008 and 2035
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3.2 Business-as-Usual Predictive Scenario and “Sustainable
Development” Exploratory Scenario

The business-as-usual scenario is designed to predict future developments on the
basis of “the logical consequences of prior assumptions or trends”. We hypothesize
that the growth in industrial plantations in the municipality will remain constant. In
other words we do not foresee either a slow-down in the rate of growth or, con-
versely, large-scale land purchases.

Sustainable development at a regional level requires a project that promotes the
implementation of sustainable forestry for both native forests and exotic plantations
(Cruz and Schmidt 2007, pp. 290–293). This must take into account the economic
situation of the study area, the possible environmental consequences and the
expectations of local people. In this case, “expectations” must be viewed within a
context of autonomous decision-making vis-à-vis the central government. Under
this scenario, native forest assets will increase slightly between 2008 and 2035
while timber plantation will stagnate. The main hypotheses of both scenarios are
listed in Table 1.

Before modeling these scenarios we need to understand how the model works
and how the driving forces can be integrated into this model. The model has been
calibrated with known past dates (1986–1999–2008) so as to assess how it works
and how the drivers “react”.

3.3 Calibration

Two models were calibrated (Maestripieri and Paegelow 2013): Land Change
Modeler (Artificial Intelligence) and CA-Markov (expert approach). The latter,
presented here, combines a Markovian procedure (Markovian probability maps)
and a multi-criteria evaluation (MCE) approach for the spatial allocation of future
LUCC.

For the prediction, the quantity of change depends on Markovian chains and
takes into account the rate of transition between 1999 (t1) and 2008 (t2). The latest
image is the one for 2008, which can be used for the first simulation test, calibrated
by two earlier dates (t0 = 1986 and t1 = 1999) (Markov chain of order 2). Using
the images for 1986 and 1999 we can extrapolate the future quantity of change. As
for the exploratory scenario, the quantity of change also depends on Markovian
chains, but the modeler changes the rates according to the scenario. The spatial
allocation also varies because of the changes in the weight factors.
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Table 1 Overview of the hypotheses on which the scenarios are based

Hypothesis Comments

Increase of production capacity Seguel (2010) notes that one of the ways that
forestry conglomerates have to develop their forest
resources and thus to increase production, is to rely
on smallholders

Land availability Moguillansky and Silva (2001) explain that “it is
known that for large enterprises, the land available
today in Chile has lower quality and higher prices,
which makes it economically unprofitable”

Updating of DL 701 The changes seek to involve small and medium
landowners and indigenous communities so as to
increase the rate of afforestation in Chile

Wood energy According to PricewaterhouseCoopers
International Limited (PwC 2011), bioenergy has
become the new corporate strategy for hedging
against market fluctuations and meeting the
requirements of sustainable development

Territorial governance The centralization of power—characteristic of
Chilean decision-making—gradually gives way to
a decentralization process, to new forms of
collective territorial organizations, independent of
the government of local administrative units
(Leloup 2005)

Mapu Lahual The Land Mapu Lahual Project (Red de Parques
Comunitarios Mapu Lahual) falls within this
context of territorial enhancement. This is a
conservation and ecotourism initiative that is part
of an overall development strategy led by
indigenous organizations

Agroforestry Although the only potential use of the land in the
municipality appears to be in forestry (Santana
2004), forest grazing could also be an option.
Financial returns from planted and native forests
are one of the most important factors driving forest
management, conservation, and investments
throughout the world (Cubbage et al. 2007).
Grazing of livestock could provide regular income
to the owners while they wait for their first harvest
of wood (pruning, thinning)

Increase the value of the native forest
resource by increasing sales of firewood

The economic attractiveness of native forest can be
increased by reducing afforestation costs in line
with those for exotic plants
Cubbage et al. (2007) demonstrated that
indigenous native forest management can
contribute to positive financial returns, one of the
most important factors driving forest management,
conservation and investment around the world
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3.3.1 Modeled Variables

Using the method of supervised classification we defined four land cover categories
to classify the three Landsat scenes: (i) timber plantations, (ii) native forest
(iii) other (non-forest land cover), and (iv) water (not included in the modeling
process). By merging all non-forest land use into one category, we are simplifying
the prospective modeling process and highlighting the timber plantation dynamic.

The process of selection of physical, natural, social and economic drivers is
detailed in Maestripieri et al. (2015). Briefly, we used GIS and satellite data (from
Landsat imagery) such as Land Use (LU), Distance from Existing Land Cover
features (DExLC), Slope (SLP), Altitude (ALT), Coastal Range (CoR) and
Pre-Coastal Range (Pre-CoR), Distance from Road Network (DRoNet), Land
Tenure (LdTen), Distance from Coastal Road (DCoRo). Because the selection of
criteria depends on the availability of the data, the MCE does not claim to provide
completeness or optimum precision.

3.3.2 Methods for Estimating Quantity, Allocation and Calibration
Outputs

Mapping scenario hypotheses depends on the MCE procedure and more specifically
on the weight attributed to each driving factor in the modeling. The objective of the
MCE is to generate suitability or probability maps by integrating a set of mea-
surable and mappable criteria. These maps (hard-classified maps) can be used to
develop specific land use strategies. The modeler controls the process by identifying
and characterizing the driving forces with an expert approach (i.e. using his/her
expert knowledge). We then discussed these driving forces with the interviewees,
who determined the weight that should be given to each one. In addition, we
analyzed the interactions between the changes observed (for instance in the shift
from native forest to timber plantation) and the driving forces (land tenure, prox-
imity to roads, and so on) (Maestripieri and Paegelow 2013). All the standardization
process, weighting procedure and technique compensation between the factors and
the level of risk-taking are presented in research by Maestripieri et al. (2015).

3.4 Validation of the Model

In order to ensure the optimization of the results and the accuracy of the predictive
model, rigorous calibration is essential. Calibration is performed using empirical
historical data and seeks to replicate a known situation. The validation of a model
usually involves comparison with a real situation (Fig. 3). Although this step is
essential for the modeler, it does not meet the expectations of planners and policy
makers, who are looking for more specific results about future land use. The val-
idation stage is important for the planners too however because, as Pontius and
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Spencer (2005) point out, “one important purpose of the validation exercise is to
allow the modeler and decision-maker to understand the appropriate level of con-
fidence to have in the model as it extrapolates to points in time that are not known,
for example, the future”.

Unlike predictive models, when we create a model based on a scenario it is
impossible to estimate its quality and accuracy. The success of a scenario must be
assessed retrospectively by comparing it with the current situation. Hulme and
Dessai (2008) explain that the success of a scenario is not so much a question of its
(retrospective) accuracy or the (retrospective) efficiency of the decision, “but more
on establishing an enabling condition for ‘good’ (robust) decisions to be made; i.e.,
in which a wide range of relevant uncertainties have been considered”. The ret-
rospective allows us a posteriori to reflect on the failures of a scenario and construct
a sound base for the development of new decisions. “Retrospective helps prevent us
from making the same mistakes, by helping to develop our knowledge of the
content and implementation of methods” (Van Der Helm 2002, in Houet 2006).

Scenarios can be evaluated and validated by an expert and by stakeholders
(Leclerc et al. 2010). Finally, Houet (2006) explains that “the evaluation may also
focus on methods used in the construction of scenarios (models, probability …) as
well as the prospective scenario verifying compliance with the four fundamentals of
scenario building: relevance, coherence, plausibility and transparency”.

Fig. 3 Organigram of calibration process (CA_Markov and LCM)
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3.4.1 Qualitative Validation

Given the temporal coverage of high-resolution images provided by Google Earth
in the municipality (18/01/2005 to 19/02/2011), the 2008 classification is the only
one that has been validated. The availability of these images is not synchronous to
the entire area, as the timing gradient shortens the coverage period (which now runs
from 26/01/2006 to 02/09/2010) to eliminate certain blurred images. Errors are
located by importing the classification under GE and adjusting the opacity, so
allowing the simultaneous visualization of the data.

We also compared each land cover of our supervised classification (2008) with
the digitized and updated Cadastre of Native Vegetation Resources (CONAF,
2006).

3.4.2 Quantitative Validation

Although visual examination by comparing the reference map (2008) and the
simulation (2008) provides an initial estimate of the quality of the prediction, it fails
to locate and accurately quantify the errors and the correctly predicted areas. In
order to overcome the subjectivity of the modeler, Pontius et al. (2004) proposed a
statistical comparison between these maps. Here is a summary presentation of the
three methods we used to assess and validate the models (each method will be
detailed in the following pages):

• For hard-classified maps: LUCC-budgets (Pontius et al. 2004)
• By comparing two land cover maps at two different dates (t1-t2), the budget

method highlights the components of the dynamic—dominant signals of land
change—The aim is to compare two-LUCC budgets (t1-t2 and t1-t2 predicted)
in order to characterize the errors.

• For soft-classified maps: ROC (Pontius and Schneider 2001)
• Although it does not separate the errors due to amount from the errors due to

location, the Relative Operating Characteristic evaluates the quality of predic-
tion in terms of location. This is done by comparing a binary map (land use)
with a suitability map.

• Budgeting of errors/accuracies (Chen and Pontius 2010)
• This method allows us to quantify and locate errors/accuracies in LUCC by

crossing two reference maps (t1 and t2) and a prediction map (t2’). Comparison
of the observed and predicted changes generates four categories of pixels: null
successes, false alarms, hits and misses (Maestripieri and Paegelow 2013).
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4 Results

4.1 Calibration Results
The problem is that scientists usually already know that persistence dominates the land-
scape. Scientists want to identify the dominant signals of land change. […] identify the
signals of change separately from any given level of persistence (Pontius et al. 2004).

The swap measures changes in spatial allocation by subtracting the balance
(gains minus losses) from the total change (gains plus losses). Let us imagine for
instance that a land use category recorded a gain of 30 ha between two dates and a
loss of 20 ha over the same period. The total change, calculated by adding these
two amounts together, is 50 ha, the balance (net change) is 10 ha and the swap is
40 ha. Although the area covered by this land use increased by only 10 ha, this low
figure hides significant spatiotemporal dynamics, as land use changed on 50 ha.

In our study, timber plantations represented 2.7% of the landscape in 1999 and
6.4% in 2008. Figure 4 shows that all the changes in this category were gains
(3.7%). No losses were observed, which also implies a swap of 0. The figure shows
that the CA-Markov model perfectly simulates the dynamic.

The native forest is the second largest category in terms of total change (7.9%—
swap 3% and net change: 4.8%). The model clearly underestimated total change

Fig. 4 Comparison between LUCC-budget (1999–2008) and simulated LUCC-budget (1999–
2008 CA_Markov). Net change + swap equals total change (%)
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(3.9%), which is mainly due to a minimization of loss (3.4% against 6.4%) and
higher persistence (64.1% against 61.2%). Nevertheless the share between swap
and net change is correctly simulated.

The “other land use” category shows the highest total change with 9.1%.
Although the net changes were only 1.2%, there was a swap of 7.9%, reflecting a
loss in a given location (afforestation and natural recolonization—4%), offset by
gains elsewhere (deforestation—5.1%). Although the 4.7% figure predicted by the
model for total change was an underestimation (it simulated 2% for deforestation
against the real figure of 5.1%), the ratio between net change and swap is correct.

In order to characterize under (and over) estimation vis-à-vis the observed map,
i.e. to understand where the mistakes (or residues) come from, we compared the
land cover map in 2008 to the CA-Markov simulation for 2008.

This comparison revealed two important facts: (i) the share of spatial concor-
dance (striped cylinders—Fig. 5) and (ii) residues that represent the simulated types
of land use that do not correspond to the real land cover in 2008.

Of the 6.4% of plantations simulated in 2008, 3.7% are consistent with obser-
vation. The remaining 2.73% (0.99% of native forest and 1.74% of “other land
use”) are the residues and are located, for the most part, near the plantations.
Conversely, the residues for the other categories (2.02% for “other land use” and
0.71% for native forest) translate simulation errors in which the model fails because
it does not predict the appearance of new plantations.

For timber plantations, ROC classifies their suitability classes in descending
order with thresholds defined by the modeler. The occurrence of each resulting class

Fig. 5 Residues between observed and simulated (CA-Markov) land cover. Cylinders with stripes
represent concordances

358 N. Maestripieri et al.



is compared to the real location map (Paegelow and Camacho Olmedo 2008) to
determine whether it actually corresponds to plantations (positive true) or
non-plantations (false positive).

Performance is measured by the Area under the Curve (AUC). If the suitability
values for land use correspond perfectly to their location on the map, then the ROC
will equal 1. Pérez Vega et al. (2012) argue that “a highly predictive model will
produce a curve that rises rapidly from the lower left to a point near the upper left
corner and then moves slowly near the upper edge of the graph to reach the upper
right hand corner”.

If the suitability values were randomly distributed between plantation and
non-plantation for example, the ROC would be 0.5 (random distribution in Fig. 6).
The AUC for plantations simulated by CA-Markov is 0.90, 0.87 for native forest
and 0.84 for the “other land use” category, which shows that the model took the
suitability values for each category into account to ensure their location.

As we explained above, the values were discussed with the interviewees who
compared the factors to determine their relative importance. These values were
integrated into a pairwise comparison matrix (Table 2). The majority of the vari-
ables presented in each scenario are non-spatial, so we had to translate them into
spatial variables and/or “play” with spatially explicit variables in order to come
closer to our hypotheses.

The assumptions mentioned for both scenarios (decree law, agroforestry, etc.)
cannot be directly introduced into the model because they are non-spatial data. The
best way to include these assumptions is by adjusting the weight factors to take

Fig. 6 ROC for CA_Markov model
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them into account. For instance, the updating of the DL 701 in 2011, just like its
earlier amendment, will have no impact (in the short-term) on indigenous com-
munities, and only affects the medium and (very) large landowners. As part of the
multi-criteria evaluation, we therefore give large landowners a high weight of 255,
while the weight for small landowners is very low (20).

In the MCE, the optimistic strategy (Strategy # 4) gives too much importance to
pixels with high suitability at the expense of criteria with lower values, and
therefore does not take account of the laws offering incentives to small landowners
to plant forests (low suitability). Strategy # 2 (low risk taking and low levels of
compensation—pessimistic strategy) gives a greater weight to factors with a lower
degree of suitability.

This scenario sees the creation of new plantations and the reforestation of all
existing areas in which trees are felled. The calculation of Markovian transition
probabilities between 2008 and 2017 produces a total of 15,590 ha of timber
plantations in the municipality.

4.1.1 “Sustainable Development” Exploratory Scenario

This scenario is halfway between the sustainability of exotic plantations (economic
stability), which implies a slight drop in forest production, and the respect for
indigenous claims resulting in the recovery of their ancestral lands and the estab-
lishment of development policies. This shift does not reduce the likelihood of
further plantations on the foothills. According to Estades and Escobar (2005)
“although pine plantations are no longer interesting, because of its great capacity for
natural regeneration, its total eradication is extremely difficult (at least with existing
techniques to date). This suggests that pine plantations are an artificial ecosystem
that will dominate much of the landscape of the CC of Chile for a long time”.

Thus, all the landowners obtain a maximum suitability score for the objective
PLANTATION. The evolution of exotic plantations is modulated by estimating

Table 2 Pairwise comparison matrix—sustainable development scenario (objective
PLANTATION)

LU LdTen CoR Pre-CoR DExLC DRoNet SLP ALT

LU 1

LdTen 9 1

CoR 2 1/6 1

Pre-CoR 6 1/2 2 1

DExLC 5 1/3 4 1 1

DRoNet 1/2 1/4 3 1 1/3 1

SLP 3 1/3 2 1/2 1/3 2 1

ALT 1/4 1/7 1/2 1/4 1/4 1/3 1/3 1

Eigenvalue 0.06 0.33 0.06 0.15 0.18 0.08 0.10 0.03

Consistency ratio: 0.08 (acceptable)
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their coverage (ha) in 2035 in the Markovian matrix (10,690 ha). The strategy (for
plantations) is identical to the business-as-usual scenario. Finally, and in order to
promote the emergence of native forest in the “other land use” category, the suit-
ability of this category is also maximum (255).

4.1.2 Results for the Different Scenarios

Established timber plantations remain stable between 2008 and 2017, making small
gains from native forests (1926 ha, or 2% of native forests in 2008). Other land use
also increases by 3776 ha, or 8%, to a total of 15,590 ha. These areas are illustrated
in Fig. 7, which shows that all these changes take place in the foothills of the
Coastal Range (to the east) near the plantations detected in 2008. If we compare
these results with the transitions observed between 1999 and 2008, we can see that
the direct substitution (native forest to new plantation) process is growing very
slightly (+43 ha), while the rate of change from “other land use” to “plantation” has
fallen.

The only category in which total area decreases is native forest, although losses
were lower than in the previous period (6673 ha against 7928 ha). The trend
suggests that these losses will continue beyond 2017. Most of this area (almost
4750 ha) was lost to the “other land use” category. The deforested areas are con-
centrated on the foothills and in the center of the Coastal Cordillera near the Ruta
U-40.

Established timber plantations remain virtually stable between 2008 and 2035with
the only new spaces captured from the “other land use” category (801.9 ha, or 2%)

Fig. 7 Left business as usual scenario. Right simulated transitions (2008–2017)
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increasing the total to 10,690 ha. This scenario marks the end of direct substitution.
Figure 8 shows that all of these areas are in the foothills near the plantations detected
in 2008.

Our results for this scenario indicate that native forest will recolonize “other land
use” areas in a diffuse and heterogeneous way, and will not suffer any losses. In
2008 native forest covered an area of 96,857 ha (63% of the landscape). In 2035
this area is expected to have expanded by about 3000 ha to around 99,000 (65% of
the landscape). In addition to this natural ‘reconquest’, it is likely that native forests
will be planted in the foothills, on managed forest land, according to a management
plan.

5 Validation and/or Discussion of Results

The approach combining multi-criteria evaluation with Markovian chains offers
good flexibility for modeling prospective scenarios. It is proving to be more
effective than LCM for the calibration process (Maestripieri and Paegelow 2013)
and makes the mapping of normative scenarios easier thanks to the weight attrib-
uted to each driving factor (Maestripieri et al. 2015).

However, there is room for improvement in the process by which the factors are
weighted and then adjusted to take the non-spatially explicit assumptions into
account. This step has a certain degree of subjectivity. This subjectivity is often
wrongly perceived as a defect of the criteria selection process. It is also sometimes
considered synonymous with inaccuracy or uncertainty (Joerin 1997).

Fig. 8 Left exploratory prospective scenario. Right simulated transitions (2008–2035)
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The multi-criteria approach has an element of subjectivity because of the states of
consciousness of the researcher, but also and above all because of his/her knowl-
edge of the fieldwork. Belton and Stewart (2002) consider that subjectivity is
inherent in all decision making, especially in the choice of the criteria on which the
decision is based, and the relative weight given to these criteria.

There are also many issues surrounding decision making. Scenario planning has
been defined as ‘a process of positing several informed, plausible and imagined
alternative future environments in which decisions about the future may be played
out, for the purpose of changing current thinking, improving decision making,
enhancing human and organization learning and improving performance’
(Chermack and Lynham 2002). Even if we developed non-participatory models,
these scenarios could only be built with the involvement of stakeholders. These
models must be seen as a tool for reflection and debate, and not as a turnkey
solution (Maestripieri et al. 2015). The question then arises as to the position of the
stakeholders in this decision-making process. Godet (1993) argues that “a scenario
approach can only be credible and useful if it complies with our prerequisites -
relevance, consistency, likelihood and transparency”. So, the next challenge is to
present the scenarios (including the driving forces of each scenario and their
weight) to local stakeholders to find out whether they consider them to be realistic
or not.

6 Conclusion and Outlook

After failing to fully integrate the local population in the decision-making process,
policymakers should question the productive model taking into account the envi-
ronmental and socio-economic impacts generated by timber plantations dynamic
and native forest fragmentation. Our retrospective analysis matches the conclusions
of Zamorano-Elgueta et al. (2015), who found that “deforestation and native forest
fragmentation in the Coastal Range of Región de Los Ríos was found to be less
intensive than in other regions of Chile. […] Nevertheless, the continuing expan-
sion of exotic tree plantations and loss and fragmentation of native forest may lead
to microclimatic changes at the forest edges that may facilitate the spread of exotic
species towards the interior of the forest fragments.”

Government policy on forest resources (timber plantations and native forest) and
their management at local and national level has an important role to play. There is
also a need to strengthen public policies for the conservation of native forest outside
protected areas (Miranda et al. 2015). The DL 701 (promulgated under the military
government of Augusto Pinochet) should be reconsidered, even though the eco-
nomic conditions of the forestry sector make timber plantations a highly profitable
land use (Manuschevich and Beier 2016).

In this way, the exploratory scenarios (and prospective scenarios in general) may
only include specialist expert opinion if—and only if—the knowledge of local
stakeholders is taken into account (Kleiche-Dray and Waast 2016).
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Chapter 18
Urban Transportation Scenarios
in a LUCC Model: A Case Study
in Bogota, Colombia

D. Páez and F. Escobar

Abstract In this chapter, we present a practical implementation of a LUCC sim-
ulation based on transport scenarios. The model, called the Bogota Land
Development model or BoLD, was built on Metronamica to address information
gaps in decision-making. Using BoLD we modeled and compared two types of
transport infrastructure: a highway-based transport network and a suburban rail
system. These transport scenarios were combined with options to expand the city
into green areas currently protected as nature reserves. Customized geospatial
analyses were developed for calculating accessibility distance decay factors
(ADDF) based on a methodology developed in this research called Over-Time
Spatial Decay Calculation (OSDC). Results of the scenarios are presented graphi-
cally in what we call a Mobility Circle, a key contribution of this research.
Validation of the results obtained suggests that both OSDC and the Mobility Circle
appear to enhance the information available to decision-makers when evaluating
urban scenarios driven by transport projects. In any case, those working in this field
should approach LUCC based primarily on changes in transport systems with
caution, as they provide a narrow view of future scenarios without clearly con-
sidering important aspects such as changes in land demand.
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1 Introduction

Building scenarios in a LUCC model requires a thorough knowledge of the study
region, as described in previous chapters of this book. This is particularly important
when the scenarios explore changes in the transport infrastructure. The LUCC
application presented here is unique as the scenarios focus on a specific transport
technology instead of evaluating overall infrastructure solutions.

Political debates about the future of a city can center on specific transport
infrastructure projects for specific areas (Al-Kodmany and Ali 2013). In some
cases, particularly in developing cities, the focus is narrowed to projects involving
one specific technology (for example, a new metro or tramway). Projects like these
are gaining momentum in democracies around the world, at the expense of holistic
or strategic infrastructure plans, and are often key priorities in the campaign pro-
grams of national and local politicians.

Transport models have been used for over 30 years. They are particularly
important for designing infrastructure to meet expected demand, such as train or bus
station capacity. They also provide valuable information for designing operational
aspects, such as fleet size and frequencies (Ortuzar and Willumsen 2005).

New approaches to infrastructure financing, based on land development, are
increasingly common today. Concepts like “transport oriented development” are
used in urban planning in conjunction with sustainable development (Suzuki et al.
2014).

Given these new financial approaches to infrastructure, the planning and
development of transport infrastructure requires important decision-making infor-
mation that cannot be obtained using the traditional models which do not provide
information about land-use cover changes (LUCC).

Although previous researchers have combined traditional transport models with
LUCC models (Zhao and Peng 2012), little work has been done on the use of
LUCC models as an overarching tool for urban planning in which specific transport
technology alternatives are evaluated not only from a demand or operational per-
spective, but also as a driver of urban development.

In this chapter we present a LUCC model developed for the city of Bogota to
evaluate transport alternatives in the growth areas to the west of the city. The
model, which is known as the Bogota Land Development model or BoLD uses
Metronamica software. Advanced spatial analyses on a Geographic Information
System (GIS) were used to determine accessibility indexes for each type of
infrastructure and land use. These analyses, combined with those produced for
neighboring interactions between land-uses, allowed specific indicators to be
developed to evaluate the proposed transport alternatives.

In order to understand land-use transport interaction, the scenarios evaluated
with BoLD included the possibility of regulatory changes permitting development
in an environmentally protected area in the north of the city.
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2 Case Study: Bogota

In this section we present the case study developed for Bogota. We begin with an
introduction describing the general urban geography of the city to provide the
reader with a context for the model. We then explain the LUCC modeling needs in
Bogota, which were used as the design parameters for the model. This section ends
with an explanation of current debates in Bogota about land development and
transport proposals. We used these proposals as the basis for the formulation of
scenarios for the BoLD model.

2.1 General Context of Bogota

Bogota (Fig. 1) is the capital of Colombia. The city has a population of 8 million
people, over 20% of the entire population of the country (Munoz-Raskin 2010).
A large proportion of Colombia’s business activity takes place in the city, which
generates over 25% of GDP (DANE 2015).

From an administrative perspective, Bogota has the political status of “capital
district”. This status, awarded under the Colombian Constitution of 1991, allows it
to be governed as an independent state and not as a local municipality. Bogota has
significant autonomy in terms of land-use planning, taxation and infrastructure
development and management.

Fig. 1 Bogota and its surrounding municipalities, within the context of Colombia, and location of
residential areas
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The population of Bogota has grown from around 5 million in 1990 to almost
7.2 million in 2010. Population projections by the National Administrative
Department of Statistics (DANE) estimate that Bogota will grow at an average rate
of 1.1% per year in the next 25 years (DANE 2011).

The city’s urban area extends across 355 square kilometers (Bocarejo et al.
2013) with an average population density of 20,500 inhabitants per square kilo-
meter (Bocarejo et al. 2013). It is divided into 19 urban communities which are in
turn divided into 112 planning zones. The purpose of the planning zones is to define
and regulate urban land-use and management at a detailed scale (Bocarejo et al.
2013).

Urban growth trends in Bogota today show a concentration of low-income
households in the south and west of the city, while the high-income households are
located in the north and in the center (Bocarejo et al. 2013). Lack of available land
for expansion and high land prices have forced low-income earners out to
peripheral areas of the city (Oviedo Hernandez and Davila 2016). As available land
within Bogota’s jurisdiction runs out, most of the city’s urban growth is likely to
occur outside the municipality of Bogota. This is why the BoLD model incorporates
six municipalities to the west of Bogota, namely Funza, Mosquera, Madrid,
Facatativá, Cota and Soacha (Fig. 1). Most of their inhabitants are either low or
middle-income. Cota, as the smallest town in this group, has a population of around
25,000 (DANE 2011), while Soacha has the highest population with more than
500,000 inhabitants (DANE 2011). The others have populations ranging be-tween
75,000 and 132,000 inhabitants.

In terms of density, the peripheral areas of Bogota have the lowest formal
employment densities and the highest population densities. High population den-
sities in these areas are due to minimal public spaces (including streets and parks)
and small areas of privately owned land per inhabitant. They are not due to
high-rise development (Bocarejo et al. 2013). In general these areas have low-rise
housing with large numbers of occupants, whereas in the high-income areas there
are high-rise developments with large flats with few occupants, so creating lower
population densities. There is also a high concentration of formal employment
(Bocarejo et al. 2013).

2.2 LUCC Modeling Needs in Bogota

BoLD was conceived to address the need to understand the global impacts of
transport infrastructure projects on urban development. This is particularly impor-
tant for Bogota, a city whose political agenda is driven by transport projects. In
1998, the local government created Transmilenio, a Bus Rapid Transit
(BRT) system. It was developed as a response to deteriorating mobility in the city
demonstrated by increasing travel times. Another objective of the new BRT system
was to reduce greenhouse gas emissions by renovating the city’s aging bus fleet
(Suzuki et al. 2014).
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The system increased accessibility in many areas of the city resulting in the
creation of new urban growth centers (Bocarejo et al. 2014). The initial plan was for
a network of 388 km, which was to be completed in 5 phases over 18 years (Suzuki
et al. 2014). Currently it is in Phase 3 with 113 km constructed. In 2015, demand
for the system reached 2,345,803 trips a day (Transmilenio 2015).

Understanding how transport infrastructure changes land use has become
increasingly important for Bogota city planners, as international funding organi-
zations (bankers and donors) often require information about the contribution of
specific transport projects to the sustainable development of the city.

Additionally, previous research has identified significant urban development
challenges caused by a lack of proper planning (Paez et al. 2014). These challenges
include; unequal distribution of transport infrastructure and services between the
most disadvantaged, the middle class and the most prosperous. To improve out-
comes, Bogota needs to include these challenges as part of the decision-making
process.

BoLD is therefore intended to address the lack of technical tools to assess
specific transport infrastructure proposals from a sustainable development
perspective.

2.3 Infrastructure and Land Development Proposals
for Bogota

Although other areas of the city have had significant debates about increased urban
development (for example, the south for low income population and the north for
the rich), stakeholder workshops as well as current administration priorities turned
our attention to the west growth area (Universidad de los Andes 2015). Transport
proposals for the western part of the city aim either to increase current road
infrastructure for buses (the existing transport option) or to create a new suburban
rail service running on the existing freight infrastructure (Regiotram 2014).

The Light Rail Transit (LRT) is planned to be developed as a public-private
partnership between private investors; the city of Bogota and the State of
Cundinamarca. All the municipalities to the west of Bogota belong to the state of
Cundinamarca. The objective of the LRT is to supply a fast,
environmentally-friendly, safe, integrated transport option for the west. It is
intended to provide users with an alternative to the current road-based public
transport (Regiotram 2014). The idea is for the LRT to operate as a commuter train
in the inter-urban areas outside Bogota, and as a tramway in Bogota’s urban areas,
reaching speeds of 110 km/h and 60 km/h respectively (Regiotram 2014).

As an alternative to the LRT, the road proposal includes road improvement
schemes in the western and northern parts of the city, with the construction of urban
highways to replace some of the roads connecting Bogota CBD to other town
centers.
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Figure 2 shows the proposed road and rail alternatives currently being debated
for Bogota and its western corridor.

A challenging aspect of modeling specific transport infrastructure projects is
including a standard infrastructure plan for the years being modeled.

Fig. 2 Proposed transport projects for Bogota and the growth area in the west
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Figure 3 shows all the roads improvements on the Transmilenio BRT network
that were taken into account for this model as the general infrastructure plan for the
rest of the city. Although stakeholders in Bogota were extensively consulted about
this general plan, many of these projects, and their year of becoming operational,
have been a source of controversy.

To complement these infrastructure scenarios in which either improved roads or
a train service were constructed, land regulation options in Bogota likely to have an
impact on the west were also modeled. In particular, we included options for the
Van Der Hammen reserve (VDH), a 1400-hectare nature reserve to the north of
Bogota, in the analysis (Fig. 4). Supporters of developing the reserve argue that
increasing the available land for residential developments close to existing com-
mercial and industrial areas in Bogota would provide shorter travel distances for
Bogota residents. If combined with sensitive urban development, these benefits
could potentially surpass those obtained from maintaining the land as an environ-
mental reserve (El Tiempo 2016).

The options for preserving the nature reserve or not were combined with the
proposed transport infrastructures in the west to produce four scenarios to be
modeled in BoLD. These scenarios are detailed in Table 1.

In the next section we present the methodology used for developing BoLD and
its technical parameters.

Fig. 3 Temporal changes in infrastructure for the BoLD Model
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Fig. 4 Area of the nature reserve under consideration for development
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3 Methodology and Practical Application
of the LUCC Model

BoLD was conceived as part of a technical cooperation project between the
University of Los Andes in Colombia and the French Development Agency (AFD
in French). The project had the following objectives and principles:

• To design and develop technical tools to aid decision-making for local
authorities in Bogota and nearby municipalities, particularly in terms of sus-
tainable development.

• These tools should be practical and replicable under different scenarios.
• There should be active participation of Bogota’s governmental institutions,

particularly of the planning and infrastructure departments.
• Indicators must be created to measure the impact of transportation problems on

the sustainable development of the city.

BoLD was developed according to a series of general steps: Diagnosis, Model
architecture, Model development and Results and Indicators.

It is important to note that significant stakeholder engagement was conducted.
This occurred as part of the steering committee and technical committee workshops
set up as part of the project. Government officials and representatives of key
non-governmental entities participated in the workshops. At least one technical
committee meeting was held in each phase of the process. In total, the project had
three steering committees with representatives from local authorities, NGOs, the
AFD and the University of Los Andes.

Community meetings are often part of the process of developing LUCC
models (Escobar et al. 2015). BoLD, however, was conceived as a strategic tool to
resolve some of the key discussions already happening in the community.

Table 1 Scenario narratives in BoLD

Road infrastructure Suburban train infrastructure

Nature reserve
maintained

Scenario 1: Road infrastructure
continues to be the main form of
transport for growth areas in the west.
New roads allow additional
connections between outlying
municipalities and Bogota. No
changes to existing restrictions on
urbanization in the VDH reserve

Scenario 2: Existing freight rail
infrastructure upgraded to provide a
suburban passenger-rail service for
Bogota and the municipalities in the
west. New road constructions or
upgrades will only take place in areas
where no rail infrastructure currently
exists

Nature reserve
urbanized

Scenario 3: As in Scenario 1, roads
are upgraded to provide accessibility
in the west. However, land
regulations are changed to allow the
VDH reserve to be urbanized, so
enabling additional road
infrastructure and BTR services

Scenario 4: As in Scenario 2, a new
train service is developed for the
west. However, land regulations are
changed to allow the VDH reserve to
be urbanized, so enabling additional
road infrastructure and BTR services
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Therefore, our intention was from day one to engage with key decision-makers that
are likely to use the findings of the model. It was also to engage with the civil
servants in Bogotá City Council with responsibilities in this field who would benefit
from using the tool to support their decision-making processes.

We will now describe each step in the methodology in detail. For each step, we
outline the technical parameters designed and developed for use in BoLD.

3.1 Step 1: Diagnosis

The first step was to conduct a diagnosis of current decision-making practices in
key government institutions of Bogota and to understand the specific needs of key
decision-makers. Interviews with stakeholders in both public and non-governmental
organizations were conducted. The aim was to understand how modeling is cur-
rently used to inform decision-making relating to major transport infrastructure
projects in the Bogota region and to find out where there is room for improvement.

One of the first issues we had to address was that strategic technical tools were
not used in most decision-making, a problem that previous research into
decision-making processes in Bogota had also encountered (Ardila 2004).

As part of the assessment, we conducted an extensive review of the literature on
the latest developments in LUCC modeling. During this, we explored the options of
programming a specific tool or of using existing software.

Although previous experiences in Bogota have shown the advantages of creating
one’s “own tool” (Guzman and Gómez-Gélvez 2014), we decided that existing
commercial software would be more appropriate for achieving the objectives set out
in the cooperation project. In particular, if we wanted to continue modeling sce-
narios beyond this first run of BoLD, we would need continuous support for the tool
as well as a platform for training the government officials who were likely to use it
in their work.

After comparing the different software tools on the market, we selected
Metronamica as the most suitable in terms of the data demands and results it
provided, as well as the large number of modeling exercises previously conducted
with it, some of them in developing countries (Barredo et al. 2004). Our previous
experience with this software had also proved successful (Hewitt et al. 2014;
Escobar et al. 2015).

Metronamica is a cellular automata-based tool for modeling LUCC scenarios
developed by RIKS (http://www.riks.nl/). The advantages of the model are the
freedom to run different scenarios for the future, its capacity to enable the definition
of very complex functions, the facility to ‘‘learn’’ the characteristics of a particular
area, the ability to link to GIS and the easy incorporation of raster-based spatial data
(Linke 2008). The transition rules affecting cell mutation from one land use cate-
gory to another throughout the model run are computed using five main parameters;
neighboring effect, zoning regulations, suitability linked to bio-physical factors,
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accessibility to communication infrastructure and a stochastic factor. The model is
described in detail in RIKS (2007) and Hewitt et al. (2014).

Previous experiences with LUCC models have shown some limitations, partic-
ularly in relation to the need for a similar set of input data and the need to recal-
ibrate and revalidate when the model is moved to other locations (Research Institute
for Knowledge Systems BV 2007). Metronamica is no exception.

In order to address these limitations we conducted specific stakeholder inter-
actions along with customized spatial analyses.

A LUCC model implemented with Metronamica is calibrated by providing two
different datasets for the study area (Straatman 2004). Generally, these datasets
need to be separated in time by around 10 years to meet the dynamics of LUCC
(Robert et al. 2004) and are both considered as baseline land-use datasets. The
calibration process involves replicating the LU map for the second date with a
sufficient level of similarity to the actual LU map. The goodness of the model can
be assessed using both qualitative and quantitative methods (Hewitt et al. 2014).
The model is then extended to the final simulation date.

When it came to calibrating BoLD, instead of using the traditional calibration
process, we decided to apply the neighboring rules and the accessibility analysis
detailed below. Although this decision could be contested, the literature shows that
calibration assessment is still a challenge and that indices such as kappa and others
have certain disadvantages (Pontius and Millones 2011). As a result, visual
assessment of calibration (van Vliet 2012) can be considered as effective as
quantitative methods. In addition, the perceived value of models of this kind is
shifting away from their very debatable predicting capacity to their usefulness as a
tool for shared learning throughout the modeling process (Hewitt et al. 2014).

In the Bogota model, after adjusting the model parameters (neighboring rela-
tions, accessibility, zoning, suitability and stochasticity) in an iterative process, we
found the observed and estimated land use maps for 2014 to be visually close
enough. However, the estimated map was rejected as it substantially incremented
the number of individual cells of different land use classes scattered within the area
(salt and pepper effect) and causing abnormal results in the prospective land use
map. The direct application of the model parameters to the observed land use map
for 2014 produced satisfactory results as it was plausible and met all the criteria
(land demands were met). More importantly, it showed the model’s capacity and
aroused so much interest amongst stakeholders that Bogota City Council requested
that it be implemented for a larger area with more diverse scenarios.

Multiple datasets for land-use coverage were explored for Bogota and its sur-
rounding area to the west. Cadastral or planning datasets containing complete
land-use cover in two different years were only obtainable for the Bogota munic-
ipality. The information about the municipalities in the west was incomplete, so we
decided to use a combination of datasets to produce a complete dataset of land-use
cover for 2005 and 2014. Although the time lapse was only 9 years, just below
what is recommended in the literature, the rapid growth experienced in Bogota over
this period has caused more than enough LUCC to enable us to calibrate the model
properly.
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The 2005 and 2014 datasets were formed on the basis of satellite images from
Landsat. However, these images had significant limitations including:

• Errors in the images that resulted in incomplete pictures of some areas
• Spectral signature similarities meant that not all land-uses could be discrimi-

nated from each other.
• The images do not provide information about the income levels within the

different residential areas, which became an important aspect, as explained in the
next section.

To address these issues, we sourced other datasets, particularly in vector form.
Table 2 contains a description of these datasets and how they were used to improve
information from the Landsat images.

3.2 Step 2: Model Architecture

The architecture of BoLD was developed on the basis of the diagnosis conducted in
the first step of the process. In this stage, we focused particularly on the land-uses to
be modeled and on the extent and resolution of the model.

3.2.1 Land-Uses Modeled

Within Metronamica, land-use classes are divided into vacant, feature and function
categories. Feature land-uses are defined as those that are not supposed to change

Table 2 Datasets used in the BoLD Model

Dataset Description Application in BoLD

2014 cadastral
dataset for Bogota

Parcel-based cadaster dataset for
Bogota that includes land-use
coverage for every land parcel and
the rate able value of each one

Calibration of land-use coverage
areas in Bogota

2005–2011
planning zones

Planning zones for areas outside
Bogota municipality with their
intended or authorized land-use
coverage

Calibration of land-use coverage
areas in Bogota by detecting
vacant zones and most likely
land-use based on regulatory
restrictions

2005 and 2014
water body
inventory

Official dataset of rivers, lakes and
other water bodies in the area

Identification of areas covered by
water not always identifiable by
Landsat images

2005 and 2014
national and
regional parks and
reserves

Official dataset from national
government describing land with
protected status in the study area

Separation of parkland from
agricultural lands, and
identification of forest reserves
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during the simulation (for example, water bodies, roads, wetlands etc.) whereas
vacant land-uses are those that lose land in favor of the more active land-use
classes, referred to as function. The latter are typically residential, industrial or
commercial (Research Institute for Knowledge Systems BV 2007). A fundamental
aspect of the model architecture is the decision as to which land-uses should be
classified as either vacant, feature or function. As part of this classification process,
we conducted a specific division of residential land cover based on population
income. This division was based on information obtained in interactions with
stakeholders and previous research into urban layout in Bogota (Munoz-Raskin
2010).

Colombia has one of the highest levels of income inequality in the world,
resulting in a GINI index of 0.5, which at a regional level is exceeded only by
Honduras (The World Bank 2013). It is hardly surprising therefore that its capital,
Bogota, also has significant economic inequalities, which are expressed in its urban
geography (Aliaga-Linares and Álvarez-Rivadulla 2010). Residential land-use is
heavily spatially clustered on the basis of the income of the residents. Generally, in
Bogota the poorest residents are located to the south and west, while the rich are
concentrated in the north.

Bogota has a system that classifies residential properties (and therefore their
occupiers) from 1 to 6, where 6 represents those earning the highest incomes and 1
the lowest. The purpose of the stratification system is to calculate land taxes and
many other public services, including subsidies for utility services and social
welfare benefits.

In a general sense, the price of land per square meter for properties in strata 6
(the highest income band) is estimated to be 10 times higher than in strata 1
(ALCALDE MAYOR DE BOGOTÁ, D. C. 2014).

The following graph (Fig. 5) shows the different prices per square meter in each
strata according to government taxation system calculations.

Table 3 shows the land-uses included in BoLD together with their description
and classification under the Metronamica model. This was developed using the
stratification system in Bogota as a basis and then simplifying it into the three
categories outlined above.

Fig. 5 Prices per square meter. Us Dollars (Source Secretaría de Hacienda)
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It is important to note that significant amounts of commercial and industrial
activity in Bogota occur on residential land or land not specifically allocated for
such purposes (Izquierdo and Horta 2013).

In view of the strategic nature assigned to BoLD, modeling small industrial or
commercial areas was considered to be beyond its scope.

3.2.2 Model Extent, Timeframe and Resolution

Metronamica is a spatially-explicit cellular automata LUCC model and therefore
requires a specific geographic area to be modeled. It also requires a specific reso-
lution or cell size. These are fundamental parameters. Results of the model can vary
significantly depending on the extent of the area and the cell size. Boundary effects

Table 3 Land-use in BoLD model

Land-use Classification Description

Available for
change

Vacant Vacant land or areas reserved for urban growth

Agriculture Vacant Land used primarily for agricultural activities that could
change to a different use in the future

High-income
residential

Function Land covered with residential properties in strata 5 and 6.

Medium-income
residential

Function Land covered with residential properties in strata 3 and 4.

Low-income
residential

Function Land covered with residential properties in strata 1 and 2.

Commercial Function Land covered with large commercial properties. It includes
shopping complexes or malls but excludes local shops or
small retail activities at ground level in residential or
industrial areas

Industrial Function Land covered with industrial activities of significant size. It
includes factories and agro-industrial complexes but
excludes other small industrial activities such as informal
car garages or workshops located in predominantly retail
complexes

Urban facilities Feature Land covered by institutional buildings, both private and
public, that provide fundamental services to the community
such as schools, hospitals, sports facilities, etc.

Roads Feature Land covered by roads and other transport infrastructure,
such as railways and stations

Water bodies Feature Land covered by water bodies such as lakes, swamps and
rivers

Other Feature Land covered with uses different to those described
previously that are likely to remain unchanged over time.
For example, government buildings, museums, parks,
historical sites, etc.
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could also distort results (Linke 2008). The entire municipality of Bogota was
included as well as those to the west of it. In view of the current growth patterns in
low-income population in the south (Botero and Gakenheimer 1999), we also
decided to include the municipality of Soacha.

It is important to acknowledge that the extent we selected has certain limitations:

• It does not include all potential growth areas outside Bogota, particularly those
in the far north (north zones inside the municipality of Bogota are included).
This was primarily due to a lack of resources and interest on the part of local
authorities. Although we acknowledge this as a limitation of the model, its
impact on the overall result is minimal as most of the population growth in the
city is happening in the south and southwest. The north is traditionally a growth
area for the most prosperous section of society. Although as this group makes up
less than 5% of the population of the city, the impact of their demands, in terms
of land use changes is minimal in comparison with the land use changes caused
to fulfil the needs of middle and low income population in the south and
southwest.

• Although the municipalities west of Bogota are quite big and have significant
vacant areas for future growth, their interaction with other municipalities outside
the study area is not included in the model. In particular, Facatativa, which is not
a commuter town for Bogota, but acts as a regional center for rural activities in
the broader context.

The modeling timeframe for BoLD was from 2014 to 2040. This is in line with
standard practice for LUCC models, which are normally used for strategic
decision-making, to cover modeling periods of about 30 years (Y.Sato et al. 2003).
This timeframe appears to be suitable not only for the scenarios proposed but also to
fill the gap in terms of decision-making information identified for Bogota.

The resolution of the BoLD model was set with a cell size of 100 � 100 meters,
so each cell covers an area of 1 hectare. This resolution was based on previous
experiences of LUCC models where a cellular automata approach was used in cities
with similar characteristics to Bogota (Escobar et al. 2015). This resolution was also
appropriate to the level of information from the Landsat images and improved with
local datasets.

3.3 Step 3: Model Development

In a general sense, a LUCC model based on cellular automata requires inputs (of
both information and parameters) in the following areas:

• future land demands
• current and future land zoning changes and suitability conditions
• neighboring relationships between land-uses, and
• accessibility analysis based on transport infrastructure
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3.3.1 Future Land Demands

Future land demand inputs were developed by forecasting current growth trends.
Demands for the three income levels of residential land-uses were based on pop-
ulation growth forecasted by the National Statistics Department (DANE 2016). The
other two key land-uses, commercial and industrial, were projected on the basis of
GDP forecasts for Bogota and its surrounding region (DANE 2016, DANE
(2) 2016). According to reports from the Bank of the Republic, industry is projected
to grow by 2.7% annually over the next 2 years. FENALCO (National Federation
of Retailers) have estimated that for the next two to three years, commercial activity
is likely to grow at around 3% a year (FENALCO 2014). In both cases, future
residential, commercial and industrial land use demands were estimated in direct
proportion to the growth forecasted by DANE and FENALCO respectively.

Our review of the literature revealed that there are two main sources of infor-
mation used to estimate the future land demand of a city. While in some models the
information was provided by a national entity (Mancosu et al. 2015; Aljoufie 2014),
in other cases land demand was constructed by the researchers themselves (Hewitt
et al. 2012). We opted for the second method, obtaining the projections for pop-
ulation growth by mathematical extrapolation (Table 4). Using this method, the
following values were obtained for the city’s population and GDP for trade and
industry (in millions of COP- Colombian Pesos):

Based on this expected growth, we calculated the expected increase in future
land demand in Bogota (in hectares or cells in the model), as observed in Table 5.

For the case of Bogota, increase in land demand is shown in Fig. 6:
When calculating the data shown in Table 5 and Fig. 6, we made the following

assumptions:

1. High-income residential land-use will always represent 5% of total residential
land-use.

2. Poverty will decrease by 5% in 9 years and the medium income group will
increase at the same rate over the same period.

3. Population densities remain constant over time.

Table 4 Projection of growth in population and GDP in Bogota

Year 2005 2014 2023 2032 2040

Total population
(people)

7,556,515 8,661,781 9,737,843 10,808,780 11,760,724

Total commercial GDP
(mill COP)

69,324 152,931 201,478 262,883 333,012

Total industrial GDP
(mill COP)

29,119 51,215 61,807 73,865 86,544
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3.3.2 Current and Future Land Zoning Changes
and Suitability Conditions

As has happened in other developing cities (Lombard 2014; Heinrichs and Bernet
2014), residential growth has not been strictly confined to authorized areas. Illegal
settlements are still common today. In Bogota in particular, construction outside
authorized areas remains a significant problem for low-income residential land-use
(Escobedo et al. 2015).

Bogota and its neighboring municipalities do not have an integrated land
planning system. This leads to restrictions and municipality-based land-use plans
that are often inconsistent with those of neighboring municipalities. After reviewing
all the land-use planning zones in all the municipalities, the following zoning
categories were included in BoLD:

Table 5 Estimated land demand

Year 2014 2023 2032 2040 % Cells per land-use for
2040

Residential high income 1359 1411 1566 1704 4.22

Residential medium income 11607 15519 18530 21582 53.41

Residential low income 7949 6584 6003 5112 12.65

Commercial 1146 1510 1970 2495 6.18

Industrial 5633 6798 8124 9519 23.55

Total cells 27694 31821 36193 40412 100.00

Cells increment (%) 13% 12% 10%

Fig. 6 Population growth for Bogota and its region
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• Archaeological: Refers to all areas, lands, buildings, spaces or facilities that
have archeological features or value.

• Heritage: Refers to all historical and cultural areas, land, buildings, spaces or
facilities, which must be preserved and protected as part of the essential fabric of
each culture or nation. This category includes museums, heritage and historic
preservation areas. A good example of this is the historical center of Bogota, La
Candelaria.

• Environmental Restriction: Refers to all areas, spaces and/or ecosystems that
have a strategic role in biological processes and contribute to biological
diversity; as well as the provision of basic resources for human subsistence.

• Industrial Use: Refers to all areas, land, buildings, spaces or facilities that
currently have high industrial activity.

• Road network: Refers to all areas and corridors through which traffic (private,
public, haulage, etc.) flows.

• Environmental slightly restricted: Refers to all areas, spaces and/or ecosystems
that have a strategic role in biological processes and contribute to biological
diversity. These areas, however, are not protected or are already fragmented or
affected by human activity. All of the land in this category falls within the
municipality of Mosquera, Cundinamarca.

• Airport: Refers to the whole airport area and other adjacent land specially
designated for aeronautical or aerospace logistics activities.

Suitability was included in BoLD using a similar procedure to zoning. Suitability
refers to the natural conditions under which land-uses can develop and to this end
we evaluated the risk of Landslides, Flood Zones and Heavy Rainstorms. The
information we used came from the regional risk management authority.

Finally, we also studied geographic areas which suffer from the ponding effect of
precipitation. The ponding effect is the product of progressive increases in the flow
of puddles or ponds caused by heavy rainfall. When the ponds join, they generate
torrential water flows that can damage or destroy everything in their path, affecting
the most vulnerable people in the city. This phenomenon occurs mainly in highly
sloping areas and near rivers and mountain streams.

3.3.3 Neighboring Relationships Between Land-Uses

Neighboring interactions are fundamental in a LUCC model. They define how
different land-uses affect the development of their surrounding land-uses. To rep-
resent neighboring interactions between land-use types, we used a methodology
based on spatial analysis and Laplace probability concepts (Hansen 1993). This
methodology was taken from Laplace’s rule and adapted for the BoLD model using
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ArcGIS to calculate distances between land-uses and their relation to land-use cells
in a defined searching radius.

Attractiveness Index

XAB ¼
Pn

i¼1
DAB

R � n ð1Þ

where,
A = Land-use A
B = Land-use B
D_AB = Average distance between A and B
R = Searching radius
n = Number of cells in A
X_AB = Attractiveness Index of A to B
Examples of results from these analyses are shown in Fig. 7.
The probabilities of land type locations and the relationships between them were

calculated for all function land uses. As an example, the above graphs show that in
our study area, high-income residential has a very strong attraction or desire to
locate close to industrial land. The inclusion of neighboring relationships based on
historical probability and spatial analysis strengthens the simulated results, as these
curves were used in all future scenarios of BoLD.

Fig. 7 Neighboring interactions between land-use categories (Source Rubio et al. 2015)
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3.3.4 Accessibility Analysis

Accessibility refers to the closeness of a particular land use to the transport service
provided in a specific area. For LUCC models, accessibility refers to the preference
of most function land-uses to locate closer to transport services. A highly accessible
location is more likely to be developed than another location with the same con-
ditions but with limited access to roads or public transport.

Mathematically, accessibility in a LUCC model based on cellular automata can
be expressed as (RIKS 2007):

Ac;y;s ¼ ay;s
tdc;y þ ay;s

ð2Þ

where:

• Ac;y;s is the accessibility of cell, c, in relation to a certain type of node or
transport link, y, (for example, a main road or train station) for a specific
land-use, s

• ay;s is the accessibility distance decay factor (ADDF) which varies depending on
the type of infrastructure, y, and is individual for each land-use, s

• tdc;y is the distance from the specific cell being analyzed to the infrastructure, y,
at a specific time, t

The result of this equation will have a value of between 0 and 1 for each cell.
The inclusion of ADDF in the equation enables us to assess the degree to which
accessibility is affected by the distance to the nearest transport infrastructure. This
factor varies for each type of infrastructure and for each land-use. As distance to the
nearest transport infrastructure is an important parameter in the scenarios being
modeled, assigning the ADDF for each type of infrastructure and for each land-use
is a key task for the modeler.

Although the calculation of ADDF is commonly based on empirical experiences
(Furtado 2009), the significance of these factors for the BoLD model required us to
explore advanced technical methods for calculating ADDF. This aspect became a
focal point of the investigation and we believe it to be the main contribution that
BoLD makes to LUCC modeling.

A methodology based on advanced spatial analysis implemented on a GIS was
used to determine ADDF. We call this methodology OSDC (Over-time Spatial
Decay Calculation).

OSDC is based on three principles. The first is that ADDF factors determined on
the basis of past information can be used for modeling future scenarios. For
example, if low-income residential land-use is more attracted to public transport
nodes compared to high-income residential uses, this relationship would be main-
tained in the future.

The second assumption in OSDC is that the ADDF values for each type of
infrastructure and for each land-use are proportional to each other. In other words, if
two ADDF for two different infrastructures are equal (for example 1) they make the
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same contribution to the overall attractiveness of the cells in the model.
Consequently, and considering that OSDC creates ADDF with values of between 0
and 1, if a specific transport infrastructure, y, for particular land-uses, s, has a low
proportional accessibility, the OSDC would assign a value of 0.

The third principle assumes that the average distance (up to a maximum of
2 km) between the cells for a particular land-use and the transport infrastructure is a
good indicator of the ADDF. The relationship is inversely proportional, the larger
the average distance to the transport hub, the smaller the decay factor value.

These three principles are applied to OSDC with the following equation:

ADDFy;s ¼
dy;s
dmaxy

max dy;s
dmaxy

ð3Þ

In which:

• ADDFy;s is the accessibility distance decay factor for the infrastructure, y, (for
example, main roads or train stations) in a specific land-use, s, (for example
commercial or industrial land-uses)

• dy;s is the average distance to the infrastructure, y, of all land-use cells of type,,
s that are no more than 2 km away from it

• dmax y is the maximum for all dy;s; values for infrastructure, y.

OSDC produces ADDF values of between 0 and 1. Additionally, and consid-
ering that transport infrastructure can be modeled as lines or points in a GIS system,
two normalization procedures must be conducted, one for each type of infrastruc-
ture (the numerator in the previous equation). The denominator of the equation is
applied to normalize the ADDF again. This second normalization is needed to
generate a proportionality between all the land-uses and infrastructure types in the
model.

OSDC was applied using the processed datasets for 2005 and 2014 in the BoLD
model, and the results were compared. Table 6 shows the results obtained and the
differences between the two years.

Ideally, there should be no difference between the ADDF calculated for 2014
and 2005. Apart from some differences in roads for high-income residential
land-use, in general OSDC is consistent (it has a standard deviation of less than
0.13).

4 Indicators and Results

The final step of the methodology involved developing decision-making indicators
for mobility. We adapted previous work by James (2015) that presented a circle of
sustainability as a representation of the sustainability of a territory. The circle is
divided into four domains and each domain into various sub-domains (James 2015).

18 Urban Transportation Scenarios in a LUCC Model … 387



T
ab

le
6

A
D
D
F
ca
lc
ul
at
ed

in
B
oL

D
us
in
g
O
SD

C

L
an
d-
us
e

20
05

da
ta
se
t

20
14

da
ta
se
t

D
iff
er
en
ce
s
(2
01

4–
20

05
)

B
R
T
lin

e
St
at
io
n

R
oa
ds

B
R
T

lin
e

St
at
io
n

R
oa
ds

B
R
T

lin
e

St
at
io
n

R
oa
ds

R
es
id
en
tia
l
hi
gh

-i
nc
om

e
0.
70

0.
00

0.
77

0.
77

0.
00

0.
48

0.
07

0.
00

−
0.
29

R
es
id
en
tia
l-
m
id
dl
e

in
co
m
e

0.
49

0.
33

0.
85

0.
40

0.
28

0.
62

−
0.
10

−
0.
04

−
0.
23

R
es
id
en
tia
l
lo
w

in
co
m
e

0.
00

0.
30

0.
00

0.
00

0.
28

0.
00

0.
00

−
0.
02

0.
00

C
om

m
er
ci
al

0.
75

0.
46

1.
00

0.
89

0.
66

1.
00

0.
13

0.
20

0.
00

In
du

st
ri
al

0.
43

0.
38

0.
10

0.
32

0.
51

0.
17

−
0.
11

0.
13

0.
06

388 D. Páez and F. Escobar



The general concept is that all the mobility impacts of each scenario can be
summarized in a single graphic. We adapted a version of the circle of sustainability
based on mobility indicators. Our mobility circle is designed to have three domains
and each domain to have three subdomains or indicators. Table 7 shows the indi-
vidual scenarios that make up the circle with an interpretation for each.

4.1 Results and Discussion

After implementing BoLD using the parameters described in the previous section,
including the ODDC for accessibility analysis, we obtained results for all the
scenarios. Map results for the baseline year (2014) and the simulated result for 2040
for each scenario are presented in Fig. 8.

Table 7 Indicators developed for the Mobility Circle

Domain Indicator Description

Urbanism Average distance to
work

Approximates the distance from a cell with residential
land-use to the land-uses related to work

Average distance to
downtown

Average distance from a cell with residential land-use
to Bolivar Plaza in the city’s downtown area

Average distance to
large parklands

Average distance from a cell with residential land-use
to the main parks in Bogota

Equity Average distance to
public transport

Average distance from a cell with residential land-use
to any type of public transport (metro or
Transmilenio)

Access rate to
transportation
infrastructure

Number of residential use cells within a certain
distance of roads or public transport stations. The
distances were set at 500 meters to public transport
and 1 km to roads.

Distance to major
activity zone

Average distance from a residential land-use cell to
any type of public transport (metro or Transmilenio)

Environment Access ratio for
commercial use

Ratio between average distance from a cell with
commercial land-use to roads and average distance to
public transport

Habitat fragmentation Indicates biodiversity according
to the ‘Probability of Occurrence’ and is based on the
degree of fragmentation.

Expansion of urban
areas

Ratio indicating how urban areas have appeared and
disappeared during the simulation

Risk Flood risk Percentage of cells with a residential land-use in areas
considered at risk of flooding.

Landslide risk Percentage of cells with a residential land-use in areas
considered at risk of landslides.

Torrential rain risk Percentage of cells with a residential land-use in areas
considered at risk of torrential rain.
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General patterns of development are maintained in all scenarios. This is probably
due to the fact that Bogota is a mature city in which similar trends have been in
place for many years. However, in some specific areas there are differences between
the scenarios.

Fig. 8 Land-use maps for 2040 scenarios
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For the first scenario (freeway development in the west with conservation of the
nature reserve), increased commercial development along the proposed road can be
observed along with additional industrial growth in the surrounding areas. Industrial
areas appear in the far west on what was previously agricultural land. These results
were expected as additional road capacity is particularly attractive for commercial
and residential development and the current trend of industrialization in the west is
maintained.

For the scenario in which a passenger rail system is built instead of additional
roads (while maintaining the nature reserve undeveloped), residential and com-
mercial development concentrates alongside the proposed stations. This is partic-
ularly obvious in border areas between Bogota and the municipalities.

In the scenarios in which the nature reserve is open for development (Scenarios 3
and 4) the influence of transport infrastructure in land patterns is very similar to
those described for Scenarios 1 and 2. However, the additional land availability in
the north creates a concentration of medium-income earners inside Bogota while at
the same time promoting low-income development on the outskirts of the study
area. This result confirms a pattern already occurring in Bogota where low income
population are forced to live in high density locations a long way from the city
centre due to land prices. As new transport infrastructures are created, land values
will increase, with the result that the only available land for low income people will
be even further out.

In order to provide information that can support decision-making and identify
differences between all four maps, we produced mobility circles for all the sce-
narios. These circles can help users understand the implications, in terms of sus-
tainability indicators, of each scenario (Fig. 9).

There are clear differences between Scenario 1 (a highway-based development
with the VDHR restricted) and Scenario 2 (a train-based development with the
same restrictions for the nature reserve). Average distance to downtown is
approximately 1% higher in Scenario 2 than in Scenario 1 causing a change in level
inside the circle. The access rate for commercial land-use is 2% lower in Scenario 2
producing the same effect inside the circle.

When Scenario 3 is compared to Scenario 2, significant changes can be
ob-served. Average distance to downtown is approximately 1% higher in Scenario
3 causing a change in level inside the circle. The access rate for commercial
land-use is about 10% higher in Scenario 3 causing a change in level inside the
circle.

As regards the other indicators, they show the same rates across all scenarios.
Expansion of urban areas, landslide risk and torrential rain risk have rates of
between 90 and 100% in all scenarios. Average distance to work, average distance
to significant parklands and flood risk are between 60 and 80% in all scenarios.
However, average distance to public transport remains under 30% in all four
scenarios.
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The most striking changes in the first comparison between Scenario 1 and
Scenario 2 are in terms of average distance to downtown. The average distance is
lower with a highway scenario in which more residential land-use is developed near
the city, while the train-based scenario promotes development in the nearby
municipalities. As commercial land-use tends to allocate near new roads, an
increase in this land-use was likely to happen in Scenario 1, as indeed occurred.

The comparison between Scenario 3 and 4 indicated greater changes. New
development of commercial land-use is higher in Scenario 3 because of the lifting
of restrictions on development in the nature reserve. With VDHR unrestricted,
residential land-use tends to allocate in the new unrestricted area while commercial
land-use tends to allocate to areas previously dominated by low-income residential.
Average distance to downtown also increases due to the house-building process in
the reserve.

4.1.1 LUCC Changes

As the location and type of transport infrastructure varies in each scenario, different
changes will take place in different locations. The matrix below (Table 8) shows the
total area for each land-use type in the baseline year (2014) and the forecast year
(2040).

Fig. 9 Circles of mobility for all four scenarios
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As expected, most of the new development occurs by converting land considered
available for this purpose (both agricultural land and land reserved for expansion).
According to the model, 3121 hectares of agricultural land would be converted into
urban areas. This result was also expected as most of the expansion of Bogota over
the last 30 years has taken place in this way.

The model results also suggest that the current trend in Bogota in which
industrial areas are converted into residential would continue in the future, espe-
cially if they are close to middle income residential areas. It is expected that 19
hectares of industrial land would be transformed into high-income residential and
91 hectares into medium-income residential from 2014 to 2040.

A shift from commercial to low-income residential areas could also be ob-served
from the matrix (total of 1014 hectares).

Some unexpected changes can also be observed. For instance, the conversion of
commercial and industrial land into agricultural land does not, in principle, make
much sense. This is probably due to over calibration of the attraction and repulsion
between function classes (residential, industry and commercial) and low land claims
for these land use classes, making the land free for vacant classes such as
agriculture.

5 Conclusion and Outlook

In this chapter, we present BoLD, a LUCC model for the city of Bogota in
Colombia. The main objective of BoLD is to assist decision-making processes by
providing LUCC information based on scenarios. The different development sce-
narios for Bogota involve specific transport infrastructure projects, which is why
BoLD was designed and implemented with this focus.

The main objective of BoLD has been achieved. We have developed a spatially-
explicit model that can assist decision-making processes. Results with four sce-
narios have shown that the model is capable of producing technical results in
relation to the positive and negative effects of the proposed transport infrastructures.
In the application of the LUCC model we were also able to incorporate land
management policies such as the urbanization of nature reserves, which were
included in the analysis.

In this research we also developed the ODDS, an advanced spatial methodology
for calculating ADDF using a formula. ODDS improves LUCC modeling by filling
a gap in the literature in which the influence of accessibility was often modeled
using empirical experiences.

Limitations inherent to this kind of exercise in general, and our case study in
particular, have been highlighted throughout the text. They can be summarized as
follows:
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• We have assumed that the impacts on land-use of a particular transport
infrastructure are not influenced by other transport projects. Although this
assumption facilitates a clearer differentiation between the options, possible
synergies between transport alternatives are not considered, something that
could be significant for other case studies outside Bogota.

• Users should approach LUCC simulations that only consider transport changes
with caution, as they provide a narrow view of future scenarios without clearly
considering important aspects such as changes in land demand.

Considering the limitations in a developing city and the fact that the complex
urban patterns of Bogota have not been studied very well, the results we obtained
appear to be similar to other previous studies in which LUCC simulations have
been used. While other studies have taken the complex path of developing a parallel
transport model (for example Aljoufie 2014), we have found an alternative for
situations in which limited information is available and the impact of transport on
urban patterns is not well understood.

The ODDS geospatial analysis method appears to be a viable option when
LUCC simulations are being developed for scenarios based on transport
infra-structure proposals. Additionally, the mobility circle offers a graphic repre-
sentation of the results that can also facilitate decision-making.

Results from the different scenarios reflect the different impact of a highway and
a train-based scenario in Bogotá. The indicators in the different mobility circles
show that highways promoted the allocation of residential land-use. The majority of
indicators were based on distance calculations. Removing restrictions on the VDHR
allowed residential land-use to allocate there while commercial tended to occupy
low-income residential areas.

Based on this experience some recommendations for the future, both in land-use
planning and in modeling procedures and transport network models are:

• Interactions between traditional transport models and BoLD can provide more
accurate information on development in the area.

• Mobility indicators using GIS based methods have great potential. These
methods can include several network analyses as seen in our review of the
literature.

• Information about land-use demand can be improved. It was found that popu-
lation growth estimates can be improved using several techniques including
transportation variables.
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Chapter 19
Integrating Econometric and Spatially
Explicit Dynamic Models to Simulate
Land Use Transitions in the Cerrado
Biome

T. Carvalho Lima, S. Carvalho Ribeiro and B. Soares-Filho

Abstract Land use changes in Brazil have broad implications within
environ-mental, socio-economic, and policy contexts. Despite extensive research on
the topic, there are still significant gaps, namely in modeling the nature of drivers of
land use change across Brazil’s large biomes. We aim to fill this gap by coupling
econometric with spatially explicit models to explore future trends in land use
change in the Cerrado biome. Cerrado savannas are considered a biodiversity
hotspot, occupying 24% of Brazil’s territory. Nevertheless, the native vegetation in
this region is under mounting pressure due to agricultural expansion. The econo-
metric model we developed determines gross rates of deforestation and regrowth in
each municipality within the Cerrado biome from 2002 to 2009. We used GEODA
and agricultural Census data (IBGE 1995, 2006) to develop an auto-regression
spatial model. This model was coupled with a spatially explicit model developed
using Dinamica EGO software. Simulations from 2009 to 2050 resulted in a loss of
14.2 Mha of native vegetation and regrowth of 18.5 Mha, showing that complex
land use dynamics are in place. Our results are in line with other studies that show
lower probabilities of deforestation inside protected areas and indigenous lands.
There is a high probability however of deforestation in some of the buffer zones
around these protected areas, which must therefore be continuously monitored. We
conclude that there is a need for a consistent monitoring framework, built upon the
work of different governmental and non-governmental initiatives, in order to design
and implement effective conservation actions in this important Brazilian biome.
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1 Introduction

Land use planning in Brazil faces enormous challenges in reconciling economic
growth and environmental conservation in a country of continental dimensions
(Soares et al. 2014; Soares-Filho et al. 2016). Persistent land-use land-cover
changes (LULCC) from a certain class (e.g. forest) to another (e.g. agriculture) are
referred to as land use transition, which are linked to complex processes by which
human activities transform the landscape (Lambin and Meyfroidt 2010; Basse et al.
2014).

A major land use transition, such as deforestation, entails impacts on carbon and
climate cycles at scales from local to global (Pielke et al. 2011; Naudts et al. 2016),
as well as on multiple ecosystem goods and services (Lawler et al. 2014). Assessing
trends in land use transitions is thus of great importance.

Spatially explicit models and scenarios are important tools to help planners and
policy makers understand the drivers of land-use change (Soares-Filho et al. 2006;
Lambin et al. 2014; Soares-Filho et al. 2016). In Brazil, the Amazon and the
Atlantic Forest biomes have been permanently monitored since the 1980s by
PRODES (Monitoring Brazilian Amazon Forest by Satellite) and SOS Mata
Atlântica, respectively. Land use change has not however been tracked in the
Cerrado (Beuchle et al. 2015), nor has there been any research on the nature of the
drivers behind such change (Bürgi et al. 2004).

We combined econometric and spatially explicit models to explore land use
transitions in the Cerrado Biome in Brazil. The land use system in this region is
distinctive for many reasons (Klink and Machado 2005). It is considered a biodi-
versity hotspot, occupying 24% of the territory of Brazil (Embrapa_Cerrados 2008)
and is the second largest biome in Brazil (after the Amazon), hosting important
endemic species and ecosystem services (Klink and Machado 2005). However, the
Cerrado also has the most coveted land for producing a wide array of agricultural
products (soy, beef etc.). Despite its importance, there is no clear evidence on the
land-use trends in this biome. While the Brazilian Ministry of Environment
(Ministério do MeioAmbiente-MMA) reports that deforestation rates in Cerrado
decreased from 14.2 thousand km2yr−1 between 2002 and 2008 to 6.4 thousand
km2yr−1 between 2009 and 2010, other sources report that reduction in defor-
estation has been less substantial than the government claims (Ferreira 2009;
Beuchle et al. 2015). It is therefore vital to adopt a common framework for mon-
itoring and assessing Cerrado land-use trends. This requires consistency in the
monitoring systems implemented by governmental institutions and programs. The
monitoring procedure must focus on the key variables of the system that are useful
for forecasting the system dynamics and their impacts on key issues, such as
biodiversity (Pereira et al. 2013). The data obtained from monitoring can be used as
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an input for spatially explicit modeling (Skidmore et al. 2015). Land-use transitions
in Cerrado are driven by a range of environmental and socioeconomic variables. In
this article, we contribute to the understanding of the dynamics behind these
transitions by combining an econometric model with a spatially explicit model
based on data for the 2002–2009 period on losses (deforestation) and gains (re-
growth) in native vegetation at the municipality scale.

2 Test Areas and Data Sets

2.1 Study Area

The study area encompasses the entire Brazilian Cerrado, comprising the states of
Goiás, Tocantins, Bahia, São Paulo,Minas Gerais,MatoGrosso,MatoGrosso do Sul,
Piauí, Maranhão as well as part of Paraná (Fig. 1). The Cerrado borders all other
Brazilian biomes except for Pampa in the south of the country. In these ecotone areas,
there is a broad range of ecosystem services (Embrapa Cerrados 2008).

Cunha et al. (1994) described four deforestation frontiers in Cerrado. The first is
a consolidated agribusiness frontier running across western Minas Gerais, central
and southeast Goiás, southern Mato Grosso do Sul and southeast Mato Grosso
(Zone I). Another agricultural expansion frontier situates in northern Goiás, Distrito
Federal (DF) and western Minas Gerais (Zone II). The agricultural expansion
during the nineties followed a different deforestation pattern. This included a small
area in northern Mato Grosso, northeastern Goiás, Tocantins and Western Bahia
(Zone III). A final agriculture frontier is emerging in the central and southern part of
Mato Grosso, northeast Tocantins, southern Maranhão and southwest Piauí (Zone
IV) (Cunha et al. 1994).

2.2 Dataset

Despite its extensive area, there is a lack of systematic data on land use dynamics in
Cerrado. The three major sources are: the Brazilian Statistical Office (Instituto
Brasileiro de Geografia e Estatística–IBGE), the Monitoring Program on the
Deforestation of Brazilian biomes, known as PROBIO (Monitoring Program orga-
nized by the Ministry of the Environment–MMA) and the Systematic Monitoring of
Deforestation in Cerrado (SIAD-LAPIG) (Table 1). While these monitoring systems
have provided data on deforestation, spatially explicit data on regrowth rates are still
missing. Even the most recent assessment by Satellite Monitoring of Deforestation in
the Brazilian biomes (Programa Monitoramento Desmatamento dos Biomas
Brasileitros–PMDBBS) focuses only on gross vegetation losses and there are no data
available on annual deforestation rates prior to 2002 (Beuchle et al. 2015).
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3 Methodology

3.1 Econometric Model

Econometric models apply mathematical and statistical techniques for data esti-
mation and inference. The econometric model we developed determines the gross
rates of deforestation and regrowth in each municipality in the Cerrado biome from
2002 to 2009.

The econometric model with spatial dependence (Le Sage and Pace 2009) is as
follows:

Ytþ v ¼ nWYþ b0 þ b1X1 þ b2X2 þ . . .þ bnXn þ e ðiÞ

Fig. 1 Major Brazilian biomes
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where:
Y = dependent variable
X = independent variable
b = coefficient
ɛ, l = error terms
n = spatial autocorrelation parameter
k = spatial autocorrelation parameter in the error term
W = weight according to neighborhood matrix
Input variables were computed for the 1204 municipalities comprising data from

both the IBGE (IBGE 1995, 2006) and from the Instituto Brasileiro de Pesquisa
Econômica Aplicada (IPEA). In addition to this secondary data, we also developed
spatial variables such as the influence of urban centers and slope using
Dinamica EGO.

Table 1 Cerrado datasets

Source Institution Time Data Data
source

Resolution

Agricultural census Instituto Brasileiro de
Geografia e Estatística–
IBGE

1995
and
2006

Interviews
with
landowners

(1) Municipality

Demographic, economic
and geographical data

Instituto Brasileiro de
Pesquisa Econômica
Aplicada–IPEA

1995
and
2006

Surveys (2) Municipality

Satellite Monitoring
deforestation in the
Brazilian biomes
PMDBBS

Ministério do Meio
Ambiente–MMA/Instituto
Brasileiro do Meio
Ambiente e dos Recursos
Naturais Renováveis–
IBAMA

2002
and
2008

Remote
sensing

(3) 1:250,000

2008
and
2009

2009
and
2010

Systematic Monitoring
of Deforestation in
Cerrado–SIAD LAPIG

LAPIG, Conservation
International and The
Nature Conservancy (TNC)
(LAPIG, 2012)

2003
to
2009

Remote
sensing

(4) 1:250,000

Project for Conservation
and Sustainable Use of
Brazilian Biological
Diversity–PROBIO

Ministério do
MeioAmbiente - MMA
emparceria com o
ConselhoNacional de
DesenvolvimentoCientífico
e Tecnológico – CNPq

2002 Remote
sensing

(5) 1:250,000

(1) http://www.sidra.ibge.gov.br/
(2) http://www.ipeadata.gov.br/
(3) http://siscom.ibama.gov.br/monitora_biomas/PMDBBS%20-%20CERRADO.html
(4) https://www.lapig.iesa.ufg.br/lapig/index.php/produtos/dados-geograficos
(5) http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm?/cerrado/mapas_pdf/vegetacao/250000/
index.html

19 Integrating Econometric and Spatially Explicit Dynamic Models … 403

http://www.sidra.ibge.gov.br/
http://www.ipeadata.gov.br/
http://siscom.ibama.gov.br/monitora_biomas/PMDBBS%20-%20CERRADO.html
https://www.lapig.iesa.ufg.br/lapig/index.php/produtos/dados-geograficos
http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm%3f/cerrado/mapas_pdf/vegetacao/250000/index.html
http://mapas.mma.gov.br/mapas/aplic/probio/datadownload.htm%3f/cerrado/mapas_pdf/vegetacao/250000/index.html


The dependent variable (gross rate = Y) was calculated by subtracting the area
of native vegetation for 1995 from the area for 2006 (ii). Negative values indicate
loss of native vegetation (deforestation), while positive values represent gains
(vegetation regrowth) as follows:

Tx ¼ Ftþ n� Ftð Þ ðiiÞ

where
Tx = rate of variation of native vegetation cover (Gross_Rate Y)
Ft = initial forest area (t)
Ft + n = forest area in (t + n)
We began the model by analyzing a total of 108 possible explanatory variables.

Variables were standardized according to the area of the municipality. Linear
stepwise regression was developed using SPSS Statistics 17.0 software. We then
excluded all the municipalities with null values. From the initial 1204, a subset of
1192 municipalities was then included in the econometric model.

The model was controlled for outliers by assigning binary values (0, 1) to two
new variables named as positive and negative outliers. In the positive outlier
variable, municipalities in which residuals were more than two standard deviations
above the mean were assigned a value of 1, while the others were assigned a value
of 0. For the negative outlier variable, municipalities with residuals below two
standard deviations were assigned a value of 1, while all the others were assigned a
value of 0. In this way, we were able to separate the influence of outliers without
removing them from the analysis (Soares Filho et al. 2008). The variables were
selected according to their statistical significance and a spatial auto-regression
model was performed using the Geoda 0.9.9.1 software.1 Once these procedures
had been completed, the econometric model was integrated into a spatially explicit
simulation model in Dinamica EGO.2

3.2 Spatially Explicit Model

The econometric model calculates the deforestation and regrowth rates, which are
then passed on to the spatially explicit model for allocation.

1https://spatial.uchicago.edu/software.
2http://csr.ufmg.br/dinamica/ (there is a detailed description of Dinamica EGO in Part I of this
book).
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3.3 Spatial Model Calibration

The Weights of Evidence model (WOFE) (Bonham-Carter 1994) was used to
derive the transition probability map (Fig. 2).

The WOFE model assesses the relationships between a group of explanatory
variables and the spatial probability of a transition, in this case the probability of a
loss or a gain in native vegetation (Fig. 2). It does this by computing changes inside
and outside a certain spatial pattern (Bonham-Carter 1994; Soares et al. 2013). The
larger the value of the coefficient of the Weight of Evidence W+, the stronger the
association between the explanatory variable and the change. By the same logic,
negative coefficients indicate an inhibitory effect, and values close to zero are
consistent with no association. Variables used in the model include (i) distance to
previously deforested areas (or regrowth) (ii) distance to roads and railways (Soares
Filho et al. 2004), (iii) distance to rivers, (iv) elevation, (v) slope, and (vi) distance
to croplands (soy). The effect of each spatial variable is calculated independently of
a combined solution and the only assumption that must be made is that the
explanatory variables are spatially independent, which can be checked using pair-
wise tests for categorical maps, such as Cramer’s Coefficient, Contingency
Coefficient, and Joint Information Uncertainty. Continuous variables also need to
be categorized (Bonham-Carter 1994).

Fig. 2 Model components
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As the quantity of change was output by the econometric model on the basis of
census data, it may overestimate the spatial data mapped by LAPIG. In order to
address this issue, we used a correction factor of 0.19 to adjust the model output to
the LAPIG data. This correction factor was obtained by comparing the simulated
annual rate of deforestation (from the spatial data from LAPIG) with the observed
rate (in IBGE census data) for the same period (2002–2009) (Figure 3). After
calibrating the model with data for 2006 to 2009, the model simulates annual losses
and gains (regrowth) of Cerrado native vegetation from 2009 to 2050. The cali-
bration goal is to capture the “rules” governing land cover transitions (gain/loss of
vegetation). The validation procedure then assesses the robustness of the
simulation.

4 Simulation Setup and Running

Dinamica EGO (see part V, and www.csr.ufmg.br/dinamica for a description of the
software) was used to run land change simulations (Soares Filho et al. 2009).
Annual time-step simulation maps were produced from 2006 to 2009. To
approximate the simulated landscape structure to the real one, we tested different
settings for the transition functions employed in Dinamica: the Expander and the
Patcher (Soares Filho et al. 2009; Soares et al. 2013). These functions incorporate

Fig. 3 Initial (left) and final (right) land cover maps. Up to 2002 only PROBIO assessed Cerrado
deforestation. By 2009 a more refined dataset was made available by SIAD-LAPIG. We used the
best data available in the different years as input for the model
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cellular automata local rules designed to mimic the neighborhood influence on the
transition of a cell state (Soares Filho et al. 2009). The job of the Expander is to
expand or contract previous patches of a certain land-use and land-cover class,
while the Patcher is designed to form new patches through a seedling mechanism
(Soares Filho et al. 2009; Soares et al. 2013).

5 Validation

The model was validated using three procedures: (i) comparison of the rates esti-
mated by the econometric model and those observed by the Brazilian statistical
office (IBGE) for the same period (1995-2006), (ii) Quantitative validation of the
simulated rates and those from LAPIG for 2009, (iii) spatial allocation comparison
using fuzzy logic (Soares et al. 2013).

6 Results

6.1 Econometric Model

The selected variables are displayed in Table 2. There is a direct relationship
between cropland area (soy, maize, sugar cane and cotton) and the loss of Cerrado’s
native vegetation. The same is true for the remaining vegetation area. Cattle rearing
is positively associated with vegetation loss. Proximity to urban areas is another
important factor. By contrast, higher elevations have a negative association with the
loss of vegetation in Cerrado.

Table 2 Significant
variables selected in the
econometric model and their
coefficients

Variable Coefficient Significance

Constant 0.114368777 0.000

Cropland area –0.08114414 0.000

Remaining vegetation –0.603871017 0.000

Head of cattle –0.006072578 0.231

Elevation 3.08378E-05 0.000

Urban influence –2.23467E-09 0.000

Negative Outlier 0.198747832 0.000

Positive Outlier –0.178983079 0.000

R2 = 0.609
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6.2 Spatially Explicit Model

6.2.1 Spatial Determinants for Loss/Gain of Native Vegetation
in Cerrado

By analyzing the WOFE coefficients we can identify the influence of spatial
determinants on the two transitions, namely loss and gain of native vegetation in
Cerrado. The analysis of the variable slope shows that flat areas (<7°) have a
positive association with loss of native vegetation while steep slopes, by contrast,
constrain deforestation (Figs. 4 and 5).

Fig. 4 Loss of Cerrado vegetation and its association with slope. The X axis shows the steepness
in degrees and Y the weight of evidence

Fig. 5 Gains in native vegetation and their association with slope. The X axis shows the steepness
in degrees and Y the weight of evidence
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Another important spatial determinant of transition is elevation. Lower elevation
areas have a positive association with the loss of native vegetation in Cerrado, while
higher elevations have a negative association with deforestation and a positive
association with gains in vegetation.

Proximity to urban areas is also an important determinant for transition in this
region. The closer to urban areas, the higher the likelihood of deforestation. Plots of
vegetation located near urban centers (within a radius of 50 km) are thus more
likely to become deforested (Fig. 6).

Other important spatial determinants for loss/gain of native vegetation are pro-
tected areas and proximity to regrowth areas. Regarding the former, we found a
negative association between protected areas (indigenous and strictly protected
lands) and loss of native vegetation, while proximity to regrowth areas (gains in
natural vegetation) is associated with regrowth.

The above results are compatible with those of similar research in the Amazon
(Soares et al. 2010). However, the ‘distance to roads and railways’ variable pro-
duces results that at first sight seem to contradict these findings. As shown in Fig. 7,
for the period under study, our results show that the areas with greatest defor-
estation are located farther away from roads. These results might be explained by
the fact that the major dynamics in Cerrado deforestation occurred before the study
period (2002–2009), when major roads such as the BR 153 (built 1959) and the BR
364 (built 1960) were constructed. Roads and railways were not therefore important
spatial determinants of deforestation over the period of study.

Fig. 6 Deforestation and its association with distance to urban. X axis shows the distance to urban
in km and Y the weight of evidence
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6.2.2 Spatial Allocation of Transitions

Figure 8 shows a kernel map of the deforestation. According to Fig. 8 deforestation
is concentrated in the central area of Mato Grosso, southern Maranhão, southeastern
Piauí and western Bahia.

These results are in line with those produced by Cunha et al. (1994). Figure 8
shows that over the study period (2002 to 2009) the highest rates of deforestation
were in western Bahia, southeastern Piauí and southern Maranhão (Zones III and IV
of Cunha et al.1994). Figure 8 shows lower rates of deforestation in Zones I and II,
where agriculture and husbandry developed earlier, in the 1990s.

7 Calibration and Validation

While the rate of variation in native vegetation (Tx- gross rate) obtained by the
census data is 0.21%, the gross rate from the econometric model was 0.29%. The
fact that the two estimates are quite similar and that both are positive reveals that
regrowth is higher than deforestation. These results are in line with official records
by the Ministry of Environment showing, for the period under analysis, that in
2002–2008 the annual deforestation rate was 0.7%. This estimate was further
reduced to 0.37% between 2009–2009 and to 0.3 for the period between 2009 and
2010.

Protected areas, such as the Jalapão State Park and the Araguaia National Park,
in the State of Tocantins, the Chapada dos Veadeiros National Park, on the border
between the States of Minas Gerais and Bahia, amongst others, have a lower
probability of deforestation (Fig. 9). The same is true for indigenous areas located
in Mato Grosso in ecotone areas (areas of transition between biomes) with the

Fig. 7 Deforestation and its association with distance to roads and railways. X axis shows the
distance to roads/railways in meters and Y the weight of evidence
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Amazon. However, as shown in Fig. 10, there is a high probability of deforestation
(in red) in some of the buffer zones around protected areas.

Using the method of reciprocal similarity (Soares et al. 2013), we compared the
simulated map by using the weights of evidence with a map of equal probability of
change for the whole Cerrado region. This procedure checks the consistency of
allocations based on spatial determinants with the randomly generated ones.

The simulated model, which used the probability resulting from the weights of
evidence, achieved a similarity of 50% for a spatial comparison window of 15 km,
while the simulation based on a constant probability (null model) achieved a
similarity of 12.5% (Fig. 11). This shows that the model performed better in spa-
tially predicting deforestation than a null (random with same transition rates) model.

8 Simulation

The model produced a loss of 14.2Mha (6.0% over the whole period at an annual rate
of 0.16%) over the period 2009 to 2050 and a gain of 18.5 Mha (annual regrowth rate
of 0.79%) (Fig. 12). Thismeans that the rate of deforestation is similar to themean rate
of 0.17% found by Ferreira et al. (2012) for the period 2010–2050. Deforestation is
concentrated in the central part of Mato Grosso–ecotone with Amazon–southern

Fig. 8 Hotspots for deforestation in Cerrado 2002–2009 using kernel statistics. Kernel statistics
were computed in Dinamica EGO, using a window size of 30 km radius

19 Integrating Econometric and Spatially Explicit Dynamic Models … 411



Fig. 9 Map showing the probability of deforestation (based on the weights of evidence for the
spatial determinants analyzed)

Fig. 10 Deforestation probability map highlighting protected areas
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Maranhão, southeastern Piauí, westernBahia andwestern Tocantins (frontier between
forest and agriculture) (Fig. 12).

As there is no monitoring of regrowth in the Cerrado biome, we used the weights
of evidence from Teixeira et al. (2009). These authors show that regrowth occurs
near water streams (Fig. 13), in high elevations and on steep slopes. The majority of
these areas are classified as Permanent Protected Areas (APPs).

Fig. 11 Similarity indexes for spatial allocation considering window size (pixel). a similarity
using the WOFE, b similarity based on a constant probability map
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Fig. 12 Simulated spatial allocation of native vegetation, deforestation and regeneration areas in
2010 and 2050

Fig. 13 Simulation of the spatial allocation of native vegetation, deforested and regrowth areas in
the years 2010, 2020, 2040 and 2050. Detail is given to the spatial allocation of regrowth in
Permanent Protection Areas (APP)
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9 Conclusion and Outlook

Spatially explicit land-use models simulate the patterns of change in the landscape
in response to both human and ecological dynamics. As there is growing awareness
that ongoing land use transitions are linked to major environmental issues (Grecchi
et al. 2014; Aguiar et al. 2016), considerable research efforts have been devoted to
modeling LULCC in a spatially explicit way in order to inform policy makers.

In line with studies on the Amazon, our results for the Cerrado biome show the
lowest probability of deforestation inside protected areas and indigenous lands.
However, only 8.21% of this region has protected status–2.85% -full protection and
5.36% under sustainable use. Our results also show that there is a high probability
of deforestation in some of the buffer zones surrounding the protected areas, so
highlighting the level of threat. These buffer zones must therefore be monitored
more carefully.

Several problems can arise when building a spatially explicit land-use model,
one of which is the lack of appropriate data to represent the system being studied,
thus limiting model calibration and validation (Soares-Filho et al. 2006, 2009,
2013). In this research, we tried to model the dynamics of land use change in the
entire Cerrado biome making use of the best data available. By using appropriate
statistical techniques to deal with uncertainties and gaps (e.g. spatial data on
Cerrado regrowth) in the data, we were able to build a model whose outputs broadly
agree with recent estimates of land cover change (Grecchi et al. 2014; Beuchle et al.
2015) and official reports (MMA/IBAMA/PNUD, 2010). The model was able to
mimic the deforestation and regrowth spatial patterns (Fig. 11) for the entire
Cerrado region. Our simulation indicates those areas that need to be continuously
monitored to avoid illegal deforestation.

Although the results of this work are illustrative of the land use dynamics in the
Cerrado region, it is important to acknowledge that there are limitations in the data,
above all due to the differences between the agricultural census and the monitoring
data, and the lack of spatial data for monitoring regrowth. These limitations in the
model approach reveal the need for monitoring systems that can capture land use
trends in the Cerrado biome in a detailed scale. Another important issue is the
adoption of a common monitoring framework that can compare and integrate dif-
ferent monitoring systems. Since the Cerrado comprises an enormous area, there is
a wide socioeconomic and environmental heterogeneity across the biome. There is
therefore a need to understand how different dynamics take place in specific
socioeconomic contexts. One possibility for future research is to regionalize the
simulation model to address the specificities of the various frontiers, for example
those identified by Cunha et al. (1994). The study of the spatial determinants
leading to deforestation in Cerrado at regional or local scale is likely to produce
new insights into the social dynamics of deforestation, although these go beyond
the scope of this research.
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Finally, we need to improve the monitoring systems by mapping the multiple
transitions that take place in the Cerrado region. This will certainly enhance the
capability of modeling approaches, and will allows us to design better tools for
planning the conservation of this important Brazilian biome.
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Part IV
Technical Notes



Chapter 20
Cellular Automaton

J.F. Mas and H. Rodrigues

Abstract Cellular Automaton (CA) is widely used in land change modeling. In
this technical note, we describe two CA: the Game of Life and the CA used in the
software package DINAMICA EGO.

Keywords Simulation � Neighborhood effects � Spatial patterns

1 Short Description of Interest

A cellular automaton (CA) consists of a discrete cell space of any dimension. Each
cell presents one state among a finite number of states, and changes it according to a
set of rules that determines the new state depending on the cell neighborhood. The
rules for updating the state of cells are iteratively applied to generate a new grid
from the previous one.

See Chap. 3 about simulation and the short presentations in Part V of this book about
CA_MARKOV, Dinamica EGO, Metronamica and APoLUS.
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2 Technical Details

The most famous cellular automaton is undoubtedly the Game of Life. It consists of
a two-dimensional grid of cells, each of which is in one of two possible states:
“populated” or “unpopulated” (black and white cells respectively in Fig. 1). The
state of each cell changes according to a few mathematical rules taking into account
its eight immediate neighbors:

• A populated cell with one or no neighbors becomes unpopulated.
• A populated cell with four or more neighbors becomes unpopulated.
• A populated cell with two or three neighbors remains populated.
• An unpopulated cell with three populated neighbors becomes populated.

Cellular automata models were first applied in geography by Tobler (1979) and
widely applied to land change modeling, particularly for urban growth simulation
due to their simplicity, flexibility and intuitiveness, and their ability to represent
spatio-temporal processes (White and Engelen 1993; Santé et al. 2010). The use of
CA to simulate land change is based on the assumption that landscape spatial
configuration affects future patterns of change through local interactions among
land uses. For example, Besussi et al. (1998) used a CA which modifies the density
of residential cells as a function of the presence of commercial cells in the
neighborhood.

Some models such as CA_MARKOV (see the technical note about Cellular
Automata in CA_MARKOV in Part IV of this book) and Dinamica EGO use a
neighborhood filtering referred to as CA to simulate a proximity effect that makes
changes occur in the form of patches in order to mimic landscape patterns and to
avoid a salt and pepper effect. Dinamica EGO patcher CA is designed to generate
new patches through a seeding mechanism. The user can set parameters to control
the mean patch size and the patch size variance (Soares-Filho et al. 2002). Figure 2
illustrates the CA behavior in a simplified way. First a patch seed (S) is selected
using an approach which selects one cell from amongst those with the highest
probabilities but without restricting the selection to these cells.

Fig. 1 Evolution of the grid of cells during three iterations according to the rules of the Game of
Life
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Then, seed neighbors are selected using a window (red box) and all neighbors in
which transition is possible are collected and placed on a “patch formation pool”.
A cell is selected from that pool using the same approach used to select a seed cell.
The selected cell (X) is used as part of the patch and its neighbors are collected and
placed in the patch formation pool. If a cell is already in the pool (dashed red box),
its probability is increased. This process continues until the expected number of
cells for that patch is reached. The number of cells in a patch is chosen as a random
number from a normal distribution based on the mean and variance patch sizes
defined by the user. In the example in Fig. 2, patch size was five cells, and the patch
formation process stopped when this size was reached.

Dinamica EGO also has a second CA known as the expander, which deals
exclusively with the expansion of previously formed patches. It works in the same
way as the patcher but only takes into account the cells in proximity to existing
areas.

CA constraint-based models use an approach closer to the Game of Life as the
transition rules are neighborhood-based. A common way of defining transition rules
is to calculate the probability of change while taking the neighborhood into account.
As this basic CA formalism is too simplified and fails to represent real landscape,

Fig. 2 Procedure of patch creation in Dinamica patcher
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it is often extended by adding elements such as suitability, zoning, accessibility and
random perturbation (Zhao and Murayama 2007). For example, Metronamica
computes the transition potential by combining neighborhood effect, accessibility,
zoning and suitability.
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Chapter 21
Cellular Automata in CA_MARKOV

M.T. Camacho Olmedo and J.F. Mas

Abstract In this technical note we present the Cellular Automata (CA) incorpo-
rated by default into CA_MARKOV (TerrSet software), that produces important
effects in the simulation step. After a short description of interest, the technical
details are showed followed by an example applying and ignoring the CA.

Keywords Simulation � Cellular Automata � Neighborhood filter � Suitability �
Land change

1 Short Description of Interest

The Cellular Automata (CA) incorporated by default into CA_MARKOV (Eastman
2015) produces important effects in the simulation step. This filter up-weights the
suitability of pixels that are contiguous to existing LUC pixels and down-weights
the suitability of pixels that are not. As a result this filter homogenizes the simulated
map through spatial aggregation and increases the probability of change in pixels
that are both suitable and close to the existing LUC, producing a dilation effect
around existing patches.

See Chap. 3 about simulation and the short presentations in Part V of this book about
CA_MARKOV.
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2 Technical Details

In CA_MARKOV, the CA reduces the probability of change away from existing
areas of that category, using a 5 � 5 filter. The changes are simulated in various
steps, so favoring the aggregation of cells where a change occurs and creates a
“patchy” pattern. Figure 1 illustrates this procedure in a simplified way.

In Fig. 1 (top), the simulated changes are obtained by allocating the change (10
cells) to the cells with the highest probability of change without any CA. The bottom
part of the figure illustrates the neighborhood filtering approach: in the first step, the
probability of change is reduced for the cells furthest away from existing areas of that
category using a 3 � 3 window. In step 1 only part of the change (five cells) is
allocated to higher change probability. Probability is again decreased away from
existing areas including newly created ones. In the second step, the rest of the change is
allocated taking into account this modified change probability map, which increases
the probability of obtaining clusters of simulated change cells. Note that this is a
simplified example (only two steps for change allocation and changes in probability)
and that different maps of simulated change can be obtained because many cells have
the same probability of change.

3 Example

Figure 2 shows an example of the CA in CA_MARKOV and ignoring this CA. The
filter incorporated by default in CA_MARKOV (Fig. 2, above) is a simple conti-
guity 5 � 5 filter (00100; 01110; 11111; 01110; 00100) normalized to force a

Fig. 1 Procedure for neighborhood filtering to simulate change patches
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sum of 1. The CA is applied to a Boolean image for each class of the LUC at t1
(initial date) for each iteration. After that a value of 0.1111 is added to each filtered
map to create the set of weighted images with values from 0.1111 to 1.1111. This
ensures that the filter will always find suitable areas. These images multiply the
suitability maps with original values from 0 to 1, giving results that can vary from 0
(null original suitability, e.g. constraints) to 1.1111 (maximum suitability) that will
be stretched to 0–255 values. The down-weighting never exceeds 90% of the
original value.

A CA_MARKOV simulation can be carried out using a simple filter (000; 010;
000) to ignore the CA (Fig. 2, below), that is, to eliminate the effects of down and
up-weighting contiguity (Camacho Olmedo et al. 2013, 2015). By adding 0.1111
we create a set of Boolean weight images with a value of 0.1111 for pixels that are
not the existing LUC at t1 and with a value of 1.1111 for pixels that are the existing
LUC at t1. This enables us to ignore the CA, because the effect of contiguity
disappears and only the existing LUC at t1 receives the higher value.

In the simulation maps (Fig. 3), the use of the Cellular Automata in the standard
CA_MARKOV produces a buildup effect around existing patches and partially
avoids the “salt-and-pepper” effect (left). In the CA_MARKOV simulation that
ignores the Cellular Automata (right), new patches with spatial artifacts from the
used factors are simulated and the “salt-and-pepper” effect is visible. Errors and

Fig. 2 Above CA default in CA_MARKOV. Boolean LUC map at t1 (left); after one iteration of
CA default filter normalized (middle); and after adding 0.1111 (right). Below Ignoring CA in
CA_MARKOV. Boolean LUC map at t1 (left); after one iteration of a user-defined filter (middle);
and after adding 0.1111 (right)
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correct predictions from the two modeling approaches correspond to different
allocation procedures that draw different effects on the simulation maps.
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Chapter 22
Fuzzy Coincidence

J.F. Mas

Abstract Fuzzy logic provides techniques to deal with inaccuracies or ambiguities
in both the attribute and the geometry of spatial data. In this technical note, the
fuzzy approach used to assess the spatial coincidence between a modeled map and
an observed (true) map is presented.

Keywords Validation � Fuzzy logic � Map overlay � Map comparison

1 Short Description of Interest

In order to assess the model, the simulated map is often compared with an observed
map of the simulated event. However, when this comparison is done pixel-by-pixel,
the simulated event (red cells in Fig. 1) is considered as correctly predicted only
when it coincides perfectly with the observed event (blue cells).

As shown in Fig. 1, this strict requirement of perfect coincidence prevents us
from assessing and comparing model performance well. In order to avoid this
problem, the maps can be compared using the concept of fuzziness of location, in
which spatial coincidence is not restricted to a strict, pixel-by-pixel overlay, but also
includes the cells in a neighborhood (Hagen 2003).

See Chap. 4 about validation.
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2 Technical Details

In raster format, fuzziness of location is represented by a tolerance region around
event cells obtained by applying a kernel window to the image. For example in
Fig. 2, shaded blue areas represent a fuzzy tolerance region around the blue cells
obtained by a window of 3 � 3 pixels. Based on this fuzzy tolerance, five of the six
simulated (red) cells that we considered coincide with the observed (blue) cells.
A larger tolerance region can be obtained using larger windows. Two-way com-
parisons can be obtained by applying the fuzziness to the simulated or to the
observed maps of the event alternatively. As simulated maps with scattered small
patches tend to score higher, because they produce a large tolerance area, the
minimum coincidence value from the two-way comparison is used in order to

Fig. 1 There is no coincidence with the observed map in either of the simulated maps, although
the first simulated map allocates the simulated events much more accurately than the second

Fig. 2 Fuzzy tolerance of
one cell width around the
observed changes (blue
shaded cells). Using this
tolerance, five cells of
simulated change (red cells)
are considered as coincident
with observed change (blue
cells)
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obtain a conservative assessment of the model (Almeida et al. 2008). An expo-
nential decay function can be used to weight the similarity using the distance from
the center of the window.

3 Example

Cuevas and Mas (2008) modeled land use/cover in a dry tropical region of Mexico
(area about 2000 km2) using two scenarios that encompass a plausible range of
future trajectories of deforestation. The first one assumes that the past observed
trends will continue and the second assumes that deforestation rates will increase
due to cattle raising.

These two simulations were compared with the observed land use/cover map
using the fuzzy coincidence method with windows from 1 to 2000 m. The coin-
cidence value was graphed as a function of the window size. Results showed that no
scenario was able to predict the exact position: no coincidence was found when the
assessment was based on a strict (no fuzzy) evaluation. However, when increasing
the window size and thus the tolerance to positional error, the coincidence aug-
ments notably, indicating that the model was able to identify the location of change
coarsely. The second scenario presented a coincidence value of 0.7 with a tolerance
distance (half window size) of about one kilometer, which indicates that it identified
most of the small regions where deforestation took place.
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Chapter 23
LUCC Based Validation Indices:
Figure of Merit, Producer’s Accuracy
and User’s Accuracy

M. Paegelow

Abstract This technical note presents the method of LUCC based validation
indices commonly used during the validation step and including techniques such as
of figure of merit, producer’s and user’s accuracy. We present first the interest and
the technical details before giving an example.

Keywords Validation � LUCC � Accuracy � Figure of Merit � Producer’s
Accuracy � User’s Accuracy

1 Short Description of Interest

There are various map comparison techniques based on the LUCC-budget
approach. One of the best known and most frequently employed is a comparison
between the last model-known LUC map (t0 observed), the projected LUC map (t1
simulated) and the model-unknown, observed LUC at t1 (t1 observed).

Comparisons of observed and simulated land change produce various possible
results: correct prediction (change or persistence correctly predicted), erroneous
prediction (observed persistence predicted as change—commission error, observed
change predicted as persistence—omission error and observed change predicted as
wrong gaining category change). The combination of these comparison categories
produced the following validation indices proposed by Pontius et al. (2008):

• Figure of Merit, which expresses the overlap between observed and simulated
change

See Chap. 4 about validation.
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• Producer’s Accuracy, which expresses “the proportion of pixels that the model
predicts accurately as change, given that the reference maps indicate observed
change” (Pontius et al. 2008)

• User’s Accuracy, which measures the proportion of pixels accurately predicted
as change when all model-predicted changes are included.

These indices, focusing on land change, are simple measures of the accuracy of
simulated LUCC.

2 Technical Details

Continuing the work done by Perica and Foufoula-Georgiou (1996), Pontius et al.
(2008) distinguished the map comparison results between anterior (t0, last model
known) LUC and posterior (t1 observed and t1 predicted) LUC, by placing them in
the following categories:

A = Error owing to observed change predicted as persistence
B = Correct. Observed change predicted as change with the same, correct,

gaining category
C = Error owing to observed change predicted as change but with a wrong

gaining category
D = Error due to observed persistence predicted as change

By combining the quantitative proportions of these comparison categories, we
obtain the three validation indexes listed above and illustrated in Fig. 1:

Fig. 1 Fictional LUC at t0,
simulated LUC at t1,
observed LUC at t1 and
comparison results between
observed and simulated LUC
at t1. The graph below
quantifies these comparisons
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• Figure of Merit—B/(A + B + C + D): Figure of Merit expresses the corre-
spondence between observed and predicted change.

• Producer’s Accuracy—B/(A + B + C): “the proportion of pixels that the model
predicts accurately as change, given that the reference maps indicate observed
change” (Pontius et al. 2008).

• User’s Accuracy—B/(B + C+D): the proportion of area that the model predicts
accurately as change when all model-predicted changes are given.

3 Example

Figure 2 shows land use in the Murcia region of Spain in 2000 (top left), 2006 (top
right) and simulated LUC for 2006 (down left). The fourth map (bottom, right)
shows the comparison between these three maps and computed validation indices.
For more details about LUCC research in this area, see Camacho Olmedo et al.
(2015).

Fig. 2 Top LUC in Murcia region in 2000 (left) and 2006 (right). Bottom Simulated LUC in 2006
(left) and comparison between observed and simulated LUC in 2006 (right). The bar graph shows
the proportions of comparison categories and various validation indices
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Chapter 24
LUCC Budget

M. Paegelow

Abstract This technical note presents the technique of LUCC budget that is
commonly used during the modeling process in both the calibration and the vali-
dation stage. First we present the interest and technical details of this technique
before illustrating the technique by an example.

Keywords Calibration � Validation � LUCC budget

1 Short Description of Interest

Land Use/Cover Change (LUCC)-budget is a map comparison technique comparing
LUC maps at two different dates. Focusing on changes in time and space, this cross
tabulation procedure synthesized by Pontius (2000) and Pontius et al. (2004a, b)
allows us to characterize land change by quantifying the following components:

• Gains
• Losses
• Net change (balance between gains and losses)
• Swap (changes balanced by equal amount of gains and losses)
• Total change

In both the calibration and validation stages, LUCC-budget provides useful
information by comparing observed LUCC to simulated LUCC, particularly in
terms of the amount of expected change and the proportion of swap and net change.
Predominant net change means that land change for the category in question is
simple extension or regression, while predominant swap is an indication of more

See Chap. 4 about validation.
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complex land change processes involving multiple categories. To illustrate this, we
analyzed western European mountain areas that have experienced economic and
demographic decline followed by land abandonment. While recently abandoned
crops become bushy, earlier abandoned cropland became bushy and later woody.
As a result, LUCC budget for bushy land may not show any net gains or losses,
despite showing a considerable amount of swap. The simple balance for changes in
bushy land (gains minus losses) at the two compared dates may be close to zero, so
disguising land change processes. Our studies show that swap is the most difficult
component for modeling software to gauge.

2 Technical Details

If we consider the following two binary LUC maps at t0 and t1 for forest and
non-forest, we can see the following changes (Fig. 1):

Gain: 1 pixel
Loss: 2 pixels
Net change: −1 pixel (absolute value of net change: 1)
Swap: 2 pixels (1 gain balanced by 1 loss)
Total change: 3 pixels changed between t0 and t1

The following matrix presents primary LUCC-budget components: gains and
losses

t1

Class A Class B Class C …Class
n

Total
t0

Losses

t0 Class A 1A 1B 1C 1n
P

1
P

1–1A

Class B 2A 2B 2C 2n
P

2
P

2–2B

Class C 3A 3B 3C 3n
P

3
P

3–3C

…Class
N

NA NB NC Nn
P

N
P

N–Nn

Total t1
P

A
P

B
P

C
P

n

Gains
P

A–1A
P

B–2B
P

C–3A
P

n–Nn

Fig. 1 Binary LUC maps for t0 and t1 and resulting LUCC budget components as gain, loss and
total change. In addition: net change and swap
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• Gain—sum of changes towards a specific LUC category.
• Loss: sum of changes from a specific LUC category.
• Total change—expresses the overall change (gains and losses) between two

LUC maps (dates).
• Absolute net change—the absolute balance of the sum of gains and losses for

each LUC category (e.g. 2% gain and 4% loss results in an absolute net change
of 2%).

• Swap—the difference between total change and absolute net change that
expresses a change of allocation without a change of quantity.

3 Example

Paegelow et al. (2014) compared the results of 3 LUCC models (CA_MARKOV,
LCM, Dinamica EGO) with observed land change in a study area in the Eastern
Pyrenees. Figure 2 shows the proportion of net change and swap as components of
total change. The graphic gives useful information to answer the following questions:

• How close is modeled land change to reality?
• Does the software model the complexity of land change (swap component)

well?

Fig. 2 LUCC budget components net change (bottom) and swap (top) resulting from comparison
between observed LUCC (2000–2009) and comparisons between observed LUC in 2000 and
simulated LUC in 2009 using three different modeling software programs: CA-Markov, LCM and
Dinamica EGO
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Chapter 25
Markov Chain

M.T. Camacho Olmedo and J.F. Mas

Abstract The Markov chain estimates the quantity of land use change and per-
sistence. Markov matrix is integrated into various LUC models and its use is
generalized within the community of land change modelers. In this technical note
we present the interest and technical details before illustrating it by an example of
annualized Markov estimations.

Keywords Calibration � Simulation � Markov chain � Transition matrix �
Estimated quantities � Land change

1 Short Description of Interest

Several approaches are used to estimate the quantity of land use change and per-
sistence. The Markov chain computes the transition areas matrix and the transition
probability matrix by cross tabulation between LUC categories from two maps (t0
to t1), which represent LUCC during the calibration stage, to project the estimated
changes and persistence at the simulation stage (t1 to t2). The Markov probability
matrix calculates the probability of each LUC category (row) changing to another
category (different LUC in column) or persisting (same LUC in column). Host
categories are located in rows and claimant categories in columns.

See Chap. 2 about calibration.

M.T. Camacho Olmedo (&)
Departamento de Análisis Geográfico Regional y Geografía Física,
Universidad de Granada, Granada, Spain
e-mail: camacho@ugr.es

J.F. Mas
Centro de Investigaciones en Geografía Ambiental, Universidad Nacional
Autónoma de México (UNAM), Morelia, Michoacán, Mexico
e-mail: jfmas@ciga.unam.mx

© Springer International Publishing AG 2018
M.T. Camacho Olmedo et al. (eds.), Geomatic Approaches for Modeling
Land Change Scenarios, Lecture Notes in Geoinformation and Cartography,
https://doi.org/10.1007/978-3-319-60801-3_25

441



The fact that the Markov matrix is integrated into various LUC models has led to
its generalized use within the community of land change modelers. Nevertheless,
the Markov chain does not estimate non-linear behavior properly. It is a trend-based
function, which is based on the hypothesis of stationary changes between the
calibration and validation period (Mas et al. 2014).

2 Technical Details

In order to assess LUCC, the transition matrix for the calibration period t0-t1 is
obtained by overlaying the two LUC maps dated t0 and t1 (Fig. 1). This matrix,
which shows the area for each transition, can be transformed into a Markov chain
probability matrix for the entire period (T), normalizing the values of each cell by
the sum of the area of each row (total area of each category at t0, see Table 1). This
Markov matrix indicates the proportion of each category that has been converted to
another category or remained the same (diagonal of the matrix). This proportion is
interpreted as the probability of transition from one category to another during a
period of time T and allows us to project the estimated areas of each LUCC
transition (Table 2). For instance, the matrix for the projected areas of each tran-
sition between t1 and t2 (t1 + T) is obtained by an element wise multiplication of
the vector of areas at t1 (9, 10, 6) and the matrix of probability. Each row element of
the matrix is multiplied by the corresponding element from the vector of areas
(Table 3).

As it is often desirable to use a time path different from the original period T for
projecting into the future, the transition probability matrix is transformed into an
annual matrix as follows (Takada et al. 2010):

A ¼ H
ðk1Þ1=t 0

. .
.

0 ðknÞ1=t

0
B@

1
CAH�1

Fig. 1 LUC maps for t0 and
t1. The matrix of transition is
constricted by overlaying
these two maps
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where A is the annual matrix, t is the number of years, H is the eigenvector of the
original transition matrix, and ʎi is the i-th eigenvalue of the original transition
matrix.

The annual transition matrix can also be obtained by generating three transition
matrices that cover the projection time period. This is done by powering the original
matrix and fitting the probability value of the same transition from the three dif-
ferent dates by quadratic regression models (Mas et al. 2014). For instance, The
Markov module available in the GIS TerrSet (Eastman 2015) uses interpolation for
the entries in the Markov matrix in order to compute a Markov entry between 0 and
1 for the desired extrapolation year. If the same time steps are used, the transition
probability obtained from the calibration period (t0 to t1) also applies for the
simulation period (t1 to t2). To this end, the Markov extrapolation starts by con-
sidering the most recent date in the calibration period to itself (t1 to t1). This
obviously produces total persistence (value 1.0000) and zero change (0.0000). It
then computes the probabilities of changes for the simulation period by a constant
annual rate to match the changes from the calibration period. If the time period in
the calibration stage is greater than the time period in the simulation stage, an a
priori constant annual rate of change is applied. Despite this, as all transitions must
force equilibrium to sum to 1 for every host LUC, in the end some results are
slightly different to the estimated amounts.

Table 1 Matrix of transition
for the period t0–t1

t0–t1 Black Grey White Sum (area t0)

Black 7 0 0 7

Grey 0 8 0 8

White 2 2 6 10

Sum (area t1) 9 10 6

Cells indicate the number of pixels

Table 2 Matrix of the
probability of transition for
the period t0–t1

t0–t1 Black Grey White Sum

Black 1 0 0 1

Grey 0 1 0 1

White 0.2 0.2 0.6 1

Cells indicate the probability (proportion) of the transition from
one category to another during a period T

Table 3 Matrix showing the
transition areas estimated by
the Markov projection

t1–t2 Black Grey White

Black 1 � 9 = 9 0 � 9 = 0 0 � 9

Grey 0 � 10 = 0 1 � 10 = 10 0 � 10

White 0.2 � 6 = 1.2 0.2 � 6 = 1.2 0.6 � 6 = 0.36
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Some methods for matrix calculation can encounter problems when the cali-
bration interval and the simulation interval have different durations (Takada et al.
2010; Flamenco-Sandoval et al. 2007).

3 Example

We did a case study (Camacho Olmedo et al. 2015) in which the calibration period
(t0 to t1) was 1990–2000 and two Markov matrices were obtained for two simu-
lation periods (t1 to t2): 2000–2006 and 2000–2010 (Table 4). In the calibration
period, data persistence of LUC 1 was 0.9941% and data transition from LUC 1 to 2
was 0.0044%.

For the simulation period 2000–2010 (the calibration and simulation periods are
identical), the estimated persistence of LUC 1 is 0.9941% and the estimated tran-
sition from LUC 1 to 2 is 0.0044%.

For the simulation period 2000–2006 (the calibration period is 10 years and the
simulation period is 6 years), the estimated persistence of LUC 1 rises to 0.9965%
and the estimated transition from LUC 1 to 2 falls to 0.0027%. Consequently, if the
calibration period is longer than the simulation period, the estimated persistence is
greater than the real persistence in the calibration period and the estimated number
of changes is lower than the real changes in the calibration period.

Table 4 Annualized Markov estimations for LUC 1 persistence and for the transition from LUC
1 to LUC 2, projecting in every case from the calibration period 1990–2000 (t0 to t1) to successive
years until 2010

Annualized Markov estimations from calibration period 1990–2000 (t0 to t1)
Examples of simulation periods (t1 to t2): 2000–2006 and 2000–2010

Date of estimations Persistence LUC 1 Transition LUC 1 to LUC 2

t1 2000 1.0000 0.0000
2001 0.9994 0.0004

2002 0.9988 0.0009

2003 0.9982 0.0013

2004 0.9976 0.0018

2005 0.9970 0.0022

t2 2006 0.9965 0.0027
2007 0.9959 0.0031

2008 0.9953 0.0035

2009 0.9947 0.0040

t2 2010 0.9941 0.0044
Examples of simulation periods (t1 to t2): 2000–2006 and 2000–2010
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Chapter 26
Multi Criteria Evaluation (MCE)

M. Paegelow

Abstract This technical note presents multi criteria evaluation (EMC). EMC is, in
the frame of modeling, a technique used to allocate simulated quantities to most
probable or suitable space. First we present the interest and technical details of this
technique before giving an example.

Keywords Calibration � Simulation � Multi criteria evaluation

1 Short Description of Interest

MCE aims to compute suitability maps on the basis of a multitude of criteria. MCE
belongs to the family of multi-criteria analyses (MCA) (cf. also the French tech-
nique ELECTRE, Roy 1991) and in the context of LUCC modeling is applied to
produce maps allocating simulated quantities to most probable or suitable space.

Implemented in TerrSet (former Idrisi) software since the 1990s, MCE (Eastman
et al. 1993; Eastman 2015; Saaty 1987; Yager 1988) distinguishes between con-
straints and factors. The first have a Boolean character and indicate whether or not a
land use is possible—their rule is to mask space. The latter express the continuous
suitability of land to be used/covered by a particular LUC. MCE is used to produce
a suitability map for each caption of the LUC maps involved.

MCE may be split into three steps (detailed below):

• Standardization: each factor, expressed in original units such as meters, percent,
minutes, $US, has to be converted into an index using the same scale. Therefore,
MCE provides a fuzzy membership-based standardization tool.

See Chap. 2 about calibration.
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• Weighting: each standardized factor can be weighted by different techniques.

A parameterization of trade-off and risk-taking can be obtained by combining
different factors used for the same suitability map.

2 Technical Details

Here are some details about the three steps of MCE referred to above.

• Standardization allows us to combine factors expressed in different units. The
transformation may be done manually. Alternatively, MCE provides a tool
called fuzzy set membership functions (sigmoidal, J-shaped, linear or user
defined), which allows us to transform original values into index values (Fig. 1).

MCE standardization showing three transformation options:

• Factor weighting can also be done manually on the basis of the available data. In
cases with a lot of factors where the specification of each factor weight is not
easy, MCE provides a matrix tool. The user estimates the relative weight of each
factor compared to the others and the algorithm performs its eigenvector as
factor weight.

• Most MCA techniques sum the weighted suitability scores and the user com-
putes the average suitability score. This means total trade-off: a place with a
critical suitability score for one important factor may be rescued by other factors
with high scores at this place. Allowing full trade-off is risk-taking while lim-
iting the impact of each factor on the final score is risk-averse. MCE therefore
offers researchers the possibility of using order weights. The number of order
weights is equal to the number of factors and their sum is equal to 1. Unlike
factor weights, order weights are space specific: for each location (pixel) the
weighted factors are ranked from the lowest (left) to the highest (right). Order
weights are given for each position in the ranking. Giving the same weight to all
positions means free trade-off (strategy 1 in Fig. 2). By contrast, putting all the
weight on the left-most (the location specific lowest) factor is risk averse and

Fig. 1 Various fuzzy set
membership functions used
for standardization
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means no trade-off (strategy 2). The opposite (putting 100% of order weight on
the locally highest factors) also excludes any trade-off but is the highest
risk-taking option (strategy 3). The driving possibilities by combining these two
criteria form a so-called decision space in the form of a triangle.

• By using order weighted averaging (OWA) we can make different designs for
the suitability maps.
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Chapter 27
Multilayer Perceptron (MLP)

H. Taud and J.F. Mas

Abstract Artificial Neural networks have been found to be outstanding tools able
to generate generalizable models in many disciplines. In this technical note, we
present the multi-layer perceptron (MLP) which is the most common neural
network.

Keywords Calibration � Neural networks � Non-linear relationships � Back
propagation

1 Short Description of Interest

Artificial Neural Networks (ANNs) are structures inspired by the function of the
brain. These Networks can perform model function estimation and handle
linear/nonlinear functions by learning from data relationships and generalizing to
unseen situations. One of the popular Artificial Neural Networks (ANNs) is
Multi-Layer Perceptron (MLP). This is a powerful modeling tool, which applies a
supervised training procedure using examples of data with known outputs (Bishop
1995). This procedure generates a nonlinear function model that enables the pre-
diction of output data from given input data.

See Chap. 2 about calibration.
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2 Technical Details

In order to understand the MLP, a brief introduction to the one neuron perceptron
and single layer perceptron is provided. The former represents the simplest neural
network and has only one output to which all inputs are connected. Given i = 0,1,
…,n where n is the number of inputs, the quantities {wi} are the weights of the
neuron. The inputs {xi} correspond to features or variables and the output y to their
predictive binary class. Figure 1 describes the three steps forming the perceptron
model. Figure 2 shows its simplified representation. The weighting step involves
the multiplication of each input feature value by its weight {xiwi} and in the second
step they are added together (x0w0 + x1w1 + ��� + xnwn). The third is the transfer
step where an activation function f (also called a transfer function) is applied to the
sum producing an output y presented as:

y ¼ f zð Þ and z ¼
Xn
i¼0

wixi ð1Þ

x0 ¼ 1;w0 the threshold or bias, and y the output.
The activation function takes various forms. Their common functions are listed

in Table 1.
A perceptron can only learn linearly separable functions from Eq. (1). Figure 3a

shows an example of linear function w1x1 þw2x2 þw0 ¼ 0 that separates the data
into two classes. In two dimensions with two features, the function is a line. In three
dimensions with three features, it is a plane. In n dimensions, it is a hyperplane with
equation:

Fig. 1 Perceptron steps: from left to right, weighting, sum and transfer steps

Fig. 2 Perceptron model, from left to right: a steps model. b Simplified model
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Xn
i¼0

wixi ¼ 0 ð2Þ

The Equation (2) can be presented by the dot product between the weight vector
W and the input vector X:

W � X ¼ 0 ð3Þ

With known responses of the input training data, the learning step (also known
as the training step) is completed. The purpose of learning is to optimize the
weights by minimizing a cost function, which is usually a square error between the
known response and the estimated one. Analytical techniques such as gradient
descent determine the optimum weight vector. The algorithm converges to a
solution reaching an operational configuration network. The validation of the model
is achieved using new data in order to show how the configuration can be gener-
alized to new situations.

The parallel connection of many perceptrons generates a single layer perceptron
(SLP) architecture, which is used in the case of various outputs. Figure 4a shows an
example with an input and output layer serving in a linearly separable multiclass case.

The perceptron and the single layer perceptron do not resolve the nonlinearly
separable problem (Fig. 3b). In this case, a solution can be found by adding any
number of layers in successive arrangement and creating a MLP architecture
(Fig. 4b). The output of one layer becomes the input of the next and so on. The first

Table 1 Some activation functions

Activation function Equation 2D graph

Unit step (Heaviside)
f zð Þ ¼ 1z� 0

0z\0

�

Linear f zð Þ ¼ z

Logistic (sigmoid) f xð Þ ¼ 1
1þ e�x

Fig. 3 Input patterns, from
left to right: a linearly
separable, b nonlinearly
separable

27 Multilayer Perceptron (MLP) 453



and the last layers are called input and output layers respectively, while the others
are the hidden layers of the neural network.

The MLP is a layered feedforward neural network in which the information
flows unidirectionally from the input layer to the output layer, passing through the
hidden layers (Bishop 1995). Each connection between neurons has its own weight.
Perceptrons for the same layer have the same activation function. In general, it is a
sigmoid for the hidden layers. Depending on the application, the output layer can
also be a sigmoid or a linear function.

Among many other algorithms, the widely known MLP learning algorithm is a
backpropagation, which is a generalization of the Least Mean Squared rule (Du and
Swamy 2014). Weights can be corrected by propagating the errors from layer to
layer starting with the output layer and working backwards, hence the name
backpropagation.

The MLP model performance depends not only on the choice of the variables,
the numbers of hidden layers, nodes, and training data but also on the training
parameters such as learning rate, momentum controlling the weight change, and
number of iterations. A MLP with one hidden layer identifies the nonlinear function
with lower accuracies. Networks with more hidden layers are likely to overfit the
training data. The learning rate and the momentum control the speed and effec-
tiveness of the learning process.

In land change modeling, the analysis of the complex relationships between land
transition and the large number of variables acting as drivers, needs advanced
empirical techniques to find a nonlinear function that describes such a complex
relationship (Mas et al. 2014). Variables such as distance, slope, type of soil, land
tenure, etc. are presented at the input node of the network. Each output node
represents a different land transition (e.g. forest to pasture, forest to cropland, and
forest to urban, etc…) for which explanatory variable values are known, as well as
the land transition observed in the past. After the training step, the MLP is able to
predict the potential change of each transition when new input data is presented to
the network (Pijanowski et al. 2002; Mas et al. 2004).

Fig. 4 Layer structure:
a SLP with three inputs and
four outputs. b MLP with
three inputs, two hidden
layers, and two outputs
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Chapter 28
Multi-objective Land Allocation (MOLA)

M.T. Camacho Olmedo

Abstract In this techincal note we present the Multi-objective Land Allocation
(MOLA), an algorithm that solves concurrences between different uses or transi-
tions to allocate the estimated changes in space in the simulation step. First we
present the interest and technical details before giving an example using an a priori
identical MOLA algorithm included in Land Change Modeler (LCM) and Cellular
Automata Markov (CA_MARKOV), in TerrSet software.

Keywords Simulation � Multi-objective Land Allocation � Estimated quantities �
Transition matrix � land change

1 Short Description of Interest

Once the estimated changes and persistence have been computed in the simulation
stage, the next step is to allocate these changes in space. This process gives rise to
hard simulation results, in which the simulated map has the same categories as those
used in calibration. In order to perform the allocation, Land Change Modeler
(LCM) and Cellular Automata Markov (CA_MARKOV) models, included in GIS
TerrSet (Eastman 2015), use an a priori identical Multi-Objective Land Allocation
(MOLA) algorithm that solves concurrences between different uses or transitions.

See Chap. 3 about simulation and the short presentations in Part V of this book about
CA_MARKOV and LCM.
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2 Technical Details

In the calibration stage, a collection of ranked change potential maps are created, in
which the pixels are ranked according to the greatest potential for the occurrence of
change. The Markov extrapolation (see the technical note about Markov chain in
Part IV of this book) specifies the estimated quantities of change, that is, it targets
the number of pixels for transition during the validation interval. Through the
Markov matrix, TerrSet’s Multi-Objective Land Allocation (MOLA) creates a list
of host classes (categories that will lose area, in rows) and claimant classes (cate-
gories that will gain area, in columns) for each host. The allocation is done for all
claimant classes of each host class, but some pixels could transition to more than
one claimant category. Therefore the MOLA algorithm solves the conflicts based on
a minimum-distance-to-ideal-point rule using the weighted ranks, and the final
result is the overlay of each host class reallocation (Eastman et al. 1995; Kangping
2014; Mas et al. 2014).

Nevertheless, MOLA works differently in LCM from in the CA_MARKOV
models. In LCM, a simple easy procedure is followed: MOLA works only once
and, consequently, LCM exactly simulates the quantities estimated by the Markov
matrix per modeled transition.

In CA_MARKOV the user must incorporate the number of iterations, i.e., the
number of time units in the simulation period, the last iteration being the prediction
in the later date. We choose ten iterations if ten is the number of years in the
simulation interval, and MOLA will run ten times. If we choose twenty iterations
for a ten-year simulation interval, MOLA will run twenty times based on 6-month
time increments (Eastman 2015). MOLA runs once for each iteration and allocates
the divided quantities into equal intervals: e.g. the surface area for each claimant
class, only within each host, is the same as estimated by Markov divided by the
number of iterations. The final result is the overlay of each new simulation map
after each MOLA reallocation. The procedure forces an adjustment of quantities in
the last reallocation.

Besides, the MOLA for each iteration does not use the original ranked suitability
maps to allocate the divided quantities, using the filtered suitability maps instead
(see the technical note about Cellular Automata in CA_MARKOV in Part IV of this
book) or a filter adjusted by the user. The filter is applied for each binary LUC map
that is temporally extracted from the simulated LUC map. Both conditions in
CA_MARKOV (iterations and the use of a Cellular Automata) affect the MOLA
procedure. Consequently, the area of simulated transitions does not coincide with
the area of transitions estimated by the Markov matrix.
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3 Example

As an example, Table 1 presents a matrix with the quantities in hectares of each
change/persistence per category estimated by a Markov matrix from the calibration
period (t0–t1) to the simulation period (t1–t2) and simulated by LCM and
CA_MARKOV for t2. We must make clear that only seven transitions—underlined
values—have been modeled (Camacho Olmedo et al. 2015). Bold values in diag-
onal are persistence.

The Markov extrapolation for the seven modeled transitions matches the output
from LCM, in other words MOLA runs once in LCM and respects the Markov
matrix.

Alternatively, in CA_MARKOV when the number of iterations is equal to t1–t2,
MOLA runs several times and the CA_MARKOV output does not respect the
estimated transition quantities resulting from the Markov matrix. The use of CA can
also partly explain the differences between simulated and estimated quantities.

Table 1 Quantities in hectares of each change/persistence per category estimated by a Markov
matrix from the calibration period (t0–t1) to the simulation period (t1–t2) and simulated by LCM
and CA_MARKOV for t2 using MOLA

1 2 3 4

Markov matrix from t0–t1 (row) to t1–t2 (columns)

1 11,732 32 11 0

2 531 65,957 445 230

3 1006 131 70,002 1772

4 1111 150 12,727 61,052
TOTAL estimated LUC at t2 14,380 66,270 83,185 63,054

LCM simulated transitions

1 11,775 0 0 0

2 531 65,957 445 230

3 1006 0 71,905 0

4 1111 150 12,727 61,052
TOTAL simulated LUC at t2 14,423 66,107 85,077 61,282

CA_MARKOV simulated transitions (number iterations = t1–t2)

1 11,774 0 0 1

2 523 66,095 396 149

3 977 18 71,915 1

4 1127 39 11,174 62,700
TOTAL simulated LUC at t2 14,401 66,152 83,485 62,851
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Chapter 29
The NASZ Model

F. Escobar

Abstract In this technical note we describe how under the cellular automata-based
NASZ model the transition potential is computed after conditions related to
Neighborhood (N), Accessibility (A), Suitability (S) and Zoning (Z).

Keywords Transition potential � Neighborhood � Accessibility � Suitability and
Zoning

1 Short Description of Interest

In cellular automata-based land change models a transition potential (TP) deter-
mines the future state (land use) of a cell, within a raster space. Typically, TP for a
particular cell is based on the neighborhood rules, in terms of attraction and
repulsion, affecting surrounding cells. In some models, TP is also affected by three
other parameters; Accessibility (A), Suitability (S) and Zoning (Z), which together
with Neighborhood (N) form the NASZ model.

2 Technical Details

In the NASZ model, TP is computed as follows:

tPf; c ¼t Nf; c � t Af; c � t Sf; c � t Zf; c � a ð1Þ

See Chap. 2 about calibration and the short presentation in Part V of this book about
Metronamica.
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where:
tPf, c is the transition potential at time t
tNf, c is the neighbourhood potential
tAf, c is accessibility
tSf, c is suitability
tZf, c is zoning
a is a stochastic factor applied to avoid over-determinism

The total amount of change for every land use class is controlled by the demand,
which is calculated using factors exogenous to the model. Demand is calculated
only for land-use classes that have experienced significant growth during the cal-
ibration period. In Metronamica they are called “function” classes (RIKS 2011;
Hewitt et al. 2014; Escobar et al. 2015).

The NASZ model is presented graphically in Fig. 1. In the calibration step,
land-use maps for two different dates, about 10 years apart, are required. The first
map acts as a baseline map while the second is used to provide the demand for each
function land-use class. For every single land-use class and at every time step, the
neighborhood effect is calculated based on the established rules of attraction and
repulsion. Accessibility to the main communication infrastructure is then computed
by multiplying the result of the neighborhood effect. This is followed by the
computation of the suitability for that particular land-use class and it is also mul-
tiplied by the previous product. We then calculate the zoning effect for the

Fig. 1 Graphic description of the NASZ model
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particular land-use class. Finally, a stochastic factor is applied in order to minimize
over-determinism. The result is the total transition potential for land-use class 1.
This process is repeated for each function land-use class. Considering the demand
for each land-use class and the calculated transition potential, the model allocates
cells to the land-use classes, so making up the simulated land-use map used for
calibration. This map is then compared to the actual t2 land-use map and accepted
as well-calibrated if the modeler observes enough similarity between them.

Once the calibrated map is produced, the same rules, with different land
demands, can be applied for the production of future land use maps corresponding
to different scenarios.

We will now describe each component of the NASZ model:

• Neighborhood potential

Each land use that occurs in a cell is influenced by the land uses that occur in a
predefined neighborhood of cells. In Metronamica, this neighborhood is defined by
a radius of 8 cells, i.e. every cell is affected by a neighborhood of 197 cells. The
way this neighborhood influences the target cell depends on the specific rules of
attraction or repulsion observed among land-use classes (RIKS 2011).

• Accessibility

Accessibility measures the effect of the proximity and importance of different
types of transport networks (roads, railways, canals…) and transport points of
interest (train stations, bus stops, entries to motorways…) on the possible future
occurrence of a land use function on a particular cell.

• Suitability

Suitability refers to the influence that physical elements of the environment have
on the possible future occurrence of land uses on a particular cell. Suitability adopts
the form of a composite map made out of as many geo-physical variables as needed.
The composite map for each of the function land-use classes includes values
ranging from 0 (not suitable at all) to 10 (most suitable).

• Zoning

While suitability refers to the influence of physical elements, zoning refers to
human-made elements. In other words, zoning measures the influence that legis-
lation and planning exert over the occurrence or not of a particular land-use class at
a certain location. Each function land-use class has a number of zoning maps, one
for each different legislative and/or planning framework existing within the mod-
eling period. Each of these maps includes four values; 0 (strictly forbidden), 1
(weakly forbidden), 2 (permitted) and 3 (actively encouraged).
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Chapter 30
Receiver Operating Characteristic
(ROC) Analysis

J.F. Mas

Abstract The Receiver Operating Characteristic (ROC) is widely applied to assess
the performance of spatial models that produce probability maps of the occurrence
of certain events such as the land use / land cover changes, the presence of a species
or the likelihood that landslides will occur. In this technical note, the construction of
the ROC curve and the calculation of the Area Under the Curve (AUC) index are
presented.

Keywords Validation � Accuracy � ROC curve � AUC � Uncertainty

1 Short Description of Interest

In LUCC modeling, the Receiver Operating Characteristic (ROC) analysis is
applied to assess the performance of models that produce a probability map which
indicates the sequence in which the model ranks the change potential of cells. For
this, the probability map (Fig. 1, left) is compared with the map of the true binary
transition (Fig. 1, right) in order to assess the spatial coincidence between the true
transition and the probability values. A model with a high predictive power is able
to produce a map of probability in which the highly ranked probabilities coincide
with the true transition.

See Chap. 4 about validation.
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2 Technical Details

Various thresholds are applied to the probability map to produce binary predicted
change maps (Fig. 2). The coincidence between predicted and true transition is
assessed by making a curve, called the ROC curve. In this curve, the horizontal axis
represents the false positive rate, i.e. the proportion (Fawcett 2006; Mas et al. 2013)
of no change cells predicted as change, and the vertical axis the true positive rate,
which is the proportion of true change predicted as change. False and true positive

Fig. 1 Maps of change potential (the value in each cell indicates the probability of change) and
true change (binary map)

Fig. 2 Maps of predicted change obtained by thresholding the probability map using different
values (0.75, 0.5 and 0.25)

Table 1 False and true positive rates at different threshold values

Threshold False positive rate True positive rate Point in the ROC curve (Fig. 3)

1 0/19 0/6 Bottom left corner

0.75 4/19 4/6 A

0.5 8/19 5/6 B

0.25 12/19 6/6 C

0 19/19 6/6 Upper right corner
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rates are also referred to as one minus specificity and sensitivity respectively.
Table 1 shows the values for false and true positive rates at different threshold
values for the data in Figs. 1 and 2. Figure 3 is the ROC curve obtained with the
same data.

The ROC curve is used to compute an index: the area under the curve
(AUC) represented by the grey shaded area in Fig. 3. When the true change
coincides perfectly with the higher ranked probabilities, then the AUC is equal to
one because the curve begins at the point (0, 0), goes up the horizontal axis to the
point (0, 1), and to the right to the point (1, 1). A random probability map produces
a diagonal ROC curve in which the true positive rate equals the false positive rate at
all threshold points. A ROC curve below the diagonal indicates a less predictive
probability map than a random map (Pontius and Parmentier 2014).
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Fig. 3 ROC curve for the
maps in Fig. 1. True and false
positive rates are computed
for each threshold applied to
the probability map (see
Table 1). The area under the
curve (AUC) corresponds to
the grey shaded area
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Chapter 31
Weights of Evidence

J.F. Mas

Abstract The weights of evidence, a quantitative method for combining evidence
in support of a hypothesis, is commonly used in pattern based models. It enables
mapping the probability of the occurrence of a certain event such as, for example, a
land cover change, a wildfire or a landslide using a map of the occurence of this
event and ancillary data. In this technical note, the computing of the weights of
evidence and the probability is presented.

Keywords Calibration � Conditional probability � Drivers

1 Short Description of Interest

The Weights of Evidence (WoE) method is based on conditional probabilities. The
conditional probability of an event is the probability that this event will occur given
the knowledge that another event has already occurred. In land change modeling,
this method is used to produce maps of change probability taking into account
spatial variables such as distance, slope or population density.

2 Technical Details

Figure 1 is a very simple map of a forest area. It shows where deforestation
occurred (black cells) with regard to a protected area PA (shaded green) and the
area close to a road R (shaded red). The figure shows for example that the prob-

See Chap. 2 about calibration.
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ability of deforestation P(D) for the entire area without any knowledge is 0.1 (10
deforestation cells out of a total of 100). However, the conditional probability of
deforestation for the area close to the road P(D|R) is 0.29 (7 deforested cells/24 cells
close to the road). The conditional probability of deforestation within the protected
area P(D|PA) is 0.05 (1/20). The WoE method enables users to calculate the
probability of an event (e.g. deforestation) taking into account different conditions
simultaneously (in this example only two: PA and closeness to road).

The positive weight of evidence w+ associated with the presence of a given
condition is calculated according to Eq. 1.

wþ ¼ PðCjEÞ
PðCj�EÞ

� �
ð1Þ

where P(C|E) is the probability of the condition C given the occurrence of the event
E and P Cj�Eð Þ is the probability of the condition C assuming that the event E did not
occur. When the condition is associated with a low occurrence of the event, the
value of w+ is negative. By contrast, when the occurrence of the condition tends to
increase the likelihood of the event, the value of the weight w+ is positive.

In practice, the weights are very easy to compute. For instance, if the event E we
want to model is deforestation and the condition is closeness to the road, P(C|E) is
the ratio between the number of cells for deforestation close to the road and the total
number of cells for deforestation. P Cj�Eð Þ is computed in the same manner taking
into account cells where deforestation did not occur. In the example in Fig. 2
weight values for the categories close to the road, far from the road, inside the PA
and outside the PA are 1.31, −0.99, −0.75 and 0.13 respectively.

The conditional probability taking into account various conditions is also easy to
calculate, by summing the weights of evidence together (Eq. 2). However, this
calculation is based on the assumption of independence between the conditions.

Fig. 1 Distribution of
deforestation patches in an
area with a road and a
protected area. Deforestation
is more frequent near the road
and much less likely inside
the protected area (only one
deforestation cell), suggesting
that the probability of
deforestation varies
depending on the distance
from the road and location
inside or outside the protected
area
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Therefore, the variables used as conditions should be tested for spatial dependence
by using indices such as Cramer’s coefficient.

P EjC1 \C2 \ . . . \Cnð Þ ¼ e
P

wþ
i

1þ e
P

wþ
i

ð2Þ

where P(E|C1\C2\… \Cn) is the probability of the event E taking place at a site
presenting the conditions C1, C2 …Ci….Cn.

Figure 2 shows the probability of deforestation based on the WoE and taking
into account the variables PA and closeness to road as represented in Fig. 1.

It is worth noting that weights of evidence can be calculated taking into account
binary explanatory variables (e.g. inside/outside a protected area) or multiple cat-
egorical variables (e.g. types of soils or land tenure). Continuous variables, such as
distance, elevation or slope, cannot be used directly to compute weights and must
first be transformed into categorical variables by binning. For a more detailed
description of the weights of evidence method, see Soares-Filho et al. (2010).
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Fig. 2 Probability of deforestation obtained through the WoE method. Forest cells with two
simultaneous “adverse” conditions (near the road and outside the PA) have the highest probability
of deforestation, because the probability is computed with two positive weight values. By contrast,
cells inside the PA and far from the road have a low probability of being deforested because
probability is based on two negative weights
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Chapter 32
A Short Presentation of the Actor, Policy,
and Land Use Simulator (APoLUS)

R.J. Hewitt

Abstract Land use change is a social-environmental process strongly influenced
by the dynamic behaviour of key actors (e.g. land managers, regulators, policy
makers). Existing frameworks for modelling land use change tend to under-
represent the role of these actors, which makes it difficult to study strongly
actor-driven land change processes, like renewable energy development or inten-
sive agriculture. In this chapter we present the Actor, Policy and Land Use
Simulator (APoLUS) model, a free-and-open-source (FOSS) geographical model
for the R environment which allows the dynamic interaction of actors to be inte-
grated with Neighbourhood (N), Accessibility (A), Suitability (S) and Zoning
(Z) parameters found in a conventional cellular automata-based geographical
model. The inclusion of actor dynamics in APoLUS makes it easier to model the
effect of policy interventions on land use change and leads to more realistic sim-
ulation of land change processes than in non actor-driven models.

Keywords Actors � Land use models � Simulation � R Environment �
Free-and-open-source software

1 Introduction

APoLUS (Actor, Policy and Land Use Simulator) is a free-and-open-source (FOSS)
geographical computer model for the R environment, designed to simulate the
effects of complex actor behaviour on land use (Fig. 1). APoLUS is a developed
version of the experimental SIMLANDER model (Hewitt et al. 2013a, b) which is
still available and which some users may prefer for simpler applications with a
single active land use. The first working version of APoLUS was completed in

R.J. Hewitt (&)
James Hutton Institute United Kingdom, Aberdeen, UK
e-mail: richardjhewitt@hushmail.com; richard.hewitt@observatorioculturayterritorio.org

R.J. Hewitt
Observatorio para una Cultura del Territorio, Madrid, Spain

© Springer International Publishing AG 2018
M.T. Camacho Olmedo et al. (eds.), Geomatic Approaches for Modeling
Land Change Scenarios, Lecture Notes in Geoinformation and Cartography,
https://doi.org/10.1007/978-3-319-60801-3_32

475



September 2015. The model uses the Cellular Automata (CA) approach described
by White and collaborators (e.g. White and Engelen 2000) to simulate land use
change based on the interaction of 5 key parameters, Neighbourhood (N),
Accessibility (A), Suitability (S), Zoning (Z) and Actor Dynamics (D). The model
was developed under the EU FP7 Project COMPLEX to allow land use types that
can be shown to follow an incremental cellular growth pattern (e.g. residential land,
industrial land) and land use types that are strongly driven by the behaviour of
actors like policy makers and planners (e.g. renewable energy, irrigated cropland) to
be modelled together. The influence of actors in shaping land use change is gen-
erally under-represented in many existing land use simulation models, which makes
it difficult to study the spatial consequences of transformative economic or policy
actions like renewable energy implementation or variation in crop prices.
Conventional CA land use models are popular, reliable and easy to calibrate against
historical data, but they do not represent actor behaviour directly, rather by proxy
through transition rules. Agent-Based Models (ABMs), on the other hand, can
model actor behavior directly but tend to be data and processing intensive and hard
to calibrate. By incorporating the effect of actor dynamics (D) into a conventional
CA model structure, APoLUS simulates the influence of actor behaviour on land
allocation without losing the advantages of conventional CA models. In this sense,
APoLUS tries to achieve balance between two competing visions of land use

Fig. 1 APoLUS model conceptual diagram, as applied to the case of Navarre, Spain, under
theCOMPLEX Project
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modeling—on the one hand, as an emergent process arising from the interaction of
human agents (as in an ABM, e.g. the FEARLUS model; Polhill et al. 2001), and
on the other, as a deterministic process controlled by spatio-temporal geographical
and socio-economic drivers, as in a CA model such as Metronamica.

The model comprises two basic components, described as follows:

1.1 Land Use Allocator

At the core of the model is the land use allocator. To simulate land use allocation, a
digital map in Geographical Information System (GIS) format (ESRI ascii) is
introduced which represents land use at a given moment in time (Tn) in the form of
a grid of cells, in which each cell contains a single land use. Cells are able to
transform from one land use to another over the course of a time sequence (T1, T2,
T3…Tn) according to their Transition Potential (TP), which is dependent on five
key parameters; (1) Actor Dynamics (D), the actor dynamics influence score for
given land uses in the map in the areas that correspond to the actors’ area of
influence, determined by the actor interaction process (see below); Neighbourhood
interaction (N), the relationship between the cell’s land use and the land use of
adjacent or nearby cells; (2) Accessibility (A), the influence of lines of communi-
cation, e.g. transport, irrigation, electricity network; (3) Suitability (S), the bio-
physical characteristics (e.g. rainfall, slope) of a given cell that influence the land
use that can be assigned to it; Zoning (Z), planning restrictions in place, e.g.
protected areas. Finally, the stochastic uncertainty of the land allocation process is
represented through the addition of a random factor (v).

1.2 Actor Interaction Process

The influence of actor dynamics on land allocation (D) is computed as an aggregate
score for each model region on the basis of six key actor and process variables,
defined according to the Contextual Interaction Theory (CIT) approach of De Boer
and Bressers (2011), and the Participatory Action Research approach described in
Hewitt et al. (2017).

(1) Motivation—the actor’s degree of motivation to implement the modelled
process for the relevant land use;

(2) Cognition—the actor’s degree of awareness and knowledge that enable them
to implement the modelled process for the relevant land use;

(3) Resources—the resources (monetary or otherwise) at the actor’s disposal;
(4) Power—the power of the actor with respect to other actors in the model;
(5) Affinity—the degree to which the actor is sympathetic towards implemen-

tation of the modelled process for the relevant land use, and;
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(6) Level of action—the typical administrative level of action (usually, but not
necessarily their level of official competence) of this actor respect to the modelled
process.

Actor characteristics can be defined either through a participatory process, in
which stakeholders are tasked with analysing actor inter-relationships and beha-
viour with respect to the implementation goal (e.g. Hewitt et al. 2017), or through
policy analysis carried out by researchers (e.g. Bressers and Dinica 2003).

2 Description of the Methods Implemented in the Model

2.1 Model Set up

The general procedure for simulation modeling in APoLUS is to proceed in order
through the numbered steps in the main switchboard (Fig. 2), import regions and
land use maps, define actors, calibrate neighbourhood, suitability, accessibility and
zoning, and run the model. At the map import stage, each land use category in the
input map (e.g. urban, agriculture, solar), must be assigned a status and an actor
influence value. Status relates to the land use category’s behaviour respect to other
categories in the model, and can take one of three possible values: passive, active or
static (see Hewitt 2015 for detailed explanation). The actor influence parameter
takes value 1 or 0 which determines whether or not allocation and demand for a
particular land use will be influenced by actor dynamics (D).

Fig. 2 APoLUS model screen capture, ubuntu linux environment. Left simulation dialog; Centre
main switchboard; Right R command line interface
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2.2 Calibration

Detailed calibration and validation procedure is the same as that used for the
Metronamica model, and involves generating simulated land use maps for known
historical dates, and then comparing the simulations against the real maps using
standard statistical techniques such as Ksim, fractal dimension or clumpiness (see,
for example, Van Vliet et al. 2013; Hewitt et al. 2014; Newland et al. 2015). The
time period between t1 (the first map available) and t2 (the second map available,
posterior to t1) is known as the calibration period. If data are available for a third
date (t3), then it simulations can be evaluated for a second period (t2–t3), known as
the validation period.

Actor dynamics are in general difficult to calibrate because the state of the actor
interaction process for historic periods is usually unknown. For this reason, it is
recommended to calibrate the model for N, A, S, Z and then subsequently add actor
dynamics. The simulation panel (Fig. 2) is designed to facilitate the calibration
process, allowing the user to calibrate one parameter at a time, and then run the
model for this parameter only, selecting the appropriate radio button (Fig. 2). Once
calibration and validation have been carried out successfully, the model is con-
sidered to be ready to generate simulations for future dates. What constitutes a
“successful” calibration is hard to define, and highly case-dependent, but an overall
Ksim score of >0.1, and an individual category Ksim score of >0.1 for the active
land use categories is a useful benchmark. If this cannot be achieved, it may be
acceptable to demonstrate that both the calibration and validation dates outperform
a null or neutral model in which change areas are located at random (Hagen-Zanker
and Lajoie 2008). One of the most important aspects of calibration is knowing when
to stop; Ksim scores >0.2 may indicate overfitting.

3 Applications

APoLUS at present has been applied in two cases, to model renewable energy
implementation in the region of Navarre (Hewitt 2015), and to model agricultural
intensification in European member states (Pera 2016). APoLUS’ sister model
SIMLANDER also has a number of ongoing use cases with publications pending.

4 Final Considerations and Technical Summary

APoLUS is implemented in R, with the exception of the multiple land use allo-
cation script which is written in C and called (automatically) from the R environ-
ment at runtime. It is recommended to use R version >3.0. APoLUS is run from the
R command line, and user input is facilitated through a series of simple dialogues.
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Installation of the raster and gWidgetstcltk packages is required. The model has
been tested and functions correctly on both 32 and 64 bit Windows systems, 32 and
64 bit Linux systems and 64 bit Macintosh systems. The APoLUS model can be
found in the COMPLEX project model repository at: http://owsgip.itc.utwente.nl/
projects/complex/index.php/2-uncategorised/21-plus4-cmp.

APoLUS, and sister model SIMLANDER, can also be downloaded directly from
https://simlander.wordpress.com.
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Chapter 33
A Short Presentation of CA_MARKOV

J.R. Eastman and J. Toledano

Abstract CA_MARKOV is a combined Cellular Automata/Markov
Chain/Multi-Criteria/Multi-Objective Land Allocation land cover prediction pro-
cedure. CA_MARKOV allocates land based on the suitability of the land for end
covers along with a cellular automaton rule to promote spatial contiguity.
CA_MARKOV works well when historical land cover data is not available or is not
a good predictor of future land cover.

Keywords Land cover prediction � Land allocation

1 Introduction

CA_MARKOV is a combined Cellular Automata/Markov Chain/Multi-Criteria/
Multi-Objective Land Allocation land cover prediction procedure that was devel-
oped as a precursor to the Land Change Modeler (LCM). The most fundamental
difference between CA_MARKOV and LCM is that CA_MARKOV allocates land
based on the suitability of the land for end covers along with a cellular automaton
rule to promote spatial contiguity. In contrast, LCM models suitability for transition
rather than suitability for the ending land cover. Although CA_MARKOV is
superseded by LCM, it is still provided for experimental purposes in the
TerrSet/IDRISI software system.

2 Descriptions of the Methods Implemented in the Model

Use of CA_MARKOV proceeds through three stages, relying on existing modules
of the TerrSet/IDRISI software for each component.
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2.1 Stage 1: Development of the Suitability Images

In the first stage, the user is required to develop suitability images for each of the
land cover classes. The suitability images are intended to represent the relative
suitability of the land for each end land cover. It is envisioned that the user would
develop these using Multi-Criteria Evaluation.

In TerrSet/IDRISI, Multi-Criteria Evaluation is achieved with the MCE module
that permits both Weighted Linear Combination (WLC) and Ordered Weighted
Averaging (OWA). The former combines evidence as a weighted average and thus
provides full tradeoff between factors (i.e., poor qualities can be balanced by good
qualities). OWA (Yager 1988; Jiang and Eastman 2000) is a refinement that allows
the user to vary the degree of tradeoff (to as little as none) as well as the balance
between opportunity and conservativeness in the aggregation of evidence.
A companion module named WEIGHT provides the Analytical Hierarchy Process
pairwise comparison procedure (Saaty 1987) for developing weights for factors that
reflect the consensus of a participating group.

2.2 Stage 2: Calculation of the Transition Areas

The second stage is a determination of the amount of area that needs to go through
each transition for the future prediction. For this CA_MARKOV relies on the
MARKOV module in TerrSet/IDRISI. MARKOV takes two historical land cover
images as input and performs a Markov Chain analysis to estimate both a transition
probability matrix and a corresponding matrix of the expected quantities (in areal
units) associated with each transition according to the prediction date. The esti-
mation procedure is identical to that performed in LCM (see the short presentation
in Part IV of this book).

2.3 Stage 3: Change Allocation

The third stage is allocation of the expected transitions. This is a form of cellular
automaton process in the manner described by White and Engelen (1997). The user
specifies the number of modeling steps (such as one step per year in the prediction).
At each step, a contiguity filter (which can be user-modified) progressively
down-weights the suitabilities of pixels distant from existing areas of each class (as
of that iteration), thus giving preference to contiguous suitable areas. However,
down-weighting never exceeds 90% allowing for the possibility of allocations at a
distance if they were highly suitable to start with.

Within each time step, after filtering, each land cover is considered in turn as a
host category. All other land cover classes act as claimant classes and compete for
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land (only within the host class) using the MOLA (multi-objective land allocation)
procedure (Eastman et al. 1995) in the TerrSet/IDRISI system. The area require-
ments for each claimant class within each host are equal to the total established by
the transition areas file divided by the number of iterations. The results of each
MOLA operation are overlaid (using a COVER operation) to produce a new land
cover map at the end of each step.

3 Applications

CA_MARKOV has been evaluated and compared to other models since its release in
1993 (Paegelow and Camacho Olmedo 2008; Memarian et al. 2012; Pontius and
Malanson 2005). It has been applied across many disciplines in varied geographic
areas, including environmental impacts on water pollution (Houet and Hubert-Moy
2006), managing Europe’s heathlands (Mobaied et al. 2011); predicting land
degradation in Zimbabwe (Kamusoko et al. 2009) and evaluating protected area
policies (Adhikari and Southworth 2012; Mondal and Southworth 2010).
CA_MARKOV has been employed for general land use prediction and scenario
modeling (Subedi et al. 2013; Halmy et al. 2015; Ding et al. 2015) including urban
(Sang et al. 2011) and coastal landscapes (Kityuttachai et al. 2013) as well as
modeling the impacts of climate change (Tong et al. 2012) and sea-level rise (Shirley
and Battaglia 2008). CA_MARKOV has even been used to model pollen-based land
cover reconstruction over 4000 years in Estonia (Poska et al. 2008).

4 Final Considerations

It is the belief of Clark Labs that the logic of LCM generally presents a stronger
approach since it models the suitability for transition rather than suitability for the
ultimate cover class. In addition, in LCM the model is developed empirically using
historical data as a guide. That said, historical data are not always available or it
may be that the historical period is not a good predictor for what is expected to
drive land cover change. In these cases, CA_MARKOV may prove to be very
useful.
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Chapter 34
A Short Presentation of CLUMondo

J. van Vliet and P.H. Verburg

Abstract CLUMondo simulates changes in land systems in response to an exoge-
nous demand, land system characteristics, and a series of biophysical and socioeco-
nomic variables. Land systems are defined in terms of their land cover composition as
well as land use intensity. As a consequence, land systems can multifunctional and
thus provide multiple different goods or services. Moreover, an increase in demand
for, say, crop produce, can lead to cropland expansion, cropland intensification, or
both. Here we explain the model algorithm, and illustrate the advantage of the land
system approach over traditional land use models at the national and the global scale.
CLUMondo is available as a free and open source model.

Keywords Land use change � Land use intensity � Land systems � Land use
model � Ecosystem services

1 Introduction

Changes in land use and cover are made in response to demands for various goods
and services provided by the land, such as food produce of providing shelter.
Changes in these demands can result in land cover conversion, for example an
increase in food demand may lead to a conversion from forests to cropland, and a
growing population may lead to an increase in built-up area. However, these
demands can also be satisfied by increasing the land use intensity of a given area of
land. For example, the conversion of subsistence agriculture to market-oriented
production is characterized by an increase in agricultural yields, while the area
under cultivation doesn’t necessarily change. Hence both subsistence cultivation
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and market based production are defined by the same land cover, namely cropland,
while they differ in their land use intensity. These different intensities related the
same land cover may have important, differential, impacts on climate (Luyssaert
et al. 2014), biodiversity (Kleijn et al. 2009), water and soil quality (Keatley et al.
2011), and rural livelihoods (Cramb et al. 2009).

The CLUMondo model uses a land systems approach towards land change
simulation. Land systems refer to typical combinations of land cover and their land
use or management intensities (van Asselen and Verburg 2012), but may also
contain information on the temporal and spatial configuration of the land system
components. Each land system produces a specific combination of goods and
services, such as tons of crop produce and head of livestock. Besides the provi-
sioning of such commodities, also other services may be provided that are valued
by society, such as water regulation and carbon sequestration (Wolff et al. 2015).
Consequently, each good or service can be supplied by one or more different land
systems, and one land system can supply one or more goods or services (see
Fig. 1). This approach requires a different model representation than other models,
where each land cover is typically driven by one (area) demand only.

2 Descriptions of the Methods Implemented

CLUMondo is a forward looking model that simulates land system changes in
response to various types of exogenously defined demand and endogenously
defined transition rules (van Asselen and Verburg 2013). Each simulation starts
from an initial land systems map, which changes in yearly time steps. The user may

Fig. 1 Schematic representation of the relation between various demands, and changes in land
uses or land systems. Conventional models (top) typically link one demand directly to one land
cover or land use type, while CLUMondo (bottom) allows to link a demand to multiple different
land systems and vice versa
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define whether demands for a particular year need to be met exactly (assuming an
equilibrium) or whether they serve as minimum or maximum levels (such as
indicating a minimum amount of carbon sequestration or a maximum amount of
water extraction).

Within each yearly time step, land systems are allocated in an iterative procedure
in which land systems are allocated according to the transition potential at time
(t) and location (i) for each land system (LS), and the demands for goods and
services for that specific year (see Fig. 2). The transition potential ðPtranst;i;LSÞ is
calculated as the sum of the local suitability ðPloct;i;LSÞ, the conversion resistance
ðPresLSÞ, the neighborhood effect ðPneight;i;LSÞ, and the competitive advantage of a
land system ðPcompt;LSÞ (van Asselen and Verburg 2013):

Ptranst;i;LS ¼ Ploct;i;LS þPresLS þPneight;i;LS þPcompt;LS

The local suitability of a location for a particular land system can be specified by
the user or estimated based on current spatial patterns of different land systems. The
latter employs one logistic regression model for each land system separately, where
the occurrence of a land system is the dependent variable b0; b1; � � � ; bnð Þ while the

Fig. 2 Schematic overview of the land system (LS) allocation in CLUMondo. The grey boxes
indicate the iterative loop for allocating LS changes within each time step
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independent variables are a set of biophysical and socioeconomic conditions
ðf1; f2; � � � ; fnÞ:

Ploc ¼ 1
1þ e�ðb0 þ b1f1 þ b1f1 þ ��� þbnfnÞ

Conversion resistance is an indication of the costs of converting a particular land
system into any other system. Conversion costs are typically high for land systems
with high capital investments and systems that are difficult to remove physically,
such as urban and peri-urban systems. Extensive agricultural systems and (semi-)
natural systems, on the other hand, are relatively easy to convert and are therefore
typically characterized by a low conversion resistance. The conversion resistance is
calibrated manually, based on expert knowledge, with values between 0 and 1.

The neighborhood effect represents the influence that land systems in the direct
surroundings exert on the allocation of land systems. While the neighborhood effect
is commonly used to simulate the mutual attraction of urban land uses (van Vliet
et al. 2013), it can also be used to express the influence of land availability in the
trade-off between cropland expansion and intensification (van Asselen and Verburg
2013). In this case it is assumed that under conditions of high land availability
cropland expansion is possible, while intensification is induced when this is not the
case. The neighborhood effect in CLUMondo is calculated as a function of the
number of cells in the user-defined neighborhood, with land systems that contribute
ðfLSÞ, a constant ðaÞ, and a weight ðwÞ. The weight may be determined by the
fraction of a specific land cover in a land system, e.g. to differentiate between land
systems with a low and a high share of urban land cover. Note that the weight and
the constant can be positive as well as negative. Therefore, the neighborhood effect
can represent attraction, for example in urban agglomerations, and repulsion, for
example due to limited land availability for cropland expansion.

Pneigh ¼ aþw � fLS
The competition between land systems is simulated based on ability of land

systems to supply the goods or services for which there is a demand. Initially, the
competitive advantage is 0 for each time step. This value is subsequently adjusted
in an iterative procedure, based on demands for goods and services that are not yet
provided. When land systems have a competitive advantage in supplying multiple
(undersupplied) demands, the competitive advantages are added. A solution is
found when all demands are fulfilled by the allocated land systems. Hence, in
contrast to some other land use change models, CLUMondo does not use a hier-
archy or heuristic to handle trade-offs between competing demands, but simulates
their competition dynamically.

Other constraints on land allocation can be implemented in CLUMondo, and
overrule the calculation of the transition potential as described above. Two important
examples are whether specific conversions are allowed and the restrictions posed by
spatial layers. The first typically reflects practical constraints for conversion, for
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example to indicate that cropland cannot become a forest directly, as it takes several
years and intermediate stages to grow trees (Verburg andOvermars 2009). The second
represent specific constraints for the occurrence of land systems, such as natural parks
that limit the expansion of urban land, or biophysical constraints that limit the
expansion of cultivated areas (Eitelberg et al. 2015).

3 Applications

The CLUMondo model is flexible with regards to the scale, resolution, and the land
systems to be considered. These model characteristics may be defined based on the
needs of the study area and research questions at hand. However, the definition of
land systems as typical combinations of land cover and land use intensities suggest
a certain minimum resolution, as all components of a specific land system need to
be included in the simulation unit. Consequently, CLUMondo is particularly well
suited to simulate changes over relatively large areas. Current applications range
from provincial to global scale. In this section we briefly present one national scale
application and one global scale application.

Crop production in Laos takes place in a range of land systems with different
intensities (Hett et al. 2012). Many villages, especially in less accessible places, are
still dependent on subsistence agriculture, using swidden cultivation (Schmidt-Vogt
et al. 2009). Other places, however, are characterized by permanent croplands,
including paddy fields, and large scale plantations. As a consequence, an increased
demand for food can be satisfied by changing relatively extensive swidden fields
into more intensive permanent croplands, but also by cultivating new cropland
areas. In our projections, intensification predominates in the near future
(Ornetsmüller et al. 2016) (Fig. 3). This land change trajectory is a model result, as
it was not specified a priori how the increased demand for food should be produced.

Globally, land systems differ in their land management intensity, but also in the
goods and services they produce. Consequently, an increase in demand for crop
products can lead to a cropland expansion but also to an intensification of existing
cropland, depending on the local characteristics, the land system patterns to start
with, as well as the availability of new land that can accommodate expansion
(Eitelberg et al. 2015). However, land change is also increasingly driven by
demands for other goods and services, for example carbon sequestration and bio-
diversity protection. As these demands are implemented through policy instru-
ments, they are now drivers of land change, as well as consequences (Eitelberg
et al. 2016). In the baseline scenario of this global application, land change is driven
by a demand for crop production, head of ruminant livestock, and area of built-up
land. Subsequently, we designed two alternative scenarios, that include an addi-
tional demand for carbon storage and biodiversity protection, respectively. As a
result of the increased competition for land resources due to these additional
demands, these scenarios yield more intensification and less expansion of cropland,
and thus to more specialized land systems (see Fig. 4).
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Fig. 3 Land systems in Laos in the years 2000 and 2030 (based on Ornetsmüller et al. 2016)

Fig. 4 Changes in crop production in various land change scenarios. The bars indicate the %
change relative to the year 2000 for two selected model regions, illustrating the additional
intensification caused by adding demand for carbon storage or biodiversity protection (based on
Eitelberg et al. 2016)
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4 Final Considerations and Technical Summary

Contrary to the representation in most models, land change is typically not driven
by a demand for areas of land cover, but by a range of demands for goods and
services provided by the land. These include food production, and housing, but
increasingly also other demands, such as recreation, carbon storage, biodiversity,
and disaster risk reduction (Wolff et al. 2015). The CLUMondo model is the first
model that directly uses these demands as input for land change simulations. The
examples provided in this chapter illustrate the two main advantages of this land
systems approach. First, the representation of land systems allows for both
expansion and intensification, in response to increased demand for food, as shown
in Laos. Second, this approach allows to include multiple different demands,
including those that are not linked to one land use strictly, such as carbon storage or
biodiversity protection, as shown in our global application.

CLUMondo is available as a free and open source model from the dedicated
webpage: http://www.environmentalgeography.nl/site/data-models/models/.
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Chapter 35
A Short Presentation of Dinamica EGO

H. Rodrigues and B. Soares-Filho

Abstract Dinamica EGO is a flexible software that allows the construction of
many different types of environmental simulation models, including complex
spatial dynamic ones. By using an intuitive, friendly and yet very powerful
graphical interface, modelers can freely employ a combination of map algebra,
cellular automata techniques, and table data manipulation to represent complex
socio-economic and environmental systems, not being limited to the use of only
predefined models.

Keywords Environmental simulation � Land use and change

1 Introduction

Dinamica EGO (EGO stands for Environment for Geoprocessing Objects) is a
freeware for environmental modeling. Its modeling platform allows the design from
very simple spatial models to very complex dynamic ones (Soares-Filho et al. 2002,
2006). Dinamica EGO favors usability, flexibility and performance, optimizing
speed and computer resources. The software interface allows designing models
using a graphical programming language in an intuitive and friendly way. Users
build models by simply dragging geoprocessing operators and connecting them to
represent the model visual diagram. While such a simplicity facilitates newcomers’
learning, sophisticated and powerful features address the challenges posed by
expert modelers. Advanced features include nested iterations, multi-transitions,
dynamic feedbacks, multi-region approach, decision processes for bifurcating and
joining execution pipelines, a complete series of spatial algorithms for the analysis
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and simulation of space-time phenomena, model wizard, and high performance
computing thanks to a 64-bit native and multiprocessor architecture that handles
large raster datasets. Dinamica EGO also allows the user to break up the model into
sub-models to simplify design and enhance communication, or to design new
operators that can be stored in the software library or exchanged using an online
repository. In addition, Dinamica EGO enables map operation combining raster
maps in any geographic projection, spatial resolution, or extent, making it truly a
multiple resolution and multi-scale software. The software environment also allows
the online coupling with R studio taking fully advantage of Dinamica EGO high
performance and R vast statistics capabilities in one integrated modeling
environment.

The software environment, developed mainly in C++ and Java, contains a series
of algorithms called operators or “functors”.1 Dinamica EGO operators include the
most common spatial algorithms available in commercial GIS, and a series of
algorithms especially designed for spatial simulations, including cellular automata
transition functions, and calibration and validation methods. A special class of
operator is the “container” that can envelop a series of operators and other con-
tainers, for example, to control the model dataflow, such as the “Repeat” container.
Operators, including containers, are sequenced in a graph form to establish a visual
data flow. With the help of a friendly graphical interface, users can create models by
simply dragging and connecting operators via their ports; each port represents a
connector to a data element, such as a map, table, matrix, mathematical expression,
or constant. Thus, a model can be designed as a diagram, whose execution follows a
data flow chain. Sub-models (an encapsulated part of a model) can be stored in the
user’s library as new operators to be reused in other models or shared through an
online store, thus facilitating the exchange of models as well as new functionalities
developed by Dinamica EGO’s worldwide community of users. Models developed
using the graphical interface are saved in EGOML (a form of Extensible Markup
Language) or EGO programming script language; the latter format enables script
writing using a text editor, which can be converted to EGO graphical diagram and
vice versa. Dinamica EGO provides various tools for data visualization, including
maps, tables, and graphs. Worthy of mention, modeler can build a wizard tutorial
for communicating the model with end-users. In the forefront of environmental
modeling, Dinamica EGO is a freeware and as such can be used at no cost for
scientific, personal, and commercial purposes.

1http://www.csr.ufmg.br/dinamica/wiki.
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2 Description of Some Methods Implemented in the Model

Most commonly, Dinamica EGO models employ some combination of map alge-
bra, cellular automata technique, and tabular data manipulation to represent com-
plex socioeconomic and environmental systems. The map algebra sub-library
includes a vast set of predefined operators (assigning map categories, extracting
map values, distance calculation, accumulated flow, etc.) and the calculate map
operators whereby users can write any mathematical or logical expression using a
combination of maps, tables, and constants. The map calculation operator
“Calculate Map” includes local, zonal and neighborhood functions. Because
operators can be sequenced forming parallel and bifurcated execution pipelines and
loops, the user is free to connect any set of operators to form a visual data flow.
Hence, any variable in Dinamica EGO can become dynamic receiving feedbacks
from any model element.

Dinamica EGO comes with a set of pre-implemented cellular automata transition
functions, but modelers can also implement their own cellular automata from
scratch using the “Calculate Map” operator together with its neighborhood func-
tions. Thanks to the set of cellular automata transition functions (named “Patcher”
and “Expander”), which allow the definition of form and size of patches of changes,
Dinamica EGO can simulate very intricate and complex landscape structures. Of
relevance, these functions replicate the expanding and contracting landscape ele-
ments, thereby simulating edge processes. The software holds multiple transitions
that are calibrated by employing the Weights of Evidence method to calculate the
influence of spatial determinants on the location of changes, producing as result an
integrated transition potential map, also known as the transition probability
map. The transition probability determines the likelihood that a specific cell or
spatial unit will change from one state to another over a time step. The transition
probabilities are calculated in Dinamica EGO using an adapted version of the
Bayesian method of conditional probability (Bonham-Carter 1994), known as the
Weights of Evidence (WOFE). See Soares-Filho et al. (2004, 2006, 2009, 2010). In
addition, a genetic algorithm tool available in Dinamica EGO is flexible enough to
embrace a multitude of spatial models as well as their specific fitness functions, thus
offering a practical way to optimize the performance of environmental models
(Soares et al. 2013).

The cellular automata functions allocate the changes, whose rates are either
passed by a coupled model or exogenously prefixed (e.g. Markovian chain). The
spatial determinants represent proximate causes of land-use change (e.g. the
opening or paving of a road) or are simply preferable (e.g. more fertile soil, low
slope) or more restricted (land-use zoning, such as protected areas) sites
(Soares-Filho et al. 2001, 2010).

Dinamica EGO can use any customized approach to validate a model. In
addition, Dinamica EGO comes with a map comparison method named “Reciprocal
Similarity Comparison” that compares the spatial matching of maps of changes
(Almeida et al. 2008; Soares-Filho et al. 2009). Since this method was made
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available in Dinamica EGO, a series of studies have applied it to perform map
comparison (e.g. Soares-Filho et al. 2010; Walker et al. 2010; Silvestrini et al.
2011; Lapola et al. 2011). A detailed mathematical description of this method is
found in Dinamica EGO guidebook (Soares-Filho et al. 2009) and in Soares et al.
(2013). Dinamica EGO features simultaneous multiple resolution simulation,
implemented through its sub region approach, a functionality that allows the user to
customize the model parameters or to perform a particular calculation for a map
zone, i.e. a region in a map, such as a country or state. Regions themselves can also
be dynamic, changing boundaries every time-step, or be nested allowing the models
to aggregate different calculations for different region levels. For example, a model
can perform certain calculations at a finer resolution, e.g. at municipality level, and
others at a coarser resolution, e.g. at state level. A series of models to perform
landscape metrics comes with the dataset. Other examples include a road con-
structor submodel, land-change simulations, as well as many image-processing
algorithms.

3 Applications

Applications of Dinamica EGO are many.2 They include, for example, simulation
of urban growth and intradynamics (Almeida et al. 2005; Godoy and Soares-Filho
2008), land-use change (Stickler et al. 2009; Teixeira et al. 2009), agricultural
expansion (Gouvello et al. 2010), fire (Silvestrini et al. 2011), deforestation
(Soares-Filho et al. 2002, 2004, 2006; Maeda et al. 2010), rent models of logging
(Merry et al. 2009) and cattle ranching (Bowman et al. 2012), and analyses of
opportunity cost of reducing deforestation (Nepstad et al. 2009) and the effec-
tiveness of protected areas (Soares-Filho et al. 2010). The software has made an
important contribution to more than 150 peer reviewed papers by scholars world-
wide and it is widely used by governmental organizations and planning bodies.

4 Final Considerations and Technical Summary

Dinamica is a very flexible modeling tool that can be run from the desktop to a
high-performance computer. Thanks to its innovative techniques, the software
provides a complete solution for calibrating, running, and validating space-time
models, no matter the complexity.

Dinamica EGO is a freeware spatial modeling software, available for research
and commercial use. Web page of the software package: http://dinamicaego.com.

2http://csr.ufmg.br/dinamica/publications/.
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Chapter 36
A Short Presentation of the Land Change
Modeler (LCM)

J.R. Eastman and J. Toledano

Abstract The Land Change Modeler is a land change projection tool for land
planning. It uses historical land cover change to empirically model the relationship
between land cover transitions and explanatory variables to map future scenarios of
change.

Keywords Land change � Land change prediction � Land planning

1 Introduction

The Land Change Modeler (LCM) was developed (Eastman 2006) as an empiri-
cally parameterized land change projection tool to support a wide range of planning
activities. Based on an analysis of historical land cover change, the system develops
an empirical model of the relationship between land cover transitions and a set of
explanatory variables. Mappings of future change are then based on this empirical
relationship and a projection of quantity derived from a Markov Chain. The result is
a business-as-usual (BAU) projection of change without subjective intervention. It
is designed to support applications with strict BAU baseline needs such as REDD
(Reducing Emissions from Deforestation and forest Degradation) climate mitigation
projects.

2 Description of the Methods Implemented in the Model

At present, three separate empirical model development tools are provided in LCM: a
Multi-Layer Perceptron neural network (MLP), Logistic Regression (LR) and
SimWeight (SW). The MLP procedure is the default, and is the most mature and
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Fig. 1 In LCM, the process of land change modeling is organized into major stages embodied by
tabs in the interface. The most important stage is that in which empirical models are developed
relating historical changes to explanatory variables. In this example, the default Multi-Layer
Perceptron Neural Network is used to develop transition potential maps (small maps, upper left)—
empirically derived statements of the potential of land to undergo specific transitions. These are
used in the subsequent change prediction tab to generate both future scenarios (large image,
center) and maps of vulnerability to change (upper left)

primary focus ofLCM(Fig. 1).MLP is also the only procedure that canmodelmultiple
transitions at the same time. Logistic Regression is provided primarily for pedagogic
reasons while SimWeight is an experimental machine learning procedure based on a
K-Nearest Neighbor variant (Sangermano et al. 2010). In each case, analysis of two
land cover layers in the recent past is used to train and evaluate the model.

2.1 Training

For the Multi-Layer Perceptron, LCM examines each of the transitions over the
historical period to determine the number of pixels that went through the transition
being modeled (change pixels) and the number that were eligible to, but which did
not (persistence pixels). The user is then required to specify the sample sizes to use
for training the model. For MLP and SimWeight, equal-sized samples of change
and persistence are required. However, the default sample sizes are very different—
10,000 for MLP and 1000 for SimWeight. The difference relates to how they are
used—for iterative learning in the case of MLP and characterization for SimWeight.
For Logistic Regression, the sample chosen is proportional to the relative number of
change and persistence pixels for the individual transition being modeled. The user
is able to indicate the sampling proportion (the default is 10%) and the method of
spatial sampling—stratified random sampling (the default) or systematic.
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2.2 Simulation

In LCM, the simulation proceeds in three stages. The first is the development of
transition potentials—mappings of the readiness of land to go through each of the
transitions under consideration. The second is the estimation of the expected
quantity of change and the third is the spatial allocation of the estimated change
based on the transition potentials.

Transition Potentials
A transition potential is a continuous value from 0–1 that expresses the relative
potential of a pixel to transition from one state to another. The metric varies from
one empirical modeling procedure to another but in the final stage of the simulation,
only the relative value of the metric matters.

If MLP is used as the modeling procedure, the transition potential is the acti-
vation level of the output neurons which represents the posterior probability of
transition under an assumption of equal probability of change/persistence. With
Logistic Regression, the transition potential is the probability of change assuming
an identical quantity to that which transitioned during the historical period. With
SimWeight, the value is unitless, but monotonic with the posterior probability of
transition.

Estimation of the Quantity of Change
In the second stage, a Markov Chain analysis is used to determine the quantity of
change for the forecast date selected. A Markov Chain assumes that the rate of
change (but not the quantity of change) remains constant over time. The calculation
proceeds (Eastman 2014) by first computing a cross tabulation of transitions
between the land cover maps for the two historical dates. From this, the basic
transition probability matrix (X) is calculated. If the date being projected forward is
an even multiple of the training period, then the new transition probability matrix is
calculated through a simple powering of the base matrix (Kemeny and Snell 1976).
For example, if the training period is from 2002 to 2011 (9 years) then the transition
probability matrix for 2020 from 2011 (9 years forward) is X1, for 2019 (18 years
forward) is X2, for 2047 (36 years forward) is X4, and so on. However, if the
projected time period is in between even multiples of the training period, then the
power rule is used to generate 3 transition matrices that envelop the projection time
period (if the 3 time periods are times A, B and C, the period to be interpolated will
be between A and B). The three values at each cell in the transition probability
matrix are then fed into a quadratic regression (thus there will be a separate
regression for each transition probability matrix cell). Given that a quadratic
regression (Y = a + b1X + b2X

2) has 3 unknowns and we have three data points, it
yields a perfect fit. This equation is then used to interpolate the unknown transition
probability. From these transition probabilities, the projected quantity of change is
determined for each transition being modeled.

36 A Short Presentation of the Land Change Modeler (LCM) 501



Spatial Allocation
Given a set of transition potential maps and the projected quantity of change for
each transition, LCM then allocates change based on a greedy selection algorithm.
The greedy selection is based on the simple assumption that the areas with the
highest transition potential will always transition first. Because a single pixel may
be selected for multiple transitions, a competitive strategy is used whereby it will be
assigned to the transition with the highest marginal transition potential. This will
lead to some transitions being allocated less than the expected quantity of change.
Thus the procedure iterates through a process of selecting pixels with lower tran-
sition potentials until all transitions achieve their required quantity.

LCM recognizes that some explanatory variables may be based on land cover,
and thus change as transitions progress. For example, a model focused on defor-
estation may use a variable of proximity to existing agriculture. As agriculture
expands, this variable will constantly be changing. Such variables are termed dy-
namic as opposed to static. Thus the user has the ability to predict in stages with
dynamic variables being automatically recomputed at each stage. The procedure
chosen for re-computation can be as simple as a single distance calculation to a
complex macro. For example, a user may have empirically determined the potential
for transition based on the age of the forest post-agriculture, and thus may use the
macro option to add time and then re-compute the transition potential at each step.

2.3 Validation

Validation is handled differently for each of the empirical modeling procedures.
For MLP, half of the training data are reserved for validation. Validation is a critical
component of the training process. At each stage in the training, learning is refined
with one half of the data and the quality of the model is assessed by comparison
with the other half. Accuracy and model skill over all transitions and persistences
combined are dynamically reported during the training process. Model skill is
reported as a Heidke Skill Score (Heidke 1926), also known as Kappa (Cohen
1960), which ranges from −1 to +1 with 0 indicating a skill no better than random
allocation. At the end of the empirical modeling procedure, LCM provides a
detailed accounting of accuracy and skill for each transition and each persistence
category. It also provides a wealth of information about the contribution of each
variable to the model including a backwards stepwise assessment that allows for a
very easy determination of the most parsimonious model.

For SimWeight, again, 50% of the training data are reserved for validation. From
these, a Peirce Skill Score (Joliffe and Stephenson 2003) is evaluated—a value
similar in nature to a Heidke Skill Score in that it ranges from −1 to +1 with 0
representing the point where the hit rate and false alarm rate are equal. SimWeight
also reports the relevance of variables by examining the variability of a variable
within historical samples of transition relative to all areas (Sangermano et al. 2010).
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For Logistic Regression, validation is handled by aGoodness of Fit measurewhich
expresses the degree to which the fitted values of the modelled regression match the
training data. Relevance of variables is assessed by the slope coefficients and t-score
values, although use of standardized variables is recommended for this purpose.

2.4 REDD

An important application of this kind of empirically-modeled projection tool is the
climate change mitigation strategy known as REDD—Reducing Emissions from
Deforestation and forest Degradation. To meet the special needs of these programs,
LCM provides a special set of tools for the development of REDD projects. Tools
provide for the definition of the project and leakage areas, specification of carbon
pools to be considered, method of calculation and carbon density in the evaluation
of CO2 emissions. Non-CO2 emissions are also considered. Leakage, success and
effectiveness rates are then specified for each of the reporting stages. In the end, 19
tables are produced following the BioCarbon Fund methodology. However, these
are easily re-formatted into any of the prevailing approved methodologies.

3 Applications

Land Change Modeler has been evaluated and applied across many disciplines in
varied geographic areas since its release in 2007. It has been evaluated against other
land change methods (Eastman et al. 2005; Fuller et al. 2011; Mas et al. 2014;
Paegelow and Camacho Olmedo 2008). LCM has been applied to forest monitoring
and deforestation (Khoi and Murayama 2011; Valle Jr et al. 2012) and its impacts
on biomass (Eckert et al. 2011; Fuller et al. 2011; Saha et al. 2013), biodiversity
(Dean and Salim 2012; Uddin et al. 2015) and species habitat impact assessment
(Fuller et al. 2012). LCM has even been employed to model post-socialist land
change in Eastern Europe (Václavík and Rogan 2010). LCM is an accepted tool by
the Verified Carbon Standard (VCS 2014) and is extensively used in REDD
(Areendran et al. 2013; Centro de Conservación 2012; Kim and Newell 2015) and
REDD+ project planning (Moore et al. 2011; Sangermano et al. 2012; Scheyvens
et al. 2014; VCS 2014).

4 Final Considerations

LCM has now been in public use for more than a decade. It was commissioned by
Conservation International and the conservation community still constitutes the
largest body of users. Companion software components have been developed to
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work closely with LCM including the Habitat and Biodiversity Modeler and the
Ecosystem Services Modeler. Development of LCM continues with two new
machine learning procedures (Weighted Normalized Likelihoods and a Support
Vector Machine) currently in testing. Additionally, a cloud-based implementation is
currently under development. Given the pace of anthropogenic land conversion, the
ability to develop defensible and skillful land change models is of critical
importance.
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Chapter 37
A Short Presentation of LucSim

J.P. Antoni

Abstract LucSim is a cellular automata (CA) dedicated to geographical analysis
and spatial simulation for researchers and advanced planning institutes, providing
user-friendly software in order to analyze and simulate land use changes and
dynamics. Two complementary models are integrated in the CA: (1) a Markov
Chain used to calculate transition matrices from a date to another, and (2) a
Decision Tree able to automatically determine a set of transition rules to be applied
on land use data. LucSim includes GIS compatibility functions allowing to display
ESRI shapefiles and is based on raster georeferenced images saved in TIF format. It
was mostly applied on French urban case studies.

Keywords Cellular automata � Markov chains � Transition rules � Decision tree �
Urban development

1 Introduction

LucSim is a cellular automata model dedicated to geographical analysis and sim-
ulation for researchers and advanced planning institutes. The goal of the project is
to provide user-friendly software in order to analyse and simulate land use changes
and spatial dynamics (Fig. 1). It is currently being developed at laboratory ThéMA
(University Burgundy Franche-Comté and CNRS) from the basis of the
CWS/Camdeus project, in collusion with the MobiSim LUTI project, to provide a
suit of simulation tools for decision making in urban and land planning.
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2 Description of the Methods Implemented in the Model

LucSim relies on the basics of cellular automata, involving grid mapped land-use
and transition rules. Its major functionality is based on P. Torrens’s definition
(Torrens 2000). Technically, the application of a set of transition rules, where the
state S of a cell i at step t + 1 depends on its state at step t and on its neighbourhood
at the same step in a radius O, constitutes the main engine to simulate prospective
scenarios of land use change. Land use transition rules can be defined manually,
constrained by different techniques or determined automatically.

For rules constraints, two models are integrated in the CA. First, from the land
use maps, LucSim is able to calculate transition matrices from a date to another, and
to run a markovian process. This Markov chain is useful to calibrate the number of
cells that can evolve in the future, and then to improve the temporal dimension of
land use change simulation, which is often missing in classical CA tools. Second,
LucSim integrates a potential model based on the main principles of spatial inter-
action. This potential can be used to integrate a specific value to cells and to weight
their decreasing influence on the neighbourhood according to their increasing dis-
tance. Markov chains and potential modeling can be automatically combined into the
CA engine to improve the relevance and the efficiency of the transition rules.

For transition rules automation, LucSim integrates a Decision Tree (DT) process
to automatically determine a set of transition rules to be applied an land use data.
According to users’ parameters and calibration, this DT is based on learning
machine and demands to split the initial data in two sub-datasets. The first one is

Fig. 1 Screenshot of LucSim tutorial
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used for training and the second one for testing the obtained results. Resulting
transition rules can immediately be analysed and run through the regular CA
process to test hypothesis or forecast future land use changes.

Spatial statistics (neighbourhood analysis) is also an advanced function of the
model, allowing to extract specific neighbourhood, to compare sets of land use
images, and to assess the relevance of the CA constraints and simulation results.

3 Applications

LucSim was mostly applied on French urban case studies (Belfort, Besançon,
Montbéliard, Nantes, Rennes) and on the cross-border regions of Strasbourg-Kehl
and Luxembourg.

4 Final Considerations and Technical Summary

As a geographical cellular automata, LucSim includes GIS compatibility functions
allowing to display ESRI shapefiles (.shp) and is based on raster georeferenced
images saved in TIF format. LucSim must then be connected and feed by GIS and
Raster graphics editors. So far as LucSim is strictly defined as a geographical
cellular automata (including diachronic land use analysis tools), it does not assume
any image creation or modification.

LucSim is a .jar software developed in Java language and necessitates the
installation of Java 8 at least to be executed on any system operator (Linux, Mac OS
or MS Windows). LucSim can be downloaded here: https://sourcesup.renater.fr/
lucsim/.
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Chapter 38
A Short Presentation of Metronamica

H. van Delden and R. Vanhout

Abstract Metronamica is a generic and spatially explicit land use modelling
framework integrating various drivers and processes relevant for understanding and
assessing land use dynamics. As a decision support system, it lets users evaluate
spatial planning and infrastructure development policy interventions and provides
results in the form of spatial and non-spatial policy relevant indicators. With over a
hundred applications worldwide it has demonstrated that the simulation of universal
concepts can be tuned to local contexts across the world to cater for very different
socio-economic, environmental and governance conditions. The full framework
comprises a suite of components like land use, population dynamics, economics
and transport, as well as powerful tailored data processing and analysis tools, which
can be turned on or off based on the scale and purpose of the application.
Metronamica components have been integrated into various tailor-made integrated
models and have been enhanced to better represent the multifunctionality of our
land, as well as the management and intensity of its use. Its wide user group has
benefitted from its ongoing development, by highlighting scientific challenges and
providing feedback on its usefulness and user-friendliness.

Keywords Land systems approach � Land use model � Cellular automata � Model
calibration � Model integration

1 Introduction

Metronamica (RIKS 2017; Van Delden and Hurkens 2011, www.metronamica.nl)
is a generic forecasting tool for planners and policy analysts to simulate and assess
the integrated effects of policy measures on urban and regional development.

H. van Delden (&) � R. Vanhout
Research Institute for Knowledge Systems, Maastricht, The Netherlands
e-mail: hvdelden@riks.nl

R. Vanhout
e-mail: rvanhout@riks.nl

© Springer International Publishing AG 2018
M.T. Camacho Olmedo et al. (eds.), Geomatic Approaches for Modeling
Land Change Scenarios, Lecture Notes in Geoinformation and Cartography,
https://doi.org/10.1007/978-3-319-60801-3_38

511



The system interactively simulates the impact of a variety of external influences
(e.g. macro-economic changes, population growth, etc.) and policy measures (e.g.
land use zoning, conservation policies, densification policies, etc.) on the regional
development of a city, region, country or continent. With the integrated scenario
support, what-if analyses can be performed that help evaluate alternative plans
under various external conditions.

The core of Metronamica is a CA-based land use allocation component that
simulates land use developments over time based on a ‘competition for space’
principle. Based on their economic and political power, actors will be able to
occupy the locations which are most desirable for them. These behavioural
dynamics can be facilitated or countered by planning and policy interventions in
obtaining a more desirable future. Metronamica is equipped with a set of indicators
to assess how autonomous developments shape long-term land use dynamics and
how (combinations of) policy options impact on these future pathways.

Metronamica is developed using the Geonamica software environment (Hurkens
et al. 2008) and includes a model library containing a range of models from various
disciplines: land use, regional interaction, transport, economics and demographics.
Applications can be set upwith one, twoor three spatial levels depending on their scope.
Spatial resolution at local level varies for current applications between 25 and 1000 m.
Temporal resolution is a year. Temporal horizon is 20–50 years into the future.

2 Description of the Methods Implemented in the Model

The models that are incorporated in Metronamica simulate activities that take place
at three spatial scales: global, regional and local, where global refers to the entire
simulated area. At global level, a macro-economic model is tied with an age-cohort
model that simulates structural demographic changes and population levels. The
age-cohort model incorporates immigration patterns and provides the labour force
supply; the latter are used as an input for the economic model. Economic conditions,
in return, have an impact on migration and mortality rates. Figures for population
and jobs in main economic sectors are used as an input for the regional model.

At the regional level, socio-economic changes take place based on the relative
attractiveness of regions and the costs required to travel from one region to another.
These costs are provided by the transport model that uses information from the
regional and local models to generate trips and calculate the speed, intensity and
congestion on the network. This provides the basis for the distribution of national
growth as well as migration of jobs and people over regions and is furthermore
input for the allocation of activities within the regions.

On the local level, land use demands from the regional model are allocated to
grid cells based on several elements including local accessibility, physical suit-
ability, zoning regulations and the attraction, repulsion and competition between
different land use functions. Finally, the local bio-physical and socio-economic
characteristics feed back into the attractiveness at the regional level and the land use
configuration is used as an input for the production of trips in the transport model.
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For each application, the user can select one or more model components. Based
on the selection of components, inputs for them come from other components or are
defined as exogenous drivers.

With the focus of the book on land use modeling, the land use component is
described below in a bit more detail. More information on all components including
the equations used can be found in the Metronamica documentation (RIKS 2017).

2.1 Land Use Component

The land use model operates at local level and uses a grid of cells. A cellular
automaton (CA) based land use model is used to determine the state of a cell within
the overall growth for each of the regions calculated by the regional model (White
and Engelen 1993). Changes in land use at the local level are driven by four
important factors that determine the potential for each location for each actor (see
also Fig. 1):

• Physical suitability, represented by one map per land use function modelled.
The term suitability is used here to describe the aptness of a cell to support a
particular land use function and its associated activity.

• Zoning or spatial planning, represented by one map per land use function
modelled. For different planning periods the map specifies which cells can and
cannot be taken in by the particular land use and how strict or flexible the
various plans are.

Fig. 1 Main drivers of the Metronamica land use model as shown for an application to Greater
Wellington, New Zealand
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• Accessibility, represented by one map per land use function modelled.
Accessibility is an expression of the ease with which an activity can fulfil its
needs for transportation, mobility and other facilities in a particular cell, based
on the proximity to infrastructure networks.

• Human behaviour, represented by spatial interaction rules simulating the pref-
erences of various actors for certain locations based on the land uses in the area
surrounding the location, including their power to occupy the most desirable
locations.

If the potential is high enough, the function will occupy the location, if not, it
will look for more attractive places. New activities and land uses invading a
neighbourhood over time will thus change the attractiveness for activities already
present and others searching for space. This process constitutes the highly
non-linear character of this model.

2.2 Land Systems and Multifunctional Land Use

To enhance the representation of the land dynamics, the local land use component
has been complemented with intensity and management information to provide a
full land systems approach. For the socio-economic functions this entails the
incorporation of activity or density levels in addition to the land use and man-
agement of the location (Van Vliet et al. 2012), for agricultural and natural uses
local suitability and management decisions are included for simulating intensity
levels (van Delden et al. 2007). These developments enable the simulation of the
multi-functionality of the land and also provide relevant intensity and density
information for further impact assessment.

2.3 Indicators

Metronamica includes a range of socio-economic and environmental indicators
which can be selected and configured based on a selection of algorithms. Examples
of such indicators are the expansion of urban areas, habitat fragmentation and the
distance from residential locations to the nearest recreation site. Other indicators
can be added on demand by selecting one from a set of available algorithms,
providing additional input data and adjusting model parameters. Examples of such
indicators are urban development in areas prone to flooding—requiring a map
indicating areas prone to flooding—and job potential, which is the ratio between the
number of jobs and inhabitants in the vicinity of a residential location.
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2.4 User Interface

An important task for the developer of an integrated spatial decision support system
(ISDSS) is to bridge the gap from scientific tools to user-friendly systems, by
creating a graphical user interface (GUI) that is easy to use and guides users in the
steps that need to be taken to carry out a scenario or policy impact assessment
study. In addition, as ISDSS often encompass complex models, the user interface
should provide insight into the structure and functioning of the model and provide
access to all relevant model inputs and outputs for updating the data, calibration and
validation. Trying to incorporate both in one interface often leads to a malfunc-
tioning system that is far from optimal for any user.

In the design of the Metronamica user interface we decided that the interface
should be able to provide access to two different types of users: the policy analysts
who use the system as part of their policy process and who carry out scenario and
impact assessment studies with the model, and the scientists or modellers who can
update the underlying data and parameters and possibly even the model equations.
For the latter group of users, we created the modeller interface where elements are
grouped per model; each individual model has its own access point through the
system diagram. Access to settings for the policy user is structured according to
their logical function in the policy interface. On a high level, access is organized by
the steps that a user takes to carry out an impact assessment analysis: configure
drivers, create integrated scenarios, run the simulation, review output through the
indicators and do comparative analysis. Zooming in on those parts, we grouped
settings and outputs by their type and their domain; for example, all economic
policy measures together, all external factors together, all ecological indicators
together etc. Example of the policy and modeller interface are provided on the
website www.metronamica.nl.

2.5 Setting up and Calibrating the Land
Use Component (Metronamica SL)

When setting up a new application, the following steps are generally applied for
finding an appropriate parameter set and assessing its quality.

1. As part of the data analysis the current situation and historic developments are
analysed. This includes analysing the temporal change in total area surface for
various land uses as well as the change in landscape structure. Regarding the
latter, metrics such as the clumpiness index (McGarigal 2014) and the rank size
distribution (Gabaix 1999) are used in conjunction with a visual inspection of
the developments. Furthermore, the enrichment factor is used to analyse the
over- and underrepresentation of certain land uses in the neighbourhood of
changed land uses (Van Vliet et al. 2013).
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2. Model set-up includes a set of choices relevant for setting up the model to a
specific region and context. In CA-based land use modeling, main choices are
related to the decision on the area extent, the applied resolution and the selection
of land use classes to be modelled, where finding a balance between providing
additional information and creating a false sense of accuracy is often a crucial
point of discussion (van Delden et al. 2011).

3. During the calibration, parameter values are set and fine-tuned and subsequently
the model is assessed on its behaviour and results, frequently over a historic
calibration period. Difficulties in calibrating CA-based land use models mainly
relate to the large number of parameters that need to be set, the limited avail-
ability of time series of land use maps, and finding objective ways to assess the
quality of the calibration. Regarding the latter, progress has been made over the
past years, which has resulted in the use of neutral models to act as a benchmark
for quality assessment (Hagen-Zanker and Lajoie 2008), together with the use of
objective measures to complement the more subjective visual assessment. To
assess the quality of the calibration we take into account the predictive accu-
racy, which is the ability of the model to accurately simulate actual land use
patterns; and the process accuracy, the extent to which the modelled processes
are consistent with real world processes (Brown et al. 2005). Main indicators
used for assessing the quality of the calibration are indicators for location
agreement, such as Fuzzy Kappa (Hagen-Zanker 2009) and Fuzzy Kappa
Simulation (Van Vliet et al. 2013); indicators for landscape structure agreement,
such as the clumpiness index (McGarigal 2014), the fractal dimension (Chen
2011), the rank size distribution (Gabaix 1999), and the enrichment factor (Van
Vliet et al. 2013); and visual inspection.

4. During the validation, the model’s behaviour and results, based on the param-
eters settings obtained during the calibration, are assessed over a data set
independent from the one used as part of the calibration. This usually results in
an evaluation of the model’s behaviour over a different historic period; although
other independent data sets are equally valid (see e.g. Van Vliet et al. 2010).
Assessment criteria are the same as for the calibration.

5. Finally, the model is tested and evaluated on its long-term behaviour, which
includes a long-term simulation with the calibration parameters, a number of
tests with extreme scenarios to assess the robustness of the model, a number of
tests to assess the sensitivity of model results on small changes to the parameter
settings and some tests to assess the impact of the main perceived uncertainties.

2.6 Applications

Metronamica has over 100 applications worldwide. Some examples of applications
using the land use component only include:
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• Hewitt et al. (2014) focusing on a participatory calibration of the land use model
• Wickramasuriya et al. (2009) applying Metronamica to shifting cultivation in Sri

Lanka
• Furtado et al. (2012) applying Metronamica with income-differentiated actors to

Belo Horizonte, Brazil
• van Delden and Hagen-Zanker (2009) using the story line-and-simulation

approach to simulate exploratory scenarios for Europe.

Metronamica has been incorporated in various integrated models, of which some
examples are provided below:

• UNHARMED (Riddell et al. 2016)—a decision support system for disaster risk
reduction, applied to Greater Melbourne, Greater Adelaide and Tasmania,
Australia.

• RECARE IAM (van Delden et al. 2016)—a Europe-wide integrated assessment
model for the impact of policy and land management options on soils and
ecosystem services.

• LUMOCAP PSS (van Delden et al. 2010)—a policy support system for eval-
uating the impacts of agricultural policies on the European land use and
landscape.

• MedAction PSS (van Delden et al. 2007)—an integrated policy support appli-
cation to assess the main issues underlying the causes and effects of land
degradation and develop integrated planning policy options and mitigation
strategies to combat desertification in the Northern Mediterranean region.

• Environment Explorer (Engelen et al. 2003)—an integrated spatial decision
support system in which social, economic and ecological processes are simu-
lated to explore policy alternatives in relation to the quality of the environment
in which Dutch citizens live, work and recreate.

• WISE (Rutledge et al. 2008), an integrated scenario explorer to support the
development of a strategic vision for New Zealand regions by taking into
account social, environmental and economic well-being.

2.7 Final Considerations and Technical Summary

www.metronamica.nl for the Metronamica modeling framework and www.riks.nl
for integrated models that include Metronamica. The Metronamica modeling
framework is generally not open source although in specific cases arrangements are
made to share the source code. Metronamica is generally not free, but under certain
conditions fees might be reduced or waived.
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Chapter 39
A Short Presentation of SLEUTH

K.C. Clarke

Abstract This chapter summarizes information about SLEUTH, a popular cellular
automaton model that simulates urban growth and land use change. The model is
supported in the public domain and all source code is open, including extensive
documentation and discussion fora. The input data for SLEUTH are listed, the
model's behavior and its control parameters explained, and methods described for
model calibration, use in simulation, and for validation. Pointers to review papers
are given as starting points for the reader to find SLEUTH applications, and the
operating system and computer requirements are given. This volume includes a
paper by the author that makes a substantial improvement to SLEUTH's calibration
procedures.

Keywords SLEUTH � Cellular automaton � Land use change model � Urban
growth � Simulation � Model calibration

1 Introduction

SLEUTH is a simulation model consisting of computer code written in the C
programming language. Its purpose is to simulate urban growth over time, and to
propagate change across a range of land use classes specified by the user. The
model consists of two tightly coupled cellular automaton (CA) models: the Urban
Growth Model and the Deltatron land use change model. Three main versions of the
model exist, with three variants. Version 1 was experimental, version 2 used
dynamic memory allocation, while version 3 adopted the Cray flat memory model
and included support for the Message Passing Interface to allow parallel processing.
SLEUTH-r used SLEUTH but changed some of the road handling routines to speed
up the model, and simplified the calibration process (Jantz et al. 2010). SLEUTH*
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included a user interface to support decision-making and scenario planning (Houet
et al. 2016). The model ingests data in the form of raster images that give the model
its name, topographic slope, land use, exclusions, urban extents, transportation and
a hillshade layer for visualization. At a minimum, the model needs one GIS data
layer at different periods of past time for slope, exclusion and hillshade, two or
more transportation and land use layers, and four or more urban extent layers.

The model uses four types of CA behavior rules: diffusive growth, new spreading
centers, organic growth and road influenced growth (Clarke andGaydos 1998). These
behaviors are determined by the values of five control coefficients that take integer
values between 0 and 100 (Fig. 1). At zero, the behavior type is disabled, while at 100
it is uninhibited by probabilities determined by the input data and the other coeffi-
cients. To allow non-linear feedbacks in the model, the coefficients are also subjected
to self-modification, inwhich the state of the entire system changes the values during a
run. During the automated calibration process a single run starts at the earliest year for
which data is available, and runs to the last year or “present.” Thirteen performance
metrics are then used to evaluate the coefficient values, averaged over a series ofMonte
Carlo iterations. Calibration consists of selecting the best five coefficients using brute
force, i.e. trying combinations and permutations to select the one that best simulates
the known data (Silva and Clarke 2002). These settings are then used for forecasting.
More recently, the brute force calibration method has been replaced with a genetic
algorithm (Clarke-Lauer and Clarke 2011, Clarke this volume). The land use change
model uses four phases: initiate change, cluster change, propagate change, and age
deltatrons respectively (Clarke 2008a, b). This ensures that spatial and temporal
autocorrelation exists in the land use change patterns.

Fig. 1 SLEUTH behavior rules
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2 Description of the Methods Implemented in the Model

Calibration: The brute force calibration process is described in detail in Silva and
Clarke (2002). The fact that so many coefficient combinations must be tried, with
Monte Carlo iterations further increasing the computational time, means that the
model calibration process can take days, weeks or even months of CPU time. While
the speed of processors has taken up much of this burden, parallel computing has
also decreased the calibration time (Guan and Clarke 2010; Clarke 2003). Most
recently, SLEUTH-GA has simply replaced brute force with a genetic algorithm
that “breeds” coefficient combinations that evolve toward a best solution
(Clarke, this volume). Calibrations have for some time focused on the
Optimal SLEUTH metric as the single best goodness of fit parameter to maximize
during calibration (Dietzel and Clarke 2007).

Simulation: SLEUTH requires calibration to give reliable scientific results
(Clarke 2004). Once the best coefficient values have been determined, the model is
run over the calibration period with a large number of Monte Carlo iterations and
the coefficients averaged at the end of the period, i.e. the start date for simulation.
The model then takes the most recent data as inputs, and runs as far into the future
as is desired. Model outputs include reports, accuracy statistics, maps, animations
and uncertainty estimates. If no land use data are present, the model simply sim-
ulates urban growth. By varying the parameters and input data simulations of
different scenarios can be created (Xiang and Clarke 2003). Others have used the
exclusion layer, including incorporating other methods such as Multi-Criterion
Evaluation into the scenarios (Mahiny and Clarke 2012).

Validation: SLEUTH is among the most validated of land use change models.
Not only has the model been subjected to sensitivity analysis, its accuracy has been
reported for about 100 different applications. In many cases its reported accuracy
during calibration has been in the 80–90% range. At least one study has returned to
areas forecast in the past to fully validate the model (Manca and Clarke 2012).
Others have investigated temporal sensitivity (Akin et al. 2014; Chaudhuri and
Clarke 2014; Peiman and Clarke 2014) and other factors. A full survey of these
studies is contained in Chaudhuri and Clarke (2013).

3 Applications

Survey articles that cover a majority of the applications are Clarke et al. (2007,
2008a, b) and Chaudhuri and Clarke (2013). The Gigalopolis project website, cited
in these publications, contains a more complete application survey and an inventory
of data and results. To the author’s knowledge, there have been over 100 appli-
cations on 6 continents, at a range of spatial scales and geographic extents and
covering western cities, favelas, informal settlements and many other fields.
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4 Final Considerations and Technical Summary

SLEUTH research remains active, with new applications and model refinements
continuously appearing. The author thanks in remembrance Dr. Leonard Gaydos,
who first funded the model’s development at USGS and who remained a colleague
and friend for two decades. His unfortunate death in a snorkeling accident in 2015
was a great loss to Geography.

SLEUTH is open source and available for free at: http://www.ncgia.ucsb.edu/
projects/gig/. The model requires a UNIX-like operating system (such as Linux,
Ubuntu or Cygwin). Test data with results are available on the website.
A discussion forum exists that can answer the majority of questions users may have.
Documentation is fully online at the Gigalopolis website.
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