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Modelling Housing Using Multi-dimensional

Panel Data

Badi H. Baltagi and Georges Bresson

Abstract This chapter surveys housing models using multi-dimensional panels.
While there is a vast literature on housing models using two-dimensional panel data,
there are few papers using multi-dimensional panels. This chapter focuses on hous-
ing models, residential mobility and location choice models derived from discrete
choice theory, utilizing multi-dimensional panels. Examples include nested or hi-
erarchical error components models, where a house is located in a street, within a
block, within a city, within a county, etc. This chapter introduces some basic con-
cepts of utility functions and discrete choice models used for hedonic functions, and
residential mobility and location choices. Then it surveys some significant papers
on multi-dimensional models of residential mobility and location choice. The paper
concludes by surveying a few papers on dynamic housing models. It shows that both
spatial and temporal dimensions in dynamic systems should be included for hedonic
housing models and discrete models of residential location in a multi-dimensional
framework. However, the inclusion of these multiple dimensions greatly compli-
cates the specification and modeling of such systems.

12.1 Introduction

This chapter surveys housing models using multi-dimensional panels. For more than
a decade, a huge literature within the New Economic Geography has emerged to
study the causes of temporal and spatial variations in house prices, residential mobil-
ity and location choice. These are major household decisions connected with many
activities and travel aspects of households’ lives. These concepts have been widely
researched in various fields including economics, sociology, geography, urban plan-
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ning, transportation, etc. Location choices and housing investments are inherently
dynamic decisions. Moreover, the choice for a household to locate in a given area
is a complex decision that is influenced by, among other things, the structural ele-
ments of a dwelling, as well as the property’s spatial relationship to certain ameni-
ties. One source of spatial heterogeneity comes from the natural hierarchical and
nested structure of the locations of houses: whether they located in a street, within
a block, within a city, within a county, within a region, etc. There is a vast literature
on such topics mainly using time series and longitudinal (two-dimensional (2D))
data, but only a few papers using a multi-dimensional (three-dimensional (3D) and
more) framework. In this chapter, we will focus on housing models, residential mo-
bility and location choice models derived from discrete choice theory, focusing on
examples that use multi-dimensional panels.

Baltagi et al. (2014), for example, focus on the estimation of UK house prices in
which spatio-temporal variations in house prices are driven by supply and demand
conditions, with spatial effects coming from two distinct sources. One is the direct
dependence of house prices in a given locality on house prices in nearby localities.
The second source of spatial heterogeneity comes from the presence of hierarchical
error components which represent the impact of local (district) effects embedded
within wider (county) effects. The panel data includes 353 local authority districts
in England over the period 2000–2007. This is done using instrumental variable es-
timation. Another example is Baltagi et al. (2015), who estimate a hedonic housing
model based on flats sold in the city of Paris over the period 1990–2003. This is
done using maximum likelihood estimation, taking into account the nested structure
of the data. Paris is historically divided into 20 arrondissements, each divided into
four quartiers (quarters), which in turn contain between 15 and 169 blocks (ı̂lot, in
French) per quartier.

In Sect. 12.2, we introduce some basic concepts of utility functions and dis-
crete choice models used for hedonic functions, residential mobility and location
choices. Section 12.3 deals with multi-dimensional models of housing hedonic price
functions, their estimation methods and some results. Section 12.4 analyses some
multi-dimensional models of residential mobility and location choice. Section 12.5
focuses on multi-dimensional dynamic models of housing models and Sect. 12.6
concludes.

12.2 Discrete Choice Models and Hedonic Price Functions: A

Quick Overview

The pioneering work by Daniel McFadden on location choice is an obvious starting
point for a discussion on housing models. One generally considers a household i
who chooses to locate in neighborhood j and buy house type k. A standard random
utility model (see, e.g., Holmes and Sieg, 2014) assumes that the indirect utility of
household i for location j and house k is given by
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ui jk = X ′
jβ +Z′

kγ+(yi − p jk)α+ εi jk = fi jk(.)+ εi jk , (12.1)

where Xj is a vector of observed characteristics of location j, Zk is a vector of ob-
served characteristics for house k, yi is the household income and p jk is the price of
housing type k in location j. Each household chooses the neighborhood-housing pair
that maximizes utility. Under the assumption that the error terms εi jk are indepen-
dent and identically distributed (i.i.d.) across i, j and k and follow a type I extreme
value distribution, McFadden (1973) (see also McFadden, 1974, 1978), derived the
well-known conditional logit choice probabilities

Pr
[
di jk = 1

]
=

exp
(

fi jk(.)
)

∑J
j=1 ∑K

k=1 exp
(

fi jk(.)
) , (12.2)

where di jk = 1 if household i has chosen neighborhood j and house type k and
zero otherwise. However, the independence of irrelevant alternatives (IIA) property
of this model is unattractive. McFadden (1978) proposed the use of a generalized
extreme value distribution for the error terms, which gives rise to the nested logit
model and allows one to relax the assumption that idiosyncratic tastes are indepen-
dent across locations and houses. However, we need to choose the nesting structure
before estimation, mainly if the nested structure is not natural and if we do not have
knowledge about the neighborhood structure. One solution is to use random coeffi-
cients βi, γi and αi instead of fixed coefficients β , γ and α . Estimation with random
coefficients is challenging and needs the use of simulation-based estimators (SBE)
(see Newey and McFadden, 1974 or Judd, 1998).

Moreover, Bayesian estimators are also well suited for the estimation of dis-
crete choice models with random coefficients. One application of such a model with
SBE has been done by Hastings et al. (2006), who study the effects of open en-
rollment policies under a particular parent choice mechanism, sorting households
among schools within the Mecklenburg Charlotte school district, North Carolina.
Bajari and Kahn (2005) used Bayesian methods to study housing demand explain-
ing racial segregation in cities.

Demand estimation has also focused on the role of unobserved neighborhood
characteristics or housing quality ζ j. In this case, the indirect utility function is
written as

ui jk = X ′
jβ +Z′

kγ+(yi − p jk)α+ζ j + εi jk . (12.3)

Unobserved neighborhood characteristics can be recovered by matching the ob-
served market shares of community j. Then, the remaining parameters can be es-
timated by a generalized method of moments (GMM) estimator using instrumental
variables (IV) to deal with the correlation between housing price p jk and unobserved
neighborhood characteristics or housing quality ζ j. Bayer et al. (2007), using two-
dimensional (2D) panel data, estimate household preferences for school and neigh-
borhood attributes in the presence of sorting. The model embeds a boundary dis-
continuity design in a heterogeneous residential choice model, addressing the endo-
geneity of the school and neighborhood characteristics. Their application concerns a
restricted-access version of the 1990 U.S. Census, that links detailed characteristics



352 Badi H. Baltagi and Georges Bresson

for nearly a quarter of a million households and their houses in the San Francisco
Bay Area with their precise residential locations. Bayer et al. (2016), using three-
dimensional panel data (3D), develop a dynamic model of neighborhood choice (see
Sect. 12.5). They capture observed and unobserved preference heterogeneity across
households and locations of housing transactions in the San Francisco Bay Area
from 1994 to 2004.

We now turn to hedonic measures with a strong theoretical grounding (see,
among others, Griliches, 1971; Rosen, 1974; Nelson, 1977; Blomquist and Wor-
ley, 1981, 1982 among others). In addition, we show the use of regression tech-
niques to control for compositional and quality change (see, e.g., Witte et al., 1979;
Brown and Rosen, 1982; Meese and Wallace, 1997, to mention a few). The hedonic
pricing method is based on the fact that prices of goods (in our case, houses) in a
market are affected by their characteristics. This method estimates the value of a
commodity based on people’s willingness to pay for the commodity as and when
its characteristics change. In real estate economics, hedonic pricing is used to adjust
for the problems associated with looking for a dwelling that is as heterogeneous as
buildings. The hedonic pricing function, which explains the price of a house, will
be affected by, among other things, the structural characteristics of the house, and
neighborhood and environmental characteristics.

Since the seminal work of Rosen (1974), we have generally used a two-stage
procedure for estimating the hedonic price function of the dwelling and for the re-
covery of marginal willingness to pay functions of heterogeneous individuals for
the characteristics of differentiated products. Basically, hedonic models of housing
price relate the price (or the logarithm of the price per square meter) to, among other
things, the characteristics of the dwellings p jk = f (Z′

k, ...). The price gradient asso-
ciated with this hedonic price function ∂ p jk/∂Zkl denotes the implicit price of the
amenity Zkl (number of rooms, quality of air, etc.). The second stage of Rosen’s pro-
cedure seeks to recover the coefficients of demand (or marginal willingness to pay)
and supply (or marginal willingness to accept) functions for the attribute Zkl from the
first-order conditions of the equilibrium relationships: ∂ p jk/∂Zkl = fd (Zk,Bk) for
demand and ∂ p jk/∂Zkl = fs (Zk,Sk) for supply, where Bk and Sk represent attributes
of the buyer and seller of house k. Bartik (1987) and Epple (1987) have described
a source of endogeneity in the second stage of Rosen’s procedure that is difficult to
overcome without exclusion restriction arguments or the use of IV methods. This
has led researchers to avoid altogether the estimation of marginal willingness to pay
functions, relying instead on the first-stage hedonic price function and limiting the
analysis to the evaluation of marginal changes in amenities (see Gayer et al., 2000;
Bishop and Timmins, 2011 to mention a few).

In some studies, dwellings were assumed to be stratified into blocks or communi-
ties j, where prices are homogeneous and price trends are roughly parallel. Ideally,
a model could be estimated in each neighborhood and the elementary geographic
zones could be very small sub-markets. In this case, each model is estimated in
a particular block, all variables are de facto interacted with the block. Thus, spa-
tial location is not without consequences and hedonic housing price models should
incorporate spatial effects. In the econometric literature, spatial effects may result
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from spatial dependence or from spatial heterogeneity. Spatial dependence means
that observations at location j depend on other observations at locations l �= j. Spa-
tial heterogeneity refers to variation in relationships over space and, more precisely,
over every point in space. The distinction comes from the structure of the depen-
dence, which can be related to location and distance, both in a geographic space,
as well as in a more general economic or social network space (see Anselin, 2001;
Anselin et al., 2008).

For spatial effects in real estate, many housing models have been estimated in a
2D framework on panel data with two indexes j and t generally for location and time
associated with spatial weight matrices (see for instance Baltagi and Bresson, 2011;
Bresson and Hsiao, 2011; Fingleton, 2008; Glaeser, 2008; Holly et al., 2010, to men-
tion a few). However, very few models have been developed in a three-dimensional,
or higher dimensional panel data setting. In the next section, we present some of
these models and their associated results for these multi-dimensional frameworks.

12.3 Multi-dimensional Models of Housing Hedonic Price

Functions: Some Examples

Baltagi et al. (2015) estimate a hedonic housing model based on flats sold in the
city of Paris over the period 1990–2003. This is done using maximum likelihood
estimation, taking into account the nested structure of the data. Paris is historically
divided into 20 arrondissements, each divided into four quartiers (quarters), which
in turn contain between 15 and 169 blocks (ı̂lot, in French) per quartier. The data
set used is an unbalanced pseudo-panel data containing 156,896 transactions. The
real estate literature emphasizes the importance of neighborhoods in determining the
value of a house or a flat. While one can try and include as many as possible of the
neighborhood characteristics in the regression to capture these effects, most attempts
may fall short because many neighborhood characteristics are not observed, as in
our case. One simple method of capturing the effect of neighbors’ prices used by
Baltagi et al. (2015) is to estimate a spatial lag regression equation with time-varying
coefficients:

ptaqi f = λt p̃taqi f +Ztaqi fβ + εtaqi f , | λt |< 1 , (12.4)

where t = 1, ...,T for years, a = 1, ...,N for arrondissements, q = 1, ...,Qta for
quartiers, i = 1, ...,Mtaq for ı̂lots and f = 1, ...,Ftaqi for flats. p is the transaction
price (in logs) for flat f , in ı̂lot i nested in quartier q, which in turn is nested in
arrondissement a at time t. Ztaqi f denotes the vector of K explanatory variables
describing the characteristics for this flat (surface in m2, count data as number of
rooms, bedrooms, bathrooms, garage plots, and dummy variables such as balcony,
whether it is located in a street, boulevard, avenue, or place, period of construc-
tion (<1850, 1850–1913, ...,1981–2003), etc). This unbalanced panel is made up
of N = 20 top-level arrondissements, each containing Qta second-level quartiers.
The second-level quartiers in turn contain Mtaq third-level ı̂lots, which contain the
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innermost Ftaqi observations on flats. The number of observations in the higher level
groups are Ftaq = ∑

Mtaq
i=1 Ftaqi and Fta = ∑Qta

q=1 Ftaq. The total number of observa-
tions is H = ∑T

t=1 ∑N
a=1 Fta. The number of top-level groups is NT, the number of

second-level groups is L = ∑T
t=1 ∑N

a=1 Qta, and the number of bottom-level groups
is G = ∑T

t=1 ∑N
a=1 ∑Qta

q=1 Mtaq. Thus, we have a five-dimensional pseudo-panel data
structure. The spatial lag coefficient λt may be time varying or constant over time
and the spatial lag variable p̃taqi f is defined as

p̃taqi f =
N

∑
a=1

Qta

∑
q=1

Mtaq

∑
i=1

Ftaqi

∑
p=1

wtaqip ptaqip , (12.5)

where wtaqip denotes the elements of the spatial weights matrices Wt , which vary
with t. Elements on the diagonal of Wt are set to zero, while the off-diagonal ele-
ments define the connexion (contiguity or distances) between dwellings. There are
at least two reasons why a positive spatial correlation may exist. First, dwellings in a
neighborhood tend to have similar structural characteristics and second, dwellings in
a neighborhood share the same location amenities (see Basu and Thibodeau, 1988).
However, many of the price determining factors shared by neighborhoods are dif-
ficult to explicitly explain, but these “omitted” factors are contained in the neigh-
borhood prices. For each year, Baltagi et al. (2015), using the “Delaunay triangle
algorithm”, define first-order contiguity matrices Wt for the nearest neighbors (i.e.,
from 10 to 140 nearest sold flats). According to the nested structure, the disturbance
term is given by

εtaqi f = δta +μtaq +νtaqi +utaqi f , (12.6)

where δta is the arrondissement effect, μtaq is the quartier effect naturally nested in
the respective arrondissement and νtaqi is the ı̂lot effect naturally nested in the re-
spective quartier. These could be fixed or random. The remainder disturbance term
for the particular flat is random utaqi f ∼ iiN(0,σ2

u ). For the random specification,
we assume that δta ∼ iiN(0,σ2

δ ), μtaq ∼ iiN(0,σ2
μ) and νtaqi ∼ iiN(0,σ2

ν ).
Following Antweiler (2001), Baltagi et al. (2015) use block-diagonal matrices of

size (H ×H) corresponding in structure to the groups or subgroups they represent.
They can be constructed explicitly by using “group membership” matrices consist-
ing of ones and zeros that uniquely assign each of the H observations to one of the G
(or L or NT ) groups. Let Rν be such an (H ×G) matrix corresponding to the inner-
most group level. Then the block-diagonal (H ×H) matrix Jν can be expressed as
the outer product of its membership matrices: Jν = RνR′

ν . The inner product R′
νRν

produces a diagonal matrix L̃ν of size (G×G), which contains the number of ob-
servations of each group. Similarly, let Rμ be such an (H ×L) matrix corresponding
to the second-level groups. Then the block-diagonal (H ×H) matrix Jμ can be ex-
pressed as the outer product of its membership matrices: Jμ = RμR′

μ . Last, let Rδ
be such an (H ×NT ) matrix corresponding to the top-level groups. Then the block-
diagonal (H ×H) matrix Jδ can be expressed as the outer product of its membership
matrices: Jδ = RδR′

δ .
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If we pool the observations, the log-likelihood is given by

ln l =−1
2

H ln(2π)− 1
2

ln |Ω |+ ln |A|− 1
2
ε ′Ω−1ε , (12.7)

where
ε = Ay−Xβ , A = IH −λW , (12.8)

with W = diag(Wt) and λ = diag(λt), where W is the block-diagonal spatial weight
matrix of size (H ×H). Wt is the spatial weight matrix1 of size (Fta ×Fta) changing
at each time period t. λ is the spatial lag matrix of size (T ×T ) whose elements λt
change at each time period t. IH is an identity matrix of size (H ×H).

The variance-covariance matrix of the disturbance is defined as follows

Ω = E
[
εε ′

]
= σ2

u
[
IH +ρνJν +ρμJμ +ρδ Jδ

]
, (12.9)

with

ρδ =
σ2
δ

σ2
u

, ρμ =
σ2
μ

σ2
u

, ρν =
σ2
ν

σ2
u
. (12.10)

Extending the derivations of Antweiler (2001) to the case of the spatial lag model
(12.4), Baltagi et al. (2015) get

ln l =−1
2

[
H ln

(
2πσ2

u
)
+

T

∑
t=1

{
ln |It −λtWt |+

N

∑
a=1

{
lnθta +Cta − ρδ

θta

U2
ta

σ2
u

}}]
,

(12.11)

with Cta =
Qta

∑
q=1

{
lnθtaq +Ctaq − ρμ

θtaq

U2
taq

σ2
u

}
, (12.12)

and Ctaq =
Mtaq

∑
i=1

{
lnθtaqi +

Vtaqi

σ2
u

− ρν
θtaqi

U2
taqi

σ2
u

}
, (12.13)

where It is an identity matrix of size (Fta ×Fta) and

1 Baltagi et al. (2015) use a block-diagonal weight matrix W of (156,896×156,896) whose small-
est sub-block is a weight matrix Wt of (6,643× 6,643) for the year 1992 and whose largest sub-
block is a weight matrix Wt of (17,098×17,098) for 1999.
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θtaqi = 1+ρνFtaqi Vtaqi =
Ftaqi

∑
f=1

ε2
taqi f ,

θtaq = 1+ρμφtaq with φtaq =

(
Mtaq

∑
i=1

Ftaqi
θtaqi

)
Utaqi =

Ftaqi

∑
f=1

εtaqi f ,

θta = 1+ρδφta with φta =

(
Qta
∑

q=1

φtaq
θtaq

)
Utaq =

Mtaq

∑
i=1

Utaqi
θtaqi

,

Uta =
Qta
∑

q=1

Utaq
θtaq

,

(12.14)

with εtaqi f = ytaqi f −λt ∑N
a=1 ∑Qta

q=1 ∑
Mtaq
i=1 ∑

Ftaqi
p=1 wtaqipytaqip −Xtaqi fβ .

A gradient of this log-likelihood function (12.11) is obtained analytically, but it can
also be obtained through numeric approximation. In carrying out this maximiza-
tion, it is necessary to constrain the optimization such that |λt |< 1, the variance σ2

u
remains positive, and that the variance ratios ρδ , ρμ and ρν remain non-negative.

Baltagi et al. (2015) report several ML estimation results. One for the random
effects (RE) model ignoring the nested effects, one for the nested RE model ignor-
ing the spatial lag effects, and one for the spatial nested RE model.2 Baltagi et al.
(2015) found significant spatial lag effects as well as significant nested random error
effects. They emphasize the importance of nested effects in the Paris housing data
as well as the spatial lag effects. In fact, they show that the impact of the adjacent
neighborhoods becomes relatively small when one takes care of the nested random
effects. In addition, due to the unbalanced pseudo-panel aspect of these transactions,
they show that one should allow the spatial weight matrix as well as the spatial lag
coefficients to vary over time, and that the likelihood ratio tests confirm that they fit
the Paris housing data better.

Following LeSage and Pace (2009), Baltagi et al. (2015) compute the marginal
effects – which are decomposed into direct, indirect and total marginal effects – and
show that the marginal spillover effects due to the neighbors are negligible relative
to the direct effects. Moreover, empirical results show that the marginal effect for a
specific housing characteristic is lower on average once the nested effects are taken
into account.

Baltagi et al. (2014) estimate a nested random effects spatial autoregressive panel
data model to explain annual house price variation across 353 local authority dis-
tricts in England over the period 2000–2007. The nested error components represent
the impact of local (district) effects embedded within wider (county) effects. Baltagi
et al. (2014) propose new estimators based on the instrumental variable approaches
of Kelejian and Prucha (1998) and Lee (2003) for the cross-sectional spatial au-
toregressive model. The estimation methods allow for the endogeneity of the spatial
lag variable producing the simultaneous spatial spillover of prices across districts

2 For the estimation of a nested error components model with unbalanced panel data using simple
analysis of variance (ANOVA), maximum likelihood (MLE) and minimum norm quadratic unbi-
ased estimators (MINQUE)-type estimators of the variance components, see Baltagi et al. (2001).
For Lagrange multiplier testing of a nested error components model with unbalanced panel data,
see Baltagi et al. (2002).
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together with the nested random effects in a panel data setting. Monte Carlo results
show that these estimators perform well relative to alternative approaches and pro-
duce estimates based on real data that are consistent with the theoretical house price
model underpinning the reduced form. The empirical results show that there is a sig-
nificant spatial lag term indicating a positive correlation between prices locally and
prices in “nearby” districts and that income within commuting distance has a posi-
tive effect, while the stock of housing has a negative effect on housing price. They
also show that the nested error components attributable to district and county effects,
like the spatial lag term, are necessary elements in modeling UK house prices.3

From hedonic price functions, we can derive temporal and/or spatial price in-
dexes. This has been done, for instance, by Syed et al. (2008) for the Sydney region.
Their data concern 15 regions in Sydney on a quarterly basis from 2001 to 2006
from a data set consisting of 418,877 house sales. As 60% of sales observations are
missing for one or more of the core characteristics, they first use multiple-imputation
techniques to fill in the gaps in the data set, prior to estimating the hedonic model.
In a second stage, they specify and estimate a non-nested three-dimensional hedo-
nic price function. They pool across all the regions and periods in the sample and
estimate the region-time specific fixed effects and shadow prices of housing charac-
teristics. This method was first proposed by Aizcorbe and Aten (2004), who refer to
it as the “time-interaction-country product dummy” method.

p jth = α+
T

∑
τ=2

βτqτh +
J

∑
κ=2

γκrκh +
T

∑
τ=2

J

∑
κ=2

δτκbτκh

+
Mκ

∑
m=2

ηκmdκmh +Z jthθ + ε jth , (12.15)

for j = 1, ...,J, t = 1, ...,T and h = 1, ...,Hjt ,

where p is the log of the price of a dwelling h belonging to region-period jt, qτh
(resp. rκh) are dummy variables such that qτh = 1 (resp. rκh = 1) if the observation
h is from period t (resp. from region j) and zero otherwise. The dummy variables
bτκh denote interactions between periods and regions taking the value of 1 if the
observation h is from region-period jt and zero otherwise. The postcode dummies
are denoted by dκmh, where dκmh = 1 for observation h’s postcode and zero other-
wise. Z is a set of quality characteristics including the dwelling type, the number
of bedrooms, bathrooms, lot size, etc. Spatial correlation between observations is

3 Baltagi and Pirotte (2014) derive the Best Linear Unbiased Predictor (BLUP) for a spatial nested
error components panel data model. This predictor is useful for panel data applications that exhibit
spatial dependence and a nested hierarchical structure. The predictor allows for unbalancedness in
the number of observations in the nested groups. This could be interesting for forecasting average
housing prices located in a county nested in a state. When deriving the BLUP, this paper takes
into account the spatial correlation across counties, as well as the unbalancedness due to observing
different numbers of counties nested in each state. Ignoring the nested spatial structure leads to
inefficiency and inferior forecasts. Monte Carlo simulations show that the resulting feasible pre-
dictor is better in root mean square error performance than the usual fixed and random effects panel
predictors which ignore the spatial nested structure of the data.
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defined by a spatial autoregressive process on the error term: ε jth = λWε jth + u jth
where u jth ∼ N(0,ω jthσ2). The spatial weight matrix W is a contiguity matrix and
the variance of u jth is subscripted with jt allowing for heteroskedasticity. The co-
efficients δ jt measure the region-period specific fixed effects for the logarithms of
the price level after controlling for the effects of the attributes of the dwellings. The
model is estimated using the maximum likelihood method. The advantage of this
region-time-dummy model is that the temporal and regional price indexes are de-
rived directly from the estimated coefficients β̂t , γ̂ j, δ̂ jt , η̂ jm and θ̂ . Let Pj,t,s the
price index for region j in year t and quarter s. Then, the relative prices are given by

Pj,t,s

Pj,t,1
= exp

(
β̂t,s + δ̂ j,t,s

)
for s = 2,3,4 ,

and
Pj,t+1,1

Pj,t,1
= exp

(
β̂t+1,1 + δ̂ j,t+1,1

)
. (12.16)

Therefore, it is possible to construct a temporal price index for each region j over
the entire time period of the dataset. Results are normalized such that the price
index for the initial region (Inner Sydney) is equal to 1 for the first quarter of 2001.
One can also construct a spatial price index for each quarter s of a specific year t
for the entire set of regions. For a given quarter (t,s), spatial price indexes can be
constructed from the estimated coefficients γ̂ j, δ̂ jt , η̂ jm and θ̂ . The starting point is
a comparison between a postcode m in region l and a postcode n in region j for a
particular dwelling h with amenities vector Zch. This spatial price index is defined
as

Plmts, jnts(Zch) = exp
[
(γ̂ j − γ̂l)+

(
δ̂ jt − δ̂lt

)
+(η̂ jn − η̂lm)

]
×
[

C

∏
c=1

exp
[
Zch

(
θ̂ jc − θ̂lc

)]]
, (12.17)

and the spatial index can be generalized to take into account all dwellings sold in
postcodes lm

Plmts, jnts = exp
[
(γ̂ j − γ̂l)+

(
δ̂ jt − δ̂lt

)
+(η̂ jn − η̂lm)

]
×
[

Hlmts

∏
h=1

C

∏
c=1

exp
[
Zch

(
θ̂ jc − θ̂lc

)]]1/Hlmts

. (12.18)

This is close to a Laspeyres price index.
Combining the temporal and spatial indexes allows a price comparison of dwell-

ings between different location-year-quarter triplets. Syed et al. (2008) found that
their hedonic house price indexes rose significantly from 2001 to 2003, after which
they fell slightly. This finding is consistent with the Australian Bureau of Statistics
(ABS) index. Their indexes, however, are less volatile than their ABS counterpart,
rising noticeably less in the boom and falling less thereafter. In the spatial dimen-
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sion, they found large and systematic differences in the price of housing across
regions of Sydney. The regional dispersion narrowed during the boom period but
appears to have increased again since then.

Several authors have shown that values of complex assets are difficult to ac-
curately quantify and information asymmetry affects asset prices through various
channels (see, e.g., Agarwal and Hauswald, 2010; Baker and Wurgler, 2007; Carlin
et al., 2013; Kelly and Ljungqvist, 2012). The subprime crisis (poor household mort-
gage decisions and subsequent foreclosure), and the housing market collapse in the
US, followed by the financial crisis have revealed that uninformed buyers overpay.
The house buying mechanism is a field in which households’ ability (or inability)
to use market information may have strong effects on housing decisions. This could
be through the choice of mortgage product and through the purchase transaction
(see Carlin et al., 2013; Turnbull and van der Vlist, 2015). House purchases may
involve residential mortgages and associated complex financial instruments, which
have been identified as a major cause of waves of foreclosures during and after the
2007–2008 financial crisis. Turnbull and van der Vlist (2015) show that buyers who
are uninformed of the housing market pay more for houses than buyers who are
informed. They use pseudo-panels of repeated sales based on neighborhood census
block-level. This data is for 426,021 parcels located in Orange County, Florida, over
the period 2000–2012. The authors split fair market value and uninformed buyer ef-
fects by first identifying for each of the market sales in the period 2000–2006 which
of the units foreclosed in 2007–2012. The future foreclosure dummy FF equals
1 if a market transaction completed in 2000–2006 is followed by a foreclosure in
2007–2012 and equals zero otherwise. Turnbull and van der Vlist (2015) estimate a
hedonic price function of the log of market price in first differences on the neigh-
borhood block-level j

pit j − pls j =
(
Zit j −Zls j

)
βZ +

(
FFi j −FFl j

)
βFF + εit j − εls j , (12.19)

for t,s = 1, ...,T , i, l = 1, ...,N, j = 1, ...,J for all i �= j and t �= s ,

where pit j is the log of the price of property i sold at time t located in area j. Z is the
vector of relevant house characteristics, and amenities and FF is the penalty associ-
ated with being foreclosed ex post (over 2007–2012). The model of first differences
at the neighborhood block-level basically treats sales within the neighborhood block
as repeat sales while accounting for observed structural differences. This is a model
on pseudo-panels of repeated observations “à la Deaton (1985)”. This model also al-
lows for clustered errors at the neighborhood block-level j. Results show that buyers
who are later foreclosed paid a 2.7% (resp. a 4.6%) premium for properties bought
between 2000 and 2006 (resp. between 2005 and 2006). Estimation on different
sub-periods also reveal a strong correlation between home buyers’ house prices and
future foreclosures. To check whether effects vary across housing market segments,
Turnbull and van der Vlist (2015) estimate quantile regression models. Results show
that the effect for the penalty associated with being foreclosed is larger for the lower
end of the housing market. Buyers in 2005–2006 who ended up foreclosed paid up
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to 3.5% above the fair market value in the lower end of the housing market, while
foreclosed owners paid a little over 1% percent more in the higher end of the housing
market.

12.4 Multi-dimensional Models of Residential Mobility and

Location Choice: Some Examples

Residential mobility and location choice are significant household decisions and
have been widely researched in various fields including economics, sociology, ge-
ography, regional science, urban planning, housing policy, transportation, etc. Deci-
sions of residential mobility and location choice are closely related to the household
housing process with a large range of factors that contribute to each choice. Due
to the vastness of the literature on such topics, we will focus on a few examples
of residential mobility and location choice. Readers could profitably read the sur-
vey by Dieleman (2001) on residential mobility. Since the seminal works of Rossi
(1955) and Alonso (1964), a huge amount of research on residential location choice
has been published. “Reasons for moving are divided into those which pertain to the
decision to move out of the former home - ‘pushes’ - and those reasons pertaining to
the choice among places to move to - ‘pulls’ ” (Rossi, 1955, p. 8). For instance, push
factors may include negative externalities like noise, pollution or crime, changes in
housing affordability, dissatisfaction with the current dwelling, changes in house-
hold structure, etc. Pull factors often include better access to good quality public
services (schools and health care facilities), employment, leisure and recreational
opportunities, etc. (see Lee and Waddell, 2010; Hoang and Wakely, 2000 for a re-
view). Our purpose is not to review the main factors of residential mobility and
relocation but to summarize a few multi-dimensional studies of residential mobility
and relocation.

One interesting study has been done by Davies and Pickles (1985) in a multi-
dimensional framework. They propose a model that conceptualizes residential mo-
bility as a sequence of choices between staying and moving. Household i will move
in time period t if and only if random utility derived from the most-favored alterna-
tive dwelling available uitb is larger than the random utility derived from the current
dwelling uita:

uita = V (yit ,Zta)+ εita =Vita + εita with εita = μia +g(dit)+νita , (12.20)
uitb = V (yit ,Ztb)+ εitb =Vitb + εitb with εitb = μib +h(t)+νitb ,

where yit is a vector of observed characteristics of household i at time t, Zta (resp.
Ztb) is a vector of the observed characteristics of the current dwelling (resp. the
most-favored alternative dwelling available). Vita and Vitb are the systematic utilities
while εita and εitb are the random components of utilities. These random compo-
nents are likely to be correlated over time for each household. εita is the sum of the
unexplained household heterogeneity μia, a function g(dit) of the duration of stay
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for household i at time t and a remainder term νita, independently distributed over
both households and time. For the other random component εitb, the unexplained
household heterogeneity μib also applies. Moreover, a time trend h(t) represents
fluctuations in market conditions. Davies and Pickles (1985) used a quadratic spec-
ification for the duration of stay g(dit) = β1dit +β2d2

it , and a cubic specification for
the housing market function h(t) = β3t +β4t2 +β5t3.

The likelihood L(zit) of the observed sequence of outcomes is the product of the
probabilities of the observed choice for each time period:

L(zit) =
T

∏
t=1

{Pr [uitb > uita]}zit {1−Pr [uitb > uita]}1−zit , (12.21)

with Pr [uitb > uita] =
∫ ∞

−Vit−μi+g(dit )−h(t)
φ (νitb −νita)d (νitb −νita) ,

where zit = 1 if household i moves in time period t and zero elsewhere, Vit =Vitb −
Vita, μi = μib −μia and φ (.) is the probability density of the difference between the
two random components. Assuming that they follow Weibull distributions, leads to
the following likelihood with a household-specific error term μi:

L(zit) =
T

∏
t=1

exp [−Vit −μi +g(dit)−h(t)]zit

1+ exp [−Vit −μi +g(dit)−h(t)]
. (12.22)

Three problems arise with this likelihood: the integration over the error term dis-
tribution is almost analytically intractable; the initial observation complicates the
handling of endogenous variables such as duration of stay dit , and numerical meth-
ods are required for parameter estimation. To overcome these problems, Davies and
Pickles (1985) derived an approximation of the likelihood using the generalized
Beta-logistic approach developed by Davies (1984).

The panel data is for 887 households participating in the Michigan Panel Study
of Income Dynamics over the period 1968–1977. The dependent variable was a res-
idential move within the county or an intercounty move with no change in the head-
of-household’s job. Among the main explanatory variables were the duration of stay,
a room adequacy index (actual rooms / required rooms), an income adequacy index
(actual income / needs), the age of the head of household, and the education level.
First, they show that the room adequacy index has a U-shaped relationship with
residential mobility. Renters have the shortest initial duration status, while owners
have the longest. But, there is no evidence of a similar U-shaped relationship an-
ticipated for the income adequacy index. Second, they show that changing financial
circumstances does not seem to play any role in the life cycle variation in residen-
tial mobility in the United States. Moreover, they are unable to show any effect of
income surplus on residential mobility.

These are unexpected results. Davies and Pickles (1985) argue that these results
may be due to the housing market being highly segmented, not just between renting
and owner-occupation, but between different types of property and their location. It
could be interesting to redo this study with more recent data. It will probably give
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different conclusions for the last decade which has known troubled financial peri-
ods. Davies and Pickles (1985) found a strong negative relationship between the age
of the head of household and residential mobility. This strong negative relationship
is present even when changing space requirements and financial pressures are ac-
counted for. The age of the head of household is the dominant life cycle and acts
as a proxy variable for changing needs and financial circumstances through the life
cycle.

Explaining the factors which determine housing tenure choices is important. For
instance, Fu et al. (2015) estimate multilevel multinomial logistic regressions for
housing types to study home ownership in urban China. They base their estima-
tion on a sample data of 2,585,480 households from the 2005 National Population
Sample Survey of China and available information for 205 urban areas (prefecture-
level data) (see Huang and Clark, 2002 for a similar study in China but in a 2D
framework). For one household i in prefecture j, the within-prefecture multinomial
logistic model for the odds of housing type m are given by

ln

[
Pr

(
housing typemi j

)
Pr

(
private rental housingi j

)]= βm j0 +
K

∑
k=1

βkm
(
Zh,ki jm −Zh,k jm

)
+ εi j .

(12.23)

The m= 1, ..,5 housing types refer to owning self-built housing, owning commodity
housing, owning affordable housing, owning privatized danwei housing and public
rental housing. Zh,ki jm is the value of household-level covariate k associated with
household i in prefecture j for the m-th housing type. Zh,k jm is the sample mean of
covariate k within prefecture j. The household-level error term εi j is assumed to be
i.i.N(0,σ2). The between-prefecture model for housing types is

βm j0 = γ00m +
S

∑
s=1

γ0smZp,s jm +η0 jm , (12.24)

where Zp,s jm is the prefecture-level covariate s in prefecture j for the m-th housing
type and η0 jm is the prefecture-level error term, which is assumed to be i.i.N(0,σ2

m).
Using a generalized linear mixed model with random effects estimation meth-

ods (GLMM), Fu et al. (2015) show at the household level that redistributors (e.g.,
cadres) and supporting clerical staff were more likely to achieve home ownership
than manual workers did. Both non-agricultural status and working in state sectors
confer benefits in obtaining reform-era housing with heavy subsidies or better qual-
ity. When one takes into account education and earnings, the advantage of redistrib-
utors (e.g., cadres) over manual workers in home ownership could be explained by
work units. At the prefecture-level, they show that the marketization only reduced
the local home ownership of self-built housing, affordable housing and privatized
danwei housing but not that of commodity housing. In contrast, political and mar-
ket connections promote all types of home ownership except self-built housing, and
have a significant positive association with the odds of renting public housing.
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Numerous studies focus on how neighborhoods change in terms of income level,
housing values, environment amenities or different racial preferences, etc. Racial
and ethnic composition may have effects on neighborhood economic change (see
for instance Sykes, 2003). Some studies have examined how neighborhood minor-
ity composition is associated with change in neighborhood relative economic status.
For instance, the paper by Jun (2016) in a 3D framework uses the Neighborhood
Change Database (NCDB), which includes the decennial census data across the
USA from 1970 to 2000 at the census tract level. The multilevel modeling fits the
data structure that a neighborhood is nested in a metropolitan area and allows for an-
swering the research question whether the effect of neighborhood racial/ethnic com-
position on neighborhood economic change is conditioned by metropolitan-level
factors. Jun (2016) shows that both neighborhood percentages of Blacks and His-
panics are negatively related to neighborhood economic gain and are conditioned by
metropolitan-level factors. Although this negative effect of neighborhood minority
composition has been consistent over the four ten-years panel, – the 1970s, 1980s,
1990s, and 2000s – its impact level is lower in the latest panel compared to the earli-
est. The negative effect of neighborhood minority composition has also declined as
a result of the interactions with metropolitan minority composition. In the later pan-
els, metropolitan minority composition turned out to moderate the negative effect of
neighborhood minority composition.

Explaining residential choices and residential mobility is not sufficient. It seems
important to jointly model residential mobility and the duration of stay at a location
preceding relocation. A considerable amount of research has treated the decision
to move as a binary choice decision (move/no-move) and modeled this decision as
a function of various factors (see above). Others have used duration models (see
Deng et al., 2003) to represent the stay at a location between moves, treating the
reason for a move as an exogenous variable. An interesting study done in a multi-
dimensional framework by Eluru et al. (2009) has extended these previous studies
in three ways. First, the move decision is treated as an endogenous variable in a
multinomial unordered choice modeling framework. Second, the duration of stay is
modeled as a grouped choice, supposing that households treat the duration of stay at
a residential location in terms of time-period ranges as opposed to exact continuous
durations. Third, they consider heterogeneity of exogenous variables using random
coefficients in both the equation for the move as well as the equation for the duration
of stay preceding a relocation. In sum, Eluru et al. (2009) estimated a joint unordered
choice-grouped choice model system with random coefficients.

Let the households be represented by the index i = 1, ...,N, let the different move
reasons (e.g., personal reasons, employment reasons, etc.) be represented by the
index m = 1, ...,M and let the duration categories (e.g., < 2 years, 2−5 years, 5−
−10 years, etc.) be represented by the index j = 1,2, ...,J. The specification of
Eluru et al. (2009) allows the possibility of multiple move records per household
to be defined by the index t = 1,2, ...,T as the different moving choice occasions
for households i. The system of equations jointly models the reason for move and
the duration of stay as follows
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uimt = X ′

itβim +ηim + εimt ,
dimt = j if ψm, j−1 < d∗

imt < ψm, j ,
(12.25)

with d∗
imt = X ′

itαim ±ηim +ζimt . (12.26)

The first equation of the system is associated with the random utility uimt for
a household i corresponding to the reason to move m at choice occasion t. The
(Q × 1) vector Xit is the vector of attributes associated with household i and its
choice environment (e.g., sex, age, employment status, family type, transportation
mode to work, etc.) at the t-th choice occasion. The (Q×1) random coefficient vec-
tor βim = βm + γim is the sum of a vector βm of mean effects of the elements of Xit
for move reason m and a random vector γim with its q-th element (q = 1, ...,Q) rep-
resenting unobserved factors specific to household i and its choice environment. ηim
expresses unobserved individual factors that simultaneously impact the propensity
of moving for a certain reason m and the duration of stay. εimt is an idiosyncratic
random error term assumed to be identically and independently standard Gumbel
distributed across individuals, move reasons and choice occasions.

The second equation of the system is associated with d∗
imt , being the latent (con-

tinuous) duration of stay for household i before moving for reason m on the t-th
choice occasion. This latent duration is mapped to the grouped duration category
dimt by the ψ thresholds (with infinite bounds as in the usual ordered-response mod-
eling framework). dimt is observed only if the end of the duration of stay at a res-
idential location is associated with alternative m. The (Q× 1) random coefficient
vector αim = αm + δim is the sum of the vector αm of mean effects for category m,
and the random vector δim of unobserved factors specific to household i and its du-
ration of stay. ζimt is an idiosyncratic random error term, assumed identically and
independently distributed with a logistic distribution across individuals, reasons for
move, and choice occasions, with variance λ 2. The elements of the random vec-
tors γ , δ and η are normally distributed: γimq ∼ N(0,σ2

γmq), δimq ∼ N(0,σ2
δmq

) and

ηim ∼ N(0,σ2
ηm) for q = 1, ...,Q.

Correlation in unobserved individual factors between the reason to move and the
duration of stay may be positive or negative, it is indicated by the ± sign in front of
ηim in the duration category equation. If a positive sign seems logical for the propen-
sity of a move for a given reason m in the first equation, a negative sign in the second
equation suggests that unobserved individual factors will decrease the duration of
stay preceding such a potential move. In the estimation, Eluru et al. (2009) consid-
ered both the positive and negative signs on the ηim terms in the second equation
of the system. But the negative sign for all m provided statistically superior results.
Conditional on γim and ηim for each (and all) m, the probability of a household i
choosing to move for reason m on the t-th choice occasion is given by

Pimt =
exp(X ′

itβim +ηim)

∑M
m=1 exp(X ′

itβim +ηim)
. (12.27)



12 Modelling Housing Using Multi-dimensional Panel Data 365

Conditional on δim and ηim, the probability of a household i choosing to stay for
a particular duration category j preceding a move for reason m on the t-th choice
occasion is given by

Rimt j = G
(
ψm, j −{X ′

itαim ±ηim}
λ

)
−G

(
ψm, j−1 −{X ′

itαim ±ηim}
λ

)
, (12.28)

where G(.) is the cumulative distribution of the standard logistic distribution. Let
Ω be a vector that includes all the parameters βm, αm, λ , σγmq , σδmq and σηm for
m = 1, ...,M and q = 1, ...,Q. Let ci be a vector stacking the coefficients γim, δim
and ηim across all m for household i. Let Σ be another vector stacking the standard
error terms σγmq , σδmq and σηm and let Ω−Σ represent a vector of all parameters
except the standard error terms. Then, the unconditional likelihood function for all
the households is given by

L(Ω) =
N

∏
i=1

Li (Ω) =
N

∏
i=1

∫
ci

{Li (Ω−Σ | ci)}dΦ (ci | Σ) , (12.29)

with Li (Ω−Σ | ci) =
M

∏
m=1

T

∏
t=1

J

∏
j=1

[PimtRimt j]
Dimt Ei jt ,

where Φ (.) denotes the multi-dimensional cumulative normal distribution and
Li (Ω−Σ | ci) is the likelihood function, for household i and for a given value of
Ω−Σ and ci. Dimt (resp. Ei jt ) is a dummy variable taking the value of 1 if house-
hold i chooses to move for reason m (resp. chooses to stay for duration category
j) on the t-th choice occasion and 0 otherwise. Equation (12.29) needs the eval-
uation of a multi-dimensional integral of size equal to the number of rows in ci.
Eluru et al. (2009) apply Quasi-Monte Carlo simulation techniques based on the
Halton sequence to approximate this integral in the likelihood function and maxi-
mize the logarithm of the resulting simulated likelihood function across individuals
with respect to Ω (see Bhat, 2001, 2003). Eluru et al. (2009) use a longitudinal data
set of households from a stratified sample of municipalities in the Zurich region
of Switzerland over the period 1985–2004. The data set includes 1012 households
and 2590 move records. They found that several demographic, socioeconomic, and
commute related variables (e.g., age, gender, family reasons, education/employment
reasons, accommodation related reasons, surrounding environment related reasons,
vicinity to family and friends, etc.) have a significant influence on the reason for
move and the duration of stay. In the duration of stay model, Eluru et al. (2009)
found that household size creates heterogeneity across the sample of households.
They show that people who own dwellings have a lower probability of moving for
surrounding vicinity related reasons than those renting their units. Likewise, people
who live in smaller homes have higher probabilities of short duration stays probably
because they are looking for larger homes. Having a mix of job opportunities located
close to residential neighborhoods increases the duration of stay in the dwelling. Re-
ducing commute distances promotes longer durations of stay, etc. Eluru et al. (2009)
found that common unobserved factors jointly affect the reason to move and the du-
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ration of stay and call for a joint modeling framework that allows error correlation
structures.

Endogeneity (or simultaneity) is a fundamental aspect of modelling housing that
should be taken into account both for hedonic housing price functions and for choice
models of residential location. This is the object of the next section.

12.5 Multi-dimensional Dynamic Models of Housing Models

In hedonic housing price functions, some explanatory variables, in addition to the
dependent variable and its spatial lag, may be endogenous following the simultane-
ous choice of the house price and of the quantities of attributes. This is particularly
true for floor space (see Fingleton and LeGallo 2008, who extended Kelejian and
Prucha’s 1998 feasible generalized spatial two-stage least squares estimator to ac-
count for endogenous variables due to system feedback, given an autoregressive
or a moving average error process). As for hedonic price functions, endogeneity is
expected to occur mainly as a result of the omission of attributes in discrete choice
models of residential mobility. In the literature, several methods have been proposed
to consider endogeneity. Berry et al. (1995) proposed a fixed effects procedure by
product and market to solve market-level endogeneity in the automobile sector. Gue-
vara and Ben-Akiva (2006) applied to residential location choice models the control
function method, which is based on the inclusion of an additional variable that con-
trols for the endogeneity problem (see Heckman, 1978; Blundell and Powell, 2004).
They applied residential location choice models based on 630 households of renters
who had moved to their present location between 1999 and 2001 in Santiago (Chile).
The results show that price endogeneity is significant in choice models of residential
location and that the control function method can account for it.

Endogeneity is not limited to the correlation between the dependent variables and
attributes (in the equation or omitted) or to the simultaneity of demand and supply,
the marginal willingness to pay and the marginal willingness to accept. Location
choices and housing investments are fundamentally dynamic decisions over multi-
ple time periods. In the 2D panel data literature, some dynamic models have been
applied to real estate topics. For instance, Engle et al. (1985) used a version of a
dynamic multiple-indicator multiple-cause (DYMIMIC) model for a hedonic price
model of the resale housing market for a suburb of San Diego, California, during
the period 1973–1980. The specification of the model features hedonic equations
for each house sale and a dynamic equation for the capitalization rate, which is
taken to be an unobservable time series to be estimated jointly with the unknown
parameters. Engle et al. (1985) used maximum likelihood with an EM algorithm
based upon Kalman filtering.

Some authors have used, in a 2D framework, the dynamic factor models (DFM)
and/or large-scale Bayesian vector autoregressive (LBVAR) models to forecast
housing prices. These models are interesting to study the “ripple effect”, i.e., the
propagation of shocks to house prices across regions. For instance, Das et al. (2010)
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forecast regional house price inflation for five metropolitan areas of South Africa,
using principal components obtained from quarterly macroeconomic time series in
the period 1980 to 2006. In the majority of cases, the dynamic factor model statisti-
cally outperforms the vector autoregressive models, using both the classical and the
Bayesian treatments. They also considered spatial and non-spatial specifications.
Das et al. (2010) indicate that macroeconomic fundamentals in forecasting house
price inflation are important. Li and Leatham (2011) investigate moving trends of
house prices in 42 metropolitan areas in the United States from the perspective of
large-scale models, which are also DFM and LBVAR models. These models accom-
modate a large panel data comprising 183 monthly series for the U.S. economy, and
an in-sample period of 1980 to 2007 are used to forecast the one to twelve-months-
ahead house price growth rate over the out-of-sample horizon of 2008 to 2010. Li
and Leatham (2011) show that DFM consistently outperforms its LBVAR alterna-
tive for forecasting the house price growth rate for the overall U.S. housing market.
The forecasting power of DFM does not decrease as the number of forecast periods
ahead increases, while LBVAR has its best performance for the two-months-ahead
forecast and then its forecasting accuracy decays.

Beenstock and Felsenstein (2015) using data from 9 regions of Israel over 1987–
2010, apply spatial panel cointegration methods for a dynamic model of regional
housing markets in which people prefer to live where housing is cheaper and build-
ing contractors prefer to build in regions where construction is more profitable.
Based on dynamic hedonic price functions, the analysis of nonstationary spatial
panel data shows that although housing starts vary directly with profitability as
measured by house prices relative to building costs, they vary inversely with prof-
itability in neighboring regions. Beenstock and Felsenstein (2015) show that there
is a non-negligible spatial substitution in housing construction and this substitution
effect suggests that contractors have local building preferences since they regard
neighboring regions as close substitutes but not more distant regions. Abate and
Anselin (2016) investigate the interactions between house price fluctuations and
output growth rate across 373 metropolitan statistical areas in the US over the pe-
riod 2001–2013. In a panel data context, they use time varying spatial econometric
hedonic price functions. They show that the spatial correlation coefficient across
metropolitan areas has been increasing over time, indicating an increasing synchro-
nization of house prices across metropolitan statistical areas during the sample pe-
riod.

Spatio-temporal models of hedonic price functions have recently been proposed
to jointly take into account time effects and spatial effects either through multifactor
error structure or through specific weight matrices. For instance, Holly et al. (2010)
considered the determination of real house prices in a panel made up of 49 US States
over 29 years. An error correction model with a cointegrating relationship between
real house prices and real incomes is found once they take proper account of both
heterogeneity and cross-sectional dependence (see also Latif, 2015 for a study on
the impact of new immigration on housing rent, using Canadian province-level panel
data from 1983 to 2010). Latif (2015) uses panel cointegration regressions and panel
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vector error correction models and shows that immigration flow has a significant
positive impact on housing rent both in the short and in the long run.

There are also extensions of the spatial hedonic price functions which use a
weight matrix that expresses spatio-temporal rather than purely spacial relations.
A general (N × N) spatio-temporal weight matrix W is obtained by splitting its
construction into two separate matrices of the same dimension. The first matrix, S,
captures the spatial relations among the N observations and a second matrix, T , ex-
presses the temporal direction of observations. Smith and Wu (2011) have proposed
a spatio-temporal weight matrix defined as the Hadamard product between two spa-
tial and temporal distance weight matrices W = S�T =

[
s jl

]�[
t jl
]
. It identifies the

spatio-temporal neighbors that affect hedonic price determination. The elements s jl
indicate the way observation j is spatially connected to observation l. The elements
on the diagonal s j j are set to zero, while the off-diagonal elements are defined by
an inverse distance function: s jl = d−γ

jl if d jl < d and 0 elsewhere, where d jl is the
geographic distance between locations j and l, d jl < d is a critical cut-off and γ ≥ 0.
The elements t jl represent the time that elapsed between the realization of observa-
tions j and l. One assumes that observations have been ordered chronologically: the
first row of T corresponds to the earliest observation, while the last row corresponds
to the latest observation. The elements on the diagonal t j j are set to zero, while the
off-diagonal elements are defined by an inverse function of the time that elapsed
between two observations: t jl =| t j − tl |−α if | t j − tl |< t and 1 elsewhere. t j (resp.
tl) is the time when dwelling j (resp. l) is sold. t is a critical cut-off value and α is a
penalty parameter to be fixed.

Several authors have used spatio-temporal models of hedonic price functions
with standard spatial specifications (spatial autoregressive (SAR), spatial error
(SEM), spatial Durbin model, etc.) but with different spatio-temporal matrices W .
They got better results in terms of estimation and/or forecasting as compared to
those obtained with the usual purely spatial weight matrices. See for instance, Pace
et al. (2000) for an application on the residential market of Bâton Rouge, Louisiana,
during 1984–1992, Liu (2013) for an application of housing in Randstad, the Nether-
lands, during the years 1997–2007, Nappi-Choulet and Maury (2011) for the resi-
dential market of Paris for the years 1995–2005, or Thanos et al. (2016) for the
Aberdeen, Scotland, housing market during 2004–2007, to mention a few. To our
knowledge, unfortunately, nobody has used these spatio-temporal multifactor error
structures or the spatio-temporal weight matrices in a three-dimensional framework.
However, this could be a promising development for future research.

The developments in the dynamics of modelling housing are focused not only on
hedonic price functions. Some authors have been interested in dynamic versions of
discrete models of location choice. Forward-looking behavior in the housing market
justifies dynamic considerations in a model of location choice. Several authors have
underlined the need to use dynamic specifications for modelling housing. For in-
stance, Case et al. (2012), using questionnaire surveys for home buyers in four U.S.
cities over 2003–2012, have shown that the root causes of the speculative bubble can
be seen in their long-term home price expectations, which reached abnormal levels
relative to the mortgage rate at the peak of the boom and have sharply declined since.
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The downward turning point around 2005 of the long boom that preceded the crisis
was associated with the changing public understanding of speculative bubbles. But
estimating dynamic discrete models of location choice is a rather challenging and
stimulating objective and is technically difficult. Bayer et al. (2016) noted that first,
the estimation of residential sorting and hedonic equilibrium models needs to match
a large sample of households, their characteristics to the location and the features
of their housing choices. Second, the high dimensionality of the state space (con-
sisting of current lifetime utilities and neighborhood characteristics) – required to
define the evolution of an urban system – leads to the curse of dimensionality, which
puts a brake on the estimation of an acceptable sized dynamic model of residential
location decisions.

Diao et al. (2015) propose a real-option based dynamic model to simulate real
estate developer behavior. In a three-dimensional framework (property, type of prop-
erty and time for private residential housing in Singapore during 1995–2012), they
extend the standard discrete choice model approach by adding an explicit proba-
bilistic representation of development templates available to developers to take into
account both the developers’ option to hold the land undeveloped and the market
volatility of different development types. In their proposed simulation framework,
Diao et al. (2015) suppose that a developer making investment decisions for a par-
cel faces a set of alternative development templates in a market with uncertainty. In
each time period, the developer estimates future revenue and the construction cost
of feasible development templates under planning constraints and related real op-
tion values. He chooses the template based on the principle of profit maximization,
but only does so if the return of the development template is higher than a threshold
level (value of the call option), which is a function of the market volatility of the
built property as suggested by the real option theory, otherwise, he keeps the status
quo. The model components in the proposed simulation framework are calibrated
with private housing data in Singapore. The results show significant volatility in
housing prices and construction costs, relevant differences in volatility across hous-
ing types, and good fit in the hedonic model of market prices and construction costs.
This kind of research contributes to the microsimulation literature by proposing an
interesting approach which takes into account the dynamic and volatile nature of the
real estate market but, unfortunately, this remains a simulation study.

Bayer et al. (2016) have proposed a new approach for estimating a three-
dimensional dynamic model of demand for houses and neighborhoods that is com-
putationally tractable. Using a semi-parametric estimation approach, they control
for unobserved household and neighborhood heterogeneity. Their model adapts dy-
namic demand models for durable goods in a housing market context. They treat
houses as assets and allow households’ wealth to evolve endogenously. Households
anticipate selling their homes at some point in the future and then consider the
expected evolution of neighborhood amenities and housing prices when deciding
where and when to purchase or sell their house. They relax the index sufficiency
assumption which is standard in the dynamic demand literature.

This assumption helps to deal with the computational challenges posed by the
large state space typically arising in models of dynamic demand. Instead of treat-
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ing the logit inclusive value as a sufficient statistic for predicting future continua-
tion values, Bayer et al. (2016) define the continuation value from predicted future
lifetime utilities, which depend on the state space in a flexible manner. Last, they
use stable and uniform realtor fees to estimate the marginal utility of consumption
without the need for a price instrument. They use the fact that households face a
monetary trade-off both in the standard sense of deciding which product (neighbor-
hood) to purchase, but also in terms of deciding when to move. They take advantage
of the fact that realtor fees during the sample period were quite uniform (6% of the
house value) in order to identify the marginal utility of consumption when estimat-
ing each resident’s move-stay decision. The decision variable, dit , denotes both of
the choices made by household i in period t, whether to move and where to move,
conditional on deciding to move. If a household decides to move, the decision is
denoted dit = j, j = 0,1, ...,J, where j indexes neighborhoods, J denotes the total
number of neighborhoods in the region and 0 denotes the outside option. The data
concern housing transactions in the San Francisco Bay Area from 1994–2004 for
more than 220,000 households and 2398 neighborhoods. We give only some re-
sults as the paper is highly technical. However, the model and estimation procedure
presented in this paper are very general and can be applied to a broad range of dy-
namic studies in housing markets. The model uses a two-stage estimator. In the first
stage, Bayer et al. (2016) use the household location and the mobility decisions to
estimate the value of lifetime expected utility for each neighborhood, time period,
and household type, as well as an unobservable characteristic that captures a house-
hold’s preference for sub-regions within the San Francisco Bay Area. In the second
stage, they recover fully-flexible estimates of per-period utility and regress them on
a set of observable attributes. They use a semi-parametric estimation approach to
control for the endogeneity of price in this second stage, utilizing outside informa-
tion relating to the financial cost of moving to pin down the coefficient on house
prices.

The results indicate that the downward biases associated with static demand
estimation are significant for three important non-marketed amenities: air quality,
crime, and neighborhood race. For instance, for a 10% change in each amenity,
the static model overestimates the willingness to pay for living in close proximity
to neighbors of the same race for low-income households. The static estimation is
$1,627.03, whereas the corresponding dynamic estimation is $612.09. For high-
income households, the bias runs in the opposite direction and the static model un-
derestimates the willingness to pay by a factor of more than two. The static model
always underestimates the willingness to pay for living in close proximity to crimes.
For low-income households and for a 10% increase in violent crime, the static esti-
mation is -$291.14, while the corresponding dynamic estimation is -$350.18. This
is also true for air pollution.
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12.6 Conclusion

The development of modelling housing in multi-dimensional frameworks (3D, 4D
or more) is still in its infancy, as compared to the huge literature in a 2D framework,
which explains why there are relatively few multi-dimensional housing studies. The
limitation comes from the availability of data and the complexity of methods rela-
tive to time series or longitudinal dimensions. The previous papers show that both
spatial and temporal dimensions in dynamic systems should be included for hedonic
housing models and discrete models of residential location in a three-dimensional
framework. But the inclusion of these multiple dimensions substantially complicates
the specification and modeling of such systems. Extending models with unobserved
neighborhood characteristics to deal with the endogenous neighborhood character-
istics or introducing rationing in housing markets (see Geyer and Sieg, 2013) is not
trivial.

Part of the attractiveness of a neighborhood may be due to the characteristics
of neighbors (for instance, higher-income households attract higher-income house-
holds, while lower-income households repel higher-income households). As Kumi-
noff et al. (2013) said “households ‘sort’ across neighborhoods according to their
wealth and their preferences for public goods, social characteristics, and commut-
ing opportunities ... These ‘equilibrium sorting’ models use the properties of market
equilibria, together with information on household behavior, to infer structural pa-
rameters that characterize preference heterogeneity. These results can be used to
develop theoretically consistent predictions for the welfare implications of future
policy changes. Analysis is not confined to marginal effects or a partial equilib-
rium setting. Nor is it limited to prices and quantities... These capabilities are just
beginning to be understood and used in applied research” (p. 1007).

Over three decades, econometric methods have made significant progress and
considerably improved to eliminate non-credible assumptions, such as homogenous
preferences and exogenous amenities. But now, in a 2D framework, the structural es-
timators still rely on parametric assumptions for utility functions, on specific statis-
tical distributions (log-normal, Type I extreme value, generalized extreme value, etc.
) used to capture sources of unobserved heterogeneity and some strong assumptions
to eliminate potential sources of market frictions. As suggested by Kuminoff et al.
(2013), one approach could be to refine the current estimators through the lens of
the econometric literature on partial identification (see Manski, 2007), which views
economic models as sets of assumptions, some of which are plausible and some of
which are “esoteric” (according to Tamer’s (2010) expression) and are needed only
to complete a model. One of the key advantages of this approach is that it could
characterize the potential sensitivity of outcomes to the least credible assumptions.
However, the presence of numerous latent variables, omitted variables, the defini-
tion of dynamic and spatial structures within multi-dimensional frameworks (3D,
4D or more) and the econometric complexity that results will not make things any
better and must move us towards the use of flexible models and methods. One of the
many other promising future pathways is probably the use of variational Bayesian
approximations (see, for instance, Ormerod and Wand, 2010; Lee and Wand, 2016).
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These methods facilitate approximate inference for the parameters in complex sta-
tistical models and provide fast, deterministic alternatives to Monte Carlo methods
to potentially overcome many problems in the applied modelling of housing.
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