
Task allocation for multi-robot teams in
dynamic environments

Maciej Hojda

Wroclaw University of Science and Technology,
Faculty of Computer Science and Management,

27 Wyb. Wyspianskiego St., 50-370 Wroclaw, Poland
maciej.hojda@pwr.edu.pl

Abstract. Multi-robot task allocation is a well known and widely re-
searched decision-making problem that is difficult to solve in reasonable
time even for small instances. Additional complexity is added by the
fact that the parameters of the system may change over time, which
happens either by external stimuli or by the task execution itself. One
of the common causes behind these changes is the movement of execu-
tors or tasks. This paper tackles a problem of multi-task, multi-robot
allocation in a such an environment. Formulated and solved is a specific
decision-making problem. Performed is an experimental comparison of a
dedicated solution algorithm with known methods for the more general
Multidimensional Knapsack and Covering problem. Empirical evaluation
illustrates that a dedicated approach is competitive and often necessary,
as the general approach proves to be too slow.

Keywords: multi-robot task allocation, mobile routing, multidimen-
sional knapsack and covering problem

1 Introduction

Multi-robot systems are expected to quickly and efficiently solve a wide vari-
ety of problems. Robots (or executors) are assigned to tasks for execution, and
while complex tasks require cooperation of many robots, those executors which
are more capable can perform multiple tasks on their own. Autonomous coop-
erating robots cover a wide spectrum of applications, including: data collection,
inspection, monitoring, production and military use [CV,CM,Ho1,TI]. Particu-
larly, of growing interest are problems when tasks are spatially distributed and
movement is required in order to perform them [Ho2,LLFNS,MPA,RSSH,TLLB].
Furthermore, the executors are often equipped with multiple tools, such as mul-
tiple means of communication [JS,YMHC] or can be selected to perform tasks
with varying levels of intensity [MPA,SBCFTW]. Varying modes of execution
allow to fine-tune the execution process through more efficient use of available
resources. As the tasks and executors grow more diverse, so increases the com-
plexity of single-robot control and management of robotic teams. This paper
focuses on the latter aspect by providing a method of joint task allocation and
routing in a spatially distributed multi-robot environment.

483© Springer International Publishing AG 2017
(Eds.), Trends in Advanced Intelligent Control, Optimization and Automation,

Advances in Intelligent Systems and Computing 577, DOI 10.1007/978-3-319-60699-6_47
W. Mitkowski et al.

Formulated and solved is a problem of multi-robot task allocation with mobile
executors. The goal is to assign robots to tasks and determine the order of task
execution for each executor. In [Ho1] this specific problem was proven to be NP-
hard even when formulated in its feasibility version. The approach was to solve a
substitutive problem instead. This paper improves upon that result by adapting
the solution algorithm to solve the stated problem directly. A comparison with
known solution algorithms for the more general Multidimensional Knapsack and
Covering Problem [AHL,HALG] emphasises the benefits of a dedicated solution
algorithm, what is visible in both the execution time and the quality of the
obtained solution.

This paper is divided into five sections: the introduction, the problem for-
mulation, the solution algorithm presentation, the empirical evaluation and the
conclusions.

2 Problem formulation

There are I executors, J tasks and Lmodes, indexes of which are given as follows:
executors I � {1, 2, . . . , I}, tasks J � {1, 2, . . . , J}, modes K � {1, 2, . . . L}.
Decision variable defines the assignment of tasks to executor and the order of
execution and is denoted by x � [xi,j,k,l]i∈I,j∈J,k∈J,l∈K with elements xi,j,k,l = 1
if task k is performed by executor i directly after task j and in mode l (0 if
otherwise). Binary requirement is formally given as follows

∀i ∈ I, j ∈ J, k ∈ J, l ∈ K xi,j,k,l ∈ {0, 1}. (1)

Depending on the assignment, different amounts of resources are spent. As
ei,k,l denoted is the cost at which the ith executor performs kth task in lth
mode. The portion of the task k that is completed throughout this execution is
denoted as ηi,k,l. Transitions between tasks cost μi,j,k for ith executor performing
task k directly after task j. Those values are assumed non-negative, i.e. ei,k,l ≥
0, ηi,k,l ≥ 0, μi,j,k ≥ 0. A shorthand is defined as e � [ei,k,l]i∈I,k∈J,l∈K, η �
[ηi,k,l]i∈I,k∈J,l∈K, μ � [μi,j,k]i∈I,j∈J,k∈J. The constraints are divided into two
sets of allocation-specific and routing-specific requirements.

First set ensures that at most one mode of execution is allowed for each
executor-task pair, that task is completed when its completion rate of E has
been achieved, the amount of resource F for each executor is limited:

∀i ∈ I, j ∈ J, k ∈ J
∑
l∈K

xi,j,k,l ≤ 1, (2)

∀k ∈ J\{1}
∑

i∈I,j∈J,l∈K

ηi,k,lxi,j,k,l ≥ E, (3)

∀i ∈ I
∑

j∈J,k∈J,l∈K

(ei,k,l + μi,j,k)xi,j,k,l ≤ F. (4)

Maciej Hojda484

It is assumed that E > 0 and F > 0. Furthermore, task j = 1 is treated as a
depot (starting and ending location for all executors) therefore ηi,1,l = ei,1,l = 0.

Second set ensures an uniform starting location for each executor, connec-
tivity of the routes, lack of loops and lack of subcycles:

∀i ∈ I
∑

k∈J,l∈K

xi,1,k,l = 1, (5)

∀i ∈ I, k ∈ J
∑

j∈J,l∈K

xi,j,k,l =
∑

j∈J,l∈K

xi,k,j,l, (6)

∀i ∈ I, k ∈ J
∑

j∈J,l∈K

xi,j,k,l ≤ 1, (7)

∀i ∈ I ∀S ⊂ J ∧ S �= ∅ ∧ S �= J
∑

j∈S,k∈S,l∈K

xi,j,k,l ≤

|S| − 1 +
J

J − |S| −
1

J − |S|
∑

j∈J,k∈J,l∈K

xi,j,k,l. (8)

These requirements do not prohibit some executors from avoiding selected tasks
entirely but ensure that every executor visits every task at most once on their
route.

Movement and task execution requires resource spendings and this general-
ized cost is encapsulated in the quality criterion given as follows

Q(x) �
∑

i∈I,j∈J,k∈J,l∈K

xi,j,k,l(ei,k,l + μi,j,k). (9)

The main problem of this paper, which is simultaneous task allocation and rout-
ing, can be now defined.

Problem 1 (TAR – task allocation and routing).
Given: I,J,K, e, η, μ, E, F
Find: x∗ where

x∗ � argmin
x∈D

Q(x), (10)

D � {x ∈ X � Ri∈I,j∈J,k∈J,l∈K : (1) ∧ . . . ∧ (8)}. (11)

As was shown in [Ho1] this problem is NP-hard even in its feasibility version (in
fact, just the allocation part is).

3 Solution Algorithm

Solution algorithm designed for TAR is based on the idea of a multi-stage func-
tional decomposition. The original problem is divided into mult(-robot) task
allocation MTA and mobile routing (MR) problems. The MTA itself is further

Task allocation for multi-robot teams in dynamic environments 485

divided into several single-task relaxed allocation problems (STA) and relaxed
task allocation problems (RTA). Individual problems and steps of the decom-
position are given formally as follows. We recall the individual problems and
algorithms after [Ho1,Ho2].

To define MTA, let the decision variable, which determines the allocation
of tasks to executors, is denoted as x̆ � [x̆i,k,l]i∈I,k∈J,l∈K, where x̆i,k,l = 1 if
executor i is assigned to task k in mode l (0 if otherwise).

Problem 2 (MTA – multi-task allocation).
Given: I,J,K, η, e, E, F
Find: x̆∗ where

x̆∗ � argmin
x̆∈D̆

Q̆(x̆), Q̆(x̆) �
∑

i∈I,k∈J,l∈K

x̆i,k,lei,k,l, (12)

D̆ � {x̆ ∈ X̆ � Xi∈I,k∈J,l∈KR : (14) ∧ . . . ∧ (18)}. (13)

∀i ∈ I, k ∈ J, l ∈ K x̆i,k,l ∈ {0, 1}, (14)

∀i ∈ I, k ∈ J
∑
l∈K

x̆i,k,l ≤ 1, (15)

∀k ∈ J\{1}
∑

i∈I,l∈K

x̆i,k,lηi,k,l ≥ E, (16)

∀i ∈ I
∑

k∈J,l∈K

x̆i,k,lei,k,l ≤ F, (17)

∀i ∈ I, l ∈ K x̆i,1,l = 1 ⇔ l = 1. (18)

The RTA problem is formulated for a fixed task k ∈ K. Let ẋk � [ẋi,k,l]i∈I,l∈K

be a decision variable (for a fixed k ∈ J) with binary elements ẋi,k,l = 1 if task k
is performed in lth mode by ith executor. The problem of a single task allocation
is given as follows.

Problem 3 (STA – single task allocation).
Given: d > 0, k ∈ J, E, F, I, η, e, x̆
Find: ẋ∗

k where

ẋ∗
k � arg min

ẋk∈Ḋk

∑
i∈I,l∈K

ẋi,k,lei,k,l (19)

Ḋk � {ẋk ∈ ×i∈I,l∈KR : (21) ∧ . . . ∧ (25)} (20)

∀i ∈ I, l ∈ K ẋi,k,l ∈ {0, 1}, (21)

∀i ∈ I
∑
l∈K

ẋi,k,l ≤ 1, (22)

∑
i∈I,l∈K

ẋi,k,lηi,k,l ≥ E, (23)

∀i ∈ I
∑
l∈K

ẋi,k,lei,k,l ≤ F, (24)

∀i ∈ I, l ∈ K ẋi,1,l = 1 ⇔ l = 1. (25)

Maciej Hojda486

Finally, we consider a relaxed task allocation problem RTA. The definition
is as in STA with constraint (21) relaxed into

∀i ∈ I, l ∈ K ẋi,k,l ∈ [0, 1], (26)

and an additional constraint

∀i ∈ I, l ∈ K ẋi,k,lei,k,l ≤ min{F, d}. (27)

where d is a positive parameter.
Since RTA is a linear programming problem it can be solved optimally with

linear programming methods. Let us denote as RTA(d) the solution to such a
problem for parameter d. This solution can be rounded to be a 2-approximate
solution of STA using a rounding algorithm RA. Let us also denote as RA(d)
the result of rounding with RA of RTA(d).

Algorithm 1 RA

1: Let i := 1, ẋ = [0]i∈I,l∈K

2: if exists only one l ∈ K for which ẋi,k,l ∈ (0, 1] then
3: set ẋi,k,l = 1.

4: if exist two different l1, l2 ∈ K for which ẋi,k,l1 , ẋi,k,l2 ∈ (0, 1) and ηi,k,l2 ≥ ηi,k,l2
then

5: set ẋi,k,l1 = 1, ẋi,k,l2 = 0.
return ẋ.

To solve the STA problem, algorithm A1 is used. Let us denote as A1(k) the
result of A1 for the kth task.

Algorithm 2 A1

1: Set ẋk := [0]i∈I,l∈K, j := 0, d
j
:=

∑
i∈I maxl∈K ei,k,l, d

j := mini∈I,l∈K ei,k,l.
2: Set j := j + 1.

3: Set dj := �(dj−1
+ dj−1)/2�.

4: if RTA(dj) exists and if Q̂[RA(dj)] ≤ 2d then
5: set ẋ := RA(dj),

6: set d
j
:= dj − 1, dj := dj−1,

7: else set dj := dj + 1, d
j
:= d

j−1
.

8: if dj ≤ d
j
then

9: go to 2.
return ẋ.

For solving the MTA problem, algorithm A2f is used.
Next formulated is the mobile routing problem. Given a solution of MTA x̆

let J̃i � {k ∈ J :
∑

l∈K x̆i,k,l = 1} be a set of tasks to which the ith executor was

Task allocation for multi-robot teams in dynamic environments 487

Algorithm 3 A2f

1: Set k := 1.
2: x̆k � [x̆i,k,l]i∈I,l∈K := A1(k).
3: If x̆k does not exits then return no solution.
4: Fi := Fi −∑

i∈I,l∈K x̆i,k,lei,k,l.
5: k := k + 1.
6: If k ≤ J go to 2. return x̆ � [x̆i,k,l]i∈I,k∈J,l∈K.

assigned. Let us denote the route of the ith executor as yi � [yi,j,k]j∈J̃,k∈J̃i
where

yi,j,k = 1 if task k is executed directly after task j (0 if otherwise). Problem MR
is given as follows.

Problem 4 (MR – mobile routing).
Given: i ∈ I, J̃i, μ Find: y∗i where

y∗i � arg min
yi∈Di

y

Qi
y(yi), Qi

y(yi) �
∑

j∈J̃i,k∈J̃i

yi,j,kμi,j,k (28)

Di
y � {yi ∈ Xj∈J̃i,k∈J̃i

R : (30) ∧ (31) ∧ (32) ∧ (33)}. (29)

∀j ∈ J̃i, k ∈ J̃i yi,j,k ∈ {0, 1}, (30)

∀j ∈ J̃i

∑
k∈J̃i

yi,1,k = 1, (31)

∀j ∈ J̃i

∑
j∈J̃i

yi,j,k =
∑
j∈J̃i

yi,k,j , (32)

∀S ⊂ J̃i ∧ S �= ∅ ∧ S �= J̃i

∑
j∈S,k∈S′

yi,j,k ≥ 2. (33)

MR is in fact an instance of the Travelling Salesman Problem and can there-
fore be solved with dedicated methods. We will use the classic cheapest insertion
algorithm. Given solutions x̆ and y we can obtain a solution to TAR using the
following equation

xi,j,k,l � y̆i,j,kx̆i,k,l. (34)

Finally, presented is the solution algorithm to the TAR problem. It is given
as follows.

Algorithm 4 TARsol

1: Formulate and solve SMTA to obtain x̆.
2: Formulate and solve MR under x̆. Obtain y.
3: Use (34) to obtain x.

This dedicated method of solving TAR is compared empirically with algo-
rithms for the Multidimensional Knapsack and Covering problem in the following
section.

Maciej Hojda488

4 Empirical evaluation

In this section we compare the TARsol with the Adaptive Memory Search (AMS)
[AHL] as well as the Alternating Control Tree (ACT) [HALG]. Both methods
are of the iterative improvement type and were tested for varying limits on the
maximum number of iterations. Since both methods provide means of solving a
maximization problem, the objective function had to be negated. Additionally,
for Alternating Control Tree, the constraint (4) in [HALG] had to be modified
accordingly. For solving linear programming problems and integer programming
problems a solver GLPK [glpk] was used.

We use the following abbreviations for tested algorithms:

– AMS − x which is the Adaptive Memory Search method run for up to x
iterations,

– ACT − x which is the Alternating Control Tree method run for up to x
iterations.

Algorithm AMS requires determination of several parameters. The evaluation
of their influence on the solution is presented in Series 1 of the experiments.
Series 1.
Tested were the following parameters of the AMS algorithm (with default val-
ues): number of iterations N , tabu tenure(base = 10) and the weight update
coefficients α∗ = 1, α+ = 0, β∗ = 1, β+ = 0, winc = 0. The experiment was done
for the problem data: I = 3, J = 4, L = 2, μi,1,j = μi,j,1 = 1, for j, k ≥ 2 :
ηi,k,l = l, ei,k,l = 10 + l, μi,j,k = |j − k|, Fi = 50, E = 2.

Due to the random nature of AMS algorithm, every experiment was repeated
10 times and the results were averaged over all runs. They are presented in the
corresponding tables where Succ is the number of experiments where a solution
was found, Q is the average quality and T is the average execution time (in
seconds).
Experiment 1.1 Tested is the number of iterations N . Results are presented
in Table 1. For further tuning selected was the value of N = 1000.

N 10 20 50 100 200 500 1000 2000 5000

Succ 0 0 4 3 2 4 5 5 4
Q - - 108.25 82.33 84 106.75 85.6 90.2 69.5
T - - 0.56 1.06 2.06 5.09 10.04 20.22 38.09

Table 1. Results of Experiment 1.1. Succ, Q and T for varying N .

Experiment 1.2 Tested is the tabu tenure base. Results are presented in Table
2. For further testing, selected was the value of base = 60.
Experiment 1.3 Tested are the additive weighting coefficients α+ = β+. Re-
sults are presented in Table 3. Selected were the values of α+ = β+ = 0.
Experiment 1.4 Tested are the multiplicative weighting coefficients α∗ = β∗.
Results are presented in Table 4. Selected were the values of α∗ = β∗ = 1.

Task allocation for multi-robot teams in dynamic environments 489

base 1 2 5 10 20 50 60 70 80

Succ 5 3 3 6 8 10 10 7 8
Q 87.2 75.67 103.33 80.67 89.75 90.1 84.7 80.43 88.86
T 9.67 9.67 9.88 10.23 10.2 12.76 13.99 13.56 14.59

Table 2. Results of Experiment 1.2. Succ, Q and T for varying base.

base 0 0.1 0.2 0.5 1 2 5

Succ 10 9 10 10 10 10 9
Q 80 81,67 81,7 81,6 85,3 84,7 85,11
T 12.8 12.74 12.9 13.17 13.46 14.19 14.71

Table 3. Results of Experiment 1.3. Succ, Q and T for varying α+, β+.

Experiment 1.5 Tested are the weighting coefficient winc. Results are presented
in Table 5. Selected was the value value of winc = 0.

It is clear from the experiments that that basic version of AMS barely man-
ages to solve TAR even for a very simple instance. Increasing the tabu tenure
resulted in a significant increase in number of successful experiments without a
major change in the average execution time. It is also clear from Tables 3-5 that
on-line modifications to weighting coefficients do not improve the results. Those
parameters were kept at their default values.

Series 2.
In this series compare are TARsol, ACT and AMS for a selected instance of
the TAR problem. Tested is the dependence of quality of the solution and the
execution time on the number of tasks. Results are presented in Tables 6 and
7. The execution of AMS was repeated 5 times for each set of parameters and
the results are the average. The number of successful executions is provided in
brackets or not at all if every execution succeeded to provide a feasible solution.
Parameters of the problem are as follows: I = 3, J ∈ {4, 5, 6}, L = 2, μi,1,l =
μi,l,1 = 1, for j, k ≥ 2 : ηi,k,l = l, ei,k,l = 10+ l, μi,j,k = |j− k|, Fi = 100, E = 2.

base 1 1.1 1.2 1.5 2

Succ 10 6 6 6 3
Q 85.4 74.67 96 91.33 81.67
T 13.77 11.94 12.11 11.79 11.82

Table 4. Results of Experiment 1.4. Succ, Q and T for varying α∗, β∗.

Maciej Hojda490

base 0 0.1 0.2 0.5 1

Succ 10 3 0 0 0
Q 90.2 78 - - -
T 13.96 12.94 - - -

Table 5. Results of Experiment 1.5. Succ, Q and T for varying winc.

J TARsol ACT − 200 AMS − 1000 ACT − 500 AMS − 2000

4 42 62 88.25 (4) 62 84.8
5 59 (0) 141 (1) 77 116.5 (4)
6 77 (0) (0) 93 173 (1)

Table 6. Results of Series 2. Q for varying J .
J TARsol ACT − 200 AMS − 1000 ACT − 500 AMS − 2000

4 0.06 1.91 12.59 (4) 21.67 28.28
5 0.07 (0) 29.29 (1) 53.07 40.21 (4)
6 0.09 (0) (0) 105.83 79.6 (1)

Table 7. Results of Series 2. T for varying J .

Concluding results of Series 2, we can observe a clear advantage of TARsol
over AMS and ACT for the tested cases. Both the quality of obtained solutions
and the execution time is better for TARsol, the latter by several orders of mag-
nitude. The difference between AMS and ACT alone is similarly straightforward,
ACT provides better solutions in a shorter span of time. Furthermore, for every
tested case, the TARsol alone provided a feasible solution every time. Obtain-
ing feasibility proved to be most difficult for the tested versions of the AMS
algorithm where it often failed, even for small instances.

The main cause behind the observed results seems to lie in the size of the TAR
problem. The number of variables and constraints is overwhelming to tackle all
at once. Even ACT, which performs a decomposition on its own, did not perform
comparably to TARsol.

5 Conclusion

The complexity of TAR prohibits a direct application of the AMS and ACT
methods. Both, the execution time and the quality of the solution obtained
by the dedicated algorithm TARsol are, on average, better. Furthermore, the
algorithm tends to find a solution for cases when AMS and ACT fail. Such results
are consistent with those obtained for the simpler MTA which was tackled in
[Ho2]. Further study on the properties of TARsol and on other dedicated solution
methods is necessary. Use of decomposition in conjunction with AMS and ACT
should also be evaluated.

References

[AHL] Arntzen, H., Hvattum L., Lokketangen A.: Adaptive memory search for multi-
demand multidimensional knapsack problems. Computers & Operations Research

Task allocation for multi-robot teams in dynamic environments 491

33, pp. 2508–2525. Elsevier (2005)
[CV] Coltin B., Veloso M., Mobile Robot Task Allocation in Hybrid Wireless Sen-

sor Networks, Proceedings of International Conference on Intelligent Robots and
Systems, pp. 2932–2937 (2010)

[CM] Correll N., Martinoli A., Multirobot Inspection of Industrial Machinery, IEEE
Robotics and Automation Magazine, Vol. 16, pp. 103–112 (2009)

[Ho1] Hojda M., Task allocation in robot systems with multi-modal capabilities, IFAC-
PapersOnLine, 15th IFAC Symposium on Information Control Problems in Man-
ufacturing – INCOM 2015 Vol. 48, No. 3, pp. 2109-2114, Elsevier (2015)

[Ho2] Hojda M., Comparison of algorithms for constrained multi-robot task alloca-
tion, Advances in Systems Science : proceedings of the International Conference
on Systems Science, pp. 255-264, Springer (2017)

[HALG] Hvattum L., Arntzen, H., Lokketangen A., Glover F.: Alternating control
tree search for knapsack/covering problems. Journal of Heuristics 16, pp. 239–258.
Springer (2008)

[JS] Jung D., Savvides A., An Energy Efficiency Evaluation for Sensor Nodes with
Multiple Processors, Radios and Sensor, Proceedings of the 27th IEEE Conference
on Computer Communications, pp. 1112–1120 (2008)

[LLFNS] Li X., Lille I., Falcon R., Nayak A., Stojmenovic I., Servicing Wireless Sensor
Networks by Mobile Robots, IEEE Communications Magazine, Vol. 50, No. 7, pp.
147–154 (2012)

[MPA] Melodia Tl, Pompili D., Akyildiz I., Handling Mobility in Wireless Sensor and
Actor Networks, IEEE Transactions on Mobile Computing, Vol. 10, No. 2, pp.
160–173 (2010)

[RSSH] Rahimi M., Shah H., Sukhatme G., Heideman J., Studying the Feasibility of
Energy Harvesting in a Mobile Sensor Network Proceedings of ICRA ’03. IEEE
International Conference on Robotics and Automation, 2003, Vol. 1, pp. 14–19
(2003)

[SBCFTW] Shott B., Bajura M., Czarnaski J., Flidr J., Tho T., Wang L., A mod-
ular power-aware microsensor with 1000x dynamic power range, Proceedings of
Information Processing in Sensor Networks, pp. 469–474 (2005)

[TI] Tekdas O., Isler V., Using Mobile Robots to Harvest Data from Sensor Fields,
IEEE Wireless Communications, Vol. 16, No. 1, pp. 22–28 (2009)

[TLLB] Tirta Y., Li Z., Lu Y-H., Bagchi S., Efficient Collection of Sensor Data in Re-
mote Fields Using Mobile Collectors, Proceedings of 13th International Conference
on Computer Communications and Networks, Vol. 50, No. 7, pp. 147–154 (2012)

[YMHC] Yong F., Mo S., Hackmann G., Chenyang L., Practical control of transmis-
sion power for Wireless Sensor Networks, Proceedings of 20th IEEE International
Conference on Network Protocols, pp. 1–10 (2012)

[glpk] GNU Linear Programming Kit, https://www.gnu.org/software/glpk/

Maciej Hojda492

	47 Task allocation for multi-robot teams in dynamic environments
	Abstract
	Keywords
	1 Introduction
	2 Problem formulation
	3 Solution Algorithm
	4 Empirical evaluation
	5 Conclusion
	References

