
Message-Oriented Middleware for System
Communication: A Model-Based Approach

Roland Petrasch(&)

Department of Computer Science, Thammasat University, Bangkok, Thailand
roland.petrasch@cs.tu.ac.th

Abstract. Distributed systems with heterogenous platforms and communica-
tion components like IoT devices require message-oriented middleware (MOM).
Protocol translation, message model handling, message queueing and conver-
sion, security, transactional consistency, monitoring are examples for the fea-
tures and aspects of MOM. This paper presents a model-based approach for the
development of MOM components using the UML and UML Profiles for MOM
and enterprise integration patterns. A model-to-model transformation is used for
the preparation of the design model for code generation.

Keywords: Internet-of-Things � Process modeling � UML � Activity diagram �
Model-driven-development � Model-driven architecture � Enterprise Integration
Patterns � EIP � Message-oriented-Middleware � MoM

1 Introduction and Related Work

In the IoT era, message-oriented middleware (MOM) and machine to machine (M2M)
communication play a crucial role: According to Gartner, in 2016, 6.4 billion of
connected “things”, i.e. IoT devices, worldwide will be in use – a rise of 30% compared
to 2015 [1]. To meet the increasing demand for high-quality communication products,
substantial research and development efforts have been made leading to significant
advances in the discipline of communication technologies during the last decade [2],
e.g. in the area of IT-security [3], or practical methodologies [4].

A plurality of IoT relevant norms, industrial (de facto) standards, and products
exist, e.g. Advanced Message Queuing Protocol (AMQP) by OASIS [5] and ISO [6],
Java Messaging Service by JCP [7] (JMS is part of the Java Enterprise API), and MQ
Telemetry Transport (MQTT) by OASIS [8]. The integration of heterogeneous system
components using these standards and communication products is possible via a
middleware layer. Nowadays, concepts and implementations of MOM are
well-accepted and well-established in practice. From a technological standpoint, MOM
often comprise components like message and resource broker, transaction manager,
persistence service/DBMS, request scheduler etc.

But the IoT paradigm also “raises a number of new challenges in the software
engineering domain” [9]. Requirements, e.g. in the form of business or domain pro-
cesses, need to transformed to architectural concepts and software design specification
that take IoT aspects, e.g. mobility of IoT devices, security of IoT data, or performance,
into account [10, 11]. New or advanced software architectures, modeling languages,

© Springer International Publishing AG 2018
P. Meesad et al. (eds.), Recent Advances in Information and Communication
Technology 2017, Advances in Intelligent Systems and Computing 566,
DOI 10.1007/978-3-319-60663-7_24



and modeling methods are helpful to take these new IoT aspects into account and
reduce the complexity of the different components.

This paper addresses some of the challenges: It presents a model-based approach
for developing middleware for IoT and Enterprise applications with a focus on
enterprise integration patterns (EIP) [12]. Existing approaches focus on certain aspects
of middleware, e.g. [13, 14], but they do not take advantage of UML, UML Profile, EIP
patterns, and/or M2M transformations.

2 Development of MOM: A Model-Based Approach

2.1 Introduction to Model-Based Software Development

The general pattern for model-based development uses a PIM (platform independent
model, e.g. a domain model, that is transformed into a PSM (platform specific model) if
the meta-models of the PIM and the PSM are not identical (otherwise it is called a
PIM-PIM transformation). The PSM serves as an input (PIM) for the next transfor-
mation(s). Transformation types are model-to-model (M2M), model-to-text (M2T), or
text-to-model (T2M). Typically, the last step of a forward-engineering approach is the
code-generation (model-to-text transformation), so that a PSI (platform specific
implementation, i.e. code) is created (s. OMG’s Model Driven Architecture [15]).
A PIM as an input or source artefact for a transformation is considered platform inde-
pendent, because it conforms only to its own meta-model (language specification) and is
independent from the meta-model of the output or target model (PSM). Therefore, a
PIM-PSM transformation involves two meta-models (source and target MM).

As the modeling language, the GPML (general purpose modeling language) UML
was chosen [16]. The UML meta-model (language specification) is MOF-conform [17]
and provides a lightweight extension mechanism: A UML Profile extends UML
meta-model elements by defining a set of Stereotypes so that new domain ortechno-
logical aspects can be included in the modeling. The possibility to create a DSML
(domain specific language) for MOM/IOT (heavy-weight approach) was evaluated, but
at the end, the existing UML diagrams were considered sufficient.

Figure 1 gives an overview of the approach used in this paper: Domain models, like
business processes (UML activity diagrams or BPMN models) and domain class dia-
grams are used as a starting point (PIM). A UML Profile for MOM/IoT is developed
and applied. The system or software architect then prepares the models for the
model-to-model transformation: Certain model elements can be marked with Stereo-
types. The transformation result is a first software design model (PSM), e.g. class or
component diagrams. With the EIP Profile (application of enterprise integration pat-
terns), design models are prepared for code generation (model-to-text transformation).

Different code generators for each target platform exist, e.g. Java Enterprise
application, Apache Camel routes for middleware services (MOM). Generated code
artefacts (PSI) are used for further manual programming.

The tool chain is based on the Eclipse modeling project [18]: Papyrus (UML Pro-
filing and Modeling), QVTo as the Operational QVT implementation (model-to-model
transformations), and Acceleo as the MOFM2T implementation (code generation).

254 R. Petrasch



2.2 Example PIM (Domain Model)

To exemplify the approach, an example scenario from the manufacturing domain is
used: the quality control (QC) of a production material. Figure 2 shows a detail of the
domain class model for the quality control (test) for a production material that usually
produces a QC result dataset. A material can be tested several times.

The process is modeled as a UML activity diagram (Fig. 3): The QC procedure is
initiated by a control app that activates a transport robot. The material is delivered to
the QC unit where the material quality check takes place. The result of the QC pro-
cedure is sent to the transport robot and the control app.

Data flow elements (data object, output/input PIN) in the process model can be
linked with domain class elements. For example, the type specification attribute for the
qc_result data flow is set to the class QCResult (Fig. 4). This model element
connection is later analyzed and used for the transformation, e.g. class operations with
the appropriate parameters can be generated.

Fig. 1. Model-based software development approach

Fig. 2. Example domain class model for the production material quality control (class attributes
and operations are omitted)

Message-Oriented Middleware for System Communication 255



This “weaving” of model elements across different model types is not only
important for model transformations, but also for model validation (consistency
checking). The following MOM Profile also uses this technique for the combination of
behavioral and structural model elements as a preparatory step for the creation of
design models.

Fig. 3. Example process model for the quality control (simplified UML activity diagram)

Fig. 4. Input PIN in the activity diagram with a connection to the domain class QCResult

256 R. Petrasch



2.3 MOM Profile Definition and Application

The MOM Profile is used for the UML activity diagrams and class models. It provides
Stereotypes for mainly two different architectural components: Normal application
software and MOM components. This differentiation is important for the M2M
transformation. A detail of the MOM Profile is shown in Fig. 5. Process elements have
a reference to the structural definition (class, package, or component).

Since partitions in an activity diagram can be interpreted as a structural element and
used for M2M transformations, it seems questionable why an additional reference to an
element of a structural model (class model, component diagram) is necessary. The
reason is that an activity is a composite for a partition (that inherits from Activ-
ityGroup). Therefore, a Partition cannot be “reused” in other activities (Fig. 6).

The application of the MOM Profile gives software architects the possibility to
model architectural aspects while creating or modifying the class model: For the control
app, a new package is introduced and – like the classes RobotControl and
QCControl – marked with the Stereotype «App Component». The class QCOntrol
is created and marked as a «MOM Component» (Fig. 7).

Also, the activity diagram is modified by applying the MOM Profile. Figure 8
shows the new partition for the MOM that acts as a message broker between the
different system units, i.e. ControlApp, TransportRobot, and QCControl
communicate with each other via the MOM MaterialQCService.

The last step before M2M transformations can take place is the creation of refer-
ences between partitions in activity diagrams and classes or packages in the class
model, so that different activity diagrams (partitions) can reference the same app or
MOM component (structural elements). Figure 9 depicts the creation of this connection
(or weaving) with the attribute (tagged value) of the Stereotype (the partition is on the
left side, the package is on the right side, and the componentRef is in the middle).

Fig. 5. Detail of the MOM Profile (simplified model)

Message-Oriented Middleware for System Communication 257



2.4 Model-to-Model Transformation

The model-to-model transformation mapping needs to be specified before it can be
implemented as an operational QVT transformation with QVTo. Rules for the mapping
are formulated, e.g. a class in the source model marked with the Stereotype «App
Component» will be transformed into a new controller and view class (Table 1).

Mapping functions are defined in operational QVT for classes that are marked with
the Stereotype «MOM Component»: A package and a class with a consumer operation

Fig. 6. Detail from the UML meta-model for activity diagrams [16, p. 404]

Fig. 7. Architectural class diagram with dependencies

258 R. Petrasch



are created for each MOM component (Fig. 10). The execution of M2M transforma-
tions lead to several software design models (PSM from the viewpoint of the domain
model): For every component (app, MOM), a separate package is generated: App
components are transformed into packages with classes for the view and controller
(MVC) and MOM components are transformed to new packages with a handler for
each communication channel (Fig. 8).

Table 1. Detail of the M2M transformation mapping specification

Source model element Target model element(s) Remark

«MOM Component»
class

(a) «MOM Component»
classes
(b) Package for MOM
comp.

New package and classes
for the component are created

«App Component»
class

(a) Controller and view
classes
(b) Package for app comp.

The MVC pattern is used

Action (MOM
partition)

Operations for MOM or
app classes

References to the MOM
classes/packages are used

Action (app partition) Operations for controller
class

References to the app
classes/packages are used

Fig. 8. Marked activity diagram with app and MOM process components

Message-Oriented Middleware for System Communication 259



The following class model is a detail of the result of the M2M transformation
(Fig. 11). This PSM represents a first version of a software design model.

2.5 EIP Profile Application and Code Generation

The software architect can manually modify design models concerning implementation
aspects. In this case, implementation-oriented design decisions for the MOM service

Fig. 9. Connection between marked partition and package

Fig. 10. QVTo transformation specification for MOM classes (detail)

Fig. 11. Model-to-model transformation: generated class model

260 R. Petrasch



package are demonstrated: The cyclic dependency between the package controlApp
and QCControlService will be eliminated (Fig. 11) by applying the enterprise
integration pattern (EIP) Publish-Subscriber-Pattern which is part of the EIP Profile for
UML class diagrams (Table 2).

The class QCResultHandler is marked with the Stereotype «Publish-Subscribe
Channel» and the controller (package controlApp) becomes a subscriber. This leads
to a unidirectional dependency of the package controlApp from the MOM service
component in the package qcControlService (Fig. 12).

Table 2. Icons and Stereotypes for the EIP Profiles

Icon [19] Stereotype Remark

«Endpoint» An endpoint is a component or an application

«Channel» A channel connects two or more endpoints

«Message»

«Publish-Subscribe
Channel»

Decouples producer and consumer. The publisher
broadcasts a message to all subscribers

Fig. 12. Class diagram (detail) with applied “Publish-Subscriber Channel” EIP

Fig. 13. Acceleo template for the code generation of Apache Camel routes (detail)

Message-Oriented Middleware for System Communication 261



When the class model is ready for code generation (M2T transformation), a code
generator for the app and MOM components is used: With the MOFM2T [20] imple-
mentation Acceleo, code generation templates for the PSI were developed. Figure 13
shows a detail of a template for the target platform (API) Apache Camel [21].

3 Conclusion

The model-driven approach for MOM development presented in this paper is a first
proof-of-concept. The method consists of the following steps:

• Domain Modeling, e.g. creation of UML class model and activity diagram (PIM)
• MOM Profile application for domain model elements (PIM markup)
• Model-to-Model transformation (PIM to PSM): creation of software design models
• Design model modification and EIP Profile application for code generation
• Model-to-Text transformation (code generation: PSM to PSI)

The approach has proven useful, because most of the code for the MOM layer can
be generated and it allows manual modifications of software design models. M2M
reduces the complexity of the transformation specifications for the code generation:
The UML (Profiles, activity diagrams, and class models) have been successfully used.
In the future, more EIP patterns and model types will be included in the Profile.

References

1. Meulen, R. (Gartner): Gartner says 6.4 billion connected “things” will be in use in 2016.
www.gartner.com/newsroom/id/3165317. Accessed 1 Feb 2017

2. Unger, H., Meesad, P., Boonkrong, S.: Recent advances in information and communication
technology. In: Advances in Intelligent Systems and Computing, vol. 361. Springer,
Heidelberg (2015)

3. Bergner, S., et al.: Networked IT-Security for Critical Infrastructures – The Research Agenda
Of VeSiKi. www.itskritis.de. Accessed 14 Jan 2017

4. Slama, D., Puhlmann, F., Morrish, J., Bhatnagar, R.M.: Enterprise IoT: Strategies and Best
Practices for Connected Products and Services. O’Reilly Media (2015)

5. Organization for the Advancement of Structured Information Standards (OASIS): OASIS
Advanced Message Queueing Protocol (AMQP) v1.0, OASIS Standard (2012)

6. International Organization for Standardization: ISO/IEC 19464:2014 - Information technol-
ogy - Advanced Message Queuing Protocol (AMQP) v1.0 specification (2014)

7. Java Community Process (JCP): Java Message Service (JMS) API. Final Release 1.1 (2002)
8. Organization for the Advancement of Structured Information Standards (OASIS): MQTT

Version 3.1.1 Plus Errata 01 (2015)
9. Consel, C., Kabac, M.: Internet of Things: a challenge for software engineering. In: ERCIM

- The European Research Consortium for Informatics and Mathematics, Special Theme.
www.ercim-news.ercim.eu. Accessed 23 Jan 2017

10. Mukhopadhyay, S.C. (ed.): Internet of Things: Challenges and Opportunities. Springer:
Smart Sensors, Measurement and Instrumentation 9 (2014)

262 R. Petrasch

http://www.gartner.com/newsroom/id/3165317
http://www.itskritis.de
http://www.ercim-news.ercim.eu


11. Holler, J., Tsiatsis, V.: From Machine-to-Machine to the Internet of Things: Introduction to a
New Age of Intelligence, 1st edn. Academic Press, London (2014)

12. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions, 1st edn. Addison-Wesley, London (2003)

13. Buckl, C., Sommer, S., Scholz, A., Knoll, A., Kemper, A.: Generating a tailored middleware
for wireless sensor network applications. In: IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (sutc 2008)

14. Plšek, A., et al.: A component framework for java-based real-time embedded systems. In:
Middleware 2008, ACM/IFIP/USENIX 9th International Middleware Conference (2008)

15. Object Management Group (OMG): Model Driven Architecture (MDA) - MDA Guide, rev.
2.0, document number ormsc/14-06-01 (2014)

16. Object Management Group (OMG): OMG Unified Modeling Language (OMG UML),
version 2.5, document formal/2015-03-01 (2015)

17. Object Management Group (OMG): OMG Meta Object Facility (MOF) Core Specification.
Version 2.5.1, document number formal/2016-11-01(2016)

18. The Eclipse Foundation: Eclipse Modeling project (2017). www.eclipse.org/modeling
Accessed 3 Feb 2017

19. Hohpe, G.: www.enterpriseintegrationpatterns.com. Accessed 21 Jan 2017
20. OMG (Object Management Group): MOF model to text transformation language

(MOFM2T). Version 1.0, document number formal/2008-01-16 (2008)
21. Apache Software Foundation: Apache Camel: Publish Subscribe Channel (2017). www.

camel.apache.org/publish-subscribe-channel.html. Accessed 1 Feb 2017

Message-Oriented Middleware for System Communication 263

http://www.eclipse.org/modeling
http://www.enterpriseintegrationpatterns.com
http://www.camel.apache.org/publish-subscribe-channel.html
http://www.camel.apache.org/publish-subscribe-channel.html

	Message-Oriented Middleware for System Communication: A Model-Based Approach
	Abstract
	1 Introduction and Related Work
	2 Development of MOM: A Model-Based Approach
	2.1 Introduction to Model-Based Software Development
	2.2 Example PIM (Domain Model)
	2.3 MOM Profile Definition and Application
	2.4 Model-to-Model Transformation
	2.5 EIP Profile Application and Code Generation

	3 Conclusion
	References


