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Abstract. In this paper, we describe the development of behavioral primitives
for use in human reliability analysis (HRA). Previously, in the GOMS-HRA
method, we described the development of task level primitives, which model
basic human cognition and actions. Like generic task types found in some HRA
methods, the task level primitives provide a generic or nominal human error
probability. These generic task types are often modeled at the task level—
grouped according to a high-level goal that includes many activities. In contrast,
task level primitives represent a finer level of task decomposition, corresponding
not to a group of actions that comprise an overall task but rather individual steps
toward that task. In this paper, we further elaborate on the task level primitives
by grouping task level primitives into procedure level primitives. This termi-
nology reflects standard groupings of activities that are performed by reactor
operators when following operating procedures. For the purposes of HRA, it is
desirable to model operator actions according to these prescribed procedure
categories. We present mappings of the procedure level to the task level
primitives found in the GOMS-HRA method. We provide examples and con-
clude that procedure level primitives are a useful tool to streamline HRA
modeling and quantification, especially for dynamic HRA applications.

Keywords: Human reliability analysis � GOMS-HRA � Subtask modeling �
Procedures � Dynamic human reliability � Analysis

1 The Importance of Subtasks in Human Reliability Analysis

In practice, human reliability analysis (HRA) looks at causes of human error at the task
level. A task consists of a series of activities related to a common goal. This goal is
typically centered on the function of a particular hardware component or system. For
example, the goal to put feedwater into service at a nuclear power plant may entail
multiple steps by a reactor operator, including preparatory actions like checking the
availability of systems, the culmination of which is a functioning feedwater system at
the plant. This division of a task into subtasks is mirrored in many operating procedure
hierarchies, in which procedure steps feature substeps and in which groups of proce-
dure steps have collective headings to indicate groupings of related steps.
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The common unit of analysis in HRA is the human failure event (HFE), which is
defined as the failure of a function, component, or system due to human action or
inaction [1]. This definition may be seen as top-down—from the hardware to the
human—in the sense that only significant hardware failures that affect the safety of the
facility are considered for modeling. The human presents one of many sources of such
hardware failures. As noted in [2], most human factors methods associated with task
analysis tend to build a bottom-up structure of human actions—from the human to the
hardware with which he or she interfaces. The bottom-up approach may capture human
errors that are not readily modeled in the top-down approach, but they may not all be
risk significant. Logically, therefore, it only makes sense to include human errors that
actually have an impact on facility safety. However, it is possible that the top-down
approach overlooks some opportunities for significant errors, such as those caused by
errors of commission—actions taken by the operator that aren’t required and may
change the facility from its expected configuration. Moreover, the top-down approach
may omit a consistent or complete modeling level of human actions, focusing instead
on the most salient actions of the operator.

The risk of the HFE as a unit of analysis is that it is very high level, potentially
encompassing dozens to hundreds of human subtasks related to hardware in a top-down
fashion. This level of task composition is very rough and may highlight certain salient
actions while overlooking seemingly less significant actions. Importantly, the HFE
level is difficult to replicate consistently between analysts, as the question of what is
omitted from the task list is left to analyst discretion and expertise. For this reason,
inconsistent task modeling within the HFE was implicated as a significant reason for
variability between human reliability analysts in one HRA benchmark [3].

The Technique for Human Error Rate Prediction (THERP) [4], arguably the
original HRA method, did not explicitly model HFEs. Instead, it considered groups of
human actions within an HRA event tree, a unique representation for linking subtasks.
This structure was particularly important for THERP, because it specified how the
human error probability (HEP) should be calculated. Each node in a THERP HRA
event tree is a human subtask; the tree models how HEPs, recoveries, and dependence
between subtasks occur. In most cases, the HRA event tree as a whole may be seen as
an HFE, and the total HEP is associated with the interconnections between subtasks.
The subtasks are quantified individually through lookup tables, which create a type of
scenario-matching approach. Novel subtasks are mapped to similar subtasks in THERP
tables, for which HEPs are provided. Dependence in the propensity of error to beget
error, resulting in increased error rates for the second and subsequent subtasks in a
series. In contrast, recovery breaks the error chain and puts the operator back on a
success path. Whereas dependence increases the HEP, recovery decreases it.

It can be extremely labor intensive to complete an HRA in THERP, in large part
due to the necessity to model many subtasks. One of the chief simplifications of later
HRA methods was the focus on the HFE instead of the subtask level of analysis. While
no HRA method to our knowledge specifically advocates omission of a thorough task
analysis, there is nonetheless an erosion of such efforts in common practice, because
most probabilistic risk models only require input of a single HEP for the entire HFE.
Even THERP and methods directly derived from it (e.g., [5]) currently tend to be used
primarily for quantification of overall HFEs, not subtask quantification.
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While there appears to be a trend away from subtask modeling in HRA as practiced,
subtask modeling remains especially important for dynamic HRA, in which human
activities are placed into a simulation. For example, in a recent dynamic HRA effort
called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER)
[6], a virtual human operator is modeled alongside thermohydraulic code. HUNTER
models each required human intervention in the plant with corresponding plant
response. HUNTER actions are therefore being modeled for each step in the operating
procedures, autocalculating the HEP [7] and required completion time for each
step. While dynamic HRA may be considered creating a virtual operator, it is also
possible to conceive of this type of modeling as creating a virtual analyst whose job it is
to calculate the HEP automatically for each HFE based on available information in the
model [8]. Regardless of whether it is a virtual operator or analyst, dynamic HRA
requires the subtask level of granularity when considering human actions. In this paper,
we focus on subtask modeling to accommodate current efforts at modeling operator
actions in the HUNTER dynamic HRA framework.

2 GOMS-HRA for Subtask Modeling

The Goals-Operators-Methods-Selection rules (GOMS) approach is a method devel-
oped to factor human information processing (i.e., cognition) into empirical observa-
tions [9]. GOMS is an important method for decomposing human activities into their
constituent subparts. It may be considered a task analysis approach focused on the
subtask level of mental operations. Adaptations of GOMS, like the Keystroke Level
Model (KLM) [10] have been used to assign action specific timing data to human
subtasks. Combining these subtask durations allows analysts to determine the relative
efficiencies of different system designs, for example.

GOMS was recently adapted to HRA to create GOMS-HRA [11] to encompass the
subtask level of human activities for dynamic HRA. Because GOMS is a framework
more than a specific method for considering human activities at the subtask level,
GOMS-HRA pays homage to GOMS, but it should not be considered an adaptation of
any of the previous instantiations of the method.

GOMS-HRA is linked to a taxonomy of human subtask primitives, corresponding
to basic human activities likely to be performed in conjunction with operating a nuclear
power plant. The Systematic Human Error Reduction and Prediction Approach
(SHERPA) [12] serves as the basic taxonomy, with adaptations for cognitive decision
making [13] and periods of relative inactivity such as waiting and monitoring. The
modified SHERPA taxonomy for use in GOMS-HRA is provided in Table 1. In our
nomenclature, we call this list task level primitives (TLPs).

Note that the action (A), checking (C), retrieving (R), and selecting (S) TLPs make a
distinction between control boards (i.e., main control room) and field (i.e., balance of
plant) operations, as denoted by a subscripted C or F, respectively. The instruction
(I) TLP distinguishes between producing (P) and receiving (R), respectively. The
decision making (D) TLP considers decisions guided by procedures (P) or without
procedures (W).
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Note also that the difference between checking (C) and retrieving (R) has to do with
the level of information being sought. Checking is the simple act of confirming
information like a status light on the control boards. In contrast, retrieving requires
greater cognitive engagement such as reading the exact value on a gauge or trending a
value over time. Generally speaking, the more cognitive effort that is required, the more
the categorization falls to retrieval.

This taxonomy serves not only to decompose human activities into elemental
subtasks; the taxonomy also affords the ability to anticipate common error types for
each subtask. The adapted SHERPA taxonomy from Table 1 yields the following types
of errors at a high level:

• Action Errors—Performing the required action incorrectly or failing to perform the
action

• Checking Errors—Looking for required information in wrong place or failing to
look for that information

• Retrieval Errors—Obtaining wrong information such as from control room indi-
cators or failing to obtain required information

• Information Communication Errors—Communicating incorrectly or misunder-
standing communications

• Selection Errors—Selecting the wrong value or failing to select a value
• Decision Errors—Making wrong decision or failing to make decision.

Waiting is not a TLP in the sense of modeling failed actions and HEPs; instead, it acts
as a placeholder for tasks such as monitoring that involve extended periods of time.
Therefore, waiting is not modeled as a potential error type, although we acknowledge
that there is opportunity for human errors to occur while waiting. Each of the errors
associated with TLPs can, in turn, be decomposed into further error types similar to
what is found in [14]. GOMS-HRA stops short of providing a catalog of possible

Table 1. GOMS Operators used to define Task Level Primitives.

Primitive Description

AC Performing required physical actions on the control boards
AF Performing required physical actions in the field
CC Looking for required information on the control boards
CF Looking for required information in the field
RC Obtaining required information on the control boards
RF Obtaining required information in the field
IP Producing verbal or written instructions
IR Receiving verbal or written instructions
SS Selecting or setting a value on the control boards
SF Selecting or setting a value in the field
DP Making a decision based on procedures
DW Making a decision without available procedures
W Waiting
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failure mechanisms for each TLP, although such a catalog may be the topic of future
research efforts.

As noted, HRA methods like THERP use a scenario-matching approach for
quantification. The task or subtask at hand is compared against a lookup table of
prequantified nominal HEPs and subsequently fine-tuned through further analysis.
Similarly, the TLPs can serve as a series of generic task types with associated nominal
HEPs. Table 2 includes nominal HEPs for each of the TLPs, as aligned to THERP
subtasks [4] using expert judgement. Unlike THERP, which includes fairly specific
scenario matches, the GOMS-HRA TLPs are characterized by the type of human
activity rather than a specific scenario. As such, we believe the TLPs are more gen-
eralizable than the scenarios found in THERP. The TLPs allow maximum flexibility for
modeling human activities in a dynamic simulation.

3 Introducing Procedure Level Primitives

The TLPs are at a more basic level than are the actions commonly prescribed to reactor
operators. Reactor operators follow operating procedures ranging from standard
operating procedures, annunciator response procedures, abnormal operating proce-
dures, emergency operating procedures, to severe accident management guidelines
(SAMGs). SAMGs tend to be different from the rest of the procedures in that they
provide problem solving strategies rather than step-by-step processes. The remaining
procedures articulate step-by-step actions the operators should follow to maintain
production and safety at the plant. In fact, there are often license penalties for deviating
from the procedures, making them legally binding process manuals.

Because the procedure steps serve as the script for operating the plant, the logical
level of task decomposition for HRA is the procedure step. Procedure steps and

Table 2. HEPs associated with each talk level primitive.

Operator Nominal HEP THERP sourcea Notes

AC 0.001 20-12 (3) Assume well-delineated controls
AF 0.008 20-13 (4) Assume series of controls
CC 0.001 20-9 (3) Assume well-delineated indicators
CF 0.01 20-14 (4) Assume unclear indication
RC 0.001 20-9 (3) Assume well-delineated indicators
RF 0.01 20-14 (4) Assume unclear indication
IP 0.003 20-5 (1) Assume omit a step
IR 0.001 20-8 (1) Assume recall one item
SC 0.001 20-12 (9) Assume rotary style control
SF 0.008 20-13 (4) Assume series of controls
DP 0.001 20-3 (4) Assume 30-minute rule
DW 0.01 20-1 (4) Assume 30-minute rule
W n/a n/a n/a
a Corresponds to THERP [4] Table values from Chap. 20.
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substeps explicate exactly what the reactor operators need to be doing at the plant,
including any interfacing with components, and in which sequence. Procedures also
point to specific decision branch points. As such, it is possible to create a simplified
model of the reactor operator without necessarily creating a full-blown artificial
intelligence system [15]. The level of procedural detail and the high procedural com-
pliance create a perfect context for using procedures for simplified dynamic modeling
frameworks like HUNTER.

To link the TLPs to the procedures, we developed procedure level primitives
(PLPs) that map common procedure steps to TLPs. In many cases, a single procedure
step may actually entail a series of TLPs. Consider, for example, the common proce-
dure step to check something such as an indicator (see Fig. 1). This procedure step
corresponds to the TLPs of check (CC), making a decision based on procedures (DP),
verbalizing the value to the shift supervisor (IP), selecting or setting a value (SC or AC)
if necessary, and potentially waiting (W) while monitoring the value.

To simplify the process of modeling TLPs, we have mapped a number of common
procedure steps to TLPs (see Table 3). These mappings, which constitute the PLPs,
may be reused across analyses and may make it possible to extract TLPs in an auto-
mated fashion from operating procedures.

To arrive at a standard list of PLPs, we referenced the Procedure Professionals
Association (PPA) Procedure Writer’s Manual [16]. The PPA manual provides an
extensive list of action verbs and their definitions to guide procedure development at
nuclear power plants and other facilities. An example definition for check is:

CHECK: Observe an expected condition exists 
(no actions to correct) 

Fig. 1. Procedure level primitive decomposition into task level primitive example.
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The list of procedure steps (or action verbs) provided by PPA is extensive, but it is
not necessarily exhaustive of all possible procedure steps at plants, nor does it narrow
the list of procedure steps according to frequency. Moreover, the PPA manual is only a
guideline, meaning individual plant’s use of particular preferred procedure terminology
or adherence to the suggested definitions will vary. Indeed, the consistency between
procedures within individual plants varies, depending on the procedure writers and
operators involved in generating the procedures as well as the system being proce-
duralized. There can be, for example, considerable differences in preferred nomen-
clature between procedures for the main control room vs. field operations. Mapping all
procedure steps in the PPA list as PLPs would prove difficult and be fraught with
necessary subjective interpretations to meet plant specific details. Instead of a complete
mapping, we have mapped PLPs on a case-by-case basis as we have encountered new
steps in procedures we are modeling as scenarios in HUNTER. This process, over time,
is building a library of PLPs. Common PLPs that recur across many procedures are
found in Table 3.

4 Discussion

4.1 Complex Mappings

As demonstrated with the check procedure step, PLPs can consist of multiple TLPs.
The challenge with the reuse of PLPs across analyses is that complex mappings may
not always be consistent. In one case, a check step may be synonymous with the
checking (CC) TLP, but, in another case, it may require multiple TLPs. Where complex
mappings occur, model building will still require expertise by the human analyst to
ensure the mappings are appropriate. There is still value in reusing PLPs, since the

Table 3. Common procedure level primitives mapped to task level primitives.

Procedure level
primitive

Task level primitive Mapping Notes

Determine* CC or RC Information type dependent
Ensure* CC or RC and/or AC

and/or SC
Information and control action type
dependent

Initiate AC –

Isolate AC –

Minimize SC –

Open AC –

Verify* CC or RC Information type dependent
Check* DP, AC, SC, WC, and/or

IP
Information type dependent

* These procedure level primitives, or action verbs, can be decomposed into multiple task
level primitives. Figure 1 depicts the check procedure primitive decomposed into DP, AC,
SC, WC, and IP task level primitives and the relationship between these task level
primitives.
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suggested mappings can serve as a template for reuse, but complex PLPs will likely
require manual fine-tuning to suit their use context.

Using text mining, we have explored the possibility to extract procedure steps to
derive PLPs automatically from operating procedures [17]. This process is still in the
early stages of exploration. One of the main challenges of text mining PLPs is with
complex PLPs, whereby the exact mappings to a series of TLPs requires more con-
textual information than can readily be extracted automatically. Other challenges
remain. The formatting of procedures (e.g., the common double column format for
procedures for Westinghouse pressurized water reactors) presents puzzling logic and
parsing for current text mining algorithms. Certain placeholder words like if and not
are at least as meaningful as standard action verbs, yet these words are semantically
excluded from text mining. Finally, there are many challenges in differentiating what
actions a reactor operator is doing versus what the plant is doing. For example, consider
the following illustrative procedure step:

check that valve is closed and pressure is deceasing 

The operator action is check. However, there are potential points of confusion
over the related word stems of close and decrease. There remains considerable
development work to refine the automatic extraction of PLPs from operating proce-
dures. Currently, we are manually extracting the procedure steps and logic to arrive at
accurate models of operator actions.

4.2 The Problem with Procedures

Of course, one of the main limitations of the PLP approach is that it relies on operating
procedures. A few specific limitations are detailed below:

• Variability in procedures. Terminology varies considerably between plants, but
there may also be intra-plant variability between procedures depending on the
system addressed. Such variability is not a limitation of the procedures or the plant,
but it makes the process of creating a global set of PLPs implausible. To address
this reality, we have crafted PLPs on a procedure-by-procedure basis, tailoring the
underlying TLPs as needed. In our anecdotal experience, the PLPs have proved
robust in mapping TLPs. Initial experience suggests strong suitability to reuse of the
PLPs across procedures, although we are carefully vetting individual instantiations
of them to account for variability across procedures.

• Procedures as scripts. Procedures do not represent the totality of operator actions.
There are routine tasks such as monitoring and communicating that are so frequent
as not to warrant mention in specific procedures. While it is tempting to use the
procedures as a script for modeling operator actions in HRA, doing so could result
in an unrealistic account of what operators do. It would omit key routine activities,
but it would also suggest a linearity of actions that is not representative of operator
actions. Operators sometimes need to deviate from procedural paths or select
alternate procedures in response to emerging plant conditions. While procedures
may be a good starting point for modeling operator tasks, they actually underspecify
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everything the reactor operators are doing. At best, procedures can be used to create
simplified models of operator actions.1 One key advantage of PLPs is that they can
incorporate some of the underspecified actions—the between-the-lines activities of
the operators—as part of the PLP. If, for example, each operator action is assumed
to include some form of threeway communication between crew members, the PLPs
for each procedure step should include the instructions (I) TLP. PLPs can ensure
that the right TLPs are included in the analysis.

• Task roles. Procedures generally provide good detail about what tasking needs to be
completed, but they do not specify who is completing that tasking. This is not an
omission in the procedures; rather, it is by design, because the assignment of
specific tasks or procedure steps is the job of the control room supervisor (CRS).
The CRS maintains situation awareness of plant conditions and processes, follows
and often reads aloud procedures, and delegates tasking between available crew
members. The net effect whether the operator at the controls or the balance-of-plant
operator performs a particular procedural step is negligible in most HRA models.
However, for dynamic HRA, where the goal is to create a virtual operator, crew
roles do matter, especially for determining relative workload of specific operators.
As such, procedures cannot be used blindly, but rather must be augmented to
specify which operator is performing the tasks.

• Complex logic and compound steps. As discussed briefly in the context of text
mining, procedures are rarely as simple as one step equals one action. Instead,
procedures often feature complex AND/OR logic and compound steps. Complex
logic can be accounted for with TLPs related to decision making, and compound
steps are simply chains of TLPs. The PLPs can likewise track the TLPs for added
complexity and steps, but the generalizability of such PLPs may prove minimal for
complex steps.

It is telling that many HRA methods include two considerations of procedures as a
performance shaping factor. The first aspect is the procedural quality for the task.
Procedure writers strive to cover plant conditions as completely as possible, but it is
never possible to anticipate every process permutation at the plant. Compound faults,
for example, may force operators to prioritize their response and choose between
competing procedures. The second aspect of procedures considered in many HRA
methods is procedural adherence. Reactor operators are trained both to follow oper-
ating procedures and to recognize when procedures may not adequately cover the
breadth of possible responses. The reactor operators must exercise their expertise,
which may on occasion take them outside of the procedural script or branch them to a
new procedure that is a better fit to the plant conditions. There are multiple success
paths to recover from a plant upset, for example, and crews may respond differently
throughout the evolution of the transient.

Since the procedural quality and procedural adherence are known to vary, these will
certainly limit the ability of the PLPs to become one size fits all across analyses. Of

1 Note that a simplified model based on PLPs will likely be incrementally more detailed than a
simplified HFE-level model. One premise of GOMS-HRA is that the more detail that is available in
the HRA model, the higher the fidelity and scrutability of the quantification.
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course, the purpose of PLPs is not to be generic constructs that are interchangeable
across all contexts. The PLPs are simply a way of bundling common groups of TLPs
that are associated with procedure steps. If the procedure steps do not lend themselves
to PLPs, a more detailed case-by-case TLP analysis is warranted.

4.3 Advantages of PLPs

While the preceding discussion has highlighted some challenges and shortcomings of
using PLPs, we believe there is merit in the approach. Where appropriate, PLPs give a
way of linking procedure steps to TLPs in GOMS-HRA. This approach can greatly
benefit efforts at dynamic HRA modeling in frameworks like HUNTER by providing
the basis for error quantification and even task timing [18]. Additionally, the TLPs
provide a basis for anticipating certain types of errors that might occur in the context of
procedure following. In many cases, PLPs can be reused, thereby reducing the labo-
rious efforts associated with model building. Ultimately, the PLP approach provides a
consistent way to decompose procedure steps into meaningful subtasks in HRA. This
approach is especially useful for dynamic HRA for heavily proceduralized nuclear
power plant activities, but PLPs hold equal promise for any HRA that requires subtask
modeling.
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