
Beyond Point Design: General Pattern
to Specific Implementations

Joel Lachter1(&), Summer L. Brandt2,
Garrett Sadler3, and R. Jay Shively1

1 NASA Ames Research Center, Moffett Field, CA 94035, USA
{Joel.Lachter,Robert.J.Shively}@nasa.gov
2 NASA Ames Research Center, San José State University,

Moffett Field, CA 94035, USA
Summer.L.Brandt@nasa.gov

3 HATS Inc., 20944 Sherman Way, Suite 211,
Canoga Park, CA 91303, USA

Garrett.Sadler@hats.solutions

Abstract. Elsewhere we have discussed a number of problems typical of highly
automated systems and proposed tenets for addressing these problems based on
Human-Autonomy Teaming (HAT) [1]. We have examined these principles in
the context of aviation [2, 3]. Here we discuss the generality of these tenets by
examining how they might be applied to photography and automotive naviga-
tion. While these domains are very different, we find application of our HAT
tenets provides a number of opportunities for improving interaction between
human operators and automation. We then illustrate how the generalities found
across aviation, photography and navigation can be captured in a design pattern.

Keywords: Human-Autonomy Teaming � Automation � Human factors

1 Introduction

1.1 Problems with Highly Automated Systems

Elsewhere we have discussed a number of problems typical of highly automated
systems [1]. Such systems are brittle, working properly within some bounded space for
which they have been programmed, then failing when parameters fall outside that
space. They are opaque, lacking transparency; human operators often do not know
what the automation is doing or why. Operators often do not know when to trust
automation, relying on it to handle conditions it cannot, or not taking advantage of it to
handle conditions it can. As automation does more of the work, operators become less
practiced. When the automation performs a task, the operator is often less aware of the
system state.

While each of these issues is troubling by itself, they often manifest together. An
operator, over-trusting the system, does not realize that some parameter has gone out of
bounds. Because it is out of bounds, the automation either quits or is no longer reliable.
The out of practice operator must then try to regain situation awareness using opaquely

© Springer International Publishing AG (outside the USA) 2018
C. Baldwin (ed.), Advances in Neuroergonomics and Cognitive Engineering,
Advances in Intelligent Systems and Computing 586, DOI 10.1007/978-3-319-60642-2_4



presented information. This situation has been responsible for a number of accidents
(e.g., Air France 477, Korean Air 801). Similar concerns have been identified by others
[4–6].

1.2 HAT Solutions

A number of authors have suggested that these concerns are ameliorated by developing
interfaces and procedures analogous to guidelines for improving teamwork among
humans [5, 7]. This area of research has been termed “Human-Autonomy Teaming” or
“HAT.” Our current approach to HAT emphasizes the following tenets:

Bi-directional Communication: Following the common aviation crew resource
management (CRM) practices that encourage input from all relevant parties into
decisions, communication should be bi-directional concerning all levels of planning
and execution. At the highest level (the mission), this means that operators should be
explicitly informing the automation of mission goals, and automation should be able to
recognize when those goals are not being met and inform the operator (preferably with
an alternate course of action). At the lowest level (implementation), the operator should
be able to “see” what the automation is doing and understand why, propose adjust-
ments and have the automation report the predicted consequences of those adjustments
before execution. Similar bi-directional communication should occur at intermediate
levels. To facilitate this dialog, automation should be able to present a rationale for
recommendations and warnings, for example, indicating why a route is rated as
unacceptable or what event triggered a warning light. In addition, under conditions of
uncertainty, automation should indicate its confidence in the data or analysis being
presented. This allows operators to better integrate information that may be significant
but unreliable (e.g., when I need to leave for work might be significantly different if I
want an 80% chance of being on time versus a 99% chance).

Transparency: Providing rationale and confidence levels also fall under a more
general tenet, that automation should be transparent. Lyons [8] defines automation
transparency as a shared awareness and shared intent between the system and its human
operator(s). That is, the system and its operators should be able to recognize what the
human/automated teammate is doing and why. To be truly transparent, communication
should use a shared language: Automation should present information in ways that fit
the operator’s mental model.

Operator Directed Interface: Interfaces should allow for dynamic task allocation
directed by the operator. In particular, intent inferencing about the operator’s state or
goals should be minimized.

1.3 The Value of a Generalizable Solution

Elsewhere we discuss our efforts to demonstrate and test these principles implemented
in an airline dispatcher ground station designed for flight following [2, 3]. But to what
degree can the success of that implementation be attributed to the HAT principles as

Beyond Point Design: General Pattern to Specific Implementations 35



opposed to other design considerations? One way to think about this problem is “How
easy would it be to apply the HAT system we developed for our ground station to a
novel situation?” This is the “turnaround test” discussed by Woods [9]. We are
attempting to address this generalizability issue by first developing use cases that
specify what HAT would look like in a broad variety of domains, and second extracting
patterns from those use cases that capture generalities about HAT. In the following
sections, we examine two such use cases and one such pattern.

2 HAT in Other Domains

2.1 Photography

Photography provides a very different set of use cases for automation and HAT from
those associated with aviation. In photography the operator has much more latitude in
setting goals and in many cases may have to change these goals quickly to capture
fleeting images. Automation can help. It can focus and adjust exposure (the brightness
of the picture), much more quickly and accurately than any human operator. However,
first it must know the goal. Automation can also detect and react to items and events of
interest such as faces, blinks, and camera shake. Thus the automation is capable of
doing much of the work to realize the operator’s goal for a shot, if that goal can be
accurately conveyed. In this section we briefly discuss some of the choices facing a
photographer and then discuss how these choices might be more quickly and accurately
conveyed to the automation.

Perhaps the most obvious choice the photographer makes is what to focus on.
Ignoring the issue of pointing the camera, there are typically many objects within the
field of view that the operator could choose to be in focus. Objects closer or further than
the chosen object will appear increasingly blurry in the final image. The issue here is
that, while it is usually obvious to the operator what the picture is of, the autofocus
system does not know. On many cameras, the autofocus system can be told to look for
the closest object or faces, but those abilities are quite brittle, braking when there are
multiple faces or the subject is not the closest object in the scene. Cameras come with
these priorities because portraits and subjects in the foreground are common goals. But
where does that leave someone taking pictures of flowers or waterfalls? It would be
nice to have a more generalized solution.

Choosing what to focus on is, of course, not the only choice that must be made
when taking a photograph. How bright (or dark) should the photograph be? How do we
control the brightness? Without turning this paper into a Photography 101 textbook, let
us just say that these are complex questions. Controlling the brightness of a photograph
has side effects for how sharp the image appears; side effects that may be desirable, or
not, depending on the goals of the photographer. While automation can determine the
appropriate level of brightness quickly, different settings affect how it controls the
brightness with major effects on the appearance of the final product.

We would like to mention one last type of automation that is creeping into some
cameras. Cameras can read information off of the sensor and process it far more quickly
than a human operator. As a result, it is possible to have the camera trigger (or briefly

36 J. Lachter et al.



suppress triggering) based on certain events. Cameras can take a picture when light-
ening flashes, or, under flickering lights, at the brightest point of cycle. Cameras can
momentarily delay firing when the subject blinks or when your hand is moving. This
raises the possibility of having a camera fire at specific moments that the operator wants
to capture, say, when a bat hits a ball.

Now imagine taking a hike with your son. You want different settings when you
take a picture of your son, a flower, a waterfall, a fox that crosses your path. How can
you easily move from one to another?

One solution would be to specify your goal, the kind of picture you want to take, at
a high, “mission” level. Dialing in a Portrait, or Waterfall play would choose the
appropriate settings. We envision the ability to create packages of settings offline that
can then be loaded onto the camera. Following a similar proposal by Miller and
Parasuraman [10], we refer to these packages as “plays.” Plays could be “called”
quickly by voice or using a scroll wheel. In some ways, plays may seem similar to the
“scene modes” appropriate for many types of photography (sports, portrait, night,
fireworks, etc.) offered on many cameras. However scene modes generally lack
transparency, customizability (strategic, offline), and flexibility (tactical, real time). By
allowing operators to create plays offline, it is possible to imagine building in crazy
levels of specificity. Imagine a baseball play where you could specify the field location.
If you then tell it you are taking pictures of the pitcher, and it senses your location
(GPS) it can determine the approximate distance greatly improving autofocus speed
and accuracy. You can specify the uniform color so it can select the appropriate people
out of a scene. The operator could say “play at second” and the autofocus would focus
at the appropriate distance and on the appropriate player, making it faster and less
likely to focus on the wrong subject entirely. (Yes, one of us spends way too much time
taking pictures at Little League games.)

Plays do more than simply allow the operator to change many more specific set-
tings at once, because plays can contain information about the desired end product; the
goal for the shot. This enables, the automation to perform intent based actions based on
real-time information about the goal and environment where the shot is taken. For
example, the automation could be set to take the picture when the ball hits the bat, or
the bee lifts off the flower. These events happen too quickly to be reliably captured
manually, but can be captured by automation if it “knows” what to look for.

Once the automation knows the goal, it can also determine whether the goal is
being met. For example, if there is not enough light, the shutter speeds necessary to
stop motion may result in underexposure. Similarly, it may not be possible to expose a
scene in a way that captures both shadow and highlight detail. In these cases the camera
might warn the operator, suggesting the use of a flash or asking whether it should
sacrifice the shadows or the highlights.

2.2 Navigating by Car

Today nearly everyone drives with a navigation system that would have been
unimaginable just ten years ago. Enter your destination, and these systems plot a route

Beyond Point Design: General Pattern to Specific Implementations 37



for you that, to the degree possible, avoids traffic delays. They then provide you with
turn-by-turn directions and offer to reroute you as the traffic situation changes.

These systems already provide some HAT-like features. They allow some speci-
fication of high-level goals (e.g., mode of transportation, fastest time, shortest route,
avoid tolls, avoid highways) and the navigation system will generate route options with
estimated driving times. On a computer, you can even create a route manually, and
Google Maps, will give you an estimate of how long it will take to drive it. However, in
current systems, the list of options is relatively limited. To some extent, this maybe
unavoidable. Today’s automation may not have a good sense of what makes a road
scenic or fun to drive. Thus, if finding a scenic route is a goal, greater input from the
operator may be required. However, in choosing a scenic route, the operator pre-
sumably would appreciate feedback from the automation about things it does know, for
example, time to destination and road closures.

Current navigation systems also fail to give operators crucial information related to
what is often the primary question on their minds: Am I going to make it there on time?
They do give you an estimate of your arrival time based on current driving conditions,
and often a fairly useless reason for any delay (e.g., “Traffic is heavy”). However,
driving in traffic is generally not so simple. Apple, Google, and Waze have access to
large databases from which they could generate statistical profiles that would allow
them to answer questions like: How early do I have to leave in order to have a 95%
chance of being on time? What is the probability that I hit traffic on the Bayshore
Freeway if I leave at 3:00? What alternatives do I have if traffic gets worse?

The answers to these questions would allow a user to develop a plan for a trip that
goes beyond the routing currently provided, to develop alternatives in case problems
develop in transit. Current navigation systems offer to reroute you if traffic patterns
change and another route becomes faster. Unfortunately, while you are driving is not
the time for “bi-directional communication” with your navigation system; carefully
vetting the proffered route is difficult (and possibly illegal) while driving. On the other
hand, simply accepting this offer, can be a bit of a crapshoot. You might end up zipping
along a highway, but you might find yourself in a warren of little streets in a ques-
tionable neighborhood. A solution to this problem might be to move the bi-directional
communication to before departure. If you live in a large city with traffic problems, you
probably find yourself periodically discussing your commute with co-workers. You
probably discuss your strategies for getting home. Leave by 4:00, take one freeway
unless it is unusually slow, in which case switch to surface streets. Maybe a co-worker
has suggested a new better route. We suggest that navigation systems could become
like very knowledgeable co-workers (at least knowledgeable when it comes to traffic)
sitting in the right seat looking at the bigger picture. Using the navigation system, you
could develop a strategy for your commute. This strategy does not have to be static.
Maybe you have a preferred route and are only willing to change if you can save ten
minutes. Once en route, maybe you are willing to be rerouted from one freeway to
another to save five minutes, but only want to switch to surface streets if it will save ten
minutes. Maybe you only want to switch if there is a 90% chance that the new route
will actually end up being faster. Maybe you want the automation to ask before
switching you to surface streets but simply to reroute you when it finds a faster
highway. These strategies look a lot like the plays discussed above. They can be very

38 J. Lachter et al.



complicated. However, because they can be formulated offline, they allow you to direct
how to adapt to changing driving conditions without requiring you to negotiate with the
navigation system while you are driving. Further, because these plays can be reused
every time you drive to and from work, investing some time in developing a good one
can save significant amounts of time down the road.

3 HAT Design Patterns

Across aviation, photography, and automobile navigation, we see very capable
automation that does not achieve its full potential because it is not aware of the goals
and expertise of its human operators. In each case, default parameters are set by
designers and engineers that assume a set of generic goals on the part of the user. These
defaults are difficult or impossible for the operators to modify. It is often unclear what
they even are. While the human could, in many cases, ignore the automation, this
would sacrifice important abilities the automation has that could improve outcomes. In
each case we propose an interface that allows the operator better access to modify these
parameters by specifying goals in a more nuanced way, by providing transparency into
how the automation will meet those goals, and by allowing for negotiation with the
automation when those goals cannot be met. Here we attempt to capture what gener-
alizes across these domains.

3.1 Plays

One solution that appears to be useful across all the domains we have looked at is
plays. Plays encapsulate goals, procedures, and division of responsibility into a
package that can be specified offline and instantiated quickly in real-time situations.
Plays help to realize our tenet that the operator is in control by allowing the operator to
explicitly request a course of action quickly, reducing the need for automation to guess
at the operator’s intent. Plays do this by shifting much of the communication about
context and authority (see Structure in Sect. 3.5 below), offline. We see this in the
development of the play for photographing baseball where team colors and field
position are entered before the game, and in the navigation example where various
route options and their priority are entered before departure. Plays can also help with
transparency, for instance, in the automobile navigation case, the plays make the
priorities used by the automation explicit.

3.2 Timing

One interesting generalization between these examples is the effect of timing. In both
the photography and the navigation example, there is a planning phase, where speci-
fication of the set of relevant plays occurs, and an execution phase. The execution
phase itself consists of discrete action events (taking of pictures; path changes), with
pauses between them. Changes to the play can occur between these actions, but would
be disruptive during execution.

Beyond Point Design: General Pattern to Specific Implementations 39



3.3 Bi-directional Communication

Another solution that seems to generalize across domains is bi-directional communi-
cation. Much work has gone into the proper allocation of functions between automation
and human operators (e.g., [4, 7]). However, in human-human teams, team-members
often perform similar if not identical functions; just imagine a brainstorming session.
More formally, with traditional “Pilot Flying/Pilot Monitoring” procedures in aviation,
a second person is used to generate ideas and catch errors more than to add new
functionality. Interestingly, there is a similar style of programming, called pair pro-
gramming, where two programmers sit together at one monitor, one typing code and
the other monitoring for errors. We see something similar in both the photography and
navigation discussions above. Both the automation and the human operator may have a
role in performing a particular function, potentially the same role. For example, in
photography, the operator can focus at roughly the correct distance and let the
automation fine tune, but sometimes the automation may focus and the operator may
need to fine tune. Similarly in navigation, the operator and automation may go back
and forth fine tuning a cross country trip to go along scenic routes and visit particular
locations while also meeting a timetable and reaching a camp ground each evening.
While the human sets the mission level goals, even at that level automation may have
input as to whether the goals are achievable. We see this sort of back and forth,
bi-directional communication, as a critical part of making human-computer interaction
into teaming. Thus, we believe the development of interfaces that support bi-directional
communication is crucial for HAT.

3.4 What Is a Design Pattern?

We have been discussing two HAT-inspired solutions to common problems with
automation: plays and bi-directional communication. In other fields, such generalized
solutions to common problems are often captured as “design patterns.” Design patterns
were introduced in architecture by Alexander, et al. in the influential book A Pattern
Language: Towns, Buildings, Construction [11]. For example, the pattern Raised Walk,
is offered as a solution to the problem “Where fast moving cars and pedestrians meet in
cities, the cars overwhelm the pedestrians. The car is king, and people are made to feel
small.”Design patterns have been particularly influential in computer programming. The
book Design Patterns: Elements of Reusable Object-Oriented Software [12], introduces
23 patterns, following a more elaborate format than A Pattern Language. Each pattern is
broken down into sections specifying (among other things) the intent, motivation, when
to use it, consequences, related patterns, and advice on implementation.

In conjunction with the NATO working group on Human Autonomy Teaming
(HFM-247), we have been working to develop similar design patterns for HAT. These
patterns are evolving as members of the working group attempt to define them in ways
that will be useful to their current projects, support generalization to new projects, and
interact well with each other. Below we give a preliminary sketch of a bi-directional
communication pattern, based on the observations above. This sketch follows an
abbreviated version of the format used by Gamma et al. [12].

40 J. Lachter et al.



3.5 A Bi-directional Communication Pattern

Intent. First, our pattern lays out a brief description of what the pattern attempts to do.
Our bi-directional communication pattern supports generation of input from all relevant
parties and its integration into decisions.

Motivation. Next comes a description of the problem and how the pattern solves it.
From the above examples, it is apparent that for many problems humans and
automation bring differing strengths and weaknesses to a problem. Looking at the task
of focusing the camera from the photography example, automation is generally faster
and more accurate than human operators. But automation can focus on the wrong
object or fail to find an object to focus on entirely. The operator can supply information
that improves the autofocus’s performance and add information when the autofocus
none-the-less gets it wrong. The result is a system that is less error prone than either
operator or automation by itself. The situation with navigation is very different, yet, in
many ways, very similar. Again the automation has important strengths. It can pull
together great stores of information and make them available to the user. However,
because navigation systems work in a domain filled with uncertainties (often behaving
in a complex and non-linear way), they cannot provide certain answers. Above we
imagine a future system that provides a more detailed statistical description of the
various options available to the operator. Still, it falls on the user to decide what types
of risk to take.

Further, the examples given here show the advantages of making communication
bi-directional with information going back and forth between the parties (as opposed to
a simpler system in which, for example, the automation simply alerts the operator to
some information).

Applicability. The examples cited above show the potential utility of implementing
the bi-directional communication pattern in cameras and navigation systems. Our
studies in aviation have shown that a back and forth between humans and automation
results in solutions that are more acceptable to the human operators [2, 13].
Bi-directional communication facilitates sharing of information regarding problem
definition, potential solutions and authority to act, information that has been shown to
be critical in a wide variety of situations [5, 8, 14–16]. Conversely, it is important that
automation be designed to take advantage of human knowledge and expertise.
Automation can only react appropriately within the range of situations it was developed
for. Outside this range, it may lack access to relevant information or the ability to
generate appropriate plans, making it brittle. Allowing human operators to input
information improves the system’s flexibility. Thus, we believe this pattern is broadly
applicable to complex automation.

There are some exceptions, however. Bi-directional communication may not work
with all types of automation such as genetic algorithms and neural networks, because
these systems lack the structure necessary to provide a rationale for their ratings and
recommendations. Also, there are situations where it may be necessary to limit com-
munications. This is particularly true in urgent situations where time is not available for
comprehensive communications.

Beyond Point Design: General Pattern to Specific Implementations 41



Structure. Next we describe, abstractly, what the solution looks like. For our
bi-directional communication pattern, we are concerned primarily with what types of
information need to be shared between automation and the human operator. We have
divided the information that needs to be shared between automation and the human
operator into three: Authority (what level of automation should the automation be
working at?), Context (what problem/what goals are the human and automation
attempting to work on?), and Options (how could we achieve our goal or solve our
problem?)

Authority. One crucial piece of information that needs to be communicated between
automation and the human operator regards authority. This could be as simple as
whether the operator or automation is performing certain tasks. At a slightly more
complex level, we can imagine assigning the automation intermediary levels of
automation (LOA) [17]. For example, the automation might propose a course of action
(e.g., the navigation system proposing a re-route) which must be accepted by the
operator. As automation gets more complex, however, we envision a more complex
authority structure. For instance, automation may be assigned more complex “working
agreements” like contingent LOAs (e.g., reroute me to surface streets if such a reroute
is predicted to save more than 10 min). Using such automation, human operators will
need access to the current working agreement and will need the ability to dynamically
change task allocations and levels of automation.

Context. Before developing a plan, automation and human operators must communi-
cate about the context in which the plan is being created:

• What is the goal? Ordinarily we would expect the operator to set the goal (Where do
I want to go?), but even here the automation may play a role (e.g., if a system failure
is detected on an aircraft, the automation might propose diverting [2]).

• What are the constraints? A given situation typically comes with some constraints
that rule out certain solutions (or, at least, make them categorically worse than
others). For example, an aircraft cannot divert to an airport that is outside its fuel
range, and a car cannot drive the wrong way down a one-way street. Both the
operator and the automation may be aware of constraints on how the goal might be
achieved and need to be able to convey this information to the other party. There
may also be temporal constraints, time limits by which actions must be taken.

• What are the priorities? In addition to constraints, other factors can be more nat-
urally traded-off against one another. If a passenger has a heart attack, you want to
transport him to a good medical facility as quickly as possible. That is great if the
closest airport also has the best medical facilities, but if it does not, how much time
are you willing to give up in order to get better facilities? Weights allow you to
define a function across the different factors that go into your decision, commu-
nicating to the automation how much the operator cares about these different
factors.

Options. Of course the reason you have the automation is to calculate options. This
could be at a very low implementation level (e.g., auto-throttles of an aircraft adding

42 J. Lachter et al.



thrust to maintain airspeed), or at a mission level (e.g., a route planning tool suggesting
where to divert to). The automation may be authorized to implement options without
operator input (aside from the initial authorization). However, the operator should have
access to these options, the rationale for selecting them, the projected consequences of
their implementation, and the automation’s confidence in these outcomes. The operator
should also be able to generate options and have the automation evaluate those as well.

Implementation. What guidelines are available for implementing this pattern?
Bi-directional communication takes time. If one had to negotiate with the autofocus
system before capturing an action shot, or a route-planning tool while driving in traffic,
it would not happen. The examples given above suggest, however, that some or all of
the communication can be done offline. Plays offer a means of encapsulating and
abbreviating this communication allowing the operators to specify when and how
decisions are to be made before the urgency of real-time operations sets in. Even when
the play is in progress, there are points of greater and lesser urgency. Interaction should
be scheduled between shots in the photography example or turns in the case of navi-
gation. In implementing this pattern for other domains, designers should be conscious
of similar rhythms.

4 Next Steps: Toward a Framework

HAT has been a goal since the dawn of the computer age [4]. However, today, with
self-driving cars on our streets and self-flying aircraft in our skies, we have a much
clearer picture of where automation is heading. While things that were only dreams a
short while ago have quickly become indispensible, our interactions with the
automation are often frustrating. Human factors engineers, unfortunately, are playing
catch-up in trying to shape a more satisfying relationship with these automated sys-
tems. In this paper we present a snapshot of our strategy for developing a framework
for HAT. Our strategy begins with tenets derived from CRM. CRM aims to maintain
clear lines of command and authority while fostering free and open exchange of
relevant information. We started from a position that the human operator should remain
in control, and that goals, plans, and information relevant to accomplishing those goals
and plans should be freely shared. We then asked, what does the operator remaining in
control and sharing this information look like in practice? Our goal is to iterate this
process, updating our tenets based on our exploration of their implications for the
design of real systems. In doing so, our goal is to develop a framework for HAT,
consisting of our tenets, guidelines for implementing the tenets, and software libraries
that make this implementation easier. To achieve these goals we must be able to find
generalizations in how human operators effectively use automation. We see the
development of HAT interfaces as being parallel to the development of graphical user
interfaces in the 1980s or touch interfaces earlier this century. In both cases there was
an early period of experimentation, which eventually settled into a familiar set of
design elements (e.g., desktop, windows, and menus). Software frameworks developed
that mirrored these design elements allowing for easy reuse, and accelerating adoption.
The kind of intelligent automation for which HAT would be useful is still in its infancy.

Beyond Point Design: General Pattern to Specific Implementations 43



We expect fluidity in HAT interface design, until the underlying automation matures.
However, we expect the kind of interaction discussed here to become increasingly
prevalent in the years to come.

Acknowledgments. We would like to acknowledge NASA’s Safe and Autonomous System
Operations Project, which funded this research. Thanks to Walter Johnson, Vernol Battiste, Mike
Matessa, and Gilles Coppin, for their thoughts and comments.

References

1. Shively, R.J., Lachter, J., Brandt, S.L., Matessa, M., Battiste, V., Johnson, W.: Why
human-autonomy teaming? In: Proceedings of the 8th International Conference on Applied
Human Factors and Ergonomics (2017, this edition)

2. Brandt, S.L., Russell, R., Lachter, J., Shively, R.J.,: A Human-autonomy teaming approach
for a flight-following task. In: Proceedings of the 8th International Conference on Applied
Human Factors and Ergonomics (2017, this edition)

3. Strybel, T., Keeler, J., Mattoon, N., Alvarez, A., Barakezyan, V., Barraza, E., Park, J.,
Vu, K.-P., Battiste, V.: Measuring the effectiveness of human automation teaming in reduced
crew operations. In: Proceedings of the 8th International Conference on Applied Human
Factors and Ergonomics (2017, this edition)

4. Licklider, J.C.R.: Man-computer symbiosis. IRE Trans. Hum. Factors Electron. 1, 4–11
(1960)

5. Endsley, M.R.: From here to autonomy: lessons learned from human-automation research.
Hum. Factors 59, 5–27 (2017)

6. Chen, J.Y.C., Barnes, M.J.: Human-agent teaming for multi-robot control: a literature
review. Army Research Lab Technical report, ARL-TR-6328 (2013)

7. Feigh, K.M., Pritchett, A.R.: Requirements for effective function allocation: a critical review.
J. Cogn. Eng. Decis. Mak. 8, 23–32 (2014)

8. Lyons, J.B.: Being transparent about transparency: a model for human robot interaction. In:
AIAA Spring Symposium Series (2013)

9. Woods, D.D.: The risks of autonomy: Doyle’s catch. J. Cog. Eng. Decis. Mak. 10, 131–133
(2016)

10. Miller, C.A., Parasuraman, R.: Designing for flexible interaction between humans and
automation: delegation interfaces for supervisory control. Hum. Factors 49, 57–75 (2007)

11. Alexander, C., Ishikawa, S., Silverstein, M., Ramió, J.R., Jacobson, M., Fiksdahl-King, I.,
Angel, S.: A Pattern Language: Towns Buildings Construction. Oxford University Press,
New York (1977)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Boston (1994)

13. Battiste, V., Johnson, W.W., Dao, Q., Brandt, S.L, Johnson, N.H., Granada, S.: Assessment
of flight crew acceptance of automated resolution suggestions and manual resolution tools.
In: 26th International Congress of the Aeronautical Sciences, Anchorage, AK (2008)

14. Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum. Factors
46, 50–80 (2004)

15. Hoff, K.A., Bashir, M.: Trust in automation: integrating empirical evidence on factors that
influence trust. Hum. Factors 5, 407–434 (2015)

44 J. Lachter et al.



16. Wiener, E.L., Kanki, B.G., Helmreich, R.L. (eds.): Crew Resource Management. Academic
Press, Cambridge (2010)

17. Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human
interaction with automation. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 30, 286–
297 (2000)

Beyond Point Design: General Pattern to Specific Implementations 45


	Beyond Point Design: General Pattern to Specific Implementations
	Abstract
	1 Introduction
	1.1 Problems with Highly Automated Systems
	1.2 HAT Solutions
	1.3 The Value of a Generalizable Solution

	2 HAT in Other Domains
	2.1 Photography
	2.2 Navigating by Car

	3 HAT Design Patterns
	3.1 Plays
	3.2 Timing
	3.3 Bi-directional Communication
	3.4 What Is a Design Pattern?
	3.5 A Bi-directional Communication Pattern

	4 Next Steps: Toward a Framework
	Acknowledgments
	References


