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Abstract
Honey bee viruses have gained substantial attention due to their involvement in
the collapse of honey bee colonies. This chapter focuses on honey bee viruses
linked to honey bee colony losses, specifically those that cause paralysis, those
carried by Varroa mites, and those that cause deformed wings. Often virus
infections in the colony are dormant and asymptomatic. Asymptomatic
infections can convert to active (and visible) symptomatic infections when
colonies are exposed to various stresses. These stresses include biological, such
as Varroa destructor, mechanical, such as the utilization of bee colonies for
pollination in net-covered crops, and chemical, such as the use of insecticides
harmful to bees. These stresses enable viruses to overcome natural honey bee
defenses, by facilitating viral access to the bee blood (hemolymph) and by
weakening its immune system. Knowledge and understanding of the
cause-and-effect interactions between viruses, stress factors, and honey bees
will promote the use of antistress measures to help ameliorate collapse of honey
bee colonies. This chapter is the result of intense collaboration between Y.S.,
instructor in beekeeping for the Extension Service of the Ministry of Agriculture
and N.C., researcher of insect viruses and particularly honey bee viruses at ARO.
The subjects presented below try to integrate the beekeeping and virus pathology
perspectives.
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1 Honey Bee Viruses and Colony Losses

Honey bee viruses have gained substantial attention since the first reports of colony
collapse disorder (CCD) where many honey bee (Apis mellifera) colonies were lost
in the US during 2006–2007 (Cox-Foster et al. 2007; Stokstad 2007). As a result, it
became clear to a wider public that bees were in trouble. Several pathogenic viruses
were then found to be actively involved in the collapse of honey bee colonies
around the world (Cox-Foster et al. 2007; Berthoud et al. 2013; Chen and Siede
2007; Cornman et al. 2012; Genersch et al. 2010; van Engelsdorp et al. 2009).

The most common honey bee viruses currently recognized are acute bee
paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus
(CBPV), deformed wing virus (DWV), Israeli acute bee paralysis (IAPV), Kashmir
bee virus (KBV), sacbrood virus (SBV), and Varroa destructor-1 (VDV-1) (Chen
and Siede 2007; de Miranda et al. 2010 2013; de Miranda and Genersch 2010;
Ribiere et al. 2010) (see Table 1).

Table 1 Honey bee viruses discussed in this chapter and their symptoms

Virus
name

Abbreviation Clade and family Symptoms Transmission
by V.
destructor

Acute bee
paralysis
virus

ABPV ABPV-IAPV-KBV
Dicistroviridae

Paralysis including: trembling,
leg paralysis, the inability to
fly, and general paralysis that
leads to death. No dead bees
accumulate in front of the
colony

Yes

Kashmir
bee virus

KBV

Israeli
acute bee
paralysis

IAPV

Chronic
bee
paralysis
virus

CBPV Unclassified Paralysis involving abnormal
trembling of body and wings.
Inability to fly, crawling at the
beehive entrance and on the
ground. Bloated abdomens
and hairless bees with black
coloration on the abdomen.
Piles of dead bees accumulate
in front of the colony.

No

Deformed
wing virus

DWV DWV-VDV-1-KV
Iflaviridae

Deformed wings, bloated and
shortened abdomens,
discoloration, and premature
death

Yes

Varroa
destructor-
1

VDV-1

Kakugo
virus

KV
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Renewed research has identified new viruses infectious to honey bees, such as
the various strains of Lake Sinai virus and aphid lethal paralysis virus Brookings
strain (Runckel et al. 2011, Cornman et al. 2012). The real impact on honey bee
colonies of some of the latter viruses is still unknown [for a comprehensive list of
viruses, see (de Miranda et al. 2013, Runckel et al. 2011)].

In this chapter, we will focus on the major honey bee viruses responsible for
recent colony losses. We will distinguish between viruses that cause paralysis
(acute or chronic) and those that cause the easily recognized symptom of emerging
bees with deformed wings (see Table 1).

2 Virus-Mediated Paralysis of the Honey Bee

The paralysis group of viruses Table 1 (de Miranda et al. 2010; Ribiere et al. 2010)
may be present in the colonies in covert asymptomatic infections (not visible) with
the symptoms described below appearing after the virus progresses to a more
virulent form.

ABPV-IAPV-KBV belong to the viral family Dicistroviridae, due to the nature
and specific organization of the viral genome; a single-strand RNA molecule
bearing all the information the virus needs to replicate in the cells of its host (de
Miranda et al. 2010).

Symptoms associated with paralysis viruses include trembling, leg paralysis, the
inability to fly, and general paralysis that leads to death [most often observed for
ABPV and IAPV and less frequently for KBV infections (de Miranda et al. 2010)].
In IAPV-infected hives, a relatively high number of smaller bees are often seen.
Some researchers reported dark cuticle pigmentation in adult bees infected with
IAPV and in pupae experimentally injected with the virus (Boncristiani et al. 2013;
Maori et al. 2007), but in experiments performed with emerging bees fed with
highly purified viral stocks, the bees never showed this symptom (Y.S. and N.C.,
unpublished observations). Paralysis by this group of viruses does not seem to
result in accumulation of dead bees in front of the beehive (de Miranda et al. 2010).

IAPV was initially linked to CCD because CCD colonies had high loads of this
infectious virus (Cox-Foster et al. 2007; Hou et al. 2014). Interestingly, IAPV was
detected in the heads of experimentally infected foragers that showed impaired
cognition and homing ability (Li et al. 2013). A recent study showed that IAPV was
most abundant in the gut, hypopharyngeal glands, and the nerves of infected adults
(Chen et al. 2014). Queens can bear the virus in the gut, spermatheca, and ovary and
can lay infected eggs as well (Chen et al. 2014). Newly emerging bees are very
sensitive to oral infection (mostly by trophallaxis).

The ectoparasite Varroa destructor is able to transmit viruses of this family,
though it seems that this happens less frequently than transmission of viruses of the
DWV clade (see below). In the USA and Europe, ABPV and IAPV prevalence
increases in the summer (Bailey et al. 1981; de Miranda et al. 2010; Chen et al.
2014), while in Israel, its prevalence peaked mostly in the fall (Soroker et al. 2011).
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CCD colonies detected in Israel had active IAPV infection with higher viral loads in
April and December (Hou et al. 2014). Acute paralysis virus (ABPV) was dis-
covered as a contaminant CBPV viral stocks (Bailey et al. 1963).

CBPV displays a different genomic organization (two single RNA segments of
different size packaged in the viral particles) and is not classified in any viral family
yet (Ribiere et al. 2010). From sequence analysis (the nature of the genomic
information), Lake Sinai viruses display partial similarity to CBPV; however, no
specific symptoms were associated with their infections in honey bees (Runckel
et al. 2011).

CBPV paralysis involves abnormal trembling of the body and wings. Symp-
tomatic bees are not able to fly and often crawl at the beehive entrance and on the
ground, and piles of dead bees can be seen in front of the colony. Bloated abdomens
and hairless bees with black coloration on the abdomens were also detected (Ribiere
et al. 2010). The virus seems not to be transmitted by Varroa mites (V. destructor)
(Ribiere et al. 2010). The infection develops slowly, from 6 days to two weeks,
depending upon the conditions and probably the viral strain. Following CBPV
infections in Israel, we were able to distinguish two types of infections:

1. an individual infected colony shows the typical symptoms of paralysis that are
usually detected by the end of the winter and beginning of the spring and,

2. a group of colonies become infected and dead bees pile up in front of the colony
during the spring-to-summer transition seasons.

Recently, we found that in most cases, CBPV infections were accompanied by
ABPV infections. We are currently investigating whether the type of infections
presented above have any correlation with the amount of ABPV present in single-
versus group-type infected colonies.

What factors determine the type of infection? It could be the evolution of the
virus to more virulent/infective strains, environmental interactions difficult to
reveal, and even characteristics of the colony. Research is ongoing to answer this
question. CBPV was also reported to be able to prevail in the colony in an
asymptomatic state (Ribiere et al. 2010).

CBPV exhibits broad distribution in the infected bee; remarkably high numbers
of viral particles were detected in the head. CBPV also prefers the honey bee
nervous system. Also, high numbers of viral copies (around 109 per ll) were
detected in the hemolymph of the infected host. The high preference of CBPV for
the bee’s nervous system correlates with trembling and other typical paralysis
symptoms observed in adult bees from infected hives (Ribiere et al. 2010).

CBPV infects adults, brood, and also eggs, but the virus replicates to higher
titers in worker bees (Blanchard et al. 2007). Experimental infections showed that
honey bee queens are susceptible to CBPV, probably transmitted by trophallaxis.
However, in naturally infected hives, there seem to exist behavioral strategies that
prevent the queen from being fed by infected workers (Amiri et al. 2014). Also,
CBPV can be transmitted by contact between infected bees and their non-infected
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mates, as well as by oral ingestion of infected feces that have high viral loads
(Ribiere et al. 2007).

CBPV was sometimes reported in association with Nosema ceranae infections
(Toplak et al. 2013).

3 Deformed Wing Virus Clade

In this group, we find the viruses of the DWV-VDV-1-Kakugo virus (KV) clade (de
Miranda and Genersch 2010). Though KV was mainly associated with aggressive
behavior of infected bees and VDV-1 was initially found in Varroa mites, this
group forms part of the clade because of the similarity of their genomes with DWV
(de Miranda and Genersch 2010; Fujiyuki et al. 2005; Ongus et al. 2004).
DWV-VDV-1 and KV belong to the Iflaviridae family of viruses [also with a
single-stranded RNA molecule similar to the dicistroviruses, but displaying a dif-
ferent organization (de Miranda and Genersch 2010)].

Queens, workers, and brood can be infected with viruses of the DWV clade (de
Miranda and Genersch 2010). Vertical transmission by drones and queens was
reported as well (Fievet et al. 2006). Horizontal transmission by larval food and
trophallaxis was also reported; however, the oral route of infection mostly results in
asymptomatic infections. Before the invasion of Varroa, DWV was often present in
honey bee colonies as an asymptomatic or mild infection (Gauthier et al. 2007; de
Miranda and Genersch 2010). The spread of V. destructor throughout the world
contributed to the horizontal transmission of DWV, mostly by the ability of the mite
to carry and inject the virus directly into the bee hemolymph. This direct injection
promotes the conversion of avirulent or low virulent asymptomatic viruses to more
virulent viruses that induced symptomatic infections [(Moore et al. 2011; Ryabov
et al. 2014) and see Sect. 4.1]. DWV and VDV-1 were shown to replicate in the
mite as well but they seem not to harm it (Ongus et al. 2004; Shen et al. 2005; Yue
and Genersch 2005; Tentcheva et al. 2006).

Worker honey bees infected with virulent DWV/VDV-1-like viruses displayed
wing deformation, bloated and shortened abdomens, and discoloration (de Miranda
and Genersch 2010, Zioni et al. 2011, de Miranda et al. 2013) and resulted in
premature death of the bees.

DWV has been detected in the midgut of infected workers (Fievet et al. 2006)
and in the hemolymph of Varroa-parasitized individuals as well as in the gut, wings,
legs, head, thorax, and abdomen (Boncristiani et al. 2009; Shah et al. 2009). High
loads of virus were also localized to the heads of infected workers (Yue and
Genersch 2005; Zioni et al. 2011). Interestingly, DWV-infected bees showed
learning disabilities (Iqbal and Mueller 2007). Moreover, extremely virulent strains
may cause premature death of infected larvae parasitized with Varroa, aborting the
emergence of worker bees (Martin 2001). The increasing imbalance in the bee
population composition in such infected colonies can lead to their subsequent
collapse (Dainat et al. 2012a). DWV has a worldwide distribution and in Europe
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and Israel, it is the most prevalent virus (Genersch et al. 2010; Soroker et al. 2011;
de Miranda and Genersch 2010; Berthoud et al. 2013). In Europe, DWV is highly
associated with losses of overwintering colonies (Dainat et al. 2012b; Highfield
et al. 2009).

4 An Abrupt Awakening: Stress-Induced Viral Infections

As discussed above, honey bee viruses can be carried by individual bees in an
asymptomatic or silent mode. This equilibrium between the host and the pathogen
can be broken by the appearance of outside stress factors, such as chemical or
biological stresses that can induce replication of dormant viruses. In this section,
scenarios of biological, chemical, and other stresses that may cause dormant viruses
to replicate and cause symptoms will be covered.

4.1 DWV and the Biological Vector Varroa destructor,
a Vicious Cycle

The rapid expansion of the ectoparasite V. destructor throughout the globe from the
Eastern honey bee A. cerana to the Western honey bee A. mellifera introduced a
new stress factor to Western bee colonies since the viruses were mostly asymp-
tomatic (de Miranda and Genersch 2010). Varroa serves as a vector of viruses, thus
profoundly changing the manner of transmission (Yue and Genersch 2005). Also,
several investigations indicated that Varroa exerts a debilitating immunosuppres-
sive effect in the parasitized bee (Shen et al. 2005; Nazzi et al. 2012). DWV became
one of the most prevalent viruses in honey bee colonies and collapsing colonies
showing typical symptoms of DWV infections became more frequent (de Miranda
and Genersch 2010). Furthermore, the number of Varroa mites that could induce the
collapse of a colony at the beginning of the Varroa invasion diminished over time.
For example, in Germany at the beginning of Varroa infestation of A. mellifera, the
colonies were able to sustain high levels of mites, up to 10,000, but nowadays mite
levels above 3000 may be enough to cause colony collapse (Boecking and Gen-
ersch 2008). Varroa-parasitized bees with deformed wings symptoms showed very
high loads of DWV-like viruses (Gisder et al. 2009; Zioni et al. 2011).

During the beekeeping season, when the colonies display high brood activity and
rapid population increase (due to the abundant forage), no treatment against Varroa
is usually applied to avoid contaminating the honey with chemicals. Thus, the
Varroa population increases and concomitantly the DWV-like viruses, which is
often unnoticed. But when Varroa treatments begin, the viruses do not necessarily
disappear. Harsher climatic conditions, like the European winter or warm Middle
Eastern summer, when forage is poor, lead to shortened life span of virus-infected
adults and rapid bee depopulation of the colony. Since the colony is unable to
replace the lost bees with a strong buildup of younger bees. Thus, despite success in
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controlling/combating Varroa, the colonies may collapse with characteristic
post-Varroa syndrome.

An insight to the nature of this phenomenon was explained in various studies.
Ongus et al. (2004) discovered VDV-1 that appeared to replicate in the mite.

VDV-1 is highly homologous to DWV [about 84% similarity at the genomic level
(Ongus et al. 2004)]. In addition, DWV replicates to high loads in the mite and
mostly in the head of symptomatic bees (Gisder et al. 2009; Yue and Genersch
2005). Moreover, DWV-symptomatic bees bore recombinant DWV/VDV-1 viruses
in their heads (Moore et al. 2011; Zioni et al. 2011). These results suggested that
parasitism by Varroa provoked not only a significant increase in viral prevalence
and a quantitative change enhancing replication of DWV, but also a qualitative
change in the virus, selecting from a mild to a more virulent strain. These
hypotheses were confirmed by two studies: one following the invasion of Varroa to
the Hawaiian Islands under natural conditions and the second in the UK with
experimentally infected hives (Martin et al. 2012; Ryabov et al. 2014). This sug-
gested that either the immunosuppressing activity of Varroa on the honey bee
and/or the ability of the virus to replicate to high loads in the mite and in the bee
promoted the transformation of DWV and the appearance of DWV-VDV-1
recombinants and virulent DWV strains (Martin et al. 2012; Ryabov et al. 2014).

Nazzi et al. (2012) demonstrated that Varroa and DWV build on weakening of
the bee’s immune system mediated by NfĸB, a protein that regulates its
stress-related responses (Nazzi et al. 2012). At high DWV loads (over 1015 viral
copies per bee), this results in the down-regulation of genes involved in the immune
response of the honey bee. Thus, the renewed ability of the virus to change (me-
diated by Varroa) and replicate to higher loads could benefit the parasite, whose
gain could be a reduction in the ability of the bee host to react to it (e.g. to being
wounded which is known to trigger immune responses (Nazzi et al. 2012)]. What is
the advantage to the virus? Further studies showed that direct injection of DWV
into the body of honey bee larvae enabled amplification of the virus and a rapid
emergence of DWV virulent strains [DWV-VDV-1-like recombinants (Gisder et al.
2009; Ryabov et al. 2014)].

These data enable us to hypothesize that the mite contribution to the emergence
of virulent strains of DWV could be:

1. The rapid accumulation of a variety of DWV variant strains that may even
replicate in the body of the mite and,

2. Their subsequent injection directly into the bee hemolymph, overcoming the
primary immune defenses of the bee which are normally directed toward
pathogens naturally introduced by oral ingestion, a route known to be much less
effective (Mockel et al. 2011).

A summary of the Varroa-DWV vicious cycle is presented in Fig. 1.
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5 CBPV Opportunistic Infections and Mechanical Stress

A common observation is that CBPV infections erupt often when the colony seems
to be strong (a robust population of adults and brood). Frequently, this eruption was
attributed to the mechanical break of the bees’ body hairs due to overcrowding of
the colony population before swarming; such breakage could facilitate the access of
contaminating CBPV to the bee hemolymph (Ribiere et al. 2010).

Another example of stress-induced infections was observed after beehives were
put under nets and into greenhouses for pollination. Keeping up with the increasing
trend in Israel to utilize honey bee hives for pollination in net-covered crops, we
noticed an increase in piles of dead bees in the front of those hives. These bees
displayed the characteristics typical of CBPV-induced paralysis and death. Diag-
nosis performed in the laboratory showed that they were highly infected with CBPV
(viral titers of above 109 particles per bee). To confirm our initial findings, we
introduced a group of colonies at the entrance of net-covered crops at two locations
in the country, and kept an equal number of control colonies uncovered, at open
crop conditions. We found that the hives located at the covered crops’ entrance
quickly contracted CBPV (Slabezki, Y, Dag, A. and Chejanovsky N, Manuscript in
preparation).

These findings support the hypothesis that mechanical stress caused cuticular
damage to the pollen/nectar-loaded honey bee foragers by their collision with the
nets in an attempt to return to the hive, providing the virus quick access to the insect
hemolymph, and thus overcoming the insect defenses.

Fig. 1 The Varroa–DWV cycle. a Infestation of a new colony by Varroa carrying low DWV
loads (blue Varroa) and conversion to highly virulent DWV. 1. Brood infestation. 2. Reproduction.
3. Reproduction and amplification of the viral load. 4. Amplification of DWV-virus injected to the
bee hemolymph induces appearance of highly virulent DWV. 5. Emerging bees carrying Varroa
with highly virulent DWV (red Varroa) can transmit the DWV-loaded parasite and/or DWV to
other bees from the same colony. 6 Foraging bees can transmit the highly DWV-loaded Varroa to
other colonies. b The Varroa–DWV cycle re-initiates with the red Varroa in the same or in other
colonies and brings them to their collapse
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6 DWV and Insecticide Exposure—Insecticide Spread
and Virus Emergence

Some insecticides were documented as causing stress responses in honey bees
(Blacquiere et al. 2012). This resulted in temporarily banning the use of three
neonicotinoids by the European Union (Gross 2013). A recent study showed that
application of the neonicotinoid clothianidin weakened the immune defenses of
recently emerged worker bees (Di Prisco et al. 2013). Furthermore, it involved the
repression of expression of another member of the NfĸB family (Di Prisco et al.
2013). Under these circumstances, DWV-dormant infections with low levels of
viral replication were promoted to replicate DWV at high levels, comparable to
those observed in symptomatic infections.

The stress situations presented above referred to induction of particular viruses.
However, we and others have observed the simultaneous or progressive appearance
of several pathogenic viruses upon weakening of honey bee defenses by biological,
chemical, or environmental stresses. These superinfections then contribute to the
rapid deterioration of the colony.

7 Prophylaxis Methods and Antiviral Approaches

7.1 What Can We Learn from Stress-Induced Infections?

The three cases discussed in detail above exposed a link between stress induction,
weakening of the immune system of the bees, and the activation of lethal viral
infections (summarized in Fig. 2) and suggest that if we adopt appropriate mea-
sures, we should be able to maintain the damage to colonies at sustainable levels. If
we “beekeepers” look at treatment according to the different elements that can
co-act to weaken a colony, beekeepers should be able to attain a comprehensive
treatment.

7.2 Can We Treat Viral Infections?

From the point of view of virus treatments, we should aim to reduce:

1. The conversion of avirulent strains to virulent strains.
2. Block the replication of viruses.
3. Reduce the possibility of their transmission.

7.2.1 Conversion of Avirulent Strains to Virulent Strains
As we discussed above, Varroa is an active vector of viruses and promotes their
direct access to the host hemolymph overcoming bee defenses. This direct infection
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route facilitates conversion of viruses from avirulent to virulent strains. To interrupt
this process, we (beekeepers) should aim to diminish the effect of Varroa by
controlling the mites. The timing and dose of treatment should be applied early in
the season, which is crucial to avoid virus conversion (from low virulent to highly
virulent strains).

However, some Varroa treatments can induce stress in bees and incidentally
increase the virus too. For example, it has been reported that coumaphos and
fluvalinate treatments can induce changes in certain honey bee genes related to
immunity, detoxification, behavioral maturation, and nutrition (Boncristiani et al.
2012; Schmehl et al. 2014). Thus, applying thoughtful, professionally assisted
treatments against Varroa (and even alternating control measures to avoid the
emergence of resistant Varroa mites) could diminish its long-term impact on bee
health. Successful breeding of bees to resist Varroa infestation might achieve
similar results (Locke et al. 2014; Rinderer et al. 2010; Buchler et al. 2010).

Knowledge of the insecticides used on the crops in the vicinity to the bee
colonies could prevent the replication of undesirable highly pathogenic viruses.
From a long-term perspective, it will be important to coordinate insecticide appli-
cations (type and timing) with honey bee colony placement and more strongly
advocating the use of honey bee-friendly insecticides (if these even exist).

Proper nutrition, such as pollen (or protein-based feeding), was shown to reduce
the impact of the pesticide chlorpyrifos; and it can help to reduce the negative
impact of some insecticides (Schmehl et al. 2014). In contrast, excessive reliance on
feeding sugar syrup may have detrimental effects, since they may have a negative
impact on the performance of the honey bee immune system (Galbraith et al. 2015).

In other cases, such as mechanical stress, using nets that could be less damaging
to the bees, or even working in other types of covered crops, would help.

Fig. 2 Biological (e.g.
mites), chemical (insecticides,
miticides), and mechanical
stressors can induce dormant
and new honey bee virus
infections
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7.2.2 Block Replication of Viruses
Viruses replicate only in the body of their hosts, yielding high numbers of viral
particles (virions) that propagate the infection. During this process, multiple copies
of the viral genome that encodes the genetic information for its propagation are
produced (from a million to a billion copies). In addition, new variations of the
original information (variants) are produced, and the chance that these variants
convert from an avirulent to a more virulent virus and infectious strains (viral strain)
increases with the increase in the number of virions produced.

Thus, blocking the ability of viruses to replicate may reduce the chance of the
emergence of more virulent and infectious strains. Sometimes the host (in this case
the honey bee) can develop such blocking, but little is known about the ability of
different bee races to resist viral infections. Much more research needs to be sup-
ported in these areas.

On the other hand, a promising approach is based on the fact that it is possible to
target the replication of honey bee viruses by utilizing biological tools that mimic or
enhance the host immune response. This approach is based on what is known as the
RNA interference response (Niu et al. 2014). This natural response detects the
presence of foreign (non-host) RNA, such as the genome of RNA viruses of the
honey bee, and promotes their specific degradation when the virus is trying to
replicate (Niu et al. 2014). During this process, the viral genome is chopped into
useless pieces by the honey bee immune defense mechanism. It became clear that it
is possible to induce this response by producing in vitro (in the laboratory) mole-
cules of double-strand RNA. Double-stranded RNAs, or (dsRNAs), are short
molecules with one strand and its mirror copy). Such RNA strands carry small bits
of the genetic information for specific viruses. Subsequent injections or feeding of
these RNA molecules to honey bees triggered the RNAi response. This resulted in
the inhibition of the ability of the virus to replicate in the honey bee. This was
shown for SBV, DWV, and IAPV (Desai et al. 2012; Liu et al. 2010; Maori et al.
2009). Furthermore, in the case of IAPV, it was revealed that the administration of
dsRNA protected the colonies from viral infection (Hunter et al. 2010). However, in
the latter case, RNAi was administrated concurrently with IAPV, and it remains to
be demonstrated that its application postinfection is efficient to diminish/ameliorate
viral damage (Hunter et al. 2010).

From the very beginning of animal and plant virus research in the middle of the
last century, viruses were considered as mysterious pathogens. However, research
has produced drugs and treatments against a series of serious viral pathogens, such
as the flu viruses, herpes viruses, human immunodeficiency viruses, small pox
virus. These treatments were aimed at stopping the multiplication of the viruses.
Thus, it is conceivable that in the future, there will be progress in understanding the
replication of honey bee viruses which may yield experimental drugs that could
block virus infections or immunize honey bees.
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7.2.3 Reduce Their Transmission
Early monitoring of symptomatic viral infections can be used as a preventative
measurement. In the case of DWV, for example, observant beekeepers could rec-
ognize that the more virulent viral strains were already present (at least in some
colonies), and measures can be taken to prevent their spread.

8 Conclusions

There is much more to be learned about bee viruses, such as the natural resistance
of different honey bee strains against virus infections, the genetic basis of this
resistance, and the effect of human-borne and environmental factors that can upset
or maintain bee virus infections. Current research is trying to understand more
about these processes.

In the meantime, we hope that this material presented an overall view of virus
infections associated with colony losses, the stress factors involved in their acute
manifestation, and possible measures that can contribute to ameliorating their
impact on your honey bee operation.
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Glossary

Genome A DNA or RNA molecule, depending on the virus, bearing all the
information the virus needs to replicate in the cells of its host

Viral genomic copies Number of viral genomes that bear the genetic information
that allows the virus to produce more viral particles

Viral loads Usually refers to the number of viral genomic copies which is the most
common method of estimating honey bee viruses, but it could also refer as well
to the number of infectious virus particles

Viral genomic replication The process by which the virus produces new copies,
replicas, of itself, that are packed in new viral particles

Immunosuppression Weakening of the immune system, body defenses
Down-regulation of genes A molecular process that results in lower expression of

the proteins that are products of these genes
Genomic homology Similarity of nucleotide sequences between virus genomes
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