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Abstract. Several researchers’ innovative work during past years has led to
development of numerous optimization techniques. Complex task that were once
difficult to be compute using traditional methods now can use the optimization
techniques for computation. Differential Evolution (DE) is a powerful, population
based, stochastic optimization algorithm. The mutation strategy of DE algorithm
is an important operator as it aids in generating a new solution vector. In this
paper, we are introducing a variant of DE mutation strategy named RDE (Recon‐
structed Differential Evolution). This strategy use three different control param‐
eters. The results computed here are then compared with the results of an existing
mutation strategy where in the comparison show a better performance for the new
revised strategy.

Keywords: Optimization · Mutation · Control parameters · Differential evolution

1 Introduction

The idea of natural selection and biological evolution propounded by Charles Darwin
resulted in the concept of Evolutionary algorithm (EA). For computing a particular
problem, an environment is created where in the potential solution can evolve. Envi‐
ronment is framed by the guidelines of the problem and fortifies the evolution of good
solution. EA is a good technique for searching the optimal solutions. EA uses various
concepts of reproduction, selection, mutation and recombination. Various evolutionary
algorithms have been developed in due course of time. Initially researchers used the
genetic algorithm technique for solving complex problems. In 1997, Storn and Price
proposed the Differential Evolution (DE) technique. Like various other evolutionary
algorithms, DE is also a population based stochastic method. DE is one of the best
evolutionary algorithm for solving real valued test functions.

Numerous attempts are being done to improve the performance of DE for several
specific applications. The efficiency and performance of DE greatly depends on the trial
vector generation strategy and the control parameters used. Several variants of the
existing technique are developed by changing these trial vector strategy and control
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parameters. The three control parameters in DE algorithm are: mutation scale factor F,
crossover constant and the population size.

In this paper, a variant of the mutation strategy named RDE is proposed by using
three different mutation scale factors. One of the scale factor is a constant value and the
other two scale factors are variable values between the range (0,1) where one factor is
the complement of the other value. This strategy showed better efficiency compared to
the existing mutation strategies.

2 Background Study

Das et al. [6] proposed two new variants of DE, DE with random scale factor (DERSF)
and DE with time varying scale factor(DETVSF). The new method showed statistically
improved results. Brest et al. [5] presented a new version of DE with self-adaptive
control parameter settings showing better efficiency in comparison to the existing tech‐
niques. Grosan et al. [9] gave the need for hybridizing evolutionary algorithms and
proposed the possibilities on hybridization. Also a review on the existing hybrid tech‐
niques were also stated. Das et al. [8] gave a detailed study on particle swarm optimi‐
zation (PSO) and DE. Subsequently, a mutual synergy of PSO and DE were discussed
and results computed. Ali et al. [1] proposed the technique of using nonlinear simplex
method with pseudo number to generate the initial population. The method was named
as NSDE and results were tabulated and compared. Xin et al. [10] developed a novel
adaptive hybrid of PSO and DE (HPSO-DE). This technique maintains the diversity of
population.

Gong et al. [3] presented a set of improved DE that try to adaptively choose a suitable
strategy for a problem at hand. In this paper, different parameter adaption methods of
DE are used for different strategies. The efficiency of the technique was tested and
verified. Islam et al. [2] proposed a new mutation strategy using fitness induced parent
selection for binomial crossover of DE and a scheme of adapting two of the control
parameters to achieve better results. Gong et al. [4] proposed ranking based mutation
operator for DE algorithm. Here the selection of the parent in mutation operation is
selected according to the ranking in the current population. The proposed operators were
integrated into advanced DE variants to verify its effects. The proposed mutation oper‐
ators enhanced the performance of DE algorithm.

Yu et al. [14] proposed an adaptive DE (ADE) algorithm with new mutation strategy
and a two level adaptive parameter control scheme. This technique has a good balance
between population diversity and fast convergence. Tang et al. [11] developed a novel
variant of DE with an individual dependent mechanism that uses an individual dependent
parameter (IDP) and an individual dependent mutation (IDM) strategy. Tabulated results
show greater performance to classical technique. Qiu et al. [12] developed the simulta‐
neous use of individuals across generations from objective based perspective. Results
obtained show the statistical superiority of the proposed technique to several evolu‐
tionary algorithms. Ramadas et al. [9] proposed an algorithm ssFPA/DE where Differ‐
ential evolution approach was combined with the concept of Flower Pollination Algo‐
rithm. The proposed technique gave better results in comparison to tradition DE
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approach. Ramadas et al. [10] also proposed an new mutation strategy named ReDE –
a revised mutation strategy. This strategy used two control parameters and two types of
population. The efficiency of the new technique was better than the traditional approach.

3 Differential Evolution

In a search space of n-dimensions of likely solutions, a specified number of vectors are
arbitrarily identified. In each iteration or generation, a new vector will be formed by
combining two or more vectors which are arbitrarily identified from the population. The
outcome vector is with predetermined target vector. A trial vector is created in a process
called recombination. If it produce a better value of objective function, then the trial
vectors are accepted in next generation. Until some stopping criteria is satisfied, the
mutation, recombination and selection are continued. DE use the population of NP
candidate solutions denoted as Xi,G where i = 1, 2… NP where index i denote population
and G represents generation of population. Differential Evolution algorithm depends on
the three operations mainly mutation, selection and reproduction.

Mutation: This operator causes DE to be distinct from other Evolutionary algorithms. It
computes the weighted difference between the vectors in population. Mutation starts by
arbitrarily choosing three individuals from the population. This operation extends the
workspace. For a given parameter Xi,G we are arbitrarily selecting 3 vectors Xr1,G, Xr2,G and
Xr3,G such that r1, r2, r3 are distinct. Then the donor vector Vi,G is computed as:

Vi,G = Xr1,G + F × (Xr2,G − Xr3,G) (1)

Here F is the mutation factor which is a constant from [0,1]. The above strategy is
denoted as DE/rand/1. Mutation function demarcates one DE scheme from another. The
often used DE codes are given below:

DE∕rand∕2 Vi,G = Xr1,G + F × (Xr2,G − Xr3,G) + F × (Xr4,G − Xr5,G) (2)

DE∕best∕1 Vi,G = Xbest,G + F × (Xr1,G − Xr2,G) (3)

DE∕best∕2 Vi,G = Xbest,G + F × (Xr1,G − Xr2,G) + F × (Xr3,G − Xr4,G) (4)

DE∕rand − to − best∕1 Vi,G = Xr1,G + F × (Xbest,G − Xr2,G) + F × (Xr3,G − Xr4,G) (5)

where, i = 1…NP, r1, r2, r3 ∈ {1,… , NP} are randomly selected and satisfy:
r1 ≠ r2 ≠ r3 ≠ i, F ∈ [0, 1], F is the control parameter proposed by Storn and Price.
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Crossover: This process also termed as recombination, includes successful solutions
into the population. The trial vector Ui,G is created for target vector Xi,G through binomial
crossover. Components of donor vector enter trial vector with probability Cr ∈ [0, 1]. Cr

is the crossover probability which is selected along with population size NP ≥ 4.

Uj,i,G+1 =

{
Vj,i,G+1 if randi,j[0, 1] ≤ Cror if j = Irand

Xj,i,G+1 if randi,j[0, 1] > Cror if j ≠ Irand

(6)

Here randi,j ≈ ∪[0, 1] and Irand is random integer from 1,2…N.

Selection: This operation differs from the selection operation of other evolutionary
algorithms. Here the population for next generation is chosen from vectors in current
population and its subsequent trial vectors. The target vector Xi,G is matched with the
trial vector Vi,G and the least value of function is taken into next generation.

Xi,G+1

{
Ui,G+1 if f (Ui,G+1) ≤ f (Xi,G) where i = 1, 2,…N

Xi,G otherwise
(7)

4 Reconstructed Mutation Strategy

In RDE, we have used three control parameters. By involving the best solution vector,
this strategy coincides faster as compared to the traditional strategies having random
vectors only. The variables Xr1,G, Xr2,G, Xr3,G are chosen at random. The parameter F
known as amplifying parameter takes a constant value. The new parameter N1 takes a
varying value which lies between (0,1) and N2 takes the complement of N1. As we are
taking three different control parameters, the value of donor vector is improved greatly
and hence the efficiency of DE algorithm is enhanced immensely. The proposed strategy
is given as:

X′ = Xr1,G + F ∗
(
N1 ∗

(
Xbest,G − Xr2,G

)
− N2 ∗

(
Xbest,G − Xr3,G

))
(8)

5 Experimental Settings

The above stated variant was implemented using MATLABr2008b on i7 core processor,
64 bit operating system with 12 GB RAM. A comparative result was obtained with the
traditional mutation strategies. Here, we have taken 5 traditional mutation strategy (DE/
rand/, DE/rand/2, DE/best/1, DE/best/2, DE/rand-to-best/1) and the proposed technique
RDE and values obtained were compared. The traditional mutation strategies were
replaced with the proposed mutation strategy and RDE was composed. In the experiment
conducted, mutation constant F is given the value 0.6 and the crossover probability Cr

is given the value 0.8. We have taken fifteen different functions and calculated the results
by fixing the value to reach and number of iterations. We have also tested the strategy
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by fixing the dimension as 25. One of the results obtained and their corresponding graphs
are given below:

Based on Best Value after 50 runs (vtr = 1.e − 015):

Table 1. Best value after 50 runs for different functions

Function DE RDE
DE/best/1 DE/rand/1 DE/best-to-

rand/1
De/best/2 DE/rand/2

Sphere 9.73e − 016 6.9e – 016 7.532e − 016 9.655e − 016 7.17e + 0 6.6e − 016
Beale 3.265e − 016 2.318e − 016 3.713e − 016 7.587e − 016 7.725e − 016 7.7e − 016
Booth 3.497e − 016 2.0514e − 016 6.0738e − 016 7.0792e − 016 8.35e − 016 9.2e − 015
Schwefel − 1.8e + 003 − 2.253e + 003 −7.8403e + 001 − 1.38e +003 −1.66e +003 −3.3e + 002
Michlewicz − 7.6399e +00 − 7.214e + 00 −7.39e + 00 − 6.959 e + 00 −6.847 e + 00 −1.14e + 001
Schaffer N.2 6.6e − 016 8.88e – 016 4.43e − 016 6.55e – 016 8.87e − 016 6.66e − 016
Schaffer N.4 3.05e − 015 2.9e – 001 2.92 − 001 2.93e – 001 2.89e − 001 2.85e − 001
HimmelBlau 1.6e − 016 8.05e – 016 3.83e − 016 9.12e – 016 1.46e − 016 4.38e − 016
Bird − 1.035e + 002 − 1.067e + 002 −1.05e + 002 − 1.065e + 002 − 1.03e + 002 − 1.05e + 002
Extended cube 3.31e − 015 4.98e – 005 6.1e − 008 1.93e – 005 2.68e + 00 2.04e − 007
Ackeley 7.19e – 015 6.46e − 012 7.99e − 015 3.63e – 013 3.09e + 00 4.4e − 015
Gold 3.00e + 00 3.00e + 00 3.00e + 00 3.00e + 00 3.00e + 00 3.0e + 00
Griewank 9.99e − 016 9.99e – 016 1.6e − 013 6.56e − 013 1.07e + 00 9.99e − 016
Rastrigin 1.79e + 001 1.23e + 002 7.47e + 001 1.28e + 002 1.52e + 002 8.04e + 001
Rosenbrock 9.6e − 016 1.07e − 008 7.88e − 016 3.9e − 009 1.07e + 005 7.48e − 016

Based on NFE on fixed VTR for size = 25 (VTR = 1.e − 015) (Table 2):

Table 2. Based on NFE on fixed VTR for different functions for size = 25 (VTR = 1.e − 15)

Function DE
DE/best/1 DE/rand/1 DE/best-to-

rand/1
De/best/2 DE/rand/2 RDE

Sphere 2880000 3705000 313000 3260000 5000000 902000
Beale 48000 94000 67000 85000 127000 68000
Booth 500000 90000 71000 77000 118000 69000
Schwefel 7000 12000 13000 4000 6000 11000
Michlewicz 1000 1000 1000 1000 1000 1000
Schaffer N.2 68000 148000 119000 139000 224000 99000
Schaffer N.4 5000000 5000000 5000000 5000000 5000000 5000000
HimmelBlau 45000 95000 67000 77000 199000 67000
Bird 1000 1000 1000 1000 1000 1000
Extended cube 5000000 5000000 5000000 5000000 5000000 5000000
Ackeley 5000000 5000000 5000000 5000000 5000000 5000000
Gold 5000000 5000000 5000000 5000000 5000000 5000000
Griewank 2880000 4579000 500000 500000 500000 1688000
Rastrigin 5000000 5000000 5000000 5000000 5000000 5000000
Rosenbrock 60900 5000000 77000 5000000 5000000 1919000
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Based on elapsed time of CPU in seconds for size = 25 (VTR = 1.e − 015) (Table 3):

Table 3. Based on elapsed time of CPU in seconds for different functions for size = 25
(VTR = 1.e − 015)

Function DE
DE/best/1 DE/rand/1 DE/best-to-

rand/1
De/best/2 DE/rand/2 RDE

Sphere 37.670 139.169 16.318 122.399 225.799 57.711
Beale 48.163 9.5786 8.263 8.533 8.81 18.35
Booth 11.6 8.25 6.817 8.494 8.5762 20.85
Schwefel 17.712 5.337 4.3044 4.956 4.5789 14.45
Michlewicz 2.73 2.217 2.817 2.064 2.074 9.02
Schaffer N.2 36.311 23.22 17.3 18.86 21.19 23.27
Schaffer N.4 190.07 227.9 261.1 238.23 245.6 234.07
HimmelBlau 14.8 16.94 18.4 12.3 15.95 16.74
Bird 12.39 11.8 8.25 8.71 8.07 7.7
Extended cube 186.78 372.56 345.3 352.3 335.02 330.7
Ackeley 314.6 310.42 325.56 312.2 300.4 345.6
Gold 257.45 425.8 331.62 312.52 319.5 334.5
Griewank 321.7 305.3 346.58 342.76 341.01 157.7
Rastrigin 254.69 316.8 265.4 310.1 323.52 301.2
Rosenbrock 52.01 36.23 52.79 324.06 34.53 34.4

A comparative analysis was performed and study done on each of the technique. By
setting the dimension as 25 and value-to-reach (VTR) as e − 015, the best value, number
of function evaluation (NFE) and the CPU time of different function strategies were
calculated. It was noted that the proposed hybrid algorithm gave the best value for most
of the standard functions.

6 Graphical Results

The above tabulated values were represented in a graphical form. The graphs show
performance curve of six different function strategies. The x-axis represents the number
of function evaluation for each mutation strategy and y-axis represents the objective
function. The graph is plotted for the various values at each iteration for fixed VTR value
of e − 015 and dimension size of 25 (Fig. 1).
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Fig. 1. Graphical representation of Michelawicz function

A comparative study was done based on above graphs. The study showed that the
revised mutation strategy gave better results compared to the existing mutation strategy
for various functions (Fig. 2).

Fig. 2. Graphical representation for Schwefel function

7 Statistical Test

Friedman test was applied and the results obtained were tabulated on the values obtained
from Table 1. Table 4 represents the values obtained from the test. N represents the
population size and df represents the degree of freedom associated with the source.
Asymptotic significance gives the p value of the Friedman test and Chi sq gives the
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Friedman chi square statistics value. Table 5 depicts the rank position of the various
mutation strategies used based on best value, NFE and CPU time (Fig. 3).

Table 4. Test statistics using Friedman’s test

N 50
Chi sq 22.71
Df 5
Asymptotic Significance 0.0004

Table 5. Ranks of the different strategies

Strategies Mean rank on best value Mean rank on NFE Mean rank on CPU time
DE/best/1 2.67 3.03 3.4
De/rand/1 3.23 4.3 3.7
DE/best-to-rand/1 2.60 3.0 3.3
De/best/2 4.23 3.4 3.2
DE/rand/2 5.1 4.2 3.1
New 3.16 3.1 4.1

Fig. 3. Bonferroni Dunn chart for best value

The above tables show that the new mutation strategy has significant performance
in comparison to the existing mutation strategies. Based on the ranks obtained, a graph‐
ical representation of the results is shown below. The x axis of the graph represents the
six different mutation strategies used and the y axis shows the ranks obtained for each
strategy based on different parameters like best value obtained and NFE value obtained
(Fig. 4).
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Fig. 4. Bonferroni Dunn bar chart for NFE

8 Conclusion

In this paper, we have given a simple, efficient mutation strategy. RDE strategy was
compared against the existing mutation strategy. The comparative study showed that
the proposed strategy gave much better for most of the functions evaluated. A detailed
study was done and graphs were plotted. Further the work can be extended to the field
of clustering for verifying the performance of the new mutation strategy in that area.
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