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Abstract. Fatigue prediction is part of the muscle endurance analysis, which is
normally based on expert experience and guided by muscle signal chart such as
surface electromyography. The overall endurance training plan is normally pre-
determined. Rapid updates on the training plan based on the athlete fitness state
is hard to achieve in this case. Hence, this has resulted in inefficient muscle opti‐
mization during endurance training. Real time muscle monitoring and feedback
can be realized through computational modelling. Many research has been done
on isometrics muscle analysis. However, less attention was paid to the isotonic
muscle fatigue prediction. This paper focuses on fatigue prediction using artificial
neural network (ANN) model to support personalized sport training program. The
ANN model aims to predict the fatigue state in isotonic muscle training. Selected
feature extraction methods from time and frequency domains, i.e. the median
frequency, mean frequency, mean absolute value, root mean squares, simple
square integral, variance length, and waveform length were used as model predic‐
tors. The ANN model has achieved minimum mean squared error at 0.23 with
overall regression value of 0.6571. The best validation performance has been
attained at epoch 11. Although the result is not as good as the fatigue prediction
for isometrics muscle analysis, it has shed light on the possibility of using compu‐
tational modelling to predict muscle fatigue in isotonic training. Nevertheless,
future work needs to be done on noise management in isotonic contractions to
further improve the data quality for better prediction.
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1 Introduction

Computational modelling is widely used in assisting human decision making, such as
for sport coaching. In muscle endurance training, fatigue prediction model is typically
recommended either to boost the muscle strength or the muscle endurance for sport
conditioning purposes. For example, physical therapy, rehabilitation programs, and
sport coaching commonly use surface electromyography (sEMG) signals analysis as
complementary guide to human experts to prolong muscle endurance against fatigue.
Hence, predicting fatigue state is an important task in muscle signal analysis.

There are currently two common approaches to predict muscle fatigue in sport
training, i.e. the expert assistance approach and the automatic prediction approach using
sEMG signals pattern [1]. The formal predicts fatigue by looking at different indicators
including physical changes in appearance, breathing, muscle contraction patterns, and
most of the time on past experience, while the later predicts muscle fatigue by analyzing
and comparing sEMG signals pattern changes across two different states, the non-fatigue
and fatigue states in the workout session. The expert assistance approach is easy to
implement, thus is a common practice in sport training. However, this approach is
sometimes subjective because the prediction is made by different experts with various
experiences. Also, the fatigue condition can be different from one person to another due
to individual fitness level. On the other hand, the automatic prediction based on sEMG
signal is more consistent in statistical perspective because is it based on quantitative
measurement of signals pattern changes in oppose to human opinions.

The rest of the paper is organized as follows. Section 2 discusses some important
literature on fatigue prediction using sEMG signal and artificial neural network model.
Section 3 presents sEMG data acquisition, experimental setup, and some essential
procedures when conducting the experiment. Section 4 illustrates the experimental
component and process flow. Section 5 depicts the experimental results and discussion
while Sect. 6 draws the conclusion and the direction for future work.

2 Literature

In general, sport training involves the muscle flexion exercise to increase the muscle
strength against resistance. Complete muscle training includes three different types of
muscle tensions, i.e. the concentric contractions, eccentric contractions, and the
isometric contractions. The concentric (shortening) and eccentric (lengthening) contrac‐
tions interchange in sequence makes up the isotonic muscle workout. Comprehensive
training on all three types of muscular contractions is important for athlete in sport
training. Among all muscular contractions, the eccentric contraction is easier to cause
muscle damage when the weight or resistance is unintentionally overloaded for a partic‐
ular muscle to accommodate. This condition, also known as involuntary eccentric
contraction is harder to control because athlete is normally less conscious on overloaded
weight during concentric contractions until it happens [1].

Today, many sport training programs are designed by experts. Trainings are
conducted under the monitoring of muscle signal analysis tool to assure optimum results,
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and to reduce the risk of muscle damage [2]. Many analysis tools use automated methods
to assist human decision especially on muscle fatigue prediction. Although isotonic
signal analysis is equally important in sport training, many research on muscle fatigue
prediction are still concentrated on isometric training as compared to isotonic training.
This is because isotonic training generates larger volume of motion artefact. Thus, it
imposes greater challenge of noise management on signal analysis [3].

Electromyography is an electro diagnostic modality, which records the electrical
activity produced by skeletal muscles contractions. The introduction of surface EMG
(sEMG) with non-invasive electrodes has offered many advantages in biomedical engi‐
neering research. The sEMG signals analysis is currently the most common way to assist
sport training, especially in sport conditioning for bio-signal feedbacks monitoring. The
raw sEMG signal can be captured by attaching sEMG electrodes on the targeted muscle
during exercise.

Fatigue analysis using sEMG signals were usually carried out for isometric training
to identify the good predictors set as well as for prediction muscle force and angle esti‐
mation [4–6]. For isotonic training, the onset of contractile fatigue was successfully
predicted in [7] using Radius Basis Function Neural Network (RBFNN) model and
Multilayer Perceptron (MLP) model. Research from [7] recommended the use of arti‐
ficial neural network (ANN) model for muscle fatigue prediction. At the same time,
many studies has proven empirically that models from ANN family such as RBF [7]
and MLP [8] are good for isometric muscle fatigue prediction [9, 10] with mean squared
error recorded between 1.76E-11 to 0.5. However, the capability of ANN models in
isotonic muscle fatigue prediction is yet to confirm.

3 Experimentation and Data Acquisition

The experiment dataset was collected by recording the sEMG signal activities based on
isotonic muscle contractions during the dumbbell lifting workout session. Muscle
contractions from two muscle types was observed during the experiment, i.e. the flexor
carpi radialis and biceps brachii from both right and left hand. Figure 1 shows the
experiment setup for data collection.

flexor carpi  
radialis electode 
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Arm Rest 
Biceps branchii 
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Oxygen 
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Fig. 1. The sEMG data collection setup for isotonic muscle contractions.
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The purpose of using armrest in the experiment was to optimize the arm muscles
utilization during dumbbell lifting task. The armrest is able to ensure only the targeted
arm muscles are used, not the other body muscles, especially lower body muscles. The
amount of oxygen consumption was monitored throughout the whole workout session
to avoid cardiovascular overload. However, these data merely serve the purpose of
monitoring but were not use as one of the predictors in the proposed model. In addition,
video recording was used throughout the data acquisition sessions when the subjects
were performing the workout to aid results validation especially in data exploration
phase. The Delsys Trigno Wireless system was used as interfacing between EMG
machine and the computer for sEMG signal acquisition. Four channels of electrode with
48 ms fixed group delay were applied on the surface of flexor carpi radialis and biceps
brachii muscles. The sampling rate of 2000 samples per second was used. The EMG
signal recorded with surface electrodes could be sampled as slow as 1000 Hz for signal
analysis, but the optimum sample rate is between 2000 to 2500 Hz [11].

A total of 27 undergraduate Sport Science students from Faculty of Sport Science
and Coaching, Sultan Idris Education University were recruited to participate in the
experiment based on voluntary basis. From the subject group, there were 9 healthy male
subjects (age = 22–24 years; body weight = 50–75 kg; height = 152–180 cm) and 18
healthy female subjects (age = 22–24 years; body weight = 42–97 kg; height = 145–
164 cm). All of the subjects are having normal body mass index. None of them has any
history of neuromuscular disorder. The participants were required to lift a dumbbell in
the position described in Fig. 1.

The dumbbell weight was predefined according to individual subject’s one-repetition
maximum (1RM) load. The measurement of 1RM is used to calculate the maximum load
that a subject can lift in one maximal muscle contraction [12]. The subjects were asked to
performed dumbbell lifting using the maximum load until fatigue in the trial experiment
set. The Wathan formula, as shown in Eq. (1) below was used in the experiment.

1RM = 100 w/
(
48.8 + 53.8 e −0.075R) (1)

where w is the amount of weight used, and R is the number of repetition performed. To
obtain the 1RM estimation, the subjects were tested with the maximum dumbbell weight
load which he/she can afford to complete a full 10 repetitions. This is a trial and error
estimation although the amount of weight used can be guided by past experience and also
the best practice in sport science [16]. Hence, the more accurate the maximum weight
used, the more realistic the 1RM measurement will estimate the true strength.

Each subject repeated the experiment for 3 trials with 2 min’ rest in between trials.
The experimental paradigm is as shown in Fig. 2. A total of 3 experiment sessions were
conducted in three different days in orders of 1RM followed by 30%RM, and 50%RM.
The orders of experiments for different percentage of RM measurement were designed
as such to avoid performing the 1RM sEMG signal recording twice. Since the determi‐
nation weight of 1RM for each subject needs to be performed in the initial trial, the
sEMG signal for the particular trial will be used as one of the three trials in session 1RM
to save time.
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Fig. 2. The experimental paradigm for each individual workout session.

The experimental paradigm and design were approved by the Ethics Committee from
the Centre for Research and Innovation Management, Universiti Teknikal Malaysia
Melaka, as well as from the Medical Research and Ethics Committee, Ministry of Health
Malaysia. All of the participants were informed of the experiment purposes and proce‐
dures. An informed consent was obtained from every subject prior to the experiment.

4 The Experimental Component and Process Flow

This research follows the experimental methodology as shown in Fig. 3. Raw sEMG
signals captured in the experiments required two important pre-processing tasks to
provide meaningful insights, i.e. the noise filtration and the feature extraction. The
amount of muscle energy produced during the muscle contraction activities is in low
amplitude (in mV) by nature [13]. Thus, the sEMG signals are normally amplified and
digitized using the built in amplifier in the sEMG data acquisition devices. Hence,
various noises including the inherent noise from the electrodes, the movement artefact
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-Feed forward backpropagation
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Fig. 3. The experimental component and process flow
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such as the cables movement, the particles on the skin surface, cross talk, etc. are ampli‐
fied concurrently. The Butterworth high pass filter with cutoff threshold at 30 Hz was
used to remove the noise artefact [13, 14].

4.1 Noise Reduction

The present of noise during sEMG signal recording will deteriorate the data quality, and
affect the prediction accuracy in the developed model. Preliminary data exploration as
shown in Fig. 4 proves the existence of motion noise from arm stretching during rest
time. This type of noise can be cleaned easily using the high-pass filter because its
amplitude is range between 0 Hz to 20 Hz. Therefore, the Butterworth filter was used
to clean the undesired noises before model building [16]. Figure 5 shows the signal
comparison of before and after the noise filtration at 30 Hz. It is obviously seen that the
motion artifact has been removed almost completely after the filtration process.

Motion Artifact

Fig. 4. Example of the present of the minor motion artifact

Fig. 5. The raw sEMG signal with presence of noise (above) and the after filteration (bottom)
using Butterworth high-pass filter with 30 Hz cut off frequency.
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4.2 Features Extraction

The raw sEMG signal data were just an oscillation shown in amplitude across time.
Thus, the raw data will normally less significance for classification and prediction task.
Therefore, good feature extraction methods are able to produce a set of significant
predictors to improve the fatigue classification result. Features extraction methods [17,
18], such as the Median Frequency (MDF), Mean Frequency (MF), Mean Absolute
Value (MAV), Root Mean Squares (RMS), Simple Square Integral (SSI), Variance
Length (VL), and Waveform Length (WL) were used to extract meaningful data for
fatigue prediction.

4.3 Feed Forward Backpropagation Neural Network

A 2-layer-10-neuron feed forward backpropagation ANN was used to predict the muscle
fatigue state using 4 sEMG channels. The hyperbolic tangent sigmoid transfer
(TANSIG) function and the linear transfer function (PURELIN) were used for the first
and second layer respectively. The implementation was run with the NNTool in Matlab
using the Levenberg-Marquardt (TRAINLM) algorithm. Early stopping conditions for
training after 1000 epochs [7] was imposed to improve the generalization of the network
and to avoid overfitting. The ANN model was trained with 72 sets of data on different
percentage of 1RM load with 7 input vectors corresponding to their output vectors. The
performance was measured by using mean square error and regression fit.

5 Results and Discussion

Table 1 shows the sample sEMG training data. The trial indicates the signal data row of
a subject for both biceps (B) and flexor (F) muscles on both left (L) and right (R) arms
across 7 features vector. The data were arranged according to the percentage from 1 RM,
30% of 1RM, 50% of 1RM for session 1, 2 and 3 respectively.

Table 1. The data sample for 1 session.

TRIAL MDF MF MAV RMS SSI VAR WL
1-LB 6.8955 6.7176 5.49E-06 8.24E-06 8.15E-06 3.28E-08 0.5776
1-LF 7.7567 7.4630 9.14E-06 1.48E-05 2.62E-05 1.05E-07 1.0567
1-RB 7.0884 7.3024 7.83E-06 1.35E-05 2.18E-05 8.74E-08 0.8561
1-RF 7.8593 8.0138 5.12E-06 7.84E-06 7.38E-06 2.96E-08 0.6078
2-LB 7.5446 7.6328 4.60E-06 7.70E-06 5.34E-06 2.14E-08 0.3895
2-LF 8.9579 9.8330 3.96E-06 1.13E-05 1.16E-05 4.64E-08 0.3655
2-RB 7.4866 7.7445 6.63E-06 1.27E-05 1.44E-05 5.79E-08 0.5712
2-RF 8.0832 8.2433 3.62E-06 5.97E-06 3.21E-06 1.29E-08 0.3297
3-RB 7.5468 7.6696 4.82E-06 8.15E-06 4.32E-06 1.74E-08 0.2951
3-LB 7.6757 7.8812 7.77E-06 1.46E-05 1.38E-05 5.54E-08 0.4897
3-RF 8.2990 8.4814 4.51E-06 9.13E-06 5.42E-06 2.18E-08 0.2973
3-RB 8.2990 8.4814 4.51E-06 9.13E-06 5.42E-06 2.18E-08 0.2973
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Figure 6 shows the model performance from the perspective of error function for
training, validation and testing phases. Best validation performance was obtained in 11
epochs, at 0.23002, which is rather good in terms of convergence speed as compared to
similar work which stopped around 14 epochs [19]. However, the training continued for
6 iterations before stopping.

Fig. 6. The early stopping criteria

Regression plot in Fig. 7 illustrates the detailed relationship between inputs and
targets of the proposed ANN model for training, testing, validation, and in overall.

The model training and validation have achieved a good fit with 0.84 and 0.88
respectively. However, the model testing has only record a weak performance of 0.33,
which is not sufficient for fatigue prediction in real practice. When compare to the best
performance in the past literature work [7], the MLP networks model for isotonic
contraction analysis has achieved better estimation results with average RMSE between
0.03 to 0.3. Therefore, even though the designed neural network is simpler than the MLP
network, but it does not perform comparatively well for isotonic fatigue analysis as it
has achieved for isometric fatigue analysis.
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Fig. 7. The regression of the trained model

6 Conclusion

In this paper, we have investigated the performance of artificial neural network in muscle
fatigue analysis for 2 biceps and 2 flexor arms’ muscles on isotonic contraction training
using 7 recommended features from past literature. The results show that the ANN model
is able to achieve minimum mean squared error at 0.23 with overall regression value of
0.6571. It has attained the best validation performance at epoch 11. This has proven that
the feed forward backpropagation neural network model is able to perform muscle
fatigue analysis on isotonic training to a certain extend. The proposed model is compat‐
ible to MLP model in terms of convergence speed. However, further analysis need to
be done using a standard data as well as noise management approach to confirm on the
prediction performance. In summary, the proposed model can be used for sport training
analysis especially for isotonic muscle contractions. However, future work needs to be
done on noise management in isotonic contractions to further improve the data quality
for better muscle fatigue prediction.

Acknowledgements. The authors would like to thank Universiti Teknikal Malaysia Melaka
(UTeM) and the Ministry of Education, Malaysia for the financial supports given through the
Research Acculturation Collaborative Effort (RACE) research grant, RACE/F3/TK12/FTMK/
F00252. Appreciation is also go to Faculty of Sport Science and Coaching, Sultan Idris Education
University (UPSI) for voluntarily research collaboration and arrangement for data collection.

590 N.S. Ahmad Sharawardi et al.



References

1. Schmitz, R.J., et al.: Effect of isotonic and isometric knee extension exercises on mechanical
and electromyographical specificity of fatigue. Isokinet. Exerc. Sci. 10, 167–175 (2002)

2. Garber, C.E., et al.: Quantity and quality of exercise for developing and maintaining
cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults:
Guidance for prescribing exercise. Med. Sci. Sports Exerc. 43, 1334–1359 (2011)

3. Kuriki, H.U., et al.: EMG Methods for Evaluating Muscle and Nerve Function, pp. 31–54.
InTech (2012)

4. Garcia, M.A.C., et al.: An alternative approach in muscle fatigue evaluation from the surface
EMG signal. In: 2010 Annual International Conference of the IEEE on Engineering in
Medicine and Biology Society, pp. 2419–2422 (2010)

5. Zhang, D., et al.: Development of new muscle contraction sensor to replace sEMG for using
in muscles analysis fields. In: 36th Annual International Conference of the IEEE on
Engineering in Medicine and Biology Society, pp. 6945–6948 (2014)

6. Alba-Flores, R., Hickman, S., Mirzakani, A.S.: Performance analysis of two ANN based
classifiers for EMG signals to identify hand motions. In:Proceedings of the Conference on
IEEE SOUTHEASTCON, July 2016, pp. 1–5 (2016)

7. Mobasser, F., Hashtrudi-zaad, K.: Rowing stroke force estimation with EMG signals using
artificial neural networks. In: Proceedings of 2005 IEEE Conference on Control Applications,
CCA 2005, pp. 825–830 (2005)

8. Bravo, J., Hervás, R., Villarreal, V.: Ambient: Ambient: intelligence for health. In:
Proceedings of the First International Conference, AmIHEALTH 2015, Puerto Varas, Chile,
14 December 2015, vol. 9456, pp. 3–14. Springer (2015)

9. Jali, M.H., Izzuddin, T.A., Bohari, Z.H., Sulaima, M.F., Sarkawi, H.: Predicting EMG based
elbow joint torque model using multiple input ANN neurons for arm rehabilitation. In:
Proceedings of the UKSim-AMSS in 16th International Conference on Computer Modelling
and Simulation, UKSim 2014, pp. 189–194 (2014)

10. Ahsan, M.: Electromygraphy (EMG) signal based hand gesture recognition using artificial
neural network (ANN). In: Mechatronics (ICOM), pp. 17–19 (2011)

11. Sys, M. L. EMG Analysis. (2009)
12. J. Hum. Sport Exerc. 1, 53–71 (2007)
13. Norali, A.N., Som, M.H.M., Kangar-arau, J.: Surface electromyography signal processing and

application: a review, pp. 11–13 (2009)
14. De Luca, G.: Fundamental Concepts in EMG Signal Acquisition (2003)
15. Faq, T.W.: Trigno Wireless-FAQ. 599, pp. 4–7
16. Fratini, A., et al.: 11th Mediterranean Conference on Medical and Biomedical Engineering

and Computing 2007, pp. 990–993. (2007)
17. Sharawardi, N.S.A., Choo, Y., Chong, S., Muda, A.K., Goh, O.S.: Single Channel sEMG

Muscle Fatigue Prediction: an Implementation Using Least Square Support Vector Machine,
pp. 320–325 (2014)

18. Chowdhury, R.H., Reaz, M.B.I., Ali, M.A.M.: Determination of muscle fatigue in SEMG
signal using empirical mode decomposition. IEEE Trans. Biomed. Eng. 8–10 (2014)

19. Jali, M.H., Izzuddin, T.A., Bohari, Z.H., Jaafar, H.I., Nasir, M.N.M.: Pattern recognition of
EMG signal during load lifting using artificial neural network. In: IEEE International
Conference on Control System, Computing and Engineering, pp. 27–29 (2015)

Isotonic Muscle Fatigue Prediction for Sport Training 591


	Isotonic Muscle Fatigue Prediction for Sport Training Using Artificial Neural Network Modelling
	Abstract
	1 Introduction
	2 Literature
	3 Experimentation and Data Acquisition
	4 The Experimental Component and Process Flow
	4.1 Noise Reduction
	4.2 Features Extraction
	4.3 Feed Forward Backpropagation Neural Network

	5 Results and Discussion
	6 Conclusion
	Acknowledgements
	References


