
PPS: Parallel Pincer Search for Mining Frequent
Itemsets Based on Spark

Krishan Kumar Sethi, Ramesh Dharavath(B), and Samuel Nyakotey

Department of Computer Science and Engineering,
Indian Institute of Technology (ISM), Dhanbad 826004, Jharkhand, India
kksethi02@gmail.com, ramesh.d.in@ieee.org, snyakotey@gmail.com

Abstract. Association rule mining is one of prominent techniques to
discover the relation between data items of a transactional data. The
process of mining has been simplified by considering only the frequent
itemsets. Pincer search is one of the frequent itemset mining method
which combines top-down and bottom-up search techniques to get the
benefits of both. Top-down approach in Pincer search reduces the number
of candidates in pass of iterations and saves a lot of computing resources.
In this work, we present a Parallel Pincer Search (PPS) which is based
on distributed implementation on Spark framework. We have converted
the search algorithm according to the Spark framework to make it run in
parallel. Spark provides a lot of features for the iterative algorithm such
as in-memory execution, efficient data structure, better fault tolerant
method, etc. We implemented the PPS on a Spark cluster with multiple
datasets and analysed the performance.

Keywords: Pincer search · Frequent itemset mining · Apriori
algorithm · Maximal itemset · Spark

1 Introduction

Knowledge discovery from the large data is a primary task of data mining tech-
niques. Data mining [1] is a complex task which consumes a lot of computation.
To simplify the knowledge discovery process, a few steps of pre-processions are
applied which may change the structure or dimension of the data. All organiza-
tions keep the storage of their historical data to analyse and produce some good
future strategies. For a last few decades, many techniques have been discovered
to fetch a great evolution in the area of data mining. Data mining algorithms
such as classification, clustering, association rule mining, prediction, abnormal
findings, pattern discovery, etc. have achieved a great attention by the researchers
and developers. Association rule mining is a process to determine the correlation
between data objects. Many decision making applications are based on the asso-
ciation rule mining and further can be extended for the data analysis process.
Association rule mining is a time consuming task due to the examination of all
possible rules. Therefore, to reduce the search space it requires to consider only
c© Springer International Publishing AG 2018
A. Abraham et al. (eds.), Proceedings of the Eighth International Conference on Soft
Computing and Pattern Recognition (SoCPaR 2016), Advances in Intelligent
Systems and Computing 614, DOI 10.1007/978-3-319-60618-7 35

352 K.K. Sethi et al.

the rules with frequent itemsets. A constrain called support measure is consid-
ered to discover the frequent itemsets. Support of an itemset is the count of that
item in transactional data. A frequent itemset have the support count more than
the user defined support threshold. Higher the support threshold can decrease
the number of frequent itemset and vice versa. Therefore, always an adequate
value of support threshold is chosen.

A large number of researches has been performed in the area of frequent item-
set mining. Apriori algorithm [2] is one of the classical method which approach in
bottom-up manner for searching for frequent items. This iterative algorithm dis-
covers lower cardinality of frequent items in starting passes and the process goes
with the higher cardinality of frequent items in further passes. There are many
limitations of the apriori algorithm such as a huge number of candidate sets are
generated and large number of passes are carried out if some frequent itemsets
are large in size. Therefore, this kind of approach requires a lot of computing
power and memory to process on large data. Pincer search [3] is another method
which combines both bottom-up and top-down search methods to reduce the
deficiencies of apriori algorithm. A top-down search starts with the discovery of
frequent maximal itemsets and closure property is applied to deduce the other
frequent itemsets. Pincer search discovers set of frequent items in each pass same
as apriori algorithm, however, at the same time it computes and accumulates the
set of frequent maximal itemsets. All the subsets of frequent maximal itemset
are also frequent, hence many of candidates need not require to be processed.
This approach optimizes the performance drastically if in starting passes, we get
some large frequent maximal itemsets. To keep the track of maximal itemsets
a data structure which is known as Maximal Frequent candidate set (MFCS) is
introduced.

In the recent years, a big evolution in technology and science has increased
the data size up to Exabyte and Zettabyte. This data is not only large in size
but also unstructured and semi-structured in nature which causes intricacy in
processing. Such data are termed as ‘Big Data’ [4] which has got great attention
in the last few years. Big data requires a large set of resources for storage and
processing. So, a traditional single machine computing is not enough to deal this
problem. Hence, multi machine processing came into usage to accumulate and
process such large amount of data. There are many multi machine distributed
frameworks available for this purpose, such as MPI [5], Hadoop [6], and Dryad [7]
etc. Hadoop is an open source framework for big data processing. Hadoop utilises
the MapReduce library for programming model which provides the environment
to write an application and run it across a cluster of machines in a distributed
manner. Although, MapReduce is not suitable for iterative algorithms because of
its performance decay due to network and I/O overhead. Spark is an alternative
framework which has gained popularity in batch and interactive processing and
also assures the high performance over MapReduce. Spark optimizes the process
execution by introducing the job caching in main memory and a better approach
for fault tolerance.

PPS: Parallel Pincer Search for Mining Frequent Itemsets Based on Spark 353

In this paper, we convey a Parallel Pincer Search (PPS) based on the Spark
framework. Pincer search has performance degradation if frequent maximal item-
sets are lengthy and scattered. Even for big data mining efficiency can’t be
achieved by Pincer search. Hence parallelize the search method is a better way
to distribute the computing among multiple nodes to reduce the processing time.
Apache Spark provides a lot of advantages over MapReduce and enhance the per-
formance. Transactional data is loaded as data objects into main memory and
implicitly distributed among the cluster nodes. We apply an iterative process
which finds k- frequent itemsets by using the (k−1) - frequent itemsets in bottom-
up manner (same as Apriori). In the same pass, we also find the set of all maximal
frequent set using top-down search method. Spark framework in-memory execu-
tion and better fault tolerant approach provide us a fare computation time. We
run PPS over a Spark cluster for various datasets and test the performance in
terms of speedup and scale up.

The organization of this paper is as follows. Section 2 describes the back-
ground information to understand this paper, i.e., Spark framework, apriori,
Pincer and important definitions. Related work is discussed in Sect. 3. Section 4
describes our proposed work in detail. Experiment details and result analysis are
given in Sect. 5. Finally the manuscript is concluded in Sect. 6.

2 Background

This section includes some background knowledge and prerequisites to under-
stand some definitions and concepts. In this, we provide the introduction of
Spark along with its advantage and definitions related to frequent itemset min-
ing algorithms i.e. Apriori and Pincer.

2.1 Spark

Spark [8] is an open source framework for big data processing and data ana-
lytics on distributed cluster computers. This framework was developed at the
University of California, Berkeley’s AMPLab and donated to the Apache foun-
dation for maintenance and further advancement. Apache Spark provides many
enhancements over Apache MapReduce of Hadoop framework [9], hence it is
faster and efficient in terms of performance. The basic feature of Spark is in-
memory processing which leads to the fast execution in iterative computation.
In addition, intermediate data generated after each iteration is stored in pri-
mary memory which reduces the I/O cost. Spark has introduced an immutable
data structure known as resilient distributed dataset (RDD) [10] for execution
in primary memory. RDD objects are distributed on a cluster and processed in
parallel in a fault tolerant manner. Spark has a better mechanism of fault tol-
erance where faulty RDD objects can be reconstructed by keeping the track of
operations.

354 K.K. Sethi et al.

2.2 Prerequisites

(a) Frequent Set: We assume a transactional dataset D={T1,T2,...,Tn}, where
n is the number of transactions. Each transaction can be represented as a k set
of items i.e. T= {i1,i2,...,ik}. Let a user defined minimum support threshold s
is criteria to define the frequent itemset. An itemset X⊆T is called frequent if
Support(X) ≥ σ. Let n is 10 and σ=50%, an itemset X will be frequent if X
appears at least 50% of transactions i.e. 5.

(b) Closure Properties: To find a frequent set from large transactional data
creates a big problem as it needs to consider all possible itemsets which is a
very lengthy process. Let suppose, k is the number of items then we require
to check the support for each possible combination (i.e. 2k-1 itemsets) which is
computationally very costly. The search space is reduced by adding an iterative
procedure which does not process any infrequent itemset further. Following two
closure properties are defined to reduce the candidate set in each pass of iteration.

Property 1. All the supersets of an infrequent itemsets are also infrequent.
Property 2. All the subsets of a frequent itemset are also frequent.

(c) Maximum Frequent Set: The frequent itemsets are categorized into the
maximal frequent set, closed frequent set and frequent set. A frequent itemset
X⊆T is called maximal frequent set if there exist no frequent supersets. On
the other hand, frequent itemset X is known as closed frequent set if there
exists no frequent superset of same support count. Remaining frequent itemsets
are ordinary frequent sets. A maximum frequent set (MFS) is the collection of
all maximal frequent itemset. All the nonempty subsets of a frequent maximal
itemset are also frequent by the property 2. Hence MFS is helpful to find the
frequent itemsets very quickly. Each iteration uses the MFS to reduce the size
of candidate set and number of passes.

2.3 Apriori Algorithm

Apriori algorithm is the basic algorithm to mine the frequent patterns in a set
of transactions. It was developed by R. Agrawal and R. Srikant in 1994. The
concept of the algorithm is to iteratively scan the transactions and find the
frequent items. The frequent itemsets generated in one iteration are used to find
larger itemsets in the next iteration. Although, searching of all possible subsets
is a complex task. To reduce the search space a property called anti-monotone
is used. This is also termed the apriori property as described below:

– All the nonempty subsets of a frequent set are also frequent.
– If a set of item is not frequent then its superset also can’t be frequent.

An itemset is called frequent if it qualifies the minimum support threshold.
Frequent itemset is represented by Li for ith -Itemset. There are two major
operations in apriori algorithm.

PPS: Parallel Pincer Search for Mining Frequent Itemsets Based on Spark 355

Join Operation: A set of candidates are generated in each iteration by joining
the frequent itemsets of last iteration. So Lk is generated by joining of Lk−1 by
itself, which is called candidate set denoted by Ck. At the time of join operation,
apriori property is applied to reduce search space.

Pruning Operation: The candidate set Ck goes through a pruning phase to
find the frequent itemsets Lk.

Each iteration applies these two operations on data to process in a bottom-up
manner and produces frequent sets.

2.4 Pincer Search

Pincer search technique for frequent itemset mining is a bi-directional method,
which includes the advantages of both bottom-up and top-down search. Each
pass of iteration discovers frequent itemset in bottom-up manner like the apriori
algorithm. Also, each pass finds the set of maximal frequent itemset in a top-
down manner. If some of large MFS are searched out, then all the subsets of
frequent maximal itemsets are pruned from the list of candidates. It saves a lot
of computation and also decreases the number of passes if all larger itemsets are
already discovered in earlier passes.

The two way search proceeds by using a new data structure called maximum
frequent candidate set (MFCS). The MFCS accumulates the list of all maximal
itemsets which can either be frequent or not. At the start of the search, all the
frequent items are part of MFCS. Obviously, MFCS is a superset of MFS, which
is updated after each pass. The Database is scanned to find the frequency check
of each of maximal itemset in MFCS.

3 Related Work

A extensive research works have been carried out in the area of frequent itemset
mining. Many algorithms are presented which are proven to work well for small
scale of transactional data. Some of the popular algorithms such as apriori [2],
EClat [11] and FP-growth [12] work in bottom-up fashion. There are some other
algorithms which work in top-down fashion like maxclique [13], max-miner [14]
and Pincer [15]. Pincer algorithm is a hybrid algorithm which combines both
bottom-up and top-down approaches in each iteration.

When we introduce big data, all frequent itemset mining algorithms does
not fit for processing such large data. All these algorithms are proposed before
more than a decade, hence generated data used to be small in size and can
be processed on a single machine. Nowadays, the single machine system is not
enough to process such huge data. Hence, we need to switch towards multi
machine computing system. Distributed computing using Hadoop and Spark
frameworks are popular because of their parallel processing. Many research works
adopted the Hadoop framework with MapReduce programming engine for fre-
quent itemset mining on big data. Ye [16] introduced a distributed approach
for processing big data using the apriori algorithm. This methodology comprises

356 K.K. Sethi et al.

a trie data structure to enhance the speed of frequent itemset mining. Lin [17]
has proposed apriori implementation using Hadoop in three different algorithms,
namely SPC, FPC and DPC. SPC is a single pass counting algorithm in which
each map and reduce phase finds k-frequent itemsets while FPC combines a fixed
number of passes (default is 3) in a map and reduce phase. On the other hand,
DPC selects the number of passes to combine dynamically. A parallel version of
apriori algorithm is presented by Li [18], which iteratively produces k-frequent
itemsets for huge data. Although it has adopted only the basic functionality of
apriori algorithm like SPC. Yu [19] suggested another MapReduce based apri-
ori implementation which processes the data in a single phase and produce all
possible frequent itemsets. Each cluster node requires a huge memory to store
all possible candidates, otherwise, the job might fail. Another frequent itemset
mining algorithm known as ECLAT has been also implemented in the distrib-
uted environment of Hadoop to process on big data [20]. There is more Hadoop
based implementation of apriori algorithm has been given in [21,22] which are
almost similar to the above work.

All the algorithms, given above, are implemented in MapReduce over Hadoop
framework either in single stage or multistage. Although Hadoop is not suitable
for iterative algorithms as it requires to save intermediate data to HDFS and read
it back, which takes a high I/O cost. Spark is a cluster computing framework,
which deals with an iterative algorithm in an efficient way and performs in-
memory process to faster the execution. In recent years, many Spark based
implementations of apriori algorithms are carried out. Implementation of basic
Apriori algorithm in Spark is presented in YAFIM [23]. Yang [24] has introduced
an innovative matrix based pruning stage in apriori which reduces the number of
candidate sets generated. There are other Spark based implementation of apriori
algorithms are presented in [25,26].

4 Proposed Work

We propose a Parallel Pincer Search which contributes the model and implemen-
tation of Pincer search in a distributed environment. Classical Pincer search is
written to work in standalone mode. With the rapid growth of data, we require
to process big data in parallel on multi machine setup. Hence, for frequent item-
set mining from big transactional data, we cast the Pincer search to work in the
distributed environment of Spark. PPS is divided into 2 passes, where pass 1
searches the 1-frequent itemset along with the MFCS and MFS. Pass N itera-
tively searches the frequent itemset of more than 1 cardinality. In addition, each
iteration makes the efficient use of MFS of last iteration and update the MFCS.
Both the passes are described as follows.

4.1 Pass 1

This phase is responsible for search of 1-frequent itemset in a bottom-up manner
and also finds the MFS at the same time in top-down manner. Initially, data is

PPS: Parallel Pincer Search for Mining Frequent Itemsets Based on Spark 357

loaded in RDD and distributed on cluster nodes. We separate the items from
the transaction ID and extract each item using flatMap() method. Each item is
mapped in (key, value) form where a key is an item and value is the count of the
item in transaction i.e. 1. Count of each item is added using the reduceByKey()
which gives the another (key, value) pair, where key is an item and value is the
count of that item in the entire dataset. A frequency check using the minimum
support is applied to each item using the filter() method. All the frequent items
are accumulated into MFCS which is the maximal candidate set. We further scan
the entire data to count the support of MFCS. Itemset from MFCS is assigned to
MFS, if it is frequent. The algorithmic instance of pass1 is shown in Algorithm1.

Algorithm 1. Pass 1
Require: D: Transactional dataset

min sup : Minimum support threshold
Ensure: MFCS: RDD of maximum frequent candidate set

MFS: RDD of maximum frequent set
FrequentSet: RDD of Frequent

1: for each transaction t in D do
2: flatMap (trans ID, t)
3: for each item I in t do
4: itemCount = map(I, 1)
5: end foreach
6: end foreach
7: sumCount= itemCount.reduceByKey()
8: frequentSet=sumCount.filter(min sup)
9: MFCS=frequentSet.keys()

10: Scan the transactions to determine support for MFCS
11: for each maximal item MIS in MFCS do
12: if support(MIS) ≥ min sup then
13: MFS=MFS ∪ MIS
14: end if
15: end foreach
16: output (MFCS, MFS, frequentSet)

4.2 Pass N

Pass N of PPS is an iterative procedure which discovers the frequent itemsets
more than 1 cardinality i.e. 2-frequent itemset, 3-frequent itemset and so on.
Each iteration takes the input, i.e. MFCS and MFS from the last iteration and
utilise MFS to reduce the candidate itemsets. All subsets of a maximal itemset in
MFS are separated from the potential candidates list. Moreover, each iteration
also finds the frequent set in the bottom-up manner. Pass N of PPS is described
in the form of pseudo code in Algorithm2. Initially, data is loaded into RDD
and distributed among the nodes. Steps from 1 to 7 in algorithm are working to
accumulate all distinct itemsets. All possible combinations of certain cardinality

358 K.K. Sethi et al.

(according to the value of the pass) of itemsets are created using the combina-
tionGenerator() function. The set of all maximum frequent itemsets (MFS from
the last iteration) are distributed among all the nodes using broadcast variable.
We check, if MFS is not empty, then a list of itemsets are separated which are
available as a subset of one of maximal itemset in shared MFS.

Each candidate from the finalCandidates: RDD is processed to compute
support count and mapped to (candidate, count) where count is the support
for that candidate. Each candidate is pruned using the filter method. Itemsets
which qualifies min sup threshold are assigned into frequentIS:RDD and rest
are assigned into nonfrequentIS:RDD. The current MFCS and nonfrequentIS is
passed to MFCSGen() function which updates the MFCS. The MFCS updated is
pruned and assigned to MFS updated which is further used in the next iteration.

Algorithm 2. Pass N
Require: D frequent: Transactional Dataset with frequent itemsets only

MFCS: RDD of maximum frequent candidate set
MFS: RDD of maximum frequent set
min sup: Minimum Support Threshold
pass: Pass of iteration

Ensure: frequentIS: RDD of Frequent itemsets
MFCS updated: RDD of updated MFCS
MFS updated: RDD of updated

1: for each transaction t in D frequent do
2: flatMap(trans ID, t)
3: for each item I in t do
4: itemList= I.distinct
5: end foreach
6: end flatMap
7: end foreach
8: candidates=combinationGenerator(pass, itemList)
9: shared MFCS=broadcast(MFCS)

10: shared MFS= broadcast(MFS)
11: if (!(shared MFS.value.isEmpty())) then
12: finalCandidates= candidates.filter(shared MFS)
13: else
14: finalCandidates=candidates
15: end if
16: for each itemset IS in finalCandidates do
17: supportIS= map(IS ⇒ (IS, supportCount(IS, D frequent)))
18: end foreach
19: frequentIS= supportIS.filter(min sup).keys()
20: nonfrequentIS= supportIS.filter(min sup).keys()
21: MFCS updated= MFCSGen(shared MFCS, nonfrequentIS)
22: MFS updated=prune(MFCS updated, min sup)
23: output(MFCS updated, MFS updated, frequentIS)

PPS: Parallel Pincer Search for Mining Frequent Itemsets Based on Spark 359

5 Experimental and Result Analysis

This section describes the implementation of PPS on a cluster of Spark and
analyzes the performance for different datasets. Pincer search is already proved
better than apriori algorithm, hence we do not compare PPS with distributed
implementation of apriori. Instead of this, we consider different datasets and
performance metrics, i.e. execution time, number of rounds and scalability. We
prefer Spark framework in place of Hadoop because of its fast execution of itera-
tive algorithms. As per our knowledge, PPS is the first implementation of Pincer
search in a distributed environment. We have set up a Spark cluster and run PPS
over it and measured the results.

5.1 Cluster Setup

We implemented the PPS in the distributed environment of Spark framework.
A cluster of 4 nodes is set up which is hedgerows in nature. Three nodes of
the cluster are configured on virtual machines on server which have Intel Xeon
CPU E5-24070 clocked at 2.20 GHz and one core to each VM. One more node
is configured on a workstation which consists Core(TM) i7-4510U CPU clocked
at 2 GHz and 4 cores. We allot 7 GB of RAM to each node and connect them
via 100 Mbps Ethernet switch. Each node is configured with Spark version 2.0.0
and Scala version 2.11.8. Program code of PPS is written in Scala programming
language and tested the cluster for different data sets.

5.2 Datasets

We run PPS for 4 different benchmark datasets and analyzed the results. First
dataset is mushroom dataset [27] which comprises the various attributes of 23
species of grilled mushroom. Second dataset is a chess game dataset [27] which
includes the end positions of the game for king vs king and rook. Third one is a
synthetic dataset which is generated by data generator of IBM [28] and known
as T1014D100k. Last dataset is a retail dataset [29] of a UK-based online store
which enlist all the transactions occurred between 01-12-2010 and 09-12-2011.
All four datasets are depicted in Table 1.

Table 1. Datasets with attributes

Dataset Number of items Number of transactions

Mushroom 119 8124

Chess 75 3196

T1014D100k 870 100000

Retail 16470 87988

360 K.K. Sethi et al.

5.3 Result Analysis

We run PPS for each dataset for different minimum support threshold and
recorded the running time of each pass of iteration. We have chosen minimum
support as 80%, 75%, 70% and 60% of total transactions for chess dataset. Exe-
cution time for initial passes are lower and keeps grow for later passes as depicted
in Fig. 1a. The Number of candidate sets is not affected by MFCS and MFS in
pass 1. Execution time for the pass 2 may be reduced if a larger maximum
frequent itemsets are identified which significantly reduces the number of candi-
dates to be processed. PPS is also run for mushroom dataset and recorded the
execution time with respect to the threshold value of 30%, 25%, 20% and 15%
as shown in Fig. 1b. Synthetic dataset T1014D100k has larger number of trans-
actions which consumes highest running time in pass 2 and then goes lower in
further passes as shown in Fig. 1c. Execution time of PPS for retail dataset with
various support threshold 0.25%, 0.50%, 1.0% and 1.75% is illustrated in Fig. 1d
It demonstrates that drops after 2nd pass is impact of large MFS. Running time
goes a bit higher after 4th pass, due to no larger itemset remains in MFS.

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

Pass of Iterations

)sdnoceS(e
mi

T
gninnu

R

80%
75%
70%
60%

(a) Chess Dataset

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

Pass of Iterations

)sdnoceS(e
mi

T
g nunnu

R

30%
25%
20%
15%

(b) Mushroom Dataset

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

Pass of Iteration

)sdnoceS(e
mi

T
gninnu

R

0.25%
0.50%
1.0%
1.5%

(c) T1014D100k dataset

0 1 2 3 4 5 6 7
0

20
40
60
80

100
120
140
160

Pass of Iteration

)sdnoceS(e
mi

T
gninnu

R

0.25%
0.50%
1.0%
1.75%

(d) Retail Dataset

Fig. 1. Performance of PPS with various datasets for different support threshold

We also check the performance of PPS for different scale of nodes. We run the
PPS for mushroom dataset, synthetic data set T1014D100k and retail data set
with 15%, 1.5% and 1.75% of the support threshold respectively on the cluster by
varying the number of cores on each node. We found that by scaling the configu-
ration of nodes the performance does increase significantly as depicted in Fig. 2.

PPS: Parallel Pincer Search for Mining Frequent Itemsets Based on Spark 361

0 1 2 3 4
0

100

200

300

400

500

600

Number of Cores

)sdnoceS(e
mi

T
gninnu

R
Retail

Mushroom
T1014D100k

Fig. 2. Execution time by varying number of cores

6 Conclusion

This paper discusses about the frequent pattern mining for big transactional
data. We choose one of the appropriate algorithm, i.e. Pincer search for search-
ing frequent items in both top-down and bottom-up manner. We derive a Parallel
Pincer Search (PPS) which is suitable to run parallel in the distributed environ-
ment of Spark. Original Pincer search is developed for single machine system
and acquired great advantages over the apriori algorithm. In addition to apriori,
Pincer also searches the frequent maximal itemsets which may prune a lot of
candidate sets in each iteration and generate the frequent itemsets of larger car-
dinality. Two data structures MFCS and MFS contribute to process the data in
bottom-up manner. Spark is one of the suitable framework over Hadoop, which
runs iterative algorithms very rapidly. Spark inherent data structure, i.e. RDD
and in-memory processing provide a better performance. We tested the perfor-
mance of PPS with respect to multiple dataset on a Spark cluster. We analysed
the speedup and scale up of PPS is accurate for different size of data and cluster
conditions.

References

1. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier,
Amsterdam (2011)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-
ing VLDB 1994, Proceedings of 20th International Conference on Very Large Data
Bases, pp. 487–499 (1994)

3. Lin, D.-I., Kedem, Z.M.: Pincer-search: an efficient algorithm for discovering the
maximum frequent set. IEEE Trans. Knowl. Data Eng. 14(3), 553–566 (2002)

4. Chen, C.L.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and
technologies: a survey on Big Data. Inf. Sci. (Ny) 275, 314–347 (2014)

5. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufman, Burlington
(1997)

6. Apache Hadoop. http://hadoop.apache.org
7. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-

parallel programs from sequential building blocks. ACM SIGOPS Oper. Syst. Rev.
41(3), 59–72 (2007)

http://hadoop.apache.org

362 K.K. Sethi et al.

8. Karau, H., et al.: Learning Spark: Lightning-fast Big Data Analysis. O’Reilly Media
Inc., Newton (2015)

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM. 51(1), 107–113 (2008)

10. Zaharia, M., Chowdhury, M., Das, T., Dave, A.: Resilient distributed datasets: a
fault-tolerant abstraction for in-memory cluster computing. In: NSDI12 Proceed-
ings of 9th USENIX Conference Networked Systems Design and Implementation,
p. 2 (2012)

11. Zaki, M.J., et al.: Parallel algorithms for discovery of association rules. Data Min.
Knowl. Disc. 1(4), 343–373 (1997)

12. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
ACM Sigmod Rec. 29(2), 1–12 (2000). ACM

13. Zaki, M.J., et al.: New Algorithms for Fast Discovery of Association Rules. KDD
97, 283–286 (1997)

14. Bayardo Jr., R.J.: Efficiently mining long patterns from databases. ACM Sigmod
Rec. 27(2), 85–93 (1998)

15. Lin, D.-I., Kedem, Z.M.: Pincer-search: a new algorithm for discovering the maxi-
mum frequent set. In: International Conference on Extending Database Technology,
pp. 103–119. Springer, Berlin (1998)

16. Ye, Y., Chiang, C.-C.: A parallel apriori algorithm for frequent itemsets mining. In:
Fourth International Conference on Software Engineering Research, Management
and Applications (SERA 2006), pp. 87–94. IEEE (2006)

17. Lin, M.-Y., Lee, P.-Y., Hsueh, S.-C.: Apriori-based frequent itemset mining algo-
rithms on MapReduce. In: Proceedings of 6th International Conference on Ubiq-
uitous Information Management and Communication- ICUIMC 2012, p. 76. ACM
(2012)

18. Li, N., Zeng, L., He, Q., Shi, Z.: Parallel implementation of Apriori algorithm based
on MapReduce. In: 13th ACIS International Conference on Software Engineering
Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 236–
241 (2012)

19. Yu, R.-M., et al.: An efficient frequent patterns mining algorithm based on MapRe-
duce framework. In: Software Intelligence Technologies and Applications and Inter-
national Conference on Frontiers of Internet of Things, pp. 1–5 (2014)

20. Moens, S., Aksehirli, E., Goethals, B.: Frequent itemset mining for big data. In:
IEEE International Conference on Big Data, pp. 111–118 (2013)

21. Lin, X.: MR-Apriori: association rules algorithm based on MapReduce. In: 2014
5th IEEE International Conference on Software Engineering and Service Science
(ICSESS), pp. 141–144 (2014)

22. Yang, X.Y., Liu, Z., Fu, Y.: MapReduce as a programming model for association
rules algorithm on Hadoop. In: 2010 3rd International Conference on Information
Sciences and Interaction Sciences (ICIS), pp. 99–102. IEEE (2010)

23. Qiu, H., Gu, R., Yuan, C., Huang, Y.: YAFIM: a parallel frequent itemset mining
algorithm with spark. In: Proceedings of International Parallel and Distributed
Processing Symposium IPDPS, pp. 1664–1671 (2014)

24. Yang, S., Xu, G., Wang, Z., Zhou, F.: The parallel improved Apriori algorithm
research based on spark. In: Proceedings of 2015 9th International Conference on
Frontier of Computer Science and Technology FCST 2015, pp. 354–359 (2015)

25. Rathee, S., Kaul, M., Kashyap, A.: R-Apriori: an efficient apriori based algorithm
on spark. In: Proceedings of the 8th Workshop on Ph.D. Workshop in Information
and Knowledge Management, pp. 27–34. ACM (2015)

PPS: Parallel Pincer Search for Mining Frequent Itemsets Based on Spark 363

26. Gui, F., Ma, Y., Zhang, F., Liu, M., Li, F., Shen, W., Bai, H.: A distributed frequent
itemset mining algorithm based on Spark. In: IEEE 19th International Conference
on Computer Supported Cooperative Work in Design, vol. 18, pp. 271–275 (2015)

27. Asuncion, A., Newman, D.: UCI machine learning repository. http://archive.ics.
uci.edu/ml/

28. Srikant, R.: Synthetic data generation code for association and sequential patterns.
Available from the IBM Quest Web site http://www.almaden.ibm.com/cs/quest

29. Brijs, T.: Retail market basket data set. In: Workshop on Frequent Itemset Mining
Implementations (FIMI03). http://fimi.ua.ac.be/data/retail.dat

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/
http://www.almaden.ibm.com/cs/quest
http://fimi.ua.ac.be/data/retail.dat

	PPS: Parallel Pincer Search for Mining Frequent Itemsets Based on Spark
	1 Introduction
	2 Background
	2.1 Spark
	2.2 Prerequisites
	2.3 Apriori Algorithm
	2.4 Pincer Search

	3 Related Work
	4 Proposed Work
	4.1 Pass 1
	4.2 Pass N

	5 Experimental and Result Analysis
	5.1 Cluster Setup
	5.2 Datasets
	5.3 Result Analysis

	6 Conclusion
	References

