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Abstract. We analyze the properties of a transportation network with
time-dependent flows with the aim of finding the maximal component along the
duration of a period of the variation of the flow. We apply this analysis method
to the subway network of Munich. The analysis is detailed and results are
included. Beyond the theoretical interest in this type of network with periodi-
cally varying properties, the paper presents a well-structured analysis method
that can be widely applied to numerous other networks of applicative interest.
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1 Introduction

The subway systems in general are critical urban infrastructures, exposed to frequent
disruptions. Various factors contribute towards serious schedule delays, including
having the entire system shut down. A temporary shutdown of a means of public
transport is relatively rare, but has a serious impact over the activity of a city. More-
over, if this unfortunate event was not due to natural hazards or temporary failures of
the system, but purposely targeted attacks, it poses then security issues.

In this paper, we analyze the scenario where a threat propagates through the net-
work using the subway system. For this, we tackle two research questions: 1. What is
the longest ride one can have in a threat propagation, such as a flee attempt using the
subway system within a limited travel time and at a specific time of the day? 2. What is
the maximal number of stations one can reach in a flee attempt using the subway
system within a limited travel time and at a specific time of the day?

We conducted the analysis on a subway system modeled as a mathematical network
where the stations are nodes and the connection between pair of stations are edges [1].
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The train frequency at each station, the corresponding subway line(s) of each station,
and the travel time between adjacent stations are encoded as weights on edges. Hence,
the research questions can be redefined as:

1. What is the longest day-dependent and time-dependent (i.e., day- and time
dependent) shortest path of a subway network. (Recall that the shortest path is the
path between two nodes in a network having the smallest edge-weight sum.)

2. What is the maximal day-time dependent sub-network (component) of a subway
network? (Recall that the maximal component is a connected sub-network that
starting from a root node of the network covers a range of nodes that satisfies a
given maximal edge-weight sum.)

The first question is a particular application of the weighted shortest path problem
[2] that can be solved efficiently using Dijkstra’s algorithm [3]. The second question is
a particular application of the constrained maximum-weight connected graph problem
[4]. The latter is the focus of this paper. Here, the first problem is treated as a
sub-problem of the second. Namely, a rooted day-time dependent component is a
collection of the corresponding shortest paths starting from a root node to each node of
a maximal edge-weight range of nodes. We consider the maximal day-time dependent
component (MDTDC) to be the main problem, and the longest day-time dependent
shortest path (LDTDSP) to be the sub-problem.

Various optimized solutions to this problem are available in [5–7]. The application
range is very diversified and similar analyzes are applied to biological systems [8–10],
wildlife corridors design [11, 12], forest planning [13], communication network design
[4], computer vision [14], and few others.

Our main contribution is a well-defined analysis method that we apply to subway
networks. The subway networks are special because of the variation of the edge weight
value. Thus, we consider the weights to have two sets of values, depending on which
case they fall into. One case is when two adjacent nodes are part of the same subway
line; in that case the weight value on the edge represents the travel time between nodes.
In the second case, when two adjacent nodes are not part of the same subway line, then
the weight value on the edge represents the sum of waiting times at the starting node
and the travel time between nodes.

A detailed description of the conducted analysis is given in Sect. 2. The Munich
subway network proves to be a good candidate [15, 16] for our analysis due to its size,
ridership [17], and train frequency variation over train time schedules [18]. More
details on the data collection is given in Sect. 3. The results are presented and discussed
in Sect. 4. The paper concludes with considerations on the application on this network
and remarks for other subway networks.

2 The MDTDC Problem with the LDTDSP Sub-problem

2.1 Formulation

Let G ¼ ðV ;EÞ be a graph and vi 2 V a random starting node. Knowing all edges eij of
that node, the time of the day (or the hour of the schedule) tD, the corresponding
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frequencies f ðtD; eijÞ, and their travel times along the edges dðvi; vjÞ, we define the
component Gc of G of all nodes that can be reached in time t starting at t ¼ 0 from vi.

All the vertices vh in Gc satisfy the condition that there is a shortest path from vi to
vh such that it can be traveled along in time less than t:

P vi; vhð Þ ¼ min
P vi;vhð Þ

X
eij2P vi;vhð Þ a

60
f ðtD; eijÞ þ dðvi; vjÞ

� �
� t ð1Þ

where P vi; vhð Þ denotes the shortest paths from vi to vh, a ¼ 0 if vi and vj belong to the
same subway line, else a ¼ 1.

From (1), for a given tD and t, MDTDC is defined as
P

P vi; vhð Þ, and LDTDSP is
defined as Pmax vi; vhð Þ. In Fig. 1 (left) is an example of the MDTDC on a simple
network. In this example, the MDTDC of the network starts from the red (center) node,
and all the orange nodes represent the visiting range for a given maximal edge-weight
of three. In Fig. 1 (right) is an example of the LDTDSP on the same simple network.
Here, the LDTDSP of the network starts from the red (center) node, and all the orange
nodes represent the visiting path for a given maximal edge-weight of three.

2.2 Algorithm

Input: An input file containing the adjacency list of the subway network for one
schedule with multiple weights, and an array of the travel time limits. The input file has
the following information on each column: col_1 = station from, col_2 = station to;
col_3 to col_26 = train frequency on that edge by hour from 00 h to 23 h (24 col-
umns); col_27 = subway line; col_28 = travel time on edge in min. The array has the
following elements: 5 min, 10 min, 15 min, 20 min.

Fig. 1. A simplified version of the application for a given maximal edge-weight of three without
considering subway lines or train frequencies. MDTDC is exemplified on a simple network to the
left. LDTDSP is exemplified on a simple network to the right.
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Output: The results for MDTDC and LDTDSP for each travel time limit.

Begin
read master_list
read travel_limit
for each hour H do
    extract adjacency_list_H from master_list
    convert adjacency_list_H to graph_H
    for each node(graph_H) N do
        calculate visited_nodes with

breadth_first_search(graph_H,from_node=N)
        order visited_nodes
        for each node(visited_nodes) V do
            calculate crnt_sp_V with 

shortest_path(graph_H,from_node=N,to_node=V)
            calculate crnt_travel_time for crnt_sp_V

save crnt_travel_time to travel_time_nodes_V
save crnt_sp_V to list_sp_V

        {end for}
        save list_sp_V & travel_time_nodes_V to LDTDSP_N
        save travel_time_nodes_V to travel_time_N
    {end for}
    calculate MDTDC_H with sum(LDTDSP_N)
    calculate LDTDSP_H with max(LDTDSP_N)
{end for}
for each travel_limit T do
    for each node(graph_H) N do
        save MDTDC_T from MDTDC_H with

travel_time_N < travel_limit_T
        save LDTDSP_T from LDTDSP_H with

travel_time_N < travel_limit_T
    {end for}
{end for}

3 Data Collection

The analysis described in the previous section was applied to the Munich subway
network. The network ridership in average is above typical, with more than 398 million
passengers per year [17] for a network with only 100 stations [17]. The train frequency
of this network varies along the subway lines, and sometimes is different along the
same line but in the opposite direction. Namely, the number of trains of a subway line
entering a station in a day is not the same from both directions, because sometimes
trains are redirected on other lines sharing the same destination station. This makes the
Munich subway network a very good candidate for our analysis.
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For this paper, the train frequency data for year 2017 was collected for every station
of the network. This data is publicly available and it can be accessed from the website
of the Munich’s association of public transport authorities (MVV) [18].

The subway network has four main schedules, corresponding to Monday-Thursday,
Friday, Saturday, and Sunday/Holiday. The latter one is the most relaxed schedule in
terms of train frequency, while Friday schedule is the busiest. MVV provides few side
schedules with a more relaxed train frequency during the children’s vacation, or more
intense during the carnival days, Christmas Eve and New Year’s Eve [18]. In this
paper, only the regular schedules are considered. This network has eight subway lines
(U1–U8), but only six (U1–U6) have a daily schedule. The other two (U7–U8) reuse
stations of other lines, with a limited train frequency, because these lines were created
only to avoid overcrowding the central stations by supplementing the number of trains,
e.g. during peak hours. Therefore, the train frequency of U7–U8 is assimilated by the
lines having a regular schedule at the stations reused by these lines [19]. E.g. the line
U7 only reuses stations of U1, U2, and U5, therefore in our analysis we do not treat this
particularity, and the train frequency of U7 is attributed to the other three lines whose
stations have been used.

For each edge, the train frequency starting or ending in one of the two corre-
sponding stations is saved for each hour of the day. Along with the frequency on each
edge, the travel time and the subway line are also stored. The train number handled by a
station in an hour varies between 0–30 trains. The travel time between every two
adjacent stations varies between 1–4 min. The lines are numbered between 1–6 for the
stations corresponding to one line and 9 for shared stations by multiple subway lines.
Figure 2 presents an example of cleaned input data for the analysis.

4 Results and Discussion

In this section, we present and discuss the results obtained after the data set was cleaned
and we applied the analysis method from Sect. 2. MDTDC and LDTDSP are computed
for the Munich subway network during the week days and weekend days. For the week
days, two related schedules are analyzed: Monday-Thursday and Friday. For the
weekend days, the other two schedules are analyzed: Saturday and Sunday/Holiday.

Fig. 2. Example of cleaned input data for the analysis of the Munich subway network.

566 M.S. Nistor et al.



For our analysis, MDTDC and LDTDSP are calculated for a maximal given travel
time corresponding to 5 min, 10 min, 15 min, and 20 min, in order to have a more
diversified range of travel windows. For MDTDC, the results below 5 min travel time
limit are flat, while for a travel time limit above 20 min, MDTDC covers more than half
of the stations.

In Tables 1 and 2, the results show a linear growth of MDTDC from one travel time
limit to another. One can observe that as the travel time limit increases, MDTDC varies
from one hour to another. The results in Table 1 are more diversified than in Table 2
because the week days have a higher train frequency variation on the subway lines. For
example, taking the 20 min travel limit, the difference between 4 am and 7 am on a
Monday-Thursday schedule is more than double, while on a Sunday/Holiday schedule
the difference is very small.

Table 1. MDTDC of the Munich subway network during week days, Monday-Thursday (M-T)
and Friday (Fr) schedules, for a maximal given travel time of 5/10/15/20 min

Hour 5 min
M-T

5 min
Fr

10 min
MT

10 min
Fr

15 min
MT

15 min
Fr

20 min
MT

20 min
Fr

00:00 12 12 22 22 27 27 34 34
01:00 12 12 21 21 25 25 27 27
02:00 0 12 0 21 0 25 0 27
03:00 0 0 0 0 0 0 0 0
04:00 12 12 18 21 21 25 23 27
05:00 12 12 22 22 27 27 34 34
06:00 12 12 23 23 31 31 41 41
07:00 12 12 25 25 38 38 47 47
08:00 12 12 25 25 38 38 47 47
09:00 12 12 24 24 35 35 44 44
10:00 12 12 24 24 33 33 42 42
11:00 12 12 24 24 33 33 42 42
12:00 12 12 24 24 33 34 42 44
13:00 12 12 24 25 33 38 42 46
14:00 12 12 24 25 33 38 42 46
15:00 12 12 24 25 34 38 46 46
16:00 12 12 25 25 38 38 47 46
17:00 12 12 25 25 38 38 47 46
18:00 12 12 25 25 38 38 47 46
19:00 12 12 25 25 35 35 45 45
20:00 12 12 22 22 32 32 39 39
21:00 12 12 22 22 30 30 39 39
22:00 12 12 22 22 30 30 39 39
23:00 12 12 22 22 30 30 39 39
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Notice that MDTDC formed in a 5 min travel time window is quite large for all
train schedules except 2 am to 4 am. That is, if one finds the starting station that
generated the size of this component, in only 5 min one can reach at any time of the
week a range of up to 12 stations. This represents 12% of the size of the network.
Furthermore, in up to 20 min time, one can reach up to 47 stations during the peak
hours of the week days, which is almost half the size of the network.

This variation can be better explored in the two charts of Fig. 3. The left side chart
corresponds to the MDTDC results from Table 1, while the right side chart corresponds
to the MDTDC results from Table 2.

Table 2. MDTDC of the Munich subway network during weekend and holidays, Saturday
(Sa) and Sunday/Holiday (S&H) schedules, for a given maximal travel time of 5/10/15/20 min.

Hour 5 min
Sa

5 min
S&H

10 min
Sa

10 min
S&H

15 min
Sa

15 min
S&H

20 min
Sa

20 min
S&H

00:00 12 12 22 22 27 27 34 34
01:00 12 12 21 21 25 25 27 27
02:00 12 0 21 0 25 0 27 0
03:00 0 0 0 0 0 0 0 0
04:00 12 12 21 21 25 25 27 27
05:00 12 12 21 21 25 25 29 29
06:00 12 12 21 21 25 25 29 29
07:00 12 12 21 21 26 25 34 29
08:00 12 12 22 21 30 25 39 30
09:00 12 12 22 22 30 30 39 39
10:00 12 12 23 22 30 30 39 39
11:00 12 12 24 22 31 30 39 39
12:00 12 12 24 22 31 30 40 39
13:00 12 12 24 22 31 30 40 39
14:00 12 12 24 22 31 30 40 39
15:00 12 12 24 22 31 30 40 39
16:00 12 12 24 22 31 30 40 39
17:00 12 12 24 22 31 30 40 39
18:00 12 12 24 22 31 30 40 39
19:00 12 12 23 22 30 30 39 39
20:00 12 12 22 22 30 30 39 39
21:00 12 12 22 22 30 30 39 39
22:00 12 12 22 22 30 30 39 39
23:00 12 12 22 22 30 30 39 39
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Notice that, since the network has about 100 stations, 47 stations in the maximal
component means about 47% of the network. Thus, the maximal component is between
12% for 5 min and 47% for 20 min., see Fig. 3.

LDTDSP of the Munich subway network for each schedule is presented in Table 3.
The results are the same for all the schedules. LDTDSP changes only from one time
travel limit to another, but not from one schedule to another.

As mentioned before, there is a connection between LDTDSP and MDTDC. Thus,
Table 3 can be read together with Tables 1 and 2. For example, if on Friday 8 o’clock
MDTDC for a 20 min travel time is 47, then 13 (*28%) is given only by
LDTDSP. The latter can be seen visual represented in Fig. 4.

Fig. 3. Variation of MDTDC of the Munich subway network. The left side chart corresponds to
week days (Table 1), and the right side chart corresponds to weekend and holidays (Table 2).
The numbers along the radial axis represent the number of stations in the maximal component.

Table 3. LDTDSP of the Munich subway network of each schedule for a given maximal travel
time of 5/10/15/20 min.

Schedule 5 min 10 min 15 min 20 min

Monday to Thursday 5 8 11 13
Friday 5 8 11 13
Saturday 5 8 11 13
Sunday/holiday 5 8 11 13
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5 Conclusions

We analyzed the scenario where a human threat propagates through the network and
we applied it on a subway system. We analyzed the properties of the system with
propagation constrains in the attempt to find the maximal day-time dependent com-
ponent and the longest day-time dependent shortest path for various schedules. The
maximal component at the rush hours of the day, during the weekdays is very large, for
a travel duration of 30 min; in fact, the maximal component is roughly half the total

Fig. 4. The Munich subway network with the stations part of LDTDSP highlighted in red during
the Friday schedule at 8 am for a 20 min travel time.
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network. Even for 15 min, the maximal component is almost 40%. This raises serious
concerns and consequences for the security of people in the network. The application to
the Munich subway system shows that the selected data samples and analysis criteria
were sufficient for this application. The names of the starting stations creating the
maximal components and the longest paths were removed on purpose, the results
should be used only in scientific terms.

This paper is yet another example suggesting that the activity of a subway system is
fragile and justifies its presence in the critical urban infrastructures category. Here, we
established a well-defined analysis method that can be applied to other type of trans-
portation systems or to other systems with similar properties.
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