
Software Time Reliability in the Presence
of Cache Memories

Suzana Milutinovic1,2(B), Jaume Abella1, Irune Agirre3,
Mikel Azkarate-Askasua3, Enrico Mezzetti1, Tullio Vardanega4,

and Francisco J. Cazorla1,5

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{suzana.milutinovic,jaume.abella,enrico.mezzetti,

francisco.cazorla}@bsc.es
2 Universitat Politècnica de Catalunya, Barcelona, Spain

3 IK4-IKERLAN, Arrasate-Mondragòn, Spain
{iagirre,MAzkarateAskasua}@ikerlan.es

4 University of Padova, Padova, Italy
tullio.vardanega@math.unipd.it

5 IIIA-CSIC, Barcelona, Spain

Abstract. The use of caches challenges measurement-based timing
analysis (MBTA) in critical embedded systems. In the presence of caches,
the worst-case timing behavior of a system heavily depends on how code
and data are laid out in cache. Guaranteeing that test runs capture,
and hence MBTA results are representative of, the worst-case conflic-
tive cache layouts, is generally unaffordable for end users. The prob-
abilistic variant of MBTA, MBPTA, exploits randomized caches and
relieves the user from the burden of concocting layouts. In exchange,
MBPTA requires the user to control the number of runs so that a solid
probabilistic argument can be made about having captured the effect
of worst-case cache conflicts during analysis. We present a computa-
tionally tractable Time-aware Address Conflict (TAC) mechanism that
determines whether the impact of conflictive memory layouts is indeed
captured in the MBPTA runs and prompts the user for more runs in case
it is not.

Keywords: Probabilistic Timing Analysis · WCET · Representative-
ness · Cache memories

1 Introduction

Measurement-based timing analysis (MBTA) is widely adopted in the real-time
domain [22]. The obtained worst-case execution time (WCET) estimates, how-
ever, are reliable insofar as the user is capable of designing test scenarios whose
conditions are close to those that can arise during operation. Complex hard-
ware and software, e.g. caches, introduce numerous sources of jitter (soj) that
are difficult to analyze and control. For example, how program objects, such as
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 233–249, 2017.
DOI: 10.1007/978-3-319-60588-3 15

234 S. Milutinovic et al.

code or stack, are assigned to memory defines their memory addresses, which
in turn determines how they are mapped to cache sets and, ultimately, the pro-
gram’s pattern of hits and misses. Controlling the effect of memory layout to
avoid incurring bad scenarios is not always feasible in practice. Existing tech-
niques are typically exploitable only at the end of the development process as any
analysis result obtained on single software units gets inevitably disrupted after
integration. This inherently clashes with the principle of incrementality in soft-
ware development and analysis, which is a fundamental cross-domain industrial
concern [16].

Measurement-Based Probabilistic Timing Analysis (MBPTA) [2,6,21]
exploits Extreme Value Theory (EVT) [14] and time-randomization to increase
the confidence on WCET estimates. MBPTA uses EVT to model the probabil-
ity of extreme events and, in particular, the combined probability of the events
whose impact is captured in the execution time observations. EVT treats the sys-
tem as a black box, focusing just on its output, hence providing no help to derive
an argument of whether all soj are properly covered. And here is where time ran-
domization comes to the rescue: higher coverage of soj can in fact be obtained
by injecting time randomization in the operation of complex jittery resources
to replace hard-to-control deterministic behavior, so that the corresponding soj
exhibit probabilistic behavior. Interestingly, this feature also allows reasoning
on whether enough measurement runs have been made, which will be the case
when the residual probability of missing a significant behavior of the soj becomes
provably negligible. For instance, if the extreme behavior of a soj has a proba-
bility of appearance of Pevent = 0.1 per run, the probability of not observing it
in R = 1, 000 runs is Pnobs = (1 − Pevent)R = (1 − 0.1)1000 = 1.7 × 10−46.

Time-randomized caches (TRc) [11] are MBPTA’s preferred cache designs
and have been demonstrated on FPGA implementations [9]. TRc use random
placement, mapping memory addresses to random cache sets at each run, giv-
ing rise to random cache (set) placements across runs. As in deterministic set-
associative caches, when the number of addresses mapped to a cache set exceeds
its associativity (W), systematic cache conflicts may occur and eventually result
in increased execution times. With TRc we do not need to control the cache map-
ping to avoid or trigger some specific scenarios, as the effect of cache placement
is transparently exposed. Still, it must be guaranteed that the effect of placement
is conveniently captured at analysis time. And this is not given since, conflic-
tive cache placements may occur with a probability high enough to impact the
timing budget of the system, but low enough to defy observation in the analysis
runs [3,17,20]. For example, for an application that accesses 5 addresses in its
execution, the probability that all of them are randomly mapped to the same
set in a 32-set 4-way cache is 10−6 ≈ (1/32)4, which can be of relevance for
the domain safety standards. If R = 1, 000 analysis runs are performed, a typi-
cal value for MBPTA, the probability of mapping the five addresses in at least
one run to the same set is very low (≈10−3). So far, this issue has been solved
in limited scenarios, which assume that either the program addresses memory
uniformly [3] or it accesses a small number (≤15) of cache lines [18].

Software Time Reliability in the Presence of Cache Memories 235

In this paper we present the Time-aware Address Conflict (TAC) app-
roach, a general and computationally-tractable method that, from the program’s
sequence of accessed addresses, determines whether the number of runs per-
formed by MBPTA, referred to as R, suffices to capture conflictive cache com-
binations with sufficient probability. Else it derives a higher number of runs,
referred to as R′, for which this can be asserted. TAC derives a list of address
combinations that, when mapped to the same set, result in a high miss count.
For each combination, TAC determines its probability and by means of a light-
weight cache simulator, the number of misses that would be incurred when the
addresses in each combination were mapped to the same set – while the rest of the
addresses are randomly mapped. This results in a <probability, misscount> pair
for each combination. The user is then advised to explore random cache place-
ments with the cache simulator until the probabilistic worst-case miss-count
(pWCMC) curve derived with EVT eventually upperbounds the pairs deter-
mined by TAC. This occurs when enough address combinations (R′) singled out
by TAC have been simulated and the number of observed miss counts becomes
sufficient for EVT to converge to an exponential tail approximation [6]. The user
is then instructed to perform R′ runs on the actual system to assure a reliable
application of MBPTA.

Results with EEBMC Autobench [19] and a railway case study running on a
time-randomized FPGA show that TAC successfully identifies conflictive address
combinations and determines the number of runs R′ required to bring the assur-
ance level of the WCET obtained with MBPTA to a desired threshold.

2 Background

MBTA aims at deriving a WCET estimate that holds during system operation.
This requires evidence that measurements taken at analysis occur under condi-
tions similar to or worse than those that can arise during operation. Providing
such evidence is out of reach of standard MBTA approaches, as pointed out
in Sect. 1. MBPTA, by deploying EVT (see Fig. 1), derives the probability that
bad behavior of several of the sources of jitter (soj), whose impact has been
captured in the analysis-time runs, is simultaneously triggered in the same run,
leading to high execution times. Furthermore, randomization makes that soj
events affecting execution time (including those leading to high execution times)
have a probability of appearance. Hence, a probabilistic argument can be built
on whether those events are captured in the measurements performed during the
analysis phase.

Representativeness defines whether the impact of any random relevant event
is properly upper-bounded at analysis time. Relevant events are those occurring
with a probability above a threshold (e.g. Prel = 10−9). With the number of
runs R carried out at analysis, only events with a relatively high probability
(observable probability or Pobs) are (probabilistically) likely to be observed in the
measurement runs. This number of runs (R) determines the lowest probability
of occurrence of an event such that the probability of not observing it in the

236 S. Milutinovic et al.

analysis time measurements is below a cutoff probability, e.g. 10−9. Pobs is a
function of the probability of occurrence per run of the event, Pevent, and the
number of runs R (observations) collected by MBPTA at analysis time. For
instance, for a cutoff probability of 10−9 and R = 1, 000 runs, we can guarantee
that if Pevent ≥ 0.021 the event will not be observed with a probability smaller
than 10−9 (and vice versa). That is, 10−9 ≥ (1 − 0.021)1000. It follows that
with a higher number of runs, events with lower probability can be captured,
though this increases the overhead on the user to deploy MBPTA. Hence, the
relevant events that may not be observed (for R = 1, 000) with a sufficiently high
probability (e.g. > 10−9) are those in the range Pevent ∈ [10−9, 0.021].

Benefits and properties of TRc: Software complexity in current complex
systems is handled via incremental software integration. In the timing domain,
caches make the memory layout of existing modules change across integra-
tion [16]. This has disruptive effects on time composability since the WCET
estimate derived for a software unit in isolation – during system early design
stages – is not valid as software integrates. This loss of time composability
has potential significant costs since, on every integration, regression tests are
required to re-assess the WCET estimate of already-integrated software. Fur-
thermore, timing analysis is pushed and compressed near the end of the devel-
opment process where the detection of timing violations leads to unacceptable
increase in product cost and time to market. TRc break the structural depen-
dence among the memory address given to program code/data and its cache set
location. The user is not required to control the effect of memory layout but just
needs to make sure that its impact on timing has been accounted for performing
enough execution time measurements at analysis time. This enables performing
measurements in isolation factoring in the impact of any cache alignment inde-
pendently of the memory placement produced by future integration. This has
the potential of enabling incremental software integration – and its benefits– in
the presence of caches. TRc hash addresses with a random number1 to compute
the (random) sets where addresses are placed [11]. The random number remains
constant during program execution so that an address is placed in the same set
during the whole execution, but it is randomly changed across executions so that
the particular set where an address is placed is also random and independent of
the placement for the other addresses across executions. Thus, the probability
of any two addresses to be placed in the same set is 1/S where S is the number
of sets.

We call conflictive address combinations, aCi, those combinations of W + 1
or more addresses that, when mapped to the same set, cause a conflictive cache
(set) placement that results in a non-negligible increase in execution time. Table 1
summarizes notations used in this paper.

HoG (Heart of Gold) method [3]: HoG shows that, whenever up to W
addresses are mapped into the same set, after some random evictions, each

1 Random numbers are generated with a pseudo-random number generator that pro-
vides sequences with long periods to prevent any correlation.

Software Time Reliability in the Presence of Cache Memories 237

Fig. 1. pWCET (EVT) estimate. Fig. 2. Application of TAC.

address can be stored in a different cache line in the set, thus not causing fur-
ther misses. Conversely, if more than W cache line addresses compete for the
cache set space, then they do not fit and evictions will occur often. This scenario
represents a random event with high impact on execution time as noticed also
in [17,20]. Hence, a correct application of MBPTA requires ensuring that (i)
either those events are captured in the measurement runs; or (ii) their probabil-
ity is low enough to be considered irrelevant. HoG assumes that the impact of
all addresses on execution time is similar. This may happen when addresses are
accessed homogeneously. However, in the general case not every combination of
addresses – when mapped to the same set – results in an execution time increase
of the same magnitude. This general case is addressed in this paper.

ReVS (Representativeness Validation by Simulation) method [18]:
ReVS considers all combinations of the most accessed cache line addresses with a
cardinality bigger than W , i.e. ∀aCi : |aCi| > W , and captures their impact in a
cache simulator. However, the number of address combinations with a cardinal-
ity bigger than W is huge:

∑U
k=W+1

(
U
k

)
for a sequence Qi, where U = |@(Qi)|.

Hence, evaluating in the cache simulator all potentially conflictive combinations
of addresses is not feasible in the general case due to its exponential dependence
on the number of addresses.

Overall, while MBTA lacks a quantitative measure of coverage of those events
that can affect execution time, MBPTA enables deriving a probabilistic argu-
ment about whether events impacting execution time are captured in analysis-
time tests. Yet, current approaches to derive the number of runs are either non-
scalable [18] or assume homogeneous accesses over all program addresses [3].
TAC provides a low-overhead solution to handle the more general case of arbi-
trary access patterns. For controlled scenarios where ReVS can be applied, e.g.
until U = 15 addresses, ReVS provides exact results with which we compare
TAC results to show that TAC covers all conflictive aCi. We also evaluate TAC
in general scenarios, including a real industrial case study.

238 S. Milutinovic et al.

Table 1. Definitions used in this paper.

Term Description

aCi; |aCi| Address combination, i.e. set of unique addresses; cardinality of aCi

K Cardinality of (number of addresses in) a combination

Qi Sequence of accesses

@(Qi); |@(Qi)| Set of unique addresses in Qi; Number of unique addresses in Qi

U Number of unique addresses in a sequence

Xi Subsequence of accesses between 2 accesses to the same address

q Number of distinct addresses in a subsequence Xi

R (R′) Number of measurements to collect determined by MBPTA (TAC)

T Number of conflictive combinations to return by TAC

3 TAC Mechanism

For a sequence of addresses, TAC focuses on identifying address combinations,
aCi that, when mapped to the same cache set, cause high execution times. The
application of TAC comprises the following steps.

Step 1. List creation. Rather than considering all address combinations with
a cardinality bigger than W as ReVS does, TAC provides a list of potential
conflictive aCi ranked according to their expected impact on execution time
(the size of the list is specified later in this section). To that end, TAC builds
an Address Guilt Matrix (Sect. 3.1) to quickly retrieve those combinations of
addresses that, when mapped to the same set, can cause high miss counts.

Step 2. Impact calculation. Each combination in the list is evaluated with
a cache simulator. Several Monte-Carlo simulations are performed to derive the
number of misses occurring when the addresses in the combination collide in
the same set while the rest of the addresses are mapped randomly. The number
of combinations in this list is fixed and, therefore, independent of the num-
ber of addresses in the program. ReVS, instead, simulates all combinations of
addresses, which has huge cost.

Step 3. Probability calculation. TAC upper-bounds the probability of occur-
rence of those aCi – and combinations of them. The probability of every aCi

to occur is: S × (1/S)|aCi|, where |aCi| is the number of addresses in aCi. For
the combined probability of several aCi we pessimistically use the addition of
their individual probabilities. In reality, due to dependences among aCi, their
combined probability is smaller than that [18].

Step 2 and Step 3 result in a pair <probability, misscount> for each combi-
nation. Figure 2 presents a synthetic example where pairs are represented with
different symbols: black triangles and squares represent the miss counts obtained
for all aCi – and their combinations – whose probability of occurrence is above

Software Time Reliability in the Presence of Cache Memories 239

Prel. Meanwhile, their gray counterparts are those below Prel, which are dis-
carded by TAC since their probability is deemed as negligible.

Step 4. pWCMC curve. TAC uses MBPTA on the miss counts obtained from
cache simulations in which all addresses are randomly mapped, as it would occur
in reality, to obtain a probabilistic worst-case miss-count (pWCMC) curve (see
solid line in Fig. 2). The number of simulations, R, is determined by MBPTA.

Step 5. Assessment. In Fig. 2 triangles are those aCi (and their combinations)
whose miss count is covered by the pWCMC, while the miss counts of the aCi

marked with squares are not. Hence, by validating whether the pWCMC curve
upper-bounds all conflictive mappings (i.e. <probability, misscount> pairs), we
determine whether the number of runs R used by MBPTA suffices. If this is
not the case, more runs are performed until the validation step is passed with
R′ ≥ R runs. Whenever it is passed, the number of runs R′ is the minimum
number of execution time measurements that MBPTA needs to use.

TAC builds on the correlation between miss counts and execution time that
has been positively assessed for our target platform in [18]. If such correlation
is weak, cache behavior would have low impact in execution time, which would
have higher dependence on other soj. However, those other soj do not challenge
MBPTA since probabilities of their events are higher than Pobs [3].

3.1 The Address Guilt Matrix

TAC follows an iterative process in which, across iterations, an incremental num-
ber of addresses K (starting from K = W + 1) is considered to be mapped to
the same set. This creates a cache conflict scenario exceeding cache space in
one set. The process stops when K is large enough so that the probability of
occurrence of the event “K addresses mapped to the same set for the most rele-
vant combinations of K addresses” is below a given cutoff probability2 Pcff . In
practice, we only need the most relevant combination for each value of K since
EVT (part of MBPTA) already accounts for the probability of several of those
events occurring simultaneously. Our results for controlled scenarios show that
the worst combination is always among the TAC top-ranked ones, so we consider
only the T = 20 most relevant combinations for each value of K. In our future
work we will investigate how to choose an optimal parameter value for T.

TAC builds on the concept of guilt, which is intended to help identifying those
aCi that, if mapped to the same set, result in high miss counts. For a given access
Ai with a non-null cache miss probability, guilt provides an approximation to
the extent each intermediate access between Ai and Ai−1 causes Ai to miss in
cache. Note that this concept, although related, differs from the probability of
miss since we are not interested in how many misses each access experiences,
but how much certain addresses can impact each other address if placed in the

2 Note that, while Prel stands for the threshold probability of relevant events at analy-
sis (e.g., 10−9), Pcff relates to the probability of events during operation (e.g.,
10−15) [3].

240 S. Milutinovic et al.

same cache set. For instance, given a direct-mapped (i.e. single way) cache and
the sequence Qi = {A1B1A2}, if both addresses A and B are mapped to the
same set, A2 will miss in cache, and the cause of that is access B1, so B1 takes
full guilt of A eviction. Later in this section we present an efficient mechanism
to approximate guilt for arbitrarily complex sequences.

From probability of miss to guilt. Approaches [4] have been proposed to
derive upper-bounds to the miss probability. However, in this work we are inter-
ested in the actual impact rather than on upper-bounds, and on guilt rather
than on Pmiss. Approaches exist to approximate [11] Pmiss (P̃miss) in the con-
text of MBPTA. These approaches are as shown in Eq. 1, where

∑
P̃miss(Xi)

corresponds to the accumulated miss probability of the intermediate accesses.

P̃miss = 1 −
(
W − 1
W

)∑ P̃miss(Xi)

(1)

While this approach provides good P̃miss approximations [18], it does not
help identifying how much each intermediate access contributes to cause the
miss.

TAC sorts address combinations based on their impact, which requires having
means to estimate the relative impact that each address and group of addresses
have on each other address (guilt) in terms of cache misses. To cover this gap we
propose the P̃guilty estimator (see Eq. 2) that targets providing a precise relative
value for guilt as needed by TAC, rather than approximating Pmiss.

P̃guilty = 1 −
(
W − 1
W

)exp

exp =

{
0, if q < W
q, if W ≤ q < K
K − 1, otherwise

(2)

When the number of intermediate addresses between Ai and Ai−1, q, is
smaller than the number of cache ways W , they all would fit in a cache way,
so misses may only be produced due to random replacement, whose impact is
already captured with the default number of runs of MBPTA [3]. Hence, we
assume that Ai results in a hit, so the guilt of intermediate accesses is 0. Hence,
we ignore Ai and look for the next occurrence of A until q ≥ W or we reach
the end of the sequence. The rationale behind this is that hits do not change
cache state in TRc, thus they can be ignored. On the other hand, ignoring inter-
mediate accesses due to having extra hits in between Ai and Ai−1 would be
misleading. For instance, let us consider W = 2 and Q1 = {A1B1A2C1A3}. We
cannot assume that A3 will always hit in Q1 since sooner or later A will be
evicted. Thus, A2 is ignored and A3 considers the guilt of B1 and C1. It can also
be observed that we enforce exp to be smaller than K, the reason behind this is
explained next.

Guilt estimation. When for an access Ai P̃guilty �= 0, its value is ‘distributed’
among the intermediate accesses between Ai and Ai−1. Each access is assigned
a guilt value w.r.t. address A computed as shown in Eq. 3. For instance given
a cache with W = 2 ways, the sequence Q1 = (A1B1C1D1A2) and K = 3, we

Software Time Reliability in the Presence of Cache Memories 241

obtain that q = 3 and P̃guilty(A2) = 1− (1/2)2 = 0.75 according to Eq. 2. In this
scenario we assign a guilt of 0.375 to each of the q = 3 intermediate accesses.
Note that the addition of guilt assigned to intermediate accesses is bigger than
P̃guilty. The idea is that for K = 3, TAC constructs 3-address combinations that
in this case can be any of ABC, ABD, ACD, BCD. In all those containing A,
we want to assign one half of the guilt to each of the two intermediate accesses.
That is, for ABC one half of the guilt is assigned to B and another half to C. At
any moment only K − 1 accesses will be simultaneously considered by TAC, so
the guilt of a given access is not decreased because of having other intermediate
accesses (more than K). As the value of K increases – as part of TAC iterative
process – those other intermediate accesses will be considered simultaneously.

guilt =

{
P̃guilty

exp , if exp > 0
0, otherwise

(3)

Based on the concept of guilt, which applies at access level, we build the
address guilt matrix (adgm). The adgm comprises as many rows and columns
as different (cache line) addresses are accessed in the program. Cell adgm[A][B]
captures the guilt of B on A, that is, a measure of to what extent misses of every
access Ai are caused by any access to Bj . The adgm is built for every value of
K. From the adgm we infer information about the impact that each address
has on the evictions of each other address. To that end we use the technique in
Sect. 3.2, which covers Step 1 and Step 2. Steps 3 to 5 are applied as presented
before.

The metric, obtained from the guilt, does not have a semantic meaning in
the real world, yet it provides a way to rank address combinations so that if aCi
is ranked higher than aCj, the actual impact in miss count (and execution time)
of aCi is higher than that of aCj. This allows performing cache simulations for
those highly ranked address combinations to measure their actual impact.

3.2 Smart Search of Address Combinations

Exhaustive Search. As reference we use an algorithm that exhaustively
searches the adgm and later provide refinements to limit computational costs.
For every value of K we build all potential combinations of K addresses out
of U , so performing an Exhaustive Search. For each combination we query the
adgm to obtain the expected impact if those addresses were mapped to the same
set. The impact is obtained as follows: (1) for each address i in the combination
aCi we compute a value Mi obtained as the highest minimum impact that W
other addresses in the combination may have on it. Hence, we take the minimum
Mi out of the highest W values in the adgm (adgm[i][x] where x is any other
address in the combination). Note that we care only about those W addresses
that can create highest impact on the address of that row in the adgm, since
W + 1 addresses suffice to exceed the cache set space. Then, we select the mini-
mum value out of those to reflect that, if an address produces few evictions, the
others will not produce more evictions than that one because other accesses will

242 S. Milutinovic et al.

become hits. (2) Finally, we obtain the impact as the harmonic mean of all Mi

values to, again, reflect that the number of evictions is limited by the address
producing the lowest number of evictions. We exclude pairs for the same address
(e.g., adgm[A][A]) since an address cannot create evictions on itself. If one or
some of the addresses have little impact on the other addresses, then its Mi value
is much lower and so the final impact, thus allowing to discard this combination.
For instance, in the combination aCi = {A,B,C,D,E, F}, if F has almost zero
impact on the other addresses, this combination will be discarded for K = 6. If
the other 5 addresses have high impact among them, they will be conveniently
considered for K = 5. Whenever all combinations are considered in the adgm
(without performing any cache simulation), we create a list of top ranked com-
binations (Step 1) for which cache simulations are performed to measure miss
counts (Step 2).

Smart Search. Since the computational cost of considering this Exhaustive
Search in the adgm is prohibitive, we propose a smart search algorithm that
comprises the following steps.

First, we discard the rows in the adgm whose P̃guilty is below 1% of the high-
est P̃guilty in the table since their combinations with relevant addresses (P̃guilty

above the 1% threshold) will already be accounted by those other addresses, and
their impact on irrelevant addresses is deemed irrelevant as well. Then, we create
address buckets in each row of the adgm with all the addresses with the same
guilt value w.r.t. the address of that row. Empirically, we observed that EEMBC
and the railway case study produce a low number of buckets. Otherwise, some
difference is tolerated among addresses in the same bucket to reduce their count.

Second, the relevant buckets for a certain address are only those whose rela-
tive impact w.r.t. the total guilt in the row is significant for the address of that
row. Such significance threshold Sth (1% in our case) is used to explore combi-
nations with meaningful impact. The remaining addresses (their guilt is below
Sth) are simply regarded as irrelevant.

Third, we generate the combinations of K elements for each row by making
all possible combinations with the address corresponding to that row and K − 1
elements from different buckets. For instance, assuming K = 4 and 2 buckets
(b1 and b2), we make all combinations of 4 addresses using the one of the row
and three addresses from the buckets: 3 from b1, 2 from b1 and 1 from b2, 1
from b1 and 2 from b2, and 3 from b2. We always choose those addresses with
the highest P̃guilty in each bucket. We take into account the size of the bucket
by computing how many combinations are expected to have the same impact
to the representative ones. For instance, if b1 and b2 contain 4 and 5 addresses
respectively, when picking 2 addresses from b1 and 1 from b2, we determine that
there are 30 different combinations meeting those constraints. This is used to set
the probability of the pair <probability, misscount> if these combinations have
a sufficiently high impact to be simulated.

Software Time Reliability in the Presence of Cache Memories 243

Fourth, when all addresses have been analyzed and the list with T = 20
combinations3 for a particular value of K is obtained (Step 1), we perform cache
simulations to determine their miss counts (Step 2). In the case of addresses in
a bucket, we simulate only those with the highest P̃guilty and assume the same
impact for other combinations that could be generated with other addresses in
the bucket. While this may lead to a little pessimism in terms of the impact
of those addresses, such pessimism is very limited given that addresses belong
to the same bucket. This may result in pairs <probability, misscount> further
challenging the reliability of the pWCMC curve, thus potentially rejecting some
very tight (yet reliable) pWCMC estimates.

4 Evaluation

We model a pipelined in-order processor with 4KB 2-way-associative 32B-line
separated first level instruction (IL1) and data (DL1) caches. Both caches deploy
random placement and replacement policies [11], with DL1 implementing write-
back (IL1 is read-only). DL1/IL1 access latency is 1 cycle for hits with 3 extra
cycles for misses. The latter is added to the main memory latency (16 cycles).

We evaluate TAC on the EEMBC automotive benchmarks, widely used in
the community to capture real-time automotive application features [19]. On
average this suite has 6,500 Lines of Code, 2,500 Unique Instruction Addresses
and 5,600 Unique Data Addresses per benchmark. In particular we use these
benchmarks: a2time (a2), aifftr (at), aifirf (ar), aiifft (ai), basefp (ba),
bitmnp (bi), cacheb (ca), idctrn (id) and iirflt (ii). We consider all addresses
accessed by each benchmark. Additionally, we analyzed the same benchmarks in
a controlled scenario in which we focus on a subset of the most accessed (cache
line) addresses to allow for a comparison against ReVS, which hardly scales
for higher values of U. While in this scenario we cover on average 58% of the
accesses across all benchmarks – thus leaving some degree of uncertainty due to
the remaining 42% accesses that are neglected in [18] – it allows comparing TAC
against ReVS, with the latter guaranteeing exact results.

TAC vs ReVS. For this comparison we focus only on the U = 15 most accessed
addresses for which ReVS is capable of exploring all address combinations.

Table 2 shows the number of runs that each of the methods regards as the
minimum to use for a reliable MBPTA application. We show results for both
IL1 and DL1. As shown, both approaches provide exactly the same number of
runs (R′) for these limited address traces. In particular, TAC identifies the same
address combinations most of the times or, alternatively, address combinations
with roughly the same impact as those regarded by ReVS as the most conflictive
ones for each value of K. The exception to this comes from the case in which
ReVS identifies for high values of K combinations which, in fact, are the addition

3 One combination may be the representative of many others if addresses belong to
buckets. Hence, simulating 20 combinations provides information of, at least, 20
actual address combinations, but generally many more than 20.

244 S. Milutinovic et al.

Table 2. Runs for TAC and ReVS for
Prel = 10−9 and U = 15.

R′
IL1 R′

DL1 R′

ReVS TAC ReVS TAC ReVS TAC

a2 58, 360 58, 360 540 540 58, 360 58, 360

at 6, 840 6, 840 5, 500 5, 500 6, 840 6, 840

ar 21, 390 21, 390 11, 530 11, 530 21, 390 21, 390

ai 8, 920 8, 920 8, 770 8, 770 8, 920 8, 920

ba 82, 080 82, 080 20, 010 20, 010 82, 080 82, 080

bi 4, 640 4, 640 3, 510 3, 510 4, 640 4, 640

ca 18, 610 18, 610 7, 950 7, 950 18, 610 18, 610

id 65, 770 65, 770 47, 700 47, 700 65, 770 65, 770

ii 18, 310 18, 310 49, 760 49, 760 49, 760 49, 760

Table 3. Results for complete
EEMBC benchmarks.

TAC MBPTA

R′
IL1 R′

DL1 R′ lik.(R′) R lik.(R)

67, 150 300 67, 150 10−9 300 0.911

300 4, 760 4, 760 10−9 300 0.271

20, 080 8, 090 20, 080 10−9 14, 260 10−7

300 10, 630 10, 630 10−9 300 0.557

78, 220 300 78, 220 10−9 1, 250 0.718

330 1, 800 1, 800 10−9 300 0.032

19, 840 1, 500 19, 840 10−9 9, 360 10−5

67, 460 43, 040 67, 460 10−9 300 0.912

29, 920 2, 430 29, 920 10−9 300 0.812

of two or more independent combinations. For instance, ReVS identifies com-
binations for K = 6 that, in reality correspond to two combinations of K = 3
occurring at the same time. As explained before, EVT needs to observe high-
impact events, but not their combination. Thus, this difference has no influence
on R′.

Execution time cost. For U = 15 ReVS requires on average 27 h per benchmark
with 1,000 cache simulations per address combination on a cluster running 100
jobs in parallel. TAC is 148 times faster requiring 2 s on average per program on
a laptop computer to derive the address combinations and their cost, and around
11 min per benchmark to run cache simulations for the limited address combi-
nations considered on the same cluster. For full benchmarks, i.e. unrestricted U ,
ReVS could not be applied while TAC required 1 min per program to generate
the pairs <probability, misscount> and around 38 min per program to perform
cache simulations in our cluster.

TAC evaluation on full benchmarks. In Table 3 we report the number of
runs required by TAC to guarantee that relevant events can only be missed with
a probability below a parametrizable residual threshold, e.g. 10−9. We also show
the runs requested by MBPTA together with the probability of missing those
events with the default number of runs required. MBPTA takes as input the
number of execution times belonging to the tail of the distribution that need to
be observed in measurements, in our case 50 values [2]. Then, starting from 300
runs, MBPTA inspects whether enough tail values are observed. If this is not the
case, it asks for more runs until this condition is satisfied and EVT converges.

As shown, R′ ≥ R: in many cases we observe that the likelihood of missing
critical address combinations in the default runs (R) determined by MBPTA
only is high. This does not mean that pWCET estimates are necessarily wrong,
but indicates that there is non-negligible risk of not observing some high-impact
timing events in the analysis runs if TAC is not used.

When comparing the number of runs of TAC with full address traces w.r.t.
only 15 addresses, we observe in most of the cases a limited variation in R′.

Software Time Reliability in the Presence of Cache Memories 245

However, in some cases R′ decreases noticeably (e.g. R′
IL1 for aifftr (at))

because there are many combinations with similar impact that cannot be
observed with only 15 addresses. This makes that the probability of observ-
ing one of those combinations is much higher and thus, fewer runs are needed
to observe one of them. In any case, differently to ReVS, which is limited to
15 addresses, TAC can deal with arbitrary access patterns without any explicit
limit. Thus, TAC removes the uncertainty brought by ReVS due to non-analyzed
addresses.

5 Railway Case Study

We use as railway case study a safety function part of the European Vital Com-
puter (EVC): the central safety processing unit of the European Train Control
System (ETCS) reference architecture. The EVC is responsible of executing all
safety functions associated to the travelling speed and distance supervision. As
a fail-safe system, whenever an over-speed of the train is detected, the ETCS
must switch to a safe-state where the emergency break is active. This safety
function shall be provided with the highest integrity level defined in the railway
safety standards, SIL-4, and has strict real-time requirements. Accordingly, we
apply MBPTA to estimate the WCET for the safety function from the moment
of reading the input sensors until the activation of the safe-state. The end user
(IK4-IKERLAN) controls input vectors’ impact on execution path coverage and
in their current timing analysis practice they focus on observed paths. We stick
to those paths and apply TAC to all of them. We plan to cover scenarios where
the user lacks this control as part of our future work.

Address traces were collected from a LEON3-based FPGA board using exist-
ing tracing capabilities of the platform. We have applied TAC to the case study
for 10 different input sets (TEST0 to TEST9). The case study comprises around
8,500 Lines of Code, 2,994 Unique Instruction Addresses and 597 Unique Data
Addresses for the largest input set.

Table 4 reports the results we obtained, in terms of the number of runs that
MBPTA and TAC require in the miss domain. For each test we show whether (Y)
or not (N) MBPTA’s default number of runs (R) and that reported by TAC (R′)
suffice to upper-bound the pairs <probability, misscount>. As it can be seen, the
default application of MBPTA failed to upper-bound some address combinations
for data and instructions for many input sets. Furthermore, in those cases where
R < R′, confidence on having enough runs for a reliable application of MBPTA
cannot be had.

This is illustrated in Fig. 3 for TEST7 and the DL1 where TAC <probability,
misscount> pairs (points in the plot) are not upper-bounded by the pWCMC
curve (lower straight line in the plot) when using R = 300, the number or runs
required by MBPTA. Instead, if we use R′ = 4, 400, as determined by TAC, the
pWCMC curve properly upper-bounds those pairs.

For this industrial application, TAC required, on average, 1, 828 runs per
input set, which is affordable in a usual test campaign. TAC took 1.3 min to
derive the conflictive combinations and 0.35 min per test for cache simulations.

246 S. Milutinovic et al.

Table 4. Runs needed by TAC and MBPTA to achieve a confidence of 10−9.

IL1 DL1

R R′ R R′

TEST0 300(Y) 300(Y) 370(N) 1,300(Y)

TEST1 300(N) 600(Y) 3,800(Y) 3,800(Y)

TEST2 300(N) 600(Y) 300(N) 1,000(Y)

TEST3 300(N) 1,600(Y) 300(N) 850(Y)

TEST4 300(N) 1,200(Y) 750(N) 1,100(Y)

TEST5 300(N) 2,100(Y) 480(N) 900(Y)

TEST6 300(N) 500(Y) 890(Y) 890(Y)

TEST7 300(N) 500(Y) 300 (N) 4,400(Y)

TEST8 300(N) 700(Y) 300 (N) 2,300(Y)

TEST9 300(N) 4,800(Y) 1,740(Y) 1,740(Y)

Fig. 3. pWCMC for TEST7 (DL1) by applying MBPTA (R) and TAC+MBPTA (R’).

6 Related Work

A recent work comparing static (deterministic) timing analysis techniques
(SDTA) and MBPTA [1] shows that there is not a dominant technique but
the relation between the application working set and the cache size is the factor
affecting the most which technique performs better.

MBPTA-compliant hardware. The concept of MBPTA-compliant hardware
has been defined in [13]. Hardware techniques provide MBPTA compliance for
some specific resources like caches [11] or buses [10]. Software randomization
techniques have been shown to enable the analysis of deterministic caches with
MBPTA [12]. Time-randomized caches were originally proposed in [11]. Recently
some variants have been proposed combining benefits of modulo placement while

Software Time Reliability in the Presence of Cache Memories 247

keeping the randomization required by MBPTA [9]. Some of these random place-
ment designs have been shown to be implementable in FPGA prototypes [9].

Probabilistic Analysis. Some works study random caches in terms of the coverage
of conflictive cache placements and complex timing effects, as noted in [3,17,
20]. Other studies cover aspects related to control-flow dependences and data-
dependences in the context of MBPTA. We refer the reader to [13,23] for details
on how to handle control and data dependences.

Applying EVT on software programs brings the dependence of execution
times on input-data [15,23] into the equation. Static and measurement based
approaches tackle input-data dependence by requiring program features like loop
bounds or recursion level to be bounded to derive WCET estimates. Hence, input
vectors mainly affect the paths traversed. Current practice in MBPTA, and our
assumption here, is to operate on a set of representative input vectors provided
by the user. This is also the practice followed by IK4-IKERLAN for the rail case
study. In the context of MBPTA, this assumption can be lifted by synthetically
extending the input set, with the same effect of full path coverage [23].

EVT has also been used to estimate WCET on top of non-MBPTA-compliant
(deterministic) architectures [5,7,8]. The main challenge of those architectures is
providing evidence of the representativeness of the execution time observations
passed to EVT. To the best of our knowledge, the representativeness challenge
has not been studied on non-MBPTA platforms [13].

7 Conclusions

MBTA cannot quantify the degree of coverage attained for the jitter caused by
platform events. For caches, while the end user can perform many tests, it is hard
to argue about whether conflictive cache mappings leading to high execution
times have been covered in the tests. In the context of MBPTA and building on
the properties of TRc, on every new run a random cache mapping is explored.
This enables building a coverage argument. Yet, it is necessary to determine the
number of runs to perform to capture conflictive cache mappings. We propose
TAC, a low-overhead mechanism that determines whether the number of runs is
enough to cover the cache mappings of interest to a given quantifiable threshold.
If this is not the case, TAC requests an increased number of runs to the user until
the threshold is reached. Results with EEMBC Automotive and a real railway
case study show that TAC successfully identifies conflictive address combinations
and increases the number of runs accordingly so that reliable WCET estimates
can be obtained for programs with arbitrary access patterns.

Acknowledgments. The research leading to these results has received funding from
the European Community’s FP7 [FP7/2007-2013] under the PROXIMA Project (www.
proxima-project.eu), grant agreement no 611085. This work has also been partially
supported by the Spanish Ministry of Science and Innovation under grant TIN2015-
65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially
supported by the Ministry of Economy and Competitiveness under Ramon y Cajal
postdoctoral fellowship number RYC-2013-14717.

www.proxima-project.eu
www.proxima-project.eu

248 S. Milutinovic et al.

References

1. Abella, J., Hardy, D., Puaut, I., Quiones, E., Cazorla, F.J.: On the comparison
of deterministic and probabilistic WCET estimation techniques. In: 2014 26th
Euromicro Conference on Real-Time Systems, pp. 266–275, July 2014

2. Abella, J., Padilla, M., del Castillo, J., Cazorla, F.: Measurement-based worst-
case execution time estimation using the coefficient of variation. ACM Trans. Des.
Autom. Electron. Syst. (to appear)

3. Abella, J., Quiones, E., Wartel, F., Vardanega, T., Cazorla, F.J.: Heart of gold:
Making the improbable happen to increase confidence in MBPTA. In: 2014 26th
Euromicro Conference on Real-Time Systems, pp. 255–265, July 2014

4. Altmeyer, S., Davis, R.I.: On the correctness, optimality and precision of static
probabilistic timing analysis. In: 2014 Design, Automation Test in Europe Confer-
ence Exhibition (DATE), pp. 1–6, March 2014

5. Bernat, G., Burns, A., Newby, M.: Probabilistic timing analysis: an approach using
copulas. J. Embed. Comput. 1(2), 179–194 (2005). http://content.iospress.com/
articles/journal-of-embedded-computing/jec00014

6. Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T., Kosmidis, L.,
Abella, J., Mezzetti, E., Quiones, E., Cazorla, F.J.: Measurement-based probabilis-
tic timing analysis for multi-path programs. In: 2012 24th Euromicro Conference
on Real-Time Systems, pp. 91–101, July 2012

7. Edgar, S., Burns, A.: Statistical analysis of WCET for scheduling. In: Proceedings
22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420), pp.
215–224, December 2001

8. Hansen, J.P., Hissam, S.A., Moreno, G.A.: Statistical-based WCET estimation and
validation. In: Holsti, N. (ed.) 9th International Workshop on Worst-Case Execu-
tion Time Analysis, WCET 2009, OASICS, Dublin, Ireland, 1–3 July 2009, vol.
10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009). http://
drops.dagstuhl.de/opus/volltexte/2009/2291

9. Hernandez, C., Abella, J., Gianarro, A., Andersson, J., Cazorla, F.J.: Random
modulo: a new processor cache design for real-time critical systems. In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2016

10. Jalle, J., Kosmidis, L., Abella, J., Quiones, E., Cazorla, F.J.: Bus designs for time-
probabilistic multicore processors. In: 2014 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1–6, March 2014

11. Kosmidis, L., Abella, J., Quiones, E., Cazorla, F.J.: A cache design for probabilis-
tically analysable real-time systems. In: 2013 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 513–518, March 2013

12. Kosmidis, L., Curtsinger, C., Quiones, E., Abella, J., Berger, E., Cazorla, F.J.:
Probabilistic timing analysis on conventional cache designs. In: 2013 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 603–606, March
2013

13. Kosmidis, L., Quiones, E., Abella, J., Vardanega, T., Broster, I., Cazorla, F.J.:
Measurement-based probabilistic timing analysis and its impact on processor archi-
tecture. In: 2014 17th Euromicro Conference on Digital System Design, pp. 401–
410, August 2014

14. Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications.
EBL-Schweitzer, Imperial College Press (2000). https://books.google.es/books?
id=tKlgDQAAQBAJ

http://content.iospress.com/articles/journal-of-embedded-computing/jec00014
http://content.iospress.com/articles/journal-of-embedded-computing/jec00014
http://drops.dagstuhl.de/opus/volltexte/2009/2291
http://drops.dagstuhl.de/opus/volltexte/2009/2291
https://books.google.es/books?id=tKlgDQAAQBAJ
https://books.google.es/books?id=tKlgDQAAQBAJ

Software Time Reliability in the Presence of Cache Memories 249

15. Lima, G., Dias, D., Barros, E.: Extreme value theory for estimating task execution
time bounds: a careful look. In: 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS), pp. 200–211, July 2016

16. Mezzetti, E., Vardanega, T.: A rapid cache-aware procedure positioning optimiza-
tion to favor incremental development. In: 2013 IEEE 19th Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), pp. 107–116, April 2013

17. Mezzetti, E., Ziccardi, M., Vardanega, T., Abella, J., Quiones, E., Cazorla, F.:
Randomized caches can be pretty useful to hard real-time systems. Leibniz
Trans. Embed. Syst. 2(1), 01:1–01:10 (2015). http://ojs.dagstuhl.de/index.php/
lites/article/view/LITES-v002-i001-a001

18. Milutinovic, S., Abella, J., Cazorla, F.J.: Modelling probabilistic cache representa-
tiveness in the presence of arbitrary access patterns. In: 2016 IEEE 19th Interna-
tional Symposium on Real-Time Distributed Computing (ISORC), pp. 142–149,
May 2016

19. Poovey, J.A., Conte, T.M., Levy, M., Gal-On, S.: A benchmark characterization of
the eembc benchmark suite. IEEE Micro 29(5), 18–29. http://dx.doi.org/10.1109/
MM.2009.74

20. Reineke, J.: Randomized caches considered harmful in hard real-time systems.
Leibniz Trans. Embed. Syst. 1(1), 03:1–03:13 (2014). http://ojs.dagstuhl.de/index.
php/lites/article/view/LITES-v001-i001-a003

21. Wartel, F., Kosmidis, L., Gogonel, A., Baldovino, A., Stephenson, Z., Triquet,
B., Quiones, E., Lo, C., Mezzetta, E., Broster, I., Abella, J., Cucu-Grosjean, L.,
Vardanega, T., Cazorla, F.J.: Timing analysis of an avionics case study on com-
plex hardware/software platforms. In: 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 397–402, March 2015

22. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem—overview of methods and survey of tools. ACM Trans. Embed. Com-
put. Syst. 7(3), 36:1–36:53. http://doi.acm.org/10.1145/1347375.1347389

23. Ziccardi, M., Mezzetti, E., Vardanega, T., Abella, J., Cazorla, F.J.: Epc: extended
path coverage for measurement-based probabilistic timing analysis. In: 2015 IEEE
Real-Time Systems Symposium, pp. 338–349, December 2015

http://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v002-i001-a001
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v002-i001-a001
http://dx.doi.org/10.1109/MM.2009.74
http://dx.doi.org/10.1109/MM.2009.74
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v001-i001-a003
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v001-i001-a003
http://doi.acm.org/10.1145/1347375.1347389

	Software Time Reliability in the Presence of Cache Memories
	1 Introduction
	2 Background
	3 TAC Mechanism
	3.1 The Address Guilt Matrix
	3.2 Smart Search of Address Combinations

	4 Evaluation
	5 Railway Case Study
	6 Related Work
	7 Conclusions
	References

