
Johann Blieberger
Markus Bader (Eds.)

 123

LN
CS

 1
03

00

22nd Ada-Europe International Conference
on Reliable Software Technologies
Vienna, Austria, June 12–16, 2017, Proceedings

Reliable Software
Technologies –
Ada-Europe 2017

Lecture Notes in Computer Science 10300

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Johann Blieberger • Markus Bader (Eds.)

Reliable Software
Technologies –
Ada-Europe 2017
22nd Ada-Europe International Conference
on Reliable Software Technologies
Vienna, Austria, June 12–16, 2017
Proceedings

123

Editors
Johann Blieberger
Institute of Computer Aided Automation
Vienna University of Technology
Vienna
Austria

Markus Bader
Institute of Computer Aided Institute
Vienna University of Technology
Vienna
Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-60587-6 ISBN 978-3-319-60588-3 (eBook)
DOI 10.1007/978-3-319-60588-3

Library of Congress Control Number: 2017943008

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 22nd edition of the International Conference on Reliable Software Technologies
(Ada-Europe 2017) took place in Vienna, returning to Austria 15 years after 2002. The
previous editions of the conference were held in Spain (Santander, 1999, Palma de
Mallorca, 2004, Valencia, 2010, Madrid, 2015), France (Toulouse, 2003, Brest, 2009,
Paris, 2014), the UK (London, 1997, York, 2005, Edinburgh, 2011), Switzerland
(Montreux, 1996, Geneva, 2007), Sweden (Uppsala, 1998, Stockholm, 2012),
Germany (Potsdam, 2000, Berlin, 2013), Italy (Venice, 2008, Pisa, 2016), Belgium
(Leuven, 2001), and Portugal (Porto, 2006).

TU Wien was the lead organizer for this edition, with aid from an international core
team that included members of Ada-Europe, the organization that oversees and
sponsors the conference series.

The conference took place in the week of June 12–16, 2017, with a rich program for
both technical content and social opportunities. The scientific program featured 15
papers selected among 37 peer-reviewed submissions, grouped into five presentation
sessions and one panel discussion, entitled “The Future of Safety-Minded Languages,”
scheduled in the central days of the conference week, to address topics ranging from
runtimes, safety and security, timing verification, programming models, and mixed
criticality. The proceedings contained in this volume reflect these contributions (see the
table of contents for details).

The conference program also included nine industrial contributions arranged in three
industrial presentation sessions. Vendor presentations with accompanying exhibitions
completed the core program. Eight tutorials for the equivalent of nine half-day sessions
were offered on Monday and Friday. The Friday program included the fourth edition
of the Workshop on Challenges and New Approaches for Dependable and
Cyber-Physical Systems Engineering (De-CPS), this year focusing on the theme
“Transportation of the Future.” The proceedings from this part of the conference
program will be published, in successive installments, in the Ada User Journal, the
quarterly magazine of Ada-Europe.

The scientific and industrial submissions originated from 24 countries and 124
distinct authors, from Europe, Asia, North and South America, Australia, and Africa.
Thanks to that wealth, the final program was an international digest of contributions
from Australia, Austria, Denmark, France, Italy, Portugal, South Korea, Spain,
Sweden, Switzerland, UK, and USA.

Each central day of the week opened with a keynote talk focusing on topics of
interest to the conference scope. The three keynote talks were:

– “The Laws of Robotics and Autonomous Vehicles May Be Much More Than
Three, But Don’t Panic… Yet” by Giovanni Battista Gallus, from Array, Italy, who
discussed the future European legal framework for the development of autonomous
vehicles, especially for programming issues.

– “Behavioral Software Metrics” by Tom Henzinger, from IST, Austria, who showed
how the classic satisfaction relation between programs and requirements can be
replaced by quantitative preference metrics that measure the “fit” between programs
and requirements. Depending on the application, such fitness measures can include
aspects of function, performance, resource consumption, and robustness.

– “Dependable Internet of Things” by Kay Römer from TU Graz, Austria, who
presented the challenge resulting from the increasing use of wireless networked
embedded systems in safety-critical applications, which must be proven to meet
strict dependability requirements even under the harshest environmental conditions.
The presentation highlighted recent results that improve the dependability of
wireless communication and localization, embedded computing, and networked
control for the Internet of Things.

The tutorial program covered the following topics:

– “Introduction to SPARK 2014,” Peter Chapin, Vermont Technical College
– “Ada on ARM Cortex-M, A Zero-Run-Time Approach,” Maciej Sobczak, GE

Aviation and Inspirel
– “Software Measurement for Dependable Software Systems,” William Bail,

The MITRE Corporation
– “Real-Time Parallel Programming with the UpScale SDK,” Luis Miguel Pinho,

ISEP, and Eduardo Quinones, BSC
– “Using Gnoga for Desktop/Mobile GUI and Web development in Ada,” Jean-Pierre

Rosen, Adalog
– “Frama-C, a Collaborative Framework for C Code Verification,” Julien Signoles,

CEA LIST
– “On Beyond ASCII: Characters, Strings, and Ada 2012,” Jean-Pierre Rosen,

Adalog
– “Modular Open System Architecture for Critical Systems,” William Bail,

The MITRE Corporation

The industrial program featured the following presentations:

– “Astronomical Ada,” Ahlan Marriott, White Elephant GmbH, Switzerland
– “IP Network Stack in Ada 2012 and the Ravenscar Profile,” Stephane Carrez,

France
– “Hardware-Based Data Protection/Isolation at Runtime in Ada Code for Micro-

controllers,” German Rivera, USA
– “Automated Testing of SPARK Ada Contracts: Progress and Case Study Report,”

Simon Daniel, Rolls-Royce plc, UK, and Stuart Matthews, Altran UK, UK
– “Introducing Static Analysis to a Mature Project,” Jacob Sparre Andersen, JSA

Research & Innovation, Denmark
– “Challenges and Opportunities for Improvements of the Testing Process for Ada

based Safety Critical Systems,” Guillem Bernat, Rapita Systems, UK
– “Experiences with Ada in the Safety-Critical Communication and Ground Control

Systems of the nEUROn UCAV,” Luis Pabón, Artemio Jiménez, and José M.
Martínez, Airbus Defence & Space, Spain

VI Preface

– “Experience with Use of Model-Driven Code Generation on the ASIM Project,”
Steen Palm, Terma A/S, Denmark

– “A Time-Triggered Middleware for Safety-Critical Automotive Applications,”
Ayhan Mehmed, Wilfried Steiner, and Maximilian Rosenblattl, TTTech Comput-
ertechnik AG, Austria.

We would like to acknowledge the work of all the people who contributed, with
various responsibilities and official functions, to the making of the conference program
overall. The success of the conference depends in large part on the quality of the
program contents. The authors of the selected contributions are to be thanked first and
foremost for that. The members of the Program and Industrial Committees had the
difficult task of screening the submissions and selecting the contributions to include in
this proceedings volume and in the Ada User Journal.

The Organizing Committee put it all together: Wolfgang Kastner (Conference
Chair); Jacob Sparre Andersen (Industrial Chair); Ben Brosgol (Tutorial and Workshop
Chair); Dirk Craeynest (Publicity Chair); Ahlan Marriott (Exhibition Chair). All
of them deserve our gratitude for their effort.

We hope that the attendees enjoyed every element of the conference program at least
as much as we did in organizing it.

June 2017 Johann Blieberger
Max Bader

Preface VII

Organization

Conference Chair

Wolfgang Kastner TU Vienna, Austria

Program Co-chairs

Johann Blieberger TU Vienna, Austria
Markus Bader TU Vienna, Austria

Tutorial and Workshop Chair

Ben Brosgol AdaCore, USA

Industrial Chair

Jacob Sparre Andersen JSA Consulting, Denmark

Publicity Chair

Dirk Craeynest Ada-Belgium and KU Leuven, Belgium

Exhibition Chair

Ahlan Marriott White Elephant, Switzerland

Local Chair

Markus Bader TU Vienna, Austria

Sponsoring Institutions

AdaCore
Ellidiss Technologies
PTC Developer Tools
RAPITA Systems Ltd.
Vector Software

Program Committee

Mario Aldea Universidad de Cantabria, Spain
Ted Baker NSF, USA

Ezio Bartocci Vienna University of Technology, Austria
Bernd Burgstaller Yonsei University, South Korea
Juan A. de la Puente Universidad Politécnica de Madrid, Spain
Lukas Esterle Vienna University of Technology, Austria
Michael González Harbour Universidad de Cantabria, Spain
J. Javier Gutiérrez Universidad de Cantabria, Spain
Jérôme Hugues ISAE, France
Raimund Kirner University of Hertfordshire, UK
Wilfried Kubinger FH Technikum Wien, Austria
Albert Llemosí Universitat de les Illes Balears, Spain
Kristina Lundkvist Mälardalen University, Sweden
Franco Mazzanti ISTI-CNR, Italy
Laurent Pautet Telecom ParisTech, France
Justus Piater University of Innsbruck, Austria
Luís Miguel Pinho CISTER/ISEP, Portugal
Erhard Plödereder Universität Stuttgart, Germany
Jorge Real Universitat Politècnica de València, Spain
José Ruiz AdaCore, France
Sergio Sáez Universitat Politècnica de València, Spain
Tucker Taft AdaCore, USA
Theodor Tempelmeier University of Applied Sciences Rosenheim, Germany
Elena Troubitsyna Åbo Akademi University, Finland
Santiago Urueña GMV, Spain
Tullio Vardanega Università di Padova, Italy
Armin Wasice University of California at Berkeley, USA
Michael Zillich Vienna University of Technology, Austria

Industrial Committee

Ian Broster Rapita Systems, UK
Jørgen Bundgaard Rambøll Denmark A/S
Dirk Craeynest Ada-Belgium & KU Leuven, Belgium
Thomas Gruber Austrian Institute Of Technology (AIT), Austria
Egil Harald Høvik Kongsberg, Norway
Ismael Lafoz Airbus Defence and Space, Spain
Björn Lundin Consafe Logistics, Sweden
Ahlan Marriott White Elephant, Switzerland
Paolo Panaroni Intecs, Italy
Paul Parkinson Wind River, UK
Andreas Richtsfeld DS Automotion GmbH, Austria
Jean-Pierre Rosen Adalog, France
Emilio Salazar GMV, Spain
Jacob Sparre Andersen JSA Consulting, Denmark
Jean-Loup Terraillon European Space Agency, The Netherlands
Sergey Tverdyshev SysGO, Germany

X Organization

Additional Reviewers

Jorge Garrido Balaguer
Hector Perez
Juan Zamorano

Organization XI

Contents

Runtimes

Evaluating MSRP and MrsP with the Multiprocessor Ravenscar Profile 3
Jorge Garrido, Juan Zamorano, Alejandro Alonso,
and Juan A. de la Puente

Ravenscar-EDF: Comparative Benchmarking of an EDF Variant
of a Ravenscar Runtime . 18

Paolo Carletto and Tullio Vardanega

Safety and Security

Sanitizing Sensitive Data: How to Get It Right (or at Least Less Wrong…). . . 37
Roderick Chapman

Enforcing Timeliness and Safety in Mission-Critical Systems 53
António Casimiro, Inês Gouveia, and José Rufino

Timing Verification

Supporting Nested Resources in MrsP . 73
Jorge Garrido, Shuai Zhao, Alan Burns,
and Andy Wellings

Predicting Worst-Case Execution Time Trends in Long-Lived
Real-Time Systems . 87

Xiaotian Dai and Alan Burns

MC2: Multicore and Cache Analysis via Deterministic and Probabilistic
Jitter Bounding . 102

Enrique Díaz, Mikel Fernández, Leonidas Kosmidis, Enrico Mezzetti,
Carles Hernandez, Jaume Abella, and Francisco J. Cazorla

Programming Models

Lock Elision for Protected Objects Using Intel Transactional
Synchronization Extensions . 121

Seongho Jeong, Shinhyung Yang, and Bernd Burgstaller

An Executable Semantics for Synchronous Task Graphs: From SDRT
to Ada . 137

Morteza Mohaqeqi, Jakaria Abdullah, and Wang Yi

http://dx.doi.org/10.1007/978-3-319-60588-3_1
http://dx.doi.org/10.1007/978-3-319-60588-3_2
http://dx.doi.org/10.1007/978-3-319-60588-3_2
http://dx.doi.org/10.1007/978-3-319-60588-3_3
http://dx.doi.org/10.1007/978-3-319-60588-3_4
http://dx.doi.org/10.1007/978-3-319-60588-3_5
http://dx.doi.org/10.1007/978-3-319-60588-3_6
http://dx.doi.org/10.1007/978-3-319-60588-3_6
http://dx.doi.org/10.1007/978-3-319-60588-3_7
http://dx.doi.org/10.1007/978-3-319-60588-3_7
http://dx.doi.org/10.1007/978-3-319-60588-3_8
http://dx.doi.org/10.1007/978-3-319-60588-3_8
http://dx.doi.org/10.1007/978-3-319-60588-3_9
http://dx.doi.org/10.1007/978-3-319-60588-3_9

RxAda: An Ada implementation of the ReactiveX API 153
Alejandro R. Mosteo

Panel: The Future of Safety-Minded Languages

A New Ravenscar-Based Profile . 169
Patrick Rogers, Jose Ruiz, Tristan Gingold,
and Patrick Bernardi

OpenMP Tasking Model for Ada: Safety and Correctness 184
Sara Royuela, Xavier Martorell, Eduardo Quiñones,
and Luis Miguel Pinho

Mixed Criticality

Migrating Mixed Criticality Tasks Within a Cyclic Executive Framework . . . 203
Alan Burns and Sanjoy Baruah

Directed Acyclic Graph Scheduling for Mixed-Criticality Systems. 217
Roberto Medina, Etienne Borde, and Laurent Pautet

Software Time Reliability in the Presence of Cache Memories 233
Suzana Milutinovic, Jaume Abella, Irune Agirre,
Mikel Azkarate-Askasua, Enrico Mezzetti, Tullio Vardanega,
and Francisco J. Cazorla

Author Index . 251

XIV Contents

http://dx.doi.org/10.1007/978-3-319-60588-3_10
http://dx.doi.org/10.1007/978-3-319-60588-3_11
http://dx.doi.org/10.1007/978-3-319-60588-3_12
http://dx.doi.org/10.1007/978-3-319-60588-3_13
http://dx.doi.org/10.1007/978-3-319-60588-3_14
http://dx.doi.org/10.1007/978-3-319-60588-3_15

Runtimes

Evaluating MSRP and MrsP
with the Multiprocessor Ravenscar Profile

Jorge Garrido(B), Juan Zamorano, Alejandro Alonso,
and Juan A. de la Puente

Sistemas de Tiempo Real e Ingenieŕıa de Servicios Telemáticos (STRAST),
Universidad Politécnica de Madrid (UPM), Madrid, Spain

str@dit.upm.es

Abstract. One of the main challenges of developing real-time systems
with Ada on multiprocessor platforms is finding an appropriate schedul-
ing policy and locking policy for shared objects. Some modifications of
the standard Ceiling Locking policy have been proposed for multiproces-
sor architectures, among which MSRP and MrsP have raised most inter-
est. In this paper the possible uses of both policies in full Ada and
Ravenscar programs are explored. To this purpose, classical response
time analysis is extended in the paper to deal with heterogeneous access
costs in multiprocessor systems. A case study has been used to validate
the approach, and an extensive test bench for comparing MSRP and
MrsP has been run in order to compare the schedulability properties of
both methods. The conclusion is that, although MrsP provides a better
overall performance, in many practical situations the simpler MSRP pro-
tocol provides comparable results when considering heterogeneous access
costs, while being compatible with the Ravenscar restrictions.

Keywords: Real-time systems · Multiprocessor systems · Ada Raven-
scar profile · Schedulability analysis

1 Introduction

In recent years, the need for using multiprocessor platforms in embedded real-
time systems has arisen, mainly due to the increasing requirements of computing
power and other resources. This trend has given rise to new research related to
scheduling methods and schedulability analysis techniques that can be used in
hard real-time multiprocessor systems [7].

One of the main issues in developing multiprocessor real-time systems is
resource sharing. Some extensions of single processor protocols, such as the Mul-
tiprocessor Priority Ceiling Protocol (MPCP) [14] and its reformulation as the
Distributed Priority Ceiling Protocol (DPCP) [15,16], or the Multiprocessor

This work has been partially funded by the Spanish National R&D&I plan (project
M2C2, TIN2014-56158-C4-3-P).

c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 3–17, 2017.
DOI: 10.1007/978-3-319-60588-3 1

4 J. Garrido et al.

Stack Resource Policy (MSRP) [9], have been proposed. All of these protocols
can be used with partitioned fixed-priorities or EDF scheduling. MSRP, which
uses a non-preemptable, busy-wait mechanism (spin-lock) to provide a bounded
locking time in shared data access, is simpler and more efficient than MPCP, and
can be analysed with well-known response-time analysis techniques [2]. However,
it should be noted that non-preemption may lead to significant blocking under-
gone by high priority tasks, thus potentially making access to protected objects
inefficient.

Burns and Wellings [6] proposed the Multiprocessor Resource Sharing Pro-
tocol (MrsP), identifying and addressing the main properties required for an
efficient general purpose lock-based resource sharing protocol. MrsP limits the
amount of blocking incurred by high-priority tasks using a novel helping mech-
anism, thus improving the efficiency of the protocol.

The Ada 2012 standard [1] supports multiprocessing in a flexible way, includ-
ing mechanisms for a variety of real-time scheduling methods. It also supports
multiprocessors under the Ravenscar profile [5,8], with the restriction that tasks
are not allowed to migrate from one processor to another. As is well known, the
scheduling policy under the profile is fixed-priority (FIFO Within Priorities), and
the locking policy is Ceiling Locking.

MSRP can be used to implement Ada protected objects with a fully par-
titioned structure, as proposed in [4], with only slight changes to prevent pre-
emption in protected operations [12]. This is also compatible with the Ravenscar
profile, although the amount of blocking suffered by high-priority tasks may limit
the usefulness of the protocol.

MrsP can also be used with Ada, with the constraint that all tasks must be
assigned to the same dispatching domain. However, migration between proces-
sors in the domain is required to implement the protocol [4]. Task migration
is forbidden in the Ravenscar profile, which means that the protocol cannot be
used in Ravenscar programs, unless the profile is redefined in a future revision
of the language.

It may thus seem that Ravenscar multiprocessor programs are limited in
their use of protected objects by being forced to use a less efficient protocol
than MrsP. However, considering heterogeneous access costs, i.e. from different
processors, and taking into account the common industry trend to implement
simple cost-effective solutions to real world problems, the possible drawbacks of
using MSRP instead of MrsP may be alleviated.

In order to assess the validity of this claim, we have extended response time
analysis techniques [2], to take into account heterogeneous accesses to shared
objects, and compare its performance against the previous homogeneous analy-
sis. We have used a real case study of an academic satellite to show the difference
between homogeneous and heterogeneous analysis methods. In this case study,
an EEPROM memory is used on board for non-volatile data storage. For this
memory, the accessing time of writing operations is orders of magnitude longer
than that of reading operations. The resulting improvement of the response time
analysis when considering the heterogeneity of access costs for this particular

Evaluating MSRP and MrsP with the Multiprocessor Ravenscar Profile 5

case study is discussed. We have also evaluated the performance of MSRP and
MrsP using an extensive test bench, with results supporting our previous claim.

The rest of the paper is organized as follows: Sect. 2 reviews the main points of
the MSRP and MrsP protocols including the traditional homogeneous response
time analysis for the given protocols. The extended timing analysis for hetero-
geneous access is presented in Sect. 3. Section 4 presents the case study and its
results. An overall evaluation of the analysis presented against the homogeneous
access cost analysis is presented in Sect. 5 for both MSRP and MrsP. Finally
conclusions are provided in Sect. 6.

2 Summary of MSRP and MrsP

The intuition under MSRP and MrsP is to extend the priority ceiling protocol
benefits (including a simple response time analysis scheme) to multiprocessor
systems. This can only be achieved if concurrent access costs to shared resources
are bounded. Both MSRP and MrsP protocols [4,6] accomplish this by forcing
that, at most, only one task per processor may be requiring access to a shared
resource at any given time. To this purpose, the active priorities of tasks accessing
a resource are increased, and the tasks spin-wait until access is granted. In fact,
the main difference between the protocols (and then their schedulability analysis)
is that, while MSRP performs the access in a non-preemptive way (which is
equivalent to increasing the priority of the task to the highest one in the system),
MrsP only increases the priority of the accessing task to the local ceiling of the
resource on that processor.

For both MSRP and MrsP, access to a shared resources is granted in FIFO
order. As concurrent accesses to a resource are bounded to one task per processor,
the longest queue a task will have to wait to be granted access to a resource is
also bounded, and so is the total access cost to the resource.

As above stated, tasks under MSRP perform the spin-wait and the access
to a resource in a non-preemptable way. On the contrary, tasks under MrsP
do so only at the local ceiling priority of the accessed resource. As a result,
MrsP tasks can be locally preempted while waiting or accessing a resource. This
preemption could affect other tasks waiting for accessing the resource in the
FIFO queue, specially if the task has already acquired the associated lock. This
delay would clearly undermine the protocol schedulability analysis. In order to
prevent such situations, MrsP incorporates a novel helping mechanism, by which
a locally preempted task execution can be taken over by another task waiting
for accessing the resource. As identified in [4], the only practical way to do this
is to migrate the locally preempted task to the processor where the waiting
task is spinning. There the task resumes the protected execution at the local
ceiling priority of the resource on that processor. When the task releases the
resource lock, it is migrated back to its host processor, and scheduled with its
base priority. A thorough analysis of the migration procedure and costs is out
of the scope of this paper.

With these scheduling and locking policies, both protocols maintain the main
PCP/SRP properties. In both MSRP and MrsP a task is only locally blocked

6 J. Garrido et al.

once per activation and before it starts executing. Then, all resources are locally
available and deadlocks are prevented.

Response Time Analysis

Both MSRP and MrsP inherit a scheduling analysis based on the Response Time
Analysis (RTA) technique [2]. However, this RTA now needs to account for the
FIFO queue to access the resource. For both protocols, let cj be the maximum
execution time for a resource rj , and |map(G(rj))| the number of processors from
where rj can be accessed. The cost of accessing the resource (ej) is bounded by:

ej = |map(G(rj))|cj (1)

Then, the worst case executing time of a task τi can be computed as the sum
of its worst case execution time out of shared resources plus the cost of each
access to a shared resource as expressed in:

Ci = WCETi +
∑

rj∈F(τi)

nie
j (2)

where F(τi) is the set of resources accessed by τi and ni is the number of times
the resource rj is accessed per τi activation. Finally, the response time of τi

under both MSRP and MrsP can be computed as:

Ri = Ci + max(ê, b̂) +
∑

τj∈hpl(i)

⌈
Ri

Tj

⌉
Cj (3)

where hpl(i) is the set of local higher priority tasks, b̂ is the maximum non-
preemptive execution time induced by the RTOS and ê is the arrival blocking
incurred by the analysed task due to lower priority tasks accessing a shared
resource. The calculation of ê is where the difference of the dynamic increase of
priorities of the accessing tasks is reflected. While under MSRP ê is equal to the
highest resource access cost of a local task to a shared resource, under MrsP this
is only the access cost of a resource used by a local task with a priority lower
than τi and a task of equal or higher priority.

For both protocols, it can be derived from Eqs. 1–3 that the response time is
highly dependant on the value of ej . Section 3 presents an approach to tightening
the analysis of ej and thus the overall response time analysis.

3 Response Time Analysis for Heterogeneous
Accesses to Shared Resources

As shown before, the MSRP and MrsP original formulation of a shared resource
access cost in Eq. 1 assumes constant (homogeneous) access costs. As noted
in [6], this is an oversimplification of the task model. Brandenburg [3] gives an

Evaluating MSRP and MrsP with the Multiprocessor Ravenscar Profile 7

intuition on different access costs to resources, which can be used to improve
schedulability analysis when there is knowledge on the access patterns from all
entities on MSRP systems. For a task model considering heterogeneous access
times to a shared resource, we can define the access cost of a resource rj as:

ej =
∑

pk

ĉj
k (4)

where ĉj
k is the maximum access time to a resource by a task executing on

processor pk. This approach keeps the interpretation of ej as the worst case
access cost for a resource, where the task having the longer access time on each
processor is queued for accessing it. However, any system having different higher
access times on each processor will benefit from this new analysis.

With this approach, access costs would still be considered equal for all tasks
accessing the resource from a given processor. However, the ej analysis can be
tightened even more, up to task level. This is achieved by considering the specific
access time to rj of the task under analysis. Then, the worst case access cost is
sum of the worst case costs on other processors, plus the access time of the task
itself. Thus, the cost of accessing a resource ej for a task τi is:

ej
i = cj

i +
∑

pk\P(τi)

ĉj
k (5)

where P(τi) returns the processor pk where task τi executes.
The value of ej

i computed for each access of τi to rj . Note that cj
i is the

time required for every such access. Therefore, Eq. 5 is also valid for task models
considering tasks accessing shared resources from different interfaces. In this way,
each access to the resource may have a different cost within the same task. This
will be exploited in the case study presented in Sect. 4.

As the only change to the equations in [2,6] is the way ej is calculated, the
rest of the equations remain valid, including the calculation of Ri (Eq. 3), which
is still extremely similar to the original equation for PCP.

Given the notion of cj in [2,6] as the maximum execution time for a resource,
when considering heterogeneous access times for a given resource, other access
times need to be equal or lower than cj . Formally, it means that ĉj

k ≤ cj . As
this is the only factor altered in the response time analysis for MrsP, it directly
implies that this analysis strictly dominates the one presented in [6].

4 Case Study

Real-Time embedded systems usually experience different access times for shared
resources. One common resource with a high difference between access times,
depending on the interface used, is non-volatile memories. This kind of devices
are characterised by having several magnitude orders of difference between write
and read accesses.

8 J. Garrido et al.

UPMSat-2 [13] is a micro-satellite mission which is being developed by sev-
eral research groups within the UPM and different industrial partners. For non-
volatile data storage, the UPMSat-2 On-Board Computer (OBC) relays on two
EEPROM memory chips of 1 MB each. This memory is used mainly to store three
types of information: executable code, configuration parameters, and telemetry
to be sent to the ground segment, including housekeeping and event data.

The EEPROM chips used in the UPMSat-2 require a minimum separation
between block writing operations of 15 ms. Due to the Ravenscar profile restric-
tions [10], this separation is enforced by an active wait within the shared resource.
As a consequence, writing access times go necessarily over 15 ms, having found
15 870µs to be a safe upper bound for the overall access time.

On the contrary, reading operations on EEPROM memories have comparable
access times to those of main memories. As a consequence, an upper bound of
575µs has been adopted for read operations.

As proposed in [13], a dual-core implementation of the UPMSat-2 computer
would have the telemetry and telecommand subsystem (TTC) allocated to a ded-
icated core, in order to maximize the availability of the communication hardware
and thus the communications link budget. A critical scheduling situation arises
when the satellite is in telemetry transmission mode. Since the radio equipment
is half duplex, transmission slots are allocated to both the ground station and
satellite system. During telemetry transmission, concurrent tasks accesses to
EEPROM memory per task activation are summarized in Table 1.

Table 1. EEPROM memory accesses per task activation.

Task Writes Reads

Core 0 Housekeeping Task 2 0

ADCS Measurement Task 1 0

ADCS Control Task 1 0

ADCS PWM Task 0 0

Core 1 TMTC Task 0 1

As TMTC Task executes by itself on Core 1, only read accesses are performed
(for retrieving stored telemetry messages to be sent to ground) on this processor.
Consequently, all write accesses are invoked from Core 0.

The analysis of a similar problem for single core platforms was addressed
in [17], where it was shown that an equivalent safe task set could be defined to
better analyse the response time of these tasks while still complying with the
Ravenscar Profile [5]. As explained in [17], tasks are assigned priorities according
to a Deadline Monotonic scheme [11]. The only exception are the PWM tasks,
which are assigned the highest priorities to provide the tightest possible bound
to their response time. As the attitude control system accuracy highly depends
on the length of the PWM duty cycle, this priority assignment provides the best

Evaluating MSRP and MrsP with the Multiprocessor Ravenscar Profile 9

possible results. The approach in [17] has also been followed here to define a task
set suitable to analyse the system under both the original MrsP formulation and
our analysis proposal.

The equivalent task set and the response time results obtained for MrsP
using the original, homogeneous analysis technique are shown in Table 2. The
results obtained using the heterogeneous analysis are shown in Table 3. These
results show an average response time reduction of 34.86%, where higher priority
tasks are the most benefited ones with respect to their response times, and lower
priority tasks are the most benefited in net time values.

The improvements obtained from the heterogeneous analysis are summarized
in Table 4. Higher priority tasks not accessing any shared resource are obviously
not affected at all by the kind of analysis. On the contrary, the highest priority
task in Core 0 has a response time which is 43.74% lower with the heterogeneous
analysis technique than that obtained with original analysis method proposed
in [6]. The second lowest priority task on the same processor, which is the last
task undergoing blocking, experiments a reduction of 39.79% in its response
time. For the lowest priority task in the same processor, the reduction is still
38.05%. Notice also that the task executing by itself on Core 1 has a reduction
of 11.61% in its response time.

5 Evaluation

The case study presented in Sect. 4 illustrates how this approach can be of ben-
efit in a real world system. In order to evaluate the difference between MSRP
and MrsP with the heterogeneous analysis technique that was introduced in
Sect. 3, a study has been carried out on a set of synthetic task sets with different
processor configurations, processor utilizations, and timing requirements. The
schedulability of each task set has been analysed considering homogeneous and
heterogeneous access costs, and it has been compared to an ideal optimal proto-
col not causing any blocking. A total of 100 000 task sets have been generated
for each configuration.

Each task set has been generated using as parameters the number of proces-
sors N , the number of shared resources R, which has been set equal to N for
this study, and a target utilization U for each processor and the whole system.
The utilization of each task has been set to Ui = fi × U , where fi is a uniform
random variable in an interval [Umin..Umax].

Task periods are also randomly generated in an interval [Tmin..Tmax], and
deadlines have been made equal to periods. The worst case execution time for
each task is Ci = Ui × Ti.

For each task τi and every resource rj , the probability of the task accessing
at least once the resource has been set to 1/R. Then, the resource execution
time for that task was uniformly designated between 0.01% and 10.00% of the
overall task execution time. Then, the probability of a task accessing the resource
N times on each task activation is calculated so as P (N) = 1/N2. In order to
maintain the envisaged task utilization, the accessing times to shared resources
were deducted from the task original C value.

10 J. Garrido et al.

Table 2. UPMSat-2 case study original analysis. Tasks are ordered by decreasing
priority. All times in ms.

Task T D C Write Read B R

Core 0 ADCS PWM 1 2000 800 0.81 0.810

ADCS PWM 2 2000 800 0.81 1.620

ADCS PWM 3 2000 800 0.81 2.430

ADCS Control Task 2000 100 4.02 15.870 31.740 69.930

ADCS Measurement 1 2000 200 2.73 31.740 72.660

ADCS Measurement 2 2000 200 2.73 31.740 75.390

ADCS Measurement 3 2000 200 2.73 31.740 78.120

ADCS Measurement 4 2000 200 2.73 31.740 80.850

ADCS Measurement 5 2000 200 2.73 15.870 31.740 115.320

Housekeeping Task 1000 1000 13.71 2× 15.870 160.770

Core 1 TMTC Task 1000 1000 100 15.870 131.740

Table 3. UPMSat-2 case study heterogeneous analysis. Tasks are ordered by decreasing
priority. All times in ms.

Task T D C Write Read B R

Core 0 ADCS PWM 1 2000 800 0.81 0.810

ADCS PWM 2 2000 800 0.81 1.620

ADCS PWM 3 2000 800 0.81 2.430

ADCS Control Task 2000 100 4.02 15.870 16.445 39.340

ADCS Measurement 1 2000 200 2.73 16.445 42.070

ADCS Measurement 2 2000 200 2.73 16.445 44.800

ADCS Measurement 3 2000 200 2.73 16.445 47.530

ADCS Measurement 4 2000 200 2.73 16.445 50.260

ADCS Measurement 5 2000 200 2.73 15.870 16.445 69.435

Housekeeping Task 1000 1000 13.71 2× 15.870 99.590

Core 1 TMTC Task 1000 1000 100 0.575 116.445

Table 4. UPMSat-2 EEPROM memory analysis improvement summary.

Task Homogeneous Heterogeneous Reduction

ADCS Control 69.930 ms 39.340ms 43.74%

ADCS Measurement 5 115.320ms 69.435 ms 39.79%

Housekeeping 160.770ms 99.590ms 30.05%

TMTC 131.740ms 116.445ms 11.61%

The experiment was carried out for systems with a configuration of N =
2, 4, 8, and 16 processors. For each value of N , the processor utilization U was
increased from 0.1 to 0.7 by steps of 0.05. For each configuration, values for Umin

and Umax have been set to [0.1, 0.2], [0.1, 0.3], [0.1, 0.4], [0.1, 0.5], [0.1, 0.9], and

Evaluating MSRP and MrsP with the Multiprocessor Ravenscar Profile 11

[0.25, 0.75]. The values of Tmin and Tmax were kept equal to [100, 10 000] for all
the configurations.

The total number of different configurations in the experiment is 318 = 52×6.
For the sake of conciseness, only the most relevant results and comparisons are
presented in this paper.

Fig. 1. Number of schedulable systems against system utilization. Tasks have an uti-
lization between 0.1 and 0.2 of the total processor utilization.

Figure 1, shows the number of systems schedulable under both homogeneous
and heterogeneous analysis for the four different numbers of processors consid-
ered, based on the average system utilization. It can be seen that using the
heterogeneous analysis technique provides better schedulability as the number
of processors increases. It can also be seen that MrsP provides overall better
schedulability than MSRP.

Figure 2 describes how this approach gives better results as the number of
processors grows, by showing the percentage of schedulable systems under each
analysis for a certain configuration. It can be clearly seen that the difference
between homogeneous and heterogeneous analysis increases as the number of
processors gets larger.

12 J. Garrido et al.

Fig. 2. Number of schedulable systems depending on the number of processors. System
utilization: 0.35. Utilization per task [0.1, 0.9] of overall utilization.

Finally, Fig. 3 plots the percentage of extra systems that are schedulable only
under heterogeneous access costs analysis. For both protocols, improvement is
achieved even for simpler systems (dual core, 10% utilization). For more complex
systems, the improvement is exponential on the number of processors, better
reflected on systems with higher utilizations.

The improvement is driven by the fact that, the more processors the system
has, the longer a queue for a resource can be in the worst case, as there can
be more parallel requests. Given that, the more processors from where requests
can be issued, the more probable is to have significantly different worst access
costs from each processor. As a result, the homogeneous analysis becomes more
pessimistic. Therefore, systems with a higher utilization benefit more from het-
erogeneous analysis. As in these systems the response times tend to be closer to
the deadlines, the schedulability analysis is more reactive to changes in compu-
tation times.

In order to compare how response times are affected by the proposed app-
roach, specific response times were collected as part of the experiments. In par-
ticular, the response time of the highest and lowest priority tasks allocated to
the first processor were recorded. Only values from systems deemed schedula-
ble with all the analysis techniques have been considered. For those, the extra
response time for each task compared to the optimal scheduling was calculated.
Figure 4 shows the overhead for systems with the biggest differences between
task utilizations. In the figure, as expected, the highest priority tasks have their
worst response times under homogeneous MSRP analysis. With this technique,
the highest priority task has to cope with a blocking time equal to the highest
access time to a shared resource in the system among those accessed from tasks
on its own processor, times the number of processors from where this resource
can be accessed. Under MrsP this is improved by only incurring blocking from
resources also used by the same highest priority task. However, the blocking time

Evaluating MSRP and MrsP with the Multiprocessor Ravenscar Profile 13

Fig. 3. Percentage of extra schedulable systems of heterogeneous over homogeneous
analysis for increasing system utilizations.

would still be equal to the worst access time to the resource times the number
of processors from where this resource can be accessed.

In the same way as in the analysis of schedulable systems, the MSRP het-
erogeneous analysis provides better results than the homogeneous MrsP. In this
case, with MSRP the blocking suffered by the highest priority task is the max-
imum of the sum of worst accesses per processor of a resource used on its host
processor. While this still includes resources not accessed by the higher priority
tasks, the variability on different worst access costs among processors gives, on
average, better results. Finally, MrsP heterogeneous analysis gives the tighter
response times.

Regarding lower priority tasks, results are similar for both protocols and
analysis techniques: as the only difference between MSRP and MrsP analysis
is the impact of arrival blocking, and the lowest priority tasks are not affected
by arrival blocking, the same results are obtained for both protocols. However,
there is still an improvement, coming from the self accesses to resources of lowest
priority tasks, even for tasks of similar utilizations, as shown in Fig. 5.

It is also worth mentioning that, for the 31 200 000 systems that were analysed
in the experiment, there was no system schedulable under the homogeneous

14 J. Garrido et al.

Fig. 4. Percentage of extra response time over optimal scheduling. Task utilization:
[0.1, 0.9] of overall processor utilization. 8 processors.

Evaluating MSRP and MrsP with the Multiprocessor Ravenscar Profile 15

Fig. 5. Percentage of extra response time over an optimal scheduling. Task utilization:
[0.1, 0.2] of overall processor utilization. 8 processors.

16 J. Garrido et al.

approach that was not schedulable under the heterogeneous analysis technique.
This confirms our claim that the heterogeneous analysis dominates over the orig-
inal homogeneous analysis.

The results presented above show that both MSRP and MrsP analysis tend
to decrease their efficiency as the number of processors increases. In order to be
able to support future generation of many-core processors, an efficient allocation
strategy will indeed be required.

6 Conclusions

A thorough analysis of schedulability for MSRP and MrsP protocols has been
presented in this paper.

In order to obtain more accurate results, response time analysis techniques
have been extended to get a tighter value of the worst-case response times. We
have validated the extended analysis technique on a real-life case study, using a
tool developed to this purpose. In this case study we have analysed the access
costs to an EEPROM memory in the UPMSat-2 satellite considering a dual-
core platform. The experiment has shown an overall reduction of a 34.86% in
the overall response time over the original homogeneous approach. The enhanced
analysis technique thus provides better schedulability, as more tasks can be run
on the same platform without missing any deadlines.

In order to achieve a more general assessment, an extensive experiment using
randomly generated task sets has been carried out. Schedulability results for dif-
ferent configurations under the MSRP and MrsP protocols, as well as an ideal
optimal protocol have been analysed. The experiment shows that the potential
extra blocking for high priority tasks imposed by MSRP is not relevant in most
situations. The results manifest that the heterogeneous analysis for MSRP con-
sistently shows better results in both schedulability and response times than the
MrsP homogeneous access cost analysis. As expected, the heterogeneous access
cost analysis for MrsP offers the overall best results. However, this protocol, in
its current form, is far from being implemented in high-integrity critical appli-
cations, due to the current challenges on measuring the costs of migrating tasks
on real platforms.

On the other hand, MSRP is in essence similar to MrsP and provides com-
parable results in many cases. Since it does not require task migrations, MSRP
is compatible with the Ravenscar profile in its present form, and is simpler to
implement in Ada. Therefore, it can be concluded that MSRP is a good choice
for implementing access locks under the Ravenscar profile, while MrsP would be
a sensible choice for full Ada real-time programs.

It should be noted that a slight improvement in real-time analysis techniques,
as proposed in the paper, can help programmers to compare locking protocols
and adopt the best solution for a given development.

Acknowledgements. The authors would like to acknowledge the fruitful discussion
with Guillem Bernat who provided some initial ideas for the paper.

Evaluating MSRP and MrsP with the Multiprocessor Ravenscar Profile 17

We would also like to acknowledge the helpful comments by anonymous reviewers,
which have contributed to improve the quality of the paper.

References

1. ISO/IEC 8652:2012(E): Information Technology – Programming Languages – Ada
(2012)

2. Audsley, N.C., Burns, A., Richardson, M., Tindell, K., Wellings, A.: Applying new
scheduling theory to static priority preemptive scheduling. Softw. Eng. J. 8(5),
284–292 (1993)

3. Brandenburg, B.B.: Scheduling and locking in multiprocessor real-time operating
systems. Ph.D. thesis, The University of North Carolina at Chapel Hill (2011)

4. Burns, A., Wellings, A.J.: Locking policies for multiprocessor Ada. Ada Lett. 33(2),
59–65 (2013)

5. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar
profile in high integrity systems. Ada Lett. XXIV, 1–74 (2004)

6. Burns, A., Wellings, A.J.: A schedulability compatible multiprocessor resource
sharing protocol-MrsP. In: 2013 25th Euromicro Conference on Real-Time Sys-
tems (ECRTS), pp. 282–291. IEEE (2013)

7. Davis, R.I., Burns, A.: A survey of hard real-time scheduling algorithms and
schedulability analysis techniques for multiprocessor systems. ACM Computing
Surveys 43(4) (2011)

8. Dobbing, B., Burns, A.: The Ravenscar profile for high-integrity real-time pro-
grams. Ada Lett. XVII(6), 1–6 (1998). Proceedings of the ACM SIGAda Interna-
tional Conference – SIGAda 1998

9. Gai, P., Lipari, G., Natale, M.D.: Minimizing memory utilization of real-time task
sets in single and multi-processor systems-on-a-chip. In: Proceedings of the 22nd
IEEE Real-Time Systems Symposium. IEEE Computer Society (2001)

10. Garrido, J., Lacruz, B., Zamorano, J., de la Puente, J.A.: In support of extending
the Ravenscar profile. Ada Lett. 36(1), 63–67 (2016)

11. Leung, J.Y.T., Whitehead, J.: On the complexity of fixed-priority scheduling of
periodic real-time tasks. Perform. Eval. 2(4), 237–250 (1982)

12. Lin, S., Wellings, A.J., Burns, A.: Ada 2012: resource sharing and multiprocessors.
Ada Lett. 33(1), 32–44 (2013)

13. de la Puente, J.A., Zamorano, J., Alonso, A., Garrido, J., Salazar, E., de Miguel,
M.A.: Experience in spacecraft on-board software development. Ada User J. 35(1),
55–60 (2014)

14. Rajkumar, R., Sha, L., Lehoczky, J.P.: Real-time synchronization protocols for
multiprocessors. In: IEEE Real-Time Systems Symposium (1988)

15. Rajkumar, R.: Real-time synchronization protocols for shared memory multi-
processors. In: Proceedings of the 10th International Conference on Distributed
Computing Systems, pp. 116–123. IEEE (1990)

16. Rajkumar, R.: Synchronization in Real-Time Systems: A priority Inheritance App-
roach. Kluwer Academic Publishers, Dordrecht (1991)

17. Zamorano, J., Garrido, J.: Schedulability analysis of PWM tasks for the UPMSat-2
ADCS. In: de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe 2015. LNCS, vol.
9111, pp. 85–99. Springer, Cham (2015). doi:10.1007/978-3-319-19584-1 6

http://dx.doi.org/10.1007/978-3-319-19584-1_6

Ravenscar-EDF: Comparative Benchmarking
of an EDF Variant of a Ravenscar Runtime

Paolo Carletto(B) and Tullio Vardanega(B)

Department of Mathematics, University of Padua, 35121 Padua, Italy
carletto.paolo@gmail.com, tullio.vardanega@math.unipd.it

Abstract. Subsequent to the publication of the seminal work by Liu and
Layland in 1973, researchers and practitioners alike started discussing
which online scheduling algorithm was to be preferred between FPS and
EDF. Results published in 2005 sustained the superiority of EDF, already
proven in theory, also from an implementation perspective. With this
work, we aim at digging deeper into the roots of those results. To this
end, we took the first-ever instance of an Ada Ravenscar runtime, with
its FPS scheduler, combined with its IPCP locking policy companion,
and developed a variant of it that implements EDF scheduling coupled
with DFP locking. In this manner, we were able to transparently attach
those two runtime variants to a suite of synthetic benchmarks, which we
used to perform an extensive quantitative comparison between those two
runtimes, getting to the bottom of where one prevails on the other.

Keywords: Ravenscar profile · Earliest Deadline First · Deadline Floor
Protocol · Analysis and development · Performance comparison

1 Introduction

The publication of the seminal work by Liu and Layland [6] back in 1973 sparked
a great deal of interest on the question of which online (preemptive) scheduling
policy for single-core processors was best. From that moment, the real-time sys-
tems community divided between two camps: one supporting Rate Monotonic
(RM); the other championing Earliest Deadline First (EDF). From the usage
perspective, this confrontation seems to have been won by the RM camp, as the
most part of existing technology, whether general-purpose operating systems or
real-time kernels implements Fixed Priority Preemptive Scheduling, hence RM.
Arguably, this happens because RM is easier to implement on top of runtimes
that do not support the notion of timing deadline natively. Implementation is
simpler also because a fixed-priority constant value can be assigned per task
and simply copied to each recurrent job of it, without the per-job dynamic com-
putation that the deadline driven approach requires. A simplistic technique to
implement a deadline-driven scheduler on top of a priority-based runtime directly
maps absolute deadlines to the existing priorities. In that manner, any real-time
kernel that supports priorities can also support deadline-driven scheduling, at
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 18–33, 2017.
DOI: 10.1007/978-3-319-60588-3 2

Ravenscar-EDF: Comparative Benchmarking of an EDF Variant 19

the cost of computing the deadline-to-priority mapping at any job release, and
of resolving the conflicts that may arise when multiple deadlines map to the
same priority. Some authors [7] suggested that this additional implementation
burden and the runtime overhead stemming from dynamic priority management
was the prime reason for EDF not being supported in commercial real-time ker-
nels, in spite of it being known that EDF would maximise the total schedulable
utilization of the processor [11].

The work we present here illustrates an empirical, quantitative comparison
between concrete implementations of the RM and EDF variants of a real-time
kernel embedded in the Ada Ravenscar runtime developed by AdaCore for the
Leon processor1 family.

Arguably, our work yields two distinct contributions. First, it makes a very
fair comparison as the sole elements that change in the systems being confronted
are the scheduling operations that implement RM and EDF in the corresponding
runtimes. As the application stays unchanged, any performance difference is
directly ascribable to the scheduling variant being used. Second, it stresses each
system to the limits discussed in the literature [11] using exactly the same,
unchanged, application software, as the switch of scheduling policy is completely
transparent to it.

On those two premises, we have created a suite of synthetic benchmarks
that aims to (and if fact does) single out the conditions under which one pol-
icy performs better than the other, to help appreciate why that happens more
profoundly – we think – than discussed in [7].

2 The RM-to-EDF Transformation Process

2.1 The Ada Ravenscar Profile

The Ravenscar profile [3,4] is an important asset of the Ada programming lan-
guage. Especially when used for embedded targets, it allows simple yet flexible
real-time systems, fully analysable for their timing feasibility (aka schedulabil-
ity), to be implemented on a runtime system that is itself lean, small and fast,
fit for being engineered to the highest level of integrity. The profile is specified in
the Ada standard (since its 2005 revision) via a collection of restrictions on the
full language. It is defined to support applications that use a statically-defined
set of library-level tasks scheduled by the fixed priority scheme known as “FIFO
Within Priorities”. The Ada Ravenscar Profile is especially designed for those
embedded applications that have tight timing and memory requirements, high-
integrity (eg. safety-critical) constraints, and want to dispense with the heavy
constraints of traditional cyclic scheduling.

The first-ever Ravenscar runtime to be released to industrial use was pro-
duced by AdaCore for the Leon processor family, and named GNAT-2012-LEON-
ELF-BIN. That technology originated from a fork of the Open Ravenscar Real-
Time Kernel (ORK+) developed by the Technical University of Madrid2.
1 http://www.adacore.com/gnatpro-safety-critical/platforms/erc32/.
2 http://www.dit.upm.es/∼ork/index.html/.

http://www.adacore.com/gnatpro-safety-critical/platforms/erc32/
http://www.dit.upm.es/~ork/index.html/

20 P. Carletto and T. Vardanega

The Leon processor that was targeted by that runtime is a 32-bit CPU micro-
processor core, based on the SPARC-V8 RISC architecture and instruction set. It
was originally designed by the European Space Research and Technology Centre
(ESTEC), part of the European Space Agency (ESA), and subsequently devel-
oped, in synthesizable VHDL and maintained by Gaisler Research, now Cobham
Gaisler.

An application conforming to the Ada Ravenscar Profile comprises N tasks
that are due to execute concurrently on the same processor core. All such tasks
are defined to have a period (denoted by the symbol T) that is the minimum time
span that elapses between two subsequent releases of it, a relative deadline (D),
and a worst-case execution time demand (C). For the system to be feasible, any
task τi arriving at time t must be able to execute for its maximum computation
time (Ci) by its absolute deadline, which falls at time t + Di.

With fixed priority scheduling, each task is assigned a static priority (P),
which is attached at release to all of its recurring jobs. For best schedulability
results, the task priority is derived from its relative deadline (or equivalently,
its rate, when D = T). Two tasks with relative deadlines Di and Dj , such that
Di < Dj , will be assigned priorities such that Pi > Pj .

Under the Ravenscar Profile, tasks may contend for exclusive access to shared
resources that are enclosed within protected objects. To warrant predictable
arbitration of such contention, protected objects are assigned a static ceiling
priority, and access to the protected object is controlled by the priority ceiling
protocol (PCP) [9]. The form of PCP assumed in the Ravenscar Profile is the
“immediate” version (IPCP) of it, in which the contending task’s priority is
raised to the resource ceiling immediately upon access to the resource.

The Ada runtime that we used in this work does not support the 2012 version
of the language, and therefore does not allow the user to directly represent
relative deadlines in the program code. We circumvented that limitation by
providing an ad-hoc API, which is only used during task elaboration and had
no impact on our comparative performance evaluation.

To perform our experiment, we modified the original Ravenscar runtime to
support Earliest Deadline First for scheduling [2], and the Deadline Floor Pro-
tocol [5] for locking. Thanks to the substantial semantic equivalence between
FPS with IPCP and EDF with DFP, we were able to compare those two run-
time variants, which only differ in a small number of (important) scheduling
operations.

2.2 Turning Priorities into Deadlines

Earliest deadline first (EDF) is a dynamic scheduling algorithm that places
tasks in a ready queue sorted by absolute deadline in increasing order. When-
ever a scheduling event occurs (job completion, job release, synchronization lock
released), the task with the shortest absolute deadline is dispatched to execution.

The Deadline Floor Protocol (DFP) used in an EDF-scheduled system when
tasks contend for shared resources, is structurally equivalent to the Immediate

Ravenscar-EDF: Comparative Benchmarking of an EDF Variant 21

Priority Ceiling Protocol (IPCP) used in a system scheduled under fixed pri-
orities. Under the DFP, every resource is assigned a relative deadline equal to
the shortest relative deadline of the tasks that may use it. The relative deadline
attribute of a shared resource is called its deadline floor, a pun to the sought
symmetry with the priority ceiling defined for all priority ceiling protocols. The
key idea in the DFP is that the absolute deadline of a task might be temporarily
shortened while accessing a shared resource, increasing its preemption privilege
under EDF. Given a task with absolute deadline d that accesses a resource
with deadline floor DF at time t, the absolute deadline of the task becomes
d := min(d, t + DF) while holding the resource.

Given these definitions, a Ravenscar-EDF Profile [1,2] with DFP presents
two main differences to the original one:

1. A different Task Dispatching Policy: the default “FIFO Within Priorities”
scheduling policy is replaced by “EDF”, while retaining the logic that jobs
with identical deadlines (a much rarer event than having identical priorities)
would have FIFO ordering in the ready queue. As a Ravenscar runtime has
only one scheduling policy, we changed the fixed priority default to EDF
directly inside the source code of the Ravenscar-EDF runtime. Notably, since
our EDF system variant works only in an “EDF” mode we did not need
to follow the Ada standard “EDF Within Priorities” scheduling which was
designed to allow it to coexist with other dispatching policies;

2. A different Locking Policy for shared resources: the default locking policy,
IPCP [9] is replaced by DFP [5], designed for EDF scheduling. As a Ravenscar
runtime can only have one locking policy, we changed IPCP to DFP directly
in the source code of the Ravenscar-EDF runtime.

To implement the new scheduling model and the new locking policy of the
Ravenscar-EDF runtime [2], we had to modify some fundamental data structures
in the original runtime; specifically, those related with the handling of tasks and
protected objects, as shown in Fig. 1. Let us now illustrate the changes we applied
in some detail.

First, we needed to support pragma Relative Deadline in place of the orig-
inal pragma Priority, to attach the EDF scheduling attribute to application
tasks. The attribute value declared by the user is used at initialization time to
set the new Base Relative Deadline attribute, added to the Ada Task Control
Block, which never changes during program execution. In turn, this value serves
to maintain two new task attributes:

1. Active Relative Deadline: to represent the task’s relative deadline, which
the runtime must consider for the purposes of scheduling. The value of this
attribute may change because of DFP, which may temporarily lower it when
the task acquires a protected object. If this attribute were missing, DFP would
overwrite the Base Relative Deadline attribute thereby preventing correct
restoration of the original base relative deadline of the task when leaving the
protected object.

22 P. Carletto and T. Vardanega

Fig. 1. An outline of the internals of the EDF runtime. Dotted lines represent the data
structures that have to be changed to support EDF and DFP.

2. Active Absolute Deadline: to determine the task position in the ready
queue, at every dispatching point. The absolute deadline of a job of τi released
at time t is t + Di where Di is the task’s relative deadline.

Next, we had to introduce a new directive pragma Deadline Floor to replace
pragma Priority for setting the locking attribute of protected objects.

The biggest changes obviously concerned the scheduling policy, which
required replacing every priority based criteria in use to manage the ready queue
with a new deadline based policy.

This change entailed a full revamp of the queueing system in the runtime.
Whereas the original version compared static priority values to determine one
task’s position in the ready queue, the EDF version compares absolute time
values, which are computed at release for every new job. To avoid unduly biasing
the evaluation, we chose to retain in the EDF runtime exactly the same linked-
list organization that was implemented in the original version. A linked list that
needs linear traversal for positioning a task in the ready queue is obviously not
the most efficient choice of runtime structure: the FPS solution should rather
use an array of per-priority queues; The EDF solution instead a binary tree. Yet,
we did not go that way, to make the comparison fair.

In contrast with [2], we decided to retain the Delay until API for the EDF
runtime, so that application tasks would have an identical API to invoke across
the two runtime variants. Again, this choice may seem to deflect from the Ada
standard, but in a Ravenscar-EDF runtime, the EDF semantics of Delay until
is very straightforward and allows the application to stay unchanged on the
switch of runtime. To this end, we moved to the Wakeup Expired Alarms proce-
dure the operation of computing the new absolute deadline on task resumption

Ravenscar-EDF: Comparative Benchmarking of an EDF Variant 23

and placing it in the ready queue accordingly, so that Delay until only had
to assert the preemption variable when the running task is taken off the CPU.
Notably, this simplification eased our refactoring of interrupt handling.

Further changes were needed to support DFP, but they turned out to be easy
because DFP works in exactly the same way as IPCP once the runtime replaces
priorities by deadlines. Both the original (IPCP) and the new version (DFP)
modify the corresponding attribute of the task that gains access to a protected
object (PO). IPCP raises the task’s current priority to the priority ceiling of the
PO; DFP lowers the relative deadline of the task to the deadline floor of the PO.

To implement DFP, we had to add a new Floor attribute to the Protection
record of the PO, which stores the deadline floor attribute assigned to the
protected object at declaration. We then added a Caller Relative Deadline
attribute to store the relative deadline of the task that acquires the PO, to allow
restoring the task’s original relative deadline on leaving the PO. We changed the
Initialize Protection procedure that is called when pragma Deadline Floor
is encountered by the main program during initialization, to set the value of
Floor attribute in the PO. Finally, we changed the Lock and Unlock procedures
so that they update the relative deadline of the task on access to the PO and
restore the original one on exit, respectively.

2.3 Implementation Challenges

Implementing the changes described in the previous section caused some devel-
opment problems, which may be worth recalling to illustrate the bottom-up
repercussions of top-down pressure of language changes.

First of all, we incurred the circular dependency shown in Fig. 2 when, follow-
ing the suggestions in [5], we included the package Ada.Deadlines as a depen-
dent of Ada.Real Time. Using the ‘‘limited with’’ clause did not help, since
it does not apply to subtypes, which deadlines are in fact.

Fig. 2. Circular dependency caused by the introduction of package Ada.Deadlines.

We solved that problem by moving all the relevant contents of Ada.Real Time
into System.BB.Time, so that introducing System.BB.Deadlines as a child unit
to it did not cause any visibility issues. Not a clean solution, indeed, though
effective for the particular internal organization of the runtime we used.

A much bigger and more fundamental problem we incurred had to do with
the handling of interrupts. The crux of it is that interrupt handling intrinsically
assumes priorities, which – in principle – do not belong in an EDF system.

24 P. Carletto and T. Vardanega

In the original Ravenscar runtime (as well as in the Ada standard), interrupts
have their own set of priority values, defined by the Interrupt Priority type,
at the top of the interrupt range, from 241 to 255 for our processor target.
The intent is that interrupt handlers go directly to the top of the ready queue
and concur solely with other interrupts as described in the left of Fig. 3. This
mechanism is very natural for a priority based system, but it does not fit well in
a deadline-based runtime as long as they have no deadline attribute (as reported
in the center of Fig. 3).

The solution that we adopted reserves a fictitious position at the top of
the ready queue for the current interrupt handler. If an interrupt handler is
active, that position is used and the deadline-based part of the queue is frozen.
If no interrupt is running, that position is not in use and cannot be contended.
We unlock the queue when the handler exits, thereby enabling normal tasks to
execute again. This solution does not support interrupt nesting, but it could
be extended to it by making the top position point to a priority-ordered queue
reserved for interrupts. The right part of Fig. 3 shows the reengineering of the
ready queue from the original version to the EDF one with support for interrupts.

Fig. 3. Different ready queue organizations.

To implement these mechanisms, we changed the Change Priority proce-
dure to use a persistent boolean flag, to tell whether an interrupt handler is
running or not. Asserting that variable effectively inhibits context switch and
enables interrupt handlers to execute undisturbed.

The Change Priority procedure is called inside Interrupt Wrapper, the
container that enables interrupt handlers to execute on their own stack, trans-
parently to normal tasks.

The not-very-elegant nature of the solution that we devised for interrupt
handling was one of the two major integration problems that we encountered.
The other arose in evaluating the Default Relative Deadline attribute, which

Ravenscar-EDF: Comparative Benchmarking of an EDF Variant 25

mirrors the Default Priority value of the FPS runtime, assigned to all priority
attributes that lack explicit user setting. The FPS attribute is set, arbitrarily,
to the value that best approximates the medium point in the standard priority
range, excluding the top subrange reserved for interrupts. In our FPS runtime,
the chosen value was 120. In a deadline based system, there is no sound value
to choose. A small value penalizes urgent tasks that have been set an explicit
relative deadline by the user. A large value may penalize the “defaulted” task if
it happened to live in a system with many urgent tasks.

Since none of our synthetic tasks had uninitialized deadlines, we were free to
arbitrarily set the Default Relative Deadline attribute value to zero and let
it be overwritten by the relative deadline that the program assigned to the task
at declaration. A better solution should be defined for general use.

3 Evaluation Benchmark

In keeping with the empirical nature of our experiment, we based our evaluation
approach on the generation, categorization and execution of a large number of
test scenarios designed to thoroughly stress both runtime variants.

To this end, we defined three types of synthetic tasks - Short, Mid and Long -,
each with corresponding magnitude of period P and worst-case execution time
C. We then composed those tasks into tasksets with different cardinality (which
ranged from 30 to 180 concurrent tasks) and a variety of CPU utilization sce-
narios between 75% and 125%.

We further duplicated the tasksets into one version with implicit deadlines
and the other with constrained deadlines, using Rate Monotonic or Deadline
Monotonic assignments respectively for the FPS benchmarks.

Figure 4 depicts the automation engine that we constructed to generate,
build, execute and record the run of 5.438 tasksets. In the first step, the engine
composes tasksets, incurring a bound on their maximum cardinality determined
by the 4 MB limit of the target processor’s limit. Subsequently, it tests their
feasibility using Response Time Analysis (RTA) for FPS [10] and the equivalent
criterion for EDF. Since those tests are exact and accurate, we were able to have
fine-grained control over the worst-case utilization scenarios that we wanted to
generate.

For the FPS case, our engine uses a simpler variant of the fine-grained high-
accuracy version of the classic RTA equation presented in [12]:

Rn+1
i = CS1 + Ci +

n∑

j∈hp(i)

⌈
Rn

i

Tj

⌉
· (CS1 + Cj + CS2) (1)

With Eq. 1, a taskset scheduled with FPS, is feasible if and only if Ri ≤ Di ∀i.
Let us briefly recall the meaning of the cost factors that appear in it.

1. CS1 is the context switch experienced by task τi when it preempts another
task on access to the CPU.

26 P. Carletto and T. Vardanega

Start

EDF Response
Time Analysis

FPS Response
Time Analysis

Taskset
Generation

EDF
Run-Time Test

FPS
Run-Time Test

Results
Recording

1- Characterization

2- Generation

3- Evaluation

5- Runtime Event
Recording

4- Execution

Stop

Task
Types

Deadline
Type

Fig. 4. Automated engine generation and evaluation steps.

2. Ci is the highest computation time demand of task τi;
3. Tj is the period of task τj ;
4. CS2 is the dual of CS1 and accounts for the cost of cleaning the context up

when task τj releases the CPU;

The feasibility of the same tasksets was then evaluated for EDF with the
quantitative method proposed in [11] for constrained-deadline systems, using
Eq. 2:

h(t) =
i∑

j=1

max

(
0,

⌊
t − Dj

Tj

⌋
+ 1

)
· (CS1 + Cj + CS2) (2)

which stipulates that a taskset is schedulable under EDF if and only if the
worst-case CPU load L does not exceed 1:

L = max
∀t

(
h(t)

t

)
≤ 1 (3)

Ravenscar-EDF: Comparative Benchmarking of an EDF Variant 27

The subsequent step was the core part of our automation engine: in it, we
compile, build and execute the benchmark tasks for both runtimes, recording
each occurrence of 3 events of interest:

– Regular Completion: when a task’s job completes execution within the
assigned deadline;

– Deadline Missed: when a task’s job completes after its assigned deadline;
– Preemption: when the current task is preempted by a newly release job.

We run our benchmarks on an evaluation version of the TSIM/LEON SPARC
simulator, which limits the longest span of execution to 232 = 4.294.967.296 clock
cycles. To overcome that limitation we used an approach derived from [8], which
suggests how to generate bounded hyperperiods using a composition of bases
and exponents. As we needed to contain the highest hyperperiod to 232, we
set an artificial upper-bound to 27 · 36 · 53 · 73 = 4.000.752.000 < 232. Adding
this constraint to the taskset generation algorithm, we ensured that all their
hyperperiods would fully execute with our simulator. Moreover, using prime
numbers as the basis of the calculation, we yielded a sufficient quantity of not
harmonic3 tasksets.

4 Evaluation Results

Citation [7] arguably is the most famous discussion of a structured quantitative
performance comparison of EDF vs FPS. Acknowledging it, we decided to follow
its same overall logic, setting the following evaluation criteria:

1. Highest Schedulable Utilization: Which tasksets achieved the highest
schedulable utilization in each runtime variant? How did the corresponding
values relate to the theoretical ratios discussed in [11]?

2. runtime Overhead: Do the less preemptions and context switches that EDF
incurs justify the higher costs of its scheduling operations?

3. Resilience to Overload Situations: What happens to EDF and FPS under
overload conditions, when the CPU utilization exceeds 100%?

4. Locking Policy: How does DFP perform compared to IPCP?

Question 1 reflects the intent to seek empirical evidence in relation to the
theoretical results presented in [11]. That work in fact shows that the perfor-
mance of EDF is 1,44269 better than FPS for Implicit Deadlines, 1,76322 for
Constrained Deadlines and 2 for Arbitrary Deadlines.

Table 1 presents the results we obtained in response to criterion 1. Interest-
ingly, they are much less slanted in favour to EDF than they were in [11].

The highest utilization (obtained without incurring deadline misses) reached
by our EDF runtime was only 3,72% (first two lines of Table 1) better than
achieved by FPS for the same tasksets. As expected in point of theory, EDF pre-
vailed because it generated a lower number of preemptions, which yielded room
3 A task system has harmonic rates if and only if the periods of its tasks are pairwise

divisible (for each i, j one has pi|pj or pj |pi) with no remainder.

28 P. Carletto and T. Vardanega

Table 1. Highest schedulable utilization achieved by EDF over FPS (line 1 & 2) and
vice-versa (line 3 & 4). RC stands for Regular Completions; DM for Deadline Misses;
PR for Preemptions

Taskset type Task types Delta

schedulable

utilization

Max CPU

load

EDF FPS

RC DM PR RC DM PR

Constrained Short & mid 2,89% 105,50% 30.714 0 3.637 29.850 415 6.202

Implicit Mid only 3,72% 102,63% 18.691 0 837 18.021 673 2.040

Constrained All 0,05% 104,06% 24.398 0 5.131 24.409 0 5.211

Implicit All 5,22% 100,85% 24.935 953 6.309 26.236 0 5.715

for higher schedulable utilization, but surprisingly less markedly for constrained-
deadline tasksets, and more visibly – but still marginally – for implicit-deadline
tasksets. In our experiments, tasks’ execution times are short enough to be sen-
sitive to the overhead of runtime procedures, making the different complexity of
the two runtimes more manifest.

The good relative performance of FPS presented in the bottom half of Table 1
can be explained in two ways, depending on the type of experiment that yielded
it: when the number of preemptions spared by EDF with respect to FPS is
small, then the marginal gain in schedulable CPU utilization also becomes small;
conversely, when a taskset overloads the CPU, EDF may “blow up” and cause
an inordinate number of vacuous preemptions, many of which lead to deadline
miss.

Fig. 5. Average number of preemptions in both runtimes with utilization ≤100%.

The different preemption behaviour of the two runtimes leads to Question 2.
As the cost of individual context switch operations is nearly the same (ca. 2,389
CPU cycles) in both runtimes, answering that question required considering
the cumulative cost incurred in the respective executions. Figure 5 shows the
average benefit gained by EDF from lesser recourse to preemption for schedulable
utilizations under 100%. The total quantity of CPU time that the application

Ravenscar-EDF: Comparative Benchmarking of an EDF Variant 29

tasks could earn from that benefit in a hyperperiod scarcely exceeded 120000
CPU cycles, very little indeed, considering that the smallest (short) tasks in our
experiments run for 750000 cycles. This quantity however must be considered
with care, since it is an average value, which balances out best- and worst-case
situations, where the two runtimes may perform rather differently.

(a) Total preemptions in the full utilization spectrum.

(b) Average cumulative differences in clock cycles over a
full hyperperiod for CPU loads that increase from 0 to
severe overload situations.

Fig. 6. Effect of differences in average number of preemptions for varying CPU loads.

When the CPU utilization exceeds 100%, the prevalence of EDF over FPS
inverts radically: EDF incurs a much greater number of preemptions (cf. Fig. 6a),
for a massive loss of application performance, which shadows to the modest gain
achieved near 100%. Figure 6b contrasts the gain to the loss.

Question 3 delves deeper into the issue of what happens under overload condi-
tions. Figure 7 plots the graph of dispersion for EDF and FPS, which helps high-
light the greater resilience of FPS. When FPS operates in overload conditions
in fact, the number of completed executions, deadline misses and preemptions
are linear to one another (cf. Fig. 7b). This happens because only tasks with
lower priorities (the “long” ones) are delayed indefinitely, without this affect-
ing those with higher priority. EDF, instead, has a radically different behavior:
beyond 100% utilization, its performance immediately starts to deteriorate and

30 P. Carletto and T. Vardanega

(a) Overload conditions under EDF.

(b) Same taskset, same overload conditions but different behavior under FPS.

Fig. 7. Overload conditions under EDF and FPS.

Ravenscar-EDF: Comparative Benchmarking of an EDF Variant 31

two kinds of extreme behavior emerge, with a blurred zone in between them as
shown in Fig. 7a. When the overload condition is transient (or rather the excess
load is modest), EDF still allows a high number of completed executions (higher
darkest diamonds in Fig. 7a) with a low number of misses and a relative small
number of preemptions (respectively lower darker triangles and squares in the
same graph). When the overload conditions are more marked, they generate a
sort of domino effect, which causes the number of preemptions and misses to
increase dramatically (higher darker triangles and squares), while the number of
completed executions drops equally fast (lower darkest diamonds in Fig. 7a).

We should clarify that the utilization factor computed in accord with [11]
represents the highest CPU load that the system incurs during a hyperperiod.
This value may be much higher than the average load that we were able to
measure at run time. Hence, a very high max CPU load does not necessarily
mean an unsustainable situation, but can rather be seen as a transient overload
that both runtime variants can possibly cope with.

Question 4 reports a quantitative comparison between the two locking policies
we implemented in our runtime variants. From our implementation, we learned
that they are extremely close to one another in terms of runtime overhead.

Fig. 8. Number of regular execution completions incurred in the experiment.

To tell the performance differences between them, we made a number of
runs of tasksets comprised of only one task whose sole activity was to seize a
PO and execute a protected procedure in it, varying its computation time from
small to large. With this setting, we counted how many task executions each

32 P. Carletto and T. Vardanega

runtime was able to complete with the longest run of the simulator, without
incurring deadline misses. Comparing the results, we saw that the applications
running with IPCP completed more executions than with DFP. This difference
decreases with a logarithmic converging progression as the computation time of
the protected procedure increases (cf. Fig. 8). This result shows that DFP incurs
more cumulative overhead than IPCP, evidently due to the need to read the
clock in checking absolute deadlines.

5 Conclusions

In the past, the real-time systems community studied in earnest the relative
benefits of EDF and FPS, with an eye to their use in industrial systems. Most
of those studies where theoretical in nature, that is, they concentrated on the
respective feasibility equations, showing that, in point of theory, EDF warranted
much better performance.

In this work, we built an experimental framework where an EDF variant of an
Ada Ravenscar runtime was developed and exposed to a quantitative comparison
with the FPS original.

An interesting trait of our EDF runtime variant is that it changes the behav-
ior of the smallest possible set of runtime primitives needed to support deadline-
driven scheduling, without changing the API provided to the application. In that
manner, we only had to build one (large) single set of benchmark applications
and transparently bind them to the desired runtime.

Overall, our tests confirmed the theoretical conclusions reached by earlier
works. Yet, we showed that the actual gain of EDF over FPS is far lower than
anticipated even for CPU loads very close to 100%, where EDF was due to reap
the best of its benefit. We also studied the behavior of EDF vs FPS scheduling
under overload situations, where we experimentally observed the fragility of the
former and contrasted to the resilience of the latter.

We hope to have provided milestone technology for the further study of
this topic. Thanks to the high performance, modularity, and predictability of
our Ravenscar runtimes, there is now room for further deeper investigations of
how EDF (with DFP, which we also added to our implementation) behaves in
comparison to FPS (with IPCP).

References

1. Burns, A.: A deadline-floor inheritance protocol for EDF scheduled real-time sys-
tems with resource sharing. Technical report YCS- 2012-476, Department of Com-
puter Science, University of York, UK (2012)

2. Burns, A.: An EDF runtime profile based on Ravenscar. Ada Lett XXXII(1),
24–31 (2013)

3. Burns, A.: The Ravenscar profile ACM. Ada Lett. XIX(4), 49–52 (1999)
4. Burns, A., Dobbing, B., Romanski, G.: The Ravenscar tasking profile for high

integrity real-time programs. In: Asplund, L. (ed.) Ada-Europe 1998. LNCS, vol.
1411, pp. 263–275. Springer, Heidelberg (1998). doi:10.1007/BFb0055011

http://dx.doi.org/10.1007/BFb0055011

Ravenscar-EDF: Comparative Benchmarking of an EDF Variant 33

5. Burns, A., Wellings, A.: The deadline floor protocol and Ada. ACM SIGAda Ada
Lett. 36(1), 29–34 (2016)

6. Liu, L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard
real-time environment. J. ACM 20(1), 46–61 (1973)

7. Buttazzo, G.: Rate monotonic vs EDF: judgment day. Real Time Syst. 29, 5–26
(2005)

8. Goossens, J., Macq, C.: Limitation of the hyperperiod in real-time periodic task
set generation. In: Proceedings of the RTS Embedded System (RTS 2001), pp.
133–147 (2001)

9. Sha, L., Rajkumar, R., Lehoczky, J.: Priority inheritance protocols: an approach
to real-time synchronisation. IEEE Trans. Comput. 39, 1175–1185 (1990)

10. Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A.J.: Applying new
scheduling theory to static priority pre-emptive scheduling. Softw. Eng. J. 8(5),
284–292 (1993). doi:10.1049/sej.1993.0034

11. Davis, R., Baruah, S., Rothvoss, T., Burns, A.: Quantifying the sub-optimality
of uniprocessor fixed priority pre-emptive scheduling for sporadic tasksets with
arbitrary deadlines. In: RTNS 2009, Paris, ECE, 26–27 October 2009

12. Vardanega, T., Zamorano, J., De La Puente, A.J.: On the dynamic semantics and
the timing behavior of Ravenscar kernels. Real Time Syst. 29, 59–89 (2005)

http://dx.doi.org/10.1049/sej.1993.0034

Safety and Security

Sanitizing Sensitive Data: How to Get It Right
(or at Least Less Wrong…)

Roderick Chapman(&)

Protean Code Limited, Bath, UK
rod@proteancode.com

Abstract. Coding standards and guidance for secure programming call for
sensitive data to be “sanitized” before being de-allocated. This paper considers
what this really means in technical terms, why it is actually rather difficult to
achieve, and how such a requirement can be realistically implemented and
verified, concentrating on the facilities offered by Ada and SPARK. The paper
closes with a proposed policy and coding standard that can be applied and
adapted to other projects.

Keywords: Security � Sanitization � SPARK � Verification � Volatile �
Optimization � Proof

1 The Problem

Secure systems must be built to resist attack by increasingly sophisticated adversaries.
An attacker might be able to observe or provoke a system into “leaking” or revealing
secret data, such as cryptographic keys, the plaintext of passwords and so on.
A well-documented example is where an intruder manages to read the operating system
page file or a core dump of a running (or deliberately terminated) process in order to
gain access to unsanitized sensitive data.

Several coding standards and guidance documents exist that call for sensitive data
to be sanitized when no longer needed, but offer little advice on how this is to be
achieved or verified, especially given the complexity of programming languages and
hardware. This paper considers this problem in detail and describes the key technical
challenges, before going on to consider the facilities offered by Ada and SPARK that
can meet these demands, based on experience gained from a recent project.

1.1 Why Is Sanitizing Data Hard?

Sanitizing sensitive data might seem simple at first: just overwrite the data with zeros
and carry on, right? A less trivial analysis reveals important questions, including:

• How do we define “sensitive”? What objects in the program are “sensitive” and how
are they identified?

• Imagine that we have two variables A and B which are defined to be “sensitive.”
We declare and initialize a local variable C with an initial value derived from some
function that combines A and B. Is C “sensitive”? Does C need to be sanitized?

© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 37–52, 2017.
DOI: 10.1007/978-3-319-60588-3_3

http://orcid.org/0000-0003-2717-760X

• Can constant objects be sensitive? If so, how are they to be sanitized?
• Exactly when should sanitization be performed, relating to the scope and lifetime of

data objects which is, in turn, intricately entwined with a particular programming
language’s model of how data should be organized and (de-)allocated?

• Compiler optimization might remove a sanitizing assignment if the assignment is
seen to be redundant or “dead” by the optimizer. How can this be prevented?

• How do we verify that sanitization really has been performed correctly, to the
satisfaction of ourselves, our customers, and regulators?

1.2 Standards, Guidance and Problems

There are several (possibly far too many) sets of guidance or coding rules for secure
systems that call for sensitive data to be sanitized as soon as it is no longer needed, so
that (for example) a subsequent buffer over-read will not find any useful data. This
section considers an incomplete set of these, and tries to point out problems in meeting
their advice.

GCHQ. The UK’s national technical authority for secure software, GCHQ, offers a
short (but thankfully unclassified) “Guidance Note” on secure coding [1]. It offers some
generic advice, but mainly consists of coding rules for C and C++. A need to avoid
copying sensitive data is mentioned (to avoid a copy existing even if the original is
sanitized), with two paragraphs specifically on sanitization:

“Sanitise all variables that contain sensitive data (such as cryptovariables and unencrypted data)
by overwriting with zeroes once they are no longer needed. This includes all copies of the data:
call-by-value functions (as found in C) implicitly copy the value of their parameters, so their
parameters should always be sanitised before the function exits. At protective markings
higher than Restricted, sanitisation may require multiple overwrites or verification, or both.”
[1, para 58].

and

“The sanitisation is needed because errors may result in the disclosure of a block of memory,
therefore the risk of that memory containing anything useful needs to be minimised. The size of
the data is not a factor: even single bytes need to be sanitised, since in some cases a difference of
8 bits could have a significant impact on the practicality of an attack. On the other hand, the
lifetime of data may be a factor: if a variable can be shown to be overwritten shortly afterwards,
it may be acceptable not to sanitise it, provided it is sanitised when it is no longer needed.
‘Shortly’ is not defined more precisely, since it will depend on the situation…” [1, para 59].

This is well-meaning, but offers little in the way of real technical detail of how
sanitization is to be achieved or verified. The failure to define “shortly afterwards” is
also disappointing.

CERT Coding Standards. The CERT at CMU has produced coding guidance for
secure software development, covering C, C++, Java and Perl to date, with several tool
vendors claiming compliance. The CERT C Coding Standard [2] provides some advice
on sanitization:

38 R. Chapman

• Recommendation 08 (Memory Management), Item 06 is titled “Ensure that sensi-
tive data is not written out to disk” which mostly covers the problem of an operating
system “paging out” sensitive data to a disk or an application doing a “core dump”
which writes the state of a process to a disk file, potentially revealing the state of
sensitive data. These are valid concerns, relevant to any application running on an
operating system that supports paging and so on, so not really a “C language issue”
per-se, since these problems could affect code written in any language.

• Recommendation 48 (Miscellaneous), Item 06 is titled “Beware of compiler opti-
mizations” and covers the problem of a compiler removing a sanitizing assignment.
It goes on to recommend using “optimization safe” C functions such as memset_s(),
C’s “volatile” qualifier (more of which later…) or operating-system specific func-
tions that are designed to sanitize memory.

Both of these recommendations appear to presume the existence of some sort of
operating system (and possibly a “disk”), but what if we’re programming an embedded
“bare metal” system with no OS at all? How can we sanitize data properly in such an
environment?

ISO SC22/WG23 Technical Report 24772. The ISO’s SC22 Working Group 23 has
produced Technical Report 24772 entitled “Guidance to avoiding vulnerabilities in
programming languages through language selection and use.” [3] The TR recognizes
sanitization as an avoidance mechanism for some vulnerabilities, but does not go into
specific details. The language-specific annexes for Ada, C and SPARK offer no
additional advice.

Common Weakness Enumeration (CWE). Mitre’s CWE [4] includes CWE-14
“Compiler Removal of Code to Clear Buffers” which identifies the risk of removal of
sanitizing assignments by optimizing compilers. It advocates the use of volatile objects
and suggests “configure your compiler so that it does not remove dead stores.”

Cryptography Coding Standard. The Cryptography Coding Standard is “a set of
coding rules to prevent the most common weaknesses in software cryptographic
implementations” [5]. Their coding rules touch on sanitization in a number of places:

• Coding Rule 5 “Prevent compiler interference with security critical operations”
mentions the problem of compilers removing sanitizing assignments, and how even
a call to C’s standard “memset” function can be optimized away in some cases. It
offers the rather vague advice to “Look at the assembly code produced and check
that all instructions are there” which hardly seems practical for anything but trivial
code. It also recommends “consider disabling compiler optimizations that can
eliminate or weaken security checks” but again this seems impractical – modern
compilers have hundreds of optimization switches, which makes it almost impos-
sible to “know” which set of them will or won’t “interfere” with security. Finally,
rule 5 does point out that the 2011 C standard does include a new “memset_s”
function, a call to which is explicitly not allowed to be optimized.

• Coding Rule 11 “Clean memory of secret data” looks promising, recommending
that code should “Clear all variables containing secret data before they go out of

Sanitizing Sensitive Data 39

scope.” It points out the existence of a SecureZeroMemory function in the
Win32 API for this purpose. It also offers a portable C function that can be used to
overwrite memory that works “for non-buggy compilers” [sic].

1.3 Technical Issues

Having seen that the standards and guidance documents offer well-meaning but
imprecise advice, we now turn to a selection of more detailed technical problems.

Unwanted Compiler Optimization. Several of the guidance documents cited above
refer to this problem, so it warrants more attention here.

Modern implementations of computer architectures feature a marked difference
between the access time of CPU registers, data cache(s), and main memory, sometimes
by many orders of magnitude. In short, DRAM access times have not kept pace with
CPU clock rates, so the penalty for a “register miss” or a “cache miss” is pronounced.
Modern compilers therefore devote significant effort in several, related classes of
optimization [6], including:

1. Common sub-expression elimination and partial redundancy elimination. These
prevent semantically equivalent expressions from being evaluated more than once.

2. Register allocation and tracking, so that variables and the values of expressions are
stored in CPU registers as much as possible.

3. Dead-load and dead-store elimination.

These improve average-case performance, but create some issues for sanitization:

• Guidance calls for the “memory” occupied by a sensitive variable to be overwritten
“before the variable goes out of scope”, but what does that mean if the variable only
ever exists in an internal CPU register and there is no “memory” allocated for it at
all?

• A final sanitizing assignment needs to occur just before a variable “goes out of
scope”, so is (by definition) a “dead store” in the eyes of an optimizer, so might be
removed, on the assumption that once a variable has gone out of scope it can’t be
accessed any more. This creates a conflict in the compiler: we (the programmers)
want dead stores to be retained for one or more particular variables, but the compiler
is trying its hardest to remove them in the interests of improving performance of the
generated code.

Derived Values and Copies. In his thorough analysis “Zeroing buffers is insufficient”
[7], Percival points out several more pernicious technical issues with a simple “write
zeros into memory” approach. Specifically, he points out:

• Sanitizing the one memory block where a variable is stored is not good enough.
Compilers implicitly make copies of data into registers or implicitly-declared and
initialized local variables, so these might also contain a copy of some sensitive
information that needs to be sanitized. In the worst case, a compiler might evaluate
the value of a sensitive variable into a CPU register and spill that register into an

40 R. Chapman

implicitly allocated temporary variable on the stack. There is no way to portably
sanitize such temporary variables in C or Ada, since those variables do not appear in
the source code.

• If a sensitive piece of data is left in a CPU register, you cannot assume that that
CPU register will be re-used and the data over-written “quickly”. Percival points out
that some CPU registers (such as the SSE registers on x86) are rarely used, and
some registers are specifically designed for cryptographic algorithms such as AES –

the problem being that you carefully use a “special” register to hold an AES key (for
example), but then that register is not used for anything else in your program, so the
key value persists and is never overwritten. Secondly, some CPUs such as x86 can
implement register renaming, which further complicates matters.

A related problem is that of derived values. As pointed out in Sect. 1.1, if two
sensitive variables A and B are combined in some way to get a value in variable C,
should C be considered to be sensitive and therefore needing sanitization? The answer
is “it depends”… on the exact operation used to derive C, the nature of A and B, and so
on. It is far from simple to suggest a generic one-size-fits-all policy for such variables.

By-Copy Parameter Passing. If a subprogram parameter is passed by copy, then the
value of the actual parameter is copied into the storage associated with the formal
parameter (which might be stack memory or a CPU register). If the actual is sensitive,
then so is the formal parameter. In Ada, this is particularly problematic, since “in”
mode parameters are constant and so cannot be assigned to at all, and the choice
between by-copy and by-reference passing can be unspecified for some types.

CPU Data Caching and Memory Hierarchy. Anyone that has programmed a
device-driver on a “bare metal” target will know that the presence of a “write”
instruction does not guarantee that the data actually reaches the target hardware device
at all, or in the order indicated in the source code. Modern CPUs have multiple levels of
data caching, which may be in “write back” mode, so an instruction to write a particular
word of memory might not actually reach the main memory device until the offending
data cache line is flushed or invalidated. Secondly, modern CPUs can execute
instructions out-of-order and re-order memory accesses in rather unexpected ways,
which can complicate matters further.

Some operating systems offer functions that are specifically designed to securely
sanitize memory, such as Win32’s SecureZeroMemory function. We presume these
functions take care of any required flushing of caches, paged-out data and so on.

On bare-metal targets, we might turn off all data caching or insist on “write
through” mode, but this may be Draconian, since disabling all caching for all
stack-allocated data would incur a potentially huge performance penalty. Some CPUs
might allow special instructions to flush particular cache lines and so-called “memory
fence” instructions that instruct the CPU to pause until all queued memory accesses are
complete. These techniques are valid (and indeed may be absolutely necessary), but
require recourse to obviously non-portable assembly language programming at some
level.

Sanitizing Sensitive Data 41

The recent 2011 editions of both the C [8] and C++ [9] languages have been
extended to define an abstract “memory model” for these languages, plus support in the
standard library for atomic types and fence operations, both of which may offer
mechanisms that support sanitization more portably.

1.4 An Example – How It Can Go Wrong in Ada

This section closes with a short (and somewhat contrived) example of how sanitization
can fail in Ada. In the remainder of the paper, all examples have been compiled with
the GPL 2016 Edition of GNAT for 32-bit x86 running on Windows 7 Pro.

Consider a simple procedure GK that takes three seed values A, B, and C, and
produces a derived key value K from them. For example:

The body of GK combines A, B, and C using a local, temporary variable T which
we have decided is sensitive and needs to be sanitized with a final assignment, thus:

To see what’s going on, we’ll compile with both “-g” and “-fverbose-asm” flags.
We’ll also enable all warnings with “-gnatwa” and “-Wall” as we would on any real
project. Compiling GK does yield a warning:

which hints at trouble ahead. Compiling with –O0 (little or no optimization) yields the
following assembly language for lines 15 through 20 of GK:

42 R. Chapman

so we can see the final assignment to T on line 20 has indeed been generated as a single
“movl” instruction.

Turning on the optimizer at level “−O1” reveals a different story. For the same
fragment of code, we get:

and that’s all. The local variable T is not allocated at all on the stack – it has completely
disappeared, in fact, with the intermediate results left in the CPU register EAX. Our
well-intended attempt to sanitize T has been discarded by the compiler, but then again,
T has disappeared entirely, so is this sufficient? What about the intermediate value left
in EAX – is that overwritten “soon” by the calling subprogram perhaps?

2 Sanitization – Constraints and Goals

In developing the coding standard for a recent project, we had to meet both CESG’s
guidance for sanitization [1], but also the constraints imposed by the wider demands of
the project, including the runtime environment, compilers, features of the target plat-
form and its operating system and so on.

In searching for the most general solution, we tried to respect the following
constraints:

1. The approach to sanitization should minimize dependence on predefined library
units and the use of language features that require substantial support from the Ada
runtime library. In particular, for our project, we required compatibility with
GNAT’s “Zero Footprint” (ZFP) runtime library.

2. The approach should not depend on any operating system facilities, and so can be
deployed on a “bare metal” target system.

3. The approach should be compatible with the SPARK language (either SPARK 2005
[10] or SPARK 2014 [11, 12]) and verification tools.

Secondly, what does a “good” approach to sanitization look like? In developing
these guidelines for Ada, we tried to respect the following goals:

1. Any proposed approach should be portable in that it should not depend on
non-standard behavior from the compiler, and should not rely on particular un-
specified or implementation-defined choices made by a compiler.

2. Our approach should permit compiler optimizations to be enabled at all levels, with
sufficient confidence that sanitization code would be preserved and implemented
correctly.

3. Our approach must prevent (as far as is possible) explicit or implicit copying or
assignment of sensitive values. This also affects parameter passing, since a
“by-copy” formal parameter involves assignment.

4. Our approach should facilitate (or at least not obstruct) verification with the SPARK
toolset.

Sanitizing Sensitive Data 43

5. Our approach should meet or exceed the demands of the various regulatory stan-
dards, such as [1]. Furthermore, we should be able to explain and justify our
approach to those regulators so that we can convince them that it actually works.

3 Sanitization Mechanisms in Ada

Having considered the scope of this problem, this section turns to the language-based
mechanisms that are available in Ada. Knowing what mechanisms are available can
then lead to a policy that can be adopted for a particular project.

3.1 Volatile

Ada, C and C++ all include a facility to mark an object as “Volatile”, meaning that the
compiler must respect the exact sequence of reads and writes to such an object that are
indicated in the source code. Ada goes further, allowing Volatile types as well as
objects. The Ada RM [13] offers a clear implementation requirement (Ada 2012 RM,
C.6(20)):

“The external effect of a program…is defined to include each read and update of a
volatile or atomic object. The implementation shall not generate any memory reads or
updates of atomic or volatile objects other than those specified by the program.”

Let’s see what happens to our example procedure GK with the declaration of T
changed as follows:

With that in place, we should be able to turn the optimizer “up to 11” (well…3) and
compile with “−O3”. Firstly, the warning from the front-end about the useless assign-
ment to T disappears, which is a good sign. The generated code for lines 15–20 is:

so we see that all the reads and writes of T have been preserved, including the final
sanitizing assignment.

At first glance, this appears to be a perfect match, at least when it comes to
preventing the optimization of sanitizing assignments. Unfortunately, it’s not that
simple for several reasons:

44 R. Chapman

1. Volatile prevents optimization of all reads and writes to an object, but we only
require that the final sanitizing assignment is preserved, so use of Volatile might
have a serious but unnecessary impact on the performance of the generated code.

2. SPARK 2014 (release 16.0.2) only permits library level objects to be declared
Volatile. Local variables may not be Volatile.

3. Most seriously and worryingly, Regehr and Eide [14] have shown that compilers
can mis-compile Volatile and do optimize away reads and writes when they
shouldn’t. Regehr and Eide only tested 13 compilers and their work dates from
2008 so we hope compilers have improved since then. Their tests were based on
analysis of C programs, but their concerns are real, especially since their results
include those for 9 builds of GCC, which shares its back-end (and optimization
code) with GNAT.

So, despite its initial good looks, the use of Volatile is not a panacea for data
sanitization. Secondly, it does not address the need to restrict assignment and copying
of sensitive data objects at all.

3.2 Controlled Types

Ada’s “Controlled Types” offer a tempting approach to supply a “Finalize” procedure
that sanitizes an object. At first glance, this seems attractive, but there are several
serious problems:

• Controlled types require significant support from the Ada runtime library which
conflicts with our requirement for compatibility with the ZFP runtime.

• They are not permitted by SPARK.
• Their semantics and implementation are notoriously difficult to understand [15, 16].

In light of these problems, controlled types were rejected without further
investigation.

3.3 Limited Types

Ada’s limited types are particularly attractive for holding sensitive data. Firstly, the
programmer can have complete control over exactly what set of operations are avail-
able to clients. Secondly, and by default, assignment is not defined for limited types, so
we can control both copying and creation of derived values. Finally, an explicitly
limited record type is defined to be a by-reference type (RM 6.2(7)) so we can be sure
that all formal parameters of such a type will be passed by reference, not by copy.

3.4 By-Reference Types

Where the use of a limited record type is not appropriate or practical, there are still
other means of forcing a type to be a “by-reference” type in Ada, which will, at least,
prevent copying by parameter passing where we don’t want it. RM C.6 (18) tells us that

Sanitizing Sensitive Data 45

if any sub-component of a type is Atomic or Volatile, then the type is defined to be a
by-reference type. Additionally, RM 6.2(5) specifies that all tagged types are
by-reference. Thus we can force by-reference passing for even a simple scalar type by
wrapping it in a tagged record or a record which has a single Atomic or Volatile
component. For example, instead of declaring a formal “in” mode parameter of type
Boolean, we might declare:

to ensure by-reference parameter passing. There are pros and cons to both approaches.
The Volatile field has no space overhead and makes the field volatile, but is not
compatible with SPARK 2014 at the time of writing. The tagged record is allowed by
SPARK, but imposes some space overhead by adding an implicit tag field to the record.

Using GNAT, it is also possible to verify the parameter passing mechanism using
the “–gnatRm” flag.

3.5 Pragma Inspection_Point

This little-used (and little-understood perhaps) pragma has particular relevance to this
problem. Inspection_Point was introduced in Ada 95 as part of the RM’s Safety and
Security Annex H. It is designed to specify a list of objects that must be inspectable at a
particular point in a program. A pragmatic interpretation means that the listed objects
are supposed to be stored in memory at the inspection point so that their values can be
seen by external means, such as a logic analyser, a JTAG probe, a real-time debugger
or similar. From the point of view of optimization, the Ada RM is clear:

‘The implementation is not allowed to perform “dead store elimination” on the last
assignment to a variable prior to a point where the variable is inspectable. Thus an
inspection point has the effect of an implicit read of each of its inspectable objects.’
(Ada RM H3.2 (9)).

This seems ideal for our needs – if a final, sanitizing assignment to a sensitive
object is immediately followed by a pragma Inspection_Point for that object, then that
final assignment should not be optimized away. This provides much finer control than
pragma Volatile. For the curious, GNAT actually implements pragma Inspection_Point
by generating a dummy volatile read to each of the objects specified in the pragma. See
the file gcc-interface/trans.c in the GNAT sources for details [17] and search the file for
“Inspection_Point”.

46 R. Chapman

Returning to our simple example, we revert to declaring T as a normal
(non-volatile) local variable, but now follow the final assignment with an Inspec-
tion_Point, thus:

The generated code at –O1 is:

which is interesting. Again, the variable T has been entirely eliminated, but com-
mentary has been added that “t is in $0” since T does not have an accessible address in
memory at all.

3.6 No_Inline and Sanitizing Operations

Having identified the problems with Volatile objects, Regehr and Eide go on to rec-
ommend that all reads and writes of a volatile variable should be performed by a
subprogram call that can never be inlined, since inlined code has the potential to be
optimized away during the compilation of any calling units. They demonstrate how this
works well for C, and the equivalent mechanism exists for Ada with the GNAT-defined
pragma No_Inline.

Combining this idea with the use of a limited private type for sensitive data yields
the following pattern for a sensitive abstract data type:

The body of Sensitive.Sanitize might depend on the target platform and operating
system, so we recommend implementing it as a separate subunit of package Sensitive
to allow for alternative implementations to be chosen at build-time. Let’s imagine that
the field F of type T is of type Word32. In that case, a suitable implementation for a
bare-metal/ZFP target might be:

Sanitizing Sensitive Data 47

At –O3, the generated code for the assignment statement and the pragma is:

We can also check the parameter passing mechanism using –gnatRm which yields:

4 Verification and SPARK

The SPARK toolset offers two major forms of static verification—information-flow
analysis and proof of user-defined contracts. This section briefly considers the interplay
between sanitization and these forms of verification.

4.1 Information Flow Analysis

As expected, both the SPARK 2005 and SPARK 2014 tools will reliably report that a
final sanitizing assignment to a local variable is ineffective, meaning that the assignment
has no influence on the final value of any exported variable of the subprogram under
analysis. This is perfectly correct and reasonable. At first, such errors being reported
might seem an annoyance, we can turn this to our advantage using pragma Warnings to
document the expectation and need for the sanitization. For our earlier example, we
would add:

4.2 Proof

At first glance, it might be possible to prove that sanitization of variables has been
performed, but closer inspection reveals two main issues:

48 R. Chapman

• The final value of a local variable cannot be asserted in the post-condition of the
subprogram that declares it, owing to its very local-ness. It would be possible to
assert the value of a sanitized library-level variable.

• Writing an assertion regarding the value of a sensitive variable means that we need
to decide on a (constant) value that should be used. The naive approach of “zero all
bits” might not be appropriate, since “all zeros” might not be a valid value. SPARK
and Ada have no “memset” or similar, so we need to be able to write an assignment
statement which is legal and itself free from runtime errors.

5 A Policy for Sanitization

In light of the difficulties described above, and the facilities offered by Ada and
SPARK, and our experience on one project, we would offer the following policy for
sanitization of sensitive data for future work.

5.1 Identification and Naming of Sensitive Variables

A project must document a clear policy for what exactly is and isn’t considered to be a
“sensitive” object. This is clearly project- and application-specific. In cryptographic
applications, for example, sensitive data might include cryptographic keys, single-use
random “nonce” values, and initialization vectors for encryption algorithms.

The definition of “sensitive” may also have to consider the visibility and lifetime of
the objects—local variables and library level states might have to be treated very
differently, for example.

Having chosen a policy for deciding which states are sensitive, we propose a
naming convention as follows:

• The names of types used for sensitive data should be prefixed with “Sensitive_”.
• The names of variables that are sensitive should have the suffix “_SAN” meaning

that such variables should be sanitized.
• The name of a formal subprogram parameter that might be associated with a sen-

sitive actual parameter shall also have the suffix “_SAN”.
• Sensitive constants are not permitted.

5.2 Types and Patterns for Sensitive Data

• By-reference types should be used for all sensitive data.
• Preferably, and if possible, a limited type should be used for sensitive data to forbid

assignment. In this case:
– A “Sanitize” procedure should be supplied, as shown in Sect. 3.6, which has a

No_Inline pragma applied to it.

Sanitizing Sensitive Data 49

– The body of such a “Sanitize” procedure should be a separate subunit to allow
for multiple implementations for different platforms and operating systems.

– The body of “Sanitize” shall include a pragma Inspection_Point immediately
following the final assignment to the formal parameter. Note that the presence of
the pragma is sufficient to suppress the “useless assignment” warning illustrated
in Sect. 1.4. This is useful for verification, since presence of this warning is a
strong indication that the programmer has forgotten to add the pragma.

• If a limited type is not possible, then a Sanitize procedure shall still be supplied for
any sensitive type, implemented as above. In this case, code review checklists must
include a check that assignment is not used for objects of such types.

• For SPARK code, a pragma Warnings shall always precede a final sanitizing
assignment (or the call to a Sanitize procedure) to document the need for the
sanitization and to suppress the information-flow warning.

5.3 Compiler Switches and Analysis

• All code should be compiled with “-gnatwa” to ensure that the “useless assignment”
warning is generated. This should be expected for sanitizing assignment, but sup-
pressed with pragma Inspection_Point.

• The “-gnatRm” switch should be used to verify that the compiler has chosen
by-reference parameter passing mechanism for all sensitive formal parameters. This
is easy if the naming convention above has also been followed.

• Analysis of the generated assembly language should be performed using the “-g”
and “-fverbose-asm” flags to verify that the inspection points are present and
correct.

• Additional analysis of the generated code might be required to verify that cache
manipulation instructions and memory fences are as required.

6 Related and Further Work

Several authors have called for compilers to help automate sanitization via some sort of
special compilation switch (“-fsanitize_local_data” perhaps?). This could go further
than source-based techniques since the compiler could arrange to sanitize all local
states, derived variables, temporaries, and CPU registers for example. How a compiler
designer would convince others of the correctness of such an approach remains
unknown.

A compiler switch seems a rather blunt instrument though. Sanitizing all local data
might produce an unacceptable performance overhead, so we return to the idea of how
objects in a program can be marked as sensitive and therefore requiring sanitization.
We might imagine a new “Sensitive” aspect in Ada 2012 that can be applied to types
and/or objects, rather like Volatile.

50 R. Chapman

A standardized Ada binding to the C11 “stdatomic” library might be a useful
exercise to supply portable access to memory fence operations.

Another compiler-related issue is that of link-time optimization (LTO). This style of
optimization has appeared recently in compilers like GCC [18] and LLVM [19].
Studies are needed to verify that sanitization code is preserved in the presence of LTO.

There has been significant interest in the verification of compilers, particularly
owing to the CompCert effort [20, 21]. The proof of CompCert covers the correct
compilation of Volatile objects, which could carry over to the correctness of sanitizing
assignments and inspection points.

The problem of sensitive derived variables could be addressed through more
advanced information flow analysis. If a tool like GNATProve, for example, knew that
variables A and B were sensitive, then could it automatically infer that C (derived from
A and B) were also sensitive? This can also be seen as a variant of the taint analysis
embodied in languages like Ruby and Perl.

7 Conclusions

Sanitization of sensitive data remains a thorny issue: standards call for it to be done, but
offer little advice on how it should be achieved in practice or verified. This paper has
illustrated some of the problems and shown how they can be addressed in Ada and
SPARK and developed into a policy, coding standard, and verification strategy for a
particular project.

Acknowledgements. The author would like to thank Robert Seacord, Florian Schanda, Bill
Ellis and the conference reviewers for their comments on earlier drafts of this paper.

References

1. CESG. Coding Requirements and Guidance (IA Developers’ Note 6), CESG, Issue 1.1,
October 2015. www.ncsc.gov.uk/guidance/coding-requirements-and-guidance-ia-developers-
note-6

2. US CERT. SEI CERT C Coding Standard. www.securecoding.cert.org/confluence/display/c/
SEI+CERT+C+Coding+Standard

3. ISO/SC22/WG23. Information Technology — Programming Languages — Guidance to
avoiding vulnerabilities in programming languages through language selection and use. TR
24772 (2013). http://www.open-std.org/JTC1/SC22/WG23/

4. Mitre Corp. Common Weakness Enumeration (CWE). http://cwe.mitre.org/
5. Cryptography Coding Standard Project. cryptocoding.net/index.php/Cryptography_Coding_

Standard
6. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and

Tools, 2nd edn. Pearson, Upper Saddle River (2013). ISBN 978-1292024349
7. Percival, C.: Zeroing Buffers is Insufficient. www.daemonology.net/blog/2014-09-06-

zeroing-buffers-is-insufficient.html
8. Programming Langauges – C. ISO/IEC 9899:2011 (2011). http://www.open-std.org/jtc1/

sc22/wg14/www/standards.html

Sanitizing Sensitive Data 51

http://www.ncsc.gov.uk/guidance/coding-requirements-and-guidance-ia-developers-note-6
http://www.ncsc.gov.uk/guidance/coding-requirements-and-guidance-ia-developers-note-6
http://www.securecoding.cert.org/confluence/display/c/SEI%2bCERT%2bC%2bCoding%2bStandard
http://www.securecoding.cert.org/confluence/display/c/SEI%2bCERT%2bC%2bCoding%2bStandard
http://www.open-std.org/JTC1/SC22/WG23/
http://cwe.mitre.org/
http://cryptocoding.net/index.php/Cryptography_Coding_Standard
http://cryptocoding.net/index.php/Cryptography_Coding_Standard
http://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html
http://www.daemonology.net/blog/2014-09-06-zeroing-buffers-is-insufficient.html
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html

9. Programming Langauges – C++. ISO/IEC 14822:2011 (2011). http://www.open-std.org/
JTC1/SC22/WG21/docs/standards.html

10. Barnes, J.: With Altran Praxis. SPARK: The Proven Approach to High-Integrity Software
(2012). ISBN: 978-0-9572905-0-1

11. McCormick, J.W., Chapin, P.C.: Building High-Integrity Applications with SPARK.
Cambridge University Press, Cambridge (2015). ISBN 978-1-107-04073-1

12. SPARK 2014 Community Site. www.spark-2014.org
13. Consolidated Ada 2012 Language Reference Manual. ISO/IEC 8652:2012/Cor 1:2016

(2016). www.ada-auth.org/standards/ada12_w_tc1.html
14. Regehr, J., Eide, E.: Volatiles are miscompiled and what to do about it. In: Proceedings of

the Eighth ACM and IEEE International Conference on Embedded Software (EMSOFT),
Atlanta, Georgia, October 2008. doi:10.1145/1450058.1450093, www.cs.utah.edu/*regehr/
papers/emsoft08-preprint.pdf

15. Comar, C., Dismukes, G., Gasperoni, F. The GNAT implementation of controlled types. In:
Proceedings of Tri-Ada 1994, Baltimore. ACM Press (1994). doi:10.1145/376503.376724

16. Kirtchev, H.: A new robust and efficient implementation of controlled types in the GNAT
compiler. In: Proceedings of High-Integrity Language Technology 2012, ACM SIGAda
Letters, vol. 32, issue. 3 pp. 43–50 (2012). doi:10.1145/2402676.2402693

17. GNAT sources at gcc.gnu.org. gcc.gnu.org/viewcvs/gcc/trunk/gcc/ada/gcc-interface/trans.c
18. GCC Online Documentation. Chap. 24 – Link Time Optimization. https://gcc.gnu.org/

onlinedocs/gccint/LTO.html
19. LLVM Compiler Infrastructure. Link Time Optimization: Design and Implementation.

http://llvm.org/docs/LinkTimeOptimization.html
20. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM, 52(7), (2009). doi:10.

1145/1538788.1538814
21. Kang, J., Kim, Y., Hur, C-K., Dreyer, D., Vafeiadis, V.: Lightweight verification of separate

compilation. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL) 2016, pp. 178–190. ACM Press. doi:10.
1145/2837614.2837642

52 R. Chapman

http://www.open-std.org/JTC1/SC22/WG21/docs/standards.html
http://www.open-std.org/JTC1/SC22/WG21/docs/standards.html
http://www.spark-2014.org
http://www.ada-auth.org/standards/ada12_w_tc1.html
http://dx.doi.org/10.1145/1450058.1450093
http://www.cs.utah.edu/%7eregehr/papers/emsoft08-preprint.pdf
http://www.cs.utah.edu/%7eregehr/papers/emsoft08-preprint.pdf
http://dx.doi.org/10.1145/376503.376724
http://dx.doi.org/10.1145/2402676.2402693
http://gcc.gnu.org/viewcvs/gcc/trunk/gcc/ada/gcc-interface/trans.c
https://gcc.gnu.org/onlinedocs/gccint/LTO.html
https://gcc.gnu.org/onlinedocs/gccint/LTO.html
http://llvm.org/docs/LinkTimeOptimization.html
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/2837614.2837642
http://dx.doi.org/10.1145/2837614.2837642

Enforcing Timeliness and Safety
in Mission-Critical Systems

António Casimiro(B), Inês Gouveia, and José Rufino

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
{casim,jmrufino}@ciencias.ulisboa.pt, igouveia@lasige.di.fc.ul.pt

Abstract. Advances in sensor, microprocessor and communication
technologies have been fostering new applications of cyber-physical
systems, often involving complex interactions between distributed
autonomous components and the operation in harsh or uncertain con-
texts. This has led to new concerns regarding performance, safety and
security, while ensuring timeliness requirements are met. To conciliate
uncertainty with the required predictability, hybrid system architectures
have been proposed, which separate the system in two parts: one that
behaves in a best-effort way, depending on the context, and another
that behaves as predictably as needed, providing critical services for a
safe and secure operation. In this paper we address the problem of ver-
ifying the correct provisioning of critical functions at runtime in such
hybrid architectures. We consider, in particular, the KARYON hybrid
architecture and its Safety Kernel. We also consider a hardware-based
non-intrusive runtime verification approach, describing how it is applied
to verify Safety Kernel software functions. Finally, we experimentally
evaluate the performance of two distinct Safety Kernel implementations
and discuss the feasibility issues to incorporate non-intrusive runtime
verification.

Keywords: Real-time and embedded systems · Software architectures ·
Architecture hybridization · Reliability and safety · Runtime verification

1 Introduction and Motivation

Advances in sensor, microprocessor and communication technologies have been
fostering new applications of cyber-physical systems, often involving complex
interactions between distributed autonomous components and the operation in
harsh or uncertain contexts. A good example can be found in the automotive
domain, where car makers strive to increase the autonomy of vehicles, exploiting
existing technologies to make them more intelligent. While the state of the art

This work was partially supported by FCT, through funding of LaSIGE Research
Unit, ref. UID/CEC/00408/2013. This work integrates the activities of COST Action
IC1402 - Runtime Verification beyond Monitoring (ARVI), supported by COST
(European Cooperation in Science and Technology).

c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 53–69, 2017.
DOI: 10.1007/978-3-319-60588-3 4

54 A. Casimiro et al.

approach consists in using information collected from local sensors to feed con-
trol loops, future cars will be connected to other cars and to the infrastructure,
and will cooperate for information exchange. Connectivity introduces additional
security risks and, given that it is enabled by wireless networks, also introduces
temporal uncertainties that conflict with real-time requirements. Additionally,
processing huge amounts of incoming data will require complex processing solu-
tions, which favor uncertainty, not predictability.

A particular challenge is to conciliate uncertainty with the required pre-
dictability, for which hybrid system architectures have been proposed. For
instance, Simplex [21] considers that a control system can be composed of a
controller executing in a complex subsystem, and a simple but reliable con-
troller that is used when the complex controller malfunctions, being deployed
in a separate part of the system, to be protected from potential faults in the
complex subsystem.

In the scope of the KARYON project [6], we proposed the KARYON hybrid
system architecture [7] to build safe cooperative systems with improved per-
formance. This software architecture encompasses application components that
execute in a complex part of the system and a Safety Kernel (SK) that, along with
critical application components, should be implemented separately and should
be verified to execute in a timely and reliable way. The role of the SK is to
monitor the behavior of complex software components and trigger the necessary
adjustments or reconfiguration actions in the complex part of the system, as
needed to satisfy a set of predefined safety requirements. Note that an SK soft-
ware instance will exist in each node of a distributed system (e.g., on each car)
and hence the paper focuses only on a single node and not on the distribution
aspects of the safety critical application or function.

In this paper we address the problem of how to verify in runtime that funda-
mental properties of the KARYON SK are satisfied. In fact, while it is possible to
use several dependability techniques, such as the replication of software compo-
nents or software verification, to enforce the required properties and raise confi-
dence that they will be secured, these are costly and there is always a probability
that, due to an accidental or even intentional fault, a property no longer holds.
For example, an SK function might not complete its execution within a required
temporal bound or it might produce an erroneous value. Runtime verification
adds another layer of protection that is fundamental for safety assurance.

We propose a hardware-based non-intrusive runtime verification approach,
which is able to detect the violation of well-defined SK properties in runtime. We
describe the approach and how it is applied to verify concrete properties of the
SK. We also provide experimental results that illustrate the performance of the
SK implemented in two platforms, complemented with a discussion on feasibility
issues relative to the incorporation of non-intrusive runtime verification.

The paper is structured as follows. Section 2 briefly reviews the KARYON
hybrid architecture, describing the role of the SK. Then, Sect. 3 provides details
on the SK design, important for explaining, in Sect. 4, how the runtime verifi-
cation approach is applied to secure design assumptions. Relevant details of the

Enforcing Timeliness and Safety 55

SK implementation and a comparative evaluation of the SK operation in two
different platforms is provided in Sect. 5. Sections 6 and 7 respectively address
related work and conclude the paper.

2 Hybrid Architectures

Hybrid distributed system models and architectural hybridization [24] can be
explored as a baseline design principle to address a trade-off between perfor-
mance and timeliness or safety or even security. In essence, hybrid distributed
system models assume that different parts of the system are characterized by
different properties (for instance, each part having different timeliness proper-
ties or different integrity levels with respect to some assumed failure modes), and
architectural hybridization explicitly separates system functions or components
into these different parts, as needed to ensure that each component enjoys the
properties provided by the part of the system in which it is allocated.

When considering the temporal domain, a system with a hybrid architecture
is structured in at least two parts: one that encompasses all complex components,
whose temporal behavior cannot be fully predicted or is hard to enforce, and
another part that usually contains simple but critical components that execute
in a predictable way. Such nice properties, like timely execution, must be enforced
by design and in the implementation. For instance, dedicated hardware may be
used to execute critical components, ensuring that they are temporally isolated
and shielded from failures in the complex part, and that interactions between the
two parts are done through a well-defined interface that preserves the properties
of the part containing critical components.

The architectural hybridization concept was explored in the context of
the KARYON project, which defined a generic architectural pattern for the

Safety Manager Run Time Safety
Informa�on

“Hybridiza�on
line”

Safety
Kernel

Sense Compute Communicate Actuate

Nominal system components

Design Time
Safety

Informa�on

Func�ons
with

several
Levels of
Service

Adjust
Component behavior

(or reconfigure)

Extract
Sensor data validity/

Timeliness informa�on

Predictable
behaviour
(all bounds
proved to

hold at
design �me)

Uncertain
behaviour

(no bounds
are proved to

hold at
design �me)

Fig. 1. The KARYON hybrid architectural pattern.

56 A. Casimiro et al.

development of sensor-based autonomous and cooperative systems [7]. This
architectural pattern is shown in Fig. 1.

The several components that constitute the autonomous system and perform
the cooperative functions are considered the nominal system components. These
include sensors, actuators, computation and communication components. Each
of these components can be used to support multiple functions. Each function
can be provided with several levels of service (LoS), depending on the com-
ponents that are being used and/or the performance level of each component.
For instance, a function to detect obstacles ahead of a vehicle may be realized
with a higher LoS if implemented using a camera sensor and an associated video
processing component that is able to identify the kind of obstacle, but it may
also be provided with a lower LoS by using just the information provided by a
distance sensor. While it might not always be possible to execute a function at a
higher LoS, namely when some needed complex component is failing to execute
its function timely enough, it is assumed that it can always be executed at the
lowest LoS, given that in this case it is ensured that all the involved compo-
nents (considered critical ones) execute in a timely way. The hybridization line
separates the system in two parts: the one where no temporal bounds can be
assumed, and the predictable part, which contains critical components that are
expected to execute timely and reliably (by design and implementation).

The architectural pattern is based on a Safety Kernel that is responsible for
maintaining the system safe, despite the possible occurrence of faults affecting
components above the hybridization line. Safety conditions are determined at
design time. For each function, it is necessary to determine the safety rules that
must hold to allow the function to be executed with a given LoS, that is, using a
certain combination of components. For instance, the obstacle detection function
can only be run at the highest LoS if the video processing component is able
to timely process a video frame and provide results with good quality (which
may not be possible in bad lighting conditions). The role of the Safety Kernel
is hence to continuously extract information about the timeliness and quality
(or validity) of sensor and processed data, use this information to verify which
safety rules are satisfied, and adjust the system configuration at runtime so that
all the functions are executed with the highest LoS that still secures safety.

To perform its task, the Safety Kernel includes: a Safety Manager component,
a repository containing Design Time Safety Information, and a repository that
is continuously updated with Runtime Safety Information. We highlight the fact
that these components are located below the hybridization line. This is necessary
because the Safety Kernel, as a critical component, must behave in a reliable
and timely way.

3 Safety Kernel Design

Figure 2 provides an overview of the Safety Kernel functional components and
the data flows between them. At startup the eXtensible Markup Language (XML)
Parser reads a local configuration file, builds a Safety Rules repository and ini-
tializes Runtime Safety Information (RSI) structures, which will be continuously

Enforcing Timeliness and Safety 57

updated in runtime with the relevant safety-related information. The configura-
tion file provides the safety rules and also unit definitions, expressed in XML.
A unit represents a Safety Kernel input (collected data), output (adjustment
data – typically a component performance level, PL) or locally calculated values
(for instance, the acceptable LoS for some function). Each unit has a unique
identifier that is used in the XML specification of the safety rules.

A safety rule is a boolean expression involving combinations of static values
(bounds) and unit identifiers. A safety rule is meaningful for a specific LoS of
some function. For instance, consider that a nominal system (e.g., an autonomous
vehicle control system) is designed to perform some function F (e.g., keep a safe
front distance value to any front object), and this function can be performed in
two different ways (e.g., using different sensors), one way providing a higher LoS,
(e.g., LoS2, allowing a smaller safety distance but requiring sensor data with high
validity, possibly not achievable in some situations), and a default way providing
a baseline LoS (LoS1, imposing a higher safety distance, proved to be enough
even when the validity of sensor data cannot be the highest one). In this case,
a safety rule would be necessary to specify the conditions for function F to be
safely executed in LoS 2. If the condition (a single one, in this example) was the
validity of sensor data, VSens, to be greater that 70, the safety rule would be
expressed as: F (LoS2) → VSens > 70.

XML
Parser

Timing
Failure

Detector

Input
Data

Manager

Safety
Manager

XML
Config Safety

Rules

Run-time
Safety Info

Data
Component
Multiplexer

Kernel I/O Interface

Safety Kernel

XML

Unit
Attribute

Rule

Validity
LoS, PLTs

Heartbeat, Data
Validity, LoS LoS, PL

Ts
Data

Validity
LoS

Rule

Data

Data

Fig. 2. Safety Kernel components. (Color figure online)

The Input Data Manager receives data inputs from the external (nominal
system) components and updates the RSI.

The Timing Failure Detector (TFD) is responsible for checking if certain data
inputs have been received from external components within predefined tempo-
ral bounds. This TFD executes periodically, during each execution round of the
Safety Kernel. When the TFD detects a timing failure (i.e., when some expected

58 A. Casimiro et al.

data is not timely produced at the Safety Kernel interface), it stores this infor-
mation in the RSI unit corresponding to the untimely data. In this paper, as
detailed in Sect. 4, we propose a design that moves into hardware a significant
part of the TFD operation: the detection of timing failures.

The Data Component Multiplexer (DCM) selects, from two or more data
inputs (collected from nominal components), one that is forwarded to its out-
put. This is useful, for instance, when a function can be realized using one of
several components that provide the same data (e.g., a front distance value), but
with different timeliness or different validity. The Data Component Multiplexer
selects, among the input values, the one that should be forwarded to the output
(and hence nominal system), according to the permitted LoS for that function.

Finally, the Safety Manager is the central component as it evaluates at run-
time if safety rules are satisfied given the RSI data.

4 Securing Design Assumptions Through Non-intrusive
Runtime Verification

The timeliness, safety and security guarantees of Safety Kernel correct operation
can be strongly enhanced through runtime verification, being of particular rel-
evance the verification whether the design assumptions specified for the Safety
Kernel are being strictly met or, somehow, have been violated.

4.1 Observer Entity

Runtime verification (RV) obtains and analyses data from the execution of a
system to detect and possibly react to behaviours, either satisfying or violating
a given specification. The classical approach to runtime verification implies the
instrumentation of system software components, such as the Safety Kernel. Small
components, which are not part of the functional system, acting as observers,
are added to monitor and assess the state of the system in runtime.

System Monitor

System Observer

Management
Interface

Bus Interfaces

Time Base

Configura�on

Sy
st

em
 B

us

System Clock

Fig. 3. Observer Entity architecture

Enforcing Timeliness and Safety 59

The usage of reconfigurable logic supporting versatile FPGA-based com-
puting platform designs enables non-intrusive approaches to runtime verifica-
tion [16]. Non-Intrusive Runtime Verification (NIRV), provides high flexibility,
meaning instrumentation with software-based probes is not required, although
it may be used; configurability, which can be performed statically (offline) or
dynamically, while the system is executing; adaptability, in the sense it is able to
accommodate over time a set of different system-level, application-related and
even mission-specific event observations; independence and isolation, in the sense
that being supported directly in hardware, the accomplishment of runtime ver-
ification actions does not disturb nor introduce any overhead in the execution
of system software components, Safety Kernel included. Similarly, the execution
of software components does not ill affect the timeliness and effectiveness of
runtime verification actions.

The Observer Entity is plugged to the platform where the SK software com-
ponents execute, and comprises the hardware modules depicted in Fig. 3: Bus
Interfaces, capturing all physical bus activity, such as bus transfers or inter-
rupts; Management Interface, enabling observer entity configuration; Configu-
ration, storing the patterns of the events to be detected; the System Observer
itself, detecting events of interest based on the set configurations; Time Base,
which allows to time stamp events of interest, to establish its occurrence rate
or to register its inter-arrival time and even to check if application-level and/or
system-specific time bounds are being fulfilled; System Monitor, which detects
possible violations to the specified system behaviour. As soon as a deviation
from the specified behaviour is detected, a notification is issued.

4.2 Safety Kernel Design Assumptions and Timeliness Analysis

Let us define TSK as the period of the Safety Kernel process. This process must
be completed within its period, thus defining the relative deadline, DSK :

DSK = TSK (1)

The Safety Kernel process is powered by two threads: a Listener Thread,
assuming the role of Input Data Manager (depicted in yellow in Fig. 2), is
activated for every incoming packet; a Periodic Thread, identified as Tim-
ing Failure Detector in Fig. 2, runs once every Safety Kernel period. Given
that Clistener thread and Cperiodic thread represent the worst-case execution time,
respectively for the Listener and Periodic threads, and that Npackets represents
the maximum total number of input packets received during a single TSK period,
one will have the following timing constraint:

Npackets × Clistener thread + Cperiodic thread ≤ DSK (2)

As illustrated in Fig. 2, there are different types of incoming packets, namely:
heartbeat, data validity, multicomponent data or cooperative level of service. In
the design of the Safety Kernel we assume the number of packet types is upper
bounded by PKT TY P . The worst-case execution time for a single activation

60 A. Casimiro et al.

of the Listener Thread, Clistener thread, corresponds to the longest worst-case
processing time of a packet, out of the worst-case packet processing times for
each packet type, Cpkt processing(typ). We also take into consideration the worst-
case processing time necessary to read a packet from the corresponding interface
(whose location is well known and statically defined), either through (memory-
mapped) I/O ports and/or network interfaces, represented by Cpkt reading. The
maximum value of Clistener thread can be expressed as:

Clistener thread = Cpkt reading + maxPKT TY P
typ=1 {Cpkt processing(typ)} (3)

In contrast with the Listener Thread, the Periodic Thread runs only once per
SK period executing three functions in sequence and in the following order: a
residual software part of the original TFD (Fig. 2), that we name herein Timing
Failure Detector Service Function (TFD SF), the Safety Manager (SM) and the
Data Component Multiplexer (DCM). The Periodic Thread worst-case execution
time, Cperiodic thread, is therefore given by:

Cperiodic thread = CTFD SF + CSM + CDCM (4)

The DCM function scans the unit1 array to find out the component data
value to be forwarded and has a worst-case execution time given by CDCM .
The Safety Manager is a more complex function as it evaluates for each unit
the safety rules and determines the new level of service or performance level.
Given the number of items (e.g., number of units, number of safety rules per
unit, etc.) to be processed by the Safety Manager is bounded by design, its
execution time is assumed to not exceed the upper bounded given by CSM .
The Timing Failure Detector Service Function is much simpler: it scans the
unit array to find out if there are updates (e.g., heartbeat, data validity,...)
untimely received and analyses them: a minimum number of required successes
and a maximum number of tolerated failures (both configured at the Safety
Kernel, per input unit), have to be observed in a row to prevent instability and
to steadily declare the corresponding input unit as “timely” or “non-timely”,
respectively. This function executes within a time that does not exceed CTFD SF ,
being CTFD SF < CTFD, the worst-case execution time of the original Timing
Failure Detector entirely implemented in software.

4.3 Runtime Monitoring of Safety Kernel Operation

Let us define tSK begin,j and tSK end,j , as the real-time instants where the jth

instance (job) of the Safety Kernel process begins and ends, respectively. Addi-
tionally, we define npkt,j as the actual number of packets received within the
duration of the jth job of the SK process, i.e. during the interval:

1 A unit corresponds to a Safety Kernel information structure, concerning input (col-
lected data), output (adjustment data) or locally calculated values. The term unit
is coined from the Safety Kernel XML configuration file (Sect.3).

Enforcing Timeliness and Safety 61

δSK,j = tSK end,j − tSK begin,j (5)

Thus, one will have the following RV value and timing constraints:

∀j∈N 0 ≤ npkt,j ≤ Npackets (6)

∀j∈N 0 ≤ δSK,j ≤ DSK (7)

Verifying that no more than Npackets are received during each TSK period, as
given by Expression (6), implies: initializing an Observer Entity counting monitor
with the Npackets value each time an instance of the SK process is started; the
value of the counter is decremented by one whenever a packet is received; if it
reaches a value smaller than zero, a violation is signalled. Detecting when an
instance of the SK process begins is achieved by configuring the address of its
first instruction as an event of interest and linking it to the counting monitor.

Verifying the timeliness of an SK job implies the use of a timeliness monitor,
a specialization of a counting monitor, which is initialized with the job relative
deadline, as specified by Expression (7); the time counter is decrement by one
at each system clock tick; if the time counter reaches a value smaller than zero,
a timeliness violation is signalled; the time counter is stopped/restarted when
an SK job is completed. Detecting when an SK job begins and when it ends is
achieved by configuring, respectively, the address of its first and last instructions
as events of interest, which will trigger the relevant (re)start/stop actions at the
timeliness monitor.

The timing failure detection capabilities of the original Safety Kernel TFD
design, described in Sect. 3, are herein moved to hardware and fully integrated in
the Observer Entity. A timeliness monitor is instantiated for each relevant data
input, being (re)started whenever a data input packet (e.g., heartbeat, data
validity,...) is received by the Listener Thread. If it expires, a timing failure has
been detected and it will be signalled to the Timing Failure Detection Service
Function. For better integration with the software functions the signalling of
timing failures is made through globally accessible memory variables.

The role of the TFD, implemented either in hardware or in software, is to
detect untimely behaviours of components in the nominal system, allowing the
Safety Kernel to act before any harmful effect becomes externally visible, e.g.
by changing the LoS or the PL (see Fig. 2). Violation of Safety Kernel design
assumptions is a more severe situation, calling for some form of exception han-
dling that hopefully will bring the system into a safe state. Since, in general,
these situations were unforeseen in the design of the system, no guarantees can
be provided that the adequate corrective actions (if any) are taken2.

2 Most probably, there will be little to do anyway, if the design violation happens
during a mission critical phase, such as the landing of a planetary probe. However,
that does not necessarily imply the failure of the mission. For example: multiple
(overload) alarms, occurring during the descendent flight of the first Moon landing,
were advisedly discarded by the Apollo 11 lander crew.

62 A. Casimiro et al.

5 Safety Kernel Implementation and Evaluation

For the implementation of the Safety Kernel, a suitable hardware/software plat-
form must be selected. The functional elements to be provided by the hardware
platform include: Processing Unit, providing the computing resources; Read-
Only Memory (ROM), to store the Safety Kernel software code and the safety
rules; Random Access Memory (RAM), supporting the Safety Kernel execu-
tion; Input/Output (I/O) Interface, to enable the exchange of data between
the Safety Kernel and the nominal system components. The software plat-
form should include fundamental real-time operating system support concern-
ing: process/thread management and scheduling; input/output management and
access, e.g. through device drivers.

5.1 Hardware Platforms and Software Implementation

In KARYON, the fulfillment of the requirements was achieved by using a devel-
opment board containing a reconfigurable logic device (FPGA), together with
Intellectual Property (IP) cores from a System-on-a-Chip (SoC) library [1], map-
ping the functional elements into the reconfigurable logic device. The selected
development board (shown on the left, in Fig. 4) was a Trenz TE-0600, comprised
of: Xilinx Spartan-6 FPGA; 256 MiB3 of RAM memory; Ethernet physical inter-
face; Flash ROM and an Secure Digital (SD) card physical interface.

The Flash ROM (not shown in Fig. 4) serves as non-volatile storage for the
Safety Kernel, whilst the SD Card interface supports the Safety Rules, writ-
ten offline to an SD card. The FPGA supports the mapping of the controller
mechanisms for these memory interfaces, together with the processing unit and
Ethernet controller.

The functional elements implemented in the FPGA (shown on the right, in
Fig. 4) were provided by the GRLIB SoC library [1], which encompasses IP cores
providing I/O functions, such as Ethernet and serial interfaces, together with the
remaining components needed to implement a fully-fledged embedded computer,
e.g. memory and interrupt controllers. The processing unit was implemented by
the LEON3 soft-processor, a SPARCv8 architecture commonly used in avionics
applications by the European space industry.

Furthermore, this hardware platform is able to support all the resources
required by the runtime verification techniques proposed in Sect. 4.3. Since the
Observer Entity is essentially composed of a few counting blocks, its complexity
is much lower than any other component in the FPGA (right side of Fig. 4) and
therefore uses only a small fraction of the occupied FPGA resources.

As software platform, we used the RTEMS real-time operating system [15]
installed on the Trenz TE-0600 hardware board. After initialization, when the
configuration file is processed, two concurrent POSIX threads are used to exe-
cute the Safety Kernel functions detailed and analysed in Sect. 4.2: the Listener

3 This corresponds to the prefixes for binary multiples defined in the IEC 60027-2
standard specification [10].

Enforcing Timeliness and Safety 63

Processing
Element

I/O
Interface

Interrupt
Controller

Memory
Controller

I/O
Interface

Timer Unit

Memory Input/Output

SoC Bus

Observer
En�ty

Fig. 4. Hardware platform for the Safety Kernel implementation.

Thread, which handles incoming information to update the runtime safety infor-
mation repository; the Periodic Thread, which is triggered every TSK time units
(e.g., milliseconds), where TSK is the Safety Kernel execution period. This value
can be changed in the XML configuration file.

To evaluate the concrete impact of using soft-processor cores, a fully-fledged
software-based implementation of the Safety Kernel was deployed on an alter-
native platform, composed of a real-time Linux environment on a Raspberry Pi
Model B Revision 2.0, with a ARM11 processor at 700 Mhz [22]. Integration of
non-intrusive runtime verification mechanisms was not possible in this platform,
since the SoC present in the current versions of Raspberry Pi does not include
the ARM CoreSight facilities [3], indispensable to secure non-intrusiveness of sys-
tem observation in ARM-based platforms. The unavailability of reconfigurable
logic devices on the simple Raspberry Pi platform also precludes the implemen-
tation in hardware of SK TFD functions. A Safety Kernel entirely implemented
in software had to be used on the Raspberry Pi platform [22].

5.2 Performance Evaluation

To properly configure the Observer Entity it is necessary to know the Safety
Kernel execution period, TSK . Moreover, from a practical perspective, it is also
important to know if TSK is sufficiently small so that the Safety Kernel can
be used in a given application. In fact, this period corresponds to the maximum
latency of timing failure detection and also to the time it may take for the Safety
Kernel to trigger a system reconfiguration.

Therefore, we performed a set of experiments to evaluate the achievable val-
ues for TSK and illustrate the feasibility of the approach. According to Expres-
sions (1) and (2), TSK depends on the worst-case execution time of two threads.
The main thread involves the execution of the Timing Failure Detection (TFD)
component, the Safety Manager (SM) and the Data Component Multiplexer
(DCM). Given that the verification of safety rules is a complex task, the worst-
case execution time of this periodic thread, Cperiodic thread, can possibly be high.
On the other hand, the Input Data Manager task is very simple, just requiring
a input unit to be updated, which means that the worst-case execution time

64 A. Casimiro et al.

of the listener thread, Clistener thread, is typically much smaller. Even knowing
that the listener thread wakes up several times per SK period, this number is
usually limited to the number of input units. In fact, each different input unit
is expected to be updated only once per SK period because there is no point in
overwriting the same input unit with indications on the validity of data or on
the execution timeliness of some nominal system component. The overhead of
the listener thread will only become relevant in systems in which the number of
different input units is high. If, for some reason, a nominal system component
starts to send more packets to the SK and waking up the listener thread more
times than expected, the constraint specified in Expression 6 will be violated
and this will be detected by the Observer entity.

Given the above, we focused our experiments on the evaluation of the Periodic
Thread response time, which in this particular case is equal to the Periodic
Thread execution time, upper bounded by Cperiodic thread.

0

1

2

3

4

5

6

7

0 20 40 60 80 100

Ex
ec

u�
on

 �
m

e
(m

s)

Safety rules

TFD

SM

DCM

Fig. 5. Periodic thread execution time on the LEON3 soft-processor.

The first experiment was done using the SK implementation on the LEON3
soft-processor, as described in Sect. 5.1. To measure the execution time of SK
components, we instrumented the SK code using start/stop timer functions pro-
vided by the underlying operating system (RTEMS or Linux), whose temporal
interference on the SK execution is very small and can be neglected. Note that
this instrumentation, despite intrusive, was necessary only for evaluation pur-
poses and is fully independent from the Observer Entity, whose runtime verifi-
cation mechanisms are still non-intrusive. The objective of the experiment was
to determine the influence of the number of safety rules on the execution time
of the periodic thread. Therefore, we created SK configuration files implying the
construction of a number of safety rules varying between 1 and 100. As explained
in Sect. 3, a safety rule is a Boolean expression whose value evaluates to true or
false depending on input data received by the SK (through the Input Data Man-
ager task). The safety rules we used in the evaluation involve one input unit, one
output unit and a single comparison. The complexity of the safety rules evalua-
tion algorithm stems from the need to parse a tree-like data structure, initialized

Enforcing Timeliness and Safety 65

at startup time and containing the input and output units, as well as the logi-
cal operations and bounds. The details of this data structure and the executed
algorithm are out of the scope of this paper and can be found in [26]. For each
configuration we measured the contribution of each of the three executed com-
ponents (TFD, SM and DCM) for the overall execution time. The experiments
were repeated 100 times and the average values were collected (the standard
deviations are very small, in the order of a few microseconds, and therefore we
do not show them).

The results of the first experiment are show in Fig. 5. They clearly show that
both the TFD and DCM components have a constant execution time, indepen-
dent of the number of rules to be checked. On the other hand, the SM component
execution time increases linearly with the number of safety rules. Therefore, it
is possible to conclude that the SK execution time is mainly and linearly depen-
dent on the number of safety rules, that is, on complexity of the application.
However, the absolute value, which reaches 6 ms for 100 safety rules, is signifi-
cant. In systems requiring a reaction time of less than 60 ms, at most 1000 rules
would be acceptable, which seems limited. The reason for such high execution
time is fundamentally due to the fact that the SK is running on a soft-processor
infrastructure.

Fig. 6. Periodic thread execution time on a Raspberry PI.

To understand the concrete impact of using a soft-processor, we performed
a second experiment by deploying the SK on a real-time Linux/Raspberry Pi
platform. The same experiments were performed and yielded the results shown
in Fig. 6.

The most important observation is the significant reduction of the execution
time, as expected. Instead of 6 ms, processing 100 safety rules takes no more
than 300µs, which is 20 times less. The approach seems thus feasible for most
applications, provided that a reasonably good processor is used.

66 A. Casimiro et al.

5.3 Effectiveness and Feasibility Analysis

The Safety Manager has, in general, a worst-case execution time, TSM , which
largely exceeds those of the Timing Failure Detector, either of the entirely
software-based solution, TTFD, or of the hardware/software co-design intro-
duced in Sect. 4, TTFD SF . Since, TTFD SF < TTFD << TSM , the performance
improvement due to a smaller TTFD SF value is not significant in terms of the
overall Safety Kernel operation. Methods to reduce the value of TSM , allowing
a significant performance improvement, will be addressed in future work.

At this point, the main benefit provided by the non-intrusive runtime veri-
fication mechanisms is to secure the Safety Kernel design assumptions. Instead
of resorting to classical code instrumentation, which is inherently intrusive, our
approach relies on independent, isolated and non-intrusive runtime verification
mechanisms, easily integrated in reconfigurable logic supporting soft-processors
(e.g., LEON3), such as the Trenz TE-0600 platform (see Sect. 5.1). Integration
of non-intrusive runtime verification mechanisms in platforms based on ARM
processors is dependent on the availability of ARM CoreSight facilities [3].

Detecting a violation of SK design assumptions may significantly contribute
to enhance the overall system dependability. For some usages, a special-purpose
exception handler could be programmed within the SK context to activate exist-
ing safeguard functions, e.g. for the safe stop of a terrestrial/maritime unmanned
autonomous vehicle. In general, such functions may not exist (cf. Sect. 4.3).

6 Related Work

A novel perspective on distributed systems’ architecture was settled by the
notion of hybridization in [23,25]. The concept of architectural hybridization
and its diverse advantages were further discussed in [24]. System parts with dis-
tinct synchronism [25] or security [8] properties can take advantage of hybrid
distributed system model approaches. Hybrid system modeling has also been
previously applied to autonomous control systems [2]. The hybrid nature of sys-
tems was also acknowledged in [14], which developed a component-based generic
platform for embedded real-time systems.

Both offline and online runtime verification (RV) approaches have been pre-
viously studied, with online RV receiving increased attention due to its many
benefits regarding safety and performance [4]. Furthermore, non-intrusive run-
time monitoring has been previously applied in embedded systems [17,27] and,
more specifically, in safety critical environments [11], presenting an RV archi-
tecture for monitoring safety critical embedded systems using an external bus
monitor connected to the target system. A novel System Health Management
technique was introduced in [18] which empowers both real-time assessment
of the system status with respect to temporal-logic-based specifications and
supports statistical reasoning to estimate its health at runtime. Configurable
non-intrusive event-based frameworks for runtime monitoring have been devel-
oped within the embedded systems’ scope [13], employing a minimally intrusive
method for dynamic monitoring. Additionally, the RV concept has been applied

Enforcing Timeliness and Safety 67

to cyber-physical systems [28], autonomous systems [5], avionic systems [19,20]
and to an AUTOSAR-like real-time operating system, aiming the automotive
domain [9]. [12] describes a runtime monitoring approach for autonomous vehi-
cle systems requiring no code instrumentation by observing the network state.

7 Conclusion

This paper addressed the problem of hardware-based non-intrusive runtime ver-
ification, considering its application on a system with a hybrid architecture.
Hybridization allows separating the system in at least two parts, making strong
assumptions (on the temporal and/or security domains) only for one of the parts,
typically a small one. It is thus important not only to verify in design time that
these strong assumptions are effectively satisfied, but also to verify them in run-
time, particularly when the operational conditions cannot be fully anticipated.

We described an approach for non-intrusive runtime verification and
explained how it is applied in a concrete case: to verify a set of assumptions
underlying the design of a Safety Kernel, also described in the paper. The app-
roach was used to verify timing assumptions and also assumptions on the max-
imum number of events occurring in a time interval.

Finally, the paper also provided experimental results to illustrate the per-
formance that might be expected from two implementations of a Safety Kernel:
one running on a soft-processor and another running on a real ARM processor.
The results show that with a hardware processor it is possible to use a Safety
Kernel in complex applications. On the other hand, we described some feasibility
constraints for applying our verification approach on ARM processors. We plan
to address these constraints in future work in order to take full advantage of the
proposed non-intrusive verification approach.

References

1. Aeroflex Gaisler, A.B., Goteborg, Sweden: GRLIB IP Library User’s Manual, April
2014

2. Antsaklis, P.J., Stiver, J.A., Lemmon, M.: Hybrid system modeling and
autonomous control systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel,
H. (eds.) HS 1991–1992. LNCS, vol. 736, pp. 366–392. Springer, Heidelberg (1993).
doi:10.1007/3-540-57318-6 37

3. ARM: ARM CoreSight Architecture Specification, 2.0 edn., September 2013
4. Backasch, R., Hochberger, C., Weiss, A., Leucker, M., Lasslop, R.: Runtime verifi-

cation for multicore SoC with high-quality trace data. ACM Trans. Design Autom.
Electron. Syst. (TODAES) 18(2), 18 (2013)

5. Callow, G., Watson, G., Kalawsky, R.: System modelling for run-time verification
and validation of autonomous systems. In: Proceeding of 5th International Confer-
ence on System of Systems Engineering, Loughborough, UK, pp. 1–7, June 2010

6. Casimiro, A., Kaiser, J., Schiller, E.M., Costa, P., Parizi, J., Johansson, R., Librino,
R.: The KARYON project: predictable and safe coordination in cooperative vehic-
ular systems. In: Proceeding of 43rd Annual IEEE/IFIP Conference on Dependable
Systems and Networks Workshop (DSN-W), pp. 1–12. IEEE (2013)

http://dx.doi.org/10.1007/3-540-57318-6_37

68 A. Casimiro et al.

7. Casimiro, A., Rufino, J., Pinto, R.C., Vial, E., Schiller, E.M., Morales-Ponce, O.,
Petig, T.: A kernel-based architecture for safe cooperative vehicular functions. In:
Proceeding of 9th IEEE International Symposium on Industrial Embedded Systems
(SIES), pp. 228–237, June 2014

8. Correia, M., Veŕıssimo, P., Neves, N.F.: The design of a COTS real-time distributed
security kernel. In: Bondavalli, A., Thevenod-Fosse, P. (eds.) EDCC 2002. LNCS,
vol. 2485, pp. 234–252. Springer, Heidelberg (2002). doi:10.1007/3-540-36080-8 21

9. Cotard, S., Faucou, S., Bechennec, J.L., Queudet, A., Trinquet, Y.: A data flow
monitoring service based on runtime verification for AUTOSAR. In: Proceeding of
14th International Conference on High Performance Computing and Communica-
tions. IEEE, Liverpool, UK, June 2012

10. IEC Standards: IEC 60027-2: Letter symbols to be used in electrical technology
Part 2: telecommunications and electronics, August 2005

11. Kane, A.: Runtime monitoring for safety-critical embedded systems. Ph.D. thesis,
Carnegie Mellon University, USA, February 2015

12. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime mon-
itoring of an autonomous research vehicle (ARV) system. In: Proceeding of 15th
International Conference on Runtime Verification, Vienna, Austria, pp. 102–117,
September 2015

13. Lee, J.C., Lysecky, R.: System-level observation framework for non-intrusive run-
time monitoring of embedded systems. ACM Trans. Design Autom. Electron. Syst.
20, 42 (2015)

14. Obermaisser, R., Kopetz, H.: Genesys: A candidate for an ARTEMIS cross-domain
reference architecture for embedded systems, September 2009

15. On-Line Applications Research Corporation: RTEMS C User’s Guide, 4.9.4 edn.
(2010)

16. Pinto, R.C., Rufino, J.: Towards non-invasive run-time verification of real-time
systems. In: Proceeding of 26th Euromicro Conference on Real-Time Systems -
WIP Session, Madrid, Spain, pp. 25–28, July 2014

17. Reinbacher, T., Fugger, M., Brauer, J.: Runtime verification of embedded real-time
systems. Formal Methods Syst. Design 24(3), 203–239 (2014)

18. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidel-
berg (2014). doi:10.1007/978-3-642-54862-8 24

19. Rufino, J., Gouveia, I.: Timeliness runtime verification and adaptation in avionic
systems. In: Proceeding of 12th workshop on Operating Systems Platforms for
Embedded Real-Time applications (OSPERT), Toulouse, France, July 2016

20. Rufino, J.: Towards integration of adaptability and non-intrusive runtime verifica-
tion in avionic systems. SIGBED Rev. 13(1), 60–65 (2016). (Special Issue on 5th
Embedded Operating Systems Workshop)

21. Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001)
22. Upton, E., Halfacree, G.: Raspberry Pi User Guide. Wiley, New York (2012)
23. Veŕıssimo, P.: Uncertainty and predictability: can they be reconciled? In: Schiper,

A., Shvartsman, A.A., Weatherspoon, H., Zhao, B.Y. (eds.) Future Directions in
DC 2002. LNCS, vol. 2584, pp. 108–113. Springer, Heidelberg (2003). doi:10.1007/
3-540-37795-6 20

24. Verissimo, P.: Travelling through wormholes: a new look at distributed systems
models. SIGACT News 37(1), 66–81 (2006)

25. Verissimo, P., Casimiro, A.: The timely computing base model and architecture.
IEEE Trans. Comput. 51(8), 916–930 (2002)

http://dx.doi.org/10.1007/3-540-36080-8_21
http://dx.doi.org/10.1007/978-3-642-54862-8_24
http://dx.doi.org/10.1007/3-540-37795-6_20
http://dx.doi.org/10.1007/3-540-37795-6_20

Enforcing Timeliness and Safety 69

26. Vial, E., Casimiro, A.: Evaluation of safety rules in a safety kernel-based
architecture. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFE-
COMP 2014. LNCS, vol. 8696, pp. 27–35. Springer, Cham (2014). doi:10.1007/
978-3-319-10557-4 5

27. Watterson, C., Heffernan, D.: Runtime verification and monitoring of embedded
systems. IET Software 1(5), 172–179 (2007)

28. Zheng, X., Julien, C., Podorozhny, R., Cassez, F.: BraceAssertion: runtime ver-
ification of cyber-physical systems. In: Proceeding of 15th IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 298–306, October 2015

http://dx.doi.org/10.1007/978-3-319-10557-4_5
http://dx.doi.org/10.1007/978-3-319-10557-4_5

Timing Verification

Supporting Nested Resources in MrsP

Jorge Garrido1(B), Shuai Zhao2, Alan Burns2, and Andy Wellings2

1 Sistemas de Tiempo Real e Ingenieŕıa de Servicios Telemáticos (STRAST),
Universidad Politécnica de Madrid (UPM), Madrid, Spain

str@dit.upm.es
2 Department of Computer Science, University of York, York, England

Abstract. The original MrsP proposal presented a new multiproces-
sor resource sharing protocol based on the properties and behaviour of
the Priority Ceiling Protocol, supported by a novel helping mechanism.
While this approach proved to be as simple and elegant as the single
processor protocol, the implications with regard to nested resources was
identified as requiring further clarification. In this work we present a
complete approach to nested resources behaviour and analysis for the
MrsP protocol.

1 Introduction

Both the increasing requirements in terms of computation power and the decreas-
ing availability of single processor platforms have given rise to the need for safe,
analysable real-time multiprocessor systems. While providing more execution
units increases the overall computation power, it also increases the complexity
of the required scheduling protocols with regard to shared resources and task
communication management.

Single core approaches benefited from the inherent serialization on access
requests imposed by the existence of only one processor. Multicore approaches
to shared resources have explored different ways of providing a bound on the
time it takes to gain access to such resources. One of the main approaches is to
use spin-locks. Following this approach, a task requesting access to a resource
places the request on a queue and spin-waits at a certain priority until the access
request is satisfied. If the synchronisation protocol does not allow higher priority
tasks to preempt tasks accessing shared resources then higher priority tasks may
suffer unnecessary blockings. Alternatively, if access requests can be preempted,
then a mechanism has to be defined to ensure progress on the locked resource if
other tasks are blocked by a resource held by a locally preempted task. This last
approach is the one followed by the Multiprocessor Resource Sharing Protocol
(MrsP) [4]. In this protocol a helping mechanism is defined, by which locally
preempted tasks can migrate to other processors to make progress provided that
a task is actively waiting on that processor to access the locked resource.

In this paper we analyse the life cycle of a task with regard to the MrsP shared
resource protocol and define a set of rules supporting a fine grained analysis for
preemptive, FIFO spin-lock controlled, nested resources.
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 73–86, 2017.
DOI: 10.1007/978-3-319-60588-3 5

74 J. Garrido et al.

2 Related Work

Despite the academic interest in multiprocessor real-time systems, many propos-
als are oblivious to, or explicitly ban, task communication and synchronization.
Among the work on shared-memory synchronization protocols for multiproces-
sors real-time systems published up to date, few publications address the analy-
sis of nested resources as required by the complex paradigms of synchronization
required by modern real-time systems.

A common approach to supporting nested resources has been to group
resources together. In this approach, of which FMLP [2] is a notable example,
nested resources are locked and released as a whole. This unfortunately seriously
undermining the concurrency of the system, thereby reducing schedulability.

The first proposal for fine-grained analysis was proposed in [10]; forcing a
strict order on locks and releases (locking operations are not allowed after a
release has been performed on the nesting). An extension of this work is the
Real-time Nested Locking Protocol (RNLP) [12,13] which limits the concurrency
on nested resource accesses by means of a token mechanism and provides a set
of request satisfaction mechanisms aiming for optimality under different system
configurations.

Recent work has provided a fully fine-grained blocking bound for nested
non-preemptive FIFO spin locks under partitioned fixed-priority scheduling [1].
This is achieved using a novel graph abstraction of the blocking interaction
among tasks and resources for which, given a set of invariants stating graph
properties, an Integer Linear Programming (ILP) approach is used to find a
subgraph yielding a safe worst-case blocking value.

It is also worth to mention SPEPP [11] as a relevant protocol introducing the
notion of a helping mechanism, fundamental to MrsP formulation. This helping
mechanism was also used in M-BWI [7,8] to deal with the issue of tasks running
out of budget while holding a resource in systems ruled by execution-time servers.

Despite the fact that MrsP was recently proposed, it has been effectively
implemented [6] in Litmus [5] and RTEMS [9]. Its implementability in Ada is
discussed in [3], where a prototype outside-kernel implementation is presented.

3 System and Task Model

The baseline of the current work is the MrsP proposal [4]. In this work a proto-
col to provide a safe upper bound to resources shared among tasks potentially
executing on different processors is presented. In this work, the general sporadic
task model is considered, under fully partitioned systems. Deadlines are uncon-
strained, but there can not be more than one active job of a task at a time. As
such, the terms task and job are used interchangeably in this paper. Resources
are required to be accessed under mutual exclusion. Preemptive fixed-priority
scheduling is assumed.

Tasks are related to resources by means of different functions: G(rj) is the set
of tasks that access directly a resource rj , and F (τi) returns the set of resources

Supporting Nested Resources in MrsP 75

used by task τi; function map returns the set of processors where the argument
entities execute, and || returns the size of a set. If all tasks that access a resource
execute on the same processor then the resource is deemed to be locally accessed,
otherwise it is contended for globally.

MrsP, in general, follows the rules of the Priority Ceiling Protocol (PCP):
resources are given a Local Ceiling Priority on each processor which is equal to
the highest priority of any local task that accessing the resource. Tasks, when
attempting to access a resource, rise their active priority to that Ceiling Priority.
Authors in [4] claim to inherit four fundamental properties from PCP:

– A job is blocked at most once during its execution.
– This blocking takes place prior to the job actually executing.
– Once a job starts executing, all the resources it needs are (locally) available.
– Deadlocks are prevented.

The scheduling analysis for MrsP keeps the form of Response-Time Analysis
(RTA) as in the PCP case, defined in the following equation:

Ri = Ci + max{ê, b̂} +
∑

τj∈hpl(i)

⌈
Ri

Tj

⌉
Cj (1)

where Ri is the worst-case response-time of task τi, ê is the maximum arrival
blocking due to local lower priority tasks accessing shared resources, and b̂ is the
maximum non-preemptive execution time caused by the underlying OS/kernel.
Ci is decomposed into the Worst Case Execution Time (WCET) of the task
outside its use of shared resources plus the cost of accessing (e) each shared
resource r up to n times during each activation:

Ci = WCETi +
∑

rj∈F(τi)

nie
j (2)

Finally, e is calculated as the cost of each individual access, cj , multiplied by
the number of processors from where the resource can be accessed (this is the
maximum length of the FIFO queue):

ej = |map(G(rj))|cj (3)

This safe upper bound to the access cost is based on two properties of MrsP:

– Only one task per processor can be accessing a resource at any given time.
This is directly inherited from PCP.

– A helping mechanism, proposed in [4], by which tasks spin-waiting to access a
resource can take over the execution of tasks locally preempted while holding
the required resource.

Since the helping mechanism is the most relevant and novel feature in [4],
and highly influences the behaviour of the system, it will be further explained
in the rest of this section.

Figure 1 represents the different logical states in which a task can be with
regard to MrsP controlled resources:

76 J. Garrido et al.

Help not needed

Requiring help

Executing

Being helped Potential helper

Helping

1
Locks resource

2
Unlocks resource

3
Preempted

4
Re-dispatched

5
Helped

Helper preempted 6

7
Releases resource

8
Requires locked

resource

9
Obtains resource

10
Helps

11
Ends

helping

Obtains resource
while preepmpted

12

Fig. 1. Task state diagram of helping mechanism without nested resources.

– Executing : A task that does not require any resource to make progress.
– Help not needed : A task is making progress with a locked resource while being

dispatched on its host processor by means of its active priority.
– Requiring help: A task holding a global resource that is unable to make

progress (as it has been locally preempted) from its host processor.
– Being helped : A task that holds a global resource and has migrated to another

processor in order to make progress.
– Potential helper : A task that requests an already allocated resource, and is

spin-waiting for it.
– Helping : A task that was spin-waiting and pulled a requiring-help task to

make progress on its processor in order to help it to release the requested
resource.

Every task initially holds no resource, so its in the executing state. At a
certain point, a task can request access to a global shared resource. As part of
the process of this request, it increases its active priority to the Local Ceiling
Priority of the resource. If the resource is free, it will lock the resource (transition,
or tran, 1). Otherwise it will be spin-waiting blocked by this resource until access
is granted to the resource (tran 8).

Transition 1, locking the resource, moves the task to the help not needed
state. While in this state, the task can: finish the access to the resource and
release its associated lock (tran 2), or be locally preempted while accessing the
resource (tran 3).

If a task is locally preempted while holding a lock, it is considered to requiring
help to make progress on the resource. While it remains in the requiring help
state, no progress is possible. If no other task requires the locked resource, while
being preempted, then this preemption time is just local interference, and the
requiring help task will, at some point (when the preempting job terminates),
be re-dispatched at its host processor due to its active priority (tran 4).

However, if at some point while being preempted, another task requests access
(or was already spin-waiting) to the resource, this task will help the preempted

Supporting Nested Resources in MrsP 77

one (tran 5 for the preempted task). This transition, in practice, implies a migra-
tion to the helper host processor, with the active priority updated to the Local
Ceiling Priority of the held resource on that processor. Then, the task will make
progress (being helped) until it releases the resource, migrating back to its host
processor with its base priority (tran 7), or until it is preempted again on the
helping processor, requiring help (tran 6) again until it is re-dispatched on its
own processor or is helped again.

Tasks blocked by a locked resource are potential helpers. Their request is
added to a FIFO queue and will be served when all requests in front have been
satisfied. This can happen when the task is actually spin-waiting for the resource
(tran 9), immediately making progress on the resource, or when the task is locally
preempted. As it would hold a resource without making progress due to being
locally preempted on its host processor, it would be considered to be requiring
help (tran 12).

If, while being a potential helper due to being blocked by a locked resource,
the holder of that resource is locally preempted and thus requires help, the help-
ing mechanism is fired. This, in practice means that the potential helper task
pulls the requiring help task to its host processor and lends it its active priority,
to execute on its behalf (tran 10). The helping procedure ends when the helped
task releases the held resource or it is preempted on the helping processor (tran
11).

Thus, for a task to be helped, there should be both a task requiring help
and a potential helper for the same resource. The helping mechanism begins
with transition 5 for the requiring help and transition 10 for the potential helper.
Equivalently, the helping mechanism ends with a helped task transitioning by 6
or 7, and a helper doing transition 11.

While these behaviours deal adequately with non-nested resources requests,
systems including nested resources require a more specific approach. The full
description and definition of such an approach is the main contribution of this
paper.

4 Nested Resources

The system model and analysis presented in [4] and briefly summarized in
Sect. 3 can not, by themselves, be transferred to a system with nested resources.
Equation 3 only reflects direct accesses from tasks to resources. In [4], a new
term, V (rj) was proposed as a function returning the set of resources accessing
the resource rj . Based on that definition, the following equation for calculating
the cost of accessing a nested resource was proposed:

ej = (|V (rj)| + |map(G(rj))|)cj (4)

Equation 4 now defines the maximum queue length for accessing the resource
as the number of processors from where the resource can be directly accessed
plus the number of outer resources from where the resource can be accessed.
While this interpretation of the queue length is correct, the value of ej does not

78 J. Garrido et al.

necessarily represent a safe upper bound for a resource that requires accessing
inner resources to complete its execution. The reason for this is that the analysis
fails to account for the possible transitive blocking while accessing that inner
resources (rk). That is, a task (or outer resource) attempting to access resource
rk may find it already locked, and be unable to make progress. We shall produce
a correct version of this equation in Sect. 4.2.

Another issue raised when considering nested resources in MrsP is local block-
ing. For non-nested resources, it is proven that, following PCP behaviour, a task
can only be blocked once, and only before it actually gets to execute. This prop-
erty is necessary to maintain the max{ê, b̂} factor for the local blocking in Eq. 1.
However, the helping mechanism proposed in [4], together with nested resources,
could lead, if no measures are taken, to situations in which higher priority tasks
can be blocked more than once after beginning their execution. Due to the help-
ing mechanism, a task holding a resource and locally preempted can be migrated
to another processor, in order to make progress, While migrated, it might lock
an inner local resource with a higher priority. If the active priority of the task is
raised then, on return to the host processor it would preempt a higher base pri-
ority task thus causing further delayed local blocking. For this reason the active
priority of a migrated task is not raised in this situation.

Help not needed

Requiring help

Executing

Being helped Potential helper

Helping

1 2

3 4

5

Helper preempted or
releases inner resource

6

7
Releases outermost

resource

8
Requires locked

outermost resource

9

10 11

Preempted holding a resource
or obtains resource
while preepmpted

12

Requires locked
inner resourece 16

13
Locks/releases
inner resource14

Locks/releases inner
resource or requires
a locked resource

15
Helped task requires

inner resource

Fig. 2. Task state diagram of helping mechanism with nested resources.

4.1 Desired Nested Resource Behaviour

In this work we propose a complete approach to global nested shared resources,
providing a safe upper bound access cost for nested resources as well as a dynamic
priority assignment scheme preserving PCP properties. Figure 2 depicts the dif-
ferent logic states of tasks under MrsP, when considering nested resources. While
the states remain the same, new transitions arise and some existing ones are now
triggered by new events.

Supporting Nested Resources in MrsP 79

Tasks still begin executing without any shared resource, and transitions 1 and
8 are triggered when the task requires the outermost resource of a nested call,
raising the active priority to the ceiling of that outermost resource. If the access
request is satisfied immediately, the task executes without requiring any help.
While executing in the help not needed state all locks and releases update the
active priority of the task (tran 13) as in PCP. If a lock request finds a resource
already locked, the task updates its priority to the local Ceiling Priority of the
resource and becomes a potential helper for that resource (tran 16).

As with the non nested case, the task can, while executing not being helped,
be locally preempted and thus require help to make progress (tran 3). If at some
point while requiring help, another task is spin-waiting for one of the resources
locked by this preempted task, it will be helped by the spinning task. However,
in the nested case, the helper may be helping not due to requesting the inner-
most locked resource, but due to requesting any of the resources held by the
preempted task.

A task, when migrated to be helped (tran 5), is granted the priority of the
helper task. While being helped, a task is allowed to lock and release further
resources (tran 14), but these actions do not change the priority of the helper,
and thus the priority at which the helped task is executing while being helped.

As with the non nested case, a task can, while being helped, release its outer-
most locked shared resource and migrate back to its host processor with its base
priority (tran 7). Similarly, a task can leave the being helped state to requiring
help (tran 6). In the nested case, this transition can be triggered by both the
task being preempted on the helping processor, and by releasing of the required
nested resource by the helping task. In this latter case, the task being helped still
holds other resources, and still requires help to make progress.

Any task finding a required resource already remotely locked while executing
or in help not needed state becomes a potential helper for that resource (trans 8
and 16). While being a potential helper a task can be preempted. In this case,
if the task holds a resource, it requires help to make progress on that resource
(tran 12).

Potential helpers are ready to help tasks requiring help, holding their required
resource (tran 10). A task while being helped may require a locked inner resource.
In this situation, the task is still considered to be helped (tran 14) and spin-
waits for locked resource. If the third task holding that inner resource is also
requiring help, the helping task is ultimately blocked by this third task not
making progress. As such, the helper task will also help the third task migrating
it to its host processor, and giving it its active priority, executing instead of the
task that was being helped before (tran 15). This transitive help is maintained
until the third task releases the inner resource required by the original helped
task.

The helping mechanism can end (tran 11) due to the same two reasons as
in the non nested case: the resource required being released or the helper task
being locally preempted, with the same implications as in the non nested case.

80 J. Garrido et al.

4.2 Updated Analysis and Properties

In this subsection we propose an analysis in which a safe upper bound can be
obtained for the access cost to a resource including any of the inner resources
required by this resource. To provide such analysis, we require a strict irreflexive
partial order on the resource nesting. This not only prevents deadlocks, but also
provides an end to the recursion in the analysis, as at least there has to be one
resource in the system not requiring any other resource to complete its execution.
Given this, the access cost for a nested resource is now defined as follows:

ej = (|V (rj)| + |map(G(rj))|) ∗ (cj +
∑

rk∈U(rj)

nk
j ek) (5)

where U(rj) is the set of inner resources directly accessed by rj and nk
j is the

number of times an inner resource rk is accessed on each access to rj .
In Eq. 5, the length of the queue is as in [4], where PCP limits the num-

ber of concurrent access attempts to a resource to one at a time per processor
(|map(G(rj))|) and the mutual exclusion nature of shared resources under MrsP
ensures that only one access attempt can be performed at a time from any
outer resource, giving the total number |V (rj)|. Note this queue length may be
pessimistic, but our objective here is to provide sufficient analysis.

For the cost of the access itself, now we do not only consider the cost of the
accessed resource itself but the cost of accessing all the nested resources. So ej

now represents the full cost for a task accessing nested resources via rj as an
outermost resource, or the cost for outer resources accessing ej and all its inner
resources.

This way of calculating the e value for nested resources now includes the
possible transitive blocking on each access. As each access is not considered
isolated, but includes the cost of inner resources queues (which are the source of
transitive blocking), now Eq. 5 provides a safe upper bound.

Considering the extra blocking a task may suffer due to the helping mech-
anism, in this proposal we require that a task does not update (increase or
decrease) its host active priority while being helped. This way, lower priority
tasks can not benefit from the helping mechanism to increase their priority while
migrated, with the undesired side effect of causing extra blocking to local higher
priority tasks. In turn, tasks are dispatched on their host processor with the pri-
ority they had when they were locally preempted. We will refer to this priority
as the Leaving Priority for the rest of the paper. Migrated tasks do update their
active priorities when they are re-dispatched on their host processor.

Example. To illustrate the approach, the example for nested resources analysis
presented in [4] is now revisited. Consider a system with four tasks, τ1, ... , τ4,
executing on four different processors p1, ..., p4, and two resources, r1 and r2,
with execution times c1 and c2 respectively. Tasks τ1 and τ2 access r1 directly,
and τ3 and τ4 access r2 directly. In addition r1 accesses r2, so, for example, when
τ1 accesses r1 it will, while holding r1 also access r2 (Table 1).

Supporting Nested Resources in MrsP 81

Table 1. Task allocation and resource usage.

Task Processor F (τi)

τ1 p1 r1, r2

τ2 p2 r1, r2

τ3 p3 r2

τ4 p4 r2

Resource G(ri) V (ri) map(G(ri))

r1 τ1, τ2 ∅ p1, p2

r2 τ3, τ4 r1 p3, p4

As presented in Sect. 4.2, the nested resource analysis proposed is solved
by iteration from inner to outer resources. In this example, we have one inner
resource, r2, and one outer resource, r1. The accessing cost of the inner resource
is (following Eq. 5):

e2 = (1 + 2) ∗ (c2) = 3c2

Then we can calculate the cost of accessing the nesting of resources via r1,
as we know the cost of accessing all its inner resources (r2):

e1 = (0 + 2) ∗ (c1 + e2) = 2(c1 + e2) = 2(c1 + 3c2)

Now e1 is a safe upper bound, including transitive blocking, for the access to
r1 and all its required inner resources. We note an incorrect answer is given for
this example in [4].

4.3 Improved Nested Helping Analysis

With the current definition of local and global resources ceiling priorities, there
are situations in which the analysis can benefit from other priority assignments.
Specifically, resources accessed only by tasks allocated to the same processor
via outer global resources receive a pessimistic analysis. This pessimism can be
reduced and in some cases eliminated by a combination of a particular priority
assignment (giving global resources encapsulating a call to an inner local resource
the ceiling priority of this inner local resource) and the definition of an equivalent
task set reflecting the behaviour of the system with that particular assignment
of priorities.

Consider a system comprising a specific processor P1 with a task set includ-
ing, among others (irrelevant for the example) the following tasks: tasks τ1, τ2,
τ3 with lowest priorities on P1, and τ10 with the highest priority on P1. On this
processor, there is a set of local resources r1l , r2l , r3l , which are only accessed by
tasks τ1, τ2, τ3 and τ10. Task τ10 accesses the local resources directly, while τ1,
τ2, and τ3 do so via a global resource, different for each of them. These resources
are accessed only from tasks from P1 and another processor, but accesses from
the other processor do not generate accesses to r1l , r2l and r3l . The relevant infor-
mation for the example is summarized in Table 2.

Given the analysis presented in Table 2, the access cost for the highest pri-
ority task τ10 of each local resource would be (considering execution times of
global resources cg and local resources cl): rl = 2cl, being the total access cost

82 J. Garrido et al.

Table 2. Task allocation and resource usage without improvement.

Task Processor F (τi)

τ10 P1 r1l , r2l , r3l
τ3 P1 r3 → r3l
τ2 P1 r2 → r2l
τ1 P1 r1 → r1l

Resource G(ri) V (ri) map(G(ri))

r1 τ1, τ
′
1 ∅ P1, P2

r2 τ2, τ
′
2 ∅ P1, P3

r3 τ3, τ
′
3 ∅ P1, P4

r1l τ10 r1 P1

r2l τ10 r2 P1

r3l τ10 r3 P1

for the three resources r1,2,3
l = 3 · 2cl. This analysis assumes that the higher

priority task may have to wait for the lower priority tasks on each access to the
local resources. This is due to the access of the lower priority tasks via a global
resource. If this was not the case, r1l , r2l and r3l would be pure local resources
and be completely ruled by PCP. As the lower priority tasks can be preempted
while holding the global resources, and each of them can migrate to a different
processor to make progress, the three of them can access their respective local
resource concurrent with τ10 while being helped remotely. In this case, the help-
ing mechanism produces a high blocking time for a high priority task accessing
directly to local shared resources. This clearly contradicts the aim and intuition
behind PCP and MrsP.

This problem can be addressed by reducing the concurrency of the lower
priority tasks. If r1l , r2l and r3l are given the same local Ceiling Priority then
only one of the three tasks τ1, τ2, or τ3 can gain access to their outer resource.
As a result only one can be helped, and only one can gain access to the inner
resource while migrated. The impact on τ10 is reduced to a single block.

5 Definitions

The detailed approach for MrsP systems supporting nested resources is now
presented as a set of rules, lemmas, properties and theorems. Those from PCP
and non nested MrsP are assumed and hold unless overridden by those presented
here.

Rule 1. Resources under MrsP nest following a strict irreflexive partial order.
Rule 2. A task being helped executes on the helper processor with the helper

active priority.
Rule 3. The helping mechanism can be initiated due to the helper task request-

ing access to any of the resources held by the helped task.
Rule 4. The helping mechanism is transitive, i.e. a helper task shall help the

locally preempted task ultimately preventing it from making progress.

Property 1. A task holding one or more resources, that is not being blocked
accessing another resource, will make progress if there is a task spin-waiting due
to being blocked by any of the resources held.

Supporting Nested Resources in MrsP 83

This is the fundamental novel property from MrsP that we wanted to move
to nested resources, as it provides the safe upper bound expressed by Eq. 5.

Rule 5. Task only modify their active priority when they are dispatched in their
host processor, not being help.

Tasks can lock and release resources whenever they are executing. If they do
so while not being helped, the active priority of the task is modified according
to PCP rules. If they do so while being helped, there is no modification of active
priorities of any the helping or the helped task. The helped task will update its
active priority according to the resources held when it is dispatched again on its
host processor when its leaving priority is the highest among the tasks eligible
to execute.

Rule 6. The helping mechanism shall also be conducted between tasks allocated
to the same host processor.

Rule 7. Tasks remain notionally eligible to be dispatched (at their leaving pri-
ority) on their host processor while being helped.

By considering tasks being helped and executing on another processor as
eligible for dispatching on their host processor, lower priority tasks are prevented
from executing when a higher priority task would be executing instead.

Lemma 1. A task is only allowed to begin its execution if all higher base priority
tasks allocated on that processor are completed.

Proof. If no task is migrated, then all uncompleted tasks are ready to execute
on that processor. Following PCP rules, the task dispatched is the one with
higher active priority. For a task that has not locked any resource, all higher
base priority task have higher active priorities. As a task can not have locked
any resource before actually executing, it is proven. If a higher base priority has
migrated, its leaving priority is at least equal to its base priority. Then, following
Rule 7 the higher priority task would be eligible to execute against any lower
base priority task not holding any resource. ��
Lemma 2. A task can only make progress by being helped if there is a pending
task on the same host processor with higher base priority than its active priority.

Proof. A task having a lower priority than the base priority of another task,
will keep having a lower priority unless it locks a resource. Given PCP rules and
Rule 7, the lower priority task can not be dispatched on its host processor with
that lower priority until the higher base priority task is completed. Until then,
it can only lock another resource while making progress because of helping. Due
to Rule 5, this will not increase its active priority, this will keep it below the
higher base priority of the pending task. As a result, a task can not be executed
if not being helped while there are higher base priorities pending tasks. ��
Corollary 1. Tasks with lower active priorities than pending tasks with higher
base priorities can not increase their active priority.

84 J. Garrido et al.

Proof. Proven during proof of Lemma 2. ��
Lemma 3. Each task can suffer at most a single local block per activation, and
this blocking occurs before the task actually executes.

Proof. Lemma 3 in [4] proves this property for MrsP without nested resources,
based on the properties of PCP. For nested resources, as tasks are not allowed
to increase their priority while migrated, no task can preempt an already higher
base priority task.

A higher priority task may require more than one resource already locked
by lower priority tasks. However, due to PCP rules, only one task could have
locked such resource on its host processor and increase its priority preventing
the higher priority task to execute (arrival blocking). The other tasks only could
have locked resources required by the higher priority task while migrated. As
tasks are dispatched on their host processor by their leaving priority, no further
arrival blocking is possible due to lower priority tasks. ��
Lemma 4. Nested MrsP does not suffer from deadlocks.

Proof. The source of deadlock in nested resources systems is when two or more
resources requiring each other prevents any progress to be made. By Rule 1
forcing irreflexive partial order, circular dependencies and thus deadlock due to
them are avoided. ��
Lemma 5. A safe upper bound to the number of concurrent access attempts
to a resource rj is given by |V (rj)| + |map(G(rj))|.
Proof. The number of direct accesses is safely bound by |map(G(rj))| as all
direct accesses from tasks are outermost accesses, and thus are all dealt while
not being help (and migrated), so this directly inherits all PCP properties. As
only one request can be generated at a time from each processor, there is an upper
bound on the number of processors from where the resource can be accessed. As
shared resources have mutual exclusion, only one task can be requesting its inner
resource at a time. The number of concurrent requests from outer resources is
thus bounded to the number of such resources, i.e. |V (rj)|. ��
Lemma 6. The cost of each individual access (e′) to a resource rj is bounded
by e′j = cj +

∑
rk∈U(rj)

nk
j ek.

Proof. As a consequence of Rule 1, there is at least one terminal resource rt in
the system not accessing any inner resource, i.e. U(rt) = ∅. For such a resource,
its individual access cost is:

e′t = ct

From Lemma 5, if we simplify the queue of a resource as qj = |V (rj)| +
|map(G(rj))| then the total access cost to et is:

et = qtct ⇒ et = qte′t

Supporting Nested Resources in MrsP 85

For the set of resources accessing the terminal resource, V(rt), the individual
access cost can be expressed as the execution time of the resource plus the access
cost to its inner resource rt as:

e′t+1 = ct+1 + nt
t+1(q

t ∗ ct)

then substituting et:

e′t+1 = ct+1 + nt
t+1e

t ⇒ et+1 = qt+1(ct+1 + nt
t+1e

t)

By the common method of recursion proving, it can be demonstrated1 that
this recursion holds for an arbitrary level k of nesting, where:

e′k = ck + nk−1
k ek−1

This can be directly applied to resources sequentially requiring more than
one different independent inner resources:

e′k = ck +
∑

rk−1∈U(rk)

nk−1
k ek−1

Theorem 1. Equation 5 is a safe upper bound to the cost of accessing a MrsP
shared resource and its required inner resources.

Proof. By construction if Lemma 5 gives a safe upper bound on the number of
possible concurrent accesses to a resource rj and Lemma 6 reflects a safe upper
bound on the cost of each individual access to rj and its required inner resources,
then Eq. 5 is a safe upper bound to the cost of accessing rj . ��

6 Conclusions

MrsP is a resource control protocol providing a safe upper bound on the con-
tention for global shared resources on multiprocessor systems. In this paper we
have provided a detailed approach to nested resource access under the MrsP
protocol. By implementing local PCP control on each processor, the number of
concurrent accesses to a global resource is bounded to at most one per proces-
sor on systems not considering nested resource access. By defining a helping
mechanism by which busy waiting tasks can undertake progress inside shared
resources on behalf of locally preempted tasks, the total access cost to a resource
is effectively bounded. Based on this global resource control scheme, the PCP
Response Time Analysis can be used to analyse MrsP systems incorporating its
specific resource access cost analysis.

The approach presented in this paper defines a complete fine grained app-
roach to nested resources for MrsP systems. The potential shortcomings of the

1 The complete proof can be found at http://www.dit.upm.es/∼jgarrido/mrsp/ae17-
appendix.pdf.

http://www.dit.upm.es/~jgarrido/mrsp/ae17-appendix.pdf
http://www.dit.upm.es/~jgarrido/mrsp/ae17-appendix.pdf

86 J. Garrido et al.

helping mechanism when used in nested resources systems are addressed specifi-
cally. In particular, we have clarified under which circumstances tasks are eligible
to help and to be helped. We have also defined how active priorities are updated
under our MrsP nested resources approach. Future work will consider analysis
that uses more detailed knowledge about resource usage to reduce the pessimism
within the analysis presented in this paper.

Acknowledgment. This work has been partially funded by the Spanish National
R&D&I plan (project M2C2, TIN2014-56158-C4-3-P).

References

1. Biondi, A., Brandenburg, B.B., Wieder, A.: A blocking bound for nested FIFO
spin locks, pp. 291–302 (2016)

2. Block, A., Leontyev, H., Brandenburg, B.B., Anderson, J.H.: A flexible real-time
locking protocol for multiprocessors. In: 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), pp.
47–56. IEEE (2007)

3. Burns, A., Wellings, A.: Locking policies for multiprocessor Ada. ACM SIGAda
Ada Lett. 33(2), 59–65 (2013)

4. Burns, A., Wellings, A.J.: A schedulability compatible multiprocessor resource
sharing protocol - MrsP. In: 25th Euromicro Conference on Real-Time Systems
(ECRTS), pp. 282–291. IEEE (2013)

5. Calandrino, J.M., Leontyev, H., Block, A., Devi, U.C., Anderson, J.H.:
LITMUS∧RT: a testbed for empirically comparing real-time multiprocessor
schedulers. In: 27th IEEE International Real-Time Systems Symposium, RTSS, pp.
111–126. IEEE (2006)

6. Catellani, S., Bonato, L., Huber, S., Mezzetti, E.: Challenges in the implementation
of MrsP. In: de la Puente, J.A., Vardanega, T. (eds.) Ada-Europe 2015. LNCS, vol.
9111, pp. 179–195. Springer, Cham (2015). doi:10.1007/978-3-319-19584-1 12

7. Faggioli, D., Lipari, G., Cucinotta, T.: The multiprocessor bandwidth inheritance
protocol. In: 22nd Euromicro Conference on Real-Time Systems (ECRTS), pp.
90–99. IEEE (2010)

8. Lipari, G., Lamastra, G., Abeni, L.: Task synchronization in reservation-based
real-time systems. IEEE Trans. Comput. 53(12), 1591–1601 (2004)

9. RTEMS, C Users guide-edition 4.6. 5, for RTEMS 4.6. 5. On-Line Applications
Research Corporation (OAR) 30 (2003). http://www.1tems.com

10. Takada, H., Sakamura, K.: Real-time scalability of nested spin locks. In: Second
International Workshop on Real-Time Computing Systems and Applications, Pro-
ceedings, pp. 160–167. IEEE (1995)

11. Takada, H., Sakamura, K.: A novel approach to multiprogrammed multiproces-
sor synchronization for real-time kernels. In: The 18th IEEE Real-Time Systems
Symposium, Proceedings, pp. 134–143. IEEE (1997)

12. Ward, B.C., Anderson, J.H.: Supporting nested locking in multiprocessor real-time
systems. In: 24th Euromicro Conference on Real-Time Systems, pp. 223–232. IEEE
(2012)

13. Ward, B.C., Anderson, J.H.: Multi-resource real-time reader/writer locks for mul-
tiprocessors. In: IEEE 28th International Parallel and Distributed Processing Sym-
posium, pp. 177–186. IEEE (2014)

http://dx.doi.org/10.1007/978-3-319-19584-1_12
http://www.1tems.com

Predicting Worst-Case Execution Time Trends
in Long-Lived Real-Time Systems

Xiaotian Dai and Alan Burns(B)

Department of Computer Science, University of York, York, UK
{xd656,alan.burns}@york.ac.uk

Abstract. In some long-lived real-time systems, it is not uncommon to
see that the execution times of some tasks may exhibit trends. For hard
and firm real-time systems, it is important to ensure these trends will
not jeopardize the system. In this paper, we first introduce the notion of
dynamic worst-case execution time (dWCET), which forms a new per-
spective that could help a system to predict potential timing failures
and optimize resource allocations. We then have a comprehensive review
of trend prediction methods. In the evaluation, we make a comparative
study of dWCET trend prediction. Four prediction methods, combined
with three data selection processes, are applied in an evaluation frame-
work. The result shows the importance of applying data preprocessing
and suggests that non-parametric estimators perform better than para-
metric methods.

Keywords: Worst-case execution time · Trend prediction · Linear
regression · Extreme value theory · Support vector regression

1 Introduction

Worst-case execution times (WCETs) are widely used in verifying the schedula-
bility of a real-time system [18]. For current practice, it is often assumed that the
WCET is a fixed value during the whole system life. However, we want to point
out that for some long-lived systems, the WCET is not constant but may be
gradually increasing with system duration. One reason is that many real-world
applications are highly data-dependent, while the size of input data naturally
grows up with time. Another cause of increased worst-case execution times is
gradually degrading hardware, e.g., decreased maximum operation frequency of
a power-aware system due to degraded thermal performance. The influence of
these effects could be minimal in a short period, but if being examined in a
large time-scale, e.g., days, months or years, the impact on task execution times
would be observable. In this work, we extend the constant WCET perspective
and assume some WCETs are varying with time, which are denoted as dynamic
WCETs (dWCET).

Traditional real-time applications that are deployed in a predictable environ-
ment should have a small variation of dWCET, assuming the system is designed
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 87–101, 2017.
DOI: 10.1007/978-3-319-60588-3 6

88 X. Dai and A. Burns

well against increased amount of data and has regular maintenance of its hard-
ware. As new systems and architectures are emerging that have larger uncertain-
ties and more interactions with the environment, these applications have more
significant dWCET variations which we are concerned with in this work. Some
of these systems include autonomous vehicles, space systems, cloud services,
self-adaptive systems, machines that learn from their environment, etc.

Systems are often designed with a limited tolerance of worst-case execution
times. To design a long-lived and reliable system, it is important to observe
the variation of dWCET and predict if the WCET assumption will be violated.
More specifically, if one WCET has a trend that would potentially cause a tim-
ing fault in the future, it should be addressed earlier to make the system achieve
a graceful degradation. Exploring execution time trends could also benefit task
scheduling. A scheduler should not be ‘short-sighted’. If a scheduler can predict
future execution behaviors, it would be possible for it to allocate resources more
optimally, and to reduce the number of unnecessary reallocation/redistribution
actions. It is interesting to see how adaptive control, as well as dynamic schedul-
ing methods, e.g., feedback scheduling [7,15], could be applied in an integrated
framework.

Overall, the objectives of identifying trends are: (1) To understand the
characteristics and influential variables of worst-case execution times; (2) To
make future predictions of execution time based on the identified trend model;
(3) To use the information of dWCET for enhanced feedback scheduling; (4) To
make the system aware of potential timing failures earlier to take corresponding
reactions, e.g., adjusting scheduler parameters, terminating less critical tasks or
invoking a system reconfiguration.

The focus of this paper is on the first two objectives, which the authors
think are fundamental to understanding dWCET. The content is organized as
follows: a general review of trend identification methods is introduced in Sect. 2.
Notations and symbols used in this article then follow. In Sect. 4, a comparative
experiment that compares four representative trend identification methods is
made. Finally, we analyze our experiment result and make recommendations
and draw conclusions.

2 Potential Approaches

The question of the presence of a trend in a time-series has been extensively stud-
ied in business, economic and environmental studies [16]. For these applications,
the variable of interest is measured or calculated at an approximately constant
rate, and the resultant time sequence data can be analyzed by statistical methods
to test the existence of a trend. Many descriptive and model-based approaches
have been used to detect trends, which range from correlation analysis, time-
series modelling, regression analysis and non-parametric statistical methods [4].

An important non-parametric statistical test is Kendall’s tau, which is widely
used as a test of trend existence [20]. In the work of Sen in 1968 [11], a slope
estimator based on Kendall’s tau, known as Theil-Sen estimator is designed,

Predicting Worst-Case Execution Time Trends 89

which is a non-parametric estimator that takes the median of all possible slopes
of pairwise observations. This estimator is claimed to be statistically robust
and unbiased [1]. The use of Kendall’s test and Theil-Sen estimator in extreme
precipitation can be found in [6]. Another statistical test for trend detection
is Spearman’s Partial Rank Correlation (SPRC) [8]. It is similar to Kendall’s
tau as it measures the relationship between two variables but differs in the
interpretation of the correlation result. In our work, we use Theil-Sen estimator
as one of the methods for its simplicity and effectiveness.

In Visser and Molenaar’s work [17], a structural time-series model is pro-
posed which has a stochastic/deterministic trend and regression coefficients.
The stochastic trend is described as an Autoregressive Integrated Moving Aver-
age (ARIMA) process, and the overall trend-regression model is estimated by
a Kalman Filter (KF). However, it is a challenge for KF to make a long-term
prediction in the presence of uncertainty.

One method that can address long-term trends is regression analysis, which
is a class of model-based statistical approaches for estimating the relationship
between dependent and independent variables. Linear models with a trend and a
seasonal component are often applied in prediction and forecasting of time series
data, where the parameters are often estimated with an ordinary least square
(OLS) estimator. However, for the OLS estimator, residuals of the time series are
required to follow a normal distribution [11], which is not always valid. Reinsel
and Tiao [10] use linear regression models to estimate trends with a correlated
noise that is modelled by an autoregressive process. In their model, additional
explanatory variables are used in the analysis to improve the prediction precision.
Linear regression is applied by Tiao in the detection of trends in stratospheric
ozone data using time series models with autoregressive noise [16]. We will use
OLS estimator as the second method in our comparison.

Predicting trends are also of great interest in modelling and explaining the
variation in rare and extreme events. Detecting long-term trends in the frequency
of extreme events is studied in [3]. In this study, Frei and Schär modelled the
counts of extreme events based on a binomial distribution and used logistic
regression to estimate trends. Several methods of detecting the change of inten-
sity in the extreme values are reviewed in [13]. A common way to model extreme
events is to use generalized extreme value (GEV) distributions [6,20], which was
first introduced by Fisher and Tippett in their study in 1928 [2]. The extreme
value distribution is generally applied on block maxima, e.g., annual or monthly
maximums in a time series.

One drawback of using block maxima is that only one data point in each
block is used in the analysis. Alternative data preprocessing approaches include
Peak-over-threshold (POT) and r-largest methods, which use relatively more
data points to train a model or fit a distribution. The POT is used in [12] to
study extreme precipitation in Ethiopia. In their study, the location parameter
of the EV distribution is represented by a monthly constant and a yearly trend.
A similar model is also applied in [13], in which the parameters of the extreme
distribution are estimated by the maximum likelihood that is considered sepa-
rately for each month. We will study GEV and explore both block maxima and
r-largest as methods of data selection.

90 X. Dai and A. Burns

Machine learning is also an active research field for trend detection. Neural
Networks has been widely used for time series modelling and forecasting [5,9,19].
However, few practical guidelines exist for building a time series Neural Network
model, in terms of the number of input nodes and hidden layers, etc. Support vec-
tor regression (SVR) is another data-driven machine learning method. It belongs
to the non-parametric regression class and is firmly grounded in the background
of statistical learning theory. It is extremely flexible because few assumptions
are imposed upon the mean function of the distribution, and it is capable of
revealing non-linear relationships between variables. However, non-parametric
techniques are relatively more computationally intensive. A description of SVR
and its mathematical details are given in [14]. SVR is a rapidly developing field
of research in Machine Learning, and it has potentials as a method of trend
prediction. Hence we will use it as the fourth method.

3 Problem Formulation: Predicting WCET Trend

As noted, trend prediction is a well-studied area in other application domains,
e.g., stock market prediction, sales estimation, etc. However, to the authors’
best knowledge, there are few studies on trend analysis of worst-case execution
times in the context of real-time scheduling. It is hard to say whether the results
obtained from other domains can also be applied to worst-case execution times
due to the unique characteristics that WCET exhibits, which include:

1. It is not directly measurable. Unlike physical and financial indices which
can be measured from sensors or statistics, measuring the maximum execution
time in a short period can only produce a high-water mark. This mark could
be smaller than the actual WCET if the worst-case execution scenario (includ-
ing the worst-case execution path, worst-case input data, and the worst-case
cache/memory condition) is not encountered during the window.

2. The factors that contribute to a WCET trend are less realized,
studied and understood. This work claims a new perspective of WCET,
which breaks the conventional assumption that WCET is static. The incre-
ment in the size of input data, more frequently extreme events and degrading
hardware performance could all change the temporal behaviour of a pro-
gram. However, the influence of these factors and what impacts they have on
WCETs remain largely unknown.

3. Complexity of estimating WCET. It is realized by the computing com-
munity that the interactions in a computer system would increase exponen-
tially as the number of entities increases. As real-time systems are generally
becoming more complicated in both software and hardware, the difficulty of
static or measurement-based WCET estimation will increase significantly.

By doing this initial study, we hope to get some insights into dynamic WCET.
Specifically, the purpose of this work is to see if one can apply existing trend
prediction techniques in the context of predicting WCET and if there are any
techniques that perform better than the others. Two data selection methods

Predicting Worst-Case Execution Time Trends 91

(block maxima and r-largest) are also considered to see if the performance
could be improved compared with using raw data. We also introduce notions
of predicted failure point, reaction time of control and reaction deadline to help
improve the decision-making process of when to take corrective action against a
potential timing failure. The rest of this paper will explain the experiment and
the result obtained.

3.1 The Dataset

In this experiment, we use controlled synthetic data that is injected with differ-
ent magnitude of trends. The model we used for generating the baseline data is
abstracted from an application which has four major execution paths according
to its operating states. We assume a deterministic trend, if it exists, is only in
the worst-case execution path. It is notable that the trend may also exist in
less critical paths, but as the execution time of the path increases, that path
will eventually overwhelm and become the worst-case path. It should also be
pointed out that there are different types of a trend: (i) Linear deterministic
trend (LDT), (ii) Linear stochastic trend (LST), (iii) Non-linear deterministic
trend (NDT), and (iv) Non-linear stochastic trend (NST). For this work, we
focus on type (i) LDT, because other types can be decomposed and approxi-
mated by a set of linear trends.

To generate execution time observations, we applied a Markov model with an
estimated state-transition matrix to simulate the correlation between consecutive
samples. To introduce variations in the data, we added corrupting white noise to
represent the non-determinisms of run-time execution, i.e., cache misses, branch
predictions and waiting for hardware resources. It is notable that the objective
here is not for precise modelling of execution time, but is to explore the patterns
behind execution times that are varying as the system runs. Hence we didn’t
include every factor that would affect WCET in the generation process. Overall,
we have 50 datasets which are divided into five groups for our evaluation.

3.2 Compared Methods

In our comparative study, we include four representative trend prediction meth-
ods that are mentioned in Sect. 2, which can be further categorized into para-
metric and non-parametric statistics:

– Ordinary Linear Regression [OLR] (parametric)
– Kendall’s tau and Theil-Sen Estimator [TSE] (non-parametric)
– Support Vector Regression [SVR] (non-parametric)
– Extreme Value Distribution [EVD] (parametric)

Note the difference between parametric and non-parametric methods is whether
a distribution is explicitly or implicitly assumed in the process of modelling. As
the type of dataset we focused on is less studied in the literature, our experiment
is implemented more in an exploratory way. We conducted a comparative study

92 X. Dai and A. Burns

between the listed methods, as well as different data preprocessing approaches
for selecting the training data.

The objective of a prediction is to estimate the influence of a trend in the
future, i.e., predicting a potential failure point where the execution time will
eventually exceed a safe upper bound due to the existence of a trend. In order
to evaluate the prediction precision, we define the Hypothetical Failure Point
(HFP) as the theoretically time point after which the system will fail the sys-
tem’s temporal requirements. We also define Estimated Failure Point (EFP) as
the estimated HFP that is predicted by trend prediction algorithms. Due to
page limitations, we can not give details of each individual method. For more
information, please refer to the references provided in Sect. 2.

4 Evaluation

To make comparisons, we implemented the aforementioned trend identification
algorithms in MATLAB c©R2015a. Two categories of dataset were generated,
and each dataset consists of multiple samples that are generated by the models
described earlier. In the following sections, we will first introduce symbols that
we used in this experiment, followed by experiment setup and evaluation metrics.

Note a single experiment, with one algorithm and one dataset, will give rise
to a large number of predictions – as the system moves from start-up to the
failure point (end of the dataset). Some of these predictions may be good, others
not. Hence the set of predictions need to be analyzed together to give an overall
estimate of the quality of the algorithm in that experiment. We assume that the
controlled system can take corrective action if the failure point, H, is identified
within a relative deadline, D. But taking action too early is not useful so there
is a maximum reaction-time R defined.

4.1 Symbols and Notations

A diagram that shows the important terms and notations is given in Fig. 1. The
symbols and notations we used in this experiment are listed below:

– t: the current (discrete) time; we assume t is equally spaced in time and there
are no observations between two successive time points tn−1 and tn.

– Cub: the upper bound of task execution time. During run-time if the worst-
case execution time Cm exceeds this bound, i.e., Cm > Cub, a system failure
will occur.

– k: the actual deterministic trend that is ejected while generating a dataset.
We use k̂(t) to represent the trend magnitude that is estimated at time t.

– H: H is the Hypothetical Failure Point (HFP), which is defined as the
expected time of failure. If k > 0, H can be directly estimated by H =
(Cub −Cm0)/k, where Cm0 is the initial WCET. For datasets that have k = 0
(i.e. no trend), we make H = ∞.

Predicting Worst-Case Execution Time Trends 93

H

tn

P(t)
k

t

Cn

D
R

-S +S

k(tn)
^

0

Cub

Fig. 1. Representation of important notations and regions

– R: the reaction time, which is defined as the earliest time that a system should
make actions before a failure happens. If a control action is made earlier than
(H − R), we have a false positive.

– D: D is the deadline before which any control action should have been made.
If any action is made in the interval (H−R,H−D], we say that this estimator
behaves correctly and mark the action as a true positive. Otherwise, we have
a false negative if no action is made.

– P (t): is a prediction of H made at time t; We have P (t) → ∞ if no trend or
a negative trend is found. In practice we make P (t) = t + B, if P (t) ≥ t + B,
where B is a boundary. This boundary indicates that the failure is too far
away to be concerned now.

– S: the satisfactory region deviated from H that is used to evaluate the good-
ness of P (t). If H − S ≤ P (t) ≤ H + S, we say the estimation is satisfactory.

During run-time, the system will continuously estimate a failure point and
will only make a control action if the estimated failure point will be reached
soon. Specifically, an action is taken if P (t) < t + R, or more accurately if the
prediction is run every T time, then an action is made based on the criterion
P (t) < t + R − T . The use of confidence intervals is not involved in this work,
and each action is made independently. To evaluate the effectiveness of each
algorithm, we associate positives and negatives with whether an action is taken
when it should be. We have a logic table shown in Table 1.

Table 1. Definition of positives and negatives

t ∈ [0, H − R) [H − R, H − D) [H − D, H)

Action made False positive True positive True positive

No action True negative False negative False negative

94 X. Dai and A. Burns

Penalty

D - H HH - R t

FP FN

H - αR

Fig. 2. Penalties that are given to false positives/negatives

In reality, we found the numbers of false positives/negatives cannot provide
enough information of the goodness of an algorithm, e.g., a false control action
made close to the reaction region is at least better than the one made far earlier.
Hence we introduce a penalty function (shown in Fig. 2). The penalty of false
positives is decreased when the time is approaching the response region (H −R),
and the penalty of false negatives is increasing from (H − R) to the deadline
(H−D). The coefficient α defines the tolerance of early actions. When t > H−D,
any false negative will score a higher penalty, as the deadline is already missed
in this case.

4.2 Experiment Setup

In general, we have two groups of synthetic time-series data: (A) trend-free; (B)
with a trend. We use the same initial worst-case execution time in both groups,
and in group B we have five distinct magnitudes of trends that are gradually
increasing from 1% to 4%. For each value of trend we independently generated
10 datasets, so overall we have 50 datasets. Each dataset is generated until the
point where a failure would happen, which is directly calculated from the actual
trend. The size of the trend-free dataset is made the same as data with 1% trend.
A full list of the datasets is shown in Table 2.

Table 2. A table of generated datasets

Group Subgroup Dataset index Data size Increasing trend

A A1 1–10 5,000 0%

B B1 11–20 5,000 1%

B2 21–30 2,500 2%

B3 31–40 1,667 3%

B4 41–50 1,250 4%

Predicting Worst-Case Execution Time Trends 95

For each dataset in the table, we take the following evaluation steps:

1. Define a sampling window W , and start to make the first estimation at time
t = W .

2. Apply data selection process for samplings from (t−W) to t. Fit pre-processed
time series data with each trend analysis method to generate trend models.

3. Use the models to estimate the system failure point P (t). Make a (dummy)
control action if P (t) satisfies P (t) − t ≤ R.

4. Make an evaluation of each estimation, including prediction error, valid/
invalid of the estimation and the property of the action if is made. A cumu-
lative penalty is added if a false positive/negative is presented.

5. Move to t = t+M and repeat from step 2 until all data points are processed,
where M is the step size. M controls the fraction of new data that is not
overlapped in the training set. For example, if M = 0.2W , at each step 20%
new data will be added into the analysis.

To evaluate the quality of an estimation, we can use the knowledge of the actual
failure time H. We define the failure estimation error at time t as: eh(t) =
H − P (t). If |eh(t)| ≤ S, the estimation is satisfactory (valid). Otherwise, we
recognize it as invalid. A smaller prediction error represents a better estimation,
and an ideal predictor would have eh = 0. In practice, we want to have a predictor
that would give a positive error (earlier) rather than a negative error (later), as
in the former case, it gives more time for the system to process and make a
reaction.

In addition to failure estimation error, we also have trend estimation error,
which is calculated as: ek(t) = k−k̂(t). Note that ek and eh are correlated, but ek

is more intuitive in evaluation of the precision of estimated slopes. To study the
absolute performance of each algorithm, we introduce a baseline algorithm: the
Ideal Predictor (IDP), which has the foresight to know the HFP and associated
time regions. For IDP, we have ∀t : ek(t) = 0 and ∀t : eh(t) = 0.

4.3 Results

Following the experiment steps that we defined earlier, we evaluated all combina-
tions of trend identification and preprocessing methods. To have a understanding
of advantages and disadvantages of different methods, we have overall three eval-
uations that focus on different aspects of the results obtained from the previous
experiment.

Impact of Data Preprocessing. Data preprocessing is an important proce-
dure in processing time-series data. In this evaluation, we compared the raw
data (-raw) with two data preprocessing methods: block maxima (-max) and
r-largest (-r) value, which are both schemes used in extreme value analysis. For
each method i, preprocessing method j and dataset κ, we obtained the mean of
estimated trend error ēi,j,κ

k of all evaluations over that dataset:

96 X. Dai and A. Burns

ēi,j,κ
k =

1
Nκ

Nκ∑

n=1

ei,j,κ
k (W + n ∗ M)

=
1

Nκ

Nκ∑

n=1

(k − k̂i,j,κ(W + n ∗ M))

(1)

where W is the sampling window, M is the step size and Nκ is the number of
evaluations made over dataset κ. In our case, datasets with different magnitude
of trends have different sizes. Hence Nκ of each subgroup is distinct, which can
be calculated from:

Nκ = floor((size of(κ) − W)/M) + 1. (2)

We group ēi,j,κ
k by {i, j}, and plot them out as box plots in Fig. 3. We have

overall 12 box blots (4 identification × 3 preprocessing methods), and each box
plot consists of 50 data points that comes from all datasets. From Fig. 3, we
could clearly see that results using raw data have the worst performance, i.e.,
olr-raw, tse-raw, svr-raw and evd-raw. Compared with the other two methods
max and r, methods using raw have a significant larger median and variance of
mean errors. This is reasonable because if raw data is used in the training set,
the extreme values that have trends in them will be overwhelmed by the data
points with no trend. Actually as what we observed during the experiment, k̂ is
approximately 0 for all raw-based methods, i.e., no trend is identified.

If we further compare block-maxima and r-largest, we can see that even con-
sidering outliers, block-maxima still performs much better than r-largest across
all four methods. To measure the improvement, we make pairwise comparisons
for each identification method with block-maxima and r-largest. Specifically, we
compare minimum, median, mean, maximum and standard deviation across all
-max and -r methods. The result is shown in Table 3 (all numbers in the table
are multiplied by 1 × 103).

From the table, we can see the minimal errors are roughly the same, except
svr-max which has slightly larger error. If we look at olr-max and olr-r, we can

Table 3. Mean error of k̂ for block maxima and r-largest

Minimum Median Mean Maximum σ

olr-max −1.91 4.16 6.31 27.64 7.21

olr-r −2.07 7.68 10.59 32.10 9.31

tse-max −1.12 2.23 3.07 17.45 3.27

tse-r −1.15 9.14 9.91 26.00 7.72

svr-max −5.24 0.15 1.60 25.65 5.71

svr-r −1.00 9.65 12.72 44.36 12.74

evd-max −1.46 1.60 3.40 23.47 4.75

evd-r −0.45 5.34 6.86 30.20 6.77

Predicting Worst-Case Execution Time Trends 97

olr
-ra

w

olr
-m

ax olr
-r

tse
-ra

w

tse
-m

ax tse
-r

sv
r-r

aw

sv
r-m

ax sv
r-r

ev
d-r

aw

ev
d-m

ax
ev

d-r

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Mean Error

Fig. 3. Distribution of mean trend errors k̂ of considered prediction methods

see that olr-r has 85% larger median, 69% larger mean and 16% larger maximal
error. For tse-max and tse-r, these values are 310%, 223% and 49%. svr-max
outperformed svr-r with 69.5% improvement in mean and 1.87 × 10−2 less in
maxima. Considering the original trend is in a magnitude of 1×10−2 (from 1% to
4%), this is a significant improvement. Finally for evd-max and evd-r, a similar
conclusion is obtained: evd-max is about 100% better than evd-r in terms of
mean error, and 6.73 × 10−3 less in maxima.

As a conclusion, compared with using raw data, data preprocessing can signif-
icantly improve identification performance. It can be seen that, for our particular
dataset and block size, block maxima performs the best.

Impact of Variations in Dataset. As part of our evaluation, we studied
the impact that the magnitude of trend would have on the performance of our
methods. In our datasets, we have five subgroups, each of which has a distinct
trend ranging from 0% to 4%. We plot the mean trend errors of each method
as an individual line across all datasets in Fig. 4. The x axis represents the
index of the dataset, and the y axis is the mean trend estimation error for all
predictions in that dataset. From the figure we can see that mean errors tend to
be increased when the magnitude of trend is increased. This can be clearly seen
from the peaks of mean errors in each subgroup. We can also see that in each
subgroup of dataset, there exists a large variation between individual datasets.
This suggests that the estimation error is highly correlated to the magnitude
and characteristics of the trend.

98 X. Dai and A. Burns

Dataset Index
0 5 10 15 20 25 30 35 40 45 50

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

IDP-MAX
OLR-MAX
TSE-MAX
SVR-MAX
EVD-MAX

Fig. 4. Estimated trend error of each dataset. All methods use block maxima for data
preprocessing. Subgroups are separated by dashed lines.

As a conclusion, estimation error is data sensitive. With the magnitude of
trend increases, the error will be increased proportionally. All of these methods
are sensitive to the actual characteristic of a dataset. From Fig. 4, we can see
different methods have very similar patterns in terms of peaks and troughs.
This indicates that although these methods are sensitive to datasets, but as
the way they vary is similar and the same dataset is used across all methods,
the characteristics of the dataset will not break the fairness of this comparison.
However, a large number of datasets should be used to average the variations
across datasets so the actual performance can be revealed.

Comparison of Identification Methods. In this evaluation, we will compare
trend identification methods with only block maxima, as it performed the best
among all data preprocessing methods. To compare the effectiveness of a trend
identification method, one important index is the ability to detect a trend. In
our work, this is measured by two factors: the validation of an estimation, and
the positiveness of a related control action. A diagram that shows the relative
performance is shown in Fig. 5. Each bar plot shows a different metric of all
four methods, plus the Ideal Predictor (IDP), separated by dataset subgroups.
For plots of valid and true positives, data is normalized to [0, 1] by IDP, while
for plots of invalid and false positive/negative, data is normalized by the worst
method.

From the valid/invalid plots in the figure, we can see that tse-max and svr-
max are the two best methods. OLR has the largest number of invalids for
dataset groups B1, B2, B3 and B4. EVD only performs slightly better than
OLR. If we further look at the numbers of falses, we could see that SVR tends
to give more false positives, while OLR gives more false negatives. All methods
give no false positives and negatives when there is no trend in the data. TSE is
consistent and has the best performance on average.

Predicting Worst-Case Execution Time Trends 99

0

0.5

1
Valid Estimations

IDP-MAX LR-MAX TSE-MAX SVR-MAX EVD-MAX

0

0.5

1
Invalid Estimations

0

0.5

1
True Positives

0

0.5

1
False Positives

k = 0 k = 1% k = 2% k = 3% k = 4%
0

0.5

1
False Negatives

Fig. 5. Experiment result - normalized false negatives/positives

To further compare these methods, we summarize penalties that come from
the results of all datasets for each method, which is shown in Table 4. From
the table it can be seen that TSE has least mean penalties with all three data
selection methods, comparing with the other three methods. This is identical
to the conclusion we described earlier. For methods using block maxima, OLR
obtained the largest penalty, while for r-largest, it is SVR.

Table 4. Mean penalties over all datasets for each prediction method

OLR TSE SVR EVD

Raw 62 62 62 62

Maxima 58.28 29.02 42.26 49.68

r-largest 58.2 53.82 77.58 55.76

There are other considerations of a trend prediction method which include its
efficiency, sensitivity to data variation, and support of multiple dependent vari-
ables. In all four methods, TSE is the most computationally efficient method,
and it is least sensitive to the characteristic of a dataset. OLR is median in
computation, but it is sensitive to the composition of the dataset, and it will be
biased if a large percentage of non-relevant data is involved. SVR is computa-
tional intensive has additional parameters that can be tuned: the cost C that

100 X. Dai and A. Burns

controls the trade-off between errors of the SVM on training data and margin
maximization, and the epsilon ε that controls the size of insensitive region. The
ability of supporting non-linear trends is supported by SVR as well. SVR directly
supports non-linear data by using Kernel functions, while other methods have
to be extended to support non-linearity. In this work, we only considered one
inference variable: the system duration. However if more dependent variables
need to be considered, a support for multi-variable regression will be necessary,
which both OLR and SVR can support while the other two cannot.

5 Conclusions

In this work, we have introduced the motivation of identifying long-term trends
in worst-case execution times to achieve timing fault prediction. We have shown
four different trend identification methods and compared their performance.
The results suggest that data preprocessing should be used as the procedure
can significantly improve estimation performance. It also can be seen that the
Theil-Sen estimator, which is a non-parametric method, achieved the best per-
formance in this particular experiment. It is robust against noise and outliers,
and is computational effective. The other non-parametric method, SVR, is also
an outstanding method as it can predict non-linear trends and can be used in
multi-variable regression. Extreme value did not perform well because it needs
a large amount of data to fit the distribution, i.e., a large data block. However,
this will decrease the ability of early detection of failures. Finally for OLR, the
performance is not satisfactory as the assumption of normally distributed resid-
uals is violated. This can be improved by assuming a more accurate distribution
of data, which requires to further examine the characteristics of WCET. The
experiment result suggests a preference for using non-parametric methods with
either block-maxima or r-largest.

For future work, we will consider more dependent variables that influence
a WCET to improve the precision of prediction. The use of ensemble learning
to combine two or three identification methods could also benefit the result of
analysis, and multiple successive predictions should be considered to confidently
make a control decision. We also aim to obtain real-life data from industrial
applications, to examine if a similar result would be obtained. All these issues
will form topics for future work.

References

1. Akritas, M.G., Murphy, S.A., LaValley, M.P.: The Theil-sen estimator with doubly
censored data and applications to astronomy. J. Am. Stat. Assoc. 90(429), 170–177
(1995)

2. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the
largest or smallest member of a sample. In: Mathematical Proceedings of the Cam-
bridge Philosophical Society, vol. 24, pp. 180–190. Cambridge Univerisity Press
(1928)

Predicting Worst-Case Execution Time Trends 101

3. Frei, C., Schär, C.: Detection probability of trends in rare events: theory and appli-
cation to heavy precipitation in the Alpine region. J. Climate 14(7), 1568–1584
(2001)

4. Hess, A., Iyer, H., Malm, W.: Linear trend analysis: a comparison of methods.
Atmos. Environ. 35(30), 5211–5222 (2001)

5. Hill, T., O’Connor, M., Remus, W.: Neural network models for time series forecasts.
Manage. Sci. 42(7), 1082–1092 (1996)

6. Kunkel, K.E., Andsager, K., Easterling, D.R.: Long-term trends in extreme precip-
itation events over the conterminous United States and Canada. J. Climate 12(8),
2515–2527 (1999)

7. Lu, C., Stankovic, J.A., Son, S.H., Tao, G.: Feedback control real-time scheduling:
framework, modeling, and algorithms. Real Time Syst. 23(1–2), 85–126 (2002)

8. McLeod, A.I., Hipel, K.W., Bodo, B.A.: Trend analysis methodology for water
quality time series. Environmetrics 2(2), 169–200 (1991)

9. Qi, M., Zhang, G.P.: Trend time-series modeling and forecasting with neural net-
works. IEEE Trans. Neural Netw. 19(5), 808–816 (2008)

10. Reinsel, G.C., Tiao, G.C.: Impact of chlorofluoromethanes on stratospheric ozone:
a statistical analysis of ozone data for trends. J. Am. Statist. Assoc. 82(397), 20–30
(1987)

11. Sen, P.K.: Estimates of the regression coefficient based on Kendall’s tau. J. Am.
Statist. Assoc. 63(324), 1379–1389 (1968)

12. Shang, H., Yan, J., Gebremichael, M., Ayalew, S.M.: Trend analysis of extreme
precipitation in the Northwestern Highlands of Ethiopia with a case study of Debre
Markos. Hydrol. Earth Syst. Sci. 15(6), 1937–1944 (2011)

13. Smith, R.L.: Extreme value analysis of environmental time series: an application
to trend detection in ground-level ozone. Statist. Sci. 4(4), 367–377 (1989)

14. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statist. Com-
put. 14(3), 199–222 (2004)

15. Stankovic, J.A., Lu, C., Son, S.H., Tao, G.: The case for feedback control real-
time scheduling. In: Proceedings of the 11th Euromicro Conference on Real-Time
Systems, pp. 11–20. IEEE (1999)

16. Tiao, G.: Use of statistical methods in the analysis of environmental data. Am.
Statist. 37(4b), 459–470 (1983)

17. Visser, H., Molenaar, J.: Trend estimation and regression analysis in climatological
time series: an application of structural time series models and the Kalman filter.
J. Climate 8(5), 969–979 (1995)

18. Wilhelm, R., Engblom, J., Ermedahl, A., et al.: The worst-case execution-time
problem overview of methods and survey of tools. ACM Trans. Embedded Comput.
Syst. (TECS) 7(3), 36 (2008)

19. Zhang, G.P., Qi, M.: Neural network forecasting for seasonal and trend time series.
Eur. J. Oper. Res. 160(2), 501–514 (2005)

20. Zhang, X., Harvey, K.D., Hogg, W., Yuzyk, T.R.: Trends in Canadian streamflow.
Water Res. Res. 37(4), 987–998 (2001)

MC2: Multicore and Cache Analysis via
Deterministic and Probabilistic Jitter Bounding

Enrique Dı́az1,2, Mikel Fernández1, Leonidas Kosmidis1, Enrico Mezzetti1,
Carles Hernandez1, Jaume Abella1, and Francisco J. Cazorla1,3(B)

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{enrique.diaz,mikel.fernandez,leonidas.kosmidis,enrico.mezzetti,

carles.hernandez,jaume.abella,francisco.cazorla}@bsc.es
2 Universitat Politècnica de Catalunya, Barcelona, Spain

3 IIIA-CSIC, Bellaterra, Spain

Abstract. In critical domains, reliable software execution is increas-
ingly involving aspects related to the timing dimension. This is due to
the advent of high-performance (complex) hardware, used to provide
the rising levels of guaranteed performance needed in those domains.
Caches and multicores are two of the hardware features that have
the potential to significantly reduce WCET estimates, yet they pose
new challenges on current-practice measurement-based timing analysis
(MBTA) approaches. In this paper we propose MC2, a technique for
multilevel-cache multicores that combines deterministic and probabilistic
jitter-bounding approaches to reliably handle both the variability in exe-
cution time generated by caches and the contention in accessing shared
hardware resources. We evaluate MC2 on a COTS quad-core LEON-
based board and our initial results show how it effectively captures cache
and multicore contention in pWCET estimates with respect to actual
observed values.

Keywords: WCET · MBTA · Multicore contention · Probabilistic tim-
ing analysis · Jitter bounding

1 Introduction

Computing power needs are steadily increasing in the critical real-time embed-
ded domains, fuelled by the complexity and sheer amount of data a modern
on-board software is expected to handle [3,7,33]. At hardware level, while high-
performance features, such as caches and multicore processors, provide the
demanded performance, they also bring about hard-to-model jitter (variabil-
ity) in execution time, which complicates timing validation and verification.
This has resulted in an increased attention on timing in safety standards (e.g.,
ISO26262 [15] in automotive) and support documents (e.g., CAST32-A [8] in
aerospace).

MBTA is the dominant timing analysis approach in most real-time
domains [34]. MBTA aims at deriving a worst-case execution time (WCET)
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 102–118, 2017.
DOI: 10.1007/978-3-319-60588-3 7

MC2 103

estimate that holds for the program during system operation from the execution
time measurements captured during the tests executed at various stages in the
analysis phase. The quality of the derived WCET estimates lies on the user’s
ability to design stressful test scenarios (conditions) that are presumably close
to the worst-case conditions that can arise during system operation. The degree
of control available to the user, while adequate on simple processor designs,
diminishes with the inclusion of complex hardware that challenges: (i) designing
worst-case scenarios, e.g., identifying the memory object allocation (code and
data) that results in cache set mappings with high impact on execution time,
and the worst contention scenarios that the application can suffer in a multicore;
and (ii) designing experiments in which bad (pathological) behavior for several
resources occurs simultaneously. Overall, despite the user may perform thou-
sands of experiments, there is no guarantee on whether the bad behavior in the
sources of jitter (soj), like the cache, has been sufficiently captured. This reduces
the confidence on the MBTA WCET estimates, which in turn can prevent the
use of some high-performance hardware features in critical real-time embedded
systems.

Measurement-Based Probabilistic Timing Analysis (MBPTA) [5,32] is a
variant of MBTA that aims at increasing the confidence on WCET esti-
mates. MBPTA, which has been successfully evaluated on several case studies
(e.g., [31,32]), aims at relieving the user from controlling hardware soj. Instead,
MBPTA makes that their impact on the measurements emerges naturally, reduc-
ing user’s burden to only controlling the number of runs to perform [17]. To that
end, MBPTA implicitly controls the impact of jittery resources on measurements
captured at analysis. In particular, some resources are forced to work on their
worst latency during analysis (upperbounding), hence ensuring measurements
conservatively capture their impact. The latency of other resources is instead
randomized so that their execution times at analysis vary according to a proba-
bilistic execution time distribution that can be used to upperbound the latencies
during operation.

In this paper we propose the MC2 (multicore and cache) MBPTA app-
roach for the analysis of a Commercial-Off-The-Shelf (COTS) multicore proces-
sor equipped with multilevel-caches. While hardware designs have been pro-
posed [14,19] for MBPTA compliance, and some of them have hit pre-silicon
(RTL) readiness level [14], analyzing MBPTA applicability on COTS multicore
processors is fundamental to favor a fast and widespread adoption of MBPTA.
MC2 exposes, in a combined MBPTA-compliant manner, the jitter of caches
and multicore contention to the execution time measurements taken at analysis.
As a result, the WCET estimates MBPTA generates from those measurements
upperbound the impact of both resources on program execution time. MC2 com-
bines two techniques that have been classified as MBPTA compliant: software
randomization [20] for cache-jitter management, and delay upperbounding for
multicore contention management [16]. For the latter, since multicore contention
can lead to very pessimistic WCET estimates [13] when contention bounds are
provisioned for the worst possible contention, MC2 provides adaptable WCET

104 E. Dı́az et al.

estimates that depend on contenders’ contention. Our results provides evidence
that MC2 effectively captures the impact on execution time - and hence on
WCET estimates - of both resources, and provides tight WCET estimates.

2 Background

When selecting the timing analysis technique to use, industrial users balance the
cost-effectiveness of the technique and the evidence that it can provide to sat-
isfy the level of confidence required by the domain-specific standards [1]. MBTA
techniques are less rigorous than static analysis methods but, in general, are
more attractive because of their cost-effectiveness and major affinity with the
consolidated industrial practice. The quality of MBTA’s derived WCET esti-
mates relates to the evidence on their coverage of the worst-case conditions.
When evidence obtained is sufficient, MBTA can be used for high-integrity soft-
ware, e.g., DAL-A functions in avionics [22]. In practice, all techniques require
user-provided inputs, e.g., worst-case scenarios for measurements for MBTA and
hardware timing models for static timing analysis (with hardware documenta-
tion potentially being inaccurate or incomplete [1], thus eventually resorting to
measurements to reverse engineering the timing model [26]). This makes complex
argue about the quality of a WCET figure. In this paper, we focus on MBTA
with the intent to increase the confidence that can be placed on the provided
WCET estimates.

MBPTA. MBPTA applies Extreme Value Theory [9] (EVT) on execution
time observations from the analysis phase to derive the probabilistic WCET
(pWCET) distribution that upperbounds program’s execution time during oper-
ation. MBPTA requires guaranteeing that the observations obtained at analy-
sis capture those events that can impact execution time at operation, and so
pWCET estimates [1]. MBPTA, by deploying EVT (see Fig. 1), is able to derive
the probability that bad behavior of several of the soj (whose impact has been

Fig. 1. pWCET example. Fig. 2. MBPTA steps. Fig. 3. Reference archi-
tecture.

MC2 105

captured in the analysis-time runs) are triggered in the same run. Hence, EVT
has to be seen as a method to predict pathological combinations of observed
events in the analysis-time measurements. In general, EVT cannot predict the
appearance of unobserved events since their impact on execution time can be
arbitrarily large. To cover this gap, MBPTA builds an argument on representa-
tiveness by means of (i) either injecting randomization in the timing behavior
of certain hardware resources (e.g., caches and buses) so that it is possible to
determine the probability of their worst behavior to be captured in the analysis-
time measurement runs; or (ii) making resources to work on their worst latency
so the analysis time measurements capture their worst timing behavior.

MBPTA application procedure starts by (1) collecting a set of representative
observations, see Fig. 2. MBPTA then (2) applies some statistical test such as
independence and identical distribution tests [5] required for EVT application.
Since in a MBPTA-compliant platform these probabilistic properties hold by
construction1, in case statistical tests are failed, the user is simply asked for
more runs until statistical tests – which are subject to false positives/negatives
– are passed. (3) MBPTA checks whether the size of the sample is enough to
include all relevant events and ensure certain statistical stability of the results.
To that end we use the initial findings in [24] and ask the user for more runs until
this condition is satisfied. As final step, (4) MBPTA derives an EVT distribution
(pWCET estimate) as shown in Fig. 1.

Software Randomization. MBPTA handles resources with small jitter (usu-
ally in the order of few cycles) by means of upperbounding, i.e., by forcing the
resource to operate on its worst latency during analysis time [14]. However, cache
resources exhibit high jitter between hit and miss events, especially when these
events span across multiple levels of cache. For this reason, timing randomization
is used. In particular we use software randomization which, by randomly vary-
ing the memory layout between distinct program executions, causes cache events
(hits/misses) to have a probabilistic behavior that holds during operation. This
allows cache jitter to be properly modelled by MBPTA. In this work we use our
custom implementation of TASA (Toolchain Agnostic Software rAndomization)
[18,21], a static variant of software randomization, applied at source-code level.
TASA randomizes the position in memory for any memory object in the software
under analysis such as functions, stack frames and global data. Moreover, TASA
can randomly affect the internal memory layout of several memory objects such
as stack frames and structures.

In general, compilers allocate memory objects in the order they are in the
source file. Very few compiler options violate this principle, which can be disabled
during compilation with small (if any) impact in the compiler performance [18].
TASA, by randomly rearranging the order of declarations for the corresponding

1 Despite time-randomization, programs might exhibit a degenerate distribution of
timing, e.g., having a single or very few different execution times. While extremely
rare in practice for real-size programs, the lack of jitter would suggest that the
maximum observed execution time could be reasonably used as a precise WCET
indicator.

106 E. Dı́az et al.

objects in the source file, modifies their relative position in the binary. This, in
combination with additional random-sized padding in the form of nop instruc-
tions or unused data, increases the potential difference among binary layouts.
When the binary is loaded to main memory for the program execution, the
random binary memory layout translates into random main memory mapping
and hence, a random cache layout, i.e., memory objects are allocated in random
cache sets.

3 Reference Platform

We use a 4-core LEON3 [2] platform implemented on an FPGA. Each LEON3
core implements a 7-stage pipeline and comprises first level instruction (ic) and
data (dc) caches, with the dc implementing a write-through no write allocate
policy, see Fig. 3. An AMBA AHB bus propagates stores, dc misses and ic misses
to the partitioned L2 cache deploying a write-back policy. Requests sent to the
bus are not split. Hence, the bus is locked all the time a request accesses the
L2. If it misses in L2, the bus is locked until the request is solved in main
memory and answered back. Requests are arbitrated in the bus using round-
robin which provides time analyzability [12]. Hence, our reference architecture
comprises two main hardware shared resources, the bus and the memory, with
the bus arbiter controlling the contention in both of them. Our platform also
comprises performance monitoring counters (PMCs) from which we track ic
misses, dc misses, store operations and L2 misses, as detailed in Sect. 4.

In our experiments we consider one task under analysis (tua or τa) and several
(up to three) contender tasks, referred to as c(τa) or τb, τc and τd. τa is always
a time-critical task for which a WCET estimate is to be derived.

4 Handling Multicore Contention and Cache Jitter

Goals and Challenges. MC2 aims at reliably capturing the impact that mul-
ticore contention (handled by the bus arbiter in our reference architecture) and
cache jitter have on pWCET estimates. This requires ensuring that the execu-
tion time observations collected at analysis capture the impact of the jitter of
both. To ease MC2 adoption, this goal has to be achieved under the following
restrictions:

1. MBPTA compliance. The proposed technique must be MBPTA-compliant
requiring minimum changes to the single-core MBPTA timing analysis app-
roach, which has already been evaluated with several industrial case stud-
ies [32].

2. pWCET estimates should be time composable, so that they are independent
of the load contenders put on resources. Time composability enables incre-
mental integration of applications, performing timing analysis of applications
mostly in isolation, without the need of regression tests. Time composability
also allows updating functionality during system operation without the need
of analysing the entire task set, but just those tasks that are updated.

MC2 107

3. The information required by MC2 from the tasks should be obtained via
PMCs to facilitate its applicability to real hardware.

4. WCET estimates should be obtained as early as possible in the design process
to facilitate incremental software integration [23] (ideally during unit testing)
and should hold across integrations for incremental verification purposes.

Overall Process. MC2 process starts by running the software-randomized task
under analysis (τa) in isolation, see Fig. 4. This exposes the impact of cache
jitter to the observed execution time (oeti) in each run ri. As a side effect, since
the hit/miss pattern of τa changes across runs (due to software-randomization),
its number of accesses to the bus and the memory also varies. Hence, τa has
an access distribution to cache/memory rather than a single value (with small
variations) as it would be the case if τa had not been time randomized.

Fig. 4. Schematic view of the proposed pTC contention model.

MC2 also factors in the maximum contention delay (mcd) for each request
type and the level of contention generated by τa’s contenders (c(τa)), which is
refereed as locc(a). Δcont in Eq. (1) captures both mcd and locc(a). By feeding
MBPTA with enlarged execution times (eet), MC2 provides MBPTA with rep-
resentative information on the impact of cache and multicore contention.

eeti = oeti + Δcont (1)

Detailed Explanation. MC2 builds upon the following assumptions and
inputs:

1. τa’s observed execution times (oetia) in each run ri
a of τa’s in isolation.

2. τa’s number of requests (pmci
a) obtained with PMC readings in each run ri

a

of τa’s in isolation. The particular counters are discussed later.
3. Worst-case request overlap assumptions: MC2 assumes that contenders’

requests align in the worst possible manner with each τa request causing max-
imum impact on τa’s execution time. While this assumption is pessimistic,
it relieves the end user from modelling the particular cycle when requests
occurs, which would be an overly expensive effort, and would only be doable
after integration. Instead, assuming mcd delay for each contenders’ request
brings some pessimism but allows MC2 enable WCET estimates during unit
testing to favor incremental integration [23]. This is in contrast to the number
of requests that can be derived during unit testing and do not change (for
our architecture) at integration, i.e., the number of requests of a task to the
bus/memory is not affected by its contenders.

108 E. Dı́az et al.

Table 1. Request types and their
latency in our reference board.

Type mcd Description

sh lsh = 1 L2 st hit

lh llh = 8 L2 ld hit in L2

lmc llmc = 28 L2 ld clean miss

smc lsmc = 28 L2 st clean miss

lmd llmd = 31 L2 ld dirty miss

smd lsmd = 31 L2 st dirty miss

Table 2. PMCs available in the refer-
ence processor.

Name Description

pmcicm Bus reads caused by ic misses

pmcdcm Bus reads caused by dc misses
pmcst Writes to L2
pmcm Misses in the L2

4. User-provided contender’s level of contention (locc(a)): MC2 factors in the
contention (i.e., number of requests) of c(τa). To that end, we follow two
models. The first one, called fully Time Composable (fTC), assumes each con-
tender task makes as many requests of the longest duration as total number
of requests generated by τa. The fTC models results in fully time-composable
estimates, but at the cost of over-estimation. To reduce the latter, a second
model, called partially Time Composable (pTC), is adjustable to the expected
level of contention of the contenders (i.e., its number of requests and their
type). The pTC model derives the WCET estimate for τa in isolation under a
given level of contention of its contenders. At integration time, composability
can be assessed by simply checking that the contention level of the particular
contenders is smaller than the level assumed at analysis. Both models are
detailed in Sects. 5 and 6 respectively.

Request Characteristics. MC2 requires information about the types of
requests to the bus, with emphasis on those having different usage of the bus,
and the maximum time each request holds the bus (mcd).

From processor manuals, we identify six types of request to the bus (see
Table 1): load/store requests that hit/miss in L2, and for the case of misses,
since the L2 is write-back, request evicting and not evicting dirty data. The
former are called dirty misses and the latter clean misses.

The mcd for each request, see the second column of Table 1, is the time
interval (measured in cycles) since a request is granted access to the bus until
it relinquishes the bus. Hence, mcd is the maximum contention that a request
of each type can incur on other requests. We have derived mcd values empiri-
cally following the process described in [16]. The general approach consists in
generating small benchmarks that generate a single-type of requests (e.g., load
hits in L2) and architect experiments so tight bounds to request latencies can
be derived.

MC2 109

5 fTC Contention Model

fTC derives a WCET estimate that is an upper bound to the slowdown τa

can suffer regardless of the load its contender tasks put on the shared resources.
This requires the model to pessimistically assume that the number of contenders
equals Nc − 1 where Nc is the number of cores – four in our platform. Further,
the model assumes that for every τa request its contenders have one request
of the worst type, i.e., causing the longest contention on it that in our archi-
tecture corresponds to lmd and smd (indistinctly referred to as xmd). Hence,
fTC assumes that each request of τa is delayed 31 cycles = lsmd = llmd by
each contenders’ request. Overall, fTC builds a set of enlarged execution time
observations as shown in Eq. (2), where ni

a is the total number of request that
τa performs in run ri.

eetia = oetia + Δi,fTC
cont = oetia +

[
ni

a × (Nc − 1) × lxmd
]

(2)

6 pTC Model

The fTC model may result in noticeably pessimistic WCET estimates. The par-
tially Time Composable (pTC) model presented in this section trades time com-
posability to tighten WCET estimates. With pTC [12], the user can yet enjoy
benefits of incremental integration with small effort to assess time composability.
The pTC model, instead of assuming Nc−1 contenders, takes the actual number
of running τa contenders. Also, unlike fTC, pTC tracks the number of requests
of each type. This offers a powerful solution to tighten WCET estimates with a
reasonable low impact on time composability. pTC assumes that an upper bound
to the number of contenders’ request of each type can be derived.

The pTC model derives the impact that the number of requests for each
contender task τb can cause on τa. Ideally, we would like to have a PMC for the
number of requests of each type made by the task. We refer to that ideal counter
as nxxx where xxx corresponds to one of the types in Table 1. However, in the
target platform there is not a specific set of PMCs measuring those values as
shown in Table 2, which lists the relevant PMCs we used.

We performed an analysis of the relation we derive among the events needed
by the pTC model and the PMCs in the architecture (pmcyyy) as shown in
Fig. 5: the number of loads to L2 (nl) matches the number of misses to the
dc and the ic (pmcdcm + pmcicm); the number of stores matches pmcst; and
the number of misses pmcm covers those caused by clean and dirty evictions
(pmcm = nlmc +nsmc +nlmd +nsmd). Further, the number of stores nst matches
pmcst = nsh + nsmd + nsmc.

With the existing PMC we approximate the number of requests of each type
made by each contender task. In doing so, we take into account the request
latency so that the resulting impact that τb causes on τa derived with PMCs is
an upperbound to the actual one we would derive if we had the ideal PMCs.
The approach consists in upper bounding high-latency requests first, which in
our architecture are dirty misses (lmd and smd).

110 E. Dı́az et al.

Fig. 5. Events and PMCs Fig. 6. Pairing steps

Bounding Dirty Misses: The number of L2 misses evicting a dirty line is
upper bounded by the minimum between the number of stores (nst = pmcst)
that cause lines to be dirty and the number of L2 misses (nm = pmcm) that
evict cache lines, see left part of Eq. (3).

n̂md = min(pmcm, pmcst) → ňmc = pmcm − n̂md (3)

Since nm = nmd +nmc, the approximation in Eq. (3) may result in assuming
that some misses generate dirty evictions while, in reality, they do not, thus
introducing some pessimism. In particular, it results in a lower bound to the
number of clean misses (ňmc), see the right side of Eq. (3).

Bounding Load Hits: The number of loads that hit in cache is upper bounded
by the minimum between the number of hits (nh) and the number of loads (nl)
to the L2, see Eq. (4). They are respectively computed from PMCs as follows:

The number of loads performed to the L2 cache (nl) equals the number of
misses in the dc and ic, i.e., nl = pmcicm+pmcdcm. Note that the number of loads
to the L2 includes hits and misses (dirty and clean), i.e., nl = nlh +nlmc +nlmd.

The number of hits in L2, nh is obtained with existing PMCs as nh =
(pmcicm + pmcdcm + pmcst) − pmcm, that is, the number of read/write accesses
to the L2, which include load misses in the ic and the dc plus stores (due to the
write-through policy of the dc cache), minus the number of L2 misses. Note that
pmcm does only count the number of direct misses. More specifically, it does not
count the number of memory accesses due to write backs.

n̂lh = min(nh, nl) → ňsh = nh − n̂lh (4)

Since nh = nlh + nsh, a lower bound to the number of store hits is derived
as shown in the right side of Eq. (4).

Bounding Contention: Once bounds to τb accesses have been computed, the
pTC model assumes that requests from τb delay τa requests by their respective
mcd. This is implemented by iteratively “pairing” each request from a run ri of
τa with one request of τb from worst to best latency, see Fig. 6.

1. First, the number of requests from task τb of type miss dirty (n̂md), i.e.
the type with highest mcd, that contend with requests of τa, ni

a, is given

MC2 111

by: ĉmd = min(ni
a, n̂md

b). Hence the number of unpaired requests from τa is
n′i

a = max(0, ni
a − ĉmd

b) requests of τa unpaired.
2. Those n′i

a requests contend with ňmc (second most impacting type) requests of
τb: čmc = min(n′i

a , ňmc
b). This results in n′′

a = max(0, n′i
a − čmc) τa’s unpaired

requests.
3. Those n′′i

a requests contend with n̂lh
b (third most impacting type) requests of

τb: ĉlh = min(n′′i
a , n̂lh

b) with n′′′
a = max(0, n′′i

a − ĉlh) requests unpaired.
4. Finally, the n′′′i

a remaining τa’s requests contend with ňsh
b (fourth most

impacting type) requests of τb: čsh = min(n′′′i
a , ňsh

b). With the remaining
τa’s request n′′′′i

a = max(0, n′′′i
a − čsh) not contending with any request of τb.

The obtained pTC contention is the result of assuming that each of these
contentions among τa and its contender τb are aligned in the worst way, causing a
contention delay as long as each τb request (see Eq. (5)). This process is repeated
for the other potential contender tasks τc and τd. The overall pTC contention
bound is given by Eq. (6).

Δi,pTC
τb→τa = (ĉmd × lmd) + (čmc × lmc) + (ĉlh × llh) + (čsh × lsh) (5)

Δi,pTC
cont = Δi,pTC

τb→τa + Δi,pTC
τc→τa + Δi,pTC

τd→τa (6)

Other Considerations. The fTC model has the advantage of breaking the
dependence between scheduling and WCET. In an exact model, the WCET
figure to be used depends on the schedule of tasks, which creates a circular
dependence as WCET is also an input for deriving a feasible schedule. This
issue has been initially tackled by an iterative approach to simultaneously attack
WCET and scheduling [10]. With fTC the WCET estimate is not affected by the
load contender tasks put on the shared resources, and hence it does not depend
on task scheduling. However, this comes at the cost of inflated WCET estimates.

It is worth noting that the principles of the presented model does not only
apply to the studied processor but also to other multicore processors. In order
to adapt the model, it is necessary to understand the type of events using the
shared resource and their duration. The quality of the results, however, depends
on the PMC support available and the accuracy it guarantees in tracking the
desired events, see Fig. 5. As part of our current work we are extending the model
to multicore processors in other domains, e.g., automotive.

7 Experimental Results

We first demonstrate our combined approach on a synthetic application and then
with benchmarks of the EEMBC Automotive suite [28].

Hardware Setup. We used an FPGA implementation of the LEON3 [2] plat-
form, as introduced in Sect. 3. Each core comprises separate 16KB 4-way set-
associative L1 caches for instruction and data, with write-through, no write
allocate policy. The cache hierarchy is complemented by a shared 128KB 4-way

112 E. Dı́az et al.

unified L2 cache, with write-back policy. An AMBA AHB bus provides connec-
tions among private caches, the L2 and the DRAM memory controller. In our
setting, we configured the L2 to be partitioned among cores (contention is still
to be suffered on bus accesses), so each core has a 32 KB direct-mapped L2.

MBPTA Setup. We applied MBPTA to the target program, considering 10−12

as the pWCET exceedance probability threshold of interest. We collected 3,000
runs to meet the representativeness requirements, as determined by the ReVS
method [24]. The obtained set of observations successfully passed the statistical
independence and identical distribution tests, prerequisites to the application of
EVT, and allowed MBPTA to converge on a pWCET distribution.

7.1 Synthetic Application

Our synthetic application resembles an “aggressive” program uniformly accessing
the shared bus for 30% of its execution time. It consists of several functions
that are sequentially accessed within a loop a total of one hundred times. Each
function comprises a variable number of instructions, performing a mixture of
purely arithmetic and read/write operations.

Our empirical evaluation proceeds through two incremental steps. First, we
assess the effectiveness of software randomization in enabling MBPTA to capture
intra-core cache jitter. To that end, we execute and analyze our program in
isolation (i.e., no contention at all), in a simple single-core setup. Second, we
show how the results in isolation can be complemented with the analysis of
inter-core contention jitter. We therefore assess our analytical model, combining
cache and contention jitter, against representative execution scenarios where all
cores in the system are concurrently enabled.

Fig. 7. Results of TASA and MBPTA on a single-core setup.

Capturing Cache Jitter. We exploited TASA to enable MBPTA to capture
the execution time variability incurred by caches. To this extent, we analyzed
our application in a single-core setup, guaranteeing complete isolation. Figure 7
reports the pWCET distribution computed by MBPTA for the target program.

MC2 113

Observed values are upperbounded by the MBPTA projection and pWCET
result is obtained by selecting the value of the projection at the 10−12 exceedance
threshold. In this case the pWCET distribution is particularly close to the max-
imum observed execution time (MOET). It is worth noting that, since plain
observed values do not provide any worst-case guarantee, it is common (though
pretty unscientific) industrial practice to resort to a fudge factor to account for
unknown factors. This factor is typically in the order of magnitude of 20% of the
MOET. Notably, the pWCET computed with MBPTA is not only much tighter
than the 20% margin, but also comes with scientific reasoning.

Multicore Contention. The MC2 approach extends single-core pWCET esti-
mates by capturing the effect of inter-core contention through a contention model
based on PMCs. In order to assess the precision of our analytical model, we
performed a set of experiments on representative execution scenarios where all
cores in the system are concurrently enabled and compared against the results
of our analytical (fTC and pTC) models. In our setting and platform, the the-
oretical worst-case inter-core contention suffered by an application corresponds
to the fTC scenario where all bus access requests are triggered one cycle after
the reserved slot and all other cores already have pending requests, each one
incurring the latency of a L2 dirty-miss. While being fully time-composable, this
scenario can be extremely pessimistic in practice as it can only occur under
extremely bad and rare overlapping of bus requests and cache miss patterns.

fTC. We consider first the fTC contention model as it is used as a reference
for the pTC one. Our application, τa, is executed under two different scenarios
of contention: (1) against three stressing kernels performing loads that miss in
L2 (i.e., clean misses) and (2) against three stressing kernels performing stores
in L2 overwriting data (i.e., dirty misses). Figure 8 shows the execution time of
τa under the two scenarios of contention and the bound derived with the fTC
model. Values are normalized against the MOET from baseline observations (i.e.,
no contention). As expected the model is accurate when the execution conditions
are matching the fTC assumptions (i.e., worst request latencies and alignment).
In practice, contenders will not generate those overly-conflictive scenarios. The
pTC model cures the pessimism coming from the worst-case latency assumption.

pTC. To compare the accuracy of the pTC model and how it adapts to con-
tenders’ load on the bus, we run our application τa against three copies of a
benchmark that performs a variable number of bus accesses depending on the
configuration, which we express as a percentage of τa accesses. Figure 9 com-
pares the observed execution times against the predictions of the pTC model.
Results from applying the fTC are included as well for the sake of comparison.
As expected, the fTC model yields pessimistic pWCET estimates. Conversely,
we observe that the pTC model computes pWCET estimates decrease in paral-
lel with the load put by contenders on the shared bus. Note that the difference
among fTC and pTC − 100% is that the former assumes that all requests con-
tribute the worst-case latency (dirty misses), whereas the latter accounts for the
actual type of requests of the contenders. For any value of p, e.g., pTC − 40%,

114 E. Dı́az et al.

N
or

m
al

iz
ed

 w
.r.

t.
ex

ec
tim

e
in

 is
ol

at
io

n

0

1

2

3

4

5

6

clean
misses

dirty
misses fTC

Fig. 8. Execution time when c(τa) cre-
ate clean/dirty misses and fTC.

W
C

E
T

 @
10

e-
12

 w
.r.

t.
is

ol
at

io
n

0

1

2

3

4

5

6

fT
C-p

re
d

pT
C10

0-
pr

ed

pT
C10

0-
ob

s

pT
C80

-p
re

d

pT
C80

-o
bs

pT
C60

-p
re

d

pT
C60

-o
bs

pT
C40

-p
re

d

pT
C40

-o
bs

pT
C20

-p
re

d

pT
C20

-o
bs

Fig. 9. Result of the pTC under dif-
ferent load scenarios generated by the
contenders

the derived pWCET@10−12 with pTC tightly upperbounds the actual observed
value.

All in all this synthetic evaluation confirms that the MC2 method effectively
captures both cache and multicore contention into pWCET estimates that are
analytically reliable and tightly upperbounding the observed values.

7.2 EEMBC

To further evaluate our approach we applied MC2 on the EEMBC automotive
benchmarks [28]. In particular, we analyzed a2time, cacheb, idctrn, iirflt,
puwmod, and tblook on the same platform. Figure 10 reports, for each bench-
mark, MOET in both singlecore and multicore scenarios, and the results of the
fTC and pTC models. For the pTC model contention was generated by deploy-
ing three copies of the benchmark itself. All results are normalized with respect
to the multicore MOET.

EEMBC

E
xe

cu
tio

n
tim

e
w

.r.
t.

m
ul

tic
or

e

0.0

0.5

1.0

1.5

2.0

12

a2tim
e

9

cacheb

10

idctrn

8

iirfl
t

13

puwmod

12

tblook

Singlecore Multicore pTC fTC

Fig. 10. Results of EEMBCs against 3 copies of themselves

First we observe that fTC WCET estimate are in general extremely high
(∼11x). This is explained by the fact that fTC model assumes not only the

MC2 115

worst-case alignment scenario but also the worst-case latencies for each con-
tender access, which is generally unrealistic. The pTC model, instead, provides
quite good results, with all values below 1.5x the multicore MOET. The only pes-
simism in the pTC model comes from its conservative assumptions on the align-
ment of requests. pTC estimates provides a good compromise between tightness
and flexibility: a further reduction in pessimism cannot be had without exact
knowledge on how bus accesses interleave, which is not flexible and typically too
difficult to derive.

8 Related Work

Several approaches have been proposed to account for inter-core contention by
computing an upper bound to the delay a task or application may suffer [11].
Some of those approaches require extending classic timing analysis framework to
account for the effect of shared resources [4], but they are generally unsustain-
able owing to the entailed computational complexity. Other approaches suggest
a separate (compositional) analysis approach [6,29,30]. They propose a separate
analysis for contention and, frequently, rely on splitting tasks into sub-tasks or
phases so that worst-case alignment in (typically) TDMA-based arbiters can
be reasonably computed. Assuming that tasks can be split into phases allows
refining the analysis model and reducing the overall pessimism; however, this
assumption is quite application-dependent and cannot be generalized. More-
over, the above approaches typically rely on insightful information on all the
applications in the system and a preliminary static analysis step to characterize
the pattern of memory accesses. Conversely, the contention analysis approach
we rely on limits the pessimism while at the same time making no assumption
on how memory accesses are distributed. Our model only requires support for
PMCs, which is often available (though at variable extent) in COTS platforms.

Other approaches make use of specific hardware and/or RTOS mechanisms
to enforce precomputed bounds to the maximum contention caused/suffered at
run time [25,27]. While interesting, those approaches do rely on domain-specific
and custom run-time hardware mechanisms that are not typically available, and
yield results that are only valid under the specific task set and system configu-
ration. Our approach, instead, derives bounds on the inter-core contention that
are at the same time realistic and only partially dependent on the co-runners
characteristics, as a first step towards enabling incremental development and
qualification.

The use of PMCs to model contention and derive an upper bound to multi-
core contention delays has been originally introduced in [16], where the analytical
model for fTC and pTC is tailored to the NGMP platform. In this work, we
readapt the same concept to the MBPTA framework and combines the con-
tention model in [16] (adapted to the LEON3) with software randomization to
provide holistic pWCET bounds, accounting for both cache jitter and contention
effects.

116 E. Dı́az et al.

9 Conclusions

We have proposed MC2, a technique for COTS multilevel-cache multicores that
derives WCET estimates factoring in the jitter generated by caches and multicore
contention. To that end, each measurement fed in input to MBPTA systemati-
cally accounts for the impact of both resources, effectively enabling MBPTA to
factor them in when deriving pWCET estimates. Our results on a COTS plat-
form confirm that MC2 effectively captures the impact of both multi-level cache
variability and inter-core contention in realistic WCET estimates, that tightly
upperbound observed values.

Acknowledgments. This work has been partially supported by the Spanish Min-
istry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and
the HiPEAC Network of Excellence. Jaume Abella has been partially supported by
the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.
Carles Hernández is jointly funded by the MINECO and FEDER funds through grant
TIN2014-60404-JIN. Authors would like to thank Pedro Benedicte for his technical
feedback on the camera ready version of this article.

References

1. Abella, J., Hernandez, C., Quinones, E., Cazorla, F.J., Conmy, P.R., Azkarate-
askasua, M., Perez, J., Mezzetti, E., Vardanega, T.: WCET analysis methods:
pitfalls and challenges on their trustworthiness. In: 2015 10th IEEE International
Symposium on Industrial Embedded Systems (SIES), pp. 1–10. IEEE (2015)

2. Gaisler, A.: Leon3 Processor (2016). http://www.gaisler.com/index.php/products/
processors/leon3

3. Buttle, D.: Real-time in the prime-time, ETAS GmbH, Germany. In: Keynote talk
at 24th Euromicro Conference on Real-Time Systems, Pisa, Italy (2012)

4. Chattopadhyay, S., Chong, L.K., Roychoudhury, A., Kelter, T., Marwedel, P., Falk,
H.: A unified WCET analysis framework for multi-core platforms. In: 2012 IEEE
18th Real Time and Embedded Technology and Applications Symposium, pp. 99–
108, April 2012

5. Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T., Kosmidis,
L., Abella, J., Mezzetti, E., Quinones, E., Cazorla, F.J.: Measurement-based prob-
abilistic timing analysis for multi-path programs. In: 2012 24th Euromicro Confer-
ence on Real-Time Systems (ECRTS), pp. 91–101. IEEE (2012)

6. Dasari, D., Nelis, V., Akesson, B.: A framework for memory contention analysis in
multi-core platforms. Real Time Syst. 52(3), 272–322 (2016). http://dx.doi.org/
10.1007/s11241-015-9229-9

7. Edelin, G.: Embedded systems at THALES: the Artemis challenges for an indus-
trial group. In: Lecture at ARTIST Summer School, Autrans, France (2009)

8. Federal Aviation Administration, Certification Authorities Software Team
(CAST): CAST-32A Multi-core Processors (2016)

9. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley,
New York (1968)

http://www.gaisler.com/index.php/products/processors/leon3
http://www.gaisler.com/index.php/products/processors/leon3
http://dx.doi.org/10.1007/s11241-015-9229-9
http://dx.doi.org/10.1007/s11241-015-9229-9

MC2 117

10. Fernandez, G., Abella, J., Quiones, E., Fossati, L., Zulianello, M., Vardanega,
T., Cazorla, F.J.: Seeking time-composable partitions of tasks for cots multicore
processors. In: 2015 IEEE 18th International Symposium on Real-Time Distributed
Computing, pp. 208–217 (2015)

11. Fernandez, G., Abella, J., Quiñones, E., Rochange, C., Vardanega, T., Cazorla,
F.J.: Contention in multicore hardware shared resources: understanding of the
state of the art. In: OASIcs-OpenAccess Series in Informatics, vol. 39. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

12. Fernandez, G., Jalle, J., Abella, J., Quiñones, E., Vardanega, T., Cazorla, F.J.:
Resource usage templates and signatures for cots multicore processors. In: Pro-
ceedings of the 52nd Annual Design Automation Conference (DAC 2015) (2015)

13. Fernández, M., Gioiosa, R., Quiñones, E., Fossati, L., Zulianello, M., Cazorla,
F.J.: Assessing the suitability of the NGMP multi-core processor in the space
domain. In: Proceedings of the Tenth ACM International Conference on Embedded
Software (EMSOFT 2012), NY, USA, pp. 175–184 (2012). http://doi.acm.org/10.
1145/2380356.2380389

14. Hernandez, C., Abella, J., Gianarro, A., Andersson, J., Cazorla, F.J.: Random
modulo: a new processor cache design for real-time critical systems. In: 2016 53rd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2016

15. International Organization for Standardization: ISO/DIS 26262. Road Vehicles -
Functional Safety. ISO, Geneva, Switzerland (2009)

16. Jalle, J., Fernandez, M., Abella, J., Andersson, J., Patte, M., Fossati, L., Zulianello,
M., Cazorla, F.J.: Bounding resource contention interference in the next-generation
microprocessor (NGMP). In: 8th European Congress on Embedded Real Time
Software and Systems (ERTS 2016) (2016)

17. Kosmidis, L., Quiones, E., Abella, J., Vardanega, T., Broster, I., Cazorla, F.J.:
Measurement-based probabilistic timing analysis and its impact on processor archi-
tecture. In: Euromicro Conference on Digital System Design (2014)

18. Kosmidis, L., Vargas, R., Morales, D., Quiones, E., Abella, J., Cazorla, F.J.: TASA:
toolchain-agnostic static software randomisation for critical real-time systems. In:
International Conference on Computer-Aided Design, pp. 1–8 (2016)

19. Kosmidis, L., Abella, J., Quiñones, E., Cazorla, F.J.: A cache design for probabilis-
tically analysable real-time systems. In: Proceedings of the Conference on Design,
Automation and Test in Europe (DATE 2013) (2013)

20. Kosmidis, L., Curtsinger, C., Quiñones, E., Abella, J., Berger, E., Cazorla, F.J.:
Probabilistic timing analysis on conventional cache designs. In: Proceedings of the
Conference on Design, Automation and Test in Europe (DATE 2013) (2013)

21. Kosmidis, L., Quiñones, E., Abella, J., Farrall, G., Wartel, F., Cazorla, F.J.: Con-
taining timing-related certification cost in automotive systems deploying complex
hardware. In: Proceedings of the 51st Annual Design Automation Conference (DAC
2014), pp. 22: 1–22: 6, NY, USA (2014). http://doi.acm.org/10.1145/2593069.
2593112

22. Law, S., Bate, I.: Achieving appropriate test coverage for reliable measurement-
based timing analysis. In: 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pp. 189–199, July 2016

23. Mezzetti, E., Vardanega, T.: A rapid cache-aware procedure positioning optimiza-
tion to favor incremental development. In: Real-Time and Embedded Technology
and Applications Symposium (RTAS), pp. 107–116, April 2013

24. Milutinovic, S., Abella, J., Cazorla, F.J.: Modelling probabilistic cache representa-
tiveness in the presence of arbitrary access patterns. In: International Symposium
on Real-Time Distributed Computing (ISORC), pp. 142–149, May 2016

http://doi.acm.org/10.1145/2380356.2380389
http://doi.acm.org/10.1145/2380356.2380389
http://doi.acm.org/10.1145/2593069.2593112
http://doi.acm.org/10.1145/2593069.2593112

118 E. Dı́az et al.

25. Nowotsch, J., Paulitsch, M., Bhler, D., Theiling, H., Wegener, S., Schmidt,
M.: Multi-core interference-sensitive WCET analysis leveraging runtime resource
capacity enforcement. In: Euromicro Conference on Real-Time Systems (July 2014)

26. Nowotsch, J., Paulitsch, M., Henrichsen, A., Pongratz, W., Schacht, A.: Monitoring
and WCET analysis in COTS multi-core-SoC-based mixed-criticality systems. In:
Conference on Design, Automation & Test in Europe (DATE) (2014)

27. Paolieri, M., Quiñones, E., Cazorla, F.J., Bernat, G., Valero, M.: Hardware sup-
port for WCET analysis of hard real-time multicore systems. In: 36th Annual
International Symposium on Computer Architecture (ISCA) (2009)

28. Poovey, J.A., Conte, T.M., Levy, M., Gal-On, S.: A benchmark characterization of
the eembc benchmark suite. IEEE Micro 29(5), 18–29 (2009). http://dx.doi.org/
10.1109/MM.2009.74

29. Schliecker, S., Negrean, M., Nicolescu, G., Paulin, P., Ernst, R.: Reliable perfor-
mance analysis of a multicore multithreaded system-on-chip. In: 6th International
Conference on Hardware/Software Codesign and System Synthesis (CODES 2008)
(2008)

30. Schranzhofer, A., Chen, J.J., Thiele, L.: Timing analysis for TDMA arbitration
in resource sharing systems. In: 16th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS) (2010)

31. Wartel, F., Kosmidis, L., Lo, C., Triquet, B., Quiones, E., Abella, J., Gogonel, A.,
Baldovin, A., Mezzetti, E., Cucu, L., Vardanega, T., Cazorla, F.J.: Measurement-
based probabilistic timing analysis: lessons from an integrated-modular avionics
case study. In: International Symposium on Industrial Embedded Systems (2013)

32. Wartel, F., Kosmidis, L., Gogonel, A., Baldovin, A., Stephenson, Z., Triquet, B.,
Quiñones, E., Lo, C., Mezzetti, E., Broster, I., Abella, J., Cucu-Grosjean, L.,
Vardanega, T., Cazorla, F.J.: Timing analysis of an avionics case study on complex
hardware/software platforms. In: Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, pp. 397–402 (2015). http://dl.acm.org/
citation.cfm?id=2755753.2755843

33. West, A.: NASA Study on Flight Software Complexity. Final Report. Technical
report, NASA Excellence Program (2009)

34. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem: overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst.
7(3), 36: 1–36: 53 (2008). http://doi.acm.org/10.1145/1347375.1347389

http://dx.doi.org/10.1109/MM.2009.74
http://dx.doi.org/10.1109/MM.2009.74
http://dl.acm.org/citation.cfm?id=2755753.2755843
http://dl.acm.org/citation.cfm?id=2755753.2755843
http://doi.acm.org/10.1145/1347375.1347389

Programming Models

Lock Elision for Protected Objects Using Intel
Transactional Synchronization Extensions

Seongho Jeong, Shinhyung Yang, and Bernd Burgstaller(B)

Department of Computer Science, Yonsei University, Seoul, Korea
{seongho.jeong,shinhyung.yang,bburg}@yonsei.ac.kr

Abstract. Lock elision is a technique to replace coarse-grained locks
by optimistic concurrent execution. In this paper, we introduce lock eli-
sion for protected objects (POs) in Ada. We employ Intel Transactional
Synchronization Extensions (TSX) as the underlying hardware trans-
actional memory facility. With TSX, a processor can detect dynami-
cally whether tasks need to serialize through critical sections protected
by locks. We adapt the GNU Ada run-time library (GNARL) to elide
locks transparently from protected functions and procedures. We criti-
cally evaluate opportunities and difficulties of lock elision with protected
entries. We demonstrate that lock elision can achieve significant perfor-
mance improvements for a selection of three synthetic and one real-world
benchmark. We show the scalability of our approach for up to 44 cores
of a two-CPU, 44-core Intel E5-2699 v4 system.

1 Introduction

Since the advent of multicore processors, software developers have been rely-
ing on multi-threaded software to achieve performance improvements. Multi-
threaded software requires synchronization to protect data shared among mul-
tiple threads. Locks allow to transform code into a critical section, which is a
block of code that can only be executed by one thread at a time. This prop-
erty of critical sections is called mutual exclusion. Employing locks to achieve
mutual exclusion is well-understood and the most prevalent form of synchro-
nization. However, because threads serialize to gain access to shared data, locks
negatively impact performance and hamper scalability.

A coarse-grained lock protects a large amount of shared data and thus is
prone to become a highly-contended scalability bottle-neck. Fine-grained lock-
ing protects shared data at a finer granularity, which allows a higher degree
of parallel access because empirically not all threads require access to the same
data-item. To achieve fine-grained locking, a programmer must partition a shared
data-structure into parts and introduce a mutual exclusion lock for each part.
E.g., instead of protecting an entire linked list with a single, coarse-grained
lock, individual list nodes can be protected by a lock. This thought-process is
error-prone and complex: obtaining locks without a global order among locks
(a locking hierarchy) will result in dead-locks, and the higher degree of par-
allelism associated with fine-grained locking makes race-conditions harder to
avoid.
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 121–136, 2017.
DOI: 10.1007/978-3-319-60588-3 8

122 S. Jeong et al.

Lock-free programming relies on hardware primitives to provide concurrent
operations on data-structures [15,20]. Although such algorithms provide high
scalability, they are mostly complex.

Lock elision [22] is a technique to reduce serialization with lock-based code.
The key insight with lock elision is that many dynamic data sharing patterns
among threads do not conflict and thus do not require the acquisition of a lock.
E.g., a concurrent hash-map [11] contains multiple key-value pairs. Two threads
updating different keys will not conflict and hence do not require serialization
(locking). Serialization is only required among threads updating the same key’s
value.

With lock elision, a thread will speculatively execute a critical section (called
transactional region) without acquiring the associated lock (the lock is said to be
elided). In the absence of inter-thread data conflicts, the memory updates (write
operations) of the thread are committed to memory. If a data conflict with
another thread is detected, speculative execution of the transactional region is
aborted and the thread’s write operations are not committed to memory. The
failed thread must then re-execute the transactional region. With lock elision,
programmers are thus granted the convenience of using coarse-grained locks,
which will exhibit the scalability of fine-grained locking in the absence of inter-
thread data conflicts.

To detect data conflicts and ensure an atomic commit of a thread’s memory
updates, a read-set and a write-set are maintained for a transactional region.
The read-set consists of addresses the thread read from within the transactional
region, and the write-set consists of addresses written to within the transactional
region. The updates to the write-set will be committed atomically to memory in
the absence of data conflicts (see Definition 1), and discarded otherwise.

Definition 1. Data Conflict. Assume a thread executing a transactional
region. A data conflict occurs if another thread either reads a location that is
part of the transactional region’s write-set or writes a location that is a part of
either the read- or write-set of the transactional region (adopted from [17]).

Lock elision requires hardware support to be efficient. Recent CPU architec-
tures from Intel, IBM and Sun/Oracle provide hardware transactional memory
(TM) extensions [13,17,27], which allow a processor to dynamically detect data
conflicts. (Transactional memory was originally proposed in 1993 by Herlihy and
Moss [14].).

In this paper, we focus on lock elision for protected objects (POs) in Ada. As
the underlying hardware mechanism we employ Intel TSX [17]. To the best of
our knowledge, lock elision for Intel TSX until now has only been attempted with
mutual exclusion locks in C and C++ [18,28]. In contrast, Ada’s POs [24] imple-
ment the monitor concept [16]. The PO synchronization mechanism goes beyond
“plain” mutual exclusion, because POs provide protected functions, procedures
and entries. Protected functions do not update shared data and hence multiple
protected functions of a PO may execute in parallel. Protected procedures and
entries require mutual exclusion. Protected entries provide programmed guards
for conditional synchronization.

Lock Elision for Protected Objects 123

Introducing lock elision with the Ada PO implementation is a promising con-
cept, because it will make coarse-grained concurrent data-structures susceptible
to fine-grained locking, at the cost of no or only minor changes of the application
source-code. Our paper makes the following contributions:

1. We adapt the GNU Ada run-time library (GNARL) to elide locks transpar-
ently from protected functions and procedures.

2. We investigate opportunities and difficulties for lock elision with protected
entries. We outline two possible elision schemes for protected entries.

3. We experimentally evaluate our approach for a selection of three synthetic
benchmarks and one real-world benchmark. We show the scalability of our
approach for up to 44 cores of a two-CPU, 44-core Intel E5-2699 v4 system.

4. We provide programming- and language-design directions to leverage the par-
allelism obtainable from lock elision with POs in Ada.

The remainder of this paper is structured as follows. In Sect. 2, we discuss lock
elision for Ada POs. Section 3 contains our experimental results. We discuss the
related work in Sect. 4 and draw our conclusions in Sect. 5. For an accessible
introduction to Intel TSX, we refer the reader to [18,23].

2 Lock Elision with GNARL

To access the Intel TSX instruction set extensions from Ada code, we created a
package with a procedural interface to each TSX instruction. The specification
of this package is depicted in Fig. 1.

A transaction is started via instruction xbegin. Upon execution of xbegin,
the processor returns the value XBEGIN STARTED in the EAX-register and “mem-
orizes” the next instruction’s address. When the processor detects a data conflict,
it will abort the transaction and transfer control to this “memorized” address.
The processor commits a transaction when it reaches instruction xend. The
memory updates of a transaction become visible to other processors (and cores)
when the transaction commits. A commit happens atomically. Instruction xtest
allows software to test whether the processor is currently inside a transaction.
Instruction xabort allows software to explicitly abort the current transaction.

Whenever a transaction aborts, control is transferred to the address “mem-
orized” by xbegin. In case of an abort, the processor sets a specific bit in the
EAX register to signal the type of conflict which caused the abort. Unless the
EAX value is 0xffffffff, which denotes XBEGIN STARTED, software must make a
decision whether to retry or fall back to the locking code. Note that there is no
guarantee from the processor that a transaction will eventually succeed. Thus,
the fall-back path with the conventional lock-based code is required.

We employ inline assembly to emit bytes corresponding to Intel TSX instruc-
tions. Figure 2 depicts our implementation for the xbegin instruction. The
remaining TSX instructions are implemented in a similar manner.

124 S. Jeong et al.

Fig. 1. Specification of package TSX inst to use Intel TSX with Ada

Fig. 2. Ada implementation for TSX instruction xbegin

2.1 Lock Elision for Protected Functions and Procedures

The Ada 2012 RM [24, Chap. 9.5.1(5)] states that execution of a protected pro-
cedure requires exclusive read-write access to the PO. Speculative execution of
critical sections with elided locks does not fulfill this requirement. Rather, seri-
alization is achieved by re-executing a critical section in case of a transactional
abort [18,23].

GNARL employs one lock per PO for synchronization. We perform lock eli-
sion of such locks as follows. (1) Check if the lock is free. If not, wait until it is
released by another task. (2) Once the lock is free, the task starts its transaction
without actual lock acquisition, and executes the critical section (the body of a
protected function or procedure). (3) If the task proceeds through the critical
section without a data conflict, it commits the updates in the write-set to mem-
ory (where they become visible to other tasks). During this entire process, the
lock appears to be free to all tasks.

Lock Elision for Protected Objects 125

Because transactions tend to abort frequently, we must keep the existing
lock-based code as a fall-back solution (to prevent infinite aborts). If any single
task proceeds with the lock-based code, all other tasks competing for access to
the PO must wait (serialize) until the lock is released (alike the conventional
GNARL implementation).

Fig. 3. Elision of a PO lock in GNARL (in pseudo-code). Try Elision is called from
procedure Write Lock before entering a critical section. The call returns either inside
of a transaction (line 20) or to acquire the PO’s lock (lines 25 and 35). Only in the
first case will the lock be elided.

Figure 3 depicts the PO lock elision scheme that we implemented within
GNARL. Procedure Write Lock is called from inside GNARL before enter-
ing a PO’s critical section. In our implementation, Write Lock calls proce-
dure Try Elision to attempt lock elision. The transaction retry count is ini-
tialized in line 14, before the start of the transaction. Line 16 (xbegin) marks
the start of the transaction. If the PO’s lock is found open, Try Elision returns
in transactional mode (line 20). Otherwise, a task will abort the transaction (in
line 22). The abort will transfer control to line 16 and from there to line 31,
where the task will wait until the lock becomes available. If retry exceeds

126 S. Jeong et al.

MAX RETRY, procedure Try Elision terminates the retry-loop and returns “fail”
(line 35). As a result, procedure Write Lock will acquire the PO’s lock (line 4)
and return in non-transactional mode. Note that line 4 can only be reached in
non-transactional mode.

The GNARL function for exiting a critical section is conceptually much sim-
pler and has been omitted due to space constraints.

We require read-access to the PO’s lock to detect data conflicts. If task A
is inside a transaction and task B acquires the lock, task A must abort its
transaction. This can be achieved by keeping the PO’s lock in the read-set of
task A’s transaction. However, the lock library underneath GNARL does not
allow to read a lock without changing it. As a work-around, we introduced a
shadow-lock variable per PO lock (as outlined in [5]). The shadow-lock is of type
integer, and we added it to the protected object package inside GNARL. The
original PO lock is used with the lock-based code, but not used with transactions.
The shadow-lock is the one kept in the read-set of a transaction. We set the
shadow-lock if a task acquires the PO’s lock. To ensure atomicity, we use GCC’s
atomic built-in functions to access the shadow-lock.

To improve performance, we applied the following three adjustments. First,
we employ the x86 pause instruction inside the busy-waiting loop used by a
task to wait for a PO lock to be released. The pause instruction is a hint to
the CPU to limit speculative execution, which increases the speed at which the
release of the lock is detected [2]. This optimization yielded a considerable per-
formance improvement. Second, a task attempts transactional execution several
times before falling back to the lock. As depicted in Fig. 3 (lines 10 and 15), a task
tries up to MAX RETRY times to execute a critical section as a transaction. Lastly,
depending on the conflict type, a task may already fall back to the PO lock before
reaching the MAX RETRY limit. On a transaction abort the CPU provides a status
code. If the XABORT RETRY-flag is not set in the status code, the transaction will
not succeed in a re-try either (e.g., if the task attempts a system-call inside the
critical section). If the XABORT CAPACITY-flag is set, the transactional memory
capacity reached its limit. When we detect one of these flags, we fall back to the
conventional lock without further retries. Note that this is a heuristic: depend-
ing on control-flow, a task might refrain from executing a system call during
the retry, or the transactional memory capacity limit was exceeded because of
another task inside of a transaction on the same processor core. (A scenario pos-
sible with processors that support hyperthreads.) Note that in line 29 of Fig. 3 a
task which encountered a data conflict will wait to allow competing tasks to finish
their transactions before re-trying. Procedure Exponential Backoff contains a
busy-waiting loop with the iteration count specified by the procedure’s argu-
ment. The waiting time increases with every unsuccessful re-try (“exponential
backoff”). Thereby situations are avoided where tasks keep mutually aborting
each other’s transactions without overall progress.

Lock elision may not always improve performance. For example, critical sec-
tions which routinely lead to capacity overflow will always fall back to the lock.
Different values for the maximum number of attempted lock-elisions and the

Lock Elision for Protected Objects 127

calibration of the busy-waiting loop (lines 10 and 11 in Fig. 3) will differ across
benchmarks and HW platforms. Putting the before-mentioned tuning parame-
ters and the decision whether to elide a PO lock under programmer control (e.g.,
via a pragma) seems advisable. Alternatively, GNARL itself may be extended
with dynamic profiling capabilities to take decisions at run-time. At the present
stage, we have hand-tuned these values, as described in Sect. 3.

2.2 Lock Elision for Protected Entries

The Ada 2012 RM [24, Chap. 9.5.3(16)] states that queued entry calls with an
open barrier take precedence over all other protected operations of the PO
(known as the “eggshell model”). The reason for this requirement is likely to
avoid starvation, according to the following definition.

Definition 2 Freedom from Starvation: every task that attempts to acquire
the PO eventually succeeds (adopted from [15]).

Obviously, RM Clause 9.5.3(16) restricts the degree of parallelism obtainable
with lock elision: consider Task A queued at an open entry and Task B calling
the same entry (or another entry, or a protected procedure or function of the
PO): Task A is required to proceed first, which requires Task B to serialize
irrespective of inter-task data conflicts.

It should be noted that for many parallel workloads, freedom from starvation
is not a concern (latency and/or throughput is). E.g., both with the “stencil”
and the more general “map” programming pattern from [19], the amount of work
is usually constant and known a priory. The order in which tasks enter a critical
region is immaterial, and it is impossible to starve a task because the amount of
work is bounded. Even if work is not bounded, e.g., with streaming applications,
then individual work items will be bounded, and tasks will synchronize at a
barrier before moving from one work-item to the next.

A not entirely unrelated issue has been discussed by the Ada Conformity
Assessment Authority (ACAA) in June 2016 to allow parallel processing of Ada
standard containers [1].

To elide locks from POs with entries, we have envisioned the following two
schemes.

Permissive Lock Elision. One possible elision-scheme for protected entries is
to waive Clause (16), at least in response to a programmer-supplied PO type
annotation such as a pragma. Protected functions, procedures and entries will
then execute in any order in parallel, subject only to serialization due to inter-
task data conflicts.

Restrictive Lock Elision. A more restrictive scheme will provide a mode-
switch from elided to non-elided, serialized execution as soon as an entry call
enqueues at a closed barrier. Such semantics can be achieved by an is queued-
flag, which is added to the read-set of every PO transaction. The task which is
about to enqueue will write to the is queued-flag, which will abort all ongoing

128 S. Jeong et al.

transactions. Procedure Try Elision from Fig. 3 must be adapted such that no
transactional execution is attempted if the is queued-flag is set. The flag will
be cleared and the PO switched back to elided mode once all queues are empty.

The core part of the Ada language does not specify the order in which entry
queues shall be served. (The real-time systems annex of the Ada RM addresses
(implementation-dependent) queuing policies, which we did not consider for this
paper.) If a first-come-first-served fairness property is not required, parallelism
can be leveraged with the restrictive scheme by allowing the tasks in the front
position of each queue to proceed to the critical section in parallel.

One note is due to the controlling variables that occur in barrier expres-
sions. If these variables are frequently written inside of protected operations,
the success-rate of transactions will be negatively impacted. A possible remedy
can be to encourage programmers to re-queue entry calls from a barrier with
a non-trivial condition to a true barrier after the update of control variables
has been completed. If the PO selectively performs elision for entries with true
barriers, only the barrier evaluation and controlling variable update is serialized,
and the remaining work of the protected operation can proceed in transactional
mode. One example that will benefit from this approach is a grow-able hash-map
which allows insert operations up to a certain load-factor and then temporarily
suspends to grow the hash-map. The number of elements inserted will be a con-
trolling variable for the barrier of the insert operation, and this variable will be
decremented with every insert operation. Without a re-queue to an entry that
performs the actual insertion, the transactional success rate can be expected to
be very low.

3 Experimental Results

To evaluate the effect of lock elision with Ada POs, we selected three synthetic
benchmarks: a concurrent linked-list, Dijkstra’s Dining Philosophers, and a con-
current hash-map. The purpose of the synthetic benchmarks was to study lock
elision in isolation, without perturbing effects that a large application (client)
might incur. We investigated one real-world application, K-means clustering,
from the Stanford Transactional Applications for Multi-Processing (STAMP)
benchmark suite [9,21]. STAMP benchmarks are implemented in C, and we
ported the K-means clustering benchmark to Ada.

In our evaluation, we used GCC/GNAT version 6.3.0. Lock elision for pro-
tected functions and procedures was implemented in GNAT’s run-time system
as described in Sect. 2. We evaluated our benchmarks on a 2 CPU Intel Xeon
E5-2699 v4 system. Each of the E5-2699 CPUs provide 22 cores with 2 hyper-
threads per core. Our evaluation platform runs the CentOS Linux distribution
(version 7.3, kernel version 4.9.4-1).

We employed likwid-pin from the LIKWID tool-suite [3,26] to pin Ada tasks
onto CPU cores. The rationale for task-pinning is to prevent the Linux kernel
scheduler from migrating tasks across CPU cores. Such migrations would oth-
erwise perturb the experiments by (1) increasing the cache coherence overhead

Lock Elision for Protected Objects 129

and (2) increase the transaction failure-rate. The order of our pinning scheme
was to assign one task to each core of the first CPU, then one task to each core
of the second CPU (tasks 1–44 were assigned this way). Note that we did not
use the CPU’s hyper-threading facility in our experimental evaluation.

All performance measurements were conducted using hardware performance
counters. We created a thick Ada binding to the PAPI C-API. PAPI [7,25]
is a library which provides a hardware-independent interface to count micro-
architectural events occurring in a CPU during program run-time. In particular,
we determined CPU cycle counts and the transactional success rate using PAPI.
For the latter, Intel TSX-capable CPUs provide two hardware cycle counters:
(1) the total number of transactional cycles and (2) the number of aborted
transactional cycles.

We ran each experiment consecutively for three times. Workloads (i.e., the
number of times each task would synchronize at a PO), were adjusted such that
a benchmark would execute between 2 and 40 s. For each benchmark execution,
the execution-time of the longest-running task was obtained. The median of
these execution times was reported.

In our lock-elided GNARL implementation, we maintain variable MAX RETRY
to set the number of transactional trials before falling back to lock-based syn-
chronization (see Fig. 3). This variable is a tuning-knob; from our experiments,
the value of this variable has to be larger than the number of participating tasks
to ensure competitive performance. On our 44-core test platform, we set this
value to 200, i.e., a task would try 200x to perform a protected function or pro-
cedure in transactional mode before falling back to the lock. Constant BACKOFF
was set to 10. This set-up was used with all benchmarks.

Linked Lists—A Counter-Example. We start our evaluation with a data-
structure where lock elision is not effective. Our linked lists consist of nodes of the
following type Node, where each node contains a pointer to the next list element.
Because nodes are dynamically allocated, each node ends up in a cache-line of
its own, although the size of a node is only 16 B on a 64 bit architecture.

1 type Node;
2 type pNode i s access Node;
3 type Node i s record
4 value : Integer;
5 next : pNode;
6 end record;

With coarse-grained locking, a single PO would be employed to synchronize
access to a linked list of this type. Each list operation (e.g., insert, lookup, . . .)
will be implemented as a protected operation. If the PO is elided, each list oper-
ation constitutes a transaction. However, traversing a linked list of N nodes will
accumulate N cache-lines in the read-set of this transaction, which we found to
exceed the CPU resources for all but the smallest linked lists. As a consequence,
for linked lists beyond this size constraint, transactions will always fail and fall
back to the lock-based code. For this particular example, transactions aborted
after traversing 100 nodes. This result will vary with the size of the nodes.

130 S. Jeong et al.

0.2

0.4

0.6

0.8

1.0

Number of threads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
ov

er
 2

 th
re

ad
s

w
ith

ou
t e

lis
io

n

Elision Without elision

(a) Execution Time

 60

 70

 80

 90

100

 2 6 10 14 18 22 26 30 34 38 42
Number of threads

Su
cc

es
 ra

te
 (%

)

(b) Transaction Success Rate

 2 6 10 14 18 22 26 30 34 38 42

Fig. 4. Analysis of the Dining Philosophers algorithm at 1 million synchronization
steps (“meals”) per philosopher

From this example, it becomes clear that lock elision cannot be applied in
the general case. Rather, a critical assessment is necessary to decide whether
lock elision will be effective for a given use-case. Such an assessment can be done
by the programmer (if the programming language provides means to explicitly
enable/disable elision), the compiler (through static program analysis), and by
the run-time system (through dynamic program analysis).

For the same reason, it seems preferable to conduct lock elision as part of the
Ada programming language implementation rather than to divert it to a lower
layer such as the glibc library.

Note that for the above example lock elision can be put to work by intro-
ducing fine-grained locking of individual list nodes (see, e.g., [15, Chap. 9.5]).
We did not pursue this direction, because it would constitute re-factoring of the
application source-code rather than lock-elision of course-grained PO locks.

Dining Philosophers. In our implementation of Dijkstra’s Dining Philoso-
phers, each philosopher is an instance of an Ada task type and each fork is
a PO. Fork acquisition is realized as a protected procedure, which guarantees
mutual exclusion. Each fork maintains a state variable that indicates whether a
fork is free or taken. When a philosophers acquires a fork, this state variable is
set to false. That way, neighboring philosophers aiming at the same fork will find
out that the fork is already taken, and re-try calling the acquire procedure until
the fork becomes available. After fork acquisition, a philosopher releases the
forks immediately by calling the forks’ Release procedure (philosophers focus
on synchronization only). Scalability of our proposed lock elision is tested by
increasing the number of philosophers and forks.

Figure 4a compares the execution time of the Dining Philosophers algorithm
with and without lock elision. Execution times are normalized over the execution
time for two philosophers without lock elision. The second normalization factor
is the workload per task (each philosopher performs 1 million synchronization
steps, irrespective of the number of participating philosophers).

Lock Elision for Protected Objects 131

0.5

1.5

2.0

2.5

3.0

3.5

 4 8 12 16 20 24 28 32 36 40 44
Number of threads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
ov

er
 1

 th
re

ad
 w

ith
ou

t e
lis

io
n

Elision Without elision

(a) Execution time for insertion

0.5

1.5

2.0

2.5

3.0

 4 8 12 16 20 24 28 32 36 40 44
Number of threads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
ov

er
 1

 th
re

ad
 w

ith
ou

t e
lis

io
n

Elision Without elision

(b) Execution time for lookup

 60
 70
 80
 90

100

 4 8 12 16 20 24 28 32 36 40 44
Number of threads

Su
cc

es
 ra

te
 (%

)

(c) Transaction success rate for insertion

 60
 70
 80
 90

100

 4 8 12 16 20 24 28 32 36 40 44
Number of threads

Su
cc

es
 ra

te
 (%

)

(d) Transaction success rate for lookup

1.0 1.0

Fig. 5. Concurrent hash-map operations (50 million operations each)

Lock elision shows superior performance from 2 up to 44 tasks. The perfor-
mance gap is at the largest with the 2-task baseline case. The gap is the smallest
for 13 tasks where lock elision suffers from an abnormal increase in execution
time.

Concurrent Hash-Map. A concurrent hash-map has high potential to harness
the benefits of transactional memory, because data accessed by different tasks
tends to be located in different memory locations. The speculative, parallel exe-
cution mechanism provided by transactional memory has thus a high chance to
succeed.

We implemented a concurrent hash-map using coarse-grained locking via a
single PO. Our hash-map provides an insert operation and a lookup function. We
employed open addressing for collision resolution. Our hash-map’s keys are of
type 32 bit unsigned integer, and the value type is Character. We purposefully
used a value type of small size, to prevent the experiment from being perturbed
by costly data movement operations which could arise, e.g., with strings. The
purpose of the experiment was to determine the performance improvement pos-
sible with lock elision.

We processed insertion and lookup with random keys generated by the
random number generator of package Ada.Numerics.Discrete Random. Those
operations were performed in a tight loop. One run of the experiment entailed
50 million insert operations on an empty hash-map, and 50 million lookup

132 S. Jeong et al.

operations on a pre-filled hash-map. Our hash-map was of size 2 × X. Note
that in this experiment, the overall number of operations (50 million) was inde-
pendent of the number of participating tasks. As more tasks are involved, the
number of operations per task decrease.

Figure 5a and b depict the execution times for the insertion- and lookup-
operations. Clearly the global lock (line-graph “Without Elision”) does not scale
to multiple tasks. Because of lock contention, tasks serialize at the PO. The
result with the elided PO (line-graph “Elision”) shows superior scalability and
performance. It should be noted that tasks ran these operations in a tight loop,
which is an unrealistic scenario for real-world applications.

Figure 5c and d illustrate the success rate of transaction cycles. As more tasks
are accessing the PO, the probability of data conflicts during insertion operations
increases. Lookup operations do not write shared data in the hash-map hence a
data conflict with other tasks is unlikely.

K-means Clustering. The K-means algorithm groups objects located in an
N -dimensional space into K clusters. This algorithm is commonly used for data-
mining. The STAMP [9,21] version of the K-means algorithm partitions objects
and employs threads such that each thread processes a subset of objects itera-
tively. With STAMP, a transaction is used to protect the update of the cluster
centers, which occurs during each iteration. The algorithm spends most of the
time computing cluster centers, and data conflicts resulting from cluster center
updates are rare. The algorithm thus benefits from the optimistic concurrency
of transactional memory.

To evaluate the effects of lock elision with K-means clustering in Ada, we
ported the C-implementation from STAMP to Ada. Instead of using transac-
tional memory, we protected the cluster center updates by a PO. Compared to
the previous examples, the percentage of CPU-cycles spent inside of the critical
sections is very small (restricted to the cluster center updates), which results in
smaller impact from lock elision. Figure 6 depicts the performance difference for
elided and non-elided POs for the K-means clustering benchmark. A constant
number of points was clustered for varying numbers of clusters. A larger number
of clusters reduces the potential for data conflicts during the tasks’ joint update
of the cluster centers. Higher-dimensional data points incur more parallelizable
work and hence diminish the non-parallelizable part (i.e., synchronization) rela-
tive to the total amount of work. With ten clusters (Fig. 6a), scalability cannot
be maintained past 18 tasks, because of the high probability of data conflicts. On
the other hand, with 100 clusters of the same dimension (Fig. 6c), performance
does not degrade. This is due to the fact that with 100 cluster centers there
is a lower probability of conflicts than with 10 cluster centers. For data points
of higher dimension (Fig. 6d), the benefit from lock elision diminishes, because
the computation-to-communication ratio increases. Figure 6b clearly shows the
benefits of lock elision for a small computation-to-communication ratio. Lock
elision can decrease the execution time by more than a factor of 5 in this case.

Lock Elision for Protected Objects 133

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 4 8 12 16 20 24 28 32 36 40 44
Number of threads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
ov

er
 1

 th
re

ad
 w

ith
ou

t e
lis

io
n Elision Without elision

(a) 10 clusters of dimension 32

0.2

0.4

0.6

0.8

1.0

 4 8 12 16 20 24 28 32 36 40 44
Number of threads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
ov

er
 1

 th
re

ad
 w

ith
ou

t e
lis

io
n Elision Without elision

(b) 100 clusters of dimension 2

0.2

0.4

0.6

0.8

1.0

 4 8 12 16 20 24 28 32 36 40 44
Number of threads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
ov

er
 1

 th
re

ad
 w

ith
ou

t e
lis

io
n Elision Without elision

(c) 100 clusters of dimension 32

0.2

0.4

0.6

0.8

1.0

 4 8 12 16 20 24 28 32 36 40 44
Number of threads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
ov

er
 1

 th
re

ad
 w

ith
ou

t e
lis

io
n Elision Without elision

(d) 100 clusters of dimension 64

Fig. 6. Execution time of Ada K-means clustering (65536 points)

4 Related Work

In [18], a comprehensive introduction to lock elision with Intel TSX is provided.
The same author implemented lock elision for the glibc library [10]. There,
POSIX mutexes are incorporated with Intel TSX. Lock elision is enabled on
TSX-capable systems via the “--enable-lock-elision=yes” parameter stated
at compile time. While lock elision promises to provide the scalability of non-
blocking synchronization, its actual performance will vary regarding the fre-
quency and cost of data conflicts. The author proposes an “adaptive elision”
policy which is currently used in glibc and subject for improvement. In the
author’s description of the policy, transactional aborts and unsuccessful trans-
actional execution will adaptively enable elision skips for a given period of time.
The author opens possibilities for improving the heuristics in future versions of
the library. It will improve C programs which are built against glibc. However,
such volatility can introduce an unwanted threat to Ada run-time systems. The
Ada programming language strictly specifies the behavior of its protected objects
due to the language’s provision for reliability and safety. Glibc’s lock elision sup-
port depends on the capabilities of the underlying hardware and the adaptive
heuristic elision algorithm which is not directly accessible to Ada programmers

134 S. Jeong et al.

who utilize POs. Our Linked Lists counter example supports the necessity of a
means to assess the practicality of lock elision for each use-case. A more effec-
tive solution is to provide fine-grained lock elision policies for Ada POs tailored
in-line with the design principles of the Ada programming language.

In [28], Yoo et al. apply Intel TSX to a set of benchmarks in the high-
performance computing domain (HPC). They survey a broad spectrum of work-
loads, including a parallel, user-level TCP/IP stack. Their benchmarks are all
implemented in C/C++ and do not contain monitor constructs like Ada’s POs.
Their evaluation is restricted to a 4th generation Intel Core processor with 4 cores
(2 hyperthreads per core). In contrast, we investigated lock elision with Ada POs.
Our evaluation platform is a state-of-the-art 2 CPU 44 cores Xeon E5-2699 v4
system. Our experiments show scalability up to 44 cores in almost all cases.

In previous work on Ada’s protected objects in real-time systems [12], the
term transaction is employed with single atomic primitives (e.g., read-modify-
write operations) in conjunction with lock-free programming. In contrast, our
approach allows to combine multiple statements of a protected procedure into a
transaction, with TSX as the underlying hardware mechanism. The work in [12]
imposes several restrictions to achieve transactional behavior, such as disallowing
the use of multiple memory locations and loop statements. These restrictions
are due to the use of hardware atomic primitives when hardware TM was not
available.

Lock-free data-structures provide concurrent access to shared data without
relying on locks to achieve mutual exclusion [15,20]. They rely on hardware prim-
itives such as a compare-and-swap (CAS) instruction and it is an agreed-upon
fact that the design of lock-free algorithms is complex. Compared to lock elision,
lock-free programming shifts the burden of achieving fine-grained parallelism
to the programmer. Nevertheless, this approach can achieve good scalability.
Both Simple Components [8] and Non-Blocking Ada [6] are collections of lock-
free data-structures implemented in Ada. As of June 2016, the Ada Conformity
Assessment Authority (ACAA) has been concerned with the provision of con-
current access to Ada’s container libraries [1].

5 Conclusions

We have implemented hardware lock elision for protected functions and pro-
cedures in Ada 2012. For entries, we presented two possible schemes for lock
elision, with varying degrees of parallelism. We demonstrated that lock elision
can achieve significant performance improvements. We showed the scalability of
our approach for several benchmarks up to 44 cores of a two-CPU, 44-core Intel
E5-2699 v4 system. To the best of our knowledge, this is the first approach to
lock elision for monitor constructs. Our benchmark source code and the GNARL
implementation have been made available on GitHub [4].

Lock Elision for Protected Objects 135

Acknowledgements. Research supported by the Next-Generation Information Com-
puting Development Program through the National Research Foundation of Korea
(NRF), funded by the Ministry of Science, ICT & Future Planning under grant NRF-
2015M3C4A7065522.

References

1. ACAA Web site on “Concurrent access to Ada container libraries”. http://www.
ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0196-1.txt?rev=1.4. Accessed 20 Jan
2017

2. Intel Developer Zone: Pause Intrinsic. https://software.intel.com/en-us/node/
524249. Accessed 12 Jan 2017

3. LIKWID GitHub page. https://github.com/RRZE-HPC/likwid/wiki. Accessed 10
Jan 2017

4. Lock-elided protected object resources on GitHub. https://github.com/bbur/
pobj-tsx.git. Accessed 28 Mar 2017

5. Lock elision anti-patterns. https://software.intel.com/en-us/articles/
tsx-anti-patterns-in-lock-elision-code. Accessed 20 Mar 2017

6. NBAda: non-blocking data structures for Ada Web site. http://www.gidenstam.
org/ada/Non-Blocking/. Accessed 20 Jan 2017

7. Performance application programming interface (PAPI) Web site. http://icl.cs.utk.
edu/papi/. Accessed 20 Jan 2017

8. Simple Components Web site. http://www.dmitry-kazakov.de/ada/components.
htm. Accessed 20 Jan 2017

9. STAMP GitHub page. https://github.com/kozyraki/stamp. Accessed 20 Jan 2017
10. The GNU C Library is now available. https://lists.gnu.org/archive/html/info-gnu/

2013-08/msg00003.html. Accessed 22 Jan 2017
11. The world’s simplest lock-free hash table, Preshing on programming blog. http://

preshing.com/20130605/the-worlds-simplest-lock-free-hash-table/. Accessed 22
Jan 2017

12. Bosch, G.: Lock-free protected types for real-time Ada. Ada Lett. 33(2), 66–74
(2013)

13. Dice, D., Lev, Y., Moir, M., Nussbaum, D.: Early experience with a commer-
cial hardware transactional memory implementation. In: Proceedings of the 14th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XIV), pp. 157–168. ACM, New York (2009)

14. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. In: Proceedings of the 20th Annual International Symposium
on Computer Architecture (ISCA 1993), pp. 289–300. ACM, New York (1993)

15. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco (2008)

16. Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun. ACM
17(10), 549–557 (1974)

17. Intel Corporation: Intel R© 64 and IA-32 Architectures Software Developer’s Man-
ual, vol. 1, December 2016

18. Kleen, A.: Scaling existing lock-based applications with lock elision. Queue 12(1),
20: 20–20: 27 (2014)

19. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns
for Efficient Computation. Morgan Kaufmann Publishers Inc., San Francisco (2012)

http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0196-1.txt?rev=1.4
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0196-1.txt?rev=1.4
https://software.intel.com/en-us/node/524249
https://software.intel.com/en-us/node/524249
https://github.com/RRZE-HPC/likwid/wiki
https://github.com/bbur/pobj-tsx.git
https://github.com/bbur/pobj-tsx.git
https://software.intel.com/en-us/articles/tsx-anti-patterns-in-lock-elision-code
https://software.intel.com/en-us/articles/tsx-anti-patterns-in-lock-elision-code
http://www.gidenstam.org/ada/Non-Blocking/
http://www.gidenstam.org/ada/Non-Blocking/
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/
http://www.dmitry-kazakov.de/ada/components.htm
http://www.dmitry-kazakov.de/ada/components.htm
https://github.com/kozyraki/stamp
https://lists.gnu.org/archive/html/info-gnu/2013-08/msg00003.html
https://lists.gnu.org/archive/html/info-gnu/2013-08/msg00003.html
http://preshing.com/20130605/the-worlds-simplest-lock-free-hash-table/
http://preshing.com/20130605/the-worlds-simplest-lock-free-hash-table/

136 S. Jeong et al.

20. Michael, M.M.: The balancing act of choosing nonblocking features. Commun.
ACM 56(9), 46–53 (2013)

21. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-
tional applications for multi-processing. In: 4th International Symposium on Work-
load Characterization (IISWC 2008), Seattle, Washington, USA, 14–16 September,
2008, pp. 35–46 (2008)

22. Rajwar, R., Goodman, J.R.: Speculative lock elision: enabling highly concurrent
multithreaded execution. In: Proceedings of the 34th Annual ACM/IEEE Inter-
national Symposium on Microarchitecture (MICRO 34), pp. 294–305. IEEE Com-
puter Society (2001)

23. Scott, M.L.: Shared-Memory Synchronization. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, San Francisco (2013)

24. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P., Schonberg, E.
(eds.): Ada 2012 Reference Manual. Language and Standard Libraries. LNCS, vol.
8339. Springer, Heidelberg (2013)

25. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with
PAPI-C. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for
High Performance Computing 2009. Springer, Heidelberg (2010)

26. Treibig, J., Hager, G., Wellein, G.: LIKWID: a lightweight performance-oriented
tool suite for x86 multicore environments. In: Proceedings of PSTI2010, The First
International Workshop on Parallel Software Tools and Tool Infrastructures, San
Diego, CA (2010)

27. Wang, A., Gaudet, M., Wu, P., Amaral, J.N., Ohmacht, M., Barton, C., Silvera,
R., Michael, M.: Evaluation of Blue Gene/Q hardware support for transactional
memories. In: Proceedings of the 21st International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT 2012), pp. 127–136. ACM, New York
(2012)

28. Yoo, R.M., Hughes, C.J., Lai, K., Rajwar, R.: Performance evaluation of Intel
transactional synchronization extensions for high-performance computing. In: Pro-
ceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC 2013), pp. 19:1–19:11. ACM, New York (2013)

An Executable Semantics for Synchronous Task
Graphs: From SDRT to Ada

Morteza Mohaqeqi(B), Jakaria Abdullah, and Wang Yi

Uppsala University, Uppsala, Sweden
{morteza.mohaqeqi,jakaria.abdullah,yi}@it.uu.se

Abstract. We study a graph-based real-time task model in which inter-
task synchronization can be specified through a rendezvous mechanism.
Previously, efficient methods have been proposed for timing analysis of
the corresponding task sets. In this paper, we first formally specify an
operational semantics for the model. Next, we describe a method for Ada
code generation for a set of such task graphs. We also specify extensions
of the approach to cover a notion of broadcasting, as well as global inter-
release separation time of real-time jobs. We have implemented the pro-
posed method in a graphical tool which facilitates a model-based design
and implementation of real-time software.

Keywords: Automated code generation · Ada programming language ·
The synchronous digraph real-time task model · Schedulability analysis

1 Introduction

Safe, accurate, and efficient timing analysis of real-time applications is an impor-
tant requirement in safety-critical embedded systems design. To achieve this
goal, having formal models which can specify the structure and behavior of the
software in an expressive way is essential. At the same time, the models utilized
must be of a suitable level of abstraction, through avoiding unnecessary technical
details, such that the analysis can be carried out in a reasonable time.

In the past, several models have been proposed to specify real-time work-
loads, ranging from the periodic and sporadic task models [7] to more complex
graph-based ones [4,9,11]. These models are used to describe the computational
workload, and accordingly, to perform timing analysis of the software applica-
tion. While many studies concern theoretical methods for analyzing the task
sets specified by these models, less attention has been paid to implementation
issues. However, in practice, a designer needs to have a clear definition of the
relation between modeling components and the corresponding implementation
building blocks. Having such a knowledge, which helps in (automatically) gen-
erating executable programs from a set of formal models, is specially important
in the model-based development paradigm [6].

In this work, we consider one of the most expressive real-time task models,
i.e., Synchronous Digraph Real-Time (SDRT) [9]. SDRT extends the Digraph
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 137–152, 2017.
DOI: 10.1007/978-3-319-60588-3 9

138 M. Mohaqeqi et al.

Real-Time (DRT) task model [11] by introducing inter-task synchronization
through a rendezvous mechanism. Efficient analysis methods for dynamic- and
fixed-priority scheduling of DRT tasks, and also for fixed-priority scheduling of
SDRT tasks, have been previously proposed [9,12]. In this work, we employ a
slightly extended version of SDRT and study automatic Ada code generation
for the model. We opt for the Ada programming language [8] since the language
primitives, specially the provided notions of task and synchronization, match
very well with the SDRT task semantics.

As it will be demonstrated, the SDRT task model allows non-deterministic
behavior. We attempt to resolve the non-determinism by confining the possible
behaviors of an SDRT task. The goal is then to produce source code implement-
ing the behavior such that the timing analyses (performed on (S)DRT task sets
[9,11]) remain valid. In summary, the key contributions include:

– Defining a formal operational semantics for SDRT;
– Proposing a code generation approach to implement the specified semantics;
– Showing how to model global inter-release time constraints using SDRT.

In the rest of the paper, we first review related work. The syntax, as well as
operational semantics, of SDRT is formally defined in Sect. 3. We present our
approach for implementation of the SDRT behavior using the Ada programming
language in Sects. 4 and 5. Some extensions of the method are demonstrated in
Sect. 6. Concluding remarks and future work are presented in Sect. 7.

2 Related Work

Implementation of real-time tasks using the Ada programming language has been
recently studied by Real et al. [10] with an emphasis on preserving release jitter
constraints. For this goal, it is proposed to implement jitter-sensitive tasks in a
time-triggered manner, running in the highest level of priority, combined with
a number of priority-scheduled jitter-tolerant tasks. A given time-triggered plan
is managed/scheduled by a protected type with the highest priority, which plays
the role of a scheduler. Time triggered tasks synchronize with this scheduler
via an entry call. In comparison, our approach can also be used to implement
the structure of a time-triggered plan with SDRT. Meanwhile, the SDRT model
provides more flexibility in the design of a real-time application, through, for
instance, allowing to model branches and inter-task synchronizations.

One of the most relevant models to SDRT is task automaton [5] for which
a code generation method is proposed in [2]. Compared to task automata, an
important feature of SDRT is that the job release times criteria is separated from
the application code logic. In terms of the operational semantics, unlike timed
automata, SDRT tasks are not allowed to manipulate the clock variables that
determine eligibility of a next job for release. In this way, minimum inter-release
times are decoupled from the functionality of the jobs. This is a crucial difference
which makes the schedulability analysis problem for the (S)DRT model feasible,

From SDRT to Ada 139

in contrast to that of task automata which can be even undecidable in the gen-
eral case [5]. The code synthesis algorithm provided for task automata in [2]
suggests to manage synchronizations and scheduling events by the generated
application code. In addition, the implementation of the method (integrated in
the TIMES tool [3]) is platform dependent. In contrast, we leverage Ada’s primi-
tives, including the synchronization mechanism, which inherently match with the
SDRT semantics. This leads to simpler and more intuitive codes. Furthermore,
the generated code is hardware independent.

A first attempt to generate Ada code from SDRT models has been carried
out by Abdullah et al. [1]. Compared to that work, in this paper we provide a
formal operational semantics for the model, and also cover a complete semantics
of SDRT including conditional branching. Moreover, we present a technique
to model/implement end-to-end inter-release separation times using the SDRT
synchronization mechanism.

3 Real-Time Task Graphs with Synchronization

In this work, we focus on the Synchronous Digraph Real-Time (SDRT) [9] task
model, which is a graph-based model extended with inter-task synchronizations.
Informally, an SDRT task is specified by a directed graph where each path of the
graph represents a possible execution path of the task. By means of this model,
a task which releases different types of jobs, i.e., with a variable behavior, can be
modeled. In what follows, we first present a number of definitions and notations
that are used throughout the paper. Then, the syntax and semantics of the
SDRT task model are formally defined.

3.1 Notations

We use Σ to denote a set of action labels used to specify inter-task synchroniza-
tions. Σ is assumed to contain a null action, denoted by ⊥, which shows the
absence of a synchronization. Let Y denote a set of variables. A valuation over
Y is a function which maps each variable in Y to a value from its domain. Any
logical condition over the variables in Y is called a guard ; the set of all guards
is denoted by G. For a given valuation σ and a guard g, both defined over a
variable set Y , we write σ |= g to denote that σ satisfies g (i.e., the guard is
evaluated to True). We also use N to denote the set of all non-negative integers.

3.2 Syntax

The syntax of an SDRT task is specified using a directed graph. More specifically,
considering a set of actions Σ, a set of variables Y , and a set of guards G defined
over Y , we define an SDRT task as follows.

Definition 1 (SDRT Task). An SDRT task is defined as a tuple (V, v0, E),
where

140 M. Mohaqeqi et al.

– V is a set of vertices,
– v0 ∈ V is the initial vertex,
– E ⊆ V × N × G × Σ × V is a set of edges.

Each vertex v ∈ V represents a job type and is associated with a non-negative
integer, d(v), as its relative deadline. Each instance of a job type is called a job.
A task releases a (possibly infinite) sequence of jobs according to the constraints
specified by edges. Intuitively, an edge (vi, p, g, a, vj) ∈ E indicates that if the
latest job of the task has been released at time t0 and is of type vi, and also the
guard g is satisfied after the completion of the job, then the task can synchronize
on the action a at any time t ≥ t0 + p, releasing a new job of type vj . Based on
this meaning, p is called the minimum inter-release time. The precise semantics
of an SDRT task is presented in the next subsection.

Here, we assume that exactly two tasks are involved in each synchronization,
that is, there is no action a ∈ Σ appearing on the edges of more than two tasks.
We later relax this restriction in Sect. 6. In addition, throughout this paper, we
assume constrained deadlines. This means that, for any arbitrary vertex v ∈ V ,
it holds that d(v) ≤ p for all p for which ∃(v, p, g, a, u) ∈ E.

It is worth noting that the syntax of an SDRT task has been originally
defined, in [9], in a more abstract level. In this work, as we are dealing with
code generation, we consider a more concrete definition. Particularly, in the
current work, the task syntax is supposed to specify an initial vertex, as well
as guards on edges. As this specification only restricts the behavior of a task,
the existing timing analysis methods still provide a safe (although maybe a
pessimistic) result.

3.3 Operational Semantics

We first make a set of assumptions based on which the SDRT semantics will be
defined.

Assumption 1 (Local Access to the Variables). Each task’s variables can
be accessed and updated only by the task itself (and by none of the other tasks).
As a result, between the finish time of a job and the start of the next one, the
value of the guards are not changed.

We also assume that the functionality of a job of type v is specified by a
function Fv(.) which manipulates the task’s variables. More specifically, given
a current valuation σ of the task variables, Fv(σ) denotes the valuation of the
variables immediately after the execution of the job. Further, given a set of n
tasks, we assume that the first job of the i-th task, for 1 ≤ i ≤ n, initializes
task’s variables to a valuation σ0,i.

The operational semantics of the SDRT task model is defined using a labeled
transition system. Let {(V1, v0,1, E1), . . . , (Vn, v0,n, En)} denote a set of n SDRT
tasks. A semantic state of the system is then defined as a triple (v̄, σ̄, c̄), where

– v̄ = 〈v1, . . . , vn〉, with vi ∈ Vi, for 1 ≤ i ≤ n, is a vector of vertices (job types),
which keeps track of the type of the latest released jobs,

From SDRT to Ada 141

– σ̄ = 〈σ1, . . . , σn〉 is a vector of valuations, where σi denotes a valuation over
the variables of the i-th task,

– c̄ = 〈c1, . . . , cn〉 denotes a vector of n non-negative integers, referred to as
clock variables. The value of ci shows the time which has passed after the
release of the last job of the i-th task.

Before defining the transition rules, we introduce a number of notations.
Take an arbitrary vector of job types v̄. By v̄[vi/v′

i] , we denote the vector of job
types obtained by replacing vi with v′

i in v̄, while the other entries of v̄ remain
unchanged. Additionally, for a vector of clocks c̄ and a set of clock variables r,
c̄[r
→ 0] denotes the vector derived from c̄ after resetting those clock variables
of c̄ that are in r to 0. Also, for a clock vector c̄ = 〈c1, . . . , cn〉, we define c̄ + 1
as c̄ after incrementing each entry by one, that is c̄ + 1 .= 〈c1 + 1, . . . , cn + 1〉.
Additionally, for a valuation σ̄ = 〈σ1, . . . , σn〉 and a job type vi ∈ Vi, we define
Fvi

(σ̄) .= 〈σ′
1, . . . , σ

′
n〉, where σ′

i = Fvi
(σi), and σ′

j = σj for j �= i. Using these
definitions, we now present the SDRT semantics.

Definition 2 (SDRT Operational Semantics). Consider a set of SDRT
tasks τ = {(V1, v0,1, E1), . . . , (Vn, v0,n, En)}. Also, define v̄0 = 〈v0,1, . . . , v0,n〉,
σ̄0 = 〈σ0,1, . . . , σ0,n〉, and c̄0 = 〈0, . . . , 0〉. The operational semantics of τ is
defined by a labeled transition system with an initial state of (v̄0, σ̄0, c̄0), and two
types of transitions:

1. Delay transitions, denoted by (v̄, σ̄, c̄) δ→ (v̄, σ̄, c̄ + 1), which represent the
progress of time;

2. Release transitions, which are associated with the release of new jobs, and
include two types:
– (v̄, σ̄, c̄) ⊥→ (

v̄[vi/v′
i], Fv′

i
(σ̄), c̄[{ci}
→ 0]

)
if ∃(vi, p, g,⊥, v′

i) ∈ Ei such that
p ≤ ci and σi |= g,1

– (v̄, σ̄, c̄) a→
(
v̄[vi/v′

i][vj/v′
j], Fv′

j
(Fv′

i
(σ̄)), c̄[{ci, cj}
→ 0]

)
if there exist

edges (vi, p1, g1, a, v′
i) ∈ Ei and (vj , p2, g2, a, v′

j) ∈ Ej with a �=⊥ and
i �= j such that p1 ≤ ci, p2 ≤ cj, σi |= g1, and σj |= g2.

In this definition, the release transition rules are written assuming that a job
takes its effect on the task variables immediately after its release (by applying
the function Fv() with no delay), while in practice, it would take some duration
to execute the job. Nonetheless, this does not compromise the correctness of
the semantics. The reason is that, as we consider constrained deadlines, the
execution of a job is always finished before the corresponding minimum inter-
release times are passed, given that the job meets its deadline. As a result, the
guard conditions, which may depend on the task variables, are evaluated only
after the job is completed, and its influence on the variables have taken place.
Therefore, the variables are not used before the completion of the job, and thus,
it does not matter when they are updated (i.e., at the beginning, or at any time

1 Recall that ci and σi denote the i-th entries of c̄ and σ̄, respectively.

142 M. Mohaqeqi et al.

during the execution of the job). Based on this, we can also argure that, the
defined initial state corresponds to the instant exactly after the first job of each
task has been released and also taken its effect.

We point out that our focus is on the job release pattern of an SDRT task set.
Hence, in the system state, we do not keep track of the amount of the executed
workload of a job. Nevertheless, the defined semantics truly reflects the behavior
of the task set, from a release time perspective, as long as no deadline is missed.

Based on the original definition of SDRT [9] (and also DRT [11]), an edge
can be taken, and the corresponding job can be released, at any time after the
specified minimum inter-release time is passed (given that the other conditions
are met). This entails a non-deterministic release-time, while for the implemen-
tation, we need to determine release times deterministically. We resolve this issue
using the so-called maximal progress assumption [2]. According to this, a job is
supposed to be released as soon as possible. In terms of the specified transition
system, this assumption is expressed as follows.

Assumption 2 (Maximal Progress). In the specified transition system in
Definition 2, whenever there are both delay transition and release transition(s)
doable, the system takes the release transition(s) first.

The presented operational semantics provides a basis for converting an SDRT
task set to an executable code. As code generation for the branching structures
plays a major role in implementing an SDRT task, we treat it separately in
Sect. 4. Next, in Sect. 5, we present our implementation approach for the whole
task graph.

4 Code Generation for Branching Structures

A branching structure can be specified in SDRT by a vertex with multiple out-
going edges. To decide which edge must be taken, the program needs to consider
the respective minimum inter-release times, guards, and also the synchronization
actions. In this section, after reviewing a number of assumptions, we demonstrate
our approach to implement the guard, minimum inter-release time, and synchro-
nization criteria of a set of edges comprising a branch. We exploit the rendezvous
mechanism of Ada for this goal. Then, we present an algorithm for implementing
the complete semantics of such structures.

4.1 Assumptions

In order to follow the semantics of the Ada rendezvous, which is used for inter-
task synchronization, we assume that the set of synchronization actions Σ con-
tains two types of actions: any action a is either a sending action, denoted by a!,
or a receiving action, denoted by a?. As will be seen, when generating source
code for a task, sending actions are mapped to (implemented by) an entry
call, while receiving actions are mapped to the accept statement of the Ada
rendezvous.

From SDRT to Ada 143

While Ada provides a mechanism for a conditional accept (within a select
block), there is no analogous structure for conditional entry calls. Hence, we need
to slightly change the semantics of SDRT to comply with this restriction. For
this purpose, when the guard of an edge with a sending action is satisfied and
the associated minimum inter-release time is also passed, we will choose that
edge to be taken (although not immediately if the receiving task is not ready
at the moment), without checking the other edges any more. To formalize this,
consider an arbitrary edge e = (v, p, g, a, u), and an edge e′ = (v, p′, g′, b!, u′)
with a sending action. Edge e′ is said to be enabled before e if p′ < p and
g′ is satisfied (irrespective of whether the rendezvous on b can be done at the
moment). Given this definition, the release transition rules in Definition 2 are
rewritten as:

– (v̄, σ̄, c̄) ⊥→ (
v̄[vi/v′

i], Fv′
i
(σ̄), c̄[{ci}
→ 0]

)
if ∃e = (vi, p, g,⊥, v′

i) ∈ Ei such that
p ≤ ci and σi |= g, and there exists no edge outgoing from vi in Ei with a
sending action which is enabled before e;

– (v̄, σ̄, c̄) a→
(
v̄[vi/v′

i][vj/v′
j], Fv′

j
(Fv′

i
(σ̄)), c̄[{ci, cj}
→ 0]

)
if there exist edges

ei = (vi, p1, g1, a?, v′
i) ∈ Ei and ej = (vj , p2, g2, a!, v′

j) ∈ Ej with a �=⊥ and
i �= j such that p1 ≤ ci, p2 ≤ cj , σi |= g1, and σj |= g2, and there exists no
edge with a sending action outgoing from vi in Ei enabled before ei and also
no such an edge from vj in Ej enabled before ej .

4.2 Realizing Basic Blocks

In order to conform with the maximal progress assumption (Assumption 2), the
implemented task needs to be notified as soon as a release transition becomes
eligible. According to the specified semantics, release transitions depend on the
corresponding guards, minimum inter-release times, and synchronizations. In the
following, we specify that how each of these criteria can be checked at runtime
to trigger a release transition.

Guards. In edges with no synchronization, or with a sending action, the guard
condition can be checked by an if-then-else structure. If evaluated to True, the
transition will be chosen to take. However, if an edge is related to a receiving
action, we will use the “conditional accept” structure of Ada to restrict the
synchronization to be done only if the guard is satisfied and the edge with the
corresponding sending action is also ready to be fired. This case is elaborated
shortly.

Minimum Inter-release Times. To respect a minimum inter-release time
between two jobs, we use the delay until statement of Ada, which provides a
way to wait until a (absolute) time instant. As an example, consider the branch-
ing structure shown in Fig. 1a, where p1 and p2 denote the minimum inter-release
times assuming p1 < p2. Further, assume g1 and g2 to denote the corresponding

144 M. Mohaqeqi et al.

s

u

v

p1

p2

(a) A choice with two edges

s

u

v

w

p1, A?

p2, B!

p3, C?

(b) A choice with three edges with synchronization

Fig. 1. Sample branching structures in SDRT.

guards. The Ada code generated for this part of the model is seen in Listing 1.2

In this example, the release time of the current job, which is of type s, has been
assumed to be 0.

1 -- After completion of the last released job
2 delay until p1;
3 if g1 then
4 next_state := u;
5 goto loop_start; -- Skipping the rest
6 end if;
7 delay until p2;
8 if g2 then
9 next_state := v;

10 goto loop_start;
11 end if;

Listing 1. Implementing the branching structure shown in Fig. 1a

Synchronization. An edge with a receiving action can be fired only if the task
sending that action is ready to synchronize. If there are multiple such edges having
the required minimum inter-release time passed, the program needs to wait until
one of the synchronizations becomes doable. We use the selective accept structure
to implement this semantics. For example, consider the branch structure shown
in Fig. 1b, where p1, p2, and p3 denote the minimum inter-release times, with
p1 < p2 < p3. Further, let g1, g2, and g3 denote the corresponding guards. The
code presented in Listing 2 implements this structure. As seen in Lines 1 to 9,
when p1 expires, the program attempts to evaluate guard g1, and if satisfied, syn-
chronize on action A. If such a synchronization cannot be accomplished until p2,
then the guard g2 is checked. If it is satisfied, the program takes the second edge
(Lines 10 to 14). Otherwise, synchronization on A is tried again until p3. If it is not
performed by that time, then both the first edge and the third edge are eligible,
which are tried using a selective accept block (Lines 20 to 27).

2 We use goto to avoid lengthy and redundant codes. The same logic can be easily
implemented without this statement.

From SDRT to Ada 145

1 delay until p1;
2 select
3 when g1 =>
4 accept A;
5 next_state := u;
6 goto loop_start;
7 or
8 delay until p2;
9 end select;

10 if g2 then
11 Task_2.B; -- Entry call to Task_2
12 next_state := v;
13 goto loop_start;
14 end if;
15 select
16 -- Repetition of the code appeared in Lines 3 to 6
17 or
18 delay until p3;
19 end select;
20 select -- A selective accept
21 -- Repetition of the code appeared in Lines 3 to 6
22 or
23 when g3 =>
24 accept C;
25 next_state := w;
26 goto loop_start;
27 end select;

Listing 2. Ada implementation of the branching structure shown in Fig. 1b.

4.3 Implementation Algorithm for Branching Structures

Our method for generating Ada code for the semantics of a branching structure
is shown in Algorithm 1.

In Algorithm 1, the input E is the list of all outgoing edges from a certain
vertex, where E[i] denotes the i-th entry of E. Also, E[i].p and E[i].a denote the
associated minimum inter-release time and synchronization action, respectively.
For simplicity and without loss of generality, in the presented pseudo-code, it is
assumed that the latest job has been released at time zero.

The algorithm iterates over the set of edges E. If an edge is not marked
with a receiving action, then the decision for taking that edge will be made only
based on the guard through the code printed by Lines 7 to 9. Otherwise, the
edge is added to the set R. As a result, R contains all edges with a receiving
action whose minimum inter-release time has been passed. After examining the
edge, if R is empty, then the program needs to just wait until the minimum
inter-release time of the next edge (if any) is passed; see Lines 13 to 16. Besides,
if R is not empty, i.e., if there are pending receiving actions, the selective accept
structure of Ada is used (as shown in Algorithm 2, which is called in Line 18 of
Algorithm 1). In this case, the program waits for the first entry call to one of
the pending accept statements, until a new edge becomes eligible, if any.

146 M. Mohaqeqi et al.

Algorithm 1. Generating Ada code for a branching structure
Input: E: List of edges sorted by inter-release times ascendingly.
1: procedure BranchCode(E)
2: n ← |E| � Number of entries in E
3: R ← {} � Used to keep edges which have a receiving action
4: print(“delay until ” + E[1].p + “;”)
5: for i ← 1 to n do
6: if E[i] is not labeled with a receiving action then
7: print(“if ” + E[i].g + “ then ”)
8: print code for taking edge E[i]
9: print(“end if;”)

10: else
11: R ← R ∪ {E[i]}
12: end if
13: if R = {} then
14: if i �= n then
15: print(“delay until ” + E[i + 1].p + “;”)
16: end if
17: else
18: SelectiveAccept(E, R, i, n);
19: end if
20: end for
21: end procedure

Algorithm 2. Generating the selective accept code
1: procedure SelectiveAccept(E, R, i, n)
2: print(“select ”)
3: print(“when ” + R[1].g + “ => ”)
4: print(“accept ” + R[1].a + “;”)
5: for k ← 2 to |R| do
6: print(“or ”)
7: print(“when ” + R[k].g + “ => ”)
8: print(“accept ” + R[k].a + “;”)
9: end for

10: if i < n then
11: print(“or ”)
12: print(“delay until ” + E[i + 1].p + “;”)
13: end if
14: print(“end select; ”)
15: end procedure

5 Implementation of a Task Graph

Each SDRT task graph is implemented as a task in Ada, running an infinite loop.
Inside the loop, the graph structure is implemented by keeping track of the latest
released job, and realizing the branching structures. We demonstrate it through
a sample task graph shown in Fig. 2. Minimum inter-release times are assumed

From SDRT to Ada 147

u

v

w

x

p1

p2, A?

p3, B!

p4

p5

p6

p7, C?

s

Fig. 2. A sample SDRT task T1.

as p1 = 100 ms, p2 = 200 ms, p3 = 500 ms, and p4 = p5 = p6 = p7 = 100 ms.
Further, let g1, g2, and g3 denote the guards on edges from s to u, v, and w,
respectively. The guard of the other edges is assumed to be always True.

The Ada code realizing this task model is seen in Listing 3. In the task body,
first, a type State is defined which includes a distinct value for each vertex
(Line 14). The variable Current State is defined of this type to store the latest
released job of the task. Also, the variable Last Release is defined to keep the
release time of the latest released job. Additionally, minimum inter-release times
are declared as constants (Lines 17 to 20). The functionality of each job type
is also implemented as a procedure (Lines 22 to 31). As seen, the task priority
is dynamically changed before and after execution of the job code. We will talk
about priority assignment shortly.

1 -- Context clauses and pragmas omitted
2 procedure Taskset_1 is
3 ---- Task declaration ----
4 task T1 is -- A singleton task
5 pragma Priority(System.Priority ’Last);
6 entry A;
7 entry C;
8 end T1;
9

10 ---- task body ----
11 task body T1 is
12 ---------- Variable declaration -------
13 T1_prio : System.Any_Priority := 20; -- Task priority
14 type State is (s, v, w, u, x);
15 Current_State : State := s; -- The first job
16 Last_Release : Ada.Real_Time.Time;
17 p1 : constant Time_Span := Milliseconds (100);
18 p2 : constant Time_Span := Milliseconds (200);
19 p3 : constant Time_Span := Milliseconds (500);
20 -- p4, p5, p6, p7 are defined similarly
21

22 -- Procedures for the job types of T1:
23 procedure s_code is
24 begin
25 Ada.Dynamic_Priorities.Set_Priority(T1_prio);
26 -- The code for job type s goes here
27 Ada.Dynamic_Priorities.Set_Priority(System.Priority ’Last);
28 end s_code;
29

30 -- Procedures for v, u, w, and x are specified as well
31 ...

148 M. Mohaqeqi et al.

32

33 --------------- Task logic --------------
34 begin
35 Last_Release := Clock;
36 loop
37 <<T1_loop >>
38 case Current_State is
39 when s =>
40 s_code;
41 delay until Last_Release + p1;
42 if g1 then
43 Current_State := u;
44 Last_Release := Last_Release + p1;
45 goto T1_loop;
46 end if;
47 delay until Last_Release + p2;
48 select
49 when g2 =>
50 accept A;
51 Last_Release := Clock;
52 Current_State := v;
53 goto T1_loop;
54 or
55 delay until Last_Release + p3;
56 end select;
57 if g3 then
58 T2.B; -- Entry call to task T2
59 Last_Release := Clock;
60 Current_State := w;
61 goto T1_loop;
62 end if;
63 select
64 -- Repetition of the code in Lines 49 to 53
65 end select;
66 when u =>
67 u_code;
68 delay until Last_Release + p4;
69 if True then
70 Current_State := x;
71 Last_Release := Last_Release + p4;
72 goto T1_loop;
73 end if;
74 -- Similar code is generated for v and w
75 ...
76 when x =>
77 x_code;
78 delay until Last_Release + p7;
79 select
80 when True =>
81 accept C;
82 Last_Release := Clock;
83 Current_State := s;
84 goto T1_loop;
85 end select;
86 end case;
87 end loop;
88 end T1;
89 --
90 begin
91 null;
92 end Taskset_1;

Listing 3. Ada implementation of the task shown in Fig. 2

In the task implementation, the task first initializes Last Release by the
current time (in Line 35), considered as the release time of the first job. Inside
the loop, Current State is examined, through a case statement, to find the

From SDRT to Ada 149

type of the latest released job. For each job type, Algorithm 1 is employed to
implement the respective behavior. For instance, when the job type is s, a branch
with three edges must be treated. After the minimum inter-release time p1 is
passed, if g1 is True, u is selected as the next job. In addition, the current time,
which would be equal to Last Release plus p1, is assigned as its release time
(see Lines 41 to 44). If g1 is not satisfied, the next edge must be tried. For this,
after waiting until p2 is passed, a select statement is executed. If g2 is evaluated
to True and the rendezvous on entry A can be done before p3 is passed, the next
job will be of type v (Line 52). In this case, the release time of the job is not
calculated by adding p2 to the previous release time. Instead, it is obtained by
reading the current clock value (Line 51). The reason is that, in such a case,
the job is released when the synchronization is done, which is determined by the
other task involving in the rendezvous. The respective code for other situations
is similarly generated, as seen in Lines 57 to 85.

Priority Assignment: An important step in realizing each task is determining
the respective priority. For this, we note that, in our implementation, a task
consists of two different types of code: codes for controlling the release timings
of the jobs, and codes implementing the actual functionality of the jobs as defined
by the application. An essential requirement is that the release semantics of a
task must not be influenced by the execution of the jobs from other tasks. To
respect this, we opt to run the logic controlling release instants of the jobs in the
highest priority level. For this purpose, the initial priority of all tasks is set to
the highest priority level; see Line 5 in of Listing 3. The priority of a task is then
adjusted to its actual (user-defined) priority whenever it wants to execute the
functionality of a job. One such dynamic priority adjustment is seen in Lines 25
and 27.

6 Extensions

This section extends our approach to cover a broadcast semantics. Additionally,
we describe how an end-to-end inter-release separation time can be modeled by
SDRT tasks.

6.1 Broadcasting

Up to now, we have assumed that a synchronization involves no more than two
tasks. One can extend the model to include a broadcast semantics as well. In a
broadcast synchronization, there may be several tasks with the same receiving
action, while there is one task with the corresponding sending action. Whenever
the task with the sending action wants to take the respective edge, it will try
all the relevant tasks, but in a non-blocking way. For instance, consider a broad-
casting on an action A, where two tasks Task1 and Task2 contain the respective
receiving action. Then, the task associated with the sending action will execute
the following code:

150 M. Mohaqeqi et al.

select

Task1.A;

else

null;

end select;

select

Task2.A;

else

null;

end select;

The else part lets the task continue its progress with no blocking if the other
task is not accepting the entry at the moment.

6.2 End-to-End Inter-Release Times

Basically, in an SDRT task, the minimum inter-release time constraint can be
specified only between two consecutive jobs. However, sometimes it is needed to
respect a minimum separation time between the release of two jobs which are not
necessarily released successively. As an example, in the task shown in Fig. 2, we
may need to add a minimum separation time constraint between any job of type
u and any subsequent job of type s. Such a constraint is called an end-to-end
minimum inter-release separation time. In [12], a method has been proposed
to transform a DRT graph with such a constraint to an ordinary DRT task.
However, the obtained DRT may contain pseudo-polynomially many number of
vertices compared to the original one. Instead, one can use the synchronization
mechanism of SDRT to allow putting this constraint with less effort (although
the computational complexity of the respective analyses may ultimately be the
same).

For instance, in the mentioned example, to preserve a minimum separation
time of p8 between the jobs of type u and subsequent jobs of type s, we can

s̄

ū u

v

w

x

p1

0, E!

p2, A?

p3, B!

p4

p5

p6

p7, C?0, F?

s

(a) Task in Fig. 2 augmented with two vertices.

z
0, E?

p8, F !

y

(b) The auxiliary task.

Fig. 3. Modifying the task in Fig. 2 to respect an end to end inter-release time separa-
tion constraint.

From SDRT to Ada 151

add an auxiliary task with two vertices as seen in Fig. 3b. Also, we augment the
DRT task in Fig. 2 with two vertices, namely s̄ and ū, seen in Fig. 3a. Whenever
a job of type u is released, the task sends a signal, through the action E!, to the
auxiliary task. On the other side, in order for a job of type s to be released, the
task synchronizes on the signal F . According to Fig. 3b, this can be done not
earlier than p8 time units after the release of u’s instance. In this way, a job of
type s may be released only if the intended delay after the last release of u is
observed.

7 Conclusion and Future Work

In this paper we defined an operational semantics for the SDRT task model
and provided a method for generating Ada code for this semantics. The method
has been implemented in a graphical tool.3 Also, we discussed extensions of the
approach to cover a broadcast synchronization, as well as global and end-to-end
inter-release time constraints.

As a future work, we want to formally prove that the provided implementa-
tion conforms to the model, i.e., it does not generate a behavior not specified by
the SDRT semantics (when neglecting scheduling overheads). Another direction
of extending this work is to tackle the model non-determinism. The semantics
provided in this work does not specify a deterministic choice in the release of new
jobs when more than one are possible at the same time; the actual behavior of
the implemented program depends on the Ada run-time system. But, it may be
possible to assign a priority to the transitions, and then, utilizing existing mech-
anisms in Ada, such as pragma Queuing Policy, to preserve orderings enforced
by such priorities.

References

1. Abdullah., J., Mohaqeqi, M., Yi, W.: Synthesis of Ada code from graph-based task
models. In: 32nd Symposium on Applied Computing, pp. 1466–1471 (2017)

2. Amnell, T., Fersman, E., Pettersson, P., Yi, W., Sun, H.: Code synthesis for timed
automata. Nordic J. Comput. 9(4), 269–300 (2002)

3. Amnell, T., Fersman, E., Mokrushin, P., Pettersson, Yi, W.: TIMES - a tool for
modelling and implementation of embedded systems. In: 8th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pp. 460–464 (2002)

4. Sanjoy, K.B.: The non-cyclic recurring real-time task model. In: Real-Time Systems
Symposium (RTSS), pp. 173–182 (2010)

5. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: schedulability, decid-
ability and undecidability. J. Inf. Comput. 205(8), 1149–1172 (2007)

6. Kim, B., Feng, L., Sokolsky, O., Lee, I.: Platform-specific code generation from
platform-independent timed models. In: Real-Time Systems Symposium (RTSS),
pp. 75–86 (2015)

3 The tool is not publicly released at the moment of writing this work. A primary
version is available at http://user.it.uu.se/∼mormo492/TimesPro.zip.

http://user.it.uu.se/~mormo492/TimesPro.zip

152 M. Mohaqeqi et al.

7. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973)

8. McCormick, J.W., Singhoff, F., Hugues, J.: Building Parallel, Embedded, and Real-
Time Applications with Ada. Cambridge University Press, Cambridge (2011)

9. Mohaqeqi, M., Abdullah, J., Guan, N., Yi, W.: Schedulability analysis of syn-
chronous digraph real-time tasks. In: 28th Euromicro Conference on Real-Time
Systems (ECRTS), pp. 176–186 (2016)

10. Real, J., Sáez, S., Crespo, A.: Combining time-triggered plans with priority sched-
uled task sets. In: 21st Ada-Europe International Conference on Reliable Software
Technologies, pp. 195–212 (2016)

11. Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:
17th IEEE Real-Time and Embedded Technology and Applications Symposium,
pp. 71–80 (2011)

12. Stigge, M.: Real-time workload models: expressiveness vs. analysis efficiency. Ph.D.
thesis, Uppsala University (2014)

RxAda: An Ada implementation
of the ReactiveX API

Alejandro R. Mosteo1,2(B)

1 Instituto de Investigación en Ingenieŕıa de Aragón (I3A),
Mariano Esquillor s/n, 50018 Zaragoza, Spain

2 Centro Universitario de la Defensa de Zaragoza (CUD),
Ctra. de Huesca s/n, 50090 Zaragoza, Spain

amosteo@unizar.es

Abstract. The ReactiveX API, also known as the Reactive Extensions
in the .NET world, is a recently popularized reactive programming frame-
work for asynchronous, event-based, multi-threaded programming. Pre-
sented by its proponents as a solid tool for applications requiring a simple
yet powerful approach to event-driven systems, it has seen favorable adop-
tion in many popular languages. Although Ada has been long-favored by
powerful tasking capabilities that reduce the need for additional multi-
threading support, the reactive approach has properties that are well-
suited to the safety and maintainability culture predominant in the Ada
world, such as complexity reduction, race-condition and deadlock avoid-
ance, and enhanced maintainability by means of concise and well-defined
information flows. This work presents the design for a ReactiveX Ada
implementation that aims to balance desirable library properties such as
compile-time checks, reasonable user-required generic instantiations, and
a shallow learning curve for both library clients and maintainers. The Ada
programmer can henceforth benefit from the abundant documentation
existing for the language-agnostic ReactiveX approach without stepping
out of the Ada tool chain.

Keywords: ReactiveX · Observer pattern · Reactive programming ·
Ada 2012

1 Introduction

Modern applications are becoming increasingly complex, in many cases driven by
external events with unpredictable latencies caused by user interaction, exter-
nal sources of information, or remote components in distributed systems, for
example. Such changes in turn require modifications to local states and generate
new internal or remote events. The reactive programming paradigm [9] arises as
a response to the challenge of implementing such systems, in which imperative
languages have shown shortcomings: the traditional model in which the program
imposes the control flow is reversed, becoming a loop that awaits for events to
which is necessary to react. This reversal of the logic flow presents challenges [1],
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 153–166, 2017.
DOI: 10.1007/978-3-319-60588-3 10

154 A.R. Mosteo

like poor understanding by novice programmers, unresponsive systems that fail
to exploit parallelism, convoluted state management, among others. A traditional
approach has been callbacks, which typically present difficulties to scalability.
The interactions between callbacks through shared states can rapidly become
too complex, and callbacks themselves can be spread through many locations,
complicating maintenance tasks. The term callback hell [4] is not unheard of.

The reactive paradigm is not particularly novel; formalization efforts have
been shown [13], and proposals using the Ada syntax have been described [12].
It is however relatively recently that reactive programming has become popu-
lar, with examples like the .NET standard reactive extensions [10], subsequently
ported to many languages, and the publication of the Reactive Manifesto [2]. At
least part of the appeal in reactive programming is the ability for the impera-
tive programmer to represent logical sequences much like in typical imperative
syntax, while retaining control of the concurrency involved, and without requir-
ing complex state management. By generalizing the observer pattern [6], the
ReactiveX approach [10] to reactive programming provides composable abstrac-
tions [5] that allow programmers to represent responses to events as complete
information flows that dynamically transform data, simultaneously removing
concerns about blocking input-output.

This work presents a high-level port of the ReactiveX framework to the
Ada 2012 language, named as RxAda [8], focusing on design aspects of the
implementation. Ada, lacking functional facilities of other languages like lambda
functions and implicit instantiation, presents challenges in the way of a prac-
tical ReactiveX implementation which the authors have addressed by means of
a combination of object-oriented and generic-based design. The paper is writ-
ten assuming no prior knowledge of the ReactiveX framework and highlights
aspects of the library that are relevant to would-be users, and that could also
be interesting to Ada architects and practitioners in general.

The paper is structured as follows: Sect. 2 introduces with examples the basics
of the ReactiveX framework. Section 3 discusses RxAda design challenges and
the solutions adopted with its advantages and drawbacks. Next, Sect. 4 presents
library organization details of relevance to users and maintainers. Lastly, con-
cluding remarks and future directions close the paper in Sect. 5.

2 Reactive Extensions Overview

The definitions of the main concepts that transpire the ReactiveX API are pre-
sented before some introductory examples. In-depth documentation is available
at the official website [10]. In the following presentation, italized words are Rx-
specific jargon with precise meaning, whereas fixed-size font is used for Rx types
and subprograms. Since RxAda has followed where possible the RxJava speci-
fication [7], its documentation would be the most useful to new RxAda users.
Also, some Java examples are provided for comparison.

The foundation of the ReactiveX approach are the Observable and Observer
interfaces, along with the Rx grammar (also termed the reactive contract [11]).

RxAda: An Ada Implementation of the ReactiveX API 155

An observer subscribes to an observable, after which it may receive at any time a
new datum (an item) from the observable via the observer On Next subprogram.
The RxAda implementation of these interfaces is shown in Listing 2.1. Per the
reactive contract (in POSIX-like regular expression syntax),

after subscribing, the observer may receive any number of On Next calls (even
none) possibly followed by either On Complete, to mark the end of the sequence,
or On Error, if something untoward happened upstream, but not both, and never
more than once. Also part of the contract is that these three methods will always
be called in mutual exclusion in a given observer, thus freeing implementers
from local concurrency concerns. Since data propagation is performed by the
observable calling On Next on its subscribers, it is clear that Rx is a push-based
framework. Observers cannot know when a new item will arrive, nor can they
request items at will.

Although superficially similar to traditional callback programming with an
enriched dynamic behavior, the true expressiveness of the Rx approach emanates
from its operators, which are themselves both observables and observers that can
be composed one after another, with each operator implementing a modification
to be applied to the items traveling through them. In other words, a chain or
sequence of observables can be built, rooted at some source observable. When an
observer subscribes to this chain, the root observable will begin emitting data
by calling the On Next in the next operator in the chain. Operators apply their
action and push down the item until it reaches the subscriber.

To illustrate these concepts, an example in both Java and Ada is presented
in Listing 2.2. It is worth stressing that concatenating operators does not trigger
a subscription. Thus, operators are passive elements that by themselves do not
cause an observable to start emitting items1. Figure 1 details these aspects of
Rx operation.
1 A related Rx concept that does create a subscription is a Subject, that is out of
the scope of this introduction. This is of importance for cold observables, which is
another Rx concept left out of this introduction.

156 A.R. Mosteo

Fig. 1. Anatomy of a data chain in RxAda (based on Listing 2.2). During the setup
phase (leftmost), operators are concatenated one after the other with the “&” function,
hence the program flow goes from top to bottom. When an observer subscribes (center)
using the overloaded “&” function, the subscription progresses from bottom to top via
Subscribe calls until reaching the source observable, that emits the items. It is at this
time that operators are copied, so that each potential subscriber gets fresh operators,
as later explained in Listing 2.3. Once the subscribed phase starts, item propagation
takes place from source observable to subscribed observer, with each operator in turn
applying its operation before pushing down the item. The relevant interfaces for each
stage are indicated after the object name. Rounded boxes are used to indicate passive
chains, whereas sharp ones indicate a live subscription.

RxAda: An Ada Implementation of the ReactiveX API 157

Indeed, the process of chain building and subscription can be separated in
two parts as exemplified in Listing 2.3. As a consequence, while chain building is
synchronous (that is, it happens as the program execution reaches that point),
the data flow may be asynchronous to the program flow, which is sometimes a
confusing point for beginners. For example, in Listing 2.2, one item is emitted
per second, in some unspecified Rx task, whereas the main program task can
be anywhere else. Another important property is that fresh operators are used
for each subscription, meaning that both subscribers in Listing 2.3 will see the
same final count instead of a cumulative count.

Another observation to be made is that Rx is lazy in regard to task cre-
ation [11], and the user should assume that tasks are reused unless explicitly
requested by scheduling operators or otherwise necessary for the operator proper
working (as in the Interval example in Listing 2.2). That is, in the example
in Listing 2.3, all data emission, filtering, counting and output will happen in
the task that performs the subscription, because no scheduling operators like
Observe On have been used.

Going back to the basic example in Listing 2.2, the main visual difference
is that Java uses dot notation to create Rx chains (also termed flows), whereas
in Ada the “&” operator has been chosen. The reasons will become apparent in
the next section. To summarize this Rx introduction:

– Anything that can be made observable can serve as the root of a chain.
– There are two distinct setup and subscribed phases.
– A chain is a pipeline in which items are sent, one at a time, to subscribers.
– Operators are composable and during the subscribed phase they perform data

transformations on one item at a time until the final result is delivered to the
subscribed observer.

– Each subscription is isolated from others that use the same chain.
– Once a flow completes or errs, no further data will reach the observer.

The takeaway from this Rx introduction is that operator chains allow the
representation of item transformations in a naturally ordered flow with cohesive
temporal logic that includes task switching. Hence, operators may take as much
time as needed without blocking concerns and spaghetti callback jumps, letting
the user focus on the application logic.

158 A.R. Mosteo

3 RxAda Design

In this section some all-pervasive design decisions are discussed. More precisely,
the genericity model of the library is first introduced. This model in turn affects
the library implementation facilities and the way clients can use the library. The
general dependency architecture is summarized last.

3.1 Typed Operators

As evidenced by Listing 2.1, observers receive items of a single type in On Next
calls. Observables, in turn, must be aware of this type to be able to call
On Next on subscribers. Seemingly not a big deal, (e.g. any collection library
has the stored type as a generic formal), the inconvenience arises from oper-
ators that transform the type being emitted. Operators exhibit both observ-
able and observer interfaces, but not necessarily of the same type. For example,
the Map operator allows the conversion or processing of a type into another by
means of a function parameter that, given the upstream incoming type, returns
a possibly different type that is passed downstream. Listing 3.1 shows the Java
specification:

This is par for the course with implicit instances in Java or C++. In
Ada, however, this requires instances with two formal parameter types, or two
instances with the second one nested inside the first one. An alternative design
was considered which would have eliminated the need for these instantiations.
A root interface type could be declared, like demonstrated in Listing 3.2:

This approach is tempting from a developer point of view since it removes
numerous instantiations when using the library. Furthermore, the whole library
can become non-generic. The price is, however, the lack of type consistency
checks between chained operators at compile time, since all of them would deal
with the same Rx Item’Class classwide data. Furthermore, user types would
have to be made descendants of the root Rx Item interface, which is a distributed
pollution imposed outside of the library and may discomfort some users. In
addition, user functions should either perform casts that could fail at runtime

RxAda: An Ada Implementation of the ReactiveX API 159

or generic marshallers should be instantiated for convenience (that could not be
compile-time checked anyway).

For these reasons this approach was not adopted. The consequence, imposed
by Ada’s explicit nature, is that one instantiation is needed per user type involved
in a chain. To mitigate the issue for beginners, and since some operators emit
known data types (e.g., Count emits integers), String, Integer and Float types
come preinstantiated and ready for use in the package Rx.Std in RxAda.

The materialization of a user type, from an RxAda implementer point of
view, is in package Rx.Impl.Typed. This package is used as a generic formal
through the rest of the implementation, and contains information related to a
user type in relation with the Rx contract that other parts of the RxAda imple-
mentation require. A traits-based approach [3] is used for user types, enabling
storage control. See Listing 3.3 for details.

3.2 Type Transformations

Once it is accepted that observers are statically typed, the issue of chaining
operators arises. In Java, as seen in the Map example, the Map operator is a
primitive operation of the Observable type. In Ada, primitive operations must
be declared in the same package as the type. Hence, to use the same dot notation
for operator chaining, all operators should be declared within the same Observ-
able package. Unfortunately, when two types are involved a new instantiation
would be required, which would no longer be primitive. Alternatively, a single
instantiation with two types could be adopted, but then operators that preserve
the type (e.g. the Filter operator) would be repeated if several packages with
the same input type existed. Another problem in this case would be that for
circular conversions (from Integer to String and back to Integer), an obvious
circular dependence for the instantiations would appear.

These reasons preclude a natural Ada solution that uses dot notation. The
adopted solution in RxAda is the use, as in the C++ implementation, of a
binary operator function. Whereas C++ uses the pipe “|” operator, in Ada
the “&” operator was chosen, which furthermore already conveys the sense of
concatenation to Ada programmers. This is realized as seen in Listing 3.4 where
the root Operator class of RxAda is defined.

160 A.R. Mosteo

As evidenced by the parameters accepted by “&”, users have to perform
an additional instantiation for every conversion between types, in the proper
From→Into direction of transformation. And, since “&” is defined for two pre-
cise types, the proper consistency checks for operators forming a chain are per-
formed at compile time. The second parameter of “&” is returned under its
Observable’Class view, to be used as first parameter of a subsequent “&” call.
Listing 3.5 shows again the initial example of Listing 2.2, this time detailing
the different types involved. Other packages shown therein are explained in the
following subsections.

RxAda: An Ada Implementation of the ReactiveX API 161

3.3 Type-Preserving Operators

With the design explained up to this point, the basic pieces are in place for
the actual implementation of Rx operators. For the issue of type-preserving
operators, the Rx.Transformers package can be directly specialized and reused,
as shown in Listing 3.6.

3.4 Observers of Several Types and Mutual Exclusion Enforcing

To close the topic of types and operators, a last case has to be considered.
A number of complex operators are able to observe observables of different types
at the same time. For example, a variant of the Sample operator emits the last
seen item from upstream whenever another observable, the sampler, emits an
item whose type is not significant, discarding the rest of upstream items. This
is prototyped in Java as:

Other operators, like Merge or Flatmap, also can receive items from several
observables at the same time. Upstream observables have no way to synchronize
their emissions, which requires enforcing of the mutual exclusion contract at the
point where these observables converge in a single operator. To support that
kind of complex operators, RxAda defines a Multiobserver specific type, which
simplifies maintenance by centralizing the mutual exclusion support and shallow
copy low-level memory management needed for observers subscribed to several
observables.

Mutual exclusion, in Ada, would typically be done with a protected type.
However, there are at least two reasons to avoid this choice in the Rx case. For
once, user supplied functions can last an unknown time, and should hence not
be performed inside a protected call. Furthermore, if items were emitted from
within a protected subprogram, any call further down the chain to a blocking
operation (for example in user-supplied code) would result in a bounded error. To
avoid these pitfalls, semaphores are used internally and transparently to operator
implementers and users. Relevant parts of the multiobserver specification are
shown in Listing 3.7.

162 A.R. Mosteo

3.5 Executing the Subscription

Previous examples ended the chain with a function named Subscribe (e.g. List-
ing 3.5). In RxAda, to distinguish between a regular operator concatenation
and an actual subscription, and for uniformity, the “&” symbol is used too, but
with a different parameter profile. As shown in Listing 3.8, a specific Sink inter-
face is used that disambiguates for the compiler the precise “&” being called.
The returned Subscription is in practice a hidden reference-counted pointer
to a shared atomic boolean that can be used to externally and asynchronously
terminate a subscription, or check its liveness.

RxAda: An Ada Implementation of the ReactiveX API 163

3.6 Dependencies and User Instantiations

To conclude this section, dependencies between the already seen parts of the
library are graphically depicted in Fig. 2. At this point the reader might right-
fully wonder how many and of which package instances should be created to
be able to use RxAda. To ease initial learning curve and for simple use cases,
RxAda provides two packages that take care of the finer details with sensible
defaults, so the new user needs basically to choose between Rx.Definites or
Rx.Indefinites as the entry point into RxAda. These packages take as for-
mal only the user type (see Listing 3.9) and create instances of all single-type
observables, ready for use. Finer storage control is available through Rx.Types.
To obtain operators that transform between types, there is the Rx.Operators
package for that purpose. For even finer control, the user can dive into the indi-
vidual operator packages, whose organization is described in the next section.

4 Library Organization

The RxAda library has been structured in several package families to simplify
its maintenance and understanding. For example, the already seen Rx.Impl.*
hierarchy contains packages that would rarely be of interest for final users, and
that contain most of the logic implementing the Rx framework. Other similar
branches are presented next, concluding with the multithreading support facili-
ties, which is particularly interesting given that it is the part of Rx that enables
such flexible tasking.

4.1 User-Facing Packages

An effort has been made to isolate as much as possible packages that users
of the library may want to eventually know about from other implementation
packages. This separation is visible in two ways: in the on-disk file organization
and in the package names. Source files (available at [8]) are classified in three
folders. A first, root folder named src contains user-facing packages, like the
ones discussed at the end of the previous section. Within this folder, another
one named priv contains the specifications of implementation packages. Finally,
a sibling folder body contains all bodies of the library. In summary, basic users

164 A.R. Mosteo

User-instantiable packages

Rx.Definites Rx.Indefinites Rx.Types

Generic Operator implementations

Rx.Op.*Rx.Op.MapRx.Op.Filter Rx.Op.Flatmap Rx.Op.*

Implementation-supporting packages

Rx.Impl.Transformers

Rx.Impl.Preservers Rx.Impl.Multiobservers

Rx.Impl.Typed

Operator instantiations

Rx.Observables

Rx.Operators

Fundamental declarations

Rx.Traits.Types Rx.Contracts

Fig. 2. Dependencies between some RxAda packages. This partial view of the pack-
age hierarchy represents the basic interactions described in Sect. 3. From bottom
to top: Rx.Contracts declares the interfaces for the Reactive Contract, whereas
Rx.Traits.Types is a generic package where the user specifies a definite representation
for an indefinite type, and the proper conversions. The Rx.Impl.Typed package takes
a user type and combines it with the Rx contract via implementation packages, not
shown here. The rest of Rx.Impl.* packages depicted are successive specializations of
the Operator implementation infrastructure. The Rx.Op.* packages are the actual Rx
operator implementations, which in turn can be instantiated directly by an advanced
user, or through the convenience packages seen in the top layer.

RxAda: An Ada Implementation of the ReactiveX API 165

should concern themselves with the src folder whereas advanced users might
have interest at some point in the priv folder too. Packages in the src folder
are directly named as Rx.<Name>, while implementation packages in priv follow
a Rx.<Specialization>.<Name> convention, as detailed next.

4.2 General Implementation Packages

As seen, implementation packages without a more specific classification belong
in the Rx.Impl.* hierarchy. These packages deal with Rx concepts, contrar-
ily to non-Rx-specific supporting packages (that might as well be provided by
third-party libraries, although there no external dependencies at present) that
are in Rx.Tools.*. The supporting packages include, for example, reentrant
semaphores and thread-safe reference-counting pointers used in the few opera-
tors that must be shallow-shared with unknown numbers of Observables (that
is, those implementing the Multiobserver interface). The rest of the operators
mostly rely on copy semantics during chain formation, and reference accesses
during data flow, simplifying the library memory management.

4.3 Operator Implementations

To distinguish between observables that create items (sources) and opera-
tors that transform data, these packages are classified respectively under the
Rx.Src.* and Rx.Op.* hierarchies, although Rx documentation refers to them
indistinctly as operators.

4.4 Scheduling Packages

As seen in the example Listing 2.2, Rx allows simple yet powerful task manage-
ment. As in other Rx implementations, users need only to use the Rx.Schedulers
package facilities for task control. The actual implementation of tasking events
and pools that are used in Rx.Schedulers and the Subscribe On, Observe On
operators is filed under the Rx.Dispatchers.* branch. An abstract Dispatcher
interface is defined that allows scheduling events in a particular scheduler at a
particular time; this is used to implement the different specialized task pools rec-
ommended in the Rx documentation (e.g., I/O and background computation).

5 Conclusions

This work presented an Ada 2012 implementation of the ReactiveX approach
to reactive programming. The focus was placed on design and implementation
decisions adopted to address the challenges arising from the imperative nature of
Ada, tagged types syntax, lack of implicit instantiations of generics and lambda
functions, and explicit memory management. The implementation aims at bal-
ancing user comfort, maintenance simplicity, and correctness and performance
issues such as compile-time type checking. To that end the library is structured

166 A.R. Mosteo

in two main layers: the upper layer exposes the operators to users with purely
client needs in a type-centric manner, with a single generic instantiation per
type and per transformation between types. The lower layer contains features
needed for library expansion and advanced client use like the definition of new
operators or selective instantiation of parts of the library.

Future work is needed to assess the performance of the library against imple-
mentations in other languages. Support for more operator variants and the
Subject interface is also in the implementation pipeline.

RxAda is available under an Open Source license to interested parties.

Aknowledgements. This work has been supported by projects RoboChallenge
(DPI2016-76676-R-AEI/FEDER-UE) and Alerta (CUD2016-17). The author thanks
the regulars at comp.lang.ada for insightful discussions and the AdaCore support team
for their prompt response to bugs uncovered during RxAda development.

References

1. Bainomugisha, E., Carreton, A.L., Cutsem, T.V., Mostinckx, S., Meuter, W.D.: A
survey on reactive programming. ACM Comput. Surv. 45(4), 52:1–52:34 (2013)

2. Bonér, J., Farley, D., Kuhn, R., Thompson, M.: The Reactive Manifesto (2014).
http://www.reactivemanifesto.org/

3. Briot, E.: Traits-based containers (2015). http://blog.adacore.com/traits-
based-containers

4. Edwards, J.: Coherent reaction. In: Proceedings of the 24th ACM SIGPLAN Con-
ference Companion on Object Oriented Programming Systems Languages and
Applications, OOPSLA 2009, pp. 925–932. ACM, New York (2009)

5. Elliott, C.M.: Push-pull functional reactive programming. In: Proceedings of the
2nd ACM SIGPLAN Symposium on Haskell, Haskell 2009, pp. 25–36. ACM (2009)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman, Inc., Boston (1995)

7. Maglie, A.: ReactiveX and RxJava. In: Reactive Java Programming, pp. 1–9.
Springer, New York (2016)

8. Mosteo, A.R.: RxAda (2017). https://bitbucket.org/amosteo/rxada
9. Salvaneschi, G., Margara, A., Tamburrelli, G.: Reactive programming: a walk-

through. In: 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 2, pp. 953–954, May 2015

10. ReactiveX: An API for asynchronous programming with observable streams.
http://reactivex.io/

11. Rx design guidelines. https://blogs.msdn.microsoft.com/rxteam/2010/10/28/rx-
design-guidelines/

12. Thornley, J.: Parallel programming with declarative Ada. Technical report, Caltech
(1993)

13. Wan, Z., Hudak, P.: Functional reactive programming from first principles. In:
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language
Design and Implementation, PLDI 2000, pp. 242–252. ACM, New York (2000)

http://www.reactivemanifesto.org/
http://blog.adacore.com/traits-based-containers
http://blog.adacore.com/traits-based-containers
https://bitbucket.org/amosteo/rxada
http://reactivex.io/
https://blogs.msdn.microsoft.com/rxteam/2010/10/28/rx-design-guidelines/
https://blogs.msdn.microsoft.com/rxteam/2010/10/28/rx-design-guidelines/

Panel: The Future of Safety-Minded
Languages

A New Ravenscar-Based Profile

Patrick Rogers1(&), Jose Ruiz2, Tristan Gingold2,
and Patrick Bernardi1

1 AdaCore, New York, USA
{rogers,bernardi}@adacore.com

2 AdaCore, Paris, France
{ruiz,gingold}@adacore.com

Abstract. We describe a new Ada language profile based directly upon the
Ravenscar profile, intended to add expressive power for certain applications in
the real-time and embedded systems domains. The new profile enhancements
result primarily from the removal of selected Ravenscar restrictions but new
capabilities are added. We provide the motivation and requirements for such a
profile, the corresponding profile changes, and analyses of the results.

Keywords: Ada � The Ravenscar profile � Real-time systems � Run-time library

1 Introduction

The Ravenscar profile is a subset of the Ada concurrency facilities that supports deter-
minism, schedulability analysis, constrained memory utilization, and certification to the
highest integrity levels. Four distinct application domains are specifically intended:

• hard real-time applications requiring predictability,
• safety-critical systems requiring formal, stringent certification,
• high-integrity applications requiring formal static analysis and verification,
• embedded applications requiring both a small memory footprint and low execution

overhead.

The profile is a subset of full Ada tasking because of the wide range and demanding
nature of the analyses involved with these domains, in addition to efficiency and code
size concerns. Those tasking constructs that preclude analysis at the source level or
analysis of the tasking portion of the underlying run-time library are necessarily dis-
allowed. Complexity is the primary concern.

The profile has proven to be very successful, allowing the use of concurrency in
domains that would have otherwise been unlikely at best. It is a major strength of the
Ada language. Indeed it is unique among languages with built-in concurrency con-
structs. Although a reduced subset based on Ravenscar was explored for Java [1] it did
not become more than a research topic.

However, a loss of expressive power inevitably results from elimination or
restriction of language features. For some applications this loss results in additional
complexity at the application level as developers “work around” the restrictions. We
argue that the loss can be mitigated if the focus of the profile is narrowed to the hard
real-time and embedded systems domains because those domains do not entail the

© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 169–183, 2017.
DOI: 10.1007/978-3-319-60588-3_11

extremely stringent analyses required by the others. In particular, expressive power can
be significantly improved without precluding schedulability analysis and without
increasing the time and space costs unacceptably.

Therefore, a new language profile specifically for a subset of hard real-time and
embedded applications is both desirable and possible. The reader should understand that
this new profile is not a replacement for the Ravenscar profile. It is an additional profile
based on Ravenscar. When the other domains are involved, or when the smallest and
simplest implementation is otherwise required, the Ravenscar profile is most appropriate.

In the remaining sections of this paper we expand on the motivations and issues,
introduce a set of requirements and new content, and analyze the implementation.

2 Motivation

Most of the Ravenscar profile restrictions exist to remove complexity, both at the
application level and in the run-time library (because that is where tasking is largely
implemented). A simpler application is less costly to analyze for certification and
safety, as is a simpler run-time library. Indeed, a subset of the language is essential to
make these analyses economically feasible. A simplified run-time library can also be
far more efficient in both space and speed [2, 3]. For example, abort statements
complicate analysis of both the application and the run-time library implementation, as
well as impose size and performance penalties even when not used in the application.
Asynchronous select statements are another source of considerable complexity, both in
the application and the run-time library implementation.

Some restrictions exist for the sake of preventing inappropriate usage. For example,
relative delay statements should not be used to (attempt to) express periodic behavior in
tasks. Implicit heap allocations are inappropriate for certified systems because they do
not appear in the source code directly. Other restrictions exist to define a static syn-
chronization and communication model, such as the prohibition of task entries and
selective accept statements. Maintaining determinism is a recurring theme.

However, some of these removed features are so powerful that application devel-
opers may “re-implement” the missing capabilities at the application level, using
constructs allowed by the profile. The lack of multiple protected entries per protected
object is a prime example, as is the lack of multiple callers queued simultaneously on
an individual protected entry [4, 5]. For instance, developers may use two protected
objects, each with a single entry and some barrier replacement code, to mimic a single
entry with multiple queued entry callers [5, Sect. 5.9]. Similarly, they may have an
explicit array of Suspension_Object values to implement the behavior that multiple
protected entries in a single protected object would provide [5, Sect. 5.10].

Indeed, the prohibition of multiple protected entries per object and multiple queued
callers per entry precludes the full power of protected objects. In Ada, the execution of
a protected subprogram call or entry call starts a “protected action.” When the called
body completes execution, the barriers for all the protected entries in the protected
object (if any) are evaluated as part of the protected action. If there are callers waiting
on entries with entry barriers that are true, one of those entries is selected and that entry
body executes. In Ravenscar, that is the end of the protected action because there can

170 P. Rogers et al.

be only one caller on the entry “queue” and there is only one entry per protected object.
A number of language operations are deferred during a protected action and these are
now allowed to happen if any are pending. For example, new calls to the protected
object’s subprograms and entries are allowed.

Absent the Ravenscar entry restrictions, however, the protected action may con-
tinue. During that same protected action, after each subsequent entry body execution,
all the protected object’s entry barriers are re-evaluated again, so that queued callers on
entries with open barriers, if any, can be detected and their calls executed. The com-
pletion of that selected entry body execution triggers yet another evaluation and this
evaluation/execution continues until there are no callers queued on entries with open
barriers in the protected object. Only then does the protected action complete. This
iterative, full form of protected action is fundamental to the power of protected objects.

While the protected action is ongoing, any tasks that will eventually call the operations
of that protected object, but have not yet done so, cannot interfere. Execution preference is
given to the callers already in the protected entry queues while the protected action
executes. As a result, the Boolean condition onwhich a caller is waiting is guaranteed to be
true when the body actually executes, unlike the common condition-variable/mutex case.

“Implementation” of these restricted facilities by application developers can add
considerable complexity to the application level. Obviously any reintroduced com-
plexity must be acceptable for the domain in question, otherwise the code will be
rejected, e.g., in those domains requiring certification. But for some hard real-time
applications, predictability is the primary requirement and thus a higher degree of
complexity, including within the run-time library, is acceptable.

Without question, there are applications that should use the Ravenscar profile and
can be expressed reasonably in that profile’s subset. However, there are some real-time/
embedded applications that do not require the most stringent analyses supported by
Ravenscar and cannot reasonably be expressed in the profile’s subset. Such applications
are not “Ravenscar applications.” This new profile means to address those applications.

3 Goal and Profile Requirements

The goal of the new profile is to maximize the expressive power available to the
developers of a certain class of real-time and embedded applications. Specifically, these
are applications that can accept additional complexity, both at the application level and
within the underlying run-time library.

These applications require the operational benefits that the Ravenscar profile pro-
vides to applications in those two domains, such as predictability. These benefits– for
these specific applications – can be expressed as requirements for the profile and its
underlying run-time library implementation:

1. The new profile must not introduce unpredictable timing behavior. The ability to
perform schedulability analysis for applications in the real-time systems domain is key.

2. The new profile must not introduce unpredictable storage utilization.
3. The new profile must minimize additional implementation complexity, to the extent

possible.

A New Ravenscar-Based Profile 171

4. The new profile implementation must maintain both low execution time overhead
and a small code memory footprint, to the extent possible.

Requirements #3 and #4 involve compromises, as new functionality will typically
require additional run-time library code. We believe the new profile content described in
Sect. 4 represents the best compromise of additional complexity for additional func-
tionality that also retains the benefits of Ravenscar expressed in the four requirements
above. In Sect. 5 we analyze each new profile feature in terms of these requirements.

4 New Profile Content

The Ravenscar profile (i.e., not this new profile) is described in the language standard
by a set of pragmas specifying both behavior and language restrictions [6]:

172 P. Rogers et al.

The new profile relaxes, replaces, or removes some of these restrictions. The fol-
lowing sections describe the changes, referring as necessary to the restrictions specified
above. Anything not indicated as removed or altered from the Ravenscar profile
remains unchanged in the new profile.

4.1 Number of Queued Callers

The extended profile does not specify the global restrictionMax_Entry_Queue_Length.
As a result, multiple callers can be queued on any given protected entry, rather than
only one caller at a time. Note that task entries remain disallowed.

In addition, for any individual protected entry declaration, the developer can
specify the maximum number of callers allowed for that entry using a new aspect (or
pragma) Max_Queue_Length. (This new aspect should not be confused with the
existing Max_Entry_Queue_Length restriction.)The specified maximum number of
callers is checked at runtime. Use of the new aspect is optional, but if specified the
value must be a static positive integer.

4.2 Number of Entries per Protected Object

The extended profile does not specify a value for Max_Protected_Entries. As a result,
multiple entries per protected object are allowed. Note that this change also allows
entry families to have more than one member.

Whenever multiple entries are open within a protected object and have callers
queued, an entry will be chosen per the text of RM D.4 paragraph 12 (i.e., by priority of
the callers or, if necessary, by the textual order of the entry declarations).

4.3 Relaxed Entry Barriers

The extended profile does not specify Simple_Barriers. Instead, a new restriction
Pure_Barriers is applied. In addition to simple Boolean local variables, the new
restriction also allows more complex Boolean expressions.

Specifically, Pure_Barriers allows the following:

• Variables local to the protected object (thus defined in the private part)
• Discriminants for the protected object
• Numeric literals
• Enumeration (and thus character) literals
• Named numbers
• Predefined relational operators
• Logical operators (and, or, xor)
• Short-circuit control forms (and then, or else)
• The logical negation operator (not)
• The Count attribute

A New Ravenscar-Based Profile 173

No other language entities are allowed in the barrier expressions. Note that, in
Ravenscar, the Count attribute is only allowed within protected entry bodies, whereas
this new profile also allows it in the entry barriers.

Although more expressive, these expressions are still limited in content so that side
effects, exceptions, and recursion are impossible. Removing the possibility of side
effects is particularly important because the language does not specify the number of
times a given barrier is evaluated. Allowing exceptions would complicate the imple-
mentation, whereas the goal is an efficient and predictable run-time library imple-
mentation that minimizes barrier evaluation cost.

4.4 Relative Delay Statements

The extended profile does not specify No_Relative_Delay. As a result, “relative” delay
statements are now allowed, in addition to “absolute” (delay-until) delay statements.

Although relative delay statements are not appropriate for expressing periodic
behavior, there are cases in which a relative delay has precisely the required semantics.
For example, an electro-mechanical relay may have a requirement that it not be
actuated more than N times per second in order to prevent burn-out. A relative delay
after each actuation directly implements that requirement.

4.5 No_Implicit_Heap_Allocations

The extended profile does not specify No_Implicit_Heap_Allocations. This restriction
is in the Ravenscar profile for the sake of the other high-integrity domains addressed by
Ravenscar and is not necessarily applicable to real-time and embedded systems. Of
course, the restriction may be considered appropriate and, if so, developers can specify
this restriction in their application code. The new profile does not prohibit the
restriction, it simply does not require it.

4.6 Ada.Calendar

The extended profile removes the restriction prohibiting use of the Ada.Calendar
package. This restriction is present in Ravenscar because the Ada.Real_Time package
has more appropriate semantics for real-time/embedded applications. However, not all
usage of Ada.Calendar is unreasonable, for example time-stamping log messages.

5 Analysis

In this section we use the four requirements listed in Sect. 3 to evaluate the changes
introduced by the new profile described in Sect. 4. Each new profile feature is
examined to show compliance with the four requirements.

174 P. Rogers et al.

5.1 Protected Entry Queueing and Multiple Entry Queues
Per Protected Object

The implementation of these two enhancements occurs indivisibly and indeed their
semantics are inextricably intertwined, so we examine them as one.

Requirement 1: Maintain timing predictability
The new profile allows multiple protected entries per protected object and multiple
queued callers per entry. These changes enable full, iterative protected actions and thus
allow many of the design idioms for protected objects. However, support for full
protected actions increases the execution times for those tasks that call protected
procedures and entries. That increase can reduce the overall schedulability of the set of
tasks in the system. Whether or not schedulability is actually precluded will depend
upon the application design.

The potential for increased task execution time (beyond that of Ravenscar) for
protected procedure and entry calls exists because of the implementation of the iterative
protected actions. Specifically, we use the common “last task in” implementation
approach, in which the caller that triggers the protected action performs all of the
subsequent entry calls on behalf of all of the selected caller tasks. This approach is the
most efficient because it avoids a task switch to each queued caller. However, a given
caller may therefore execute more than the one procedure or entry body explicitly
called in its source code. The result is that a protected procedure or entry call may
involve a computation time greater than that of the individual entry/procedure explicitly
called.

To precisely show where the increases occur we will use equations for Response
Time Analysis, the standard way of analyzing fixed-priority real-time systems such as
those using Ravenscar [4]. (The bulk of the following is based directly on [4, 7].) In the
most abstract form, the response time R for any single task in the system is the sum of
the task’s computation time C, blocking time B, and interference time I, as shown in
Eq. (1):

Ri ¼ Ci þ Bi þ Ii ð1Þ

Specifically, for any single task i in a given interval, Ci is the worst-case execution
time (WCET) required for the task to do the work it performs to meet its functional
requirements, Bi is the worst-case time the task is waiting for lower priority tasks, and Ii
is the worst-case time the task is preempted by the execution of higher priority tasks.
The entire task set is schedulable if every task i has a worst-case response time Ri less
than or equal to that task’s individual dead line Di. There are other terms that would be
included in the equation as well, such as the system overhead (e.g., clock handling) and
jitter, but these can be ignored for our purposes.

By definition, for a given task the total interference per interval is the amount of
time required for the execution of all the higher priority tasks in that interval. Each
higher priority task is released some number of times in the interval because each has a
shorter period. When released each executes for their computation time C. For any
single higher priority task j, then, the total interference contributed per interval is the
product of the number of releases for j and computation time Cj. The total interference

A New Ravenscar-Based Profile 175

experienced by the lower priority task is then the sum of those products from all the
higher priority tasks, shown in Eq. (2):

Ii ¼
X

j2hpðiÞ

Ri

Tj

� �
Cj ð2Þ

In Eq. (2), hp is the set of tasks with priorities higher than that of task i, referenced
elsewhere as Pi.Cj is the computation time for a task j in that set and Tj is the period for
that task. To understand the number of releases in the equation, consider that over the
time of Ri, the higher priority task j will be released at least once because it has a shorter
period. If we divide Ri by the period of the higher priority task, Tj, we get a fractional
value representing the number of releases in Ri for task j. The number of releases must
be a whole number so the ceiling function is applied to that fractional value (The
ceiling function returns the smallest integer greater than the fractional value it operates
upon.).

The reader will have observed that Ri appears on both sides of the equation. The
easiest way to solve such an equation is with a recurrence relationship [4] but showing
that is outside the scope of this paper.

For the blocking term Bi, recall that this is the amount of time spent waiting for
lower priority tasks to finish their execution, per interval. Waiting necessarily occurs
when a lower priority task has a mutual exclusion lock on one or more shared
resources, which in Ada are protected objects. By “shared” we mean that tasks of
different priorities, higher and lower relative to a given task, call protected procedures
or a protected entry in the same protected object. One or more protected objects can be
shared in this way.

The blocking term must be both bounded and quantifiable to support schedulability
analyses. Under the Ceiling Priority protocol applied by Ravenscar (and the new
profile) the bound is ideal: higher-priority processes can only be blocked once per
release by lower-priority tasks locking a shared protected object. There are no iterative
protected actions in Ravenscar so a task can only execute one entry per invocation.
Therefore, the blocking time in Ravenscar is the maximum execution time required for
any single protected entry in a protected object shared among the tasks in question. We
can quantify this value precisely using Eq. (3):

Bi ¼ max
K

k¼1
usageðk; iÞ CðkÞ ð3Þ

In Eq. (3), K is the number of protected objects potentially shared among tasks with
higher and lower priorities than Pi. The term C(k) is the execution time required for a
protected procedure body or entry body in protected object k. (Note that in [4, 7] C(k) is
the sole value provided for protected object k, but it is not necessarily the greatest value
experienced when invoking the protected entries ink. In our usage we do assume that it
is the largest single value.) A protected object may or may not be shared among a given
group of tasks so the equation must be able to ignore some protected objects’ C(k)
values. Therefore, the function usage (k, i) returns either 0 or 1, indicating whether or
not protected object k is accessed by at least one task with priority lower than Pi, and at

176 P. Rogers et al.

least one task with priority greater than or equal to Pi. If the protected object k is not
shared in that manner the product will be zero and those values of C(k) will be ignored.
Thus the worst case blocking for task i, Bi, is the maximum of the protected entry
execution times C(k) from among all the shared protected objects’ operations invoked
by lower priority tasks.

In the new profile, a higher priority task is still blocked only once per release by a
lower priority task. However, the value of C(k) may now be greater than the time for
the invocation of a single entry because iterative protected actions are now allowed. In
these protected actions, multiple entry bodies may be executed, assuming the appli-
cation design is such that iterative protected actions will actually occur.

The number of entries executed in the protected actions will be no greater than the
number of callers queued on the entries in the protected object. As a result, to compute
the worst case value for C(k) we now need to know the worst case number of callers
accessing k. Without any additional information, that worst case is the total number of
tasks N in the application because it is possible for all tasks to call the same protected
object’s entries. Moreover, it may be the case that every task in the application has
called the entry in k with the highest computation time. If the barrier remains open, that
entry will execute once for every caller.

There are two mitigating factors that can limit the number of callers.
First, the new profile allows the developer to specify the maximum number of

callers per individual entry, via the new aspect Max_Queue_Length (see Sect. 4.1).
Therefore, the worst case value for C(k) is the sum, for all entries in the protected object
k, of the product of each individual entry WCET and the maximum number of callers
for that entry. That could still be a significant value, depending on the application
design, but it is likely much less than N and is under the direct control of the developer.
We express this value in Eq. (4):

CðkÞ ¼
X

e2EðkÞ
Max Queue LengthðeÞ CðeÞ ð4Þ

In Eq. (4), k is again a protected object and E(k) is the set of entries declared in
k. Max_Queue_Length is the value specified by the aspect for entry e. C(e) is the worst
case computation time for the protected entry e. Thus, for each entry e in k, C(k) is the
sum of the product of the number of callers for e and the computation time for e. C(k) is
therefore the WCET for executing all the entries in k for the possible number of callers.

The second factor reducing the number of callers has to do with the definition of
blocking with regard to shared protected objects. Some of the callers queued on the
protected entries of protected object k may have higher priority than Pi (the priority of
task i), and some may have lower priority. By definition, only the lower priority callers
contribute to the blocking term Bi. The execution of entry bodies on behalf of queued
higher priority callers is simply part of the interference term Ii, as if task i was pre-
empted by each such caller. The usage function in Eq. (3) already ensures that only
appropriately shared protected objects are included in the calculation. We repeat the
blocking computation from Eq. (3), now as Eq. (5), both for convenience and because
the meaning of C(k) has changed:

A New Ravenscar-Based Profile 177

Bi ¼ max
K

k¼1
usageðk; iÞ CðkÞ ð5Þ

The change is that C(k) is now the worst case computation time for executing a
protected action in protected object k, rather a single entry in k (see Eq. (4)).

In addition, calls to some entry-specific attributes are somewhat slower and there is
a minimum implementation-dependent increase in the run-time library implementation
for entry handling, in both cases due to the potential for protected actions. These
increases will also appear in the blocking term via C(k). All the increases are examined
and explained in the subsection for requirement #4.

The reader should understand that these execution time increases do not introduce
non-determinism and so they do not preclude schedulability analysis. The increases
may potentially reduce the chances for overall schedulability but the analysis can still
be performed.

Note that the new profile does not impose a requirement to have multiple entries in
any given protected object, nor is there a requirement to have multiple callers queued
per entry. The application designer can choose to have only one entry per protected
object and can set the value of Max_Queue_Length to one for each entry. In that case,
though, the designer should simply apply the Ravenscar profile. That usage clearly
involves a different application design than the one intended for use with the new
profile. In other words, an application either has a Ravenscar compliant design or it
does not. If not, it requires a different profile. In either case the application will be
analyzable for schedulability.

Requirement 2: Maintain storage utilization predictability
Support for multiple entries and multiple callers (entry queues) uses logical linked lists
that are physically part of the existing task descriptors in the run-time library. The lists
are represented using pointers to task descriptors that are already present in the
descriptors. The queue elements are the task descriptors themselves. There is no need to
allocate any additional memory.

Requirement 3: Minimize additional complexity
The implementation for multiple entries and multiple callers added fewer than 300
logical SLOCs (declarations and statements) to the existing Ravenscar run-time library
implementation.

Requirement 4: Maintain space and speed efficiency
In the early 2000s, the European Space Agency (ESA) funded the development of a
vendor-independent Ravenscar benchmarking test suite: the ESA Ravenscar Bench-
marks, or ERB [8]. The work was done by AdaCore along with the Technical
University of Madrid and the University of Padua. The test suite is available for
download via the AdaCore Libre site (http://libre.adacore.com/tools/erb/) using sub-
version. We used the ERB to measure the efficiency of the new profile’s run-time
implementation.

The ERB is targeted to the ERC32 and Leon processors and is designed to use the
GNAT compiler, among others. We used the GNAT Leon compiler with execution on

178 P. Rogers et al.

http://libre.adacore.com/tools/erb/

the “tsim” simulator. We used the original tests for our analysis. To run the tests we
followed the instructions in the “GETTING_STARTED” file.

The ERB tests examine a number of characteristics of an implementation, including
timing for tasking related features, accuracy of arithmetic operators, subprogram call
overhead, dynamic memory allocation and deallocation times, and the amount of
memory used. The useful tests for our purposes measure the performance of various
tasking constructs so we did not run all the tests defined by the test suite. Instead, we
ran all the tasking timing tests, specifically the tests named “tp_t_a_xxx” where “xxx” is
a number and a letter.

We ran the tests using the run-time libraries for the Ravenscar profile and the new
profile and got repeatable results. Since the ERB itself and the tsim simulator are
designed with exactly that expectation we have confidence in the results and corre-
sponding conclusions.

The tests were not changed from the originals so the source code is consistent with
the Ravenscar restrictions. For example, any entry in a protected object is the only entry
present and has at most one caller. This approach allows us to discuss performance
differences relative to the Ravenscar profile. Therefore, in the results that follow, we
provide the percentage difference between the results of the tests when run on our
standard Ravenscar run-time library and when run on a run-time library implementing
the new profile.

In nearly all cases the resulting percentage differences were either literally zero or
were so close to zero as to be insignificant. We do not present those results. In some
cases we took one representative result from a set of directly related tests. This was
done because those tests showed no differences among the results. For example, some
tests measure calls from a task versus calls from a main procedure. Only one result is
used for such a group of tests. As a result, only five tests provided informative non-zero
results. In addition, one set of tests provided a useful result even though the difference
was zero, i.e., there was no change.

Specifically, in those tests in which a protected entry is not declared within a
protected object, the timing is unchanged: there is no performance increase for calls to
protected procedures declared within such objects. The reason it is unchanged is that an
optimized run-time library routine dedicated to that scenario is used in both profiles.
This is an important idiom (mutual exclusion alone, without condition synchronization)
so the lack of any additional overhead is ideal. This was test tp_t_a_07a.

However, when a protected object does contain an entry declaration, calls to both
protected procedures as well as protected entries do encounter a change in performance,
due to the potential for an iterative protected action triggered by the completion of the
body. In this scenario, we cannot use a dedicated run-time routine to handle a single
entry with a single caller, but must use the “standard” run-time routine for the sake of
the additional semantics. The performance is therefore not the same as with the
Ravenscar profile. Specifically:

• A call to a protected entry with the barrier open is approximately 54% slower, due
to the check for other potential entries to execute (although none would ensue since
there was only one entry and one caller in Ravenscar). This was test tp_t_a_09a.

A New Ravenscar-Based Profile 179

• A call to a protected entry with the barrier closed is approximately 25% slower. In
this case no entry body is executed so, in combination with the Simple_Barriers
restriction, no further protected action execution is possible. The caller is simply
queued. (Simple_Barriersentails that ‘Count is not used in a barrier.) This was test
tp_t_a_10a.

• A call to a protected procedure, when the protected object contains an entry dec-
laration that is closed, is approximately 13% slower. This is the minimal case, in
which the potential for another entry body execution must be checked but no
resulting processing is required (there is no caller queuing, in particular). This was
test tp_t_a_12a.

Other functionality related to protected entries also exhibit performance changes:

• A call to ‘Count for an entry, made from a protected procedure within that same
protected object, is approximately 21% slower. This was test tp_t_a_13a.

• A call to ‘Caller in a protected entry is approximately 58% slower. This was test
tp_t_a_14a.

We have presented the differences in terms of percentages relative to the bespoke
Ravenscar run-time routines that take advantage of the reduced semantics. However,
the numbers themselves are still low and well within the realm of usability.

5.2 Pure_Barriers

See Sect. 4.3 for the definition of the new restriction Pure_Barriers. Recall from that
section that, although this new restriction allows more language entities in the barrier
expressions, the expressions are by no means fully general.

Requirement 1: Maintain timing predictability
The barrier expression is compiled like any expression. However, although the
expression can be more complex than those of Simple_Barriers, it is restricted to simple
language-defined operators that have no side-effects and no exceptions. As a direct
result, execution time remains predictable.

Requirement 2: Maintain storage utilization predictability
The amount of stack needed to evaluate the barrier is predictable because of the
restrictions imposed. In particular, arbitrary Boolean functions and non-local variables
are not allowed.

Requirement 3: Minimize additional complexity
Although Pure_Barriers is less restrictive than Simple_Barriers, the complexity is still
low and is directly controlled by the user.

Requirement 4: Maintain space and speed efficiency
Likewise, space and speed efficiency depend on the expression complexity and are,
therefore, under user control. The restrictions are such that efficiency should remain
high.

180 P. Rogers et al.

5.3 Relative Delay Statements

A relative delay statement in the application code is implemented in the run-time
library as a procedure with a body that simply contains an absolute delay statement.
The value of type Time for this absolute delay is computed as the sum of the result of
the Clock function plus the Duration value converted to a Time_Span value. In other
words, the implementation contains precisely the work-around used by application
programmers under the Ravenscar profile when a relative delay is desired.

Requirement 1: Maintain timing predictability
The implementations of functions Clock, To_Time_Span, and the function “+” prior to
the absolute delay statement have consistent, predictable times, as in the Ravenscar
profile.

Requirement 2: Maintain storage utilization predictability
There is no additional memory allocation for this feature.

Requirement 3: Minimize additional complexity
This feature does not increase complexity, it is almost transparent.

Requirement 4: Maintain space and speed efficiency
This feature is efficient in terms of both space and speed. The additional time required
consists of the execution of the bodies of the functions Clock, To_Time_Span, and the
addition function, all of which are minimal and the same as under the Ravenscar
profile.

5.4 Non-tasking Restrictions

The removal of the restrictions preventing implicit heap allocation and use of Ada.
Calendar does not require run-time library support. There are no performance impacts
and no other effects other than to allow the otherwise prohibited functionality in the
code. Application developers can specify both restrictions, if desired, and the compiler
will detect violations as in the Ravenscar profile.

5.5 Analysis Summary

We have examined each new profile addition in terms of the four general requirements,
restated here along with their specific results summary:

1. The new profile must not introduce unpredictable timing behavior. The ability to
perform schedulability analysis for applications in the real-time systems domain is
key.

The new profile features maintain the ability to perform schedulability analysis.
Full protected actions, if used, increase the blocking time for individual tasks, but that
does not preclude schedulability analysis. The new features do not introduce
non-determinism.

A New Ravenscar-Based Profile 181

2. The new profile must not introduce unpredictable storage utilization.

The new profile features do not introduce any unpredictable storage utilization into
the run-time library. It does remove the unilateral application of the restriction
No_Implicit_Heap_Allocations, but the run-time library does no such allocations. If the
application designer wants to ensure no such storage allocation occurs they can reapply
the configuration pragma, but removal of the pragma does not introduce
unpredictability.

3. The new profile must minimize additional implementation complexity, to the extent
possible.

Some of the new profile features introduce complexity into the run-time library,
others introduce none whatsoever. In particular, the allowance for multiple entries per
protected object and multiple simultaneously queued callers introduces complexity but
not beyond an acceptable amount.

4. The new profile implementation must maintain both low execution time overhead
and a small code memory footprint, to the extent possible.

The new profile features do affect performance but do not do so to an unacceptable
degree. The additional memory footprint in the implementation is quite small and
appears in the form of additional object code.

Overall, the new features provide significantly enhanced expressive power while
meeting the required constraints.

6 Conclusions

The Ravenscar profile presents an appropriate subset of Ada tasking for the several
application domains it addresses when the absolute minimum application and imple-
mentation complexity is required. However, the resulting profile is necessarily strict
and the resulting loss of expressive power is considerable.

The loss can be mitigated when additional complexity is allowable, i.e., when only
schedulability analysis or a small memory footprint is required. That is the case for a
class of applications in the real-time and embedded systems domains.

Considerable expressive power can be restored, especially for protected types,
without sacrificing predictability and without imposing unacceptable performance
degradations. Moreover, the complexity of the added run-time library code is small:
much of the additional code consists of declarations, with simple control flow con-
sisting of a few if-statements and a few loops. These changes make possible the
expression of a larger set of applications in the two domains without prompting the
work-arounds that introduce complexity at the application level.

The reader will have noticed that we have not mentioned the name of the new
profile, other than the fact that it is directly based on Ravenscar. AdaCore is currently
shipping the new profile in selected products, with the profile named “GNAT Extended
Ravenscar Profile,” but we hope to have this new profile included in the language
standard and as such it would have a vendor-independent name.

182 P. Rogers et al.

The authors would like to thank the reviewers of the 17th International Real-Time
Ada Workshop for their comments on our position paper [9] proposing an initial
version of the new profile, as well as the meeting members for their very helpful
suggestions and feedback.

References

1. Kwon, J., Wellings, A.J., King, S.: Ravenscar-Java: a high-integrity profile for real-time Java.
Concurrency Comput. Pract. Experience 17(5–6), 681–713 (2005)

2. Shen, H., Baker, T.P.: A Linux kernel module implementation of restricted Ada tasking.
ACM SIGAda Ada Lett. 19(2), 96–103 (1999)

3. Dobbing, B.: The Ravenscar tasking profile – experience report. ACM SIGAda Ada Lett. 19
(2), 28–32 (1999)

4. Burns, A., Wellings, A.: Analysable Real-Time Systems Programmed in Ada. CreateSpace
Independent Publishing Platform (2016)

5. Burns, A., Dobbing, B., Vardanega, T.: Guide for the use of the Ada Ravenscar profile in high
integrity systems. Ada Lett. XXIV(2), 1–74 (2004)

6. ISO: ISO/IEC JTC 1/SC 22/WG9 Ada Reference Manual-Language and Standard
Libraries-ISO/IEC 8652:2012/Cor 1:2016 (2016)

7. Burns, A., Wellings, A.J.: Real-Time Systems and Programming Languages, 4th edn.
Addison-Wesley, Reading (2009)

8. Berrendonner, R., Guitton, J.: The ESA Ravenscar benchmark. In: Reliable Software
Technologies – Ada-Europe 2005. Springer, New York (2005)

9. Rogers, P., Ruiz, J., Gingold, T.: Toward extensions to the Ravenscar profile. ACM SIGAda
Ada Lett. 35(1), 32–37 (2015)

A New Ravenscar-Based Profile 183

OpenMP Tasking Model for Ada:
Safety and Correctness

Sara Royuela1(B), Xavier Martorell1(B), Eduardo Quiñones1(B),
and Luis Miguel Pinho2(B)

1 Barcelona Supercomputing Center, Barcelona, Spain
{sara.royuela,xavier.martorell,eduardo.quinones}@bsc.es

2 CISTER/INESC-TEC, ISEP, Polytechnic Institute of Porto, Porto, Portugal
lmp@isep.ipp.pt

Abstract. The safety-critical real-time embedded domain increasingly
demands the use of parallel architectures to fulfill performance require-
ments. Such architectures require the use of parallel programming models
to exploit the underlying parallelism. This paper evaluates the applica-
bility of using OpenMP, a widespread parallel programming model, with
Ada, a language widely used in the safety-critical domain.

Concretely, this paper shows that applying the OpenMP tasking
model to exploit fine-grained parallelism within Ada tasks does not
impact on programs safeness and correctness, which is vital in the envi-
ronments where Ada is mostly used. Moreover, we compare the OpenMP
tasking model with the proposal of Ada extensions to define paral-
lel blocks, parallel loops and reductions. Overall, we conclude that the
OpenMP tasking model can be safely used in such environments, being
a promising approach to exploit fine-grain parallelism in Ada tasks, and
we identify the issues which still need to be further researched.

1 Introduction

There is a clear trend towards the use of parallel computation to fulfill the perfor-
mance requirements of real-time embedded systems in general, and safety-critical
embedded systems in particular (e.g. autonomous driving). In that regard, the
use of advanced parallel architectures, like many-core heterogeneous processors,
is increasingly seen as the solution. These architectures rely on parallel program-
ming models to exploit their massively parallel capabilities. Thus, there is a need
to integrate these models in the development of safety-critical systems [21].

Safety-critical systems are commonly developed with programming languages
where concepts as safety and reliability are crucial. In that respect, Ada is widely
used in safety-critical and high-security domains such as avionics and railroad
systems. The whole language is designed to keep safeness: it enforces strong
typing, checks ranges in loops and so eliminating buffer overflows, provides actual
contracts in the form of pre- and post-conditions, prevents access to deallocated
memory, etc. A long list of language decisions allows compilers to implement
correctness techniques to certify algorithms regarding their specification.
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 184–200, 2017.
DOI: 10.1007/978-3-319-60588-3 12

OpenMP Tasking Model for Ada: Safety and Correctness 185

Ada supports a concurrency model (by means of Ada tasks and protected
objects) that is mainly suitable for coarse-grained parallelism. Hence, there has
been a significant effort to add support for fine-grained parallelism to Ada, to
benefit from parallel architectures. The existent proposal [26] enriches the Ada
core with extensions that support parallel blocks and parallel loops (including
reductions). This technique is based on the notion of tasklets [23]: concurrent
logical units within an Ada task. Since adding parallelism also means adding a
source of errors (due to concurrent accesses to global data and synchronizations)
the proposal addresses safety using new annotations. With that, the compiler is
able to detect data race conditions1 and blocking operations2.

This paper evaluates the use of the OpenMP [1] tasking model to express
fine-grained parallelism in Ada. OpenMP was born in the 90’s out of the need
for standardizing the different vendor specific directives related to parallelism.
The language has successfully emerged as the de facto standard for shared-
memory systems. This is the result of being successfully used for decades in
the high-performance computing (HPC) domain. Furthermore, OpenMP has
recently gained much attention in the embedded field owing to the augmenta-
tions of the latest specifications, which address the key issues in heterogeneous
embedded systems: (a) the coupling of a main host processor to one or more
many-core accelerators, where highly-parallel code kernels can be offloaded for
improved performance/watt; and (b) the capability of expressing fine-grained,
both structured and unstructured, and highly-dynamic task parallelism.

This paper shows how OpenMP can be integrated with Ada, and how cor-
rectness and thus safety are preserved when using the OpenMP tasking model [9]
by virtue of compiler analyses. These analyses allow both compile-time detection
of errors that may cause runtimes to break or hang, and automatic amendment
of errors introduced due to a wrong usage of the user-driven parallelism. The
OpenMP tasking model implements an execution pattern similar to the tasklet
model, for an OpenMP task3 resembles a tasklet. Interestingly, both models map
to state-of-the-art scheduling methods, enabling to provide timing guarantees to
OpenMP applications [24]. Such points make OpenMP particularly relevant for
embedded heterogeneous systems, which typically run applications that can be
very well modeled as periodic task graphs.

There are however a few caveats. First, the interplay between OpenMP and
Ada runtimes, each with its own model. Second, although the tasking model of
OpenMP has been demonstrated to be analyzable for real-time systems using
the limited preemptive scheduling model [30], it is still ongoing effort to make it

1 A race condition occurs when two or more accesses to the same variable are concur-
rent and at least one is a write.

2 Blocking operations are defined in Ada to be one of the following: entry calls; select,
accept, delay and abort statements; task creation or activation; external calls on a
protected subprogram with the same target object as that of the protected action;
and calls to a subprogram containing blocking operations.

3 An OpenMP task is a specific instance of executable code and its data environ-
ment, generated when a thread encounters a given construct (i.e. task, taskloop,
parallel, target, or teams).

186 S. Royuela et al.

a standard offering. Finally, it remains as a future work to evaluate the complete
OpenMP language, including its thread-based model (see Sect. 4.1).

2 Motivation: Why OpenMP?

Programming multi-cores is difficult due to the multiple constraints it involves.
Hence, the success of a multi-core platform relies on its productivity, which com-
bines performance, programmability and portability. With such a goal, multitude
of programming models coexist. The different approaches are grouped as follows:

Hardware-centric models aim to replace the native platform programming with
higher-level, user-friendly solutions, e.g. Intel R© TBB [27] and NVIDIA R©

CUDA [5]. These models focus on tuning an application to match a chosen
platform, which makes their use a neither scalable nor portable solution.

Application-centric models deal with the application parallelization from design
to implementation, e.g. OpenCL [34] and OmpSs [13]. Although portable,
these models may require a full rewriting process to accomplish productivity.

Parallelism-centric models allow users to express typical parallelism constructs
in a simple and effective way, and at various levels of abstraction, e.g. POSIX
threads (Pthreads) [11], MPI [33] and OpenMP [12]. This approach allows
flexibility and expressiveness, while decoupling design from implementation.

Given the vast amount of options available, there is a noticeable need to unify
programming models for many-cores [36]. In that sense, OpenMP has proved
many advantages over its competitors. On the one hand, different evaluations
demonstrate that OpenMP delivers tantamount performance and efficiency com-
pared to highly tunable models such as TBB [16], CUDA [19], OpenCL [31], and
MPI [17]. On the other hand, OpenMP has different advantages over low level
libraries such as Pthreads: (a) it offers robustness without sacrificing perfor-
mance [18], and (b) OpenMP does not lock the software to a specific number of
threads. Another advantage is that the code can be compiled as a single-threaded
application just disabling support for OpenMP, thus easing debugging.

The use of OpenMP presents three main advantages. First, an expert commu-
nity has constantly reviewed and augmented the language for the past 20 years.
Thus, less effort is needed to introduce fine-grained parallelism in Ada. Second,
OpenMP is widely implemented by several chip and compiler vendors (e.g. GNU
[2], Intel R© [4], and IBM [3]), meaning that less effort is needed to manage paral-
lelism as the OpenMP runtime will manage it. Third, OpenMP provides greater
expressiveness due to years of experience in its development. The language offers
several directives for parallelization and synchronization, along with a large num-
ber of clauses that allow to contextualize concurrency, providing a finer control of
the parallelism. Overall, OpenMP is a good candidate to introduce fine-grained
parallelism to Ada by virtue of its benefits.

Despite its benefits, there is still work to do to fulfill the safety-critical domain
requirements. Firstly, OpenMP is not reliable because it does not define any
recovery mechanism. In that regard, different approaches have been proposed

OpenMP Tasking Model for Ada: Safety and Correctness 187

and some of them have been already adopted, which we discuss in Sect. 5.3.
Secondly, both programmers and compilers must satisfy some requirements to
make possible whole program analysis (such as programmers adding information
in headers libraries, and compilers implementing techniques like IPO [7]).

3 Ada Language Extensions for Fine-Grain Parallelism

Ada includes tasking features as part of the standard by means of tasks, which
are entities that denote concurrent actions, and inter-task communication mech-
anisms such as protected objects or rendezvous. However, this model is mainly
suitable for coarse-grained parallelism due to its higher overhead [32].

Efforts exist to extend Ada with a fine-grained parallel model based on the
notion of tasklets [23], where parallelism is not fully controlled by the program-
mer: the programmer specifies the parallel nature of the algorithm, and the
compiler and the runtime have the freedom to organize parallel computations.

Based on this model, specific language extensions have been proposed [35]
to cover two cases where parallelization is suitable: parallel blocks and parallel
loops, including reductions. The following subsections present the syntax and
semantics proposed (which are being considered for future versions of the Ada
language [8]), as well as how safety is kept in this model.

3.1 Parallel Blocks

A parallel block (Listing 1.1) denotes two or more parts of an algorithm that can
be executed in parallel. A transfer of control4 or exception5 within one parallel
sequence aborts the execution of parallel sequences that have not started, and
potentially initiates the abortion of those sequences not yet completed6. Once
all parallel sequences complete, then the transfer of control or exception occurs.

Listing 1.1. Parallel block syntax
with proposed Ada extensions

1 parallel
2 sequence_of_statements
3 and
4 sequence_of_statements
5 {and
6 sequence_of_statements}
7 end parallel;

Listing 1.2. Parallel loop syntax with
proposed Ada extensions

1 for i in parallel lb..ub loop
2 sequence_of_statements
3 end loop;

4 A transfer of control causes the execution of a program to continue from a different
address instead of the next instruction (e.g. a return instruction).

5 Exceptions are anomalous conditions requiring special processing. Ada has prede-
fined exceptions (language-defined run-time errors) and user-defined exceptions.

6 The rules for abortion of parallel computations are still under discussion [25].

188 S. Royuela et al.

3.2 Parallel Loop

In a parallel loop (Listing 1.2), iterations may execute in parallel. Each iteration
can be treated as a separate unit of work. However, this may introduce too
much overhead from: (a) the creation of the work item, (b) the communication
of results, and (c) the synchronization of shared data (protected objects). To
palliate this, both the compiler and the runtime are given the freedom to chunk
iterations. Although not mandatory, programmers may gain control by defining
sized chunks. The proposal reveals the necessity of providing support for per-
thread copies of relevant data to deal with data dependencies and shared data.

The authors also introduce the concept of a parallel array; that is data being
updated within a parallel loop. The syntax is shown in Listing 1.3, where the use
of <> indicates an array of unspecified bounds. In that case, the compiler may
choose the size based on the number of chunks chosen for the parallelized loops
where the array is used. Alternatively, the programmer may provide a bound,
thus forcing a specific partitioning. The rule regarding transfer of control and
exceptions presented for parallel blocks also applies here. For this purpose, each
chunk is treated as equivalent to separate sequences of a parallel block.

Listing 1.3. Not chuncked parallel array with proposed Ada extensions

1 Arr : array (parallel <>) of a_type
2 := (others => initial_value);

3.3 Parallel Reduction

The authors of the proposed Ada extensions define a reduction as a common
operation for values in a parallel array that consists in combining the different
values of the array at the end of the processing with the appropriate reduction
operation. Syntax for parallel reductions is still under discussion [25] and the
current proposal is to define this reduction in the type as in Listing 1.4.

Listing 1.4. Parallel reduction with proposed Ada extensions

1 ...
2 type Partial_Array_Type is new array (parallel <>) of Float;
3 with Reducer =>"+", Identity => 0.0;
4 Partial_Sum : Partial_Array_Type := (others => 0.0);
5 Sum : Float := 0.0;
6 begin
7 for I in parallel Arr’Range loop
8 Partial_Sum(<>) := Partial_Sum(<>) + Arr(I);
9 end loop;

10 Sum := Partial_Sum(<>)’Reduced; -- reduce value either here or
11 -- during the parallel loop
12 ...

OpenMP Tasking Model for Ada: Safety and Correctness 189

3.4 Safety

Despite the clear benefits of parallel computation in terms of performance, paral-
lel programming is complex and error prone, and that may compromise correct-
ness and so safety. Hence, it is paramount to incorporate compiler and run-time
techniques that detect errors in parallel programming.

There are two main sources of errors when dealing with parallel code: (a) the
concurrent access to shared resources in a situation of race condition, and (b) an
error in the synchronization between parallel operations leading to a deadlock.
To guarantee safety, Ada parallel code must use atomic variables and protected
objects to access shared data. Moreover, the compiler shall be able to complain
if different parallel regions might have conflicting side-effects.

In that respect, due to the hardship of accessing the complete source code to
perform a full analysis, the proposed Ada extensions suggests a two-fold solution
[35]: (a) eliminate race conditions by adding an extended version of the SPARK
Global aspect to the language (this will help the compiler to identify those
memory locations that are read and written without requiring access to the com-
plete code); and (b) address deadlocks by the defined execution model, together
with a new aspect called Potentially Blocking that indicates whether a
subprogram contains statements that are potentially blocking.

4 OpenMP for Fine-Grained Parallelism in Ada

In this paper, we propose a complementary approach for exploiting fine-grain
parallelism in Ada: OpenMP. Our approach is motivated by the threefold advan-
tage of (a) being a well-known parallel programming model supported by many
chip and compiler vendors, (b) offering a simple yet exhaustive interface, and (c)
providing greater expressiveness as a result of years of experienced development.

4.1 OpenMP Execution Model

OpenMP provides two different models of parallelism:

Thread-parallelism, which defines a conceptual abstraction of user-level threads
that work as proxies for physical processors. This model enforces a rather
structured parallelism. Representative constructs are for and sections.

Task-parallelism, tasking model hereafter, which is oblivious of the physical lay-
out. Programmers focus on exposing parallelism rather than mapping paral-
lelism onto threads. Representative constructs are task and taskloop.

An OpenMP program begins as a single thread of execution, called the initial
thread. Parallelism is achieved through the parallel construct. When such
a construct is found, a team of threads is spawned. These are joined at the
implicit barrier encountered at the end of the parallel region. Within that region,
the threads of the team execute work. This is the so-called fork-join model.

190 S. Royuela et al.

Then, within the parallel region, parallelism is achieved by means of different
constructs: for, sections and task, among others.

Mutual exclusion is accomplished via the critical and atomic constructs,
and synchronization by means of the barrier construct. Additionally, the
tasking model offers the taskwait construct to impose a less restrictive syn-
chronization (while a barrier synchronizes all threads in the current team, a
taskwait only synchronizes descendant tasks of the binding task).

Figure 2 shows the execution model of a parallel block with a loop imple-
mented using the parallel for directive, where all spawned threads work in
parallel from the beginning of the parallel region as long as there is work to do.
Figure 1 shows the model of a parallel block with tasks. In this case, the single
construct restricts the execution of the parallel region to only one thread until a
task construct is found. Then, another thread (or the same, depending on the
scheduling policy), concurrently executes the code of the task.

Fig. 1. Fork-join model with unstruc-
tured parallelism

Fig. 2. Fork-join model with struc-
tured parallelism

The tasking model adapts better to the parallelism model proposed for Ada,
which is oblivious of the threads as well. Thus, even if a thread-parallel version
is possible, we focus on the tasking model, remaining the other as future work.

4.2 Data Scoping

One of the most interesting characteristics of OpenMP is that it allows a rich
definition of the scoping of variables involved in the parallel computation by
means of data-sharing clauses. This scoping can be one of the following:

– private: a new fresh variable is created within the scope.
– firstprivate: a new variable is created in the scope and initialized with the

value of the original variable.
– lastprivate: a new variable is created within the scope and the original variable

is updated at the end of the execution of the region (only for tasks).
– shared : the original variable is used in the scope, thus opening the possibility

of data race conditions.

OpenMP Tasking Model for Ada: Safety and Correctness 191

The use of data-sharing clauses is particularly powerful to avoid unneces-
sary synchronizations as well as race conditions. All variables appearing within
a construct have a default data-sharing defined by the OpenMP specifications
(Sect. 2.15.1 [1]). Data-scoping rules are not based on the use of the variables,
but on their storage. Thus, users are required to explicitly scope many vari-
ables, changing the default data-sharing values, in order to fulfill correctness
(i.e., avoiding data races) and enhance performance (i.e., privatizing variables).

Listing 1.5 shows a simple C code with two tasks concurrently performing
two multiplications. These tasks are synchronized in the taskwait directive
previous to adding the two computed values. The code shows the default data-
sharing of the variables derived following the data-scoping rules: a, b and res
are defined as shared because they have dynamic storage duration, whereas x
and y are defined as firstprivate. This code however is not correct because the
updated values of x and y are not visible outside the tasks. Hence, programmers
must manually introduce the data-sharing clauses as shown in Listing 1.6.

Listing 1.5. OpenMP specification
defined data-sharing clauses

1 int a, b, res;
2 int foo() {
3 #pragma omp parallel
4 // shared(a, b, res)
5 #pragma omp single nowait
6 {
7 int x, y;
8 #pragma omp task
9 // firstprivate(x) shared(a)

10 x = a*a;
11 #pragma omp task
12 // firstprivate(y) shared(b)
13 y = b*b;
14 #pragma omp taskwait
15 res = x + y;
16 }
17 }

Listing 1.6. OpenMP manually defined
data-sharing clauses

1 int a, b, res;
2 int foo() {
3 #pragma omp parallel shared(res) \
4 firstprivate(a, b)
5 #pragma omp single nowait
6 {
7 int x, y;
8 #pragma omp task shared(x) \
9 firstprivate(a)

10 x = a*a;
11 #pragma omp task shared(y) \
12 firstprivate(b)
13 y = b*b;
14 #pragma omp taskwait
15 res = x + y;
16 }
17 }

Manually defining data-sharing clauses is a cumbersome and error-prone
process because programmers have to be aware of the memory model and ana-
lyze the usage of the variables. Fortunately, compiler analysis techniques have
already proved that it is possible to automatically define data-sharing clauses
[28] and statically catch incoherences in the user-defined attributes that may
lead to non-deterministic results, runtime failures and loss of performance [29].
We further explain these in Sect. 5.

The possibility of defining data-sharing attributes makes an important dif-
ference with the proposed Ada extensions, where this task is allotted to the
compiler. In that regard, OpenMP adds flexibility to the model without losing
simplicity, as the attributes can still be discovered at compile time.

4.3 Supporting OpenMP in Ada

The current OpenMP specification is defined for C, C++ and Fortran. In the
examples showed in Sect. 4.2 we use the syntax defined for C/C++. However,

192 S. Royuela et al.

Ada does not group a sequence of statements by bracketing the group (as in
C), but uses a more structured approach with a closing statement to match the
beginning of the group. Since Ada already defines pragmas of the form pragma
Name (Parameter List);, we propose introducing a new kind of pragma, the
pragma OMP, together with the directive name (e.g. task, barrier, etc.).

Listing 1.7 shows an example of the proposed syntax when the OpenMP
construct applies to one statement, and Listing 1.8 shows an example where the
construct applies to more than one statement.

Listing 1.7. OpenMP proposed syntax
pragmas applying to one statement

1 pragma OMP (taskloop, num_tasks=>N);
2 for i in range 0..I loop
3 ... -- statements here
4 end loop;

Listing 1.8. OpenMP proposed syntax for
pragmas applying to several statements

1 pragma OMP (task, shared=>var);
2 begin
3 ... -- statements here
4 end;

OpenMP defines the argument of a data-sharing clause as a list of
items. This does not match directly with the syntax allowed in Ada for
pragmas, which is shown in Listing 1.9. In order to simplify the syntax
needed to define data-sharing clauses, we propose to extend the definition of
pragma argument identifier with a list of expressions. We will use this
proposed syntax for the rest of the document.

Listing 1.9. Ada syntax for pragmas
pragma ::=

pragma i d e n t i f i e r [(pragma argument assoc iat ion { , pragma argument assoc iat ion })] ;
pragma argument assoc iat ion ::=

[pragma argument ident i f i e r =>] name
| [p ragma argument ident i f i e r =>] expre s s i on

4.4 Parallel Blocks

As previously introduced, a parallel block denotes two or more concurrent sec-
tions. In OpenMP a parallel block can be written so that each parallel region
is wrapped in a task, and all tasks are wrapped in a parallel region. We use
the parallel computation of the Fibonacci sequence to illustrate this scenario.
Listing 1.10 shows the implementation using Ada extensions, and Listing 1.11
shows the OpenMP implementation.

In the Ada version, the compiler can detect that no unsafe access is made to
N, X or Y in the parallel block, thus concluding no synchronization is required
(except the one at the end of the parallel block). Furthermore, it can privatize
X and Y, copying out their value after the parallel computation completes. This
however, may harm performance due to the extra copies (it remains as a compiler
decision). The logic behind the choice to make data-sharing transparent to the
user is based on simplicity and readability, whilst safe.

In the OpenMP version, although programmers are not forced to define the
data-scoping manually (since the compiler can detect the proper data-sharing
attributes as it does in the Ada version), they can specify the intended model for

OpenMP Tasking Model for Ada: Safety and Correctness 193

Listing 1.10. Parallel Fibonacci
sequence with Ada extensions

1 if N < 2 then
2 return N;
3 parallel
4 X:= Fibonacci(N - 2);
5 and
6 Y:= Fibonacci(N - 2);
7 end parallel;
8 return X + Y;

Listing 1.11. Parallel Fibonacci sequence
with OpenMP tasks

1 if N < 2 then
2 return N;
3 pragma OMP (parallel, shared=>X,Y,
4 firstprivate=>N);
5 pragma OMP (single, nowait);
6 begin
7 pragma OMP (task, shared=>X,
8 firstprivate=>N);
9 X:= Fibonacci(N - 2);

10 pragma OMP (task, shared=>Y,
11 firstprivate=>N)
12 Y:= Fibonacci(N - 2);
13 end
14 return X + Y;

data access. Hence, accesses to X and Y are marked as shared because there is no
concurrency in the usage of these variables and they are both updated within the
corresponding tasks and visible after the tasks. Additionally, the access to N is
marked as firstprivate because the value is just read within the task. Since there
is an implicit barrier at the end of the parallel construct, the return statement
will always access the correct values of X and Y. This model is not as naive as the
proposed Ada extensions, being a trade-off between simplicity and flexibility.

4.5 Parallel Loop

As previously explained, a parallel loop defines a loop where iterations may be
executed in parallel. The OpenMP tasking model offers the taskloop construct,
which specifies that the iterations of the associated loops will be distributed
across the tasks created by the construct, and executed concurrently. Users can
control the number of tasks and their size with the following clauses:

– num tasks defines the number of tasks created.
– grain size defines the number of loop iterations assigned to each task.

We illustrate this scenario with the well-known matrix multiplication bench-
mark. Consider two matrices M1 and M2, and the matrix RES, where their mul-
tiplication is stored. Listing 1.12 shows the code implemented with the syntax
proposed for the Ada extensions, and Listing 1.13 shows the implementation
using the OpenMP taskloop construct.

Again, OpenMP allows more expressiveness by virtue of the data-sharing
clauses. In the Ada version the compiler may not be able to determine that par-
allel access to RES are not data races. Moreover, the OpenMP version also allows
controlling the granularity of the parallelization whereas the Ada extensions are
limited to defining the number of elements of a parallel array.

4.6 Parallel Reduction

For the Ada extensions, a reduction is an operation defined over the elements of
a parallel array. OpenMP relaxes this constraint and defines a reduction as a

194 S. Royuela et al.

Listing 1.12. Parallel matrix multipli-
cation with Ada extensions

1 for i in parallel 0..MAX_I loop
2 for j in range 0..MAX_J loop
3 for k in range 0..MAX_K loop
4 RES(i,j):= RES(i,j)
5 + M1(i,k) * M2(k,j);
6 end loop;
7 end loop;
8 end loop;

Listing 1.13. Parallel matrix multiplica-
tion with OpenMP taskloop

1 pragma OMP (parallel);
2 pragma OMP (taskloop,
3 private=>i, j, k,
4 firstprivate=>MAX_I, MAX_J, MAX_K,
5 shared=>RES, M1, M2,
6 grainsize=>size);
7 begin
8 for i in range 0..MAX_I loop
9 for j in range 0..MAX_J loop

10 for k in range 0..MAX_K loop
11 RES(i,j):= RES(i,j)
12 + M1(i,k) * M2(k,j);
13 end loop;
14 end loop;
15 end loop;
16 end

parallel operation which result is stored in a variable. Different implicitly
declared reduction identifiers are defined in OpenMP (e.g. +, -, *, etc.). Addition-
ally, the specification allows user defined reductions with the syntax specified in
Listing 1.14. There, reduction identifier is either a base language identi-
fier or an implicitly declared identifier, typename list is a list of type names,
combiner is the reduction expression, and initializer clause indicates
the value to be used to initialize the private copies of the reduction.

Listing 1.14. OpenMP syntax for user-declared reductions

1 #pragma omp declare reduction \
2 (reduction_identifier : typename_list : combiner) \
3 [initializer_clause]

The reduction itself is implemented in OpenMP by means of a clause that
can be added to multiple constructs like parallel and for among others. The
possibilities with OpenMP reductions underscore their versatility in the face of
the proposed Ada extensions. Until OpenMP 4.5, the reduction is limited to
the thread-parallelism model. Nonetheless, the planned OpenMP 5.0 [6] defines
reductions for taskloops as well. Listing 1.15 shows the syntax adapted to our
proposal for Ada. Clauses num tasks and grain size can still be used.

Listing 1.15. OpenMP parallel taskloops reduction example

1 pragma OMP parallel (taskloop reduction=>+,TOTAL);
2 begin
3 for i in range 0..MAX_I loop
4 TOTAL := Arr(i);
5 end loop;
6 end

OpenMP specifies that the number of times the combiner is executed, and the
order of these executions is unspecified. This means that different executions may
deliver different results. To avoid this unspecified behavior some restrictions can
be added to the use of OpenMP reductions in safety-critical embedded domains,

OpenMP Tasking Model for Ada: Safety and Correctness 195

such as: limiting the operations to those that are associative and commutative,
and forbidding the use of floating point types.

4.7 Mutual Exclusion

In OpenMP, mutual exclusion is achieved by means of two constructs: critical
and atomic. While the critical construct restricts the execution of its associ-
ated structured block to a single thread at a time, the atomic construct ensures
that a specific storage location is accessed atomically.

The atomic construct is very restrictive in the sense that it accepts a
limited number of associated statements of the form defined in the specifica-
tions (Sect. 2.13.6 [1]). Consequently, atomics do not represent a threat con-
cerning safety because no deadlock may be caused by their use. Differently, the
critical construct accepts any kind of statement and, as a consequence, dead-
locks may appear. Although OpenMP forbids nesting critical constructs with
the same name, this is not sufficient to avoid deadlocks. A critical construct
containing a task scheduling point7 may cause a deadlock if the thread executing
the critical region jumps to a region containing a critical construct with the
same name. Section 5 discusses solutions and the work that needs to be done to
integrate OpenMP and Ada mutual exclusion mechanisms.

5 Safety in OpenMP

Compilers are key tools to anticipate bugs that may appear at run-time,
becoming fundamental when developing safety-critical systems. Although most
OpenMP compilers do not diagnose common mistakes that cause execution
errors, previous works are encouraging. The following subsections tackle the situ-
ations that jeopardize safety when using OpenMP, showing the existent solutions
and also explaining additional proposals. The argumentation is orthogonal to the
underlying language. The techniques used have been implemented in compilers
for C/C++, hence it is possible provide them in Ada compilers as well.

5.1 Correctness: Data Races and Synchronization

Detecting exact data races at compile time is an open challenge, and static tools
still struggle to obtain no false negatives and minimal false positives. Current
mechanisms have been proved to work properly on specific subsets of OpenMP
such as having a fixed number of threads [22] or avoiding the use of non-affine
constructs8 [10]. A more general approach can be used to determine the regions
7 A task scheduling point (TSP) is a point during the execution of the a task region

at which it can be suspended to be resumed later, and where the executing thread
may switch to a different task region. OpenMP defines the list of TSP to be: the
point immediately following the generation of an explicit task, after the point of
completion of a task region, and in a taskwait region among others.

8 Non-affine constructs are non-affine subscript expressions, indirect array subscripts,
use of structs, non-affine loop bounds, and non-affine if conditions, among others.

196 S. Royuela et al.

of code that are definitely non-concurrent [20]. Although it is not an accurate
solution, it will never deliver false negatives. The previously mentioned tech-
niques can be combined to deliver conservative and fairly accurate results.

It is unattainable that compilers are able to interpret the semantics of an
algorithm, thus correctness techniques are limited. However, it is feasible for
compilers to observe situations that are incoherent or may lead to runtime errors.
In that regard, static analysis techniques have proved to be able to catch tasks
and variables that are not properly synchronized, causing both non-deterministic
results (due to data races) and runtime failures (due to wrong synchronization
-e.g. a task using as shared an automatic storage variable after its lifetime has
ended-) [29]. Such techniques adopt a conservative approach, in the sense that
performance is secondary when correctness is on the line (e.g. privatize a variable
in order to avoid a race-condition). The compiler can provide a report, so users
may act in accordance with the decisions taken.

Additionally, it has been demonstrated that the compiler can determine the
data-sharing attributes of a task provided that all code concurrent with the task
is accessible at compile time [28]. When a variable cannot be automatically deter-
mined, the user is warned to manually scope it. Since limitations concern full
access to the code, whole program analysis techniques can resolve the problem.
Furthermore, the Potentially Blocking aspect proposed by the authors of
the Ada extensions could be used to enable the detection of such problems at
compile time, avoiding the necessity of program analysis in some cases.

Listing 1.16 shows a potential OpenMP Ada code computing the number pi
as an example of the application of the correctness techniques implemented in
an OpenMP-compliant compiler (Mercurium [15]). The constructs added by the
user to express parallelism are emphasized, while the parts discovered by the
compiler in order for the code to be correct are underlined. Both synchroniza-
tion (with the taskwait construct) and mutual exclusion (with the atomic
construct) can be decided by the compiler. Also the data-sharing clauses needed
to avoid race-condition (on variable x) and for the code to make sense (variable
sum) are automatically determined. Given the code with none of the underlined
clauses and constructs, the compiler detects:

– For tasks 1 and 2: variable x is in a race condition due to concurrency between
tasks 1 and 2. Additionally, the value of this variable is defined and used (in
that order) within the tasks only, thus the variable can be privatized.

– In all tasks, variable step is a read-only scalar. Thus, it can be firstprivate.
– Variable sum is updated and read among the tasks, so it has to be shared.

However, it is in a race condition, so accesses must be synchronized. On the
one hand, tasks 1 and 2 read-write the variable, thus the compiler adds an
atomic construct. On the other hand, task 3 only reads the variable, so the
compiler adds a taskwait before the task.

– For task 3, variable res must be used before exiting the function. Otherwise,
if the task is deferred until the function returns, the variable will no longer
exist. Thus, a taskwait must be inserted after the task.

OpenMP Tasking Model for Ada: Safety and Correctness 197

Listing 1.16. Example of data sharing

1 function Pi (n_steps: in Integer) return Float is
2 x : Float;
3 sum, res: Float := 0.0;
4 step : Float := 1.0/Float(n_steps);
5 begin
6 pragma OMP(task); -- private=>x, firstprivate=>step, shared=>sum
7 begin -- OpenMP Task 1
8 x := 0;
9 for I in 1 .. n_steps/2-1 loop

10 x := (Float(I)+0.5)*step;
11 pragma OMP(atomic);
12 sum := sum + 4.0/(1.0+x*x);
13 end loop;
14 end;
15 pragma OMP(task); -- private=>x, firstprivate=>step, shared=>sum
16 begin -- OpenMP Task 2
17 x := 0;
18 for I in n_steps/2 .. n_steps loop
19 x := (Float(I)+0.5)*step;
20 pragma OMP(atomic);
21 sum := sum + 4.0/(1.0+x*x);
22 end loop;
23 end;
24 pragma OMP(taskwait);
25 pragma OMP(task); -- firstprivate=>step,sum, shared=>res
26 begin -- OpenMP Task 3
27 res := step * sum;
28 end;
29 pragma OMP(taskwait);
30 return res;
31 end Pi;

5.2 Deadlocks

OpenMP offers two ways to synchronize threads: via directives, such as
critical and barrier, and via runtime routines, such as omp set lock.
In both cases, a deadlock may occur only if a thread that holds a lock tries to
obtain the same lock. This is a consequence of being a model focused in lan-
guages which do not provide higher-level concurrency mechanisms. Ada code
will use protected objects, so work still needs to be performed to integrate both
Ada and OpenMP runtime systems.

5.3 Error Handling

In the critical domain it is important to understand and specify behaviour upon
failures. The technique to enable such property is error handling. There are three
main mechanisms for handling errors: exceptions, error codes and call-backs.
Each method has advantages and disadvantages. The first fits perfectly in the
structure of exception-aware languages such as Ada. The second is suitable for
exception-unaware languages such as C. Finally, the third has the advantage of
isolating the code that is to be executed when an exception occurs. Although
only some minor mechanisms have been included in the specifications (i.e. can-
cellation constructs), there are different proposals to improve OpenMP reliability

198 S. Royuela et al.

by adopting error handling mechanisms in OpenMP [14,37]. The integration of
these with Ada exceptions is also in need for future work.

6 Conclusions and Future Work

There is an oportunity for extending Ada with fine-grained parallelism. Exten-
sions to the language with such purpose have already been presented and are
still under discussion. Nevertheless, the increasing variety of platforms and their
specific programming models force programmers to master multiple complex
languages. Comparisons among multiple parallel programming models show the
need to provide a common programming model for many-cores. In that regard,
OpenMP is the perfect candidate, for it has successfully emerged as the de facto
standard for shared-memory parallel programming, and starts to be used for
distributed memory systems. In this paper, we show how the OpenMP tasking
model can successfully be applied to Ada to define fine-grained parallelism in
the form of parallel blocks, parallel loops and parallel reductions. The use of
OpenMP is not a threat regarding safeness, for we have shown that both com-
pilers and runtimes can be used to check correctness and recover from failures.

There is nevertheless work to be done to understand the actual impact of
mixing OpenMP and Ada tasks, because both will be mapped to the underlying
threads of the operating system. Another area for future work is a potential
combination of the OpenMP tasking model and the proposed syntax for Ada
parallel extensions. The underlying parallel models are sufficiently close to enable
this to be considered further.

References

1. OpenMP 4.5 (2015). http://www.openmp.org/wp-content/uploads/openmp-4.5.
pdf

2. GOMP (2016). https://gcc.gnu.org/projects/gomp/
3. IBM Parallel Environment (2016). http://www-03.ibm.com/systems/power/

software/parallel/
4. IntelR© OpenMP* Runtime Library (2016). https://www.openmprtl.org
5. NVIDIAR© CUDA C Programming Guide (2016). https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html
6. OpenMP Technical Report 4: version 5.0 Preview 1 (2016). http://www.openmp.

org/wp-content/uploads/openmp-tr4.pdf
7. Intel Interprocedural Optimization (2017). https://software.intel.com/en-us/

node/522666
8. Ada Rapporteur Group: AI12-0119-1 (2016). http://www.ada-auth.org/cgi-bin/

cvsweb.cgi/ai12s/ai12-0119-1.txt
9. Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X.,

Unnikrishnan, P., Zhang, G.: The design of OpenMP tasks. TPDS 20(3), 404–418
(2009)

10. Basupalli, V., Yuki, T., Rajopadhye, S., Morvan, A., Derrien, S., Quinton, P., Won-
nacott, D.: ompVerify: polyhedral analysis for the OpenMP programmer. In: Chap-
man, B.M., Gropp, W.D., Kumaran, K., Müller, M.S. (eds.) IWOMP 2011. LNCS,
vol. 6665, pp. 37–53. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21487-5 4

http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://gcc.gnu.org/projects/gomp/
http://www-03.ibm.com/systems/power/software/parallel/
http://www-03.ibm.com/systems/power/software/parallel/
https://www.openmprtl.org
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://www.openmp.org/wp-content/uploads/openmp-tr4.pdf
http://www.openmp.org/wp-content/uploads/openmp-tr4.pdf
https://software.intel.com/en-us/node/522666
https://software.intel.com/en-us/node/522666
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0119-1.txt
http://www.ada-auth.org/cgi-bin/cvsweb.cgi/ai12s/ai12-0119-1.txt
http://dx.doi.org/10.1007/978-3-642-21487-5_4

OpenMP Tasking Model for Ada: Safety and Correctness 199

11. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley, Reading
(1997)

12. Chapman, B., Jost, G., Van Der Pas, R.: Using OpenMP: Portable Shared Memory
Parallel Programming, vol. 10. MIT press, Cambridge (2008)

13. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X.,
Planas, J.: Ompss: a proposal for programming heterogeneous multi-core architec-
tures. Parallel Process. Lett. 21(02), 173–193 (2011)

14. Duran, A., Ferrer, R., Costa, J.J., Gonzàlez, M., Martorell, X., Ayguadé, E.,
Labarta, J.: A proposal for error handling in OpenMP. IJPP 35(4), 393–416 (2007)

15. Ferrer, R., Royuela, S., Caballero, D., Duran, A., Martorell, X., Ayguadé, E.:
Mercurium: Design decisions for a s2s compiler. In: Cetus Users and Compiler
Infastructure Workshop in conjunction with PACT (2011)

16. Kegel, P., Schellmann, M., Gorlatch, S.: Using OpenMP vs. threading building
blocks for medical imaging on multi-cores. In: Sips, H., Epema, D., Lin, H.-X.
(eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 654–665. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03869-3 62

17. Krawezik, G., Cappello, F.: Performance comparison of MPI and three OpenMP
programming styles on shared memory multiprocessors. In: SPAA. ACM (2003)

18. Kuhn, B., Petersen, P., O’Toole, E.: OpenMP versus threading in C/C++. Con-
currency Pract. Experience 12(12), 1165–1176 (2000)

19. Lee, S., Min, S.J., Eigenmann, R.: OpenMP to GPGPU: a compiler framework for
automatic translation and optimization. SIGPLAN Not. 44(4), 101–110 (2009)

20. Lin, Y.: Static nonconcurrency analysis of OpenMP programs. In: Mueller,
M.S., Chapman, B.M., Supinski, B.R., Malony, A.D., Voss, M. (eds.) IWOMP
-2005. LNCS, vol. 4315, pp. 36–50. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68555-5 4

21. Lisper, B.: Towards parallel programming models for predictability. In: OASIcs,
vol. 23. Schloss Dagstuhl LZI (2012)

22. Ma, H., Diersen, S.R., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis
of concurrency errors in openmp programs. In: ICPP, pp. 510–516. IEEE (2013)

23. Michell, S., Moore, B., Pinho, L.M.: Tasklettes – a fine grained parallelism for
ada on multicores. In: Keller, H.B., Plödereder, E., Dencker, P., Klenk, H. (eds.)
Ada-Europe 2013. LNCS, vol. 7896, pp. 17–34. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38601-5 2

24. Pinho, L., Nelis, V., Yomsi, P., Quinones, E., Bertogna, M., Burgio, P., Marongiu,
A., Scordino, C., Gai, P., Ramponi, M., Mardiak, M.: P-SOCRATES: a parallel
software framework for time-critical many-core systems. MICPRO 39(8), 1190–
1203 (2015)

25. Pinho, L.M., Michell, S.: Session summary: parallel and multicore systems. Ada
Lett. 36(1), 83–90 (2016)

26. Pinho, L.M., Moore, B., Michell, S., Taft, S.T.: Real-time fine-grained parallelism
in ada. ACM SIGAda Ada Lett. 35(1), 46–58 (2015)

27. Reinders, J.: Intel Threading Building Blocks. O’Reilly & Associates Inc,
Sebastopol (2007)

28. Royuela, S., Duran, A., Liao, C., Quinlan, D.J.: Auto-scoping for OpenMP
tasks. In: Chapman, B.M., Massaioli, F., Müller, M.S., Rorro, M. (eds.) IWOMP
2012. LNCS, vol. 7312, pp. 29–43. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30961-8 3

29. Royuela, S., Ferrer, R., Caballero, D., Martorell, X.: Compiler analysis for OpenMP
tasks correctness. In: Computing Frontiers, p. 7. ACM (2015)

http://dx.doi.org/10.1007/978-3-642-03869-3_62
http://dx.doi.org/10.1007/978-3-540-68555-5_4
http://dx.doi.org/10.1007/978-3-540-68555-5_4
http://dx.doi.org/10.1007/978-3-642-38601-5_2
http://dx.doi.org/10.1007/978-3-642-38601-5_2
http://dx.doi.org/10.1007/978-3-642-30961-8_3
http://dx.doi.org/10.1007/978-3-642-30961-8_3

200 S. Royuela et al.

30. Serrano, M.A., Melani, A., Bertogna, M., Quinones, E.: Response-time analysis of
DAG tasks under fixed priority scheduling with limited preemptions. In: DATE,
pp. 1066–1071. IEEE (2016)

31. Shen, J., Fang, J., Sips, H., Varbanescu, A.L.: Performance gaps between OpenMP
and OpenCL for multi-core CPUs. In: ICPPW, pp. 116–125. IEEE (2012)

32. Sielski, K.L.: Implementing Ada 83 and Ada 9X using solaris threads. Ada: Towards
Maturity 6, 5 (1993)

33. Snir, M.: MPI-the Complete Reference: The MPI Core, vol. 1. MIT press, Cam-
bridge (1998)

34. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. CSE 12(3), 66–73 (2010)

35. Taft, S.T., Moore, B., Pinho, L.M., Michell, S.: Safe parallel programming in Ada
with language extensions. ACM SIGAda Ada Lett. 34(3), 87–96 (2014)

36. Varbanescu, A.L., Hijma, P., Van Nieuwpoort, R., Bal, H.: Towards an effective
unified programming model for many-cores. In: IPDPS, pp. 681–692. IEEE (2011)

37. Wong, M., Klemm, M., Duran, A., Mattson, T., Haab, G., Supinski, B.R., Chur-
banov, A.: Towards an error model for OpenMP. In: Sato, M., Hanawa, T., Müller,
M.S., Chapman, B.M., Supinski, B.R. (eds.) IWOMP 2010. LNCS, vol. 6132, pp.
70–82. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13217-9 6

http://dx.doi.org/10.1007/978-3-642-13217-9_6

Mixed Criticality

Migrating Mixed Criticality Tasks Within
a Cyclic Executive Framework

Alan Burns1(B) and Sanjoy Baruah2

1 University of York, York, UK
burns@cs.york.ac.uk

2 University of North Carolina, Chapel Hill, USA

Abstract. In a cyclic executive, a series of frames are executed in
sequence; once the series is complete the sequence is repeated. Within
each frame, units of computation are executed, again in sequence.
In implementing cyclic executives upon multi-core platforms, there is
advantage in coordinating the execution of the cores so that frames are
released at the same time across all cores. For mixed criticality systems,
the requirement for separation would additionally require that, at any
time, code of the same criticality should be executing on all cores. In this
paper we derive algorithms for constructing such multiprocessor cyclic
executives for systems of periodic tasks, when inter-processor migration
is permitted.

1 Introduction

Recent trends in embedded computing towards the widespread use of multi-core
platforms, and the increasing tendency for applications to contain components
of different criticality, have thrown up major challenges to the developers of
reliable software-based systems. In this paper we consider these two challenges in
the context of highly safety-critical application domains where cyclic executives
remain the scheduling mechanism of choice.

Cyclic executives. A cyclic executive is a simple deterministic scheme that
consists, for a single processor, of the continuous executing of a series of frames
(or minor cycles as they are often called). Each frame consists of a sequence of
jobs that execute in the specified sequence and are required to complete by the
end of the frame. The set of frames is called the major cycle.

Multicore CPUs. On a multi-core, or multiprocessor, platform each core
should have the same frame size and the same major cycle time. The time source
from which the run-time support software will execute the jobs contained within
each frame, is synchronised so that all cores switch between minor cycles con-
currently. Within each frame there are a series of jobs to be executed. If jobs
are constrained to execute always within the same minor cycle and always on
the same core then the run-time schedule is defined to be partitioned. Alterna-
tively, if jobs can migrate from one active frame to another active frame on a
different core then the schedule is defined to be global. In this paper we allow a
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 203–216, 2017.
DOI: 10.1007/978-3-319-60588-3 13

204 A. Burns and S. Baruah

small number of constrained job migrations. In a previous workshop paper [5]
we focused on independent jobs, in this paper we address the more practical
problem of jobs that are derived from periodic tasks. In other work [6,7] we
have shown how fully partitioned systems can be constructed.

Mixed criticality. In mixed-criticality scheduling (MCS) theory, tasks are char-
acterized by several different WCET parameters denoting different estimates of
the true WCET value, these different estimates being made at different levels
of assurance. The scheduling objective is then to validate the correct execu-
tion of each task at a level of assurance that is consistent with the criticality
level assigned to that task: tasks assigned greater criticality must be shown to
execute correctly when more conservative WCET estimates are assumed, while
less critical tasks need to have their correctness demonstrated only when less
conservative WCET estimates are assumed.

Related work. A cyclic executive is a particularly restricted form of static
schedule. The issue of mapping mixed criticality code to static schedules has
been addressed by Tamas-Selicean and Pop [13,14]. An alternative approach
to implementing the move between criticality levels in a static schedule is by
switching between previously computed schedules; one per criticality level - this
approach is explored in [3,12]. However, these schemes are only applicable to
single processor systems. The notion of separation used in this paper comes
from [9].

2 System Model

In a typical implementation, a cyclic executive (CE) is defined by two durations,
the length of the minor cycle (or frame) TF and the duration of the major cycle
TM . These values are related by (TM = k.TF) where k is a positive integer
(usually a power of 2), denoting the number of frames in the repeating major
cycle of the CE.

The issue of how to choose TF and TM to best support a set of tasks with
given periods is beyond the scope of this paper. Rather we follow industrial
practice [4] and assume these parameters are fixed by the system definition and
that application tasks’ periods are constrained to be multiples of TF (up to the
value of TM).

The mapping of tasks to frames implies that there is a set of jobs allocated
to each frame. All jobs within a frame must complete by the end of the frame.
However, what it means to complete will depend on the behaviour of the system
in terms of its criticality levels – as will be explained shortly.

We assume that the hardware platform consists of m identical (unit speed)
processors (or cores). Each job can execute on any core and has identical tem-
poral behaviour on all cores.

In general V criticality levels, L1 to LV , may be defined for a system with
L1 being the highest criticality; in this paper we primarily restrict ourselves to
just two criticality levels (V = 2), and use the notation L1 = hi and L2 = lo.

Migrating Mixed Criticality Tasks Within a Cyclic Executive Framework 205

Run-time support

Mixed-criticality scheduling (MCS) theory has primarily concerned itself with
the sharing of CPU computing capacity in order to satisfy the computational
demand, as characterized by the worst-case execution times (WCET), of pieces
of code. However, there are typically many additional resources that are also
accessed in a shared manner upon a computing platform, and it is imperative
that these resources also be considered.

An interesting approach towards such a consideration was advocated by
Giannopoulou et al. [9] in the context of multicore platforms: during any given
instant in time, all the cores are only allowed to execute code of the same crit-
icality level. This approach has the advantage of ensuring that accesses to all
shared resources (memory buses, cache, etc.) during any time-instant are only
from code of the same criticality level. We refer to such a scheme of switching
between workloads of different criticality levels as synchronised switching .

We focus our attention in this paper on synchronized switching. That is, we
seek to construct cyclic executives in which each minor cycle may be considered
partitioned into V criticality levels. Initially the highest criticality jobs are exe-
cuted, when they have finished the next highest criticality jobs are executed, and
so on. This continues until finally the lowest criticality jobs are executed. In a
simple system with just two criticality levels, hi and lo, there is a switchover time
S defined within each minor frame. Before S each core is executing hi-criticality
work, after S each core is executing lo-criticality work. To give resilient fault
tolerant behaviour, if the hi-criticality work has not completed by time-instant
S on any core then the lo-criticality work is postponed (on every core), thereby
giving extra time for the hi-criticality work to execute (up to the end of the
minor cycle). In this paper we will explore how to find acceptable (safe and
efficient) values for the switching times.

Implementing the criticality switches. Giannopoulou et al. [9] advocated,
if supported by the hardware platform, the use of synchronisation barriers. In
the case of dual-criticality workloads (the generalization to >2 criticality levels
is straight-forward), each core calls the barrier upon completing its assigned
hi-criticality work. When the final core completes and calls the barrier, all the
calls are released from the barrier and each core continues with executing lo-
criticality work.

The benefit of this barrier-based scheme is that it can take advantage of time
gained by jobs executing for less than their estimated WCETs. So at the end of
the hi-criticality executions if the signal occurs before the pre-computed barrier
S, then all cores can move to lo-criticality executions early. Additionally, there
may be situations arising at run-time when a late switch to one criticality level
is compensated by time gained from under-execution within jobs of the next
criticality level. For example, the switch occurs at some time > S, but the lo-
criticality jobs end up executing for less than their lo-criticality WCET values
and hence all complete by the end of the frame.

206 A. Burns and S. Baruah

3 Dual Criticality Jobs

In this section, we consider the scheduling of a collection of jobs within a single
frame of an m-processor platform, when there are only two criticality levels (V =
2). All the jobs are assumed to become available at the start of the frame (without
loss of generality, denoted as being at time 0), and they all have a deadline at the
end of the frame (denoted D). In keeping with prior work on the scheduling of
such dual-criticality systems, we use the notation hi and lo to denote the greater
and lesser criticality levels (i.e., L1 = hi and LV = L2 = lo). The criticality
of job ji is denoted by χi ∈ {lo,hi}; each hi-criticality job is characterized by
two WCET parameters Ci(lo) and Ci(hi) (with Ci(lo) ≤ Ci(hi)), while each
lo-criticality job ji is characterized by a single WCET parameter Ci(lo) (for
convenience such jobs are also assigned a Ci(hi) value with Ci(lo) = Ci(hi)).

Given a collection of such dual-criticality jobs to be scheduled within a frame
of duration D upon an m-processor platform, our objective is to determine the
switching point S such that only hi-criticality jobs are executed over the interval
[0, S). If all hi-criticality jobs complete by time-instant S, then lo-criticality
jobs are executed over [S,D); else, the lo-criticality jobs are abandoned and
execution of hi-criticality jobs continues over [S,D) as well. It follows that there
are three conditions that need to be satisfied:

1. If each hi-criticality job ji executes for no more than Ci(lo), then all the
hi-criticality jobs must fit into the interval [0, S).

2. All the lo-criticality jobs must fit into the interval [S,D)
3. If each hi-criticality job ji executes for no more than Ci(hi), then all the

hi-criticality jobs must fit into the interval [0,D).

In Sect. 3.1 below, we derive a simple and efficient algorithm for determining
S (and the corresponding schedules) such that these conditions are satisfied; in
Sect. 3.2, we describe an optimization to this simple method. These algorithms
assume minimal run-time support.

3.1 A Simple Scheme for Constructing CEs

We first define two (potential) candidates for the switching point S:

Smin The earliest instant at which all hi-criticality jobs have completed if they
execute for no more than C(lo).

Smax The latest instant at which a switch must occur for the lo-criticality work
to complete by time D.

It is evident that any candidate S must satisfy the two inequalities Smin ≤
S ≤ Smax.

Let us additionally define two interval durations, which constrain the possible
values of Smin and Smax.

Δlo The duration (makespan) of the interval needed for all the lo-criticality jobs
to (begin and) complete execution.

Migrating Mixed Criticality Tasks Within a Cyclic Executive Framework 207

Δhi The duration of the interval needed for all the hi-criticality jobs to execute
the extra work they must do in hi-criticality mode—i.e., the amount (Ci(hi)−
Ci(lo)), for each ji with χi = hi.

To determine these durations, we employ the optimal scheme of
McNaughton [10, p. 6]. Given a collection of n jobs with execution requirements
c1, c2, . . . , cn, McNaughton showed that the minimum makespan of a preemptive
schedule for these jobs on m unit-speed processors is given by

max
(∑n

i=1 ci

m
,

n
max
i=1

{ci}
)

(1)

The actual schedule is obtained by taking the jobs (in any order) and allocating
them to m intervals of the size of the makespan, each representing one of the m
processors. As one interval is filled, perhaps with part of a job, the next interval
starts with the rest of this job. At most (m − 1) jobs are split across intervals in
this manner. During run-time a job that was split across two intervals will run
at the beginning of the time-interval upon one processor, and towards the end
of the time-interval on the other processor.

A direct application of McNaughton’s result yields the conclusion that the
minimum makespan for a global preemptive schedule for the jobs in lo-criticality
mode is given by

Δlo def= max
(∑

χi=lo Ci(lo)
m

, max
χi=lo

{
Ci(lo)

})
(2)

We therefore set
Smax def= D − Δlo (3)

Similarly, a direct application of the makespan result allows the minimum inter-
val for the hi-criticality work (in lo-criticality mode) to be computed:

Smin def= max
(∑

χi=hi Ci(lo)
m

, max
χi=hi

{
Ci(lo)

})
(4)

Clearly for the whole system to be schedulable, it is necessary that Smin ≤
Smax which is equivalent to requiring that

Smin ≤ D − Δlo

⇔ Smin + Δlo ≤ D (5)

We now consider the final constraint—the scheduling of hi-criticality jobs
executing in hi-criticality mode. It has been shown [2, Example 1] that this is
not necessarily ensured by simply computing the makespan (using McNaughton’s
method, as above) with the Ci(hi) values, and validating that the resulting
makespan is ≤ D. We instead determine the minimal makespan for all the hi-
criticality jobs, subject to each such job having received an amount of execu-
tion equal to its lo-criticality WCET by time-instant Smin. To determine this

208 A. Burns and S. Baruah

makespan, we apply McNaughton’s scheme to the work that is left to do after
time-instant Smin (i.e. Ci(hi) − Ci(lo) for each job ji with χi = hi). Letting
Ci(ex) denote the “excess” computational requirement of job ji in hi-criticality
mode over lo-criticality mode:

Ci(ex) def=
(
Ci(hi) − Ci(lo)

)
,

we have

Δhi def= max
(∑

χi=hi Ci(ex)
m

, max
χi=hi

{
Ci(ex)

})
(6)

It is evident that Smin + Δhi ≤ D is sufficient for schedulability; earlier
(Expression 5) we had shown that Smin + Δlo should also be ≤ D. Putting
these pieces together, we may summarize this method as follows. We compute
Smin,Δlo, and Δhi according to Expressions (4), (2), and (6) respectively, and
require that

Smin + max
(
Δlo,Δhi

) ≤ D (7)

as a sufficient schedulability condition. If this condition is satisfied, S ← Smin

(i.e., we declare Smin to be the switch-point we had set out to compute).

3.2 An Improvement

Let us now suppose that Condition 7 is violated, and Smin + max
(
Δlo,Δhi

)
>

D. Since
(
Smin + Δlo ≤ D

)
is a necessary condition for schedulability (see

Inequality 5), it must be the case that

Smin + Δhi > D.

Now if
(∑

χi=hi Ci(hi) ≥ mD
)
, there is nothing to be done. Otherwise,

there must be some unused processor capacity in the McNaughton schedule
constructed according to Expression 4 for the interval [0, S), and/or in the
McNaughton schedule constructed according to Expression 6 for the interval
after time-instant S. Let us consider the situation where the schedule has some
unused processor capacity over the interval [0, S) (recall that S ← Smin in the
method of Sect. 3.1). An inspection of Expression (4) reveals that this happens if

∑
χi=hi Ci(lo)

m
< max

χi=hi

{
Ci(lo)

}

Our idea, intuitively speaking, is that any such unused capacity prior to time-
instant S may as well be allocated to some hi-criticality task, for use in the
event of the system undergoing a mode-change into hi-criticality mode. (If the
system does not undergo such a mode-change, this allocated capacity may end
up remaining unused.) Doing so leaves less execution remaining to be completed
after the switch instant S in hi-criticality mode, and may thus result in a smaller
makespan in hi-criticality modes (i.e., a smaller value for Δhi).

Migrating Mixed Criticality Tasks Within a Cyclic Executive Framework 209

Such a scheme is particularly effective if the duration of the hi-criticality
schedule after S—the one of duration Δhi—is also dominated by longer jobs,
i.e., if in Expression 6

∑
χi=hi Ci(ex)

m
< max

χi=hi

{
Ci(ex)

}

If this be the case, then the unused capacity prior to time-instant S can be filled
so as to minimise the maximum Ci(ex) by bringing forward work to before S—
this is accomplished by increasing Ci(lo) for such a job, thereby decreasing its
Ci(ex) by the same amount. However, jobs that have (Ci(lo) = S) cannot have
work brought forward in this manner since this would result in S increasing as
well.

It is evident that this scheme is effective since:

– Any work brought forward will not change S,
– The first term in Expression (6) is not increased by bringing work forward,

and
– The second term in Expression (6) is reduced by always choosing the largest

value and decreasing it.

We note that if more than one job has the same Ci(ex) value then an arbitrary
choice is made (and has no impact on optimality).

And what if there is no unused processor capacity in the schedule over [0, S)?
In that case, the switch-point S may be increased to any value ≤ Smax (where
Smax is as defined by Expression (3)). An obvious choice for S is S ← Smax;
an iterative algorithm for achieving the smallest value of S (i.e., the earliest
possible switch-time) is as follows. Setting the switch point S to be Smin +1 will
generate m free slots. So Ci(lo) values of hi-criticality jobs can be increased by
this amount (and the corresponding C(ex) values decreased). If this will reduce
the size of Δhi by more than one then an overall decrease in S + Δhi will have
been achieved. This cycle is repeated (i.e. adding 1 to S) until either no further
gain is made or S takes the value of Smax. At each step of the cycle no C(lo)
value should increase beyond the current value of S.

Example 1. We apply this improved scheme to the scheduling of the mixed-
criticality instance of Table 1 upon 3 unit-speed processors with a frame length
of 8 (D = 8).

We can immediately use the equations above to compute: Δlo = 3 (and
hence Smax = 5) and Smin = 4. So the first step to schedulability is satisfied (i.e.
Smin ≤ Smax). if we ignore mixed criticality issues then the minimum makespan
for the hi-criticality jobs (ignoring lo-criticality work) is 7. So a completely
separated scheme would require a frame size of 10 (7 + 3).

If we initially focus on Smin then we note that there are no free slots, so
Eq. (6) gives a makespan in hi-criticality mode (Δhi) of 5. So the use of this
value for S (i.e. 4) gives a required frame size of 9 (4 + 5); since the frame-size
is 8, the instance would be deemed unschedulable with S ← 4.

210 A. Burns and S. Baruah

Table 1. An example dual-criticality job instance

χi Ci(lo) Ci(hi) Ci(hi)− Ci(lo)

j1 LO 3 - -

j2 LO 2 - -

j3 LO 2 - -

j4 HI 2 7 5

j5 HI 3 7 4

j6 HI 3 3 0

j7 HI 4 4 0

However, if we set S ← (Smin+1) which equals Smax = 5 then the total work
available on three processors by time 5 is 15. The work required using C(lo)
values for hi-criticality work is 12. Hence 3 units of work can be added to these
C(lo) values. If we make C4(lo) = 4 and C5(lo) = 4 then maximum Ci(ex)
becomes equal to 3. Hence Δhi = 3 and Smax + Δhi = 8. Therefore the job set
fits into the frame size of 8, with a switch time of 5. ��

Rather than iterating through potential candidate values for S in the manner
described above, we can construct a single linear program (LP) for determining
a suitable value for S – see Fig. 1. In this linear program

– δi denotes the amount of execution that is “moved” from Ci(ex) to Ci(lo);
the first two constraints of the LP restrict this amount to (i) be positive and
(ii) not exceed the value of Ci(ex).

– The next two constraints are an LP representation of the makespan resulting
from applying McNaughton’s rule to the lo-criticality execution requirements
of the hi-criticality jobs.

– The fifth constraint represents the requirement that the synchronization bar-
rier should not be moved beyond Smax (since doing so could result in lo-
criticality jobs failing to complete even in lo-criticality behaviors).

– The final two constraints are an LP representation of the makespan resulting
from applying McNaughton’s rule to the excess (i.e., hi-criticality minus lo-
criticality) execution requirements of the hi-criticality jobs.

Since a linear program can be solved in time polynomial in its representation,
this LP-based approach allows us to determine, in polynomial time, whether an
instance can be scheduled using our improved approach (The iterative approach
could require time proportional to Smax − Smin; in pathological cases, it could
thus have a run-time that is pseudo-polynomial in the representation of the
instance to be scheduled.).

Migrating Mixed Criticality Tasks Within a Cyclic Executive Framework 211

Fig. 1. A linear program for determining the switching point S

4 Periodic Task Systems

We now consider instances in which the workload is specified as periodic tasks
rather than as individual jobs. In this section, we again focus upon dual-
criticality systems.

Let us assume that there are k minor cycles in the major cycle of the cyclic
executive we seek to construct, with k being an integer power of 2. As before,
we assume that we have m parallel cores. Application tasks are assumed to have
harmonic periods that are k or 2k or 4k etc. times the size of the minor frame (e.g.
∈ {25ms, 50ms, 100ms, 200ms, 400ms, . . .}). For the purposes of illustration in
the following discussions we will assume that there are 8 minor cycles to the
major cycle (i.e., k = 8).

We now describe how we construct cyclic executives for such dual-criticality
periodic task systems. For each of the k sets of frames we seek to compute a
switch point S1, S2, . . . , Sk; we do not require these switch points to be the same
in each minor cycle.

First the tasks with period equal to the minor cycle must be allocated to all
the minor cycles. These can be dealt with by the job-based procedures described
in Sect. 3.

To add tasks with longer periods a number of approaches are possible. The
simplest, and the one that is most appropriate if computation times for these
tasks are relatively small (and hence compatible with the jobs already allocated),
is to allocate each job of these tasks to exactly one minor cycle. So, for example,
a task with period equal to twice the minor cycle duration will be allocated
exactly once each in cycles {1, 2}, {3, 4}, {5, 6}, and {7, 8}. And a task with
period four times the minor cycle duration will be allocated exactly once each
in cycles {1, 2, 3, 4} and {5, 6, 7, 8}. Finally tasks with period equal to the major
cycle can be allocated to any one of the minor cycles. To manage this allocation,
common forms of heuristics may be applied. First-Fit or Worst-Fit for example,
with the tasks been allocated largest C(lo) first. As tasks are added to each

212 A. Burns and S. Baruah

cycle the analyses of Sect. 3 above for the set of frames that make up that cycle
are applied. Different switch points for each cycle will emerge, but if the full
task set can be accommodated then allocation is complete and the system is
schedulable by construction.

This process of allocating jobs to single cycles can fail if tasks with larger
periods have larger computation times (C(lo) or C(hi)) that are not easily
accommodated within a single frame. To accommodate such tasks, jobs need to
be split between minor frames. (This is a common approach with single processor
cyclic executives and is considered to be one of the disadvantages of the cyclic
executive approach.) Two forms of splitting are possible, explicit or implicit.
With explicit splitting the code of the task is actually partitioned (statically).
So for a task with period equal to twice the minor cycle the code will be ‘cut’ in
half (approximately). Each portion can then be analysed to determine its C(lo)
and C(hi) values. The first half will be allocated to cycles 1, 3, 5 and 7; and
the second half will be allocated to cycles 2, 4, 6 and 8. These jobs are added to
the existing jobs corresponding to tasks with periods equal to the duration of a
single frame, and the earlier analysis of Sect. 3 again applied.

Although this explicit splitting is optimal from a scheduling point of view
(if the code can be partitioned exactly into two parts with the same C(lo)
and C(hi) values), this approach suffers from a number of significant practical
problems:

– The lack of available tool support for splitting code into exact portions that
can give rise to identical estimates of worst-case execution time.

– Code structures may not be amenable to such partitioning.
– Even if approximate splitting is possible, modifications to the code due to

upgrades or bug fixes, will require re-splitting, and re-testing. This is an
expensive process.

For these reasons we reject explicit splitting and employ an implicit scheme
similar to that used earlier for job splitting. But for a task with two estimates
of worst-case execution time there is the issue of when to trigger the migration.
(Note the migration here is to the next cycle; it may or may not involve a move
to a different core.)

Reducing a task that runs every 50 ms, say, to one that runs every 25 ms is
very similar to the use of period transformation [11] to reduce a task’s period
(and hence raise its priority in a rate-monotonic system). The application of
period transformation to mixed criticality systems has been discussed in a num-
ber of papers [1,8,15]. Here we make use of the main techniques which is to
divide C(hi) by the number of parts the task is split into. So if the 50 ms task
has WCET estimates of 8 and 12 and is split into two parts, its computation
time in the first cycle will be all at the “normal” or lo-criticality level (so it has
C(lo) = 6 and C(ex) = 0). In the second cycle it could again have C(lo) = 6
and C(ex) = 0, but this would be conservative in that the task is being allocated
6 + 6 = 12 units even at the lo-criticality level – it would be more efficient to
have C(lo) = 2 and C(ex) = 4. Moreover, if the lo-criticality load on the first
cycle is too high it could reduce its requirement in that cycle to be C(lo) = 5,
and then in the second cycle we have C(lo) = 3 and C(ex) = 4. Alternatively

Migrating Mixed Criticality Tasks Within a Cyclic Executive Framework 213

if the second phase of the cycle is overloaded in the second cycle (i.e. C(ex) = 4
is too high) then the first cycle could have C(lo) = 8 and C(ex) = 2, and the
second cycle C(lo) = 0 and C(ex) = 2. This potential movement of work from
one cycle to another is exploited in the following scheme.

We need additional notation to denote per-cycle parameterisation. We will
add ‘[x]’ to the previously defined terms to denote the xth cycle. A task, τi, with
a period equal to k minor cycles is split into k jobs, τi[1] . . . τi[k]. Its computation
times will be denoted by Ci[x](lo), Ci[x](hi) and, by construction, Ci[x](ex) def=
Ci[x](hi) − Ci[x](lo).

We now describe the allocation process for dual critically systems. The fol-
lowing steps will be undertaken:

1. Allocate all single cycle tasks (i.e. tasks with period equal to the minor cycle)
using the job-based analysis developed earlier (discussed in Sect. 3 above).

2. Allocate all remaining HI-crit tasks using the period transformation scheme
(as detailed below).

3. If the above step is not successful, move work to later cycles until all HI-crit
work is scheduled (or declare task set is unschedulable).

4. Allocate all remaining LO-crit tasks.

We will now describe these steps in more detail.
Initially the HI-crit tasks are allocated to the cycles with the computation

time of each part of the task τi being defined by:

Ci[x](lo) = min
(

Ci(hi)
p

,Ci(lo) − (x − 1)Ci(hi)
p

)
≥0

(8)

(here, the subscript ≥ 0 denotes that this value is capped to be no smaller than
zero), and

Ci[x](ex) = Ci(hi)/p − Ci[x](lo) (9)

where p being the number of minor cycles that equal the period of the task and
x goes from 1 to p.

To illustrate this, a task with Ci(lo) = 8 and Ci(hi) = 12 split over 4 cycles
would have pairs of values for Ci[x](lo) and Ci[x](ex) of: (3, 0), (3, 0), (2, 1)
and (0, 3).

As all minor cycles are the same following step one, we initially focus on the
first cycle. The hi-criticality load from single cycle tasks is added to the extra
load from the set of Ci[1](lo) and Ci[1](ex) values. The analysis of the job-based
scheme is applied to give values of S[1]min, Δ[1]hi and Δ[1]lo. If the size of the
minor cycle is D, S[1]min + Δ[1]hi ≤ D and S[1]min + Δ[1]lo ≤ D then the first
cycle is schedulable and the scheme moves on to the second cycle.

However if the first cycle is not schedulable then the next step is to fill the
makespan (if there are ‘gaps’) by moving work from C(ex) to C(lo). Again this
follows the job-based approach. If this is not sufficient then work needs to be
moved from some task’s (or tasks’) Ci[1](lo) to Ci[2](lo) so as to reduce S[1]min.

Once Ci[1](lo) and Ci[2](lo) have changed then the relevant Ci[1](ex) and
Ci[2](ex) values are recomputed.

214 A. Burns and S. Baruah

To make the first cycle schedulable any task that is active in the following
cycle may be chosen as the one to have its work moved from the first to the
second cycle. The task or tasks to choose are those that will not have their
criticality behaviour in the first cycle changed. This constraint is best illustrated
by an example. If a task with C(lo) = 5 and C(hi) = 10 is split into two then
all of the following schemes are valid for the two computation times in the two
cycles: (5, 0) and (0, 5), or (5, 1) and (0, 4) etc. until (5, 5) and (0, 0). But if
this task moves just a single unit of its lo-criticality execution requirement into
the second cycle then the only valid scheme is (4, 0) and (1, 5).

Once the first cycle is made schedulable the process is repeated on the second
and subsequent cycles. If in any cycle there is no available work to be moved
forward (to another cycle), then the technique of moving work within a cycle
from after the switching point to before may be attempted. If none of these
schemes work then the task set is not schedulable.

Intuitively, work in being moved forward until C(lo) is satisfied. Then a
task’s work can be done as either C(lo) or C(ex) which gives more flexibility.
So if with the example used earlier, with Ci[x](lo) and Ci[x](ex) values of: (3,
0), (3, 0), (2, 1) and (0, 3), only two ticks could be accommodated in any S[x]min

then work would be pushed through until the following is obtained: (2, 0), (2,
0), (2, 0) and (2, 4).

If the hi-criticality tasks can be allocated then the next step is to allocate
the lo-criticality tasks. From the hi-criticality stage k switching times have been
computed S[1] . . . S[k]. The available space is therefore D − S[1] + D − S[2] +
· · ·+D−S[k]. lo-criticality tasks are spread evenly across the cycles. Those that
execute every cycle must go into every cycle, those that execute every two need
to be spread across the first two, then third and fourth etc. This is continued
until, again, the allocation is successful or the task set is deemed unschedulable.

4.1 An Example

We illustrate our technique for the following task set:

χi T Ci(lo) C(hi)

τ1 hi 10 2 3

τ2 hi 10 3 4

τ3 hi 10 2 3

τ4 hi 10 1 2

τ5 lo 10 2 2

τ6 lo 10 3 3

τ7 lo 10 1 1

τ8 hi 20 4 6

τ9 hi 20 6 8

τ10 lo 20 2 2

Migrating Mixed Criticality Tasks Within a Cyclic Executive Framework 215

Here there are two criticality levels (hi and lo) and the minor cycle time is
10 ms. Tasks have periods of either 10 or 20, so only two minor cycles are needed
in the system’s major cycle. The hardware platform has two cores, so each of
the two minor cycles contains two frames.

The two hi-criticality tasks with period of 20 must be split. So τ8[1] has
a computation time C8[1](lo) = 6/2 = 3; and τ9[1] has computation time
C9[1](lo) = 8/2 = 4. Adding 3 and 4 to the computation times of tasks τ1
to τ4 gives a makespan for S[1]min of (2 + 3 + 2 + 1 + 3 + 4)/2 = 7.5.

The value of Δ[1]HI is 2 which is acceptable, but the makespan for the lo-
criticality jobs (Δ[1]lo) is 3. So S[1]max is 7 and S[1]min > S[1]max which breaks
the invariant for schedulability. We need to move work out of the first cycle so
that S[1]min has a value of 7.

Choosing τ9 we reduce its computation time in the first cycle to 3. This
means that S[1]min now has a makespan of (2 + 3 + 2 + 1 + 3 + 3)/2 = 7, which
is acceptable.

In the second cycle τ8 needs 1 in the lo-criticality mode and 2 more in the
hi-criticality mode (i.e. C8[2](lo) = 1 and C8[2](ex) = 2). Task τ9 now needs
3 in lo-criticality mode and 2 more in hi-criticality mode. So S[2]min now has
a makespan of (2 + 3 + 2 + 1 + 1 + 3)/2 = 6, and Δ[2]hi in the second cycle is
(1+1+1+1+2+2)/2 = 4. So S[2]min +Δ[2]hi is 10, which is the upper bound.

Finally we add τ10. There is no room in the first cycle, but it can be added
to the second cycle. The value of Δ[2]lo for the second cycle is now 4, from
(2 + 3 + 1 + 2)/2, which is just acceptable as now S[2]min + Δ[2]lo is again 10.

The analysis shows that the full task set is schedulable over two frames and
two cycles with switching times of 7 in the first cycle and 6 in the second. In
total 40 time units are required (2× 2× 10). If one ignores the benefits of mixed
criticality scheduling then the total requirement using C(hi) values is 52. This
equates to the use of three frames (that is three cores) which is one core more
than is required with criticality-aware scheduling.

5 Conclusions and Further Work

Single processor safety-critical systems are often constrained so that they can be
implemented as a series of frames in a repeating cyclic executive. In this paper
we have extended this approach to incorporate multi-core platforms and mixed
criticality applications. We allow a minimum number of tasks to be split across
frames and cycles, and propose a practical means of constructing the necessary
cyclic schedule.

Under further work we will extend the use of Linear Programming from
job-based to task-based scheduling. We will also look to demonstrate how the
proposed model can be implemented in Ada. The Ada programming language
provides support for various forms of scheduling on single and multiprocessor
platforms. This includes direct support for a barrier synchronisation protocol,
and controlled task migration. These features, together with execution-time mon-
itoring and timing events, should enable the full model to be represented in Ada.

216 A. Burns and S. Baruah

Once an appropriate multicore platform with full Annex D Ada support is avail-
able a demonstrator will be implemented.

References

1. Baruah, S., Burns, A.: Fixed-priority scheduling of dual-criticality systems. In: Pro-
ceedings of the 21st International Conference on Real-Time Networks and Systems,
RTNS 2013, pp. 173–181. ACM, New York (2013)

2. Baruah, S., Burns, A.: Achieving temporal isolation in multiprocessor mixed-
criticality systems. In: Proceedings of the 2nd International Workshop on Mixed
Criticality Systems (WMC), Rome (Italy), December 2014

3. Baruah, S., Fohler, G.: Certification-cognizant time-triggered scheduling of mixed-
criticality systems. In: Proceedings of the IEEE Real-Time Systems Symposium
(RTSS), Vienna, Austria. IEEE Computer Society Press (2011)

4. Bate, I., Burns, A.: An integrated approach to scheduling in safety-critical embed-
ded control systems. Real-Time Syst. 25(1), 5–37 (2003)

5. Burns, A., Baruah, S.: Semi-partitioned cyclic executives for mixed criticality sys-
tems. In: Proceedings of the International Workshop on Mixed Criticality Systems
(WMC), December 2015

6. Burns, A., Fleming, T., Baruah, S.: Cyclic executives, multi-core platforms and
mixed criticality applications. In: Proceedings of 27th ECRTS, pp. 3–12 (2015)

7. Fleming, T., Baruah, S., Burns, A.: Improving the schedulability of mixed critical-
ity cyclic executives via limited task splitting. In: Proceedings of the 24th Interna-
tional Conference on Real-Time Networks and Systems, pp. 277–286 (2016)

8. Fleming, T., Burns, A.: Extending mixed criticality scheduling. In: Proceedings of
the International Workshop on Mixed Criticality Systems (WMC), December 2013

9. Giannopoulou, G., Stoimenov, N., Huang, P., Thiele, L.: Scheduling of mixed-
criticality applications on resource-sharing multicore systems. In: International
Conference on Embedded Software (EMSOFT), pp. 17:1–17:15, Montreal, October
2013

10. McNaughton, R.: Scheduling with deadlines and loss functions. Manag. Sci. 6, 1–12
(1959)

11. Sha, L., Lehoczky, J., Rajkumar, R.: Solutions for some practical problems in
prioritized preemptive scheduling. In: Proceedings of the Real-Time Systems Sym-
posium. IEEE Computer Society Press (1986)

12. Socci, D., Poplavko, P., Bensalem, S., Bozga, M.: Time-triggered mixed critical
scheduler. In: Proceedings of the International Workshop on Mixed Criticality Sys-
tems (WMC), pp. 67–72, December 20143

13. Tamas-Selicean, D., Pop, P.: Design optimization of mixed-criticality real-time
applications on cost-constrained partitioned architectures. In: Proceedings of the
IEEE Real-Time Systems Symposium (RTSS), Vienna, Austria. IEEE Computer
Society Press (2011)

14. Tamas-Selicean, D., Pop, P.: Task mapping and partition allocation for mixed-
criticality real-time systems. In: 2011 IEEE 17th Pacific Rim International Sym-
posium on Dependable Computing (PRDC), pp. 282–283, December 2011

15. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: Proceedings of the Real-Time Systems Symposium,
pp. 239–243, Tucson, AZ. IEEE Computer Society Press, December 2007

Directed Acyclic Graph Scheduling
for Mixed-Criticality Systems

Roberto Medina(B), Etienne Borde, and Laurent Pautet

LTCI, Télécom ParisTech, Université Paris-Saclay, 75013 Paris, France
{roberto.medina,etienne.borde,laurent.pautet}@telecom-paristech.fr

Abstract. Deploying safety-critical systems into constrained embedded
platforms is a challenge for developers who must arbitrate between two
conflicting objectives: software has to be safe and resources need to
be used efficiently. Mixed-criticality (MC) has been proposed to meet
a trade-off between these two aspects. Nonetheless, most task models
considered in the literature of MC scheduling, do not take into account
precedence constraints among tasks. In this paper, we propose a multi-
core scheduling approach for a model presenting MC tasks and their
dependencies as a Directed Acyclic Graph (DAG). We also introduce an
evaluation framework for this model, released as an open source software.
Evaluation of our scheduling algorithm provides evidence of the difficulty
to find correct scheduling for DAGs of MC tasks. Besides, experimenta-
tion results provided in this paper show that our scheduling algorithm
outperforms existing algorithms for scheduling DAGs of MC tasks.

Keywords: Mixed-Criticality · Directed acyclic graphs · Mode
transition · Real-time scheduling

1 Introduction

Having certified software is imperative to deploy applications in safety-critical
systems. To ensure that critical tasks always meet their timing requirements (i.e.
deadline), Certification Authorities (CA) require an overestimated Worst-Case
Execution Times (WCET).

The Mixed-Criticality (MC) model was proposed in [15] to guarantee safety
while efficiently using embedded resources. In this model, tasks with different
criticality levels share the same hardware platform. This model ensures that,
(i) high-criticality tasks of the system always perform their execution within
their deadlines and (ii) resources are efficiently used by redistributing WCET
overestimation of high-criticality tasks to low-criticality tasks.

Nonetheless, data dependencies between tasks on a MC model has seen very
few contributions [6]. Our model represents MC tasks with a Directed Acyclic
Graph (DAG), where vertices represent tasks and edges represent precedence
constraints among them. Vertices that are not related by an edge can be executed
in parallel. This is very interesting since embedded platforms use multi-core
architecture nowadays.
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 217–232, 2017.
DOI: 10.1007/978-3-319-60588-3 14

218 R. Medina et al.

In this paper, we propose a new approach based on static List Scheduling
(LS) to schedule DAGs of MC tasks for multi-core architectures. We also propose
a random generation method of MC-DAGs1, used to evaluate our scheduling
algorithm. Our evaluation shows that our scheduler has a better schedulability
rate compared to the reference algorithm of the literature [2].

The remainder of the paper is organized as follows: Sect. 2 presents the task
model used in our contribution. The main difficulties that need to be overcome
by our scheduling approach are presented in Sect. 3. In order to schedule the
MC-DAG on multi-core architectures we propose a new scheduling algorithm
in Sect. 4. The implementation of the MC-DAG test generator is described in
Sect. 5. Section 6 presents the evaluation of our algorithm on the generated MC-
DAG tests. Related works are discussed in Sect. 7 and we conclude in Sect. 8
with future research perspectives.

2 Task Model

In this section we present the task model our contribution relies on: DAGs of
MC tasks. DAGs and the synchronous model of computation are widely used
in industrial tools like SCADE from Esterel, Simulink from MathWorks among
others. Therefore, including the MC approach to this model is of great interest.

2.1 Mixed-Criticality Tasks

MC scheduling [6] has become an appealing solution to integrate various tasks
with different levels of criticality onto the same hardware platform.

MC scheduling was first presented by Vestal in [15]. Vestal’s task model
is based on the following observation: the higher the criticality level becomes,
the more overestimated the WCET is. For instance, in a low criticality level
tasks could have their WCET determined empirically (i.e. measuring execution
times over multiple executions). While on a high criticality level, code coverage
analysis and validation from a CA to determine a pessimistic WCET that cannot
be exceed at any time, is required. Therefore the low criticality levels have a
smaller WCET than high criticality levels. In order to mitigate the impact of
overestimated WCET on resource dimensioning, MC models propose to identify
operational modes, and to define different timing configurations of tasks for
each operational mode. In particular when high-criticality tasks exceed their
WCET of a low-criticality mode, the system performs a mode transition into a
high-criticality mode where low-criticality tasks are stopped (discard approach)
or have less processing power (elastic approach). However, this mode transition
needs to be safe: deadlines of high-criticality tasks must still be satisfied.

We consider MC systems with two operational modes noted HI and LO.
When the system is in LO mode (initial mode), all tasks can be executed on
the platform until their WCET in LO mode (noted Ci(LO) for a task τi). For

1 Open source: https://github.com/robertoxmed/ls mxc.

https://github.com/robertoxmed/ls_mxc

Directed Acyclic Graph Scheduling for Mixed-Criticality Systems 219

each task τi, Ci(LO) ≤ Ci(HI) (Ci(HI) is the WCET of τi in mode HI, it
is a pessimistic WCET). If a task is able to complete its execution before its
Ci(LO), we suppose all estimated time budget is used, i.e. the processor would
be idle until the Ci(LO) is consumed. A Timing Failure Event (TFE) occurs
when a task τi runs for a longer time than its Ci(LO), and the occurrence of a
TFE triggers a mode switch from LO to HI mode. In HI mode, tasks considered
as highly critical (noted as HI tasks) are able to run until Ci(HI) while lower
criticality tasks (noted as LO tasks) are stopped: we adopt the discard approach.

2.2 DAG Mixed-Criticality Model

In addition to their criticality level, we consider tasks with precedence constraints
modeled as DAGs. This representation allows us to identify clearly which parts of
a computation can be run in parallel. Multi-core platforms are more and more
used in embedded systems, parallel computation is an important challenge to
improve resource usage. At the same time, MC studies often use independent task
sets, however real applications are most likely going to have tasks communicating
with each other. For example, Simulink and SCADE are tools that are used for
designing and implementing embedded control systems [12]. We consider real-
time systems modeled with a single-DAG, i.e. only one DAG of mixed-critical
tasks is being executed by the platform. All tasks forming the DAG are constraint
to meet a single deadline, can be preempted and can migrate from one CPU to
another.

Our model, noted MC-DAG, is composed of tasks represented by vertices
in the graph. Precedence constraints are materialized by edges. Each task τi is
characterized by a criticality level χi ∈ {LO, HI}, a WCET in LO mode Ci(LO)
and a WCET time in HI mode Ci(HI) (Ci(HI) = 0 if χi = LO). HI criticality
tasks cannot depend on the output of LO criticality tasks for safety reasons: if the
LO tasks fails to deliver its output, the HI criticality task can be compromised.
For this reason we only allow three types of communications in our model: from
HI to HI, from HI to LO and from LO to LO. Industrial standards like ARINC653
also apply this communication constraint for partitions for example.

In the remaining, we shall illustrate our contribution with the example of
the MC-DAG presented in Fig. 1. White vertices represent LO criticality tasks
and gray vertices are HI criticality tasks. Numbers on each vertex represent the
execution times of tasks. The graph on the left has WCET for tasks in LO
mode, while the right graph gives the WCET of HI tasks in HI mode. WCET
are presented in Time Units (TU).

3 Problem Statement

Scheduling MC tasks on multi-core platforms is a difficult problem, specially
due to transitions to higher criticality modes: deadlines of high-criticality tasks
must be met, even when a TFE occurs. This scheduling problem becomes even
more complex when there exist precedence constraints between tasks: if a task

220 R. Medina et al.

(a) DAG in LO mode (b) DAG in HI mode

Fig. 1. Mixed-Criticality DAG example.

increases its WCET due to a switch to HI mode, all its successors are delayed
in a domino effect.

In this paper, we aim at making sure a safe scheduling of a given MC-DAG
exists. A MC system is considered to be safe if (i) tasks meet their deadlines in HI
and LO modes, and (ii) the mode transition from LO to HI is safe: HI tasks meet
their deadline even when a TFE occurs: the incrementation of the WCET (from
Ci(LO) to Ci(HI)) for HI tasks cannot compromise their deadline. Allocating
MC tasks with data dependencies to a multi-core architecture is equivalent to an
optimization problem that aims at minimizing the execution time of a MC-DAG
while enforcing safe mode transitions for each possible date of a TFE. Ensuring
the safety of a LO to HI mode transition is therefore a challenging objective.

Fig. 2. Safe and unsafe mode transitions

Figure 2 provides scenarii for safe and unsafe mode transitions. The HI task
τi completes its execution. Then, both the HI task τj and the LO task τk become
ready to execute. Let us assume LO task τk starts its execution before the HI
task τj . A TFE occurs during the execution of task τj . In other words, τj executes
for a longer time than its LO WCET, Cj(LO). Thus, a mode switch occurs. τk
is stopped and τj ’s WCET is extended up to its HI WCET, Cj(HI). In these
two scenarii, the WCET Ck(LO) differs: the WCET in the second scenario is

Directed Acyclic Graph Scheduling for Mixed-Criticality Systems 221

greater than the one in the first scenario. In the first scenario, illustrated on the
low left part of Fig. 2, the deadline of task τj is satisfied during the transition.
In the second scenario, Ck(LO) is greater and when the TFE occurs, task τj has
not enough execution time available and eventually causes a deadline miss.

In addition to this problem, another issue is to evaluate scheduling algo-
rithms for MC-DAGs in multi-core architectures. Since the MC-DAG model has
mostly seen theoretical contributions, there does not exist yet a benchmarking
framework to evaluate such DAG scheduling algorithms. Besides, benchmarking
frameworks for MC-DAG have to consider lots of parameters that influence the
degree of parallelism of tasks, the distribution of CPU utilization among tasks,
the number of cores that are assigned to the DAG, as well as the topology of
graph.

In the rest of this paper, we present the technical solutions we propose to
answer these difficult problems.

4 Multi-core Scheduling for MC-DAGs

4.1 Scheduling Algorithms for DAGs on Multi-cores

Finding an optimal scheduling of DAGs on a limited number of processors
(respecting the deadline and minimizing the scheduling time of the DAG) is
a NP-complete problem [9]. List Scheduling (LS) is a polynomial approach to
find near-optimal scheduling. It aims at producing a static scheduling for DAGs
that minimizes the completion time of the DAG, also called makespan. Several
different heuristics are based on LS and improve the resulting scheduling under
some hypothesis. As explained before, the MC-DAG model increases the com-
plexity of DAG scheduling, mainly because of the safety constraints on the LO
to HI mode transition (satisfying the deadline of HI tasks after their WCET is
incremented).

In order to reduce the complexity of this problem, we consider the following
hypotheses: the scheduler executes tasks with a time-triggered semantics, and
tasks execute exactly for their WCET: if tasks finish before their WCET, idle
time is enforced at run time. These hypotheses increase the determinism of the
schedule and reduce the number of possible scheduling scenarii, as well as the
number of instants for which TFEs may occur.

4.2 Scheduling Algorithms for MC-DAG on Multi-cores

Scheduling MC-DAGs was first proposed by Baruah for uni-core architectures
in [4]. LS was then used for scheduling this model into multi-core platforms [2].
The idea is to build two scheduling tables: one per mode. In HI mode, a static
scheduling allocates time slots to HI tasks in a table by applying LS to the DAG
in HI mode. In LO mode, another static scheduling table allocates time slots
to tasks almost the same way. However, time slots are allocated for HI tasks as
soon as they are ready. Then, time slots are allocated to LO tasks according to

222 R. Medina et al.

LS when they are not preempted by HI tasks. In case a TFE occurs, the system
switches to HI mode and applies the scheduling table in HI mode. Since HI tasks
are always scheduled prior to LO tasks, there is a guarantee to have a safe mode
transition.

We applied this approach to schedule MC-DAGs on uni-core architec-
tures [11]. The objective was to evaluate availability of MC-DAG systems
enriched with our recovery mechanisms to switch back to LO mode. In this
context, we realized that preempting LO tasks as soon as a HI task is ready can
produce inefficient schedules and could result in deadline misses whereas valid
schedules exist.

Figure 3 highlights the problem with this approach. Figure 3a provides the
schedule obtained with Baruah’s method on the MC-DAG we described on Fig. 1.
On this example, the deadline (180 TUs) is missed. Figure 3b illustrates the
schedule obtained with our method on the same example.

(a) Baruah’s MC DAG scheduling (b) Valid MC DAG scheduling

Fig. 3. Scheduling tables for the MC DAG

Intuitively, the main idea of our approach is to privilege HI tasks over LO
tasks, only at specific instants for which it is required to prioritize HI tasks
in order to ensure a safe mode transition. These specific instants are called
Latest Safe Activation Instant (LSAIs). The main steps of our algorithm consist
in calculating the HI scheduling table (SHI) starting from the deadline of the
graph. This way we obtain a LSAI for each HI task. The LO mode scheduling
table (SLO) is then obtained thanks to LS with preemption of HI tasks at their
LSAI. We explain this method in the remaining of this section: in Sect. 4.3, we
define a necessary condition in order to ensure mode transitions are safe. As
explained in Sect. 4.4, we use this definition to compute the LSAIs of HI tasks
in LO mode, as well as the scheduling table of HI tasks in HI mode. Finally, we
explain in Sect. 4.5 how we compute the scheduling table of tasks in LO mode.

4.3 Safe Mode Transition: Necessary Condition

We introduce in this section a necessary condition (see Eq. (1)) ensuring that a
mode transition can be performed safely. This condition is then used in Sect. 4.4
to compute (i) the LSAIs of HI tasks in LO mode, and (ii) the scheduling of HI
tasks in HI mode.

∀τi ∈ τHI ,WCRTi(LO) + Ci(HI) − Ci(LO) ≤ D. (1)

Directed Acyclic Graph Scheduling for Mixed-Criticality Systems 223

In this equation, τHI is the set of HI tasks of the graph and D is the deadline
of the graph. WCRTi(LO) corresponds to the Worst Case Response Time, that
is the time required for task τi to finish its execution in LO mode. The intuition
behind Eq. (1) is that, for all τi ∈ τHI , τi has enough time to finish its execution
in mode HI in case a TFE occurs while executing τi in LO mode. Figure 4 gives
an illustration of Eq. (1):

– the upper part of the figure illustrates a scheduling scenario in which Eq. (1)
is not respected, leading to a deadline miss;

– the lower part of the figure illustrates a scheduling scenario in which Eq. (1)
is respected. This illustration helps to understand why, in the worst case (i.e.
the time of the TFE equals WCRTi(LO)) the deadline is still met after the
transition to HI mode.

Fig. 4. Example of unsafe mode transition

Respecting Eq. (1) forces HI tasks in LO mode to start at a time that allows
τi to switch to HI mode safely. The LSAI of τi, an exit vertex of the MC-DAG
in HI mode, is illustrated on Fig. 4. As one can see on the figure, computing the
LSAI of an exit vertex of the DAG is very easy: it is a straightforward application
of Eq. (1). In the next subsection, we explain how we compute the LSAIs of all
the HI tasks, which boils to compute the scheduling table of the MC-DAG in HI
mode.

4.4 Building the HI Mode Table

We schedule HI tasks in HI mode as late as possible in order to compute the
LSAIs of HI tasks in LO mode, leaving as much time as possible to schedule LO
tasks in LO mode. In order to do so, we first compute the LSAIs of exit vertices
as illustrated on Fig. 4. The LSAI of a task τi then becomes the virtual deadline
for the predecessors of τi and we can compute the LSAIs of these predecessors by
applying Eq. (1) with this virtual deadline. In other words, we reverse schedule
the MC-DAG in HI mode: from the deadline of the graph, backwards time 0, we
allocate time slots for HI tasks in HI mode. As a result, we obtain a scheduling
table of HI tasks in HI mode, called SHI , and the starting date of a task in this
table corresponds to its LSAI. However, in order to start HI tasks in HI mode
as late as possible we need to minimize the makespan of the reverse schedule.

224 R. Medina et al.

For this purpose, we use a LS algorithm called Highest Level First with
Estimated Time (HLFET) [1]. Indeed, HLFET is the most efficient LS algorithm
to schedule DAGs on multi-cores [9]: HLFET is less computationally expensive
than other LS algorithms (which are in general of polynomial complexity), and
provides near-optimal makespans. In HLFET, the level of a vertex is given by
the longest path from that vertex to an exit vertex, and the level of an exit
vertex is equal to its execution time. For example, applying HLFET to the graph
presented in Fig. 1b leads to the following levels for HI tasks: 〈(A, 180), (C, 140),
(D, 160), (F, 100), (G, 80), (I, 40), (J, 20)〉.

Algorithm 1. SHI computation
1: function CalcSHI
2: Calculate levels for each vertex in HI mode
3: for all HI tasks τi do
4: RET [τi] ← Ci(HI) /* Remaining execution time*/

5: t ← Deadline
6: while t > 0 do
7: for all cores c do
8: τ ← lowest level task s.t. all successors have been fully scheduled
9: SHI [t][c] ← τ

10: RET [τ] ← RET [τ] − 1
11: if RET [τ] = 0 then LSAI[τ] ← t

12: t ← t − 1
13: if

∑
RET > t ∗ NbCores then

14: return NotSchedulable
15: return SHI and LSAI

Algorithm 1 describes the algorithm we propose to compute the scheduling
table of HI tasks in HI mode, called SHI . The first step of the algorithm is
to compute the levels of tasks with HLFET (using Ci(HI) for their execution
time). We build SHI starting from the deadline and from the exit vertices of
the DAG in HI mode. For each time slot, we schedule on each core the tasks (i)
having the lowest level, and (ii) having all their successors completely scheduled.
If all the tasks are completely scheduled before time 0 is reached, the system
is schedulable in mode HI and table SHI provides its scheduling in mode HI.
Besides, the start date of τi in this table is also the LSAI of τi.

We illustrate the execution of this algorithm on the DAG provided in Fig. 1b.
We assume we have two cores to execute this DAG and its deadline is 180 TUs.
At the beginning we have two exit vertices with no successors: I and J . Tasks I
and J are selected, they have the lowest levels. Once J has been fully allocated,
at time 160 TU, the only task that can be executed is G (F has to wait until
I is completely scheduled). AT 140 TU, F is scheduled until 80 TU, activating
tasks C and D. Once D has been fully allocated, task A executes from TU 20
to 0. The final SHI table is shown in Fig. 5, and the DAG is schedulable in HI
mode. With SHI , we also obtain the LSAIs of each task, depicted with vertical

Directed Acyclic Graph Scheduling for Mixed-Criticality Systems 225

Fig. 5. SHI table

arrows in Fig. 5: 160 for I, 140 for J , 100 for G, 80 for F , etc. As explained in
the next section, these LSAIs are then used to calculate the scheduling table of
tasks in LO mode, called SLO.

4.5 Building the LO Mode Table

Algorithm 2 describes the algorithm we propose to compute the scheduling table
of HI and LO tasks in LO mode. First, we calculate tasks levels using HLFET
(using Ci(LO) for tasks execution time). Then, we start allocating time slots to
tasks from time 0, scheduling tasks towards the deadline. We schedule tasks with
the highest level first, but we promote a HI task when its LSAI is reached. LSAI
behaves as a virtual deadline that guarantees safe mode transitions. Promoted
tasks preempt other tasks, and execute until completion. Preempted tasks can
be resumed in another processor since task migration is allowed in our model.
As explained previously, we thus guarantee that Eq. 1 is satisfied for all HI task.

Algorithm 2. SLO computation
1: function CalcSLO
2: Calculate levels for each vertex in LO mode
3: for all tasks taui do
4: RET [τi] ← Ci(LO) /* Remaining execution time */

5: t ← 1
6: for all timeslots t ≤ Deadline do
7: if t is a LSAI then promote the corresponding HI task(s)

8: for all cores c do
9: τ ← highest level task s.t. all predecessors have been fully scheduled

10: SLO[t][c] ← τ
11: RET [τ] ← RET [τ] − 1

12: if
∑

RET > (Deadline − t) ∗ NbCores then
13: return SchedulingException

14: return SLO

Considering the MC-DAG provided in Fig. 1a, the levels of each task are given
by: 〈(A, 120), (B, 110), (C, 90), (D, 110), (E, 40), (F, 60), (G, 40), (H, 30), (I, 30),
(J, 10), (K, 10)〉.

226 R. Medina et al.

Fig. 6. SLO table

Time 0 TU is a LSAI for task A so it is promoted and starts its execution. At
10 TUs, tasks B,C,D and G can run and no LSAI occurs. Thus, we select B and
D, the tasks with the highest levels. At 20 TUs, we have a LSAI for D. However,
D is already running so there is no preemption at this point. But, at 40 TUs,
it is a LSAI for C which preempts B. At 60 TUs, D has finished its execution,
B is resumed (on a different processor). Once C has finished its execution at 70
TUs, F runs until it completes at 100 TUs in parallel with B. Tasks G,E have
met their precedence constraints and it is a LSAI for G, so G and E are selected.
We continue this procedure until there are no more tasks to schedule. The final
SLO is presented in Fig. 6. Vertical arrows correspond to LSAIs of HI tasks.

In this section, we presented a scheduling approach for MC-DAGs. To eval-
uate this approach, we propose the benchmarking tool described in Sect. 5.

5 Mixed-Criticality DAG Synthesis

To evaluate our scheduling algorithm we need a benchmarking tool that auto-
matically generates a significant number of MC-DAGs. No such tool is avail-
able in the literature: contributions to this subject have only presented theo-
retical work [2] or evaluation frameworks have not been released publicly [10].
We explain the different aspects we considered for developing our benchmarking
tool.

The benchmarking tool takes into account different aspects of the various
communities that are part of our work: DAG, Real-time on multi-core architec-
tures, and MC scheduling.

– The objective of generating graphs randomly is to avoid topologies that might
influence schedulability. We developed a DAG generation tool based on the
Erdös-Rényi’s method, which has been used in several research on DAGs
scheduling for real-time systems [8,14].

– An important parameter for scheduling tasks sets on multi-core systems is the
utilization. Distribution of utilization [5] is a method widely used in the real-
time systems domain in order to benchmark scheduling algorithms. Task sets
can be generated quite efficiently with a uniform distribution of utilization
among tasks. However, these methods usually create independent tasks, i.e.
without precedence constraints among them.

– When it comes to MC in DAG generation tools, it is important to parame-
terize the utilization of HI and LO tasks, as well as utilization of HI tasks in
LO mode.

Directed Acyclic Graph Scheduling for Mixed-Criticality Systems 227

Our generator has three main stages: (i) generation of the DAG of HI tasks,
(ii) reduction of HI tasks utilization in LO criticality mode, and (iii) completion
of the DAG with LO tasks. The following parameters are used by the tool:
e is the probability of having an edge between two vertices. p the maximum
degree of “parallelism” in the DAG, i.e. the maximum number of vertices that
are not transitively connected by an edge. CP , the critical path of the graph,
i.e. the longest path in the DAG between an entry vertex to an exit vertex.
UHI , the utilization (of HI tasks) in HI mode. UHIinLO, the utilization of HI
tasks in LO mode (UHIinLO < UHI). ULO, the utilization (of all tasks) in LO
mode.

The first step of the MC-DAG generation creates the DAG in HI mode using
a parameter UHI . This step is iterative: each iteration adds vertices until the
utilization UHI is reached. More precisely, we create in each iteration a random
number (between 1 and p) of vertices. When creating vertices, we distribute UHI

by giving each vertex a Ci(HI). An edge can be added between two vertices, with
a probability e, if (i) the vertices were created in different iterations (enforcing
the degree of paralellism p), and (ii) if adding the edge does not increase the
critical path (thus enforcing parameter CP).

As a second step, we generate the LO part of HI tasks. Parameter UHIinLO

gives an upper bound of the utilization of HI tasks in LO mode. HI tasks’ Ci(LO)
is randomly generated between 1 and a bound starting at Ci(HI).

We iteratively try a Ci(LO) for each task and check if UHIinLO is satisfied
after the reduction. If it is not the case, a new iteration tries other values for
Ci(LO), but this time between 1 and the previous value tested. As a consequence,
values for Ci(LO) decrease until UHIinLO is satisfied. In addition, if all HI tasks
become unitary (i.e. Ci(LO) = 1) the reduction phase stops.

On the last step of the generation, LO tasks are added to the graph. We
distribute a utilization of ULO −UHIinLO to LO tasks (UHIinLO is the final real
value obtained after the reduction phase). We use a process similar to the one
used in step one in order to complement the DAG of HI tasks. However, we
prevent the process from adding edges from LO tasks to HI tasks. Finally, we
check whether the CP was reached while creating the DAG. If not, we add a
last task (either HI or LO) that completes the CP .

Our benchmarking tool is open sourced and can be found on GitHub2.
Figure 7 shows a MC-DAG that was created with our generator. HI tasks are
presented in gray and LO tasks are presented in white. Numbers represent
estimated execution times in TUs. This MC-DAG was obtained using the fol-
lowing parameters: ULO = 4; UHI = 3; UHIinLO = 1.5; p = 6; CP = 30;
e = 40%.

2 https://github.com/robertoxmed/ls mxc.

https://github.com/robertoxmed/ls_mxc

228 R. Medina et al.

(a) HI mode (b) LO mode

Fig. 7. Generated MC DAG

6 Evaluation of the Scheduling Algorithm

In this section we present our experimental results, and compare our approach to
Baruah’s [2] algorithm. The comparison criteria we used is the acceptance rate,
defined as follows: given a set of MC-DAGs of tasks, supposed to be schedulable
in HI and LO mode, the acceptance rate is the ratio of MC-DAGs for which a
safe schedule (i.e. also ensuring safe mode transitions) was found.

6.1 DAG Generator Parameters

In our experiments, we have considered execution platforms of 2, 4, and 8 cores.
The DAG parameters used for generation were chosen as follows: parallelism
degree p was set twice the number of cores. Here is the rationale: for p greater
than the number of cores, DAGs have mainly entry vertices. For p much smaller
than the number of cores, we consider the hardware platform is oversized. The
probability of having an edge between two vertices, e, was increased progres-
sively from 20 to 60%. Utilization in HI and LO mode ULO, UHI , was increased
progressively as well from half of the number of cores, to the number of cores
(e.g. ULO/HI varied from 4 to 8 for a hardware platform of 8 cores). Utilization
of HI tasks in LO mode UHIinLO is given by min(UHI ,ULO)

2 , that way we always
reduce HI tasks’ execution time in LO mode. The CP was fixed to 30 TUs for
all the tests, and we considered the deadline equals to CP (see definition on
Sect. 5).

6.2 Results

Obtained results, with 8 cores, are shown in Fig. 8. We do not provide results
obtained with 4 or 2 cores because they are very similar to results presented here.
Each subfigure represents results obtained with an edge probability e set to 20,
40 and 60%. Each line represents the acceptance rate for a given ULO, varying
from 4 to 8. Continuous lines correspond to results obtained with our method,
whereas dashed lines are results obtained with Baruah’s MC-DAG scheduler.
The x-axis represents the UHI , also varying from 4 to 8. Each point of the figure

Directed Acyclic Graph Scheduling for Mixed-Criticality Systems 229

gives the acceptance rate obtained on a set of 200 DAGs for each combination
of parameters ULO; UHI ; UHIinLO; p; e; CP .

6.3 Analysis of Results

Except when ULO = 4, Baruah’s scheduler has a much lower acceptance rate
than our algorithm. This was predictable: forcing LO preemptions each time a
HI tasks can be executed is suboptimal. The difference becomes very significant
when ULO increases: on Fig. 8a, with e = 20 and ULO = 7, our method has
an acceptance rate very close to 100% whereas Baruah’s algorithm produces an
acceptance rate below 40%. Clearly, relaxing the preemption condition to only
LSAIs gives a better acceptance rate.

More generally, we can see on Fig. 8a that increasing ULO impacts signifi-
cantly the acceptance rate of a scheduling method. In practice, ULO is expected
to be high in a MC-DAG: increasing ULO may either enable the inclusion of more
functionalities, or reduce the probability of TFEs by overestimating WCET in
mode LO. Experimental results show that the acceptance rate obtained with our
method begins to decrease when ULO is above 7. For instance, on Fig. 8a, with

(a) Edge probability of 20% (b) Edge probability of 40%

(c) Edge probability of 60%

Fig. 8. Acceptance rates for different edge probabilities.

230 R. Medina et al.

e = 20 and ULO = 7, the acceptance rate is around 100%. With ULO = 7.5, the
acceptance rate drops to approximately 90%. It decreases progressively between
70 to 50% when ULO = 8 and UHI increases. LSAIs of HI tasks are the main rea-
son for this behavior. Each time a HI tasks preempts a LO one, the completion
time of this LO task is increased, potentially ending in a deadline miss. How-
ever, the acceptance rate provided is still very good for high levels of utilization
UHI = 8 and ULO = 7.5 on 8 cores. Therefore a vast number of LO tasks can be
included into the system and we would still be able to ensure a safe scheduling.

With higher values of e, 40 and 60%, (i.e. the DAGs have more edges) we
have similar results except that the acceptance rate for ULO above 7.5 decreases.
However, it remains above 75% in all subfigures of Fig. 8.

Our scheduling algorithm is very efficient when it comes to finding schedulers
for DAGs. At each step of the allocation phase, the scheduler tests if there are
enough slots to schedule the remaining of the DAG, which discards non-feasible
cases rapidly. On average, the scheduling phase of our experiments took 70 s for
200 DAGs that were a combination of parameters ULO;UHI ;UHIinLO; p; e;CP .
However, since the complexity of HLFET is polynomial, the running time of
our scheduling algorithm can increase significantly depending on the number of
nodes contained in the graph.

7 Related Works

In this section, we position our approach with respect to existing contributions
aiming at scheduling DAGs for Real-Time systems.

Saifullah et al. [14], adapted preemptive and non-preemptive Earliest Dead-
line First (EDF) to schedule DAGs. In this work, authors transform the DAG
of tasks into a set of independent tasks scheduled with EDF by synthesizing the
scheduling parameters of these tasks (i.e. period, deadline). However, this app-
roach requires idle time between the completion of the DAG and the deadline
in order to compute the tasks parameters, which leads to an underutilization of
the platform. DAGs in this work do not include tasks with different criticality
levels.

Scheduling tests based on Worst-Case Response Time (WCRT) for multi-
ple DAGs using DM and EDF are presented in [13]. Necessary conditions are
found for systems running multiple DAGs by finding safe upper-bounds on their
WCRT. However, these safe upper-bounds can be very pessimistic if applied to
a single DAG, which is the scope of our contribution. DAGs can be judged as
non-schedulable when in fact a valid schedule exists. In addition, each DAG has
only one criticality level in this work.

A scheduling approach for multiple DAGs with mixed-criticality levels was
presented in [10]. Authors use a federated approach to allocate cores to tasks: a
single DAG can have various exclusive cores for its execution, while less demand-
ing DAGs are scheduled in processors that are left. The task model used in this
paper differs from ours since they use DAGs to describe the internal structure of
a task: a task is modeled by jobs with precedence constraints among them. Criti-
cality levels being assigned to tasks, means that this model forbids dependencies

Directed Acyclic Graph Scheduling for Mixed-Criticality Systems 231

among tasks of different criticality levels (even dependencies of LO tasks on HI
tasks). As opposed to our proposal, mixed-criticality tasks are independent tasks
in this model.

The federated approach was also considered on the latest work of Baruah [3]
to schedule multiple DAGs into one multi-core architecture. DAGs with a high
utilization value will have exclusive cores assigned to them and LS is applied to
find the scheduling tables for these exclusive cores. Tasks with a low utilization
are distributed to the remaining cores and are considered to be sequential, so
any real-time scheduling algorithm can be applied for them. The model differs
from the one in [10] where DAGs are assigned with a single criticality level,
while Baruah’s model allows vertices to have different criticality levels in the
same DAG. Nonetheless the approach to schedule multiple DAGs still considers
HI tasks with the highest priority over LO tasks (like in [2]), which still causes
delays on LO tasks for the scheduler in LO mode, this can be avoided with our
scheduling approach.

Existing contributions do not aim at finding a minimal execution time for
a single DAG of tasks with mixed criticality levels. As a consequence, these
contributions would perform poorly when aiming at scheduling a single-DAG
with criticality levels.

8 Conclusion

This paper presents an efficient and safe scheduling algorithm for real-time sys-
tems modelled with a DAG of MC tasks. Being based on a heuristic that mini-
mizes the completion time of the DAG, our algorithm takes advantage of multi-
core platforms to find a near optimal allocation of tasks. Evaluation results pro-
vided in the paper show the capacity of our algorithm to find feasible schedules,
even when the utilization of the multi-core platform is significant. Last but not
least, our algorithm ensures safe mode transitions: higher criticality tasks will
meet their deadline even in case timing failures occur. This paper also presents
the very first benchmarking tool that generate randomly DAGs of MC tasks.
As we believe this task model will become more and more popular in real-time
domain, this open-source tool should be of great interest for the community.

Our future works will consider multiple DAGs being executed into a single
multi-core platform with different periods and deadlines. In addition, we plan
to integrate our work in design methodologies aiming at code generation [7] and
safety analysis [11].

Acknowledgment. This research work has been funded by the academic and research
chair Engineering of Complex Systems.

232 R. Medina et al.

References

1. Adam, T.L., Chandy, K.M., Dickson, J.R.: A comparison of list schedules for par-
allel processing systems. Commun. ACM 17(12), 685–690 (1974)

2. Baruah, S.: Implementing mixed-criticality synchronous reactive systems upon
multiprocessor platforms. University of North Carolina at Chapel Hill, Technical
report (2013)

3. Baruah, S.: The federated scheduling of systems of mixed-criticality sporadic dag
tasks. In: 2016 IEEE Real-Time Systems Symposium (RTSS), pp. 227–236. IEEE
(2016)

4. Baruah, S.K.: Semantics-preserving implementation of multirate mixed-criticality
synchronous programs. In: RTNS (2012)

5. Bini, E., Buttazzo, G.C.: Measuring the performance of schedulability tests. Real-
Time Syst. 30(1–2), 129–154 (2005)

6. Burns, A., Davis, R.: Mixed Criticality Systems - A Review. Department of Com-
puter Science, University of York, Technical report, January 2016 (2013)

7. Cadoret, F., Robert, T., Borde, E., Pautet, L., Singhoff, F.: Deterministic imple-
mentation of periodic-delayed communications and experimentation in aadl. In:
ISORC, June 2013

8. Cordeiro, D., Mounié, G., Perarnau, S., Trystram, D., Vincent, J.M., Wagner,
F.: Random graph generation for scheduling simulations. In: Proceedings - ICST
(2010)

9. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph schedul-
ing algorithms. J. Parallel Distrib. Comput. 59(3), 381–422 (1999)

10. Li, J., Ferry, D., Ahuja, S., Agrawal, K., Gill, C., Lu, C.: Mixed-criticality federated
scheduling for parallel real-time tasks. In: RTAS (2016)

11. Medina, R., Borde, E., Pautet, L.: Availability analysis for synchronous data-flow
graphs in mixed-criticality systems. In: Proceedings - SIES (2016)

12. Pagetti, C., Saussié, D., Gratia, R., Noulard, E., Siron, P.: The rosace case study:
From simulink specification to multi/many-core execution. In: 2014 IEEE 20th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pp.
309–318. IEEE (2014)

13. Parri, A., Biondi, A., Marinoni, M.: Response time analysis for G-EDF and G-DM
scheduling of sporadic DAG-tasks with arbitrary deadline. In: RTNS (2015)

14. Saifullah, A., Ferry, D., Li, J., Agrawal, K., Lu, C., Gill, C.: Parallel real-time
scheduling of DAGs. IEEE Trans. Parallel Distrib. Syst. 25, 3242–3252 (2014)

15. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: RTSS (2007)

Software Time Reliability in the Presence
of Cache Memories

Suzana Milutinovic1,2(B), Jaume Abella1, Irune Agirre3,
Mikel Azkarate-Askasua3, Enrico Mezzetti1, Tullio Vardanega4,

and Francisco J. Cazorla1,5

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{suzana.milutinovic,jaume.abella,enrico.mezzetti,

francisco.cazorla}@bsc.es
2 Universitat Politècnica de Catalunya, Barcelona, Spain

3 IK4-IKERLAN, Arrasate-Mondragòn, Spain
{iagirre,MAzkarateAskasua}@ikerlan.es

4 University of Padova, Padova, Italy
tullio.vardanega@math.unipd.it

5 IIIA-CSIC, Barcelona, Spain

Abstract. The use of caches challenges measurement-based timing
analysis (MBTA) in critical embedded systems. In the presence of caches,
the worst-case timing behavior of a system heavily depends on how code
and data are laid out in cache. Guaranteeing that test runs capture,
and hence MBTA results are representative of, the worst-case conflic-
tive cache layouts, is generally unaffordable for end users. The prob-
abilistic variant of MBTA, MBPTA, exploits randomized caches and
relieves the user from the burden of concocting layouts. In exchange,
MBPTA requires the user to control the number of runs so that a solid
probabilistic argument can be made about having captured the effect
of worst-case cache conflicts during analysis. We present a computa-
tionally tractable Time-aware Address Conflict (TAC) mechanism that
determines whether the impact of conflictive memory layouts is indeed
captured in the MBPTA runs and prompts the user for more runs in case
it is not.

Keywords: Probabilistic Timing Analysis · WCET · Representative-
ness · Cache memories

1 Introduction

Measurement-based timing analysis (MBTA) is widely adopted in the real-time
domain [22]. The obtained worst-case execution time (WCET) estimates, how-
ever, are reliable insofar as the user is capable of designing test scenarios whose
conditions are close to those that can arise during operation. Complex hard-
ware and software, e.g. caches, introduce numerous sources of jitter (soj) that
are difficult to analyze and control. For example, how program objects, such as
c© Springer International Publishing AG 2017
J. Blieberger and M. Bader (Eds.): Ada-Europe 2017, LNCS 10300, pp. 233–249, 2017.
DOI: 10.1007/978-3-319-60588-3 15

234 S. Milutinovic et al.

code or stack, are assigned to memory defines their memory addresses, which
in turn determines how they are mapped to cache sets and, ultimately, the pro-
gram’s pattern of hits and misses. Controlling the effect of memory layout to
avoid incurring bad scenarios is not always feasible in practice. Existing tech-
niques are typically exploitable only at the end of the development process as any
analysis result obtained on single software units gets inevitably disrupted after
integration. This inherently clashes with the principle of incrementality in soft-
ware development and analysis, which is a fundamental cross-domain industrial
concern [16].

Measurement-Based Probabilistic Timing Analysis (MBPTA) [2,6,21]
exploits Extreme Value Theory (EVT) [14] and time-randomization to increase
the confidence on WCET estimates. MBPTA uses EVT to model the probabil-
ity of extreme events and, in particular, the combined probability of the events
whose impact is captured in the execution time observations. EVT treats the sys-
tem as a black box, focusing just on its output, hence providing no help to derive
an argument of whether all soj are properly covered. And here is where time ran-
domization comes to the rescue: higher coverage of soj can in fact be obtained
by injecting time randomization in the operation of complex jittery resources
to replace hard-to-control deterministic behavior, so that the corresponding soj
exhibit probabilistic behavior. Interestingly, this feature also allows reasoning
on whether enough measurement runs have been made, which will be the case
when the residual probability of missing a significant behavior of the soj becomes
provably negligible. For instance, if the extreme behavior of a soj has a proba-
bility of appearance of Pevent = 0.1 per run, the probability of not observing it
in R = 1, 000 runs is Pnobs = (1 − Pevent)R = (1 − 0.1)1000 = 1.7 × 10−46.

Time-randomized caches (TRc) [11] are MBPTA’s preferred cache designs
and have been demonstrated on FPGA implementations [9]. TRc use random
placement, mapping memory addresses to random cache sets at each run, giv-
ing rise to random cache (set) placements across runs. As in deterministic set-
associative caches, when the number of addresses mapped to a cache set exceeds
its associativity (W), systematic cache conflicts may occur and eventually result
in increased execution times. With TRc we do not need to control the cache map-
ping to avoid or trigger some specific scenarios, as the effect of cache placement
is transparently exposed. Still, it must be guaranteed that the effect of placement
is conveniently captured at analysis time. And this is not given since, conflic-
tive cache placements may occur with a probability high enough to impact the
timing budget of the system, but low enough to defy observation in the analysis
runs [3,17,20]. For example, for an application that accesses 5 addresses in its
execution, the probability that all of them are randomly mapped to the same
set in a 32-set 4-way cache is 10−6 ≈ (1/32)4, which can be of relevance for
the domain safety standards. If R = 1, 000 analysis runs are performed, a typi-
cal value for MBPTA, the probability of mapping the five addresses in at least
one run to the same set is very low (≈10−3). So far, this issue has been solved
in limited scenarios, which assume that either the program addresses memory
uniformly [3] or it accesses a small number (≤15) of cache lines [18].

Software Time Reliability in the Presence of Cache Memories 235

In this paper we present the Time-aware Address Conflict (TAC) app-
roach, a general and computationally-tractable method that, from the program’s
sequence of accessed addresses, determines whether the number of runs per-
formed by MBPTA, referred to as R, suffices to capture conflictive cache com-
binations with sufficient probability. Else it derives a higher number of runs,
referred to as R′, for which this can be asserted. TAC derives a list of address
combinations that, when mapped to the same set, result in a high miss count.
For each combination, TAC determines its probability and by means of a light-
weight cache simulator, the number of misses that would be incurred when the
addresses in each combination were mapped to the same set – while the rest of the
addresses are randomly mapped. This results in a <probability, misscount> pair
for each combination. The user is then advised to explore random cache place-
ments with the cache simulator until the probabilistic worst-case miss-count
(pWCMC) curve derived with EVT eventually upperbounds the pairs deter-
mined by TAC. This occurs when enough address combinations (R′) singled out
by TAC have been simulated and the number of observed miss counts becomes
sufficient for EVT to converge to an exponential tail approximation [6]. The user
is then instructed to perform R′ runs on the actual system to assure a reliable
application of MBPTA.

Results with EEBMC Autobench [19] and a railway case study running on a
time-randomized FPGA show that TAC successfully identifies conflictive address
combinations and determines the number of runs R′ required to bring the assur-
ance level of the WCET obtained with MBPTA to a desired threshold.

2 Background

MBTA aims at deriving a WCET estimate that holds during system operation.
This requires evidence that measurements taken at analysis occur under condi-
tions similar to or worse than those that can arise during operation. Providing
such evidence is out of reach of standard MBTA approaches, as pointed out
in Sect. 1. MBPTA, by deploying EVT (see Fig. 1), derives the probability that
bad behavior of several of the sources of jitter (soj), whose impact has been
captured in the analysis-time runs, is simultaneously triggered in the same run,
leading to high execution times. Furthermore, randomization makes that soj
events affecting execution time (including those leading to high execution times)
have a probability of appearance. Hence, a probabilistic argument can be built
on whether those events are captured in the measurements performed during the
analysis phase.

Representativeness defines whether the impact of any random relevant event
is properly upper-bounded at analysis time. Relevant events are those occurring
with a probability above a threshold (e.g. Prel = 10−9). With the number of
runs R carried out at analysis, only events with a relatively high probability
(observable probability or Pobs) are (probabilistically) likely to be observed in the
measurement runs. This number of runs (R) determines the lowest probability
of occurrence of an event such that the probability of not observing it in the

236 S. Milutinovic et al.

analysis time measurements is below a cutoff probability, e.g. 10−9. Pobs is a
function of the probability of occurrence per run of the event, Pevent, and the
number of runs R (observations) collected by MBPTA at analysis time. For
instance, for a cutoff probability of 10−9 and R = 1, 000 runs, we can guarantee
that if Pevent ≥ 0.021 the event will not be observed with a probability smaller
than 10−9 (and vice versa). That is, 10−9 ≥ (1 − 0.021)1000. It follows that
with a higher number of runs, events with lower probability can be captured,
though this increases the overhead on the user to deploy MBPTA. Hence, the
relevant events that may not be observed (for R = 1, 000) with a sufficiently high
probability (e.g. > 10−9) are those in the range Pevent ∈ [10−9, 0.021].

Benefits and properties of TRc: Software complexity in current complex
systems is handled via incremental software integration. In the timing domain,
caches make the memory layout of existing modules change across integra-
tion [16]. This has disruptive effects on time composability since the WCET
estimate derived for a software unit in isolation – during system early design
stages – is not valid as software integrates. This loss of time composability
has potential significant costs since, on every integration, regression tests are
required to re-assess the WCET estimate of already-integrated software. Fur-
thermore, timing analysis is pushed and compressed near the end of the devel-
opment process where the detection of timing violations leads to unacceptable
increase in product cost and time to market. TRc break the structural depen-
dence among the memory address given to program code/data and its cache set
location. The user is not required to control the effect of memory layout but just
needs to make sure that its impact on timing has been accounted for performing
enough execution time measurements at analysis time. This enables performing
measurements in isolation factoring in the impact of any cache alignment inde-
pendently of the memory placement produced by future integration. This has
the potential of enabling incremental software integration – and its benefits– in
the presence of caches. TRc hash addresses with a random number1 to compute
the (random) sets where addresses are placed [11]. The random number remains
constant during program execution so that an address is placed in the same set
during the whole execution, but it is randomly changed across executions so that
the particular set where an address is placed is also random and independent of
the placement for the other addresses across executions. Thus, the probability
of any two addresses to be placed in the same set is 1/S where S is the number
of sets.

We call conflictive address combinations, aCi, those combinations of W + 1
or more addresses that, when mapped to the same set, cause a conflictive cache
(set) placement that results in a non-negligible increase in execution time. Table 1
summarizes notations used in this paper.

HoG (Heart of Gold) method [3]: HoG shows that, whenever up to W
addresses are mapped into the same set, after some random evictions, each

1 Random numbers are generated with a pseudo-random number generator that pro-
vides sequences with long periods to prevent any correlation.

Software Time Reliability in the Presence of Cache Memories 237

Fig. 1. pWCET (EVT) estimate. Fig. 2. Application of TAC.

address can be stored in a different cache line in the set, thus not causing fur-
ther misses. Conversely, if more than W cache line addresses compete for the
cache set space, then they do not fit and evictions will occur often. This scenario
represents a random event with high impact on execution time as noticed also
in [17,20]. Hence, a correct application of MBPTA requires ensuring that (i)
either those events are captured in the measurement runs; or (ii) their probabil-
ity is low enough to be considered irrelevant. HoG assumes that the impact of
all addresses on execution time is similar. This may happen when addresses are
accessed homogeneously. However, in the general case not every combination of
addresses – when mapped to the same set – results in an execution time increase
of the same magnitude. This general case is addressed in this paper.

ReVS (Representativeness Validation by Simulation) method [18]:
ReVS considers all combinations of the most accessed cache line addresses with a
cardinality bigger than W , i.e. ∀aCi : |aCi| > W , and captures their impact in a
cache simulator. However, the number of address combinations with a cardinal-
ity bigger than W is huge:

∑U
k=W+1

(
U
k

)
for a sequence Qi, where U = |@(Qi)|.

Hence, evaluating in the cache simulator all potentially conflictive combinations
of addresses is not feasible in the general case due to its exponential dependence
on the number of addresses.

Overall, while MBTA lacks a quantitative measure of coverage of those events
that can affect execution time, MBPTA enables deriving a probabilistic argu-
ment about whether events impacting execution time are captured in analysis-
time tests. Yet, current approaches to derive the number of runs are either non-
scalable [18] or assume homogeneous accesses over all program addresses [3].
TAC provides a low-overhead solution to handle the more general case of arbi-
trary access patterns. For controlled scenarios where ReVS can be applied, e.g.
until U = 15 addresses, ReVS provides exact results with which we compare
TAC results to show that TAC covers all conflictive aCi. We also evaluate TAC
in general scenarios, including a real industrial case study.

238 S. Milutinovic et al.

Table 1. Definitions used in this paper.

Term Description

aCi; |aCi| Address combination, i.e. set of unique addresses; cardinality of aCi

K Cardinality of (number of addresses in) a combination

Qi Sequence of accesses

@(Qi); |@(Qi)| Set of unique addresses in Qi; Number of unique addresses in Qi

U Number of unique addresses in a sequence

Xi Subsequence of accesses between 2 accesses to the same address

q Number of distinct addresses in a subsequence Xi

R (R′) Number of measurements to collect determined by MBPTA (TAC)

T Number of conflictive combinations to return by TAC

3 TAC Mechanism

For a sequence of addresses, TAC focuses on identifying address combinations,
aCi that, when mapped to the same cache set, cause high execution times. The
application of TAC comprises the following steps.

Step 1. List creation. Rather than considering all address combinations with
a cardinality bigger than W as ReVS does, TAC provides a list of potential
conflictive aCi ranked according to their expected impact on execution time
(the size of the list is specified later in this section). To that end, TAC builds
an Address Guilt Matrix (Sect. 3.1) to quickly retrieve those combinations of
addresses that, when mapped to the same set, can cause high miss counts.

Step 2. Impact calculation. Each combination in the list is evaluated with
a cache simulator. Several Monte-Carlo simulations are performed to derive the
number of misses occurring when the addresses in the combination collide in
the same set while the rest of the addresses are mapped randomly. The number
of combinations in this list is fixed and, therefore, independent of the num-
ber of addresses in the program. ReVS, instead, simulates all combinations of
addresses, which has huge cost.

Step 3. Probability calculation. TAC upper-bounds the probability of occur-
rence of those aCi – and combinations of them. The probability of every aCi

to occur is: S × (1/S)|aCi|, where |aCi| is the number of addresses in aCi. For
the combined probability of several aCi we pessimistically use the addition of
their individual probabilities. In reality, due to dependences among aCi, their
combined probability is smaller than that [18].

Step 2 and Step 3 result in a pair <probability, misscount> for each combi-
nation. Figure 2 presents a synthetic example where pairs are represented with
different symbols: black triangles and squares represent the miss counts obtained
for all aCi – and their combinations – whose probability of occurrence is above

Software Time Reliability in the Presence of Cache Memories 239

Prel. Meanwhile, their gray counterparts are those below Prel, which are dis-
carded by TAC since their probability is deemed as negligible.

Step 4. pWCMC curve. TAC uses MBPTA on the miss counts obtained from
cache simulations in which all addresses are randomly mapped, as it would occur
in reality, to obtain a probabilistic worst-case miss-count (pWCMC) curve (see
solid line in Fig. 2). The number of simulations, R, is determined by MBPTA.

Step 5. Assessment. In Fig. 2 triangles are those aCi (and their combinations)
whose miss count is covered by the pWCMC, while the miss counts of the aCi

marked with squares are not. Hence, by validating whether the pWCMC curve
upper-bounds all conflictive mappings (i.e. <probability, misscount> pairs), we
determine whether the number of runs R used by MBPTA suffices. If this is
not the case, more runs are performed until the validation step is passed with
R′ ≥ R runs. Whenever it is passed, the number of runs R′ is the minimum
number of execution time measurements that MBPTA needs to use.

TAC builds on the correlation between miss counts and execution time that
has been positively assessed for our target platform in [18]. If such correlation
is weak, cache behavior would have low impact in execution time, which would
have higher dependence on other soj. However, those other soj do not challenge
MBPTA since probabilities of their events are higher than Pobs [3].

3.1 The Address Guilt Matrix

TAC follows an iterative process in which, across iterations, an incremental num-
ber of addresses K (starting from K = W + 1) is considered to be mapped to
the same set. This creates a cache conflict scenario exceeding cache space in
one set. The process stops when K is large enough so that the probability of
occurrence of the event “K addresses mapped to the same set for the most rele-
vant combinations of K addresses” is below a given cutoff probability2 Pcff . In
practice, we only need the most relevant combination for each value of K since
EVT (part of MBPTA) already accounts for the probability of several of those
events occurring simultaneously. Our results for controlled scenarios show that
the worst combination is always among the TAC top-ranked ones, so we consider
only the T = 20 most relevant combinations for each value of K. In our future
work we will investigate how to choose an optimal parameter value for T.

TAC builds on the concept of guilt, which is intended to help identifying those
aCi that, if mapped to the same set, result in high miss counts. For a given access
Ai with a non-null cache miss probability, guilt provides an approximation to
the extent each intermediate access between Ai and Ai−1 causes Ai to miss in
cache. Note that this concept, although related, differs from the probability of
miss since we are not interested in how many misses each access experiences,
but how much certain addresses can impact each other address if placed in the

2 Note that, while Prel stands for the threshold probability of relevant events at analy-
sis (e.g., 10−9), Pcff relates to the probability of events during operation (e.g.,
10−15) [3].

240 S. Milutinovic et al.

same cache set. For instance, given a direct-mapped (i.e. single way) cache and
the sequence Qi = {A1B1A2}, if both addresses A and B are mapped to the
same set, A2 will miss in cache, and the cause of that is access B1, so B1 takes
full guilt of A eviction. Later in this section we present an efficient mechanism
to approximate guilt for arbitrarily complex sequences.

From probability of miss to guilt. Approaches [4] have been proposed to
derive upper-bounds to the miss probability. However, in this work we are inter-
ested in the actual impact rather than on upper-bounds, and on guilt rather
than on Pmiss. Approaches exist to approximate [11] Pmiss (P̃miss) in the con-
text of MBPTA. These approaches are as shown in Eq. 1, where

∑
P̃miss(Xi)

corresponds to the accumulated miss probability of the intermediate accesses.

P̃miss = 1 −
(
W − 1
W

)∑ P̃miss(Xi)

(1)

While this approach provides good P̃miss approximations [18], it does not
help identifying how much each intermediate access contributes to cause the
miss.

TAC sorts address combinations based on their impact, which requires having
means to estimate the relative impact that each address and group of addresses
have on each other address (guilt) in terms of cache misses. To cover this gap we
propose the P̃guilty estimator (see Eq. 2) that targets providing a precise relative
value for guilt as needed by TAC, rather than approximating Pmiss.

P̃guilty = 1 −
(
W − 1
W

)exp

exp =

{
0, if q < W
q, if W ≤ q < K
K − 1, otherwise

(2)

When the number of intermediate addresses between Ai and Ai−1, q, is
smaller than the number of cache ways W , they all would fit in a cache way,
so misses may only be produced due to random replacement, whose impact is
already captured with the default number of runs of MBPTA [3]. Hence, we
assume that Ai results in a hit, so the guilt of intermediate accesses is 0. Hence,
we ignore Ai and look for the next occurrence of A until q ≥ W or we reach
the end of the sequence. The rationale behind this is that hits do not change
cache state in TRc, thus they can be ignored. On the other hand, ignoring inter-
mediate accesses due to having extra hits in between Ai and Ai−1 would be
misleading. For instance, let us consider W = 2 and Q1 = {A1B1A2C1A3}. We
cannot assume that A3 will always hit in Q1 since sooner or later A will be
evicted. Thus, A2 is ignored and A3 considers the guilt of B1 and C1. It can also
be observed that we enforce exp to be smaller than K, the reason behind this is
explained next.

Guilt estimation. When for an access Ai P̃guilty �= 0, its value is ‘distributed’
among the intermediate accesses between Ai and Ai−1. Each access is assigned
a guilt value w.r.t. address A computed as shown in Eq. 3. For instance given
a cache with W = 2 ways, the sequence Q1 = (A1B1C1D1A2) and K = 3, we

Software Time Reliability in the Presence of Cache Memories 241

obtain that q = 3 and P̃guilty(A2) = 1− (1/2)2 = 0.75 according to Eq. 2. In this
scenario we assign a guilt of 0.375 to each of the q = 3 intermediate accesses.
Note that the addition of guilt assigned to intermediate accesses is bigger than
P̃guilty. The idea is that for K = 3, TAC constructs 3-address combinations that
in this case can be any of ABC, ABD, ACD, BCD. In all those containing A,
we want to assign one half of the guilt to each of the two intermediate accesses.
That is, for ABC one half of the guilt is assigned to B and another half to C. At
any moment only K − 1 accesses will be simultaneously considered by TAC, so
the guilt of a given access is not decreased because of having other intermediate
accesses (more than K). As the value of K increases – as part of TAC iterative
process – those other intermediate accesses will be considered simultaneously.

guilt =

{
P̃guilty

exp , if exp > 0
0, otherwise

(3)

Based on the concept of guilt, which applies at access level, we build the
address guilt matrix (adgm). The adgm comprises as many rows and columns
as different (cache line) addresses are accessed in the program. Cell adgm[A][B]
captures the guilt of B on A, that is, a measure of to what extent misses of every
access Ai are caused by any access to Bj . The adgm is built for every value of
K. From the adgm we infer information about the impact that each address
has on the evictions of each other address. To that end we use the technique in
Sect. 3.2, which covers Step 1 and Step 2. Steps 3 to 5 are applied as presented
before.

The metric, obtained from the guilt, does not have a semantic meaning in
the real world, yet it provides a way to rank address combinations so that if aCi
is ranked higher than aCj, the actual impact in miss count (and execution time)
of aCi is higher than that of aCj. This allows performing cache simulations for
those highly ranked address combinations to measure their actual impact.

3.2 Smart Search of Address Combinations

Exhaustive Search. As reference we use an algorithm that exhaustively
searches the adgm and later provide refinements to limit computational costs.
For every value of K we build all potential combinations of K addresses out
of U , so performing an Exhaustive Search. For each combination we query the
adgm to obtain the expected impact if those addresses were mapped to the same
set. The impact is obtained as follows: (1) for each address i in the combination
aCi we compute a value Mi obtained as the highest minimum impact that W
other addresses in the combination may have on it. Hence, we take the minimum
Mi out of the highest W values in the adgm (adgm[i][x] where x is any other
address in the combination). Note that we care only about those W addresses
that can create highest impact on the address of that row in the adgm, since
W + 1 addresses suffice to exceed the cache set space. Then, we select the mini-
mum value out of those to reflect that, if an address produces few evictions, the
others will not produce more evictions than that one because other accesses will

242 S. Milutinovic et al.

become hits. (2) Finally, we obtain the impact as the harmonic mean of all Mi

values to, again, reflect that the number of evictions is limited by the address
producing the lowest number of evictions. We exclude pairs for the same address
(e.g., adgm[A][A]) since an address cannot create evictions on itself. If one or
some of the addresses have little impact on the other addresses, then its Mi value
is much lower and so the final impact, thus allowing to discard this combination.
For instance, in the combination aCi = {A,B,C,D,E, F}, if F has almost zero
impact on the other addresses, this combination will be discarded for K = 6. If
the other 5 addresses have high impact among them, they will be conveniently
considered for K = 5. Whenever all combinations are considered in the adgm
(without performing any cache simulation), we create a list of top ranked com-
binations (Step 1) for which cache simulations are performed to measure miss
counts (Step 2).

Smart Search. Since the computational cost of considering this Exhaustive
Search in the adgm is prohibitive, we propose a smart search algorithm that
comprises the following steps.

First, we discard the rows in the adgm whose P̃guilty is below 1% of the high-
est P̃guilty in the table since their combinations with relevant addresses (P̃guilty

above the 1% threshold) will already be accounted by those other addresses, and
their impact on irrelevant addresses is deemed irrelevant as well. Then, we create
address buckets in each row of the adgm with all the addresses with the same
guilt value w.r.t. the address of that row. Empirically, we observed that EEMBC
and the railway case study produce a low number of buckets. Otherwise, some
difference is tolerated among addresses in the same bucket to reduce their count.

Second, the relevant buckets for a certain address are only those whose rela-
tive impact w.r.t. the total guilt in the row is significant for the address of that
row. Such significance threshold Sth (1% in our case) is used to explore combi-
nations with meaningful impact. The remaining addresses (their guilt is below
Sth) are simply regarded as irrelevant.

Third, we generate the combinations of K elements for each row by making
all possible combinations with the address corresponding to that row and K − 1
elements from different buckets. For instance, assuming K = 4 and 2 buckets
(b1 and b2), we make all combinations of 4 addresses using the one of the row
and three addresses from the buckets: 3 from b1, 2 from b1 and 1 from b2, 1
from b1 and 2 from b2, and 3 from b2. We always choose those addresses with
the highest P̃guilty in each bucket. We take into account the size of the bucket
by computing how many combinations are expected to have the same impact
to the representative ones. For instance, if b1 and b2 contain 4 and 5 addresses
respectively, when picking 2 addresses from b1 and 1 from b2, we determine that
there are 30 different combinations meeting those constraints. This is used to set
the probability of the pair <probability, misscount> if these combinations have
a sufficiently high impact to be simulated.

Software Time Reliability in the Presence of Cache Memories 243

Fourth, when all addresses have been analyzed and the list with T = 20
combinations3 for a particular value of K is obtained (Step 1), we perform cache
simulations to determine their miss counts (Step 2). In the case of addresses in
a bucket, we simulate only those with the highest P̃guilty and assume the same
impact for other combinations that could be generated with other addresses in
the bucket. While this may lead to a little pessimism in terms of the impact
of those addresses, such pessimism is very limited given that addresses belong
to the same bucket. This may result in pairs <probability, misscount> further
challenging the reliability of the pWCMC curve, thus potentially rejecting some
very tight (yet reliable) pWCMC estimates.

4 Evaluation

We model a pipelined in-order processor with 4KB 2-way-associative 32B-line
separated first level instruction (IL1) and data (DL1) caches. Both caches deploy
random placement and replacement policies [11], with DL1 implementing write-
back (IL1 is read-only). DL1/IL1 access latency is 1 cycle for hits with 3 extra
cycles for misses. The latter is added to the main memory latency (16 cycles).

We evaluate TAC on the EEMBC automotive benchmarks, widely used in
the community to capture real-time automotive application features [19]. On
average this suite has 6,500 Lines of Code, 2,500 Unique Instruction Addresses
and 5,600 Unique Data Addresses per benchmark. In particular we use these
benchmarks: a2time (a2), aifftr (at), aifirf (ar), aiifft (ai), basefp (ba),
bitmnp (bi), cacheb (ca), idctrn (id) and iirflt (ii). We consider all addresses
accessed by each benchmark. Additionally, we analyzed the same benchmarks in
a controlled scenario in which we focus on a subset of the most accessed (cache
line) addresses to allow for a comparison against ReVS, which hardly scales
for higher values of U. While in this scenario we cover on average 58% of the
accesses across all benchmarks – thus leaving some degree of uncertainty due to
the remaining 42% accesses that are neglected in [18] – it allows comparing TAC
against ReVS, with the latter guaranteeing exact results.

TAC vs ReVS. For this comparison we focus only on the U = 15 most accessed
addresses for which ReVS is capable of exploring all address combinations.

Table 2 shows the number of runs that each of the methods regards as the
minimum to use for a reliable MBPTA application. We show results for both
IL1 and DL1. As shown, both approaches provide exactly the same number of
runs (R′) for these limited address traces. In particular, TAC identifies the same
address combinations most of the times or, alternatively, address combinations
with roughly the same impact as those regarded by ReVS as the most conflictive
ones for each value of K. The exception to this comes from the case in which
ReVS identifies for high values of K combinations which, in fact, are the addition

3 One combination may be the representative of many others if addresses belong to
buckets. Hence, simulating 20 combinations provides information of, at least, 20
actual address combinations, but generally many more than 20.

244 S. Milutinovic et al.

Table 2. Runs for TAC and ReVS for
Prel = 10−9 and U = 15.

R′
IL1 R′

DL1 R′

ReVS TAC ReVS TAC ReVS TAC

a2 58, 360 58, 360 540 540 58, 360 58, 360

at 6, 840 6, 840 5, 500 5, 500 6, 840 6, 840

ar 21, 390 21, 390 11, 530 11, 530 21, 390 21, 390

ai 8, 920 8, 920 8, 770 8, 770 8, 920 8, 920

ba 82, 080 82, 080 20, 010 20, 010 82, 080 82, 080

bi 4, 640 4, 640 3, 510 3, 510 4, 640 4, 640

ca 18, 610 18, 610 7, 950 7, 950 18, 610 18, 610

id 65, 770 65, 770 47, 700 47, 700 65, 770 65, 770

ii 18, 310 18, 310 49, 760 49, 760 49, 760 49, 760

Table 3. Results for complete
EEMBC benchmarks.

TAC MBPTA

R′
IL1 R′

DL1 R′ lik.(R′) R lik.(R)

67, 150 300 67, 150 10−9 300 0.911

300 4, 760 4, 760 10−9 300 0.271

20, 080 8, 090 20, 080 10−9 14, 260 10−7

300 10, 630 10, 630 10−9 300 0.557

78, 220 300 78, 220 10−9 1, 250 0.718

330 1, 800 1, 800 10−9 300 0.032

19, 840 1, 500 19, 840 10−9 9, 360 10−5

67, 460 43, 040 67, 460 10−9 300 0.912

29, 920 2, 430 29, 920 10−9 300 0.812

of two or more independent combinations. For instance, ReVS identifies com-
binations for K = 6 that, in reality correspond to two combinations of K = 3
occurring at the same time. As explained before, EVT needs to observe high-
impact events, but not their combination. Thus, this difference has no influence
on R′.

Execution time cost. For U = 15 ReVS requires on average 27 h per benchmark
with 1,000 cache simulations per address combination on a cluster running 100
jobs in parallel. TAC is 148 times faster requiring 2 s on average per program on
a laptop computer to derive the address combinations and their cost, and around
11 min per benchmark to run cache simulations for the limited address combi-
nations considered on the same cluster. For full benchmarks, i.e. unrestricted U ,
ReVS could not be applied while TAC required 1 min per program to generate
the pairs <probability, misscount> and around 38 min per program to perform
cache simulations in our cluster.

TAC evaluation on full benchmarks. In Table 3 we report the number of
runs required by TAC to guarantee that relevant events can only be missed with
a probability below a parametrizable residual threshold, e.g. 10−9. We also show
the runs requested by MBPTA together with the probability of missing those
events with the default number of runs required. MBPTA takes as input the
number of execution times belonging to the tail of the distribution that need to
be observed in measurements, in our case 50 values [2]. Then, starting from 300
runs, MBPTA inspects whether enough tail values are observed. If this is not the
case, it asks for more runs until this condition is satisfied and EVT converges.

As shown, R′ ≥ R: in many cases we observe that the likelihood of missing
critical address combinations in the default runs (R) determined by MBPTA
only is high. This does not mean that pWCET estimates are necessarily wrong,
but indicates that there is non-negligible risk of not observing some high-impact
timing events in the analysis runs if TAC is not used.

When comparing the number of runs of TAC with full address traces w.r.t.
only 15 addresses, we observe in most of the cases a limited variation in R′.

Software Time Reliability in the Presence of Cache Memories 245

However, in some cases R′ decreases noticeably (e.g. R′
IL1 for aifftr (at))

because there are many combinations with similar impact that cannot be
observed with only 15 addresses. This makes that the probability of observ-
ing one of those combinations is much higher and thus, fewer runs are needed
to observe one of them. In any case, differently to ReVS, which is limited to
15 addresses, TAC can deal with arbitrary access patterns without any explicit
limit. Thus, TAC removes the uncertainty brought by ReVS due to non-analyzed
addresses.

5 Railway Case Study

We use as railway case study a safety function part of the European Vital Com-
puter (EVC): the central safety processing unit of the European Train Control
System (ETCS) reference architecture. The EVC is responsible of executing all
safety functions associated to the travelling speed and distance supervision. As
a fail-safe system, whenever an over-speed of the train is detected, the ETCS
must switch to a safe-state where the emergency break is active. This safety
function shall be provided with the highest integrity level defined in the railway
safety standards, SIL-4, and has strict real-time requirements. Accordingly, we
apply MBPTA to estimate the WCET for the safety function from the moment
of reading the input sensors until the activation of the safe-state. The end user
(IK4-IKERLAN) controls input vectors’ impact on execution path coverage and
in their current timing analysis practice they focus on observed paths. We stick
to those paths and apply TAC to all of them. We plan to cover scenarios where
the user lacks this control as part of our future work.

Address traces were collected from a LEON3-based FPGA board using exist-
ing tracing capabilities of the platform. We have applied TAC to the case study
for 10 different input sets (TEST0 to TEST9). The case study comprises around
8,500 Lines of Code, 2,994 Unique Instruction Addresses and 597 Unique Data
Addresses for the largest input set.

Table 4 reports the results we obtained, in terms of the number of runs that
MBPTA and TAC require in the miss domain. For each test we show whether (Y)
or not (N) MBPTA’s default number of runs (R) and that reported by TAC (R′)
suffice to upper-bound the pairs <probability, misscount>. As it can be seen, the
default application of MBPTA failed to upper-bound some address combinations
for data and instructions for many input sets. Furthermore, in those cases where
R < R′, confidence on having enough runs for a reliable application of MBPTA
cannot be had.

This is illustrated in Fig. 3 for TEST7 and the DL1 where TAC <probability,
misscount> pairs (points in the plot) are not upper-bounded by the pWCMC
curve (lower straight line in the plot) when using R = 300, the number or runs
required by MBPTA. Instead, if we use R′ = 4, 400, as determined by TAC, the
pWCMC curve properly upper-bounds those pairs.

For this industrial application, TAC required, on average, 1, 828 runs per
input set, which is affordable in a usual test campaign. TAC took 1.3 min to
derive the conflictive combinations and 0.35 min per test for cache simulations.

246 S. Milutinovic et al.

Table 4. Runs needed by TAC and MBPTA to achieve a confidence of 10−9.

IL1 DL1

R R′ R R′

TEST0 300(Y) 300(Y) 370(N) 1,300(Y)

TEST1 300(N) 600(Y) 3,800(Y) 3,800(Y)

TEST2 300(N) 600(Y) 300(N) 1,000(Y)

TEST3 300(N) 1,600(Y) 300(N) 850(Y)

TEST4 300(N) 1,200(Y) 750(N) 1,100(Y)

TEST5 300(N) 2,100(Y) 480(N) 900(Y)

TEST6 300(N) 500(Y) 890(Y) 890(Y)

TEST7 300(N) 500(Y) 300 (N) 4,400(Y)

TEST8 300(N) 700(Y) 300 (N) 2,300(Y)

TEST9 300(N) 4,800(Y) 1,740(Y) 1,740(Y)

Fig. 3. pWCMC for TEST7 (DL1) by applying MBPTA (R) and TAC+MBPTA (R’).

6 Related Work

A recent work comparing static (deterministic) timing analysis techniques
(SDTA) and MBPTA [1] shows that there is not a dominant technique but
the relation between the application working set and the cache size is the factor
affecting the most which technique performs better.

MBPTA-compliant hardware. The concept of MBPTA-compliant hardware
has been defined in [13]. Hardware techniques provide MBPTA compliance for
some specific resources like caches [11] or buses [10]. Software randomization
techniques have been shown to enable the analysis of deterministic caches with
MBPTA [12]. Time-randomized caches were originally proposed in [11]. Recently
some variants have been proposed combining benefits of modulo placement while

Software Time Reliability in the Presence of Cache Memories 247

keeping the randomization required by MBPTA [9]. Some of these random place-
ment designs have been shown to be implementable in FPGA prototypes [9].

Probabilistic Analysis. Some works study random caches in terms of the coverage
of conflictive cache placements and complex timing effects, as noted in [3,17,
20]. Other studies cover aspects related to control-flow dependences and data-
dependences in the context of MBPTA. We refer the reader to [13,23] for details
on how to handle control and data dependences.

Applying EVT on software programs brings the dependence of execution
times on input-data [15,23] into the equation. Static and measurement based
approaches tackle input-data dependence by requiring program features like loop
bounds or recursion level to be bounded to derive WCET estimates. Hence, input
vectors mainly affect the paths traversed. Current practice in MBPTA, and our
assumption here, is to operate on a set of representative input vectors provided
by the user. This is also the practice followed by IK4-IKERLAN for the rail case
study. In the context of MBPTA, this assumption can be lifted by synthetically
extending the input set, with the same effect of full path coverage [23].

EVT has also been used to estimate WCET on top of non-MBPTA-compliant
(deterministic) architectures [5,7,8]. The main challenge of those architectures is
providing evidence of the representativeness of the execution time observations
passed to EVT. To the best of our knowledge, the representativeness challenge
has not been studied on non-MBPTA platforms [13].

7 Conclusions

MBTA cannot quantify the degree of coverage attained for the jitter caused by
platform events. For caches, while the end user can perform many tests, it is hard
to argue about whether conflictive cache mappings leading to high execution
times have been covered in the tests. In the context of MBPTA and building on
the properties of TRc, on every new run a random cache mapping is explored.
This enables building a coverage argument. Yet, it is necessary to determine the
number of runs to perform to capture conflictive cache mappings. We propose
TAC, a low-overhead mechanism that determines whether the number of runs is
enough to cover the cache mappings of interest to a given quantifiable threshold.
If this is not the case, TAC requests an increased number of runs to the user until
the threshold is reached. Results with EEMBC Automotive and a real railway
case study show that TAC successfully identifies conflictive address combinations
and increases the number of runs accordingly so that reliable WCET estimates
can be obtained for programs with arbitrary access patterns.

Acknowledgments. The research leading to these results has received funding from
the European Community’s FP7 [FP7/2007-2013] under the PROXIMA Project (www.
proxima-project.eu), grant agreement no 611085. This work has also been partially
supported by the Spanish Ministry of Science and Innovation under grant TIN2015-
65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially
supported by the Ministry of Economy and Competitiveness under Ramon y Cajal
postdoctoral fellowship number RYC-2013-14717.

www.proxima-project.eu
www.proxima-project.eu

248 S. Milutinovic et al.

References

1. Abella, J., Hardy, D., Puaut, I., Quiones, E., Cazorla, F.J.: On the comparison
of deterministic and probabilistic WCET estimation techniques. In: 2014 26th
Euromicro Conference on Real-Time Systems, pp. 266–275, July 2014

2. Abella, J., Padilla, M., del Castillo, J., Cazorla, F.: Measurement-based worst-
case execution time estimation using the coefficient of variation. ACM Trans. Des.
Autom. Electron. Syst. (to appear)

3. Abella, J., Quiones, E., Wartel, F., Vardanega, T., Cazorla, F.J.: Heart of gold:
Making the improbable happen to increase confidence in MBPTA. In: 2014 26th
Euromicro Conference on Real-Time Systems, pp. 255–265, July 2014

4. Altmeyer, S., Davis, R.I.: On the correctness, optimality and precision of static
probabilistic timing analysis. In: 2014 Design, Automation Test in Europe Confer-
ence Exhibition (DATE), pp. 1–6, March 2014

5. Bernat, G., Burns, A., Newby, M.: Probabilistic timing analysis: an approach using
copulas. J. Embed. Comput. 1(2), 179–194 (2005). http://content.iospress.com/
articles/journal-of-embedded-computing/jec00014

6. Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T., Kosmidis, L.,
Abella, J., Mezzetti, E., Quiones, E., Cazorla, F.J.: Measurement-based probabilis-
tic timing analysis for multi-path programs. In: 2012 24th Euromicro Conference
on Real-Time Systems, pp. 91–101, July 2012

7. Edgar, S., Burns, A.: Statistical analysis of WCET for scheduling. In: Proceedings
22nd IEEE Real-Time Systems Symposium (RTSS 2001) (Cat. No.01PR1420), pp.
215–224, December 2001

8. Hansen, J.P., Hissam, S.A., Moreno, G.A.: Statistical-based WCET estimation and
validation. In: Holsti, N. (ed.) 9th International Workshop on Worst-Case Execu-
tion Time Analysis, WCET 2009, OASICS, Dublin, Ireland, 1–3 July 2009, vol.
10. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2009). http://
drops.dagstuhl.de/opus/volltexte/2009/2291

9. Hernandez, C., Abella, J., Gianarro, A., Andersson, J., Cazorla, F.J.: Random
modulo: a new processor cache design for real-time critical systems. In: 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2016

10. Jalle, J., Kosmidis, L., Abella, J., Quiones, E., Cazorla, F.J.: Bus designs for time-
probabilistic multicore processors. In: 2014 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1–6, March 2014

11. Kosmidis, L., Abella, J., Quiones, E., Cazorla, F.J.: A cache design for probabilis-
tically analysable real-time systems. In: 2013 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 513–518, March 2013

12. Kosmidis, L., Curtsinger, C., Quiones, E., Abella, J., Berger, E., Cazorla, F.J.:
Probabilistic timing analysis on conventional cache designs. In: 2013 Design,
Automation Test in Europe Conference Exhibition (DATE), pp. 603–606, March
2013

13. Kosmidis, L., Quiones, E., Abella, J., Vardanega, T., Broster, I., Cazorla, F.J.:
Measurement-based probabilistic timing analysis and its impact on processor archi-
tecture. In: 2014 17th Euromicro Conference on Digital System Design, pp. 401–
410, August 2014

14. Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications.
EBL-Schweitzer, Imperial College Press (2000). https://books.google.es/books?
id=tKlgDQAAQBAJ

http://content.iospress.com/articles/journal-of-embedded-computing/jec00014
http://content.iospress.com/articles/journal-of-embedded-computing/jec00014
http://drops.dagstuhl.de/opus/volltexte/2009/2291
http://drops.dagstuhl.de/opus/volltexte/2009/2291
https://books.google.es/books?id=tKlgDQAAQBAJ
https://books.google.es/books?id=tKlgDQAAQBAJ

Software Time Reliability in the Presence of Cache Memories 249

15. Lima, G., Dias, D., Barros, E.: Extreme value theory for estimating task execution
time bounds: a careful look. In: 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS), pp. 200–211, July 2016

16. Mezzetti, E., Vardanega, T.: A rapid cache-aware procedure positioning optimiza-
tion to favor incremental development. In: 2013 IEEE 19th Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), pp. 107–116, April 2013

17. Mezzetti, E., Ziccardi, M., Vardanega, T., Abella, J., Quiones, E., Cazorla, F.:
Randomized caches can be pretty useful to hard real-time systems. Leibniz
Trans. Embed. Syst. 2(1), 01:1–01:10 (2015). http://ojs.dagstuhl.de/index.php/
lites/article/view/LITES-v002-i001-a001

18. Milutinovic, S., Abella, J., Cazorla, F.J.: Modelling probabilistic cache representa-
tiveness in the presence of arbitrary access patterns. In: 2016 IEEE 19th Interna-
tional Symposium on Real-Time Distributed Computing (ISORC), pp. 142–149,
May 2016

19. Poovey, J.A., Conte, T.M., Levy, M., Gal-On, S.: A benchmark characterization of
the eembc benchmark suite. IEEE Micro 29(5), 18–29. http://dx.doi.org/10.1109/
MM.2009.74

20. Reineke, J.: Randomized caches considered harmful in hard real-time systems.
Leibniz Trans. Embed. Syst. 1(1), 03:1–03:13 (2014). http://ojs.dagstuhl.de/index.
php/lites/article/view/LITES-v001-i001-a003

21. Wartel, F., Kosmidis, L., Gogonel, A., Baldovino, A., Stephenson, Z., Triquet,
B., Quiones, E., Lo, C., Mezzetta, E., Broster, I., Abella, J., Cucu-Grosjean, L.,
Vardanega, T., Cazorla, F.J.: Timing analysis of an avionics case study on com-
plex hardware/software platforms. In: 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 397–402, March 2015

22. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem—overview of methods and survey of tools. ACM Trans. Embed. Com-
put. Syst. 7(3), 36:1–36:53. http://doi.acm.org/10.1145/1347375.1347389

23. Ziccardi, M., Mezzetti, E., Vardanega, T., Abella, J., Cazorla, F.J.: Epc: extended
path coverage for measurement-based probabilistic timing analysis. In: 2015 IEEE
Real-Time Systems Symposium, pp. 338–349, December 2015

http://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v002-i001-a001
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v002-i001-a001
http://dx.doi.org/10.1109/MM.2009.74
http://dx.doi.org/10.1109/MM.2009.74
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v001-i001-a003
http://ojs.dagstuhl.de/index.php/lites/article/view/LITES-v001-i001-a003
http://doi.acm.org/10.1145/1347375.1347389

Author Index

Abdullah, Jakaria 137
Abella, Jaume 102, 233
Agirre, Irune 233
Alonso, Alejandro 3
Azkarate-Askasua, Mikel 233

Baruah, Sanjoy 203
Bernardi, Patrick 169
Borde, Etienne 217
Burgstaller, Bernd 121
Burns, Alan 73, 87, 203

Carletto, Paolo 18
Casimiro, António 53
Cazorla, Francisco J. 102, 233
Chapman, Roderick 37

Dai, Xiaotian 87
de la Puente, Juan A. 3
Díaz, Enrique 102

Fernández, Mikel 102

Garrido, Jorge 3, 73
Gingold, Tristan 169
Gouveia, Inês 53

Hernandez, Carles 102

Jeong, Seongho 121

Kosmidis, Leonidas 102

Martorell, Xavier 184
Medina, Roberto 217
Mezzetti, Enrico 102, 233
Milutinovic, Suzana 233
Mohaqeqi, Morteza 137
Mosteo, Alejandro R. 153

Pautet, Laurent 217
Pinho, Luis Miguel 184

Quiñones, Eduardo 184

Rogers, Patrick 169
Royuela, Sara 184
Rufino, José 53
Ruiz, Jose 169

Vardanega, Tullio 18, 233

Wellings, Andy 73

Yang, Shinhyung 121
Yi, Wang 137

Zamorano, Juan 3
Zhao, Shuai 73

	Preface
	Organization
	Contents
	Runtimes
	Evaluating MSRP and MrsP with the Multiprocessor Ravenscar Profile
	1 Introduction
	2 Summary of MSRP and MrsP
	3 Response Time Analysis for Heterogeneous Accesses to Shared Resources
	4 Case Study
	5 Evaluation
	6 Conclusions
	References

	Ravenscar-EDF: Comparative Benchmarking of an EDF Variant of a Ravenscar Runtime
	1 Introduction
	2 The RM-to-EDF Transformation Process
	2.1 The Ada Ravenscar Profile
	2.2 Turning Priorities into Deadlines
	2.3 Implementation Challenges

	3 Evaluation Benchmark
	4 Evaluation Results
	5 Conclusions
	References

	Safety and Security
	Sanitizing Sensitive Data: How to Get It Right (or at Least Less Wrong…)
	Abstract
	1 The Problem
	1.1 Why Is Sanitizing Data Hard?
	1.2 Standards, Guidance and Problems
	1.3 Technical Issues
	1.4 An Example – How It Can Go Wrong in Ada

	2 Sanitization – Constraints and Goals
	3 Sanitization Mechanisms in Ada
	3.1 Volatile
	3.2 Controlled Types
	3.3 Limited Types
	3.4 By-Reference Types
	3.5 Pragma Inspection_Point
	3.6 No_Inline and Sanitizing Operations

	4 Verification and SPARK
	4.1 Information Flow Analysis
	4.2 Proof

	5 A Policy for Sanitization
	5.1 Identification and Naming of Sensitive Variables
	5.2 Types and Patterns for Sensitive Data
	5.3 Compiler Switches and Analysis

	6 Related and Further Work
	7 Conclusions
	Acknowledgements
	References

	Enforcing Timeliness and Safety in Mission-Critical Systems
	1 Introduction and Motivation
	2 Hybrid Architectures
	3 Safety Kernel Design
	4 Securing Design Assumptions Through Non-intrusive Runtime Verification
	4.1 Observer Entity
	4.2 Safety Kernel Design Assumptions and Timeliness Analysis
	4.3 Runtime Monitoring of Safety Kernel Operation

	5 Safety Kernel Implementation and Evaluation
	5.1 Hardware Platforms and Software Implementation
	5.2 Performance Evaluation
	5.3 Effectiveness and Feasibility Analysis

	6 Related Work
	7 Conclusion
	References

	Timing Verification
	Supporting Nested Resources in MrsP
	1 Introduction
	2 Related Work
	3 System and Task Model
	4 Nested Resources
	4.1 Desired Nested Resource Behaviour
	4.2 Updated Analysis and Properties
	4.3 Improved Nested Helping Analysis

	5 Definitions
	6 Conclusions
	References

	Predicting Worst-Case Execution Time Trends in Long-Lived Real-Time Systems
	1 Introduction
	2 Potential Approaches
	3 Problem Formulation: Predicting WCET Trend
	3.1 The Dataset
	3.2 Compared Methods

	4 Evaluation
	4.1 Symbols and Notations
	4.2 Experiment Setup
	4.3 Results

	5 Conclusions
	References

	MC2: Multicore and Cache Analysis via Deterministic and Probabilistic Jitter Bounding
	1 Introduction
	2 Background
	3 Reference Platform
	4 Handling Multicore Contention and Cache Jitter
	5 fTC Contention Model
	6 pTC Model
	7 Experimental Results
	7.1 Synthetic Application
	7.2 EEMBC

	8 Related Work
	9 Conclusions
	References

	Programming Models
	Lock Elision for Protected Objects Using Intel Transactional Synchronization Extensions
	1 Introduction
	2 Lock Elision with GNARL
	2.1 Lock Elision for Protected Functions and Procedures
	2.2 Lock Elision for Protected Entries

	3 Experimental Results
	4 Related Work
	5 Conclusions
	References

	An Executable Semantics for Synchronous Task Graphs: From SDRT to Ada
	1 Introduction
	2 Related Work
	3 Real-Time Task Graphs with Synchronization
	3.1 Notations
	3.2 Syntax
	3.3 Operational Semantics

	4 Code Generation for Branching Structures
	4.1 Assumptions
	4.2 Realizing Basic Blocks
	4.3 Implementation Algorithm for Branching Structures

	5 Implementation of a Task Graph
	6 Extensions
	6.1 Broadcasting
	6.2 End-to-End Inter-Release Times

	7 Conclusion and Future Work
	References

	RxAda: An Ada implementation of the ReactiveX API
	1 Introduction
	2 Reactive Extensions Overview
	3 RxAda Design
	3.1 Typed Operators
	3.2 Type Transformations
	3.3 Type-Preserving Operators
	3.4 Observers of Several Types and Mutual Exclusion Enforcing
	3.5 Executing the Subscription
	3.6 Dependencies and User Instantiations

	4 Library Organization
	4.1 User-Facing Packages
	4.2 General Implementation Packages
	4.3 Operator Implementations
	4.4 Scheduling Packages

	5 Conclusions
	References

	Panel: The Future of Safety-Minded Languages
	A New Ravenscar-Based Profile
	Abstract
	1 Introduction
	2 Motivation
	3 Goal and Profile Requirements
	4 New Profile Content
	4.1 Number of Queued Callers
	4.2 Number of Entries per Protected Object
	4.3 Relaxed Entry Barriers
	4.4 Relative Delay Statements
	4.5 No_Implicit_Heap_Allocations
	4.6 Ada.Calendar

	5 Analysis
	5.1 Protected Entry Queueing and Multiple Entry Queues Per Protected Object
	5.2 Pure_Barriers
	5.3 Relative Delay Statements
	5.4 Non-tasking Restrictions
	5.5 Analysis Summary

	6 Conclusions
	References

	OpenMP Tasking Model for Ada: Safety and Correctness
	1 Introduction
	2 Motivation: Why OpenMP?
	3 Ada Language Extensions for Fine-Grain Parallelism
	3.1 Parallel Blocks
	3.2 Parallel Loop
	3.3 Parallel Reduction
	3.4 Safety

	4 OpenMP for Fine-Grained Parallelism in Ada
	4.1 OpenMP Execution Model
	4.2 Data Scoping
	4.3 Supporting OpenMP in Ada
	4.4 Parallel Blocks
	4.5 Parallel Loop
	4.6 Parallel Reduction
	4.7 Mutual Exclusion

	5 Safety in OpenMP
	5.1 Correctness: Data Races and Synchronization
	5.2 Deadlocks
	5.3 Error Handling

	6 Conclusions and Future Work
	References

	Mixed Criticality
	Migrating Mixed Criticality Tasks Within a Cyclic Executive Framework
	1 Introduction
	2 System Model
	3 Dual Criticality Jobs
	3.1 A Simple Scheme for Constructing CEs
	3.2 An Improvement

	4 Periodic Task Systems
	4.1 An Example

	5 Conclusions and Further Work
	References

	Directed Acyclic Graph Scheduling for Mixed-Criticality Systems
	1 Introduction
	2 Task Model
	2.1 Mixed-Criticality Tasks
	2.2 DAG Mixed-Criticality Model

	3 Problem Statement
	4 Multi-core Scheduling for MC-DAGs
	4.1 Scheduling Algorithms for DAGs on Multi-cores
	4.2 Scheduling Algorithms for MC-DAG on Multi-cores
	4.3 Safe Mode Transition: Necessary Condition
	4.4 Building the HI Mode Table
	4.5 Building the LO Mode Table

	5 Mixed-Criticality DAG Synthesis
	6 Evaluation of the Scheduling Algorithm
	6.1 DAG Generator Parameters
	6.2 Results
	6.3 Analysis of Results

	7 Related Works
	8 Conclusion
	References

	Software Time Reliability in the Presence of Cache Memories
	1 Introduction
	2 Background
	3 TAC Mechanism
	3.1 The Address Guilt Matrix
	3.2 Smart Search of Address Combinations

	4 Evaluation
	5 Railway Case Study
	6 Related Work
	7 Conclusions
	References

	Author Index

