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Abstract. This paper explores the interaction of humans and autonomous,
intelligent agents working together as teammates in cyberspace operations.
Though much research has investigated human-machine teams in domains such
as robotics, there is a dearth of research into human-agent dynamics in cyber-
space operations Some challenges are similar, such as trust between human and
agent. Other challenges, such as representation and interface, are unique to
cyberspace given that topological, logical, and temporal relationships are first
class constructs with different semantic interpretations from their counterpart
visual and spatial representations that are prevalent in physical domains. These
challenges arise as the software behaves less like a tool and increasingly
becomes more like a synthetic teammate.
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1 Introduction

There has been a plethora of human factors research on human-machines interactions
addressing issues such as trust, communication, and user interfaces. For human-machine
interaction, the research typically addresses machines that operate in the physical world,
such as robotics platforms or training systems, which emulate a physical world. On the
other hand, there is a dearth of research regarding how humans interact with a synthetic
teammate for cyberspace operations. In fact, there has been very little research in general
regarding teaming in cyberspace [1].

Cyberspace is a relatively new domain where concepts such as teaming are being
developed as many of the current capabilities used in the domain are built by and for
expert cybersecurity professionals for individual purposes rather than for collections of
individuals. For cyberspace operations, where military concepts such as fire and
maneuver apply, teaming is an inherent requirement.

Consideration must also be given to the velocity and volume of data that must
processed and comprehended in cyberspace operations to drive decision-making. Just
the shear amount of data one has to understand to make sense of underlying actions
demands more automation. Also at play is a well-documented shortfall of a workforce
that can scale to can make sense of this data. These shortcomings point towards more
autonomy, transferring some of the tactical decision-making to synthetic teammates
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that can augment humans by supporting them with data analysis, hypothesis genera-
tion, and confirming or denying key attributes or indicators of compromise.

When considering such a human-machine teaming construct, representational issues
arise as data in the domain describes topological and logical representations that do not
always correlate to visual-spatial representations that are first-class constructs in phys-
ical domains. A question also surfaces as to the degree to which such a teaming
arrangement requires the personification of the synthetic teammate. This is a funda-
mental question one must answer because it drives the need for whether natural inter-
action is required or not (e.g. Siri or some form of augmented reality). For cyberspace
operations where there are aspects that are similar in physical domains, such as com-
mand and control, maneuver, fires, etc., personification may be an important aspect to
the design as it helps support explain-ability and ultimately trustworthiness.

We begin by reviewing what is meant by cyberspace operations. We then apply
human-machine teaming concepts to cyberspace operations. Following this discussion,
we present some of the representational and interface considerations inherent to
building trust for human-machine teaming in cyberspace operations. We then conclude
with aspects of our future work.

2 Teaming in Cyberspace Operations

Cyberspace operations are actions conducted in cyberspace—the information envi-
ronment created when we connect computational nodes together through some physical
and logical transmission medium such as Ethernet, fiber, or RF [2]. It includes both
cyber-pure or cyber-physical systems, which are systems where these compute nodes
receive input from sensors in the physical world or compute solutions that cause an
effect on an electro-mechanical actuator in the physical world. Examples of
cyber-physical systems include automobiles, electrical power plants, robotics plat-
forms, and military weapon systems.

The cyberspace environment also includes a human element—the cognitive and
social factors that enable human interaction through this environment. Direct com-
munication is part of this interaction, but the environment supports a much broader
array of behaviors between humans. Examples include social meeting places where the
exchange of ideas occur, economic activity and transactions, monitoring and control-
ling of physical systems, and malicious activity such as stealing information or money,
or perhaps worse, physical damage to systems [3].

It follows that from a military perspective, cyberspace operations are pro-active
actions to defend these cyber-pure and cyber-physical systems from an active adversary
in order to retain freedom of maneuver (defensive) while projecting power to achieve
military objectives (offensive). The use of the traditional military functions of intelli-
gence, maneuver, fire support, protection, sustainment, and command and control are
important in achieving these objectives as well as the integration of cyberspace actions
into physical domains (i.e. land, sea, air, space). The integration of these functions and
domains demands teaming at tactical, operational, and strategic levels. This research
focuses on tactical-level teaming, specifically between agents and humans.



Interacting with Synthetic Teammates in Cyberspace 135

The types of teams in consideration are the Cyber Mission Forces (CMF), which
the U.S. Department of Defense established after the standup of U.S. Cyber Command
[4]. The CMF is composed of the teams that are the maneuver elements executing
cyberspace actions such as reconnaissance, defense, and attack to achieve both
defensive and offensive oriented goals.

Large companies increasingly are applying more military-style processes and
techniques to drive their cybersecurity operations, so these observations will apply
there also. Security operations centers (SOCs), share some similarities with certain
CMF teams, where individuals work collectively to maintain persistent observation of
the information flowing in and out of that organization while actively searching for
potential compromises. This effectively changes these cybsersecurity teams from a
reactive security posture to a proactive defensive posture.

An example of this proactive defense are the procedures, techniques, and tools that
these teams employ to support cyber threat hunting [5, 6]. The ability to hunt for
adversarial threats across networks of enterprise-scale is becoming an increasingly
important part of the CMF and a SOC'’s tactics, techniques, and procedures (TTPs).
The goal of hunting is to identify malicious behavior in an organization’s network
through indicators of compromise (IOC). IOCs include hash values of malicious
software; Internet or domain name addresses; host-based (e.g. logs) or network-based
evidence (e.g. netflow data); harvested malware binaries or source code (e.g. implants,
command and control malware); and, at a more abstract level, adversary TTPs. Iden-
tifying adversary tools and TTPs are the most valuable evidence as they are the costliest
for an adversary to change.

Threat hunting uses open-source or classified threat intelligence, that when com-
bined with the organization’s asset inventory and known vulnerabilities, facilitates
generation of hypotheses as to where potential adversaries may, or already have,
compromised systems. These hypotheses focus the team’s attention on specific aspects
of the data to determine if a compromise has occurred and how it might have happened.
This information is then feed into an overall representation of the situation generating
new hypotheses and repeating the cycle (Fig. 1a).

As this activity is very much conducive to task-decomposition and requires a
somewhat persistent presence, cyber-threat hunting is typically carried out by a small
team of individuals composed of different skill sets. Figure 1b lists example work roles
(operator, analyst, planner, leader) that might make up such a team. As current state of
the art for hunting is resource intensive, especially when considering a network on the
order of magnitude of 10-100K nodes, there is a need for automated, or autonomous,
tools that offload cognitive tasks performed by operators and analysts, enabling them to
hunt more efficiently so that measures such as the number of breaches, dwell time (i.e.
how long an adversary in the organization’s network), and response time can improve.
Some of the activity is conducive to automation such as some of the operators and
analysts’ functions and thus favorable for human-machine teaming.

The ultimate goal of our research is to reduce the workload requirements for
cyberspace operators, analysts, and planners so that they can spend more time com-
prehending and responding to the broader situation. We have demonstrated progress in
building autonomous cognitive agent models to support training [8]. These agents work
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independently of an overall team, avoiding issues such as trust, communication, and
human-machine interfaces, although we have incorporated some of the representations
described in Sect. 4.

e Operator — Collects and processes information
from systems to exploit, locate, and/or track targets
of interest. Navigates network and conducts im-
mediate forensics analysis.

e Analyst — Uses collected information (e.g. threat
intelligence, IDS alerts, firewall logs, network traf-
fic logs) to identify, analyze, and report threats that
are occurring or might occur. Works closely with
operators to help determine their next steps. Works
closely with planners to identify and validate re-

Threat INVESTIGATE

Hunting Via Tools &
Loop Techniques

INFORM & ENRICH
Analytics

UNCOVER

New Patterns
&TTPs

quirements for analysis.
Planner — Develops detailed plans to satisfy oper-
ational requirements. Collaborates with other plan-

ners and analysts to identify, validate, and levy re-
quirements for collection and analysis.

e Leader — Synchronizes activity across the team,
executing decision-making authority and establish-
ing vision and direction for an organization's oper-
ations. Keeps external organizations and leaders
informed of planned and ongoing activities.

(b) Work roles (adapted from [7])

(a) Cyber threat hunting loop ([6])

Fig. 1. Cyber threat hunting loop and workroles

3 Human-Machine Teaming for Cyberspace Operations

There are several aspects of human-machine teaming that have been well studied, many
revolving around the issue of trust [9]. The factors associated with trust are also
important for human-machine teaming in cyberspace/cybersecurity operations where
the state of the practice is transitioning from five-year-old soccer, where teammates
bunch around the moving ball, to fourteen-year-old soccer where the teammates play
their positions. As organizational structures and processes for cyberspace operations
mature, the ability to include autonomous agents as part of the teaming structure to
facilitate and reduce human workload becomes more feasible and practical.

For example, Abbass et al. [9] illustrate key components for human-machine
teaming for autonomous systems (Fig. 2), connecting desired supporting behaviors
with what others [10] argue are the baseline functions for teaming: information
exchange, communication, shared understanding, and communication of human intent
(depicted by the four boxes in the bottom left-hand corner of Fig. 2).

Sycara and Lewis [10] point out that the exchange of information, supported by
communication, requires bringing to bear all relevant sources of knowledge given the
current situational context (e.g. perceptions, past experiences, current internal state).
This communication requires internal semantic representations and interfaces that are
both general across many functions but also specific to the domain of interest while
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Fig. 2. Model for successful human-machine teaming [9]

ensuring that noisy data or visual clutter is filtered as much as possible. To support such
teaming, they argue architectures should support cognitive processes (e.g. decision-
making, planning, reasoning) along with behaviors to support multi-entity relationships
(situation assessment and monitoring).

For example, in the cyber threat hunting activity described in the previous section,
we have found that an understanding of network topology is important to human
operators and analysts [1]. However, the 10-100K nodes and corresponding topolog-
ical connections that are an organization’s network map are not all of equal importance
for any particular task. Rather it is typically a few (1-2) compute nodes that are of
interest (e.g. a compute node that has been identified with malware) along with a small
number of connecting nodes (e.g. 3—10 nodes that are local one-hop connections,
organization boundary nodes, and external nodes communicating with the node(s) of
interest). There are currently limited ways to communicate a select set of nodes to
another application, let alone, to an autonomous agent that may be assisting a hunt
activity. Furthermore, the way to internally represent a small subset of a network within
an agent’s limited capacity for representing knowledge is not well understood.

Also, important in human-machine teaming is the ability to communicate human
intent and tasking to an agent [10]. Shared understanding arises between human and
machine when the underlying knowledge representation supports a two-way dialogue,
to include an agent receiving and incorporating a human’s intent into its own internal
representation and presenting the results of its internal processing through a natural
interface and in a format that is comprehensible to humans.

An example of where approaches fall short in this regard, are deep learning agents. It
is difficult to convey a human’s intent to a deep learning architecture in order to direct the
system to perform a specific task outside of the task the learned model was trained to
recognize. The learned model is trained to classify a particular set of objects. Asking it to
classify additional sets of objects or other classes of objects requires retraining the model.
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The results of a deep learner’s computations and how it inferred its results are not
explainable to a human. This is of concern in situations where communication of
human intent is important or in adversarial settings where the results may be in question
[11]. So, although deep learning performs specific tasks very well (e.g. image recog-
nition), it points to the need for other representations and processes that can support the
incorporation of human intentions while explaining recommended actions.

Again, using our cyber threat hunting example, machine learning techniques are
now showing up in commercial products to support actions such as anti-malware
detection or intrusion detection with limited understanding as to how such systems earn
a human’s trust and ultimately team with them. There are cases where human analysts
have ignored the results of a security product due to a lack of trust in the system’s
recommendations. For example, during the 2013 exfiltration of credit card data from
Target [12], one of the cybersecurity systems warned of the breach but the humans
monitoring the system chose to ignore its alerts and turned off its ability to automat-
ically delete malware resulting in 40 million credit card number stolen and a loss of at
least 61 million dollars. This is an example where the system was trustworthy, but the
humans did not trust its warnings. To help serve as a basis for human-machine teaming
in the cyberspace domain, the next section begins to describe some potential avenues to
pursue in regards to representation and presentation challenges.

4 Representation and Interfaces for Cyberspace Operations

As stated above, human-machine teaming is centered around trust, with the agent’s
internal representations and external interface primary factors in supporting information
exchange, communication, shared understanding, and communication of human intent.
Currently, knowledge representations to support semantics for cyberspace operations is
not well understood. Equally important are interfaces that support natural, two-way
dialogue and presentation of relevant material, tailored to a human’s work role. Within
the context of cyber threat hunting, CMF operators and analysts typically prefer
command line interfaces with analysts also using web-based tools to support data
query, filtering, and prioritization. Visualization of network mapping technology is
improving but still rudimentary and displays for situational awareness lacking [1].
Planners and leaders are mostly relegated to presentations and documents to record and
convey information—formats that are not conducive to human-machine interaction in a
domain such as cyberspace where agility and speed are paramount.

4.1 Knowledge Representations

There has been a plethora of research on knowledge representation to support
decision-making, planning, reasoning, and communicating in physical domains. Many
symbolic, rule-based systems support knowledge-rich problem spaces where the
structure and processing is primarily hand-crafted knowledge based on elicitation from
subject matter experts. Such approaches are brittle and do not scale in complex envi-
ronments where reasoning over concrete representations, such as images or raw
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malware binaries are necessary. However, these symbolic approaches have been shown
to be more explainable and support incorporation of human intent and tasking.

More recently, non-symbolic, deep learning architectures have shown significant
progress where the system learns an internal knowledge representation scheme by
training it to match its input to a desired output (i.e. supervised learning) or to cluster
the input data into groups that are similar (i.e. unsupervised learning). The processing
in these systems applies mathematical manipulations by combining affine transfor-
mations with continuous functions that are converted to probabilities with a softmax
function to classify input. During training of the model, backward processing applies
gradient adjustments to weight parameters in order to minimize loss. Despite showing
great promise for classification tasks, deep neural networks have limited capacity to
reason about their actions and suffer from shortfalls discussed in previously.

Rather than settling on either representation, we have found that support for mixed
symbolic and non-symbolic approaches through fixed architectural mechanisms and
perceptual interfaces are generalizable across multiple domains [13]. For example, in
[14] we demonstrate mixed modality symbolic and non-symbolic representations for
visual-spatial domains such as simulations or robotics, where the non-symbolic rep-
resentations are manifested in the form or mental imagery processing (Table 1).

Amodal, symbolic representations are useful for general reasoning and explana-
tions. In physical domains, symbols may denote an object, and visual properties of the
object, and qualitative spatial relationships between objects. The first row in Table 1
represents two objects (tree, house) and some qualitative visual and spatial properties
(green, left-of).

The non-symbolic, spatial representation is also amodal, although perceptual-based
in that it is an interpretation of senses asserting the location, orientation, and rough
shape of objects in space. Spatial processing is accomplished with sentential, mathe-
matical equations. The second row in Table 1 represents the metric location, orienta-
tion, and rough shape of a tree and the house. Direction, distances between objects,
size, and rough topology can be inferred implicitly from this information.

In contrast to the symbolic and spatial representation, both of which are sentential
structures, space, including empty space, is inherent in the visual depictive represen-
tation that is based on the raw, perceived or stored data. Computationally, the depiction
is a bitmap where the processing uses either mathematical manipulations (e.g., filters or
affine transformations) or specialized processing that takes advantage of the topological
structure. Both the symbolic and non-symbolic representations have functional and
computational trade-offs that specific tasks often highlight. For example, given
appropriate inference rules and the symbolic representation in Table 1, one can infer
that the green object (tree) is to the left of the blue object (house). However, one cannot
infer the distance between the tree and the house or that the top of the house is shaped
like a triangle. One can infer these properties from a symbolic representation only when
the relevant property is encoded explicitly or when task knowledge supports the
inference. Thus symbolic, top-down processing, when augmented with bottom-up, data
driven non-symbolic processing provides wider coverage to multiple classes of
problems.
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Table 1. Symbolic and non-symbolic representations for visual-spatial processing

Representation Information Processing Example
Symbolic Object identities Symbolic object(tree)
e Qualitative spatial and manipulation/ | color (tree, green)
visual properties productions left-of(tree, house)
Spatial e Object labels Mathematical | tree:
(non-symbolic) Quantitative spatial and manipulation location: <-2,4,0>
visual properties orientation: 0
o Shape shape coordinates:
o Location, Direction, <1,3,1>;<2,8,1>;<1,3,0>...
Orientation house:
o Size location: <9,4,0>
o Topology orientation: 0
shape coordinates:
<8,3,1>;<2,3,1>;<4,3,0>....
Visual e Object labels Mathematical
(non-symbolic) | e Visual properties and depictive
o Shape manipulations
o Texture
o Empty space
e Spatial properties
o Location, Direction
o Size
o Topology

When applying this form of symbolic and non-symbolic representation to cyber-
space operations some of the semantic interpretation breaks apart. For example, literal
metric distance (spatial) between two compute nodes in cyberspace has little meaning,
but distance in terms of latency (temporal) or the number of hops between two nodes
(logical and topological) has relevant meaning both in a logical and in a geographic
sense (i.e. geographic location may be inferred based on latency and other sources of
information). In cyberspace operations topological, logical, and temporal relationships
are first class constructs. The semantics of the visual and non-visual properties of
compute nodes, their logical bindings (e.g. IP addresses), their software artifacts (e.g.
files, processes) and spatial relationships with other nodes must be explicitly repre-
sented in any knowledge representation scheme.

Our hypothesis then is that the symbolic and non-symbolic representations used in
physical domains apply in the cyberspace domain, but that the semantic interpretation
of these features and relationships differ. Table 2 summarizes some of these differ-
ences. For example, symbolic objects in the cyberspace domain might be a hardware
compute node, its operating system, applications running on that processing node (to
include potential malicious applications, and human users interacting with that node
such as normal users, system administrators, and remote adversaries. Topological
relationships might include connectivity between nodes or qualitative spatial rela-
tionships such as the fact that a certain file is stored on a specific node. Such objects
represent the physical, logical, and social-cognitive layers of cyberspace [2]. Note that
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these representations may not necessarily be stored within the agent’s memories but
rather may exist on an external system with which an agent interacts.

Quantitative spatial relationships may include distance, as previously discussed, or
other relationships such as direction, described by a network interface (logical) vice a
degrees or orientation (spatial). Location might imply a physical, medium access layer
numeric (i.e. a MAC address), a logical address (e.g. an IP address), a listening port
(e.g. a TCP port), a geographic location, or some combination. As discussed above,
such quantitative relationships combine symbolic labels with concrete numeric
(non-symbolic) information. Finally, visual representations in cyberspace operations

Table 2. Symbolic and non-symbolic representations for cyberspace processing

Represen- Information Processing Example
tation
Symbolic e Object identities Symbolic node(node-1)
o Qualitative spatial, visual, manipulation/ | binary(file-1); on (file-1,
and non-visual properties productions node-1)
connected (node-1, node-2)
Spatial e Object labels Mathematical | node-1:
(non- e Quantitative spatial, non- manipulation location (net): 192.168.1.1
symbolic) visual, and visual properties location (geo): <1,3,1>
o Shape —not defined direction: <eth0>
o Location (physical net- direction: <ethl>
work) node-2:
o Location (logical network) location (net): 192.168.1.2
o Location (organization) location (geo): <1,2,1>
o Location (geolocation) direction: <eth0>
o Orientation file-1:
o Size (e.g. file size, packet size: 215KB
size) connection:
o Topology <node-1, eth1>
o Direction (e.g. network in- <node-2, eth0>
terface) distance: Sms
Visual e Object labels Mathematical ascii — jpeg
(non- e Visual properties and depictive
symbolic) o Shape manipulations
o Texture
o Empty space .
e Spatial properties Proprigiary
o Location
o Size Executable
o Topology

o Direction
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that the agent might use to reason over for functional or efficiency gains or to present to
the human user for further analysis could include visualizations of binary data such as
executables, network packets, or file types within a directory structure [15].

As we have found in physical domains, our hypothesis is that the use of these
hybrid approaches can afford efficient processing and provide additional functionality
for a certain class of problems with cyberspace. For example, in cyber threat hunting
operations, an agent may need to measure distance between communicating nodes by
sending a ping request and measure latency. Non-symbolic, deep neural networks may
provide some of the sensing infrastructure with the symbolic classifications received as
perceptual input to the agent. The mix between symbolic and non-symbolic processing
then provides support for decision-making and learning over multiple time scales while
providing explanation-based representations in the form of symbolic knowledge. These
representations are important not only for an agent’s own internal processing but also
supports interfacing with human teammates.

4.2 Interfaces to Support Two-Way Dialogue

We have found that developing usable human-agent interfaces for teaming requires not
only an agent’s internal knowledge representation as described above, but also main-
tenance of a model of the user to help understand their current information needs. This
requires understanding users in context, making sense of the user’s input, translating
that input into a representation that the agent can process and store internally, and then
taking the results of the agent’s decision-making process across multiple time scales
and presenting it to the user in natural ways.

Our research has provided much insight into how this interaction occurs in a
human-machine teaming scenario involving unmanned systems [16]. However, we
have not applied these lessons for cyberspace agents. Our hypothesis is that many of
the techniques we have used for robot-human teaming will also apply here. For
example, the interactive devices we have prototyped and employed, enable supervisory
control providing the user with the ability to issue high-level commands to the robot
with the robot providing feedback to maintain the user’s situational awareness. These
interactions are through natural interfaces, such as speech, gesture, sketch. To support
such interaction, interface devices must have their own level of sophistication with
modules to support dialog management, human comprehension model, and planning
and execution.

In many cases the combination of multiple modes can help clarify the situation for
the agent and build the human’s trust that the agent understands the current task. For
example, using a prototype interface in Fig. 3, a human cyber hunt analyst may task an
agent by circling a node on a network graph and then stating “search for btw.z in the
registry keys and identify any anomalous external nodes that it is communicating
with”. The agent interprets the if as the node that was circled by the analyst and, after
conducting an DNS name lookup on the node may backbrief the analyst by stating,
“searching web-1.acme.com for btw.z and calls to suspicious external nodes.” As part
of the feedback, that agent may visually show a subset of the network graph and
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highlight the communication path between the compromised internal node and an
external command and control server.

We have also explored the use of augmented reality interfaces for human-machine
interaction for robotics and Army battle staffs, finding that these interfaces work best
when the overlay of control graphics or non-visible entities is important for the
operation. Others have investigated the impact on cognitive workload when using
augmented reality for SOCs [17]. Their research found that subjects wearing the
devices reported reduced cognitive workload, performing the primary cyber-related
tasks more efficiently, and responding to ancillary events more successfully. Such
approaches may be useful in continuous monitoring situations where hunt operators or
analysts need to move away periodically from the display to check on a physical
computer.

. Intemet

Attack Progress

Goals

@ Possess information using SQL Inje
@ Recon system withs can

[3] Run SQLMap against target IP 172

[4] Run Metasploit module usermap_sc

Fig. 3. Mockup use of sketch, visual, and speech to interface with cyberspace agent

5 Conclusion

This paper explores the interaction of humans with autonomous, intelligent agents
working together as teammates in cyberspace operations. The ultimate goal of our
research is to reduce workload requirements for cyberspace operators, analysts, and
planners so that they can spend more time comprehending and responding to the
broader threat.

To support communication, sharing of human intent, and explain ability, symbolic
and non-symbolic knowledge representations were explored. Representational chal-
lenges unique to cyberspace operations are unlike physical domains where spatial and
visual properties and relationships provide concrete interpretations of the world model.
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Topological, logical, and temporal relationships are first class constructs in cyberspace,
requiring a semantic interpretation of common properties and relationships such as
distance, direction, location, and connectedness.

Future work will continue to investigate and prototype these agents with the pro-
posed knowledge representation and natural interaction schemes for cyberspace
operations while exploring how malicious adversaries can potential violate these
mechanisms in support of their own goals.
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