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Preface

Belief change (belief revision) is a research area in formal philosophy that makes use
of logic to produce models of how human and artificial agents change their beliefs
in response to new information. The properties of these models are investigated in
order to improve our understanding of how beliefs can be changed, with a particular
emphasis on what it means to change one’s beliefs in a rational way. This area of
research arose in the 1970s and 1980s through a confluence of several approaches.
Its first great synthesis was an article in the Journal of Symbolic Logic in 1985 (the
so-called AGM paper). In the three decades that have followed since then, the area
has developed rapidly and in many directions. This book is an introduction to the
subject and at the same time an overview of some of its major ramifications. The
model proposed in the 1985 paper will be used as a starting point, but we will also
pay much attention to the criticism that has been raised against it and to several
alternative models that have been proposed to supplement or replace it. Theorems
and other formal results are presented without proofs; instead we give references to
the research papers where the proofs can be found.

Belief change has turned out to be an unusually rich research area that provides
us with new, dynamic ways to understand human rationality. We hope that the reader
will see how full this field of research is of exciting openings for new discoveries.

In preparing the contents of this book we benefited from the help of more than
fifty colleagues who answered our queries and provided us with information. In
addition to its academic excellence, the belief revision community is a remarkably
generous one. Special thanks go to Mauricio Reis, Rafael Testa, Hans van Ditmarsch
and Ramón Pino Pérez for their help with Chapters 9, 10, 12 and 13 respectively.

Funchal and Stockholm, Eduardo Fermé1

November 2017 Sven Ove Hansson

1 In his work with this book Eduardo Fermé was partially supported by FCT UID/CEC/04516/2013
(NOVA LINCS),FCT SFRH/BSAB/127790/2016, and FAPESP 2016/13354-3
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Chapter 1
Motivation

This is a brief introduction to the theory of belief change. It provides an example of
a belief change problem, and lists some of the major issues that are investigated in
this research area.

1.1 An Example of the Belief Change Problem

We consider the following set of sentences in natural language [94]: “Juan was born
in Puerto Carreño” (α), “José was born in Puerto Ayacucho” (β), and “Two people
are compatriots if they were born in the same country” (γ). We assume that this set
represents all the currently available information about Juan and José. Suppose that
we receive the following piece of new information: “Juan and José are compatriots”
(δ). If we add the new information to our corpus of beliefs, then we obtain a new
set of beliefs that contains the sentences α, β, γ and δ. We can define an operation
of addition as one that takes a sentence and a set of previous beliefs and returns
the minimal set that includes both the previous beliefs and the new sentence. This
operation exemplifies the simplest way of changing a set of sentences. There are
other types of change that are not that simple.

For example, suppose that upon consulting an atlas we discover to our surprise
that Puerto Carreño is in Colombia (ε) and Puerto Ayacucho is in Venezuela (φ). If
we add ε and φ to the set {α,β,γ,δ}, the result will be a set with contradictory in-
formation: Juan and José are compatriots but Puerto Carreño and Puerto Ayacucho
do not belong to the same country. The addition does not satisfactorily reflect the
notion of a consistent revision. If we wish to retain consistency, then some subset of
the original set must be discarded or perhaps a part of the new information has to
be rejected. In our example, there are several possible alternatives. The information
about Juan’s or José’s birthplace could be wrong, and so could the atlas. Finally the
claim that Juan and José are compatriots could be wrong. Any of these three options,
either individually or combined, will allow us to solve the problem of the incom-
patibility among the original and the new information or beliefs. Consequently, we

1
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2 1 Motivation

can specify an operation that takes a set and a sentence and returns a new consistent
set. The new set includes parts (or all) of the beliefs in the original set and it also
includes the new sentence (if we are willing to accept it). The outcome of a revision
can be expressed as a consistent subset of the outcome of the addition. This opera-
tion is based on two notions: consistency and a selection among the possible ways
to perform the change.

There are other ways to change a set of beliefs. Suppose that we discover that
γ is incorrect, and therefore wish to discard it from our set. The result should be a
new set where γ is absent. We may for instance want it to be undetermined whether
Juan and José are compatriots. Note that this is different from accepting as a fact
that Juan and José are not compatriots. We can ask if the process of discarding
information should behave as the inverse of the process of adding information: If
after discarding some information we proceed to add it again, will we obtain the
original set or not? Like revision, the operation of discarding requires the selection
of one out of several possible results.

1.2 Some Questions About the Belief Change Problem1

Any formalization of belief change requires the selection of a language in which
the beliefs are represented. In our previous example the information about Juan and
José is represented by a set of sentences in natural language. The use of a linguistic
representation of beliefs implies the acceptance of important idealizations. What-
ever language is chosen, the question emerges how to use the language to represent
the epistemic state: should it be represented by a single sentence or by a set (perhaps
an infinite set) of sentences? In the latter case, should the set be closed under some
notion of logical consequence or should it only be a simple enumeration of sen-
tences? The second option implies the need to obtain in some way the consequences
of these sentences and to differentiate between implicit and explicit information.

Can the belief state be changed spontaneously or does change require an exter-
nal stimulus? In other words, is the belief state internally stable? If the belief state
is changed only in response to external stimuli, should the belief state and the in-
formation that provokes the change be represented by the same or different types
of formal structures? Should both be sentences or both be sets of sentences? How
should the sentences be interpreted? If an epistemic interpretation of the sentences
is chosen, what are the possible statuses of the sentences? Acceptance, rejection,
indeterminateness, or perhaps degrees of acceptability? What types of information
can be represented in the belief state?

Generally speaking, it seems to be fundamental to define operations that answer
to the notion of minimal change, or maximal preservation of the belief state. That
is to say, it is required in some way to “calculate the value” of the information to

1 Borrowed from [11].



1.2 Some Questions About the Belief Change Problem 3

be discarded. Does a preference order exist that represents the credibility or infor-
mational value of expressions in the language? Is this order included in the belief
state or is it intrinsic to the change operation? Should minimal change be defined
quantitatively or qualitatively?

In what ways can a belief state be modified? Are they independent or interre-
lated? What is the relationship between the original and the updated belief state?
How should an operation to revise the original belief state be constructed? What
are the parameters of this operation? The original belief state and the new informa-
tion are obvious such parameters, but are there any other parameters? Should the
change operation take into account the history of the produced changes, or is each
new change performed independently of those performed earlier?

These kinds of questions have encouraged several authors to propose different
belief change models and to assume some of the above options and discard others.
By far the most influential of these models was proposed by Carlos Alchourrón
(1931–1996), Peter Gärdenfors, and David Makinson in their paper “On the Logic of
Theory Change: Partial Meet Contraction and Revision Functions”. Many research
papers have been called “seminal”, but few deserve that designation as much as this
article in the Journal of Symbolic Logic in 1985. It was the starting point of a large
and rapidly growing literature that employs formal models in the investigation of
changes in belief states and databases.

This book is an introduction on and an overview of the research that has been
inspired by the AGM article.



Chapter 2
History

This is a brief history of belief change theory, showing how it emerged in the 1980s
from work in philosophy and computer science and how it has impacted further
developments in these two disciplines.

2.1 The Beginnings

In a wide sense, belief change has been a subject of philosophical reflection since
antiquity. In the twentieth century, philosophers discussed the mechanisms by which
scientific theories develop, and they proposed criteria of rationality for revisions of
probability assignments. Beginning in the 1970s a more focused discussion of the
requirements of rational belief change has taken place in the philosophical commu-
nity.

Four authors had a big influence in the beginnings of the area: Georg Henrik
von Wright (1916–2003), Jaakko Hintikka (1929–2015), William Harper and Isaac
Levi. von Wright laid the foundations of the logic of beliefs, which was consid-
erably developed and extended by Hintikka [325, 199]. Harper [197] pointed out
that Carnap’s inductive logic does not allow us to revise previously accepted evi-
dence and created a model to accommodate rational conceptual change. Levi [220]
provided much of the basic formal framework of belief change. Carlos Alchourrón
(1931–1996) and David Makinson cooperated in studies of changes in legal codes,
analysing the logical structure of the derogation procedure in which a norm is re-
moved from a legal code. They tried to find the general principles that any dero-
gation should satisfy, and defined a family of all the possible derogations [5]. The
key idea was, given a code A, to create a partial order on the norms of A and in-
duce an order on the set of parts of A. The maximal sets of A that did not imply
the norm to be removed were called remainders. Later they extended the horizon
of the problem, arguing that the problem was not limited only to sets of norms. The
set A might be an arbitrary set of formulae, and the problem was how to eliminate
one of the formulae or one of the consequences of the set [6]. Two different ways

5
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6 2 History

to contract a theory by means of remainder sets were analyzed: maxichoice and full
meet.

Peter Gärdenfors’s early work was concerned with the connections between be-
lief change and conditional sentences (if-sentences). He was looking for a model
of explanations. Gärdenfors thought that explanations can be expressed as differ-
ent types of conditional sentences. He was influenced by Levi and Harper (see
above), and this led him to make a thorough study of epistemic conditionals [128].
Gärdenfors constructed a semantic account of epistemic conditionals that is based
on belief states and belief changes [129]. He defined a set of postulates that change
functions must satisfy [130].

Gärdenfors’s postulates were closely related with the ideas developed by Al-
chourrón and Makinson. With combined forces the three wrote a paper that pro-
vided a new, much more general and versatile formal framework for studies of belief
change, now known as the AGM model. The cooperation of the three philosophers
was explained by Gärdenfors in [137]:

“I became acquainted with the work of Alchourrón and Makinson on derogations of legal
systems first via their 1981 paper on “Hierarchies of regulations and their logic”. When
they in 1982 submitted an article to Theoria with the title “On the logic of theory change:
Contraction functions and their associated revision functions” I was then the managing
editor of the journal and I immediately saw the similarities between our programs. We soon
joined forces and via a series of letters, sent between Buenos Aires, Lund and Beirut, we
developed what was to become the AGM paper.” [137]

Since the paper was published in 1985, its major concepts and constructions have
been the subject of significant elaboration and development.

2.2 The Impact in Philosophy

Belief change theory has opened up a new area for philosophical reflection. Many of
the issues mentioned in Section 1.2 are philosophical questions that became acces-
sible to study through the introduction of formal models of belief change. Precise
philosophical discussions–for instance, about what types of belief changes there are,
whether some of them can be defined in terms of the others [115, 146, 182], how
(changes in) all-or-nothing beliefs relate to (changes) in probabilistic beliefs [244],
and whether belief changes can be perfectly reversible [161]–have become possible
through the introduction of formal models of belief change. In addition, new light
has been thrown on philosophical issues that were already discussed long before
belief change theory was developed. We will mention two particularly important
examples of this.

First, the discussion on the meaning of conditional sentences turned out to be
closely related to the logic of belief change. An important class of conditional sen-
tences seems to satisfy the so-called Ramsey test. The test stipulates that a rational
agent believes in the sentence “If α then β” if and only if she would believe in β if
she were brought to believe in α. Due to this connection, the logic of belief change
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provided new tools for studies of the properties of conditional sentences. (We will
return to this in Section 11.3.)

Secondly, philosophers of science have long discussed the mechanisms of the-
ory change and theory replacement in science. Although belief change models have
usually been constructed to represent individual belief systems, they can also be
applied to joint or collectively held thought systems such as scientific theories. Re-
cently, belief change models have been used to investigate this and other issues in
the philosophy of science [263].

2.3 The Impact in Artificial Intelligence

The AGM model appeared at a moment when the area of artificial intelligence was
suffering from a crisis. This crisis was clearly elucidated by Allen Newell in his
seminal address The Knowledge Level, delivered when he assumed the presidency
of the American Association for Artificial Intelligence [258]. Newell pointed out
three indicators of the crisis:

“A first indicator comes from our continually giving to representation a somewhat magical
role. What is indicative of underlying difficulties is our inclination to treat representation
like a homunculus, as the locus of real intelligence.”

“A second indicator is the great theorem-proving controversy of the late sixties and early
seventies. Everyone in AI has some knowledge of it, no doubt, for its residue is still very
much with us.”

“The results of a questionnaire promoted in 79/80 by Brachman and Smith which was sent
to the AI community: ‘The main result was overwhelming diversity–a veritable jungle of
opinions. There was no consensus on any question of substance.’ [...] As one [of the respon-
dents] said, ‘Standard practice in the representation of knowledge is the scandal of AI.’”

Newell claimed that Knowledge Representation and Reasoning (KRR) must be a
priority on the AI agenda and postulated the existence of a knowledge level:

“[...] there exists a distinct computer systems level, lying immediately above the symbol
level, which is characterized by knowledge as the medium and the principle of rationality
as the law of behavior. ”

The knowledge level rationalizes the agent’s behaviour, while the symbol level
mechanizes it. The knowledge level is more related with the question what? whereas
the symbol level is more related with how? For example, in a computer system, a
knowledge level is related with the functional requirements and the symbol level
with the non-functional requirements and implementation features.

Newell’s proposal had an enormous influence on AI community. In 1983, Fagin,
Ullman and Vardi pointed out the necessity of defining the dynamics of the process
of update in a database [86]:

“The ability of the database user to modify the content of the database, the so-called update
operation, is fundamental to all database management systems. ”
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“[W]e consider the problem of updating arbitrary theories by inserting into them or deleting
from them arbitrary sentences. The solution involves two key ideas: when replacing an old
theory by a new one we wish to minimize the change in the theory, and when there are
several theories that involve minimal changes, we look for a new theory that reflects that
ambiguity.”

In his keynote at the Theoretical Aspects of Rationality and Knowledge Workshop
in 1986 [145], Joseph Halpern also refered to the dynamics of beliefs:

“Most of the work discussed above has implicitly or explicitly assumed that the messages
received are consistent. The situation gets much more complicated if messages may be
inconsistent. This quickly leads into a whole complex of issues involving belief revision
and reasoning in the presence of inconsistency. Although I won’t attempt to open this can of
worms here, these are issues that must eventually be considered in designing a knowledge
base.”

The principles exposed by the cited authors were very similar to those expressed by
the AGM trio for belief states. The rapid propagation of the AGM ideas in the AI
community after Gärdenfors and Makinson presented them on TARK 88 [138] was
no surprise. The can of worms was open.1

1 For a more thorough overview of the impact of AGM in artificial intelligence see [59].



Chapter 3
The AGM Model

The purpose of this chapter is to introduce the AGM account of belief change, orig-
inally developed by Alchourrón, Gärdenfors and Makinson [4]. In Sections 3.1–3.3
we introduce the formal apparatus of belief sets and in Section 3.4 the operations
of change. In Sections 3.5–3.6 we introduce the axioms of the AGM model. In Sec-
tion 3.7 the relations between contraction and revision are specified and in Section
3.8 we introduce the basic constructive method of the AGM model, partial meet
contraction and revision functions.

3.1 The Language

Beliefs are expressed in a languageL that is called the object language of our model.
As is common in logic, we consider the language to be identical to the set of sen-
tences that can be expressed in it; thus p ∈L if and only if p is a sentence in L.

The language may be either finite or infinite, unless we explicitly specify that it
is finite. We also assume that the language contains the usual truth functional con-
nectives: negation (¬), conjunction (∧), disjunction (∨), implication (→) and equiv-
alence (↔). ⊥ denotes an arbitrary contradiction and ⊺ an arbitrary tautology. L
is closed under truth-functional operations (for example, if p ∈ L and q ∈ L, then
p∨q ∈ L, etc.). We say that two sentences p and q are logically independent if and
only if all combinations of truth values are logically possible for them. The letters
p, pi,q, . . . will be used to denote sentences of L. A,Ai,B, . . . denote sets of sentences
in L. K and H are reserved to represent sets of sentences that are closed under logi-
cal consequence, i.e., each such set contains all sentences that follow logically from
it. Such a set is called a belief set or theory. K is the set of belief sets.

9
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3.2 Logical Consequence

To express the logical relationships among the sentences in the object languageLwe
introduce a consequence operation Cn. It is a function that takes us from any set of
sentences X inL to the set Cn(X) that consists, intuitively speaking, of all the logical
consequences of X. We will assume that the logic encoded by Cn includes classical
truth-functional logic, i.e., the elementary logic that is usually taught through truth
tables. This means for instance that if p ∈ X then p∨ s ∈Cn(X) for all sentences s ∈L,
and it also means that if both p ∈ X and q ∈ X, then p∧q ∈Cn(X). There may also be
other logical principles encoded in Cn, in addition to classical truth-functional logic,
but it will be left open what these logical principles are. Formally, the consequence
operation is introduced as follows:

Definition 3.1. [321] A consequence operation on a language L is a function Cn
that takes each subset of L to another subset of L, such that:

• A ⊆Cn(A) (inclusion)
• Cn(A) =Cn(Cn(A)) (iteration)
• If A ⊆ B, then Cn(A) ⊆Cn(B). (monotony)

We are going to assume that Cn satisfies the following three properties:

• If p can be derived from A by classical truth-functional logic, then p ∈Cn(A).
(supraclassicality)
• q ∈Cn(A∪{p}) if and only if (p→ q) ∈Cn(A). (deduction)
• If p ∈Cn(A), then p ∈Cn(A′) for some finite subset A′ of A. (compactness)

We write Cn(p) for Cn({p}) when p ∈L. We use ⊢ p as an alternative notation for
p ∈Cn(∅), A⊢ p for p ∈Cn(A) and p⊢ q for q ∈Cn(p). Note that K ⊢ p if and only
if p ∈ K. We will use both notations interchangeably. K� denotes the inconsistent
belief set, and it follows that K� =L.

The consequence operation satisfies the following properties [163]:

1. If Cn satisfies iteration, monotony, supraclassicality, and deduction then Cn(p∨
q) =Cn(p)∩Cn(q).

2. If Cn satisfies iteration, monotony, supraclassicality, and deduction then: If q ∈
Cn(A∪{p1}) and q ∈Cn(A∪{p2}), then q ∈Cn(A∪{p1 ∨ p2}). (introduction
of disjunction into premises).

3. If Cn satisfies deduction then: Cn(A) ⊢ ¬p if and only if Cn(A∪{p}) ⊢ �.
4. If Cn satisfies iteration and monotony then: If A ⊆ B ⊆ Cn(A) then Cn(A) =

Cn(B).
5. If Cn satisfies monotony then Cn(A)∩Cn(B) =Cn(Cn(A)∩Cn(B)).
6. If Cn satisfies inclusion, iteration, and monotony then Cn(A∪ B) = Cn(A∪

Cn(B)).
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7. If Cn satisfies inclusion, iteration, and monotony then: if A and B are logically
closed, then A∪B is logically closed if and only A ⊆ B or B ⊆ A.1

8. If Cn satisfies inclusion, iteration, monotony, and supraclassicality then: If p ∈
Cn(A) and ¬p ∈Cn(A), then Cn(A) =L.

9. If Cn satisfies inclusion, iteration, monotony, and supraclassicality then
Cn({p∧q}) =Cn({p,q}).

3.3 Belief Sets and Possible Worlds

As already mentioned, to represent an epistemic agent’s belief state we will use a set
of sentences that is logically closed, i.e., it contains all its own logical consequences.
Such a set will be called a belief set and denoted by K. Its characteristic logical
property is:

K =Cn(K)

Obviously, the use of a logically closed set to represent an individual’s belief state is
an idealization, since the individual may fail to draw all the logical conclusions that
follow from her beliefs. However, it should be observed that Cn does not include
all of logic (or mathematics); we have left it open whether it includes anything
more than classical truth-functional logic. It should also be observed that belief
change theory is mainly concerned with rational belief change, and rationality can
be conceived as requiring that one draws the logical conclusions that are available.

Another important class of subsets of L are its inclusion-maximal consistent sub-
sets, more commonly called possible worlds. A subset µ of L is a possible world if
and only if it satisfies two conditions. First, µ is consistent, i.e., � ∉Cn(µ). Secondly,
it is so large that no sentence can be added to it without making the new set incon-
sistent, i.e., if p ∉ µ then � ∈Cn(µ∪{p}). The set of possible worlds will be denoted
byW.

Two important properties of possible worlds should be noted. First, they are log-
ically closed, i.e., if µ is a possible world then µ =Cn(µ). Secondly, they are deter-
minate in the sense that for each sentence p ∈L, either p ∈ µ or ¬p ∈ µ. It is due to the
latter property that they are called possible worlds; they give a complete description
(as far as the language L allows) of what is true or false in a particular state of the
world.

There is an important two-way connection between belief sets and sets of pos-
sible worlds. In one direction, the intersection of any set of possible worlds (i.e.,
the set of sentences that are elements in all these worlds) forms a belief set; thus
if X is a set of possible worlds, then ⋂X is a belief set. In the other direction, for
any belief set K we can identify the set of possible worlds that contain it, namely

1 A∪ B = Cn(A∪ B) is not true in general even if A and B are logically closed: Let p and q
be logically independent sentences, A = Cn({p}) and B = Cn({p → q}). Then q ∉ A∪ B, but
q ∈Cn(A∪B).
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{µ ∈W ∣ K ⊆ µ}. The following observation connects belief sets and possible worlds
tightly to each other:

Observation 3.1. Let K be a belief set. Then ⋂{µ ∈W ∣K ⊆ µ} =K. (For a proof, see
[163] p. 52.)

This observation provides us with a one-to-one correspondence between, on the
one hand, belief sets, and on the other hand sets of possible worlds. Therefore,
sets of possible worlds (often called propositions) can be used as an equivalent
alternative to belief sets for representing belief states. It is conventionally assumed
that ⋂∅ = L, which means that the inconsistent belief set also corresponds to a
subset of W, namely the empty set. In what follows we will use the following
notation (for any belief set K and any sentence p):

∥ K ∥= {µ ∈W ∣ K ⊆ µ} is the set of K-worlds.

∥ p ∥= {µ ∈W ∣ p ∈ µ} is the set of p-worlds.

Both belief sets and sets of possible worlds have been used extensively in the AGM
framework. As we will see, they can both be used to construct models of belief
change. But before studying these models we will consider the syntactical approach
to AGM, i.e., the approach that focuses on connections among sentences describing
what is believed or not believed before and after a belief change.

3.4 Basic Ideas of AGM Theory

In the AGM model, belief sets are used to represent epistemic states.2 Provided that
the belief set is consistent, the epistemic agent can have exactly three epistemic
attitudes to a sentence p, each defined from the belief set:

belief in p if p ∈ K.
disbelief in p if ¬p ∈ K.
unsettledness about p if p ∉ K and ¬p ∉ K.

The epistemic state is assumed to be internally stable, and all changes result from in-
puts. Inputs in the AGM framework always take the form of a sentence together with
an instruction on what to do with it. This is either an instruction to include or not to
include the sentence in the resulting new belief set. Based on the threefold classifi-
cation into belief, disbelief, and unsettledness, there are six forms of belief change,
as illustrated in Figure 3.1. The operations denoted by +p and +¬p are expansions.
They consist in the addition to a belief set of a sentence that does not contradict it.
Nothing has to be removed in order to retain consistency. The operations denoted

2 This section is based on [181].
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belief in p

disbelief in p p unsettled

∗¬p

∗p +p

−p

−¬p

+¬p

Fig. 3.1: The six types of belief change (assuming /⊢ p and /⊢ ¬p ).

∗p and ∗¬p are revisions. They consist in the addition to a belief set of a sentence
that contradicts it. In order to retain consistency, some previous beliefs will have to
be removed. Finally, the operations −p and −¬p are contractions. They consist in
the removal of a sentence from a belief set without introducing its negation. These
are the major forms of belief change in the AGM model, and the symbols +, ∗ and
− are used to denote them. In performing these operations, the following general
rationality criteria are applied as far as possible:

• logical closure: The outcome is a logically closed set, just like the original belief
set.3

• success: (i) A sentence to be added is included in the outcome. (ii) A sentence
to be contracted is not included in the outcome.
• consistency preservation: The outcome is consistent, just like the original belief

set.
• conservatism: (i) When a new sentence is added, no sentences are removed. (ii)

In contraction, no sentences are added [181].
• informational economy: As much as possible of the previous information is

retained.
• non-arbitrariness: If there is more than one candidate for the revised belief

set that satisfies the other rationality criteria, then one of them should not be
arbitrarily chosen.

In contraction, these requirements are all compatible if the sentence to be removed
is non-tautologous. If the sentence to be removed is a tautology, then logical closure
and success are incompatible (but each of them is compatible with the other condi-
tions). In the AGM model this is solved by giving higher priority to logical closure

3 This is a special case of the principle of categorial matching, according to which the belief state
should be represented in the same way after as before the operation of change [139].
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than to success, i.e., the outcome of contraction by a tautology is a logically closed
set and therefore it does not satisfy the success criterion. (K−⊺ = K.)

For changes consisting in adding a new sentence, we have to distinguish between
three cases. First, if the sentence to be added is consistent with the original belief
set (i.e., if K ∪{p} is consistent), then all requirements are compatible. This is the
expansion case referred to above. It is often treated as a limiting case of revision.

Secondly, if p is inconsistent, then consistency preservation and success cannot
both be satisfied. This is traditionally solved by giving priority to success (which is
compatible with the other conditions). Thus K ∗� =L.

Thirdly and finally, if p is consistent in itself but inconsistent with the original
belief set, then any two of the three conditions consistency preservation, success,
and conservatism are compatible, but not all three of them. (Logical closure is com-
patible with each of these combinations.) There are two standard solutions to this.
One is to give up consistency preservation, usually by just letting the outcome be
Cn(K ∪{p}). This operation is called expansion. The other solution is to give up
conservatism, and remove enough elements from the original belief set K to ensure
that p can be added without giving rise to inconsistency. This type of operation is
called revision.

3.5 A Syntactic Approach to Contraction

A contraction of a belief set by a sentence p requires that p be removed but no new
belief be added. We write − to denote a contraction function from L to K. Hence,
K− p denotes the contraction of K by a sentence p.

According to the principle of categorial matching, when we contract a belief set
K by a sentence p, the outcome should be logically closed:

K− p =Cn(K− p) (closure)

No new belief is added to the belief set in the contraction:

K− p ⊆ K (inclusion)

As far as possible, the objective of the operation must be carried out; i.e., if it is
possible to eliminate the sentence from the theory then it must be eliminated. The
only sentences that cannot be contracted are the tautologies.

If /⊢ p then p /∈ K− p. (success)

Together, closure, success, and inclusion signify that the outcome of a contraction is
a belief set included in the original belief set, which does not, if this can be avoided,
contain the sentence to be contracted. These conditions provide a convenient demar-
cation of contractions from other types of belief change [163]:
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Definition 3.2. [163] An operation − for a belief set K is a contraction if and only
if it satisfies closure, inclusion and success.

Next, let us consider two limiting cases (extreme cases) of contraction. In the first
of these, p is logically true. We have already made an exemption from the success
postulate for this case. When we are presented with the impossible task to take away
something that cannot be taken away, the most reasonable solution is to leave the
original belief set unchanged.

If ⊢ p then K− p = K. (failure) [121]

The second limiting case is when the sentence to be contracted is not implied by
the original belief set. In this case the minimal way to eliminate p from K is to do
nothing:

If K ⊬ p then K− p = K. (vacuity)

The contraction operation should be independent of the syntactic representation of
the sentences. In other words, logically equivalent sentences should yield the same
result:

If ⊢ p↔ q then K− p = K−q. (extensionality)

Extensionality guarantees that the logic of contraction is extensional in the sense of
allowing logically equivalent sentences to be freely substituted for each other.

Definition 3.3. [239] An operation − for a belief set K is a withdrawal if and only
if it satisfies closure, success, inclusion, vacuity and extensionality.

The criterion of informational economy requires that K − p be a large subset of K.
For example,

K− p = {
K if p ∉ K
Cn(∅) otherwise

satisfies the five postulates for withdrawal. However, such an operation seems ex-
treme, since for all non-vacuous cases of contraction it returns only the minimal
theory. According to the AGM rationality criteria, contraction should not only be
successful, it should also be conservative in the sense of not leading to unnecessary
losses of previous beliefs. An additional postulate is necessary to achieve that. The
AGM trio proposed as a rule of conservativity the postulate of recovery, accord-
ing to which it is enough to add (by expansion) the eliminated sentence to recover
totally the original theory.
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K ⊆ (K− p)+ p (recovery)4

Recovery is the most debated postulate of belief change [239, 99]. We will turn to
this debate in Section 5.1. The postulates discussed thus far may be called elemen-
tary (or basic) since they concern changes (contractions) by one single sentence.
Another category of postulates, to which we will now turn, is those that compare
changes by different sentences. They will be called comparative (or supplementary)
postulates. The AGM trio provided comparative postulates for contraction in the
form of postulates for contraction by a conjunction. In order to contract a conjunc-
tion p∧q from a theory K, we must either cease believing p or cease believing q.
Now, if a sentence r in K is neither removed in the contraction of K by p nor in the
contraction of K by q, then r should not be removed in the contraction of K by p∧q:

(K− p)∩(K−q) ⊆ K−(p∧q) (conjunctive overlap)

On the other hand, if p is removed if we contract by p∧q, then we expect that if
a sentence r must to be removed in order to remove p then it will also be removed
when p∧q is contracted:

If p ∉ K−(p∧q) then K−(p∧q) ⊆ K− p. (conjunctive inclusion)

The last two postulates are called the supplementary AGM (or Gärdenfors) postu-
lates. In presence of the basic postulates, the supplementary postulates are equiva-
lent to the following:

K−(p∧q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

K− p, or
K−q, or (conjunctive factoring)
K− p∩K−q

Observation 3.2. [4] Let K be a belief set and − an operation on K that satisfies clo-
sure, inclusion, vacuity, success, extensionality, and recovery. Then − satisfies both
conjunctive overlap and conjunctive inclusion if and only if − satisfies conjunctive
factoring.

The intuition behind this observation and the conjunctive factoring postulate is one
of the pillars of the AGM theory. If we wish to contract the belief set by a conjunc-
tion and there exists some preference between the conjuncts, then this contraction is
equivalent to contraction by the non-preferred conjunct. In the case of indifference
between the conjuncts, the outcome of contracting by the conjunction equals the
intersection of the outcomes of contractions by the conjuncts.

4 The converse of recovery, (K− p)+ p ⊆ K, follows from inclusion for the case when p ∈ K.
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3.6 A Syntactic Approach to Revision

Revision is related to expansion, in the sense that it incorporates new beliefs. How-
ever, as opposed to expansion, consistency is preserved in revision (unless the new
information is itself inconsistent). Consequently, the revision process must eliminate
enough sentences to avoid contradiction with the new belief. Just as for contraction,
there is no plausible way to define revision uniquely, but it can be constrained by a
set of postulates.

We write ∗ to refer to a revision function from K ×L to K. Hence K ∗ p denotes
the belief set that is the outcome of the revision of K by the sentence p. Again, the
result of the change must be a belief set:

K ∗ p =Cn(K ∗ p) (closure)

According to the principle of success, the new sentence must be incorporated into
the outcome of the revision.

p ∈ K ∗ p (success)

The revised belief set contains nothing that does not follow from the original belief
set in combination with the new belief. This is guaranteed by the following postu-
late:

K ∗ p ⊆ K+ p (inclusion)

Note that if ¬p ∈K, then K+p is the inconsistent belief set. In the case when the new
belief does not contradict any of the sentences in K, there is no reason to remove
any of them:

If K ⊬ ¬p then K+ p ⊆ K ∗ p. (vacuity)

According to the “consistency preservation” criterion, unless the new belief is itself
inconsistent, the result of the revision must be consistent.

If p ⊬ � then K ∗ p ⊬ �. (consistency)

Thus, if p is consistent, then K ∗ p is consistent even if K is inconsistent. Like con-
traction, the revision operation should be independent of the syntactic representation
of the sentences. In other words, logically equivalent sentences must yield the same
result:

If ⊢ p↔ q then K ∗ p = K ∗q. (extensionality)

The above are the six basic AGM (Gärdenfors) postulates for revision. Let us now
analyze revision of a belief set K by a conjunction p∧ q. According to the AGM
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authors, if q does not contradict K ∗ p, then revising K by p∧ q yields the same
result as expanding K ∗ p by q [139]. This follows from the following postulates:

K ∗(p∧q) ⊆ (K ∗ p)+q (superexpansion)

If K ∗ p ⊬ ¬q then (K ∗ p)+q ⊆ K ∗(p∧q). (subexpansion)

Note that when ¬q ∈ K∗ p, then (K ∗ p)+q = K�. Therefore the condition K∗ p /⊢ ¬q
is not needed in superexpansion. Superexpansion and subexpansion are called the
supplementary AGM (or Gärdenfors) postulates for revision. They are presented in
terms of revision by a conjunction, but they are equivalent to a pair of postulates
that refer to revision by a disjunction [133]. The first of these postulates says that if
a sentence r is incorporated both in the revision of K by p and in the revision of K
by q, then r is also incorporated in the revision of K by p∨q:

(K ∗ p)∩(K ∗q) ⊆ K ∗(p∨q) (disjunctive overlap)

The second of the disjunctive postulates says that when K ∗ (p∨q) /⊢ ¬p, the sen-
tences in K that remain in K ∗(p∨q) are also retained in K ∗ p:

If K ∗(p∨q) /⊢ ¬p, then K ∗(p∨q) ⊆ K ∗ p. (disjunctive inclusion)

As already indicated, there is a direct correspondence between the conjunctive and
the disjunctive postulates for revision:

Observation 3.3. [133] Let K be a belief set and let ∗ be an operation for K that
satisfies closure, success, inclusion, vacuity, consistency and extensionality. Then:

1. ∗ satisfies disjunctive overlap if and only if it satisfies superexpansion.
2. ∗ satisfies disjunctive inclusion if and only if it satisfies subexpansion.

Finally, in the presence of the basic postulates, the combination of superexpansion
(disjunctive overlap) and subexpansion (disjunctive inclusion) is equivalent to the
following postulate:

K ∗(p∨q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

K ∗ p, or
K ∗q, or (disjunctive factoring)
K ∗ p∩K ∗q

Observation 3.4. [133] Let K be a belief set and let ∗ be an operation for K that
satisfies closure, success, inclusion, vacuity, consistency and extensionality. Then ∗
satisfies both superexpansion and subexpansion if and only if ∗ satisfies disjunctive
factoring.

The intuition behind disjunctive factoring is that if we wish to revise by a disjunction
and there is some preference between the disjuncts, then this revision is equivalent
to revising by the preferred disjunct. In the case of indifference, revising by the
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disjunction returns the beliefs that are common to the outcomes of revising by each
member of the disjunction.

When the language is finite, K can be represented by a single sentence ϕ (which
represents the conjunction of all the sentences in K). For this case, Katsuno and
Mendelzon [205] presented an alternative (and equivalent) axiomatic characteriza-
tion of revision:

(R1) ϕ∗ p ⊢ p
(R2) If ϕ∧ p ⊬ � then ⊢ ϕ∗ p↔ ϕ∧ p.
(R3) If p ⊬ � then ϕ∗ p ⊬ �.
(R4) If ⊢ ϕ1↔ ϕ2 and ⊢ p1↔ p2 then ⊢ ϕ1 ∗ p1↔ ϕ2 ∗ p2.
(R5) (ϕ∗ p)∧q ⊢ ϕ∗(p∧q)
(R6) If (ϕ∗ p)∧q ⊬ � then ϕ∗(p∧q) ⊢ (ϕ∗ p)∧q.

3.7 Relations Between Contraction and Revision

We have seen that contraction and revision are characterized by two different sets
of postulates. These postulates are independent in the sense that the postulates of
revision do not refer to contraction and vice versa. However, it is possible to define
revision functions in terms of contraction functions, and the other way around. We
can define revision in terms of contraction by means of the Levi identity:

K ∗ p = K−¬p+ p (Levi identity)

The idea behind the Levi identity is that before adding p we have to reduce K so
that p can be consistently added. It is possible to add p consistently to a set if and
only if that set does not imply ¬p. Thus, our reduction of K should remove ¬p. This
we can do by contracting ¬p from K.

Observation 3.5. Let K be a theory and − an operation for K that satisfies the con-
traction postulates closure, inclusion, success, vacuity and extensionality. Let ∗ be
defined from − via the Levi identity. Then:

1. [4] ∗ satisfies the revision postulates closure, success, inclusion, vacuity, con-
sistency and extensionality.

2. [4, 97] If − also satisfies conjunctive inclusion, then ∗ satisfies subexpansion.
3. [4] If − also satisfies conjunctive overlap and recovery, then ∗ satisfies superex-

pansion.
4. [97] If − satisfies conjunctive overlap but not recovery, then ∗ does not in gen-

eral satisfy superexpansion.

Note that recovery is not needed to obtain the basic revision postulates. This means
that each withdrawal generates, via the Levi identity, a revision that satisfies the
six basic AGM postulates. If −1 and −2 are two withdrawals that generate the same
revision they are called revision equivalent [239].
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To define contraction in terms of revision we use the following identity:

K− p = (K ∗¬p)∩K (Harper identity)

Similar relationships between the postulates hold in this direction as well.

Observation 3.6. [4] Let K be a theory and ∗ an operation for K that satisfies the re-
vision postulates closure, success, inclusion, vacuity, consistency and extensionality.
Let − be defined from ∗ via the Harper identity. Then:

1. − satisfies the contraction postulates closure, inclusion, success, vacuity, exten-
sionality and recovery.

2. If ∗ also satisfies subexpansion, then − satisfies conjunctive inclusion.
3. If ∗ also satisfies superexpansion, then − satisfies conjunctive overlap.

The Levi and Harper identities provide us with a nice one-to-one correspondence
between operations of revision and contraction:

Definition 3.4. [239] Let K be a belief set. Then R and C are functions from and to
sentential operations on K such that

(1) for every sentential operation − for K, R(−) is the operation such that for all
p ∈L: K(R(−))p =Cn((K−¬p)∪{p}).

(2) for every sentential operation ∗ for K, C(∗) is the operation such that for all
p ∈L: K(C(∗))p = (K ∗¬p)∩K.

Observation 3.7. [239] Let K be a logically closed set and − an operation for K
that satisfies the contraction postulates closure, inclusion, vacuity, extensionality,
and recovery. Then C(R(−)) = −.

Observation 3.8. [239] Let K be a logically closed set and ∗ an operation for K that
satisfies the revision postulates closure, success, inclusion, and extensionality. Then
R(C(∗)) = ∗.

3.8 Partial Meet Operations

Already in the original AGM paper in 1985, the operations were presented both
syntactically, as we saw in Sections 3.5-3.6, and through an explicit construction.
In this section we will present the direct construction that was provided in the 1985
paper [4]. As in that paper, the main focus will be on contraction.

If we wish to apply the criterion of informational economy uncompromisingly,
then the contracted belief set K − p should be as large a subset of K as it can be
without implying p. In order to express this more precisely, the following notation
is useful:
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Definition 3.5. [5] Let K be a belief set and p a sentence. The set K ⊥ p (“K
remainder p”) is the set of sets such that H ∈ K ⊥ p if and only if:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H ⊆ K
H /⊢ p
There is no set H′ such that H ⊂ H′ ⊆ K and H′ /⊢ p

Hence, K ⊥ p is the set of maximal subsets of K that do not imply p. K ⊥ p is
called a remainder set and its elements are the remainders of K by p. There is a
special remainder set L ⊥⊥ that consists of all the maximal consistent subsets of the
language, i.e., possible worlds. We will use L ⊥⊥ as an alternative notation forW.

Remainder sets satisfy the following properties:

1. K ⊥ p = {K} if and only if K /⊢ p.
2. K ⊥ p =∅ if and only if ⊢ p.
3. If H ⊆ K and H /⊢ p, then there exists some H′ ∈ K ⊥ p such that H ⊆ H′ [5] 5.
4. If p ∈ K and /⊢ p, then for all H in K ⊥ p, H+¬p is an element of L ⊥⊥ (i.e., a

possible world) [6].

A first tentative approach to constructing an operation of contraction is to choose
just one element from K ⊥ p for each input sentence [6]:

K− p ∈ K ⊥ p when /⊢ p, and otherwise K ⊥ p = K. (maxichoice contraction)

Though it seems to be intuitive, maxichoice contraction generates belief sets that
are “too large”, since they satisfy the following property [238]:

If p ∈ K, then for any q ∈L, either p∨q ∈ K− p or p∨¬q ∈ K− p. (saturability)

The following example shows the implausibility of this property:

Example 3.1. I believe that “it is four o’clock” (p). Then I discover that my watch
has stopped. After that I must contract my belief p (but not revise by ¬p). According
to saturability I must retain either “it is four o’clock or there is a life after death”
(p∨q) or “it is four o’clock or there is no life after death” (p∨¬q), but I have no
reason to make this choice.

As was noted by Makinson [238, p. 357], neither p∨q nor p∨¬q should be retained
in general in the process of eliminating p from K, unless there is “some reason” in
K for its continued presence.

Maxichoice contraction satisfies the following postulate [133, 163]:

If q ∈ K and q ∉ K− p then /⊢ p and q→ p ∈ K− p. (fullness)

In the presence of closure and success, fullness implies recovery. Using fullness we
can obtain an axiomatic characterization of maxichoice contraction:
5 This property depends on compactness and the axiom of choice.



22 3 The AGM Model

Observation 3.9. [133] Let K be a belief set. An operation − on K is a maxichoice
contraction if and only if − satisfies closure, success, inclusion, vacuity, extension-
ality, and fullness.

At the other extreme, we can consider an operation that returns only the sentences
that are common to all the elements of K ⊥ p [6]:

K− p =⋂(K ⊥ p) when /⊢ p, and otherwise K− p = K. (full meet contraction)

Contrary to maxichoice contraction, full meet contraction generates belief sets that
are “too small”, since they satisfy the following property [97]:

If p ∈ K then for any q ∈L, p∨q ∈ K− p if and only if ⊢ p∨q. (devastation)

Full meet contraction is characterized as follows:

Observation 3.10. [6] If − is the full meet contraction on K and p ∈ K, then K− p =
Cn({¬p})∩K.

In terms of postulates, full meet contraction can be characterized as follows:

Observation 3.11. [4] Let K be a belief set. An operation − is the full meet contrac-
tion on K if and only if − satisfies closure, success, inclusion, vacuity, extensionality,
recovery, and

K−(p∧q) = (K− p)∩(K−q). (meet identity)

Although full meet contraction is not an appropriate contraction, it provides the
lower bound for the recovery postulate. We can formalize this concept in the fol-
lowing way:6

Observation 3.12. [238] Let K be a belief set, ∼ the operation of full meet con-
traction for K and − an operation for K. Then − satisfies recovery if and only if
K ∼ p ⊆ K− p for all p.

A third approach is to generate the contraction outcome from the intersection of only
some of the elements of K ⊥ p. To do this we need to define a selection function for
K ⊥ p.

Definition 3.6. [4] Let K be a belief set. A selection function for K is a function γ
such that for all sentences p:

1. If K ⊥ p is non-empty, then γ(K ⊥ p) is a non-empty subset of K ⊥ p.
2. If K ⊥ p is empty, then γ(K ⊥ p) = K.

6 For a detailed study of full meet contraction see [166] and [173].
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We can further specify properties of the selection function to ensure that the “best”
elements of K ⊥ p are selected. For this purpose, we need to introduce a preference
relation on K ⊥ p:

Definition 3.7. [4] A selection function γ for a belief set K is relational if and only
if there is a relation ⊑ on the remainders of K7 such that for all sentences p, if K ⊥ p
is non-empty, then:

γ(K ⊥ p) = {B ∈ K ⊥ p ∣ B′ ⊑ B for all B′ ∈ K ⊥ p}

γ is transitively relational if and only if ⊑ is a transitive relation.

Partial meet contraction is defined in terms of the selection function γ:

Definition 3.8. [4] Let K be a belief set and γ a selection function for K. An opera-
tion − on K is a partial meet contraction if and only if there is a selection function γ
for K such that for all sentences p:

K− p =⋂γ(K ⊥ p)

Furthermore, − is (transitively) relational if and only if it can be generated from a
(transitively) relational selection function.

Maxichoice contraction is the special case of partial meet contraction when for all
sentences p, γ(K ⊥ p) has exactly one element. Full meet contraction is the special
case when γ(K ⊥ p) = K ⊥ p whenever K ⊥ p is non-empty.

One of the major achievements of AGM theory is the characterization of partial
meet contraction, and its transitively relational variant, in terms of postulates:

Theorem 3.2. [4] Let K be a belief set. An operation − on K is a partial meet con-
traction if and only if − satisfies closure, success, inclusion, vacuity, recovery, and
extensionality. If − is a relational partial meet contraction then it satisfies conjunc-
tive overlap. Furthermore, − is a transitively relational partial meet contraction if
and only if it satisfies both conjunctive overlap and conjunctive inclusion.

As we saw in Section 3.7, we can define a corresponding operation of revision by
means of the Levi identity:

Definition 3.9. [4] Let K be a belief set. Let ∗ and − be operations on K such that
for all sentences p:

K ∗ p = (K−¬p)+p
Then:

1. ∗ is a maxichoice revision if and only if − is a maxichoice contraction.
2. ∗ is a full meet revision if and only if − is a full meet contraction.

7 X is a remainder of K if and only if there exists some p with X ∈ K⊥p.
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3. ∗ is a partial meet revision if and only if − is a partial meet contraction.
4. ∗ is a (transitively) relational partial meet revision if and only if − is a (transi-

tively) relational partial meet contraction.

We have observed that maxichoice contraction and full meet contraction are implau-
sible operations, but useful as upper and lower bounds of partial meet contraction.
This implausibility is even more evident in revision, as can be inferred from the
following observations:

Observation 3.13. [6] Let ∗ be a maxichoice revision for a belief set K. If ¬p ∈ K,
then K ∗ p ∈L ⊥⊥.

Observation 3.14. [6] Let ∗ be a full meet revision for a belief set K. If ¬p ∈K, then
K ∗ p =Cn(p).

As we did for contraction, we can characterise partial meet revision in terms of
postulates:

Theorem 3.3. [4] Let K be a belief set. An operation ∗ on K is a partial meet revi-
sion if and only if ∗ satisfies closure, success, inclusion, vacuity, consistency, and
extensionality. If ∗ is a relational partial meet revision then it satisfies superexpan-
sion. Furthermore ∗ is a transitively relational partial meet revision if and only if it
satisfies both superexpansion and subexpansion.



Chapter 4
Equivalent Characterizations

One of the most remarkable features of the AGM model is its capability of being
expressed in several different, seemingly quite dissimilar ways. In this chapter we
present five different ways to characterise AGM operations: possible world mod-
els, epistemic entrenchment, specified meet contraction, kernel contraction and safe
contraction.

4.1 Possible World Models

In Section 3.3 we introduced possible worlds in the logical sense, viz. inclusion-
maximal consistent subsets of the language. We noted that there is a one-to-one
correspondence between belief sets and sets of possible worlds. We also introduced
the notation ∥K∥ for the set of all possible worlds that contain the belief set K and
similarly ∥p∥ for the set of all possible worlds that contain the sentence p. The
following observation summarizes some useful properties of possible worlds.

Observation 4.1. [143, 163] Let K and H be logically closed sets and p and q sen-
tences. Then the following properties hold:

H ⊆ K if and only if ∥K∥ ⊆ ∥H∥
If µ ∈L ⊥⊥ , then µ ∈ ∥p∥ if and only if µ ∉ ∥¬p∥.
∥Cn(K∪H)∥ = ∥K∥∩∥H∥
∥K∥∪∥H∥ ⊆ ∥K∩H∥.
∥p∥ ⊆ ∥q∥ if and only if ⊢ p→ q.
∥p∧q∥ = ∥p∥∩∥q∥
∥p∨q∥ = ∥p∥∪∥q∥.

One of the major advantages of possible world models is that they can be repre-
sented graphically in a very intuitive way. Usually, a rectangular space such as the
square in Figure 4.1 represents the set of all possible worlds. Each possible world
is represented by a point in the rectangle, and each set of possible worlds (propo-
sition) is thought of as a subarea of the rectangle. Hence, in Figure 4.1, the central
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Fig. 4.1: A possible worlds model.

circle corresponds to the belief set K. It is important to note that in these diagrams,
a larger area represents a smaller belief set (since a smaller belief set is compati-
ble with a larger number of possible states of the world). The smallest belief set,
Cn(∅), is represented by the whole square since it is a subset of all possible worlds.
The largest belief set, Cn(�), is represented by the empty set since it is not a subset
of any possible world.

Expansion is easily represented in a possible worlds model. ∥K + p∥ should be
the set of worlds that are both K-worlds and p-worlds; thus:

∥K+ p∥ = ∥K∥∩∥p∥

This is illustrated in Figure 4.2.
The contraction of K by p takes the form of an addition of some ¬p-worlds to

the set ∥K∥. We will use the concept of a propositional selection function to present
the possible worlds semantics for partial meet contractions.

Definition 4.1. [163] Let M be a proposition. A propositional selection function
forM is a function f such that for all sentences p: (1) f (∥p∥) ⊆ ∥p∥, (2) If ∥p∥ ≠∅
then f (∥p∥) ≠∅ and (3) IfM∩∥p∥ ≠∅, then f (∥p∥) =M∩∥p∥.

We can think ofM as the set of K-worlds for some belief set K. Then this definition
says that f selects some p-worlds if there are any, and that if there are some p-worlds
that are also K-worlds, then it selects exactly those.

We are now in a position to present the following observation, showing how
partial meet contraction can be constructed in terms of possible worlds. (See Figure
4.3.)
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Fig. 4.2: Expansion. The dark orange area is the outcome of the operation ∥K+ p∥.

Observation 4.2. [143, 163] Let K be a belief set. An operation − on K is a partial
meet contraction if and only if there is a propositional selection function f for ∥K∥
such that for all sentences p: K− p =⋂(∥K∥∪ f (∥¬p∥)).

Fig. 4.3: Partial meet contraction in a case with p ∈ K and /⊢p. The outcome of the
operation ∥K− p∥ is represented by the union of the dark orange areas.
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Fig. 4.4: Partial meet revision. The dark orange area represents the outcome of the
operation ∥K ∗ p∥.

Due to the Levi identity and the definitions of f and + we can define K ∗ p =
(K−¬p)+ p =⋂((∥K∥∪ f (∥p∥))∩∥p∥) = ⋂( f (∥p∥)). (See Figure 4.4.)

To capture the supplementary postulates either in contraction or in revision,
and consequently transitively relational partial meet contraction (revision), we need
tools that are much more sophisticated. There are two closely related ways to do
this: by Grove’s sphere systems or by means of a total preorder on worlds.

Adam Grove [143] defined a sphere system centred around ∥K∥ as a collection
S of subsets of L ⊥⊥ that are ordered by inclusion. Figuratively, the distance from
a possible world to the centre of the system reflects its plausibility relative to the
theory K. Formally:

Definition 4.2. [143] Let X be a subset of L ⊥⊥. A system of spheres centred on X
is a collection S of subsets of L ⊥⊥, i.e., S ⊆ P(L ⊥⊥), that satisfies the following
conditions:

(S1) S is totally ordered with respect to set inclusion; that is, if U ,V ∈ S, then
U ⊆ V or V ⊆ U .

(S2) X ∈ S, and if U ∈ S then X ⊆ U .
(S3) L ⊥⊥ ∈ S (and so it is the largest element of S).
(S4) For every p ∈ L, if there is some element of S intersecting with ∥p∥, then

there is also a smallest element of S intersecting with ∥p∥. The smallest
sphere in S intersecting with ∥p∥ is denoted by Sp.

The elements of S are called spheres. See Figure 4.5 for a graphical illustration of a
sphere system.
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Fig. 4.5: A system of spheres centred around K.

Definition 4.3. [143] A propositional selection function f for a proposition X is
sphere-based if and only if there is a system of spheres S such that for all p: If
∥p∥ /=∅, then f (∥p∥) = Sp∩∥p∥.

Observation 4.3. [143] Let K be a belief set.

1. An operation − on K is a transitively relational partial meet contraction if and
only if there is a sphere-based propositional selection function f for ∥K∥ such
that for all sentences p: K− p =⋂(∥K∥∪ f (∥¬p∥)).

2. An operation ∗ on K is a transitively relational partial meet revision if and only
if there is a sphere-based propositional selection function f for ∥K∥ such that
for all sentences p: K ∗ p =⋂( f (∥p∥)).

These operations are illustrated in Figures 4.6 and 4.7.
Alternatively, the semantics of the AGM model can be characterized by a total

preorder between possible worlds, i.e., a reflexive, transitive and total relation on
L ⊥⊥.

Definition 4.4. [205] A total preorder ≤K on possible worlds, with the strict part
<K and the symmetric part ≃K , is a global faithful assignment if and only if the
following conditions hold:

1. If K ⊆ω and K ⊆ω′, then ω ≃K ω
′

2. If K ⊆ω and K /⊆ω′, then ω <K ω
′

The notion of a global faithful assignment allows us to define partial meet opera-
tions:
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Fig. 4.6: Transitively relational partial meet contraction. The outcome of the
operation ∥K− p∥ is represented by the union of the dark orange areas.

Fig. 4.7: Transitively relational partial meet revision. The dark orange area
represents the outcome of the operation ∥K ∗ p∥.

Observation 4.4. [205] Let K be a belief set.

1. An operation − on K is a transitively relational partial meet contraction if and
only if there is a global faithful assignment ≤K for K such that K− p =⋂(∥K∥∪
min(∥¬p∥,≤K)).

2. An operation ∗ on K is a transitively relational partial meet revision if and only
if there is a global faithful assignment ≤K for K such that:
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Fig. 4.8: Transitively relational partial meet revision in the model of global faithful
assignment. The dark orange area represents the outcome of the operation ∥K ∗ p∥.

K ∗ p =⋂min(∥p∥,≤K)

Revision by global faithful assignment is illustrated on Figure 4.8.1

4.2 Epistemic Entrenchment

“Even if all sentences in a knowledge set are accepted or considered as facts, this does
not mean that all sentences are of equal value for planning or problem solving purposes.
Certain pieces of knowledge and belief about the world are more important than others
when planning future actions, conducting scientific investigations or reasoning in general.
We will say that some sentences in a knowledge system have a higher degree of epistemic
entrenchment than others. The degree of entrenchment will, intuitively, have a bearing on
what is abandoned from a knowledge set and what is retained, when a contraction or revision
is carried out.” [138]

Epistemic entrenchment was introduced by Peter Gärdenfors in [131], [138] and
[133]. It is a binary relation ≤ on the sentences in the belief set K such that in
contraction, giving up beliefs with lower entrenchment is preferred to giving up
those with higher entrenchment. p ≤ q denotes that p is at most as sentrenched as q
and p < q that p is less entrenched than q. From a formal point of view, < is the strict
part of ≤, i.e., p < q holds if and only if p ≤ q and q /≤ p.

1 This graphical notation for global faithful assignment is due to Sébastien Konieczny and Ramón
Pino Pérez.



32 4 Equivalent Characterizations

Gärdenfors proposed a set of five postulates for epistemic entrenchment. The first
postulate simply states that the order is transitive.

If p ≤ q and q ≤ r, then p ≤ r. (transitivity)

If q follows logically from p, then p has to be given up whenever q is given up. We
can therefore assume that p is at most as entrenched as q in this case.

If p ⊢ q, then p ≤ q. (dominance)

Removing p∧q necessarily implies removing either p or q. It is therefore natural to
assume that either p or q is at most as entrenched as p∧q.

p ≤ (p∧q) or q ≤ (p∧q) (conjunctiveness)

The minimality postulate states that non-beliefs are all minimally entrenched.

If K /= K�, then p ∉ K if and only if p ≤ q for all q. (minimality)

The maximality postulate, on the other hand, states that the maximally entrenched
beliefs are (exactly) the logical truths.

If q ≤ p for all q, then ⊢ p. (maximality)

A relation satisfying transitivity, dominance, conjunctiveness, minimality and max-
imality is a standard entrenchment ordering.

Observation 4.5. [109, 138, 163, 296] Let ≤ (with the strict part <) be a standard
entrenchment ordering. Then it satisfies:

4.1 p ≤ p (reflexivity) 4.2 p ≤ q or q ≤ p (connectedness)
4.3 If q∧ r ≤ p, then q ≤ p or r ≤ p. 4.4 p < q if and only if p∧q < q.
4.5 If r ≤ p and r ≤ q, then r ≤ p∧q. 4.6 If p ≤ q, then p ≤ p∧q.
4.7 If p < q and q < r, then p < r. 4.8 If p ≤ q and q < r, then p < r.
4.9 If q < r and q < p, then q < p∧ r. 4.10 If p < q, then p < p∨q.
4.11 If p < q, then p∧ r < q. 4.12 If p ≤ q, then p∧ r ≤ q.
4.13 If q∧ r < p, then q < p or r < p. 4.14 If p ≤ q, then p∧ r ≤ q∧ r.
4.15 If /⊢ p and ⊢ q, then p < q. 4.16 p ∉ K if and only if p < q for all

q ∈ K.
4.17 If p < q, then p ≤ p∧q. 4.18 p∨q < p∨¬q if and only if p <

p∨¬q.
4.19 If ⊢ p↔ p′ and ⊢ q↔ q′, then:
p ≤ q if and only if p′ ≤ q′. (intersub-
stitutivity)

4.20 If K /=K�, then: p ∈K if and only
if � < p.

4.21 If ⊺ ≤ p, then ⊢ p. (maximality
2)

4.22 If p ∉ K, then p ≤ q. (K-
minimality)
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4.23 If p ∈ K and p ≤ q, then q ∈ K.
(K-representation)

4.24 p∧q ≤ r if and only if p ≤ q∧ r
or q ≤ p∧ r. (choice)

Gärdenfors proposed the following connections between orders of epistemic en-
trenchment and operations of contraction:

(G≤) q ∈ K− p if and only if q ∈ K and either ⊢ p or p < (p∨q).

(C≤) p ≤ q if and only if p ∉ K−(p∧q) or ⊢ (p∧q).

Theorem 4.25. [133, 138] Let ≤ be a standard entrenchment ordering on a consis-
tent belief set K. Furthermore let − be the entrenchment-based contraction on K
defined from ≤ by condition G≤. Then − is a transitively relational partial meet con-
traction, and C≤ also holds.

Theorem 4.26. [133, 138] Let − be a transitively relational partial meet contraction
on a consistent belief set K. Furthermore let ≤ be the relation defined from − by
condition C≤. Then ≤ satisfies the standard entrenchment postulates and G≤ also
holds.

The crucial clause of G≤ is p < (p∨q). This clause can be justified with reference
to the recovery postulate [138]. If − satisfies recovery and closure, then it holds for
all q ∈ K that p→ q ∈ K − p. Since p→ q and p∨q together imply q, it follows that
if p∨q ∈ K − p, then q ∈ K − p. Furthermore, if q ∈ K − p, then p∨q ∈ K − p. Thus,
q ∈ K− p if and only if p∨q ∈ K− p.

We can see from C≤ (excluding the limiting case) that:

p∨q ∉ K−((p∨q)∧ p) if and only if p∨q ≤ p.

Using extensionality, we obtain:

p∨q ∉ K− p if and only if p∨q ≤ p.

Negating both sides of the equivalence, using the connectedness of ≤, we obtain:

p∨q ∈ K− p if and only if p < p∨q.

We showed above that given recovery and closure, p∨ q ∈ K − p is equivalent to
q ∈ K− p, thus:

q ∈ K− p if and only if p < p∨q,

as desired. However, it does not seem possible to intuitively justify G≤ unless one
accepts the recovery postulate [138, pp. 89–90]. In fact, Gärdenfors admitted: “The
comparison is somewhat counterintuitive” [136].
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However, although recovery is needed to prove that the relation ≤ obtained from
− through C≤ satisfies G≤, it is not needed to show that ≤ is a standard entrenchment
relation. Consequently, the role of recovery in epistemic entrenchment is located in
the definition of the rule of contraction. Rott [288] proposed an alternative construc-
tion of contraction from ≤, later called severe withdrawal [302]:

K− p = {q ∈ K ∣ p < q}

Severe withdrawal has been axiomatized [302, 104]. It has also been shown to sat-
isfy the following implausible postulate [163]:

If ⊬ p and ⊬ q, then either p /∈ K÷q or q /∈ K÷ p. (expulsiveness).

However, Lindström and Rabinowicz have proposed that it can be used as a lower
limit for contraction. Transitively relational partial meet contraction would be the
upper limit, and a reasonable operation of contraction should be somewhere be-
tween these two extremes [231, pp. 115]. This has been called Lindström’s and
Rabinowicz’s interpolation thesis [292].

Fermé [96] and Rott [295] showed that a transitively relational partial meet con-
traction satisfies fullness2 if and only if it also satisfies:

If p ∈ K and /⊢ p, then p < p∨q or p < p∨¬q.

Entrenchment-based revision can be defined from entrenchment-based contraction
via the Levi identity. However, it is also possible to define entrenchment-based revi-
sion directly from an entrenchment ordering, by means of the following equivalence
[231, 287, 97]:

(∗EBR) q ∈ K ∗ p if and only if either (p→ ¬q) < (p→ q) or p ⊢ �.

Conversely, an entrenchment relation can be obtained from an operation of revision
as follows:

(C≤∗) p ≤ q if and only if: If p ∈ K ∗¬(p∧q) then q ∈ K ∗¬(p∧q).

In order to clarify (C≤∗), assume that p ∈ K ∗¬(p∧ q) and q ∈ K ∗¬(p∧ q); then
p∧q ∈ K ∗¬(p∧ q), which implies ⊢ p∧ q. This means that if we are not in the
limiting case, then (C≤∗) implies p /∈ K ∗¬(p∧q). Due to the Levi identity, this is
equivalent with p /∈ (K−(p∧q))+¬(p∧q), or equivalently, p /∈ K−(p∧q).

Theorem 4.27. [97] Let ≤ be a standard entrenchment ordering on a consistent be-
lief set K. Furthermore let ∗ be the revision on K defined by condition ∗EBR from ≤.
Then ∗ is a transitively relational partial meet revision, and C≤∗ also holds.
2 In the presence of the AGM contraction postulates fullness characterizes maxichoice contraction
(see Section 3.8).
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Theorem 4.28. [97] Let ∗ be a transitively relational partial meet revision on a con-
sistent belief set K. Furthermore let ≤ be the relation defined from ∗ by condition
C≤∗. Then ≤ satisfies the standard entrenchment postulates and ∗EBR also holds.

Rott [296] provided a characterization of partial meet revision in terms of a weak-
ened version of epistemic entrenchment:

Theorem 4.29. [296] Let ≤ be an ordering on a consistent belief set K and let ≤
satisfy reflexivity, intersubstitutivity, choice, maximality 2, K-minimality and K-
representation.3 Furthermore let ∗ be an entrenchment-based revision on K defined
by condition ∗EBR from ≤. Then ∗ is a partial meet revision.

Theorem 4.30. [296] Let ∗ be be a partial meet revision on a consistent belief set K.
Furthermore let ≤ be the relation defined from ∗ by condition C≤∗. Then ≤ satisfies
the entrenchment postulates reflexivity, intersubstitutivity, choice, maximality 2,
K-minimality and K-representation.

The belief change literature contains several approaches related with epistemic en-
trenchment. In quantitative formalisms, Dubois and Prade [83, Sec. 2.5] remarked
that a possibility or necessity measure provides a preorder on sentences. Spohn [315]
defined a model of ordinal conditional functions where the order of sentences repre-
sents the degree of implausibility of their negations. In qualitative formalisms, Rott
[288] introduced a preference relation that provides a canonical representation of
an epistemic entrenchment and a belief base. Williams has introduced operations
based on ensconcement relations on belief bases (see Section 6.2). She has shown
that Rott’s proposal is equivalent to the ensconcement approach. In the framework
of descriptor revision, epistemic entrenchment has been generalized to relations of
proximity between success conditions (see Chapter 14). For a discussion on quan-
titative vs. qualitative formalisms see [107, Sec. 1].

4.3 Specified Meet Contraction

As we saw in Chapter 3, partial meet contraction was introduced as a modification
of a simpler (and purely logical) operation, namely full meet contraction:

K ∼ p =⋂(K ⊥ p)

Full meet contraction was first described by Alchourrón and Makinson [6]. It was
soon realized that it removes too much from the belief set. Partial meet contraction
was constructed to solve this problem. As we have already seen, it operates by se-
lecting a subset of the elements of K ⊥ p for intersection, and its defining formula
is:

3 These properties are defined in Observation 4.5.
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K− p =⋂γ(K ⊥ p)

Specified meet contraction, introduced in [169], is an alternative modification of
full meet contraction to make it less restrictive. In specified meet contraction, the
selection mechanism does not operate on the remainder set but on the sentence to
be contracted. The underlying intuition is that in order to contract by a complex
sentence, we often only remove parts of its contents:

I realized that p∧q cannot be true, so I had to give up either my belief in p or
my belief in q, or perhaps both. After some deliberation I chose to give up only
p.

Specified meet contraction employs a sentential selector f that takes us from the
sentence that is the contraction input to the sentence that will be eliminated by full
meet contraction. The formal definition is as follows:

Definition 4.5. [169] An operation − on K is an operation of specified meet contrac-
tion if and only if there is a sentential selector f such that for all p, K− p =K ∼ f (p).

The two constructions are compared in Figure 4.9. The following theorem identi-
fies, in the form of an axiomatic characterization, the operations that can be con-
structed as specified meet contractions:

Theorem 4.31. [168] Let − be a sentential operation on a finite-based belief set K.
The following two conditions are equivalent:

(1) − satisfies:
K− p =Cn(K− p) (closure),
K− p ⊆ K (inclusion), and
K− p is finite-based. (finite-based outcome)

(2) There is a sentential selector f such that for all p: f (p) ∈K and K− p =K ∼ f (p).

It can be seen from this theorem that specified meet contraction covers many types
of operations that are not partial meet contractions. In particular, neither the suc-
cess nor the recovery postulate needs to be satisfied for an operation to be a spec-
ified meet contraction. But on the other hand, one of the required three postulates,
namely finite-based outcome, is not satisfied in general by partial meet contraction.
Therefore, only some partial meet contractions are also specified meet contractions.

Observation 4.6. [177] Let K be a finite-based belief set and − a partial meet con-
traction on K. Then − satisfies finite-based outcome if and only if − is (also) a
specified meet contraction.

It has often been argued that finite-based outcome is a desirable property for an op-
eration of contraction. For instance, all three AGM authors have endorsed it [6, pp.
21–22], [138, p. 90], [239, p. 384]. This gives us reason to investigate those partial
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⋂(K ⊥ p)
Full meet contraction

⋂γ(K ⊥ p)
Partial meet contraction

⋂(K ⊥ f (p))
Specified meet contraction

Fig. 4.9: A comparison between three forms of contraction: full meet contraction,
partial meet contraction, and specified meet contraction.

meet contractions that are also specified meet contractions. They can of course be
specified in terms of the four basic AGM postulates for contraction that are not men-
tioned in the above axiomatic characterization of specified meet contraction, namely
extensionality, vacuity, success, and recovery. Alternatively, they can be character-
ized in terms of properties of the sentential selector. This is fairly easily done since
each of these postulates corresponds exactly to a property of the sentential selector
f . For instance, a specified meet contraction − satisfies recovery if and only if its
sentential selector f satisfies the property:

If p ∈ K, then ⊢ p→ f (p).

The properties corresponding to the remaining three basic AGM postulates can be
found in Table 4.1. The reader is referred to [168, 169, 171, 172, 174] for additional
formal results on specified meet contraction, including further properties of the sen-
tential selector f and extensions to multiple and iterated variants of specified meet
contraction.

Properties of sentential selectors Contraction postulates
If ⊢ p↔ q then ⊢ f (p)↔ f (q) extensionality
f (p) ∈ K if and only if p ∈ K vacuity
If ⊢ p then ⊢ f (p) failure
If p ∈ K∖Cn(∅), then ⊬ p∨ f (p) success
If p ∈ K, then ⊢ p→ f (p) recovery

Table 4.1: Some one-to-one correspondences between the properties of a sentential
selector and the properties of the specified meet contraction that it gives rise to.
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4.4 Kernel Contraction

Whereas partial meet contraction is based on a selection of what to retain, kernel
contraction [154] and safe contraction [7] are based on a selection of sentences to
remove. Safe contraction was proposed by Alchourrón and Makinson in 1985, the
same year that the seminal AGM paper was published. Kernel contraction was intro-
duced nine years later, but for expository reasons we begin with the latter operation.

We define the kernel set for a sentence p and a belief set K as follows:

Definition 4.6. [154] Let K be a belief set and p a sentence. Then K y p is the set
such that A ∈ K y p if and only if:

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A ⊆ K
A ⊢ p
If B ⊂ A then B /⊢ p.

Ky p is called the kernel set of K with respect to p and its elements are the p-kernels
of K.

Basically, at least one element of each p-kernel of K must be removed in the con-
traction process, since otherwise the sentence p would still be implied. On the other
hand, due to the minimality criterion, only sentences that are included in one or more
elements of the kernel set may have to be discarded. The remaining problem is how
to choose the sentences to remove. The most general case, i.e., without additional
criteria for the selection, is an incision function defined as follows:

Definition 4.7. [154] An incision function σ for K is a function such that for all
sentences p:

{
σ(K y p) ⊆⋃(K y p)
If ∅ /= A ∈ K y p, then A∩σ(K y p) /=∅.

Thus, incision functions cut into each p-kernel, removing at least one sentence. A
subset of K implies p if and only if it contains at least one p-kernel. The set obtained
from K by removing all sentences selected by the incision function does not con-
tain any p-kernel. This is why incision functions can be used to derive contraction
operations.

Definition 4.8. [154] Given a belief set K, a sentence p and an incision function σ
for K, the kernel contraction of K by p, denoted by K−σp, is defined as:

K−σp = K∖σ(K y p)

However, the contraction obtained in this definition can yield an outcome K−σp that
is not closed under logical consequence. In order to ensure that the closure postulate
is satisfied we have to impose a further condition on the incision function:
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Definition 4.9. [154] An incision function σ for a belief set K is smooth if and only
if it holds for all subsets A of K that: if A ⊢ q and q ∈ σ(K y p), then A∩σ(K y
p) /=∅. A kernel contraction is smooth if and only if it is based on a smooth incision
function.

Smoothness is what is required for a kernel contraction on a belief set to satisfy
closure. Importantly, the smooth kernel contractions on belief sets coincide with the
partial meet contractions [154].4 This connection can be further specified in terms
of the relation between selection and incision functions:

Observation 4.7. [87] Let γ a selection function for a set K. The function σγ de-
fined as follows:

σγ(K y p) = K∖⋂γ(K⊥p)

is an incision function for K. We call it the associated incision function of γ.

Observation 4.8. [87] Let σ be an incision function for a set K. The function γσ on
K⊥p defined as follows:

γσ(K⊥p) = {
{H ∶ H ∈ K⊥p and (K∖σ(K y p)) ⊆ H} if K⊥p ≠∅
{K} otherwise

is a selection function on K.

Observation 4.9. [87] Let γ be a selection function for a set K, σγ the incision
function defined from γ using Observation 4.7, and γ′ the selection function defined
from σγ using Observation 4.8, i.e., γ′ = γσγ . Then:

1. γ(K⊥p) ⊆ γ′(K⊥p)
2. ⋂γ′(K⊥p) =⋂γ(K⊥p)
3. γ(K⊥p) = γ′(K⊥p) if whenever ⋂γ(K⊥p) ⊆H for H ∈ K⊥p, then H ∈ γ(K⊥p).

We can conclude from this that the seemingly different strategies of selecting sets to
retain (partial meet contraction) and selecting sentences to remove (kernel contrac-
tion) yield essentially the same result. As we will see in Chapter 6, this sameness
depends essentially on the logical closure of the set K.

4.5 Safe Contraction

In safe contraction, a relation on sentences is used to determine which sentences to
discard from each p-kernel [7, 8]. In this operation, the elements of the belief set K
are ordered according to a relation ≺ (traditionally called a hierarchy). Intuitively,

4 For belief bases, however, the smooth kernel contractions form a proper subset of the partial meet
contractions.
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q ≺ r means that r should be retained rather than q if we have to give up one of them,
and we say that “q is less safe that r”. The ordering ≺ helps us to choose which
element to remove from each kernel. The remaining beliefs are safe and form the
outcome of the safe contraction of a belief set K by p (modulo ≺).

Definition 4.10. [7] Let ≺ be a relation on K. Any sentence q in K is safe with
respect to p if and only if q is not minimal under ≺ among the elements of any
A ∈ K y p. The set of all safe sentences of K with respect to p is denoted by K/p.

Definition 4.11. [7] Let K be a belief set and ≺ a relation on K. The safe contraction
on K associated with ≺ is equal to the set of consequences of the safe sentences:

K− p =Cn(K/p)

Since safe contraction is a special case of kernel contraction, the following theorem
should not come as a surprise:

Theorem 4.32. [7] Any safe contraction on K is a partial meet contraction.

However, the converse of that theorem does not hold. In other words, there are partial
meet contractions that are not safe contractions. In order to relate safe contraction to
transitively relational partial meet contraction, additional properties on ≺ are needed:

Definition 4.12. [8] Let K be a belief set and ≺ a relation over K. Then ≺ is a virtu-
ally connected hierarchy over K if and only it satisfies:

If p1 ≺ ⋅ ⋅ ⋅ ≺ pn, then not pn ≺ p1. (acyclicity)
If ⊢ p↔ p′ and ⊢ q↔ q′, then: p ≺ q if and only if p′ ≺ q′. (intersubstitutivity)
If p ≺ q then either p ≺ r or r ≺ q. (virtual connectivity)

Definition 4.13. [8] Let K be a belief set and ≺ a relation over K. Then, for all p, q
and r ∈ K, ≺ is a regular hierarchy over K if and only it satisfies:

If p ≺ q and q ⊢ r, then p ≺ r. (continuing-up)
If p ⊢ q and q ≺ r, then p ≺ r. (continuing-down)

Theorem 4.33. [8, 289] Let K be a belief set and − an operation on K. Then − is a
safe contraction, based on a regular and virtually connected hierarchy ≺ over K, if
and only if − is a transitively relational partial meet contraction.

Additional results on safe contraction, including characterizations of the effects on
− of various properties of ≺, have been obtained by Rott [289] and Rott and Hansson
[301].



Chapter 5
Criticism of the Model

Although the AGM model is commonly considered to be the standard model of
belief change, it has been subject to extensive criticism. In this chapter we make a
résumé of this criticism. Much of the critical discussion has referred either to the
postulates for partial meet contraction and revision, or to various aspects of the use
of belief sets to represent belief states.

For additional elaborations on philosophical issues relating to the AGM model,
see also [165, 190, 294].

5.1 The Recovery Postulate and Minimal Change

One of the basic principles of the AGM theory [4] is that belief changes should
take place with minimal loss of previous beliefs. In the opinion of the AGM trio,
the postulate of recovery guarantees minimal losses of contents in the contraction
process [133, p. 65] [238, p. 352] [241, p. 478]. Recovery is based on the intuition
that “it is reasonable to require that we get all of the beliefs ... back again after first
contracting and then expanding with respect to the same belief” [130]. This can be
exemplified as follows:

Example 5.1. [163] I believed that I had my latchkey on me (p). Then I felt in my
left pocket, where I usually keep it, and did not find it. I lost my belief in p (but
without starting to believe in ¬p instead). Half a second later, I found the key, and
regained my belief in p.

However, counter-examples have been constructed in which recovery seems to give
rise to implausible results:

Example 5.2. [148] I believed that Cleopatra had a son (s). Therefore I also believed
that Cleopatra had a child (c or equivalently s∨d where d denotes that Cleopatra had
a daughter). Then I received information that made me give up my belief in c, and I
contracted my belief set accordingly, forming K−c. Soon afterwards I learned from
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a reliable source that Cleopatra had a child. It seems perfectly reasonable for me to
then add c (i.e., s∨d) to my set of beliefs without also reintroducing s.

This pattern is incompatible with recovery, and therefore also with partial meet con-
traction. The problem (if we see it as such) is that every element of K ⊥ (s∨ d)
has s∨ d → s as one of its elements, and therefore s∨ d → s is also an element of
K−(s∨d). Consequently, (K−(s∨d))+(s∨d) implies s.

Example 5.3. [157]1 I previously entertained the two beliefs, “x is divisible by 2”
(p) and “x is divisible by 6” (q). When I received new information that induced me
to give up the first of these beliefs (p), the second (q) had to go as well (since p
would otherwise follow from q).
I then received new information that made me accept the belief “x is divisible by 8.”
(r). Since p follows from r, (K− p)+ p is a subset of (K− p)+ r; thus by recovery I
obtain that “x is divisible by 24” (s), contrary to intuition.

This example shows that retaining the sentence p→ q after contraction of K by p
gives rise to unintuitive results. There seem to be cases when this sentence has to be
removed. Due to recovery, AGM contraction cannot eliminate it.

Makinson [241, p. 478] noted that “as soon as contraction makes use of the no-
tion ‘y is believed only because of x’, we run into counterexamples [to recovery]”.
He argued that this is provoked by the use of a justificatory structure that is not rep-
resented in the belief set and that, without this structure, recovery can be accepted;
or, in Makinson’s words, it can be accepted in a “naked” theory. In [161], Hansson
replied: “Actual human beliefs always have such a justificatory structure (...). It is
difficult if not impossible to find examples about which we can have intuitions, and
in which the belief set is not associated with a justificatory structure that guides our
intuitions. Against this background, it is not surprising that, as Makinson says, re-
covery ‘appears to be free of intuitive counterexamples’ in which the belief set is
not associated with a justificatory structure. It also seems to be free of confirming
examples of this kind”. Glaister argued that the problem exhibited in the counterex-
amples dissolves if we pay sufficient attention to exactly what is to be contracted.
In the Cleopatra case, he claims, the contraction is more accurately represented by
a multiple contraction by the set {s∨d, s∨¬d,¬s∨d} than by s∨d [141].

Niederée [259] pointed out several implausible formal properties that follow
from recovery:

Observation 5.1. [259] Let K be a belief set and p ∈ K. Then, regardless of whether
or not q is in K, recovery together with closure implies that:

1. q→ p ∈ K−(p∨q),
2. p ∈ (K−(p∨q))+q,
3. ¬q ∈ (K−(p∨q))+¬p.

1 We use here the modified version introduced in [105].
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As we mentioned in Section 3.5, operations that satisfy the other five basic con-
traction postulates but not recovery are called withdrawals [239]. In the literature
several withdrawals have been proposed [58, 95, 105, 223, 224, 250, 302].

An obvious reaction to these difficulties would be to replace recovery by some
other postulate that puts a limit to how much can be removed in a contraction. How-
ever, no plausible such alternative postulate has been presented. In particular, al-
though the following postulates are more intuitively appealing, they are equivalent
to recovery in the presence of the other basic AGM postulates:

If q ∈ K and q ∉ K − p then there is some set K′ such that K − p ⊆ K′ ⊆ K and
p ∉Cn(K′) but p ∈Cn(K′∪{q}). (relevance) [146]

If q ∈ K and q ∉ K− p then there is some set K′ such that K′ ⊆ K and p ∉Cn(K′)
but p ∈Cn(K′∪{q}). (core-retainment) [148]

If q ∈ K and q ∉ K− p then K− p /⊢ p∨q. (disjunctive elimination) [91]

5.2 The Success Postulates

Partial meet revision satisfies the following postulate:

Revision success: p ∈ K ∗ p

Several authors have found this to be an implausible feature of belief revision, even
if p is not a contradiction. Hence Cross and Thomason pointed out that a system
obeying this postulate

“is totally trusting at each stage about the input information; it is willing to give up what-
ever elements of the background theory must be abandoned to render it consistent with the
new information. Once this information has been incorporated, however, it is at once as
susceptible to revision as anything else in the current theory.

Such a rule of revision seems to place an inordinate value on novelty, and its behaviour
towards what it learns seems capricious.” [65]

Similarly, one of the AGM postulates for partial meet contraction:

Contraction success: If /⊢ p, then p ∉ K − p,

has been contested on the grounds that we should “allow a reasoner to refuse the
withdrawal of p not only in the case where p is a logical truth. There may well
be other sentences (‘necessary truths’) which are of topmost importance for him”
[290, p. 54]. Both with respect to revision success and contraction success, a com-
mon strategy among critics has been to construct AGM-style operations that do not
always give primacy to the new information. (See Chapter 8.)
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5.3 Remainder Sets: Information vs. Informational Value

Some researchers have argued that remainder sets retain “too much information”.
According to Levi [222, 223], some of the information in the belief set may have
no value for the inquiring agent; consequently, the agent tries to retain as much
of the valuable information as possible, instead of as much of the information as
possible. He argued that measures of information should be replaced by measures of
informational value,2 and proposed an alternative construction, based on saturatable
sets: H is a saturatable set with respect to p if and only if H =Cn(H) and Cn(H∪
{¬p}) ∈ L ⊥⊥. Furthermore, S (K, p) is the set of saturatable sets with respect to
p that are subsets of K. As Alchourrón and Makinson proved, K⊥p ⊆ S (K, p) [5].
Partial meet Levi contraction, based on a selection among all the saturatable subsets
of K with respect to p, is defined as K − p = ⋂γ(S (K, p)), where γ is a selection
function defined in the same way as in the AGM account. Hansson and Olsson [193]
proved that an operation − on K is a partial meet Levi contraction if and only if it
satisfies closure, inclusion, vacuity, success, extensionality, and failure.

The main problem with this construction is that it allows for very drastic
contractions. For instance, the following rather extreme operation is a partial meet
Levi contraction: [193, pp. 111–112]

K− p = {
K if p ∉ K or ⊢ p
Cn(∅) otherwise

5.4 The Expansion Property

It follows from the basic AGM postulates that the revision operation satisfies the
following property:

If K ⊬ ¬p then K ∗ p =Cn(K∪{p}). (expansion property of revision)

The expansion property of revision is just as tenacious as the recovery property of
contraction. In the spheres model, it follows from the assumption that the possible
worlds that are compatible with the present belief set form the innermost sphere
(as in Figure 4.7). In the original AGM formulation of partial meet revision it fol-
lows from the Levi identity in combination with the contraction postulate vacuity.3

However, it is easy to find examples in which it does not seem plausible:

2 “... when seeking to answer a question, not all new information is relevant to the question being
asked. This is, perhaps, the chief of several reasons why measures of informational value ought to
be carefully distinguished from measures of information” [222, p. 123].
3 According to the Levi identity, K ∗ p =Cn((K −¬p)∪{p}). When K ⊬ ¬p, vacuity yields K −
¬p = K.
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Example 5.4. [151] John is a neighbour about whom I initially know next to noth-
ing.

Case 1: I am told that he goes home from work by taxi every day (t). This makes
me believe that he is a rich man (r).

Case 2: When told t, I am also told that John is a driver by profession (d). In this
case I am not made to believe that he is a rich man (r).

In case 1 we have r ∈ K ∗ t, and due to the expansion property K ∗ t =Cn(K ∪{t}).
Since K is logically closed it follows that t→ r ∈K. In case 2, the expansion property
yields K ∗ (t&d) = Cn(K ∪ {t&d}). Combining this with t → r ∈ K we obtain r ∈
K ∗(t&d), contrary to the description of case 2.

This example exemplifies a quite common pattern of belief change: When we
acquire a new belief that does not contradict our previous beliefs (such as t in the
example), we often include in the outcome some additional belief (such as r in the
example) that does not follow deductively but nevertheless serves to make the belief
set more complete and/or more coherent.

The expansion property can also go wrong in the opposite direction, as illustrated
in the following example:

Example 5.5. Valentina was uncertain whether or not her husband is unfaithful to
her (u), but she still believed that her husband loves her (l). However, when she
learnt that he is unfaithful to her, she lost her belief that he loves her.

In this case we have l ∈ K and K ⊬ ¬u. The expansion property of revision requires
that K ∗u =Cn(K∪{u}); thus l ∈ K ∗u, contradicting the plausible pattern of belief
change exhibited in the example.

The expansion property of revision has been much less discussed than the re-
covery property of contraction, but it is no less problematic and no less difficult to
remove from the AGM framework. Both properties have provided impetus for the
development of alternative frameworks.

In [268] and [269], Pagnucco and coworkers introduced a new belief change op-
eration, abductive expansion. Unlike AGM expansion (consisting in K+p =Cn(K∪
{p})), in abductive expansion the agent also incorporates a justification or explana-
tion of the new belief. The justification is the “abduction” of a formula p and it can
be defined as follows:

Definition 5.1. [269] Let K be a belief set. An abduction function for K is a function
f such that for each sentence p:

1. If K∪{p}) /⊢ �, then K∪{ f (p)} ⊢ p and K∪{ f (p)} /⊢ �
2. If K∪{p}) ⊢ �, then f (p) = ⊺
3. If ⊢ p↔ p′, then ⊢ f (p)↔ f (p′)

Definition 5.2. ⊕ is an abductive expansion for K if and only if there is an abduction
function f fot K such that K⊕ p = K+{ f (p)} for all p.
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The postulates that characterize abductive expansion are:

K⊕ p is a belief set. (closure)
If ¬p /∈ K, then p ∈ K⊕ p. (limited success)
K ⊆ K⊕ p. (inclusion)
If ¬p ∈ K, then K⊕ p = K. (vacuity)
If ¬p /∈ K then ¬p /∈ K⊕ p. (consistency)
If ⊢ p↔ q, then K⊕ p = K⊕q. (extensionality)

For the supplementary level, disjunctive factoring is added:

Either K⊕ (p∨q) = K⊕ p, or K⊕ (p∨q) = K⊕q, or K⊕ (p∨q) = (K⊕ p)∩
(K⊕q). (disjunctive factoring)

A semantic account of abduction can be based on Grove’s systems of spheres.
The construction is very similar to the one used in AGM belief revision. However,
whereas ∥K∥ is the innermost sphere in AGM revision, in abductive expansion there
may be spheres that are proper subsets of ∥K∥.

5.5 Are Belief Sets Too Large?

Belief sets have been criticized for being too extensive in two important respects that
are both problematic from the viewpoint of cognitive realism: their logical closure
and their infinite structure.

The use of a logically closed belief set to represent the belief state has important
implications. In particular it means that all beliefs are treated as if they have inde-
pendent status. Suppose you believe that you have your keys in your pocket (p). It
follows that you also believe that either you have your keys in your pocket or the
Archbishop of York is a Quranist Muslim (p∨q). However, p∨q has no independent
standing; it is in the belief set only because p is there. Therefore, if you give up your
belief in p we should expect p∨q to be lost directly, without the need for any mech-
anism to select it for removal. In the AGM framework, however, “merely derived”
beliefs such as p∨q have the same status as independently justified beliefs such as
p. Belief base models (to be discussed in Chapter 6) have largely been constructed
in order to distinguish between these two types of beliefs.

The logical closure of belief sets is also problematic from another point of view.
In a study of the philosophical foundations of AGM, Hans Rott pointed out that the
theory is unrealistic in its assumption that epistemic agents are “ideally competent
regarding matters of logic. They should accept all the consequences of the beliefs
they hold (that is, their set of beliefs should be logically closed), and they should
rigorously see to it that their beliefs are consistent” [294].4 In the same article he ar-
gued that the AGM model is not based on a principle of minimal change, something
that has often been taken for granted.

4 See Section 10.3 for resource-bounded agents.
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However, as we noted in Section 3.2, logical closure only requires that the agent
be able to draw the inferences that have been incorporated into the consequence
operation Cn, and in the minimal case this does not go beyond classical senten-
tial truth-functional logic. Furthermore, Isaac Levi has proposed that the belief set
K should be interpreted as containing the statements that the agent is committed
to believing, rather than those that she actually believes in [220, 222]. Such an in-
terpretation may have other problems, but it defuses problems created by the high
demands on inferential competence that seem to follow from logical closure.

Since actual human agents have finite minds, a good case can be made that a cog-
nitively realistic model of belief change should be finitistic, and this in two senses.
First, both the original belief set and the belief sets that result from a contraction
should be finite-based, i.e., obtainable as the logical closure of some finite set. Sec-
ondly, the outcome set, i.e., the class of belief sets obtainable by contraction from
the original belief set ({X ∣ (∃p)(X = K − p)}), should be finite [153, 179]. Partial
meet contraction does not in general satisfy either of these two finitistic criteria. To
the contrary, even if the original belief set K is finite-based, the standard AGM ax-
ioms do not ensure that the outcome K − p of contracting it by a single sentence p
is also finite-based [169].5 And even if both K and K − p are finite-based, the pro-
cedure that takes us from K to K − p involves a choice among infinitely many sets
(the elements of K⊥p), none of which is finite-based. Such a procedure does not
seem to satisfy reasonable criteria of cognitive realism. This has led to the develop-
ment of finitistic models such as belief base models (Chapter 6) and specified meet
contraction (Section 4.3).

5.6 Lack of Information in the Belief Set

Belief sets have been criticized not only for being too large but also for lacking
important information.

Most importantly, AGM contraction or revision in its original form is a “one
shot” operation. After partial meet contraction of K by p we obtain a new belief set
K− p but we do not obtain a new selection function to be used in further operations
on this new belief set. In other words, the original AGM framework does not satisfy
the principle of categorial matching, according to which the representation of a
belief state after a change should have the same format (and contain the same types
of information) as the representation of the belief state before the change6 [139]. In
studies of iterated revision, various ways to extend the belief state representation to
solve this problem have been investigated. (See Chapter 7.)

5 Unless, of course, the language L is logically finite, by which is meant that it does not contain
an infinite set of logically non-equivalent sentences. Arguably, this is a strong and implausible
condition, since it excludes the possibility of expressing natural numbers of unlimited size.
6 However, a fairly small rearrangement of the AGM definition is sufficient to make iterated partial
meet contraction possible. We will return to that in Section 7.3.



Chapter 6
Belief Bases

It was understood from the beginning that the use of logically closed sets of sen-
tences to represent belief states is not cognitively realistic. In an article published
in 1985 Makinson pointed out that “in real life, when we perform a contraction or
derogation, we never do it to the theory itself (in the sense of a set of propositions
closed under consequence) but rather on some finite or recursive or at least recur-
sively enumerable base for the theory” [238, p. 357]. The use of belief bases rather
than (logically closed) belief sets has turned out to increase the expressive power of
the belief change framework in important ways.

6.1 Representing Belief States with Belief Bases

Belief sets are very large entities. For instance, if p is in the belief set then so are
both p∨q and p∨¬q for any q in the language. Even for a very simple belief set
such as Cn(p), to contract by p involves making a choice between (excluding one or
both of) p∨q and p∨¬q for any q in the language. For computer implementations,
the use of finite belief bases is a necessity.1

A belief base is a set A of sentences such that a sentence p is believed if and only
if A⊢ p. Obviously, to each belief base A corresponds a belief set Cn(A). Important
distinctions can be introduced through the use of belief bases [66, 94, 114, 116, 146,
147, 150, 155, 255, 293, 327]. Although belief bases need not be finite, most work
on them has focused on finite bases.

There are two opposing trends in the use of belief bases to represent the beliefs
of an epistemic agent. One approach, supported by Dalal [66], is associated with
a coherentist epistemic representation in which all elements of the belief set have
equal status, and belief bases are a merely expressive resource. This interpretation
requires that the outcome of a belief change operation is the same for different belief
base representations of the same belief set. This principle is known as irrelevance of

1 For an overview of the computational costs of performing changes on belief bases see [257].
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syntax. For instance, if Cn(A)=Cn(B), then Cn(A− p)=Cn(B− p) and Cn(A∗ p)=
Cn(B∗ p).

In the other approach, the elements of the belief base A have another (and typi-
cally higher) epistemic status than those elements of Cn(A) that are not in A. Con-
sider the following example [167]: Suppose that the belief set contains the sentence
p, “Shakespeare wrote Hamlet”. Due to logical closure it then also contains the sen-
tence p∨q, “Either Shakespeare wrote Hamlet or Charles Dickens wrote Hamlet”.
The latter sentence is a “mere logical consequence” that should have no standing
of its own, and it will therefore not be an element of the belief base. In this model,
changes are made on the belief base. The intuition is that a sentence that is merely
derived from others cannot survive if the beliefs that support it are removed. For
another example, Susan believes that the moon rotates around the earth (p). She
also believes that her copy of Don Quijote is on her bedside table (q). Therefore,
she believes that the moon rotates around the earth if and only if her copy of Don
Quijote is on her bedside table (p↔ q). When entering the bedroom, she sees that
the book is not on the nightstand as she had expected. She acquires the new belief
¬q and consequently she cannot retain both her previous beliefs p and p↔ q. Ac-
cording to the AGM approach (and other belief set approaches), both p and p↔ q
are elements of the belief set on which choices are made, and she must make a
choice which (if any) of them to retain. In the belief base approach p is in the belief
base but p↔ q is a merely derived belief that disappears automatically when q is
removed. It is not subject to any choice. This use of belief bases makes it possible to
distinguish between different ways to hold the same beliefs. For instance A1 = {p,q}
and A2 = {p∧q} have the same logical consequences, and consequently, they gen-
erate the same belief set. However, the difference between A1 and A2 is not just a
“notational bondage” that should be straightened out by some process of “articula-
tion” (Belnap [30], cited by Rott in [293]). In this case A and B represent genuinely
different belief states.

Another important feature of belief bases is that they allow us to express the dif-
ference between different inconsistent belief states. This is not possible in the belief
set approach, since there is only one inconsistent belief set. If K is inconsistent, then
K =L. In contrast, the following two belief bases:

A1 = {p,¬p,q1,q2,q3,q4,q5,q6} and
A2 = {p,¬p,¬q1,¬q2,¬q3,¬q4,¬q5,¬q6}

are different although they have the same logical closure. We can expect A1 −¬p
and A2−¬p to be different consistent belief bases. This is of course a more sensible
way to deal with inconsistencies than the conflation of all inconsistencies that is ne-
cessitated in operations on belief sets. Actual epistemic agents can find themselves
in an inconsistent state, and they are able to extricate themselves from it without
collapsing all distinctions. On local inconsistencies in belief bases, see [195].
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6.2 Change Operations on Belief Bases

In order to define operations of change on belief bases, largely the same construc-
tions can be applied as for belief sets. The expansion operation for a belief base A
is defined as A+ p = A∪{p}.

Just as for belief sets, partial meet contraction can be defined in terms of re-
mainder sets, such that for all p: A− p = ⋂γ(A⊥p). Hansson [147] axiomatically
characterized this operation:

Theorem 6.1. Let A be a belief base. A function − on A is a partial meet base
contraction for A if and only if it satisfies:

If /⊢ p , then A− p /⊢ p. (success)
A− p ⊆ A (inclusion)
If q ∈ A and q /∈ A− p, then there exists some A′ such that A− p ⊆ A′ ⊆ A and
p /∈Cn(A′) but p ∈Cn(A′∪{q}). (relevance)
If p ∈Cn(A′) if and only if q ∈Cn(A′) for all subset A′ of A, then A− p = A−q.
(uniformity)

Success and inclusion are just adapted from belief sets to belief bases. Relevance
has much the same function as recovery has for belief sets, namely to prevent un-
necessary losses of beliefs. It requires of an excluded sentence q that it contributes
in some way to the fact that A implies p. Uniformity postulates that if two sentences
p and q have the same behaviour in a belief base A, i.e., if they are implied by ex-
actly the same subsets of A, then the outcomes of contracting by p and by q should
be identical.

Observation 6.1. [163, p. 71]

1. If − satisfies inclusion and relevance, then it satisfies

If ⊢ p, then A− p = A. (failure)
If A /⊢ p, then A− p = A. (vacuity)

2. If − satisfies uniformity, then it satisfies

If ⊢ p↔ q, then A− p = A−q. (extensionality)

Kernel contraction can also be applied to belief bases. Thus, we can define a kernel
base contraction for a base A based on an incision function σ such that for all p:
A− p = A∖σ(Ay p). Hansson [154] axiomatically characterized this operation:

Theorem 6.2. Let A be a belief base. A function − on A is a kernel base contraction
for A if and only if it satisfies: success, inclusion, uniformity and

If q ∈ A and q /∈ A− p, then there exists some A′ such that A′ ⊆ A and p /∈Cn(A′)
but p ∈Cn(A′∪{q}). (core-retainment)
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Just as for belief sets, a kernel base contraction is smooth if and only if for all
subsets A′ of A: If A′ ⊢ q and q ∈σ(Ay p), then A′∩σ(Ay p) ≠∅ [154]. A kernel
base contraction is relevant if and only if for all q ∈ σ(Ay p), there exists some X
such that (A∖σ(Ay p)) ⊆ X ⊆ A, X /⊢ p and X∪{q} ⊢ p [87].

Theorem 6.3. Let A be a belief base and − a kernel base contraction for A. Then:

1. [154] − is smooth if and only if it satisfies

A∩Cn(A− p) ⊆ A− p. (relative closure)

2. [87] − is relevant if and only if it satisfies relevance.

Since relevance implies core-retainment, it follows from Theorem 6.2 that all partial
meet base contractions are kernel base contractions. However, the converse impli-
cation does not hold. The following example shows that even if a kernel contraction
is smooth it need not be (reconstructible as) a partial meet contraction [163, pp. 91–
92]. Let p,q, and r be logically independent sentences, and let A = {p,q,r}. We then
have

Ay (p∧(q∨ r)) = {{p,q},{p,r}}.

Now let σ be such that

σ(Ay (p∧(q∨ r))) = {p,r}.

It can straightforwardly be verified that a function σ with this property can be a
smooth incision function for A. It follows that

A−σ (p∧(q∨ r)) = {q}.

To see that −σ cannot be reconstructed as a partial meet contraction, consider the
relevant remainder set:

A ⊥ (p∧(q∨ r)) = {{p},{q,r}}.

A selection function γ for A must select a non-empty subset of A ⊥ (p∧ (q∨ r)),
i.e. γ(A⊥ (p∧(q∨r))) is either {{p}},{{q,r}}, or {{p},{q,r}}. It follows that the
contraction outcome is either {p},{q,r}, or ∅. It cannot be {q}.

Contrary to partial meet and kernel contraction, epistemic entrenchment can-
not be straightforwardly transferred to a belief base framework. However, Williams
[332, 334, 335] defined an ensconcement relation on a belief base A as a transitive
and connected relation ⪯ that satisfies the following three conditions:2

2 p ≺ q means p ⪯ q and q /⪯ p.
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(⪯1) If q ∈ A∖Cn(∅), then {p ∈ A ∶ q ≺ p} /⊢ q.
(⪯2) If /⊢ p and ⊢ q, then p ≺ q, for all p,q ∈ A.
(⪯3) If ⊢ p and ⊢ q, then p ⪯ q, for all p,q ∈ A.

(⪯1) says that the formulae that are strictly more ensconced than p do not (even
conjointly) imply p. Conditions (⪯2) and (⪯3) say that tautologies are the most en-
sconced formulae. Given an ensconcement relation, a cut operation is defined by:

cutA(p) = {q ∈ A ∶ {r ∈ A ∶ q ⪯ r} /⊢ p}

Observation 6.2. [333]
If p ∈ A, then cutA(p) = {q ∈ A ∶ p ≺ q}.

We can define a base contraction operation − using the cut operation:

Definition 6.1. [333] Let A be a belief base and ⪯ an ensconcement relation. Then
− is an ensconcement-based contraction if and only if:

q ∈ A− p if and only if q ∈ A and either (i) p ∈Cn(∅) or (ii) cutA(p) ⊢ p∨q.

Definition 6.2. [333] Let A be a belief base and ⪯ an ensconcement relation. Then
− is a brutal base contraction if and only if:

q ∈ A− p if and only if q ∈ A and either (i) p ∈Cn(∅) or (ii) cutA(p) ⊢ q.

Ensconcement-based contraction is closely related to AGM contraction, whereas
brutal base contraction is closely related to severe withdrawal [288]3.

Ensconcement-based contraction and brutal base contraction have been axiomat-
ically characterized:

Theorem 6.4. [91, 100] Let A be a belief base. A function − on A is an
ensconcement-based contraction for A if and only if it satisfies: success, inclusion,
vacuity, extensionality, disjunctive elimination, 4 and:

A−(p∧q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

A− p, or
A−q, or (conjunctive factoring)
A− p∩K−q

If q ∈ A, p /∈ A−(p∧q) and q /∈ A−(q∧ r), then p /∈ A−(p∧ r). (transitivity)
If q ∈ A and {r ∈ A ∶ q /∈ A−(q∧ r)} /⊢ p, then q ∈ A− p. (EB1)
If q ∈ A− p then {r ∈ A ∶ r ∈ A−(r∧ p)} ⊢ p∨q. (EB2)

Theorem 6.5. [127] Let A be a belief base. A function − on A is a brutal base con-
traction for A if and only if it satisfies: success, inclusion, vacuity, failure, relative
closure, and:

3 For a thorough study of brutal base contraction, see [127].
4 See page 43.
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If A−q /⊢ p, then A−q ⊆ A− p. (strong inclusion)
If q ∈ A, A ⊢ p and A− p = A− q, then p ∈ Cn(A− q∪ {r ∈ A ∶ A− q = A− r}).
(uniform behaviour)

Williams [333] and Nebel [255] proposed the following way to define belief base
contractions, where ÷ is an operation for belief sets:

A− p = (Cn(A)÷ p)∩A

Fermé, Krevneris and Reis [91] proved that, in the previous formula, − satisfies
success, inclusion, vacuity, extensionality and disjunctive elimination if and only if
÷ is a partial meet contraction. They call these operations basic AGM-related base
contractions.

6.3 Belief Base Revision from Belief Base Contraction

As we mentioned above, one of the most important advantages of belief bases is
that they make it possible to distinguish between different inconsistent belief states.
This feature can be used to construct two substantially different types of revision
operations based on contraction, depending on whether the negation of the added
sentence is contracted before or after its addition:

A∗ p = A−¬p+ p (internal revision, Levi identity) [4]
A∗ p = A+ p−¬p (external revision, reversed Levi identity) [152]

The second of these options is not viable for a belief set, since if ¬p ∈K then the first
of its two suboperations results in the set K+ p that contains the whole language and
therefore removes all traces of the original belief set. Internal and external revision
have both been axiomatized:

Theorem 6.6. [152] The operation ∗ is an operation of internal partial meet revision
for a belief base A if and only if it satisfies:

A∗ p ⊢ p (success)
A∗ p ⊆ A∪{p} (inclusion)
A∗ p is consistent if p is consistent. (consistency)
If q ∈ A and q /∈ A ∗ p, then there is some A′ such that A ∗ p ⊆ A′ ⊆ A, A′ is
consistent but A′∪{q} is inconsistent. (relevance)
If for all A′ ⊆ A, A′ ∪{p} is inconsistent if and only if A′ ∪{q} is inconsistent,
then A∩(A∗ p) = A∩(A∗q). (uniformity)

Theorem 6.7. [152] The operation ∗ is an operation of external partial meet
revision if and only if it satisfies success, inclusion, consistency, relevance, and:
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If p and q are elements of A and it holds that for all A′ ⊆ A, A′∪{p} is inconsis-
tent if and only if A′∪{q} is inconsistent, then A∩(A∗ p) = A∩(A∗q). (weak
uniformity)
A∪{p}∗ p = A∗ p. (pre-expansion)

It can easily be shown with examples that pre-expansion does not hold for internal
partial meet revision, and that uniformity does not hold for external partial meet
revision [152]. Therefore, neither of these operations is a special case of the other.

The distinction between different inconsistent belief bases also makes it possible
to construct meaningful operations of consolidation, i.e., removal of inconsistency.
(See Chapter 8.)

6.4 Other Belief Base Approaches

Nebel has proposed belief base operations in which a complete, reflexive and tran-
sitive relation over the elements of the belief base is used to prioritize among its
elements [256]. This approach was further developed by Weydert who also related
it to the AGM postulates [329].

Di Giusto and Governatori have developed an approach in which the elements of
the belief base are divided into two categories, facts and rules. Facts are removed if
that is necessary to accommodate new facts. Rules are not removed but can instead
be changed. Hence, suppose that the belief base contains the fact a∧b and the two
rules a↣ c and b↣ c. After revision by the new fact ¬c, a new belief base can be
obtained that contains the facts a∧ b and ¬c and the two rules (a∧¬b) ↣ c and
(b∧¬a)↣ c [73].

Bochman has developed a theory of belief revision in which an epistemic state is
represented by a triple ⟨S ,<, l⟩, where S is a set of objects called admissible belief
states, < a strict preference relation on these states, and l a function that assigns a
(logically closed) belief set to each element of S . One and the same belief set may
be assigned to several elements of S . This structure shares many features with belief
bases [36].

It is commonly assumed that the belief base approach corresponds to a foun-
dationalist epistemology, whereas the original AGM framework that applies oper-
ations of change directly to the belief set represents a coherentist view of belief
change. Gärdenfors has provided the most thorough justification of this interpre-
tation [134]. Del Val claimed that the two approaches are equivalent [68]. Doyle
accepted Gärdenfors’s analysis of the relationship between the belief set/belief base
and coherentism/foundationalism distinctions. However, he argued that the funda-
mental concern for conservatism that Gärdenfors appealed to in his defence of co-
herentism applies equally to the foundationalist approach [79]. A more radical crit-
icism was ventured in [194] where it was argued that the original AGM approach
is incompatible with important characteristics of coherentism. In [164] Hansson
claimed that the application of partial meet contraction to belief bases comes much
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closer to expressing coherentist intuitions than their application directly to belief
sets.

6.5 Base-Generated Operations on Belief Sets

Operations on a belief set can be constructed by assigning to it a belief base and
an operation on that belief base. Such operations will be called base-generated, and
they can be introduced in the following style:

Definition 6.3. [153] An operation − on a belief set K is a base-generated partial
meet contraction if and only if there is a belief base A for K and an operation ÷ of
partial meet contraction for A such that for all sentences p: K− p =Cn(A÷ p).

Other types of base-generated contraction, such as base-generated kernel contrac-
tion, are defined in the same way.

Let − be a base-generated operation on a belief set K, and let A be the base and
÷ the operation on A from which − is generated. It follows directly that if ÷ satisfies
success (i.e., A÷ p⊬ p if ⊬ p), then so does − (i.e., K− p⊬ p if ⊬ p). We can say that
success is a closure-invariant postulate. The same applies to several other common
contraction postulates:

Observation 6.3. [158] The following contraction postulates are closure-invariant:
inclusion, vacuity, success, extensionality and failure.

The first four of these postulates coincide with four of the five postulates for a with-
drawal in Makinson’s sense [239]. The fifth postulate for withdrawals is closure
(K ÷ p =Cn(K ÷ p)) that is satisfied by all base-generated contractions. Therefore,
all base-generated partial meet contractions are withdrawals. However, they do not
in general satisfy recovery, the sixth of the basic Gärdenfors postulates.

In order to fully characterize the properties of base-generated contractions, some
new postulates are needed:

Observation 6.4. [154] An operation − on a consistent belief set K is generated by
an operation of kernel contraction for a finite base for K if and only if − satisfies
closure, inclusion, vacuity, success, and:

There is a finite set A such that for every sentence p: K − p =Cn(A′) for some
A′ ⊆ A. (finitude)
If it holds for all r that p ∈ K − r if and only if q ∈ K − r, then K − p = K − q.
(symmetry)
If K−q⊈K− p, then there is some r such that K−r ⊬ p and (K−r)∪(K−q)⊢ p.
(weak conservativity)

By strengthening weak conservativity to conservativity, we obtain a characterization
of base-generated partial meet contraction:
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Observation 6.5. [153] An operation − on a consistent belief set K is generated
by an operation of partial meet contraction for a finite base for K if and only if −
satisfies closure, inclusion, vacuity, success, symmetry, finitude, and:

If K −q ⊈ K − p, then there is some r such that K − p ⊆ K − r ⊬ p and (K − r)∪
(K−q) ⊢ p. (conservativity)

Finitude is a fairly strong postulate that implies finite-based outcome and also en-
sures that there is only a finite set of possible contraction outcomes. Symmetry says
that if two beliefs stand or fall together, then they yield the same contraction out-
come. Conservativity and weak conservativity are two ways to express the require-
ment that in order for beliefs to be given up in the contraction by p they must in
some way contribute to the fact that the belief set implies p. The relation between
conservativity and weak conservativity is similar to that between relevance and core-
retainment.



Chapter 7
Iterated Change

An AGM contraction or revision takes us from a belief set to a new belief set. In
doing this, it makes use of a selection mechanism such as a selection function or
an entrenchment relation. However, it does not provide a new selection mechanism
to be used for further changes of the new belief set. The problem of constructing
models that allow for iterated change is one of the most studied problems in the
literature on belief change.

7.1 Revising Epistemic States

In order to represent iterated (repeated) belief change we need models in which
the outcome of a belief contraction or a belief revision can itself be contracted or
revised. This is not possible if the outcome of a contraction or revision consists only
of a new belief set. It also has to contain information on how that new belief set
will be changed in response to new inputs. Whereas standard AGM operations take
us from a complete belief state (belief set + change mechanism) to an incomplete
belief state (belief set only), for iterated change we need operations that take us from
a complete belief state to another complete belief state.

Accounts of iterated belief change have used different representations of the
change mechanism that is part of such a complete belief state. The most common of
these is a preorder on the set of possible worlds, or equivalently a complete sphere
system (cf. Section 4.1). The current belief set can be inferred from this preorder;
it is simply the intersection of the worlds in the highest equivalence class (inner-
most sphere). A standard operation of change such as those presented in Section 4.1
provides us with a new belief set, or equivalently, with the innermost sphere of a
new sphere system. To make additional changes possible, we need an operation of
change that gives rise to a new complete sphere system, from which the new belief
set can be inferred, and which can in its turn be subject to further changes, etc.

The most influential formulation of this approach is due to Darwiche and Pearl
[67]. They propose that the epistemic state contains in addition to the belief set a
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structure that commands the belief changes. The formal definition of an epistemic
state used by Darwiche and Pearl is:

Definition 7.1. [151, 67] Let there be a set E of objects called belief states. s is a
support function from E to P(L) such that for all Ψ ∈ E , s(Ψ) is a belief set.

If the elements of E are finite-based, then s can be replaced by a function B from
E to L such that B(Ψ) is a single sentence that is equivalent with the conjunction
of s(Ψ). Intuitively, s(Ψ) is the belief set associated with Ψ , and if s(Ψ) is finite-
based, then B(Ψ) is a single sentence representing it.

Darwiche and Pearl modified the Katsuno and Mendelzon postulates (R1)-(R6)
for revision to work for epistemic states whose associated belief sets are represented
by a single sentence.

(CR1) B(Ψ ∗ p) ⊢ p
(CR2) If B(Ψ)∧ p ⊬ � then ⊢ B(Ψ ∗ p)↔ B(Ψ)∧ p.
(CR3) If p ⊬ �, then B(Ψ ∗ p) ⊬ �.
(CR4) If Ψ1 =Ψ2 and ⊢ p1↔ p2 then ⊢ B(Ψ1 ∗ p1)↔ B(Ψ2 ∗ p2).
(CR5) B(Ψ ∗ p)∧q ⊢ B(Ψ ∗(p∧q))
(CR6) If B(Ψ ∗ p)∧q ⊬ � then B(Ψ ∗(p∧q)) ⊢ B(Ψ ∗ p)∧q.

This modification involves a weakening of the extensionality postulate to (CR4)
that allows the outcome of a belief revision to be different for different belief states
although they have the same belief set.

Darwiche and Pearl introduced four additional postulates that are known as the
DP-postulates for iterated revision:

(DP1) If q ⊢ p then ⊢ B((Ψ ∗ p)∗q)↔ B(Ψ ∗q).
(DP2) If q ⊢ ¬p, then ⊢ B((Ψ ∗ p)∗q)↔ B(Ψ ∗q).
(DP3) If B(Ψ ∗q) ⊢ p, then B((Ψ ∗ p)∗q) ⊢ p.
(DP4) If B(Ψ ∗q) /⊢ ¬p, then B((Ψ ∗ p)∗q) /⊢ ¬p.

Postulate (DP1) states that the later evidence q cannot discredit the previous evi-
dence p if q implies p (thus, in a sense, making p redundant). Postulate (DP2) states
that if q contradicts the previous evidence p, then q completely eradicates the effect
of p on the belief set. Postulate (DP3), on the other hand, ensures that p is retained
after accommodating the more recent evidence q, given that p would be believed
after revision by q. Lastly, postulate (DP4) stipulates that if p is not contradicted
after revision by q, then it should not be contradicted after revision by first p, then
q.

Darwiche and Pearl relate (DP1)-(DP4) with properties of total preorders in the
possible world context. A global faithful assignment is defined as in Definition 4.4:

Definition 7.2. [205, 67] Let Ψ be a belief state. A total preorder ≤Ψ on possible
worlds, with the strict part <Ψ and the symmetric part ≃Ψ , is a global faithful as-
signment associated with the belief state Ψ if and only if the following conditions
hold:
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1. If B(Ψ) ⊆ω and B(Ψ) ⊆ω′, then ω ≃Ψ ω′.
2. If B(Ψ) ⊆ω and B(Ψ) /⊆ω′, then ω <Ψ ω′.

Theorem 7.1. [67] Let Ψ be a belief state:

1. An operation ∗ on Ψ satisfies (CR1)-(CR6) if and only if there is a global faith-
ful assignment ≤Ψ for Ψ such that Ψ ∗ p =⋂(min(∥p∥,≤Ψ)).

2. ∗ also satisfies (DP1)-(DP4) if and only if ≤Ψ satisfies:

(DPR1) If p ∈ω1 and p ∈ω2, then ω1 ≤Ψ ω2 if and only if ω1 ≤Ψ∗p ω2.
(DPR2) If ¬p ∈ω1 and ¬p ∈ω2, then ω1 ≤Ψ ω2 if and only if ω1 ≤Ψ∗p ω2.
(DPR3) If p ∈ω1, ¬p ∈ω2 and ω1 <Ψ ω2, then ω1 <Ψ∗p ω2.
(DPR4) If p ∈ω1, ¬p ∈ω2 and ω1 ≤Ψ ω2, then ω1 ≤Ψ∗p ω2.

According to (DPR1), the order among the p-worlds remains unchanged after revi-
sion by p. According to (DPR2), the order among the ¬p-worlds remains unchanged
after revision by p. (DPR3) says that if a p-world is higher ranked than a ¬p-world,
then it remains so after revision by p. (DPR4) says in addition that if a p-world
is equally ranked with a ¬p-world, then after revising by p it either remains so or
improves its relative position.

(DP1)-(DP4) have become the benchmark for iterated revision, and new propos-
als are almost invariably compared to them. However, convincing counterexamples
can be given against each of the DP postulates. Stalnaker [319, pp. 205–206] has
presented a counterexample to DP1. Counterexamples to DP2 have been proposed
by Konieczny and Pino Pérez [212] and by Stalnaker [319, pp. 205–206]. (See also
the discussions of DP2 by Lehmann [219] and by Jin and Thielscher [201].)

Jin and Thielscher [201] and Booth and Meyer [47] have pointed out that DP3
and DP4 are too permissive since they do not rule out operations in which all newly
acquired information is given up as soon as an agent learns a fact that contradicts
some of its current beliefs. Counterexamples to DP3 and DP4 have been given in
[189]. The following is a counterexample to DP3:

Example 7.2. [189] During my time as a clerk at the headquarters of Destination
Paradise airlines, service technicians discovered cracks in the petrol tanks of some
of the older planes. These airplanes were always immediately grounded until the
tank had been replaced by a new one. But some of the pilots were worried that deep
cracks could develop in a few days. Such an occurrence in the interval between two
service inspections could potentially cause a severe accident.

Case 1: At 9 a.m. I overheard a conversation in the coffee room. One of the
secretaries said: “I have been told that airplane DP3 has a crack in the petrol tank.”
This made me believe that DP3 had, at 9 a.m., a crack in the petrol tank (p). It also
made me believe that the plane was in for repair. One hour later my boss told me: “I
have been called to a meeting. There was a terrible accident just a few minutes ago.
DP3 has caught fire in the air and crashed, and apparently there are few chances that
anyone has survived.” This made me believe that DP3 had crashed (q). It also made
me reverse my previous belief that it had a crack in its tank one hour ago, since in
that case it would not have been in service. Hence, K ∗ p∗q ⊬ p.
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Case 2: I did not overhear the coffee table conversation. But at ten o’clock my
boss told me that DP3 had just caught fire in the air and crashed (q). Since a crack
in the petrol tank was the only plausible cause of such an accident that I was aware
of, I now also believed that there had been a crack in the petrol tank at 9 a.m. that
day (p). Hence, K ∗q ⊢ p.

Jin and Thielscher [201] and Booth and Meyer [47] have independently proposed
the following condition (known as the independence postulate) instead of DP3 and
DP4:

(Ind) If B(Ψ ∗q) /⊢ ¬p, then B((Ψ ∗ p)∗q) ⊢ p.

Given the revision postulates (CR1)-(CR6), (Ind) is stronger than (DP3) and (DP4).
(DP1), (DP2) and (Ind) are characteristic of a family of operations called admissi-
ble revision operations [47]. In global faithful assignment, (Ind) corresponds to the
following postulate [201, 47]:

(R-Ind) If p ∈ω1, ¬p ∈ω2, and ω1 ≤Ψ ω2, then ω1 <Ψ∗p ω2.

7.2 Major Classes of Iterable Operations

In a model of iterated belief revision there may be more than one way to arrive at
one and the same belief set. Does it make any difference for further changes how we
arrive at it? We can divide iterable operations into three classes according to their
ability to remember the revision history and take it into account:

Operations without memory: In this case, each belief set is revised in a prede-
termined way, independently of how it was obtained, i.e.:

If B(Ψ ∗ p) = B(Υ∗ p), then B((Ψ ∗ p)∗q) = B((Υ∗ p)∗q).

Full meet revision is a trivial example of an iterable operation without memory.
Areces and Becher have analyzed this class of operations [10].

Operations with full memory: In this case the full history of changes is con-
served, so that rollbacks of previous changes are possible. Operations with full
memory have been proposed, for example, by Brewka [56], Lehmann [219],
and Konieczny and Pérez [212]. Falappa, Garcı́a, Kern-Isberner and Simari
proposed another type of revision in which discarded beliefs can be reused [89].

Operations with partial memory: In this case it makes a difference for future
revisions how a belief set was arrived at, but the information remembered is
not sufficient to reconstruct the previous states. Most of the proposed iterable
revision operations are of this type.

In a recent review Rott recognized three major types of iterable revision operations
on belief sets. They all have partial memory [299]:
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Conservative revision, originally called natural revision, has been studied by
Boutilier [54, 55] and Rott [297]. This operation is conservative in the sense
that it only makes the minimal changes of the preorder that are needed to accept
the input. In revision by p, the maximal p-worlds are moved to the bottom of
the preorder which is otherwise left unchanged. The main characteristics of this
operation are:

(Nat) If B(Ψ ∗ p) ⊢ ¬q, then B((Ψ ∗ p)∗q) = B(Ψ ∗q).
(CRNat1) If B(Ψ ∗ p) ⊆ω1 and B(Ψ ∗ p) /⊆ω2, then ω1 <Ψ∗p ω2.
(CRNat2) If B(Ψ ∗ p) /⊆ω1 and B(Ψ ∗ p) /⊆ω2, then ω1 ≤Ψ∗p ω2 if and only
if ω1 ≤Ψ ω2.

Moderate revision, also called lexicographic revision, was originally studied by
Nayak [253, 254]. When revising by p, this operation rearranges the preorder by
putting the p-worlds at the bottom (but preserving their relative order) and the
¬p-worlds at the top (but preserving their relative order). It has the following
properties:

(Lex) If q /⊢ ¬p, then B((Ψ ∗ p)∗q) ⊢ p.
(CRLex) If p ∈ω1 and ¬p ∈ω2, then ω1 <Ψ∗p ω2

Radical revision is similar to moderate revision, but it differs in making the new
belief irrevocable, i.e., impossible to remove. Segerberg characterized a class of
such operations axiomatically [309]. It is further investigated in [98]. In radical
revision by p based on a preorder of possible worlds, the relative order of the p-
worlds is retained whereas the ¬p-worlds are removed from the preorder, thus
becoming inaccessible. The main characteristic of this operation is:

(Irr) B((Ψ ∗ p)∗¬p) ⊢ �.
(CRIrr) For all ωi ∈W, ωi ⊂ B((Ψ ∗ p)∗¬p).

Delgrande, Dubois and Lang argue that since revision assumes a static world, there
is no reason why the outcome of an iterated revision should depend on the order
of the inputs. Therefore, they propose that iterated revision should take the form of
prioritized merging, a special case of multiple revision [70]. Several other types of
iterable operations have been proposed; see for instance [51, 43, 57, 203, 210, 260].

7.3 Making AGM Contraction Iterable

We noted in Section 7.1 that any AGM contraction, standardly defined, can only be
used for one particular belief set. Let us look more closely at the reason why this is
so:

Original definition of partial meet contraction: [4]
(1) If K ⊥ p ≠∅ then ∅ ≠ γ(K ⊥ p) ⊆ K ⊥ p.
(2) If K ⊥ p =∅ then γ(K ⊥ p) = {K}.
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(3) K− p =⋂γ(K ⊥ p)

Suppose that we wish to use the same selection function γ for two different belief
sets K1 and K2. Let ⊺ be a tautology. It follows from clause (2) that γ(K1 ⊥ ⊺) = {K1}
and γ(K2 ⊥ ⊺) = {K2}, thus γ(K1 ⊥ ⊺) ≠ γ(K2 ⊥ ⊺). But we also have K1 ⊥ ⊺ = K2 ⊥
⊺ = ∅, so for γ to be a function it must be the case that γ(K1 ⊥ ⊺) = γ(K2 ⊥ ⊺). We
can conclude from this contradiction that in this framework, each selection function
can only be used for one belief set.

However, this formal problem has a surprisingly simple solution. We can rear-
range the definition of partial meet contraction as follows:

Alternative definition of partial meet contraction:
(1’) γ(K ⊥ p) ⊆ K ⊥ p and if K ⊥ p ≠∅ then γ(K ⊥ p) ≠∅.
(2’) K− p =⋂γ(K ⊥ p) unless γ(K ⊥ p) =∅ in which case K− p = K.

As applied to a single belief set K, this definition is equivalent with the original
definition. The major difference is that it allows us to use one and the same selection
function for all belief sets. With this simple reconstruction, partial meet contraction
can be turned into a global operation, applicable to all belief sets. Since partial meet
revision is definable from partial meet contraction via the Levi identity, this means
that we have global AGM operations for both contraction and revision.

An obvious question to ask about this construction is: What properties does it
give rise to in global (iterated) change, in addition to the properties of the classical
operation that only works for a single belief set? The answer to that question may
be surprising:

Observation 7.1. [172]1 Let L be infinite, let K1 and K2 be logically closed, and
let p1 ∈ K1 ∖Cn(∅) and p2 ∈ K2 ∖Cn(∅). If K1 ⊥ p1 = K2 ⊥ p2 then K1 = K2 and
⊢ p1↔ p2.

Corollary 7.1. [172] Let X be a set of belief sets, and for each K ∈ X let γK be a
selection function for the set of all K-remainders.2 Then there is a selection func-
tion γ for the set of remainders of elements of X3 that gives rise to a partial meet
contraction γ such that γK(K ⊥ p) = γ(K ⊥ p) for all K ∈X and all sentences p.

The corollary tells us that any combination of (local) selection functions for each
belief set K can be unified into a single, global selection function. Furthermore, it
tells us what properties this construction gives rise to in addition to the properties of
the local operation. The answer is: none.

This means that with the alternative definition, a single AGM-style selection
function can be used to perform both contractions and revisions on all possible be-
lief sets, without imposing any constraints on the properties of these operations other
than the constraints already imposed by standard AGM operations on a single belief
set.
1 This does not hold for belief bases [152].
2 This is the set {X ∣ (∃p ∈L)(X ∈ K ⊥ p)}.
3 This is the set {X ∣ (∃K ∈X)(∃p ∈L)(X ∈ K ⊥ p)}.



Chapter 8
Non-Prioritized Change

In AGM revision, new information has primacy. This is mirrored in the success
postulate for revision. At each stage the system has total trust in the input infor-
mation, and previous beliefs are discarded whenever that is needed to consistently
incorporate the new information. This is an unrealistic feature since in real life, cog-
nitive agents sometimes do not accept the new information that they receive. There
may be different reasons for this: the new information contradicts highly entrenched
previous beliefs, the reliability of the source of the information is doubtful, or the
information is too complex to be accepted more than partially. Belief revision that
violates the success postulate is called non-prioritized belief revision.

8.1 Classification of Revision Operations

Revision operations can be classified with a focus on the revision process [162, 97]:

Integrated Revision/Choice. Choose among the originally believed sentences and
the input in one single step.
Examples: entrenchment-based AGM revision [4], update [206], entrenchment-
based and possible world variants of credibility-limited revision [191],
Schlechta’s and Rabinowicz’s revision [306, 274], revision by comparison [107]
and improvement operations [213].

Decision + Revision. (1) Decide whether to fully accept, partially accept, or reject
the input. (2) Revise when appropriate.
Examples: screened revision [242] and selective revision [101].

Contraction + Expansion. (1) Remove the negation of the input. (2) Add the input.
Examples: AGM revision via the Levi identity and internal revision of belief
bases [152].

Expansion + Contraction. (1) Add the input. (2) Remove its negation.
Example: external revision of belief bases [152].
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Expansion + Consolidation. (1) Add the input. (2) Regain consistency by contract-
ing by �.
Example: semi-revision [159, 261].

8.2 Some Constructions of Non-Prioritized Revision

In this section we will present some major proposals for the construction of non-
prioritized revision.

Makinson [242] proposed screened revision, a simple model of non-prioritized
belief revision. He introduced a set A of sentences that are immune to revision. The
outcome of revising by sentences that contradict K ∩A is identical to the original
belief set. If the input sentence is compatible with K ∩ A, then the belief set is
revised essentially in the AGM way. Formally, screened revision for a belief set K
is defined as follows:

K#A p = {
K ∗ p if p is consistent with K∩A.
K otherwise

where ∗ is an AGM revision function with the additional constraint that for all p,
K∩A ⊆ K ∗ p.

A more general approach, called generalized screened revision, was proposed in
[160]:

K# f p = {
K ∗ p if p is consistent with K∩ f (p).
K otherwise

where f is a function such that for each sentence p, f (p) is a set of sentences. ∗ is
a (modified) AGM revision function such that for all p, K ∩ f (p) ⊆ K ∗ p. Different
properties can be added to f . Makinson [242] proposed, for example, f (p) = {q ∶
p < q}, where < is a binary relation on the language.

Credibility-limited revision [191] is a revision model that is based on the assump-
tion that the new information must stay within our limit of credibility in order to be
accepted. The following example illustrates the underlying intuitions:

Example 8.1.

1. Carlos tells me: “Today I have lunch with Miguel.” I believe him.
2. Santiago tells me: “Today I have lunch with the King of Sweden and the Presi-

dent of the USA.” I don’t believe him.

In the first case, we are disposed to accept the new information, but in the second
case, our reaction is to reject it. The reason is that in the second case, the new belief
exceeds our credibility limit for new information. The assertion that the King of
Sweden and the President of the USA have lunch with Santiago is “too distant”
from our corpus of beliefs. Formally, credibility-limited revision is defined by a set
C, consisting of all the credible sentences of the language, and a standard operation
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∗ of revision:

K⊙ p = {
K ∗ p if p ∈ C
K otherwise

where ∗ is an AGM revision function and ⊙ is the credibility-limited revision in-
duced by ∗ and C.

This model has been axiomatically characterized, and it has also been developed
in terms of epistemic entrenchment and possible world models [191]. In [103] the
model was extended to belief bases and in [45] to iterated revision.

If a belief base is inconsistent, then it can be made consistent by removing enough
of its more dispensable elements. This operation is called consolidation. The consol-
idation of a belief base A is denoted by A!. A plausible way to perform consolidation
is to contract by falsum (contradiction), i.e., A! = A−� [147].

Unfortunately, this recipe for the consolidation of inconsistent belief bases does
not have a plausible counterpart for inconsistent belief sets. The reason is that since
belief revision operates within classical logic, there is only one inconsistent belief
set. Once an inconsistent belief set has been obtained, all distinctions have been lost,
and consolidation cannot restore them.

Consolidation can be combined with expansion to construct semi-revision, an
operation of non-prioritized revision for belief bases [159]:

A⊙ p = (A+ p)!

As a result of the consolidation, the input sentence may be discarded. Furthermore,
contrary to most other forms of non-prioritized revision, the consolidation process
may discard both p and ¬p. Therefore this model violates the “non-indifference
principle” (p ∈ K⊙ p or ¬p ∈ K⊙ p). Fuhrmann [118] extended this construction
to inputs that are belief bases or belief sets, A⊙ B = (A∪ B)!. Olsson proposed a
coherentist version of semi-revision, where coherence takes the place of consistency
[261]. Hansson and Wassermann proposed an operation that regains consistency
only in a local part of the belief base, the part that is relevant for p and ¬p [195].

Selective revision [101] introduces another way to deal with an input sentence:
Only a part of it can be accepted. The following example illustrates the practical
relevance of this option:

Example 8.2. [101] One day when you return back from work, your son tells you,
as soon as you see him: “A dinosaur has broken grandma’s vase in the living-room.”
You probably accept one part of the information, namely that the vase has been
broken, while rejecting the part of it that refers to a dinosaur.

An operation ⊙ of selective revision can be constructed from a standard revision
operation ∗ and a transformation function f from and to sentences:

K⊙ p = K ∗ f (p)

In the intended cases, f (p) does not contain any information that is not contained
in p (in other words, ⊢ p→ f (p)). By adding further conditions on f , various ad-
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ditional properties can be obtained for the operation of selective revision. Some
plausible such properties are:

⊢ f ( f (p))↔ f (p) (idempotence)
If ⊢ p→ q then ⊢ f (p)→ f (q). (monotony)
If ⊢ p↔ q then ⊢ f (p)↔ f (q). (extensionality)
If /⊢ ¬p, then /⊢ ¬ f (p). (consistency preservation)
/⊢ ¬ f (p) (consistency)
If K /⊢ ¬p, then ⊢ f (p)↔ p. (weak maximality)
Either ⊢ f (p)↔ p or ⊢ f (¬p)↔ ¬p. (disjunctive maximality)

Improvement operations [213] are another family of non-prioritized belief revision
operations. We present them in Section 10.2.

8.3 Non-Prioritized Contraction

The success postulate for contraction implies that all non-tautological beliefs are
retractable. As was observed by Rott [290, p. 54], this is not a fully realistic re-
quirement, since actual doxastic agents are known to have beliefs of a non-logical
nature that nothing can bring them to give up. In non-prioritized contraction some
non-tautological beliefs may be shielded from contraction.

An operation ÷ of shielded contraction [102] can be based on an ordinary con-
traction operation − and a setR of retractable sentences, so that:

K÷ p = {
K− p if p ∈R
K otherwise

This construction can be further specified by adding various requirements on the
structure ofR. It has close connections with credibility-limited revision [102, 242].
In [103] shielded contraction was characterized for belief bases.
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Multiple Change

In the original AGM model the input is a single sentence. This is a limitation of
the framework, since agents often simultaneously receive more than one piece of
information. In models of multiple change, the input is a (possibly infinite) set of
sentences. There are fundamental differences between iterated and (simultaneous)
multiple belief changes, i.e., K ∗ p∗q is not in general identical to K ∗{p,q}. How-
ever, the generalization of revision to the multiple case is simple if the input is finite:
Revision by the set {p1, ..., pn} corresponds to revision by the conjunction of its el-
ements, p1∧ ...∧ pn. It is much less obvious how to generalize contraction.

9.1 Choice and Package Contraction

Fuhrmann and Hansson identified two types of multiple contraction [121]. In choice
contraction, a set of sentences is considered to be removed from the belief set K if
and only if it is not a subset of the contraction outcome. Choice contraction can be
denoted by −∃, and its success condition is

B /⊆ K−∃ B, unless B ⊆Cn(∅).

In package contraction, B is considered to be removed from K if and only if all of
its elements have been removed. Package contraction can be denoted by −∀, and its
success condition is

B∩(K−∀ B) =∅, unless B∩Cn(∅) /=∅.

If B is finite, then choice contraction by B can plausibly be equated with standard
single-sentence contraction by the conjunction of all its elements. Package contrac-
tion cannot be reduced to contraction by a single sentence, and it is therefore the
most interesting of the two operations.
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The following postulates are plausible properties for package multiple contrac-
tion:

K−∀B =Cn(K−∀B) (p-closure)

K−∀B ⊆ K (p-inclusion)

If B∩K =∅, then K−∀B = K. (p-vacuity)

If B∩Cn(∅) =∅, then B∩(K−∀B) =∅. (p-success)

If for every sentence p in B there is a sentence q in C such that ⊢ p↔ q, and
vice versa, then K−∀B = K−∀C. (p-extensionality)

K ⊆Cn((K−∀B)∪B) (p-recovery)

If B is finite, then K ⊆Cn((K−∀B)∪B). (p-finite recovery)

If every subset X of K implies some element of B if and only if X implies some
element of C, then K−∀B = K−∀C. (p-uniformity)

If p ∈ K and p /∈ K−∀B, then there is a set K′ such that K−∀B ⊆ K′ ⊆ K and
B∩K′ =∅ but B∩Cn(K′∪{p}) ≠∅. (p-relevance)

If p ∈ K and p /∈ K−∀B, then there is a set K′ such that K′ ⊆ K and B∩K′ = ∅
but B∩Cn(K′∪{p}) ≠∅. (p-core-retainment)

The postulates p-closure, p-inclusion, p-vacuity, p-success, p-extensionality, p-
recovery and p-finite recovery are generalizations of the basic AGM postulates (for
contraction) that were originally presented in [146]. Analogously, the postulates p-
uniformity and p-relevance are generalizations of the postulates uniformity and rel-
evance for single sentence contraction [147, 149]. The postulate p-core-retainment
generalizes the single sentence contraction postulate core-retainment [108].

Observation 9.1. Let K be a belief set and −∀ a multiple contraction on K. Then:

• If −∀ satisfies p-inclusion and p-relevance, then it satisfies p-closure [121].
• If −∀ satisfies p-relevance, then it satisfies finite p-recovery [121].
• If −∀ satisfies p-inclusion, p-uniformity and p-relevance, then it satisfies p-

vacuity and p-extensionality [275].

9.2 Multiple Partial Meet Contraction

Most of the major AGM-related contraction operations have been generalized to
multiple package contraction. We therefore have a wide variety of such operations,
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including multiple partial meet contraction [146, 121, 225], multiple kernel con-
traction [108], multiple specified meet contraction [171], and a multiple version of
Grove’s sphere system [276, 92].

For partial meet contraction, the first step is to generalize the definition of re-
mainder sets. For any belief set K and set of sentences B, the remainders of K by B
are the maximal subsets of K that do not imply any element of B. K ⊥ B denotes the
remainder set of K by B.

The definition of a package selection function is a straightforward generalization
of the notion of a selection function (presented in Definition 3.6).

Definition 9.1. [146, 121] Let K be a belief set. A package selection function for K
is a function γ such that for all sets of sentences B:

1. If K ⊥ B is non-empty, then γ(K ⊥ B) is a non-empty subset of K ⊥ B, and
2. If K ⊥ B is empty, then γ(K ⊥ B) = {K}.

Finally we are in a position to introduce the definition of a partial meet multiple
contraction:

Definition 9.2. [146, 121] Let K be a belief set and γ a package selection function
for K. The partial meet package contraction on K that is generated by γ is the
operation −∀γ such that for all sets of sentences B:

K−∀γB =⋂γ(K ⊥ B).

Partial meet multiple contraction has been axiomatically characterized as follows:

Theorem 9.1. [121] Let K be a belief set and −∀ a multiple contraction on K. Then
−∀ is a partial meet package contraction if and only if it satisfies the postulates
p-inclusion, p-success, p-uniformity and p-relevance.

A partial meet package contraction on a belief set also satisfies the postulates p-
closure, finite p-recovery, p-vacuity and p-extensionality [121]. Li [225] has proved
that partial meet package contraction does not in general satisfy p-recovery in the
infinite case.

9.3 Multiple Kernel Contraction

Package kernel contraction was introduced in [108]. It is defined by means of kernel
sets, i.e., minimal subsets of a belief base A that imply some element of the set B:

Definition 9.3. [108] Let A and B be two sets of sentences. The package kernel set
of A with respect to B, denoted by A ⊥⊥P B, is the set such that X ∈ A ⊥⊥P B if and
only if:

1. X ⊆ A
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2. B∩Cn(X) ≠∅
3. If Y ⊂ X, then B∩Cn(Y) =∅.

The package incision function for (a set) A is, roughly speaking, an operation that
selects at least one element from each of the sets in A ⊥⊥P B, for any set B:

Definition 9.4. [108] A function σ is an incision function for A if and only if, for all
sets B:

1. σ(A ⊥⊥P B) ⊆⋃(A ⊥⊥P B)
2. If ∅ ≠ X ∈ A ⊥⊥P B, then X∩σ(A ⊥⊥P B) ≠∅.

We can now, finally, present the definition of package kernel contraction.

Definition 9.5. [108] Let σ be an incision function for A. The package kernel con-
traction ≈σ for A based on σ is defined as follows:

A≈σB = A∖σ(A ⊥⊥P B).

Package kernel contraction has been axiomatically characterized:

Theorem 9.2. [108] A multiple contraction −∀ for a set of sentences A is a package
kernel contraction if and only if it satisfies p-inclusion, p-success, p-uniformity and
p-core-retainment.

The last two theorems show that every package partial meet contraction is a package
kernel contraction.

9.4 Sphere-Based Multiple Contraction

Reis and Fermé [276] have presented the possible worlds counterpart of package
partial meet contraction. More precisely, they have shown how the remainders can
be defined in terms of possible worlds and, making use of that way of defining the
remainders, how package partial meet contractions can be defined as intersections
of (appropriate) sets of possible worlds.

We start by the definition of the set XK⊥B that allows us to define a remainder set
in terms of possible worlds.

Definition 9.6. [276] Let K be a belief set and B be a set of sentences. We denote by
XK⊥B the subset of P (⋃{∥¬αi∥ ∶ αi ∈ B∩K}) such that a set X of possible worlds is
an element of XK⊥B if and only if:

1. X∩∥¬αi∥ ≠∅, for all αi ∈ B∩K.
2. If ω ∈ X then there is some α j ∈ B∩K such that X∩∥¬α j∥ = {ω}.

The relation between the set XK⊥B and the remainder set K⊥B is the following:

Observation 9.2. [276] Let K be a belief set and B a finite set of sentences. Then:
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1. If X ∈XK⊥B then ⋂(∥K∥∪X) ∈ K⊥B.
2. If X ∈ K⊥B then there is some X ∈XK⊥B such that X =⋂(∥K∥∪X).
3. K⊥B = {⋂(∥K∥∪X) ∶ X ∈XK⊥B}.

The first statement of the observation says that the addition of an element of XK⊥B
to ∥K∥ gives rise to a set of worlds whose intersection is a maximal subset of K
that does not imply any element of B. The second statement says that each of the
remainders can be constructed in this way by means of an element of XK⊥B. The
third shows how to construct the remainder set K⊥B from XK⊥B.
XK⊥B can be used to define package partial meet contraction in terms of possible

worlds:

Theorem 9.3. [276] Let K be a belief set. An operation −∀ is a partial meet package
contraction on K if and only if for any set of sentences B:

K−∀B =⋂(∥K∥∪(⋃ f (XK⊥B))) ,

where f is a propositional package selection function for ∥K∥ such that for all sets
of sentences B: (1) f (XK⊥B) ⊆XK⊥B, and (2) if XK⊥B ≠∅ then f (XK⊥B) ≠∅.

Reis, Peppas and Fermé [277] proved that any method for constructing multiple
contractions which is based on systems of spheres fails to fully characterize the
class of transitively relational partial meet multiple contractions. They explain this
informally as follows: Let K be a belief set and −∀ and −′∀ two package contractions
on K induced (by the same method) from the systems of spheres S and S′, respec-
tively. Assume additionally that −∀ and −′∀ are such that for any sentence p of L,
K−∀{p} = K−Sp and K−′∀ {p} = K−S′ p, where −S is the S-based contraction on K
and −S′ is the S′-based contraction on K. It follows that if −∀ and −′∀ agree on all
contractions by singleton sets, then it must be the case that S = S′, and therefore −∀
and −′∀ have to agree on contractions by sets of arbitrary size (i.e., K−∀A = K −′∀ A
for any set of sentences A), no matter what the method of producing −∀ and −′∀ from
S (and S′) might be. On the other hand, there exist partial orders ⊏ and ⊏′ on the set
of remainders of K that agree when restricted to remainders of K by singleton sets,
but differ otherwise. Consequently, they induce transitively relational partial meet
package contractions that are different from each other but, nevertheless, agree on
all contractions by singleton sets.

Nevertheless, systems of spheres can be used to define various classes of partial
meet package contraction. Different such classes of operations have been presented
in [275, 92, 278]. Some of these methods have been translated to epistemic en-
trenchment and axiomatically characterized [93].

Other kinds of multiple change have been proposed in the literature. Spohn
has proposed a ranking-theoretic account of multiple package contraction [317].
Fuhrmann has investigated operations such as the subtraction p− q that asserts p
with the exception of what q says, and the merge p ○ q that extracts the maximal
consistent content from p and q jointly [118, 119]. Finally, Zhang has investigated



74 9 Multiple Change

the combination of iterated and multiple contraction, represented by series of con-
tractions such as K−A1− ...−An, where each Ak is a set of sentences [339].



Chapter 10
Alternative Operations of Change

In the original AGM model there are three major types of operations: contraction,
revision, and expansion. Subsequently a large number of additional types of opera-
tions have been proposed. In this section we summarize some of them.

10.1 Update

In 1992, Katsuno and Mendelzon presented a type of operation of change that they
called update [206]. Whereas revision operations are suited to capture changes that
reflect evolving knowledge about a static situation, update operations are intended
to represent changes in beliefs that result from changes in the objects of belief. The
difference was pointed out for the first time by Keller and Winslett [207] (in the
context of relational databases) and is captured in the following example [338]:

Example 10.1. Initially the agent knows that there is either a book on the table (p)
or a magazine on the table (q), but not both.

Case 1: The agent is told that there is a book on the table. She concludes that
there is no magazine on the table. This is revision.

Case 2: The agent is told that subsequently a book has been put on the table.
In this case she should not conclude that there is no magazine on the table. This is
update.

This difference is evident in the possible worlds approach. Katsuno and Mendelzon
proposed that when the world changes, the agent changes each of the worlds that
(s)he considers to be possible in order to accommodate the input while changing
as little else as possible. They constructed update as follows (see Figure 10.1 for a
graphical representation):

Definition 10.1. A local faithful assignment is a function mapping each possible
world ω to a total preorder ≤ω such that if ω /=ω′, then ω <ω ω′.
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Fig. 10.1: Dots represent possible worlds and the line at the bottom represents
∥ϕ∥. Each column represents the distribution and ordering of the possible worlds
regarding the local faithful assignment of one world ωi in ∥ϕ∥. ∥ϕ◇ p∥ is the union
of all the dark orange regions.

Definition 10.2. Let K be a finite-based belief set. Let ϕ ∈L be such that Cn(ϕ) =K.
An operation ◇ on ϕ is an update if and only if there is a local faithful assigment
such that:

∥ϕ◇ p∥ =⋃{min(∥p∥,≤ω) ∶ ϕ ∈ω}

Update on finite-based belief sets has been axiomatically characterized as follows:

Theorem 10.2. [206] An operation ◇ is an update operation if and only if it satisfies:

(U1) ϕ◇ p ⊢ p
(U2) If ϕ ⊢ p, then ⊢ ϕ◇ p↔ ϕ.
(U3) If ϕ /⊢ � and p /⊢ �, then ϕ◇ p /⊢ �.
(U4) If ⊢ ϕ1↔ ϕ2 and ⊢ p1↔ p2, then ⊢ ϕ1 ◇ p1↔ ϕ2 ◇ p2.
(U5) (ϕ◇ p1)∧ p2 implies ϕ◇(p1∧ p2).
(U6) If ϕ1 ◇ p1 ⊢ p2 and ϕ2 ◇ p2 ⊢ p1, then ⊢ ϕ1 ◇ p1↔ ϕ2 ◇ p2.
(U7) If ϕ is complete,1 then (ϕ◇ p)∧(ϕ◇q) implies ϕ◇(p∨q).
(U8) ⊢ (ϕ1∨ϕ2 ◇ p)↔ (ϕ1 ◇ p)∨(ϕ2 ◇ p).

It follows from (U2) that if ϕ ⊢ �, then ϕ◇ p ⊢ � for all p. In other words, if a belief
set is inconsistent, then consistency cannot be regained with an update.2

1 ϕ is complete if and only if for all p ∈L, ϕ ⊢ p or ϕ ⊢ ¬p.
2 With respect to this property, Katsuno and Mendelzon said [206, p. 190]: “We can never repair
an inconsistent theory using update, because update specifies a change in the world. If there is no
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If we compare update with AGM revision (see postulates (R1)-(R6) in Section
3.6), we can note some interesting formal differences. In particular, postulate R2
(vacuity) does not hold for update. Update and its relation with revision have been
further studied by Becher [28] and others.

10.2 Changes in the Strengths of Beliefs

Sometimes when a statement is presented to us, this makes us consider it to be more
credible than before, but we still do not believe it. Such a change may not affect the
belief set, but it will affect how the belief state responds to new inputs. This kind of
belief change was studied by Cantwell. He introduced the operations of raising and
lowering, whereby the degree of plausibility required for a sentence to be included
into the belief set is changed in either direction [57].

One important class of such operations is the improvement operations investi-
gated by Konieczny and Pérez [213]. These operations do not (necessarily) satisfy
the success postulate, although they increase (“improve”) the agent’s estimate of the
plausibility of the new information [211, 213]. For instance, if you see what looks
like wolf tracks in your garden, this makes it more plausible than before that a wolf
has visited your garden, but you will presumably still not believe it.

In the construction of improvement operations it has often been assumed that if
the agent receives the same new information sufficiently many times, then (s)he will
finally believe it. For an epistemic state Ψ , an operation ○ and a natural number n,
○n is defined by recursion in the following way:

Ψ ○0 p = Ψ
Ψ ○n+1 p = (Ψ ○n p)○ p

and the operation ⋆ is defined as Ψ ⋆ p =Ψ ○n p, where n is the first integer such that
B(Ψ ○n p)⊢ p. B is a function that takes us from a belief state to its associated belief
set. The key property of this operation is:

There exists an integer n such that B(Ψ ○n p) ⊢ p. (iterative success)

Another interesting property is

If B(Ψ) /⊢ p, then there is some q such that /⊢ B((Ψ ○ p)⋆q)↔ B(Ψ ⋆q). (non-
triviality)

This property says that any revision by a formula p that is not a consequence of
the epistemic state modifies the epistemic state of the agent. In a possible worlds
model, improvement by p means that some or all of the p-worlds are moved to a

set of worlds that fits our current description, we have no way of recording the change in the real
world.”
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higher position in the preorder, but this does not necessarily lead to a change in the
belief set.

Improvement operations have been combined with credibility-limited revision in
the following way: A new piece of information is accepted if it is judged credible
by the agent. However, if it is not considered credible, then its epistemic status
is nevertheless raised, in the manner that this would be done by an improvement
operation [46].

In quantitative theories of belief change, such as probabilistic and ranking the-
ories (Sections 11.1 and 11.2), the degree of acceptance of each sentence is repre-
sented by a numerical value. Changes in the strength of beliefs can then be repre-
sented as changes in these values. However, the meaning of these numbers is not
entirely clear (especially not for non-probabilistic functions), and real agents are
notoriously bad at reasoning with them [324]. These difficulties are largely avoided
by using a preorder instead of a numerical representation. Comparative degrees of
belief can then be specified by taking certain beliefs as points of reference. The
operation of change will adjust the position of an input sentence in an ordering to
be the same as that of a reference sentence. Such an operation requires two sen-
tences as inputs: the sentence to be adjusted and the reference sentence to which
it will be adjusted. Since two sentences are involved, Rott called such operations
two-dimensional [299].

Fermé and Rott proposed the operation of revision by comparison. In the intended
case, the input sentence p is accepted to the same degree as a previously believed
sentence q. However, if the negation of the input sentence p is more plausible than
the reference sentence q, then q will be removed from the outcome [107]. Therefore,
revision by comparison violates the DP postulates for iterated change that we men-
tioned in Section 7.1 (in particular DP2 since it collapses distinctions between the
positions in the ordering of some ¬p-worlds). Rott has proposed a variant, bounded
revision, that captures the spirit of revision by comparison and also satisfies the DP
postulates [300]. As Rott pointed out, revision by comparison reduces the number
of equivalence classes in the preorder, whereas bounded revision increases it.

10.3 Resource-Bounded and Local Change

AGM is a theory of changes of beliefs undertaken by highly idealized reasoners with
unlimited cognitive capacities. In contrast, real reasoners such as humans, comput-
ers, and robots have limited resources. As was noted by Wassermann, it is important
to distinguish between a limited implementation of a theory for ideal reasoning, and
a theory for reasoners with limited resources [327].

Harman has put forward a highly useful list of principles that should be valid for
any resource-bounded agent [196]:

Clutter avoidance: One should not clutter one’s mind with trivialities.
Recognized implication: One has a reason to believe p if one recognizes that p
is implied by one’s views.
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Recognized inconsistency: One has a reason to avoid believing things that one
recognizes to be inconsistent.
Positive undermining: One should stop believing p whenever one positively
believes that one’s reasons for believing p are no good.
Conservatism: One is justified in continuing to fully accept something in the
absence of a special reason not to.
Interest condition: One should add a new proposition p to one’s beliefs only if
one is interested in whether p is true (and it is otherwise reasonable for one to
believe p).
Get back principle: One should not give up a belief one can easily (and ratio-
nally) get right back.

Doyle investigated characteristics of real agents such as mental inertia and constitu-
tional elasticity [80]. He proposed a formal structure, a reason maintenance system
(RMS), to capture these characteristics. Alechina, Jago, and Logan used RMS to
construct a resource-bounded operation of contraction [9].

The two features of resource-boundedness that have attracted most attention
among researchers are finitude and inconsistency tolerance. Both belief bases
(Chapter 6) and specified meet contraction (Section 4.3) have been constructed
largely in order to avoid the infinite structures of the standard AGM model.

Gabbay and Hunter maintain that there is a fundamental difference between how
inconsistencies are handled by real agents and how they have usually been treated
in formal logical systems. For a real agent it need not be necessary to restore con-
sistency; it may be sufficient to have rules that specify how to act when an incon-
sistency arises [122]. What makes inconsistencies devastating in the AGM model is
that there is only one inconsistent belief set, namely the whole language. This is an
unsatisfactory feature of belief set representation, since two agents can both have in-
consistent beliefs without having the same beliefs. As we saw in Section 6.1, belief
bases fare much better in this respect. There are many different inconsistent belief
bases, and they can reasonably be taken to represent different inconsistent belief
states [147]. This feature of belief bases was employed in Hansson and Wasser-
mann’s model of local change [195]. Given a belief base B and a sentence r, the
r-compartment of B is the subset of B that is relevant for r. In local change, re-
vision of B by r involves changes only of the r-compartment; hence a part of the
belief base can be made consistent while the belief base as a whole remains in-
consistent. Wassermann has shown how these principles can be used to provide a
model of change that satisfies Harman’s principles. This can be accomplished with
a construction involving a short-term memory in which recently computed results
are temporarily stored [326]. She also showed how local change can be used for
diagnosis [328], i.e., the process of finding a compartment that may have caused an
abnormal behaviour of the system [279].

In a similar vein, Parikh [270] proposed a principle for relevance-sensitive
change. Its basic principle is that if a belief set can be split into two independent
parts (expressed in different sublanguages), then a revision of one part does not af-
fect the other. This principle is not satisfied by AGM revision. Peppas provided a
semantics for Parikh’s relevance-sensitive condition in terms of systems of spheres
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[271], and Kourousias and Makinson have investigated the conditions under which
Parikh’s relevance-sensitive condition is satisfied [216, 243].

10.4 Paraconsistent Belief Change

Consistency preservation is a central requirement in AGM revision. The reason for
this is that the underlying logic is supraclassical and therefore satisfies the explo-
sion principle, namely that anything follows from a contradiction (ex contradictione
quodlibet, {p,¬p} ⊢ q). Consequently there is, as we just noted, only one inconsis-
tent belief set, namely the whole language. If we arrive at an inconsistent belief set,
then we have lost all distinctions. To avoid this we have to steer clear of contradic-
tions in all operations on belief sets in a supraclassical logic.

However, this does not seem to be how cognitive agents behave in practice. Real
agents can believe in contradictory statements without believing everything and los-
ing all distinctions. In order to model that feature of actual reasoning, we can weaken
the consequence relation and make it paraconsistent (which means that the explosion
principle does not hold). Relatively little work has been performed on paraconsistent
belief revision, but important contributions have been made for instance by Restall
and Slaney [280], Priest [273], Mares [248], Tanaka [320], and Testa, Coniglio and
Ribeiro [322].

The underlying logic used by Restall and Slaney [280] avoids the explosion prin-
ciple by demanding a connection between the premises and the conclusion of an
inference. In a valid inference the premises have to be relevant to the conclusion.
Mares [248] developed a model in which an agent’s belief state is represented by a
pair of sets. One of these is the belief set, and the other consists of the sentences that
the agent rejects. A belief state is coherent if and only if the intersection of these two
sets is empty, i.e., if and only if there is no statement that the agent both accepts and
rejects. In this model, belief revision preserves coherence but does not necessarily
preserve consistency.

Priest [273] and Tanaka [320] suggested that in a paraconsistent logic, revision
can be performed by just adding sentences without removing anything. In other
words, if the logic tolerates inconsistencies, then expansion can serve the function
usually assigned to revision. Furthermore, Priest [273] pointed out that in a paracon-
sistent framework, revision on belief sets can be performed as external revision, i.e.,
with the reversed Levi identity. In a supraclassical framework, external revision can
only be used on belief bases. (See further Section 6.3.) Testa, Coniglio and Ribeiro
[322] showed that this holds for semi-revision as well. In a supraclassical system,
semi-revision (defined in Section 8.2) can only be used for belief bases, but in a
paraconsistent system it can also be used for belief sets. The reason for this differ-
ence is that the intermediate inconsistent belief set that arises in external revision
and semi-revision extinguishes all distinctions if the underlying logic is supraclas-
sical but not if it is paraconsistent.
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10.5 Some Other Operations of Change

Indeterministic change: The AGM model and most other models of belief change
are deterministic in the sense that given a belief set and an input, the resulting belief
set is well-determined. There is no scope for chance in determining the outcome of
the change. Although this may not be a realistic feature, it substantially simplifies
the formal structure. In indeterministic belief change, an operation can have more
than one admissible outcome. Indeterministic belief change has been studied by
Gallier [126] and by Lindström and Rabinowicz [231]. The latter authors gave up
the assumption that epistemic entrenchment satisfies connectedness. This resulted in
Grove-style sphere systems with spheres (“fallbacks”) that are not linearly ordered
but still all include the original belief set.

Replacement is an operation that replaces one sentence by another in a belief set.
An operation of replacement has two variables, such that in K∣pq , p has been replaced
by q. Hence, the outcome is a belief set that contains q but not p. This operation can
have outcomes that are not obtainable through either partial meet contraction or par-
tial meet revision. Replacement can also be used as a kind of Sheffer stroke for be-
lief change, i.e., an operation in terms of which the other operations can be defined.
Contraction by p can be defined as the replacement ∣p⊺ of p by a tautology, revision
by p as the replacement ∣⊥p of falsum by p, and expansion by p as the replacement
∣⊺p of a tautology by p. (Tautologies are as usual taken to be unremovable.) Partial
meet replacement has been axiomatically characterized, and a semantic account in
terms of possible worlds has been provided [170].

Reconsideration, introduced by Johnson and Shapiro [204, 203], is a non-
prioritized operation on belief bases. It represents changes that are performed in
hindsight in order to eliminate negative effects of previously performed changes.
Previously removed beliefs can be reintroduced if there are no longer any valid rea-
sons for their removal. This operation can be seen as an optimization that eliminates
the negative effects of the order in which inputs have been received. It can involve
an examination of all current and previous beliefs, but the same result can also be
produced by an algorithm that examines a subset of the retracted basic beliefs, using
dependency relationships.



Chapter 11
Extended Representations of Belief States

The AGM model is a simple and elegant representation of quite complex phenom-
ena. Obviously, the trade-off between simplicity and relevance can be made differ-
ently. Many of the modifications of the framework that have been proposed consist
in extensions of the belief state representation so that it contains more information
than what is contained in a belief set or belief base. We have already studied one
such extension in Sections 7.1 and 10.2. This chapter is devoted to additional exten-
sions.

11.1 Probability and Plausibility

The AGM model and other logical approaches to belief revision represent features
of doxastic behaviour that differ from those represented by probabilistic models. The
degrees of belief represented for instance by entrenchment relations do not coincide
with probabilities [298]. It seems difficult to construct a reasonably manageable
model that covers both the logic-related and the probabilistic properties of belief
change. (Problems connected with the lottery and preface paradoxes have a major
role in creating this difficulty [217, 237].)

However, some authors have explored the interrelations between the two types of
models. Lindström and Rabinowicz showed how belief revision can be connected
with accounts of conditional probability that allow the condition to have probability
zero [230]. Makinson further investigated this and other connections between the
two frameworks [244]. Insights from the AGM model can be used as an impetus
for considering “revisionary” accounts of conditional probability, i.e., accounts in
which p(q,r), the probability of q given r, is not defined in the standard way. (Ac-
cording to the standard definition, p(q,r) is equal to p(q&r)/p(r) when p(r) ≠ 0,
and otherwise undefined.) Furthermore, the notion of non-prioritized revision that
has been developed in the AGM tradition (revision not satisfying p ∈ K ∗ p for all
p; see Chapter 8) can be usefully transferred to a probabilistic context. There it
corresponds to “vacuous” conditionalizing when the condition is too unbelievable
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to be taken seriously, i.e., p(q,r) = p(q) when r is highly unlikely. Makinson also
discussed “hyper-revisionary” probabilistic conditionalization, in which the fact that
something believed to be very improbable actually happens is taken as a reason to
believe that the probability was underestimated. There is an analogy between hyper-
revisionary conditionalization and belief revision that violates the AGM property
that if K + p is logically consistent, then K ∗ p = K + p. Such violations would be
justified if K and p are epistemically but not logically incompatible.

In order to investigate the relationship between AGM and Bayesian conditional-
ization, Bonanno introduced what he called the qualitative Bayes rule, namely that

“... if at a state the information received is consistent with the initial beliefs–in the sense
that there are states that were considered possible initially and are compatible with the
information–then the states that are considered possible according to the revised beliefs are
precisely those states.” [39]

Bonanno constructed and characterized a model of belief revision that satisfies this
condition. It complies with the AGM postulates for partial meet revision.

Friedman and Halpern have developed a model based on a notion of plausibility
that is a generalization of probability. Instead of assigning to each set A of sentences
a number p(A) in [0,1], representing its probability, they assign to it an element
Pl(A) of a partially ordered set. Pl(A) is called the “plausiblity” of A. If Pl(A) ≤
Pl(B) then B is at least as plausible as A. A sentence p is believed if and only
if p is more plausible than ¬p. Changes in belief take the form of changes in the
plausibility ordering. Conditions on such changes have been identified that produce
a revision operation that is essentially equivalent with partial meet revision [111,
113].

Several other authors have presented probability-based and plausibility-based be-
lief revision models that have close connections with the AGM model [20, 82, 13,
16].

11.2 Ranking Models

In Wolfgang Spohn’s ranking theory of belief change, a belief state is represented by
a ranking function κ that assigns a non-negative real number to each possible world
W, representing the agent’s degree of disbelief in W [314, 315, 316]. A sentence p is
assigned the value κ(p) =min{κ(W) ∣ p ∈W}. Furthermore, p is believed if and only
if κ(¬p) > 0, i.e., if and only if every ¬p-world is disbelieved to a non-zero degree.
The conditional rank of q given p is κ(q ∣ p) = κ(p&q)− κ(p). For any sentence p
and number x, the p↦ x-conditionalization of κ is defined by:

κp↦x(q) =min{κ(q ∣ p),κ(q ∣ ¬p)+ x}

Contractions, expansions and revisions can all be represented as conditionalizations.
The outcome depends on the numerical values involved. In addition, other opera-
tions such as the strengthening or weakening of beliefs already held are straightfor-
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wardly representable in this framework. Important results on belief revision based
on ranking functions, including an axiomatic representation that clarifies their rela-
tionship to AGM operations, have been reported by Hild and Spohn [198]. A gener-
alization of Spohn’s ranking functions has been proposed by Weydert [330].

11.3 Conditionals and the Ramsey Test

Belief revision theory has primarily been concerned with belief states and inputs
expressed in terms of classical sentential (truth-functional) logic. The inclusion of
non-truth-functional expressions into the language has interesting and often surpris-
ingly drastic effects.

Among the several formal interpretations of non-truth-functional conditionals,
such as counterfactuals, one is particularly well suited to the formal framework of
belief revision, namely the so-called Ramsey test. It is based on a suggestion by
Frank Ramsey (1903–1930) that has been further developed by Robert Stalnaker
and others [318, pp. 98–112]. The basic idea is that “if p then q” is taken to be
believed if and only if q would be believed after revising the present belief state by
p. Let p� q denote “if p then q”, or more precisely: “if p were the case, then q
would be the case”. The Ramsey test says:

p� q holds if and only if q ∈ K ∗ p.

If we wish to treat conditional statements like p� q on par with statements about
actual facts, then they will have to be included in the belief set when they are as-
sented to by the agent; thus:

p� q ∈ K if and only if q ∈ K ∗ p.

However, inclusion in the belief set of conditionals that satisfy the Ramsey test
will require radical changes in the logic of belief change. As one example of this,
contraction cannot then satisfy the inclusion postulate (K − p ⊆ K). The reason for
this is that contraction typically provides support for conditional sentences that were
not supported by the original belief state. Hence, if I give up my belief that John is
severely mentally retarded, then I gain support for the conditional sentence “If John
has lived 30 years in London, then he understands the English language” [151].

A famous impossibility theorem by Gärdenfors shows that the Ramsey test is
incompatible with a set of plausible postulates for revision [132]. The crucial part
of the proof consists in showing that the Ramsey test implies the following mono-
tonicity condition:1

If K ⊆ K′, then K ∗ p ⊆ K′ ∗ p.

1 The proof is straightforward: Let K ⊆ K′ and q ∈ K ∗ p. The Ramsey test yields p� q ∈ K, then
K ⊆ K′ yields p� q ∈ K′, and finally one more application of the Ramsey test yields q ∈ K′ ∗ p.



86 11 Extended Representations of Belief States

This condition is incompatible with the AGM postulates for revision, and it is also
easily shown to be implausible. Let K be a belief set in which you know nothing
specific about Ellen and K′ one in which you know that she is a lesbian. Let p
denote that she is married and q that she has a husband. Then we can have K ⊆ K′
but q ∈ K ∗ p and q ∉ K′ ∗ p.

Several solutions to the impossibility theorem have been put forward. One option
investigated by Rott and others is to reject the Ramsey test as a criterion for the
validity of conditional sentences [186, 285]. Levi accepts the test as a criterion of
validity but denies that such conditional sentences should be included in the belief
set when they are valid. In his view, they lack truth values and should therefore
not be included in belief sets [221]. This, of course, blocks the impossibility result.
Levi and Arló-Costa have investigated a weaker version of the Ramsey test that is
not blocked by Gärdenfors’s result and is also compatible with the AGM model
[12, 15].

In a somewhat similar vein, Lindström and Rabinowicz have proposed that a con-
ditional sentence expresses a determinate proposition about the world only relative
to the subject’s belief state. Given a conditional statement p� q and a belief set K,
there is some sentence rK

p�q such that p� q holds in the belief state represented
by K if and only if rK

p�q ∈ K. In this way we can have the Ramsey test in the form

rK
p�q ∈ K if and only if q ∈ K ∗ p,

which is not blocked by the impossibility result [233, 232].
Yet another option is to accept both the Ramsey test and the inclusion of condi-

tional sentences into the belief set. Then belief sets containing� will behave very
differently under operations of change than the common AGM belief sets, and the
standard AGM postulates will not hold [151, 286]. Not even the simple operation of
expansion can be retained. Reusing an example from Section 5.4, we can suppose
that you have no idea about John’s profession, but then “expand” your belief set by
the belief that he is a taxi driver. You will then lose the conditional belief that if
John goes home by taxi every day, then he is a rich man–hence this is not an expan-
sion after all [151]. As was noted by Rott, “[e]xpansions are not the right method
to ‘add’ new sentences if the underlying language contains conditionals which are
interpreted by the Ramsey test” [286].

Ryan and Schobbens have related the Ramsey test to update rather than revision
(cf. Section 10.1) and found the test to be compatible and indeed closely connected
with update operations [303].

Kern-Isberner has proposed a framework for revision that is based on a con-
ditional valuation function that assigns (numerical) values to both non-conditional
and conditional sentences. In this framework–which differs from AGM in important
respects–conditional sentences can be elements of belief sets, and revisions can be
performed with conditional sentences as inputs [209]. A partly similar approach has
been developed by Weydert [331].
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11.4 Modal, Doxastic, and Temporal Sentences

The inclusion of modal sentences in belief sets has been investigated by Fuhrmann.
Let ◇p denote that p is possible. The following, seemingly reasonable definition:

◇p ∈ K if and only if ¬p ∉ K,

gives rise to problems similar to those exhibited in Gärdenfors’s theorem, and es-
sentially the same types of solutions have been discussed [115].

Lindström and Rabinowicz have investigated the inclusion into a belief revision
framework of introspective beliefs, i.e., allowing for Bp ∈ K, where Bp denotes “I
believe p”. Paradoxical results not unsimilar to those for conditionals are obtained
in this case as well [234]. Similar results were obtained by Friedman and Halpern
[112].

Dupin de Saint-Cyr and Lang introduced temporally labelled sentences into be-
lief revision and proposed a belief change operation, called belief extrapolation,
in which predictions are based on initial observations and a principle of minimal
change [84]. Bonanno has developed logics that contain both a next-time temporal
operation and a belief operation. The basic postulates of AGM revision are satisfied,
and a strong version of the logic also satisfies the supplementary postulates [40, 41].

Booth and Richter have developed a model of fuzzy revision on belief bases.
In this model, both the elements of the belief base and the input formulas come
attached with a numerical degree (whose precise interpretation is left open). They
showed that partial meet operations on belief bases can be faithfully extended to this
fuzzy framework [52].

Finally, Fuhrmann has generalized partial meet operations to arbitrary collec-
tions of (not necessarily linguistic) items that have a dependency structure satis-
fying the Armstrong axioms for dependency structures in database relationships
[117, 120].

11.5 Changes in Norms, Preferences, Goals, and Desires

Norms: The AGM model was partly the outcome of attempts to formalize changes in
norms [5]. In spite of this, authors who tried to apply the AGM model to normative
change have found it to be in need of rather extensive modifications to make it
suitable for that purpose.

Boella, Pigozzi, and van der Torre analyzed normative change in a framework
where a norm system is represented by a set of pairs of formulas. The pair ⟨p,q⟩
should be read “if p, then it is obligatory that q”. In this framework, however, pos-
tulates for norm contraction and revision that are closely analogous to the AGM
postulates give rise to inconsistency [38].
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Governatori and Rotolo proposed a model for changes in legislation that, among
several other aspects, also includes an explicit representation of time. Such a model
can account for phenomena such as retroactivity that are difficult to deal with in an
input-assimilating framework such as AGM [142].

Hansson and Makinson investigated the relationship between changes and appli-
cations of a norm system. In order to apply a norm system with conflicting norms
to a particular situation, some of the norms may have to be ignored. Although
these norms will remain intact for future situations, the problem of how to prior-
itize among conflicting items is similar to selecting sentences for removal in belief
contraction [192].

Common law systems (case law systems), such as those of the United Kingdom,
the United States, Canada, Australia, and New Zealand, have a structure that dif-
fers significantly from the civil law systems (Roman law systems) that dominate
on the European continent and in Latin America. Most studies of changes in le-
gal systems are primarily applicable to civil law systems in which the legal system
changes through the modification of statutes. In common law systems, legal change
takes place to a large extent through court decisions that are constrained by previous
decisions made in other courts. John Horty [200] has investigated the nature of norm
change in common law systems. It turns out to have interesting logical properties
that differ from those of changes in statutory codes.

Preferences: A model of changes in preferences can be obtained by replacing the
standard propositional language in AGM by a language consisting of sentences of
the form p ≥ q (“p is at least as good as q”) and their truth-functional combinations.
The acquisition of a new preference takes the form of revision by such a prefer-
ence sentence. The adjustments of the original preference state that are needed to
maintain consistency in such revisions can be modelled by partial meet contraction.
However, some modifications of the AGM model seem to be necessary in order to
obtain a realistic model of preference change [144, 156, 218].

Goals and desires: Desires are often allowed to be contradictory, since they need
not be actively pursued by the agent. Likewise, we often have goals that are diffi-
cult or impossible to combine. Intention selection is a process aimed at removing
such contradictions, and ending up with a consistent set of intentions [265]. Paglieri
and Castelfranchi have proposed a model of Data-oriented Belief Revision (DBR)
in which significant attention is paid to the mutual influences between beliefs and
goals [264]. In one direction, beliefs support and regulate goal processing and the
transition from desires to intentions [62, 60, 61, 63]. In the other direction, goals can
affect belief revision by determining the relevance (usefulness to the agent’s current
purposes) and likability (capability of fulfilling the agent’s goal) of potential beliefs.
Relevance increases the likelihood that a potential belief will be considered a candi-
date for belief, whereas likeability increases its chances of being actually believed,
once considered. Boella, da Costa Pereira, Pigozzi, Tettamanzi, and van der Torre
have also analyzed the role of goals in belief revision [37]. Their model is similar
to DBR in its selection criteria, but it puts more emphasis on preventing wishful
thinking from having any influence on the agent’s beliefs.



Chapter 12
Applications, Connections, and Implementations

The AGM model has turned out to have a surprising number of connections with
other areas of research.

12.1 Non-Monotonic and Defeasible Logic

In [135], Gärdenfors pointed out that belief revision and non-monotonic logic are
motivated by quite different ideas. Belief revision deals with the dynamics of belief
states, whereas non-monotonic logic is concerned with how we jump to conclusions
from what we believe. But it is nevertheless possible to translate concepts, models,
and results from one of these areas to the other. The first step towards such a trans-
lation was taken by Makinson and Gärdenfors [245]. Non-monotonic reasoning can
be expressed by an inference operation ∣∼ such that A ∣∼ p denotes that A is a good
enough reason to believe p, or in other words that p is a plausible consequence of
A. We can also define an operation C that stands in the same relation to ∣∼ as Cn to
⊢, i.e., C(A) = {p ∣ A ∣∼ p}. The crucial difference is that whereas Cn satisfies:

If A ⊆ B, then Cn(A) ⊆Cn(B) (monotony)

C does not satisfy the corresponding property. Given a belief set K representing
the background beliefs we can translate formulas between the two frameworks as
follows [245]:

p ∣∼ q if and only if q ∈ K ∗ p.

Due to this connection, discussions in belief revision and non-monotonic logic have
become increasingly interconnected. Lindström [229] and Rott [291] have shown
that belief revision and non-monotonic logic are closely connected through their re-
constructibility in terms of choice functions satisfying various rationality postulates.
Other contributions in this tradition are [240, 287]. (See Section 12.7.)
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In the last years of his life, Carlos Alchourrón published a series of articles on
the logic of defeasible conditionals [1, 2, 3]. He proposed that conditional construc-
tions in ordinary language can often be understood as saying that an antecedent p
together with a set of assumptions is a sufficient condition for the consequent q.
Such conditionals can be represented by a formula ◻( f (p)→ q), where f (p) is a
function that takes us from p to the conjunction of p and these presuppositions. The
connection between this approach and AGM was initially somewhat unclear [29],
but in [106] axioms were given that relate it to a generalized version of AGM revi-
sion for an implicit underlying belief set K (not necessarily satisfying the postulates
inclusion and vacuity). This result shows that there are close connections between
Alchourrón’s approach and Pagnucco’s concept of abductive expansion, which is
also closely associated with non-monotonic inference [268]. Billington, Antoniou,
Governatori and Maher [35] have clarified the relationships between AGM revision
and non-monotonic inference, showing that some of the AGM postulates do not hold
or need to be modified for revision in a non-monotonic framework.

12.2 Modal and Dynamic Logics

We can distinguish between three ways to integrate belief revision with a modal
logic.1 First, one can add modal operators to the logical language (cf. Section 11.4).
Secondly, one can formalize the execution of expansion, revision, and contraction
with dynamic modal operators, similar to those for program execution. Thirdly, one
can add both epistemic and dynamic modal operators, thereby integrating belief and
belief change in one language. This has been done in the dynamic doxastic logic
by Segerberg and collaborators, and later, but largely independently, in dynamic
epistemic logic.

A reason to investigate belief revision in modal logic is that the theories of belief
change developed within the AGM tradition are not logics in a strict sense, but rather
informal axiomatic theories of belief change. Instead of characterizing the models
of belief and belief change in a formalized object language, the AGM approach uses
a natural language (ordinary mathematical English) to characterize the mathemat-
ical structures under study. The approaches to be mentioned here “internalize” the
operations of belief change into the object language.

Explicit belief operators: An early approach was closely connected to non-
prioritized belief revision. Let Bp denote that p is believed by the agent. Then ◻Bp
can denote that p is necessarily believed, i.e., it is believed and no amount of epis-
temic input can change this. ◇¬Bp means that it is possible to arrive at some state
of belief in which p is not believed. ◇◻Bp signifies that it is possible to arrive at
some state in which p is believed and can after that no longer be disbelieved, etc.
Depending on the details of the revision process, this can be shown to give rise to
either an S4.2 or an S4 logic for the modal operator [155].

1 This section relies heavily on personal communication from Hans van Ditmarsch.
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Dynamic modalities for belief revision: In various publications, van Benthem,
de Rijke, and Fuhrmann [32, 116, 283, 33] introduced an “update logic” including
the following notation:

[÷p]q (q holds after contraction by p)
[∗p]q (q holds after revision by p)
[+p]q (q holds after expansion by p)

This update logic can be seen as a precursor of subsequent treatments of belief
change in dynamic logic.

Dynamic doxastic logic (DDL) extends propositional logical theories of belief
sets with both Hintikka-style doxastic operators [199] and dynamic modal operators
for belief change [307, 308, 310]. DDL was defined by Krister Segerberg as a logical
framework for reasoning about doxastic change. The basic DDL represents an agent
with opinions about the external world and an ability to change these opinions in
the light of new information. Such an agent is non-introspective in the sense that it
lacks opinions about its own belief states, for example B[∗p]q is not a well-formed
formula. Lindström and Rabinowicz extended the model to include such formulas
[235]. The result allows not only introspective agents but also iterated change, which
has been studied by John Cantwell [57].

Dynamic epistemic logic (DEL) also studies changes in information and investi-
gates actions with epistemic impact on agents [272, 24, 75]. Like DDL it has epis-
temic operators for belief or knowledge and also dynamic operators for changes
in belief or knowledge. The best-studied dynamics is that of the public announce-
ment of a formula φ. This can—with many reservations—be seen as a kind of belief
expansion with φ. One such reservation is that the postulate of success is not neces-
sarily satisfied: after public announcement of φ it need not be the case that Bφ is true,
i.e., that φ is believed. The standard counterexample is the Moore-sentence p∧¬Bp
[252, 199]. Clearly, B(p∧¬Bp) is inconsistent for standard notions of knowledge
and belief. In DEL, the Moore-sentence is just one example of an unsuccessful up-
date; see [76].

To model belief revision in DEL, we need Kripke models where knowledge,
belief, and degrees of belief (or conditional belief) can all be encoded. This can be
done by adding plausibility relations to the Kripke models, and identifying belief in
φ with truth of φ in the most plausible of the epistemically accessible states. For a
simplified example, suppose that only the two states s and t are considered possible
by an agent, but (s)he considers s to be more plausible than t. Furthermore suppose
that p holds in s but not in t. Then the agent believes that p is true. Belief revision
with ¬p revises the plausibilities such that t becomes more plausible than s. Now, the
agent believes that p is false: B¬p. So we have Bp∧[∗¬p]B¬p, where [∗¬p] is not
a ‘hard’ (i.e., truthful) public announcement but a tentative or ‘soft’ (i.e., preference
changing) public announcement. An alternative belief revision mechanism in the
DEL setting would eliminate the state s from consideration (a ‘hard’ update, as for
the execution of public announcements), after which t is the only remaining state.
Again, the agent believes that p is false. These issues were addressed by Aucher
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[19], van Benthem [34], van Ditmarsch and Labuschagne [74, 77], and Baltag and
Smets [25] (with many follow-up papers). Conditional reasoning and reasoning with
different degrees of belief can also be modelled in such settings.

12.3 Horn Clause Contraction

In a formal language based on atomic sentences, a sentence is called a literal if
it is either an atomic sentence (also called a positive literal) or the negation of an
atomic sentence (also called a negative literal). A clause is a disjunction of literals.
A Horn clause is a clause with at most one positive literal. (This makes p1, ¬p1 and
¬p1∨¬p2∨¬p3∨¬p4 Horn clauses.)

The logic of Horn clauses has found extensive use in artificial intelligence,
database theory, and logic programming, in particular in applications to truth main-
tenance systems and deductive databases. With the exception of a few early contri-
butions [94, 284], studies of Horn clause belief change started only recently.

Delgrande [69] and Delgrande and Wassermann [72] investigated the contraction
of theories expressed in propositional Horn logic. The main conclusions were the
following:

• There are at least two plausible types of contraction functions for a Horn
clause framework. In entailment-based contraction (e-contraction) the formula
to be contracted is entailed by a belief set and the desired outcome is a be-
lief set which does not entail that formula. In inconsistency-based contraction
(i-contraction) the addition of a formula would lead to inconsistency and the
desired outcome is a smaller belief set to which that formula can be added.
• Recovery is not a desirable property for contraction of Horn clauses. Such con-

tractions have some features that are usually associated with the contraction of
belief bases.
• In Horn clause contraction, maxichoice contraction appears to constitute an ap-

propriate approach.

Regarding the third point, Delgrande and Wassermann [72] found that the applica-
tion of contraction operations to remainder sets (as in AGM) has undesirable prop-
erties in Horn clause logic. Instead they developed an account of maxichoice Horn
contraction in terms of what they call weak remainder sets (defined semantically
instead of syntactically).

Booth, Meyer, and Varzinczak provided a generalization of Delgrande’s par-
tial meet constructions for Horn clauses (infra-contraction) [49] (cf. [121]). Booth,
Meyer, Varzinczak, and Wassermann [50] showed that this construction coincides
with standard kernel contraction, as applied to Horn clauses. Fotinopoulos and Pa-
padopoulos obtained a characterization of Horn contraction in terms of a system of
spheres [110], and Zhuang and Pagnucco characterized Horn contraction in terms
of epistemic entrenchment [342].
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12.4 Description Logic

Description logics (DL) is a family of formal knowledge representation languages.2

Description logics are decidable fragments of first-order logic. These fragments are
more expressive than propositional logic. Originally descended from semantic net-
works, they describe domains in terms of classes, properties, relationships and indi-
viduals.

In order to represent the domain, description logics use two structures: the TBox
(terminological box) and the ABox (assertional box). The TBox contains sentences
describing concept hierarchies (i.e., relations between concepts) while the ABox
contains sentences stating where in the hierarchy individuals belong (i.e., relations
between individuals and concepts). For example, the statement “all Portuguese are
Europeans” belongs in the TBox, while “João is Portuguese” belongs in the ABox.

Description logics are used for knowledge representation, in particular as the
basis for widely used languages that represent formal ontologies. Description log-
ics have been successful in detecting incoherences in databases (ontology debug-
ging), but provide little support for resolving these incoherences (ontology repair).
Methodologies for belief change can be used to improve their performance in that
respect. Techniques for ontology debugging are closely related to the identification
of the kernel set in kernel (and safe) contraction. Furthermore, methods for combin-
ing information from different sources (merging) can be useful for this task. Using
proposals by Benferhat, Kaci, Le Berre and Williams [31], Meyer, Lee and Booth
[251] proposed basic strategies for solving incoherences in a framework based on
description logic. Ribeiro and Wassermann have proposed a belief revision approach
to finding and repairing inconsistencies in ontologies represented in description log-
ics [282].

12.5 Belief Change by Translation Between Logics

The AGM model has been axiomatized and described for classical logic. One strat-
egy to extend it to other logics is to translate the source logic into classical logic,
perform the change and then translate back the outcome into the source logic. This
method was proposed independently by two groups. Gabbay, Rodrigues and Russo
[123, 124] proposed to translate a non-classical logic L into first-order classical
logic, perform the revision there and then translate the results back. For example,
let τ be a translation function from L into classical logic, and let T τ be a classical
logic encoding the basic properties of L. If the axiomatization of T τis sound and
complete, then for any belief set K and sentence α in the logic L we have: K ⊢L α if
and only if T τ∪Kτ ⊢ ατ, where Kτ and ατ are the translation in classical logic of K
and α respectively. Therefore, a revision operation ∗L in the logic L can be defined
as K ∗Lα = {β ∶ Kτ ∗(ατ∧T τ) ⊢ βτ}.

2 For a detailed overview see [23].
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Coniglio and Carnielli [64] define logics as two-sorted first-order structures, and
they argue that this broad definition encompasses a wide class of logics that are inter-
esting theoretically as well as from the point of view of applications. The language,
concepts and methods of model theory can be used to describe the relationships be-
tween logics through morphisms of structures called transfers. This leads to a formal
framework for studying several properties of abstract logics and their attributes such
as consequence operators, syntactical structures, and internal transformations. They
define a model of belief change, called Wide Belief Revision Systems, to define
belief revision for non-standard logics.

12.6 Truth and Learning

Formal learning theory uses mathematical models to investigate the assimilation
of new information. However, it differs from belief revision theory in attending to
different types of problems. In learning theory, the main focus is on inductive prob-
lems. These are problems in which data is accumulated and processed in order to
answer some empirical research question. The research question is usually repre-
sented by a partition of the set of possible worlds, i.e., a collection of non-empty
sets of possible worlds such that each possible world is an element of exactly one of
them. The question has been fully answered when we know in which of the elements
of the partition the actual world is located. The cognitive agent receives a series of
data that successively eliminates some of the possible answers. The central issue
for the learning theorist is to construct inductive strategies, strategies for drawing
conclusions from these data as they arrive [208]. Such a strategy should answer the
following question:

(LT) What–if any–conclusion concerning our research question should we draw
from some sequence p1, p2, . . . , pn of data (observations)?

A central requirement on an inductive strategy is that as more and more data is re-
ceived, it should converge to the truth, i.e., to a true answer to the research question.
In many problems we cannot know for sure when we have reached the truth. It is
characteristic of an inductive process that we have to interrupt it at some stage when
we have an answer to the research question that is safe enough for our purposes.
Otherwise we might have to go on for ever. (LT) is closely related to a question in
belief revision, namely:

(BR) What is the belief set that we obtain by subjecting the original belief set
K to a series of revisions K ∗ p1 ∗ p2 ∗ ⋅ ⋅ ⋅ ∗ pn?

In order to answer this question we need operations for iterated belief revision.
(See Chapter 7.) But importantly, belief revision is performed with specifications
(goals) that differ from those of learning theory. As we have just noted, the dominant
concern of learning theory is to find the truth or, more specifically, a true answer to
a given question. In contrast, belief revision is not concerned with finding the truth.
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Its dominant concern is to perform the assimilation of new information in a way that
changes the original belief set as little as possible. Not surprisingly, this fundamental
difference has implications for the properties of the assimilation process. Genin and
Kelly have shown that an operation of revision cannot provide a credible account
of the inductive processes studied in learning theory unless several of the standard
AGM postulates are dispensed with [140]. The relationship between the two types
of operations is a promising but largely unexplored research topic.

12.7 Connections with Social Choice

The classical theory of rational choice was developed by mathematical economists
[18, 312, 313]. It has occupied a central role in the social sciences for more than
half a century.

Choice rationality is concerned with how to choose rationally among a set of
alternatives. The standard representation of choice is a choice function. A choice
function is defined over a set A of alternatives, and for each subset of that set it
chooses, intuitively speaking, the most choiceworthy (or “best”) alternatives. For-
mally, C is a choice function for A if and only if it is a function such that for each
subset B of A: (1) C(B) is a subset of B and (2) if B is non-empty then so is C(B).
Notably, C(B) can have more than one element. However, this does not mean that
the agent chooses more than one alternative, only that there is more than one al-
ternative that she is willing to choose. Among the rationality properties that have
been proposed for choice functions, the following two are the most important ones
[311, 312]:

Chernoff (property α)
If B1 ⊆B2 then B1∩C(B2) ⊆C(B1).
Property β
If B1 ⊆B2 and X,Y ∈C(B1), then: X ∈C(B2) if and only if Y ∈C(B2)

Our choices are to a large extent guided by our preferences. In economics and so-
cial choice theory it is often assumed that a rational agent’s choices are completely
determined by his or her preferences in the following way:

C(B) = {X ∈B ∣ (∀Y ∈B)(X ≥ Y)}

A choice function C is relational if and only if it is based on some preference re-
lation ≥ in this way. There are tight formal connections between the properties of
choices and those of preferences. It is possible to base a choice function on a given
preference relation ≥ if and only if ≥ satisfies completeness and acyclicity. All such
choice functions (i.e., all relational choice functions) satisfy Chernoff. A relational
choice function satisfies property β if and only if the underlying preference relation
is transitive [311].
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The structures studied in rational choice theory have a close connection with the
selection functions employed in belief revision. Rott relates belief revision, non-
monotonic reasoning and rational choice, and shows how standard postulates of
belief change and non-monotonic reasoning correspond to the constraints of classi-
cal theories of rational choice. According to Rott, these connections constitute an
important bridge between practical and theoretical rationality [295].

Olsson [262] concedes that Rott’s work is indisputable as a formal achievement,
but puts his philosophical conclusions in question. According to Olsson, Rott has not
discovered any surprising connections between belief revision and choice. Instead
he has reconnected the AGM theory with its roots in counterfactual reasoning and
rational choice.

Further studies on the relations between belief change and social choice have
been reported by Arló-Costa and Pedersen [17] and by Bonanno [42].

12.8 Implementations

Belief revision has usually been studied from the viewpoint of ideal agents (resource
bounded or not). The performance of belief change operations in a computer or robot
gives rise to new challenges. From a practical point of view we have to deal with
actual limitations in memory, reasoning, accuracy, etc. From a theoretical point of
view the computational tractability of the proposed algorithms is a major challenge.

In the 1980s several algorithms for the implementation of belief change opera-
tions were proposed. Most of them were constructed to determine which beliefs are
supported and how, and to perform changes while minimizing the number of (usu-
ally atomic) sentences to be changed. Major examples are the algorithms proposed
by Doyle, [78], Borgida [53], Winslett [338], Dalal [66] and Satoh [305]. Katsuno
and Mendelzon [205] provided an overview of several of these approaches.

Two logics suitable for supporting belief revision systems have been proposed.
The first of these was due to Martins and Shapiro in an early paper that also de-
scribed an actual implementation [249], and the second to Gabbay, Pigozzi, and
Woods [125]. Recent works on implementation also include proposals by Williams
[336], Williams and Sims [337], and Delgrande and Schaub [71].

A core aspect in implementation is the space and time required for computation.
One of the first studies of the computational costs of belief change algorithms was
performed by Eiter and Gottlob [85]. In a survey written in 1998 Nebel said:

The general revision problem for propositional logic appears to be hopelessly infeasible
from a computational point of view because [the sources of complexity] are located on the
second level of the polynomial hierarchy [257].

However, specific algorithms can reduce this computational cost. The determination
of what properties have to be given up in order to gain efficiency is a major chal-
lenge for future studies. An interesting step was taken by Jin and Thielscher when
they proposed a model called Reinforcement Belief Revision. This model combines
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two important desiderata for belief change implementations: It satisfies the standard
rationality postulates, and the time and space required for its implementation can be
assessed [202].



Chapter 13
Multiagent Belief Change

Classical AGM operations model the belief changes of a single agent. They can
be extended so that more than one agent is involved. In many situations coherent
beliefs based on several sources are needed. However, these sources may contradict
each other. Consequently, agents need to combine their beliefs in order to obtain a
common, consistent set of beliefs.

The first approaches to multiagent belief change were proposed by Baral, Kraus,
Minker, and Venkataram. They combined different belief bases to obtain a consis-
tent combination that satisfies a set of integrity constraints [26, 27]. Later, Revesz
[281] and Lin [228] showed how to obtain a common belief set based on distances
between models. Liberatore and Schaerf proposed arbitration [226, 227], a method
for mutual belief revision involving two agents. These proposals have been followed
by several other approaches to multiagent change [81, 246, 247, 236, 21].

13.1 Merging

Konieczny and Pino Perez have proposed operations of merging that generalize sev-
eral previously proposed methods for conflict-solving through the combination of
information from several agents [215]. As in classical belief revision, rationality
postulates are proposed. However, as the authors pointed out [214], there is an im-
portant difference, namely the social aspect of merging. Postulates are needed on
how conflicts between sources of information should be resolved. Consequently,
it is possible to distinguish between different families of merging operations, de-
pending on their behaviour towards the sources, for instance majority-respecting
behaviour (for a detailed discussion, see [214]).

In order to introduce merging formally we have to introduce some notation:
A belief base A is a finite set of propositional formulae {p1, . . . , pn}. We write

⋀A for the conjunction of the formulae of A, i.e., ⋀A = p1 ∧ . . .∧ pn. A denotes
the set of belief bases. Let A1, . . . ,An be n (not necessarily different) belief bases. A
profile E is a finite and non-empty multiset of belief bases E = {A1, . . . ,An} (hence
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different agents are allowed to exhibit identical bases). It represents the beliefs of a
group of n agents. E denotes the set of profiles. ⋀E denotes the conjunction of the
bases of E, i.e., ⋀E =⋀A1∧ . . .∧⋀An. ⋁E denotes the disjunction of the bases of E,
i.e., ⋁E =⋀A1∨ . . .∨⋀An. A profile E is said to be consistent if and only if ⋀E is
consistent. ⊔ denotes the union of profiles. Two profiles are equivalent, denoted by
E1 ≡ E2, if there is a bijective function f from E1 onto E2 such that for any A ∈ E1,
⊢ f (A)↔⋀A.1

Merging operations can be constructed as functions from the set of profiles and
the set of propositional formulae (which will represent integrity constraints) to the
set of belief bases, i.e., △ ∶ E ×L↦A. We will use the notation △p(E) instead of
△(E, p). △p(E) is the merged belief base obtained from the profile E under the
integrity constraint p (which corresponds to the input sentence in traditional belief
change).

The following axioms have been proposed for merging operations [214]:

(IC0) △p(E) ⊢ p
(IC1) If p is consistent, then △p(E) is consistent
(IC2) If ⋀E is consistent with p, then △p(E) ≡ (⋀E)∧ p
(IC3) If E1 ≡ E2 and ⊢ p1↔ p2, then △p1(E1) ≡△p2(E2)
(IC4) If A1 ⊢ p and A2 ⊢ p, then △p({A1,A2})∧ A1 is consistent if and only if

△p({A1,A2})∧A2 is consistent
(IC5) △p(E1)∧△p(E2) ⊢△p(E1⊔E2)
(IC6) If △p(E1)∧△p(E2) is consistent, then △p(E1⊔E2) ⊢△p(E1)∧△p(E2)
(IC7) △p1(E)∧ p2 ⊢△p1∧p2(E)
(IC8) If △p1(E)∧ p2 is consistent, then △p1∧p2(E) ⊢△p1(E)

We follow [214] in explaining the postulates. (IC0) to (IC2) correspond to the
AGM postulates success, consistency and vacuity. (IC3) corresponds to Katsuno
and Mendelzon’s postulate (R4) for belief revision (see Section 3.6). (IC4) states
that when two belief bases are merged, the merging operation must not give prefer-
ence to one of them. (IC5) and (IC6) together state that if the merge of E1 is con-
sistent with the merge of E2 then the conjunction of these two merges is equivalent
with the merge of E1 ⊔E2. (IC7) and (IC8) are closely related with the AGM sup-
plementary postulates. They imply that an interpretation that is preferred among the
possible interpretations will remain preferred if one restricts the possible choices.

Merging is an extension of revision. If a profile is composed of just a single finite
base A, then merging and revision coincide, as we see in the following theorem:

Theorem 13.1. [214] Let A be a finite belief base. Let ϕ such that ⊢ ϕ↔⋀A (i.e., ϕ
represents the conjunction of all the sentences in A). Let △ be a merging operation
for {A}. Then ∗ defined as ϕ∗ p =△p({A}) satisfies the revision postulates (R1) -
(R6).

1 Note that this is different from claiming that E1 and E2 are equivalent if and only if for each
element of Ai of E1 there exists an element of A j of E2 such that ⊢⋀Ai↔⋀A j and vice-versa.
For example, E1 = {A1,A1,A1,A2} and E2 = {A2,A2,A2,A1} satisfy this condition; however, we
expect different outcomes from merging operations on these two profiles.
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Merging operations can be characterized in terms of possible worlds. We need to
define first the notion of a syncretic assignment:

Definition 13.1. [214] A syncretic assignment is a function mapping each profile E
to a total preorder ≤E (<E , ≃E) on possible worlds such that for any profiles E,E1,E2
and for any belief bases A, A′, the following conditions hold:

1. If ω1 ⊢⋀E and ω2 ⊢⋀E, then ω1 ≃E ω2.
2. If ω1 ⊢⋀E and ω2 /⊢⋀E, then ω1 <E ω2.
3. If E1 ≡ E2, then ≤E1=≤E2
4. For any belief bases A and A′ and any possible world ω1 with ω1 ⊢ A there is

some possible world ω2 such that ω2 ⊢ A′ and ω2 ≤{A}⊔{A′} ω1.
5. If ω1 ≤E1 ω2 and ω1 ≤E2 ω2, then ω1 ≤E1⊔E2 ω2.
6. If ω1 <E1 ω2 and ω1 ≤E2 ω2, then ω1 <E1⊔E2 ω2.

Theorem 13.2. [215] An operation△ is an IC merging operation if and only if there
exists a syncretic assignment that maps each profile E to a total preorder ≤E such
that △p(E) =⋃(min(∥p∥,≤E))

The (IC) postulates do not tell us what properties the outcome should have when
there is no consensus among the agents. Konieczny and Pino Perez provided ad-
ditional properties to characterize merging operations with different behaviours in
such cases. For instance, a majority merging operation satisfies (IC0)-(IC8) and

(Maj) For each E1 and E2 there is some n such that △(E1⊔En
2) ⊢△(E2).

This postulate says that if a subgroup is repeated sufficiently many times, then the
opinion of that subgroup will prevail. For other merging operations and their seman-
tics, see [214].

13.2 Argumentation

Argumentation theory is concerned primarily with the evaluation of claims based on
premises in order to reach conclusions. The work by Toulmin [323] published in the
1950s can perhaps be recognized as a point of departure, but full attention to his pro-
posal was delayed until the beginning of the 1980s. The work of Jon Doyle on Truth
Maintenance Systems (TMS) [78] could be considered as a starting point for this
research, as it attracted attention to the problem of how something comes to be be-
lieved. This work can also be regarded as a first effort in the overlapping area where
belief revision and argumentation meet. The research on argumentation during the
past few decades led to many developments that include both theoretical and prac-
tical contributions. The two areas grew along mostly separate lines of inquiry until
recently; but, in the last decade there has been a renewed interest in the interplay
between belief revision and general forms of reasoning. Argumentation represents a
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reasoning mechanism that is particularly apt for obtaining the consequences of a po-
tentially inconsistent repository of beliefs, in ways that connect closely with studies
of belief change.

Falappa, Kern-Isberner and Simari [90] have argued that belief revision and ar-
gumentation theory are complementary approaches. Belief revision describes the
way in which an agent is supposed to change her beliefs when new information ar-
rives or she observes changes in the world, whereas argumentation theory deals with
strategies agents employ for their own reasoning, or to change the beliefs of other
agents, by providing reasons for such changes. By combining the two, the variety
and complexity of reasoning processes is better accounted for than if only one of
them is used.

In [88], these authors propose a system that uses argumentative structures in the
form of explanations for non-prioritized revisions of a belief base B. In this model,
an epistemic input is composed of a sentence p and a set of reasons to believe in
p, i.e., rules and prerequisites A from which p can be deductively derived. A partial
acceptance revision operation is constructed such that A is initially accepted, which
leads to the creation of B∪A as a (possibly inconsistent) intermediate belief base.
Then inconsistencies are removed from B∪ A, giving rise to a consistent revised
belief base B∗A. The operation ∗ is an operation of external revision in the sense
explained in Section 6.3.

Paglieri and Castelfranchi proposed Data-oriented Belief Revision (DBR) as an
alternative to AGM [61, 265]. This model combines belief revision with argumenta-
tion, following Toulmin’s account of argumentation [323]. The application of DBR
to argumentation is primarily intended to highlight structural communalities be-
tween arguments and belief-supporting networks. The suggestion is that arguments
should be studied also as attempts to change the audience’s beliefs [266, 267]. The
model contains two basic informational categories, data and beliefs, in order to ac-
count for the distinction between pieces of information that are simply gathered and
stored by the agent (data), and pieces of information that the agent considers to be
(possibly up to a certain degree) truthful representations of the state of the world
(beliefs). Contrary to beliefs, data are allowed to be contradictory. When a belief is
abandoned, this does not entail removal of the corresponding information from the
agent’s memory, i.e., disbelieving is not forgetting.

13.3 Game Theory

Belief change and game theory are related in several ways. Booth and Meyer [48]
investigated equilibria in belief merging. They assume a Principle of Equilibrium
according to which all agents simultaneously make the appropriate response to what
all the other agents do. The removal functions of the individual agents are combined
to construct a social belief removal function. The key idea is that the social belief
removal function can perform a minimal change in the AGM sense. Two classes
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of removal functions for agents have been studied: basic and hyperregular removal.
The former has been axiomatically characterized by Booth [44].

Zhang studied bargaining situations from another viewpoint that is also related
to belief change. Traditionally, a bargaining situation is abstracted as a game whose
set of potential outcomes can be represented by ⟨S ,d⟩ where S represents the set
of feasible alternatives and d ∈ S the disagreement point, i.e., the outcome to be
expected if the negotiations break down and no bargain can be reached. A bargain-
ing solution is a function that assigns to ⟨S ,d⟩ a unique element of S . Bargaining
theory explores the relationship between the bargaining situation and the solution.
Zhang proposed an axiomatic characterization of bargaining solutions that is based
on postulates from AGM and game theory [340].

One of the major ways to solve a game is to employ backwards induction, by
which is meant that one reasons backwards in a chain of successive decisions ap-
proximately as follows: What will the last player do in the different situations that
(s)he might find herself in? Given that, what will the next last player do in the situa-
tions that she can find herself in, and given that the third last player, etc., all the way
back to the first player. Models of backwards induction in games will have to include
representations of conditional reasoning and therefore also belief-contravening sup-
positions.

Arló-Costa and Bicchieri [14] proposed an operation for hypothetical reasoning
in games, based on a proposal by Samet [304], that is intuitively well-behaved and
satisfies some of the classical AGM properties. These authors developed models in
which the condition that all players are disposed to behave rationally at all nodes
is both necessary and sufficient for them to play the backward induction solution in
centipede games (i.e., games in which two players take turns choosing either to take
a slightly larger share of an increasing pot, or to pass the pot to the other player).
This result was obtained without assuming that rationality is commonly known (as
it is in [22]) or commonly hypothesized by the players (as it is in [304]).



Chapter 14
Descriptor Revision

This chapter introduces a new approach to belief revision that was recently presented
in [182] and has been further developed in [190, 183, 185, 189, 187, 184, 341]. It
provides us with a mechanism for belief change that is in important respects more
general than previous approaches. Descriptor revision is based on two new formal
constructions: A generalized notation for success conditions and the application of
choice mechanisms directly to the set of potential outcomes of the belief change
operation.

14.1 Belief Descriptors

Standard operations of belief change are defined in terms of their success condi-
tions, such as p ∈ K ∗ p for revision and p ∉ K − p for contraction. These are state-
ments about what is believed in the belief state that the operation results in. We have
encountered some operations with other success conditions, such as ⊥ ∉ K! for con-
solidation, A∩(K−A) =∅ for package contraction, A⊈K−A for choice contraction,
etc. All these are conditions on which sentences should be included in the outcome
of the operation.

Descriptor revision makes use of a general notation for success conditions. This
notation is based on a metalinguistic belief predicateB that is applied to sentences in
the object language L in which beliefs are expressed. For instance, Bp denotes that
p is believed in the belief state in question, and B(r∨ s) that r∨ s is believed. We
can combine B-sentences with the usual truth-functional operations. Hence, ¬Bp
denotes that p is not believed (which is different from B¬p, which means that ¬p
is believed), and Bp∨Bq means that either p or q is believed (which is different
from B(p∨q), which denotes that p∨q is believed). We can also use a set of such
sentences as a success condition. All elements of such a set have to be satisfied for
the set to be satisfied; for instance {Bp,¬Bq} is satisfied if and only if p is believed
and q is not.
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Upper-case Greek letters such as Ψ,Ξ, . . . will be used to denote non-empty sets
consisting of truth-functional combinations of B-sentences. Obviously, single such
sentences can also be presented as sets; we just write, for instance, {¬Bq} instead of
¬Bq. Sets consisting of truth-functional combinations of B-sentences will be called
(belief) descriptors. The formal definition is as follows:

Definition 14.1. [182] An atomic belief descriptor is a sentence Bp with p ∈L. It is
satisfied by a belief set K if and only if p ∈ K.

A molecular belief descriptor is a truth-functional combination of atomic de-
scriptors. Conditions of satisfaction are defined inductively, such that K satisfies ¬α
if and only if it does not satisfy α, it satisfies α∨β if and only if it satisfies either α
or β, etc.

A composite belief descriptor (in short: descriptor; denoted by upper-case Greek
letters Ψ , Ξ,. . .) is a non-empty set of molecular descriptors. A belief set K satisfies
a composite descriptor Ψ if and only if it satisfies all its elements.

The symbol B is not part of the object language, and therefore it cannot be used to
express an agent’s beliefs about her own beliefs.1

With descriptors we can express a wide variety of success conditions, including
but not restricted to those that have been discussed in the literature on AGM-style be-
lief change. To mention just one example, the operation of “making up one’s mind”
aims at either belief or disbelief in a specified sentence p. Its success condition is
Bp∨B¬p [341].

The following notation is used to express the logical relations among descriptors:

Definition 14.2. [182] Let K be a belief set and let Ψ and Ξ be descriptors.

(1) K ⊩Ψ means that K satisfies Ψ , and
(2) Ψ ⊩ Ξ means that all belief sets satisfying Ψ also satisfy Ξ.

14.2 Descriptor Revision

Descriptors are so versatile that when we use them, we only need one operation of
belief change. That operation is called descriptor revision and is denoted by ○. For
any belief set K and descriptor Ψ , K ○Ψ is, intuitively speaking, the outcome of an
adjustment of K to make it satisfy Ψ .

We will now turn to the second basic idea of descriptor revision. (The first was
the use of descriptors to represent success conditions.) That idea is to perform belief
changes by choosing directly among the belief sets that are potential outcomes of
the operation. This is an entirely different approach from that applied in the AGM
framework.
1 It is possible to include an autoepistemic belief predicate into the language. It may or may not
coincide with B, depending on whether or not the agent’s autoepistemic beliefs accord with her
epistemic conduct. See [190].
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In the original AGM model, belief change is based on a choice among the ele-
ments of K ⊥ p, the set of inclusion-maximal subsets of K that do not imply p. In
the sphere-based model, it is based on a selection among possible worlds. Possible
worlds are very large entities, far beyond human cognition, and so are the elements
of the remainder set.2 It is cognitively unrealistic to assume that we perform our
belief changes by choosing among an infinite collection of remainders or possible
worlds, and then forming the intersection of those that we have selected.

In descriptor revision we choose directly among the belief sets that are potential
outcomes of the operation. The framework contains an outcome set or set of poten-
tial outcomes, denoted by X. Intuitively speaking, X consists of all those belief sets
that a belief change can result in [179]. We can interpret it as consisting of all those
belief sets that are sufficiently plausible, sufficiently close at hand, or sufficiently
coherent to be the outcome of a belief change. When we perform the belief change
K ○Ψ , we employ a choice function that picks out one among those elements of X
that satisfy Ψ . If none of the elements of X satisfies Ψ , then we let K ○Ψ = K.

Descriptor revision in this general, choice-based form has been axiomatically
characterized with the following four postulates [190]:

K ○Ψ =Cn(K ○Ψ) (closure)
K ○Ψ ⊩Ψ or K ○Ψ = K (relative success)
If K ○Ξ ⊩Ψ then K ○Ψ ⊩Ψ . (regularity)
If K ○Ξ ⊩Ψ if and only if K ○Ξ ⊩Ψ ′ for all Ξ, then K ○Ψ =K ○Ψ ′. (uniformity)

The closure property comes with our use of belief sets as (idealized) representations
of belief states. Both relative success and regularity can be seen as weaker and more
reasonable versions of the implausible success condition K○Ψ ⊩Ψ . Uniformity says
essentially that if two success conditions are satisfied by exactly the same elements
of the outcome set, then the changes that have these two conditions as inputs yield
the same outcome.

Several more specified forms of descriptor revision have been developed. Ar-
guably the most important of these is centrolinear revision [190]. It is based on a
relation ≦ on the outcome set X, such that K ≦ X for all X ∈X. For all descriptors Ψ
we construct K ○Ψ as the unique ≦-minimal element of X that satisfies Ψ , unless Ψ
is unsatisfiable within X, in which case K ○Ψ = K. (The construction only works if
≦ satisfies certain conditions; see [190] for details.) In order to characterize centro-
linear revision axiomatically we can use the above four postulates that hold for all
choice-based descriptor revisions, and in addition the following two:3

If K ⊩Ψ then K ○Ψ = K. (confirmation)
If K ○Ψ ⊩ Ξ then K ○Ψ = K ○(Ψ ∪Ξ). (cumulativity)

2 If L is logically infinite (contains infinitely many logically non-equivalent sentences) and K ≠
Cn(∅), then K ⊥ p has an infinite number of elements, and each of these elements is logically
infinite. This applies even if there is a sentence q such that K = Cn({q}) [169]. See Section 5.5.
3 However, uniformity is not needed for the characterization since it follows from relative success,
regularity and cumulativity [190].
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We can think of centrolinear revision as an operation whose outcome is as close to
the original belief set as the success condition allows it to be. This can be illustrated
in a spatial model by positioning the elements of X, i.e., the potential belief sets, at
different distances from the original belief set K, for instance around K on a surface
or on a straight line with K at one end.

Alternatively, centrolinear revision can be based on a relation of epistemic prox-
imity on descriptors that has very much the same function in descriptor revision as
epistemic entrenchment has in AGM belief change [183, 190].

14.3 Connections with AGM

Standard revision by a sentence (we will now call it sentential revision) can easily be
constructed as a special case of descriptor revision. If we have a descriptor revision
○ on a belief set K, then we can construct a sentential revision ∗ as a special case,
such that for all p:

K ∗ p = K ○Bp

This operation has been axiomatically characterized, and (unsurprisingly) it does not
in general satisfy the basic AGM postulates. However, it has partial meet revision
as a special case. Perhaps more importantly, all transitively relational partial meet
revisions can be constructed in this way from some centrolinear descriptor revision.
In other words, full-blown AGM revision (satisfying all eight AGM postulates) is a
special case of centrolinear descriptor revision [185, 190].

Contraction, the other major AGM operation, has a more complex relation to
descriptor revision. An obvious first attempt to obtain contraction by a sentence p
from descriptor revision would be to define K − p as K ○¬Bp. Such an operation
will not in general satisfy the inclusion postulate for contraction (K − p ⊆ K). This
may not necessarily be a disadvantage, since the inclusion postulate is contestable.
When we remove a sentence p from the belief set, this is usually because we have
received some new information that made us doubt it, and since this new information
was accepted it should be added to the belief set. Based on that argument, we have
reasons to investigate operations that remove a sentence p in a process of minimal
change that may very well include the addition of some new information to the
belief set. Such an operation is called a revocation. It can be derived from descriptor
revision with the formula K− p = K ○¬Bp [182, 190].

There are several ways to construct “pure” contraction, i.e., contraction satisfying
the inclusion postulate, in the framework of descriptor revision. The most straight-
forward of these is to extend the success condition so that it also requires inclusion
to be satisfied:

K− p = K ○({¬Bp}∪{¬Bq ∣ q ∉ K})

Several constructions of both revocation and contraction have been investigated in
some detail [190, 175, 176, 178, 180, 177]. Interestingly, AGM contraction differs
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from AGM revision in not being subsumable under descriptor revision. It has been
shown that a partial meet contraction can be reconstructed as a centrolinear revision
if and only if it is also a transitively relational maxichoice contraction [184]. The
latter type of operation is highly problematic. For reasons discussed in Section 3.8,
maxichoice contraction is usually considered to be an utterly unrealistic limiting
case.

14.4 Further Developments

The descriptor operations described above are all local, i.e., defined only for a single
belief set K. However, descriptor revision can easily be extended to global (iterated)
belief change [189, 190]. This means that the operation ○ should not be limited to
a specific belief set K but instead be applicable to all belief sets that the agent may
potentially entertain at some point in time. From a formal point of view, this means
that ○ should take us from pairs of a belief set and a descriptor to a new belief set
(instead of taking us from a descriptor to a new belief set). One way to construct
global descriptor revision is to base it on distances. Then, for any belief set K and
descriptor Ψ , K ○Ψ is the closest Ψ -satisfying belief set within reach from K (unless
there is no such belief set, in which case K ○Ψ = K). However, it can be argued that
these distances should by asymmetric, or in other words that the distance from a
belief set K1 to another belief set K2 need not be the same as the distance from K2 to
K1. Some belief changes are made much more easily in one direction than the other.

Example 14.1. I was once in a belief state in which I did not have any opinion on
whether 361 is a prime number or not. It was very easy to bring me to a belief state
in which I believe it not to be a prime number. (It was sufficient to convince me that
361 = 19×19.) However, it would be far from easy to bring me back to a state with
no belief in the matter [190].

In the descriptor framework, a generalization of Ramsey test conditionals is easily
obtainable:

Definition 14.3. [189] A Ramsey descriptor is a sentence Ψ ⇒ Ξ, where Ψ and Ξ
are descriptors. For a given operation ○ of descriptor revision,⇒ has the following
condition of validity:

Ψ ⇒ Ξ holds if and only if K ○Ψ ⊩ Ξ.

In other words, Ψ⇒Ξ means that if the belief set is revised by Ψ , then the outcome
will satisfy Ξ. The Gärdenfors impossiblity theorem (Section 11.3) that prevents
us from inserting standard Ramsey test conditionals into belief sets cannot be gen-
eralized to the descriptor framework. Therefore, we can unproblematically extend
the belief sets of descriptor revision so that they contain Ramsey descriptors, i.e.,
sentences of the form Ψ ⇒ Ξ.
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Standard Ramsey test conditionals (that we denote with the symbol�) can be
obtained with the following recipe:

p� q if and only if Bp⇒Bq.

Ramsey descriptors can also be used to express other forms of conditionality be-
tween belief patterns [189, 188, 186, 190]. Consider for instance the following ex-
amples:

Example 14.2. “If he gives up his belief that his wife is faithful to him, then he will
also lose his belief that she loves him.” (¬Bp⇒ ¬Bq)

“If she gives up her belief that the first chapter of Genesis is literally true, then
she will still believe that God exists.” (¬Bp⇒Bq)

“If she makes up her mind on whether this painting is a genuine Picasso or not,
then she will come to believe that it is genuine” (Bp∨B¬p⇒Bp) [190].

These are just a few examples of the many patterns of change that can be uncovered
in human epistemic behaviour and studied in a precise manner with new and more
sophisticated formal tools. In spite of several decades of research on the logic of
belief change, the area is still replete with unanswered questions and unexplored
issues. We may still only be at the beginning of its development.
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215. Konieczny, S., Pino Pérez, R.: Merging information under constraints: a logical framework.
Journal of Logic and Computation 12(5), 773–808 (2002)

216. Kourousias, G., Makinson, D.: Parallel interpolation, splitting, and relevance in belief
change. Journal of Symbolic Logic 72:3, 994–1002 (2007)

217. Kyburg, H.E.: Probability and the Logic of Rational Belief. Wesleyan University Press,
Middletown (1961)



120 References

218. Lang, J., van der Torre, L.: From belief change to preference change. In: M. Ghallab, C.D.
Spyropoulos, N. Fakotakis, N.M. Avouris (eds.) ECAI 2008: 18th European Conference on
Artificial Intelligence, Patras, Greece, July 21-25, 2008, Proceedings, Frontiers in Artificial
Intelligence and Applications, vol. 178, pp. 351–355. IOS Press (2008)

219. Lehmann, D.J.: Belief revision, revised. In: Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI’95), pp. 1534–1540 (1995)

220. Levi, I.: Subjunctives, dispositions, and chances. Synth̀ese 34, 423–455 (1977)
221. Levi, I.: Iteration of conditionals and the Ramsey test. Synthese 76, 49–81 (1988)
222. Levi, I.: The fixation of belief and its undoing: changing beliefs through inquiry. Cambridge

University Press, Cambridge (1991)
223. Levi, I.: Contraction and informational value (1997). (manuscript. Available at

http://www.columbia.edu/ levi/contraction.pdf)
224. Levi, I.: Mild Contraction: Evaluating Loss of Information Due to Loss of Belief. Oxford

University Press, Cambridge (2005)
225. Li, J.: A note on partial meet package contraction. Journal of Logic, Language and Informa-

tion 7, 139–142 (1998)
226. Liberatore, P., Schaerf, M.: Arbitration: A commutative operator for belief revision. In:

Proceedings of the Second World Conference on the Fundamentals of Artificial Intelligence
(WOCFAI’95 (1995)

227. Liberatore, P., Schaerf, M.: Arbitration (or how to merge knowledge bases). Knowledge and
Data Engineering, IEEE Transactions on Knowledge and Data Engineering 10(1), 76–90
(1998)

228. Lin, J.: Integration of weighted knowledge bases. Artificial Intelligence 83 (2), 363–378
(1996)

229. Lindström, S.: A semantic approach to nonmonotonic reasoning: Inference operations and
choice. Uppsala Prints and Preprints in Philosophy 6, Department of Philosophy, Uppsala
University (1991)

230. Lindström, S., Rabinowicz, W.: On probabilistic representation of non-probabilistic belief
revision. Journal of Philosophical Logic 19, 69–101 (1989)

231. Lindström, S., Rabinowicz, W.: Epistemic entrenchment with incomparabilities and rela-
tional belief revision. In: A. Fuhrmann, M. Morreau (eds.) The Logic of Theory Change:
Workshop, Konstanz, FRG, October 13–15, 1989, Lecture Notes in Artificial Intelligence,
vol. 465, pp. 93–126. Springer (1991)

232. Lindström, S., Rabinowicz, W.: Belief revision, epistemic conditionals and the Ramsey test.
Synthese 91, 195–237 (1992)

233. Lindström, S., Rabinowicz, W.: Conditionals and the Ramsey test. In: D. Gabbay, P. Smets
(eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 3 (Be-
lief Change), pp. 147–188. Kluwer (1998)

234. Lindström, S., Rabinowicz, W.: Belief change for introspective agents. In: B. Hansson,
S. Halldén, Nils-Eric-Sahlin (eds.) Spinning Ideas. Electronic Essays Dedicated to Peter
Gärdenfors on His Fiftieth Birthday. http://www.lucs.lu.se/spinning/ (1999)

235. Lindström, S., Rabinowicz, W.: DDL unlimited. Dynamic doxastic logic for introspective
agents. Erkenntnis 51, 353–385 (1999)

236. Liu, W.: A framework for multi-agent belief revision. Ph.D. thesis, University of Newcastle
(2002)

237. Makinson, D.: The paradox of the preface. Analysis 25, 205–207 (1965)
238. Makinson, D.: How to give it up: A survey of some recent work on formal aspects of the

logic of theory change. Synthese 62, 347–363 (1985)
239. Makinson, D.: On the status of the postulate of recovery in the logic of theory change. Journal

of Philosophical Logic 16, 383–394 (1987)
240. Makinson, D.: The Gärdenfors impossibility theorem in nonmonotonic contexts. Studia Log-

ica 49, 1–6 (1990)
241. Makinson, D.: On the force of some apparent counterexamples to recovery. In: E.G. Valdés,

W. Krawietz, G. von Wright, R. Zimmerling (eds.) Normative Systems in Legal and Moral
Theory: Festschrift for Carlos Alchourrón and Eugenio Bulygin, pp. 475–481. Duncker &
Humblot, Berlin (1997)



References 121

242. Makinson, D.: Screened revision. Theoria 63, 14–23 (1997)
243. Makinson, D.: Propositional relevance through letter-sharing. Journal of Applied Logic 7(4),

377–387 (2009)
244. Makinson, D.: Conditional probability in the light of qualitative belief change. Journal of

Philosophical Logic 40(2), 121–153 (2011)
245. Makinson, D., Gärdenfors, P.: Relation between the logic of theory change and nonmono-

tonic logic. In: A. Fuhrmann, M. Morreau (eds.) The Logic of Theory Change: Workshop,
Konstanz, FRG, October 13–15, 1989, Lecture Notes in Artificial Intelligence, vol. 465, pp.
185–205. Springer (1991)

246. Malheiro, B., Jennings, N.R., Oliveira, E.: Belief revision in multi-agent systems. In: Pro-
ceedings of the 11th European Conference on Artificial Intelligence (ECAI 94), pp. 294–298
(1994)

247. Malheiro, B., Oliveira, E.: Solving conflicting beliefs with a distributed belief revision ap-
proach. In: M. Monard, J. Sichman (eds.) Advances in Artificial Intelligence, Lecture Notes
in Computer Science, vol. 1952, pp. 146–155. Springer (2000)

248. Mares, E.D.: A paraconsistent theory of belief revision. Erkenntnis 56(2), 229–246 (2002)
249. Martins, J., Shapiro, S.: A model for belief revision. Artificial Intelligence 35, 25–79 (1988)
250. Meyer, T., Heidema, J., Labuschagne, W., Leenen, L.: Systematic withdrawal. Journal of

Philosophical Logic 31:5, 415–443 (2002)
251. Meyer, T., Lee, K., Booth, R.: Knowledge integration for description logics. In: Proceedings

of the 7th International Symposium on Logical Formalizations of Commonsense Reasoning,
pp. 645–650. AAAI Press (2005)

252. Moore, G.E.: A reply to my critics. In: P. Schilpp (ed.) The Philosophy of G.E. Moore, pp.
535–677. Northwestern University, Evanston IL (1942). The Library of Living Philosophers
(volume 4)

253. Nayak, A.: Iterated belief change based on epistemic entrenchment. Erkenntnis 41, 353–390
(1994)

254. Nayak, A., Pagnucco, M., Peppas, P.: Dynamic belief revision operators. Artificial Intelli-
gence 146:2, 193–228 (2003)

255. Nebel, B.: A knowledge level analysis of belief revision. In: Proceedings of the 1st Interna-
tional Conference of Principles of Knowledge Representation and Reasoning, pp. 301–311.
Morgan Kaufmann (1989)

256. Nebel, B.: Syntax-based approaches of belief revision. In: P. Gärdenfors (ed.) Belief Revi-
sion, no. 29 in Cambridge Tracts in Theoretical Computer Science, pp. 52–88. Cambridge
University Press (1992)

257. Nebel, B.: How hard is it to revise a belief base? In: D. Dubois, H. Prade (eds.) Handbook of
Defeasible Reasoning and Uncertainty Management Systems, Volume 3: Belief Change, pp.
77–145. Kluwer Academic Publishers, Dordrecht (1998)

258. Newell, A.: The knowledge level. Artificial Intelligence 18, 87–127 (1982)
259. Niederée, R.: Multiple contraction: A further case against Gärdenfors’ principle of recovery.

In: A. Fuhrmann, M. Morreau (eds.) The Logic of Theory Change: Workshop, Konstanz,
FRG, October 13–15, 1989, Lecture Notes in Artificial Intelligence, vol. 465, pp. 322–334.
Springer (1991)

260. Nittka, A.: A method for reasoning about other agents’ beliefs from observations. Ph.D.
thesis, University of Leipzig (2008)

261. Olsson, E.: Coherence. Ph.D. thesis, Department of Philosophy. Uppsala University (1997)
262. Olsson, E.: Belief revision, rational choice and the unity of reason. Studia Logica 73, 219–

240 (2003)
263. Olsson, E., Enqvist, S. (eds.): Belief Revision Meets Philosophy of Science, Logic, Episte-

mology, and the Unity of Science, vol. 21. Springer Netherlands (2011)
264. Paglieri, F.: See what you want, believe what you like: Relevance and likeability in belief
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