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Building Better Tumor Models: Organoid 
Systems to Investigate Angiogenesis
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Abstract Cancer remains a leading cause of death in the United States and other 
developed countries. In nearly all cases, the cause of death is related to complica-
tions associated with tumor metastasis to distant sites such as the brain, lung, liver, 
and bone. A central feature of tumor progression is the acquisition of a blood sup-
ply, which provides nutrients for the growing tumor as well as conduits for transport 
of cancer cells. Our understanding of how a tumor acquires and manipulates a blood 
supply has been gleaned largely from animal models, but more recent advances in 
tissue engineering and microfabrication have led to clever 3D in vitro models of 
tumors that include blood vessels. This chapter will first briefly review the process 
of blood vessel growth including our knowledge of blood vessels within the cancer 
microenvironment, and discuss the most recent advances to mimic blood vessel 
growth in the tumor microenvironment using 3D in vitro culture methods. Finally, 
we discuss several important factors that control blood vessel growth including 
hypoxia, cellular metabolism, and tissue mechanics, which provide rich opportuni-
ties for future investigation.
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1  Introduction

Angiogenesis, the process of vessels sprouting from existing blood vessels, is a 
critical event in numerous pathophysiological processes, including embryogenesis, 
wound healing, inflammation, diabetes, and cancer. Early growth of a neoplastic 
tissue engenders a metabolic deficit (e.g., glucose and oxygen) that limits growth. 
Compensatory mechanisms that permit additional growth include changes in 
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metabolism and the acquisition of a blood supply. The access to vasculature allows 
tumors to disseminate cancer cells to distant organ sites, leading to the formation of 
metastatic lesions. The hypothesis that angiogenesis is required for tumor growth 
was first proposed by Folkman in 1971 [1]. Thereafter, there has been reaffirmation 
of this concept by independent groups [2–5]. As a result, anti-angiogenic therapy is 
part of the treatment regimen for some types of solid cancers including breast, lung, 
and renal cancers.

The biology of angiogenesis within the tumor microenvironment has been largely 
studied in either mouse models or simple 2D monolayer culture systems (Fig. 1). 
Although these classical model systems have provided a wealth of understanding, 
they have limitations and there remains a need for novel model systems that can 
further improve our understanding of angiogenesis. Animal models offer a complex 
tissue environment compared to 2D cell cultures, but the biology of these animal 
models is simply not human. A more recent model used to study cancer biology is 
the patient-derived xenograft (PDX) in which a human tumor is implanted either 
subcutaneously or orthotopically in an immunocompromised mouse. The major 
limitation in the subcutaneous model is that it lacks important features of the origi-
nal tumor microenvironment. In contrast, orthotopic tumor xenografts are implanted 
at the original tumor site and are considered more reliable for studying the biology 
or predicting drug response in humans. Nonetheless, in both cases the tumor xeno-
grafts are surrounded by non-human tissue stroma, developed in the absence of a 

Fig. 1 Advantages and disadvantages of tumor model systems. Experimental model systems of 
the tumor microenvironment (TME) broadly include four categories: (a) traditional 2D monolayer 
cell culture, (b) 3D in vitro multicellular models, (c) animal models, and (d) human models. While 
simple and inexpensive, 2D monolayer culture cannot replicate the essential heterotypic cell-cell 
and cell-matrix interactions that have proven essential in the biology of the TME. Animal models 
can replicate the integrated response of the whole animal, but many times the immune system is 
compromised to allow the study of human cells and the temporal and spatial resolution of the TME 
is severely limited. While humans represent the “perfect” system, studies are limited to more 
advanced cancers, and most interventions, including genetic manipulation, are not possible. 
Advanced 3D in vitro multicellular models allow the step-by-step incorporation of key compo-
nents in the TME, and high spatial and temporal resolution of dynamic events. While it may be 
difficult to fully recapitulate the TME in vitro, new advances in microfabrication and imaging 
provide opportunities to tease apart complex cell-cell and cell-matrix dynamics in the TME. The 
arrows linking the models are purposely two-way as observations made in one system can answer 
questions, but also generate new hypotheses that can be tested or confirmed in alternate systems. 
While all four approaches are important, a 3D in vitro model can provide unique opportunities to 
study angiogenesis in the tumor microenvironment

V.S. Shirure et al.



119

normal immune response, and take several months to grow [6, 7]. Furthermore, the 
animal models are expensive to maintain, are not high-throughput, provide barriers 
to some imaging technologies, and provide inherently limited spatial and temporal 
resolution. The 2D culture systems, on the other hand, are much easier to develop 
and utilize. However, these systems lack the fundamental complexity of the multi-
cellular 3D tissue microenvironment. These limitations have led to the development 
of 3D culture systems, which are positioned between 2D and animal models in 
terms of advantages and limitations (Fig. 1).

The idea of mimicking 3D tissue function in vitro is not new in cancer research; 
in fact, tumor spheroids were first presented nearly four decades ago [8]. Since then, 
the model systems have evolved from 3D tumor spheroids comprised solely of can-
cerous cells to tumor spheroids composed of a mixture of cancer and stromal cells, 
vascularized tumors, and more recently perfused vascularized tumors [8–10]. 
Despite the recent progress that has been made in the field using conventional bio-
logical models, we still do not have a complete picture of the impact of microenvi-
ronmental factors that dictate the formation and maintenance of cancer-associated 
blood vessels. Herein we provide a limited discussion of the biological pathways of 
angiogenesis; unique features of vessels within the cancer microenvironment; the 
important roles of hypoxia, cellular metabolism, and mechanics on tumor angiogen-
esis; and tumor metastasis as a backdrop to understand how the creation of in vitro 
3D tumor organoids can be used to further augment our understanding of tumor 
angiogenesis and its role in tumor progression.

2  Cell Signaling Pathways in Tumor Angiogenesis

The growth of blood vessels from existing blood vessels to meet the metabolic 
needs of a tumor defines tumor angiogenesis (Fig.  2a) [11]. The important pro- 
angiogenic factors involved in cancer are vascular endothelial growth factor 
(VEGF), placental growth factor (PlGF), and angiopoietin-1 (ANG1) [12]. These 
pro-angiogenic factors activate otherwise quiescent vessels and “turn on” the so- 
called angiogenic switch. VEGF has been extensively studied for how it activates 
the angiogenic program [12]. Vessel exposure to proangiogenic factors leads to 
vasodilation and increased vascular permeability. The endothelial cells lining the 
vessel degrade the basement membrane by proteolytic activity of matrix metallo-
proteinases (MMP). The endothelial cells detach and organize into a new branch in 
which the endothelial cell leading the branch is called a tip cell and the endothelial 
cells following are called stalk cells (Fig. 2b). The tip cells sense gradients of mor-
phogens and guide the direction of the new sprout. The tip cell restricts the stalk 
cells from transforming into other tip cells by secreting delta-like ligand 4 and sig-
naling through the NOTCH-mediated pathway. The stalk cells, on the other hand, 
are responsible for proliferating and forming continuous extension branching from 
the original vessel. Eventually vessel junctions are reestablished, proteolytic activ-
ity is neutralized, the basement membrane is synthesized, and pericytes are recruited 
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to stabilize the nascent vessels. The processes that stabilize the vessels are 
conducted by numerous molecular pathways mediated by platelet-derived growth 
factor B (PDGF-B), ANG-1, transforming growth factor-β (TGF-β), ephrin-B2 and 
NOTCH. The WNT signaling pathway also plays a role in tumor angiogenesis 
[13, 14]. Endothelial cells express an array of WNT ligands and their frizzled (FZD) 
receptors, some of which are essential for stimulating endothelial cell proliferation 
[14]. One of the regulators of WNT signaling is β-catenin. Activation of WNT/β- -
catenin signaling can induce numerous tumor growth genes including Myc, Axin2, 
and Zeb1 in vivo. In contrast, abnormal β-catenin activation and signaling has been 
associated with solid stress from tumor masses [13, 14].

Another important cell signaling pathway that regulates vessel integrity is the 
angiopoietin (ANG) and TIE signaling system; this pathway stimulates basement 
membrane deposition to promote vessel tightness [15, 16]. However, dysregulation 
of ANG and TIE signaling in sprouting endothelial cells can lead to vascular perme-
ability, inflammation, and defects that allow for tumor metastasis [17]. Finally, 
p21-activated kinases (PAKs) alter RhoGTPase signaling, causing irregular actomyosin 

Fig. 2 Angiogenesis in the tumor microenvironment. (a) Angiogenesis is required to promote 
tumor growth. The angiogenesis in tumors of mice was captured using optical frequency domain 
imaging (OFDI) technique. This high resolution microscopy shows tumor associated vasculature 
is dense and unorganized compared to surrounding non-tumor tissue. The red and yellow indicate 
the depth of the tissue and blue indicates lymphatics. Scale bar = 500 mm (reprinted with permis-
sion [11]). (b) Numerous signaling factors, including soluble growth factors and membrane bound 
receptors, integrins, and junction proteins, play a role in the development of vasculature during 
tumor progression. Such signaling is regulated both via tumor cells as well as vascular cells, 
including the tip cell of blood vessels undergoing angiogenesis
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contractility and actin dynamics, and altered cell motility and permeability in 
endothelial cells [18, 19]. Furthermore, work by Ghosh et al. has shown that endo-
thelial cells in the tumor microenvironment demonstrate aberrant Rho activity and 
fail to respond to mechanical strain in the same manner as normal endothelial cells 
[20]. In addition to altering cell motility and permeability, disruption of actin 
dynamics also changes contractile forces and tension in cells, resulting in changes 
to the transcriptional regulators YAP and TAZ [21–23]. Studies are beginning to 
investigate the exact mechanisms that YAP and TAZ have on endothelial cells in 
cancer-associated blood vessels, but some preliminary work reveals that transloca-
tion of YAP/TAZ to the nucleus can upregulate the expression of target genes such 
as connective tissue growth factor (CTGF) and can lead to an increase in monocyte 
adhesion to endothelial cells [21].

3  Organoid Systems to Model Angiogenesis

The early 3D systems were mainly devoted to create vessels to study activation of 
angiogenic programs. In these systems, either a single suspension of endothelial 
cells or endothelial cell coated microbeads were embedded into extracellular matrix 
(ECM) gels, such as collagen, fibrin, or Matrigel [24, 25]. These gels were placed in 
micro-well plates or similar assemblies to generate a 3D culture system. These 
approaches have successfully yielded capillary microvessels with lumens, but these 
systems have several limitations. The vasculature was not designed for perfusion of 
fluid through the vascular lumen, the vasculature formed was not stable over time, 
and creating controllable temporal and spatial concentration gradients around the 
vasculature is difficult.

The rapidly emerging “organ-on-a-chip” field utilizes tissue engineering and 
microfabrication to create in vitro microtissues in platforms that are optically clear, 
cost-effective, have high spatial and temporal resolution, can capture events in real 
time, and have the potential to be high-throughput. These systems are proving criti-
cal for uncovering novel aspects of angiogenesis. The general method to fabricate 
the organ-on-a-chip platform begins with the computer-aided design of the device. 
A mask is printed from these designs, and used to create a master mold. The master 
mold is fabricated using soft lithography techniques, in which a silicon vapor coated 
with photoresist, such as SU8, is covered with the mask and exposed to UV. The UV 
light polymerizes the exposed area of photoresist, which is the area of device design 
on the mask. The non-polymerized photoresist is etched, and the master mold is 
used to create numerous replicas of the device design using polymers such as 
polydimethylsiloxane (PDMS). The devices made of PDMS are ideal for many cell 
culture applications, including tumor organoids, as they are permeable to oxygen, 
transparent, and have a similar refractive index to glass to facilitate optical 
imaging.

We and others have developed several microfluidic platforms that capture fea-
tures of the human microcirculation (Fig.  3) [26–32]. A critical feature of the 
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Fig. 3 In vitro blood vessels created by coating microfluidic channels with endothelial cells. (a1) 
Device design for coating endothelial cells on the surfaces of the PDMS and collagen gel. (a2) The 
endothelial cells (green) form monolayer in the device, and (a3) angiogenesis is observed from 2D 
coat into 3D collagen gel (reprinted with permission from [30]. (b1) Device design to create hol-
low tubes of circular cross section in collagen gel by using silicon master mold. The surface of the 
collagen tube are coated with endothelial cells to form a vessel. (b2) These vessels stained with 
endothelial specific CD31 (red) sprout and (b3) exhibit barrier function as they retain dextran in 
the lumen (green). Scale bar in b2 and b3 shows 100 μm (reprinted with permission from [27]). 
(c1) The channels in the hydrogel were developed by using viscous finger patterning and then (c2) 
endothelial cells (green) were coated on the hollow structures. (c3) These vessels show angiogenic 
response (red) to VEGF concentration gradients. Scale bar in c2 and c3 show 500 and 50 μm, 
respectively (reprinted with permission [32]). (d1) PDMS device in which a cylindrical tube is 
created in collagen gel using needle of 400 μm diameter. (d2) The gel cylinder was coated with 
endothelial cells (green). (d3) When the vessels exposed to angiogenic factors show angiogenesis. 
Scale bars in d2 and d3 are 100 μm. Scale bar in the insert of d3 is 50 μm (reprinted with permis-
sion from [31])
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microcirculation is the hollow capillary structure through which blood or a blood 
substitute can flow. The studies use mainly two approaches to create these struc-
tures. The first approach is lining a conduit with endothelial cells. Some studies 
first create a perforated rectangular shaped conduit in PDMS, and coat one side or 
all sides of the conduit with endothelial cells [30]. Others have used a more sophis-
ticated approach of creating a cylindrical conduit in an ECM gel (i.e., collagen or 
fibrin) and then coat the lumen of the cylinder with endothelial cells [27, 31]. Once 
the endothelial cells adhere to the wall of the conduit and spread they form tight 
junctions with physiological permeability coefficients [27]. This method generally 
creates large diameter (>100 μm) endothelial cell-lined tubes [27, 31, 32]. These 
endothelial- lined tubes can then be exposed to various levels of concentration gra-
dients, which are created by using additional microfluidic lines. There are several 
creative designs to establish concentration gradients using microfluidics. These 
device designs initiate angiogenesis in response to physiological concentration lev-
els of VEGF, bFGF, and several other proangiogenic factors or cocktails of factors 
[27, 31, 32]. As the endothelial cells are coated, a challenging task is to maintain 
the density of endothelial cells and shape of the tube to accurately mimic the 
in vivo vasculature.

The second approach to generate microvessels follows the developmental pro-
cess of vasculogenesis, in which the endothelial cells are encouraged to self- 
assemble into capillaries (Fig. 4). In this method, the microvessels are produced 
from endothelial cells and stromal cells that are initially randomly distributed in an 
ECM. The stromal cells are a necessary component as they secrete factors necessary 
to support vessel formation, in particular tube formation and stabilization [33–35]. 
Our lab has shown that cord blood-derived endothelial cells and human lung fibro-
blasts in a fibrin gel generate dynamic, interconnected, and perfusable networks of 
microvessels [29]. When implanted in the mouse, the microvessels anastomose to 
mouse vasculature and become functional [36, 37].This co-culture system provides 
a more physiologic alternative, compared to assays using only endothelial cells [27, 
31, 32], to mimic in vivo angiogenesis. Moreover the physical dimensions,  including 
diameter, of the microvasculature formed by our assay resembles that of the in vivo 
microvasculature (<50 μm).

Vasculogenic vessel formation has also been shown to be facilitated by other 
types of stromal cells, such as bone marrow derived stromal cells [28]. In the 
context of tumor angiogenesis, such a system could be of interest, as bone marrow 
is one of the most frequent metastatic sites for multiple types of solid tumors, 
including breast, and colon cancers. Our lab has been working to develop micro-
fluidic systems to place tumors in the immediate vicinity of perfused microvascu-
lar tissue developed by this vasculogenic process [38]. These systems are designed 
to recapitulate microenvironment of early and advanced tumors and study angio-
genesis in response to the microenvironmental perturbations described in the fol-
lowing sections.

Building Better Tumor Models: Organoid Systems to Investigate Angiogenesis



Fig. 4 Microfluidic systems to create in vitro vascular networks by vasculogenesis process. (a1) 
Device design for creating endothelial network from randomly distributed endothelial cells and 
normal lung fibroblasts in fibrin gel. (a2) The endothelial cells (green) form interconnected net-
work of vessels (reprinted with permission from [29]). (b1) One approach to connect the vessels
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Fig. 4 (continued) with the fluidic lines of PDMS device is to coat the fluidic lines with endothe-
lial cells. (b2) The endothelial cells in the fluidic line connect with the vessel network in the gel 
forming a perfused network of vessels (reprinted with permission from [35]). (c1) Microfluidic 
platform design used to create vascular network from bone marrow derived mesenchymal stem 
cells and endothelial cells in fibrin gel. (c2) The micrograph shows endothelial network in this 
device (red). The scale bar is 200 μm (reprinted with permission [28]). (d1) Microfluidic platform 
used for co-culture of endothelial cells and pericytes in fibrin gel. (d2) The system supports forma-
tion of endothelial network (red) formation with pericyte coverage (green). The scale bar is 
100 μm. The figure is reprinted from [26], and is covered under Creative Commons Attribution 
(CC BY) license

4  Hypoxia and Tumor Angiogenesis

4.1  Overview

The deficiency of oxygen, an essential nutrient for cell proliferation and survival, is 
a critical stimulus for acquiring new blood vessels. Hypoxic tumors activate molec-
ular programs that lead to secretion of proangiogenic factors by the tumor as well as 
tumor-associated stromal cells. Tumor hypoxia has been associated with poor 
patient prognosis, with clinical studies showing that advanced breast cancers have a 
median oxygen tension of 10 mmHg, compared with 65 mmHg in normal breast 
tissue [39–41]. Hypoxic cores exist in advanced stage tumors [42], and can also 
exist in tumors as small as 400 μm in diameter [43]. In hypoxic conditions, angio-
genesis is primarily regulated by hypoxia inducible factors (HIFs). Of the highly 
conserved HIF family of transcription factors, HIF-1 has been the best studied [44–
46]. It is known to be a heterodimer of α-subunit (HIF-1α) and a β-subunit (HIF-1β), 
where subunits are members of the basic helix-loop-helix (bHLH)-containing PER- 
ARNT- SIM (PAS) domain family of transcription factors. In addition to HIF-1α and 
HIF-1β, there are two additional oxygen regulated α-subunits are (HIF-2α and 
HIF-3α) and two other constitutively expressed β-subunits (HIF-2β, and HIF-3β). 
Furthermore, the low oxygen environment stabilizes HIF-1α in endothelial cells as 
well [47].

The HIF-1 activation follows a series of molecular events. Starting at oxygen 
concentrations below 6%, HIF-1α stabilizes and translocates from the cytoplasm to 
the nucleus, where it dimerizes with HIF-1β [48]. HIF-1 then binds to hypoxia 
responsive elements (HREs) within the promoters of HIF target genes leading to the 
increased expression of proangiogenic factors such as vascular endothelial growth 
factor (VEGF), VEGF-R2, angiopoietin 1/2, fibroblast growth factor, platelet- 
derived growth factor, and the decreased expression of anti-angiogenic factors such 
as thrombospondin-1 and carbonic anhydrase-9 [49]. In addition to angiogenesis, 
HIF-1 can activate more than a hundred genes that control important cellular pro-
cesses such as epithelial-mesenchymal transition, stem-cell maintenance, and 
metabolism that impact tumor cell invasion, metastasis, metabolic reprograming, 
and resistance to therapy [4].

Building Better Tumor Models: Organoid Systems to Investigate Angiogenesis
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4.2  Controlling and Measuring Oxygen In Vitro

The traditional method to create hypoxic conditions utilizes cell culture incubators, 
where blending excess nitrogen with air lowers oxygen concentration. Alternatively, 
the exchange of oxygen from air can be controlled by an air tight glove box equip-
ment, or hypoxic conditions can simply be generated due to consumption of oxygen 
by cell culture. Additionally, chemicals that consume oxygen, such as sodium nitrate, 
can also be used to manipulate oxygen tension [50]. Alternatively, cobalt chloride 
can stabilize HIF-1α in the presence of normoxia, and allows for more flexible data 
collection. This “pseudo-hypoxic” condition can simulate the impact of HIF-1α, but 
cannot fully recapitulate all features that hypoxia has on cell function [51].

Microfluidic devices have become attractive systems to study hypoxia due to 
their inherently small size, and thus small diffusion distances. A common technique 
to reduce oxygen in microfluidic devices is to use separate channels containing an 
oxygen scavenger such as sodium nitrate (Fig.  5). These channels are separated 
from the tissue chambers by a semipermeable material, such as PDMS, that allows 
diffusion of oxygen but not water [52–54]. By altering the concentration and flow of 
the scavenger, the oxygen tension within the device can be controlled with high 
spatial and temporal resolution. PDMS is ideally suited as a material of construction 
for these device as it is a highly permeable material with respect to oxygen com-
pared to relatively impermeable materials such as cyclic olefin copolymer, polysty-
rene, polypropylene, poly(methacrylic acid), polyurethane, and poly(methyl 
pentene) [55]. By choosing an appropriate coating and/or using an oxygen scaven-
ger, a wide range of oxygen concentrations can be controlled to study tumor hypoxia 
and its effects.

A major advantage of using in vitro systems is that real time oxygen measure-
ments can be performed in a live tissue culture with minimal disruption of biologi-
cal processes. The gold standard for the oxygen sensors is Clark-type electrodes 
which measure oxygen by detecting a current flow caused by the reduction of oxy-
gen [56]. However, the method is operationally complex and less sensitive for oxy-
gen measurement relative to other methods. Recently, more sensitive techniques 
have been developed that employs an oxygen sensitive luminophore. The lumines-
cence of oxygen sensitive dyes is inversely proportional to the concentration of 
oxygen. When the dyes are excited by a laser in the presence of oxygen, the excited 
state energy of the phosphorescent indicator molecule is absorbed by oxygen instead 
of being emitted as a luminescent photon. In other words, oxygen quenches the 
phosphorescence, and reduces the lifetime of the phosphorescence decay. Generally, 
a shorter luminescence lifetime indicates a higher oxygen concentration. The life-
time of the phosphorescence, as opposed to the intensity, is a more robust method as 
it is insensitive to photobleaching and independent of the concentration of the dye. 
Detecting the luminescence lifetime generally requires a more complicated experi-
mental setup because a pulsed laser needs to be used [57].

While many research groups have focused on controlling the oxygen environ-
ment around tumor spheroids, some groups, including ours, have begun to control 
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Fig. 5 Manipulating and measuring oxygen concentrations in vitro. (a) Oxygen scavenger lines 
can be designed into microfluidic platforms to generate hypoxic conditions inside tissue chambers. 
Typically these include materials such as sodium sulfite. (b) PhLM is a method used to measure 
oxygen concentrations in 3D culture systems. Using a pulsed laser to excite the oxygen sensitive 
dye and measuring the dye’s lifetime of decay, a longer phosphorescent lifetimes correspond to 
lower oxygen concentrations

oxygen tension in vascularized tumors [52, 53, 58]. Due to the role that the vascular 
network has in oxygen regulation and the interaction between the tumor and the 
vasculature during hypoxia, the inclusion of these components in the next genera-
tion of tumor organoid models is critical for a complete understanding of angiogen-
esis in the tumor microenvironment.
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5  Cellular Metabolism and Angiogenesis in the Tumor 
Microenvironment

5.1  Overview

Endothelial cells act as a semi-permeable barrier between the circulating blood and 
various tissues. Being in direct contact with the blood, endothelial cells have the 
most ready access to the nutrients needed for healthy cell growth, including glucose, 
glutamine, and oxygen but are also responsible for delivering these nutrients to the 
surrounding tissue. Endothelial cells are able to balance their own metabolic needs 
and transport duties by executing a specific metabolic program that shares many 
similarities with cancer cell metabolism.

Endothelial cells are highly glycolytic and consume glucose at a high rate. Even 
during quiescence, endothelial cells generate more than 80% of their ATP through 
glycolysis alone [59, 60]. Glycolysis in endothelial cells tends to favor lactate as its 
end product, as less than 1% of pyruvate generated by glycolysis is oxidized in the 
tricarboxylic acid (TCA) cycle. By reducing the utilization of oxidative phosphory-
lation (OxPhos) and thus reducing the amount of consumed oxygen, they are able to 
more effectively deliver oxygen to the tissues.

When appropriate signals are received to form tip cells and induce angiogenesis, 
phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFK2 or PFKFB3) expres-
sion is upregulated (Fig. 6). PFK2 converts fructose-6-phosphate into fructose- 2,6- 
bisphosphate (F2,6BP), a potent regulator of phosphofructokinase-1 (PFK1) which 
converts F6P into fructose-1,6-bisphosphate (F1,6BP), considered the first commit-
ted step in glycolysis. VEGF and fibroblast growth factor 2 (FGF2) have been shown 
to increase PFK2 expression and glycolysis. Kruppel-Like Factor 2 (KLF2), a tran-
scription factor which responds to hemodynamic-induced stress on the EC glycoca-
lyx, has been shown to reduce PFK2 expression in quiescent endothelial cells (De 
Bock et al.; Doddaballapur et al.; De Bock, Georgiadou, and Carmeliet). By upregu-
lating PFK2 and increasing levels of F2,6BP, PFK1 activity and flux through gly-
colysis are both greatly increased. In many other cells, such as immune cells, this 
activation would lead to a 20- to 30-fold increase in glycolytic flux but only a two-
fold increase occurs in endothelial cells. The end products, lactate, can later be used 
as a mitochondrial fuel by other stromal cells or regenerated through gluconeogen-
esis after reaching the liver.

Similar to endothelial cells, most tumor cells are highly glycolytic even in the 
presence of oxygen, known as Warburg Metabolism, and have reduced OxPhos 
[61]. In contrast to endothelial cells, tumor cells have a high rate of proliferation, 
and consume large quantities of glucose [61]. The rapid use of glucose and excre-
tion of lactate in the tumor microenvironment stimulates angiogenesis. In low glu-
cose conditions, endothelial cells can utilize Fatty Acid Oxidation (FAO) and amino 
acid metabolism, especially glutaminolysis, to supplement their energetic and mac-
romolecular needs. FAO catabolizes circulating triglycerides to create acetyl-CoA, 
which can then be used for energy production in the TCA or for lipid synthesis and 
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Fig. 6 Endothelial cell metabolism in cancer associated angiogenesis. (a) In normal tissues, ECs 
in blood vessels demonstrate a quiescent phenotype, with limited glycolysis for energy production 
due to hemodynamic stress-induced stimulation of Kruppel-Like Factor 2 (KLF2). In tip cells, 
glycolysis is upregulated by several growth factors and downregulation of KLF2 by reduced flow 
also serves to increase glycolytic flux as ECs become activated to proliferate and develop new 
vasculature via angiogenesis. (b) Nanostructure Imaging Mass Spectrometry of rat brain sections 
b. to resolve metabolic differences by brain region (reprinted with permission from [62]). An initia-
tor is used, similar in function to the matrix from MALDI techniques, to desorb and ionize metabo-
lites before analysis by mass spectrometry. Each metabolite can be visualized in its own ion image, 
as shown to the right, which allows for label-free spatial tracking of multiple metabolites in a tissue 
sample
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also yields NADPH as a byproduct. Glutaminolysis catabolizes glutamine, whose 
concentration in tissues is typically 5 μM, yielding glutamate, which is then con-
verted to α-ketoglutarate and can enter the TCA cycle. Glutamate can also act as a 
nitrogen source for amino acid or nucleotide synthesis and an NADH source. These 
alternative energy sources facilitate angiogenesis into the tumor microenvironment, 
which is typically hypoxic and low in nutrients necessary for proliferation.

5.2  Methods to Characterize Cellular Metabolism In Vitro

There are several techniques that have been utilized to study metabolism in 2D cul-
ture and are being adapted to study 3D tissues in vitro. Three promising options 
include the Seahorse Extracellular Flux (XF) Assay, Fluorescence Lifetime Imaging 
Microscopy (FLIM), and Mass Spectrometry (MS) based metabolomics analysis. 
Direct in vitro studies of metabolism in complex tissues, including organoids com-
posed of multiple cell types, create many challenges compared to standard 2D meta-
bolic analyses due to the heterogeneity of the system and the need to analyze 
multiple focal planes.

The SeaHorse XF assays are useful to characterize a broad metabolic phenotype 
(i.e., primarily glycolytic or OxPhos) using a microwell plate format. They employ 
a probe containing an embedded oxygen-sensitive fluorophore and an embedded 
proton-sensitive fluorophore to monitor minute changes in acidity and oxygen con-
centration which can then inform the oxygen consumption rate and the extracellular 
acidification rate. The former is characteristic of OxPhos whereas the latter is indic-
ative of glycolysis with lactate as the terminal end product (Fan et  al.). The XF 
assays were originally developed for 2D cell culture, but have since been adapted to 
analyze spheroids as well, allowing for the rapid profiling of organoids grown in 
spheroid plates [62]. This system has the advantage of being label free, high- 
throughput, customizable for reagent studies, and fully adapted to 3D assays. 
However, it measures only two of the tens of thousands of possible metabolites, and 
contains no spatial resolution.

Fluorescence Lifetime Imaging Microscopy (FLIM) utilizes confocal or multi-
photon microscopy with rapidly pulsed lasers to detect the lifetime of endogenous 
fluorophores. FLIM can offer incredible temporal resolution, on the order of nano-
seconds, of the chemical state of a system. In vivo and in vitro, NADPH, NADH, 
and FAD are fluorescent molecules with a myriad of functions tied to the metabolic 
state of the cell and the ratios of protein bound to unbound forms is indicative of 
cellular metabolism [63, 64]. FLIM is incredibly sensitive due to the natural sensi-
tivity of the fluorophores to their local chemical environment; bound forms of these 
molecules show a significant increase in lifetime (for NAD(P)H, 3.2 ns) over their 
unbound, free solution forms (for NAD(P)H, 0.8 ns) and can thus be used to meta-
bolically profile cells [65, 66]. More recently FLIM has been used in 3D tumor 
organoids to assess cell proliferation [67]. Because this is a microscopic technique, 
it also offers high spatial resolution, permitting insight into the subcellular ratios of 
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each of these fluorescent molecules. NADH and NADPH are nearly identical spectrally, 
but there have been some inroads into differentiating their FLIM signals, which is 
an important distinction due to the distinct roles of NADH in energy production and 
NADPH in biomolecule production and redox state maintenance [68, 69]. FLIM, 
however, is limited to those metabolites which are inherently fluorescent, and 
requires relatively expensive equipment.

By far the most robust technique for studying metabolism is Liquid 
Chromatography-Mass Spectrometry (LC-MS). LC-MS allows for the detection 
and quantification of nearly the entire metabolome of a sample. In 2D cell culture, 
cells are grown in culture medium, fixed (usually with ice cold methanol), and the 
metabolites are extracted using a mixture of organic and aqueous solvents before 
being passed through a chromatography column and analyzed by mass spectrome-
try. The combination of LC-MS allows for the separation of metabolites based on 
both the retention time (LC) and mass to charge ratio (MS) that allows for high reso-
lution detection and identification of each metabolite. By comparing the metabo-
lomes or specific metabolites of two nearly identical samples grown in different 
conditions, known as differential metabolomics, enriched pathways dependent on 
these differences can be elucidated. In addition, isotope labeling allows for the 
tracking of metabolites through different pathways through the detection of strong 
isotope peaks and the use of metabolic flux analysis using isotopically labeled 
metabolites yields a more complete picture of the metabolic network. The main 
shortcoming of this technique is that this represents an “average” metabolome for 
the sample, so extending this technique to 3D tissues results in a total loss of spatial 
resolution and a lack of cell specificity. To ameliorate the loss of specificity, cell 
sorting techniques can be used although this also presents its own set of challenges 
and disadvantages in sample handling.

Mass Spectrometry Imaging (MSI) is a Matrix Assisted Laser Desorption/
Ionization (MALDI) variant that uses a laser and specific analyte preparation to 
desorb and ionize metabolites from finely sectioned tissues before running typical 
mass spectrometry and analysis. The details of MSI preparation and analysis are 
active areas of research and have been recently reviewed [70]. However, the result 
of an MSI experiment recreates the metabolome at each point with sub-micrometer 
resolution while retaining the spatial organization of the analyzed tissue [62]. By 
analyzing adjacent tissue sections histologically, metabolic differences between 
adjacent cells are resolvable as well. Very recently, MSI has been used to investigate 
tumor organoids in 3D to investigate topics such as drug delivery/penetration and 
the impact of hypoxia [71–73].

All three techniques outlined here have inherent strengths and weaknesses. Both 
XF and FLIM techniques can repeat measurements on the same sample and require 
little preparation, but offer somewhat limited information about the system, while 
LC-MS and MSI offer more complete information, but require more time, effort, 
and preparation to execute and analyze and are terminal experiments. As this is still 
a developing field of research, future advances may offer greater ease or scope for 
these techniques or new techniques altogether but metabolic studies of complex 3D 
tissues are finally possible. Being able to analyze cellular metabolism in tumor 
organoids will create a more complete picture of tumor angiogenesis.
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6  Biomechanics in Tumor-Associated Angiogenesis

6.1  Overview

In addition to changes in metabolism and oxygen tension, biomechanical forces can 
regulate angiogenesis [74, 75]. Physical forces, including extracellular matrix 
(ECM) stiffness, compressive/contractile forces exerted due to cell proliferation and 
other cellular activities, and fluid forces exerted by blood and plasma flow have all 
been shown to be critical regulators of angiogenesis (Fig. 7) [76–82]. The composi-
tion, and therefore effective stiffness, as well as the organization of the ECM sur-
rounding the tumor also plays a role in mechanically regulating angiogenesis 
[83–88]. Increased peritumoral ECM stiffness correlates with increased potential 
for angiogenesis and metastasis. Furthermore, both tumor cells and endothelial cells 

Fig. 7 Macromechanical forces in tumor progression. Typically, three different types of forces are 
considered important in tumor progression. Interstitial flow (red) generated by developing vascu-
lature within the tumor promotes vessel growth at the periphery of the mass. Compressive forces 
and strains (purple) increase as tumor cells divide uncontrollably, putting pressure on the sur-
rounding ECM. Finally, ECM surrounding the tumor can apply compressive forces (green) as 
more ECM is deposited by tumor and stromal cells, effectively creating a dense capsule of tissue 
containing the tumor mass
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can actively remodel the ECM to facilitate enhanced angiogenesis as well as promote 
metastasis. Compressive forces in the tumor microenvironment are a result of the 
unchecked proliferation of tumor cells that are constrained by surrounding ECM 
and stromal cells [14, 89]. Finally, at the cellular level, contractile behaviors of cells 
in the tumor microenvironment can alter angiogenesis and tumor progression 
[90–93]. Enhanced mechanosignaling from cancer-associated fibroblasts (CAFs) 
and tumor cells alter ECM alignment and remodeling, promoting both enhanced 
angiogenesis and tumor cell metastasis [94–99]. Recent work has demonstrated that 
paracrine regulation to limit the number of tip cells occurs through the Notch path-
way, which has been shown to be mechanosensitive [100, 101]. Furthermore, the 
shift from quiescent vascular endothelial cell to migrating tip cell mimics the phe-
notypic change seen in epithelial to mesenchymal transformation (EMT). In both 
cases cell- cell junction proteins are dramatically downregulated and cells become 
more migratory. Several groups have demonstrated that EMT is regulated through 
active biomechanical forces including cell-cell tension and contractile forces [92, 
102–104].

Endothelial cells are also exquisitely sensitive to fluid flow including intralumi-
nal flow, interstitial flow over and around the basolateral surface, and intercellular 
(transmural) flow between cell junctions. While interstitial flow of plasma can 
enhance angiogenic signaling in endothelial cells as well as invasive pathways in 
tumor cells, luminal flow of blood through vessels limits the angiogenesis [30, 105, 
106]. Importantly, the leaky and tortuous nature of blood vessels in the tumor micro-
environment impacts the magnitude and variance of all of these flows.Luminal flow 
exerts shear stress that regulates nitric oxide production by endothelial cells, which 
in turn limits endothelial cell sprouting and angiogenesis [30]. The interstitial flow 
of plasma leaks across the capillary wall and is reabsorbed in post capillary venules. 
Thus, the interstitial flow exerts transmural shear forces on the endothelial junc-
tions, pressure forces from apical to basal, and basal to apical sides of the endothe-
lial tube. The transmural flow has been shown to facilitate angiogenesis in a shear 
stress dependent manner [107]. Transmural flow is characterized by Starling’s Law, 
in which the driving force is the arithmetic sum of hydrostatic and oncotic pressure 
differences across the wall of the vessels. The transmural flow exerts shear stress, 
the magnitude of which not only depends on the flow across the vessels but also on 
the size of vessel perforations. Interestingly, the vessel perforations in organs 
throughout the human body vary, indicating differential potential of organs for 
angiogenesis in response to transmural flow. The basal to apical interstitial flow, like 
that in post-capillary venules, has been shown to activate and directionally guide 
angiogenesis [108]. However, apical to basal flow, like that in capillaries, does not 
activate angiogenesis, indicating the direction of flow is important in activating the 
angiogenic program (Fig. 8).

Finally, tumor cells themselves can sense shear stress, leading to changes in the 
production of soluble mediators that directly impact angiogenesis such as VEGF, 
HIF1, and matrix metalloproteinase 9 [109, 110]. The shear forces are transmitted 
in cells by several mechanisms, including integrin signaling pathways and surface 
glycocalyx signaling. Integrins on the surface of endothelial cells attach to the ECM 
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surrounding the cells and begin the formation of focal adhesions (FAs) inside the 
cell. Over 200 proteins have found to be associated with FA formation and many of 
these or their downstream effectors are either mechanosensors or mechanoregula-
tors. A full review of FA and glycocalyx signaling in tumor-associated angiogenesis 
is outside the scope of this book chapter but can be found in other excellent reviews 
[81, 111–116].

Fig. 8 Angiogenesis models for studying metastasis. (a) A microfluidic device that simulates fea-
tures of intravasation includes a collagen filled central chamber with HT1080 fibrosarcoma cells 
(red) migrating towards an endothelial cell (green) lined fluidic line. Scale bar 30 μm (reprinted 
with permission from [155]). (b) An alternate 3D model of intravasation includes a spheroid of 
cells comprised of both endothelial cells (red) and SW620 colon carcinoma cells (green) embed-
ded in a collagen gel that contains fibroblasts. Microvessels sprouts from the spheroid and cancer 
cells intravasate and migrate within the vessel lumen. Scale bar 100 μm (reprinted with permission 
from [9]). (c) A model of tumor cell extravasation using a similar microfluidic device as in (a). 
Here endothelial cells line a fluidic channel (gray) and a collagen gel (green) is placed adjacent to 
the abluminal surface at specified regions. Tumor cells (breast cancer, MDA-MB-231) are intro-
duced through the microfluidic channel, and evidence of extravasation is demonstrated (white 
arrow). Red label is VE-cadherin, and blue is the DAPI stained nuclei of the endothelial cells 
(reprinted from [160] and is covered under Creative Commons Attribution (CC BY) license)

V.S. Shirure et al.



135

6.2  Angiogenesis Models to Elucidate the Impact 
of Mechanical Forces

Early understanding of biomechanical pathways involved in tumor-associated 
angiogenesis came exclusively from 2D monolayer cultures, either on uncoated or 
ECM-protein coated tissue culture plastic or glass. Another level of complexity in 
2D monolayers is derived when polyacrylamide (PA) gels are functionalized with 
collagen or fibronectin before cells are seeded onto the substrate [117–119]. The 
advantage of this system is that the PA gels can be synthesized over a wide range of 
stiffness values with great control. ECM proteins, either collagen or fibronectin, can 
then be covalently bonded to the PA gels permitting cell culture. Numerous groups 
have used these gels to probe the mechanoregulation of cell behavior including FA 
formation and regulation of cell contractile behavior. The disadvantage of this 
widely used system is that it is limited to 2D studies. Recently, work from the 
Takyama lab has utilized this protocol in conjunction with PDMS-soft lithography 
and 3D collagen gels to generate hybrid platforms that allow for spatial control over 
cell seeding with the benefit 3D cell culture in ECM-based gels [120]. The 2D PA 
system has also been utilized to study the effects of matrix stiffness, specifically 
crosslinking of collagen by lysyl oxidase, on the upregulation of VEGF in hepato-
cellular carcinomas [119].

Additionally, there have been several studies that demonstrate remarkable differ-
ences in 2D and 3D signaling behavior, especially of endothelial cells [121]. A key 
demonstration of this occurs in integrin signaling regulation where FAs in 3D are 
formed and degraded much more quickly than in 2D. FAs are dynamic in 3D and 
the inhibition of specific integrins can either promote or inhibit faster migration [87, 
113, 122, 123]. Results from studies such as these have prompted a new wave of 
tumor angiogenesis research incorporating the techniques used in tissue engineer-
ing to generate 3D organoids to replicate the native tumor microenvironment. These 
models have gone through several iterations, at first only including tumor cells and 
then adding more cell lines to recapitulate the complex multicellular environment. 
This includes stromal or support cells, immunological cells, and endothelial cells in 
the surrounding blood vessels. While numerous research groups have adopted 3D, 
multicellular approaches to study specific tumor types, metastatic potential, and 
 cellular pathway regulators, there has been limited investigation of biomechanical 
regulation of tumor progression, specifically angiogenesis, in this type of model.

Tissue engineering protocols allow for several methods of spatial control over 
cellular seeding in either synthetic polymer or ECM-derived materials. One of the 
approaches is a “self-assembled” technique, in which cells are simply mixed 
together for co-culture before casting of the matrix in a premade mold or dish, and 
sometimes includes external mechanical stimulation from moving culture platforms 
including orbital shakers or rotating vessel wall bioreactors [85, 124–127]. 
Furthermore, many of these studies represent nascent research in developing novel 
platforms and are limited in their ability to interrogate the role of biomechanics in 
angiogenesis associated with tumor progression. Bates et  al. demonstrated that 
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blocking integrin function in such self-assembled organoid models of colorectal 
cancer blocked tumor progression [128]. Vascularized liver buds have been gener-
ated via these same techniques, with a possible dependence on stromal cell contrac-
tile behavior for tissue assembly [129–131]. The advantages of this protocol are that 
the cells naturally orient themselves in a manner replicating the native in vivo tumor 
microenvironment. However, there is incomplete spatial control of this process, lim-
iting the type of results that can be gleaned from such studies. However, these mod-
els are still important tools to understand tumor angiogenesis, and have demonstrated 
the importance of CAFs in promotion of tumor associated blood vessel growth 
through factors including VEGF, HIF-1a, caveolin-1 [31, 97, 132].

Another approach to investigate the role of biomechanics on angiogenesis in 3D 
tumor organoids involves the use of animal models. A recent study demonstrated the 
mechanosensitive nature of angiogenesis using the avian choiroallantoic membrane 
(CAM) model in the developing avian embryo [133]. Rings containing a collagen 
gel were implanted on top of the membrane, with tension induced in only the outer-
most layer of tissue. Harvested gels showed invasion of blood vessels due to tensile 
forces generated by the implant. This same model was utilized by another group to 
explore how crosslinks affecting biomechanical properties of the collagen gels 
altered VEGF production in tumor spheroids seeded onto the CAM [134].

Microfluidic model systems, as described above, provide a novel technique to 
study the effects of luminal and interstitial flow in a 3D tumor microenvironment 
containing self-assembled vasculature network with the further advantage of high 
levels over spatiotemporal seeding, flow conditions, and ease of visualization in real 
time during experiments. By controlling device parameters and fluidic pressures in 
feeding chambers, the precise direction and magnitude of interstitial flow can be 
manipulated, allowing for creation and monitoring of soluble signaling factor gradi-
ents that alter angiogenesis in the tumor microenvironment. We have developed mul-
tiple microfluidic devices that controls interstitial flow and permits tumor growth in 
the presence of self-assembled vasculature [29, 38, 135–137]. Others have utilized 
similar techniques to study the effects of ECM composition and stiffness, effects of 
diffusion of growth factors, alterations in cell phenotypes in co- culture and nascent 
vasculature biomechanical properties such as permeability [138–142]. The contin-
ued advance of model systems will continue to enhance our understanding of the role 
of mechanical forces on angiogenesis in the tumor microenvironment.

7  Intravasation and Extravasation in Tumor-Associated 
Angiogenesis

7.1  Overview

Numerous outstanding recent reviews are available that cover the general metastatic 
process of cancer [143–146], as well as those focusing specifically on the role of the 
endothelium including intravasation (tumor cells entering the circulation) and 
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extravasation (tumor cells exiting the circulation) [147–150]. In addition, a recent 
review describes in vitro and in vivo models that have been developed to probe the 
metastatic process including some of the very recent advances in microfluidic and 
“organ-on-a-chip” technologies [151]. Thus, this section will succinctly review the 
metastatic process, features of this process that involve the circulation which have 
been captured with in vitro models, and then focus on features of the metastatic 
cascade which specifically involve the circulation that have proven difficult to simu-
late including possible strategies moving forward.

Tumor metastasis is the process by which a primary tumor is able to success-
fully move, or metastasize, to another location in the body. While complex, many 
steps in the metastatic cascade have been described. For an epithelial-based tumor 
(which comprise approximately 80% of all tumors), the process can be summa-
rized in five steps: (1) dedifferentiation from an epithelial phenotype to a migra-
tory mesenchymal cell phenotype, usually termed epithelial-mesenchymal 
transition (EMT), (2) intravasation of the mesenchymal phenotype tumor cell, or 
clusters of tumor cells, from the primary tumor into the circulation, (3) survival 
within the circulation, (4) attachment to an endothelial cell at a distant site and 
extravasation from the circulation, and (5) survival and differentiation in a recep-
tive stroma from the mesenchymal tumor cell phenotype back to an epithelial cell 
phenotype, termed mesenchymal-epithelial transition (MET). Engaging the circu-
lation is a necessary step for successful metastasis. Intravasation, survival in the 
circulation, and extravasation (steps 2–4) all uniquely require or utilize the vascu-
lar network. Although specific features of these events have been demonstrated 
in vitro, several important features have not, and numerous important questions 
remain unanswered.

Intravasation occurs in what is generally referred as the metastatic niche, a tumor 
microenvironment that contains the necessary factors for successful migration and 
entry into the circulation. The development of the metastatic niche is complex but 
involves the release of growth factors and trophogens from the endothelium that 
encourage the clustering of tumor-associated myeloid cells, platelets, and tumor 
cells towards the vascular supply. For example, endothelial cells in cancer- associated 
blood vessels have differential expression of adhesion molecules, P- and E- selectin, 
that recruit attachment of leukocytes to the metastatic niche [74]. Also, increased 
release of stromal derived factor-1 (SDF1) from endothelial cells leads to recruit-
ment of endothelial progenitor cells to the metastatic niche. The recruitment of 
additional cell types, along with altered expression on endothelial cells, leads to a 
cascade of cell secreted factors, such as VEGF, endostatin, and other pro-tumor 
growth factors that characterize the metastatic niche and contributes to metastasis 
[74, 152]. Using murine and zebrafish models, and 3D organotypic microvascular 
niches, Ghajar and co-workers demonstrated that endothelial tip cells of cancer- 
associated blood vessels have decreased expression of pro-dormancy factor, throm-
bospondin- 1, and enhanced expression of pro-tumor factors, periostin and TGF-β1, 
that encourages tumor cell migration [153].
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7.2  Methods to Investigate Intravasation and Extravasation 
of Tumor Cells

Intravasation from within the metastatic niche requires the tumor cell(s) to cross the 
basolateral side of the endothelial cell. This necessitates overcoming the endothelial 
basement membrane and intercellular functional proteins. There is general consen-
sus that intravasation occurs in vessels that are part of the tumor microenvironment 
and thus have characteristic features which are different from vessels in non- 
cancerous tissue including increased permeability and less basement membrane. 
Several relatively sophisticated 3D in vitro models of intravasation have recently 
been presented. At least two groups have utilized soft lithography to create a micro-
fluidic device to mimic intravasation. In both cases tumor cells could migrate across 
an ECM hydrogel (collagen or fibrin) and then engage the abluminal surface of an 
intact layer of endothelial cells [154, 155]. Zervantonakis et al. coated a microflu-
idic line on the other side of the ECM that was lined with a confluent layer of endo-
thelial cells [155]. The tumor cells could then penetrate the abluminal surface of the 
endothelial cells, thus mimicking intravasation. Strengths of this approach include 
the 3D migration of tumor cells in response to controlled gradients, and the con-
trolled migration of tumor cells across an endothelial monolayer. The models are 
also easily adaptable to include other cells such as macrophages [155], and stromal 
cells [154]. In either case, the endothelial cell phenotype was not conditioned by the 
tumor microenvironment and only immortalized cell lines were utilized.

Ehsan et al. presented an alternate strategy to create a 3D in vitro model of intrav-
asation by co-culturing endothelial cells and tumors cells in a spheroid and placing 
this spheroid in a fibrin gel [9]. A spontaneous vessel network formed within the 
spheroid and also sprouted from the spheroid. A colon cancer cell line intravasated 
into the vessel network, and they showed this process was related to EMT and the 
expression of the transcription factor SNAIL. Strengths of this model include the 
creation of a vascular network in close proximity to the tumor, and a true 3D vascu-
lar network. The surrounding matrix did contain stromal cells, but their work was 
also limited to immortalized cancer cell linesand there was no flow within the vessel 
lumens.

Mimicking the step of tumor cell survival in the blood vessel is problematic due 
to the complexity of blood and its components (e.g., platelets, leukocytes, clotting 
factors) and the mechanical microenvironment. Most cancer cells in the circulation 
do not survive; those cancer cells that do survive are able to overcome the shear 
stress and immune system by aggregating together and/or interacting with platelets 
[149]. These events have generally been captured using in vivo mice models and 
post-sacrifice observations of metastasis [156, 157]. This approach has been useful 
to identify some of the key cells and proteins involved, but lack temporal and spatial 
resolution. No in vitro model to date has been able to capture these dynamic events.

Extravasation requires the tumor cell(s) to cross from the luminal side of the 
endothelial cell, and thus crossing the intercellular junctional proteins and basement 
membrane, in that order. In contrast to intravasation, extravasation occurs at sites 
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distant from the primary tumor and thus the endothelium is generally considered to 
be normal, but specific to the organ. Many details of how a tumor cell attaches and 
transmigrates the endothelium have been worked out using Transwell© [158] cham-
bers and 2D laminar flow chambers [159]. Some of the mechanisms parallel the 
steps of neutrophil adhesion and paracellular transmigration including the expres-
sion of PECAM1 and E-Selectin on the endothelial cells and αVβ3 integrin and 
CD44 on the cancer cell. A more advanced 3D microfluidic model was recently 
reported and demonstrated flow and extravasation of cancer cells through a micro-
fluidic channel lined with endothelial cells [160]. The major weaknesses in the cur-
rent in vitro models of extravasation are the lack of organ endothelial specificity. 
Most models have utilized human umbilical vein endothelial cells (HUVECs) [158, 
161] cultured on a fibronectin coated membrane of collagen gel, and thus they do 
not contain organ specific features of the endothelial cell [162] or vascular architec-
ture [163]. Overcoming these challenges in the mimicry of tumor cell extravasation 
represents a tremendous opportunity to enhance our understanding of tumor progression.

8  Summary and Future Directions

In this chapter, we have discussed the process of angiogenesis in tumor organoids, 
the development of novel model systems for its study, as well as numerous results 
garnered from such studies. Increasingly, researchers are trying to recapitulate the 
complex native in vivo tumor microenvironment to provide an enhanced under-
standing of tumor progression for the purpose of developing novel therapeutic strat-
egies. Initial research strategies utilized simple co-culture systems, either 2D or 3D, 
or mouse models, both of which present limited spatial or temporal control in eluci-
dating the cues that regulate angiogenesis and tumor progression. The recent trend 
is the generation of sophisticated organ-on-a-chip systems where researchers can 
control spatial and/or temporal patterning of cells in matrices that mimic the native 
tumor tissue. Furthermore, use of microfluidic systems based on optically transpar-
ent materials permits real-time analysis of angiogenesis in the tumor microenviron-
ment. Modular control over factors including hypoxia, shear flow, biomechanical 
properties, and gradients of growth factors permit interrogation of tumor progres-
sion at previously unimaginable resolution and physiological relevance.

As this field develops further, we predict that we will generate models combining 
the numerous factors discussed in this chapter, to generate in vitro systems that fully 
recapitulate the complex, native tumor microenvironment. By enhancing our under-
standing of how these features alter not only tumor cell behavior, but also endothe-
lial cells of tumor-associated vasculature and the processes accompanying tumor 
development including intravasation/extravasation, we increase the likelihood of a 
breakthrough scientific discovery that will allow for development of novel anti- 
cancer treatment strategies, targeting the processes we are only beginning to fully 
understand due to our refined models of tumor organoid angiogenesis.
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